Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon

MANUAL PART NO.
070-2270-00 -

97077

Tektronix

COMMITTED TO EXCELLENCE

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

4051 GPIB
HARDWARE SUPPORT

REFERENCE MANUAL

First Printing MAR 1977
Revised JUL 1981

Copyright © 1977 by Tektronix, Inc. Beaverton, Oregon. Printed
in the United States of America. All rights reserved. Contents of
this publication may not be reproduced in any form without
permission of Tektronix, Inc.

U.S.A. and foreign TEKTRONIX products are covered by U.S. and
foreign patents and/or patents pending.

TEKTRONIX is a registered trademark of Tektronix, Inc.

DISCLAIMER

The interface circuits in this manual are for educational purposes only. It is our way
of presenting practical 4051 GPIB interface designs to help you get started. All
efforts have been made to keep the designs simple, practical, and economical. The
designs serve nicely as a starting point—a basis for learning the fundamentals of
4051 GPIB interfacing. In most applications you’ll find it necessary to modify parts
of a design, add more sophisticated components, and arrive at more innovative
approaches to meet the interfacing requirements for a particular peripheral device.

Each interface circuit in this manual has been built and tested with a 4051 to make
sure that it works; and we feel reasonakbly sure that the interface circuits will work in
most applications, provided the circuits are built by acompetent electrical engineer
or electronic technician with a good working knowledge of digital logic design.
However, since some of the interface designs have not undergone the rigorous
Tektronix evaluation and environmental testing procedures that are normally
required of most Tektronix instruments, Tektronix cannot assume any liability for a
customer-built interface based on these designs. Furthermore, Tektronix cannot
assume liability for any interface circuitry that has not been designed, buiit, tested,
and marketed by Tektronix. Any damage to Tektronix equipment which results from
interface circuiting not designed, built, tested and marketed by Tektronix may
nullify the warranty on the damaged Tektronix equipment.

4051 GPIB Hardware Support

®

PREFACE

The purpose of this manual is to provide hardware support information to Tektronix customers
and personnel who are interested in designing interfaces for the Tektronix 4051 Graphic
System and its General Purpose Interface Bus (GPIB). Although the discussions and designs
in this manual are directed specifically toward the 4051 GPIB, the information contained herein
is valuable to any design effort involving the implementation of IEEE Standard 488-1975.

This manual clarifies the guidelines set forth in the IEEE Standard and at the same time
provides practical working models of 4051 GPIB interfaces. The manual is organized in the
following manner:

Section 1 contains background information on IEEE Standard 488-1975 for those of you not
familiar with the document. The GPIB organization is discussed first, followed by the bus
signal line definitions, protocol definitions, and the 4051’s compatibility with the IEEE
Standard. If you have a clear understanding of the IEEE Standard, most of this material may be
skipped without loss of continuity.

Section 2 discusses a model of a general purpose TTL interface that works on the 4051 GPIB.
Starting with the GPIB connector, this section shows how to make the proper electrical
connections to the bus and how to arrange bus receivers and transmitters in an effective
listen/talk configuration. Typical TTL circuit designs are then discussed, starting with Listen
Handshake circuitry. Talk Handshake circuitry, is covered next, then Address Decoding
circuitry, and finally Serial Poll circuitry. A schematic diagram and an Integrated Circuit list is
provided for each circuit. These circuits can be combined into a complete interface that listens,
talks, and responds to serial polls over the 4051 GPIB. The complete block diagram and
schematic diagram for this interface are found in the diagram section at the back of this
manual.

Section 3 presents a working model of a microprocessor-based GPIB interface. The interface
design is based on the MC6800 microprocessor and is taken directly from a production model
TEKTRONIX 4924 Digital Cartridge Tape Unit. The written text in this section originates from
an application note written by Mr. Steve Baunach, the Tektronix firmware engineer responsible
for the design and implementation of both the 4051 GPIB interface controller and the 4924
GPIB interface.

4051 GPIB Hardware Support @ Ii

Section 4 in this manual presents detailed timing information on the 4051 GPIB. Timing
diagrams are used to illustrate GPIB data transfers characteristics for the BASIC I/0
statements PRINT, INPUT, WRITE, READ, WBYTE, RBYTE, and POLL. A written explanation
of the timing events accompanies each diagram to assist those of you who are unfamiliar with
timing diagram symbology. The timing events in this manual are based on Level 2 4051
firmware and may differ slightly from other releases of 4051 firmware.

Section 5 in this manual discusses methods that can be used to calculate maximum effective
data rates for 4051 GPIB data transfers. The information in this section may be used to
determine if the 4051 GPIB data rates are compatible with your system application.

The back of this manual contains an Appendix with information on the 4051 internal floating
point format for numeric data. This information is provided for those who are interested in
transferring numeric data over the 4051 GPIB with READ and WRITE statements. A diagram
section containing a block diagram for the general purpose interface, the schematic diagram
for the general purpose interface, a schematic diagram for the 4051 GPIB Binary Header
Generator can also be found in the back.

@ 4051 GPIB Hardware Support

CONTENTS

Preface
Section 1 BACKGROUND INFORMATION ON THE 4051 GPIB Page
Introduction 1-1
Why was a Standard Instrumentation Interface Needed? 1-1
How is IEEE Standard 488-1975 Defined? 1-2
Compatability with IEEE Standard 488-1975 1-5
What Hardware and Logic Describe the Interface? 1-9
The GPIB Connector i 1-10
The GPIB Interfacing Concept 1-12
How does the Three Wire Handshake Work? 1-15
Section 2 4051 GPIB HARDWARE INTERFACE DESIGNS
Introduction 2-1
Interface Block Diagram Description 2-1
Introduction e 2-1
The Listen Function 2-1
The Talk Function 2-3
Responding to a Serial Poll 2-5
Closing Remarks i 2-6
The First Step is Hooking Uptothe Bus 2-7
GPIB Connector Requirements 2-7
GPIB Termination Requirements 2-8
If You Decide to use Ready-Made GPIB Transceivers 2-8
Making Efficient use of GPIB Transceivers 2-8
Interface Circuit Description 2-12
Introduction e 2-12
Interface Listen Handshake Circuit Design Criteria 2-13
A Circuit that Meets the Listen Handshake Design Criteria .. 2-14
Talk Handshake Circuit Design Criteria 2-24
An Interface Circuit that Talks to the 4051 GPIB 2-24
Address Decoder Design Criteria 2-27
4051 PRINT Operations 2-30
Interface Clear 2-34
A Word about 4051 WRITE Operations 2-34
4051 INPUT Operations 2-35
4051 Serial POLL Operations 2-37
Obtaining the Maximum Sustained Data Rate for ASCII Input 2-39
Introduction 2-39
Using the READ Statement to Input ASCllI Data 2-39
4051 Internal Data Formats 2-40
Building a Header Generator for an ASCII Peripheral Device 2-43
An Overview on How the Header Generator Works 2-43
Header Generator Circuit Description 2-44

4051 GPIB Hardware Support @

CONTENTS (cont)

Section 3 A MICROPROCESSOR-BASED GPIB INTERFACE
Introduction e 3-1
Background e 3-1
The Design e 3-3
Two Handshake Examples 3-4
Miscellaneous Comments 3-9
Macroassembler Listing oo, 3-10
Section 4 4051 GPIB TIMING DETAILS
Introduction 4-1
Timing Details for the PRINT Statement 4-2
Address Timing for PRINT with Secondary Address
not Suppressed 4-2
Suppressing the Secondary Address 4-4
Handshake Timing During a PRINT DataBurst 4-4
The Unaddressing Sequence for the PRINT Statement 4-7
Timing Details for the INPUT Statement 4-7
Introduction 4-7
Address Timing for INPUT with the Secondary Address
not Suppressed e 4-8
Suppressing the INPUT Secondary Address 4-10
The INPUT DataBurst 4-11
The Unaddressing Sequence 4-13
A Complete INPUT Operation 4-16
Timing Details for the WRITE Statement 4-16
Introduction 4-16
Address Timing for WRITE with the Secondary Address
not Suppressed 4-17
Suppressing the WRITE Secondary Address 4-19
The WRITE DataBurst, 4-20
The Unaddressing Sequence for the WRITE Statement 4-23
Timing Details for the READ Statement 4-24
Introduction 4-24
Address Timing for READ with the Secondary Address
not Suppressed 4-24
Suppressing the READ Secondary Address 4-27
The READ Data Burst, 4-28
The Unaddressing Sequence for the READ Statement 4-32

@ 4051 GPIB Hardware Support

Section 4

Section 5

Appendix A

DIAGRAMS

4051 GPIB Hardware Support

CONTENTS (cont)

4051 GPIB TIMING DETAILS (cont)

Timing Details for WBYTE
Introduction
Timing Details e
Transferring My Talk Address for Device 2 with WBYTE
Transferring My Listen Address and Three Data Bytes

with WBYTE

Timing Details for RBYTE
Introduction
Receiving One DataByte
Receiving more than One DataByte

Timing Details for Serial Poll
Introduction e
Serial Poll Flow Diagram, ...
The 4051 POLL Statement Timing Details

Using EOI to Terminate a Data Transfer

4051 GPIB DATA RATES

Factors that Control GPIB Data Rates
Computing 4051 GPIB DataRates
Computing Effective Data Rates for PRINT
Computing Effective Data Rates for INPUT
Computing Effective Data Rates for WRITE
Computing Effective Data Rates for READ
Computing Effective Data Rates for WBYTE
Computing Effective Data Rates for RBYTE

The 4051 INTERNAL FLOATING-POINT FORMAT

Introduction
The Header
The Status and Exponent Information
The Binary Fraction
Putting It All Together
A Complete Example
Floating-Point Numbers Coming In Must Be Normalized
4051 Floating-Point Work Sheets

Vi

Fig. 1-1. The 4051 GPIB can be interfaced to anything.

4051 GPIB Hardware Support

Section 1

BACKGROUND INFORMATION
ON THE 4051 GPIB

INTRODUCTION

This section provides background information on IEEE Standard 488-1975 and the 4051 GPIB.
The development of the IEEE Standard is discussed first, followed by an explanation of the
4051 General Purpose Interface Bus organization, signal line definitions, and protocol
definitions. This material is most helpful to people who are unfamiliar with GPIB concepts. This
section may be skipped by more experienced personel without loss of continuity.

WHY WAS A STANDARD INSTRUMENTATION INTERFACE
NEEDED ?

PROGRAMMABLE INSTRUMENTATION DEVELOPMENT

Technological advances have brought an increase in the sophistication of the computer
industry over the last ten years. These technological advances have had a parallel effect on
measurement devices and instrumentation. The instrumentation of today is very versatile and
highly programmabile; this justifies the need for a general purpose interface standard.

Not long ago measurement devices were almost all analog, using panel meters to indicate
measurement values. Some devices which were inherently digital (counters, for example)
began appearing with easy-to-read digital displays. Once displays become digital,
manufacturers started supplying output-only interfaces to allow the display readings to be
transferred to recording devices, such as digital strip printers. In this way, the "numbers” from
the instruments were permanently recorded without the need for anyone to write them down.
To perform computations with these numbers still required someone to key them into a
terminal or key punch; a direct transfer of the data from the instrumentation to the computer
(sometimes via paper tape) was only a step away. A number of custom interfaces appeared
which allowed specific instruments to output data to specific computers.

A device such as the frequency counter just discussed has an analog input and digital output.
From the standpoint of the digital information, the frequency counter may then be referred to
as a "talk only” device.

4051 GPIB Hardware Support @

1-1

BACKGROUND INFORMATION ON THE 4051 GPIB
How Is IEEE Standard 488-1975 Defined?

1-2

“Listen only” devices also exist. Just as measurement devices can talk to a computer, those
devices capable of generating stimuli or other signals can be programmed by a computer and
are classified as listeners. A waveform generator is an example of such an instrument. A
number of waveform generators exist having output frequencies and amplitudes which are
programmable digitally via interfaces specific to the brand and model of instrument.

With the growing popularity of instruments with digital interfaces came an even greater
number of interfaces with differing mechanical, electrical, and functional specifications. Some
devices required two interfaces, one forinput and one for output. A multimeter could be such a
listener/talker capable of being programmed by a computer-controller to a measurement
setting of volts DC, and range of 100.00 full scale. The multimeter could then make a
measurement and output the reading in a digital format for use by the computer.

EVENTS LEADING TO A STANDARDIZED INTERFACE

The traditional approach to interfacing such instrumentation has been to provide each device
with specialized control, data, and status signal lines. This works well, but has resulted in just
about as many interface solution techniques as there are design engineers. The net result was
a dedicated interface structure for each device or instrument integrated into a system. This
then led to the design of many interface adapters to accommodate the ever-increasing variety
of codes, formats, signal levels, logic conventions, and timing protocols, to name only a few
factors.

Initial attempts were made to standardize the interfaces from the perspective of the computer
or controller. Such a solution proved too costly, as more sophisticated instrumentation had

many programmable input and output lines, and began to require as much as 100 interface

signal lines. At this point, both European and American instrumentation manufacturers began

an all-out effort toward a proper solution.

HOW IS IEEE STANDARD 488-1975 DEFINED ?
DESIGN OBJECTIVE FOR THE STANDARD INTERFACE

The needs of the entire instrumentation community are varied and one interface solution
cannot satisfy all of everyone’s requirements. It is the most-frequent needs which require
standardization and which fall within the objectives of IEEE Standard 488-1975. In order to
better define those systems for which the standard would be suited, the following limitations
were set:

1. Data rates of up to one megabyte (one million characters) per second would be
supported. This would handle all but the fastest analog-to-digital converters and

mass storage devices.

2. Distances up to a total of twenty meters would be supported. This would handle
instrument setups close to the controller, but not remote tarminals and displays.

@ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
How Is IEEEE Standard 488-1975 Defined?

3. Up to about fifteen devices running simultaneously would be supported.
Most systems fall into this category.

4. Communications methods would be optimized for devices with typical
message lengths of ten to twenty characters (digital), as most programmable

instruments fall into this category.

Taking full account of cost, flexibility, and compatibility as major factors to be considered, the
objectives of the IEEE 488 Standard are to:

1. Define a general-purpose system for use in limited distance applications.

2. Specify the device-independent mechanical, electrical, and functional interface
requirements.

3. Specify the terminology and definitions related to the system.

4. Enable the interconnection of independently manufactured apparatus into a single
functional system.

5. Permit apparatus with a wide range of capability—from the simple to the complex—
to be interconnected to the system simultaneously.

6. Permit direct communication between devices without requiring all messages to be
routed through a control unit.

7. Define asystem with a minimum of restrictions on the performance characteristics of
the devices.

8. Permit asynchronous communication over a wide range of data rates.

9. Define a system that, of itself, may be relatively low cost and permits the
interconnection of low cost devices. '

10. Define a system that is easy to use.

4051 GPIB Hardware Support @ 1-3

BACKGROUND INFORMATION ON THE 4051 GPIB
How Is IEEE Standard 488-1975 Defined?

WHAT IS INCLUDED IN IEEE STANDARD 488-1975 ?

The primary focus of the General Purpose Interface Bus (IEEE Standard 488-1975) is to define

an interface system to interconnect self-contained devices to other devices by external means.
This means that the GPIB is a device-independent interface system. In this manner, existing
programmable apparatus should be able to connect to GPIB-compatible devices by adding

another module to the present interface. New instruments need not be designed with the GPIB

in mind to eventually be compatible with the GPIB.

There are four elements to any interface system. These elements are:

Mechanical Elements
Electrical Elements
Functional Elements
Operational Elements

H oL

Of these four, only the fourth is truly device-dependent. Operational elements state the way in
which any one device reacts to a signal on the bus. These reactions tend to be device-
dependent characteristics and state the way in which the devices use the interface via
application software. As the operational characteristics of all present and future devices and
systems can not be foretold, the interface standard does not include operational elements. The
characteristics of the 4051 are, however, discussed in this manual.

Mechanical elements, the physical connectors and cables, are defined by the standard.
Building mechanical specifications into the standard ensures that interconnecting GPIB
compatible devices will never require more than a standard interfacing cable. It should never
be necessary to wire connectors or route signals to appropriate pins by studying the manuals
of each of the devices concerned. The connectors have 24 pins with trapezoidal shells for ease
ininterconnecting devices. The cables are provided with a plug and a receptacle ateach end to
allow rigid stacking of connectors at any cable intersection or device. This allows both star and
bus structure configurations. Sixteen of the 24 pins are defined for signals.

