TEKTRONIDC

4051

EDITOR

4051R06

Tektronix, Inc.
P.O. Box 500

Beaverton, Oregon 97077

070-2170-00 First Printing FEB 1977

onix, In¢. Beaverton, Oregon. Printed

\ 1%
i ik

SECTION 1

SECTION 2

SECTION 3

4051R06 EDITOR

CONTENTS

GENERAL DESCRIPTION Page
Introduction e 11
Specifications 1-3
Installation Instructions 1-4
An Overview of the EDITOR Commands 1-6
Terms Used inthe Manual 1-8
How the Manual is Organized 1-11

GENERAL INFORMATION

Introduction 2-1
Getting Started 2-6
Getting the Most Workspace for the EDITOR 2-6
Calling the EDITOR 2-6
Returning Control of the System to the BASIC Interpreter .2-6
The Text Buffer, 2-6
The Size of the Text Buffer 2-7
Display Format 2-7
Using an EDITOR Command 2-8
The Command Keyword 2-8
Delimiters inthe Command 2-9

Edit Delimiters T T 2-10

String Delimiters 2-13

Edit Line Numbers in the Command 2-15

How Much Text is Affected by an EDITOR Command2-23
Omitting a Parameter in a Command: Default Values2-27

Optional Edit Line Numbers 2-27
Optional Edit Delimiters 2-29
Other Optional Parameters 2-32
EDITOR Command Syntax P 2-35

SPECIAL KEYS

Introduction 3-1
The User-Definable Keys 3-1
RETURNTOBASIC 3-1
RUBOUT CHARACTER 3-2
MARGIN OFF 3-2
MARGIN 1 . 3-2
MARGIN 2 ... e 3-2
Resetting the MARGIN Parameter 3-3

SECTION 3

SECTION 4

SECTION 5

CONTENTS (cont)

SPECIAL KEYS (cont)

Keyboard Keys i
The AlphanumericKeys
The RETURN Key it
The BREAK Key
The LINEEDITORKeys
The COMPRESS/EXPAND Key
The REPRINT/CLEAR Key
The RECALL NEXT LINE/RECALL LINEKey
The STEP PROGRAM Key (RECALL PREVIOUS LINE)
Peripheral Control Keys

EDITING COMMANDS

The CARD Command,
The CASE Command
The COPY Command,
The DELETE Command
The INSERT Command
The LISTCommand
The MOVE Command
The NLSEARCH Command
The NLSEARCH and Delete Line Command
The NLSEARCH and Replace String Command
The SEARCH Command
The SEARCH and List Line Command
The SEARCH and Edit Line Command
The SEARCH and Delete Line Command
The SEARCH and Replace String Command
The SORT Command
The REVSORT Command

ENVIRONMENTAL COMMANDS

The LASTLINE Command
The LOWERCASE Command
The RENUMBER Commandoo....
The UPPERCASE Command
The #= Command
The ~= Command
The = Command« ...
The]= Command

4051R06 EDITOR

SECTION 6

SECTION 7

SECTION 8

SECTION 8

4051R06 EDITOR

CONTENTS (cont)

Input/Output Commands

Introduction
I/O Addresses
Default Values
The APPEND Command
The FIND Command
The INPUT Command
The MARK Command
The OLD Command
The PRINT Command
Special PRINT Commands
The SAVE Command
The SKIP Command
The SWN Command
The WRITE Command

APPENDIX A

Error Messages

APPENDIX B
Tables

APPENDIX C

Index

L

-
-
<

4051R06 EDITOR

Fig. 1-1. 4051 EDITOR.

Section 1

GENERAL DESCRIPTION

INTRODUCTION

The Tektronix 4051R06 EDITOR is a Read-Only Memory device designed to be used with the
Tektronix 4050-Series Graphic Systems. The EDITOR ROM Pack, shown in Fig. 1-1, contains
firmware routines that allow ASCII magnetic tape files to be altered or edited.

How To Call the EDITOR

After the ROM Pack is plugged into the Graphic System backpack or into a ROM Expander
Unit, the EDITOR routines are made available by entering the statement CALL”EDITOR"” from
the keyboard. Executing the CALL statement gives control of the Graphic System to the
EDITOR, and until the RETURN TO BASIC overlay key is pressed, BASIC commands are not
available.

EDITOR Commands and Special Keys

When the EDITOR is in control of the Graphic System, 29 commands may be used to bring
lines of textinto memory, aiter them, and send the edited lines to an internal or external storage
device. The commands include text editing commands, Input/Output commands, and
environmental commands. The keyboard LINE EDITOR keys may be used while the EDITOR is
in control, and six of the user-definable keys have special meanings.

What to Use the EDITOR For

The EDITOR is used to edit already existing files, or to create new files. The text acted upon by
the EDITOR may be any set of ASClI characters; that is, programs, data, or “free"” text such as
letters or textbooks. The EDITOR is not restricted to editing BASIC programs; it may be used to
write programsin FORTRAN, COBOL, ALGOL, orany other programming language that uses
ASCII characters. The EDITOR may be used to edit programs written in other versions of
BASIC, to make the programs compatible with 4051 BASIC.

The EDITOR and the Data Communications Interface

The TEKTRONIX 4051 Data Communications Interface is used to send the contents of internal
magnetic tape files to a host computer, or to pull files from ahost and place themin an internal
tape file. This means that programs created or updated under EDITOR control may be stored

on the internal magnetic tape unit, then sent to a host computer using the Data
Communications Interface. Or, programs stored on the host may be pulied back into the
internal tape unit using the Interface, then edited off-line using the EDITOR.

4051R06 EDITOR @ 11

General Description

Writing, updating, and documenting programs are most economically done off-line, under
EDITOR control. Using the EDITOR saves costly connect time during these processes, and
frees the host computer to work on other jobs.

Summary

In summary, the EDITOR is a line-oriented and string-oriented text editor consisting of 29
commands. The EDITOR allows the 4050-Series Graphic Systems to be used off-line for
creating, editing, and storing free text, as well as for writing, updating, documenting, and
saving programs in any programming language based on the ASCII character set.

@ 4051R06 EDITOR

General Description

SPECIFICATIONS

POWER REQUIREMENTS

The 4051R06 EDITOR draws all necessary power from the 4051 power supplies. Connections
to the power supplies are made through the backpack on the rear panel of the main chassis.
The EDITOR ROM Pack must be inserted into a slot in the backpack, or into a ROM Expander
Unit, before power is applied to the system.

Voltage Supplies Current Limit
+5 Vdc 100 mA
+12 Vdc 40 mA
—-12 Vdc 4 mA

MEMORY REQUIREMENTS

When inserted into a backplot slot, the EDITOR immediately reserves 592 bytes of RAM
memory for its own use. This space is used to store status information, and is not the same as
the workspace reserved for storing text.

The 4051 Option 1 (Data Communications Interface) also uses 592 bytes as soon as it is

plugged into the system. However, if the EDITOR and a Data Communications Interface are
both plugged into backpack slots, they share the same 592 bytes of storage.

ALTITUDE

Non-operating: 50,000 feet maximum
Operating: 15,000 feet maximum

TEMPERATURE
Non-Operating: —40°C to +65°C.
Operating: +10°C to +40°C.
HUMIDITY

95% non-condensing (storage)
80% non-condensing (operating)

4051R06 EDITOR @ 1-3

General Description

VIBRATION (NON-OPERATING)
0.015" DA-10-50-10

SHOCK (NON-OPERATING)
1/2 Sine 11 ms duration, 30 G’s

PHYSICAL DIMENSIONS (INCLUDING EDGE BOARD CONNECTOR)

Length: 4.662 inches (11.84 centimeters)
Width: 2.620 inches (6.65 centimeters)
Depth: 0.875 inches (2.22 centimeters)

WEIGHT
8 0z. (227 grams)

STANDARD ACCESSORIES

1—Operators Manual (Tektronix Part Number 070-2170-00)
5—User-definable key overlays

INSTALLATION INSTRUCTIONS

1. Set the 4051 power switch to the OFF position.

Inserting any device into the backpack when the 4051 power is ON may cause
memory to be erased. Make sure that important information in the RAM is stored on
magnetic tape before turning the power OFF and proceeding.

2. With the power removed from the system, insertthe EDITOR ROM Pack into aslotas shown
in Fig. 1-2. Press down, and at the same time gently rock the plastic housing from side to side
until the ROM Pack edgeboard connector is firmly seated in the receptacle connector.

3. Setthe 4051 power switch to the ON position. After a few seconds of warm-up, the system s
ready for use.

14 @ 4051R06 EDITOR

General Description

4051R06 EDITOR

Fig. 1-2.

Insert the EDITOR ROM pack into a backpack slot.

General Description

1-6

AN OVERVIEW OF THE EDITOR COMMANDS
EDITING COMMANDS

The EDITOR provides 11 editing commands for use in changing text. The commands are
CARD, COPY, CASE, DELETE, INSERT, LIST, MOVE, NLSEARCH, SEARCH, SORT, and
REVSORT.

The commands are used to format text into lines of a specified length (CARD), to copy portions
of text at a specified location (COPY), and to change the case of the characters in the text
(CASE). Lines may be deleted (DELETE), new lines may be created (INSERT), and lines may
be listed on the display or sent to an external device (LIST). Lines may be moved to a new
location (MOVE) or rearranged according to the ASCII value of characters found in specified
positions within a line (SORT and REVSORT).

NLSEARCH and SEARCH together have six syntax forms which are variations of searching for
a specified string. NLSEARCH is used to delete lines found to contain a certain string, or to
search for a string and replace it with another string. SEARCH performs these same two
functions, but at the same time lists all lines containing the specified string.

SEARCH has two more variations. The first one seeks out and lists on a device all lines found to
contain a certain string. The second one finds a line containing the string, reprints and recalls
the line to the line buffer for editing, then continues the search.

INPUT/OUTPUT COMMANDS

The EDITOR has 10 Input/Output commands used for transmitting text to and from storage
devices, for positioning the READ/WRITE head, and for marking new files. The commands are
APPEND, FIND, INPUT, MARK, OLD, PRINT, SAVE, SWN (Save With Number), SKIP, and
WRITE.

Although many of the commands have the same keyword as a BASIC Input/Output command,
remember that these are EDITOR commands, not BASIC commands. EDITOR commands are
not necessarily identical to their BASIC equivalents; there are some differences in the syntax
forms and in how the commands work. For example, the command WRITE in EDITOR may

have two line numbers following the keyword, but WRITE in BASIC requires a data item to be
specified in the command. Also, WRITE in BASIC is used to send data to a peripheral devicein

machine dependent binary code, but WRITE in EDITOR is used to store text on a device in

ASCII code.

The differences between EDITOR Input/Output commands and the equivalent BASIC
commands are included in the explanations of the commands in Section 6.

@ 4051R06 EDITOR

General Description

ENVIRONMENTAL COMMANDS

There are eight EDITOR commands that are called “"environmental” because they do not
transmit or edit text, but alter the working environment or change status bytes within the
system. The commands are LASTLINE, LOWERCASE, RENUMBER, UPPERCASE, |=, #=,
~=,and _=.

The LASTLINE command examines the text buffer and returns information about the size of its
current contents. LOWERCASE and UPPERCASE set flags that affect the result of executing
the commands CASE, SORT, REVSORT, NLSEARCH, and SEARCH. The RENUMBER
command assigns new edit line numbers to lines of text.

The next four environmental commands allow specified ASCII characters to take on special
meanings. The]= command gives the specified ASCI| character the meaning "END-OF-
RECORD.” The #=command defines a character than can stand for any digit, and ~=assigns a
"wildcard” character. The command _= lets the specified character be used as a prefix
meaning "all but the character following this one.”

Special PRINT Commands

In addition to the environmental commands described above, three special PRINT commands
may be executed while under EDITOR control to change the processor status or internal
magnetic tape status. The first special PRINT command prepares the microprocessor for
requests for an alternate Input/Output format. This command is the same as its BASIC
equivalent and is reviewed briefly in Section 5.

The second special PRINT command instructs the microprocessor to change the end-of-
record character from a CR to a CR and LF when inputting text, and when listing text on an
external device. The command differs from its BASIC counterpartin that it only affects the end-
of-record character during the two Input operations APPEND and OLD, and the two Output
operations LIST and SEARCH.

The third special PRINT command changes the internal magnetic tape status by specifying
whether physical records are to be 128 or 256 bytes long, whether or not the checksum error
checking technique should be used, and whether or not to use file header format. The
command is the same as its BASIC equivalent.

SPECIAL KEYS

Alphanumeric Keys, LINE EDITOR Keys, and Peripheral Control Keys

Most of the keys on the Graphic System keyboard operate under EDITOR control as they doin
BASIC. All of the alphanumeric keys still function after the EDITOR is called, performing the
same or similar functions as in BASIC.

4051R06 EDITOR @ 1-7

General Description

The LINE EDITOR keys also work under EDITOR control. The functions COMPRESS,
EXPAND, RUBOUT—, RUBOUT-, BACKSPACE, SPACE, REPRINT, CLEAR, RECALL LINE,
and RECALL NEXT LINE, may be performed under EDITOR control. Several of these keys
function in a slightly different manner or serve different purposes under EDITOR than in
BASIC. The differences are explained in Section 3.

The AUTO NUMBER key is not used by the EDITOR, and the STEP PROGRAM key is assigned
the special meaning "RECALL PREVIOUS LINE"” while the EDITOR is in control. Peripheral
control keys REWIND and MAKE COPY may be used under EDITOR, but not AUTO LOAD.

USER-DEFINABLE KEYS

Five user-definable keys have predefined uses while the EDITOR is in control. The specially
assigned keys are shown on the user-definable key overlay. MARGIN OFF, MARGIN 1, and
MARGIN 2 control how many columns of text appear on the display and what happens when a
PAGE FULL condition occurs. The RUBOUT CHARACTER user-definable key provides the
symbol | , and the RETURN TO BASIC key is pressed to return control of the system to the
BASIC Interpreter.

TERMS USED IN THE MANUAL

The terms defined below are used throught the manual. It may be helpful to know what these
words mean before reading Section 2.

Text

The word text refers to any set of ASCII characters. Text may consist of one line of characters,
or of many lines separated by the end-of-record character. The text acted upon by the EDITOR
may be programs, data, or "free text.”

Text Buffer

The text buffer is a portion of memory reserved for use by the EDITOR. The text buffer is the
workspace where editing occurs. Normally, text is brought into the text buffer from a
peripheral device using the command OLD or APPEND. The text is held in the text buffer and
modified using the editing commands, then sent from the text buffer to a storage device using
Output commands SAVE, SWN, or WRITE.

@ 4051R06 EDITOR

General Description

Line Buffer

The EDITOR J/ine buffer is a portion of memory used to store up to 396 characters. The EDITOR
line buffer is more than five times longer than BASIC’s line buffer. Acting as an intermediary
between the keyboard and the text buffer, the EDITOR line buffer holds characters entered
from the keyboard, until BREAK or the RETURN key is pressed. When BREAK or RETURN is
pressed, all characters currently in the line buffer are sent to the text buffer.

In BASIC, lines cannot be longer than 72 characters. However, under EDITOR control you may
create lines up to 396 characters long, simply by continuing to enter characters from the
keyboard. Lines having more than 66 characters appearin "wrap-around” form on the display:

2o e s st sitessosscoesdteedseeceddttodsseteedtoedsteedsteeded
peoeeesssees et esosttest el treceetttetididfrtecidesatrectotd s
bpesosacibeeteedseesitosecotbecescesstiodstoeiiietedserioddsietis st
pdesdsetidsestetdttesdsrecedeseceidetoddereotodoreideceoisseeidoss s
eesssetobosteocisottddetoidtotectoetodeseeiedteoiieesecisetiitie s
183292200 783000350¢902020000080000008800080¢0083¢0¢02880003880292%4+

The line shown above begins after the colon (:) and consists of 396 asterisks. After the 396
asterisks have been entered, the cursor stops moving, and any additional characters entered
from the keyboard are lost.

Once aline has been sent to the text buffer, it may be recalled to the line buffer by pressing the
RECALL NEXT LINE/RECALL LINE or STEP PROGRAM key. A line that has been recalled to
the line buffer in this manner may be edited using the LINE EDITOR keys.

Although the line buffer can only hold 396 characters, you may create lines longer than 396
characters under EDITOR control. Forinstance, you may use the SEARCH and Replace String
command to locate and delete an end-of-record character between two lines that have 300
characters each. Deleting the end-of-record character in this way concatenates the two lines
into one line of 600 characters. The long line may be held in the text buffer, listed, and saved
under EDITOR. Once saved, the line can be brought back into the text buffer using the Input
commands OLD and APPEND.

However, only part of the line can be brought back into the line buffer, because the line buffer
holds a maximum of 396 characters. Pressing RECALL LINE, RECALL NEXT LINE, or STEP
PROGRAM brings the first 396 characters of the line into the line buffer for editing. The
remaining 204 characters are not accessible for editing by the LINE EDITOR keys.'

I1f you must access these characters, insert an end-of-record character again to split the line into two lines that are both
short enough to be recalled to the line buffer for editing. Later, the end-of-record character may be removed once
more to obtain the longer line. Thus, although it is more convenient to work with lines having 396 or fewer characters,
you may actually use the EDITOR to create a line of any length (provided the line does not exceed the current length
of the text buffer).

4051R06 EDITOR @ 19

General Description

Line of Text

A line is a string of ASCII characters that fall between two end-of-record characters. In this
manual, line of text refers to a line found in the text buffer.

Logical Record

A logical record is a string of ASCII characters that lie between two end-of-record characters
on a storage device. A string of characters between two end-of-record characters is called a
line of text while found in the text buffer, but becomes a /ogical record when stored on
magnetic tape.

Edit Line Number

When the RENUMBER command is executed under EDITOR control, each line of text is
assigned a special line number called an edit line number. Edit line numbers appear to the left
of the lines of text, and are separated from the text by a colon (:).

Edit line numbers are assigned by the EDITOR. They are not considered to be part of the text,
and cannot be altered except by the RENUMBER command. Edit line numbers should not be
confused with program line numbers, which are part of the text and may be edited using
EDITOR commands.

String

The word string is used in command syntax forms to mean any ASCII character string.
Quotation marks are shown in the syntax form if delimiters are required around a string. For
instance, the EDITOR command PRINT does not require delimiters around the parameter
string, so no quotation marks appear in the syntax form. However, SEARCH and NLSEARCH
require parameter strings to be enclosed in string delimiters, as indicated by the quotation
marks in the syntax forms.

String Delimiter

A string delimiter is a character used to enclose a parameter string in an EDITOR command.
Although the command syntax forms show quotation marks around strings, any ASCII
character except SPACE and CR may serve as a string delimiter.

End of Record Character

An end-of-record character marks the beginning of a logical record or line of text. An end-of-
record character can be entered from the keyboard by pressing RETURN while inserting new
text, or by entering a specially assigned "END-OF-RECORD"” character. (Refer to the]=
command for an explanation of how to use the special "END-OF-RECORD" character.)

1-10 @ 4051R06 EDITOR

General Description

End-of-record characters are not actually stored in the text buffer. Pressing RETURN while
inserting new text, orentering the special "END-OF- RECORD" character, setsa “flag” in the
appropriate location in the text. When outputting text to a peripheral device, the EDITOR
disables the flag and inserts a CR character (or a previously specified alternate end-of-record
character). Conversely, when bringing text into the text buffer from a peripheral device, the
EDITOR removes the CR character (or the alternate end-of-record character) and sets the flag.

Edit Delimiter

An edit delimiter is a character used to separate strings, edit line numbers, or other numeric
constantsinan EDITOR command. Although the command syntax usually shows acomma (,)
as the edit delimiter, any of the following characters may serve as an edit delimiter:

space

Edit delimiters and string delimiters are explained in greater detail in Section 2.

HOW THE MANUAL IS ORGANIZED

The manual is organized into six sections and two appendices. Section 2 provides general
information about the EDITOR and about using EDITOR commands. Section 3 describes
operation of the keyboard and user-definable keys under EDITOR control.

Sections 4, 5, and 6 discuss the EDITOR commands in detail. Examples are given to illustrate.
uses for the commands, and if an EDITOR command resembles a BASIC command,
similarities and differences are noted.

Section 4 describes editing commands. Two of the commands, LIST and SEARCH, allow an
I/0 address to be specified as a parameter. Although technically this makes them Input/Output
commands, LIST and SEARCH are included in Section 4 because of the important role they
play during text editing.

Section 5 discusses environmental commands, and special PRINT commands used to change
processor or magnetic tape status. Section 6 explains the Input/Output commands. Appendix
A describes error messages, and Appendix B contains tables, includingacommand summary,
tables of default parameter values, and an ASCII code chart.

4051R06 EDITOR @ 111

Section 2

GENERAL INFORMATION

INTRODUCTION

Section 2 is designed to help you get started using the EDITOR. General principles are
explained here in order to simplify the explanations of individual EDITOR commands in later
sections. After reading this section, you will be ready to begin using the EDITOR, and will be
familiar with most of the rules for using EDITOR commands.

This section tells you how to call the EDITOR, how to return to BASIC control after using the
EDITOR, and how to use the commands; including how to specify command keywords,
delimiters, and edit line numbers. You will find out how much text is affected by an EDITOR
command, and what happens when parameters are omitted in the command.

NOTE

Since some of the details in this section will make more sense after you have worked
with the commands, it is a good idea to read this material quickly, and return to it if
questions or problems arise when trying the EDITOR commands.

The section begins witha COMMAND SUMMARY chart, showing each command keyword, an
example of how to use the command, and a short description of what happens when the
command is executed. You may want to glance at this chart before reading about the
commands, then use it later as a reference while using the EDITOR. A table of the EDITOR
commands and their default parameter values is also included in the section, so that you may
quickly check for a default value without looking up the individual command.

4051R06 EDITOR @

21

General Information

4051R06 EDITOR
COMMAND SUMMARY

Command Example Action Taken

EDITING

COMMANDS

CARD CA 80,42 Formats the text buffer into lines that are 80 characters

long, splitting lines of text having more than 80 characters
into 2 or more lines, and using the character * (decimal
equivalent 42) to fill out any lines of text that have less
than 80 characters.

CASE CAS 1,100 In lines 1 through 100 of the text buffer, lower case char-
acters a-z are replaced by their uppercase equivalents A-Z,

if the UPPERCASE flag has been set. |f the LOWERCASE flag
has been set, uppercase characters A-Z are replaced by their
lowercase equivalents a-z.

COPY C 1,3,10 Duplicates lines 1 through 3 of the text buffer, placing the
copied text immediately before line 10.”

DELETE D 1,10 Deletes lines 1 through 10 from the text buffer.

INSERT 1100 Responds with five spaces and a colon (:) to prompt the

entry of new text from the keyboard. Lines of text entered
after the colon are placed in the text buffer immediately
before the line 100.

LIST L @29:200,300 Lists lines 200 through 300 of the text buffer on peripheral
device 29 on the General Purpose Interface Bus.

MOVE M 1,3,10 Moves lines 1 through 3 of the text buffer, placing them imme-
diately before line 10.**

NLSEARCH and NL 0,1000 "REM"%* Searches lines 0 through 1000 of the text buffer, and deletes
Delete Line lines found to contain the string REM .

NLSEARCH and |NL 1,100 "ON ERROR",”ON SIZE"|Searches lines 1 through 100 of the text buffer, and replaces

Replace String occurrences of the string ON ERROR with the string ON
SIZE .

SEARCH and S @29:0,2000 “638-" Searches lines 0 through 2000 of the text buffer, and lists

List Line on device 29 all lines found to contain the string 638-

SEARCH and S 1,100 "Mr. ", Searches lines 1 through 100 of the text buffer for the

Edit Line string Mr. . One by one, lines found to contain the string

are recalled to the line buffer, and wait to be edited.

SEARCH and S @29:0,3000 "pd."%* Searches lines 0 through 3000 of the text buffer for the
Delete Line string pd. . Lines found to contain the string are listed
on device 29, and deleted from the text buffer.

SEARCH and S @29:1,1000 "PRI","PRI @3:" Searches lines 1 through 1000 of the text buffer and replaces
Replace String occurrences of the string PRI with the string PRI @3: .
Changed lines are listed on device 29.

‘See end of table “*See end of table

2-2 @ 4051R06 EDITOR

General Information

4051R06 EDITOR

COMMAND SUMMARY (cont.)

Command

Example

Action Taken

SORT

S0 1,10:1,2,3

Rearranges lines 1 through 10 in the text buffer, sorting
"alphabetically” according to the ASCII values of characters
found in the first three character positions within each

line.

REVSORT

REV 1,10:1,2,3

Rearranges lines 1 through 10 in the text buffer, sorting
"alphabetically in reverse” according to the ASCI! values of
characters found in the first three character positions with-
in each line.

ENVIRONMENTAL

COMMANDS

LASTLINE

LA

Returns the following information about the current status
of the text buffer:
— The last edit line number in the text buffer (includ-
ing offset if the line has no number).
— The total number of lines in the text buffer.
— The number of bytes needed to save the current con-
tents of the buffer on a storage device.
— The number of unused bytes remaining in the text buf-
fer.

LOWERCASE

LO

Enables the EDITOR to distinguish between lowercase char-
acters a-z and their uppercase equivalents A-Z during search-
ing and sorting operations. Prepares the EDITOR to change
uppercase characters into lowercase characters if the CASE
command is executed.

UPPERCASE

Causes the EDITOR to treat lowercase characters a-z in the
text buffer as uppercase characters A-Z during searching and
sorting operations. Prepares the EDITOR to change lowercase
characters into uppercase characters if the CASE command is
executed.

RENUMBER

R 100,10,3

Renumbers all lines in the text buffer starting with the line
currently numbered 3. The new edit line numbers start at 100
and increase with an increment of 10.

Makes the character / stand for "END-OF-RECORD.” The
character / may be used during line editing to insert end-of-
record characters into the text, and may appear in target
and replacement strings during searching operations.

Makes the character % stand for "any digit 0 to 9,” so that
any of the digits 0 through 9 satisfy a search for the char-
acter.

Makes the character ? stand for "any character.” Any

ASCII character satisfies a search for the character ? .
When used in a replacement string, ? indicates that the ASCiI
character found in that position should remain unchanged by
the replacement procedure.

Allows the character + to be used as a prefix meaning "all
but, “ so that all characters satisfy a search except the one
immediately following +. For instance, the command S "+A”
searches the text buffer for all ASCII characters except A.

4051R06 EDITOR

@ 2-3

General Information

4051R06 EDITOR
COMMAND SUMMARY (cont.)

Command Example Action Taken

Special PRINT

Commands

Processor Status PRI @37,0:10,4,13 Prepares the microprocessor for requests for an aiternate
Input/Output format. When a % sign is used in an I/0O command
instead of @, the special format is as follows:

end-of-record = LF (ASCII 10)
end-of-file = EOT (ASCII 4)
character to ignore = CR (ASCII 13)

PRI @37,26:1 Telis the microprocessor to send a line feed (LF) character
after each CR in the text when listing text on external de-
vices (LIST and SEARCH commands).

PRI @37,26:0 Tells the microprocessor to send a CR (instead of CR and LF)
after each line when listing text on external devices.

Magnetic Tape PRI @33,0:1,1,1 Sends the following status information to the microprocessor:

Status — Format the tape into 128-byte physical records.

— Do not use the checksum error checking technique.
— Do not use file header format.

PRI @33,0:0,0,0 Sends the following status information to the microprocessor:
— Format the tape into 256-byte physical records.
— Use the checksum error checking technique.
— Use file header format.

i70

COMMANDS

APPEND A @29:50 Adds logical records to the text buffer from the file cur-
rently open on device 29. The incoming text is added im-
mediately before line 50 of the text buffer.

FIND F @29:4 Positions the READ/WRITE heads to the beginning of file 4
on device 29, and opens the file for access by input/Output
operations.

INPUT INP @29: Displays one logical record from the file currently open on
device 29, and positions the READ/WRITE heads over the next
record on file.

MARK MA 2,5120 Reserves space on the internal magnetic tape for 2 new files,
starting at the current position of the tape heads. 5120 bytes
of storage are reserved for each file.

OLD 0 @29: Clears the text buffer, then brings logical records into the
text buffer from the current file on device 29.

PRINT P @29:List of File 3 Prints List of File 3 on device 28.

SAVE SA @29:100,500 Stores an unnumbered copy of text buffer lines 100 through
500 on the file currently open on device 29. Once the lines
are saved, the file is closed to access by Input/Output oper-
ations.

SWN SWN @29:100,500 Stores a numbered copy of text buffer lines 100 through 500
on the file currently open on device 29. Once the lines and
edit line numbers are saved, the file is closed to access by
Input/Output operations.

24 @ 4051R06 EDITOR

General Information

4051R06 EDITOR
COMMAND SUMMARY (cont.)

Command Example Action Taken

SKIP SK @29:10 Moves the READ/WRITE heads 10 logical records forward on
the current file on device 29. The portion of the file beyond
the new position of the READ/WRITE heads remains open for
access by Input/Output operations.

WRITE W @29:100,500 Stores an unnumbered copy of text buffer lines 100 through
500 on the file currently open on device 29. Once the lines
are stored, the file remains open for access by Output oper-
ations.

*If a non-existent line number is specified in an EDITOR command, the EDITOR automatically uses the line having the next
largest edit line number.

**A portion of the text buffer may include lines which do not have edit line numbers. EDITOR commands actupon all lines of the
text buffer (numbered or not) which fall between the specified starting and ending line numbers.

4051R06 EDITOR @

General Information

2-6

GETTING STARTED
Getting the Most Workspace for the EDITOR

Unless you have important variables and programs stored in memory, you should donate more
workspace to the EDITOR by performing the following two functions before calling the
EDITOR:

CEL ALL
HEM

Deleting BASIC programs and compressing memory immediately before calling the EDITOR,
allows more space for text to be stored while it is being altered by EDITOR commands. A
maximum amount of space is automatically reserved for text if the EDITOR is called
immediately after power-up.

Calling the EDITOR

The next step in getting started is to call the EDITOR by entering the following statement from
the keyboard:

CALL "EDITOR"

When this statement is executed, the Graphic System is placed under EDITOR control. You
may now use the EDITOR commands. Regular BASIC commands are no longer available to
you, however, and variables or programs stored in memory prior to the CALL cannot be
accessed while the system is under EDITOR control.

Returning Control of the System to the BASIC Interpreter

When you are finished using the EDITOR commands, press the RETURN TO BASIC overlay
key to return control of the system to the BASIC Interpreter. You must now use BASIC
commands. All of the variables and programs stored in memory prior to calling the EDITOR,
are available to you again.

The Text Buffer

The EDITOR'’s workspace is the text buffer, an area in memory reserved for holding lines of
text. Newly created lines of text are held in the text buffer, and lines previously stored on
magnetic tape are always brought into the text buffer before being changed by editing
commands.

@ 4051R06 EDITOR

General Information

The Size of the Text Buffer

The size of the text buffer depends on the memory option you chose for your Graphic System,
and on the number and size of BASIC variables and programs leftin memory before calling the
EDITOR. To find the maximum size of your text buffer, call the EDITOR immediately after
turning the system power on. Then execute the LASTLINE command, by entering the
following statement from the keyboard:

LASTLINE

The EDITOR returns three lines of information. The last line tells you how many bytes of space
are "free” (unused) in the text buffer. Since the text buffer is currently empty, and no BASIC
variables or programs are stored in memory, this number represents the maximum number of
bytes the text buffer may contain.

For example, here is what happens for a Graphic System having 32K bytes of memory:

CALL “"EDITOR"
LASTLINE

8 Lines
8 Characters
39218 Free

For this particular Graphic System, the maximum amount of space reserved for the text buffer
is 30210 bytes.

Display Format

Commands entered from the keyboard appear on the display starting in the first character
position. To help you distinguish commands from text, the EDITOR begins displaying text in
the seventh character position, and precedes each line of text with a colon (:). Edit line
numbers up to four digits long may appear before the colon in each line of text. Here is a sample
of the display format:

4051R06 EDITOR @ 2-7

General Information

INSERT
: THESE LINES
*WERE CRERTED
tUSING THE
+ INSERT COMMAND.

RENUMBER 3066,508,0

LIST

3000: THESE LINES
35080: WERE CREATED
4000: USING THE

4500 INSERT COMMAND.

In this example, EDITOR command keywords INSERT, RENUMBER, and LIST appear on the
display starting in the left-most character position, but lines of text are indented and preceded
by a colon, or a line number and a colon.

When the command INSERT is entered, the EDITOR responds by spacing five character
positions to the right, and typing a colon. The colon prompts you to enter a line of text. When
you press RETURN, the EDITOR moves five spaces on the next line, marks another colon, and
waits for you to create another line. When you are through inserting new lines of text, press the
BREAK key.

The RENUMBER command assigns edit line numbers to lines of text. Here, each line receives a
number, starting with 3000 and incrementing by 500. Then the EDITOR command LIST
causes the line numbers and lines of text to appear on the display as shown above.

The commands INSERT, RENUMBER, and LIST are explained in detail in Sections 4 and 5.

Using an EDITOR Command
THE COMMAND KEYWORD
Abbreviating a Keyword

When entering an EDITOR command, you may specify the complete command name, or use
an abbreviation. For instance, the command COPY may be entered as COPY, COP, CO, or C.

Most command keywords can be shortened to one letter. However, if two or more commands
begin with the same letter, more of the keyword may be required for the EDITOR to know which
command to execute. Examples of this are MOVE and MARK, and the commands COPY,
CARD, and CASE. MOVE may be abbreviated to M, but MARK requires at least MA to be
specified; COPY may be entered as C, but CARD and CASE can only be shortened to CA and
CAS, respectively.

@ 4051R06 EDITOR

General Information

The minimum number of letters required when entering each command keyword is shown in
the syntax forms in Sections 4, 5, and 6.

Abbreviating command keywords speeds the process of entering EDITOR commands. It is
much more convenient to enter A, O, and L than APPEND, OLD, and LIST. However, you
should be aware that when you return to BASIC, some of these abbreviations are not valid. For
instance, the BASIC commands PRINT, LIST and OLD cannot be abbreviated to asingle letter
as the corresponding EDITOR commands can. Attempting to enter keywords P, L, or O while
the system is under BASIC control, causes an UNDEFINED VARIABLE error message to
appear on the display. To avoid forming habits that are hard to break, you might wantto use the
same abbreviations for EDITOR commands as for BASIC commands of the same name.

Uppercase and Lowercase Letters in the Keyword

An EDITOR command may be entered from the keyboard in uppercase, lowercase, or a
combination of both. For example, the following command is valid:

Search 1,188 "Rlpha"

If a syntax error is made when entering acommand keyword in lowercase, the EDITOR returns
a syntax error message. The third line of the message reprints the incorrect command,
capitalizing all letters in the keyword up to and including the first incorrect character. For
example:

serch 1,188 "Alpha"

EDITOR ERROR

Suntax - error number 138
SERch 1,108 "Alpha"

As in BASIC, a command containing a syntax error is automatically recalled to the line buffer,
and may be corrected by typing over the incorrect characters, or by using the LINE EDITOR
keys.

DELIMITERS IN THE COMMAND

Two types of delimiters may appear in an EDITOR command. The first type is called an edit
delimiter, and is used to separate strings or numeric constants such as edit line numbers.

4051R06 EDITOR @

2-9

General Information

Edit Delimiters

The following characters may be used as edit delimiters:

space

Although the command syntax forms show a comma (,) as the edit delimiter, any of the above
characters may be used to separate the command parameters. For instance, the following
commands are equivalent:

MOVE 1,108,259
MOUE 1{,108:258
MOVE 1 180 258

Ifacomma appears in acommand syntax form, it can be replaced by any other edit delimiter. In
some cases, using an edit delimiter other than acomma helps you remember what the numbers
mean, and what the command does. For example, you may enter the following command,
using commas to separate all of the parameters:

SEARCH 1,108, “THIS", "THAT"

Or, you may replace some of the commas with other edit delimiters, and enter this command:
SEARCH 1,100:"THIS"="THAT"

This second form seems to express the meaning of the command, that the EDITOR is to search
lines 1 through 100 of the text buffer, then change occurrences of THIS into THAT .

Some similar examples are given in Sections 4, 5, and 6. Keep in mind that you can substitute

other edit delimiters for the ones shown in examples, and that commas appearing in a syntax
form may be replaced by other edit delimiters.

2-10 @ 4051R06 EDITOR

General Information

Using a Space as an Edit Delimiter

A blank space in an EDITOR command is taken to be an edit delimiter, except in these
instances:

—When the space occurs immediately before or after a keyword. For example:

LIST 1,1000

—When the space immediately follows another edit delimiter, such as a comma or
another blank space.

Except in the two cases listed above, blank spaces in a command are considered to be edit
delimiters. This means that you must be careful when putting blank spaces in a command, or
the EDITOR may misinterpret your command.

For instance, the following two commands are not equivalent:

LIST 8,08+108
LIST 9,0+ 160

The first command tells the EDITOR to list lines 0 through 100 on the display. However, the
extra blank spaces between + and 100 cause the EDITOR to misinterpret the second
command.

In some cases, adding one more blank space can completely change the meaning of a
command. For instance, the commands shown below are not the same:

SEARCH “97062"
SEARCH "97862" p

The character b appearing at the end of the second command indicates that a space was
entered by pressing the SPACE bar before the RETURN key. The space is an editdelimiter, and
completely changes the meaning of the command. Without the extra space, thecommand asks
the EDITOR for a list of all lines found to contain the string 97062. But when the space (b) is
added onto the end of the command, the EDITOR reprints the lines one by one, recalling each
one to the line buffer and stopping each time to allow the line to be edited.

4051R06 EDITOR @ 2-11

General Information

When entering the command, do not press the SPACE bar before RETURN unless you want the
SEARCH command to perform a different function. This shows how important the addition of
one edit delimiter can be.

When a Space Follows an Edit Delimiter

The EDITOR ignores spaces that immediately follow an edit delimiter. For instance, a comma
followed by aspaceinacommand is interpreted as one delimiter, acomma. Similarly, aspace
followed by one or more blank spaces is taken to be one edit delimiter, a space. This can be
important when two successive edit delimiters are required. For example, if starting and ending
line numbers are omitted in the SORT command, two successive edit delimiters are required
after the keyword:

SORT,s1

This command tells the EDITOR to rearrange all lines in the text buffer according to the ASCII
value of the character found in the first position in each line. The two commas placed side by
side within the command are counted as two edit delimiters by the EDITOR.

Normally, commas can be replaced by other edit delimiters. However, because the EDITOR
ignores spaces that follow edit delimiters, the following versions of the command are not
correct and cause a syntax error:

SORT, 1
SORT. 1
SORT: 1
SORT: 1
SORT= 1

In each case, the space within the command is ignored because itimmediately follows another
edit delimiter. The EDITOR counts only one delimiter, and returns an error if any of these
commands are executed.

When a Space Follows a Command Keyword

The EDITOR ignores spaces thatimmediately follow acommand keyword. This means that for
the SORT command described above, the following versions are not correct:

2-12 @ 4051R06 EDITOR

General Information

SORT .1
SORT .1
SORT 31
SORT :1
SORT =1

In each case, the space following the keyword SORT is ignored. The EDITOR only sees one
edit delimiter, and returns a syntax error.

String Delimiters

The second type of delimiter that may appear in an EDITOR command is called a string
delimiter, and is used to enclose character strings specified in a command. Although the
command syntax forms show quotation marks (") as the string delimiter, any keyboard
character that causes a printed character to appear on the display may be used to enclose
strings.

The same string delimiter must be used to mark the beginning and the end of a string. For
example:

SEARCH ~UARIANCE~

In this example, the delimiter ~ is used to mark the beginning and the end of the word
VARIANCE.

When two strings are specified in an EDITOR command, the delimiter for the first string need
not be the same as the delimiter for the second string. For instance, both of the commands
shown below are valid:

SEARCH "ON ERROR","ON SIZE"
SEARCH ¥ON ERRORX,-ON SIZE~

A character used to delimit a string must not occur within the string. Forexample, the character
' cannot be used to delimit the string WON'T WORK :

4051R06 EDITOR @ 2-13

General Information

SEARCH “MON‘T WORK"
EDITOR ERROR

Suntax - error number 138
SEARCH “NON‘T WORK”

When the command SEARCH 'WON'T WORK' is executed, the EDITOR returns a syntax
error,and reprints the incorrectcommand. The syntax error occurs because the delimiter ’
is one of the characters enclosed in the string.

Using an Edit Delimiter Character as a String Delimiter

Normally, any edit delimiter character except a space may be used as a string delimiter. For
example, the following command uses an edit delimiter (:) to enclose a string:

SEARCH 1,109 :END:

However, if the edit line numbers are omitted in the command, and only a blank space appears
in their place, a syntax error occurs. The EDITOR returns an error message and reprints the
incorrect command:

SEARCH :END:
EDITOR ERROR
Syntax - error number 148
SERRCH :END:

The rule to remember is that when entering the SEARCH and NLSEARCH commands with only
aspace between the keyword and the first string delimiter, do not choose the string delimiter to
be one of the characters set aside as edit delimiters. For instance, all of the commands shown
below cause syntax errors:

SERRCH .END.
SERRCH =END=
NLSERRCH END;
NLSERRCH +END,

The above commands cause syntax errors because the delimiter used to enclose the target
string is one of the edit delimiters.

2-14 @ 4051R06 EDITOR

General Information

Using a Number as a String Delimiter

If the edit line numbers are omitted in a SEARCH or NLSEARCH command, the delimiter used
to enclose the target string must not be anumber. Forexample, the following command causes
a syntax error:

SEARCH 11END11
EDITOR ERROR

Syntax - error number 138
SEARCH 11END11

The error shown above occurs because the number 11 is used to enclose the string END.

EDIT LINE NUMBERS IN THE COMMAND
What Edit Line Numbers Are

The EDITOR allows line numbers to be specified as parameters in most commands. The line
numbers are called edit line numbers, and are assigned to lines of text by the EDITOR when the
RENUMBER command is executed. Edit line numbers appear to the left of the lines of text, and
are separated from the text by a colon:

LIST
1:100 DIM AC18,10)
2:116 FOR I=1 TO 18
3:120 FOR J=1 TO 18
4:130 ACI,Jd=1-CI+J-1)
5:148 HEXT J
6:150 NEXT 1
7:160 PRINT "THE 10%18 HILBERT MATRIX IS:"
8:170 PRINT A
9:1806 END

Edit line numbers are not the same as program line numbers. In the sample text shown above,
program line numbers 100, 110, 120, ... are part of the text, and may be edited using EDITOR
commands. Buttheeditlinenumbers 1,2,3,... arenotconsideredto be part of the text: they are
used to refer to specific lines of text, and cannot be changed except by the RENUMBER
command.

Edit line numbers may be four digits long, ranging from 0 to 9999. The parameters of the
RENUMBER command determine the line numbers that are assigned to the text. For instance,
thecommand RENUMBERS50,5,0 gives edit line numbers 50, 55, 60, ... to each line of text,
beginning with the first line in the text buffer.

4051R06 EDITOR @ 2-15

General Information

2-16

When Lines of Text Do Not Have Edit Line Numbers

Lines in the text buffer only receive edit line numbers when the RENUMBER command is
executed. This means that newly created lines inserted into the text using the INSERT
command do not have edit line numbers. Also, previously stored lines brought into the text
buffer using OLD or APPEND, do not have edit line numbers.

The Output commands PRINT, SAVE, and WRITE remove edit line numbers before sending
lines to a device. Although SWN (Save With Number) saves edit line numbers along with the
text, the numbers are stored as part of the text, and do not function as edit line numbers when
brought back into the text buffer.

How Edit Line Numbers Are Affected by EDITOR Commands

Although edit line numbers can only be created or altered by the RENUMBER command, some
EDITOR commands remove edit line numbers from parts of the text. Copied or moved lines
(lines sent to a new location by the COPY or MOVE command) lose their edit line numbers
upon arriving at their destination. The commands SORT and REVSORT also strip line numbers
from lines of text that are sent to a new location.

The following is an example of how this happens:

LIST
1:EDITOR I-0 COMMANDS
2: SAUE
3:SEARCH
4:5KIP
5: SWN
6. WRITE
7 APPEND
8:FIND
9: INPUT

18:LIST
11:0LD
12: PRINT

MOVE 7,12,2

LIST
1:EDITOR I-0 COMMANDS

PPEND

IND

NPUT

IST

VOr—TND

N WY

@ 4051R06 EDITOR

General Information

The first listing shows a piece of text consisting of twelve numbered lines. The command
MOVE 7,12,2 tellsthe EDITOR to move lines 7 through 12, and place them just before line 2.
After the command is executed, a new listing shows that the moved lines no longer have edit
line numbers.

The EDITOR removes the numbers in order to keep the edit line numbers in an increasing
sequence. Even though some lines are unnumbered, you may continue to execute EDITOR
commands, referring to the unnumbered lines as 1+1, 1+2, 1+3, and so on.

How to Use Edit Line Numbers in a Command

Edit line numbers appear after the command keyword, and are separated by edit delimiters.
Many EDITOR commands allow a starting edit line number and an ending edit line number to
be specified. The commands APPEND, INSERT, MOVE, and COPY ask for a third edit line
number, a destination line number. For example, the following command tells the EDITOR to
copy lines 1 through 10 of the text buffer and place the copied lines of text just before line 18:

COPY 1.10,18

How to Refer to an Unnumbered Line of Text

Because some EDITOR commands remove edit line numbers from parts of the text, the text
buffer may include both numbered and unnumbered lines. For example:

-

LIS
1:0UTPUT COMMANDS
sLIST
+ PRINT
: SRVE
4: SEARCH
+ SWN
6:WRITE

When a portion of the text is unnumbered, you may execute the RENUMBER command to
obtain an edit line number for each line of text. Or, you may continue to perform editing
functions, referring to the unnumbered lines by using an "offset.”

An offset is a count of the number of lines between a numbered and an unnumbered line. The
count begins after any numbered line and continues until the desired unnumbered line is
reached. An offset is positive or negative, depending on whether the unnumbered line falls
before or after the numbered line.

4051R06 EDITOR @ 2-17

General Information

For example, in the preceding text, the unnumbered line consisting of the word SAVE may be
referred to in an EDITOR command as line number 143, or 4—1:

LIST 1+3
: SAUE

LIST 4-1
:SAVE

In this example, the EDITOR responds with the same line when asked to list edit line numbers
1-+3 and 4—1.

Any line in the text buffer may be identified according to its distance from edit line number 1:

LIST 1+1
(LIST

LIST 1+2
¢PRINT

LIST 143
: SAVE

LIST 1+4
4:SEARCH

LIST 145
s SHN

LIST 146
6:WRITE

Or, you may count upward from edit line number 6, using negative values for the offset:

2-18 @ 4051R06 EDITOR

General Information

LIST &-1
: SWN

LIST 6-2
4:SEARCH

LIST 6-3
:SAVE

LIST 6-4
sPRINT

LIST 6-5
:LIST

LIST 6-6
1:OUTPUT COMMANDS

An offset may be used when referring to anumbered line. For instance, in the last example, the
line consisting of OUTPUT COMMANDS has an edit line number (1), but can also be identified
as line 6—6:

LIST 6-6
1:0UTPUT COMMANDS

A line number with an offset is not a sum. That is 3+1 does not necessarily refer to line 4.
Likewise, in the last example shown above, 6—6 refers to edit line number 1, not 0.

Using an Offset in an EDITOR Command.

Whenever the term "edit line number” appears in a syntax form, you may specify aline number
with an offset of the kind shown above. Here are some sample commands that use offsets to
refer to unnumbered lines of text:

DEL @,08+18

SAVE @8+1,1060
LIST 6+1,08+8

COPY 08,0+18,32
MOVE ©8+2,0+6,0+10
SORT +7,+10,1

4051R06 EDITOR @ 2-19

General Information

In the last command shown above, the numbers +7 and +10 are equivalent to 0+7 and 0+10,
where 0 refers to the first line of text in the buffer.

NOTE

The RENUMBER command can be executed at any time. If you prefer not to use
offsets to refer to unnumbered lines of text, execute a RENUMBER command and
obtain an edit line number for each line in the text buffer.

Specifying a Non-Existent Line Number in a Command

The commands DELETE, NLSEARCH and Delete Line, and SEARCH and Delete Line remove
lines of text and their edit line numbers from the buffer. For this reason, some line numbers do
not exist that you normally expect to be in the text. For example:

LIST
188:REM THIS IS A TABLE OF SQUARE ROOTS
128:PRI "NUMBER","SQUARE ROOT"
130:FOR I={ TO 100
149:PRI I, SQRCI)
17BHEXT 1
18@:END

In this example, edit line numbers 110,150,and 160 have been previously deleted from the text
buffer and are missing from the normal sequence 100, 110,120, ... If you specify any of these
non-existent line numbers as a parameter in a command, the EDITOR automatically
substitutes the line of text having the next largest edit line number. If no larger edit line number
exists, the EDITOR assumes that you are referring to some location beyond the end of the text.

Often it is faster and more convenient to specify a non-existent line number when referring to
the first line of text, the last line of text, or a location after the last line of text.

The FirstLine of Text. Edit line number 0 always refers to the firstline in the text buffer, whether
or not the line is numbered. For example:

Example 1

LIST
+.00D

60: .EVEN
65:.BLKH
78:.BLKB
75:.RADIX

LIST ©
:.0DD

2-20 @ 4051R06 EDITOR

General Information

Example 2

LIST
588: . WORD
S01:.BYTE
502:.ASCII

LIST @
500: . WORD

Beyond the Last Line of Text. When specifying edit line numbers in a command, you
sometimes need to refer to a location beyond the last line of the text. For instance, you may
want moved, copied, orinserted lines to be placed after the last line oftext. In this case, you can
always refer to a point beyond the end of the text by specifying edit line number 10000. (Edit
line number 10000 is always beyond the end of the text, and never exists in the text, because
edit line numbers can only be four digits long.)

Any other number that is larger than the largest editline number in the text may aiso be used to
indicate a point past the end of the text. For instance, if the largest edit line numberin the textis

50, any number from 51 to 10000 may be used to refer to a point beyond the last line of text.

For example:

Example 1
LIST
1:1.1 INTRODUCTION
2:1.2 EMPIRICAL DISTRIBUTIONS
3:1.3 MEASURES OF CENTRAL TENDENCY
INSERT 10000
:1.4 MEASURES OF VARIATION
LIST
f:1.1 INTRODUCTION
2:1.2 EMPIRICAL DISTRIBUTIONS
3:1.23 MEASURES OF CENTRAL TENDENCY
:1.4 MEASURES OF VARIATION

4051R06 EDITOR @ 2-21

General Information

Example 2

INTRODUCTION
EMPIRICAL DISTRIBUTIONS

Cad TS e

MEASURES OF UARIATION

$1.5 COMPUTATION OF THE MEAN

INTRODUCTION
EMPIRICAL DISTRIBUTIONS

[E A o

MEASURES OF VARIATION
COMPUTATION OF THE MEAN

1
2
3 MEASURES OF CENTRAL TENDENCY

1
2
3 MEASURES OF CENTRAL TENDENCY
5

When the INSERT command is executed, the EDITOR responds by typing a colon and waiting
foranew line to be entered. In both examples shown above, the inserted line is placed after the
last line of text, because line numbers 10000 and 4 both refer to a point beyond the end of the

text.

The Last Line of Text. While 10000 always refers to a location after the last line of text, 10000-1
always refers to the last line of text. This is true whether the last line is numbered or not. An

example is shown below:

LIST
98:1.1 INTRODUCTION
S5:1.2 EMPIRICAL DISTRIBUTIONS
68:1.3 MEASURES OF CENTRAL TENDENCY
65:1.4 MEASURES OF UARIATION
¢0:1.5 COMPUTATION OF THE MEAN

LIST 106000~
?8:1.5 COMPUTATION OF THE MEAN

Any number larger than the largest edit line number in the text, may be used with an offset of —1

to indicate the last line of the text:

2-22 @

4051R06 EDITOR

General Information

1.1 INTRODUCTION

1.2 EMPIRICAL DISTRIBUTIONS

:1.3 MEASURES OF CENTRAL TENDENCY
1.4 MEASURES OF UARIATION

1.5 COMPUTATION OF THE MEAN

LIST 12-1
:1.5 COMPUTATION OF THE MEARN

HOW MUCH TEXT IS AFFECTED BY AN EDITOR COMMAND
Starting and Ending Lines

When a starting line number and an ending line number are specified in a command, the
EDITOR acts upon the portion of the text buffer from the beginning of the starting line to the
end of the ending line. All lines of text between and including the starting line and ending line

are affected by the command. Unnumbered lines are affected as well as numbered lines. For
example:

Y(I)=X(I)%%2

NRITE (6,200) X(I)yYC(I)
7:20 CONTINUE

8:106 FORMAT (Fl10.2)

9:208 FORMAT (1H, 15X, 2(F208.5)

DELETE 1,7
LIST
9

LIST
1:C COMPUTE THE SQUARES AND PRINT
: DIMENSION X(1@),Y(18J
. DO 20 I=1,16
4: READ (5,188) X(I)

88 FORMAT (F10.2)
288 FORMAT (1H, 15X, 2(F28.5))

In this example, the command DELETE 1,7 deletes all numbered and unnumbered lines
between and including lines 1 and 7 of the text buffer.

4051R06 EDITOR @ 2-23

General Information

2-24

The parameters of the following EDITOR commands include a starting line and an ending line:

Destination Lines

CASE
DELETE
LIST
MOVE
NLSEARCH
SEARCH
SORT
REVSORT
SAVE
SWN
WRITE

The four EDITOR commands INSERT, COPY, MOVE, and APPEND allow a destination lineto
be specified. The destination line number tells the EDITOR where to place lines that are being
repositioned or added to the text buffer. Inserted, copied, moved, orappended lines of text are
always placed immediately before the destination line. For example:

LIST

MOVE 7,8,

LIST

In this example, the command MOVE 7,8,6

QO Tl) IO e

(S0 AN A

=3}

. 168 REM X% SUBROUTIHNE
: 119 PRINT "ENTER CONSTANTS:®
:120 FOR I=1 TO N
:138 PRINT "B("3;I3")="3
: 148 INPUT BCID
: 170 RETURN
¢ 158 HEXT 1
1168 PRINT "END OF INPUT"
6
:188 REM *¥ SUBROUTINE
:118 PRINT "ENTER CONSTANTS:*
<120 FOR I=1 TO N
+138 PRINT "B("jI5")="3§
: 1408 INPUT B(I)
158 NEXT 1
. 160 PRINT "END OF INPUT"
1178 RETURN

specifies 7 as a starting line number, 8 as an

ending line number, and 6 as a destination line number. After the command is executed, a
listing of the text shows that lines 7 and 8 have been moved and placed just before line number

6.