Electrical elements, the voltage and current values required at connector nodes, are well
defined by the interface standard. All specifications are based on the use of TTL technology
The logical states are defined as follows:

Coding Electrical
Logical State Signals Levels
] correspondsto 2.0 V<volts <5.2V

(called high state)

1 corresponds to 0<<volts<0.8V
(called low state)

14 @ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
Compatability With IEEE Standard 488-1975

Messages can be set as either active or passive true signals. Passive true signals occur in the
high state and must be carried on a signal line using open collector devices. (Driver
requirements are expanded upon in IEEE Standard 488 Section 3.3)

Functional elements are well defined by the interface standard and determine the ease with
which one can interconnect independently designed devices and have them interact
appropriately. Functional elements cover:

1. Interface functions which define the use of specific signal lines so that a device can
receive, process, and send messages.

2. The specific protocol by which interface functions send and receive their limited sets
of messages.

3. Logical and timing relationships between the allowable states of interface signal
lines.

4. Therepertoire of interface functions from which the design engineer may choose for
his particular device application area.

5. The total processing capability and communications capability that the system is
capable of supporting.

Ten interface functions provide the system with complete communications and control
capabilities. These are discussed in the sections on compatibility with the interface standard.

Therefore, the IEEE Standard 488-1975 interface definition encompasses the device
independent elements of mechanical, electrical, and functional nature to leave only the device-
dependent operational elements to the design engineer, thus insuring system compatibility.

COMPATIBILITY WITH IEEE STANDARD 488-1975

There are ten interface functions, some with as many as 28 allowable subsets, supported by
andincluded in the interface standard. Only those functions important to a particular product’s
applications need be implemented.

4051 GPIB Hardware Support @

1-5

BACKGROUND iINFORMATION ON THE 4051 GPIB
Compatability With IEEE Standard 488-1975

A device need only be able to handshake on data to be compatible with the standard. In orderto
be addressed, it must also acknowledge the call from the controller and be able to recognize its
own address. The least number of signal lines, then, that must be implemented in order fora
device to respond on the interface bus are:

1. The eight data lines D101-D108

2. The three data transfer handshake lines:
a. NRFD—not ready for data
b. NDAC-—data not accepted
c¢. DAV—data valid

3. CONTROLLER’s management line:
a. ATN—attention

4051 GPIB TO IEEE 488 COMPATIBILITY

In general, the 4051 Graphic System acts as a standard talker, listener, and controller. The
controller function does not have the ability to conduct a parallel poli; it does however, have the
ability to conduct a serial poll. Serial polls are taken each time the POLL statement is executed
in BASIC.

The Graphic System does not have the ability to transfer control to another device on the GPIB
with controller capability. Therefore, the Graphic System assumes thatitis the only controller
on the GPIB. This assumption is made at all times.

4051 GPIB Support of IEEE 488 Interface Functions

The degree to which the 4051 GPIB supports each of the ten interface functions is described
below. The referenced sections are in the IEEE Standard 488-1975 document.

1. SH (Source Handshake Function, Section 2.3)

The SH function provides a device with the ability to initiate and terminate the
transfer of messages on the data bus.

The 4051 conforms to subset SH1 meaning that it is completely compatible with no
states omitted.

1-6

®

4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
Compatability With IEEE Standard 488-1975

2. AH (Acceptor Handshake Function, Section 2.4)

The AH function provides a device with the capability to guarantee proper reception
of messages on the data bus as well as the capability of delaying initiation or
termination of such messages.

The 4051 conforms to subset AH1 meaning that it is completely compatible with no
states omitted.

3. T (Talker Function, Section 2.5)

The T function provides the device with the capability of sending device dependent
data over the bus to other devices.

The 4051 conforms to subset TE3 meaning that itis a basic extended talker, honoring
secondary addresses. The 4051 addresses itself internally and not over the GPIB. The
only talker substates notimplemented would allow other devices to poll the status of
the 4051. This isn’t required because the 4051 is the system controller at all times.

4. L (Listener Function, Section 2.6)

The L function provides the device with the capability of receiving device dependent
data overthe bus from other devices. This capability exists only when the function is
addressed to listen.

The 4051 conforms to subset LE1 meaning that it is a basic extended listener,
honoring secondary addresses. The 4051 addresses itself internally and not over the
GPIB, but is also capable of removing itself from the bus as a listener.

5. SR (Service Request Function, Section 2.7)

The SR function provides the device with the capability to asynchronously request
service from the controller in charge of the interface. The 4051 is always the
controller and therefore has no need for this capability.

The 4051 conforms to subset SR@ meaning that it has no capability to issue an SRQ.
This has no consequence on the 4051’s capability to honor SRQs, which is quite
complete.

6. RL (Remote Local Function, Seciton 2.8)

The RL function provides the device with the capability to select between two
sources of inputinformation: programmed or manual (remote and local). This is most
important with stand-alone measurement devices, and is not used with the 4051.

The 4051 conforms to subset RL®, meaning that it has no compatibility here,
although it can control the RL function of other devices.

4051 GPIB Hardware Support @ 1-7

BACKGROUND INFORMATION ON THE 4051 GPIB
Compatability With IEEE Standard 488-1975

7.

10.

PP (Paralle!l Poll Function, Section 2.9)

The PP function provides the device with the capability to present one bit of status to
the controller in charge, without being addressed to talk. The 4051 is the controllerin
charge and does not require this capability.

The 4051 conforms to subset PP@ meaning that it has no capability here.

DC (Device Clear Function, Section 2.10)

The DC function provides the device with the capability of being cleared (initialized)
either individually or as part of a group of devices.

The 4051 conforms to subset DC@® meaning that it does not have the capability of
being cleared by an external device. The BASIC keyword INIT does inititalize the
4051 as well as all devices on the GPIB.

DT (Device Trigger Function, Section 2.11)

The DT function provides the device with the capability of having its basic operation
started either individually or as part of a group of devices.

The 4051 conforms to subset DT@ which means that it has no capability of being
"started” remotely. This is a logical consequence of the 4051 being the controller of
the system. '

C. (Controller Function, Section 2.12)

The C function provides the device with the capability to send device addresses,
universal commands, and addressed commands to other devices over the interface.
The device with an active C function is called the system controller (of the interface
system).

The 4051 conforms to subsets C1, C2, C3, C4 and C28. These have the following
meanings:

a. Ci1—the 4051 is the system controller.

b. C2—the 4051 can send IFC (interface clear) with the BASIC keyword INIT fo
clear all other devices on the bus and thereby takes charge of the bus.

c. C3—the 4051 can send REN (remote enable) to lock out the front panels of
devices on the bus and putthem in aremotely programmable mode. This occurs
automatically whenever the 4051 is running a BASIC program.

@ 4051 GPIB Hardware Suppott

BACKGROUND INFORMATION ON THE 4051 GPIB
What Hardware and Logic Describe the Interface?

d. C4—the 4051 can respondto SRQs (service requests) issued asynchronously by
devices on the bus. The 4051 then undertakes a serial poll and determines which
device originated the SRQ and the status of the device.

e. C28—the 4051 can send interface messages.
f. As mentioned previously, the 4051 is the only controller in the interface system.
Therefore it cannot receive control from another controller, pass control to

another controller, pass control to itself, or take control synchronously.

In summary, the following set of interface functions contained in the IEEE Standard 488-1975
document completely describe the 4051 GPIB specifications:

SH1 —source handshake
AH1 —acceptor handshake
TES3 —talker

LE1 —listener

SR -—service request

RL@ —remote local

PPQ —parallel poll

DC@ -—device clear

DTo —device trigger
C1,2,83, 4,28 —controller

WHAT HARDWARE AND LOGIC DESCRIBE THE INTERFACE ?
(GPIB DEVICES

The General Purpose Interface Bus (GPIB) of the 4051 Graphic System was designed as a
convenient, easy to implement, and powerful communications link between the 4051 and
compatible devices, as well as a link between the devices themselves. The interface contains all
ofthe mechanical, electrical and functional specifications required by IEEE Standard 488-1975
which describes a standard digital interface for programmable instrumentation. The
compatibility of the 4051 GPIB with IEEE 488 was previously discussed. GPIB devices can take
on three status designations: controllers, talkers, and listeners.

Controllers

The Graphic System acts as the controller and is the device which assigns who is going to
transmit data (talker) and who will receive data (listeners). There canbe only one controller ata
time and it services all interrupts from the other devices. The Graphic System assumes thatitis
the only controller on the bus and it has cormnplete control over the direction of all data
transfers. There is no provision in the Graphic System for other devices on the GPIB to take
turns as controller-in-charge.

4051 GPIB Hardware Support @ 19

BACKGROUND INFORMATION ON THE 4051 GPIB
The GPIB Connector

1-10

Peripheral devices on the GPIB are designated as talkers and listeners. The Graphic System
acts as the controller to assign peripheral devices on the bus as listeners and talkers.
Asynchronous communications of device addresses and data occur on an eight-line data bus
at the rate of the slowest assigned listener.

Talkers

Atalkeris adevice capable of transmitting information onthe Data Bus. There can be only one
talker at a time. The Graphic System has the ability to assume the role of the talker when it is
programmed to do so. The talking rate is usually governed by the listeners which "handshake”
onevery byte (character) that is transmitted by the talker. Clearly, the net communications rate
can not exceed the maximum transmission rate of the talker.

Listeners

A listener is a device capable of receiving information transmitted over the Data Bus. There

may be up to fourteen listeners taking part in an 1/0 operation at any one time. The Graphic
System has the ability to assume the role of a listener anytime it is programmed to do so. The

communications rateis generally limited by the maximum receive rate of the slowest assigned

listener.

Idle Devices

A device need not be a talker or a listener at all times. It may be idle. Any device which has not
been addressed since the last untalk (UNT) and unlisten (UNL) commands is in an idle state
and has no effect on data communications rates. Therefore, devices need not be powered
down in order to maximize transfer rates. In fact, it should be remembered that more than half
of the devices on the bus must be powered up for the system to operate.

THE GPIB CONNECTOR

The GPIB connector is located on the rear panel of the Graphic System main chassis. This
connector allows external peripheral devices to be connected to the system. The devices must
conform to IEEE Standard 488-1975. The GPIB connector is a standard 24-pin connector such
as an Amphenol Micro-Ribbon connector, with sixteen active signal lines and eight interlaced
grounds. The cable attached to the GPIB connector must be no longer than 20 meters
maximum with no more than fifteen peripheral devices connected at one time. The connector
pin arrangement and signal line nomenclature is shown in Fig. 1-2.

@ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
The GPIB Connector

SHIELD SRQ NDAC DAV DI04 DI02

IFC | NRFD| EOI

GND | GND | GND | REN | D07 | DIO5S
1 9 7

2056-01
LOGIC GND GND GND DIO8 DI06
GND 10 8 6

Fig. 1-2. GPIB connector.

Interconnecting cable assemblies are provided with both a plug and a receptable connector
type at each end of the cable to allow either star or bus-structured systems. Connectors may be
stacked rigidly using standard counterbored captive screws.

4051 GPIB Hardware Support @ 1-11

BACKGROUND INFORMATION ON THE 4051 GPIB
The GPIB Interfacing Concept

THE GPIB INTERFACING CONCEPT

The GPIB is functionally divided into three component buses; an eight-line Data Bus, a three-
line Transfer Bus, and a five-line Management Bus for a total of sixteen active signal lines. This
bus structure is shown in Fig. 1-3.

Dio8
D107
D106
Di05
DI04
D103
D102

D101
DATA BUS

DAV
NRFD

NDAC
TRANSFER BUS

ATN
IFC
SRQ
REN
EOI
MANAGEMENT BUS

» 3 y ..
4 GRAPHIC

(2056) 2270-2

Fig. 1-3. GPIB component buses.

The transfer rate over the Data Bus is a function of the slowest peripheral device taking partina
transfer at any one time. The bus operates asynchronously. Both peripheral addresses and
data are sent sequentially over the Data Bus. Once peripheral addresses are established fora
particular transfer, successive data bytes may be transmitted in a burst for higher effective data
rates. Within the 4051 Graphic System, data rates are dependent on the operation being
performed and on the conversion time from the ASCII code on the GPIB to the machine
dependent binary coding within the 4051. Effective data transfer rates are discussed in detail in
Section 5 of this manual.

1- 1 2 @ 4051 GPIB Hardware Support

BACKGROUND INFFORMATION ON THE 4051 GPIB
The GPIB Interfacing Concept

GPIB SIGNAL DEFINITIONS

Data Bus

The Data Bus contains eight bidirectional active-low signal lines, D101 through D108. One
byte of information (eight bits) is transferred over the bus at a time. D101 represents the least
significant bit in the byte; D108 represents the most significant bit in the byte. Each byte
represents a peripheral address (either primary or secondary), a control word, or a data byte.
Data bytes can be formatted in ASCH code, with or without parity (the Graphic System
assumes no parity), or they can be formatted in machine dependent binary code.

Management Bus

The Management Bus is a group of five signal lines which are used to control data transfers
over the Data Bus. The signal definitions for the Management Bus are as follows:

Attention (ATN)

Service Request (SRQ)

4051 GPIB Hardware Support

This signal line is activated by the controller when peripheral
devices are being assigned as listeners and talkers. Only peripheral
addresses and control messages can be transferred over the Data
Bus when ATN is active low. After ATN goes high, only those
peripheral devices which are assigned as listeners and talkers can
take part in the data transfer. The Graphic System assumes it is the
only source of this signal. The use of the attention line is governed
by user-written programs.

Any peripheral device on the GPIB can request the attention of the
controller by setting SRQ active low. The controller responds by
setting ATN active low and executing a serial poll to see which
device is requesting service.

This response is generated by an ON SRQ THEN statement whichis
executed in the BASIC program. The serial poll is taken when a
POLL statement is executed in the BASIC program. After the
peripheral device requesting service is found, BASIC program
control is transferred to a service subroutine for that device. When
the service subroutine is finished executing, program control
returns to the main program. The SRQ signal line is reset to an
inactive state when the device requesting service is polled. The
Graphic System is not interrupted if another service request (SRQ
active low) occurs during the service subroutine. Thisis notanerror
condition and the controller responds to the second SRQ on
returning to the main program. Interruptable routines may be
generated in software by resetting the interrupt feature with an ON
SRQ THEN statement. See the section on handling interrupts in the
4051 Graphic System Reference manual.

@

1-13

BACKGROUND INFORMATION ON THE 4051 GPIB

The GPIB Interfacing Concept

Interface Clear (1FC)

Remote Enable (REN)

End or Identify (EOI)

Transfer Bus

The IFCsignal line is activated by the 4051 when it wants to place all
interface circuitry in a predetermined quiescent state. The Graphic
System assumes that it is the only source of this signal. IFC is
activated each time the INIT statement is executed in a BASIC
program.

The REN signal line is activated whenever the system is operating
under program control. REN causes all peripheral devices on GPIB
to ignore their front panel controls and operate under remote

control via signals and control messages received over the GPIB.

The EOl signal can be used by the talker to indicate the end of adata
transfer sequence. The talker activates EOl as the last byte of data is
transmitted. When the 4051 is listening, the 4051 assumes that a data
byte received is the last byte in the transmission, if EOIl is activated.
When the 4051 is talking, it always activates EOI as the last byte is
transferred except during a WRITE operation. The 4051 issues EOI
at the end of WBYTE transmissions when it is user set. All
transmissions other than WBYTE also end transmissions with the
UNTalk and UNListen commands for use by devices which do not
honor EOI.

A handshake sequence is executed by the talker and the listeners over the Transfer Bus each
time a byte is transferred over the Data Bus. The Transfer Bus lines are defined as follows:

Not Ready for Data
(NRFD)

Data Valid (DAV)

Data Not Accepted
(NDAC)

An active low NRFD signal line indicates that one or more assigned
listeners are not ready to receive the next data byte. When all of the
assigned listeners for a particular data transfer have released NRFD,
the NRFD line goes inactive high. This tells the talker to place the
next data byte on the Data Bus.

The DAV signal line is activated by the talker shortly after the talker
places a valid data byte on the Data Bus. An active low DAYV signal
tells each listener to capture the data byte presently on the Data Bus.
The talker is inhibited from activating DAV when a listener holds
NRFD active low.

The NDAC signal line is held active low by each listener until the
listener captures the data byte currently being transmitted over the
Data Bus. When all listeners have captured the data byte, NDAC

goes inactive high. This tells the talker to take the byte off the Data

Bus.

@ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

HOW DOES THE THREE WIRE HANDSHAKE WORK ?
INTRODUCTION

Consider an elegant system comprising hardware and software and a shared COMMON area
that all devices can not only see, but monitor constantly. This COMMON area contains three
types of information: data, control logic variables, and data transfer logic variables. The data
constitutes the information to be transferred between the hardware components in the system
in some well understood coding format, perhaps ASCII code.

We have up to 15 devices on the common bus at one time and must somehow keep them
communicating. We address each device with numbers set manually on each device. We allow
the devices to have one or more of three possible status capabilities. All devices will not
necessarily want to receive all information on the bus at all times. Therefore we have:

TALKERS Those devices which are the source of data at any given time and
which have the capability of putting data out onto the bus and into
the DATA area. (Only one device is allowed to talk at one time in
order to eliminate possible confusion.)

LISTENERS Those devices that accept or read the information inthe DATA area.
Any number of devices can be listeners at any one time, each of
which behave as an input device.

CONTROLLER The device that assigns TALK and LISTEN status to the other
devices on the bus. We should also note that this is a relatively
unique use of the word "controller” as this device is only assigning
status and is never programming devices or reading their
measurements. The controller here cannot make decisions and
should not be confused with “process controllers” popular in
industrial environments.

Examples of CONTROLLERS, LISTENERS, and TALKERS:

Devices that can Control, Talk and Listen, such as a programmable calculator or 4051. These
devices control, perhaps by telling a 4924 Digital Cartridge Tape Drive to FIND file 8 and to start
TALKING its stored information out onto the bus as DATA. The 4051 can also tell another
device like the 4662 Digital Plotter to simultaneously LISTEN to the 4924 Tape Unit and plot the
data that the Tape Unit is Talking. The 4051 is also capable of being a talker and has perhaps
output that data which is now stored by the 4924 Tape Unit. The 4051 can also adopt listener
status and input data from the same tape.

4051 GPIB Hardware Support @ 1-15

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

1-16

Some devices can’t control, but can both Talk and Listen. The 4924 Digital Cartridge Tape Unit
is one such device. In the world of instrumentation, so is a digital multimeter (such as a
HP 3490A, Dana 5900, or Fluke 8500). Such a multimeter can adopt listener status and inputa
new change of measurement function (voltage, current, resistance) and range (100 mV full
scale) and then adopt TALKER status to send the measurement value into the common area as
data to be used by other devices.

Some devices can only be Listeners. A paper tape punch listens to data on the bus, accepts the
data and punches it out on tape. A signal generator (such as a HP 330B, Fluke 6010 0r6011, or
Wavetek 152 or 159) is also only a Listener. The waveform, frequency, and amplitude are
dictated on the controller which lells the signal generator to listen. The information is talked by
the controller and listened to by the signal generator which changes function, frequency, and
amplitude and outputs these as an analog signal to some outside device.

Some devices can only be talkers. A paper tape reader is one such device. It reads a paper tape,
then outputs or talks it onto the bus as data to be used by the assigned listeners. A digital
counter (such as the HP 5345A or Dana 9000) inputs an analog frequency and displays this
frequency as a number. [t can also talk by putting this same number on the bus as data for use
by the listeners.

THE COMMON AREA

The devices constantly scan the contents of the COMMON area and are always aware of the
status of the following logic variables.

Data

The data is present as an ASCII character (8 parallel bits) and is placed there at the maximum
rate of the talker. The talker is not allowed to put a new character in its place until the slowest
listener has read it. This is in contrast to typical data communications systems where the bits
come through serially at a clocked "Baud Rate”. More on this later.

Control

We have need for 5 CONTROL or "General Interface Management” logic variables. These
variables are eithera 1" for “on” ora "@" for "off”. In the routine transfers of data, the variables
are relatiavely unimportant. What they do lend the system, though, is a considerable amount of
flexibility. The variables are as follows:

IFC "Interface Clear” usually remains off (@) and bothers no one. On
system power-up or initialization, IFC is set to one (1) by the
CONTROLLER to tell all the devices on the GPIB to set their status
to a predetermined quiescent mode. Once everyone is initialized
(and has said s0) IFC goes into its usual @ state. Inthe 4051, IFC is set
to "1” every time the INIT command is executed in BASIC.

@ 4051 GP!B Hardware Support

ATN

SRQ

4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

" Attention” is the most important variable. Without some special
signal or flag, how can a LISTENER and TALKER know to cease its
current activity and listen to the CONTROLLER for new
TALKER/LISTENER assignments? ATN is usually "0,” but
whenever the CONTROLLER wants to get in its say, the
CONTROLLER sets ATN to “"1” and all of the devices cease their
operation and listen. Besides a flag for assigning LISTENER and
TALKER status, ATN is used by the 4051 when INIT is executed.
First, the INIT command is recognized by the 4051. Next the value of
IFCissetto ”1” by the controller. All devices constantly observe the
COMMON area and note this call from the CONTROLLER. All
devices see IFC become a "1"”, so they reset themselves to a
predefined state.

"Service Request” is the opposite of ATN, that is, SRQ lets the
CONTROLLER know that some device wants to talk. Not every
device can set SRQ and allow the present processes to be
interrupted. The 4051 CONTROLLER constantly monitor the status
of SRQwhen an ON SRQ THEN statement is executed in BASIC and
honors the device request when SRQ is set it equal to "1.” The 4051
is said to "support single level interrupts” or "honor interrupts”.
SRQ s a single variable equal to "@" or ”1” and does not remember
who set SRQ to "1". The capacity for honoring service requests is
generally present only in sophisticated CONTROLLERS. Briefly, the
CONTROLLER must:

Constantly monitor SRQ.

On finding SRQ equal to 1", stop all present activity.

Store all current device status.

POLL each device, according to a software command to see who

called for its attention.

5. Honor the device’s request via a user-written service request
subroutine.

6. Reload device status from before interrupt (SRQ) condition.

7. Continue with previous process as if nothing had occurred.

PN~

The 4051 is one such sophisticated GPIB CONTROLLER.

@ 1-17

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

REN "Remote Enable” is a signal which acts as a safety latch for many
devices. Some devices can be operated either manually or remotely
from a distant station by program control. It is sometimes advisable
to "lock out” the front panel of equipmentiif itis to be used solely ina
programmable fashion. REN is set to “1” when GPIB bus is active.
The devices which have this lock-out feature see that they are
supposed to be under the control of some system component and
not the whims of mortal man and summarily ignore their front panel
switches and knobs. REN is automatically set to “1"” by the 4051
CONTROLLER when the 4051 is placed under program control. It is
not uncommon for a front panel lamp, such as "REMOTE", to light
up on the GPIB device when it is in this mode. ‘

EOI "End or Identify” is one of the nicer things about the GPIB. Although
not aiways implemented, those devices that use EOl are a joy to have
in the system. Because EOI is a separately monitored variable, the
TALKER can set EOl equal to 1" when the last byte of data is sent
and tell the listener that there is no more data. This is the same as
sending a CR delimiter to mark the end of the logical record. The
4051 terminates the data acquisition and continues with the next
program line when: the current variables have assigned values and
EOIl is detected.

Another device that honors EOI is the TEKTRONIX 4662 Digital
Plotter. The byte of data sent from the 4051 is accompanied by
setting EOlequalto "1”. The 4662 then knows that it has received the
last byte of information.

Thus, with the five presently implemented control variables: IFC, ATN, SRQ, REN, and EOl we
have the signals (or flags) required for the CONTROLLER to call (ATN) devices, reset (IFC)
devices, to be interrupted (SRQ) asynchronously by devices, and to lock-out (REN) manual
operation of devices. We also give TALKERS the ability to delimit transmissions (EOI) without
having to send a delimiter character or character string.

DATA TRANSFER VARIABLES

The beauty of the GPIB design isits facility for devices to communicate effortlessly regardless
oftheirtransmitting and receiving rates. The process that allows this is the now famous "Three
Line Handshake” for which the Hewlett-Packard Company holds the patent.

During a data transfer, the TALKER controls only one logic variable DAV, or “"Data Valid".
Whenever the TALKER places data in the common DATA area, for all LISTENERS to use, the
TALKER sets DAV equal to “1”. If the data isn’t valid, or if the TALKER is in the process of
updating the data, DAV is set equal to "@".

1‘18 @ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

The LISTENERS have control over two logic variables, NRFD (”"Not ready for Data”) and
NDAC ("Data Not Accepted”). These two signals let the TALKER know when new data bytes
can be supplied and when the talker may erase the previous data, respectively.

Each LISTENER has to OK the transfer of each data byte. Because of this, NRFD and NDAC
have inputs from every LISTENER and are thus not simple variables.

In fact, let us consider NRFD and NDAC as two arrays each with 31 elements:

DIM NRFD (31), NDAC (31)
where NRFD goes from NRFD (@) thru NRFD (30)
and NDAC goes from NDAC (@) thru NDAC (30)

Furthermore, when we speak of the value of NRFD or NDAC, we refer to NRFD (@) and NDAC
(3) which summarize the status of the entire array. Remember that valid GPIB addresses go
from 1 to 30 and that we may have no more than 15 devices on the bus at one time, each with a
different address. We now assign NRFD (n) and NDAC (n) to device number "n”. We always
have extra array elements not being used and set these elements equal to “@". In fact, all values
of the arrays NRFD and NDAC not pertaining to active GPIB LISTENERS are set equal to "0".
The summary values NRFD (@) and NDAC (@) are the logical OR of the array members:

NRFD (@) = NRFD (1) OR NRFD (2) OF ... OR NRFD (30)
and NDAC (@) = NDAC (1) OR NDAC (2) OR ... OR NDAC (30)

Rather than signifying something to do, NRFD and NDAC hold up the communications
process to wait for slowpoke LISTENERS on the bus. Using this technique, the TALKER can
put an 8-bit byte in the DATA area at which time the LISTENERS can start reading it. As long as
aLISTENER has not finished reading the data (has not accepted it, NDAC (n) = 1) the value of
NDAC (@) remains 1 and the TALKER cannot update or modify the data.

(An alternative learning technique could involve using the terms RFD, Ready For Data,
and DAC, Data Accepted, as well as inverting the meaning of the @ to 1 designations. RFD
(@) and DAC (@) would then be the Logical AND of the RFD (n) and DAC (n) terms,
respectively. Although less obvious, the NRFD and NDAC terms are used because they
are part of the IEEE-488 standard and have more trivial counterparts in the actual
hardware than would RFD and DAC.)

1-19

4051 GPIB Hardware Support

®

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

HANDSHAKE PARAMETER STATES

Once the CONTROLLER has assigned the TALKER and LISTENERS the data transfer may
commence. The only activity on the bus should be the changing of DATA accompanied by the
Data Valid variable (DAV) going from @ to 1 and the alternate switching of the NRFD (@) and
NDAC (@) parameters from @ to 1 and back to @ again with the LISTENERS request for data
(using NRFD) and, summarily, acceptance of data (using NDAC).

Two common errors may occur during the transfer. If a LISTENER requests data (NRFD =0,
NDAC = 1) and the TALKER never responds, which means not admitting that valid data is on
the bus (DAV = @), the bus hangs up. As there is no defined clocking rate for data, the
LISTENERS think that they have a slow TALKER on the line and just sit there waiting. The
difference between a slow talker and a dead one is a mater of degree. Thus, the controller
cannot check for this error. This occurs during an incorrect INPUT, READ, OLD, or APPEND
from an existing device or a request to TALK addressed to a LISTEN-only device.

The second common error is more insidious. NRFD and NDAC are binary and the two can thus
have a total of four different configurations (11, 10, 01, 0,0). Three are legal states. The "0,0”
state is a LISTENER error.

The “1,1" State In the “1,1"” state the LISTENER is Not Ready For Data (NRFD=1)
and has Not Accepted Data (NDAC=1). This is a legal state for the
LISTENER as it is indicating to the interface that it is not yet
prepared internally to continue with the handshake cycle. If any
LISTENER has the 1,1 configuration (NRFD (n)=1 and NDAC
(n)=1), then communication on the bus is temporarily held up. All
LISTENERS enter and leave communications modes in the 1,1 state.

The "@,1" State In the "@,1" state the LISTENER is Ready For Data (NRFD=0) and
therefore Not Accepting Data (NDAC=1). This is a legal state for any
and all LISTENERS as it indicates to the interface and TALKER that
the LISTENERS are prepared to receive messages.

The "1,0" State in the "1,0" state, the LISTENER is Not Ready For Data (NRFD=1)
because it is in the process of Accepting Data (NDAC=@). This is
certainly a valid state as the LISTENER is indicating to the TALKER
to maintain a valid byte of data. In the "1,0" state the LISTENER is
indicating to the TALKER that it has received a data byte and is
processing it.

The "0,0" State The "@,0" state is always present in at least one device (the TALKER)
but is not valid in an assigned LISTENER. In the "8,0” state the
LISTENER is Ready For Data (NRFD=@) and is in the process of
Accepting Data (NDAC=0). The first signifies to the TALKER to get
rid of the present data and the second says to retain it as the data is
still being read. The TALKER should recognize this as an error.

120 @ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

Remember that the TALKER does not see the status of each
LISTENER, but only the logical OR of all the NRFD (n) and all the
NDAC (n) elements. If any LISTENER has its NRFD or NDAC
parametersetto 1", the TALKER will not recognize the presence of
a"@,0" statein another LISTENER. Sophisticated GPIB LISTENERS
will generate an EOI or SRQ if both its NRFD and NDAC are "0"
when the device is in the LISTENER mode. Many do not.

HANDSHAKE SEQUENCE

The concept of assigning TALKERS and LISTENERS will be handled later. Let us now consider
the actual handshake sequence involving a TALKER (in control of parameter DAV) and some
LISTENERS (controlling the communications rate with parameters NRFD and NDAC.).

TALKER

START

SET DAV =0

Y

LISTENERS

START

SET NRFD,
NDAC =1

READY FOR
HANDSHAKE
?

2270-3

Fig. 1-4(a). Talker sets DAV inactive (@) to start the sequence. Listeners set NRFD and NDAC to 1.

4051 GPIB Hardware Support

1-21

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

1. On initialization and just after assignment of TALKER and LISTENER status, the
TALKER initializes DAV = @ (data not valid). Fig. 1-4(a).

2. The LISTENERS initialize NRFD = 1 (none are ready for data) and set NDAC =1

(none have accepted the data). The LISTENERS will hold up the system until they
feel that they are able to handshake and respond to data. Fig. 1-4(a).

TALKER LISTENERS

READY FOR
DATA
?

NRFD & NDAC
BOTH=0

ADD
ORLTER ERROR CONDITION

(ON DIO LINES)

e

DELAY Y

2270-4

Fig. 1-4(b). Talker checks for an error, then places data on the data bus and waits.

1'22 @ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

3. The TALKER checks for the "@,08" status error condition (both NRFD and NDAC =
@), then places the DATA in the common area. In reality, the data is placed on 8
parallel lines known as the DIO (Data Input/Output) lines. Fig. 1-4(b).

4. The TALKER then delays to allow the data to “settle” on the DIO lines. Meanwhile,

the LISTENERS have initialized thernselves and are capable of handshaking. They
now wait until they are ready to accept data. Fig. 1-4(b).

TALKER LISTENERS

NRFD = § WHEN
_______________ SET NRFD =0

ALL LISTENERS ARE READY

SET DAV =1

Y Y

Fig. 1-4(c). Talker sets DAV active when the listeners are ready.

2270-5

4051 GPIB Hardware Support @ 1-23

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

5. AIILISTENERS have now indicated readiness to accept the first data byte (all NRFD
(n) = 0, therefore) NRFD = 0. Fig. 1-4(c).

6. The TALKER, upon sensing NRFD = @, sets DAV = 1 to indicate that data is settled
and valid. Fig. 1-4(c).

TALKER LISTENERS

DATA IS VALID AND MAY
DAV =1 = oo o o o o o o o o o o e o

NOW BE ACCEPTED
SET NRFD =1
ACCEPT DATABYTE
_NDACISSETTOOWHENALL | (o \orc g
LISTENERS HAVE ACCEPTED DATA

Y

2270-6

Fig. 1-4(d). Listeners set NRFD active (1), accept data, then set NDAC Inactive ().

1-24 @ 4051 GPIB Hardware Support

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

7. Thefirst LISTENER sets NRFD =1 to indicate that it is no longer ready, then accepts
the data. The other LISTENERS follow at their own rates. Fig. 1-4(d).

8. The first LISTENER sets NDAC =@ to indicate that it has accepted the data. (NDAC
remains = 1 because the other LISTENERS still have NDAC (n) = 1.) Fig. 1-4(d).

9. The last LISTENER sets NDAC (n) = 0 to indicate that it has accepted the
data; all have now accepted and NDAC = 0. Fig. 1-4(d).

TALKER LISTENERS

ISDAV =0

—

S TIME =~ ves

YES

MORE DATA
?

SET NDAC =1

2270-7

Fig. 1-4(e). Talker sets DAYV inactive (@) and the handshake cycle Is repeated or ended.