4051R06 EDITOR

General Information

What Happens When a Non-Existent Line Number is Specified in a Command

Itis best notto deliberately specify a non-existent line numberin an EDITOR command, except
when referting to the first line of text, the last line of text, or a location beyond the last line of
text. However, knowing how the EDITOR handles non-existent line numbers can be important,
especially if you inadvertently specify a non-existent line number in a command.

When a non-existent edit line number is specified as a starting line, ending line, or destination
line, the EDITOR searches fora larger edit line number. The next largest edit line number found
in the text is automatically substituted as the command parameter.

This influences the amount of text that is affected by the command, and in what manner. The
following examples illustrate what happens when a non-existent starting, ending, or
destination line number is specified:

Example 1

LIST
:BUCKNER, STEUEN
:SHERMAN. NRNCY
JiSMITH, JRCK L.
4: TURNER, NELL B.
CHSE 1.4

LIST
tBUCKNER, STEUEN
tSHERMAN, NEAHCY
Zrzmithy Jack V.
4: turners nell b,

+ |

Example 2

1:BUCKNER, STEUEN
:CALLAHAN, LISH
JSHERMAN, NANCY
4:5MITH, JACK L.
S:TURNER, HELL EB.

LIST 1,2+1
1:BUCKNER, STEUEN
:CALLAHAN, LISA
JISHERMAN, HNRNCY
4:SMITH, JACE L.

4051R06 EDITOR @

2-25

General Information

Example 3

LIST
:BUCKNER, STEUEN
P SHERMAN, NANCY
JiSMITH. JRCK L,
4:TURNER, NELL E.

INSERT 2
:CALLAKAN, LISA

LIST
:BUCKNER, STEUEN
: SHERMAH, HANCY
tCALLAMAN. LISH
3:SMITH. JACK L.
4:TURNER, NELL E.

In the first example, the command CASE 1,4 is given. The EDITOR is unable to find the
starting line number 1, and begins looking for an edit line number larger than 1. The next
largest line number in the text is 3, so the command acts on the portion of the text that starts
with edit line number 3. After the command is executed, a listing shows that lines 3 and 4 have
been changed from upper case to lower case.

The second example shows the LIST command entered with starting line number 1 and ending
line number 2+1. However, 2 does not appear as a line number in the text. Since the next largest
editline numberinthe textis 3, the EDITOR uses 3+1 forthe ending line number, and lists the

first four lines on the display.

In the third example, edit line number 2 is given as the destination line for the INSERT
command. The EDITOR is unable to find line number 2, and goes on to use line 3 as the
destination line. A later listing shows that the line of text created using the INSERT command,
is inserted just before line 3 in the text buffer.

Special Cases

The EDITOR handles non-existent line numbers in the manner described above, exceptin the
following instances:

—The number 0, which never appears as an edit line number in the text, always
refers to the first line in the text buffer. (See "The First Line of Text” on the

preceding pages.)

—If a non-existent line number is specified in a command and no larger edit line
number can be found in the text, the EDITOR assumes the specified line referstoa
location beyond the end of the text. (See "Beyond the Last Line of Text” on the

preceding pages.)

2-26 @ 4051R06 EDITOR

General Information

—If a non-existent ending line number is specified without an offset in the DELETE
command, the EDITOR deletes all numbered and unnumbered lines up to, but not
including, the next largest line number found in the text.

OMITTING A PARAMETER IN A COMMAND: DEFAULT VALUES

EDITOR command parameters include 1/0 addresses, character strings, edit line numbers,
and other numeric constants. Most of these parameters are optional, and if one or more of the
parameters is omitted when entering a command, the EDITOR supplies a predetermined value
by default. A table of the EDITOR commands and their default parameter values appears on the
following pages.

Optional Edit Line Numbers

More than half of the EDITOR commands allow edit line numbers to be given as parameters. All
of these edit line numbers are optional, and may be omitted when entering a command. The
only exception to this rule is the DELETE command, which requires at least a starting line
number to be specified.

Default Values for Optional Edit Line Numbers

The default values for optional starting, ending, and destination line numbers are described in
the following paragraphs. The information also appears on the table of default parameter
values on the following pages.

The Starting Line Number. If the starting line number is omitted in a command, the command
begins acting on the first line of text in the buffer. For example, the command SAVE, 100
saves lines of text from the first line through line 100.

The Ending Line Number. If the ending line number is not specified, the last line affected by the
command is thelastlinein the textbuffer. Forinstance LIST 3, liststhecontents of the text
buffer from line 3 to the end of the text.

The only exception to this rule is the DELETE command. The command DELETE 3,
deletes only line 3, instead of deleting all lines in the text buffer from line 3 on. This is for your
protection, to prevent you from accidentally wiping out large portions of the text buffer. If you
want to delete all lines in the text buffer from line 3 on, you may do so by entering a command
such as DELETE 3,10000

4051R06 EDITOR @ 2-27

General Information

When the Starting and Ending Line Numbers Are Both Omitted. When the starting line number
and the ending line number are both omitted, the command acts upon the entire text buffer. For
example, the command LIST tells the EDITOR to list all lines in the text buffer, and the
command SEARCH "A$=" or SEARCH ,, "A$=" tellsthe EDITOR to search all lines
in the text buffer for the string A$=

The Destination Line Number. |f a destination line is omitted in an EDITOR command, the
default destination is before the first line of text for the INSERT command, and beyond the end
of the text for the MOVE, COPY, and APPEND commands. For example, the command
INSERT places newly created lines just before the first line of text; but the command
COPY 1,10, duplicates line 1 through 10 and places the copy after the last line of text.

Differences between BASIC and EDITOR Commands

BASIC commands do not allow an ending line number to be specified by itself. For instance,

thecommand SAVE ,100 causesasyntaxerrorin BASIC. Likewise, BASIC doesnotallow
a starting line number to be followed only by a delimiter: the command SAVE 3, causesa
syntax error.

The EDITOR, however, allows you to give a starting line number by itself, or a starting line
number followed by a delimiter. You may specify an ending line number alone, or give a
destination line number without any starting or ending line number.

How to Take Advantage of the Default Values

Being able to specify a starting, ending, or destination line number by itself helps speed the
entry of EDITOR commands. If you want to move the first 10 lines of text to the end of the text
buffer, for instance, you need only enter MOVE ,10, from the keyboard. To save the
contents of the text buffer fromline 10 on, enter SAVE 10, or WRITE 10, .Relyingon
the default values in this way saves you from having to either keep track of the edit line numbers
assigned to the first and last line of text or specify 0 and 10000 in the command.

Starting, ending, and destination line numbers can appear in any combination in a command.
That is, the following commands are all syntactically correct:

2-28 @ 4051R06 EDITOR

General Information

COPY

COPY 4.

COPY 24,

COPY 45,

COPY ,,10000
COPY 245,
COPY 4,530
CoPY 2,,10000
COPY 2,435,30

These COPY commands show that an edit line number can appear alone or in combination
with the other edit line numbers.

Optional Edit Delimiters

in any EDITOR command, the number and placement of delimiters is important. Especially
when omitting edit line numbers in a command, you must be careful to leave in enough
correctly placed delimiters to make the meaning of the command clear to the EDITOR. For
example, the SORT commands shown below have different meanings:

SORT ,,41,2
SORT 41,2

Both commands are valid, but one of the edit delimiters (,) is omitted in the second command.
The first command tells the EDITOR to sort all lines in the text buffer according to the ASCII
value of characters found in the first two positions in each line. The second command,
however, tells the EDITOR to sort lines up to and including edit line number 1, according to the
ASCII value of characters found in the second character position in each line.

When Edit Delimiters May Be Omitted

Because of their effect on the meaning of commands, you must be careful when leaving out
edit delimiters. However, it is useful and convenient to omit edit delimiters in the situations

4051R06 EDITOR @ 2-29

General Information

described below:

—No edit delimiters are required when all command parameters are omitted and
only the keyword is entered.

—When omitting the starting and ending line numbers in the SEARCH and
NLSEARCH commands, the two edit delimiters may be replaced by a blank space.
For example:

SEARCH, + "TEKTRONIX"

can be shortened to

SEARCH "TEKTRONIX"

—When a command ends in a line number followed by an edit delimiter, the delimiter
may be omitted without altering the meaning of the command:

Example 1
COPY 4,20 is equivalent to COPY 4,29,

Example 2
SRUE S is equivalent to SAVE 5,

The commands in Example 1 tell the EDITOR to place a copy of lines 4 through 20 after the last
line of text. The commands in Example 2 cause the contents of the text buffer fromline5onto
be stored on magnetic tape.

The EDITOR does not interpret the command SAVE 5 in the same manner as BASIC. In
BASICthecommand SAVES5 savesprogram line 5ontheinternal magnetic tape. Only one
line is saved, line 5. But when executed under EDITOR control, SAVES5 savesall lines of
text from edit line 5 through the end of the text.

When a Starting Line is Given Alone and is Not Followed by an Edit Delimiter.

Whenever an EDITOR command is entered with only a starting line number, the command
affects the text buffer from the starting line number through the end of the text. The following
commands act upon all lines in the text buffer from line 50 on:

2-30 @ 4051R06 EDITOR

CASE S8
WRITE 5@
COPY 5o

General Information

If youwantan EDITOR command to affectonly one line of text, you must enter that line as the

starting and ending line numbers:

SAUE 5,5
WRITE 11,11
CASE 30,38
SEARCH 1,1 "x"
COPY 18,18,22

All of these commands act upon only one line of text, the one given as the starting and ending

line number.

Exceptions. Normally, commands entered with only a starting line number affect all lines of
text from the starting line number on. However, there are two exceptions to this rule. When a
starting line number is given alone and is not followed by an edit delimiter, the LIST and

DELETE commands only affect the starting line:

LIST

N B G IS =
Pts s podh il Pt Pt Pt
N D GIN =D
OO OOOD

LIST 3
3:120

DELETE 3
LIST

AU BN e
"o O B0 BE B B
Vo e s s Pt Pt
ANE =D
OO ®

4051R06 EDITOR

INIT

WBYTE @86,108:
RBYTE X

WBYTE €63,95:
M$=CHR(X)
PRINT M$

END

RBYTE X

INIT

WBYTE ©g80,108:
WBYTE €63,95:
M$=CHR(X)
PRINT M$

END

@

2-31

General Information

The above example shows thatthe command LIST 3 listsonly line 3, notall text fromline 3
on. Likewise, after the command DELETE 3 is executed, a listing shows that only one line
has been deleted, line 3.

In summary, when only a starting line number is specified, and no edit delimiter follows the line
number, the LIST and DELETE commands only actupon one line of text. Thisisto preventyou
from accidentally listing or deleting a large portion of the text buffer.

Other Optional Parameters

Other EDITOR command parameters include I/O addresses, ASCII characters, and numeric
constants. Most of these parameters are optional. A table of default values forall ofthe EDITOR
commands is presented on the following pages. The table gives each EDITOR command
name, a descriptive form of its syntax showing how the parameters are used in the command,
and default values for each optional parameter.

2-32 @ 4051R06 EDITOR

HOLIad3 90H IS0Y

€e-¢

TABLE OF EDITUR COMMANDS
AND DEFAULT PARAMETER VALUES

Command Syntax (Descriptive Form) Default Values
APPEND APPEND [1/O address] [destination for appended text] I/0 address = @33,4:
destination = after the last line of text
CARD CARD [number of characters] [, [till character (decimal equivalent}]] number of characters = 80
fill character = space
CASE CASE [starting line number:] [, [ending line number]] starting line number = first line of text
ending line number = last line of text
COPY COPY [starting line number] [. [ending line number] [, | destination for copied text]] :l Starting line number = first line of text
ending line number = last line of text
destination = after the last line of text
DELETE DELETE starting line number [., | ending line number i] ending line number = starting line number
FIND FIND [1/O address] [file number] 1/0 address = @33,27:
file number = 0
INPUT INPUT [1/O address] 1/0 address = @33,13:
INSERT INSERT [destination for inserted lines of text] destination = before the first line of text
LASTLINE LASTLINE '
LIST LIST [1/0 address] [starting line number] [, [ending line number]] 1/0 address = @32,19:
starting line number = first line of text
ending line number = last line of text
LOWERCASE LOWERCASE LOWERCASE
MARK MARK [number of files] [, [number of bytes per file] number of files =0
number of bytes per file = 768
MOVE MOVE [starting line number] [. [ending!ine number] [., [destination for moved text]]] starting line number = first line of text
ending line number = last line of text
destination = after the last line of text
NLSEARCH NLSEARCH [[starting line number | , [ending line number | ,] space ' target string starting line number = first line of text
| | ending line number = last line of text
*
3. * replacement string ' j
oLD OLD [1/0 address] 1/0 address = @33,4:
PRINT PRINT { 1/O address] [ASCH character string] 1/0 address = @32,12:

UOJjeW.ojU| [BJBUID)

ve-c

HOL1a3 904 iS0y

TABLE OF EDITOR COMMANDS
AND DEFAULT PARAMETER VALUES

(cont)
Command Syntax (Descriptive Form) Default Values
RENUMBER RENUMBER [new starting line number] [. [increment between new line numbers] [, new starting line number = 1
increment between new edit line numbers = 1
[line in the current text where renumbering is to begin]]] where to begm renumbenng = first line of text
REVSORT REVSORT [starting line number] . [ending line number] ., character position [., character position starting line number = first line of text
ending line number = last line of text
t...0]
SAVE SAVE [1/0 address J [starting line number] [, [ending line number }] I/0 address = @33,12
starting line number = first line of text
ending line number = last line of text
SEARCH SEARCH [1/0 address] [[starting line number 1 , [ending line number | ,] space ‘' target string 1/0O address = @32,19
- | starting line number = first line of text
[', . [replacement string "] { ending line number = last line of text
SKIP SKIP [1/Oaddress] [number of logical records to advance the READ/WRITE heads] number of logical records = 65536
SORT SORT [starting line number :' , [ending line number] , character position [, character position Starting line number = first line of text
ending line number = last line of text
(o.oo0]
SWN SWN [1/0 address] [starting line number] [., [ending line number]] 170 address = @33,12

(Save With Number)

starting line number = first line of text
ending line number = last line of text

UPPERCASE UPPERCASE LOWERCASE
WRITE WRITE [1/0 address] [starting line number] [. [ending line number]] 1/0 address = @33,121

starting line number = first line of text
ending line number = last line of text

] = :I = [ASCII character] initial value:] =]
default: no assignment

#= # = [ASCII character | initial value: # = #
default: no assignment

-~ = ~ = [ASCII character] initial value: ~ = ~

default: no assignment

_ = [ASClI character |

initial value: _ = _
default: no assignment

uojeWIOjU| [BIBUDD)

General Information

EDITOR COMMAND SYNTAX

The explanation of each command in Sections 4, 5, and 6 begins with the command syntax and
adescriptive form of the syntax. These expressions are constructed in the same manner as the
syntax and descriptive forms of BASIC commands described in the 4051 Graphic System
Reference Manual.

Optional Entries

items enclosed in square brackets are optional. For instance:

Syntax Form:

SK [1/O address] [numeric constant]

Descriptive Form:

SKIP [1/Oaddress] [number of logical records to advance the READ/WRITE heads]

This command can be entered in any of the following forms:

SKIP

SKIP @29
SKIP €29:3
SKIP 3

Choices

Items enclosed in braces make up a selection list from which one item must be selected. For
example:

4051R06 EDITOR @ 2-35

General Information

Syntax Forms:

*
NL [[edit line number] , [edit line number] .] b ' string ' { “ string }

Descriptive Forms:

NLSEARCH [[starting line number | , [ending line number] ,] space ‘' target string '

*
{ , ‘“ replacement string }

Two ways this command may be used are:

NLSEARCH "pd."X
NLSEARCH "pd.","PAID"

Embedded Optional Entries

Embedded optional entries cannot be entered by themselves. For example:

Syntax Form:

S [1/0 address] [[edit line number 1 , [edit line number] ,] b string

Descriptive Form:

SEARCH [1/0 address] [[starting line number | , [ending line number 1 ,] space ‘‘ target string '’

These commands are valid:

SEARCH 1,1008 "RETURN"
SERRCH 1,4 “RETURN"
SEARCH .1, "RETURN"

2-36 @ 4051R06 EDITOR

General Information

However, the following command is not valid:

SEARCH 3 "RETURN"

This command causes a syntax error, because the optional starting line number cannot appear
without the two edit delimiters (commas) that are enclosed in the larger set of brackets.

An Example of EDITOR Syntax

The commands having the most optional entries are COPY, MOVE, and RENUMBER. The
syntax and descriptive forms for the COPY command appear below:

Syntax Form:

Descriptive Form:

C [edit line number] [, [edit line number] [, [edit line number]]]

COPY [starting line number] [, [ending line number] [, [destination for copied text]]]

Using the rules for interpreting optional entries and embedded optional entries, the COPY
command may be entered in any of these ways:

coPy
CoPY
COoPY
copy
CoPY
CcoPY
CoPY
CoPY

4051R06 EDITOR

Ssy or
» 18, o
1930
S5:18, or
10,30
Sy, 30
5,10,30

-

COPY 5y or COPY S
COPY , 10

COPY 35,10

@ 2-37

Section 3

SPECIAL KEYS

INTRODUCTION

This section describes the operation of the keys on the Graphic System keyboard while the
system is under EDITOR control. Certain keys function in a slightly different manner under
EDITOR control than in BASIC; these are explained fully in this section. Other keyboard keys
that function under EDITOR control as in BASIC are mentioned briefly in this section; a more
complete description may be found in the Graphic System Operator's Manual.

All of the keyboard keys except AUTO LOAD and AUTO NUMBER still function after the
EDITOR is called. The alphanumeric keys, LINE EDITOR keys, and peripheral control keys
perform the same or similar functions as they do in BASIC. In addition, some of the user-
definable keys have special meanings to the EDITOR.

THE USER-DEFINABLE KEYS

Five of the user-definable keys have predefined uses while the EDITOR is in control. The keys
are labeled on the user-definable key overlay as shown below:

EDITOR

RETURN
TO BASIC

| RUBOUT B MARGIN 4 MARGIN MARGIN
(| CHARACTER [: 1 g 8 2

2170-3

RETURN TO BASIC

Pressing the RETURN TO BASIC overlay key returns control of ‘the system to the BASIC
Interpreter. EDITOR commands can no longer be executed. The text buffer is cleared, and
becomes part of the system RAM space.

4051R06 EDITOR @ 31

Special Keys

32

Because the text buffer disappears when control is returned to BASIC, you should save
important lines of text on magnetic tape before pressing the RETURN TO BASIC key.

RUBOUT CHARACTER

Pressing the RUBOUT CHARACTER key causes the symbol | to appear on the display. The
symbol | represents the ASCIl character "RUBOUT,"” and is not provided by any of the other
keyboard keys. It is an extra character that may be used in lines of text.

The MARGIN Keys: MARGIN OFF, MARGIN 1, and MARGIN 2

User-definable keys MARGIN OFF, MARGIN 1, and MARGIN 2 control the number of columns
of text that appear on the display and what happens when a PAGE FULL condition occurs.

MARGIN OFF

Once the MARGIN OFF key has been pressed, information entered from the keyboard or listed
onthe display appears in two columns. The first column may fill all 72 character positions of the
35 lines on the display. The second column may occupy character positions 37 through 72 of
each line on the display.

The first column is filled first, then the second column. Characters begin to fill the second
column after the last line of the display is filled, or a CARRIAGE RETURN occurs while the

cursorisin the last line. If text is being displayed, lines of text must be less than 36 characters
long, to keep the second column of text from overwriting the first column.

When a PAGE FULL condition occurs, no blinking F appears in the upper left corner of the
screen. Instead, the cursor returns to the HOME position and begins overwriting what is
already on the screen.

Upon powering up and calling the EDITOR, the system is automatically set to MARGIN OFF.

MARGIN 1

Once MARGIN 1 has been pressed, information from the keyboard or listed on the display
appearsinonecolumn. When the screen is full, ablinking F appears in the upper leftcorner of
the display, and the HOME/PAGE key must be pressed for writing to continue.

MARGIN 2

Once the MARGIN 2 key is pressed, information appears on the display in two columns, as it

@ 4051R06 EDITOR

Special Keys

does after MARGIN OFF. However, when the screen is full, the blinking F appears in the upper
left corner, prompting you to press HOME/PAGE.

Resetting the MARGIN Parameter

The EDITOR "remembers” the choice of MARGIN OFF, MARGIN 1, or MARGIN 2 until the
system is powered down, or a different MARGIN key is pressed. Returning control of the

system to BASIC does not affect the MARGIN choice. If you press MARGIN 1, for example,
returning to BASIC does not reset the MARGIN parameter: the next time you call the EDITOR,
it "“remembers” your selection of MARGIN 1.

Although returning control of the system to BASIC does not affect the MARGIN choice,
turning the system power off resets the MARGIN parameter to MARGIN OFF by default.

KEYBOARD KEYS

THE ALPHANUMERIC KEYS

The alphanumeric keys operate under EDITOR control, including special keys HOME/PAGE,
ESC, TAB, TTY LOCK, CTRL, SHIFT, BACKSPACE, LF, RETURN, RUBOUT, BREAK, and the
SPACE bar. All of these keys function under EDITOR control as they do in BASIC, with the

exception of RETURN and BREAK.

The RETURN Key

When RETURN is pressed, the EDITOR examines the current contents of the line buffer. If the
information contained in the line buffer is a command, the EDITOR immediately executes the
command. However, if the data is a line of text the EDITOR sends it to the text buffer.

The BREAK Key

The BREAK key has several uses. The functions provided by BREAK are summarized as
follows:

—After the INSERT command is executed or one of the RECALL keys is used,
pressing BREAK causes the current contents of the line buffer to be loaded into
the text buffer. At the same time, the EDITOR is removed from insert mode
(prompt mode) and returned to normal command mode.

—BREAK may be used to interrupt listing (LIST and SEARCH commands) or
searching operations (NLSEARCH and SEARCH commands).

4051R06 EDITOR @ 33

Special Keys

—While the Search and Edit Line command is executing, pressing BREAK tells the
EDITOR to begin searching for the next occurrence of the target string.

—Pressing BREAK twice provides an immediate exit from a BUSY condition. This
operation should be used with caution and only as a last resort.

THE LINE EDITOR KEYS

Aliofthe LINE EDITOR keys may be used while the system is under EDITOR control. Although
RUBOUT~—/BACKSPACE and RUBOUT—/SPACE function exactly as they do in BASIC, the
other three LINE EDITOR keys work somewhat differently under EDITOR control.

The COMPRESS/EXPAND Key
The EXPAND Function

The EXPAND function is used to create space for inserting new characters within a line of text.
Asin BASIC, you bring the line into the line buffer using the RECALL keys, position the cursor
over the first character to be shifted to the right side of the display, and press the
COMPRESS/EXPAND key.

What happens next depends on the number of characters currently being held in the line
buffer, and on the position of the “"end-of-line marker.”

The End-of-Line Marker. Unlike BASIC’s 72-byte line buffer, the EDITOR line buffer is 396
bytes long, and holds up to 396 characters (a character occupies 1 byte of space). The EDITOR
line buffer consists of six units of 66 bytes each, with an “end-of-line marker” positioned over
the last byte in one of the six units. The end-of-line marker plays an important role in how the
EXPAND and COMPRESS functions operate.

Immediately after the EDITOR is called, the end-of-line marker is at the end of the first unit:

byte 0 65 131 197 263 329 395

However, the position of the marker may change, depending on the number of characters
entered in the line buffer.

@ 4051R06 EDITOR

Special Keys

What Causes the End-of-Line Marker to Move. The position of the end-of-line marker depends
on the length of the largest line that has been entered in the line buffer since the EDITOR was
called. If all of the lines entered in the line buffer have been less than 66 characters long, the
marker remains at the end of the first unit. However, as soon as a line having 66 or more
characters is placed in the line buffer, the marker jumps to the end of the second unit:

byte 0 65 131 197 263 329 395

T

If a line containing 132 or more characters is placed in the line buffer, the end-of-line marker
moves to the end of the third unit. And if a line having 330 or more characters is placed in the
line buffer, the end-of-iine marker moves to the end of the buffer:

byte 0 65 131 197 263 329 395

T

The EDITOR "remembers” the length of the largest line entered in the line buffer. Thatis, once

the marker is moved to the right by a long line, subsequent shorter lines do not affect the
marker.

Pressing the COMPRESS/EXPAND key can also cause the end-of-line marker to change
position. The marker may move to the right after EXPAND, or to the left after COMPRESS.

What Happens When EXPAND is Performed. When the COMPRESS/EXPAND key is pressed
without pressing the SHIFT key, the EDITOR checks the line buffer and notes the current
position of the end-of-line marker. Then the EDITOR examines the 10 character positions
(bytes) immediately preceding the marker. If there are any non-blank characters in these

positions, the EDITOR moves the end-of-line marker to the end of the next unit.

Next the EDITOR performs the expansion. All characters to the right of the cursor, including
the character underneath the cursor, are moved to the right, until the end-of-line marker is
reached. On the screen the line appears to be split into left and right portions separated by a
gap. Additional characters may now be inserted into the gap.

4051R06 EDITOR @ 35

Special Keys

The COMPRESS Function

Once you have finished inserting characters into an expanded line, you may close the gap by
performing the COMPRESS function. Justas for EXPAND, what happens when COMPRESS is
performed depends on the number of characters currently in the line buffer, and on the
position of the end-of-line marker.

What Happens When COMPRESS is Performed. When the COMPRESS/EXPAND key and the
SHIFT key are pressed at the same time, the EDITOR checks the line buffer and notes the
current position of the end-of-line marker. Then the EDITOR examines the unit (66 bytes) that
immediately precedes the marker. If there are only blank characters in these positions, the
EDITOR moves the end-of-line marker one unit to the left, and repeats the procedure for the
next unit.

Once a unit containing some non-blank characters is reached, the EDITOR performs the
compression. The portion of the line that appears to the right on the screen is shifted to the
current position of the cursor.

An Example

Suppose you want to add a character after the word “"OF" in line 2 shown below:

LIST
B E200330280200800080030032¢0000¢0230820328033030008038002008202988%%44
3338328003 80008 8003380832330 02333002080333003220¢80039%988383 7
2:SOLUTION OF LINEAR EQUATIONS

The first step is to enter 2 from the keyboard and press RECALL LINE. Line 2 is reprinted and
recalled to the line buffer with the cursor over the first character in the line:

2:SOLUTION OF LINEAR EQUATIONS

Next you position the cursor after the word "OF,” and press EXPAND.

The EDITOR looks for the end-of-line marker. Suppose in this example that the end-of-line
marker is at the end of the second unit. The EDITOR then examines the 10 bytes of the line
buffer that precede the end-of-line marker, bytes 122 through 131 in this case. Since bytes 122
through 131 are blank, the end-of-line marker does not move.

The EDITOR expands the line, moving the right portion to the right until the end-of-line marker
is reached. Since the end-of-line marker is at the end of the second unit, the last character in

36 @ 4051R06 EDITOR

Special Keys

the line moves to the 131st position in the line buffer. On the screen the right portion of the line
appears to have moved. Since the end-of-line marker is at the end of the second unit, the last
character in the line moves to the 131st position in the line buffer. On the screen the right
portion of the line appears to have moved to the right, and down one line:

LINEAR EQUATIONS

You now insert characters into the line:

SOLUTION OF N
LINEAR EQUATIONS

Finally, you reposition the cursor and press the COMPRESS key. Because the end-of-line
marker is still at the end of the second unit, the EDITOR examines the second unit (bytes 66
through 131) for non-blank characters. The second unit does contain some non-blank
characters, so the EDITOR does not move the marker, and goes on to perform the
compression:

SOLUTION OF N LINEAR EQUATIONS

The REPRINT/CLEAR Key
The REPRINT Function

Pressing the REPRINT/CLEAR key and the SHIFT key at the same time causes the current
contents of the line buffer to appear on the screen immediately below the last line displayed.
The cursor moves down one line, retaining its position in the line.

If the line buffer currently contains a line of text, pressing REPRINT causes the line to be

reprinted without an edit line number, and without the colon (:) that normally precedes a line of
text. Afterthe line of textis reprinted, the EDITOR remains in "insert” mode. Pressing RETURN
causes the prompt character (:) to appear, asking you to enter a new line of text. If you do not
want to create a new line of text, pressing BREAK removes the EDITOR from "insert” mode.

If the line buffer has been cleared by pressing RETURN, BREAK, or CLEAR, the REPRINT
function reprints the line most recently held in the line buffer. After a line of text is reprinted,
pressing RETURN causes the prompt character (:) to appear if the EDITOR was in "insert”
mode before performing REPRINT. (Refer to the INSERT command for an explanation of the
"insert” mode.)

4051R06 EDITOR @ 37

Special Keys

Asin BASIC, the REPRINT function is most useful for displaying a clear copy ofalinethat has
been made unreadable by type-over corrections and RUBOUT symbols.

The CLEAR Function

Pressing the REPRINT/CLEAR key without pressing the SHIFT key causes the contents of the
line buffer to be erased (cleared). If CLEAR is performed after a previously stored line is
brought back into the line buffer by using RECALL or RECALL NEXT LINE, the contents of the
line is lost. The line is erased from both the line buffer and the text buffer. A listing of the text
buffer shows a blank line (a colon followed by blanks) where the erased line was previously
stored. Likewise, if CLEAR is pressed when the Search and Edit Line command pauses foryou
to edit aline, the line disappears from the line buffer and the text buffer. A blank line remainsin
the text buffer where the erased line previously appeared.'

If you inadvertently delete a line of text by pressing CLEAR while the line is in the line buffer,
you may recover the line by immediately pressing REPRINT, then BREAK or RETURN.
immediately pressing REPRINT recalls a "backup” copy of the deleted line to the line buffer.
Pressing BREAK or RETURN then returns the line to the text buffer.

The RECALL NEXT LINE/RECALL LINE Key
The RECALL LINE Function

The RECALL LINE function is performed after entering an edit line number from the keyboard.
Pressing the RECALL NEXT LINE/RECALL LINE key without pressing the SHIFT key causes
the specified line of text to be pulled from the text buffer and loaded into the line buffer. The
cursor is positioned at the beginning of the recalled line.

The line may now be altered or edited using the keyboard keys and the other LINE EDITOR
keys. As in BASIC, you simply space forward or backspace to incorrect characters, and type
over the errors with correct information. You may use the RUBOUT, RUBOUT-, and
RUBOUT— keys to delete characters, and the COMPRESS/EXPAND key to allow additional
characters to be inserted within the line.

When you have finished editing, press BREAK to return the corrected line to the text buffer.

Pressing RETURN also returns the corrected line to the text buffer, but leaves the EDITOR in
insert mode (prompt mode) until BREAK is pressed. This provides an alternate way to insert
new lines of text into the text buffer. Forinstance, to add a new line of textimmediately after line
50 in the text buffer, enter 50 from the keyboard, press RECALL LINE, and then RETURN. The
EDITOR returns a colon, prompting the entry of new text. You then enter a line of text, press
BREAK, and the newly created line is inserted in the text bufferimmediately following edit line
number 50.

1This is slightly different from the way the CLEAR key works in BASIC. In BASIC, if the CLEAR key is pressed after a
previously stored line is recalled to the line buffer, the line is cleared from the line buffer, but not deleted from memory.

@ 4051R06 EDITOR

Special Keys

The RECALL NEXT LINE Function

Like RECALL LINE, RECALL NEXT LINE is performed after entering an edit line number from
the keyboard. However, instead of returning the line having the specified edit line number,
RECALL NEXT LINE returns the next line in the text buffer (whetheritis numbered or not). For

instance, entering 50 and then pressing the SHIFT and RECALL NEXT LINE/RECALL LINE

keys, recalls the line of text that immediately follows line 50 in the text buffer.

After a RECALL LINE or RECALL NEXT LINE is performed and before BREAK is pressed,
either RECALL LINE or RECALL NEXT LINE may be performed again. In either case, the
current contents of the line buffer are returned to the text buffer, and the next line in the text
bufferis recalled. RECALL LINE or RECALL NEXT LINE may be performed repeatedly in this
manner without entering any edit line number, in order to recall consecutive lines for editing.

The STEP PROGRAM Key (RECALL PREVIOUS LINE)

The STEP PROGRAM key functions in a completely different manner under EDITOR control
than in BASIC. The STEP PROGRAM key is pressed after an edit line number is entered from
the keyboard. The line thatimmediately precedes the specified line in the text bufferis recalled
to the line buffer. For example, entering 50 and pressing STEP PROGRAM causes the line of
textimmediately preceding line 50 in the text buffer, to be recalled to the line buffer for editing.

Aline that has been recalled to the line buffer using the STEP PROGRAM key can be altered
with the help of the keyboard and LINE EDITOR keys. As when using RECALL LINE or
RECALL NEXT LINE, you press BREAK to send the corrected line to the text buffer. Pressing
RETURN also sends the corrected line to the text buffer, but leaves the EDITOR ininsert mode.

After RECALL LINE, RECALL NEXT LINE, or STEP PROGRAM and before BREAK is pressed,
STEP PROGRAM may be pressed again. The line currently in the line buffer is returned to the
text buffer, and the preceding line is recalled to the line buffer. STEP PROGRAM may be
pressed repeatedly in this way without entering an edit line number, in order to recall lines one
by one for editing.

Peripheral Control Keys

Peripheral control keys REWIND and MAKE COPY function under EDITOR control as they do
in BASIC. Pressing REWIND causes the EDITOR to rewind the tape cartridge in the internal
magnetic tape unit, and pressing MAKE COPY causes an attached Hard Copy Unit to make a
copy of the information currently displayed on the screen.

4051R06 EDITOR @ 39

Section 4

EDITING COMMANDS

CONTENTS PAGE
The CARD Command e e e e e 4-3
The CASE Command i e e e e e e e e 4-9
The COPY Command ottt e e e e e e e e e e e e et 4-13
The DELETE Command it e i 4-19
The INSERT Command e e e ettt e e 4-23
The LIST Command e e e e e e e 4-29
The MOVE Commandttt e et e e e e e e e e 4-35
The NLSEARCH Command i et et e e e e e et 4-39
The NLSEARCH and Delete Line Command 4-41
The NLSEARCH and Replace String Command 4-47
The SEARCH Command e e e e et e et e e e 4-55
The SEARCH and List Line Command 4-59
The SEARCH and Edit Line Command« 4-65
The SEARCH and Delete Line Command 4-73
The SEARCH and Replace String Command 4-79
The SORT Command e e e e e e e e e e e e e e e 4-87
The REVSORT Command i e e e e e e e e e 4-95

4051R06 EDITOR @

4-1

4-2

NOTES

4051R06 EDITOR

Editing Commands
CARD

The CARD Command

Syntax Form:

CA [numeric constant] [, [numeric constant]]

Descriptive Form:

CARD [number of characters] [, [fill character (decimal equivalent)]]

PURPOSE

The CARD command formats text into lines of a specified length. Lines of text that are longer
than the desired length are split into two or more lines, and lines of text that are too short are
filled out to the desired length with a specified ASCII character.

EXAMPLES

Lo ()
r I

S8,
146

58,46

(e}
X

[au(]
X

EXPLANATION

The CARD command formats all lines in the text buffer to a uniform length. Two parameters
may be entered after the keyword CARD. The first parameter specifies the number of
characters each line is to contain. The second parameter is the decimal code number for an
ASCII character. The ASCII character is called the "fill character,” because it is used when
needed to fill out lines of text to the desired length.

For example, the command CA 50,46 tells the EDITOR to format the current contents of the

text buffer into lines that are 50 characters long. Lines having fewer than 50 characters are
“filled out” using the ASCII character . (decimal equivalent 46). Thatis, when aline is found

4051R06 EDITOR @ 4-3

Editing Commands

CARD

4-4

to have fewer than 50 characters, character positions to the right of the last character in the line
are filled with the character . until the length of the line is increased to 50 characters.'

If any line has more than the specified number of characters, the CARD command is not
immediately executed. Instead, the EDITOR lists on the display the edit line numbers of all
lines found to be longer than the desired length. (Ifthe lines are unnumbered, no list appears. A
blank line is printed on the display for each line found to be too long.) Then the EDITOR prints a
message on the screen, instructing you to type "C" if you wish to continue.

If you enter an uppercase C from the keyboard, the CARD command is executed. Lines shorter
than the specified line length are filled out to the desired length using the ASCII fill character.
However, lines previously found to be longer than the specified length, are split into two or
more lines. When two or more lines are created in this way, the fill character is used if needed to
fill out the last of the new lines.

If you do not want long lines of text to be split in the manner described above, respond to the
message Type "C” to continue by pressing RETURN or entering any character other than
uppercase C. This prevents the EDITOR from executing the CARD command. The text remains
unchanged, and all lines are intact.

Default Values

Both parameters for the CARD command are optional. The examples listed above show that
both parameters may be omitted, as in the command CA . The number of characters may be
specified and the fill character omitted, as in CA 50, . Or, the fill character may be given
alone, as in the command CA ,46 .

When the number of characters is omitted in a CARD command, the EDITOR supplies the
value 80 by default. When the fill character is omitted, the EDITOR supplies the value 32, the

ASCIIcode foraspace. Thusthecommand CA isequivalentto CA 80,32 .Thecommands
CA 50, and CA 50,32 are the same; and CA ,46 is equivalent to CA 80,46 .

Notes on the Command Syntax

As indicated in the syntax form, the edit delimiter (,) is optional when the fill character is
omitted. For example, the commands CA 50, and CA 50 are the same. Both commands tell
the EDITORto format the textinto lines that are 50 characters long, using spaces as needed to
fill lines to 50 characters.

1Not including the end-of-record character at the end of the line.

@ 4051R06 EDITOR

Editing Commands
CARD

An Editing Example

The following examples show the CARD command being used to format a sample piece of text.

Example 1

LIST
{:Machine dependent kinary code
2:Magnetic tape format compatibility
J:Magnetic tape statements
4:Math functions
SiMatrix addition
6:Matrix assignment
7iMinus print fields
8:Modular design of basic statements
9:Nesting
18:Numneric constants
11:Numeric variables
12:0perators, logical
13:0utput to printer, formatted
14:Peripheral device numbers

CARD 43,435

LIST
i:Machine dependent binary code----======w=--
2:Magnetic tape format compatibility--=-==---
3:Magnetic tape statements--- ————
4:Math functions-- - ———— -
S:Matrix addition-=-—--c-vece-u-- ————e—eeecaa—
6:Matrix assignment-- ceerecenccncnneaenae
7:Minus print fields- e c— e e ————
8:Modular desian of basic stntcnents ---------
9:Nesting------- --= it
18:Numeric constants-----------------coo—o———-
11:Nuneric variables--------=---- ittt
12:0perators, logical---—--~--—c-ccc-co—coooo-
13:0utput to printer, formatted---------------
14:Peripheral device numbers-------=----------

Example 1 shows the CARD command being used to format lines of free text. The com-
mand CA 43,45 tellsthe EDITORto formatthe textinto lines of 43 characters, usinga hyphen
(ASCII code 45) as a fill character.

Since all of the lines have fewer than 43 characters, no message appears on the display, and the

CARD command isimmediately executed. After the command is executed, a listing of the text
shows that hyphens (-) have been added to fill each line to a uniform length of 43 characters.

4051R06 EDITOR @ 45

Editing Commands

CARD

4-6

Example 2

1:Machine dependent kinary code
2:Magnetic tape format compatibility
J:Magnetic tape statements

4:Math functions

S:Matrix addition

6:Matrix assignment

7:Minus print fields

8:Modular design of program statements
9:Nesting
11:Numeric variables
12:0perators, logical
13:0utput to printers formatted
14:Peripheral device numbers

CRR0834,45
Type "C" to continue

LIST

Machine dependent binary code-----
Magnetic tape format compatibility
Magnetic tape statements-----===--

tMatrix assignment-~---c-vsconoo—- -
tMinus print fields-----=----c-v—o-
:Qodulur design of program statemen
e e ——————
:Nesting--------m-mcomocmomcmcon e
tNumeric variables-----==--=-cc--—-
:Operators, logicgl-=--==-==--=o=--
:Output to printer, formatted------
:Peripheral device numbers---------

i
i
i
i

Example 2 illustrates what happens when one or more of the lines of text is longer than the line
length specified in the CARD command. The same sample piece of text is used, but this time
the command CA 34,45 is entered.

Because line 8 has more than 34 characters, the CARD command is notimmediately executed.
Instead, the EDITOR prints the number 8 on the display, and a message appears, asking for a

"C" as a signal to continue.

Entering an uppercase C causes the cursor to reappear at the beginning of the next line. The
character C does not appear on the display. The CARD command has been executed.

@ 4051R06 EDITOR

Editing Commands
CARD

A listing of the text shows that lines having fewer than 34 characters are filled out to the 34th
character position using hyphens (-). Line 8 is now split into two lines of 34 characters each,
with the second line filled to the 34th position by the character - . The newly created line that
appears after line 8 has no edit line number.

If an uppercase C had not been entered from the keyboard after the message appeared, the
CARD command would not have been executed.

Special Uses For the CARD Command

A CARD command that specifies 80 as the first parameter is used to format text into "“card
images,” lines having 80 characters each. Lines formatted into card images may be sent to a
device that asks for 80-character records and accepts the 80th character as the end-of-record
character.’

The CARD command may also be executed before text is rearranged by SORT or REVSORT
commands. A CARD command that specifies a fill character having a decimal equivalent less
than 33, formats text so that the REVSORT command is the inverse of the SORT command.
(Refer to the explanations of the SORT and REVSORT commands later in this section.)

An ASCII code chart is inciuded in Appendix B, for use in finding the decimal equivalents of
ASCII characters.

2Af*(er a CARD command formats text into lines of 80 characters, a CR (CARRIAGE RETURN) character remains in
the 81st position of each line. The final CR character can be removed before sending the lines to an external device.
The method of removing CR characters depends on how the lines are sent to the device. For instance, if the lines are
transmitted using the 4051 Data Communications Interface, a parameter of the CALL “TCRLF’’ routine signals the
Interface to remove the final CR character from each line.

4051R06 EDITOR @ 4-7

NOTES

4051R06 EDITOR

Editing Commands

The CASE Command

Syntax Form:

CAS [edit line number] [, [edit line number]]

Descriptive Form:

CASE [starting line number] [, [ending line number]]

PURPOSE

The CASE command changes lowercase text characters a-z into their uppercase equivalents
A-Z if the uppercase flag has been set. If the lowercase flag has been set, the CASE command
changes uppercase text characters A-Z into their lowercase equivalents a-z.

EXAMPLES

CRS 56,
CARS 59
CRS 1,100
CAS B,8+58

EXPLANATION

The CASE command allows a starting edit line number and an ending edit line number to be
specified. The starting and ending line numbers may be entered with an offset as in the com-
mand CAS 0,0+50 ,orwithoutan offsetasin CAS 1,100 . The command acts upon all lines
of text between and including the starting and ending lines. For instance, the com-

mand CAS 0,0+50 affects the first 51 lines (lines 0 through 0+50) of the text buffer.

What happens when the CASE command is executed depends on whether the uppercase or

lowercase flag is set (refer to the explanations of the UPPERCASE and LOWERCASE
commands). If the uppercase flag is set, the EDITOR examines the current contents of the text

4051R06 EDITOR @

CASE

4-9

Editing Commands

CASE

4-10

buffer from the starting line through the ending line, and changes lowercase characters a-z
into their uppercase equivalents A-Z. If the lowercase flag is set, the EDITOR changes
uppercase characters A-Z into lowercase characters a-z.

Default Values

Both the starting and ending lines are optional. The examples listed above show that the
starting line number, ending line number, or both, may be omitted when entering the
command. When the starting line number is omitted, the CASE command begins acting on the
first line in the text buffer. When the ending line number is omitted, the last line affected by the
command is the last line in the text buffer.

For example, the command CAS acts upon all lines in the text buffer. The com-
mand CAS 50, acts upon all lines from line 50 on, and CAS ,50 affects all lines up to and
including edit line 50.

Notes on the Command Syntax

As indicated in the syntax form, the edit delimiter (,) is optional when the ending line number is
omitted. For example, the command CAS 50, and CAS 50 are the same. Both commands
tell the EDITOR to check for alowercase or uppercase flag, then make appropriate changesin
all lines of text from edit line 50 on.

Command Semantics

The ending line number should be at least as large as the starting line number. If the ending line
number is smaller than the starting line number, the command either has no effect, or causes a
semantic error as in the following example:

CRS T.2

EDITOR ERROR

Semantic - error number 139
CRS 7.2

The correct way to enter the command is as follows:

[aa]
r
[da]
[AN]
-3

@ 4051R06 EDITOR

Editing Commands
CASE

An Editing Example

The following examples show how the CASE command changes characters in a sample piece
of text.

Example 1

LIST
1:CRT and shield assembly removal
2:This procedure requires two people and should
3:be carried out only by qualified service
4:personnel. A crt is a high vacuum device and
S:is dangerous if not handled properly.
7 Warning
8:The crt may implode if it is scratched or
tstruck severeluy., Do not handle the crt by its
10:neck. Wear protective clothing and a face
{i:shield when handling the crt.

UPPERCASE

CASE 1,1

CASE 7,11

LIST
1:CRT AND SHIELD ASSENBLY REMOVAL
2:This procedure requires two people and should
3:be carried out only by qualified service
4:personnel. A crt is a high vacuum device and
S:is dangerous if not handled properly.
7 HARNING

8: THE CRT MAY IMPLODE IF IT IS SCRATCHED OR

9: STRUCK SEVERELY. DO NOT HANDLE THE CRT BY ITS
18:NECK. WEAR PROTECTIVE CLOTHING AND A FACE
11:SHIELD WHEN HANDLING THE CRT.

The first listing in Example 1 shows 11 lines of text containing lowercase characters. The
command UPPERCASE is entered to set the uppercase flag. Next the commands
CASE 1,1 and CASE 7,11 are executed.

Because the uppercase flag is set, the EDITOR changes lowercase characters a-z into

uppercase characters A-Z. A listing of the text after the two CASE commands are executed
shows only uppercase characters in line 1 and in lines 7 through 11 of the text buffer.

4051R06 EDITOR @ 4-11

Editing Commands

CASE

4-12

Example 2
LIST
¢ INDICATORS 1-9, 1-11
¢ INDICATOR, SPARE 1-13
+INITIAL CONDITION 1-14
: INPUT FIELD 2-7
¢ INPUT/0UTPUT 3-1
: INSERT CHARACTER 1-22, 2-3
¢ INSERT LINE 1-23, 2-3, 2-6
: INSTALLATION 2-14
¢ INTERFACE 1-3, 1-4, 1-6, 2-16, 2-21
+JOIN TYPES, RULINGS 2-10

:KEYBOARD FUNCTION (PURPOSE OF> 1-10
<KEYBOARD, NUMERIC 1-21

:LINE FEED 1-24, 2-1, 2-3, 2-7
:LOCAL OPERATION 1-7

LOWERCASE
CASE

LIST
cindicators 1-9, 1~
cindicators spare 1-
tinitial condition 1
cinput field 2-7
tinputsoutput 3-1
tinsert character 1-22, 2-3
tinsert line 1-23, 2-3, 2-6
tinstallation 2-14
:interface 1-3, 1-4, 1-6, 2-16, 2-21
:join types, rulings 2-10 ‘
ckeyboard function (purpose of) 1-10
:keyboards, numeric 1-21
:line feed 1-24, 2-{, 2-3, 2-7
slocal operation (-7

11
13
-14

The first line in Example 2 shows unnumbered lines of text containing only uppercase
characters. The command LOWERCASE is entered to set the lowercase flag, then the com-
mand CASE is executed.

Because the lowercase flag is set, the EDITOR changes uppercase characters into lowercase
characters. The command CASE tells the EDITOR to change characters to lowercase in all

lines of text. A listing after the command is executed shows that all uppercase characters have

been changed to lowercase.

Special Uses for the CASE Command

Some specialized systems are designed to accept only uppercase characters. The CASE
command may be used to convert characters to uppercase before sending them to a
specialized system.

@ 4051R06 EDITOR

Editing Commands

The COPY Command

Syntax Form:

C [edit line number] [, [edit line number] [, [edit line number] J]

Descriptive Form:

COPY [starting line number] [. [ending line number] [, [destination for copied text]]]

PURPOSE

The COPY command duplicates specified lines of text, and sends the copied lines to adesired
location in the text buffer.

EXAMPLES

c

c5

C 5

C 5,5

C 545,250

C 106,500,1235

EXPLANATION

The COPY command allows a starting line number, an ending line number, and a destination
line number to be specified. When the COPY command is executed, all lines of text between
and including the starting and ending lines are copied, and placed immediately before the
specified destination line. Forinstance, theexample C 100,500,1235 listed above copies text
lines 100 through 500, and inserts the copy immediately before line 1235. The com-

mand C 5,5,250 copies line 5, placing the copy immediately before line 250.

4051R06 EDITOR @

COPY

4-13

Editing Commands

COPY

4-14

Defauit Values

The starting, ending, and destination line numbers are optional, and may be omitted or entered
in any combination. Several examples are listed above.

When the starting line number is omitted, the first line copied by the COPY command is the first
line of text. When the ending line number is omitted in the command, the last line copied is the
last line of text. When the destination line is omitted, copied text is placed after the last line of
text.

In the examples listed above, the command C copiesall of the currenttext. The copy appears
below the original text. Thecommand C 5 makes a copy of all text from line 5on, placing the
copy afterthe lastlineoftext. C,5 copiesalltextuptoandincludingline5, placing the copy

after the last line of text.

Notes on the Command Syntax

As indicated by the brackets in the syntax form, final edit delimiters (,) are optional. When an
edit delimiter is the last entry in the command, it may be omitted without changing the meaning
of the command. Thatis, the commands C 5,, andC 5, andC 5 areequivalent,andC 1,3, is
the sameas C 13 .

Command Semantics

The ending line number should be at least as large as the starting line number. If the ending line
number is smaller than the starting line number, the command makes no sense, and has no
effect on the text buffer. Forexample, thecommand C 4,2,8 has noeffecton the currenttext.
The correct way to enter the command is C 2,4,8 .

When only a destination line is specified, the line number must be larger than the largest line
number currently assigned to the text. For instance, the command C ,,3 causes a semantic
error if the text buffer contains lines numbered 1 through 8:

LIST
1: REAL FUNCTION RSCRLECIFACT?
2. COMMON ~BTEST- ERROR,DEBUG, EOM, HNDSHK,
3% % COMPB(2595,5UBSTR(113,MASTER,OPSEQ(S>,
4: & LINTRM,BLKTRHM, INBIT,0UTBIT, TRCOUN,BUFF,
M & HNRMBUF (235, FRULT
B INTEGER ERROR.DEBUG.EOM, HNDSHK, COMPB,
7 & SUBSTR,MASTER,OPSEG,LINTTM,BLKTRM,
21 & TRCOUN,EUFP,FAULT,INBIT,0UTEIT,NAMBUF
C LR B

EDITOR ERROR
§emugtic - error nunber 1
L; LI R

o
"o

@ 4051R06 EDITOR

Editing Commands
COPY

The reason for the semantic error is that the command C ,,3 asks the EDITOR to copy the
entire text, and insertthe copy before line 3. However, line 3 lies within the portion of text to be
copied.

Althoughthecommand C ,,3 issyntactically correct, it does not make sense in this particular
example. The EDITOR assumes the command does not convey the meaning you intend, and
returns a semantic error.

The above example illustrates a general rule. The destination line must not lie between the
starting and ending lines in the text buffer, or a semantic error occurs. For example, the com-
mand C 1,10,3 causesasemantic error, because the destination line (edit line number 3) falls
between the starting and ending lines (edit lines 1 and 10).

An Editing Example

The following example shows the COPY command being used to duplicate parts of a sample
FORTRAN program.

Example 1

LIST

REAL FUNCTION RSCALECIFACT)

COMMON ~BTEST~ ERROR,DEBUG,EOMs HNDSHK
& COMPB(259),SUBSTR(11),MASTER, OPSER(S),
& LINTRM,BLKTRM, INBIT,0UTBIT, TRCOUN,BUFP,
& HNAMBUF (23),FAULT

INTEGER ERROR, DEBUG, EOM; HNDSHK, COMPB,
& SUBSTR,MASTER, OPSEQ,LINTTM,BLKTRM,
& TRCOUN,BUFP,FARULT,INBIT,0UTBIT,NAMBUF
RSCALE=FLOATC(IFACT)>/256.0

RETURN

END

REAL FUNCTION RANGLECIDEGR)
RANGLE=FLOATC(IDEGR>%180.06,32767.0
SUBROUTINE MOUE(X,Y)

INTEGER X, Y

CALL OPAIR(28,X,Y)

N N o
MBI DO IMN NI GINg

C 16,11,14
C 10,11,17
c 2,8,13
C 2,815

(continued on next page)

4051R06 EDITOR @ 4-15

Editing Commands

COPY

4-16

REAL FUNCTION RSCALECIFACT)

COMMON ~BTEST~ ERROR,DEBUG, EOM, HNDSHK,

& COMPB(259),SUBSTR¢11),MASTER, OPSEQ(S),
& LINTRM,BLKTRM, INBIT,0UTBIT, TRCOUN,BUFP,
& HNAMBUF(23),FAULT
&
&

INTEGER ERROR,DEBUG,EOM, HHDSHK, COMPB,
SUBSTR,yMASTER,OPSEQ, LINTTM, BLKTRM,

8: TRCOUN, BUFP,FAULT, INBIT, OUTBIT, NAMBUF

9: RSCALE=FLOART(IFACT>,236.8

RETURN

END

REAL FUNCTION RANGLECIDEGR)

: COMMON ~/BTEST- ERROR,DEBUG, EOMs HNDSHK,

H & COMPB(259),SUBSTR(11),MASTER, OPSEQ(S),

&% LINTRM,BLKTRM, INBIT,OUTBIT, TRCOUN,BUFP,

& NAMBUF(23),FAULT

&

&

NV 8 GO -

P P pt
oD
ae 00 o9

INTEGER ERROR,DEBUG.EOM, HNDSHK, COMPB,
SUBSTR,MASTER,OPSEQ, LINTTM, BLKTRM,
: TRCOUN, BUFP,FAULT, INBIT, QUTBIT, NAMBUF
13: RANGLE=FLOATC(IDEGR>*180.08,32767.0
: RETURN
: END
14: SUBROUTINE MOUE(X,Y)>
: COMMON /BTEST/ ERROR,DEBUG,EOMs HNDSHK,
& COMPB(259)>,SUBSTR(11),MASTER, OPSEQ(S),
& LINTRM,BLKTRM, INBIT,0UTBIT, TRCOUN,BUFP,
& NAMBUF(23),FAULT
INTEGER ERROR,DEBUG, EOM, HNDSHK, COMPB,
& SUBSTR,MASTER,OPSEQ,LINTTM,BLKTRM,
& TRCOUN,BUFP,FAULT, INBIT,OUTBIT, NANBUF
INTEGER X, Y
CALL OPAIK(284X,Y>
RETURN
END

—
o

Four COPY commands are executed in Example 1. The commands C 10,11,14 and

C 10,11,17 tellthe EDITORto copy lines 10and 11, inserting the copies beforelines 14and 17,
respectively. Next the commands C 2,8,13 and C 2,8,15 tell the EDITOR to place a copy of

lines 2 through 8 immediately before lines 13 and 15, respectively.

A second listing of the text shows that copies of the specified lines have been sent to the
desired locations. The lines generated by the four COPY commands are the unnumbered lines
in the new listing. (Newly created lines are not given edit line numbers until a RENUMBER

command is executed.)

The new listing shows that the RETURN and END statements (lines 10 and 11) now appear in
three places in the text, as do the COMMON and INTEGER statements (lines 2 through 8).
Using the COPY command to generate the lines is quicker and simpler than entering 18 lines

from the keyboard.

4051R06 EDITOR

Editing Commands
COPY

Special Uses for the COPY Command

COMMON and INTEGER statements like those shown in Example 1 often appearin FORTRAN
programs. COMMON and INTEGER statements can be many lines long, and the same
statements are usually repeated many times in one program. Using the COPY command is the
easiest way to duplicate groups of lines such as COMMON and INTEGER statements, which

must appear in many locations.

4051R06 EDITOR @ 4-17

NOTES

4-18 @ 4051R06 EDITOR

Editing Commands
DELETE

The DELETE Command

Syntax Form:

D edit line number [, [edit line number]]

Descriptive Form:

DELETE starting line number [, [ending line number]]

PURPOSE

The DELETE command erases specified lines from the text buffer.

EXAMPLES

DEL
CEL S@,80

DEL @,19608
GEL ©.8+48

n

EXPLANATION

The DELETE command allows a starting and ending line number to be specified. When the
DELETE command is executed, all lines of text between and including the starting and ending
lines are deleted from the text buffer. For instance, the example DEL 50,60 listed above
deletes lines 50 through 60 from the text buffer. Just as for the other EDITOR commands,
starting and ending line numbers may be expressed using an offset, as in the example
DEL 0,0+40 listed above.

Since edit line number 0 always refers to the first line of text, and 10000 always refers to the last
line of text, the command DEL 0,10000 listed above deletes the entire contents of the text
buffer. This command is equivalent to the BASIC statement DEL ALL , which cannot be
executed under EDITOR control.

4051R06 EDITOR @ 4-19

Editing Commands
DELETE

Default Values

The DELETE command is the only EDITOR command that requires at least a starting line
number to be specified. Entering only the keyword DEL causes a syntax error. This is for
your protection, so that you cannot wipe out the entire text buffer by entering DEL and
accidentally pressing RETURN.

The ending line number is optional. When the ending line number is omitted in a DELETE
command, the EDITOR deletes only the starting line. This is also for your protection, to keep
you from inadvertently deleting large portions of text.

Notes on the Command Syntax

As indicated by the brackets in the syntax form, the edit delimiter (,) may be omitted when the
ending line is not specified. The meaning of the command is not changed: that is,
both DEL 5 and DEL 5, delete only line 5 from the text buffer.

If a negative number is entered as the starting orending line number, the EDITOR supplies the
value 0. Thus the command DEL —3 deletes the first line of text.

Command Semantics

If the ending line number is larger than the starting line number, the EDITOR normally returns a
semantic error. For example:

DEL 8.8

ERITOR ERROR

Semantic - error numker 139
DEL 8.€

Thecommand DEL 8,6 issyntactically correct. However, the meaning of the command is not
clear, because the ending line precedes the starting line in the text buffer.

4-20 4051R06 EDITOR

Editing Commands
DELETE

An Editing Example

The following example shows the DELETE command being used to erase specified lines froma
sample BASIC program.

Example 1

LIST
I9@:REM X% END OF INITIALIZATION #x
S6@:REM XX BEGINNING OF MAIN CODE *x%
SPOIREM X% ROW INTERCHANGE IF L{K %%
980: TRACE ON
998:FOR P=1 TO N+i
6008: T=ACK,P)
618:A(K,P)>=AlL,P)
628:ACLyP)=T
gig:ggﬁTt: KEEP TRAC
. ACK OF ROW PERMUTATIONS xx
638: T=P1 (K)
6608:P1CK)=P1(L)
678:P1(L)=T
680: TRACE OFF
630:REM Xx REDUCTION SUBROUTINE xx%

DEL 330,580
DEL 640
DEL 680,

LIST
S990:FOR P=1 TO N+i
608: T=ACK,P)
618:ACKyPI)=ACL,P)
620: ACL4P)=T
630: NEXT P
630: T=P1(K)
660:P1(K)=Pi(L)
670:Pi(L)=T
698:REM %% REDUCTION SUBROUTINE xx

Three DELETE commands are executed in Example 1. The command DEL 550,580 deletes
lines 550 through 580. The commands DEL 640 and DEL 680, delete line 640 and line 680,
respectively. A new listing shows thatthe REM, TRACE ON, and TRACE OFF statements have

been deleted.

4051R06 EDITOR @ 4-21

NOTES

4-22 @ 4051R06 EDITOR

Editing Commands
INSERT

The INSERT Command

Syntax Form:

I [edit line number]

Descriptive Form:

INSERT [destination for inserted lines of text]

PURPOSE

The INSERT command prepares the EDITOR for new lines to be entered from the keyboard
and sent to a specified location in the text. Executing the INSERT command places the
EDITOR in "insert” mode. A colon (:) appears on the display, signaling that the EDITOR is
ready to receive new lines of text. After the new lines are entered, pressing the BREAK key
returns the EDITOR to normal command mode.

EXAMPLES

EXPLANATION

The INSERT command is used to enter new lines from the keyboard and add them to the text
buffer. The INSERT command has only one parameter, a destination line number. When an
INSERT commmand is executed, the EDITOR is placed in “insert mode” and is ready to receive
new text. Lines entered from the keyboard after the command is executed and before the
BREAK key is pressed, are inserted in the text buffer immediately before the specified
destination line.

4051R06 EDITOR @ 4-23

Editing Commands

INSERT

4-24

For example, the command | 50 listed above prepares the EDITOR to receive new text from
the keyboard. Lines entered after the command is executed and before BREAK is pressed, are
inserted immediately before line 50 in the current text. Similarly, the command | +10 listed
above prepares the EDITOR to receive new lines and insert them before the 11th line of text
(line +10 is the same as line 0+10, the 11th line of text).

Insert Mode

Executing an INSERT command places the EDITOR in insert mode. When the EDITOR is in
insert mode, pressing RETURN causes a colon (:) to appear in the sixth character position of
the nextline on the display. The cursor appears one character position to the right of the colon.

The colonisthe EDITOR's prompt character, and signals that you may begin entering new text
from the keyboard. Characters entered immediately after the colon are part of a new line of
text. Pressing the RETURN key ends the line. When RETURN is pressed, the new line is sent
from the line buffer to the text buffer, where it is inserted just before the destination line
specified in the INSERT command.

After RETURN is pressed, another colon appears on the display immediately below the
previous one. This means that the EDITOR is ready to receive another new line. You may
continue to create new lines in this manner, pressing RETURN to mark the end of a line and
cause another colon prompt to appear on the display. Each time RETURN is pressed, the
current line is inserted immediately before the destination line in the text buffer.

The LINE EDITOR keys COMPRESS/EXPAND, RUBOUT—/BACKSPACE,
RUBOUT—/SPACE, and REPRINT/CLEAR function while the EDITOR is in insert mode. That
is, if you make an error while entering a new line of text, you may correct the line using these
keys, and you may backspace and type over incorrect characters.

The RECALL NEXT LINE/RECALL LINEand STEP PROGRAM keys do not function while the
INSERT command is being used to create new lines of text.

Removing the EDITOR from Insert Mode

When you are finished entering new lines, press the BREAK key to remove the EDITOR from

insert mode. Pressing BREAK causes the cursor to reappear (without a colon) at the beginning
of the nextline on the display. All newly created lines have now been inserted in the text buffer,
and the system is prepared to receive EDITOR commands.

@ 4051R06 EDITOR

Editing Commands
INSERT

When BREAK is pressed, the current line is sent to the text buffer, and placed before the
destination line in the text buffer. Thus, although you can press RETURN before BREAK, you
are not required to press RETURN after entering the last of the newly created lines. If the
BREAK key is pressed immediately after the last character of the line is entered, the EDITOR
automatically adds an end-of-record character to the end of the line.

Normally, pressing BREAK after the colon prompt appears removes the EDITOR from insert
mode without adding a blank line after the inserted lines. However, if an INSERT command is
executed and BREAK is pressed immediately after the colon appears for the first time, a blank
line is inserted in the text buffer just before the specified destination line.

The CLEAR Function

Pressing the REPRINT/CLEAR key while the EDITOR is in insert mode, clears the contents of
the current line from the line buffer and the text buffer. A blank line remains in the text. (If the
line was numbered, the edit line number remains in the text buffer.) The cursor reappearsin the
seventh character position of the next line on the display. New characters can be entered from
the keyboard, and inserted into the empty line by pressing RETURN or BREAK. As always
when the EDITOR s ininsert mode, pressing RETURN causes another colon prompt to appear
on the display, and pressing BREAK ends execution of the INSERT command.

Default Values

The destination line may be omitted when entering the INSERT command. When no
destination line is specified, newly created lines are inserted at the beginning of the current
text. Thatis,thecommand | listed in the examples above places the EDITOR in insert mode,
and tells the EDITOR to insert new lines before the first line of the current text.

Thecommand | tellsthe EDITORto place newly created lines of text before the beginning of
the text. If you want to add lines onto the end of the text, you must specify a destination line that
is beyond the end of the text. For instance, the command | 10000 in the examples listed
above, may be used toinsert lines after the last line of text, because 10000 is always larger than
the largest edit line numberin the text. (See "How to Use Edit Line Numbersina Command"” in
Section 2 for a more complete description.)

By contrast, the command | 10000-1 inserts new lines just before the last line of the current
text, because 10000-1 always refers to the last line of text.

4051R06 EDITOR @ 4-25

Editing Commands

INSERT

An Editing Example

The following example shows the INSERT command being used to add new statements to a

4-26

BASIC program.

Example 1

LIST

1160
1 18@
1200
1228
1248
1268
1288

U & G [0 =

: 150

: 290
: 38
H L)

150
1:168
1170
2,180
1190
3:200
4:220
5:240
61260
7280
1290
: 308
1210

INPUT W

INPUT F$

INPUT N

FIND W

PRINT @33:"DEF FNF(X)="iF$
FIND W

AFPPEND 290

PRINT "ENTER WORK FILE NUMBER:";
PRINT "ENTER FUNCTION, F(X¥»:":
PRINT "ENTER # OF POINTS TO BE GRAPHED:";

REM X*x USER FUNCTION APPENDED HERE k¥%

PRINT "ENTER BEGINNING X UALUE:"j

INPUT X1

PRINT "ENTER WORK FILE NUMBER:";

INPUT W

PRINT "ENTER FUNCTION, F(¥):";

INPUT F$

PRINT “ENTER # OF POINTS TO BE GRAPHED:"j
INPUT N

FIND_W

PRINT @33:"DEF FNF(X)=";F$

FIND W

APPEND 290

REM ¥¥% USER FUNCTION APPENDED HERE ¥¥¥

PRINT "ENTER BEGINNING X UALUE:";
INPUT ¥1

@ 4051R06 EDITOR

Editing Commands
INSERT

Four INSERT commands are executed in Example 1. Firstthe command | placesthe EDITOR
in insert mode, and causes the colon prompt to appear on the next line of the display. The
characters that appear on the same line and to the right of the colon are entered from the
keyboard before pressing BREAK.

Next the command 12 is executed, and another colon appears on the display. As before,
characters are entered from the keyboard and BREAK is pressed to remove the EDITOR from
insert mode. Then I3 is executed, another new line entered, and BREAK pressed again.

Finally the command 18 is executed. This time, the INSERT command is used to add three
new lines to the text buffer. After the first and second lines are entered, RETURN is pressed,
causing the colon prompt to reappear in the next line. After the third line is entered, however,
BREAK is pressed to remove the EDITOR from insert mode.

After the INSERT commands are completed, a listing shows the six newly created lines in the
desired locations in the text buffer. The line created using the command | appears at the
beginning of the text; the lines created using the commands 12 and 13 appearbeforelines 2
and 3, respectively.

The three lines inserted using the command 18 appear at the very end of the text. This is
because edit line number 8 is larger than the largest line number in the current text, and

therefore refers to a location beyond the end of the text.

All of the newly created lines of text remain unnumbered until a RENUMBER command is
executed.

4051R06 EDITOR @ 4-27

NOTES

4-28 @ 4051R06 EDITOR

Editing Commands
LIST

The LIST Command

Syntax Form:

L [1/O address] [edit line number] [, [editline number]]

Descriptive Form:

LIST [1/0 address] [starting line number] [, [ending line number]]

PURPOSE

The LIST command lists lines of text on the specified peripheral device. If a peripheral device s
not specified, the list is printed on the display.

EXAMPLES

LIS

LIS 5@

LIS Se,

LIS ,50
LIS 408,500
LISE29;

LISE23:488,

EXPLANATION

The LIST command allows an I/0 address, a starting line number, and an ending line number
to be specified. When the LIST command is executed, edit line numbers and text between and
including the starting and ending line are listed on the specified peripheral device. For
instance, the example LIS@29:400,500 shown above causes lines 400 through 500 of the
current text to be listed on peripheral device 29.

4051R06 EDITOR @ 4-29

Editing Commands
LIST

When listing text on the display or any peripheral device, the EDITOR inserts a colon (:) before
the first text character in each line. The colon is used to mark the beginning of each line and to
separate edit line numbers from text.

Executing a LIST command does not change the current contents of the text buffer. When a
copy of the text is transmitted to the display or another device, the EDITOR places a colon
before the first text character in each line, and inserts an end-of-record character for each line
of text. If the device is a magnetic tape, the EDITOR also places an end-of-file mark after the
last line recorded on the tape.

A list of the current text can be sent to any device on the General Purpose Interface Bus by
specifying the appropriate primary address in the LIST command. For example, the com-
mand LIS@29: sends a copy of the current edit line numbers and text to device 29 on the
GPIB (General Purpose Interface Bus). A primary address is the only requirement for an 1/0
address: the EDITOR automatically issues secondary address 19, which tells the peripheral
device that the incoming ASCII strings are lines of text to be listed.

Specifying atape device in a LIST command when the tape head is positioned to the beginning
of the open file, changes the file header name to ASCII TEXT .

Default Values

All of the LIST command parameters are optional. When no I/0 address is specified, edit line
numbers and text are listed on the display. When the starting line number is omitted, the first
line listed is the first line of text, and when the ending line number is omitted, the last line listed
is the last line of text.

For instance, the command LIS shown above lists all of the current text on the display.
LIS 50, lists from line 50 on, and LIS,50 lists all lines up to and including line 50. Like-
wise, LIS@29:400, sends a list to device 29 of the current text from line 400 on, and
LIS@29:,500 lists on device 29 all text up to and including line 500.

The command LIS 50 shown above, causes only line 50 to be listed on the display (see
"Notes on the Command Syntax").

Omitting the Keyword

Eventhe keyword LIST isoptional, as long as at least one element of the syntax is specified. An
I/0 address, an edit line number, or an edit delimiter suffices when entering a LIST command.?
For instance, the command LIS 400, may be shortened to 400, and the command

LIS ,500 may be shortened to ,500 . Similarly, LIS 400,500 is the same as 400,500 .

3S&nce a space is an edit delimiter, this means that pressing the SPACE bar, then RETURN, is the same as entering the
keyword LIS and pressing RETURN. Both commands cause all of the current text to be listed on the display.

4-30 @ 4051R06 EDITOR

Editing Commands
LIST

To list one line of text on the display, you need only enter the desired line number, then press
RETURN. Thus the command 50 is equivalent to LIS 50 .

Notes on the Command Syntax

As for many other EDITOR commands, the edit delimiter (,) may be omitted if the ending line
number is omitted. However, omitting the edit delimiter changes the meaning of the command.
That is, the commands LIS 50 and LIS 50, are not the same.

When a starting line is given alone and is not followed by a delimiter, the LIST command lists
only one line of text, the starting line. Thus LIS 50, lists from line 50 through the end of the
text, but LIS 50 lists only line 50 on the display.

1/0 Addresses. When specifying a peripheral device, do not enter blank spaces within the 1/0
address, orimmediately before or after the colon (:) that ends the I/0O address. Forexample, the
command LIS@29: ,500 causes an error, because a space appears immediately after the
colon:

LIS@29: 588
EDITOR ERROR
Syntax - error number 138
LISe23: ,500

The correct way to enter the above command is LIS@29:,500 .

Command Semantics

The ending line number specified in the LIST command should be at least as large as the
starting line number. If the ending line number is smaller than the starting line number, the
command makes no sense, and has no effect on the text buffer. For example, the command
LIS 5,1 has no effect on the current text. The correct way to enter the commandis LIS 1,5 .

4051R06 EDITOR @ 4-31

Editing Commands
LIST

An Editing Example

The following example shows the LIST command being used to display lines of text on the
screen.

Example 1

LIS
EIgENSIUN RC208),BC205
WRITE ¢(6,418)
168 FORMART (” ENTER DEGREE OF POLYNOMIAL: >
READ (S,%> K
C ENTER COEFFICIENTS OF POLYNOMIAL, PCX3
WRITE (6,20)
20 §0§M?T (- ENTER COEFFICIENTS OF ¥:7“)
2K+
DO 100 I=1,N
168 READ (SyX%) A(N-I+1)
C ENTER BEST GUESS APPROXIMATION FOR ROOT
3

WRITE (6,30)
0 FORMAT ¢ ENTER APPROXIMARTE ROOT: 7)
READ (Ss%)> X8

ANBGNN=OWOVONOUNLGITY—

(S Y o

F-S

EIgENSION A(28),B(20)
WRITE (6,18)
FORMAT ¢ ENTER DEGREE OF POLYNOMIAL: ")

B X7V AR o
se s se e w
-

(s 3

LIS 13,
13: WRITE (6,30)
14:30 FORMAT ¢~ ENTER APPROXIMATE ROOT: 7>
15: RERD (S,%)> X@

LIS 7,11
7: WRITE (6,20)
g:20 FORMAT ¢’ ENTER COEFFICIENTS OF X:7)
: N=K+1
: DO 1808 I=1,N
1108 READ (Sy%) A(N-I+1)

In the example shown above, thecommand LIS causes the entire textto be displayed onthe
screen. Next, the command LIS ,4 tells the EDITOR to list all lines up to and including line 4.
Then LIS 13, tells the EDITOR to lists all lines from 13 on. Finally, the command

LIS 7,11 causes lines 7 through 11 to be listed on the display.

4-32 @ 4051R06 EDITOR

Editing Commands
LIST

Listing Text on a Magnetic Tape Device

Before specifying a tape device in a LIST command, a file must be opened on the device by
executing a FIND command. Once a file is open, the tape may be repositioned using SKIP or
INPUT commands. (Refer to the SKIP and INPUT commands for detailed explanations.)
Whether the tape is positioned to the beginning of the file or to a particular logical record, the
LIST command stores text on the tape beginning at the current position of the tape head. Any
previously recorded information that lies beyond the tape head is lost.

Afterthe LIST command is executed, the file remains open and available to Output operations.
Subsequent Output commands overwrite the end-of-file mark left by the last command, and
insert a new end-of-file mark when the operation is finished.

After executing a LIST command and before turning the system power off, it is advisable to
close the file by executing a FIND command or pressing the RETURN TO BASIC overlay key.
Closing the file ensures that all transmitted text reaches the tape.

Format. When text is listed on a magnetic tape file, edit line numbers stored by the LIST
command become part of the text and no longer serve as edit line numbers. When the text is
broughtinto the text buffer and listed on the display, the display format is as follows: each line
on the display begins with a colon followed by a blank space. The next four character positions
in the line contain the edit line number stored by the LIST command. One or more of these
positions may be blank, depending on the number of digits in the line number, and all four
positions are blank if the line was unnumbered. A colon follows, then text characters begin in
the seventh position. For example:

LIST
IFFORD
HERIDGE

4 —

RN LR S

Error Messages. If a LIST command attempts to output text to the internal magnetic tape and
no file is open on the tape, a MT File error message appears on the display.

Ifa LIST command specifies a magnetic tape device and the file is not large enough to hold all
of thetext, a Device at EOF error occurs. When this happens, text is written on the tape file
until the last byte before the physical end of the file is reached. The EDITOR places a logical
end-of-file mark in the last byte of the file, and returns the Device at EOF error message. The
remainder of the text transmitted by the LIST command is not stored on the tape.

4051R06 EDITOR @ 4-33

Editing Commands
LIST

After a LIST command is executed, the file remains open to Output operations only.
Attempting to execute an APPEND, OLD, INPUT, or SKIP command without reopening the file
causes an error. A Device Access or Buffer Access error message appears on the display.
Both messages mean that the specified device is not available for access by Input operations,
and that the magnetic tape buffer cannot receive information from the device.

4-34 @ 4051R06 EDITOR

Editing Commands
MOVE

The MOVE Command

Syntax Form:

M [edit line number J [, [edit line number] [, [editline number]]]

Descriptive Form:

MOVE [starting line number] [, [ending line number] [, [destination for moved text]]]

PURPOSE

The MOVE command moves specified lines of text to a new location in the text buffer.

EXAMPLES

M 1s3.10
M 5,5,308
M 1,3,

M 58,125
M , 160,

EXPLANATION

The MOVE command allows a starting line number, an ending line number, and a destination
line number to be specified. When the MOVE command is executed, all lines of text between
and including the starting and ending lines are moved, and placed immediately before the
specified destination line. For instance, the example M 1,3,10 listed above moves text lines 1
through 3, and inserts them immediately before line 10. The command M 5,5,30 movesline5,
and places the line immediately before line 30.

4051R06 EDITOR @ 4-35

Editing Commands
MOVE

The Difference Between MOVE and COPY

The MOVE and COPY commands are alike in syntax and perform similar functions. Both
commands send an already existing portion of text to a new location in the text buffer. The only
difference between MOVE and COPY is in how the original lines are affected by the command.
The COPY command leaves the original lines intact, sending a copy of the lines to the new
location. The MOVE command, however, actually moves the original lines by rearranging the
text buffer and placing the lines in the new location. The moved lines appear in the new
location, but no longer appear in their former position.

Default Values

The starting, ending, and destination line numbers for the MOVE command are optional, and
may be omitted or entered in any combination. Several examples are listed above.

When the starting line number is omitted, the first line relocated by the MOVE command is the
first line of text. When the ending line number is omitted in the command, the last line moved is
the last line of text. When the destination line is omitted, moved lines are placed after the last
line of text.

In the examples listed above, the command M 1,3, moves lines 1 through 3 to the end of the
currenttext. Thecommand M ,50,125 moves ali lines up to and including line 50, placing the
moved text just before line 125. Finally, the command M ,100, sends all lines up to and
including line 100 to the end of the text.

Notes on the Command Syntax

Just as for the COPY command, final edit delimiters (,) are optional. When an edit delimiter is
the last entry in the command, it may be omitted without changing the meaning of the
command. That is, the commands M 1,3, and M 1,3 are equivalent.

Command Semantics

Just as for the COPY command, the ending line number should be at least as large as the
starting line number. If the ending line number is smaller than the starting line number, the
command makes no sense, and has no effect on the text buffer. For example, the command
M 7,1,10 has no effect on the current text. The correct way to enter the command

is M1,710 .

A semantic error occurs if the specified destination line lies between the starting and ending

lines. For example, the command M 1,10,3 causes a semantic error, because the destination
line (edit line number 3) falls between the starting and ending lines (edit lines 1 and 10).

4-36 @ 4051R06 EDITOR

Editing Commands
MOVE

An Editing Example

The following example shows the MOVE command being used to move statements of a sample
FORTRAN program.

Example 1

-
—
(X4
—

:C DEFINE FORTRAN FUNCTIOHN DF ¥
FUNCTION DF (¥
DF = 3¥X¥¥2-2.94€%%-5.738
END
RETURN
C DEFINE FORTRAN FUNCTION F{X)
FUNCTION F(XD
FaXx¥x3-1,473%Kx¥2-5,738%%+6,763
RETURN
END

Q'O O IOV & T -

—
.a,.. o
—
[
—_

MOVE
LIST

(.

DEFINE FORTRAN FUNCTION F(X)
FUNCTION FiX)
F=X%%3-1.473%X%X¥2-5.738%¥¥+6.763
RETURN
END

C DEFINE FORTRAN FUNCTION DF¢X)

FUNCTION DF(X)

DF = 3%Xx%2-2.946%X-5,738

END

RETURN

ANy

[, EL R LN LN TR L

MOVE
LIST

1944

:C DEFINE FORTRAN FUNCTION F{X)
FUNCTION F(X)
F=XX%3-1,473¥X%%x2-5, 738%X+6.763
RETURN
END

C DEFINE FORTRAN FUNCTION DF(X)
FUNCTION DF(X)

DF = 3%X¥%2-2.946%X-5.738
RETURN
END

G\ =

F-3

Two MOVE commands are executed in Example 1. Thecommand M 6,10,1 tellsthe EDITOR
to move lines 6 through 10, inserting them just before line 1. After the command is executed, a
new listing shows that the statements defining FUNCTION F(X), originally lines 6 through 10,
have been moved to the beginning of the text. The lines relocated by the MOVE command are
the unnumbered lines in the new listing. (Moved lines are not given edit line numbers until a
RENUMBER command is executed.)

4051R06 EDITOR @ 4-37

Editing Commands
MOVE

Next the command M 5,5,4 tells the EDITOR to move line 5 and place it immediately before
line 4. A new listing shows thatthe RETURN statement (originally line 5) has been moved, and
now appears as an unnumbered line immediately before the END statement (line 4).

The MOVE Command and BASIC Programs

After using the MOVE command to rearrange statements in a BASIC program, you must edit
the program line numbers to be consistent with the changes. This is important if you plan to
return to BASIC and execute the program, because BASIC’'s OLD command reorders
statements according to program line numbers. In other words, the program line numbers
must be in ascending order, or BASIC’s OLD command will rearrange the statements again.

4-38 @ 4051R06 EDITOR

Editing Commands
NLSEARCH

The NLSEARCH (No List SEARCH) Command

Syntax Forms:

NL [[edit line number 1 , [edit line number] ,:I b string " { * * string "’ }

Descriptive Forms:

NLSEARCH [[starting line number]| , [ending line number] ,] space '’ target string '’

*
{ , ‘ replacement string "}

PURPOSE

The NLSEARCH command searches a portion of the current text for a specified "target” string.
What happens when an occurrence of the string is found, depends on which form of the
command is entered. If the target string is immediately followed by an asterisk (*), lines found
to contain the string are deleted from the text buffer. However, if a replacement string is
specified after the target string, occurrences of the target string in the text are overwritten by
the replacement string.

Because the two functions performed by NLSEARCH are different, each is treated as a
separate command on the following pages. The two commands are named according to the
function they perform: NLSEARCH and Delete Line, and NLSEARCH and Replace String.

INTRODUCTION
How Searching Occurs

When an NLSEARCH and Delete Line or NLSEARCH and Replace String command is
executed, the EDITOR scans the current text from the starting line through the ending line for
an occurrence of the specified "target” string. The first character scanned is the end-of-record
character that immediately precedes the starting line, and the last character scanned is the
end-of-record character that immediately follows the ending line.

4051R06 EDITOR @ 4-39

Editing Commands
NLSEARCH

What Happens When an Occurrence of the Target String is Found

As soon as an occurrence of the target string is found, the EDITOR performs the required
function. Thatis, foran NLSEARCH and Delete Line command, the EDITOR deletes the line of
text that contains the occurrence of the target string. For an NLSEARCH and Replace String
command, the EDITOR overwrites the occurrence of the target string in the text with the
"replacement” string specified by the command.

Continuing the Search

The search continues after the line containing the target string is deleted, or after the target
string is overwritten by a replacement string. For an NLSEARCH and Delete Line command,
the new search begins after the deleted line. That is, the first character scanned is the end-of-
record character that precedes the next line of text.

For an NLSEARCH and Replace String command, the search resumes after the replacement
procedure. The first character scanned is 1) the character that immediately follows the
replacement string in the text, if the target string was shorter than the replacement string; or

2) thelast character of the replacement string, if the target string was longer than the replacement
string.

The EDITOR continues to search the text in the manner described above, deleting lines or
replacing occurrences of the target string. When the end-of-record character thatimmediately
follows the ending line is reached, the EDITOR stops searching and ends execution of the
command.

4-40 @ 4051R06 EDITOR

Editing Commands
NLSEARCH and Delete Line

The NLSEARCH and Delete Line Command

Syntax Form:

NL [[edit line number] , [edit line number] ,] b * string " %

Descriptive Form:

NLSEARCH [[starting line number] , [ending line number] ,] space ‘' target string '’ %

PURPOSE

The NLSEARCH and Delete Line command searches a portion of the current text for a
specified target string. Lines found to contain the string are deleted from the text buffer.

EXAMPLES

NL "MQUED, LEFT NO ADDRESS"¥
NL "INSUFFICIENT FUNDRS"¥

HL 1ewe,, "ua"x

NL Z@8,, "i"%

HL 5888 "MARGIN"X

NL 58,1258 "TRACE"¥

NL 1488,5006 "FEM"X

EXPLANATION

The NLSEARCH and Delete Line command allows a starting line number, an ending line
number, and an ASCII character string to be specified. The string is enclosed in quotation
marks (or another string delimiter) and the last entry in the command is an asterisk (*). When
the NLSEARCH and Delete Line command is executed, the EDITOR searches the current text
from the starting line through the ending line for the specified "target” string, and deletes lines
found to contain the string.

4051R06 EDITOR @ 4-41

Editing Commands
NLSEARCH and Delete Line

For example, the command NL 1000,5000 "REM" % searches lines 1000 through 5000 for
occurrences of the target string REM . Lines found to contain the string REM are deleted
from the text buffer. Similarly, the command NL 50,1250 "TRACE" * searches lines 50
through 1250, and deletes lines found to contain the string TRACE .

The NLSEARCH and Delete Line command is the same as the SEARCH and Delete Line
command, except that no I/O address is specified in the command, and no list is made of the
deleted lines.

Default Values

When the starting line number is omitted in an NLSEARCH and Delete Line command, the
EDITOR starts the search at the beginning of the first line of text. For example, the command
NL ,5000 "MARGIN"” % searches all lines up through 5000 and deletes lines found to contain
thetargetstring MARGIN .Whenthe ending line number is omitted, the search ends after the
last line of text. For example, the command NL 200,, "V0" * searches from the beginning of
line 200 through the end of the text, and deletes line found to contain VO .

When both the starting and ending line numbers are omitted, the EDITOR searches the entire
text. For example, the command NL “INSUFFICIENT FUNDS"” = deletes all lines containing
the string INSUFFICIENT FUNDS .

Notes on the Command Syntax

When entering an NLSEARCH and Delete Line command, do not enter any blank spaces
immediately before the asterisk (*). For example:

NL "®2" ¥

ECITOR ERROR

Syntax - error number 138
NL "X¥2" %

This command causes a syntax error because a blank space appears between the second
guotation mark (") and the asterisk (*).

Edit Delimiters in the Command. The syntax and descriptive forms show three edit delimiters,
represented by two commas (,) and aspace (). The commas may be replaced by another edit
delimiter (such as . or : orin some circumstances, a space’). The space (b) shown in the
syntax and descriptive forms is not meant to be replaced by another edit delimiter: forexample,
the command NL,,,”"REM” * causes a syntax error.

The second edit delimiter cannot be a space if the ending line number is omitted. This is because spaces immediately
following another edit delimiter are ignored. For more information about edit delimiters, refer to ""Edit Delimiters’
in Section 2.

4-42 @ 4051R06 EDITOR

Editing Commands
NLSEARCH and Delete Line

You can specify the edit delimiters in the manner indicated in the syntax and descriptive forms,
or abbreviate the NLSEARCH and Delete Line command according to the following rules:

—If an ending line number is specified, you need only enter one edit delimiter
between the ending line number and the target string. For example, the
following commands are valid:

NL 1,3,"REM"X
HL 143 "REM"X

Several sample commands in this explanation follow the format of the last
command shown above. The space immediately following the key-

word NL is ignored by the EDITOR, and is entered only for the sake of
appearance.

—When omitting both the starting line number and the ending line number,
you may enter two non-blank edit delimiters between the keyword and the
target string. For example:

HL,s s "REM"X

Or, you may replace the two edit delimiters with a blank space:

NL "REM"¥

This last command illustrates the simplest way to enter an NLSEARCH and
Delete Line command without specifying edit line numbers. Several sample
commands in this explanation are of this format.

String Delimiters in the Command. The target string of an NLSEARCH and Delete Line
command must be enclosed in a string delimiter, or a syntax error occurs. A string delimiter
can be any keyboard character that causes a printed character to appear on the display except
1) aspace; 2) one of the characters in the target string; or 3) a number or an edit delimiter, if
no edit line numbers are specified and a space appears in their place. For more detailed
explanations, refer to "String Delimiters” in Section 2.

4051R06 EDITOR @ 4-43

Editing Commands
NLSEARCH and Delete Line

Command Semantics

Omitting the asterisk (*) at the end of an NLSEARCH and Delete Line command causes a
semantic error. Replacing the asterisk with acomma or any other edit delimiter such as a space
also causes a semantic error.

The EDITOR returns a semantic error in these two instances because the incorrect command
resembles a SEARCH and List Line or SEARCH and Edit Line command. Since the NLSEARCH
command makes no list of affected lines, it makes no sense to tell the EDITOR to perform a
function similar to that of a SEARCH and List Line or SEARCH and Edit Line command. The
EDITOR assumes you have misunderstood the function of the NLSEARCH command, and
returns a semantic error.

The ending line number specified in an NLSEARCH and Delete Line command should be at
least as large as the starting line number. If the ending line number is smaller than the starting
line number, the command either has no effect, or causes a semantic error as in the following
example:

HNL 18.2 "REM"X

ECITOR ERROR

Semantic - error number 139
NL 18.2 "REM"%

The correct way to enter the command is as follows:

HL 2,106 "REM"X

Differences Between NLSEARCH and Delete Line and SEARCH and Delete
Line
The NLSEARCH and Delete Line command is the same as the SEARCH and Delete Line

command, except that no 1/0 address is specified in the command, and no list is made of the
deleted lines.

4-44 @ 4051R06 EDITOR

Editing Commands
NLSEARCH and Delete Line

An Editing Example
The following example illustrates the use of the NLSEARCH and Delete Line command.

Example 1

4051R06 EDITOR

349 REM ¥¥ BEGIN LOOP XX
358 SET TRACE

Ug=o

FOR K=1 TO 2tN-1 STEP 2
®=A+K*XH

398 S4=S4+FNF (X>

480 NEXT K

418 12=H-3%(5B+2¥S2+44%S4)
220 SET HORMAL
4
4

Gl G
Q0 ~J T
(s R~ R un)

29 REM %% USE CORRECTION FACTOR *¥
40 12=(16%12-183-15

S8 ue=Iz2

13:468 PRINT

14:478 PRINT I2

15:486 IF ABS(12-183<E THEN 54@
16:45%0 lo=12

17:5808 NEXT N

18:510 REM ¥% PRINT FINAL YALUE X%
19:528 PRINT

26:539 PRINT "FINAL UALUE IS"iIZ

O == (D L0 O0 =3 T N £a G 1V

HL "REM"X

NL 2,14 "Ug"¥

NL 12,5, "PRINTI"X
NL 410 "SET"%

LIST

FOR K=1 TO 2tN-1 STEP 2
X=A+KxH

S4=S4+FHF (X

HEXT K
[2=H-2%(S0+2%52+4%54)
2=(16%12-18>-15

RINT 12

?BS(IE-IB)(E THEN 548
2

H
INT "FINAL UALUE IS"3I2

RN AN R Y
— 0 00 ~J
OO

ae 20 a0 8e B
L
LYo Xus Rat B S
[iaRan oo

®-JN WD O-JT N &
wa
=
[»)

I3 ot i Pt P Pt

1538 P

@ 4-45

Editing Commands
NLSEARCH and Delete Line

The initial listing in Example 1 shows that the text consists of twenty BASIC program
statements. Then four NLSEARCH and Delete Line commands are executed.

The command NL "REM"x* tells the EDITOR to delete all lines in the current text that
contain the string REM . Thecommand NL 2,14 "V0"* tells the EDITOR to search lines 2
through 14 and delete lines found to contain the string VO .

The command NL 12,, "PRINT]" % searches from line 12 through the end of the text for the
word PRINT followed by an end-of-record character. (Refer to the explanation of the

]= command.) When such a string is found, the line containing the word PRINT is deleted
from the text buffer.

Thecommand NL ,10 "SET"% tells the EDITOR to search through line 10 and delete lines
containing the string SET .

After the four commands are executed, a new listing shows that the REMARK statements
(BASIC program lines 340, 430, and 510) have been deleted, as well as statements containing
the variable name VO (program lines 360 and 450), statements ending with the key-
word PRINT (program line numbers 460 and 520), and statements containing SET (state-
ments 350 and 420, SET TRACE and SET NORMAL).

4-46 @ 4051R06 EDITOR

Editing Commands
NLSEARCH and Replace String

The NLSEARCH and Replace String Command

Syntax Form:

NL [[edit line number 1 , [edit line number] ,] b * string " , * string "

Descriptive Form:
NLSEARCH [[starting line number] , [ending line number] ,] space ‘' target string '

‘“ replacement string '

PURPOSE

The NLSEARCH and Replace String command searches a portion of the current text for a
specified target string, and replaces occurrences of the string with the desired replacement
string.

EXAMPLES

NL "INPUTH#1,"="INPUTE33:"

NL "END #1","EQFC(@2"

HL 188, "CHRHGE A$ TO A"y "A=RSCCRS$)"
HL 4S5, "CHANGE #A TO A$","A$=CHR(m"
HL ,288 "RND","INTC21¥RND+1@"

KL +50886 "MAT A=B¥C","A=B MPY C"

HL 45,286 "ON ERROR","OH SIZE"

HL 188,5860 "HAT ~=IHUC-" " oo

EXPLANATION

The NLSEARCH and Replace String command allows a starting line number, an ending line
number, and two ASCII character strings to be specified. The first string is the "target” string

and the second string is the “replacement” string. Both strings are enclosed in quotation marks
or another string delimiter.

4051R06 EDITOR @ 4-47

Editing Commands
NLSEARCH and Replace String

448

When the NLSEARCH and Replace String command is executed, the EDITOR searches the
current text from the starting line through the ending line for the target string. Occurrences of
the target string in the text are overwritten by the replacement string in the following manner:
the first character of the replacement string overwrites the first character of the target string,
the second character of the replacement string overwrites the second character of the target
string, and so on.

For example, the command NL 45,200 "END #1”,"EOF(0)" tells the EDITOR to search lines
45 through 200 of the current text forthe string END #1 . Occurrences of this target string are
overwritten by the replacement string EOF(0) .

The replacement string need not have the same number of characters as the target string. If the
replacement string is longer than the target string, the NLSEARCH and Replace String
command lengthens the text. For example:

LIST
2:0ear Mr. Doe:
3:1t has come to our attention that you recently purchased

NL "Doe","Johnson”

sDear Mr. Johnson:
It has come to our attention that you recently purchased

In this example the command NL “Doe”,”Johnson” specifies a replacement string that has
more characters than the target string. When the command is executed, the EDITOR locates an
occurrence of the target string in line 2, and overwrites it with the replacement string. The
characters JOH replace DOE and are immediately followed by NSON . A later listing
shows that the length of line 2 has increased by four characters, and the word JOHNSON ap-
pears instead of DOE .

If the replacement string is shorter than the target string, the NLSEARCH and Replace String
command shortens the text. For example:

LIST
ar Hr. McGrath:
has come fto our attention that you recently purchased

NL "McGrath", "Ank"

as o0
—
-+ M

2:Dear Mr. Ank:
3.1t has come to our attention that you recently purchased

@ 4051R06 EDITOR

Editing Commands
NLSEARCH and Replace String

In this example the command NL "McGrath”,”Ank"” specifies a replacement string that has
fewer characters than the target string. When the command is executed, the EDITOR locates
an occurrence of the target string in line 2, and overwrites it with the replacement string. The
characters Ank overwrite McG , and the remainder of the target string, rath is deleted
from the text buffer. A later listing shows that the length of line 2 has decreased by four
characters, and the word Ank appears instead of McGrath .

The Difference Between NLSEARCH and Replace String and SEARCH and

Replace String

The NLSEARCH and Replace String command is the same as the SEARCH and Replace String
command, except that no I/O address is specified, and no list is made of the changed lines.

Default Values

When the starting line number is omitted in an NLSEARCH and Replace String command, the
EDITOR starts the search at the beginning of the first line of text. For example, the com-
mand NL ,5000 "MAT A=B % C",”"A=B MPY C" searches all lines up through 5000, and
replaces occurrences of the string MAT A=B* C with A=B MPY C .

When the ending line is omitted, the search ends after the last line of text. For example, the
command NL 45,, "CHANGE A TO A$",”A$=CHR(A)" searches from the beginning of line
45 through the end of the text, and overwrites occurrences of CHANGE A TO A$ with
A$=CHR(A) .

When both the starting and ending line numbers are omitted, the EDITOR searches the entire
text. For example, the command NL "END #1”,"EOF(0)" searches the entire text, and
replaces all occurrences of END#1 with EOF(0) .

Notes on the Command Syntax

When entering an NLSEARCH and Replace String command, use only one edit delimiter
between the target and replacement strings. Entering more than one delimiter causes a syntax
error. For example:

HL 1,188 "PREINT" , "PRINT ®323:"
EDITOR ERROR

Suntax - error number 132

NL 1.1088 "PRINT® . "PRINHT #33:°"

The correct way to enter the command is as follows:

HL 1,188 “PRINT","PRINT @32:"

4051R06 EDITOR @ 4-49

Editing Commands
NLSEARCH and Replace String

Edit Delimiters in the Command. Just as for other searching commands, the syntax and
descriptive forms show three edit delimiters, represented by two commas (,) and a space (b).
The two commas may be replaced by another edit delimiter, with the following exception: the
second comma cannot be replaced by aspace if the ending line number is omitted, or a syntax
error occurs. This is because the EDITOR ignores spaces thatimmediately follow another edit
delimiter. (For more information, refer to "Edit Delimiters” in Section 2.)

The space (b) in the syntax and descriptive forms is not meant to be replaced by another edit
delimiter. For example, the command NL,,,"@33","@29" causes a syntax error.

Just as for the other searching commands, you can specify the edit delimiters in the manner
indicated in the syntax and descriptive forms, or abbreviate the NLSEARCH and Replace
String command according to these rules:

—Ifanending line number is specified, you need only enter one edit delimiter between the
ending line number and the target string. For example, the commands NL 1,3,”S1",”S2"
and NL 1,3 "S1","82" are valid.

Several of the sample commands in this explanation are of the format of the last
command. The space immediately following the keyword NL isignored by the EDITOR,
and is entered only for the sake of appearance.

—When omitting both the starting and ending line numbers, you may enter two non-blank
edit delimiters between the keyword NL and the target string, as in the command
NL,,“S1",”"S2” . Or, you may replace the two edit delimiters with a blank space, as

in NL ”"S1”,"82" .The format of this last command is more convenient, and is
emphasized in the examples.

String Delimiters in the Command. As for all searching commands, the target and replacement
strings must be enclosed in a string delimiter, or a syntax error occurs. The delimiter used to
enclose the target string need not be the same as the delimiter used to enclose the replacement
string.

A string delimiter can be any keyboard character that causes a printed character to appear on
the display except 1) a space; 2) one of the characters in the target or replacement
string; or 3) a number or edit delimiter, if no edit line numbers are specified and a space
appears in their place. For more information, refer to "String Delimiters” in Section 2.

Command Semantics

The ending line number specified in an NLSEARCH and Replace String command should be at
least as large as the starting line number. |f the ending line number is smaller than the starting
line number, the command either has no effect, or causes a semantic error.

450 @ 4051R06 EDITOR

Editing Commands
NLSEARCH and Replace String

Special Uses for the NLSEARCH and Replace String Command:
Deleting Specified Strings

If the replacement string is empty (has no characters), the NLSEARCH and Replace String
command deletes occurrences of the target string from the text buffer. This is not the same as
deleting the line in which the target string occurs (the function provided by the NLSEARCH
and Delete Line and SEARCH and Delete Line commands). For example:

NL “HAT®

This command locates and deletes all occurrences of the string MAT inthe currenttext. The
target string is empty—no characters are enclosed in the quotation marks used as the string
delimiter. When the command is executed, each occurrence of the string MAT in the textis
replaced by a "null” string, and disappears from the text. For every occurrence of

MAT deleted from the text buffer, the text is three characters shorter. For anillustration of how
this command acts on a sample piece of text, see “An Editing Example” in this explanation.

NOTE

An empty replacement string may be specified inan NLSEARCH and Replace String
or SEARCH and Replace String command. However, specifying an empty target
string in any NLSEARCH or SEARCH command makes no sense, and causes a
semantic error.

4051R06 EDITOR @ 4-51

Editing Commands
NLSEARCH and Replace String

An Editing Example
The following example illustrates the use of the NLSEARCH and Replace String command.

Example 1
LIST
1:368 IF END #1 THEN 1500
2:319 REM %X INITIALIZATION %%
3:328 DIM ACS1,52)B(S3,543,Q(H1,X1),R{%2,%2)
4:338 DIM SCX3 X3, TCHUL,R1),U(K2,¥2),U(K3, ¥3)
5:348 MAT A=2ER
6:350 MAT B=2ER
7:360 MAT C=2ER(10,18)

8:378 REM %% USER ENTERS THE THREE MATRICES xx
3:388 PRINT "ENTER FIRST MATRIX:"
16:390 MAT INPUT @

11:400 PRINT "ENTER SECOND MATRIX:"
12:410 MAT INPUT R

132429 PRINT "ENTER THIRD MATRI¥:™"
14:438 MAT INPUT &

13:440 REM ¥ INUERT THE MATRICES *x
16:450 MAT T=IHUCQ)

17:468 MAT U=INU(R)

18:478 MAT U=INU(S)

19:488 MAT C=2ER(X1,X1)

208:4958 PRINT "ENTER A 18 BY 10 MATRIX:"
21:560 MAT INPUT 2(1@,10)

NL ,18 "IF END ~~","ON EOF(@)"

HL 21,5 "MAT INPUT 2¢(10,10>","DIM 2(18,18)>3518 INPUT 2"
NL 7,7 "MAT C=2ER(10,10>","DIM C(10,10>1365 C=0"

NL "“MAT ",""

NL "ZER","0"

(continued on next page)

4.52 @ 4051R06 EDITOR

Editing Commands
NLSEARCH and Replace String

LIST

ON EOF(O> THEN 1500

REM xx INITIALIZATION X%

DIM ACS1,82),B¢S3,54),G(X1,X1),R(X2,X2)
gig S(X3, 83y TCKL K1, UCK2,%2),U(K3,%3)
B=0

DIM C(10,10)

C=0

= OV UL En Gl N e
A0 06 58 BS 00 B0 O
O OJ G G G O € Oy
O NB N —D
UOODOOST®

8:370 REM X% USER ENTERS THE THREE MATRICES XX
9:380 PRINT "ENTER FIRST MATRIX:"

18:398 INPUT @

11:408 PRINT "ENTER SECOND MATRIX:"

12:410 INPUT R

13:4208 PRINT "ENTER THIRD MATRIX:"

14:438 INPUT S

15:440 REM XX INUERT THE MATRICES xx

16:450 T=INU(Q)
17:460 U=INUC(R)
18:478 U=INU(S)

19:4808 C=0(X1,X1)
20:498 PRINT "ENTER A 10 BY 18 MATRIX:"
21:508 DIM 2¢18,10)

¢510 INPUT 2

Example 1 shows the NLSEARCH and Replace String command being used to make a
"foreign” BASIC program compatible with TEKTRONIX 4051 BASIC. An initial listing shows
that the text consists of 21 BASIC program statements. Then five NLSEARCH and Replace
String commands are executed.

The first NLSEARCH and Replace String command tells the EDITOR to search the current text
up through line 10 for a string consisting of IF END immediately followed by a space,
immediately followed by any two ASCI| characters. The two unspecified ASCll characters are
represented in the target string by the symbol ~, the wildcard character by default. (For an
explanation of what the wildcard character means when used in a target or replacement string,
refer to the ~= command in Section 5.) The command also specifies that occurrences of the
target string in the text are to be overwritten by the replacement string ON EOF(0) .

The second NLSEARCH and Replace String command tells the EDITOR to search the current

text from line 21 on for occurrences of the string MAT INPUT Z(10,10) . Occurrences of the
string are to be overwritten by a string consisting of DIM Z(10,10) immediately followed by
the beginning of a new line and the string 510 INPUT Z . The beginning of the new line is

represented in the replacement string by the symbol], the current "END-OF-RECORD"

character by default. (For an explanation of what the "END-OF-RECORD" character means
when used in a target or replacement string, refer to the]= command in Section 5.)

4051R06 EDITOR @ 453

Editing Commands
NLSEARCH and Replace String

The third NLSEARCH and Replace String command is similar to the second, but specifies that
the EDITOR is to search only line 7: 7 is both the starting and ending line number. The
command tells the EDITOR to overwrite occurrences of the string MAT C=ZER(10,10) in
line 7 with the string DIM C(10,10) followed by the beginning of a new line and the
string 365 C=0 . Asinthe last command, the beginning of the new line is represented in the
replacement string by the symbol]

The fourth NLSEARCH and Replace String command tells the EDITOR to search the entire text
for the string MAT . Occurrences of MAT are to be replaced by an empty string. This is the
same as telling the EDITOR to delete all occurrences of the string MAT .

Finally, the fifth NLSEARCH and Replace String command specifies that all occurrences
of ZER in the program are to be replaced by the character 0 .

After the NLSEARCH and Replace String commands are executed, a new listing is made to
show the changed text. The statement 300 IF END #1 THEN 1500 is now

300 ON EOF(0) THEN 1500 . The statement 500 MAT INPUT Z(10,10) is replaced by
500 DIM Z(10,10) andimmediately followed by the new statement 510 INPUT Z . The state-
ment 360 MAT C=ZER(10,10) is replaced by 360 DIM C(10,10) and immediately followed
by the new statement 510 INPUT Z .

All occurrences of the string MAT have been deleted from the text. For example, the state-

ment 450 MAT T=INV(Q) hasbeen changedto 450 T=INV(Q) .Occurrencesof ZER have
been overwritten by 0 : for example, statement 340 is now A=0 .

454 @ 4051R06 EDITOR

Editing Commands
SEARCH

The SEARCH Command

Syntax Forms:

S [1/O address] [[edit tine number] , [edit line number] ,] b * string [{ T [# string ,,]}]

Descriptive Forms:

SEARCH [t/0O address] [[starting line number] , [ending line number | ,] space ‘‘ target string ’

*
, [replacement string "]

PURPOSE

The SEARCH command searches a portion of the current text for lines containing a specified
"target” string. What happens when an occurrence of the string is found, depends on which
form of the command is entered. If the command is entered with only the keyword SEARCH
and atarget string, lines containing the string are listed on a peripheral device. But if an asterisk
immediately follows the target string, lines found to contain the string are listed on the device,
then deleted from the text buffer.

If the target string is followed by an edit delimiter such as a comma, lines of text found to
contain the string are recalled one by one to the line buffer, and wait to be edited from the
keyboard. And finally, if the command specifies a replacement string after the target string,
occurrences of the target string in the text are overwritten by the replacment string, and
changed lines are listed on a peripheral device.

Because such different functions are performed by the four variations of the SEARCH
command, each one is treated as a separate command on the following pages. The SEARCH
commands are named according to the function they perform: SEARCH and List Line,
SEARCH and Edit Line, SEARCH and Delete Line, and SEARCH and Replace String.

4051R06 EDITOR @ 4-55

Editing Commands
SEARCH

INTRODUCTION

How Searching Occurs

When a SEARCH command is executed, the EDITOR scans the text for the target string in the
same manner as for the NLSEARCH command. That is, the search begins with the end-of-
record character that precedes the starting line, and ends with the end-of-record character that
follows the ending line. Upon finding an occurrence of the target string, the EDITOR performs
the required function: listing, deleting, or recalling to the line buffer the line that contains the
target string (SEARCH and List Line, SEARCH and Edit Line, SEARCH and Delete Line); or
overwriting an occurrence of the target string in the text with a replacement string (SEARCH
and Replace String).

The search then continues, starting with the end-of-record character that precedes the next
line of text (SEARCH and Edit Line, SEARCH and Delete Line) or with the next text character
after the target string (SEARCH and List Line). Like the NLSEARCH and Replace String
command, the SEARCH and Replace String command resumes the search with 1) the
character that immediately follows the replacement string in the text, if the target string was
shorter than the replacement string; or 2) the last character of the replacement string, if the
target string was longer than the replacement string.

The SEARCH Command as an Input/Output Command

SEARCH and List Line, SEARCH and Delete Line, and SEARCH and Replace String are
Input/Output commands. Information concerning I/O addresses, and the syntax and
semantics of EDITOR Input/Output commands is provided at the beginning of Section 6. Other
important information is summarized below.

Before specifying a magnetic tape device in a SEARCH command, a file on the chosen
peripheral device must be opened by executing a FIND command. If no file is open on the
specified device, executing a SEARCH command causesa MT File error. After executing a
FIND command, you may position the tape to a particular logical record within the file by
executing a SKIP or INPUT command. Whether the tape is positioned to the beginning of the
file using the FIND command or to a particular logical record using FIND and then SKIP or
INPUT, the SEARCH command stores text on the tape beginning at the current position of the
tape head. Any previously recorded information that lies beyond the tape head, is lost.