4051 GPIB Hardware Support @ 1-25

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

1-26

The TALKER, having sensed that NDAC = @, sets DAV = @. This indicates to the
LISTENERS that the data (on the DIO lines) must now be considered not valid.

Fig. 1-4(e).
TALKER changes data (on the DIO lines).

TALKER delays to allow data to settle (on DIO lines).

LISTENERS, upon sensing DAV = @, set NDAC = 1 in preparation for next cycle.
NDAC = 1 as soon as the first LISTENER sets NDAC (n) = 1. Fig. 1-5.

The first LISTENER indicates that it is ready for the next data byte (character) by
setting NRFD (n) =@. (NRFD remains = 1 due to other LISTENERS causing NRFD (9)
=1.) Fig. 1-5.

The last LISTENER indicates that it is ready for the next data byte by setting NRFD =
@. NRFD (P) is now equal to 0. Fig. 1-5.

The TALKER upon sensing NRFD =@, sets DAV =1 to indicated that data on the DIO
lines is settled and valid. Fig. 1-5.

Thefirst LISTENER sets NRFD = 1toindicate that itis no longer ready, then accepts
the data. Fig. 1-5.

The first LISTENER sets NDAC (n) =@ to indicate that it has accepted the data as in
(8). Fig. 1-5.

Thelast LISTENER sets NDAC =@ to indicate that it has accepted the data. Fig. 1-5.
The TALKER, having sensed that NDAC (@) = @, sets DAV = 0. Fig. 1-5.
The TALKER removes the data byte from the DIO signal lines after setting DAV = @.

The LISTENERS, upon sensing DAV = 0, set NDAC = 1 in preparation for the next
cycle. Fig. 1-5.

Note that all three handshake signals, DAV, NRFD and NDAC are at their initialized
states as in (1) and (2). Fig. 1-5.

@ 4051 GPIB Hardware Support

TALKERS

‘ START ,

SET DAV =0
(HIGH)

BOTH\
NRFD, NDAC H—rto

=0
?

ADD OR ALTER
DATAONDIO
LINES

DELAY

NO

NRFD
=0 (HIGH)
?

ERROR
CONDITION

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

LISTENERS

‘ START >

SET NRFD
AND NDAC =1
{LOW)

READY
FOR HAND
SHAKE
?

READY
FOR DATA
?

YES

SET NRFD =0
(HIGH)

VES
SET DAV =1
(Low) SET NRFD =1
(LOw)
NDAC ACCEPT
=0 (I—;IGH) DATA BYTE
YES ~ LA (GoEs HiGH WHEN a1, i
X i ISTENERS HAVE AECEP?ﬁﬁr‘ —_—
SET DAV=0 \\o‘,/\ SET NDAC=0
{HIGH) T, {HIGH)

DAV=0
(HIGH)

SET NDAC =1
(LOW)

2270-8

Fig. 1-5. Complete GPIB handshake flow chart.

4051 GPIB Hardware Support @ 1-27

BACKGROUND INFORMATION ON THE 4051 GPIB
How Does the Three Wire Handshake Work?

HOW THE 4051 GPIB INTERFACE CONTROLLER IS IMPLEMENTATED

The implementation of the GPIB protocal in the 4051 is done in the firmware. Firmware is the
4051's internal microprocessor program that has been coded and "locked” into a silicon chip.
User access to the GPIB is done through software, that is, programming the 4051 in the BASIC
language.

Because the 4051 GPIB interface is programmable, the interface is discussed in software

terminology. One of the most important concepts is the Three Wire Handshake, which was just
discussed at length.

1-28 @ 4051 GPIB Hardware Support

Section 2

4051 GPIB HARDWARE INTERFACE DESIGNS

INTRODUCTION

The information in this section is directed toward individuals who want to design their own
4051 GPIB interface and don’t know where to start. This material picks up where |EEE Standard
488-1975 leaves off. A conceptual block diagram of a typical GPIB interface is discussed first.
This interface is straightforward and allows a peripheral device to listen, talk, and respond to
serial polls on the 4051 GPIB. After the block diagram discussion, the individual circuitsin the
interface are discussed in detail. A workable schematic of each circuit is provided along with an
Integrated Circuit list to help you if you want to build the circuit. We hope that the material in
this section is beneficial to you and that it will help you gain a better understanding of GPIB
interfacing design concepts.

INTERFACE BLOCK DIAGRAM DESCRIPTION
INTRODUCTION

Diagram A is located in the Diagrams section at the back of this manual. This diagram presents
aconceptual view of a general purpose interface that listens, talks, and responds to a serial poll
on the 4051 GPIB. (Pull out this diagram now and look at it.) The text which follows describes
how the interface works starting with the listen handshake circuitry and ending with the serial
poll circuitry. Keep in mind that the term "interface” refers to the hardware components that
allow a peripheral device to talk and listen to the 4051 over the GPIB. The purpose of the
interface is to act as a go-between that matches the peripheral devices data transfer protocol
with the protocol used on the 4051 GPIB.

THE LISTEN FUNCTION

The LISTEN function of the interface in Diagram A operates in one of two modes. In the first
mode, the interface listens only to the controller; in the second mode, the interface listens only
to the current data transfer.

4051 GPIB Hardware Support @ 2_1

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Block Diagram Description

2-2

Listening to the 4051 Controller

The interface is designed to respond almost instantly to the controller when ATN is set active
low, regardless of the state of the peripheral device. This design feature allows the controller to
clear the interface at the end of a data transfer and set up a new transfer with other devices,
even though the peripheral device itself may be busy digesting data and unable to respond.

When the 4051 sets ATN low, the interface immediately comes on the bus in aready stateand is
prepared to receive and decode addresses. The interface listen handshake circuitry
handshakes on every data byte from the 4051 and the address from the 4051 is taken off the
GPIB data bus and passed to the address decoder circuits. If the address is a valid address for
the interface, the address decoding circuits send a signal to the interface memory where the
address is “remembered.” When ATN is released by the 4051, the interface enters the state
currently recorded in the memory. This particular interface enters an IDLE state on system
power-up, a TALK state when a preassigned primary talk address is received from the 4051, a
LISTEN state when a pre-assigned primary listen address is received, and a POLL state when
the controller command SPE (serial poll enable) is received from the 4051.

Oncetheinterfaceisin one of these states, the interface participates in the bus activity until the
4051 controller sets ATN active low and issues UNTALK if the interface is talking, UNLISTEN if
the interface s listening, or SPD (serial poll disable) if the interface isin a POLL state. Anytime
IFC (interface clear) is set active low by the 4051, the interface returns to the IDLE state,
regardless of the present state of the interface. (IFC is set low when an INIT statement is
executed in BASIC.)

Listening to a 4051 Data Transfer

When a preassigned primary listen address is issued to the interface and ATN is released
(made inactive) by the 4051, the interface stays on the bus ready to receive data bytes and send
themtothe peripheral’s data input bus. At this time, the signal LISTEN TO ME is made active to
tell the peripheral device’s handshake signal lines GRABIT, GOTIT, and I'M BUSY, and makes
these handshake signals part of the GPIB handshake cycle. Here’s how the interface listen
handshake cycle works:

1. The interface listen handshake circuitry looks at the peripheral signal 'MBUSY to see if the
peripheral device is busy. If 'MBUSY is true (active), the interface waits. If 'M BUSY is false
(inactive), the interface sets NRFD high on the 4051 GPIB to tell the talker (the 4051 in this
case) to send a data byte.

2. The 4051 responds by placing the data byte on the GPIB Data Bus. The data byte also
appears on the peripheral’s input data bus via the intefaces’s Data Bus receivers. The talker
(4051) then sets DAV (Data Valid) low—indicating that the data byte is valid and can be
captured.

@ 4051 GPIB Hardware Support

4.

8.

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Block Diagram Description

. The interface listen handshake circuitry sees DAV go low and responds by setting GRAB IT

active (true). This signal tells the peripheral device to latch the data byte off its input data
bus and place the byte into a peripheral input buffer (a temporary storage location).

When the data byte has been successfully captured, the peripheral device sets the signal
line GOT IT to an active true state. The interface handshake circuitry then responds by
setting NDAC (Not Data Accepted) high on the GPIB. This tells the 4051 that the data byte
has been successfully captured by the peripheral device.

The 4051 responds to NDAC by setting DAV high (inactive) and takes the data byte off the
Data Bus.

In the meantime, the interface handshake circuits set NDAC low and prepare for the next
handshake cycle.

The above action is repeated over and over as each data byte is transferred from the 4051 to
the interface. At the end of the transfer, the 4051 activates ATN and issues UNLISTEN to the
interface. When this happens, the address decoder in the interface sends a signal to the
interface memory and the interface memory returns to the IDLE state. Atthe same time, the
signal line LISTEN TO ME goes inactive and the peripheral device is free to go about its
business.

Note that at any time during the data transfer, the peripheral device can freeze the activity
on the GPIB by setting the signal I'M BUSY active true. This usually occurs when the
peripheral’s input data buffer gets full, cr when the peripheral device stops to process
information just received, or when the peripheral device honors a higher priority interrupt
request within its own architecture. Note also that while ATN is down, the I'M BUSY signal
has no effect on the interface. In fact, all the peripheral handshake signals are ignored and
the peripheral device is effectively "cut-off” from the data transfer. This allows the interface
to respond instantly to 4051 controller commands (no matter what the state of the
peripheral) and allows the 4051 to clear the interface from the GPIB anytime the 4051 elects
to do so.

THE TALK FUNCTION

The general purpose interface enters the TALK state when the 4051 issues a preassigned
primary talk address to the interface with ATN down. At this time, the interface address
decoder sends a signal to the interface memory telling the memory to "remember” to TALK.
When ATN is released, the TALK TO ME signal goes active true and the interface enters the
TALK state.

The TALK TO ME signal has three functions:

1.

The signal tells the peripheral device to start sending data to the interface.

4051 GPIB Hardware Support @

2-3

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Block Diagram Description

2. The signal enables the interface GPIB Data Bus drivers to work, and thus enables the
interface to place data bytes on the GPIB Data Bus.

3. The signal enables the interface talk handshake circuits to work.

Once in the TALK state, the peripheral device starts sending data bytes to the interface; the
interface, inturn, passes the data bytes to the assigned listener (in this case the 4051) over the
GPIB. Here's how it happens (refer to Diagram A):

1. When ATN is released by the 4051, TALK TO ME goes active true. Assuming that the
peripheral device is ready to talk immediately, the peripheral device places the first data
byte on the peripheral output data bus. Since TALK TO ME also enables the interface Data
Bus drivers, the data byte appears on the GPIB Data Bus at the same time.

2. After waiting the required minimum time for the data lines to settle (2 us), the peripheral
device sets the signal SHIP IT active true. This tells the interface thatit's O.K. to transfer the
data byte.

3. In the meantime, the interface talk handshake circuits look for the 4051 to set NRFD high.
When NRFD goes high and when SHIP IT is true, the interface circuitry sets DAV (Data
Valid) low on the 4051 GPIB.

4. The 4051 responds to DAV by setting NRFD low. The 4051 captures the data byte, then sets
NDAC high.

5. The interface responds to the high going NDAC signal by setting DAV high (inactive) to tell
the 4051 that the data byte is no longer valid. The interface then makes the signal IT'S GONE
active true. This tells the peripheral device that the data byte has been successfully
transferred and that it can get ready to transfer the next byte.

6. The peripheral device sees that IT'S GONE, then takes the data byte off the peripheral
output data bus. The peripheral device then places the next data byte on the bus, waits for
the lines to settle, then tells the interface to SHIP IT.

7. The interface reéponds as before and the handshake cycle is repeated.

8. This action continues until the 4051 sets ATN active low and issues UNTALK to the
interface over the GPIB. If the 4051 is the listener, the UNTALK command is issued
automatically at the end of the transfer (except for RBYTE operations). If the 4051 is not a
listener, the talking peripheral device can set EO!l or SRQ low on the GPIB for 350 us
(minimum). This causes the 4051 to branch to an ON EOI THEN statement or an ON SRQ
THEN statement in the BASIC program, then to a WBYTE @95: statement that issues the
UNTALK command to the interface. When the UNTALK command is received, the interface
returns to the IDLE state and the signal TALK TO ME goes inactive. This tells the peripheral
device that the transfer is ended.

24 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Block Diagram Description

RESPONDING TO A SERIAL POLL

If the peripheral device wants service from the 4051, the peripheral device must set the signal
SERVICE PLEASE to an active true state. This causes the interface to set SRQ low on the 4051
GPIB. Since the SRQ line is shared by all peripheral devices on the bus, the 4051 has no way of
knowing which device is holding SRQ low. The SRQ situation is normally handled in the
current BASIC program in the following way.

When SRQ is set low, the 4051 BASIC interpreter looks at a previously executed ON SRQ
THEN statement in the BASIC program to find out where to branch in the BASIC program.
Program control is then transferred to the line number specified in the ON SRQ THEN
statement. The line number is usually the line number of a peripheral device service routine (if
there is only one device on the bus) or a POLL statement (if there are several devices on the
bus).

If the ON SRQ THEN statement transfers control to a POLL statement, the 4051 executes a
serial poll on the GPIB to find out which device is pulling down on SRQ. Each peripheral device
specified in the POLL statement address list must respond to the 4051 during the serial poll.
The interface in Diagram A responds to a serial poll as follows:

1. The 4051 starts a serial poll by setting ATN active low. The 4051 then issues an UNLISTEN
command, followed by a SPE (serial poll enable) command.

2. Theinterface address decoder sees SPE and sends a signal to the interface memory to tell
the circuits to "remember” that a serial poll is in progress. The interface responds by
setting the signal POLL IN PROGRESS to an active true state.

3. The peripheral device responds to POLI. IN PROGRESS by placing its status byte on the
output data bus (lines D1-D8). If the peripheral device is requesting service, the device
must indicate this condition by setting bit 7 in the status byte to an active (true) state. Ifthe
device is not requesting service, bit 7 in the status byte must be inactive (false).

4. Notice at this point that the status byte is not placed on the GPiB Data Bus. All activity
stops here and the interface and the peripheral device wait until the interface is addressed
as a talker by the 4051.

5. The point at which the 4051 addresses the interface as a talker depends on the position of
the peripheral address in the POLL statement address list. (See the 4051 Graphic System
Reference Manual for more information). If the address is first in the list, the interface will
be addressed first, if the address is second in the list, the interface will be addressed
second, and so on. When the interface’s primary talk address is issued by the 4051, the
interface enters the TALK state, as previously described, and TALK TO ME is made active
true.

4051 GPIB Hardware Support @ 2-5

4051 GPIB HARDWARE INTERFACE DESIGNS
Intertace Block Diagram Description

2-6

6. The signal TALK TO ME enables the interface GPIB Data Bus drivers to work. This places
the peripheral status byte on the GPIB Data Bus. TALK TO ME also activates the interface
talk handshake circuitry and the status byte is ready for transfer.

7. Soon after the 4051 issues the primary talk address, the 4051 assigns itself as alistener and
releases ATN. The TALK handshake sequence then occurs (as previously described) and
the status byte is transferred to the 4051.

8. After the status byte is transferred, the signal IT'S GONE is made active true by the
interface. At this time, the peripheral device must set SERVICE PLEASE to an inactive
state; this causes the interface to release SRQ.

9. If bit 7 in the status byte is set to a true state, the 4051 assigns the position number of the
device to the first variable in the POLL statement and the decimal equivalent of the status
byte to the second variable inthe POLL statement. (Refer to the 4051 Reference Manual for
details.) The 4051 then ends the polling sequence by activating ATN, and issues UNTALK
and SPD (serial poll disable), in that order. This sequence returns the interfacetoan IDLE
state and frees the peripheral device for further operations.

10. If bit 7 in the status byte is not set, the 4051 assumes that the peripheral device is not
requesting service. The 4051 then sets ATN low and issues the primary talk address for the
next peripheral device in the POLL statement address list.

11. The interface must interpret this new talk address as an "implied” UNTALK command and
clear the interface from the talk state. When the 4051 finds the peripheral device that is
requesting service, the interface is returned to an IDLE state by the commands UNTALK
and SPD (serial poll disable) at the end of the polling sequence.

CLOSING REMARKS

This block diagram description presents an overview of the interface circuits which are about
to be described in detail in the following paragraphs. An attempt has been made to keep the
schematic diagram layout in Diagram B similar to the block diagram layout in Diagram A. If you
feel that you are getting lost in the detail of the schematic—that is “not able to see the forest
because of the trees”, then take time to review the block diagram and its layout; get a "feel” for
the overall picture of the interface, before diving back into the detail.

4051 GPIB Hardware Support

®

4051 GPIB HARDWARE INTERFACE DESIGNS
The First Step Is Hooking Up to the Bus

THE FIRST STEP IS HOOKING UP TO THE BUS
GPIB CONNECTOR REQUIREMENTS

Each peripheral device must be connected to the 4051 GPIB via a 24-pin female connector as
shown in Fig. 2-1. The most common (and preferred) mounting position for the connector is
the horizontal position on the rear panel of the peripheral device with pin 1 positioned in the
upper right corner. The mechanical specifications for a GPIB connector are found on page 95
of the IEEE Standard 488-1975.

}_ % MC3441 ;
| GPIB TRANSCEIVER |
| |
| +5V |
| | TO
I
I R ">C — TTL
I 3K I circuits
| |
] |
R, :
FROM
6.2K -— T
| CIRCUITS
|
|
|
_____ ————m e | —
DRIVER
ENABLE
FEMALE 24-PIN
GPIB CONNECTOR
2270-1

Fig. 2-1. GPIB connector and termination requirements.

4051 GPIB Hardware Support @ 2-7

4051 GPIB HARDWARE INTERFACE DESIGNS
The First Step Is Hooking Up to the Bus

2-8

GPIB TERMINATION REQUIREMENTS

If you are connecting a peripheral device to the GPIB, every signal line on the 24-pin connector
must be terminated, regardless of whether the line is used or not. The standard line load
configuration is shown in Fig. 2-1. Each bus line must be suspended between two resistors
connected between £5 vdc and ground. The top resistor (R;) must be a 3K ohm resistor (£5%)
and the bottom resistor must be 6.2K ohm resistor (£5%).

The most awkward way to handle the termination requirement is to use sixteen 3K ohm
resistors and sixteen 6.2K ohm resistors, connecting them up two at a time to each bus line.
This method takes a lot of room on the interface circuit board and we don’t recommend it.

Another way to handle the problem is to use "resistor packs,” which mount in 14-pin or 16-pin
integrated circuit receptacles, and contain up to 16 individual resistors in each package. This
method is acceptable, but there's a better way yet.

The best way to handle the termination problem is to use ready-made GPIB tranceiver chips
which not only contain the termination resistors for each bus line, but also contain abus driver
and a bus receiver for each line. Besides saving a considerable amount of space on the
interface circuit board, these chips provide a good electrical match between the GPIB
connector and the TTL logic in the peripheral interface.

IF YOU DECIDE TO USE READY-MADE GPIB TRANSCEIVERS

Several companies manufacture transceiver integrated circuits which are specifically
designed for GPIB applications. The transceiver chips used in this interface manual happen to
be manufactured by Motorola Inc. and are used because they are available to us atthe moment.
There are undoubtedly other GPIB transceivers on the market that work just as well. We are not
recommending any one transceiver over another. The choice is yours. Pick a transceiver that
best suits your needs.

MAKING EFFICIENT USE OF GPIB HANDSHAKE TRANSCEIVERS

There are several GPIB transceiver chips in the MC3440 family and each chip has slightly
different characteristics. Fig. 2-2 shows a GPIB handshake configuration using a MC3440
transceiver chip and a MC3441 transceiver chip.

There are four drivers and four receivers in each chip. The termination resistors are also in each
chip, but are not shown. The only difference in the two chips is that the MC3441 (U2) has one
driver which is independent from the common enable line controtling the rest of the drivers.
The transceivers are designed so that the four receivers are always active (listening), but the
fourdrivers are notenabled until a low is applied to pin 12 on each chip (exceptforonedriverin
u2).

@ : 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
The First Step Is Hooking Up to the Bus

Since the interface must drive part of the GPIB handshake signal lines and listen to the others
during a LISTEN handshake, then reverse the role of each signal line during a TALK
handshake, the trick is to arrange the transceiver output in such a way that the talk and listen
state of the transceivers can be controlled with one signal line; and at the same time not have a
receiver in the chip listening to its associated driver.

DAV —————
TO THE PERIPHERAL
INTERFACE CIRCUITS

IFC —————————————t~

EOI _——

FROM THE PERIPHERAL
INTERFACE CIRCUITS

LOGIC
GND

NDAC

TO THE PERIPHERAL
INTERFACE CIRCUITS

NRFD e

J1-10 SRQ S ———————————
su @
FROM THE PERIPHERAL
J1-8 NDAC et
NDAC @—1 INTERFACE CIRCUITS
J1-7 NRFp ————————————-—
NRFD ——— —
-7
REN W L

TALK TO ME
(From the Interface
Memory Circuit}

2270-10

Fig. 2-2. Typical GPIB handshake transceiver configuration.

4051 GPIB Hardware Support @ 29

4051 GPIB HARDWARE INTERFACE DESIGNS
The First Step Is Hooking Up to the Bus

2-10

The transceiver arrangement in Fig. 2-2 works nicely and at the same time accommodates
leftover control lines on the GPIB management bus. Two other MC3440 transceivers can be
used to connect the GPIB Data Bus to the interface. This means that it only takes four chips to
connect the entire interface to the GPIB connector. (The Data Bus arrangement will be shown
in the schematics that follow.)

The following is a brief discussion on the transceiver arrangement in Fig. 2-2 and explains why
signals are connected as they are.

TALK and LISTEN. During any GPIB handshake, the interface is driving some lines and
listening to others. This means that one tranceiver must be in a receive mode while the otheris
in a transmit mode. It's not generally wise to use one chip for both purposes simultaneously,
unless extra precautions are taken. Since the receivers are always receiving, the interface
might end up listening to itself talk. Pin 12 on each transceiver turns the drivers on and off.
These two inputs are controlled by one signal line called TALK TO ME. An inverter U3A is
placed in-between the two inputs so they are always in the opposite state. When TALKTOME
is low (inactive), the drivers in U2 are enabled and the drivers in U1 are disabled. When TALK
TO ME is high (active), the drivers in U2 are disabled and the drivers in U1 are enabled.

ATN (Attention). This signal comes in from pin 11 on the GPIB connector and connects to pin
15 on U1. Since the 4051 is the only device allowed to drive this signal line, pin 13 on U1 is
grounded and the driver is permanently disabled. The interface can only listen to ATNatpin 14
on U1. Because the receiver is an inverter, pin 14 goes high when ATN is active low on the
GPIB.

DAV (Data Valid). This signal comes from pin 6 on the GPIB connector and connects to pin9on
U1. During alisten handshake sequence, the interface must listen to this line at pin 10 of U1.Pin
10 goes high when data is valid on the GPIB Data Bus and low when data is invalid. The low-to-
high transition at pin 10 is normally used to clock a latch in the interface which captures the
data byte.

When the interface is placed in the TALK mode, the signal TALK TO ME goes active and the
DAV driver is enabled. The interface then drives the DAV signal line from pin 11 on U1 when the
peripheral device places valid data on the GPIB Data Bus.

@ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
The First Step Is Hooking Up to the Bus

IFC (Interface Clear). This signal comes from pin 9 on the GPIB connector and connects to pin
7onU1. Like ATN, this signal can only be driven by the 4051, so the U1 driveris grounded and
permanently disabled. The interface listens to IFC at pin 6 on U1 and enters an IDLE state
whenever pin 6 goes high.

EOI (End or Identify). This signal comes from pin 5 on the GPIB connectorand connects to pin
2 on the U1 chip. Generally, this signal is undefined and can be used as the designer sees fit.
However,ina 4051 system, EOl means END OF TRANSFER when the signal is activated as the
last data byte in atransferis placed on the bus. While the interface is listening, the interface can
listen to EOl at pin 3 of U1. When the interface is talking, the peripheral device can activate EOI
as the last data byte is transferred by setting pin 4 on U1 high. (This has the same effect as
sending a CR delimiter to the 4051.).

SRQ (Service Request). This signal comes frorn pin 10 on the GPIB connector and connects to
pin 150n U2. Since only the 4051 can listen to this signal line, the bus receiver output for SRQ s
not connected. The independently-enabled bus driverinthe MC3440 chip is used to drive SRQ
because the peripheral device must be able to set SRQ low and request service at any time,
regardless of the state of the other interface tranceivers.

NOTE

According to the IEEE GPIB Standard: |If several devices are connected to the GPIB bus,
one more than 50% of the devices must be turned on (regardless of whether they are
actually used), or the bus may be loaded down causing a spurious SRQ signal on the bus.

NDAC (Not Data Accepted). This signal comes from pin 8 on the GPIB connector and connects
to pin 9 on U2. In the listen state, the interface must set this signal line low when a data byte is
captured from the Data Bus. Since the drivers in U2 are enabled during a listen operation, the
interface operates the NDAC signal line by setting pin 11 on U2 in a low state.

During a talk handshake operation, the interface must listen to NDAC to find out when the
listeners on the bus have received the data byte being transferred. The interface listens at pin
10 on U2 and knows the data byte is transferred when pin 10 goes low.

NRFD (Not Ready for Data). This signal comes from pin 7 on the GPIB connectorand connects
to pin 7 on U2. During a listen operation, the interface sets NRFD high to tell the talker (or the
4051 controller) that the interface is ready for the next data byte. The interface sets NRFD high
by placing a low on pin 5 on U2.

Inthetalk state, the interface mustlisten to NRFD to find out when the listener at the other end
of the GPIB is ready for the next data byte. The interface listens at pin 6 of U2 and knows the
listener is ready when pin 6 goes low.

4051 GPIB Hardware Support REV A, MAR 1979 2-11

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

REN (Remote Enable). This signal comes from pin 17 on the GPIB connector and connects to
pin 2 on U2. Since this signal can only be driven by the 4051, the input to the driver is grounded
and permanently disabled. The 4051 sets REN low when the 4051 is operating under program
control. This makes pin 3 on U2 go high and tells the peripheral device to ignore its front panel
controls and operate solely under the directions received from the 4051 GPIB.

Logic Ground. Pin 24 on the GPIB connectoris the return path for all GPIB signals and should
be connected to pin eight on all GPIB interface transceivers. This includes the transceivers for
the GPIB Data Bus as well. A source of trouble can develope if the logic grounds on the
transceivers are not properly connected.

Voltage to the Chips. A DC voltage of +5 volts must be connected to pin 16 on each transceiver
chip. Each chip draws approximately 50 milliamps under normal operating conditions. Since
the interface cannot draw power from the GPIB, the power must come from the peripheral
device or a special power supply built specifically for the interface.

A Word of Caution. Itis importantto ground pins 13and 50on U1 and pin4 on U2. If the input to
one of these drivers is allowed to float high while the drive is enabled, a signal line (such as
ATN) will be set low by the interface (instead of the 4051) and will cause havoc on the bus.

INTERFACE CIRCUIT DESCRIPTION
INTRODUCTION

A complete schematic diagram for a general purpose interface for the 4051 GPIB is located on
the second pull-out in the Diagram section at the back of this manual; pull it out now. This
schematic diagram gives a complete picture of the interface components along with an IC list.
This diagram is provided as a convenience for you and you may remove it from the manual if
you wish to do so.

For ease of illustration, the interface is broken into blocks and each block is discussed
separately, starting with the listen handshake circuitry. The portion of the schematic on the
pull-out to which the discussion pertains is repeated within this text; the schematic blocks
within the text are slightly rearranged in some cases, with some components masked out to
emphasize the active components in the circuit. The "U"” numbers and the pin numbers of the
components in these smaller schematics match the U numbers on the components in the
complete schematic in Diagram B.

2-12 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

Circuitdescriptions are sometimes tedious to read—especially if you are an experienced logic
designer and can easily figure out how a circuit works by looking at it. The circuit descriptions
do serve other purposes, however. It might be helpful to read through them at least once. The
design criteria for each circuit is covered first, then an explanation follows on how the circuit
design meets the design criteria. There are many subtleties in a GPIB interface design and
many pitfalis to avoid. These subtleties and pitfalls are mentioned in the circuit descriptions
when they apply. In addition, the purpose of logic components may not be obvious at first
glance (like the "implied UNTALK" circuitry) and the circuit descriptions help remove the
mystery surrounding these components.

INTERFACE LISTEN HANDSHAKE CIRCUIT DESIGN CRITERIA

The most important circuit in the interface is the LISTEN handshake circuit. Without the
LISTEN handshake circuit, the 4051 can’t communicate with the interface; the 4051 can’t
assign the peripheral device to be a listener or atalker and the interface can’t respond to a serial
poll.

The listen handshake circuitin an interface can be designed in several ways, but no matter how
the circuit is designed, the circuit must meet the following design criteria:

1. Response to ATN High (Inactive) when Ny Listen Address has not been Received. The
listen handshake circuitry in the interface should view this situation as an idle condition and
get off the GPIB completely; that is, let all signal lines float high (inactive), just as though no
device were present.

2. Response to ATN Low when My Listen Address has not been Received. This condition
occurs on the GPIB when the interface is in an idle state and the 4051 starts a controller
addressing sequence to assign peripheral devices as listeners and talkers. While ATN goes
active low, the interface listen handshake circuit must get on the bus and handshake on every
data byte transferred from the 4051. The address decoder in the interface must also leap into
action and decode every address from the 4051—regardless of whether the address is
meaningful to the interface or not. When the interface receives a meaningful address (with ATN
low), the interface address decoder must continue to evaluate the additional address bytes
cominginfrom the 4051 and not take action on the meaningful address until after the 4051 sets
ATN high. This is important and the interface must not violate this rule!

The interface’s initial response to alow-going ATN signal must be to set NDAC low and NRFD
either high or low, depending whether or not the interface is ready to receive and decode
addresses from the 4051. Whether the interface is ready to decode addresses or not, the
interface must set NDAC low within 200 ns after ATN goes low to comply with the IEEE
Standard.

4051 GPIB Hardware Support @ 2'1 3

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

3. Response to ATN Being Low after My Listen Address has been Received. This condition
can occur two different times on the GPIB: (1) during the initial addressing sequence when
ATN is low (true) and the primary listen address has been received and (2) at the end of a data
transfer when the 4051 sets ATN low and prepares to issue an UNLISTEN command to the
interface. In both cases, the interface must not allow the peripheral device to listen to the GPIB
Data Bus while ATN is low. In the first case, the 4051 may still have addresses to issue (either
primary or secondary) and the peripheral device might pick up these addresses as data bytes.
In the second case, the interface may receive the UNLISTEN command from the 4051, but the
peripheral device mightalso capture the UNLISTEN command and treat the command byte as
the last data byte in the transfer. it isimportant to design the interface so that only the interface
can listen to the GPIB when ATN is active low. The peripheral device must be effectively
"cutoff” from the GPIB during this time.

4. Response to ATN High when My Listen Address has been Received. This condition on the
GPIB tells the interface to capture all data bytes being transmitted over the GPIB and to pass
the data bytes to the peripheral device as valid data. It isimportant for the interface at this point
to honor the peripheral’s handshake signal lines and the peripheral’s busy signal. If the
interface does not do this, the interface may start receiving data bytes faster than the peripheral
device can take them and data will be lost. The peripheral’s BUSY signal should be connected
to the interface handshake circuitry in such a way that the peripheral device can freeze the
activity on the GPIB anytime it elects to do so.

5. Responseto Interface Clear and an UNLISTEN Command from the 4051. Anytime the 4051
sets IFC low on the GPIB, the interface must return to an IDLE state and get offthe bus. And, if
the interface is in a LISTEN state, and the 4051 issues an UNLISTEN command (decimal 63)
with ATN active low, the interface must get off the bus.

A CIRCUIT THAT MEETS THE LISTEN HANDSHAKE DESIGN CRITERIA

Fig. 2-3 is a schematic diagram for a typical TTL listener handshake circuit. This circuit is
identical to the listen handshake circuit block on the larger interface schematic in Diagram B.
Although a circuit of this type can be designed in any one of a number of ways, the important
thingis that this circuit be passive while other data transfers are taking place on the GPIB, and
atthe sametime beready to leap into action andlisten to the bus as soon as the controller sets
ATN active low. Here's how this response is built into the circuit.

Remaining ldle

As previously stated, the interface should be in an IDLE state when ATN is high and the
interface’s primary listen address has not been issued by the 4051. The listen handshake
circuitry looks at the state of ATN at pin 14 on GPIB transceiver U1. When ATN is high
(inactive) on the GPIB, pin 14 on U1 is low. The rest of the logic in the circuit is set up as follows.

2-14 @ 4051 GP!B Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

U3E

10 1
LISTEN TO ME
{From Interface
Momory}
GOTIT P
E
ueD
11 R
13 Fl
" GRABIT R P
12 o H
GPIB Connector U13F M E
7404
n A
ATN B 12 13
0<}— I'M BUSY L
13
usD
LOGHC
IC LIST
COMPONENT TYPE

U1 MC 3441

4 5 9 10 Uz MC 3440

use uac u3 SN 7404

ua SN 7408

< 4 Us SN 7408

3 SN 7402

u13 SN 7404

TALK TO ME
{From Interface
Memory)

Fig. 2-3. Typical 4051 GPIB listen handshake circuit design.