Aftera SEARCH command is executed, the file remains open for access by Output commands.
That s, after executing a SEARCH command, you may execute any EDITOR Outputcommand
without reopening the file. However, before turning the system power off or removing the

internal magnetic tape unit, you should close the file by executing a FIND command that

specifies a different file number. Closing the file in this way is important to ensure that all
transmitted text reaches the tape.

4-56 @ 4051R06 EDITOR

Editing Commands
SEARCH

Executinga SEARCH command when the tape is positioned to the beginning of afile changes
the file header name to ASCII TEXT (if this has not been previously done).

A Special Note About Syntax. When specifying an I/0 address in a SEARCH command, do not
enter any blank spaces between the I/0 address and the target string, or a syntax error occurs.
That s, if you specify an I/O address, you must omit the space (B) that appears in the syntax

and descriptive forms. This is also mentioned in the explanations of the individual SEARCH
commands on the following pages.

4051R06 EDITOR @ 4-57

NOTES

458 @ 4051R06 EDITOR

Editing Commands
SEARCH and List Line

The SEARCH and List Line Command

Syntax Form:

S [1/0 address] [[edit line number] , [edit line number] ,] b ‘ string

Descriptive Form:

SEARCH [/0 address] [[starting line number] , [ending line number] ,] space ‘' target string '’

PURPOSE

The SEARCH and List Line command searches a portion of the text for a specified target string,
and lists on a peripheral device all lines found to contain the string. If no peripheral device is
specified, lines containing the target string are listed on the display.

EXAMPLES

o3

"ON ~ GO TO"

1ea,, "po"

y o880 "CONTINUE"

lva, 5008 "<1"

33" JONES"

Sezeiies,, "EOF"
SR33:,500a “"NEW ADDRESS®

SE23:188,54080 "e€32-"

[y

[44]

[£g]

Si

1]

EXPLANATION

The SEARCH and List Line command allows an I/0 address, a starting line number, an ending
line number, and an ASCII character string to be specified. The string must be enclosed in
quotation marks (or another string delimiter). When the SEARCH and List Line command is
executed, the EDITOR searches the current text from the starting line through the ending line
for the specified "target” string. Lines found to contain the string are listed on the specified
peripheral device. The contents of the text buffer are not changed by the command.

4051R06 EDITOR @ 4-59

Editing Commands
SEARCH and List Line

For example, the command S@33:100,5000 "638-" searches lines 100 through 5000 of the
current text for occurrences of the target string 638- .Linesfound to contain the string 638-
are listed on the file that is currently open on device 33 (the internal magnetic tape).

If a line contains more than one occurrence of the target string, the line is listed more than
once. Forexample, aline containing three occurrences of the target string is listed three times
on the specified peripheral device.

Default Values

When no I/O address is specified ina SEARCH and List Line command, lines found to contain
the target string are listed on the system display by default. For example, the command
S 100,5000 “X1"” searches lines 100 through 5000 for the string X1 . Lines found to
contain X1 are listed on the display.

When the starting line number is omitted in a SEARCH and List Line command, the EDITOR
starts the search at the beginning of the first line of text. For example, the command

S ,5000 “"NEW ADDRESS"” searches all lines up through 5000 for the string

NEW ADDRESS , and lists lines found to contain the string on the system display.

When the ending line number is omitted, the search ends after the last line of text. Forexample,
the command S 100,, "DO" searches from the beginnning of line 100 through the end of the
text, and lists on the display the lines found to contain the string DO .

When both the starting and ending line numbers are omitted, the EDITOR searches the entire

text. For example, the command S "CONTINUE" lists on the system display all lines in the
current text that contain the string CONTINUE .

Notes on the Command Syntax

When enteringa SEARCH and List Line command, do notenter any blank spaces immediately
after the I/0 address. For example, the following command causes a syntax error:

Se3Z: 1ee,508 "CONTINUE"

The correct way to enter the command is as follows:

S@33:100,500 "CONTINUE"

4-60 @ 4051R06 EDITOR

Editing Commands
SEARCH and List Line

Edit Delimiters in the Command. Just as for other searching commands, the syntax and
descriptive forms show three edit delimiters, represented by two commas (,) and a space (b).
The two commas may be replaced by another edit delimiter, with the following exception: the
second comma cannot be replaced by a space if the ending line number is omitted, or a syntax
error occurs. This is because the EDITOR ignores spaces thatimmediately follow another edit
delimiter. (For more information, refer to "Edit Delimiters” in Section 2.)

The space (B) in the syntax and descriptive forms is not meant to be replaced by another edit
delimiter. For example, the command S,,,”GO TO" causes a syntax error.

Just as for the other searching commands, you can specify the edit delimiters in the manner
indicated in the syntax and descriptive forms, or abbreviate the SEARCH and List Line
command according to these rules:

—Ifanendingline number is specified, you need only enter one edit delimiter between the
ending line number and the target string. For example, the commands
S 100,500,”EOF” and S 100,500 "EOF" are valid.

Several of the sample commands in this explanation are of the format of this last
command. The space immediately following the keyword S is ignored by the EDITOR,
and is entered only for the sake of appearance.

—When omitting both the starting and ending line numbers, you may enter two non-blank
edit delimiters between the keyword S and the target string, as in the command
S,,"EOF” . Or, you may replace the two edit delimiters with a blank space, as

in S "EOF” .Theformat of this last command is more convenient, and isemphasized in
the examples.

String Delimiters in the Command. As for all searching commands, the target string must be
enclosed in a string delimiter, or a syntax error occurs. The string delimiter can be any
keyboard character that causes a printed character to appear on the display except 1) aspace;
2) one of the characters in the target or replacement string; or 3) anumber or editdelimiter, if
no edit line numbers are specified and a space appears in their place. For more information,
refer to "String Delimiters” in Section 2.

4051R06 EDITOR @ 4-61

Editing Commands
SEARCH and List Line

4-62

Command Semantics

When specifying a peripheral device in a SEARCH and List Line command, do not enter any
blank spaces immediately before the colon (:), or a semantic error occurs.’ For example:

S@33 "GO

ECITOF ERROR

Semantic - error numbesr 129
@33 ocrear

The correct way to enter the command is as follows:

Sy

!
(3]
(49}
C
(ane}

The ending line number specified in a SEARCH and List Line command should be at least as
large as the starting line number. If the ending line number is smaller than the starting line
number, the command either has no effect, or causes a semantic error as in the following

example:

18,2 "REM"

LITOR ERROR

emantic ~ error nunber |
18.2 "REM"

W T
o
LN

The correct way to enter the command is as follows:

S 2,18 "REN"

NOTE

When entering a SEARCH and List Line command, do not press the SPACE bar
immediately before RETURN. If the final entry is a space, the EDITOR interprets the
command to be a SEARCH and Edit Line command, not a SEARCH and List Line
command. This is because a space is an edit delimiter. (Refer to the explanation of
the SEARCH and Edit Line command.)

5This is true for all EDITOR Input/Output commands.

@ 4051R06 EDITOR

An Editing Example

Editing Commands
SEARCH and List Line

In the following example, the SEARCH and List Line command is used to locate and list lines
containing a specified target string. The initial listing shows twenty-six ficticious names and
telephone numbers. The command S "638-" tells the EDITOR to locate and list all lines
containing the string 638- .Whenthe command is executed, the EDITOR lists on the display
five lines found to contain telephone numbers that begin with the prefix 638- .

Example 1

4051R06 EDITOR

LIST

rEvanss John

:gtkiﬁig
rCarneu,
ihertz, L
Getmarn,
Herriott
tEstez, M
rHugee, C
rKarps J
tH1il, Ro
:Carlson,
:Donner,
Miller,
tHelson,
:DtEHQ F
tSmith, T

tRobinson
s Sherby,

. Shea, Fr
tSnows Da
¢t Thompson
tTrujillo
tletzel,

S "638-"
:Evans, John

tHerriott

Ifugeey C

:Carl=on,
:F’otter-,

Bruce
Jack L
yle
Stanley
+Thomas W
arlene
a0l
Kenneth
ger H

E W
Beatrice
B E
Elroy ©

L
FPierre
William T
CH
Kevin
ancine
niel K
s Isabel
s+ Leona
Maude

s Thomas W
arol

EMW
William T

(L =~JLnCco

641-33¢4
639-4523
644-111
6209-135
644-058
357-5122
638-51508
643-5640
627-6891
635-0683
520-4144
643-1768
646-7891
357-4308%

N OO AN b

4-63

NOTES

4-64 @ 4051R06 EDITOR

Editing Commands
SEARCH and Edit Line

The SEARCH and Edit Line Command

Syntax Form:

S [[edit line number] , [edit line number]] b * string " ,

Descriptive Form:

SEARCH [[starting line number] , [ending line number] ,] space ‘‘ target string ‘' ,

PURPOSE

The SEARCH and Edit Line command searches a portion of the text for a specified target
string. One by one, lines found to contain the string are recalled to the line buffer for editing.
After aline containing the string is recalled and edited, the BREAK key is pressed to return the
corrected line to the text buffer and to tell the EDITOR to begin searching for the next
occurrence of the target string.

EXAMPLES

L2y

"IF BREAK THEHWN",
"MAT ~=ZER",

168, "CALL WARN",

S 58,4, "DATH",

15088 "PRINT USING",
s 5006 "MAT",

S 1906,5088 "MR.",
1,2080806 "NUN",

S @,168 "’",

w“

Dig]

w)

(x]

w“

4051R06 EDITOR @ 4-65

Editing Commands
SEARCH and Edit Line

EXPLANATION

The SEARCH and Edit Line command allows a starting line number, an ending line number,
and an ASCII character string to be specified. The string must be enclosed in quotation marks
or another string delimiter, and the last entry in the command is an edit delimiter (a comma or
one of the other five edit delimiters). When the SEARCH and Edit Line command is executed,
the EDITOR searches the current text from the starting line through the ending line for the
specified "target” string. One by one, lines found to contain the string are listed on the display,
and recalled to the line buffer for editing.’

For example, the command S 100,5000 "NUM", searches lines 100 through 5000 of the
current text for occurrences of the target string NUM . Lines found to contain the

string NUM are listed on the display, and recalled to the line buffer for editing. Lines
containing more than one occurrence of the target string are listed and recalled to the line
buffer only once.

Lines containing the target string are recailed to the line buffer in the following manner:
executing the SEARCH and Edit Line command by pressing RETURN causes the line that
contains the first occurrence of the target string to appear on the display. The cursor is
positioned over the last character of the target string. For example:

LIST
1:379 REM %% USER ENTERS THE THREE MATRICES %Xk
2:388 FRINT "ENTER FIRST MATRIX:"
3:3%0 INPUT @
4:400 PRINT "ENTER SECOND MATRIX:"
51419 INPUT R
6:428 PRINT "ENTER THIRD MATRIX:"®
7:4328 INPUT S
S 4,7 "PRINT",

7
4:498 PRINT "ENTER SECOND MATRIX:"

The line may now be edited using the keyboard and LINE EDITOR keys. (Refer to Section 3 for
information about how the system keyboard operates under EDITOR control.)

Afterthelineis edited, pressing the BREAK key returns the corrected line to the text buffer. At
the same time, the line containing the next occurrence of the target string is recalled to the line
buffer, and listed on the display with the cursor positioned over the last character of the target
string. The line is now ready for keyboard editing.

6No 1/O address is specified in the SEARCH and Edit Line command. Recalled lines are always listed on the system
display.

4-66 @ 4051R06 EDITOR

Editing Commands
SEARCH and Edit Line

You may continue to edit lines in this manner, pressing BREAK each time to return a corrected
line to the text buffer and signal the EDITOR to list and recall the next line that contains an
occurrence of the target string. After the last line containing the target string is listed on the
display and recalled to the line buffer, pressing BREAK ends execution of the SEARCH and
Edit Line command, and causes the cursor to reappear at the beginning of the next line on the
display.

The RETURN and REPRINT/CLEAR Keys

Pressing RETURN during execution of the SEARCH and Edit Line command causes a colon
prompt (:) to appear on the display. After the colon appears you may create a new line of text by
entering characters from the keyboard, then pressing RETURN or BREAK. Pressing RETURN
or BREAK inserts the new line into the text immediately following the last line recalled by the
SEARCH and Edit Line command. Pressing RETURN also causes a new colon prompt to
appear on the display; and pressing BREAK signals the EDITOR to search for the next
occurrence of the target string.

While the line buffer contains a line recalled by the SEARCH and Edit Line command, pressing
the REPRINT/CLEAR key without pressing the SHIFT key clears the line from the line buffer
and the text buffer. A blank line remains in the text, and the cursor reappears in the seventh
character position of the next line on the display. New characters can be entered from the
keyboard, and inserted into the empty line by pressing RETURN or the BREAK key. As always
during the execution of the SEARCH and Edit Line command, pressing RETURN causes a
colon promptto appear on the display, and pressing BREAK signals the EDITOR to search for
the next occurrence of the target string.

The RECALL NEXT LINE/RECALL LINE and STEP PROGRAM Keys

The RECALL NEXT LINE/RECALL LINE and STEP PROGRAM keys function during the
execution of the SEARCH and Edit Line command. This allows you to edit text that precedes or
follows lines containing the specified target string. While the line buffer contains a line recalled
by the SEARCH and Edit Line command, the RECALL NEXT LINE and RECALL LINE functions
return the recalled line to the text buffer. At the same time, the next line of text is recalled to the
line buffer and listed on the display. Similarly, pressing the STEP PROGRAM key returns the
current line to the text buffer, and recalls the preceding line to the line buffer.

Default Values

When the starting line number is omitted in a SEARCH and Edit Line command, the EDITOR
starts the search at the beginning of the first line of text. For example, the command
S ,500 "PRINT USING", searches all lines up through 500 for the string PRINT USING .

Linesfoundtocontain PRINT USING arelisted onthe system display and recalled to the line
buffer for editing.

4051R06 EDITOR @ 4-67

Editing Commands
SEARCH and Edit Line

When the ending line number is omitted, the search ends after the last line of text. For example,
the command S 100,, “CALL WARN", searches from the beginning of line 100 through the
end of the text for thestring CALL WARN . Lines found to contain CALL WARN are listed on
the display, and recalled to the line buffer for editing.

When both line numbers are omitted, the EDITOR searches the entire text. For example, the
command S "IF BREAK THEN", lists and recalls all lines in the current text that contain the
string IF BREAK THEN .

Notes on the Command Syntax

The last entry in the SEARCH and Edit Line command can be any edit delimiter: a comma, a
colon, a semicolon, an equals sign, or a space. If the edit delimiter is not a space, do not enter
blank spaces immediately before the edit delimiter. For example:

S "DATR" ,
EDPITOR ERROR

Suyntax - error number 138
S "DATA" .

The correct way to enter the command is as follows:
S "DATA",

Edit Delimiters in the Command. Just as for other searching commands, the two commas in the
syntax and descriptive forms may be replaced by another edit delimiter, with the following
exception: the second comma cannot be replaced by a space if the ending line number is
omitted, or a syntax error occurs. Also, the space (B) in the syntax and descriptive forms is not
meant to be replaced by another edit delimiter.

Just as for the other searching commands, you can specify the edit delimiters in the manner
indicated in the syntax and descriptive forms, or abbreviate the SEARCH and Edit Line
command as in the following examples:

S 1,18, "MAT",
S 1,10 "MAT",
Seo "HUN",

S "NUM",

As always, spaces immediately following the keyword are not required, and are ignored by the
EDITOR.

4-68 @ 4051R06 EDITOR

Editing Commands
SEARCH and Edit Line

String Delimiters in the Command. As for all searching commands, the target string must be
enclosed in a string delimiter, or a syntax error occurs. The string delimiter can be any
keyboard character that causes a printed character to appear on the display except 1) aspace;
2) one of the characters in the target or replacement string; or 3) anumber or edit delimiter, if
no edit line numbers are specified and a space appears in their place. For more information,
refer to “String Delimiters” in Section 2.

Command Semantics

The ending line number specified in a SEARCH and Edit Line command should be at least as
large as the starting line number. If the ending line number is smaller than the starting line
number, the command either has no effect, or causes a semantic error.

An Editing Example

The following example illustrates the use of the SEARCH and Edit Line command.

Example 1 LIST

4051R06 EDITOR

1:638 PRINT®33:"A=";A
21640 TRACE ON
3:658 FOR J=1 TO N-1
4:660 FOR I=J+1 TO N
51670 ACT,N+10=ACT s J)EACI, H+1)
6:680 NEXT I
71698 NEXT J
8:780 TRACE OFF
9:710 PRINT@33: "A=";A
18:730 DIM BCM, MY, CCM, M)
11:740 MAT C=CON ’ ALL THE ELEMENTS OF C ARE 1
12:750 MAT B=IDN < B IS THE NxH IDENTITY MATRIX
13:770 MAT A=INUCA)
" liizae ot

: AT C=CON 1§ 680 N850 REEE005E B8 B 008 2

12:758 MAT B=ICN 0§ 0 B0 BEE BE0 RENREEEE NROEDD
S 11,, "MAT “,

11:740 ame’ c=tam

740 C=1
12:750 BALLE2ION*,B
13:770 BEB A=INUCA)

770 A=INUVCA)

S ;18 "PRINT",
1:6328 PRINTHRER"A=";A
630 PRINT “A=";A
9:710 PRINTERER"A=";A
718 PRINT "A=";A

(continued on next page)

4-69

Editing Commands
SEARCH and Edit Line

S 2,9 "TRACE",
2:640 SEAQERABE
8:706 SEANBBOGARL

LIST
1:6208 PRINT "A="jA
2:640 SET TRACE
3:650 FOR J=1 TO N-{
4:660 FOR I=J+{ TO N
5:670 ACI N+ =ACTJDXACI H+1)
6:680 NEXT I
7:690 HEXT J
708 SET NORMAL
716 PRINT "fA="3A
736 DIMN B(MyMO4C{M M)
740 C=1
756 CALL "IDN",B
778 A=INV(R)

The initial listing in Example 1 shows that the text consists of a portion of a BASIC program.
Then four SEARCH and Edit Line commands are executed. The firstcommand S "', tellsthe
EDITOR to list and recall to the line buffer all lines containing the character ' . When the
command is executed, lines 11 and 12 are recalled to the line bufferand listed on the display. As
shown in the example, the RUBOUT— key is pressed repeatedly to delete characters from the
right hand portion of line 11. The BREAK key is then pressed to return the edited line to the text
buffer and tell the EDITOR to continue the search. Line 12 is recalled and listed, and corrected
using the RUBOUT— key, and BREAK is pressed again. Since all occurrences of the
character ' have been located, pressing BREAK ends execution of the command.

The command S 11,, "MAT", tells the EDITOR to search from line 11 on for the

string MAT .Linescontaining MAT areto belisted and recalled to the line buffer. When the
command is executed, lines 11, 12, and 13 are recalled to the line buffer and listed on the
display. As in the last command, keyboard corrections are made to the lines, by pressing the
RUBOUT keys and typing over incorrect characters. After lines 11 and 13 are corrected, a
REPRINT function is performed to obtain a clean copy of the edited line. (Refer to the
explanation of the REPRINT/CLEAR key in Section 3.) After each line is corrected, BREAK is
pressed to return the line to the text buffer and resume the search. Execution ends after the
BREAK key is pressed the third time.

The command S ,10 "PRINT”, tells the EDITOR to search up through line 10 for the
string PRINT .Linescontaining PRINT aretobelistedand recalied to theline buffer. When
the command is executed, lines 1 and 9 are recalled and listed on the display. Foreach line, the
RUBOUT—key is pressed to delete certain characters;a COMPRESS function is performed to
delete blank spaces; and a clean copy of the line is obtained by performing a REPRINT
function. The BREAK key is pressed after each line is corrected. Execution ends the second
time the BREAK key is pressed.

4-70 @ 4051R06 EDITOR

Editing Commands
SEARCH and Edit Line

The command S 2,9 "TRACE", tells the EDITOR to search lines 2 through 9 for the
string TRACE . Lines containing TRACE are to be listed and recalled to the line buffer.
When the command is executed, lines 2 and 8 are recalled to the line buffer and listed on the
display. Line 2 appears first and is corrected by typing over incorrect characters and by
pressing the RUBOUT key. The line is returned to the text buffer by pressing BREAK. Line 8
appears next and is corrected and returned to the text buffer by pressing BREAK again. This
time, pressing BREAK ends execution of the command.

Finally, a new listing shows how the text has been modified by the SEARCH and Edit Line
commands.

4051R06 EDITOR @ 4-71

NOTES

4-72 @ 4051R06 EDITOR

Editing Commands
SEARCH and Delete Line

The SEARCH and Delete Line Command

Syntax Form:

S [1/0 aoldress] [[edit line number 1 , [edit line number] ,] b * string " %

Descriptive Form:

SEARCH ‘- 1/0 address] [[starting line number 1 , [ending line number] ,] space ‘' target string ‘"%

PURPOSE

The SEARCH and Delete Line command searches a portion of the current text for lines
containing a specified target string. Lines found to contain the string are listed on a peripheral
device, and deleted from the text buffer. If no peripheral device is specified, the lines are
printed on the display, then deleted.

EXAMPLES

& "transferred"¥
S 1ed,, "OPTION"¥
S ,5880 "TRACE"¥
S 189,5680 "pd, "%
@26 "REM"¥
Se28:,56008 "K1"¥

EXPLANATION

The SEARCH and Delete Line command allows an I/O address, a starting line number, an
ending line number, and an ASCII character string to be specified. The string is enclosed in
quotation marks (or another string delimiter) and the last entry in the command is an asterisk
{ *). When the SEARCH and Delete Line command is executed, the EDITOR searches the

current text from the starting line through the ending line for the specified "target” string, and
deletes lines found to contain the string.

4051R06 EDITOR @ 4-73

Editing Commands
SEARCH and Delete Line

The deleted lines are listed on the peripheral device specified by the command. Lines found to
contain more than one occurrence of the target string are only listed once.

For example, the command S 100,500 “pd.” * searches lines 100 through 500 for
occurrences of the target string pd. . Lines found to contain the string pd. are listed on the
system display by default, and deleted from the text buffer. Similarly, the command

S 100,5000 "' * searches lines 100 through 5000, listing and deleting lines found to contain
the character '

Default Values

When no I/O address is specified in a SEARCH and Delete Line command, deleted lines are
listed on the system display by default. For example, the command S 100,5000 "REM" *
searches lines 100 through 500 for the string REM . Lines found to contain REM are listed
on the system display, and deleted from the text buffer.

When the starting line number is omitted, the EDITOR starts the search at the beginning of the
first line of text. For example, the command S ,500 "TRACE"* searches the current text
through line 500 for the string TRACE . Lines found to contain TRACE are listed on the
system display and deleted from the text buffer.

When the ending line number is omitted, the search ends after the last line of text. For example,
the command S 100,,”OPTION" * searches from the beginning of line 100 through the end
ofthe text for thestring OPTION . Linesfoundtocontain OPTION arelisted onthe system
display and deleted from the text buffer.

When both the starting and ending line numbers are omitted, the EDITOR searches the entire
text. For example, the command S “transferred” * lists and deletes all lines containing the
string transferred .

Notes on the Command Syntax

When entering a SEARCH and Delete Line command, do not enter any blank spaces
immediately before the asterisk (*). For example:

S "¥Xz" %

EDITOR ERROR

Syntax - error number 138
SREPICENE |

This command causes a syntax error because a blank space appears between the string
delimiter (") and the asterisk (*).

4-74 @ 4051R06 EDITOR

Editing Commands
SEARCH and Delete Line

When specifying a peripheral device in a SEARCH and Delete Line command, do not enter any
blank spaces immediately after the I/0 address. For example, the command

S @29: "REM"” # causes a syntax error. The correct way to enter the command

is S @29:"REM" »

Edit Delimiters in the Command. Just as for other searching commands, the syntax and
descriptive forms show three edit delimiters, represented by two commas (,) and a space (b).
The two commas may be replaced by another edit delimiter, with the following exception: the
second comma cannot be replaced by a space if the ending line number is omitted, or a syntax
error occurs.

The space (B) in the syntax and descriptive forms is not meant to be replaced by another edit
delimiter. For example, the command S,,,”"REM” # causes a syntax error.

Just as for the other searching commands, you can specify the edit delimiters in the manner
indicated in the syntax and descriptive forms, or abbreviate the NLSEARCH and Replace
String command according to these rules:

—Ifanendingline numberis specified, you need only enter one edit delimiter between the
ending line number and the target string. For example, the command S 1,100 "REM" *
isvalid. Several of the sample commands in this explanation are of this format. The space
immediately following the keyword S is not required, and is entered only for the sake
of appearance.

—When omitting both the starting and ending line numbers, you may enter two non-blank
edit delimiters between the keyword S and the target string, as in the command
S,,”"REM” % _ Or, you may replace the two edit delimiters with a blank space, as

in S "REM” * . The format of this last command is more convenient, and is emphasized
in the examples.

String Delimiters in the Command. As for all searching commands, the target string must be
enclosed in a string delimiter, or a syntax error occurs. The string delimiter can be any
keyboard character that causes a printed character to appear on the display except 1) aspace;
2) one of the characters in the target or replacement string; or 3) a number or edit delimiter, if
no editline numbers are specified and aspace appears in the their place. For more information,
refer to "String Delimiters” in Section 2.

Command Semantics

When specifying a peripheral device in a SEARCH and Delete Line command, do notenter any
blank spaces immediately before the colon (:) or a semantic error occurs. For example, the
command S@33 :"OPTION" # causes a semantic error.

4051R06 EDITOR @ 4-75

Editing Commands
SEARCH and Delete Line

The ending line number specified ina SEARCH and Delete Line command should be at least as
large as the starting line number. If the ending line number is smaller than the starting line
number, the command either has no effect, or causes a semantic error.

An Editing Example

The following example illustrates the use of the SEARCH and Delete Line command.

Example 1

,__
o]
o
—

REM X BEGIN LOOP ¥

SET TRACE

UB=8

FOR K=1 TO 2tN-1 STEP 2
¥=A+K¥H

S4=S4+FNF ()

NEXT K
12=H-3%(SB+2%S2+4%54)

SET NORMAL

REM ¥X% USE CORRECTION FACTOR XX
12=C16%12-185-15

ug=12

PRINT

:478 PRINT 12

:480 IF ABS(I2-I@8 <E THEN 540
¢498 Ip=12

:586 HEXT H

1510 REM **¥ PRINT FINAL UALUE *x
:528 PRINT

:530 PRINT "FINAL VALUE IS"i12

HT1"¥
460 PRINT
528 PRINT

LR X N NN Y NI Y Y]

BN QO ST NN
QOO TS

T
[s~]

BN
()
(1]

S]

= O AN 0= 0t bt poh Pt P e P P Pt
WEID OWUWONNNINAAGCN®DYOOINNHL GITY
LA R NI N

.o 88 py

, "SET"X
2:350 SET TRACE
9:420 SET NORMAL
Q

«19 "REM"X

é 348 REM X% BEGIN LOOP ¥x
1

1&

w
n

[95]

1426 REM ¥¥ USE CORRECTION FACTOR ¥
:518 REM ¥¥ PRINT FINAL UALUE XX

(continued on next page)

4-76 @ 4051R06 EDITOR

Editing Commands
SEARCH and Delete Line

r"
by
o
-

FOR K=1 TO 2tN~-1 STEP 2
X=n+K¥H

S4=S4+FNF (¥

HEXT K
[12=H/3%(SB+2¥52+4%54)
[2=016%12-108)-13

PRINT 12

IF ABS(I2-18)<E THEN 540
Ig=12

HEXT N

PRINT "FINAL VALUE IS"jlI2

SN OOV A
e RS O GO NE A6 AN SO B8 DL W
[R R o L Ao]
@O0 = o= SO CO
L A aana s o Faxos Rong

m.—..—.,—-p—a’.‘

Example 1 shows the SEARCH and Delete Line command being used to edita BASIC program.
An initial listing shows that the text consists of twenty BASIC program statements. Then four
SEARCH and Delete Line commands are executed.

The command S "PRINT]” * tells the EDITOR to list and delete all lines that end with the

string PRINT . The end of the line is represented in the target string by the symbol] , the
current "END-OF-RECORD" character by default. (For more information, refer to

the]= commandin Section 5.) When the command is executed, the EDITOR lists and deletes
two lines found to contain the target string, lines 13 and 19.

The command S 2,15 "V0" % searches lines 2 through 15 for the string VO . Lines
containing VO are to be listed on the display, and deleted from the text buffer. When the
command is executed, the EDITOR lists and deletes lines 3 and 12.

The command S 2,, "SET” * searches from line 2 on for the string SET . When the
command is executed, the EDITOR lists and deletes two lines found to contain the
string SET , lines 2 and 9.

The command S ,19 "REM” * searches up through line 19 for the string REM . When the
command is executed, the EDITOR lists and deletes three lines found to contain the target

string, lines 1, 10, and 18.

Finally, acomplete listing shows how the program has been modified by the four SEARCH and
Delete Line commands.

4051R06 EDITOR @ 4-77

NOTES

4-78 @ 4051R06 EDITOR

Editing Commands
SEARCH and Replace String

The SEARCH and Replace String Command

Syntax Form:

S [(Vo] address] [[edit line number 1 , [edit line number] ,] b “ string , * string

Descriptive Form:
SEARCH |[1/0 address] [[starting line number] , [ending line number] ,] space ‘‘ target string '’

, * replacement string *’

PURPOSE

The SEARCH and Replace String command searches a portion of the current text for a
specified target string, and replaces occurrences of the string with the desired replacement
string. Changed lines are listed on a peripheral device, or on the display if no device is
specified.

EXAMPLES

[45]

MAT B=IDN(3435/,/0IM B(3,33ICALL "IDN",B~
188ys “MAT C=CONCHyNI~y/DIM CINGNIIC=1~
12888 “"MAT INPUT A_C"."INPUT A"

S 188,5008 "% “","~ REM"

S@33:"TRACE ON","SET TRACE"

S@33:108,, "PRINT ~3" "PRINT =~,"

5@33:,5000 "READ#1;","READE33:"
S@3232:100,5000 “"PRINT","PRINTE3:"

(4]

o

4051R06 EDITOR @ 4-79

Editing Commands
SEARCH and Replace String

4-80

EXPLANATION

The SEARCH and Replace String command allows an 1/O address, a starting line number, an
ending line number, and two ASCII character strings to be specified. The first string is the
"target” string and the second string is the "replacement” string. Both strings must be
enclosed in quotation marks or another string delimiter.

When the SEARCH and Replace String command is executed, the EDITOR searches the
current text from the starting line through the ending line for the target string. Occurrences of
the target string in the text are overwritten by the replacement string in the following manner:
the first character of the replacement string overwrites the first character of the target string,
the second character of the replacement string overwrites the second character of the target
string, and so on.

Each time an occurrence of the target string is overwritten by the replacement string, the
changed line is listed on the peripheral device specified by the command. If a line contains
more than one occurrence of the target string, the line is listed more than once. Forexample, a
line containing three occurrences of the target string is listed three times on the specified
peripheral device.

The replacement string need not have the same number of characters as the target string. If the
replacement stringis longer than the target string, the SEARCH and Replace String command
lengthens the text; but if the replacement string is shorter than the target string, the command
shortens the text.

For example, the command S 100,5000 "PRINT","PRINT@3:" tells the EDITOR to search
lines 100 through 5000 of the current text for the target string PRINT . Occurrences of
PRINT are overwritten by PRINT@3: and changed lines are listed on the system display by
default. Each time an occurrence of PRINT is replaced by PRINT@3: the textincreases by
three characters.

Default Values

When no I/O address is specified in a SEARCH and Replace String command, changed lines
are listed on the system display by default. For example, the command

S 100,5000 “"TRACE ON","SET TRACE" searches lines 100 through 5000 for the

string TRACE ON . Occurrences of the string TRACE ON are replaced by

SET TRACE and the changed lines are listed on the system display.

When the starting line number is omitted, the EDITOR starts the search at the beginning of the

first line of text. For example, the command S ,5000 “MAT INPUT",”INPUT"” searches the
current text through line 5000 for the string MAT INPUT .Occurrencesof MAT INPUT are

replaced by INPUT and changed lines are listed on the system display.

@ 4051R06 EDITOR

Editing Commands
SEARCH and Replace String

When the ending line number is omitted, the search ends after the last line of text. Forexample,
the command S 100,, /MAT C=CON/,/C=1/ searches from the beginning of line 100
through the end of the text for the string MAT C=CON . Occurrencesof MAT C=CON are
replaced by C=1 and changed lines are listed on the system display.

Notes on the Command Syntax

When entering a SEARCH and Replace String command, use only one edit delimiter between
the target and replacement strings. Entering more than one delimiter causes a syntax error. For
example:

S 1,188 "PRINT" « "PRIWNT @33:"
EDITOR ERROR

Syntax - error number

S 1,188 "PRINT" « "PRIH

—
s O
(3
4

The correct way to enter the command is as follows:

S 1,188 "PRINT","PRINT @320"

When specifying a peripheral device in a SEARCH and Replace String command, do notenter
any blank spaces immediately after the 1/0 address. For example, the command

S@33: 1,100 "TRACE ON",”"SET TRACE" causes a syntax error. The correct way to enter
the command is S@33:1,100 "TRACE ON","SET TRACE" .

Edit Delimiters in the Command. Just as for other searching commands, the syntax and
descriptive forms show three edit delimiters, represented by two commas (,) and a space (b).
The two commas may be replaced by another edit delimiter, with the following exception: the
second comma cannot be replaced by a space if the ending line number is omitted, or a syntax
error occurs.

The space (b) in the syntax and descriptive forms is not meant to be replaced by another edit
delimiter. For example, the command S,,,”"@33","@29" causes a syntax error.

Just as for the other searching commands, you can specify the edit delimiters in the manner
indicated in the syntax and descriptive forms, or abbreviate the NLSEARCH and Replace
String command according to these rules:

—Ifanending line number is specified, you need only enter one edit delimiter between the
ending line number and the target string. For example, the command

S 1,100 "AQ",”A2" is valid. Several of the sample commands in this explanation are of
this format. The space immediately following the keyword S is not required and is
entered only for the sake of appearance.

4051R06 EDITOR @ 4-81

Editing Commands
SEARCH and Replace String

—When omitting both the starting and ending line numbers, you may enter two non-blank
edit delimiters between the keyword S and the target string, as in the command
S,,"A0",”A2" . Or, you may replace the two edit delimiters with a blank space, as

in S "A0",”A2" . The format of this last command is more convenient, and is
emphasized in the examples.

String Delimiters in the Command. As for all searching commands, the target and replacement
strings must be enclosed in a string delimiter, or a syntax error occurs. The delimiter used to
enclose the target string need not be the same as the delimiter used to enclose the replacement
string.

A string delimiter can be any keyboard character that causes a printed character to appear on
the display except 1) a space; 2) one of the characters in the target or replacement string;
or 3) anumber or edit delimiter, if no edit line numbers are specified and a space appearsin
their place. For more information, refer to "String Delimiters” in Section 2.

Command Semantics

The ending line number specified in a SEARCH and Replace String command should be at
least as large as the starting line number. If the ending line number is smaller than the starting
line number, the command either has no effect, or causes a semantic error.

When specifying a peripheral device in a SEARCH and Replace String command, do notenter
any blank spaces immediately before the colon (:) or a semantic error occurs. Forexample, the
command S@33 :"MAT INPUT",”INPUT” causes a semantic error.

Special Uses for the SEARCH and Replace String Command:
Deleting Specified Strings

If the replacement string is empty (has no characters), the SEARCH and Replace String
command deletes occurrences of the target string from the text buffer. This is not the same as
deleting the /ine in which the target string occurs (the function provided by the NLSEARCH
and Delete Line and SEARCH and Delete Line commands).

For example, the command S /MAT/,// locates and deletes all occurrences of the
string MAT in the current text.

4-82 @ 4051R06 EDITOR

Editing Commands
SEARCH and Replace String

An Editing Example
The following example illustrates the use of the SEARCH and Replace String command.

Example 1

:620 ‘CORRECT MATRIX A
638 PRINT®33:"R="34
:640 TRACE ON
638 FOR J=1 TO N-1
660 FOR I=J+1 TO N
670 ACI N+1D=ACT, JIXACI N+1)
6808 NEXT [
1698 NEXT J
780 TRﬁCE OFF
: 710 PRINT@33:"A="3A
“INITIALIZE MHTRICES B,C
MAT C=CON(N,N>
748 MAT B=IDNC(N,N)>

~ =4
Wi
oo

S +5_"TRACE ON","SET TRACE"
3:640 SET TRACE

S 555 "TRACE OFF","SET NORMAL"
9:708 SET NORMAL

l|@33. » " n
639 PRINT "A="3A
10 718 PRINT 'QS"Q

" s n n. RE"' "
11620 REM CORRECT MATRIX A
1:720 REM INITIALIZE MATRICES B, C

COH;N +N3>-y 7DIM C(NyN>1?735 C=1-

C

73

S /MAT_B=IDN(NyN)/,/DIM B(N,N>I?50 CALL "IDH",B~
:758 CALL "IDN" sB

)

“w

1
.M

[74]
an

LIST
@ REM CORRECT MATRIX A
A PRINT "A="3;A
8 SET TRACE
8 FOR J=1 TO N-1
€0 FOR I=J+1 TO N
6:678 ACI N+1)=ACT, JIXACIsN+1)
7:680 NEXT 1
8:690 NEXT J
9.760 SET HORMAL
18:710 PRINT "A="3R
11:728 REM INITIALIZE MATRICES B,C
12:736 DIM C(N,ND
¢735 C=1
13:748 DIM B(N,N)
: 7508 CALL "IDN",B

4051R06 EDITOR @ 4-83

Editing Commands
SEARCH and Replace String

4-84

Example 1 shows the SEARCH and Replace String command being used to locate and replace
specified strings, and make a "foreign” BASIC program compatible with 4051 BASIC. An initial
listing shows that the text consists of thirteen BASIC program statements. Then six SEARCH
and Replace String commands are executed.

Thecommand S ,5 "TRACE ON",”SET TRACE" tellsthe EDITORtosearch the currenttext
up toandincluding editline 5 forthe string TRACE ON .Occurrencesof TRACE ON areto
be replaced by SET TRACE and the changed lines listed on the display.

When the command is executed, an occurrence of the target string is located in line 3 and
overwritten with the string SET TRACE . A listing of line 3 as changed by the replacement
procedure appears on the next line of the display.

The command S 5,, "TRACE OFF”,”"SET NORMAL" tells the EDITOR to search from line 5
on for the string TRACE OFF . Occurrences of TRACE OFF are to be replaced
by SET NORMAL and the changed lines listed on the display.

When the command is executed, an occurrence of the target string is located in line 9 and
overwritten with SET NORMAL . Alisting of line 9 as changed by the replacement procedure
appears on the display.

Next the command S "@33:",” " tells the EDITOR to locate all occurrences of @33: inthe
text. The string @33: is to be replaced by a space (the replacement string consists of one
blank space) and the changed lines are to be listed on the display. When the command is
executed, occurrences of @33: are located and replaced in lines 2 and 10. After the
replacement procedure, a listing of lines 2 and 10 appears on the next lines of the display.

Then the command S "# '","~ REM" is executed. At the time the command is executed, the
symbol # isthe "any digit” characterand ~ isthe wildcard character.no #= or ~= com-
mands have been previously executed. The command S "# '","~ REM” tells the EDITOR to
search the entire text for a string consisting of a digitimmediately followed by a space and an
apostrophe (') .Occurrences of this string are to be overwritten with a five-character string
consisting of the first character of the target string, immediately followed by a space

and REM .

When the command is executed, the EDITOR locates the target string in lines 1 and 11. After
the replacement procedure, a new listing of the two lines appears on the display.

Next the command S /MAT C=CON(N,N)/,/DIM C(N,N)]735 C=1/ tells the EDITOR to
replace all occurrences of MAT C=CON(N,N) with the string DIM C(N,N) immediately
followed by a new line that begins with 735 C=1 . The beginning of the new line is
represented by the symbol] , the current "END-OF-RECORD"” character by default. When
the command is executed, the EDITOR locates and overwrites an occurrence of the target
string in edit line 12. The replacement procedure results in a new line. A listing of the new
line 735 C=1 appears on the display.

@ 4051R06 EDITOR

Editing Commands
SEARCH and Replace String

Finally the command S /MAT B=IDN(N,N)/,/DIM B(N,N)]750 CALL "IDN",B/ is executed.
The EDITOR locates an occurrence of the string MAT B=IDN(N,N) inline 13, and overwrites
the string with DIM B(N,N) followed by a new line that begins with 750 CALL "IDN",B .

A listing of the new line appears on the display.

After all of the SEARCH and Replace String commands are executed, a listing of the entire text
shows all the changes that have been made.

4051R06 EDITOR @ 4-85

NOTES

4-86 @ 4051R06 EDITOR

Editing Commands
SORT

The SORT Command

Syntax Form:

SO [edit line number] , [edit line number] , numeric constant [, numericconstant [, . . .]]

Descriptive Form:

SORT [startingline number] , [ending line number] , character position [, character position

[...1]

PURPOSE

The SORT command rearranges lines of text, sorting "alphabetically” according to the ASCII
values of characters found in specified positions within each line.

EXAMPLES

SO 4,41

SO +5142,3

SO 1,.1,2

SO +100,1,2

SO 1,1000,1,2

SO 1,100841,2,3,4,5,6

EXPLANATION

The SORT command allows a starting line number, an ending line number, and character
positions to be specified. When the SORT command is executed, the EDITOR rearranges the
text between and including the starting and ending line numbers using a “selection sort”
procedure. Lines are rearranged in the text buffer according to the ASCII value of characters
found in the positions specified by the command. For example, the command

SO 1,1000,1,2 tellsthe EDITORto rearrange lines 1through 1000 of the text buffer according
to the ASCII value of characters found in the first two character positions in each line.

4051R06 EDITOR @ 4-87

Editing Commands

SORT

4-88

Lines are rearranged in order of increasing ASCI| value. For example, the command

SO 500,600,1 rearranges lines 500 through 600 of the text so that the ASCII code values of

characters found in the first character position increase. That is, a line beginning with A is
placed before a line beginning with C ; and a line beginning with 0 is placed before a line
beginning with 3 .

Sorting begins with the last character position specified in the command, and ends with the
first character position specified in the command. For example, the command

SO 1,1000,1,2,3 sorts lines 1 through 1000 according to the ASCII value of characters found
in the third character position in each line, then the second character position, then the first
character position. This has the effect of “alphabetizing” lines on the basis of their first three
characters.

The I/0 light on the system front panel lights up briefly each time the SORT command moves a
line of text. When the text is completely sorted, the 1/O light stops blinking and the cursor
reappears on the next line of the display.

To stop the execution of a SORT command, you may press the BREAK key twice.

What Happens When a Specified Character Position is Empty

Since text rearranged by the SORT command may consist of lines of varying lengths, one or

more lines may be empty (have no character) in the specified character position.” When the
SORT command rearranges lines according to characters in a certain position, lines that are
empty in that position move to the top of the text buffer.

For example, the command SO 100,500:1,2,3,4 begins sorting on the fourth character
position. Any lines having fewer than four characters are moved to the top of the text buffer.
When the command sorts on the third character position, lines having fewer than four
characters move to the top of the text buffer; and so on.

When sorting is complete, the lines are "alphabetized.” For example, the line CAR precedes
CART , the line TO precedes TOP , and A precedes ART .

Defauit Values

When the starting line number is omitted in a SORT command, the first line involved in the
sorting process is the first line of the current text. That is, the command SO ,100,1,2 sortsall
lines up to and including line 100 according to the ASCII value of characters found in the first
two character positions in each line.

7Don"c confuse an empty character position with a character position containing a space, the character SP (ASCH| 32).

@ 4051R06 EDITOR

Editing Commands
SORT

When the ending line number is omitted in a SORT command, the last line involved in the
sorting process is the last line of the current text. For example, the command SO 1,,1,2 sorts
from line 1through the end of the text, according to the ASCIt value of characters found in the
first two character positions.

When both the starting and ending line numbers are omitted, the command acts upon the
entire text. Thatis, the commmand SO,,1,2,3 sorts all lines of text according to the ASCII value
of characters found in the first three character positions.

Notes on the Command Syntax

Interpreting the SORT Command. The EDITOR interprets the SORT command in the following
way: the number that precedes the first edit delimiter (,) is a starting line number. The number
that immediately precedes the second edit delimiter is an ending line number. Numbers that
immediately precede any subsequent edit delimiters are character positions.

Defauit values are supplied if one or both of the starting and ending line numbers are omitted in
the command. Some sample SORT commands are shown below, along with their interpreta-
tions. The commands specify 5, 6, and 7 as parameters, but differ in their interpretations
because of the number and placement of the edit delimiters.

Command Interpretation
SO 5:6,7 Sort lines 5 through 6 on character position 7.
SO0 45,6,7 Sort up through line 5 on character positions 7 and 6.
S0y s5:6,7 Sort all lines of text, on character positions 7, 6, and 5.
SO S5496,7 Sort from line 5 on, on character positions 7 and 6.

To help you remember the interpretation of a SORT command, you may separate edit line
numbers from character positions using an edit delimiter other than a comma, as in the com-
mand SO 50,60:1,2,3 .

Syntax Errors. A minimum of two edit delimiters and one character position must be specified
in a SORT command, or a syntax error occurs. For example, all of the following commands
cause syntax errors:

S0 S,

S0 , 109,
S0 1,2

S0 100,500,

4051R06 EDITOR @ 4-89

Editing Commands
SORT

These commands cause syntax errors because they do not specify at least two edit delimiters
(,) and one character position. Forinstance, the first command SO 5, specifiesonly one edit
delimiter and no character position: 5 is interpreted as a starting line number. The last
command SO 100,500, specifies two edit delimiters, but no character position: 100 and
500 are interpreted as starting and ending line numbers, respectively.

Character Positions. A character position can be any digit from 1 through 9999. The character
positions specifiedina SORT command are generally entered consecutively, and in increasing
order, as in the command SO,,1,2,3,4,5,6 . However, the following commands are
syntactically correct:

SO 108,200:5,1,2,3,4
S0 108,208:7,12

Commands of this type are useful in certain circumstances. (Refer to “Special Uses for the
SORT Command” in this explanation.)

Command Semantics

The ending line number specified in a SORT command should be at least as large as the
starting line number. If the ending line number is smaller than the starting line number, the
command either has no effect, or causes a semantic error.

How the SORT Command is Affected by the Lowercase or Uppercase Flag

Calling the EDITOR orexecuting the LOWERCASE command sets a "lowercase flag.” Setting

the lowercase flag enables the EDITOR to distinguish between lowercase and uppercase text
characters during the sorting process. Forexample, when sorting lines according to the ASCI|
value of characters in the first position, the EDITOR places a line beginning with b (ASCII 98)
after a line beginning with B (ASCII 66).

Executing the UPPERCASE command sets an "uppercase flag.” Setting the uppercase flag
causes the EDITOR to treat all lowercase text characters as uppercase characters during the
sorting process. For example, when sorting lines according to the ASCI| value of characters in
the first character position, the EDITOR treats a line beginning with b as if it began

with B (ASCII 66).

For illustrations of how the lowercase and uppercase flags affect the result of the SORT

command, refer to “An Editing Example” in the explanations of the LOWERCASE and
UPPERCASE commands.

4-90 @ 4051R06 EDITOR

Editing Commands
SORT

Special Uses for the SORT Command

Alphabetizing Using the SORT Command. The SORT command may be used to alphabetize
lists of names or words that begin in the same character position and contain the characters
A-Z and/or a-z. An illustration is provided in "An Editing Example” in this explanation. The
SORT command should specify enough character positions to completely alphabetize the list.
For example, if the longest name in the list has six characters, the command
S0,,1,2,3,4,5,6 completely alphabetizes the list.

The list may be in lowercase letters, or uppercase, or both. For instance, the first characterin
each line may be uppercase, and the rest of the characters lowercase. However, keep in mind
that when the lowercase flag is set, the EDITOR distinguishes between lowercase and
uppercase characters. For example, if the lowercase flag is set, the EDITOR moves the
line art toalocationaftertheline Art ,andplaces art after Zap .Ifyoudonotwantlines
to be “alphabetized” in this manner, you may execute the UPPERCASE command to make the
EDITOR treat all text characters as uppercase.

Words or names to be alphabetized should begin in the same character position. This is
because blank spaces preceding the word are the character SP (ASCII 32). When the
EDITOR sorts on a particular character position, aline having a space in that position is placed
above a line having any other alphanumeric character: all ASCII characters except control
characters have a higher ASCII code value than SP .

Arranging Numbers in Increasing Order. The SORT command can be used to arrange
numbers in increasing order. The numbers need not all have the same number of digits. For
example:

LIST

[+2]
E-N
[eN]

$0,,142,3,4

LIST

[V
A

If the numbers to be arranged in increasing order contain a decimal point (.), the decimal point
must appear in the same character position in each line.

4051R06 EDITOR @ 4-91

Editing Commands
SORT

The numbers to be arranged in increasing order should either all begin in the same character
position, or all end in the same character position. If the numbers all end in the same character
position, you should execute a SORT command that specifies the appropriate character
positions consecutively and in increasing order, as in the command SO,,1,2,3,4,5,6 .

Ifthe numbers to be arranged in increasing order all begin in the same character position, you
should execute a different SORT command. For example:

LIST

N (A e)
[o
25 (48]
D

[EN] 5N

sseuas asue
WO e T ony

5U,95s493s1,2

The SORT command in this example first specifies character positions that are empty in one or
more of the lines to be sorted. The character positions are entered consecutively and in
decreasing order: 5,4,3 . Next the command specifies the remaining character positions

consecutively and in increasing order: 1,2 .

Only a SORT command of the type described in this example can correctly arrange numbers
that begin in the same character position, and do not all have the same number of digits.

4-92 @ 4051R06 EDITOR

Editing Commands
SORT

An Editing Example

The following example illustrates the SORT command being used to alphabetize a list of
names. Because all of the names begin in the same character position and have nineteen or
fewer characters, a SORT command that specifies the first nineteen character positions
completely alphabetizes the list.?

Example 1

LIST
iZimmerman, Neil D.
tHillstroms A, f.
:Carmichael,y David
:Brockway, Marius E.
tHarveyy, Richard @,
tTaylor, Ouwen
:Gardner, Keith W.
tFosters Alice
:Siebold, William B.
tLentz, John F.
tSloan, Irene
tPollock, Rcbert
:Kearneyy, John D,
tEllis, Terry L.
:Kellery, Suzanne

SORT,,14243,4,5,6,7,8,9,18,11,12,13,14,15416,17,18,419

LIST
:Brockways Marius E.
tCarmichael, David
tEllis, Terry L.
tFoster, Alice
tGardner, Keith W.
tHarvey, Richard A.
tHillstrom, A. A.
:Kearney, John D.
:Keller, Suzanne
cLentz, John F.
sPollocks Robert
:Sieboldy, William B.
:Sloany Irene
:Taylor, Owen
sZimmerman, Neil D.

8Actually for this particular list of names, the command SO,,1,2 would suffice to completely alphabetize the list,
because no two names are identical in the first three or more positions.

4051R06 EDITOR @ 4-93

Editing Commands
SORT

Timing Information

The SORT command uses a "selection sort” algorithm.” The amount of time required to sort
the text depends on the number of lines to be sorted, the number of characters perline, and the

number of character positi

ons specified in the command.

The execution time for a SORT command may be approximated by the following formula:

Time (in seconds) =

where S
C
L

(2.02E-5) % S % C % L12.016
= the number of character positions specified in the SORT command
= the average number of characters per line

= the number of lines of randomly ordered text

For example, executing the command SO,,1 takes about six seconds if the text consists of
100 randomly arranged lines having an average of 63 characters per line.

An alternative formula is
Time (in seconds) =

where S

Both of the above formul
shorter, and will be mini

as follows:
(2.02E-5) % S* T % L11.016

the number of character positions specified in the SORT command

= the total number of characters to be sorted
the number of lines of randomly arranged text

It

as assume the text is randomly ordered. Execution times are much
mal, if the text is already fairly well sorted.

For information about sorting by selection, refer to Donald E. Knuth, The Art of Computer Programming, Vol. 3,
‘‘Sorting and Searching,’”” Addison-Wesley Publishing Company, 1973, p. 139.

4-94

4051R06 EDITOR

@

Editing Commands

REVSORT
The REVSORT Command
Syntax Form:
REV [edit line number] . [edit line number] , numeric constant [, numeric constant [, . . .]J
Descriptive Form:
REVSORT [starting line number] , [ending line number] , character position [, character position
[o...1]

PURPOSE

The REVSORT command rearranges lines of text, sorting "alphabetically in reverse”
according to the ASCII values of characters found in specified positions within each line.

EXAMPLES

REU 441

PEU 4514243

REV 144142

REV ,1600,1,2

REU 1,1000,1,2

REU 1,1088,1,24344+5,6

EXPLANATION

Like the SORT command, the REVSORT command allows a starting line number, an ending
line number, and character positions to be specified. When the REVSORT command is
executed, the EDITOR rearranges the text between and including the starting and ending line
numbers using a “selection sort” procedure. Lines are rearranged in the text buffer according
to the ASCIl value of characters found in the positions specified by the command. For example,
the command REV 1,1000,1,2 tells the EDITOR to rearrange lines 1 through 1000 of the text
buffer according to the ASCII value of characters found in the first two character positions in
each line.

4051R06 EDITOR @ 4-95

Editing Commands
REVSORT

Unlike the SORT command, the REVSORT command rearranges lines in order of decreasing
ASCll value. For example, the command REV 500,600,1 rearranges lines 500 through 600 of
the text so that the ASCIl code values of characters found in the first character position
decrease. Thatis, aline beginning with A isplaced afteraline beginningwith C ;andaline
beginning with 0 is placed after a line beginning with 3 .

Sorting begins with the last character position specified in the command, and ends with the
first character position specified in the command. For example, the command

REV 1,1000,1,2,3 sortslines 1through 1000 according to the ASCI| value of characters found
in the third character position in each line, then the second character position, then the first
character position. This has the effect of “reverse alphabetizing” lines on the basis of their first
three characters.

The 1/0 light on the system front panel lights up briefly each time the REVSORT command
moves a line of text. When the text is completely sorted, the 1/0 light stops blinking and the
cursor reappears on the next line of the display.