The low at pin 14 on U1 makes the output of inverter U3C high which in turn makes pin 1 on
AND gate U4A high (U4A is located in the middle of the circuit).

AND gate U4A is the key element which controls the active and idle state of this listen
handshake circuit. Since the inactive state of ATN makes pin 1 on U4A high, and the inactive
state of the LISTEN TO ME signal makes pin 2 on U4A high, the output of U4A goes high. (The
LLISTEN TO ME signal comes from the interface memory.) This LISTEN TO ME signal goes
active only when the primary listen address for the interface is issued by the 4051). The high
output of U4A makes the output of inverter U3B go low and keeps U4B and U4C disabled.
(Notice that U4A and U3B together perform a NAND function. They were selected over a
NAND gate in this case to make the most efficient use of leftover gates in the IC packages.)

4051 GPIB Hardware Support REV A, MAR 1979 2-15

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

U4B and U4C act as enable/disable gates for the signal lines NDAC and NRFD, respectively.
With the output of U3B keeping one pin on each gate low, the output of U4B and U4C remain
low which makes pin 7 and pin 9 on the GPIB transceiver U2 float high. The high condition of
both NRFD and NDAC on the GPIB tells the 4051 that the interface is off the bus and essentially
not present.

Addressing the Interface

The 4051 sets ATN low on the GPIB to issue addresses over the bus. The interface must
respond immediately (within 200 ns) by setting NDAC low. Since this interface is designed to
decode addresses anytime ATN is low (regardless of the state of the peripheral device), the
interface sets NRFD high at the same time NDAC is set low. This tells the 4051 that the interface
is immediately ready to decode addresses (provided another device on the GPIB is not keeping
NRFD low). Before going into the details of how NRFD is set high and NDAC is set low, a brief
overview of the listen handshake circuit is in order.

A Quick Schematic Overview

The interface listen handshake circuit is functionally divided into two groups of gates. The
gates on the left of U4A control the interface’s NDAC response. The gates on the right of U4A
control the interface’s NRFD response. Since the listen handshake circuit operates in two
modes—one handshake mode with ATN active low and the other handshake mode during a
data transfer—there are two AND gates in each group, one gate for each mode. When ATN is
low and the 4051 is issuing address, USA on the left controls the NDAC signal line; U5D on
the right controls the NRFD signal line. During a data transfer when the peripheral device is
listening, U5B on the left controls the NDAC signal line; U5C on the right controls the NRFD
signal line.

Getting Ready to Handshake when ATN goes Low

Now back to the present situation. The 4051 sets ATN active low on the GPIB, and the following
four actions occur in the interface listen handshake circuitry to get the interface ready to
receive and decode addresses:

1. Gates U6A, U5B, and U5C are immediately disabled and effectively removed from the
circuit. UBA is in the circuit to detect when the primary listen address is issued and ATN is
high. This condition tells the interface to start listening to the GPIB Data Bus for valid data.
Since ATN is low at this time and the controller is issuing peripheral addresses, this gate
must be disabled. It is disabled in the following way. When ATN goes low, pin 14on U1 goes
high which makes pin 2 on U6A go high. This keeps the output of U6A low (disabled) which,
in turn, keeps U5B and U5C disabled. With U5C disabled, U4D has no effect on the circuit
either. (Later it will be shown how this circuitry handles the handshake during the data
transfer with the assigned talker).

2-16 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

2. Gates U4B and U4C are enabled which allows the interface to drive NRFD and NDAC. When
ATN goes low, pin 14 on U1 goes high, the output of inverter U3C goes low, and AND gate
U4A is disabled. This makes pin 4 on U3B go high, which enables both U4B and U4C to pass
the NRFD and NDAC signals to GPIB transceiver U2. The source of the NRFD signal is pin
10 on UBC and is passed by U4C to the input of the NRFD driver (U2, pin 5). The source of
the NDAC signal is pin 4 on U6B and is passed to the input of the NDAC driver (U2, pin 11)
by U4B.

3. NRFD Remains Inactive High. With U4D and U5C effectively out of the picture at this time,
the NRFD signal is controlled by U5D. Pin 13 on U5D acts as the gate enable which goes
active high when ATN is made active (low) on the GPIB. Therefore, NRFD is controlled
directly by DAV (Data Valid) on the GPIB. At this time, datais not valid, so DAV is high on the
GPIB. This causes pin 10 on U1 to golow and pin 8 on U3D to go high, thus making pin 12 of
U5D go high. As a result, pin 11 of U5D goes high, pin 10 on U6C goes low, pin 8 on U4C
follows along by staying low, and the output of the NRFD driver (U2, pin 7) stays high. This
tells the 4051 controller that the interface is ready to receive the first address over the Data
Bus.

4. NDAC goes low. At the same time U5D is enabled by the ATN signal, U5A is also enabled.
The source of the NDAC signal is actually pin 10 on U6C. When U6C goes low, pin 1 on USA
goes low. This makes the output of USA go low, which makes the output of U6B go high.
Since U4B is enabled, the output of U4B follows the output of U6B and also goes high. This
causes the NDAC driver output to go low, telling the 4051 controller that the interface has
not yet accepted a data byte. The interface is now ready to capture and decode the first
address from the 4051 controller.

Timing Delays Assuming a 15 ns delay occurs for signal transitions to pass through each logic
gate in the circuit, it takes approximately 105 ns for the handshake circuitry to respond to ATN.
This time delay is well within the 200 ns maximum response time which is specified in the IEEE
Standard.

Handshaking with the 4051 While ATN is Active Low

with NRFD high and NDAC low on the GPIB, the interface effectively tells the 4051 controller |
am ready to receive the first address over the data bus”. When all peripheral devices on the
GGP1B Data Bus are ready, the 4051 places the first address on the GPIB Data Bus and sets DAV
low. When DAV goes low, pin 10 on U1 goes high; this indicates to the interface that the address
on the Data Bus is valid and is ready to be captured and decoded.

4051 GPIB Hardware Support @ 2-17

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

2-18

Receiving and Decoding the Address Byte

Normally, a byte on the Data Bus is captured and decoded by an address decoder which is not
part of the handshake circuitry. The active ATN signal is used to enable the address decoder to
look at the Data Bus, and at the same time, the leading edge of DAV is used to clock the decoder
into capturing (or reading) the address byte. This is usually set-up as a separate action,
independent of the handshake sequence. Since the address decoder is discussed in detail later
in this section, we'll keep our attention on the handshake circuitry for now. The point is this:
due to the inherent delays in the handshake cycle (with the 4051 as the controller), the fastest
time in which the handshake cycle can be completed is 18 us. This provides an 18 us "time
window"” for the address decoder to read and decode address bytes.

Taking advantage of this knowledge, the handshake circuitry is designed to proceed with the
handshake as quickly as possible, even though the circuit doesn’t know for sure that the
address decoder is actively decoding the address. The handshake circuitry "assumes” that
18 us is more than enough time for the address decoder to "do it’s thing,” so the handshake
circuitry responds immediately to DAV by setting NRFD low, followed by setting NDAC high. It
works nicely in this case and here's how it happens.

Setting NRFD Low

The interface circuit’s first response to DAV must be to set NRFD low, as specified in the IEEE
handshake flow diagram. This action is accomplished as follows. The low going DAV signal
line causes pin 10 on U1 to go high. The output of inverter U3D responds by going low which
causes the output of U5D to go low; the output of U6C goes high. This high is applied to pin 10
of U4C, and in combination with the high on pin 9 on U4C, makes the output of U4C go high.
The high U4C output is fed to the input of the NRFD driver, and the output of the driver (U2, pin
7) goes low to make NRFD go low on the GPIB. All this happens in about 20 ns.

Setting NDAC High

The next step in the interface response to DAV is to capture the address byte on the Data Bus,
then set NDAC high. Since the Address Decoding circuitry does this on the leading edge of
DAV, enough time has already passed for the decoding circuits to complete the decoding
operation. Therefore, the handshake circuit continues without stopping by setting NDAC high.
This tells the 4051 that the data byte has been accepted.

The source of the NDAC signal is the NRFD signal with a few gate delay periods thrown in.
When the NRFD signal goes high on pin 10 of U6C, pin 1 on U5A goes high. Since U5A is
already enabled by the ATN signal on pin 2, the output of USA goes high, causing the output of
U6B to go low. The output of U4B follows by going low, which causes the output of the NDAC
drive to go high on the GPIB.

This action happens quickly and NDAC is set high approximately 30 ns after NRFD goes low.
NDAC going high tells the 4051 controller that the interface has received the address byte.

@ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

The 4051 Sets DAV High and Takes the Address Byte Off the Data Bus

Assoonas NDAC goes high, the 4051 knows that all listeners have accepted the address byte;
the 4051 now returns DAV to a high state (inactive) and takes the address byte off the Data Bus.
In spite of the interface’s fast response in setting NDAC high, it takes the 4051 18 us to set DAV
high and take the address byte off the bus. Because of this delay, there is an 18 us "time
window" for the address decoding circuits to look at the information on the Data Bus before the
data is removed.

Resetting NRFD and NDAC

At this point in the handshake cycle, NRFD is low and NDAC is high on the GPIB. Since it was
the low going DAV signal that set NRFD low and NDAC high in the first place, these two signals
revert back to their original states when the 4051 sets DAV high again. NRFD is reset first by
going high; NDAC follows 30 ns later and goes low.

But Wait Just a Minute...

It is interesting to note here that technically this action violates the IEEE Standard. NDAC
should be set low first, then NRFD should be set high. For a split second (30 ns) both NRFD and
NDAC are both high which indicates a possible error condition. But, in the interest of keeping
this circuit simple for educational purposes, we have allowed it. And, because the 4051 is a
microprocessor controlled device, and isn’t fast enough to detect this 30 ns period when NRFD
and NDAC are both high, we have allowed it. If this circuit were being drive by a controller
which was able to detect a 30 ns time period when both NDAC and NRFD were high, then the
controller might be justified to terminate the cperation at this point; in which case, it would be
necessary to add a few more logic gates and redesign the circuit so the NDAC goes low first,
followed by NRFD going high.

Doing It Again and Again

With the 4051 as the controller, the 4051 keeps ATN held low until all the peripheral addresses
in the current BASIC statement are issued over the GPIB. As far as the interface circuitry is
concerned, this can be for an indefinite period, so the handshake circuitry keeps handshaking
on every address byte, and the address decoder keeps looking for addresses that it recognizes.
When the last address is issued and the 4051 releases ATN, the interface handshake circuits
revert back to an idle state (NRFD and NDAC both high); that is, if the interface primary listen
address was not received during the addressing operation.

4051 GPIB Hardware Support @ 2-19

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

2-20

When the Primary Listen Address is Received

If during the addressing operation, the 4051 issues the primary listen address for this interface,
the address decoding circuits set LISTEN TO ME active high. This makes the output of inverter
U3E go low and places a low on pin 3 of U6A and pin 2 of U4A.

Iltisimportant here that the interface circuits keep listening to the GPIB Data Bus and that they
keep interpreting the data bytes as peripheral addresses and controller commands. If the
interface allows the peripheral device to start listening to the bus after receiving the primary
listen address, the peripheral might start interpreting the remaining address bytes as ASCII|
code (for example). The interface, therefore, must wait until after ATN goes high before
passing the data bytes to the peripheral device as data.

AND gate U6A is in the circuit to make sure the interface waits for ATN to go high before
capturing bytes on the Data Bus and treating them as data. U6A does this by disabling the data
transfer handshake circuitry U5B and U5C when LISTEN TO ME is high (true) and ATN is low
(true). Here’s how it's done.

While the interface is in an idle state, the inactive ATN signal line on the GPIB keeps pin 2 on
U6BA low. Since the primary listen address has not been received, LISTEN TO ME remains
inactive low which keeps the output of U3E high. This disables U6A and keeps pin 1 on U6A
low. This low disables U5B and U5C and prevents these gates from taking part in the circuit
action. During an addressing sequence, ATN goes low on the GPIB making pin 2 on UBGA go
high. This keeps the output of UBA low throughout the addressing operation, even if the
interface’s primary listen address is issued by the 4051 controller and the addressing decoding
circuits set LISTEN TO ME high. When the addressing operation is over, ATN goes high again
onthe GPIB and pin 2 on U6A returns to a low state. The condition of LISTEN TO ME at this
time then determines if the output of U6A goes high orlow. If LISTEN TO ME is set high (true),
then the output on UBA goes high which enables gates U5B and U5C to operate.

Handshaking During a Data Transfer
Introduction

When the interface is addressed to listen to a data transfer, the interface must keep
handshaking after ATN goes inactive high on the GPIB. The interface must also honor the
peripheral’s busy signal and stop handshaking if the peripheral device gets too busy to handle
additional data. The following paragraphs describe how the interface switches to a different set
of gates to control the handshake during the data transfer and how the interface honors the
peripheral handshake signals GRAB IT, GOT IT, and I'M BUSY.

@ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

Keeping U4B and U4C Enabled

If the interface’s primary listen address is received while ATN is low on the GPIB, the address
decoder and interface memory circuits set LISTEN TO ME high, as previously described. This
high is inverted to alow by U3SE and keeps pin 2 of U4A low. This disables U4A, even after pin 1
on U4A goes high when ATN goes high. Therefore, the output of U4A stays low and keeps the
output of inverter U3B high; as a result, U4B and U4C remain enabled. This action allows the
interface to keep driving NRFD and NDAC, even after ATN goes high on the bus and the
assigned Talker starts sending data.

Keeping NDAC Low After ATN Goes High

The source of the NDAC signal during the data transfer is a signal called GOT IT which comes
from the peripheral device. When GOT IT goes high true, itindicates that the peripheral device
has successfully captured the data byte on the peripheral data input bus.

When ATN goes high after the initial addressing sequence, the first data byte isn’t on the GPIB
data bus yet, so the GOT IT signal is low (inactive). Even though U5B in the listen handshake
circuitis enabled at this time by the high from U6A, the GOT IT signal keeps pin 4 on U5B low.
This keeps the output of U5B (pin 6) low.

Both US5A and U5B in the NDAC circuitry are effectively disabled at this time, so the output of
U6B remains high, the output of U4B remains high, and the NDAC driverin U2 keeps the NDAC
signal line low on the GPIB. This tells the talker that the interface hasn’t received data yet.

The end result of all this is that the interface switches from US5A and U5D to USB and U5C as the
NDAC and NRFD signal sources, respectively. The interface does this to bring GOT ITand I'M
BUSY into the handshake cycle and it does this while at the same time maintaining a ready
state on the GPIB by keeping NDAC low and NRFD high.

The Talker Places the First Data Byte on the Data Bus

After ATN goes inactive high atthe end of the addressing sequence, the assigned talker checks
to see if NRFD and NDAC are both high. If they are both high, it means nobody is out there
listening; this is an error condition. If NDAC is low, the talker is allowed to place the first data
byte onthe GPIB Data Bus, let the data lines settle for at least 2 us, then check to see if NRFD is
high.

Placing the Data Byte on the Peripheral’s Data Input Bus

Since the interface’s Data Bus transceivers are always in a LISTEN state, (unless they are told
to TALK), the data byte on the GPIB Data Bus automatically appears on the peripheral device’s
input Data Bus. (Refer to Diagrams A and B.)

4051 GPIB Hardware Support @ 2-21

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

If the Peripheral Device is Not Busy

If the peripheral device is not busy when ATN goes high, the peripheral device keeps I'M BUSY
low (inactive), which keeps pin 13 on U4D high. At the same time, DAV is inactive high, which
keeps pin 10 on U1 low, pin 8 on U3D high, and pin 12 on U4D high. With both inputs on U4D
high, the output on U4D goes high. This high signal, along with the high signal from U6A keeps
pin 8 on U5C high and the output of U6C low. The output of U4C goes low as a result and the
output of the NRFD driver goes high (U2, pin 7). This, of course, tells the talker that the
interface is ready to receive data immediately after ATN goes high.

If the Peripheral Device is Busy

If the peripheral device should get busy during the period when the primary listen address is
received and ATN goes high, then I'M BUSY goes high. This makes pin 12 on U13F go low,
which disables U4D. This in turn disables U5C which makes the output of U6C go high. U4C
responds to this high by making its output go high which makes pin 7 of the NRFD driver go
low. This tells the talker that the interface is not ready to receive data yet. When the peripheral is
free to receive data, I'M BUSY goes low to make NRFD on the GPIB go high.

The Talker Sets DAV Low

After waiting at least 2 us for the data lines on the GPIB to settle, and after checking to see that
the NRFD signal line is in a high state, the talker sets DAV (Data Valid) low. This tells the
interface that the data on the GPIB Data Bus is valid and can be captured.

The Interface Responds By Setting NRFD Low

The low going DAV signal on the GPIB triggers the listen handshake circuits to set NRFD low.
Here's how it happens. Pin 10 on U1 goes high when DAV goes low. This causes pin 8 on U3D to
go low which disables AND gate U4D. The low output of U4D disables U5C which causes the
output of UBC to go high. The output of U4C also goes high which makes the output of the
NRFD driver go low at pin 7 on U2. Setting NRFD low at this time is the first step in the listeners
response to DAV (as specified in the IEEE Standard).

The Interface Tells The Peripheral Device to "GRAB IT"

When DAV goes low on the GPIB, pin 10 on U1 goes high as previously described. This makes
the output of inverter U3D go low which makes pin 12 on U6D go low. (U6D is located on the
right side of the listen handshake circuit.) Since the active LISTEN TO ME signal from the
interface memory circuit is holding pin 11 on U6D low, the combination of two low inputs
makes the output of U6D go high. This tells the peripheral device that the data byte on the
peripheral’s data input bus is valid and to GRAB IT.

2'22 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

The Peripheral Device Tells The Interface “1 GOT IT”

When the peripheral device has successfully captured (or “latched”) the databyte onits input
bus, the peripheral device sets the signal GOT IT to an active (high) true state. This tells the
interface that it's O.K. to proceed with the handshake sequence and set NDAC (Not Data
Accepted) high on the GPIB.

The Interface Sets NDAC High

When the interface sees GOT IT go high, the interface relays the message to the GPIB talker by
setting NDAC to a high state. Here’s how it happens:

1. With the high output of U6A keeping pin 5 on U5B high, the GOT IT signal makes the output
on AND gate U5B go high.

2. The high U5B output makes the output pin 4 on U6B go low.
3. This low is passed to pin 11 on GPIB transceiver U2 via AND gate U4B.

4. The low pin 11 on U2 turns off the bus driver and makes the NDAC signal on the GPIB go
high. Assuming that another device on the GPIB is not holding NDAC low, the high-going
NDAC signal tells the talker that the peripheral device has successfully captured the data
byte.

The Talker Sets DAV High

As soon as the interface sets NDAC high, the talker responds by setting DAV high (inactive) on
the GPIB. This means that the data byte on the GPIB Data Bus is no longer valid. The talker
takes the data byte off the bus and places the next data byte on the bus.

The Interface Resets NRFD and NDAC And Prepares For The Next Cycle

When the talker sets DAV high, the interface listen handshake circuit reverts back to a ready
state by setting NRFD high and NDAC low. Since the low DAV signal causes the handshake
circuit to set NRFD low and NDAC high in the first place, the high going DAV signal causes a
reverse action and returns NRFD and NDAC to their original states.

Here again, the reverse action of returning NRFD high before returning NDAC low causes a
moment when both signals are high. This split-second action technically violates the IEEE
Standard and the talker has the right to terminate the data transfer at this point. But, since the
4051 is unable to pick up this split-second violation and since this circuit is for educational
purposes only, we have allowed it (primarily in the interest of keeping the circuit as simple and
straight-forward as possible.)

4051 GPIB Hardware Support @ 2-23

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

2-24

Doing It Again And Again And . . . Again

If the talker is not busy, the talker is free to set DAV low as soon as the interface returns NRFD to
a high state. This starts the next handshake cycle and the transfer sequence continues until the
4051, acting as the GPIB controller, sets ATN low and issues the UNLISTEN command. It is
appropriate to point out here that anytime the peripheral device gets too busy to handle the
data coming in, the peripheral device can set I'M BUSY active high and freeze the activity on the
GPIB. Then, when the peripheral device is ready again, the peripheral can set I'M BUSY to an
inactive low state and the interface can continue handshaking with the talker over the GPIB.

TALK HANDSHAKE CIRCUIT DESIGN CRITERIA

The Talk handshake circuitry is much simpler than the listen handshake circuitry and the
design criteriais very simple—"talk only when you're told to.” Fig. 2-4 illustrates a very simple
talk handshake circuit design. This design is tailored specifically to take advantage of the 4051
timing characteristics on the GPIB and may not work when the interface is talking to other
peripheral devices over the GPIB. An understanding of the timing sequence during a READ or
INPUT operation with the 4051 is required, so it may help to refer to the READ and INPUT
timing diagrams in Section 4 as you read this text.

A CIRCUIT THAT TALKS TO THE 4051

The circuit in Fig. 2-4 consists of two GPIB transceivers, one inverter, one D-latch, and one
AND gate. The two transceivers are the same transceivers (U1 and U2) shown in the listen
handshake circuit Fig. 2-3. The listen handshake circuitry has been masked out to emphasize
the "talk” components of this handshake circuit.

The circuit is entirely controlled by the TALK TO ME signal that originates from the interface
memory. (Refer to the interface block diagram to get a clear picture of where this TALK TO ME
signal comes from.) When TALK TO ME is inactive (low), the D-inputto U19Ais low, pin12on
U2 is low and pin 12 on U1 is high. This places the transceivers in the listen handshake
configuration and keeps the outputs on D-latch U19A in a fixed, reset condition; Q output low,
Qoutputhigh. ltis interesting to note that any activity on the GPIB causes the clock input (pin
3) on the D-latch to pulse and the clear input (pin 1) to pulse. Nothing happens though,
because the D input (pin 2) is low.

When the 4051 addresses this interface during a READ or INPUT operation, the 4051 issues the
primary talk address, the secondary address for READ or INPUT, then holds down on NRFD
and NDAC while it assigns itself as a listener. When the 4051 releases ATN, the 4051 keeps
NRFD and NDAC low for 38 us, then sets NRFD high.

@ 4051 GP1B Hardware Support

n
GPIB Connector

J1-11
ATN i

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

J1-6

DAV @

IFc Ll

J1-5.

o1 W

LOGIC J1-24
GND

85—

SRQ .J‘l-‘lo

noac @22

NRFD i N7

REN . J117

Fig. 2-4. Typical 4051 GPIB talk handshake circuit design.

8 SHIPIT
10
P
E
U18A R
7474 F
RP
2 H
o af2 or
A R
A
P L
6
a}———————— IT'sGONE
cL
1
1C LIST
COMPONENT TYPE
u1 MC 3441
v2 MC 3440
us SN 7404
U17 SN 7408
u1e SN 7474
TALK TO ME
(From interface
Memory)
2270-12

This circuit takes advantage of this timing characteristic in the following way. When the 4051
sets ATN to a high (inactive) state, the interface memory circuits set the TALK TO ME signal
high (true). This turns the bus drivers "on” in U2 and turns the drivers "off" in U1, thus placing
the handshake circuitry in a TALK state. A high TALK TO ME signal is also placed on the D-
input (pin 2) on U19A at this time, to “arm" the latch. The TALK TO ME signal also turns on the
GPIB Data Bus drivers (see the block diagram) and tells the peripheral device to place the first
data byte on its output data bus.

4051 GPIB Hardware Support

2-25

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

The Peripheral Device Talks To The Interface

The peripheral device responds to the TALK TO ME signal by placing the first data byte on the
peripheral output bus; the peripheral waits 2 us for the lines to settle, then sets the SHIP IT
signal active (high). The SHIP IT signal enables AND gate U17C to pass the state of pin5on D-
latch U19A to the DAV bus driver on the GPIB.

NOTE

This interface places the 2 us waiting period burden on the peripheral device. If the
peripheral device is unable to accomplish this, a 2 us delay can be placed in the SHIP
IT signal path by adding a flip-flop and a one-shop multivibrator.

The Interface Talks To The 4051—Setting DAV Low

When 38 us have elapsed after ATN goes high, the 4051 sets NRFD high to indicate that it is
ready to receive the first data byte. This low to high transition causes pin 6 on U2 to go low,
which causes pin 12 on U3F to go high and clock D-latch U19A. Since a high is on pin 2 of

U19A, the outputs on U19A change state; the Q output goes high and the Q output goes low.

Assuming that the peripheral device is on the ball and has the data byte on the bus and has
SHIP IT set high, the high going Q output on U19A causes the output of U17C to go high. This
high causes the output of the U1 driver to set DAV (Data Valid) on the GPIB to a low state,
telling the 4051 that the data byte on the GPIB Data Bus is valid and can be captured.

The 4051 Sets NDAC High

When DAYV goes low, the 4051 sets NRFD low, captures the data byte, places the byte in its
input buffer, then sets NDAC high to indicate to the interface that the data byte has been
received. This activity takes approximately 21 us (minimum).

The Interface Sets DAV High And Tells The Peripheral Device To Continue

The high going NDAC signal on the GPIB causes pin 10 on U2 to go low. This makes pin 1 on D-
latch U19A go low and clears the latch; the Q output goes low and the Q output goes high.

The low Q output on U19A causes the output of U17C to go low and the DAV signal line of the
GPIB goes high (inactive). This tells the 4051 that the data byte is no longer valid.

2-26 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

At the same time, the Q output on U19A goes high making the IT'S GONE signal active true.
This tells the peripheral device that the 4051 has received the data byte; it also means that the
peripheral should place the next data byte on the data bus. The peripheral device places the
next byte on the bus, then sets SHIP IT high and the handshake cycle is repeated.

The Transfer Ends When ATN Goes lLow

The transfer continues in this fashion until the peripheral sets END OF TRANSFER active true
with the last data byte on the bus or until the 4051 decides that it doesn’t want any more data.
When this happens, the 4051 sets ATN low, and the TALK TO ME signal immediately goesto a
low state. This returns the handshake transceivers to a listen configuration, allows the
interface to receive and decode the UNTALK addresses, and effectively "kills” the talk circuit.
After the 4051 issues the UNTALK command with ATN down and releases ATN, the interface
memory circuits return to an IDLE state and the TALK TO ME signal remains inactive (low).

ADDRESS DECODER DESIGN CRITERIA

The purpose of the interface address decoder is to evaluate each peripheral address and
controller command issued by the 4051, and when the 4051 issues a meaningful address to the
interface, the address decoder must recognize the meaningful address and immediately send a
signal to the interface memory so the address can be remembered.

The interface address decoder must meet the following design criteria:

1. The address decoder must remain inactive when ATN on the GPIB is inactive (high).

2. Anytime ATN is active (low), the address decoder must evaluate ALL peripheral addresses
and controller commands issued by the 4051.

3. And finally, the address decoder must send asignal to the interface memory circuits when a
meaningful address or controller command is received over the GPIB.

4051 GPIB Hardware Support @ 2-27

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

A Conceptual View Of The Address Decoding Operation

It is appropriate to take a look at the concept on which the address decoder circuit is based
before discussing the schematic diagram. The concept is not immediately obvious by looking
at the schematic. Fig. 2-5 illustrates the concept on which the address decoding circuit is
based. Each peripheral address coming over the GPIB Data Bus is issued as an eight-bit binary
number. The GPIB data lines are separated into two groups with four lines in each group. Each
group of four lines is fed into a four-line to sixteen-line decoder.

Each decoder has sixteen outputs—one output for each of the sixteen possible binary bit
patterns on the four input lines. For every address issued over the GPIB, one output on each
decoder goes active true. In order to detect a meaningful address, the two active outputs for the
meaningful address are combined into one active true signal with an AND gate.

Address
Decoder

D108
D107
D106
D105

Decimal 4

“AND" Gate

ATN ==
DAV

emsape Device 2
U11 TALK

DI04 iy
Di03
DI02 shwm
D101

Decimal 2

u10

EEEE

227013

Fig. 2-5. Conceptual view of GPIB address decoder.

2-28 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

The binary bit pattern for the device 2 primary talk address is shown in Fig. 2-5. Itis interesting
to look at the meaning of each data line in this pattern.

The upper four data lines indicate whether the address is a universal controller command, a
primary listen address, a primary talk address, or a secondary address. DIO8 is always inactive
(false) and represents a binary 0. DIO7 and DIO6 determine the address type. If both lines are
inactive false (00) the address is a universal controller command (like Serial Poll Enable). If
DIO7 is false and DIO6 is true (01), then the address is a primary listen address. If DIO7 is true
and DIO6 is false (10), as shown in the illustration, then the address is a primary talk address.
And, if both lines are true (11), the address is a secondary address.

DIO5 determines whether the address is for devices 0-15 or 16-30. If DIO5 is false (0), then the
address is for a device within the range 0-15. If DIO5 is true (1), then the address is for a device
within the range 16-30.

The lower data lines DIO1-D10O4 indicate the device number within the upper or lower address
group. In Fig. 2-5, DIO5 is false, so the address is for a device in the lower group (0-15). Since
the binary number on DIO1-DI0O4 represents a decimal 2, this primary talk address is for
device 2.

The address decoder doesn’t recognize the individual meaning of each data line, but instead
treats the address as a two digit decimal number. The binary number on the upper four lines is
equivalent to decimal 4, in this case, so the output representing decimal 4 on decoder U9 goes
active true. Atthe same time, the binary number on the lower four lines represents decimali 2, so
the output representing decimal 2 on decoder U10 goes active true. The combination of both
these outputs makes the output of the AND gate U11 go active true and tells the interface
memory that the primary talk address 2 has been received. Usually, the active transition of the
AND gate output is used to clock a D-latch in the interface memory. This places the latch in a
"set” condition and triggers other interface circuits into a TALK state.

It can be seen from this diagram that each address on the GPIB causes a different two-pin
combination on the output of the address decoders. Therefore, a separate AND gate is
required for each address that must be decoded. It can also be seen that the peripheral device
number assignment is made at the output of the address decoder. In this case, the interface
responds to the primary talk address for device 2. If we want this peripheral device to be device
3, then the lower input to the AND gate has to be changed to the output on U10 which
represents decimal 3.

4051 GPIB Hardware Support @ 2-29

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

Enabling the Address Decoder

The address decoder must only be allowed to operate while ATN is low on the 4051 GPIB. To
ensure that this requirement is met, a decoder with two enable inputs is used. Both inputs must
be active forthe decoder to operate. One input is made active when ATN goes low on the GPIB.
The other goes active when DAV goes low on the GPIB. The ATN/DAV combination ensures
that the address decoder only decodes valid peripheral address and controller commands.
Due to 4051 transfer characteristics, the ATN/DAV combination lasts for at least 18 us; this
may be longer if a peripheral device slows the handshake down. This means that the output of
the AND gate will be a positive-going pulse with a duration of 18 us (minimum).

The Address Decoder And The Interface Memory

Since the interface address decoder and the interface memory are closely related, it is
appropriate to talk about both circuits at the same time. Turn your attention now to the
schematic diagram in Fig. 2-6.

This particular interface circuit is designed to respond to 4051 PRINT statements, INPUT
statements, and POLL statements. Each of these operations are now covered in detail starting
with PRINT operations.

4051 PRINT OPERATIONS

The PRINT operation was chosen in this case to illustrate how an interface should respondtoa
typical output transfer from the 4051. Usually a PRINT operation implies that the peripheral

device is able to receive and handle data formatted in ASCII code. Line printers, mass storage
devices, and programmable universal counters are examples of such devices.

In all PRINT statements, the 4051 issues the specified primary listen address followed by the
default secondary address 12 (ifanother secondary address is not specified in the statement).
The interface address decoder and memory circuit must be set up to recognize this sequence.
Assume that the statement PRINT @2: "ABC" is executed. Here’s how the address decoder
responds during the print operation:

1. The 4051 starts the PRINT operation by setting ATN low on the GPIB. This makes pin 14on
GPIB transceiver U1 go high and the output of inverter U3C go low (see Diagram B). This
low sets pin 18 on both address decoders (U9 and U10) low and fullfills half of the enable
requirements for the decoders.

2. While ATN is low, the interface listen handshake circuit gets on the bus (as previously
described) and tells the 4051 that the interface is ready to receive the first address byte.

3. The 4051 responds by placing the primary listen address for device 2 on the GPIB Data Bus
and waits for the data lines to settle.