To stop the execution of a REVSORT command, you may press the BREAK key twice.

What Happens When a Specified Character Position is Empty

Since text rearranged by the REVSORT command may consist of lines of varying lengths, one
or more lines may be empty (have no character) in the specified character position.' When the
REVSORT command rearranges lines according to characters in a certain position, lines that
are empty in that position move to the top of the text buffer.

For example, the command REV 100,500:1,2,3,4 begins sorting on the fourth character
position. Any lines having fewer than four characters are moved to the top of the text buffer.
When the command sorts on the third character position, lines having fewer than four
characters move to the top of the text buffer; and so on.

When the REVSORT Command is the Inverse of the SORT Command

The REVSORT command performs the inverse of the SORT command if the lines being sorted
all have characters (are non-empty) in the specified positions. For example, if all lines have at
least five characters, the command REV,,1,2,3,4,5 rearranges the text in reverse order from
the command SO,,1,2,3,4,5 .

If one or more lines is empty in a position specified by the command, the REVSORT command
may not perform the inverse of the SORT command.'® For example, if one of the lines has only
three characters, the command REV,,1,2,3,4,5 may not rearrange the text in reverse order
from the command SO0,,1,2,34,5 .

10Don’t confuse an empty character position with a character position containing a space, the character SP (ASCI1| 32).

4-96 @ 4051R06 EDITOR

Editing Commands
REVSORT

Default Values

When the starting line number is omitted ina REVSORT command, the first line involved in the
sorting process is the first line of the current text. Thatis, the command REV ,100,1,2 sortsall
lines up to and including line 100 according to the ASCII value of characters found in the first
two character positions in each line.

When the ending line number is omitted in a REVSORT command, the last line involved in the
sorting process is the last line of the current text. Forexample, the command REV 1,,1,2 sorts
from line 1 through the end of the text, according to the ASCII value of characters found in the
first two character positions.

When both the starting and ending line numbers are omitted, the command acts upon the
entire text. That is, the command REV,,1,2,3 sorts all lines of text according to the ASCII
value of characters found in the first three character positions.

Notes on the Command Syntax

Interpreting the REVSORT Command. The number that precedes the first edit delimiter (,)ina
REVSORT command is a starting line number. The number that immediately precedes the
second edit delimiter is an ending line number, and numbers that immediately precede any
subsequent edit delimiters are characters positions. Default values are supplied if one or both
of the starting and ending line numbers are omitted in the command. For example, the
command REV 5,6,7 tells the EDITOR to "reverse” sort lines 5 through 6 on character
position 7, but the command REV,,5,6,7 tells the EDITOR to "reverse” sort all lines, on
character positions 7, 6, and 5.

To help you remember the interpretation of a REVSORT command, you may separate edit line
numbers from character positions using an edit delimiter other than a comma, as in the com-
mand REV 50,60:1,2,3 .

Syntax Errors. Like the SORT command, the REVSORT command requires a minimum of two
edit delimiters and one character position to be specified, or a syntax error occurs. For
example, all of the following commands cause syntax errors:

REU

REU S,

REU 41006,
REY 199,500

These commands cause syntax errors because they do not specify at least two edit delimiters
(,) and one character position.

4051R06 EDITOR @ 4-97

Editing Commands
REVSORT

498

Character Positions. A character position can be any digit from 1 through 9999. The character
positions specified in a REVSORT command are generally entered consecutively and in
increasing order, as in the command REV,,1,2,3,4,5,6 . However, the following commands
are syntactically correct:

REU 188,2080:5,1,2,3,4
REU 108,20808:7,12

Command Semantics

The ending line number specified in a REVSORT command should be at least as large as the
starting line number. If the ending line number is smaller than the starting line number, the
command either has no effect, or causes a semantic error.

How the REVSORT Command is Affected by the Lowercase or Uppercase Flag

Callingthe EDITOR orexecuting the LOWERCASE command sets a “lowercase flag.” Setting
the lowercase flag enables the EDITOR to distinguish between lowercase and uppercase text
characters during the sorting process. For example, when the REVSORT command sorts lines
according to the ASCII value of characters in the first position, a line beginning with

b (ASCII 98) is placed before a line beginning with B (ASCII 66).

Executing the UPPERCASE command sets an “uppercase flag.” Setting the uppercase flag
causes the EDITOR to treat all lowercase text characters as uppercase characters during the
sorting process. For example, when the REVSORT command sorts lines according to the
ASClIvalue of characters in the first character position, aline beginning with b istreated asif
it began with B (ASCII 66).

For illustrations of how the lowercase and uppercase flags affect the result of the REVSORT
command, refer to “An Editing Example” in the explanations of the LOWERCASE and
UPPERCASE commands.

Special Uses for the REVSORT Command

"Reverse Alphabetizing” Using the REVSORT Command. The REVSORT command may be
used to "reverse alphabetize” lists of names or words that contain the characters A-Zand/or a-
z. The REVSORT command should specify enough character positions to completely sort the
list. For example, if the longest name in the list has six characters, the command
REV,,1,2,3,4,5,6 completely "reverse alphabetizes” the list.

@ 4051R06 EDITOR

Editing Commands
REVSORT

The list may be in lowercase letters, or uppercase, or both. For instance, the first characterin
each line may be uppercase, and the rest of the characters lowercase. However, keep in mind
that when the lowercase flag is set, the EDITOR distinguishes between lowercase and
uppercase characters. For example, if the lowercase flag is set, the REVSORT command
places the line art before the line ART , and places art before Zap . If you do not want
lines to be "reverse alphabetized” in this manner, you may execute the UPPERCASE command
to make the EDITOR treat all text characters as uppercase.

Words or names to be "reverse alphabetized” should either all begin in the same character
position, or all end in the same character position. If the names all end in the same character
position, you should execute a REVSORT command that specifies the appropriate character
positions consecutively and in increasing order, as in the command REV,,1,2,3,4,5,6 .If the
names all begin in the same character position, you should first execute a CARD command that
specifies 32 (SP)asthefill characterand fills outall lines to the same character position. Then
execute a REVSORT command that specifies the appropriate character positions
consecutively and in increasing order as in the command REV,,1,2,3,4,5,6 . Executing a
CARD command to fill out the lines to a uniform length ensures that the REVSORT command
correctly “reverse alphabetizes” the list (in the sense of performing the inverse of the SORT
command).

Arranging Numbers in Decreasing Order. The REVSORT command can be used to arrange
numbers in decreasing order. An illustration is provided in "An Editing Example” in this
explanation. Numbers to be arranged in decreasing order by the REVSORT command need
not all have the same number of digits, but if the numbers contain a decimal point (.) the
decimal point must appear in the same character position in each line.

An example is shown below:

LIST

w
(2 4]
—

LD -

=~J
Ol = ()

REUy41,2,2,4,5

LIST

w

M A0 -

E Sl ¥ I (V]
LR Nl N N e

4051R06 EDITOR @ 4-99

Editing Commands
REVSORT

Numbers to be arranged in decreasing order should either all begin in the same character
position, or all end in the same character position. If the numbers end in the same character
position, you should execute a REVSORT command that specifies the appropriate character

positions consecutively and in increasing order, as in the command REV,,1,2,3,4 .

If the numbers to be arranged in decreasing order all begin in the same character position and
do not all have the same number of digits, you should first execute a CARD command, then a
REVSORT command. The CARD command should use ASCII code value 32 (SP) as the fill
character. The REVSORT command should specify the appropriate character positions in the
following order: first specify character positions that have no digitin one or more of the lines to
be sorted. Enter these positions consecutively and in decreasing order. Then specify the
remaining character positions consecutively and in increasing order.

An example is shown below:

995'!4!3‘!1!2

—
]
o <
—
S T 0 M AN
DS TR gV
nah
[ax]

L =d s e

In this example the numbers to be arranged in decreasing order all begin in the first character
position, and do not all have the same number of digits. Executing the command CA 5 for-
mats the text into lines of five characters, using SP (a space) as the fill character by default.

Because one or more of the lines has no digit in character positions 5, 4, and 3, the REVSORT
command is entered as REV,,5,4,3,1,2 . After the command is executed, a new listing shows
that the five numbers have been correctly arranged in decreasing order.

4-100 @ 4051R06 EDITOR

An Editing Example

Editing Commands

REVSORT

The following example shows the REVSORT command being used to arrange numbers in
decreasing order. The numbers are found in character positions 33 through 41, and all endin
the same character position (41). The REVSORT command executed in the example tells the
EDITOR to rearrange lines 3 through 14, on the basis of the ASCl| value of characters found in
positions 33 through 41. Afterthe command is executed, a new listing shows that the lines have
been rearranged so that the numbers in the “Amount Sold” column are in decreasing order.

Example 1

4051R06 EDITOR

11: THOMPSON
12: VAN DYKE
13: UERMIERE
14: WENTWORTH

REV 3,14,33,34,35,36,37,38,39,40,41

LIST

1

$ SALESMAN

: SAUER

: PARKER
tHENTWORTH
tLENZ
:CLIFFORD
tKINTZ

: THOMPSON
+UAN DYKE
:VERMIERE
s NOAKES
+GLINES

: ETHERIDGE

AMOUNT SOLD
$ 920,000
$ 150,990
$ 249,800
$ 820,000
¢ 950,300
$ 433,600
$ 1,326,500
$ 1,570,000
$ 720,400
$ 565,300
$ 450,860
$ 1,182,000

AMOUNT SOLD
$ 1,570,000
$ 1,320,500
$ 1,102,000
$ 958, 300
$ 920,000
$ 820,008
$ 720,400
$ 565,300
$ 450,800
$ 433,600
$ 249,800
$ 158,996

4-101

Editing Commands
REVSORT

Timing Information

Like the SORT command, the REVSORT command uses a "selection sort” algorithm. The
execution time for a REVSORT command depends on the number of lines to be sorted, the
number of characters per line, and the number of character positions specified in the
command. Execution times may be approximated using the formulas provided for the SORT
command. (Refer to "Timing Information” in the explanation of the SORT command.)

4-102 @ 4051R06 EDITOR

Section 5

ENVIRONMENTAL COMMANDS

CONTENTS PAGE
The LASTLINE Command ittt e e e e e e e e e e e e e 5-3
The LOWERCASE Command e e e e e e e e e e 5-9
The RENUMBER Commandt e e e e e 5-15
The UPPERCASE Commandttt e et e e e e e s 5-21
The #= ComMMANd e e e e 5-27
The ~= CommMaNd e e e e e e 5-33
The = Command e e e e 5-41
The]=Command e 5-47

4051R06 EDITOR @

5-1

5-2

NOTES

4051R06 EDITOR

Environmental Commands
LASTLINE

The LASTLINE Command

Syntax Form:

LA

Descriptive Form:

LASTLINE

PURPOSE

The LASTLINE command returns the following information about the current status of the text
buffer:

— Theeditline number of the last line in the text buffer (including an offset if the last line
does not have a number).

— The total number of lines in the text buffer.

— The number of bytes needed to save the current contents of the text buffer on a storage
device.

— The number of unused bytes remaining in the text buffer.

EXAMPLE

LA

EXPLANATION

The LASTLINE command has no parameters. Only the keyword LA is entered from the
keyboard, as shown in the example above. When the LASTLINE command is executed, the
EDITOR returns information about the current contents of the text buffer.

The Last Line of Text

When the LASTLINE command is executed, information about the text buffer is printed on the
next four lines of the display. The first number printed on the display is the edit line number of
the last line in the current text. The edit line number may be expressed using an offset, asin +10
or 1200+5. If the text buffer is empty, no number is printed, and a blank line appears on the
display.

4051R06 EDITOR @ 5-3

Environmental Commands
LASTLINE

54

The Number of Lines in the Current Text

The next line on the display shows the number of lines in the current text. For example, if the
text buffer currently contains 12 lines of text, the words 12 Lines appear on the display.

The Number of Characters in the Current Text

The next line on the display gives the number of characters in the current text. For example, if
the text buffer currently contains 303 characters, the information 303 Characters appearson
the display.

The number of characters includes a count of end-of-record characters (usually CARRIAGE
RETURNS) used to delimit lines of text upon output. However, edit line numbers do not
contribute to the count, nor do the colons (:) that mark the beginning of text in listings.'

Because each character requires one byte of storage space on a peripheral device, the number
of characters returned by the LASTLINE command is the amount of space (in bytes) required
to store the current text.

This number determines how large a file must be marked to store the current text. To mark a file
large enough to store the text using the SAVE or WRITE command, mark the file to have one
more byte than the number of characters returned by the LASTLINE command. The extra byte
must be reserved for storing an end-of-file mark, which the EDITOR adds after the last
character when outputting text.

For instance, if the LASTLINE command returns 1536 Characters , and you intend to store
the entire text on magnetic tape using the SAVE or WRITE command, the file must be marked
to have at least 1537 bytes. (Refer to the MARK command for an explanation of how to mark a
tape file under EDITOR control.)

If youintend to store the text using the SWN (Save With Number) command, you must mark the
file to be somewhat larger. This is because the count of characters returned by the LASTLINE
command does not include the number of bytes needed to store edit line numbers (the SWN
command saves edit line numbers along with the text). If the SWN command is used to store
the text on magnetic tape, you must mark a tape file large enough to hold the edit line numbers
and text. To compute the number of bytes required, count approximately seven bytes per line
of text, for storing edit line numbers; add the number of characters returned by the LASTLINE
command, then add one byte for the end-of-file mark. The result of this calculation is the
minimum number of bytes that should be specified when marking a file to hold edit line
numbers and text.

Forinstance, if the LASTLINE command returns 100 Lines and 1537 Characters , and you
want to save the current text using the SWN command, you should mark the magnetic tape file
to have at least 7% 100 + 1537 + 1 = 2238 bytes.

The EDITOR inserts the colons when listing text on the display or another device. The colons appear only in the listing,
and are not stored in the text buffer.

@ 4051R06 EDITOR

Environmental Commands
LASTLINE

The Number of Free Bytes in the Text Buffer

The last line of information printed on the display is the number of free (unused) bytes in the
text buffer. Forexample, if the LASTLINE command returns the information 318 Free ,there

are 318 bytes available in the text buffer for storing edit line numbers and text. This helps you
keep track of how much more text may be entered without overflowing the text buffer.

When calculating how much space a particular line of text will occupy in the text buffer, count
one byte per text character, then add two extra bytes. The two extra bytes precede the line in
the text buffer, and are used to store the edit line number. Even if the line is unnumbered, two
bytes are still reserved in the text buffer, in case an edit line number is assigned later.
Thus any line of text occupies a minimum of two bytes in the text buffer, and a blank line
occupies exactly two bytes.

When calculating how much space text occupies in the text buffer, do not count end-of-record
characters. End-of-record (CARRIAGE RETURN) characters are not stored in the text buffer.
The two-byte pairs used to store edit line numbers serve to delimit the lines of text, so thatend-
of-record characters need not be stored in the buffer. When the EDITOR outputs text to a
peripheral device, it recognizes an edit line number to be the beginning of a new line of text,
and automatically inserts the end-of-record character before sending a line to the specified
device.’

When the LASTLINE command returns the information 318 Free , you may actually only
enter a maximum of 316 new text characters. Exactly how many text characters can be entered,
depends on how many new lines, and therefore how many pairs of extra bytes, will be stored in
the text buffer. Forexample, if 318 bytes are free in the text buffer, you might only be able to add
212 new text characters, if the 212 characters are entered as 53 lines of 4 characters each. This
is because the 53 lines require 2% 53 = 106 additional bytes of space in the text buffer for
storing edit line numbers. In this case, the new text occupies 212 + 106 = 318 bytes, all of the
remaining space in the text buffer.

An Editing Example

The following examples show how the LASTLINE command provides information about the
current contents of the text buffer.

2Although end-of-record characters are not stored in the text buffer, you must enter end-of-record characters from the
keyboard or press RETURN to end the current line. Entering an end-of-record character marks the end of a line, and
prompts the EDITOR to reserve two bytes in the text buffer to precede the next new line of text.

4051R06 EDITOR @ 5.5

Environmental Commands

LASTLINE

5-6

Example 1

Example 2

Example 3

CALL "EDITOR"

LA

@ Lines

@ Characters
382108 Free

LA
1354

1354 Lines
28838 Characters

18 Free

LIST :
. DATA DCTABC(1>71H ~
. DATA DCTABC(Z2)71H ~
: DATA DCTARB(3)71H ~
: DATA DCTABC(4)71H ~
: DATA DCTAB(S)71H ~
: DATAR DCTABC(E>~71H -
: DATA DCTAB(?7)/1H ~
: DATA DCTAB(8)~1H -
: DATA DCTAB(9)>/1H ~
: DATA DCTABC1B)>-/1H ~

LA

+9

18 Lines

251 Characters

29949 Free

kR 2000,100,0

LA

2900

10 Lines

251 Characters

29949 Free

I 2600
: DATA DCTABC11)>/1H 7
: DATA DCTAB(12)>~1H -

LA

2900

12 Lines

383 Characters

29895 Free

4051R06 EDITOR

Environmental Commands
LASTLINE

In Example 1, the LASTLINE command is executed immediately after the EDITOR is called.
Since the text buffer is empty, the EDITOR prints a blank line on the display, then returns
the information that there are no lines currently in the text buffer, no characters to be stored on
magnetic tape, and 30210 unused bytes remaining in the text buffer.

In Example2 the LASTLINE command is executed while the text buffer contains a
piece of text. After the command is executed, the EDITOR returns the following information:

— The last line of text has edit line number 1354.

— The current text consists of 1354 lines.

— There are 28838 characters to be stored on magnetic tape.
— 18 unused bytes remain in the text buffer.

In Example 3 the LASTLINE command is executed before and after a RENUMBER command,
then is executed a third time after new text is added to the text buffer.

Before the command LA is entered, a listing shows that the text buffer contains ten
unnumbered lines of text. Then the LASTLINE command is executed, and the EDITOR returns
the information that the last line of text is edit line +9 (the same as edit line 0+9); that there are
10 lines of text consisting of 251 characters; and that there are 29949 unused bytes remaining in
the text buffer. :

Next a RENUMBER command is executed, and the command LA is entered and executed
again. The information returned by the LASTLINE command is the same as before, except for
the edit line number of the last line of text. The lastline now has edit line number 2900, because

the RENUMBER command assigned the numbers 2000, 2100, 2200, ... to the text.

The number of free bytes in the text buffer does not change after a RENUMBER command is
executed. This is because two bytes per line have already been automatically reserved in the
text buffer, for later use in storing edit line numbers.

Next the INSERT command is used to add two new lines to the text buffer. The new lines are
inserted at the end of the text, because the command 13000 specifies a destination beyond
the last line of text (refer to the INSERT command for an explanation of how to specify a
destination).

Finally, the LASTLINE command is executed again. Because of the two unnumbered lines of
text inserted after line 2900, the number of lines has changed from 10 to 12; the number of
characters to be stored on magnetic tape has increased to 303; and the number of unused bytes
in the text buffer is now 29895.

4051R06 EDITOR @ 5-7

Environmental Commands
LASTLINE

The number of characters to be stored on magnetic tape has increased to 303 because of the
two new lines of text. Each line contributes 25 new text characters (including the 7 blank
characters entered by pressing the SPACE bar), and one end-of-record character.

Thus there are 25%2 + 2 = 52 new characters to be stored on magnetic tape.

The number of free bytes in the text buffer has decreased to 29895 because of the new lines of
text. Each of the two new lines reserves 2 bytes in the text buffer for later use in storing an edit
line number, and 25 bytes to store the new text characters. Thus the number of free bytesinthe
text buffer has decreased by 2%2 + 2%25 = 54 pytes.

5-8 @ 4051R06 EDITOR

Environmental Commands
LOWERCASE

The LOWERCASE Command

Syntax Form:

LO

Descriptive Form:

LOWERCASE

PURPOSE

The LOWERCASE command enables the EDITOR to distinguish between lowercase
characters a-z and their uppercase equivalents A-Z during searching and sorting operations
(NLSEARCH, SEARCH, REVSORT, and SORT commands). The LOWERCASE command also
prepares the EDITOR to change uppercase characters into lowercase characters if the CASE
command is executed.

EXAMPLE

LO

EXPLANATION

The LOWERCASE command has no parameters. Only the keyword LO is entered from the
keyboard, as shown in the example above. Executing the LOWERCASE command has no
immediate effect on the contents of the text buffer. Instead, a system environmental parameter
is assigned a value that prepares the EDITOR for subsequent commands.

Changing the value of the environmental parameter by executing the LOWERCASE command,
sets a "lowercase flag.” Once the lowercase flag is set, the EDITOR is able to recognize the
difference between lowercase and uppercase characters in the text buffer. Forexample, when

the lowercase flag is set, the EDITOR recognizes the character b to be different from the
character B .This affects the operation of the commands NLSERACH, SEARCH, REVSORT,

SORT, and CASE.

4051R06 EDITOR @

59

Environmental Commands
LOWERCASE

The NLSEARCH and SEARCH Commands

When the lowercase flag is set, a lowercase character in the text buffer cannot “match” or
satisfy a search for an uppercase character specified in atarget string. Likewise, an uppercase
character in the text cannot "match” or satisfy a search for a lowercase character.

Forexample, when the lowercase flag is set thecommand NL"A",”” deletesall occurrences of
the character A (ASCII equivalent 65) from the text buffer. Occurrences of the charac-

ter a (ASCIl equivalent 97) are not changed by the command. Likewise, when the lowercase
flag is set the command NL "a"”,”” deletes all occurrences of the character a (ASCII
equivalent 97), and ignores the character A (ASCIl equivalent 65).

The REVSORT and SORT Commands

Setting the lowercase flag enables the EDITOR to disinguish between lowercase and
uppercase characters during sorting operations. For example, if a REVSORT or SORT
command is executed while the lowercase flag is set, a line containing the character B ina
specified character position is not treated the same as a line containing the character b inthe
same position. This is because the uppercase character B does not have the same ASCII
code value as its lowercase equivalent b . (Refer to the ASCII code chart provided in
Appendix B.)

For an illustration of how REVSORT and SORT operate after the LOWERCASE command is
executed, refer to “An Editing Example” on the following pages.

The CASE Command

While the lowercase command is set, executing a CASE command causes uppercase
characters A-Z to be replaced by their lowercase equivalents a-z. The reverse operation is
performed if the uppercase flag is set, (Refer tothe explanation of the UPPERCASE command.)

Default Value

Calling the EDITOR automatically sets the lowercase flag. The lowercase flag is set until the
UPPERCASE command is executed. The UPPERCASE command sets an "uppercase flag,” by
changing the value of the environmental parameter. (Refer to the explanation of the
UPPERCASE command.)

Because the lowercase flag is set by default, you need only execute the LOWERCASE

command if the UPPERCASE command has been executed since the last time the EDITOR
was called.

5-10 @ 4051R06 EDITOR

An Editing Example

Environmental Commands
LOWERCASE

The following examples show how the SEARCH, CASE, SORT, and REVSORT commands
operate while the lowercase flag is set.

LIST

Example 1

LO
S

4051R06 EDITOR

:Rbernathy, Tod
:Brockwayy Marius E.
t:Carmichael, David
Ellis, Terry L.
osters Alice
iltlstrom.: A.
earnay, John D,
eller, Suzanne
entz, John F.
ollocks Robert
iebold, William B.
aylor,s Ouwen
Zimmerman, Heil D.

=NV RXXXIMN

I'Q]

rAbernathy, Tod
:Foster, Alice
tHillstronm, R.

tAbernathy, Tod
:Brockwayy Marius E.
:Brockway, HMarius E.
sCarmichael, David
:Carmichael, David
:Carmichael, David
:Kearney, John D,
:Kellery Suzanne
:Siebold, William B.
:Taylor, Owen
sZimmermany Neil D.

rabernathy, tod
ibrockwayy marius e.
scarmichael, david
ellisy terry 1.
foster, alice
hillstroms a.
kearney, john d.
keller,s suzanne
lentz, Jjohn ¢f.
pollocky robert
cieboldy william b.
:taylor, owen
tzimmermany neil d.

@ 5-11

Environmental Commands

LOWERCASE
Example 2 LO

LIST
H
H)
:B
4
H
. C
:D
:d
:E
e
‘F
o f

SORT, 41

LIST
R
‘B
:C
:D
H 3
:F
H
‘b
:C
:d
€
. f

Example 3 LO

LIST

T ML ON O wWwe

REUSORT, , 1

(continued on next page)

5-12 @ 4051R06 EDITOR

Environmental Commands
LOWERCASE

B0 NU UN OGS GO UL BE DY ES NS VR SO
D>OMOODOMMATNAOM

Example 1illustrates how the SEARCH and CASE commands operate while the lowercase flag
is set. An initial listing shows that the text buffer contains a list of thirteen names. The
command LO is executed to ensure that the lowercase flat is set, then the com-

mand S "A” tells the EDITOR to search the text and list lines found to contain the charac-
ter A .

Because the lowercase flag is set, the EDITOR is able to distinguish between lowercase and
uppercase characters, and searches only for the uppercase character A (ASCIl value 65). A
lowercase character a in the text does not “match” the target string, and so does not satisfy
the search.’

After the command S “A” is executed, the EDITOR lists three lines found to contain the
character A .

Next, thecommand S "a"” isexecuted. Againthe EDITOR recognizes the difference between
lowercase and uppercase characters in the text, and searches only for the lowercase
character a (ASCIIvalue 97). Afterthe command is executed, eightlines found to contain the
characer a are printed on the display. Several lines are listed more than once, because they
contain more than one occurrence of the character a .

Next the command CASE is executed. Because the lowercase flag is set, the EDITOR
replaces all uppercase characters in the text with their lowercase equivalents. A new listing
shows that the buffer now contains only lowercase characters.

Example 2 illustrates how the SORT command operates while the lowercase flag is set. Asin

the previous example, the command LO is executed to make sure that the lowercase flag is
set. Then a listing shows uppercase characters A-F and the lowercase equivalents a-f in lines
consisting of one character each. The command S0,,1 tells the EDITOR to rearrange the
lines according to the ASCII value of the character found in the first position in each line. Lines.
are to be rearranged so that the ASCII code values are in increasing order.

3This is not the way the SEARCH command operates if the uppercase flag is set.

4051R06 EDITOR @ 5-13

Environmental Commands
LOWERCASE

Because the lowercase flag is set, the EDITOR is able to distinguish lowercase characters from
uppercase characters. After the SORT command is executed, a new listing shows that lines
consisting of lowercase characters have been moved to alower location in the text buffer than

those consisting of the uppercase equivalents. This is because lowercase characters have
higher ASCII code values than uppercase characters. (Refer to the ASCIl code chart provided

in Appendix B.)

Example 3 is similarto Example 2, but executesthecommand REV,,1 . Thistimethelinesare
rearranged in decreasing ASCII code value. Again, lowercase and uppercase characters are
seen as different; but this time, uppercase characters are moved to a lower location in the text
buffer, because their ASCII values are lower than those of the lowercase equivalents.

5-14 @ 4051R06 EDITOR

Environmental Commands
RENUMBER

The RENUMBER Command

Syntax Form:

R [edit line number] [, [numeric constant] [, [edit line number]]]

Descriptive Form:

RENUMBER [new starting line number] [, [increment between new line numbers :] [,

[line in the current text where renumbering is to begin]] :I

PURPOSE

The RENUMBER command assigns a new set of edit line numbers to some or aliof thelinesin
the current text. The parameters for the command include a new starting edit line number, the
increment between new edit line numbers, and the line in the current text where renumbering is
to begin. If none of these parameters are specified, the command assigns new edit line
numbers 1, 2, 3, ... and renumbers the entire text.

EXAMPLES

354

=T

1+ 100
100,186
108,,75
3252008
56,5,100

4051R06 EDITOR @ 5-15

Environmental Commands
RENUMBER

EXPLANATION

The parameters of the RENUMBER command specify which lines of text are to be renumbered,
and how they are to be renumbered. The first parameter is the first new edit line number, the
second parameter is the increment between new edit line numbers, and the third parameter is
the line in the current text where renumbering is to begin. For example, the com-

mand R 50,5,100 listed in the examples above renumbers the text buffer, beginning with the
line currently number 100. New edit line numbers are assigned inincrements of 5, starting with
new edit line number 50.

The RENUMBER command is an important and useful command. Assigning edit line numbers
to the text makes it easy to refer to specific lines in subsequent EDITOR commands. Unless
edit line numbers are assigned, lines must be referred to using offsets, as in 0+10 or 250+3.
Although you are free to use offsets to identify lines of text, it is simpler to refer to lines using
edit line numbers assigned by the RENUMBER command.

For this reason, you will probably want to execute a RENUMBER command immediately after
creating a new piece of text using the INSERT command, or after inputting the contents of a
tape file into the text buffer.

Once a RENUMBER command has been executed, editing the text may cause some lines to
lose their edit line numbers. Forinstance, lines affected by the MOVE and COPY commands, or
rearranged by the SORT and REVSORT commands, are stripped of their edit line numbers.

When this happens, you may execute a RENUMBER command again and obtain a new set of

edit line numbers. The RENUMBER command can be executed as often as needed during

editing, to help avoid confusion and keep the lines numbered.

Default Values

Just as for the COPY and MOVE commands, the three parameters of the RENUMBER
command are optional, and may be omitted or entered in any combination. Some examples are
listed above.

When the new starting line number is omitted, the RENUMBER command assigns new edit line
number 1to the first renumbered line of text. When the increment between new line numbers is
omitted inthe command, the value used for the incrementis 1. If the line where renumbering is

to begin is not specified, the entire text is renumbered.

Forinstance, intheexamples listed above, thecommand R renumbers all of the current text,

assigning new edit line numbers 1, 2, 3, The command R ,5, also renumbers the entire

text, butassigns new linenumbers 5,10, 15, Thecommand R 100,10 renumbersthe entire
text with the following numbers: 100, 110, 120,

Thecommand R ,, 100 renumbersthetextfrom theline currently numbered 100 on. The new
edit line numbers assigned are 1, 2, 3, R 100,,75 renumbers the text from line 75 on,
assigning the line numbers 100, 101, 102, Finally R ,2,2000 renumbers from line 2000 on,
assigning the numbers 1, 3, 5,

5-16 @ 4051R06 EDITOR

Environmental Commands
RENUMBER

Notes on the Command Syntax

When an edit delimiter is the last entry in a RENUMBER command, it may be omitted without
altering the meaning of the command. Thatis, the commands R 3,, and R 3 areequivalent.
The command R ,5, is the same as R,5 and R 10,10, may be shortened to R 10,10 .

The Line # Too Large Error Message

If a RENUMBER command tries to assign a number larger than 9999 to one or more lines of
text, the EDITOR returns a Line # Too Large error message. An example is shown below:

LIST

REM X% SUBROUTINE

PRINT "ENTER CONSTANTS:*"
FOR I= TO N

PRINT “"B("§I;">="3

INPUT BCI>

NEXT I

PRINT "END OF INPUT"
RETURN

'C?:\.J.O\Ul&wl\Jt—

R 9596,100,1
EDITOR ERROR
Line % Too Large - error number 132

LIST
9568: REM X% SUBROUTINE
9608: PRINT "ENTER CONSTANTS:"
9706: FOR I= TO N
3800. PRINT "B("3I3")>="j§
99500: INPUT B<ID
NEXT 1
PRINT "END OF INPUT"
RETURH

In the above example, the command R 9500,100,1 tells the EDITOR to renumber the current
text, assigning edit line numbers in increments of 100, and assigning new edit line number
9500 to the first line of text.

When the RENUMBER command is executed, the EDITOR removes all previous edit line
numbers, and begins assigning the new numbers: 9500, 9600, 9700, However, after
assigning line number 9900 to the fifth line of text, the EDITOR stops. The next line number in
the sequence would be 10000, but edit line numbers can only be four digitslong. The EDITOR
returns the message Line # Too Large , and stops executing the RENUMBER command.

4051R06 EDITOR @ 5-17

Environmental Commands
RENUMBER

A new listing of the text shows that the EDITOR has renumbered the text as directed, until the
nexteditline number to be assigned is more than four digits long. To obtain an edit line number
for every line of text, you may execute another RENUMBER command that specifies either a

smaller increment, or a smaller first new edit line number.

An Editing Example

The following example shows the RENUMBER command being used to assign new edit line

numbers.

Example 1

r-
Py
o
-

o bt s et e
B LA L s ™)
OOOO®

LIST

NI -
®"s e seve s
Pt Pt Prtts Pt Pt
BN -
oo

R 49,,

LIST
40: 100
41:110
42:120
43:130
44: 140

R 50,18,

LIST
58: 108
66:110
78:120
80:130
98: 140

5-18

FOR P={ TO N+
T=ACK,P)
ACKsPI=ACL,P>
ACL,PI=T

NEXT P

FOR P=1 TO N+{
T=ACK,P)
ACKsPI=ACL,P)
ACL,P)=T

NEXT P

FOR P=1 TO N+{
T=ACK,P)
ARCKsPI=ACL,P>
ACL,P)=T

NEXT P

FOR P=1 TO N+i
T=ACK,P)
ACKsPI=AC(L,P)
ACL,P)=T

NEXT P

(continued on next page)

4051R06 EDITOR

Environmental Commands
RENUMBER

R 600,5,50

LIST
600:108 FOR P=1 TO N+i
605:110 T=A(K,P’
610:120 A(K,PI=AC(L,P)
615:138 ACL,P)=T
620:140 NEXT P

R 18,,600

LIST
10:188 FOR P=1 TO N+1
11:1108 T=ACK,P>
120128 ACK,PI=ACL,P)
13:138 ACL,P>=T
14:1408 NEXT P

Five RENUMBER commands are executed in the example shown above. Each time, a new
listing of the text shows how the text has been renumbered. The command R assigns
numbers 1, 2, 3, 4, and 5 to the previously unnumbered lines. Next, R 40,, renumbers all the
lines,using an increment of 1 by default and assigning 40 as the first new edit line number.

The command R 50,10, renumbers the lines using 10 as the increment, and assigns edit line
number 50to thefirst line of text. Then R 600,5,50 renumbers the text from the currentline 50
on, assigning to line 50 the new edit line number 600, and renumbering the rest of the lines in
increments of 5.

Finally, the command R 10,60 renumbers all the lines, assigning 10 as the first new edit line
number, and using an increment of 1 by default.

Special Uses for the RENUMBER Command

When using the EDITOR to create a BASIC program, you may use the RENUMBER and SWN
(Save With Number) commands together to make BASIC program line numbers. This is done
by entering BASIC statements from the keyboard without program line numbers, then
executing a RENUMBER command such as R 100,10,0 . The command causes edit line
numbers 100, 110, 120, ... to appear before the colon in each line of text.

Next, open a magnetic tape file and execute a SWN command. The SWN command saves the
edit line number along with each statement. The next time the file is brought back into the text
buffer, numbers previously assigned as edit line numbers, now appear as program line
numbers preceding each statement. This method saves you the trouble of entering BASIC
program line numbers along with each statement.

For an illustration of the procedure described above, refer to "An Editing Example” in the
explanation of the SWN command.

4051R06 EDITOR @ 5-19

NOTES

5-20 @ 4051R06 EDITOR

Environmental Commands
UPPERCASE

The UPPERCASE Command

Syntax Form:

V)

Descriptive Form:

UPPERCASE

PURPOSE

The UPPERCASE command causes the EDITOR to treat lowercase characters a-z in the text
buffer as uppercase characters A-Z during searching and sorting operations (NLSEARCH,
SEARCH, REVSORT, and SORT commands). The UPPERCASE command also prepares the
EDITOR to change lowercase characters into uppercase characters if the CASE command is
executed.

EXAMPLE

U

EXPLANATION

The UPPERCASE command has no parameters. Only the keyword U is entered from the
keyboard, as shown in the example above. Executing the UPPERCASE command has no

immediate effect on the text buffer. instead, a system environmental parameter is assigned a
value that prepares the EDITOR for subsequent commands.

Changing the value of the environmental parameter by executing the UPPERCASE command
disables the lowercase flag, and sets an "uppercase flag.” (Refer to the LOWERCASE
command for an explanation of the lowercase flag.) Once the uppercase flag is set, the
EDITOR perceives all characters in the text buffer to be uppercase characters. For example,
when the uppercase flag is set the EDITOR considersalowercase b foundinthetexttobe the
sameasanuppercase B .Thisaffects the operation of the NLSEARCH, SEARCH, REVSORT,
SORT, and CASE commands.

4051R06 EDITOR @ 5-21

Environmental Commands
UPPERCASE

The NLSEARCH and SEARCH Commands

When the uppercase flagis set, a lowercase character in the text buffer “matches” or satisfies a

search forthe equivalent uppercase character specified in a target string. Conversely, since all

characters in the text are perceived as being uppercase, no character in the text can "match” or
satisfy a search for a lowercase character.

Forexample, when the uppercase flag is setthecommand NL "A”,”” % deletes all occurrences
of the character A (ASCII equivalent 65) from the text buffer. Occurrences of the charac-
ter a are also deleted from the text buffer, because the EDITOR considers every a to be
identical to A . Conversely, the command NL "a"% has no effect on the text, because the
EDITOR sees no lowercase characters while the uppercase flag is set.

The REVSORT and SORT Commands

When the uppercase flag is set, the EDITOR considers all characters in the text buffer to be
uppercase characters. Ifa REVSORT or SORT command is executed while the uppercase flag

is set, a line of text containing the character b in a specified character position is treated the
same as a line containing the character B in the same position. This is because when the
uppercase flag is set, the characters b and B are treated as having the same ASCII code

value, 66.

Foranillustration of how the REVSORT and SORT commands operate after the UPPERCASE
command is executed, refer to "An Editing Example” on the following pages.

The CASE Command

While the uppercase flag is set, executing a CASE command causes lowercase characters a-z
to be replaced by their uppercase equivalents A-Z. This is the inverse of the function performed
by the CASE command if the lowercase command is set.

Default Value

Calling the EDITOR automatically sets the lowercase flag. To set the uppercase flag, you must
execute the UPPERCASE command.

An Editing Example

The following examples show how the SEARCH, CASE, SORT, and REVSORT commands
operate while the uppercase flag is set. The examples are analagous to those used to illustrate
the effect of setting the lowercase flag. To compare the results shown below with the results
when the lowercase flag is set, refer to “An Editing Example” in the explanation of the
LOWERCASE command.

bh-22 @ 4051R06 EDITOR

Example 1

4051R06 EDITOR

LIST
Abernathy, Tod

11is, Terry L.
ostery Alice
illstromn, A.
ellers Suzanne
entz, John F.
ollock, Robert
iebold, William
aylory Ouwen

OAWOONNND NN -
WUV r-xRXXrNmo

[

U
S Olq"

s liﬁll

1:Abernathy, Tod
1:Abernathy,; Tod
2:Brockways Marius
2:Brockway, Marius
4:Foster, Alice
S:tHillstrom, A.
6:Kellery Suzanne
g:Siebold; William

10: Taylor, Owen

:ABERNATHY, TOD
:BROCKNAY, MARIUS
:ELLIS, TERRY L.
:FOSTER, ALICE
¢HILLSTROM, f.
<KELLER, SUZANNE
:LENTZ, JOHH F.
:POLLOCK, ROBERT
<SIEBOLD, WILLIAM
:TAYLOR, OWEN

rockways Marius E

B.

Environmental Commands
UPPERCASE

5-23

Environmental Commands

UPPERCASE

LIST

Example 2

oL UTUS-TOOCLIW

SOs41

LIST

TR UOTO VWL

LIST

Example 3

(=R Wi o B TRES o s s D R) YT TN

(continued on next page)

REU. .1

4051R06 EDITOR

5-24

Environmental Commands
UPPERCASE

LIST

DROITOMNADLMT T

SC BY B0 0T A 0D U VY AN NS NS BN

Example 1illustrates how the SEARCH and CASE commands operate while the uppercase flag
is set. An initial listing shows that the text buffer contains a list of ten names. The com-
mand U is executed to set the uppercase flag, then the command S “a” tells the
EDITOR to search the text and list lines found to contain the character a .

Because the uppercase flag is set, the EDITOR perceives all characters in the text to be
uppercase characters, and so is unable to find any occurrences of the character a (ASCII
value 97). Since no occurrences of the target string are found, no lines are listed on the display
after the SEARCH command is executed.

Next the command S "A” tells the EDITOR to search the text and list lines found to contain
the character A . Because the uppercase flag is set, the EDITOR does not distinguish
between lowercase and uppercase characters in the text. Both the lowercase character a and
the uppercase character A "match” the target string and satisfy the search.

After the command is executed, the EDITOR lists seven lines found to contain the charac-
ters A or a .Lines1and 2 are printed twice, because they contain two occurrences of the
target string.

Next the command CASE is executed. Because the uppercase flag is set, the EDITOR
replaces all lowercase characters in the text with their lowercase equivalents. A new listing
shows that the text buffer now contains only uppercase characters.

Example 2 illustrates how the SORT command operates while the uppercase flag is set. Asin
the previous example, the command U is executed to set the uppercase flag. Then a listing
shows uppercase characters A-F and their lowercase equivalents a-fin lines consisting of one
charactereach. Thecommand S0,,1 tellsthe EDITORto rearrange the lines according to the
ASCllIvalue of the character found in the first position in each line. Lines are to be rearanged so
that the ASCII code values are in increasing order.

4051R06 EDITOR @ 5-25

Environmental Commands
UPPERCASE

Because the uppercase flag is set, the EDITOR treats lowercase characters in the text as
uppercase characters. After the SORT command is executed, a new listing shows that lines
consisting of lowercase characters are next to those consisting of their uppercase equivalents.
This is because lowercase characters are treated as having the same ASCII code values as their
uppercase equivalents.

Example 3is similar to Example 2, but executes thecommand REV,,1 .Thistimethelinesare
rearranged in decreasing ASCII code value. Again, lowercase characters are seen as
uppercase: a new listing shows that each line consisting of a lowercase character is next to the
line consisting of its uppercase equivalent.

5-26 @ 4051R06 EDITOR

Environmental Commands
#:

The # = Command (A Character to mean "DIGIT")

Syntax Form:

= [ASCII character]

PURPOSE

The #= command assigns the meaning "any digit 0 through 9" to a specified ASCII character.
Once the new meaning is assigned, the specified ASCII character may be used in the target
string of any SEARCH or NLSEARCH command. Immediately after the EDITOR is called, the
meaning “any digit 0 through 9" is assigned to the character # by default.

EXAMPLES

NOTE

The most important aspect of the #= command is its effect on subsequent
searching operations. It may be helpful to be familiar with the NLSEARCH and
SEARCH commands before reading about the #= command.

EXPLANATION

The #= command specifies an ASCIl character that will representany digit (0,1,2,3,4,5,6, 7,
8, or 9) in subsequent searching operations. Aftera #= command is executed, the specified
ASCII character can be used to locate lines or strings that contain one or more digits. For
example, after the command #=3% is executed, the character * is assigned the special
meaning "any digit 0 through 9,” and can be used to locate digits in text.

4051R06 EDITOR @ 5-27

Environmental Commands

#=

5-28

ASCII Character Symbols

Any ASCII character may be specified in a #= command except CR (ASCII 13) and
SP (ASCII 32). CR and SP cannot be assigned the meaning "any digit": pressing RETURN
ends the command, and spaces after the keyboard #= are ignored.

An ASCllchartis provided in Appendix B. Asin BASIC, the symbol for each control character

in the first or second column of the chart is entered by pressing the CTRL key and the
corresponding character in the fifth or sixth column of the chart. For example, the symbol for
BEL (ASCII 7) is entered as G, and the symbol for ESC (ASCII 27) is entered as [. The only
exception is control character CR (ASCII 13), which cannot be represented by the symbol M.
Pressing CTRL and M has the same effect as pressing the RETURN key, and does not cause the
symbol M to appear on the display.

The symbol for the character RUBOUT (ASCII 127) is entered from the keyboard by pressing
the RUBOUT CHARACTER overlay key.

Locating Digits in the Text

The ASCII character specified in the #= command can be used in subsequent searching
commands to locate digits in the text. If the character appears in the target string of a SEARCH
or NLSEARCH command, the EDITOR understands the character to mean "any digit.” When
scanning the textto finda "match” for that character, the EDITOR looks fora 0,1,2,3,4,5,6,7,
8, or 9. The first occurrence of one of these digits is considered to be a match and ends the
search.

Forexample, afterthecommand #=3% isexecuted, thecharacter % canbeusedin atarget
string to mean "any digit.” When scanning the text to find a match for the target string, the
EDITOR considers the first occurrence of a digit to match the character *

After the command #=% is executed, the character % may appear anywhere in a target
string, and may appear more than once in a target string. For example, the com-

mand S "V*" l|ocates and lists lines that contain the character V followed by a digit (such
as VO or V1). The command S "**%A"” searches for lines containing three digits
followed by the character A (such as 100A or 201B).

NOTE

The "all but” prefix should not immediately precede the “any digit” character in a
target string. For example, if the character _ currently has the meaning "all but”
and the character # currently means “any digit,” the character _ should not
immediately precede # in the targetstring ofa SEARCH or NLSEARCH command.
(Refer to the explanation of the _= command.)

@ 4051R06 EDITOR

Environmental Commands
H#=

Once a character is assigned the meaning "any digit,” only a digit can satisfy a search for that
character. For example, after the command #=3% is executed, the command S "*" looks
only for digits in the text. Occurrences of the character * do not satisfy the search.

The character specified in the #= command represents "any digit” until the RETURN TO
BASIC key is pressed or another #= command is executed that specifies a different ASCII
character. Pressing the RETURN TO BASIC key and calling the EDITOR again, has the same
effect as executing the command #=# (refer to "Default Values” in this explanation).

Syntax Errors. The ASCII character that currently represents "any digit” cannot appear in the
replacement string of a NLSEARCH and Replace String or SEARCH and Replace String
command, or a syntax error occurs. For example:

#=X

S "yg","yx*

EDITOR ERROR

Syntax - error number 138
S ’luall ’ “u*ll

The syntax error shown in the example occurs because the character assigned the meaning
"any digit” appears in the target string of a SEARCH and Replace String command.

Although the character currently assigned the meaning "any digit” cannot be used in a
replacement string, you may insert the character into the text during line editing and while
entering new text from the keyboard.

Default Values

Calling the EDITOR assigns the meaning "any digit” to the character # by default. Until
a #= command is executed that specifies a different ASCII character, the EDITOR
understands # to mean "digit” in the target string of a SEARCH or NLSEARCH command.

When the parameter of the #= command is omitted, no character is assigned the meaning
"any digit.” Thatis, entering #= and pressing RETURN cancels the previously chosen "any
digit” character, and makes no new assignment. You should execute the command #= ifyou
want to make sure that no ASCI! character means "“digit” in atarget string. Atany time afterthe
command #= is executed, you are free to choose a "digit” character again by executing a
command such as #=# or #=3% .

4051R06 EDITOR @ 5-29

Environmental Commands

#=

5-30

When to Execute the #= Command

Because calling the EDITOR assigns the character # asthe "any digit” character, you must
execute a #= command that specifies a character other than # if you want to search for
occurrences of the symbol # in the text.

An Editing Example

The following example illustrates the use of the #= command.

Example 1

LIST

Pt i s ot Pads P Pt fohs s P P Pt

o
]
*

7
"
2
-3

[ACEACE AV E AN]
(2 B XAV
OOoO®

oo
J O
o

G W GIN N
WIN) = O \O O
OO OC®

PRINT "ENTER # OF VUALUES:";
INPUT X

GOSUB 1660

IF E=1 THEN 1446
L=E

N=0

N1=0

GO TO 1838

E8=2

GOsSUE 2636

GO TO 185@
B(4>=B(4)+1

GOsSuUB 16686
IF E=1 THEN 1440
GO TO 1838
GOSUB 2630
GO TO 1e5e

GOSUB 16680
IF E=1 THEN 1440
GO TO 1630
GOSUB 2638
GO TO 1050

IF E=1 THEN 1448
N=0
N1=0
E8=2

(continued on next page)

4051R06 EDITOR

Environmental Commands
#:

s 1] n

11220 PRINT "ENTER # OF UALUES:";
=4
S "TO #*

-
wno
nNW
o™
ci o
oo
——
oo
it e
oo
(&, Y]
o0

“'!l

11220 PRINT "ENTER # OF VALUES:"3

Example 1 shows three #= commands and their effect on subsequent searching operations.
The initial listing in the example shows that the text consists of twelve BASIC program
statements. At the time of the listing, the character # is the "any digit” character by default:
no #= commands have been previously executed.

Thenthe command S " #" is executed. Because the character # currently represents "any
digit,” the EDITOR searches the text for lines containing a digit preceded by a blank space.

The EDITOR finds four occurrences of the target string. A listing appears on the display of the
lines found to contain a digit preceded by a space. The four listed lines are the BASIC program
statements that specify a "destination” line number: GOSUB, IF... THEN, and GO TO
statements. The four occurrences of the target string are shaded below:

LIST

1248 GOSUB: 1660
1250 IF E=1 THEN: 1448
1290 GO TO:#1030
{319 GOSUB: 2630

Next thecommand #=3% isexecuted. Afterthecommand is executed, the symbol * isthe
"any digit” character, and the symbol # no longer has any special meaning.

Because * is the current "digit” character, the command S ” %" searches for a digit
preceded by a space, and produces the same results as the previous command S ” #” did
when # was the "digit” character. The command S "=%" searches for a digit preceded by
the symbol = , and lists four lines found to contain equalities.

Next the command S " #" is executed a second time. This time, the character # has no

special meaning, so the EDITOR searches for the symbol # preceded by a space. One
occurrence of the target string is found and the line in which it occurs is listed on the display.

4051R06 EDITOR @ 5-31

Environmental Commands
#—=

Thenthecommand #=# isexecuted to reassign the meaning “any digit” tothe character # .
The subsequent command S "TO #" specifies the character # in a target string to mean
"digit.” The command locates and lists the two GO TO statements of the program.

Finally, the command #= is executed. The comand #= cancels the previous
assignment #=# ,and makes no new assignment. No ASCII character represents "any digit.”
The command S "#" locates and lists the one line that contains the symbol # | illustrating
that the character # no longer means "any digit.”

5-32 @ 4051R06 EDITOR

Environmental Commands

The ~ = Command (A "WILDCARD" Character)

Syntax Form:

~ = [ASCI| character]

PURPOSE

The ~= command assigns the meaning "wildcard” to a specified ASCII character. Once the
new meaning is assigned, the specified ASCII character may be used in the target or
replacement string of a SEARCH or NLSEARCH command. Immediately after the EDITOR is
called, the meaning "wildcard” is assigned to the character ~ by default.

EXAMPLES
~=¥
NOTE
The most important aspect of the ~= command is its effect on subsequent
searching operations. It may be helpful to be familiar with the NLSEARCH and
SEARCH commands before reading about the ~= command.
EXPLANATION
The ~= command specifies an ASCII character to be used as a "wildcard” character in
subsequent searching operations. For example, the command ~=? specifies the

character ? to be a "wildcard” character for subsequent searching operations.

The wildcard character may appear in the target string or replacement string of a NLSEARCH
or SEARCH command. When specified in a target string, the wildcard character has the special
meaning "any character.” When specified in a replacement string, the wildcard character

means ""no change.”

4051R06 EDITOR @ 5-33

Environmental Commands

The character specified inthe ~= command is the wildcard character until the RETURN TO
BASIC key is pressed or another ~= command is executed that specifies a different ASCI|
character. Pressing the RETURN TO BASIC key and calling the EDITOR again, has the same
effect as executing the command ~=~ (refer to "Default Values” in this explanation).

ASCII Character Symbols

Any ASCII character may be specified in a ~= command except CR (ASCII 13) and SP
(ASCII 32). CRand SP cannot be the wildcard character, because pressing RETURN ends the
command, and spaces after the keyword ~= are ignored.

An ASCllIchartis provided in Appendix B. Asin BASIC, the symbol for each control character

in the first or second column of the chart is entered by pressing the CTRL key and the
corresponding character in the fith or sixth column of the chart. For example, the symbol for
BEL (ASCH 7) is entered as G, and the symbol for ESC (ASCII 27) is entered as [. The only
exception is control character CR (ASCII 13), which cannot be represented by the §ymbol M.
Pressing CTRL and M has the same effect as pressing the RETURN key, and does not cause the
symbol M to appear on the display.

The symbol for the character RUBOUT (ASCII 127) is entered from the keyboard by pressing
the RUBOUT CHARACTER overlay key.

Using the Wildcard Character in a Target String

The ASCII character specified in the ~= command can appear in the target string of
subsequent SEARCH or NLSEARCH commands. When used in the target string of a SEARCH
or NLSEARCH command, the wildcard character means "any character.” That is, any ASCII|
character in the text is a "match” for a wildcard character in the target string.

For example, after the command ~=? is executed, the character ? means "any character”
whenitappears in the target string of a SEARCH or NLSEARCH command. When scanning the
text to find a match for the target string, the EDITOR considers any ASCII character to match
the character ? . Even blank spaces entered by pressing the SPACE bar, CARRIAGE
RETURN characters entered by pressing RETURN, and occurrences of the symbol ? inthe
text satisfy a search for the wildcard character ? .

The wildcard character may be specified anywhere in a target string, and may be specified

more than once in a target string. For example, after the command ~=? is executed, the
wildcard character ? means "any character” incommandssuchas S "B(?,L)" or S "B(K,?)”
or S"(?2,?)" .

5-34 @ 4051R06 EDITOR

Environmental Commands

NOTE

The “all but” prefix should not immediately precede the wildcard character in a
target string. For example, if the character _ currently means “all but” and the

character ~ is the wildcard character, _ should not immediately precede ~ in
the target string of a SEARCH or NLSEARCH command. (Refer to the explanation of
the _= command.)

Using the Wildcard Character in a Replacement String

The ASCII character specified inthe ~= command can appear in the replacement string of
subsequent NLSEARCH and Replace String or SEARCH and Replace String commands.
When used in a replacement string, the wildcard character means "no change.” That is, a
wildcard character in the replacement string tells the EDITOR that the character found in that
position should not be overwritten during the replacement procedure. For example, if the
character # means "digit” and ? is the wildcard character, the command NL "X#",V
changes occurrences of X0 to VO , X1 to V1 , X2 to V2 , and so on. Each time an
occurrence of the target string is found in the text, the EDITOR overwrites the first character of
the target string with the character V , and leaves the second character of the target string
unchanged.

The wildcard character may be specified anywhere in a replacement string, and may be
specified more than once in a replacement string. Also, the wildcard character may be
specified in both the target and replacement string of a NLSEARCH and Replace String or
SEARCH and Replace String command. This is a useful tool for specifying that no matter what
ASCII character occupies a certain postion in the target string, that character should remain
unchanged by the replacement procedure.

Forexample, after the command ~=? is executed, the command NL "?33","729" overwrites
%33 with %29 , and @33 with @29 . Similarly, NL "GOTO~~~~","GOSUB~~~~"
overwrites GO TO 1040 with GOSUB 1040 , GO TO 1580 with GOSUB 1580 , and so on.

Awildcard characterin the replacement string actually indicates a position in the target string

that is to remain unchanged. If the fourth character in a replacement string is the wildcard
character, the fourth character in occurrences of the target string should be unchanged by the
replacement procedure. For example, if ~ is the wildcard character, the command

NL ”"31~0","1~0" replaces 3120 with 110 , not 120 .

4051R06 EDITOR @ 5-35

Environmental Commands

5-36

Default Values

Calling the EDITOR assigns the character ~ to be the "wildcard” character by default. Until
a ~= command is executed that specifies a different ASCII character, the EDITOR under-
stands ~ to mean "any ASCII character” in the target string of a SEARCH or NLSEARCH

command, and "no change” in the replacement string ofa SEARCH or NLSEARCH command.

When the parameter of the ~= command is omitted, nowildcard character is assigned. That
is, entering ~= and pressing RETURN cancels the previously chosen wildcard character,
and makes no new assignment. You should execute the command ~= if you want to make
sure that no ASCII character means "any digit” when used in a target string, or that no
character means "no change” when used in a replacement string. At any time after the
command ~= js executed, you are free to choose a wildcard character again by executing a
command such as ~=~ or ~=7?7 .

When to Execute the ~= Command

Because calling the EDITOR assigns ~ as the wildcard character, you must execute

a ~= command the specifies acharacterotherthan ~ if youwantto search specifically for
occurrences of the symbol ~ in the text, or if you want to use the character ~ in a
replacement string without the special meaning “"no change."”

An Editing Example

The following examples illustrate the use of the ~ command.

Example 1
LIST
: 1768 PRINT "IS THIS A CONTINUATION OF THE SAME PROBLEM?";
. 1778 INPUT A$
. 1788 IF A$="Y" THEN 2140
¢ 1796 GOSUB 420
: 1888 PRINT "IS DATA ON PROGRAM TAPE?“;
. 1818 INPUT B$
. 1828 X=29
. 1836 IF B$="Y%" THEN 1950
¢ 1849 E(7)=1
: 1858 PRINT "IS DATA TO BE READ FROM EXTERNAL DEVICE?";
: 1866 INPUT Cs
¢ 1878 IF C$="N" THEN 19306
rJL 1] “’3" . IIE$4I

(continued on next page)

@ 4051R06 EDITOR

Environmental Commands

LIST

17606 PRINT "IS THIS A CONTINUATION OF THE SAME PROBLEM?";
17706 INPUT E$

1780 IF E$="Y" THEN 2140

1798 GOSUB 43@

1808 PRINT "“IS DATA OM PROGRAM TAPE?"}

1816 INPUT ES$

1820 ¥=29

1838 IF E$="Y" THEN 1956

18408 E(7)=1

1856 PRINT "IS DATA TO BE READ FROM EXTERNAL DEVICE?";
1868 INPUT E$

1876 IF E$="H" THEN 1938

Example 2

LIST

908 REM ~ SUBROUTINE

910 X@=8

928 X1=1

9308 X2=K(1,1)

$540 PRINT *DO YOU NEED INSTRUCTIONS?";
:958 INPUT X$¢

:5608 IF X$="Y" THEN 780

HL “X#","y2*

LIST
:568 REM ~ SUBROUTINE
:516 ve=0
1520 Vi=]
$530 V2=X(1,1)
:549 PRINT "DO YOU NEED INSTRUCTIONS?"j
:550 INPUT X$
15608 IF X$="Y" THEN 780

§ "an

1560 REM ~ SUBROUTINE

4051R06 EDITOR @ 5-37

Environmental Commands

~=

5-38

Example 3

LIST

2008 REM ~~~ SUBROUTINE ~~~
2180 FOR I=1 TO L(1@»

2200 T1C1>=T1(1)+BC(1, 1)
23088 T1(2>=T1(2)+B(2,1)
2400 T1(3)=T1(3)+B(3,1
2500 T1(4)=T1(4)+B(4,1)
2680 NEXT I

2708 GOSUB 3790

2800 INPUT K

2900 B(1,L>=B(1,L>+D3*X1
3808 B(2,L)>=B(2,L)+D3xX1x¥X1
3108 B(3,L>=B(3,L>+D3

S9 B S8 S8 S0 S A SE VR ST SO RS

HL "B(~yL) "y "B(~yK)"

LIST

2600 REM ~~~ SUBROUTINE ~~~
2108 FOR I=1 TO L(1@)

2200 T1(1)>=T1(15+4B(1,1)
2300 T1(2)=T1(2)+B(2,1)
2400 T1(3)>=T1(+B(3I,
2500 T1<(4)=T1(4)+B4,1)
2600 NEXT I

27088 GOSUB 3790

2800 INPUT K

2908 B(1,K>=B(1,K>+D3xX1
36008 B(2,K>=B(2,K)+D3xX1%xX1
3108 B(3,K>=B(3,K>+D3

Example 1 illustrates the use of the wildcard character in a target string. The initial listing
shows that the text consists of a portion of a BASIC program. At the time of the listing, the

character ~ is the wildcard character by default: no ~= commands have been previously
executed.
Then the command NL "~$","E$"” is executed. Because the character ~ in a target string

means "any character,” the EDITOR looks for two-character strings consisting of any ASCII
character immediately followed by $. Occurrences of the two-character string are over-
written by the string E$.Afterthecommand NL "~$","E$” isexecuted, a new listing shows
that occurrences of the variable names A$, B$,and C$ have been replaced with the
variable name E$.

@ 4051R06 EDITOR

Environmental Commands

Example 2 illustrates the use of the wildcard character in a replacement string. The initial
listing shows several statements of a BASIC program. Thecommand ~=? assigns ? asthe
wildcard character, then the command NL "X#"”, "V?" is executed.

At the time the command is executed, the character # means "any digit” : no #= com-

mands have been previously executed. (Refer to the #= command for information about the
"any digit” character.) Occurrences of such a two-character pair in the text are replaced by

another two-character string consisting of the character V followed by the second character
of the target string. After the command NL "X#","V?" is executed, a new listing shows that
occurrences of the variable names X0 , X1 ,and X2 have been replaced by the variable
names VO , V1 ,and V2 |, respectively.

Finally the command S "~" is executed to illustrate that once the command ~=? assigns
the character ? as the wildcard character, the character ~ no longer means "any
character” when used in a target string. The command S "~" locates and lists the one line
that contains the symbol ~ .

Example 3 illustrates the use of the wildcard character in both the target and replacement
string. The initial listing shows that the text consists of a portion of a BASIC program. At the
time of the listing ~ is the wildcard character: no ~= commands have been previously
executed.

Then the command NL "B(~,L)",”"B(~,K)" is executed. Because ~ is the wildcard
character, the EDITOR looks for a five-character string consisting of B(followed by any
ASCllIcharacter, followed by ,L) .Occurrences of such afive-character string are overwritten
by a string that is similar but specifies K) instead of L) as the last two characters.

After the command is executed, a new listing shows that the variable names B(1,L) ,B(2,L) ,
and B(3,L) have been changed to B(1,K) , B(2,K) , and B(3,K) , respectively.

4051R06 EDITOR @ 5-39

NOTES

5-40 @ 4051R06 EDITOR

Environmental Commands

The _ = Command (An “"ALL BUT" Prefix)

Syntax Form:

_ = [ASCll character]

PURPOSE

The _= command assigns the meaning "all but” to a specified ASCII character. Once the new
meaning is assigned, the specified ASCII character may be used as a prefix to another
character in the target string of a SEARCH or NLSEARCH command. immediately after the
EDITOR is calied, the meaning "all but” is assigned to the character _ by default.

EXAMPLES

NOTE

The most important aspect of the _= command is its effect on subsequent
searching operations. It may be helpful to be familiar with the NLSEARCH and
SEARCH commands before reading about the _= command.

EXPLANATION

The _= command specifies an ASCII character that will mean "all but the following charac-
ter” in the target string of subsequent searching commands. For example, the command
_=' assignsthecharacter ' tobeusedasan "all but” prefixin the targetstring ofa SEARCH or
NLSEARCH command.

Any ASClI character may be specifiedina —= command except CR (ASCII 13) and SP (ASCII
32). The symbol for the character RUBOUT (ASCII 127) is entered from the keyboard by
pressing the RUBOUT CHARACTER overlay key.

4051R06 EDITOR @ 5-41

Environmental Commands

Using the "All But” Prefix in a Target String

When the "all but” prefix precedes another character in the target string of a SEARCH or
NLSEARCH command, the EDITOR looks for any ASCIl character except the one immediately
following the prefix. For example, after the command _=' assigns the character ' to be the
"all but” prefix, the command S "'B” tells the EDITOR to search for all ASCII characters
except B . The command S "“A’'0” tells the EDITOR to locate all two-character strings
consisting of A followed by any ASCII character except 0 .

The "all but” prefix may appear anywhere within a target string, but cannot be the last
character in the target string (refer to “Syntax Errors” in this explanation). The "all but” prefix
may appear more than once in a target string. For example, if _ is the "all but” prefix, the
command S "5_3_2" searches for three-character strings consisting of the character 5 ,
followed by any ASCII character except 3 , followed by any character except 2 . Strings
such as 501 or 598 match the target string, but 532 , 538 , or 572 do not satisfy the
search.

The "all but” prefix may appear in successive positions in a target string. However, even-
numbered occurrences of the characterin a set of successive "all but” prefixes do not have the
special meaning "all but the character following this one.” For example, if X is the "all but”
prefix, the command S "XXXA" searches for a two-character string consisting of any ASCI|
character except X followed by any ASCII character except A . Likewise, the

comand S "XXXX" searches for a two-character string consisting of any character
except X followed by any character except X .

NOTE

The "all but” prefix should not immediately precede the “digit,” wildcard, or "END-
OF-RECORD" character in a target string. For example, if _ is the "all but” prefix,

isthe "any digit” character, ~ isthe wildcard characterand] isthe "END-OF-
RECORD" character, the EDITOR cannot interpret commands such as S “_#" or
S"="orS"#".

The character specified in the _= command may be used in the replacement string of a
subsequent SEARCH or NLSEARCH command. However, the character has noc special
meaning when used in a replacement string. For example, after the command _=- is
executed, the command NL "100A”,”100-A" replaces occurrences of the string 100A with
the string 100-A .

5-42 @ 4051R06 EDITOR

Environmental Commands

The character specified in the _= command is the "all but” prefix until the RETURN TO

BASIC key is pressed or another _= command is executed that specifies a different ASCII
character. Pressing the RETURN TO BASIC key and calling the EDITOR again, has the same
effect as executing the command _=_ (refer to "Default Values” in this explanation).

Syntax Errors

The "all but” prefix must precede another character in the target string. Entering the "all but”
prefix as the last character of the target string causes a syntax error. For example, if _ isthe
“all but” prefix, attempting to execute S "_" or S "A_" causes a syntax error message to
appear on the display.

Default Values

Calling the EDITOR assigns the character _ as the "all but” prefix by default. Until a
_= command is executed that specifies a different ASCI| character, the EDITOR under-
stands _ to mean "all but the following character” in the target string of a SEARCH or
NLSEARCH command.

When the parameter of the _= command is omitted, no character is assigned to be the “all
but” prefix. That is, entering _= and pressing RETURN cancels the previously chosen “all
but” prefix, and makes no new assignment. You should execute thecommand _= if you want
to make sure that no ASCII character means “all but the following character” in the target
string. Atany time afterthecommand _= isexecuted, you are freeto chose an “all but"” prefix
again by executing a command suchas _=_ or _=" .

When to Execute the _= Command

Because calling the EDITOR assigns _ as the "all but” prefix, you must execute a _ =
command that specifies a character other than _ if you want to search for occurrences of
the symbol _ in the text.

An Editing Example

The following example illustrates the use of the _= command.

4051R06 EDITOR @ 5-43

Environmental Commands

LIST
1550
1960
:578
: 580
1590
. 600
1610
1620
1630
1640
1650
1660
1670
1680

S nﬂ‘(n
$580
:599
:610
1630
1640

Example 1

NL °®

LIST
:550
: 560
: 570
: 580
15960
1600
16106
1620
1630
1640
1650
1660
1670
16808

S "nla"
. 580
: 550
1630
1640
1650
1678

5-44

ll’ ll*ll

EE“ -~ USER’S INPUT CONTINUES __
PRINT "DO YOU WISH TO GO ON?"j
INPUT A$

IF A$="N" THEN 1206

PRINT "ENTER FIRST NUMBER:";
INPUT AO

PRINT "ENTER SECOND NUMBER:"§
INPUT a1l

DELETE f,B

DIM AC(N>,BCN>

FOR I=1 TO H

ACIo=1

NEXT I

INPUT QS

IF A$="H" THEN 1200
INPUT Q@

INPUT Al

DELETE RA,B

REM %X USER’S INPUT CONTINUES x%
REM XXXXXXXAXXXXKRKRXXXXTXXRXXXALKR
PRINT "DO YOU WISH TO GO ON?"j;
INPUT A$

IF A$="N" THEN 12086

PRINT "ENTER FIRST NUMBER:";
INPUT AG

PRINT "ENTER SECOND NUMBER:"$
INPUT #l

DELETE #,B

DIM ACNI,BCND

FOR I=1 TO N

ACID=1

NEXT I

INPUT A$

IF A$="N" THEN 1200
INPUT A1

DELETE A,B

DIM ACHY,BCN)
ACT)=1

REM %% USER’S INPUT CONTINUES X%

@ 4051R06 EDITOR

Environmental Commands

Example 1 shows three _= commands and their effect on subsequent SEARCH and
NLSEARCH commands. The initial listing shows that the text consists of a portion of a BASIC
program. At the time of the listing, the character _ isthe "all but” prefix: no _= commands
have been previously executed.

Then the command _= is executed. Because no ASCII character is specified in the
command, the EDITOR cancels the previous assignment of _ as the "all but” prefix, and
makes no new assignment. Because _ is no longer the "all but” prefix, the command

NL " ",”*%" overwrites occurrences of the symbol _ with the symbol % .

Next the command _=' specifies the character ' to be the "all but” prefix. Since the
character ' now means "any character but the following one,” thecommand S "A'0" tells
the EDITOR to locate and list lines containing a two-character string consisting of the
character A followed by any ASCII character except 0 . The EDITOR locates and lists six
lines found to contain a "match” for the target string. The "matches” are shown below:

A$

A1

A,

A(
Finally the command _=_ is executed to re-establish _ as the "all but” prefix. Since _ is
now the "all but” prefix, the character ' no longer has any special meaning, as illustrated by
the fact that the command S """ locates and lists a line that contains the symbol * .

4051R06 EDITOR @ 5-45

NOTES

5-46 @ 4051R06 EDITOR

Environmental Commands

]:

The] = Command (A Character to mean "END-OF-RECORD")

Syntax Form:

] = [ASCII character]

PURPOSE

The)= command assigns the meaning "END-OF-RECORD" to a specified ASCII character.
Once the new meaning is assigned, the specified ASCII character string may be used to insert
end-of-record characters (usually carriage returns) into the text. The character may

also be used in target and replacement strings in the SEARCH and NLSEARCH commands.
Immediately after the EDITOR is called, the meaning "END-OF-RECORD" is assigned to the
character] by default.

EXAMPLES

NOTE

An important aspect of the]= command is its effect on subsequent searching
operations. It may be helpful to be familiar with the SEARCH and NLSEARCH
commands before reading about the 1= command.

EXPLANATION

The]= command specifies an ASCII character to mean "END-OF-RECORD" during
subsequent editing or searching operations. For example, the command]=/ assigns the
special meaning "END-OF-RECORD" to the character / .

4051R06 EDITOR @ 5-47

Environmental Commands

]:

5-48

The ASCII character specifiedina]= command means "END-OF-RECORD" when used in
the target or replacement string of subsquent SEARCH or NLSEARCH commands. The
character also means "END-OF-RECORD" if entered from the keyboard while the line buffer
contains a recalled line (a line recalled from the text buffer to the line buffer by the SEARCH
and Edit Line command or by the RECALL NEXT LINE/RECALL LINE or STEP PROGRAM
keys).

Any ASCII character may be specifiedina]= command except CR (ASCII 13) and SP (ASCII
32). The character specified inthe]= command is the "END-OF-RECORD" character until
the RETURN TO BASIC key is pressed or another]= command is executed that specifies a
different ASClI character. Pressing the RETURN TO BASIC key and calling the EDITOR again,
has the same effect as executing the command]=] (refer to "Default Values” in this
explanation).

The Difference Between the "END-OF-RECORD" Character and CR (ASCII 13)

The "END-OF-RECORD" character is used to locate, insert, or delete end-of-record
characters. However, the "END-OF-RECORD" character does not represent the ASCI|
character CR (ASCII code 13). The distinction is as follows:

End-of-record characters are not stored in the text buffer. The two bytes that precede each line
of text in the text buffer store the edit line number and also serve as a "flag” to mark the
beginning of the line. Because the flag serves the same purpose as an end-of-record character,
the character CR (ASCH 13) is not needed and not stored in the text buffer.

Pressing RETURN while the system in under EDITOR control sets the flag, but does notinserta
CR into the text. Inputting a stored line from a peripheral device removes the CR (ASCII 13)
character, and sets the flag: outputting the line disables the flag and reinserts the CR (ASCII
13) character.!

This means that the character CR (ASCIl 13) can only occur in text brought in by an Input
command that specifiesa % symbolinthe I/O address. If the alternate input/Qutput format
specifies an end-of-record character other than CR, thesymbol M represents CR characters
in listings of the inputted text. But even then, the "END-OF-RECORD" character represents
the alternate end-of-record character, and cannot locate the character CR : that is, the
symbol M does not satisfy a search for the "END-OF-RECORD" character.

In summary, the "END-OF-RECORD" character specified by the]= command represents a
flag and not CR (ASCII 13). Using the "END-OF-RECORD" character to locate, insert, or
delete end-of-record characters, actually locates, sets, or disables a flag in the text buffer. For
the sake of simplicity the term “end-of-record character” instead of “flag” will be used in the
remainder of this discussion: butkeep in mind that in this explanation, the term “end-of-record
character” does not refer to the ASCII character CR.

4If the symbol % instead of @ appears in the 1/O address of an Input/Output command, the EDITOR removes or inserts
a previously specified ‘‘alternate’’ end-of-record character.

@ 4051R06 EDITOR

Environmental Commands

]:

Using the "END-OF-RECORD"” Character in a Target String

The "END-OF-RECORD"” character may be specified in the target string of a SEARCH or
NLSEARCH command. When scanning the text for the target string, the EDITOR considers an
end-of-record character to "match” the "END-OF-RECORD" character.

This allows you to locate lines that begin or end with a specified string. For example, after the
command]=/ isexecuted, thecommand S "/1650” % locates and deletes lines that begin
with the string 1650 . The command S "MD/”, locates lines that end with the

string MD and recalls the lines one by one to the line buffer for editing.

The "END-OF-RECORD" character can be specified anywhere in a target string. For example,
if] isthe "END-OF-RECORD" character, the command S "]STOP]” locates and lists lines
consisting of the string STOP .

The "END-OF-RECORD" character may appear in successive positions in a target string. For
example, if] isthe "END-OF-RECORD" character, the command NL “]]”% deletes blank
lines. (Two successive end-of-record characters constitute a blank line. A blank line can be
created by pressing RETURN twice while entering text from the keyboard.)

NOTE

The "all but” prefix should not immediately precede the "END-OF-RECORD"”
character in a target or replacement string. For example, if the character _ currently
means "all but” and the character]| is the "END-OF-RECORD” character, _
should notimmedately precede] in the target or replacement string ofa SEARCH
or NLSEARCH command. (Refer to the explanation of the _= command.)

Ifthe "END-OF-RECORD" character appears in the target string of a SEARCH and Delete Line
or NLSEARCH and Delete Line command, the command deletes the line that contains the last
character of the target string. For example, if] is the "END-OF-RECORD" character, the
command NL "0]1"% deletes lines that begin with 1 and are immediately preceded by a
line that ends with 0 .

However, if the "END-OF-RECORD" character is the last character of the target string, the
NLSEARCH and Delete Line or SEARCH and Delete Line command deletes the line that
contains the next to last character of the target string. For example, if] is the "END-OF-
RECORD"” character the command NL "1650]"” % deletes lines that end with the

string 1650 .

4051R06 EDITOR @ 5-49

Environmental Commands

]:

5-560

Using the "END-OF-RECORD"” Character in a Replacement String

The "END-OF-RECORD" character can be specified in the replacement string of a SEARCH
and Replace String or NLSEARCH and Replace String command. This allows you to insert or
delete end-of-record characters. For example, if] is the "TEND-OF-RECORD" character, the
command S “STOP”,"STOP]” inserts an end-of-record character after the string STOP .
The command S "P]JA","PA" deletes end-of-record characters found immediately after the
character P and before the character A .

The “END-OF-RECORD" character may appear anywhere in a replacement string, and may
appear more than oncein areplacementstring. Forexample, if / isthe "END-OF-RECORD"
character, the command S " % % %% %","//% % % %% %//" inserts two end-of-record
characters before and after a string consisting of six successive % characters.

The "END-OF-RECORD"” character may appear in successive positions in a replacement
string. For example, if] is the "END-OF-RECORD" character and ~ is the wildcard
character, thecommand NL “~]","~]]" createsablank line aftereach linein the currenttext.

Entering the "END-OF-RECORD" Character From the Keyboard

While the INSERT command is being used to create new text, the character specified in

the]= command does not have the special meaning "END-OF-RECORD.” For example,
if] is the "END-OF-RECORD" character and the INSERT command is being used to enter
new lines, typing] inserts the symbol] into the text.

However, if the line buffer currently contains a line recalled to the line buffer by the SEARCH
and Edit Line command or by the RECALL NEXT LINE/RECALL LINE or STEP PROGRAM
keys, entering the "END-OF-RECORD"” character from the keyboard enters an end-of-record
character into the text. The “"END-OF-RECORD" character appears on the display when it is
typed from the keyboard, but is converted to an end-of-record character when the line is
placed back in the text buffer. Subsequent listings show the beginning of anew line instead of
the "END-OF-RECORD" symbol.

Thus you may split up a recalled line by entering an “END-OF-RECORD" character from the
keyboard while the cursor is in the appropriate position.

Deleting "END-OF-RECORD" Characters From the Keyboard

When certain searching operations locate and list a line containing an end-of-record
character, the end-of-record character is represented on the display by the "END-OF-
RECORD"” character.

@ 4051R06 EDITOR

Environmental Commands

]:

For example, if the "END-OF-RECORD" character assigned by the]= command appears in
the target string of a SEARCH and Edit Line command, listings of recalled lines show the
“"END-OF-RECORD" character in the appropriate position. The end-of-record character may
be deleted from the recalled line by typing over the "END-OF-RECORD" symbol with a new
character, or by pressing the RUBOUT key while the cursor is positioned over the "END-OF-
RECORD" symbol. This allows you to concatenate lines by deleting end-of-record characters
from the keyboard.

For example, if # is the "any digit” character and / is the "END-OF-RECORD" character,
the command S "#/R”, tells the EDITOR to locate lines that end with a digit and are
immediately followed by a line beginningwith R . When such a pairoflinesis found, both the
line ending with a digitand the line beginning with Rare recalled to the line buffer, and listed on
the display as one line separated by an end-of-record character. The end-of-record character
is represented on the display by the symbol / . For example:

S II#.‘:RN!
+1324/RETURN
$1658-RETURN

The end-of-record character may now be deleted by typing over the symbol / with a new
character or by pressing the RUBOUT key while the cursor is positioned over the / . This
deletes the end-of-record character, and concatenates the two lines.

Default Values

Calling the EDITOR assigns the character] to be the "END-OF-RECORD"” character by
default. Until a]= command is executed that specifies a different ASCII character, the
EDITOR understands] to mean "END-OF-RECORD" when used in a target or replacement
string or when entered from the keyboard after a line is recalled to the line buffer.

When the parameter of the]= command is omitted, no "END-OF-RECORD" character is
assigned. That is, entering]= and pressing RETURN cancels the previously chosen
"END-OF-RECORD" character, and makes no new assignment. You should execute the
command]= if you want to make sure that no ASCI! character means "END-OF-RECORD"
when used in a target or replacement string or when inserted into a recalled line. Atany time
afterthe command]= isexecuted, you are freetochoose an "END-OF-RECORD" character
again by executing a command such as]=] or]=/ .

4051R06 EDITOR @ 5-51

Environmental Commands

]:

5-62

When to Execute the]= Command

Because calling the EDITOR assigns the character | asthe "END-OF-RECORD" character,
you must execute a]= command that specifies a character other than] if you intend to
search for occurrences of the symbol] in the text, or if you want to use the symbol] ina
replacement string without the special meaning "END-OF-RECORD.”

You may also want to assign a different "END-OF-RECORD" character before recalling a line
to the text buffer that contains the symbol | . Otherwise, returning the line to the text buffer
would delete the symbol] and add an end-of-record character in its place.

An Editing Example

The following examples illustrate the use of the |]= command.

Example 1

—
-
o
—.‘
>+ —
m I
(&) —
-4 (4]

NL ll]!l’"*ll

LIST
PXTHISKISKAYTEST

t'“.. "] " ’ H 4 n
LIST
s J¥THISXISKXAFTEST

Example 2

—
—t
[77)
-

(4]

[+~

[ar]

DO 260 I=1,508
B(NY=A(N)
C=B(N>

DO 258 J=2,H
250 Etl'.NaJIl)=9(N~J+l)+X*B(N-J*2)

D0 388 J=2,K1
308 C=B(K1-J+2)+X%C

Ke=¥-B(1>-C
0=

W= OO E GITY -

[STN STy

] "
NL]] * (continued on next page)

@ 4051R06 EDITOR

Example 3

4051R06 EDITOR

Environmental Commands

]:

LIST
1:500 00 200 1=1,500
2: B(NI)=A(N>
3: C=B(N>
: D0 250 J=2,N
6:250 B{N=-J+1)=AC(N-J+1)+XXB(N-J+2)
7 Ki=N-1{
: DO 300 J=2,K1
10: 300 C=B(K1~-J+2)+XxC
12: ¥o=X-B(1)/C
13: X0=X
LIST
+TAPE VERIFICATION [SECTION S 1
EDescription
;Hurduare Reguirements
;Progran Limitations
EOpernting Instructions
;Unrinbles
NL u]]n,u]] (1]
LIST
:TAPE VERIFICATION [SECTION S 1
; Description
E Hardware Requirements
; Program Limitations
; Operating Instructions
E Variables
3=/
yxn

: TAPE VERIFICATION C SECTION S5 1

@ 5-563

Environmental Commands

]:

Example 4
LIST
:TAPE VERIFICATION [SECTION S 1
E Description
: Hardware Requirements
¢t Program Limitations
¢ Operating Instructions- Methodology
=
S Hon M

LR

Methodoloay

S "Descriptions","Description-"
¢ Description- Hardware Reguirements

LIST
TAPE UVERIFICATION [SECTION 5 1

Description- Hardware Requirements
Program Limitations

Operating Instructions

Methodoloay

Example 1 shows the location of end-of-record characters in a short sample text. At the time of
the initial listing, the character] is the "END-OF-RECORD" character: no]= commands
have been previously executed.

Because the character] means "END-OF-RECORD,” the command NL "]",”*" tells the
EDITOR to replace all end-of-record characters with the symbol % . A subsequent listing
shows the text concatenated into one line, with the symbol % in positions previously
occupied by end-of-record characters. The *’s indicate that lines of text are considered to
begin with an end-of-record character. This is because the end-of-record character is actually
a flag stored in the two bytes that precede the line in the text buffer.’

Example 2 shows the "END-OF-RECORD" character being used to delete blank lines. The
initial listing shows that the text consists of thirteen lines of FORTRAN code, including two
blank lines (lines 4 and 11). At the time of the listing, the character] is the "END-OF-
RECORD" character: no]= commands have been previously executed.

5Although the % at the beginning of the line in the new listing shows that the initial end-of-record character has been
replaced by the character %, the EDITOR has automatically reinserted an end-of-record character at the beginning of
the line. Thus text always begins with an end-of-record character (and never ends with one).

5-54 @ 4051R06 EDITOR

Environmental Commands

]:

Then the command NL ”]]” % is executed. Because] is the "END-OF-RECORD" charac-
ter, the command tells the EDITOR to locate and delete blank lines (lines consisting of two
successive end-of-record characters). After the command is executed, a new listing shows that
the two blank lines (lines 4 and 11) have been deleted from the text buffer.

Example 3 shows the "END-OF-RECORD" character being used to indent certain lines of text.
At the time of the initial listing,] is the "END-OF-RECORD" character. The com-

mand NL “]]"],"]1 “ tells the EDITOR to locate two successive end-of-record characters,
and overwrite them with two end-of-record characters followed by five blank spaces. This is
the same as adding five spaces to the beginning of every line that immediately follows a blank
line. After the command is executed, a new listing shows the indented lines are those that
immediately follow a blank line in the text.

Next the command]=/ is executed to assign / as the "END-OF-RECORD" character.
Since / is now the "END-OF-RECORD" character, the character] no longer has any
special meaning, and may be used to locatethe symbol] inthetext. Thisisillustrated by the
fact that the command S "]” locates and lists a line that contains the symbol] .

Example 4 shows the "END-OF-RECORD" character being used to insert and delete end-of-
record characters. After an initial listing, the command]=/ is executed to assign / as the
"END-OF-RECORD" character. The commands S “-",”/" and S "Description/”,”Description-"
are then executed.

Thecommand S "-","/" tellsthe EDITOR to overwrite occurrences of the symbol - withan
end-of-record character, and to list changed lines on the display. The text contains an
occurrence of the symbol - in the last line of the text. The EDITOR replaces the symbol -
with an end-of-record character, splitting the last line into two lines consisting of Operating
Instructions and Methodology . A listing of the new line Methodology appears on the
display.

The command S "Description/”,” Description-" tells the EDITOR to overwrite occurrences
of Description/ with Description- . Thethird line together with the end-of-record character
that precedes the fourth line, matches the target string and is overwritten by the replacement

string. This has the effect of concatenating the third and fourth lines and inserting a hyphen (-)

between them. The new line is listed on the display, and a complete listing is made to show how
the text has been changed.

4051R06 EDITOR @ 5-55

NOTES

5-56 @ 4051R06 EDITOR

CONTENTS

Introduction e
/O AdAress oo e e e e
Default Values e e e
The APPEND Command
The FIND Command
The INPUT Command
The MARK Command
The OLD Command

The PRINT Command
Special PRINT Commands
The SAVE Command
The SKIP Command
The SWN Command
The WRITE Command

4051R06 EDITOR

Section 6

INPUT/OUTPUT COMMANDS

6-1

I/0 Commands

6-2

INTRODUCTION

Section 6 describes ten EDITOR commands used for transmitting text to and from storage
devices, for positioning the magnetic tape head, and for marking new files. The commands are
APPEND, FIND, MARK, OLD, PRINT, SAVE, SKIP, SWN (Save With Number), and WRITE.
Many of these commands have the same keyword as a BASIC Input/Output command, but
differ slightly from BASIC. Important differences between EDITOR Input/Output commands
and their BASIC counterparts are included in the explanation of the commands.

I/0 ADDRESSES

Asin BASIC, an I/O address consists of thesymbol @ or % ,followed by aprimary address,
a comma, a secondary address, and a colon (:). The symbol @ or % specifies the
Input/Output format to be used (refer to ”Specifying an Alternate input/Output Format” in the
explanation of the PRINT command).

The primary address is a peripheral device number between 1 and 255. As in BASIC, when an
Input/Output command is executed, the peripheral device is converted to a primary talk or
listen address, whichever is appropriate for the keyword. The primary address tells the
peripheral device whether it has been selected to send or receive information from the text
buffer.

Preassigned peripheral device numbers are the same as in BASIC. For example, device 32 is
the system display, device 33 is the internal magnetic tape, and device 37 addresses
microprocessor status parameters. Device numbers 1 through 30 are used for external devices
on the General Purpose Interface Bus.

Asecondary address is specified as anumber between 0 and 31. Each number has a predefined
meaning that tells the EDITOR what type of operation is being performed. For example,
secondary address 27 means that the EDITOR is executing a FIND command; secondary
address 4 means that the EDITOR is executing an APPEND or OLD command.

The colon (:) following the secondary address marks the end of the I/0 address.

DEFAULT VALUES

I/0 addresses in EDITOR commands are optional. If an 1/O address is not specified, the
EDITOR automatically inserts a default 1/O address appropriate for the keyword. If only a
primary address is specified, the EDITOR automatically issues a default secondary address.

The following table lists the default primary and secondary addresses for EDITOR
Input/Output commands.

@ 4051R06 EDITOR

I/0 Commands

TABLE OF DEFAULT PRIMARY AND SECONDARY ADDRESSES
FOR EDITOR INPUT/OUTPUT COMMANDS

1/0 Command Default I/0 Address
APPEND @33,4:
FIND @33,27:
INPUT @33,13:
LIST @32,19:
oLD @33,4:
PRINT @32,12:
SAVE @33,12:
SEARCH @32,19:
SKIP @33,13:
SWN (Save with Number) @33,12:
WRITE @33,12:

32 = GS display
33 = internal magnetic tape

ENTERING EDITOR INPUT/OUTPUT COMMANDS FROM THE KEYBOARD

When entering an Input/Output command, do not enter any blank spaces within the 1/0
address or immediately before or after the colon (:) that ends the I/O address. Extra blank
spaces can cause a syntax error, semantic error, or INVALID 1/0 OPERATION error. Some
examples are shown below:

SAUR29: 168,599
EDITOR ERROR i
Suntax - error nunker 138
SRUE33: 1b@,5u8

SHUE29 186,580
EDITOR ERROR)
Semantic ~ error nunber 139
SAUEZZ 108,500

SHU@ 29: 188,500
ECITOR ERROR

INUALID 10 OFERATION IN IMMEDIATE LINE - MESSAGE NUMBER €7

4051R06 EDITOR @ 6-3

1/0 Commands

The correct way to enter the command is as follows:

SAUR29: 188,509

Justasforall EDITOR commands, spaces may be entered immediately after the keyword. That
is, the following command is also valid:

“n

RY ®29: 168,508

COMMAND SEMANTICS

The ending line number specified in an Input/Output command should be as large as the
starting line number. If the ending line number is smaller than the starting line number, the
command either has no effect, or causes a semantic error as in the following example:

SRU 7,3

EDITOR ERROR

Semantic - error number 139
SHU T, 3

The correct way to enter the command is as follows:

MAGNETIC TAPE MOVEMENT

EDITOR Input/Output commands that specify a tape device in the 1/0 address cause the
magnetic tape to move (advance or rewind). After tape movement stops, the magnetic tape
head points to a particular logical record on the file. For example, the command FIN6 ad-
vances or rewinds the internal magnetic tape until the tape head points to the first logical
record on file 6.

For the sake of simplicity in these explanations, the phrase "positioning the tape to a particular
logical record” is used instead of "positioning the tape so that the tape head points to a
particular logical record.” References to the tape head are omitted, except when needed to
emphasize the exact position of the magnetic tape.

6-4 @ 4051R06 EDITOR

1/0 Commands
APPEND

The APPEND Command

Syntax Form:

A [1/Oaddress | [editline number]

Descriptive Form:

APPEND [1/0 address] [destination for appended text]

PURPOSE

The APPEND command brings logical records into the text buffer from the file currently open
on a peripheral device. If no peripheral device is specified, the APPEND command inputs
logical records (stored lines) from a file on the internal magnetic tape. Incoming lines are
added to the current text immediately before the line number specified in the command.

EXAMPLES

>
<

o An
LY (R <

>
]
no
O
[+

EXPLANATION

The APPEND command allows an 1/O address and a destination line number to be specified.
When the APPEND command is executed, the EDITOR inputs logical records from the
specified peripheral device, and adds them to the text buffer immediately before the
destination line in the current text. For example, the command A@29:0 listed above inputs
logical records from the file currently open on device 29, and places the lines before the first
line of text (line 0).

Before the APPEND command is executed, a file on the chosen peripheral device must be
"opened” by executing a FIND command. The FIND command positions the READ/WRITE
(magnetic tape) head to the beginning of the file, and opens the file for access by Input/Output
commands. After executing a FIND command, you may position the tape to a particular logical

4051R06 EDITOR @ 6-5

1/0 Commands
APPEND

record within the file by executing a SKIP command. Using the SKIP command to position the
tape to a particular logical record, allows you to append part of a magnetic tape file instead of
the entire file. (Refer to the FIND and SKIP commands for more detailed explanations.)

Whether the tape is positioned to the beginning of the file using the FIND command, or to a
particular logical record using FIND and then SKIP, the APPEND command inputs all logical
records from the current position of the tape head to the end of the file. After the APPEND
command is executed, the file is closed and no longer available for access by Input/Output
commands.

Default Values

Both the 1/O address and the destination line number are optional. When the I/0 address is
omitted in an APPEND command, the peripheral device is the internal magnetic tape by
default. When the destination line is omitted, appended lines are added after the last line of the
current text.

Forinstance,thecommand A listed above bringslogical records into the text buffer from the
file currently open on the internal magnetic tape. Appended lines are inserted at the end of the
text. The command A 50 also inputs logical records from the internal magnetic tape, but
places incoming lines immediately before line 50 in the text buffer. The command A@?29:
inputs logical records from the open file on peripheral device 29, and sends incoming lines

to the end of the current text.

Notes on the Command Syntax

When entering an APPEND command from the keyboard, do not enter any blank spaces
between the I/O address and the destination line number. For example, a command such
as A@29: 0 causes a syntax error.

Differences between BASIC APPEND and EDITOR APPEND

The differences between the BASIC command APPEND and the EDITOR command APPEND
are as follows:

— When an APPEND command is executed under EDITOR control, incoming lines do
not overwrite a “"dummy” line as they do in BASIC. Instead, appended lines are placed
before the destination line, without destroying the line.

— Partial files may be appended under EDITOR control, by using SKIP or INPUT

commands to position the magnetic tape to a particular logical record within a file. In
BASIC this can only be done using INPUT commands.

6-6 @ 4051R06 EDITOR

1/0 Commands
APPEND

— BASIC’s APPEND command assigns new program line numbers to BASIC program
statements brought into memory. However, the EDITOR’s APPEND command does
not alter BASIC program line numbers, nor does it assign edit line numbers to newly
appended lines of text.

— BASIC's APPEND command cannot input lines that are more than 72 characters long.
Attempting to append a line that has more than 72 characters causes a NO PRO-
GRAM FOUND or STATEMENT TOO LONG error message to appear on the
display. However, the EDITOR's APPEND command can input lines ofany length (up
to the current size of the text buffer).

Error Messages

If no file is open on the specified device, attempting to execute an APPEND command causes
a MT File error message to appear on the display.

Attempting to execute an APPEND command causesa Device Access errorif the file isopen
to Output operations only — thatis,ifa LIST,PRINT, SEARCH,or WRITE command has been
executed since the last time the file was opened.

Attempting to execute an APPEND command while the tape is positioned to the beginning ofa
file marked NEW, LAST, or SECRET causes a MT File error message to appear on the
display.

If the APPEND command attempts to input a line that exceeds the current length of the text
buffer, execution is terminated and a Text Buf. Overflow error message is printed on the
display. After the message appears, the text buffer contains inputted lines up to, but not
including, the line that overflowed the text buffer.

An Editing Example

The following example shows how the APPEND command adds previously stored lines to the
current text.

4051R06 EDITOR @ 6-7

1/0 Commands

APPEND
Example 1
LIST
S8:FOR K=1 TO N-1
60:FOR I=K+1 TO N
7OIM=ACI,K)~ACK,4K)D
88:ACI,K)=N
98:FOR J=K+1 TO N+1
190:ACT, J2=ACT, HD-M¥ACK, J)
llB:NEkT J
128:NEXT 1
130:HEXT K
FINi
A SB
LIST
:PRINT "ENTER SIZE OF MATRIX- ROWS, COLUMNS:";
s INPUT H,K
+DELETE n
cDIM ACN,K)
:FOR I=1 TO N
:FOR J=1 TO K
:PRINT "RACUSIs, "3 ="y
: INPUT n(I,J)
NEXT J
TNEXT 1

6-8

SB:FOR K=1 TO N-1

60:FOR I=K+1 TO N

70 M=AC],K)7ARCK.K)
8B:ACI,KI=M

98:FOR J=K+1 TO H+1
100:AC1, JI=ACT, J)~MXAC(K, J)
1182 HEXT J

120 HEXT 1

138 HEXT K

The initial listing in Example 1 shows that the text buffer contains nine lines of text. The lines
are BASIC program statements entered without program line numbers.

Thecommand FIN1 isexecuted to open file 1 on the internal magnetic tape and position the
tape head to the beginning of the file. Then the command A 50 is executed.

Whenthe APPEND command is executed, the contents of file 1 are brought into the text buffer
and placed immediately before line 50 of the current text. A new listing shows that ten lines
have been added to the text buffer. The appended lines are the unnumbered lines in the new
listing.

@ 4051R06 EDITOR

I/0 Commands
APPEND

None of the BASIC statements in Example 1 have BASIC program line numbers. The program
line numbers were omitted from the statements in the text buffer and on file 1 to avoid the
problem of keeping line numbers in sequence (the EDITOR command APPEND does not
resequence BASIC program line numbers). After the APPEND command is executed and all
editing is complete, you may create BASIC program line numbers by executing an appropriate
RENUMBER command, then the SWN (Save With Number) command. For more information
on how to create BASIC program line numbers in this way, refer to the explanation of the SWN
command.

4051R06 EDITOR @ 6-9

NOTES

6-10 @ 4051R06 EDITOR

{/0 Commands
FIND

The FIND Command

Syntax Form:

F [1/O address] [numeric constant]

Descriptive Form:

FIND [1/O address] [file number]

PURPOSE

The FIND command positions the magnetic tape to the beginning of a specified file on a
peripheral device, and opens the file for access by Input/Output operations.

EXAMPLES

FIN

EXPLANATION

The FIND command allows an 1/O address and a file number to be specified.! The FIND
command positions the tape so thatthe READ/WRITE (magnetic tape) head is at the beginning
of the desired file on the peripheral device, and "opens” the file for access by Input/Output
operations. For example, the command FIN@29:5 listed above positions the tape to the
beginning of the storage area on file 5 of device 29, and opens the file for access by
Input/Output operations.

A file name cannot be specified. The EDITOR is not intended for use with ‘“‘file management” devices, that is,
devices that require file names and passwords.

4051R06 EDITOR @ 6-11

1/0 Commands

FIND

6-12

Default Values

If the I/0 address is omitted in a FIND command, the internal magnetic tape is selected as the
peripheral device by default. If the file number is omitted, the EDITOR supplies the value 0 by
default, and performs a REWIND function on the specified device.

Forexample, thecommand FIN5 positions the internal magnetic tape to the beginning of file
5and opens the file for access by Input/Output operations. The command FIN@29: rewinds
the magnetic tape on device 29, and the command FIN rewinds the internal magnetic tape.

Notes on the Command Syntax

When entering a FIND command from the keyboard, do not enter any blank spaces between
the I/0 address and the file number. For example, the command FIN@29: 5 causes asyntax
error.

Error Messages

If a non-existent internal magnetic tape file is specified in a FIND command, the EDITOR
returns a MAG TAPE FILE NOT FOUND error message.

Finding the LAST File

As in BASIC, the magnetic tape head may be positioned to the LAST (dummy) file by
specifying the appropriate file number in a FIND command. The tape is automatically
positioned to the beginning of the file header in preparation for creating new files with the
MARK command. When a MARK command is executed after finding the LAST file, the dummy
file is overwritten with new files as they are created, and a new dummy file is created on tapeas
the LAST file.

Accessing the Tape File Header

As in BASIC, if amagnetic tape status parameter is changed by a special PRINT command, the
FIND command positions the tape to the beginning of the specified file header instead of to the
beginning of the storage area. This allows direct access to the file header. Information in the
header can be changed or deleted, or new information can be added.? For example, when the
following EDITOR commands are executed, all of file 1 beginning with the file header is loaded
into the text buffer and printed on the display:

PRI€33,8:8,8,1
FINL

oLd

LIS

2A tape file header can be changed as long as the header meets the minimum format requirements described in
the Graphic System Reference Manual under the topic ‘“Changing a Tape File Header’’ in the explanation of the
FIND command.

@ 4051R06 EDITOR

1/0 Commands
FIND

The first command shown above changes the internal magnetic status parameter to “no
header” format. This causes the EDITOR to position the tape to the beginning of the headeron
file number 1 when the command FIN1 is executed. (The EDITOR assumes that the file
header is the first logical record in the storage area because a ""'no header” format has been
specified.)

Executing the command OLD brings the file header into the text buffer along with the
contents of file 1. The file header is now available for editing using the keyboard and LINE
EDITOR keys.

After a file header is changed, the new information can be stored on the tape file using an
EDITOR SAVE, SWN, or WRITE command. Executing the EDITOR command PRI@33,0:0,0,0
returns the internal magnetic tape status parameter to its normal value.

Opening a Magnetic Tape File

Opening atape file by specifying the file numberin a FIND command makes the contents of the
file available to EDITOR Input/Output commands APPEND, OLD, INPUT, MARK, PRINT,
SAVE, SKIP, SWN, or WRITE. Forexample, after file 5 on device 29 is opened by executing the
command FIN@29:5 , file 5 is prepared for access by Input/Output commands that specify
peripheral device 29.

Once a file is open, it remains open until a subsequent EDITOR command closes the file.

Closing a Magnetic Tape File

Certain EDITOR Input/Output commands automatically “close” the file that is currently open
on the specified peripheral device. After a file is closed, it is unavailable to Input/Output
operations until it is reopened by a FIND command.

Closing a file places an end-of-file mark after the last record in the file. If the command that
closes the file is an Output command, closing the file also forces any information remainingin
the magnetic tape buffer onto the tape file.?

The following EDITOR commands close the current file after the Input or Output operation is
completed:

APPEND
FIND*
oLD
MARK
SAVE
SWN

3 . R . R . .
The magnetic tape buffer is a portion of memory used for intermediary storage of text during Input/Output
operations.

AWhen the FIND command is executed, the EDITOR closes the file that is currently open on the device, and opens
the file specified by the command.

4051R06 EDITOR @ 6-13

I/0 Commands
FIND

After any of the above commands are executed, the open file on the specified device is closed
and unavailable for access. Before another |I/O operation is performed on the file, the file must
be reopened by executing the FIND command again.

It one of these commands specifies a device other than the internal magnetic tape, the
command closes any open file on the internal magnetic tape as well as on the specified external
device. Pressing user-definable key 5 (the RETURN TO BASIC overlay key) closes all open
files in the system.

The INPUT and SKIP commands also close the currentfile if an attempt is made to read beyond
the physical or logical end of the file (refer to the explanations of the INPUT and SKIP
commands).

EDITOR Input/Output Commands that Do Not Close the Current File
The following commands do not close the open file on the specified peripheral device:

INPUT
LIST
PRINT
SEARCH
SKIP
WRITE

After any of these commands are executed, the file involved in the I/0 operation is still open
and available for another Input or Output operation. For example, after the WRITE command

outputs text to a tape file, the file remains open for Output operations. Thus you may execute
WRITE commands repeatedly without executing the FIND command again, or execute a SAVE
after a WRITE command without having to reopen the file.

The commands LIST, PRINT, and WRITE place a logical end-of-file mark after the last record
stored on the tape, but do not close the file. If another Output command is executed, lines sent
to thefile overwrite that end-of-file mark, and a new end-of-file mark is placed at the end of the
newly stored lines.

Special Uses for the FIND Command

To close an open file on a particular device, you need only execute a FIND command that
specifies a differentfile on the device. The reason for this is that the FIND command closes any
open file on the device before opening the file specified in the command.

6-14 @ 4051R06 EDITOR

I/0 Commands
FIND

For instance, after the WRITE command is used to output text to file 5 on device 29, you may
close the file by executingacommand suchas FIN@29:1 .Whenthe command FIN@29:1 is
executed, file 5 is closed and file 1 is opened.

It can be important to close a file in this manner, since closing a file forces the last information
in the magnetic tape buffer onto the tape file. If the system power is turned off or the internal
tape unit removed while a file is still open, text remaining in the magnetic tape buffer does not
reach the file and is lost. Closing the file ensures that all transmitted text reaches the tape.

4051R06 EDITOR @ 6-15

6-16

NOTES

4051R06 EDITOR

I/0 Commands
INPUT

The INPUT Command

Syntax Form:

INP [1/0O address]

Descriptive Form:

INPUT [1/O address]

PURPOSE

The INPUT command displays one logical record from the file currently open on a specified
peripheral device, and advances the magnetic tape to the next record on the file.

EXAMPLES

INP
INPE2I:
INPE29,13:
INPE29,308:

EXPLANATION

When the INPUT command is executed, the EDITOR brings one logical record (stored line)
from a magnetic tape file into a temporary buffer, then displays the line on the screen. At the
same time, the magnetic tape is positioned to the next record on the file.

The current text is not affected by the INPUT command, since the displayed line is held in a
temporary buffer and is not sent to the text buffer.

Before the INPUT command is executed, a file must be opened on the desired peripheral
device by executing a FIND command. When the INPUT command is executed immediately
after the FIND command, the first logical record of the open file appears on the display, and the
tape advances one logical record on the file.

4051R06 EDITOR @ 6-17

1/0 Commands
INPUT

After the INPUT command is executed, the file remains open for access by EDITOR
Input/Output commands. For example, another INPUT command can be executed without
executing the FIND command again. This time, the second logical record of the open file
appears on the display, and the tape moves forward one more record.

You may execute the INPUT command repeatedly, to display successive logical records and
advance the tape one logical record at a time. Or, you may use the FIND and SKIP commands
to position the tape to a particular logical record, then execute an INPUT command to display
the record on the screen.

Whether the tape is positioned to the beginning of a file using the FIND command, or to a
particular logical record using FIND and then INPUT or SKIP, the INPUT command displays
the logical record that is currently positioned at the tape head.

Default Values

When no I/0 address is specified in the INPUT command, the peripheral device is the internal
magnetic tape by default. Thatis, thecommand INP displays one logical record from the file

currently open on the internal magnetic tape, and positions the tape to the beginning of the
next record on the file.

The Difference Between SKIP and INPUT

Both the SKIP and INPUT commands reposition the magnetic tape on a peripheral device. The
INPUT command displays one logical record, and moves the tape to the beginning of the next
record on the file. However, the SKIP command is used to move the tape forward a specified
number of logical records, and does not display records on the screen. (Refer to the
explanation of the SKIP command.)

The Difference Between BASIC INPUT and EDITOR INPUT

Like the EDITOR INPUT command, the BASIC INPUT command inputs one logical record
from a specified device, and positions the tape head to the beginning of the next record.
However, instead of being held in a temporary buffer, the data is brought into memory and
assigned to a variable specified in the INPUT command.

Executing the command INP@29:A$ andthen PRI A$ in BASIC is analagous to-executing

thecommand INP@29: under EDITOR control. The only difference is that the EDITOR com-
mand INP@29: displays a line on the screen, but does not store it for later use.

6-18 @ 4051R06 EDITOR

1/0 Commands
INPUT

Error Messages

If the INPUT command attempts to input a logical record from an empty internal magnetic tape
file or an internal magnetic tape file that has a header marked NEW, SECRET, or LAST, the
EDITOR returns a MT File error message.

If no file is open on the peripheral device, executing an INPUT command causes a
MT File error.

Attempting to execute an INPUT command causes a Buffer Access errorifthefileis opento
Output operations only—that is, if a LIST, PRINT, SEARCH, or WRITE command has been
executed since the last time the file was opened.

Ifthe INPUT command attempts to move the tape beyond the physical or logical end of thefile,
a Device at EOF error message appears on the display, and the file is closed to Input/Output
operations.

Special Uses for the INPUT Command

The INPUT command may be used to check the position of the tape after SKIP or INPUT
commands have repositioned the tape.

The INPUT command allows you to view the first line of a file without bringing thefile into the
text buffer.

The INPUT command may be used to position the magnetic tapetoa particular logical record
within a file before performing an Input/Output operation. The INPUT command may be used
before any of the following EDITOR Input/Output commands: APPEND, INPUT, LIST, OLD,
PRINT, SEARCH, SKIP, SAVE, SWN, and WRITE.

NOTE

INPUT is not intended for use before the MARK command. Attempting to execute a
MARK command can destroy the contents of the magnetic tape if the tape is not
positioned to the beginning of a file.

The INPUT command can be used to read the status of an external peripheral device or to clear
an error condition that has occurred on the device. Forexample, if device 29 on the GPIBisthe
TEKTRONIX 4924 Digital Cartridge Tape Drive, you may execute the command INP@29,30:
to obtain an error message number and clear the error.

4051R06 EDITOR @ 6-19

1/0 Commands

INPUT

6-20

An Editing Example

The following example shows the INPUT command being used to move the tape and display

lines on the screen.

Example 1°

FINg

aLh

LIST

FINZ

INF
1oe

INP
118

INP
129
INP
120

INP
140

INP
150
INP
169

INP
170

;188 KEM %% SUEBROUTINE

:119 FRINT "ENTER CONSTANTS:"
c128 FOR I=1 TO N

1129 PRINT "B("ils"»="y.

;148 INPUT BCID

s 158 NEXT I

1166 PRINT "END OF INPUT"
178 RETURN

REM ¥¥ SUBROUTINE

PEINT "ENTER CONSTANTS:"

FOR I =1 TO N

PRINT "B("3I3"=";

INPUT BT

NEXT 1

PRINT "END OF INPUT"

RETURN

In Example 1 the commands FIN2 , OLD , and LIST are executed to open file 2 on the
magnetic tape, bring the file into the text buffer, and list the lines on the display. Then the com-
mand FIN2 is executed to reopen file 2, and the INPUT command is executed eight times.
Each time the INPUT command is executed, the EDITOR displays a logical record from file 2,
and positions the tape head to the beginning of the next record. Lines displayed on the screen
by the INPUT command are not preceded by an EDITOR colon ()

@ 4051R06 EDITOR

I/0 Commands
MARK

The MARK Command

Syntax Form:

MA [numeric constant] [, [numeric constant]]

Descriptive Form:

MARK [number of files] [, [number of bytes per file]]

PURPOSE

The MARK command reserves space on the internal magnetic tape for a specified number of
files.

EXAMPLES

MA

MA 108,

Ma ,5128
MA 2.5128

EXPLANATION

The MARK command is almost identical to its BASIC counterpart. Just as in BASIC, files are
formatted in 256-byte physical records unless a special PRINT command instructs the
EDITOR to mark files in 128-byte physical records. The first physical record of each file serves
as the file header, and the file storage area begins with the second physical record.

When the MARK command is executed, the specified number of files are created on the
internal magnetic tape, starting at the current position of the magnetic tape head. The file
header for each newly created file is marked NEW, and the final "dummy" file has a file header
marked "LAST.”

Files are marked to have a minimum of 768 bytes. The exact length of the new files is

determined by the number of bytes specified as the second parameter in the MARK command.
If the specified number of bytes is nota multiple of 256, the EDITOR takes the new file sizetobe

4051R06 EDITOR @ 6-21

I/0 Commands
MARK

the next highest multiple of 256. for example, when the command MA 2,2000 is executed, the
EDITOR marks two files having 2048 bytes each, because 2048 is the next highest multiple of
256.

After the MARK command is executed, the tape is positioned to the beginning of the LAST file
just created. If another MARK command is immediately executed, additional files are marked
on the tape.

You may execute a MARK command while the tape is positioned to the beginning of any file on
the internal magnetic tape. As in BASIC, however, any old information stored underneath and
beyond the newly marked files, is lost.

NOTE

Execute the MARK command only when the tape is positioned to the beginning of a
file. Executing a MARK command after a SKIP or INPUT command can destroy the
contents of the tape. If this happens, the tape must be re-marked.

Changing the Tape Format

Internal status parameters can be changed to give a different file marking format. If the special
PRINT command PRI@33,0:1,1,1 is executed, files are created without a file header; are
marked in 128-byte physical records; and are marked without using the “Checksum"” error
checking technique. This allows the EDITOR to make digital tape recordings in a format
compatible with other recording devices—a TEKTRONIX 4923 Digital Tape Recorder, for
example. (Referto the PRINT command for more information about changing the tape format.)

Default Values

When the number of bytes is not specified ina MARK command, the EDITOR marks files to be
768 bytes long. If the number of files is not specified, only a LAST file is marked, and no new
files are created.

For instance, the command MA creates a LAST file that is 768 bytes long. The com-
mand MA 10, marksten files of 768 bytes each, and the command MA ,5120 marks one file
of 56120 bytes.

Notes on the Command Syntax

When only the first parameter is entered, the delimiter may be omitted without altering the
meaning of the command. For example, the command MA 5, is the same as MA 5 . Both
commands tell the EDITOR to mark five new files of 768 bytes each.

6-22 @ 4051R06 EDITOR

I/0 Commands
MARK

Differences Between BASIC MARK and EDITOR MARK

— BASIC requires both the number of files and the number of bytes per file to be
specified in a MARK command. The EDITOR allows these parameters to be omitted.

— The EDITOR command MARK does notallow an I/O address to be specified. Files are
marked on an external device by executing a PRINT command (see “Marking Files on
an External Device").

Marking Files on an External Device

To mark new files on a peripheral device other than the internal magnetic tape, execute a
PRINT command that specifies 28 as the secondary address. For instance, the command
PRI@3,28:5,2048 creates five new files of 2048 bytes each on device 3 on the GPIB (General
Purpose Interface Bus). This enables you to mark files on any device (a 4924 Digital Cartridge
Tape Drive, for example) while the system is under EDITOR control.

4051R06 EDITOR @ 6-23

NOTES

6-24 @ 4051R06 EDITOR

1/0 Commands
oLD

The OLD Command

Syntax Form:

O [1/0 address]

Descriptive Form:

OLD [1/0 address]

PURPOSE

The OLD command clears the text buffer, then brings logical records into the text buffer from
the file currently open on a peripheral device. If no peripheral device is specified, the OLD
command inputs logical records (stored lines) from a file on the internal magnetic tape.

EXAMPLES

oLD
oLbez3:
OLD@23,4:

EXPLANATION

The OLD command allows an 1/O address to be specified. When the OLD command is
executed the EDITOR clears (erases) the text buffer, then loads logical records into the text
buffer from the specified peripheral device. For example, the command OLD@29: listed
above clears the text buffer, then inputs stored lines from the file currently open on device 29.

Before the OLD command is executed, a file on the chosen peripheral device must be
"opened” by executing a FIND command. The FIND command positions the READ/WRITE
(magnetic tape) head to the beginning of the file, and opens the file for access by Input/Output
commands. Unless a FIND command is executed to position the tape and open a file,
attempting to execute the OLD command erases the text buffer and causes a MT File error
message to appear on the display.’

5
For this reason, you must be careful not to execute an OLD command unintentionally by entering O and pressing
RETURN. If a FIND command has not been executed, an error message appears and the entire contents of the

text buffer are lost.

4051R06 EDITOR @ 6-25

I/0 Commands
OoLD

After executing a FIND command, you may position the tape to a particular logical record
within the file by executing a SKIP command. Using the SKIP command to position the tape to
a particular logical record, allows you to input part of a magnetic tape file instead of the entire
file. (Refer to the FIND and SKIP commands for more detailed explanations.)

Whether the tape is positioned to the beginning of the file using the FIND command, orto a
particular logical record using FIND and then SKIP, the OLD command inputs all logical
records from the current position of the tape head to the end of the file. After the OLD
command is executed, the file is closed and no longer available for access by Input/Output
commands.

Default Values

When no I/0 address is specified in the OLD command, the peripheral device is the internal
magnetic tape by default. That is, the command O clears the text buffer, then brings logical
records into the text buffer from the file currently open on the internal magnetic tape.

The Difference Between OLD and APPEND

The OLD command deletes the current contents of the text buffer before inputting lines, but
the APPEND command does not. That is, APPEND is used to add lines to the current text, but
OLD is used to replace the current text with previously stored lines.

The Differences Between BASIC OLD and EDITOR OLD

The differences between the BASIC command OLD and the EDITOR command OLD are as
follows:

— Partial files may be brought in under EDITOR control, by using SKIP or INPUT
commands to position the tape to a particular logical record within afile. In BASIC this
can only be done using INPUT commands.

— BASIC's OLD command examines program statements for syntax errors, and
rearranges statements according to their BASIC program line numbers. Also, if two
statements have the same program line number, BASIC's OLD command inputs only
the second of the statements.

The EDITOR's OLD command does not perform these functions. The EDITOR sees
BASIC program line numbers and statements as free text, and does not recognize
BASIC syntax errors.

6-26 @ 4051R06 EDITOR

1/0 Commands
oLD

— Attempting to execute an OLD command when no file is open on the specified device,
causes an error both in BASIC and under EDITOR control. In BASIC, the error does
not affect the program currently stored in memory, but under EDITOR control, the
entire text is deleted.

— BASIC’s OLD command cannot input lines that are more than 72 characters long.
Attempting to input a line that has more than 72 characters causes a NO PROGRAM
FOUND or STATEMENT TOO LONG error message to appear on the display.
However, the EDITOR’s OLD command can input lines of any length (up to the current
size of the text buffer).

Error Messages

If no file is open on the specified device, attempting to execute an OLD command causes
a MT FILE error message to appear on the display.

Attempting to execute an OLD command causes a Device Access error if the file is open to
Output operations only—that is, if a LIST, PRINT, SEARCH, or WRITE command has been
executed since the last time the file was opened.

If an OLD command attempts to input logical records from an internal magnetic tape file
marked NEW, SECRET, or LAST, a MT File error message appears on the display.

Ifthe OLD command attempts to input a line that exceeds the currentlength of the text buffer,
execution is terminated and a Text Buf. Overflow error message is printed on the display.
After the message appears, the text buffer contains inputted lines up to, but not including, the
line that overflowed the text buffer.

An Editing Example

The following example shows how the OLD command clears the text buffer, then brings
previously stored lines into the text buffer.

4051R06 EDITOR @ 6-27

1/0 Commands
oLD

Example 1

LIST
:FOR K=1 TO N-1
‘FOR I=K+1 TO N
M=ACTK)7AK KD
ACT,K>)=M
‘FOR J=K+1 TO N+i
RCL, D=ACL D -MXACK, DD
NEXT J
¢NEXT 1
NEXT K

FIN4

oLD

LIST
: K=8
:188 FORMAT <(F6.1)>
: RERD (5,100 X0
.10 X=¥@8-F(X0)/DF (X0)
: IF (ABSC(F(¥>),LT.(B.5E-3>) GO TO 30
: K=K+1
: IF (K.GT.508) GO TO 2@
: X0=X
: GO TO 1@

.20 WRITE (6,20@)

:200 g?ggﬁT (1X,4HPROG, 4HRAM ,4HABOR, 4HTED.)
¢ 30 WRITE (6,300) X

:380 FORMAT (1X,4HROOTs4H IS ,F9.4)
i STOP

END

FUNCTION F(X)
F=XX%3-1.473%X¥%2~5.738%X+6.763
RETURN

END

FUNCTION DF(X>

DF = 3%xXXx%2-2.946%X-5,738
RETURN

END

The initial listing in Example 1 shows that the text buffer contains nine lines of text. Then the
command FIN4 isexecutedtoopen file4 ontheinternal magnetic tape and position the tape
to the beginning of the file.

Next the command OLD is executed. The text buffer is cleared of its previous contents, and
file 4 of the internal magnetic tape is loaded into the text buffer.

A new listing shows that the lines of text thatappeared in the first listing have been deleted, and
the text now consists of the lines stored in file 4.

6-28 @ 4051R06 EDITOR

1/0 Commands
PRINT

The PRINT Command

Syntax Form:

P [1/Oaddress] [string]

Descriptive Form:

PRINT [1/Oaddress] [ASCII character string |

PURPOSE

The PRINT command outputs an ASCII character stringto a specified peripheral device. If no
peripheral device is specified, the string is printed on the display by default.

EXAMPLES

PRI CHAPTER 2
PRI®29:CHAPTER 2
PRI®3,28:1,5120
PRI®I7,0:18,4,3
PRI®37,26:1
PRIE33,8:1,141

EXPLANATION

The PRINT command allows an /O address and an ASCII string to be specified. When the
PRINT command is executed, the parameter string is sent to the specified peripheral device.
For example, the command PRI@29:CHAPTER 2 transmits the string CHAPTER 2 to the
open file on device 29.

Executing a PRINT command does not change the current contents of the text buffer. When
the specified string is transmitted to a magnetic tape device, the EDITOR records the stringon
the tape and places an end-of-record character and an end-of-file mark after the string. If the
peripheral device is the system display, the string is displayed on the screen, butdoes notenter
the text buffer.

4051R06 EDITOR @ 6-29

1/0 Commands

PRINT

6-30

Executing the PRINT command when the tape is positioned to the beginning of the file
changes the file header name to ASCII TEXT (if this has not been previously done).

Before executing the PRINT command, you must open a file on the chosen peripheral device
by executing a FIND command. The FIND command positions the magnetic tape to the
beginning of the file, and opens the file for access. Unless a file is open on the peripheral
device, attempting to execute a PRINT statement causesa MT File error message to appear
on the display.

Once the file is open, you may position the tape to a particular logical record within the file by
executinga SKIP or INPUT command. Using SKIP or INPUT commands to position the tapeto
a particular logical record allows you to output the ASCI| string to a particular location in the
file. (Refer to the SKIP and INPUT commands for more detailed explanations.)

Whether the tape is positioned to the beginning of the file orto a particular logical record within
the file, the PRINT command stores the specified string on the tape beginning at the current
position of the tape head. Any previously recorded information that lies beyond the tape head
is lost.

After the PRINT command is executed, the file remains open and available for access to Output
operations. Subsequent Output commands overwrite the end-of-file mark left by the PRINT
command, and insert a new end-of-file mark when the operation is finished.

For example, a SAVE command can be executed after a PRINT command, without reopening
the file. The SAVE command overwrites the previous end-of-file mark, and places a new end-
of-file mark at the end of the saved lines.

The PRINT command can be executed repeatedly to output strings to adevice. Oncea PRINT
command has been executed, each subsequent PRINT command overwrites the end-of-file
mark left by the previous PRINT command, and begins storing the parameter string at the
current position of the tape head.

After executing a PRINT command and before turning the system power off or removing the
internal magnetic tape unit, close the file by executing a FIND command or pressing the
RETURN TO BASIC overlay key. Closing the file forces any information remaining in the
magnetic tape buffer onto the tape, so that no part of the string is lost.

Default Values

When no I/0 address is specified ina PRINT command, the peripheral device is selected to be
the system display by default. For example, the command PRI@33:CHAPTER 2 records the
string CHAPTER 2 on the file currently open on the internal magnetic tape.

@ 4051R06 EDITOR

1/0 Commands
PRINT

When no string is specified in a PRINT command, a blank line is stored on the peripheral
device. For example, the command PRI@33: savesa blank line on the file currently open on
the internal magnetic tape.

Notes on the Command Syntax

The EDITOR PRINT command does not require the parameter string to be enclosed in
quotation marks as the BASIC PRINT command does. That is, the EDITOR command
PRI@33:CHAPTER 2 is equivalent to the BASIC command PRI@33:"CHAPTER 2" . Both
commands print the string CHAPTER 2 on the internal magnetic tape.

When entering a PRINT command from the keyboard, do not enter any blank spaces between
the 1/0 address and the parameter string. For example, a command such as
PRI@33: CHAPTER 2 causes a syntax error.

Error Messages

If no file is open on the internal magnetic tape, attempting to output a string to the tape by
executing a PRINT command causes a MT File error message to appear on the display.

Executing the PRINT command causes a Device at EOF error message to appearifthefileis
not large enough to hold all of the specified string. When this happens, string characters are
written on the tape file until the last byte before the physical end of the file is reached. The
EDITOR places a logical end-of-file mark in the last byte of the file, and returns the
Device at EOF error message. The remainder of the string transmitted by the PRINT
command is not stored on the tape.

After a PRINT command is executed, the file remains open to Output operations only.
Attempting to execute an APPEND, OLD, INPUT, or SKIP command without reopening the file
causes an error. A Device Access or Buffer Access error message appears on the display.
Both messages mean that the specified device is not available for access by Input operations,
and that the magnetic tape buffer cannot receive information from the device.

4051R06 EDITOR @ 6-31

1/0 Commands
PRINT

An Editing Example

The following examples show the PRINT command being used to output a specified string.

Example 1

PRI SECTION C
SECTION C

Example 2

FIN1S
PRI®33:SECTION C
FINIS

oLD

LIST
:SECTION C

In Example 1 the command PRI SECTION C tells the EDITOR to display the string
SECTION C on the screen. In Example 2 the command PRI@33:SECTION C tells the
EDITOR to write the same string on the internal magnetic tape. First the command

FIN15 opensfile 15 on the internal magnetic tape, then the PRINT command is executed. To
display the result, the commands FIN15 , OLD ,and LIST are executed. The new listing
shows that file 15 now contains the logical record SECTION C .

6-32 @ 4051R06 EDITOR

I/0 Commands

SPECIAL USES FOR THE PRINT COMMAND

Duplicating Other Editor Commands

As in BASIC, the PRINT command can be used to duplicate commands such as FIND, MARK,
and LIST by specifying the appropriate secondary address.® For example, the EDITOR
command PRI@20,27:5 is equivalent to the command FIN@20:5 because secondary address
27 in the PRINT command is secondary address for the FIND operation.

Marking Files on an External Device

The MARK command can also be duplicated by a PRINT command that specifies 28 as the
secondary address. For example, the command PRI@3,28:5,2048 creates five new files on
device 3.

Because the EDITOR MARK command does not allow an 1/0 address to be specified,
executing a PRINT command with secondary address 28 is the only way to mark files on an
external device.

SPECIAL PRINT COMMANDS

The EDITOR allows three special PRINT commands to be executed in order to change internal
status parameters. The first special PRINT command changes the internal magnetic tape
status, and affects how files are marked and read. The other special PRINT commands change
the status of the microprocessor, and affect the results of Input/Output operations.

Internal Magnetic Tape Status

The status byte for the internal magnetic tape unit is changed by a special PRINT command
that specifies 33 as the primary address, and O as the secondary address. The command sends

information to the EDITOR for later use in marking and reading files. Changing the status byte

allows the EDITOR to read tapes recorded on external recording equipment. Forexample, the

command PRI@33,0:1,1,1 allows the EDITOR to read and write in a format compatible with

that of the TEKTRONIX 4923 Digital Cartridge Tape Recorder.

As in BASIC, the special PRINT command consists of the keyword PRINT and the 1/O ad-
dress @33,0: followed by three parameters. Each parameter must be assigned avalue of O or
1. The value assigned to each parameter determines how files are marked and read until the
system power is turned off or another PRINT command is executed with different values. The
first parameter in the PRINT command represents the physical record length; the second
parameter specifies whether or not the magnetic tape unit is to use the checksum error
checking technique; and the third parameter selects file header format or non-header format.

6De;:\ending on the device involved in the operation, other EDITOR Output commands may be duplicated by a
PRINT command.

4051R06 EDITOR @ 6-33

1/0 Commands

Physical Record Length

When the MARK command creates files on the internal magnetic tape, the file is divided into
physical records. The number of bytes in a physical record is determined by the first parameter
in the special PRINT command. If the value assigned to the first parameter is 1, a physical
record consists of 256 bytes: if the value assigned is 0, a physical record consists of 128 bytes. If
no value is specified, the parameter is set to 0 by default.

If the first parameter is set to 1, the EDITOR can only read magnetic tapes marked in 128-byte
physical records. If the parameter is set to 0, the EDITOR can only read tapes marked in 256-
byte physical records. If the parameter is not set to the appropriate value, attemptingtoreada
tape causesa MAG TAPE READ ERROR IN IMMEDIATE LINE error message to appear on
the display.

Checksum

As in BASIC, "checksum” is a technique used to check for errors when tapes are read or
recorded.’ If the second parameter in the special PRINT command is assigned the value 0, the
EDITOR uses the checksum technique during subsequent Input/Output operations. However,
if the parameter is assigned the value 1, the EDITOR does not use the checksum technique. If
no value is specified, the parameter is set to 0 by default.

Oncethe second parameterissetto 1, the EDITOR can only read tapes recorded without using
the checksum technique; and after the parameter is reset to 0, the EDITOR can only read tapes
recorded using the checksum technique. Attempting to read a tape causes a MAG TAPE
READ ERROR if the parameter is not set to the appropriate value.

Header Format

Ifthe third parameter of the PRINT command is set to 1 ,the EDITOR marks files in "no header”
format—that is, the first logical record on the file is treated as a file header, and the second
logical record on the file is considered to be the beginning of the storage area.

If an ASCI! file has been marked in header format, the tape file header may be accessed by
setting the third parameter to 1, then executing an OLD command to bring the file into the
butfer. The firstlogical record brought into the text buffer is the file header. (Refer to the FIND
command for more information about accessing a file header.)

The value 0 or 1 assigned to each parameter in the PRINT command determines how files are
marked and read until the system power is turned off or another PRINT command is executed
to assign new values. Turning the system power off resets the parameters to 0, and has the
same effect as executing the command PRI@33,0:0,0,0 or PRI@33: .Pressingthe RETURN
TO BASIC overlay key does not alter the values assigned to the magnetic tape status
parameters.

7The checksum technique is described in the section on Magnetic Tape Status in the Graphic System Reference
Manual.

6-34 @ 4051R06 EDITOR

1/0 Commands

Examples

Some examples of the special PRINT command are given below, with a summary of their effect
on subsequent magnetic tape operations.

PRI@0,0:1,1,1 — 128-byte physical record
— no checksum
— non-header format

PRI@33,0:0,0,0 — 256-byte physical record
— checksum
— header format

PRI@33,0:1,0,1 — 128-byte physical record
— checksum
— non-header format

Microprocessor Status Parameters

Input and output delimiters are controlled by assigning values to microprocessor status
parameters in two special PRINT commands. The first special PRINT command specifies the
I/0 address @37,26: and controls theinputand output delimiters (end-of-record characters)
used during APPEND, OLD, LIST, and SEARCH commands. The second special PRINT
command specifies the I/0 address @37,0: and determines the delimiters that are used when
a percent sign (%) appears instead of the symbol @ insubsequentinput/Output commands.

Changing the ASCII Input/Output Delimiter from CR to CR/LF

The ASCII Input/Output delimiter is controlled by a special PRINT command. Asin BASIC, the
PRINT command consists of the keyword PRINT and the I/O address @37,26: followed by
one parameter. The parameter must be assigned a value of 0 or 1. The value 0 or 1 determines
the Input/Output delimiter to be used until the system power is turned off or the value of the
parameter is changed by executing another PRINT command.

Assigning the viaue 1 to the parameter by executing the command PRI@37,26:1 telis the
EDITOR toinserta LF (LINE FEED) character aftereach CR (CARRIAGE RETURN) in the text
when subsequent LIST or SEARCH command output text to a device other than the system
display. The command also tells the EDITOR to delimitincoming logical recordsonaLF (LINE
FEED) character instead of a CR character during subsequent APPEND or OLD operations
that specify a device other than the internal magnetic tape.

8Actually sach incoming record begins with a LF character and ends with a CR. The EDITOR ignores any char-
acters found after the CR and before the LF. For example:

Logical Record 1 Logical Record 2
et et
L C L C
F a a a R 1 G N o R E F b b b R

When an APPEND or OLD command is executed, the EDITOR inputs two logical records (the strings aaa and bbb) but
does not input the string IGNORE.

4051R06 EDITOR @ 6-35

1/0 Commands

Assigning the value 0 to the parameter by executing the command PRI@37,26:0 tells the
EDITOR to use a CR (CARRIAGE RETURN) character as the end-of-record character during
all Input/Output operations.

Tapes recorded while the parameter is set to 0 cannot be read while the parameteris setto 1.

The value 0 or 1 assigned to the parameter in the PRINT command determines the
Input/Output delimiters until the system power is turned off or another PRINT command is
executed to assign a different value. Turning the system power off resets the parameter to O,
and has the same effect as executing the command PRI@37,26:0 . Pressingthe RETURN TO
BASIC overlay key does not alter the value assigned to the status parameter.

Selecting an Alternate Input/Output Format

When the symbol @ appears in an Input/Output command, the EDITOR uses a CR
(CARRIAGE RETURN) character for the end-of-record character; 255 (hexadecimal FF) for
the end-of-file mark; and 255 for a character to be deleted upon input or output (255 does not
represent an ASCII character, so no ASCII character is deleted).

When thesymbol % appearsinthel/O address instead of @ ,the EDITOR uses an alternate
I/0 format that has been established in a special PRINT command. The special PRINT
command consists of the I/O address @37,0: followed by three parameters.

The parameters represent the desired end-of-record character, end-of-file character, and

character to be ignored (removed from the text upon input or output). The values assigned to
the first two parameters are ASCII code numbers, and must be in the range 0-255. The value
assigned to the third parameter may be an ASCII code number, or may be in the range 128-255.
If the number falls in the range 128-255, no ASCII character is deleted upon input or output.

For example, executing the command PRI@37,0:10,4,13 prepares the EDITOR for requests
for an alternate Input/Output format. If subsequent commands specify the symbol % in-
stead of @ inthe I/O address, the EDITOR uses a LF (ASCII code 10) for the end-of-record
character, EOT (ASCII code 4) for the end-of-file mark; and CR (ASCII code 13) for the
character to be removed from incoming or outgoing text.

6-36 @ 4051R06 EDITOR

1/0 Commands

Differences Between BASIC and the EDITOR. BASIC only permits alternate Input/Output
formats to be used during Input operations, by specifying a%signin APPEND, OLD, or INPUT
commands. The EDITOR, however, allows alternate Input/Output formats to be used during
Output operations PRINT, SAVE, WRITE, SWN, as well as Input Operations APPEND, OLD,
SKIP, and INPUT. Only the EDITOR commands LIST and SEARCH are not affected by
specifying an alternate format and entering a % sign in the 1/O address.

Another difference between BASIC and the EDITOR is the treatment of CR (CARRIAGE
RETURN) characters upon input. BASIC cannot store CR characters in memory. When an
alternate format is used and an incoming string contains a CR character, BASIC inputs
characters up to the CR; butthe CR character and the remainder of that logical record are lost.

However, when an alternate Input/Output format is used and the end-of-record character is a
character other than CR, the EDITOR treats incoming CR characters as text characters. CR
characters are stored in the text buffer, butare not treated as end-of-record characters and are
not represented by the symbol specified in the }= command.

Resetting the Status Parameters. Once the three parameters have been assigned values in a
special PRINT command, the alternate Input/Output format is determined until the system
power is turned off oranother PRINT command is executed to change the values. Pressing the
RETURN TO BASIC overlay key does not affect the values assigned to the three parameters.

4051R06 EDITOR @ 6-37

NOTES

6-38 @ 4051R06 EDITOR

1/0 Commands
SAVE

The SAVE Command

Syntax Form:

SA [1/0 address] [edit line number] [, [edit line number]]

Descriptive Form:

SAVE [1/0 address] [starting line number] [, [ending line number]]

PURPOSE

The SAVE command outputs a copy of some or all of the current text to a specified peripheral
device. If no peripheral device is specified, the com mand saves text on the file thatis currently
open on the internal magnetic tape.

EXAMPLES

SAU

SRU 188,

SAU 500

SAU 188,508
Saue29:
SAUR23: 180,
SAUP23:,560
SAVE29: 190,568

EXPLANATION

The SAVE command allows an I/0 address, astarting line number, and an ending line number
to be specified. When the SAVE command is executed, a copy of the current text between and
including the starting and ending lines is sent to the specified peripheral device. For example,
the command SAV@29:100,500 transmits lines 100 through 500 of the current text to the
open file on device 29.

4051R06 EDITOR @ 6-39

1/0 Commands
SAVE

Executing a SAVE command does not change the current contents of the text buffer. When a
copy of the text is transmitted to an output device, the EDITOR removes the edit line number
fromeach line of text, and inserts an end-of-record character. The EDITOR also places an end-
of-file mark after the last line recorded on the tape.

Executing the SAVE command when the tape head is positioned to the beginning of the file
changes the file header name to ASCII TEXT (if this has not been previously done).

Before the SAVE command is executed, a file on the chosen peripheral device must be opened
by executing a FIND command. The FIND command positions the magnetic tape to the
beginning of the file, and opens the file for access. Unless a file is open on the specified device,
attempting to execute the SAVE command causesa MT File error message to appear on the
display.

Once the file is open, you may position the tape to a particular logical record within the file by
executing a SKIP or INPUT command. Using SKIP or INPUT commands to position the tape to
aparticularlogical record, allows you to output textto a particular locationin the file. (Refer to
the SKIP and INPUT commands for more detailed explanations.)

Whether the tape is positioned to the beginning of the file using the FIND command or to a
particular logical record using FIND and then SKIP or INPUT, the SAVE command stores text
on the tape beginning at the current position of the tape head. Any previously recorded
information that lies beyond the tape head, is lost.

After the SAVE command is executed, the file is closed and no longer available for access by
Input/Output commands.’

Default Values

When no I/0 address is specified in a SAVE command, the peripheral device is selected to be
the internal magnetic tape by default. If the starting line number is not specified, the first line

sent to the tape is the first line in the current text. If the ending line number is omitted, the last
line transmitted is the last line in the current text.

Forexample, thecommand SAV outputs a copy of the entire text to the file currently open on
the internal magnetic tape. SAV 100, outputs all text from line 100 on,and SAV 500 saves
text up to and including line 500.

9 . es . .
If the device specified in the SAVE command is the TEKTRONIX 4924 tape unit, the file is not closed. You

should close the file by pressing the RETURN TO BASIC key or executing a FIND command that specifies the
4924 tape unit as the peripheral device.

6-40 @ 4051R06 EDITOR

1/0 Commands
SAVE

Notes on the Command Syntax

The edit delimiter (,) may be omitted if the ending line number is not specified. Thatis, thecom-
mands SAV 100, and SAV100 arethesame. Both commands tellthe EDITORto outputthe
current text from line 100 on, and store the text on the internal magnetic tape. To store only line
100 on the tape, you must specify 100 as both the starting and ending line number, and enter
the command SAV 100,100 .

When specifying a peripheral device in a SAVE command, do not enter any blank spaces
between the I/0 address and the starting line number. For example, a command such
as SAV@29: ,500 causes a syntax error.

The Difference Between BASIC SAVE and EDITOR SAVE

Under EDITOR control you may send lines to a particular location on atape file by using SKIP
or INPUT commands to position the tape, then executinga SAVE command. In BASICthiscan
only be done using INPUT commands.

Error Messages

If no file is open on the specified peripheral device, attempting to execute a SAVE command
causes a MT File error message to appear on the display.

Executing the SAVE command causes a Device at EOF error message to appear if the file is
not large enough to hold all of the text. When this happens, text is written on the tape file until
the last byte before the physical end of the file is reached. The EDITOR places a logical end-of-
file mark in the last byte of the file, and returns the Device at EOF error message. The
remainder of the text transmitted by the SAVE command is not stored on the tape.

The Differences Between LIST and SAVE

— As in BASIC, the LIST and SAVE commands differ in their treatment of control
characters. The LIST command converts the control character to a printable symbol
before sending itto the specified peripheral device; butthe SAVE com mand does not.

— Executing the special PRINT command PRI@37,26:1 affects the operation of the
LIST command, but not the SAVE command (refer to the PRINT command for more
information).

— When no I/O address is specified in a LIST command, the display is chosen to be the

peripheral device by default. But when the peripheral device is omitted in a SAVE
command, the internal magnetic tape is chosen by default.

4051R06 EDITOR @ 6-41

170 Commands

SAVE

6-42

— When the SAVE command is executed, the EDITOR removes all edit line numbers,
and transmits only text characters to the specified device. However when the LIST
command is executed, the EDITOR transmits both edit line numbers and text, and
inserts a colon (:) immediately before the first text character in each line.

An Editing Example

The following example shows the SAVE command being used to output specified lines of text.

Example 1
LIST
1:C DEFINE FORTRAN FUNCTIONS F(X) AND DF (¥»
2% FUNCTION F(X)
CH F=Xi¥3-1,4734X$¥2-5,738¥X+6. 763
4 RETURN
S, ENC:
£ FUNCTION DF (XD
Ve DF=323X$¥¥2-2.94€¥X-5.7353
23 FETURHN
3: EHD
180 END OF FORTRAN FUNCTION DEFINITIONS
FINS
SAY 2,49
FINS
oL
LIST

FUNCTION F({X>
F=X¥¥3-1.472¥K¥¥2-5.738%%+6,763
RETURN

END

FUNCTION DF (x5
DF=2¥X¥¥2~2.946¥%-5.738

FETURN

ERD

Theinitial listing in Example 1 shows that the text buffer contains ten lines of FORTRAN code.
Thecommand FINS isexecuted toopen file 5 on the internal magnetic tape and position the
tape to the beginning of the file. Then the command SAV 2,9 instructs the EDITOR to store
lines 2 through 9 on file 5 of the internal magnetic tape.

The next three commands input and display the contents of file 5. Because the SAVE command

closed the file, another FIND command is executed, then the OLD command. A new listing
shows that lines 2 through 9 of the text have been saved on file 5 as requested.

@ 4051R06 EDITOR

I/0 Commands
SKIP

The SKIP Command

Syntax Form:

SK [1/0O address] [numeric constant]

Descriptive Form:

SKIP [1/0 address 1 [number of logical records to advance the READ/WRITE heads]

PURPOSE

The SKIP command moves the magnetic tape forward a specified number of logical records on
a peripheral device. |f no device is specified, the internal magnetic tape is chosen by default.

EXAMPLES

SK

SK 18
SKe293:18
SKe29,13: 18

EXPLANATION

The SKIP command is used to position the magnetic tapetoa particular logical record withina
file before performing an Input/Output operation. Executing the SKIP command before an
Inputcommand allows a portion of a file to be broughtinto the text buffer: executing the SKIP

command before an Output command allows text to be sent to a particular location in a file.

The SKIP command may be executed before any of the following EDITOR Input/Output
commands: APPEND, INPUT, LIST, OLD, PRINT, SEARCH, SKIP, SAVE, SWN, and WRITE.

NOTE
SKIP is not intended for use before the MARK command. Attempting to execute a

MARK command can destroy the contents of the magnetic tape if the tape is not
positioned to the beginning of a file.

4051R06 EDITOR @ 6-43

I/0 Commands
SKIP

The SKIP command allows an 1/0 address and a positive integer to be specified. When the

SKIP command is executed, the EDITOR moves the tape forward the specified number of
logical records on the peripheral device. For example, the command SK@29:10 moves the
tape forward 10 logical records on the file currently open on device 29.

The contents of the tape file are not altered by a SKIP command: logical records are "skipped
over” by the command, but not lost. The skipped records may be accessed again by
repositioning the tape using FIND and SKIP or INPUT commands.

Default Values

If no peripheral device is specified in the SKIP command, the EDITOR moves the tape on the
internal magnetic tape. For example, the command SK 10 advances the tape 10 logical
records on the internal magnetic tape.

If the number of logical records is omitted in a SKIP command, the EDITOR moves the tape
forward 65536 records by default.

Notes on the Command Syntax

When entering a SKIP command from the keyboard, do not enter any blank spaces between
the 1/0 address and number of logical records. For example, a command such
as SK@29: 10 causes a syntax error.

Error Messages

If a SKIP command attempts to move the tape beyond the physical or logical end of the file,
a Device at EOF error message appears on the display, and the file is closed to further
Input/Output operations. This means that the number of logical records specified in a SKIP
command must not exceed the number of records that remain on the file beyond the current
position of the tape head. For example, if there are three logical records between the current
position of the tape head and the end-of-file mark, executing the command SK 4 causes a
Device at EOF error and closes the file.

Special Uses for the SKIP Command

Editing a Very Large File. The SKIP command can ease the process of editing a very large file.
Instead of bringing the entire file into the text buffer, input part of the file. Start by executing a
FIND command, then position the tape to some record within the file using a SKIP command.
Next execute an OLD command to input the portion of the file that lies beyond the current
position of the tape head.

6-44 @ 4051R06 EDITOR

1/0 Commands
SKIP

Inputting a portion of a file instead of the entire file leaves more free space in the text buffer, and
thus more room for text to be inserted during editing.

When you finish editing a portion of a file, return the corrected text to its original location on the
tape by reopening the file and executing the SKIP command again, followed by a SAVE, SWN,
or WRITE command. You should use the same SKIP command you used before bringing the
lines into the text buffer. Forexample, if you executed FIN3 , SK 50 ,and OLD toinputall
but the first 50 lines of the file, the commands FIN3 , SK 50 , and SAVE output the
corrected lines to their original location on the tape file.

Editing a File that is Too Large for the Text Buffer. The SKIP command enables you to edit a file
that is too large to fit into the text buffer. If a file exceeds the current size of the text buffer,
executing an OLD command causes a Text Buf. Overflow error message to appear on the
display. After the message appears, the text buffer contains inputted lines up to, but not
including, the line that overflowed the text buffer.

To access the entire file, proceed as follows:

1. Execute the OLD command and obtainthe TextBuf. Overflow errormessage. Atthis
point you may edit the portion of the file that has been successfully brought into the text
buffer. If you need extra space in the text buffer for inserting new text, delete as many lines
as needed from the end of the text buffer.

2. Reopen the file and execute a SKIP command that "skips over” the records already
edited.

3. Execute the OLD command again. If no error message appears, the remainder of the
file has been successfully brought into the text buffer and may be edited.

Howeverifa TextBuf. Overflow message appears whenthe OLD command is executed,
edit the current contents of the text buffer, and return to step 2 of the above procedure.
Continue in this manner until the entire file has been accessed.

Saving the Edited Text. Each time a portion of the file is accessed and edited using the
procedure outlined above, the corrected text should be saved on a second file that s at leastas
large as the first one. When storing text on the second file, you must use the SKIP command to
ensure that each transmitted portion reaches the appropriate location on the file. After all text
has been edited and stored, the second file is a complete and corrected version of the first file.

4051R06 EDITOR @ 6-45

1/0 Commands

SKIP

6-46

An Editing Example

The following examples show the SKIP command being used to position the magnetic tape
before Input/Output operations.

Example 1
FIN1
oLD
LIST
: DOJZE I=1,NCHAR, 4
: IFCHCHRAR-I.LT.3) J=NCHAR-I+1
: K=C(I+3)-4
: JEN=1+J
: ENCODE (4.10,KA4(K> (KAL1<¢J)>4J=1,JEN)
.10 FORMAT (R4)
128 CONTINUE
: RETURN
END
FINI
SK 3
OoLD
LIST
: K=(I+3,-4
JEN=1+J
: ENCODE (4.18,KR4(K) (KAL1(J),J=1, JEN)
.18 FORMAT (A4)
120 CONTINUE
: RETURN
END
Example 2
FIN1
SK 6
INP
10 FORMAT (R4)

4051R06 EDITOR

170 Commands
SKIP

Example 3
FIN2
oLp
LIST
: J=J+1
: IF (J.GT.I» RETURN
: H=N+1
DEL B,08+3
I
: IF (BUFF(J>.NE.74B) GO TO 48
: INCH)=TABLE63(BUFF(J+13+1,2>
: J=J+1
: GO 7O 2o
FINZ
SK 3
SRy
FIN2
OLD
LIST
J=J+1
IF (J.GT.I> RETURN
H=H+1

IF (BUFF{J>.NE.74B)> GO TO 48
INCN)=TABLE3(BUFF (J+1)>+1,2)
J=J+1

GO TO 30

Example 1 shows the SKIP command being used before the OLD command. First the com-
mands FIN1 ,OLD ,and LIST areexecuted toinputand list on the display the contents of
the firstfile from the internal magnetic tape. The listing shows that the file consists of ten lines
of FORTRAN code.

The command FIN1 reopens the file and positions the tape to the beginning of the file. Next
the command SK 3 advances the tape three logical records on file 1. Then the com-
mand OLD is executed.

Because the tape is positioned to the beginning of the fourth record on the file, the first three
logical records of file 1 are “skipped” when the OLD command is executed. A listing shows that
only the last seven lines from file 1 have been brought into the text buffer for editing.

In Example 2 the SKIP command is executed before the INPUT command. First the com-
mand FIN1 reopens file 1 and positions the tape to the beginning of the file. Next the com-
mand SK 6 advances the tape six logical records on file 1. Then the command INP is
executed.

4051R06 EDITOR @ 6-47

1/0 Commands
SKIP

Because the tape is positioned to the beginning of the seventh record on the file, executing the
INPUT command causes the seventh logical record of file 1 to appear on the display.

Example 3 shows the SKIP command being used before the Output command SAVE. First the
command FIN2 ,OLD ,and LIST areexecutedtoinputand listonthedisplay the contents
of file 2 of the internal magnetic tape. The listing shows that the file consists of three lines of
FORTRAN code. Then the text buffer is cleared by the command DEL 0,0+3 andthe INSERT
command is used to create four new lines of code.

The command FIN2 reopens the file and positions the tape to the beginning of the file;
then SK 3 advances the tape three records on file 2; and the command SAV is executed.
Because the tape is positioned to the beginning of the fourth record on the file, the first three
logical records are "skipped” when the SAVE command is executed. After the SAVE command
is executed, a new listing shows that the newly created lines have been stored immediately
after the third logical record on file 2.

6-48 @ 4051R06 EDITOR

I/0 Commands
SWN (Save With Number)

The SWN (Save With Number) Command

Syntax Form:

SWN [1/0 address] [edit line number] [, [edit line number |}]

Descriptive Form:

SWN [170 address] [starting line number] [, [ending line number]]

PURPOSE

The SWN command sends a copy of some or all of the current text to a specified peripheral
device. Edit line numbers are saved as part of the text. If no peripheral device is specified, the
SWN command sends lines of text and their edit line numbers to the file that is currently open
on the internal magnetic tape.

EXAMPLES

SWN

SWN 188,

SWN ,568

SWN 168,560
SHN@29:
SHNE29: 100,
SHNE23: , 568
SHN@29: 1088, 588

EXPLANATION

The SWN (Save With Number) command allows an I/O address, a starting line number, and an
ending line number to be specified. When the SWN command is executed, a copy of the current
text between and including the starting and ending lines is sent to the specified peripheral
device. Edit line numbers are transmitted along with the text. For example, the com-

mand SWN@29:100,500 outputs lines 100 through 500 along with their edit line numbers to
the open file on device 29.

4051R06 EDITOR @ 6-49

I/0 Commands
SWN (Save With Number)

6-50

Edit line numbers are sent to the device, but not the colon (:) the EDITOR uses to separate edit
line numbers from text in listings.

Executing a SWN command does not change the current contents of the text buffer. When a
copy of the line numbers and text is transmitted to an output device, the EDITOR inserts an
end-of-record character for each line of text, and places an end-of-file mark after the last line
recorded on the tape.

Executing the SWN command when the tape is positioned to the beginning of a file changes
the file header name to ASCII TEXT (if this has not been previously done).

When the SWN command is executed, one blank line is created on the file immediately before
the first line stored by the command. If the stored text is a BASIC program, the blank line
cannot be detected by the BASIC Interpreter.

Before the SWN command is executed, a file on the chosen peripheral device must be opened
by executing a FIND command. The FIND command positions the magnetic tape to the
beginning of the file, and opens the file for access. Unless a FIND command is executed to
position the tape and open a file, attempting to execute the SWN command causes

a MT File error message to appear on the display.

Once the file is open, you may position the tape to a particular logical record within the file by
executing a SKIP or INPUT command. Using SKIP or INPUT commands to position the tape to
aparticularlogical record, allows you to output text to a particular locationin the file. (Refer to
the SKIP and INPUT commands for more detailed explanations.)

Whether the tape is positioned to the beginning of the file using the FIND command or to a
particular logical record using FIND and then SKIP or INPUT, the SWN command stores text
on the tape beginning at the current position of the tape head. Any previously recorded
information that lies beyond the tape head, is lost.

After the SWN command is executed, the file is closed and no longer available for access.

Format

Edit line numbers saved by the SWN command become part of the text and no longer serve as
edit line numbers. When the text is brought back into the text buffer and listed on the display,
the format is as follows: the colon that precedes each line of text is followed by a blank space.
The next four character positions in the line contain the edit line number saved by the SWN
command. One or more of these positions may be blank, depending on the number of digits in
the line number, and all four positions are blank if the line was unnumbered. Another blank
space follows, then the remainder of the text begins in the seventh character position. For an
iflustration of the format, see "An Editing Example” in this explanation.

@ 4051R06 EDITOR

1/0 Commands
SWN (Save With Number)

Default Values

When no I/0 address is specified in a SWN command, the peripheral device is selected to be
the internal magnetic tape by default. If the starting line number is not specified, the firstline
sent to the tape is the first line in the current text. If the ending line number is omitted, the last
line transmitted is the last line in the current text.

Forexample, thecommand SWN outputs acopy of the entire text including edit line numbers
to the file currently open on the internal magnetic tape. SWN 100, outputs all line numbers
and textfrom line 100on,and SWN ,500 saves line numbers and textup to and including line
500.

Notes on the Command Syntax

The edit delimiter (,) may be omitted if the ending line number is not specified. That s, the com-
mands SWN 100, and SWN 100 are the same. Both commands tell the EDITOR to output
the current edit line numbers and text from line 100 on. To store only line 100 on the tape you
must specify 100 as both the starting and ending line number, and enter the command
SWN 100,100 .

When specifying a peripheral device in a SWN command, do not enter any blank spaces
between 1/0O address and the starting line number. For example, the command
SWN@29: 100,500 causes a syntax error.

The Difference Between SWN and SAVE

The only difference between the SWN and SAVE commands is that SWN stores edit line
numbers along with the text, but the SAVE command does not. If the specified lines of textare
unnumbered, the SWN and SAVE commands perform the same function; however, six blank
spaces precede each line stored by the SWN command. (These six spaces include the four that
would have been used to store the edit line number if the line had been numbered.)

Differences Between SWN and LIST

One difference between the SWN and LIST commands is that SWN closes the file, but LIST
does not. That is, the LIST command can be executed repeatedly without executing another
FIND command, but the SWN command cannot.

Another difference is that the LIST command outputs a colon (:) before the firsttext character
in each line, but the SWN command does not.

The LIST and SWN commands also differ in their treatment of control characters. The LIST

command converts the control character to a printable symbol before sending it to the
specified device; but the SWN command does not.

4051R06 EDITOR @ 6-51

I/0 Commands
SWN (Save With Number)

Error Messages

Ifnofileis open onthe internal magnetic tape, executinga SWN command to output text to the
tape causes a MT File error message to appear on the display.

Executing the SWN command causes a Device at EOF error message to appear if the file is
notlarge enoughto hold all of the edit line numbers and text. When this happens, text is written
on the tape file until the last byte before the physical end of the file is reached. The EDITOR
places a logical end-of-file mark in the last byte of the file, and returns the Device at

EOF error message. The remainder of the line numbers and text transmitted by the SWN
command are not stored on the tape.

Forinformation about how large a file must be marked in order to store the current text, refer to
the explanation of the LASTLINE command.

Special Uses for the SWN Command

The SWN command can be used to create BASIC program line numbers. When using the
EDITOR to write a BASIC program, you may enter the statements without program line
numbers, execute an appropriate RENUMBER command, then use the SWN command to
convert edit line numbers into program line numbers. This method is illustrated below in "An
Editing Example. "

An Editing Example

The following example shows the SWN command being used to output specified lines of text
along with their edit line numbers.

Example 1

LIST
4l FOR R=K+1 TO N
4701 IF AESC(ACRWKDY)Y <= ABSCACLK>Y THEN 438
4c@iL=R
49 NEXT K
388 IF L=K THEHN &1#8
S18:FOR P=1 TO H+i
SeaiT=ACK.F>
S3AIAKFI=HiL P
SR AL FY=T
SSEINEXT F

FINZ

SH

(continued on next page)

6-52 @ 4051R06 EDITOR

1/0 Commands
SWN (Save With Number)

FINZ
oLb
LIST

460 FOR R=K+1 TO H

4760 IF ABSCA(RK)) <= ABSCA(L.K>)> THEN 499
488 L=k

430 NEXT R

980 IF L=K THEN ©£10@

518 FOR P=1 TO N+t

528 T=AlK,P>

538 ACKPI=ALLP)

948 ACL,PI=T

550 HEXT P

Example 1 illustrates how you may use the SWN command to create BASIC program line
numbers, instead of entering each line number from the keyboard. The initial listing shows that
the text consists of ten BASIC program statements entered without program line numbers.
Prior to this listing, a RENUMBER command was executed to assign edit line numbers
460, 470, 480, ... to the text.

File 3 on the internal magnetic tape is opened using the command FIN3 , then the SWN
command is executed. When the SWN command is executed, each BASIC program statement
isstored on file 3, along with the edit line number that preceded the statement in the text buffer.

Todisplay the results, file 3 is reopened and the text brought back into the text buffer using the
commands FIN3 and OLD . A new listing shows that the numbers previously assigned as
edit line numbers have been incorporated into the text. The numbers now appear as BASIC
program line numbers preceding each statement.

4051R06 EDITOR @ 6-53

6-54

NOTES

4051R06 EDITOR

I/0 Commands
WRITE

The WRITE Command

Syntax Form:

w [o address | [edit line number] [Ueditiine number]]

Descriptive Form:

WRITE [1/O address] [starting line number J [, [ending line number] J

PURPOSE

The WRITE command outputs a copy of some or all of the current text to a specified peripheral
device. If no peripheral device is specified, the command writes text on the file that is currently
open on the internal magnetic tape. After text is written on a file, the file remains open for

access by Output operations.

The WRITE and SAVE commands perform similar functions. The only difference is that after
storing text on a tape file, the SAVE command closes the file, but the WRITE command leaves

the file open to Output operations.

EXAMPLES

W 160,
W58
W 1@a,
W
We23: 108,

Wezd:,500

Wee29: 1ae, Soe

(]

[aX)

[¥e)

.e < X
- <
w
[
=

[
[4Y]
i

4051R06 EDITOR @

6-55

1/0 Commands

WRITE

6-56

EXPLANATION

The WRITE command allows an I/0 address, a starting line number, and an ending line number
to be specified. When the WRITE command is executed, a copy of the current text between and
including the starting and ending lines is sent to the specified peripheral device. For example,
thecommand W@29:100,500 transmits lines 100 through 500 of the current textto the open
file on device 29.

Executing a WRITE command does not change the current contents of the text buffer. When a
copy of the text is transmitted to an output device, the EDITOR removes the edit line number
from each line of text, and inserts an end-of-record character. The EDITOR also places an end-
of-file mark after the last line recorded on the tape.

Executing the WRITE command when the tape head is at the beginning of the file changes the
file header name to ASCII TEXT (if this has not been previously done).

Before executing the WRITE command, you must open a file on the chosen peripheral device
by executing a FIND command. The FIND command positions the magnetic tape to the
beginning of the file, and opens the file for access. Unless a FIND command is executed to
position the tape and open a file, attempting to execute the WRITE command causes a
MT File error message to appear on the display.

Once the file is open, you may position the tape to a particular logical record within the file by
executing a SKIP or INPUT command. Using SKIP or INPUT commands to position the tape to
aparticularlogical record, allows you to output text to a particular location in the file. (Refer to
the SKIP and INPUT commands for more detailed explanations.)

Whether the tape is positioned to the beginning of the file using the FIND command, orto a
particularlogical record using FIND and then SKIP or INPUT, the WRITE command stores text
on the tape beginning at the current position of the tape head. Any previously recorded
information that lies beyond the tape head is lost.

After the WRITE command is executed, the file remains open and available to Output
operations. Subsequent Output commands overwrite the end-of-file mark left by the WRITE
command, and insert a new end-of-file mark when the operation is finished.

For example, a SAVE command can be executed after a WRITE command, without reopening
the file. The SAVE command overwrites the previous end-of-file mark, and places a new end-
of-file mark at the end of the saved lines.

The WRITE command can be executed repeatedly to output portions of the text. OnceaWRITE
command has been executed, each subsequent WRITE command overwrites the end-of-file
mark left by the previous WRITE command, and begins storing text at the current position of
the tape head. Thus you may edit and save text in small portions, by executing a WRITE
command each time you finish editing a section of the text.

@ 4051R06 EDITOR

I/0 Commands
WRITE

Forinstance, thecommands W 1,4 then W5,10 then W11,20 may be executed to transmit lines
through 20 of the current text to the internal magnetic tape. The final result of executing the
three commands is the same as if the command W 1,20 had been executed.

After executing a WRITE command and before turning the system power off or removing the
internal magnetic tape unit, close the file by executing a FIND command or pressing the

RETURN TO BASIC overlay key. Closing the file forces any information remaining in the
magnetic tape buffer onto the tape, so that no transmitted text is lost.

Default Values

When no I/0 address is specified ina WRITE command, the peripheral device is selected to be
the internal magnetic tape by default. If the starting line number is not specified, the first line
sent to the tape is the first line in the current text. If the ending line number is omitted, the last
line transmitted is the last line in the current text.

For example, the command W outputs a copy of the entire text to the file currently open on
the internal magnetic tape. W 100, outputs all text from line 100 on,and W ,500 saves text
up to and including line 500.

Notes on the Command Syntax

The edit delimiter (,) may be omitted if the ending line number is not specified. Thatis,thecom-
mands W 100, and W 100 are the same. Both commands tell the EDITOR to output the
current text from line 100 on, and store the text on the internal magnetic tape. To store only line
100, you must specify 100 as both the starting and ending line number, and enter the com-
mand W 100,100 .

When specifying a peripheral device in a WRITE command, do not enter any blank spaces
between the I/O address and the starting line number. For example, the command
W@29: 100,500 causes a syntax error.

The Difference Between BASIC WRITE and EDITOR WRITE

The EDITOR's WRITE command is completely different from BASIC's WRITE command. In
BASIC, the WRITE command sends specified data items to a peripheral device in machine
dependent binary code. However, the EDITOR command WRITE outputs text to a peripheral
device in ASCII code.

4051R06 EDITOR @ 6-57

1/0 Commands
WRITE

Error Messages

If no file is open on the specified peripheral device, attempting to execute a WRITE command
causes a MT File error message to appear on the display.

After a WRITE command is executed, the file remains open to Output operations only.
Attempting to execute an APPEND, OLD, INPUT, or SKIP command without reopening the file
causes an error. A Device Access or Buffer Access error message appears on the display.
Both messages mean that the specified device is not available for access by Input operations,
and that the magnetic tape buffer cannot receive information from the device.

Executing the WRITE command to the internal magnetic tape causesa Device at EOF error
message to appear if the file is not large enough to hold all of the text. When this happens, text
is written on the tape file until the last byte before the physical end of the file is reached. The
EDITOR places a logical end-of-file mark in the last byte of the file, and returns the Device at
EOF error message. The remainder of the text transmitted by the WRITE command is not
stored on the tape.

For more information about how large a file must be marked in order to store the current text,
refer to the explanation of the LASTLINE command.

The Difference Between WRITE and SAVE

The only difference between the WRITE and SAVE commands is that the SAVE command
closes the file, but the WRITE command does not. That is, the WRITE command can be
executed repeatedly without executing another FIND command, but the SAVE command
cannot.

6-58 @ 4051R06 EDITOR

I/0 Commands
WRITE

An Editing Example

The following example shows the WRITE command being used to output specified lines of
text.

Example 1

LIST
558: READC(S. 1 JBUFF
ST HD FORMAT (588R1 >
Sve:C ROUTINE TO INPUT STRINGS OF LESS THAN
S HS 586 CHARS

590: I1=5081

660: 16 CONTINUE

616: I=1-1

620: IF ¢I,ER.1> GO TO 20

€30: IF (BUFF(1),.E@,55B> GO TO 19

£40:20 CONTINUE
658:C DECODE LOOP

IF (1.EQ.1> GO TO 28
IF ¢(BUFF(¢I)>.EQ.558> GO TO 1@

660: N=9
676° J=0
680:30 CONTINUE
FIN3
W +S€0
W 599,640
W 660,
FIN3
oLD
LIST
. READ (5. 1 YBUFF
' FORMAT ¢S00R1)
: 1=501
118 CONTINUE
: I=1-1
20 CONTINUE
: N=9
: J=0
239 CONTINUE

Three WRITE commands are executed in Example 1. The initial listing shows that the text
consists of fourteen lines of FORTRAN code. The command FIN3 is executed to open file 3
on the internal magnetic tape and position the tape to the beginning of the file.

4051R06 EDITOR @ 6-59

170 Commands
WRITE

Next the three WRITE commands are executed. The command W ,560 tells the EDITOR to
output the text up to and including line 560 to file 3 on the internal magnetic tape. The com-
mand W 590,640 tellsthe EDITOR to outputlines 590 through 640,and W 660, outputsthe

text from line 660 on.

To display the results, the contents of file 3 are brought into the text buffer using the com-
mand FIN3 and OLD .Anew listing shows thatthe specified portions of the text have been

saved in order on the tape file.

6-60 @ 4051R06 EDITOR

Error Number

129

132

133

134

138

139

141

4051R06 EDITOR

Appendix A

ERROR MESSAGES

Meaning

A peripheral device on the GPIB (General Purpose Interface Bus) is
requesting service.

A RENUMBER command has attempted to assign an edit line
number larger than 9999 to one or more lines of text. Execute a new
RENUMBER command that specifies either a smaller increment, or
a smaller first new edit line number.

Text inserted from the keyboard using the INSERT command, or
brought from a peripheral device using OLD or APPEND, has
exceeded the current length of the text buffer. The text buffer
contains inserted or inputted text up to, but not including, the line
that overflowed the buffer. To increase the size of the text buffer, you
may 1) delete several lines of text; or 2) return to BASIC, delete-
variables and programs currently stored in memory, then call the
EDITOR again.

Characters have been entered too rapidly from the keyboard,
overflowing the "queue” buffer that acts as an intermediary between
the keyboard and the line buffer. The error is not fatal. However, the
characters that overflowed the queue are lost.

An incorrect command has been entered from the keyboard.

An incorrect or meaningless command has been entered from the
keyboard.

1) Anattempt has been made to input text from a magnetic tape file
that is currently open to Output operations only. An example is
executing the command W 100,500 and then OLD .

2) A peripheral device has attempted to use the magnetic tape
buffer while information from a different device is still in the
magnetic tape buffer. An example is executing the command
W@3:100,500 and then INP .

A-1

Appendix A

Error Number

143-144-145

146

147

148

Meaning

1) Anattempt has been made to execute an Input/Output command
while nofile is open on the specified peripheral device. A file must be
opened for access by executing a FIND command.

2) An input command (APPEND, INPUT, SKIP, or OLD) has
attempted to read from a file marked NEW or LAST .

1) An Input command has attempted to read beyond the logical or
physical end of the file. An example is executing the com-

mand SKIP 20 when the open file on the internal magnetic tape
consists of fewer than 20 logical records.

2) AnOutput command has attempted to write beyond the physical
end of the file.

Same as error number 141. An example is executing the com-
mand W 100,500 and then INP .

An incorrect command has been entered from the keyboard. (Same
as error number 138.)

@ 4051R06 EDITOR

Appendix A

In addition to those described on the preceding pages, EDITOR ERROR messages may appear
that are the same as BASIC error messages. Error messages that are "borrowed” from BASIC
are preceded by the line EDITOR ERROR , immediately followed by a blank line, and then a
message that gives an error number smaller than 129. The most common of these errors are
described below. If you encounter others, refer to Appendix A in the Graphic System

Reference Manual.

Error Number
52

53

54

56

57

58

67

69

4051R06 EDITOR

Meaning

A non-existent tape file has been specified in a FIND command.

The EDITOR is unable to read a portion of the current internal
magnetic tape file. An example is attempting to input a file under
non-header format that was created under header format.

The end of the magnetic tape has been detected. An example is
executinga MARK command that attempts to mark files beyond the
end of the magnetic tape.

An attempt has been made to send information to a file
marked SECRET .

An attempt has been made to read or write to a non-existent tape
cartridge. Insert a tape cartridge into the tape slot and execute the
operation again.

An attempt has been made to read text that is stored in an invalid
magnetic tape format. Executinga MARK command while the tape is
not positioned to the beginning of a file, can create an invalid
magnetic tape format. When this happens, the tape must be re-
marked.

An attempt has been made to execute an illegal Input/Output
operation on aninternal peripheral device. An example is executing
the command A@32:200 .

1) An input error has occurred on the General Purpose Interface
Bus. This usually means that there are no devices connected to the
GPIB.

2) The primary address specified in an Input/Output command is
not within the range 0 through 255.

4051R06 EDITOR

Appendix B

TABLES

B-1

Appendix B

ASCIl CODE CHART

g 16 32 48 64 8f 96 112
NUL | DLE SP g @ p
1 17 33 49 65 81 97 113
SOH DC1 ! 1 A q
2 18 34 50 86 82 98 114
STX DC2 " 2 B r
3 19 35 51 67 83 99 115
ETX DC3 # 3 C S
4 28 36 52 68 84 199 116
EOT DC4 $ 4 D t
5 21 37 53 69 85 191 117
ENQ | NAK % 5 E u
6 22 38 54 79 86 192 118
ACK | SYN & 6 F v
7 23 39 55 71 87 143 119
BEL ETB ! 7 G w
BELL
8 24 40 56 72 88 184 129
BS CAN (8 H X
BACK SPACE
9 25 41 57 73 89 195 121
HT EM) 9 | y
14 26 42 58 74 of 196 122
LF sSuB * J z
1 27 43 59 75 91 197 123
VT ESC +) K {
12 28 a4 60 76 92 198 124
FF FS , < L :
13 29 45 61 77 93 199 125
CR GS - = M }
RETURN
14 3g a6 62 78 94 19 126
SO RS > N ~
15 31 a7 63 79 95 111 127
sl us / ? o) RusOUT

B-2

4051R06 EDITOR

Appendix B

4051R06 EDITOR
COMMAND SUMMARY

Command Example Action Taken

EDITING

COMMANDS

CARD CA 80,42 Formats the text buffer into lines that are 80 characters

long, splitting lines of text having more than 80 characters
into 2 or more lines, and using the character ¥ (decimal
equivalent 42) to fill out any lines of text that have less
than 80 characters.

CASE CAS 1,100 In lines 1 through 100 of the text buffer, lower case char-
acters a-z are replaced by their uppercase equivalents A-Z,

if the UPPERCASE flag has been set. If the LOWERCASE flag
has been set, uppercase characters A-Z are replaced by their
lowercase equivalents a-z.

COPY C 1,3,10 Duplicates lines 1 through 3 of the text buffer, placing the
copied text immediately before line 10.”

DELETE D 1,10 Deletes lines 1 through 10 from the text buffer.

INSERT 1100 Responds with five spaces and a colon (:) to prompt the

entry of new text from the keyboard. Lines of text entered
after the colon are placed in the text buffer immediately
before the line 100.

LIST L @29:200,300 Lists lines 200 through 300 of the text buffer on peripheral
device 29 on the General Purpose Interface Bus.

MOVE M 13,10 Moves lines 1 through 3 of the text buffer, placing them imme-
diately before line 10.**

NLSEARCH and NL 0,1000 "REM"%* Searches lines 0 through 1000 of the text buffer, and deletes
Delete Line lines found to contain the string REM .

NLSEARCH and |NL 1,100 "ON ERROR","ON SIZE"|Searches lines 1 through 100 of the text buffer, and replaces

Replace String occurrences of the string ON ERROR with the string ON
SIZE .

SEARCH and S @29:0,2000 "638-" Searches lines 0 through 2000 of the text buffer, and lists

List Line on device 29 all lines found to contain the string 638- .

SEARCH and S 1,100 "Mr. ”, Searches lines 1 through 100 of the text buffer for the

Edit Line string Mr. . One by one, lines found to contain the string

are recalled to the line buffer, and wait to be edited.

SEARCH and S @29:0,3000 "pd."* Searches lines 0 through 3000 of the text buffer for the
Delete Line string pd. . Lines found to contain the string are listed
on device 29, and deleted from the text buffer.

SEARCH and S @29:1,1000 "PRI",”PRI @3:" Searches lines 1 through 1000 of the text buffer and replaces
Replace String occurrences of the string PRI with the string PRI @3: .
Changed lines are listed on device 29.

“See end of table “*See end of table

4051R06 EDITOR @ B-3

Appendix B

4051R06 EDITOR

COMMAND SUMMARY (cont.)

Command

Example

Action Taken

SORT

$0 1,10:1,2,3

Rearranges lines 1 through 10 in the text buffer, sorting
"alphabetically” according to the ASCII values of characters
found in the first three character positions within each

line.

REVSORT

REV 1,10:1,2,3

Rearranges lines 1 through 10 in the text buffer, sorting
"alphabetically in reverse” according to the ASCII values of
characters found in the first three character positions with-
in each line.

ENVIRONMENTAL
COMMANDS

LASTLINE

LA

Returns the following information about the current status
of the text buffer:
— The last edit line number in the text buffer (includ-
ing offset if the line has no number).
— The total number of lines in the text buffer.
— The number of bytes needed to save the current con-
tents of the buffer on a storage device.
— The number of unused bytes remaining in the text buf-
fer.

LOWERCASE

LO

Enables the EDITOR to distinguish between lowercase char-
acters a-z and their uppercase equivalents A-Z during search-
ing and sorting operations. Prepares the EDITOR to change
uppercase characters into lowercase characters if the CASE
command is executed.

UPPERCASE

Causes the EDITOR to treat lowercase characters a-z in the
text buffer as uppercase characters A-Z during searching and
sorting operations. Prepares the EDITOR to change lowercase
characters into uppercase characters if the CASE command is
executed.

RENUMBER

R 100,10,3

Renumbers all lines in the text buffer starting with the line
currently numbered 3. The new edit line numbers start at 100
and increase with an increment of 10.

Makes the character / stand for "END-OF-RECORD.” The
character / may be used during line editing to insert end-of-
record characters into the text, and may appear in target
and replacement strings during searching operations.

Makes the character * stand for "any digit 0 to 9,” so that
any of the digits 0 through 9 satisfy a search for the char-
acter#.

Makes the character ? stand for "any character.” Any

ASCII character satisfies a search for the character ?

When used in a replacement string, ? indicates that the ASCI!I
character found in that position should remain unchanged by
the replacement procedure.

Allows the character + to be used as a prefix meaning "all
but, " so that all characters satisfy a search except the one
immediately following +. For instance, the command S "+A"
searches the text buffer for all ASCII characters except A.

@ 4051R06 EDITOR

Appendix B

4051R06 EDITOR

COMMAND SUMMARY (cont.)

Command

Example

Action Taken

Special PRINT
Commands

Processor Status

PRI @37,0:10,4,13

Prepares the microprocessor for requests for an alternate
Input/Output format. When a % sign is used in an 1/0O command
instead of @, the special format is as follows:

end-of-record = LF (ASCII 10)

end-of-file = EOT (ASCII 4)

character to ignore = CR (ASCII 13)

PRI @37,26:1

Tells the microprocessor to send a line feed (LF) character
after each CR in the text when listing text on external de-
vices (LIST and SEARCH commands).

PRI @37,26:0

Tells the microprocessor to send a CR (instead of CR and LF)
after each line when listing text on external devices.

Magnetic Tape
Status

PRI @33,0:1,1,1

Sends the following status information to the microprocessor:
— Format the tape into 128-byte physical records.
— Do not use the checksum error checking technique.
— Do not use file header format.

PRI @33,0:0,0,0

Sends the following status information to the microprocessor:
— Format the tape into 256-byte physical records.
— Use the checksum error checking technique.
— Use file header format.

170
COMMANDS

APPEND

A @29:50

Adds logica! records to the text buffer from the file cur-
rently open on device 29. The incoming text is added im-
mediately before line 50 of the text buffer.

FIND

F @29:4

Positions the READ/WRITE heads to the beginning of file 4
on device 29, and opens the file for access by Input/Output
operations.

INPUT

INP @29:

Displays one logical record from the file currently open on
device 29, and positions the READ/WRITE heads over the next
record on file.

MARK

MA 2,5120

Reserves space on the internal magnetic tape for 2 new files,
starting at the current position of the tape heads. 5120 bytes
of storage are reserved for each file.

oLD

0 @29:

Clears the text buffer, then brings logical records into the
text buffer from the current file on device 29.

PRINT

P @29:List of File 3

Prints List of File 3 on device 29.

SAVE

SA @29:100,500

Stores an unnumbered copy of text buffer lines 100 through
500 on the file currently open on device 29. Once the lines
are saved, the file is closed to access by Input/Output oper-
ations.

SWN

SWN @29:100,500

Stores a numbered copy of text buffer lines 100 through 500
on the file currently open on device 29. Once the lines and
edit line numbers are saved, the file is closed to access by
Input/Output operations.

4051R06 EDITOR

@ B-5

Appendix B

B-6

4051R06 EDITOR

COMMAND SUMMARY (cont.)

Command Example Action Taken

SKIP SK @29:10 Moves the READ/WRITE heads 10 logical records forward on
the current file on device 29. The portion of the file beyond
the new position of the READ/WRITE heads remains open for
access by Input/Output operations.

WRITE W @29:100,500 Stores an unnumbered copy of text buffer lines 100 through

500 on the file currently open on device 29. Once the lines
are stored, the file remains open for access by Output oper-
ations.

*If a non-existent line number is specified in an EDITOR command, the EDITOR automatically uses the line having the next

largest edit line number.

**A portion of the text buffer may include lines which do not have edit line numbers. EDITOR commands actupon all lines of the
text buffer (numbered or not) which fall between the specified starting and ending line numbers.

@ 4051R06 EDITOR

HOL11d3 904 +s0v

TABLE OF EDITOR COMMANDS
AND DEFAULT PARAMETER VALUES

Command Syntax (Descriptive Form) Default Values
APPEND APPEND [1/0 address 1 [destination for appended text } 1/0 address = @33,4:
destination = after the last line of text
CARD CARD [number of characters] [, [fil) character (decimal equivalent)]] number of characters = 80
fill character = space
CASE CASE [starting line number] [. [ending line number]] Starting line number = first line of text
. ending line number = last line of text
COPY COPY [starting line number] [s [ending line number] [, [destination for copied text]]] Starting line number = first line of text
ending line number = last line of text
destination = after the last line of text
DELETE DELETE starting line number [. [ending line number]] ending line number = starting line number
FIND FIND [1/Oaddress) [file number] /0 address = @33,27:
file number = 0
®
INPUT INPUT [1/O address | I/O address = @33,13:
INSERT INSERT [destination for inserted lines of text | destination = before the first line of text
LASTLINE LASTLINE
LIST LIST [1/0 address] [starting line number] [., [ending line number]] 1/0 address = @32,19
starting line number = first line of text
ending line number = last line of text
LOWERCASE LOWERCASE LOWERCASE
MARK MARK [number of files] [., [number of bytes per file]] number of files = 0
number of bytes per file = 768
MOVE MOVE [starting line number] [, [ending fine number] [, [destination for moved text]]] starting line number = first line of text
ending line number = Ilast line of text
destination = after the last line of text
NLSEARCH NLSEARCH [[starting line number] , [ending line number |] space ' target string ' Starting line number = first line of text
‘ \ ending line number = last line of text
*
) , * replacement string '’ ’
®
~

g xipuaddy

8-8

HO11d3 904 S0

TABLE OF EDITOR COMMANDS
AND DEFAULT PARAMETER VALUES

(cont)
Command Syntax (Descriptive Form) Default Values
oLD OLD { 1/0 address] I1/0 address = @33,4:
PRINT PRINT [I/0 address] [ASCI! character string] /0 address = @32,12:
RENUMBER RENUMBER [new starting line number :I [. [increment between new line numbers] [, new starting line number = 1
increment between new edit line numbers = 1
{ line in the current text where renumbering is to begin |]] where to begin renumbering = first line of text
REVSORT REVSORT [starting line number] . [ending line number] , character position [, character position Starting line number = first line of text
ending line number = last line of text
(...1]
SAVE SAVE [1/0 address] [starting line number] [., [ending line number]] 1/0 address = @33,12:
starting line number = first line of text
ending line number = last line of text
SEARCH SEARCH [1/0 address] [[starting line number | , [ending line number] ,] space ‘' target string ' I/0 address = @32.19
- starting line number = first line of text
|: | - [replacement string "1} ending line number = last line of text
SKIP SKIP [1/0 address] [number of logical records to advance the READ/WRITE heads] number of logical records = 65536
SORT SORT [starting line number :]) [ending line number] , character position [. character position starting line number = first line of text
ending line number = last line of text
t...1]
SWN SWN [170 address] [starting line number] [, [ending line number]] |/O addfeSS = @33|12

(Save With Number)

starting line number = first line of text
ending line number = last line of text

UPPERCASE

UPPERCASE

LOWERCASE

WRITE

WRITE [1/O address] [starting line number] [, [ending line number } }

1/0 address = @33,12:
starting line number = first line of text
ending line number = last line of text

g xipuaddy

HO11a3 904 LS0y

6-9

TABLE OF EDITOR COMMANDS
AND DEFAULT PARAMETER VALUES

(cont)
Command Syntax (Descriptive Form) Default Values
1=] = [ASCIl character] initial value: 1=1]
default: no assignment
= # = [ASCHi character) initial value: # =
default: no assignment
~ = ~ = [ASCIl character] initial value: ~ = ~

default: no assignment

_ = [ASCII character)

initial value: _ = _
default: no assignment

a xjpuaddy

Appendix B

B-10

Syntax and Descriptive Forms

The APPEND Command

Syntax Form:

A [1/Oaddress | [edit line number]

Descriptive Form:

APPEND [1/O address | [destination for appended text }

The CARD Command

Syntax Form:

CA [numeric constant] [, [numeric constant]]

Descriptive Form:

CARD [number of characters] [, [fitt character (decimal equivalent)]]

The CASE Command

Syntax Form:

CAS [edit line number] [. [edit line number] :]

Descriptive Form:

CASE [starting line number] [, [ending line number |]

The COPY Command

Syntax Form:

C [edit line number] [. [edit line number] [, [edit line number }]]

Descriptive Form:

COPY [starting line number] [B [ending line number] [, | destination for copied text]]]

4051R06 EDITOR

Appendix B

The DELETE Command

Syntax Form:

D edit line number [, [edit line number]]

Descriptive Form:

DELETE starting line number [, [ending tine number }]

The FIND Command

Syntax Form:

F [1/Oaddress) [numeric constant]

Descriptive Form:

FIND [1/O address] [file number]

The INPUT Command

Syntax Form:

INP [1/O address]

Descriptive Form:

INPUT [1/O address]

The INSERT Command

Syntax Form:

I [edit line number]

Descriptive Form:

INSERT [destination for inserted lines of text]

4051R06 EDITOR @ B-11

Appendix B

The LASTLINE Command

Syntax Form:

LA

Descriptive Form:

LASTLINE

The LIST Command

Syntax Form:

L [vOaddress] [edittine number] [. [edit line number 1]

Descriptive Form:

LIST [1/0 address] [startingline number] [. [ending line number]]

The LOWERCASE Command

Syntax Form:

LO

Descriptive Form:

LOWERCASE

The MARK Command

Syntax Form:

MA [numeric constant] [. [numeric constant]]

Descriptive Form:

MARK [number of files] [. [number of bytes per file]]

B-12 @

4051R06 EDITOR

The MOVE Command

Syntax Form:

M [edit line number :l [, [edit line number] [, [edit line number]]]

Descriptive Form:

MOVE [starting line number] [, [ending line number] [., [destination for moved text]]]

The NLSEARCH Command

Syntax Forms:

NL [[edit line number] , { edit line number]] b string " ({ f # string ** ’

Descriptive Forms:

NLSEARCH [[starting line number 1 , [ending line number |] space '‘ target string
f !
(' N ** replacement string)’

The NLSEARCH and Delete Line Command

Syntax Form:

NL [[edit line number 1 , [edit line number | ,] b " string " %

Descriptive Form:

NLSEARCH [[starting line number 1 , [ending line number | ,] space ‘' target string " %

The NLSEARCH and Replace String Command

Syntax Form:

NL [[edit line number | , [edit tine number] ,] b * string * , ‘° string

Descriptive Form:

NLSEARCH [{ starting line number |} , [ending line number | ,] space ‘ target string '

* replacement string *

4051R06 EDITOR @

Appendix B

B-13

Appendix B

B-14

The OLD Command

Syntax Form:

O [1/0 address]

Descriptive Form:

OLD [1/O address |

The PRINT Command

Syntax Form:

P [1/Oaddress | [string]

Descriptive Form:

PRINT (/O address] [ASCil character string |

The RENUMBER Command

Syntax Form:

R [edit line number] [. [numeric constant] [, [edit line number |]]

Descriptive Form:
RENUMBER [new starting line number] [B [increment between new line numbers] [.

[line in the current text where renumbering is to begin |]]

The REVSORT Command

Syntax Form:

REV [edit line number] N [edit line number] , numeric constant [, numeric constant [, . . .]]

Descriptive Form:

REVSORT [stamng line number] B [ending line number] , character position [, character position

Lo...1]

4051R06 EDITOR

Appendix B

The SAVE Command

Syntax Form:

SA [1/0 address] [edit line number] [, [edit line number]]

Descriptive Form:

SAVE [1/0 address] [starting line number] [. [ending line number]]

The SEARCH Command

Syntax Forms:

S [1/0 address :! [[edit line number 1 , [edit line number |] b string [\{ * }]

, [string "]

Descriptive Forms:

SEARCH [1/0 address] [[starting line number] , [ending line number | ,] space ‘‘ target string

{ *
' . [replacement string "]

The SEARCH and List Line Command

Syntax Form:

S [I/O address] [[edit line number | , [edit line number] ,] b ' string

Descriptive Form:

SEARCH [1/C address J [[starting line number | . [ending line number 1 ,] space ' target string

The SEARCH and Delete Line Command

Syntax Form:

S [170 address] [[edit line number | , [edit line number | ,] b " string " %

Descriptive Form:

SEARCH [(¥{e) address] [[starting line number] , [ending line number |} ,] space ‘* target string ‘%

4051R06 EDITOR @

Appendix B

B-16

The SEARCH and Edit Line Command

Syntax Form:

s [{ edit line number | , [edit line number | ,] b ‘ string "

Descriptive Form:

SEARCH [[starting line number] , [ending line number | ,] space ‘‘ target string ',

The SEARCH and Replace String Command

Syntax Form:

S [1/0 address] [[edit line number 1 , [edit line number | ,] b string © , * string "

Descriptive Form:

St ARCH [1/0 address] [[starting line number | , | ending line number | ,] space ‘' target string "’

replacement string '

The SKIP Command

Syntax Form:

SK [1/O address] [numeric constant]

Descriptive Form:

SKIP [/O address] [number of logical records to advance the READ/WRITE heads]

The SORT Command

Syntax Form:

SO [edit line number] , [edit line number] , numeric constant [, numericconstant [, . . .]]

Descriptive Form:

SORT [starnnghne number] B [ending line number] , character position [, character position

to...0]

4051R06 EDITOR

The SWN (Save With Number) Command

Syntax Form:

SWN [/0 address] [edit line number] [, | edit line number]]

Descriptive Form:

SWN [110 address] [starting line number] [[ending line number]]

The UPPERCASE Command

Syntax Form:

Descriptive Form:

UPPERCASE

The WRITE Command

Syntax Form:

w [1/0 address] [edit line number] [, [edit line number]]

Descriptive Form:

WRITE [1/0 address] [starting line number] [. [ending line number |]

The] = Command (A Character to mean “END-OF-RECORD"’)

Syntax Form:

] = [ASCI! character]

The #= Command (A Character to mean “DIGIT")

Syntax Form:

= [ASCII character]

4051R06 EDITOR @

Appendix B

B-17

Appendix B

The ~= Command (A “WILDCARD"’Character)

Syntax Form:

~ = [ASCII character]

The _ = Command (An “ALL BUT" Prefix)

Syntax Form:

_ = [ASCHI character]

B-18 @ 4051R06 EDITOR

4051R06 EDITOR

TABLE OF DEFAULT PRIMARY AND SECONDARY ADDRESSES

FOR EDITOR INPUT/OUTPUT COMMANDS

I/0 Command Default /0O Address
APPEND ~ @334
FIND @33,27:
INPUT @33,13:

LIST @32,19:

OoLD @33,4:
PRINT @32,12:
SAVE @33,12:
SEARCH @32,19:

SKIP @33,13:

SWN (Save with Number) @33,1 2:
WRITE @33,12:

32 = GS display
33 = internal magnetic tape

Appendix B

B-19

Appendix C

A

Abbreviations 2-8

"All but” prefix 5-41

Alphabetizing 4-88, 4-91, 4-93, 4-98
Alphanumeric keys 1-7, 3-3

Alternate end-of-file mark 6-36
Alternate end-of-record character 1-11
Alternate Input/Output format 1-7, 1-11, 6-36, 6-37
"Any digit” character 5-27

APPEND command 6-5

ASCIl code chart B-1

Asterisk 4-41, 4-42, 4-44, 4-73, 4-74
AUTO LOAD 1-8, 3-1

AUTO NUMBER 1-8, 3-1

BASIC programs 2-6

BASIC program line numbers 5-19, 6-9, 6-52

Blank spaces 2-11, 2-12, 4-30, 4-42, 4-43, 4-50, 4-62, 5-34,
6-3, 6-6, 6-31, 6-41, 6-44, 6-57

BREAK key 1-9, 3-3, 3-4, 3-8, 3-9, 4-24, 4-25, 4-65, 4-88,
4-96

BUSY condition 3-4

C

CALL statement 1-1, 2-6

CARD command 4-3, 4-99

Card images 4-7

CASE command 4-9, 5-10, 5-22

Checksum 1-7, 6-22, 6-33, 6-34

CLEAR function 3-8, 4-25

Closing a tape file 6-13, 6-14, 6-15, 6-31, 6-40, 6-57

Colon 2-7, 3-7, 3-8, 4-23, 4-27, 4-30, 4-33, 5-4, 6-2, 6-20,
6-42, 6-50

Command keywords 2-8

Command summary 2-2, B-2

COMPRESS function 3-6

Concatenating lines 1-9

COMPRESS/EXPAND key 3-4, 4-24

Control characters 5-28, 6-41, 6-57

COPY command 4-13, 4-36

CR/LF Input/Output delimiter 1-7, 6-35, 6-36

CR (ASCII 13) 1-10, 1-11, 4-7, 5-4, 5-5, 5-28, 5-34, 5-48,
6-36, 6-37

CTRL key 3-3, 5-28

4051R06 EDITOR

INDEX

D

Default I/0 addresses B-18

Default values 2-27, 2-28, 2-33, B-7, B-18
DELETE command 2-27, 4-19

Deleting lines see DELETE command
Deleting strings 4-51, 4-82

Destination line 2-24, 2-28

Digits, locating 5-27

Display format 2-7

E

Edit delimiter 2-10, 2-11, 2-12, 2-29, 4-42, 4-50, 4-61, 4-68,
4-75

Edit line number 1-10, 2-15, 2-16, 2-17, 2-18, 5-3, 5-4, 5-5,
5-15, 6-49, 6-52

Editing commands 4-1

End-of-file mark 4-30, 4-33, 5-4, 6-14, 6-29, 6-30, 6-31, 6-36,
6-40, 6-44, 6-50, 6-52, 6-56, 6-58

End-of-line marker 3-4, 3-5, 3-6

End-of-record character 1-7, 1-9, 1-11, 4-30, 4-39, 4-56,
5-4, 5-5, 5-47, 5-48, 5-50, 5-54, 5-55, 6-29, 6-30, 6-36,
6-37, 6-40, 6-50, 6-56

"END-OF-RECORD" character 1-11, 5-47

Ending line 2-23, 2-27

Environmental commands 5-1

Error messages A-1

EXPAND function 3-4, 3-5

F

Fill character 4-3

File header see header
FIND command 6-11
Formatted text 4-3

H

Header, accessing the tape file header 6-12
Header format 1-7, 6-12, 6-22, 6-33, 6-34
HOME/PAGE key 3-2, 3-3

INPUT command 6-17
Input/Output addresses 6-2
Input/Output commands 6-1
Input/Output delimiters 6-35, 6-36
INSERT command 2-8, 4-23

Insert mode 3-3, 3-7, 3-8, 4-23, 4-27
Installation 1-4

C1

Appendix C

L

LAST file 6-12

LASTLINE command 2-7, 5-3

Line buffer 1-9, 3-4, 3-5, 3-6, 3-7, 4-66

LINE EDITOR keys 1-7, 1-9, 2-9, 34, 4-24, 4-66

Line of text 1-10

LIST command 4-29

Logical record 1-10, 6-17, 6-25, 6-35, 6-36, 6-43, 6-44
LOWERCASE command 4-9, 4-12, 4-90, 4-98, 5-9
Lowercase flag 4-9, 4-12, 4-90, 4-98, 5-9

Magnetic tape buffer 6-13, 6-15, 6-31, 6-57, 6-58
Magnetic tape movement 6-4

Magnetic tape status 1-7, 6-22, 6-33

MAKE COPY key 3-9

MARGIN 1 3-2, 3-3

MARGIN 2 3-2, 3-3

MARGIN OFF 3-2, 3-3

MARK command 6-21

Marking files on an external device 6-23, 6-33
Memory requirements 1-2

Microprocess status parameters 6-35

MOVE command 4-35

NLSEARCH command 4-39, 5-10, 5-22, 5-27, 5-33, 5-41,

NLSZZRCH and Delete Line command 4-39, 4-40, 4-41,

NL:;AQRCH and Replace String command 4-39, 4-40,4-47,
No:::)?istent line numbers 2-5, 2-20, 2-21, 2-22, 2-25, 2-26
Non-header format 1-7, 6-13, 6-22, 6-33, 6-34

o

Offset 2-10, 2-17, 2-18, 2-19, 5-16

OLD command 6-25

Opening a tape file 6-11, 6-13

Overflowing the text buffer 5-5, 6-7, 6-27, 6-45, A-1
Overlay keys 3-1

P

PAGE FULL condition 3-2

Peripheral control keys 3-9

Physical record length 1-7, 6-21, 6-33, 6-34

Positioning the tape see FIND command, INPUT
command, SKIiP command

Power requirements 1-3

Prefix character see "all but” prefix

Primary address 6-2

PRINT command 5-29

Processor status 6-35

C-2

Q

Queue buffer A-1

RECALL LINE function 1-9, 3-8

RECALL NEXT LINE function 1-9, 3-8, 3-9

RECALL NEXT LINE/RECALL LINE key 1-9, 3-8, 4-67,
5-48, 5-50

RECALL PREVIOUS LINE function (STEP PROGRAM
key) 1-9, 3-8, 4-67, 5-50

RENUMBER command 2-8, 5-15

Replacement 4-48, 4-80

Replacement string 4-40, 4-48, 4-56, 4-80, 5-29, 5-33, 5-42,
5-47

REPRINT function 3-7

REPRINT/CLEAR key 3-7, 4-24, 4-67

RETURN key 1-9, 3-3, 3-8, 4-24, 4-25, 4-30, 4-66, 4-67,5-28

RETURN TO BASIC key 1-1, 2-6, 3-1, 3-3, 5-29, 5-34, 5-43,
5-46, 6-14, 6-34, 6-36, 6-37

REVSORT command 4-95, 5-10, 5-22

REWIND key 3-9

Rewinding the magnetic tape 6-12

RUBOUT CHARACTER 1-8, 3-2

RUBOUT/BACKSPACE key 3-4, 4-24

RUBOUT/SPACE key 3-4, 4-24

C]

SAVE command 6-39

Save With Number see SWN (Save With Number)

SEARCH command 4-55, 5-10, 5-22, 5-27, 5-33, 5-41, 5-47

SEARCH and Delete Line command 4-56, 4-73, 5-49

SEARCH and Edit Line command 4-56, 4-65, 5-51

SEARCH and List Line command 4-56, 4-59

SEARCH and Replace String command 1-9, 4-56, 4-79,
5-29

Secondary address 6-2

SKIP command 6-43

SORT command 2-12, 2-13, 4-87, 5-10, 5-22

SP (ASCII 32) 1-10, 4-30, 4-88, 4-96, 5-28, 5-34

Spaces see blank spaces

Special PRINT commands 6-33

Specifications 1-2

Starting line 2-23, 2-27, 2-30, 2-31

Status parameters 6-33

STEP PROGRAM key 1-9, 3-9, 4-67, 5-48

String 1-10

String delimiter 1-10, 2-13, 2-14, 2-15, 4-61, 4-69

SWN (Save With Number) command 6-9, 6-49

Syntax 2-35, 2-36, 2-37, B-9

Syntax errors 2-9, A-1

T

Target string 4-39, 4-40, 4-48, 4-55, 4-56, 4-80, 5-28, 5-33,
5-34, 5-41, 5-42, 5-47

Text 1-8

Text buffer 1-7, 2-6, 2-7, 3-1, 5-3, 54, 5-5

4051R06 EDITOR

V)

Unnumbered lines 2-5, 2-17, 2-18, 2-19, 2-23
UPPERCASE command 4-11, 4-29, 4-90, 4-98, 5-21
Uppercase flag 4-9, 4-11, 4-90, 4-98, 5-21
User-definable keys 3-1

w

Wildcard character 5-33
WRITE command 6-55
Special symbols

#= command 5-27

_= command 5-41

~= command 5-33
]= command 5-47

4051R06 EDITOR

Appendix C

Cc-3

T MANUAL CHANGE INFORMATION

TEKTRONID®| rroouct_4051 EDITOR | CHANGE REFERENCE _C1/677

_ o roical excell 070-2170-00 DATE 6-6-77

CHANGE: DESCRIPTION

 ——————

The following change information applies toa 4051R06 EDITOR that has a serial number of B020290 or higher.

Since the time this manual was printed, extra features have been added to the EDITOR. A summary of the
features is provided below. Because certain changes affect the operation of the commands, you should read the
following pages carefully before turning to the rest of the manual.

SUMMARY

» The syntax of the MARK command has been expanded to allow an 1/O address to be specified. This means you
may now use the MARK command instead of a PRINT command to mark files on an external device such as the
TEKTRONI!X 4924 Digital Cartridge Tape Drive. The new syntax and descriptive forms are as follows:

Syntax Form:

MA [I/O address] [numeric constant] [, [numeric constant]]

Descriptive Form:

MARK [l/O addrms] [number of files] [, [number of bytes per file]]

The default 1/O address for the MARK command is @33,28: . That is, if no |/O address is specified, files are
marked on the internal magnetic tape by default.

o The syntax of the CARD command has been expanded to allow an 1/0 address to be specified. When the
CARD command is executed, lines found to be longer than the desired number of characters are listed on the
specified peripheral device. The new syntax forms are as follows:

Syntax Form:

CA [l/O address] [numeric constant] [, [numeric constant]]

Descriptive Form:

CARD [I/O address] [number of characters] [, [fill character (decimal equivalent)]]

PAGE 1 OF 16

pRopUCT___ 4001 EDITOR CHANGE REFERENCE __C1/677 DATE__ 6-6-77

CHANGE: DESCRIPTION

The default 1/O address for the CARD command is @32,19: . That is, if no I/O address is specified, lines
found to be too long are listed on the system display by default.

* The "all but” prefix may immediately precede the “END-OF-RECORD" character in the target string of
a SEARCH or NLSEARCH command. For example, if _ is currently the ““all but” prefix and]

is the “END-OF-RECORD" character, the command S “A_1" lists lines containing an occurrence of A
that is not immediately followed by an end-of-record character. (Refer to the explanation of the _= and
1= commands.)

* The “all but” prefix may immediately precede the “any digit’’ character in the target string of a SEARCH
or NLSEARCH command. For example, if _ is currently the “all but” prefix, and # is the "“any digit”
character, the command S “A_#" lists lines containing an occurrence of the character A that is not
immediately followed by one of the digits O through 9.

o The default {/O address for the SAVE command has been changed to @33,1: .

° The default 1/O address for the SWN (Save With Number) command has been changed to @33,1: .

+ After a SAVE or SWN command stores text on a TEKTRONIX 4924 tape unit file, the file is automatically
closed and no longer available for access by Input/Output operations. That is, you need not execute a FIND
command or press the RETURN TO BASIC overlay key to close the file.

* The INPUT command is used to display one logical record on the screen, and advance the tape to the next
logical record on the file. The operation of the INPUT command has not changed. However, the following
note should be added about executing the INPUT command when the tape is positioned to a logical record that
contains more than 408 characters:

After the INPUT command displays a complete logical record on the screen, the cursor reappears at the
beginning of the next line on the display. However, if the logical record contains more than 408 characters,
the INPUT command displays only the first 408 characters, and the cursor reappears in the same line as the
displayed portion. To view the rest of the record and advance the tape to the next record on the file, execute
another INPUT command (while the cursor is in the same line, or after pressing RETURN). The portion of the
logical record that begins with the 409th character is displayed on the screen. |f the cursor again reappears in
the same line as the displayed characters, continue to execute INPUT commands, until the entire record has
been displayed and the cursor reappears at the beginning of the next line on the display.

NOTE

You are not required to continue executing INPUT commands until the entire record
is displayed and the tape advances to the next logical record. However, you should
be aware that since the tape only advances in groups of 408 characters, you may be
positioning the tape to the middle of the logical record. Subsequent 1/0 commands
that are executed while the file is still open, only affect the portion of the record
that lies beyond the tape head.

° Executing the UPPERCASE command disables the lowercase flag, and sets an ‘‘uppercase flag.”” Once the
uppercase flag is set, the EDITOR does not recognize the difference between lowercase and uppercase charac-
ters in the text. For example, the character a in the text is considered to be the same as the character A
during searching and sorting operations.

PAGE 2 OF 16

PRODUCT ___4051 EDITOR CHANGE REFERENCE __C1/677 DATE 6-6-77

CHANGE: DESCRIPTION

This means that when the uppercase flag is set, the commands S ““a’ and S “A’" are equivalent. The command
S "a” searches the text for the character a . The character A also satisfies the search, because the EDITOR
cannot see the difference between a and A in the text. Likewise, the command S A"’ searches the text for
the character A . The character a also satisfies the search, because the EDITOR cannot distinguish between

a and A in the text.

At the time the manual was printed, setting the uppercase flag caused the EDITOR to see all text characters as
uppercase. This meant that the commands S ““a’” and S “A’’ were not equivalent. The command S “A"”
searched for the character A . The character a also satisfied the search, because the EDITOR saw the lower-
case character a to be an uppercase A . The command S “‘a”’ searched for the character a , but was never
able to find one, because the EDITOR saw all text characters as uppercase.

Because the change significantly affects the operation of the command, a new discussion of the UPPERCASE
command is provided at the end of this section. You may replace pages 5-21 through 5-26 of the manual with
this new explanation.

CORRECTIONS TO THE MANUAL

The following is a detailed list of corrections to the manual. These corrections make the manual compatible with
your version of the EDITOR.

Changes Concerning the MARK Command

page €-21 change the syntax and descriptive forms to

Syntax Form:

MA [:I/O address] [numeric constant] [, [numeric constant]]

Descriptive Form:

MARK [I/O addre:s:I [number of files] [, [number of bytes per file]]

page B-12 same change as above
page 6-21 change the first sentence to

The MARK command reserves space for magnetic tape files on the specified device.
page 6-21 paragraph 2 under EXPLANATION: change the first sentence to

When the MARK command is executed, the specified number of files are created on the device,
starting at the current position at the magnetic tape head.

PAGE 3 OF 16

pRODUCT __4051 EDITOR CHANGE REFERENCE C1/677 DATE__6-6-77

CHANGE: DESCRIPTION

page 6-22 paragraph 1 under Changing the Tape Format: change the first part of the second sentence to

If the speclal PRINT command PRI1@33,0:1,1,1 is executed, internal magnetic tape files are created
without a file header;

page 6-22 paragraph 1 under DEFAULT VALUES: insert as the first sentence

When the 1/O address is omitted in a MARK command, files are marked on the internal magnetic
tape by default.

page 6-23 delete the second item under Differences Between BASIC MARK and EDITOR MARK.
Also change the title to The Difference Between BASIC MARK and EDITOR MARK.

page 6-23 the paragraph entitled Marking Files on an External Device is still valid, but no longer
necessary.

page 2-33 the entry for the MARK command: change the Syntax (Descriptive Form) to include an
optional 1/0 address. Also insert under Default Values for the MARK command

[/O address = @33,28:
page B-7 same change as above

page 6-3 in the TABLE OF DEFAULT PRIMARY AND SECONDARY ADDRESSES after the
entry for LIST, insert the entry

MARK @33,28:
page B-19 same change as above

page 6-33 delete paragraph 2 under Marking Files on an External Device

Changes Concerning the CARD command

page 4-3 change the syntax and descriptive forms to

Syntax Form:

CA [l/o address] [numeric constant] [. [numeric constant)]

Descriptive Form:

CARD [I/O addrm] [number of characters] [. [fill character (decimal equivalent) 1]

PAGE 4 OF 1g

PRODUCT ___%4051 EDITOR CHANGE REFERENCE C1/677 DATE___6-6-77

page 4-3

page 4-4

page 4-4

page 4-4

page 4-4

page 4-4

page 2-33

page B-7

page 6-3

page B-19

CHANGE: DESCRIPTION
page B-10 same change
page 4-3 paragraph 1 under EXPLANATION: change the second, third, and fourth sentences to read

Two parameters may be entered after the keyword CARD and the /O address. The first specifies
the number of characters each line is to contain. The second is the decimal code number for an
ASCI!| character.

paragraph 2 under EXPLANATION: change the command CA 50,46 to

CA ©33:50,46
line 4: change the word “‘display” to
specified device
line 6: change the word “‘appears’’ to
is made
line 6: change the words “‘printed on the display” to
issued

paragraph 1 under Default Values: replace paragraph 1 with

All three parameters for the CARD command are optional, and may be omitted or entered in any
combination. Several examples are listed on the preceding page.

under Default Values: insert a third paragraph consisting of the sentence

When the 1/O address is omitted, lines that are too long are listed on the system display by default.

the entry for the CARD command: change the Syntax (Descriptive Form) to include an
optional 1/0 address. Also insert under Default Values for the CARD command

1/0 address = @32,19:
same change as above

in the TABLE OF DEFAULT PRIMARY AND SECONDARY ADDRESSES: after the
entry for APPEND, insert the entry

CARD ©@32,19:

same change as above

PAGE 5 OF 16

prRODUCT __ 4051 EDITOR CHANGE REFERENCE _C1/677 DATE 6-6-77

CHANGE: DESCRIPTION

Changes Concerning the]= Command

page 5-49 delete the indented paragraph called NOTE.
Changes Concerning the # = Command

page 5-28 delete the indented paragraph called NOTE that appears at the bottom of the page.
Changes Concerning the _= Command

page 5-28 replace the indented NOTE with the following paragraph:

NOTE
The “all but” prefix should not immediately precede the wildcard character in a
target string. For example, if _ is the “all but” prefix and ~ is the wildcard
character, the EDITOR cannot interpret the command S *_~""
Changes Concerning the SAVE Command
page 2-34 the entry for the SAVE command: change the Default Value for the 1/O address to
1/0 address = @33,1:
page B-8 same change as above

page 6-3 in the TABLE OF DEFAULT PRIMARY AND SECONDARY ADDRESSES: in the
entry for SAVE, change the Default |/O Address to

@33,1:
page B-19 same change as above
Changes Concerning the SWN Command

page 2-34 the entry for the SWN (Save With Number) command: change the Default Value for
the 1/0 address to

1/0 address = @33,1:
page B-8 same change as above

page 6-3 in the TABLE OF DEFAULT PRIMARY AND SECONDARY ADDRESSES: in the entry
for SWN (Save With Number), change the Default /0O Address to

@33,1:

page B-19 same change as above

PAGE 6 oF 16

prODUCT____ 4051 EDITOR CHANGE REFERENCE

C1/677

DATE

6-6-77

CHANGE:

Changes Concerning the Closing of Files

page 6-40 delete footnote 9

PAGE 7 OF 4g

DESCRIPTION

4051 EDITOR CHANGE REFERENCE _ C1/677 DATE___ 6677

PRODUCT

CHANGE: DESCRIPTION

Changes Concerning the INPUT Command

page 6-19 After the last paragraph on the page, insert the following:

Logical Records Containing More Than 408 Characters

After the INPUT command displays a complete logical record on the screen, the cursor
reappears at the beginning of the next line on the display. However, if the logical record
contains more than 408 characters, the INPUT command displays only the first 408 charac-
ters, and the cursor reappears in the same line as the displayed portion. To view the rest of
the record and advance the tape to the next record on the file, execute another INPUT
command (while the cursor is in the same line, or after pressing RETURN). The portion

of the logical record that begins with the 409th character is displayed on the screen. |f the
cursor again reappears in the same line as the displayed characters, continue to execute
INPUT commands, until the entire record has been displayed and the cursor reappears at

the beginning of the next line on the display.

NOTE

You are not required to continue executing INPUT commands until the
entire record is displayed and the tape advances to the next logical record.
However, you should be aware that since the tape only advances in groups
of 408 characters, you may be positioning the tape to the middle of the
logical record. Subsequent |/O commands that are executed while the
file is still open, only affect the portion of the record that lies beyond the

tape head.

PAGE 8 OF 16

PRODUCT 4051 EDITOR CHANGE REFERENCE ___C1/677 DATE 6-6-77

CHANGE: : DESCRIPTION

Changes Concerning the UPPERCASE Command
page 2-3 Action Taken by the UPPERCASE command example U: change the first phrase to

Causes the EDITOR to perceive lowercase text characters a-z to be the same as their
uppercase equivalents A-Z.

page B-4 same change as above
page 4-90 paragraph 6: change the second sentence to

While the uppercase flag is set, the EDITOR does not distinguish between lowercase and
uppercase text characters during the sorting process.

page 4-98 paragraph 4: change the second sentence to

While the uppercase flag is set, the EDITOR does not distinguish between lowercase and
uppercase text characters during the sorting process.

You may replace the discussion of the UPPERCASE command that appears on pages 5-21 through
5-26 with the explanation that begins on the following page.

PAGE 9 OF 1¢

6-6-77

PRODUCT 4051 EDITOR CHANGE REFERENCE ____C1/677 DATE

CHANGE: DESCRIPTION

The UPPERCASE Command

Syntax Form:

U

Descriptive Form:

UPPERCASE

PURPOSE

The UPPERCASE command causes the EDITOR to perceive lowercase text characters a-z to
be the same as their uppercase equivalents A-Z during searching and sorting operations
(NLSEARCH, SEARCH, REVSORT, and SORT commands). The UPPERCASE command
also prepares the EDITOR to change lowercase text characters into uppercase characters if
the CASE command is executed.

EXAMPLE

U

EXPLANATION

The UPPERCASE command has no parameters. Only the keyword U is entered from the
keyboard, as shown in the example above. Executing the UPPERCASE command has no
immediate effect on the text buffer. Instead, a system environment parameter is assigned a
value that prepares the EDITOR for subsequent commands.

Changing the value of the environmental parameter by executing the UPPERCASE command
disables the lowercase flag, and sets an ““uppercase flag’’. Once the uppercase flag is set, the
EDITOR does not recognize the difference between uppercase and lowercase characters in
the text. For example, when the uppercase flag is set the EDITOR considers a lowercase b
found in the text to be the same as an uppercase B. This affects the operation of the
NLSEARCH, SEARCH, REVSORT, SORT, and CASE commands.’

PAGE 10 OF 16

propuCT 4051 EDITOR CHANGE REFERENCE __C1/677 DATE 6-6-77

CHANGE: DESCRIPTION

The NLSEARCH and SEARCH Commands

When the uppercase flag is set, a lowercase character in the text buffer “‘matches’’ or satisfies a
search for the equivalent uppercase character specified in a target string. Conversely, an upper-
case character in the text “‘matches’’ the equivalent lowercase character in a target string.

For example, when the uppercase flag is set the command NL “A”, *"** * deletes all occurrences
of the character A (ASCI!I equivalent 65) from the text buffer. Occurrences of the charac-

ter a are also deleted from the text buffer, because the EDITOR does not recognize the
difference between a and A . Likewise, when the uppercase flag is set the command NL "“a"’*
deletes all occurrences of the characters A and a .

The REVSORT and SORT Commands

When the uppercase flag is set, the EDITOR does not distinguish between lowercase and
uppercase text characters during sorting operations. For example, if a REVSORT or SORT
command is executed while the uppercase flag is set, a line of text containing the character
b in a specified character position is treated the same as a line containing the character B
in the same position. This is because when the uppercase flag is set, the characters b and
B are treated as having the same ASCII code value, 66.

For an illustration of how the REVSORT and SORT commands operate after the UPPER-
CASE command is executed, refer to ‘‘An Editing Example’’ on the following pages.

The CASE Command

While the uppercase flag is set, executing a CASE command causes lowercase text characters
a-z to be replaced by their uppercase equivalents A-Z. This is the inverse of the function
performed by the CASE command if the lowercase flag is set.

Default Value

Calling the EDITOR automatically sets the lowercase flag. To set the uppercase flag, you must
execute the UPPERCASE command. ’

An Editing Example

The following examples show how the SEARCH, CASE, SORT, and REVSORT commands
operate while the uppercase flag is set. The examples are analagous to those used to illustrate
the effect of setting the lowercase flag. To compare the results shown below with the results
when the lowercase flag is set, refer to ““An Editing Example” in the explanation of the
LOWERCASE command.

PAGE 11 OF 16

PRODUCT 4051 EDITOR CHANGE REFERENCE __C1/677 DATE 6-6-77
CHANGE: DESCRIPTION
Example 1

fbernathy, Tod

Ellis, Terry L.
Fostery; Alice
Hillstrom, A.
Kellers Suzanne
Lentz, John F.
Pollock, Robert
Siebold, William
Taylor, Owen

S "a"

{:Abernathy, Tod
1:Abernathy, Tod
2:Brockway, Marius
2:Brockway, Marius
4:Fostery, Alice
S:Hillstrom, A.
6:Kellery, Suzanne
9:Siebold, William
10: Taylor, Owen

S "A"

1:Abernathy, Tod
1:Abernathy, Tod
2:Brockway, Marius
2:Brockway, Marius
4:Foster, Alice
StHillstrom, A.
6:Kellery, Suzanne
9:Siebold, William
10:Taylor, Owen

CASE
LIST

1:ABERNATHY, TOD
2:BROCKWAY, MARIUS
3:ELLIS, TERRY L.
4:FOSTER, ALICE
S¢HILLSTROM, R.
6:KELLER, SUZANNE
?:LENTZ, JOHH F,
8:POLLOCK, ROBERT
9.SIEBOLD, WILLIAM
10:TAYLOR, OMWEN

PAGE 12 OF 16

Brockway, Marius E

prODUCT 4051 EDITOR CHANGE REFERENCE __C1/677

DATE 6-6-77

CHANGE:

DESCRIPTION

Example 2 LIST

MMOODDwR 2N IO

SOyl

LIST

Example 3 LIST

U
REU, 41

PAGE

TEIREIEILEILE IR LN E N R B LN LN Y J
MaMADQONTTDE

MMAOOTDNN QN T O

13 oF 16

(continued on next page)

PRODUCT __4051 EDITOR CHANGE REFERENCE _C1/677 pATE____6-6-77

CHANGE: DESCRIPTION

LIST

(YN ININEINENENERLNLNENRZ.NZE]
DaO@TrONOLMAU M

Example 1 illustrates how the SEARCH and CASE commands operate while the uppercase
flag is set. An initial listing shows that the text buffer contains a list of ten names. The
command U is executed to set the uppercase flag, then the command S “a” tells the
EDITOR to search the text and list lines found to contain the character a .

Because the uppercase flag is set, the EDITOR does not recognize the difference between
lowercase and uppercase text characters. Both the lowercase character a and the uppercase
equivalent A “‘match’’ the target string and satisfy the search. After the command is execu-
ted, the EDITOR lists seven lines found to contain the characters A or a . Lines 1 and 2
are printed twice, because they contain two occurrences of the target string.

Next the command S ““A” tells the EDITOR to search the text and list lines found to con-
tain the character A . Again the EDITOR does not distinguish between lowercase and
uppercase characters in the text. As for the preceding command, both the lowercase charac-
ter a and the uppercase character A ‘‘match’’ the target string and satisfy the search. After
the command is executed, lines found to contain the characters a or A are listed on the
display. The list is the same as for the preceding command.

Next the command CASE is executed. Because the uppercase flag is set, the EDITOR replaces
all lowercase characters in the text with their uppercase equivalents. A new listing shows
that the text buffer now contains only uppercase characters.

Example 2 illustrates how the SORT command operates while the uppercase flag is set. As

in the previous example, the command U is executed to set the uppercase flag. Then a

listing shows uppercase characters A-F and their lowercase equivalents a-f in lines consisting

of one character each. The command SO,,1 tells the EDITOR to rearrange the lines according
to the ASCII value of the character found in the first position in each line. Lines are to be
rearranged so that the ASClI code values are in increasing order.

PAGE 14 ofF 16

PRODUCT 4051 EDITOR CHANGE REFERENCE ___C1/677 DATE 6~6-77

CHANGE: DESCRIPTION

Because the uppercase flag is set, the EDITOR perceives lowercase characters in the text to be
the same as uppercase characters. After the SORT command is executed, a new listing shows
that lines consisting of lowercase characters are next to those consisting of their uppercase
equivalents. This is because lowercase characters are treated as having the same ASCII code
value as their uppercase equivalents.

Example 3 is similar to Example 2, but executes the command REV,,1 . This time the lines
are rearranged in decreasing ASCI| code value. Again, no distinction is made between lower-
case and uppercase characters: a new listing shows that each line consisting of a lowercase
character is next to the line consisting of its uppercase equivalent.

PAGE 15 OF 16

PRODUCT 4051 EDITOR CHANGE REFERENCE _C1/677 paTE___ 6-6-77

CHANGE:

DESCRIPTION

page 5-9

page 5-10

Changes Concerning the LOWERCASE Command

paragraph 1 under PURPOSE: at the end of line 1 insert the word
text
paragraph 1 under PURPOSE: in line 4 replace ‘‘uppercase characters’’ with
uppercase text characters
paragraph 2 under EXPLANATION: in line 4 replace “’the character b’ with
the character b in the text
paragraph 2 under EXPLANATION: in line 5 correct the misspelling NLSERACH to
NLSEARCH

paragraph 1 under The REVSORT and SORT Commands: in line 2 replace ‘‘uppercase
characters’’ with

uppercase text characters
paragraph 1 under the CASE Command: in line 1 replace "‘uppercase’’ with

uppercase text

PAGE 16 oOF 16

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	C-01
	C-02
	C-03
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16