2'30 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

ADDRESS
DECOBER
 POLL N PROGRESS
,
£
13
|
s
"
[
k
- 24
) 2o 3
;51 L ° N LISTEN TO ME
%) 2] 2 Yy
T He aft
abh2
g ey o
s bl
B 12, LISTEN
61 6 §
189 1o
une
s 00 Salk o me
z - @ ALK TOMEl .
Db i
uize
. 0 <:?.
— - L, uic TALK
8, .o 1402
—
T -~ gy,
EXTERNAL fioy —@ 04—V L ,\aunz
Bicde \ono—8 o5 R
e [0S
A I
3 > 4
LIS . i § o
—‘ n }\'ziﬁ [10] &3] DAV
Blbb*k%g. Dy — 4 ‘—:a 2 ATN
D107 —wt-o—13g O X KRt
DIO6 —-w1%g O -l 14 ‘5 -
0105 —a-=—12m O ey z L
-
| ‘ 1gha|10f o] 3 6471". us
0104 et gl 21 1 3441
Dms—‘»—:l. o 9, 1
010z —w 128 O = >
D101 —w-=—1 @ O "
I 547”711.? ME3441 VFC 2270-14
e e o> DATA BUS -
SNe | | TRANCE IVERS
IC LIST
COMPONENT TYPE
uz MC 3441
us MC 3441
us SN 74154
u10 SN 74154
u1 SN 7402
u12 SN 7402
u13 SN 7404
via SN 7402
u16 SN 7402
u1e SN 7474
uz SN 7408
uis SN 7474
uie SN 7474

Fig. 2-6. Typical 4051 GPIB address decoder and memory design.

4051 GPIB Hardware Support REV A, MAR 1979 2-31

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

4. Since the interface GPIB Data Bus receivers are active at this time, the primary listen
address appears at the input the address decoder. Since the GPIB Data Bus receivers
invert the signal states, the address decoder must be designed to accept positive logic;
that is, the higher voltage state represents a binary 1.

5. After the 4051 waits for the lines to settle, the 4051 sets DAV low on the GPIB.

6. The low DAV signal makes pin 10 on the GPIB transceiver go high. This causes the output
of inverter U3D to go low and triggers the address decoders (U9 and U10) to decode the
address.

7. Since the binary number on DIO5-DIO8 represents decimal 2, pin 3 on U9 goes active low.
The binary number on data lines DIO1-DIO4 also represents decimal 2, so pin 3 goes
active low. These two low outputs make the output of AND gate U11C go high.

8. The low-to-high transition at the output of U11C clocks D-latch U16A. Since the D inputis
tied high to +5 vdc through resistor R1, the latch enters a "set” state where the Q output
(pin 6) goes low. The D-latch acts as a memory element, recording the fact that the
interface primary listen address has been received.

9. In this case, the low Q outputon U16A is used to enable AND gate U15B. This prepares the
interface memory to receive secondary address 12 which follows the primary listen
address.

10. While the above action is taking place, the interface listen handshake circuitry completes
the handshake with the 4051. The 4051 then takes the primary listen address off the GPIB
and places the default seconda'ry address 12 on the GPIB. The interface listen handshake
circuit starts the second handshake sequence and the address decoder responds as
follows.

11. When DAV goes low on the GPIB for the second time, the secondary address is atthe input
of the address decoder. The binary number on data lines DIO5-DI08 represents decimal 6
so pin 7 on U9 goes low. The binary number on data lines DIO1-D10O4 represents decimal
1250 pin 14 on U10 goes low. These two low outputs make pin 13on U11D go high whichin
turn makes the output of U13C go low. Since pin 5 on U15B is already low, the lowin pin 6
causes the output of U15B to go high and clock D-latch U16B.

12. When U16B is clocked, the Q outputs enter a "set” state making the Q output (pin 9) go
high. This indicates that the secondary address for PRINT has been received. It is
important at this time that the interface not allow the peripheral device to listen to the GPI1B
Data Bus until after ATN goes high. The Q output on U16B is therefore fed into AND gate
U17A. This AND gate is held in a disabled state until ATN is set high by the 4051.

2-32 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

13. While the above action is taking place, the interface listen handshake circuit finishes the
handshake sequence for the secondary address byte. The 4051 then releases ATN and
prepares to issue the ASCII character string "ABC"” (CR).

14. When ATN goes high, pin 14 on GPIB transceiver U1 goes low (see Diagram B). This
causes pin 6 on inverter U3C to go high which enables U17A to set LISTEN TO ME active
high. '

15. The LISTEN TO ME signal tells the peripheral device to prepare to receive ASCII
information over its input data bus. LISTEN TO ME also switches the interface listen
handshake circuit into a mode where the peripheral listen handshake signals GRAB IT,
GOT IT, and I'M BUSY are incorporated into the GPIB handshake.

The Peripheral Device Receives The ASCII String

The 4051 at this time sends the three ASCII characters A, B, and C followed by a carriage
return. As each character is placed on the GPIB Data Bus, the character also appears on the
peripheral input data bus via GPIB transceivers U7 and U8 (located in the interface circuitry).
The interface listen handshake circuit then goes through the handshake with the 4051 (as
previously described) and the peripheral device receives the ASCII string “ABC".

After the fourth handshake, the CR is received by the peripheral device and the 4051 sets ATN
low on the GPIB. This immediately sets LISTEN TO ME low because AND gate U17A is
disabled. When LISTEN TO ME goes low, the interface handshake circuit returns to its original
operating mode and ignores the peripheral listen handshake signal lines GRAB IT, GOT IT,
and I’'M BUSY. The interface address decoder is enabled at this time and the interface prepares
to receive and decode additional address from the 4051.

The 4051 Issues UNLISTEN To The Interface

With ATN low, the 4051 issues the controller command UNLISTEN (decimal 63) to the
interface. This makes pin 6 on U9 go low and pin 150n U10 go low. The two low outputs on U9
and U10 cause pin 10 on AND gate U12C go high. This forces the output of U14C to go low
which makes the CLEAR inputs on U16A and U16B go active low. As a result, both D-latches
return to a "reset” state and the interface enters the IDLE state.

The 4051 finishes up by releasing ATN, then Ieaves the bus. The interface also leaves the bus.

4051 GPIB Hardware Support @ 2-33

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

INTERFACE CLEAR

It is important that the interface be in idle condition before the PRINT operation is executed.
The interface doesn’t have power-up circuitry to place each component in a predetermined
state, so an IFC (interface clear) function is built-in to place the interface into an IDLE state.
The 4051 sets IFC low when an INIT statement is executed in BASIC. This is one reason why it
is good practice to place an INIT statement at the beginning of every BASIC program. INIT
"resets” the 4051 to an initial state and at the same time pulses IFC on the GPIB to "reset” the
interface circuitry on the GPIB. Here's how the interface responds to IFC (see Diagram B).

The low going IFC signal on the GPIB causes pin 6 on GPIB transceiver U1 to go high. This
makes the output of NOR gates U14C, U14B, and U14D to go low. (These gates are located in
the interface memory block.) It can be seen in the schematic diagram in Fig. 2-6 that these low
outputs activate the CLEAR inputs on all D-latches in the interface memory. Since each D-
tatch represents a “memory cell,” the entire interface memory is cleared and the interface
enters an IDLE state. The three memory output signals POLL IN PROGRESS, LISTEN TO ME,
and TALK TO ME go inactive low, if they are not already low.

A WORD ABOUT 4051 WRITE OPERATIONS

Two D-latches are used in the interface memory circuit to record the transmission of both the
primary listen address and the secondary address for PRINT. If this peripheral device could
only listen to ASCII data, then only one D-latch would be necessary. The secondary address
for PRINT could be ignored and the Q output on U16A could be tied directly to pin 1 on AND
gate U17A to activate the LISTEN TO ME signal.

But two D-latches are used simply to illustrate how to set up a listen function based on the
secondary address.

Assume for the moment that the peripheral device is a mass storage device capable of
receiving data in 4051 internal binary format as well as ASCII code format. To make the
distinction between the two formats, the interface memory needs to send two signals to the
peripheral device. One signal called LISTEN TO ME PRINT for ASClI data transfers and one
signal called LISTEN TO ME WRITE for 4051 internal binary code transfers.

Since the 4051 issues the same primary listen address in both a PRINT and WRITE operation,
the interface must make the distinction between the two operations by looking at the
secondary address. The 4051 issues secondary address 12 for PRINT operations and
secondary address 15 for WRITE operations.

2-34 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

The decoding circuitry presently in the interface doesn’t need to be changed; but additions
need to be made. Another decoding circuit similar to the logic chain U11D, U13C, U158, U16B,
and U17A needs to be added to decode the WRITE secondary address. Then, when the primary
listen addressisissued forthe interface, D-latch U16A is set as previously described. But, when
the secondary address is issued, only one of the two secondary address D-latches are set
depending on whether the secondary address; is 12 or 15. If secondary address 12 is issued, a
latch is set which makes the signal LISTEN TO ME PRINT go active. If secondary address 15 is
issued, a latch is set which makes the signal LISTEN TO ME WRITE go active. This tells the
peripheral device what the data format is and the peripheral device can take the appropriate
steps in preparing to receive the information.

4051 INPUT OPERATIONS

Input operations require the interface to assume a talker role and transmit data tothe 4051. The
circuitry in this interface is set up to respond to INPUT operations when INPUT statements are
executed in BASIC. Like the listen operations just described, the interface can easily be set up
to operate in a multitude of talk operations, like INPUT, READ, OLD, etc. The operation
selected depends on the capabilities of the peripheral device. In this case INPUT is selected
because ASCII data transfers are typical of most GPIB peripheral devices. The following text
describes the interface response when the statement INPUT @2:A$ is executed in 4051 BASIC.

1. The 4051 starts the INPUT operation by setting ATN low on the GPIB. This causes the
interface listen handshake circuitry to set NDAC low and NRFD high, as previously
described.

2. The 4051 then places the primary talk address for device 2 on the GPIB and the address
appears at the input of the interface address decoder. The 4051 then sets DAV active low.

3. When DAV goes low, pin 5 on address decoder U9 goes low and pin 3 on address decoder
U10 goes low. This makes the output of AND gate U12A go high and clock D-latch U18A.

4. D-latch U18A serves as the "memory element” for the primary talk address. Since the D-
input is always high, the latch enters a "set” state when clocked by U12A. The Q output of
U18A goes low and tells the interface that the primary talk address has been received.

5. Thelow on pin 6 of U18 enables AND gate U15C to pass the secondary address signal from
the address decoder to D-latch U18B. This signal comes from the address decoder as soon
as the secondary address for INPUT is transferred over the GPIB.

6. While the above action is taking place, the interface listen handshake circuitry completes
the handshake with the 4051. The 4051 then takes the primary talk address off the bus,
places the secondary address for INPUT (decimal 109) on the bus, and sets DAV low. This
causes pin 7 on U9 togo low and pin 150n U10to go low; the output of AND gate U12B goes
high.

4051 GPIB Hardware Support @ 2-35

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

7. The high U12B output makes the output of inverter U13D go low. This low, in combination
with the low from U18A pin 6, makes the output of AND gate U15C go high and clock D-
latch U18B.

8. D-latch U18B serves as the “memory element” forthe INPUT secondary address. The latch
enters a "set” state when clocked by U15C; pin 9 on U18B goes high and pin 8 goes low.
This tells the interface to start talking in ASCII code, but only after ATN goes high.

Atthis point, the interface must continue to receive and decode addresses until ATN goes high.
And, the interface must prevent the peripheral device from “seeing” the talk signal until ATN
goes high.

AND gate U17B is in the circuit to fulfill this requirement. With ATN in a low state, pin50on U17B
stays low to keep the gate disabled. This prevents the peripheral device from seeing the high
true TALK TO ME signal at pin 9 on U18B. After the 4051 sets ATN high, the output of U17B
goes high which sets TALK TO ME to a true state. This tells the peripheral device to start talking
in ASCII code.

The Implied UNTALK

If a peripheral device is assigned to be a talker with ATN low, and the controller issues another
primary talk address without firstissuing the UNTALK command, the first talker must interpret
this action as-an implied UNTALK and get off the bus. Itisimportant that the implied UNTALK
facility be builtinto the GPIB interface because a serial poll sequence depends on the presence
of this facility. In addition, the 4051 may be programmed to issue one or more primary talk
addresses in sequence (over a period of time) with the WBYTE statement and each talker must
have the implied UNTALK facility in operation; if not, several talkers might be on the bus
transfer data at the same time. This situation produces pure chaos!

The implied UNTALK requirement is built into the interface circuitry as follows:

When D-latch U18B enters a “set” state, the Q output (pin 8) goes low which enables AND gate
U15A to pass a primary talk signal from the address decoder to NOR gate U15D. With the
interface in this state, any additional primary talk addresses coming over the GPIB causes pin 1
on U14A to go low. This makes the output of U15A go high which makes the output of U15D go
low. Since the output of U15D is tied to both clear inputs on U18A and U18B, the low going
U15D output clears both D-latches and returns the interface to an UNTALK state.

2-36 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

Transmitting Data Over The GPIB

After the 4051 issues the secondary address for INPUT, the 4051 assigns itself as a listener,
then releases ATN. This makes the TALK TO ME signal on the interface circuit board go active
high. TALK TO ME tells the peripheral device to place the first data byte on the peripheral
output data bus. At the same time, TALK TO ME activates the interface talk handshake circuitry
and places the GPIB Data Bus drivers in a talk state.

The peripheral device transmits data bytes over the GPIB (as previously described) and the
4051 receives the data bytes and assigns them to the variables specified in the INPUT
statement. The interface talk handshake circuit goes through the handshake sequence with
each data byte transferred. This action continues until all of the specified variables have
assigned values. The 4051 then sets ATN active low and issues the UNTALK command over the
GPIB.

Responding To The UNTALK Command

When the 4051 sets ATN low, AND gate U17B is immediately disabled. This makes TALK TO
ME inactive low which returns the GPIB Data Bus transceivers to a listen state and also
activates the interface listen handshake circuitry. When the 4051 issues the UNTALK
command, pin 6 on U9 goes low and Pin 17 on U10 goes low. This causes the following chain
reaction: the output of AND gate U12D goes high; the output of NOR gate U14D goes low; the
output of inverter U13E goes high; and the output of U15D goes low. The high to low transition
at the output of U15D makes both CLEAR inputs to D-latches U18A and U18B go low. This
places both latches in a ""reset” state. After that, the 4051 releases ATN and the interface
returns to an idle state.

4051 SERIAL POLL OPERATIONS

Serial poll operations occur on the GPIB whenever the 4051 executes a POLL statement in
BASIC. This usually occurs when a peripheral device sets SRQ (service request) on the GPIB
active low and an ON SRQ THEN statement in the BASIC program transfers program control to
a POLL statement. All peripheral devices with SRQ capability are listed in the POLL statement
with the highest priority device listed first. The 4051 initiates the serial poll on the GPIB and the
interface circuitry responds as described below. (Refer to the serial poll timing diagram in
Section 4 for additional information.)

1. The 4051 starts the serial poll by setting ATN low. The 4051 then issues the commands
UNLISTEN (decimal 63) and SERIAL POLL ENABLE (decimal 24). If the interface is in a
LISTEN state, the UNLISTEN command clears the interface (as previously described). The
SPE command is then received by the interface and decoded.

4051 GPIB Hardware Support @ 2-37

4051 GPIB HARDWARE INTERFACE DESIGNS
Interface Circuit Description

2. The SPE data byte causes pin 2 on address decoder U9 to go low. Pin 9 on U10 also goes
low. These two low outputs cause the output on AND gate U11A to go high and clock D-
latch U19B. Since the D-input on U19B is always high, the latch enters a "set” state and pin 9
goes high. This high makes the POLL IN PROGRESS signal active true which tells the
peripheral device that the 4051 is executing a serial poll and to place the peripheral status
byte on the peripheral output data bus. The status byte is not placed on the GPIB Data Bus
at this time, however, because the interface is not addressed as a talker and the GPIB Data
Bus transceivers are in a listen state.

3. Next, the 4051 issues the primary talk address (and the secondary address, if one is
specified) for the firstdevice in the POLL statement address list. If the address is for another
device on the bus, the interface address decoder decodes the address sequence, but the
TALK latches (U18A and U18B) remain in a "reset” state. The 4051 then turns the bus
around, assigns itself as a listener and receives the status byte and checks bit 7 for a binary 1
state.

If bit 7 is set (true), the 4051 terminates the serial poll by setting ATN low and issues
UNTALK, followed by SPD (serial poll disable). The SPD command byte makes the output
of AND gate U11B go high, which makes the output of NOR gate U14B go low. This action
clears U19B and returns the POLL IN PROGRESS signal (pin 9) to an inactive (low) state.

If bit seven in the first status byte is not set, the 4051 continues with the serial poll by setting
ATN low and issues the primary talk address for the next device in the POLL statement address
list. This tells the second device in the list to send its status byte and at the same time issues an
"implied” UNTALK command to the first device. This action continues until the device address
for this interface is issued.

Transferring The Status Byte

If thisinterface is holding SRQ active low, and the 4051 issues the primary talk address and the
secondary address for INPUT with ATN low, then the interface enters a TALK state and TALK
TO ME goes active (high). This activates the talk function in the interface and the interface
transfers the peripheral status byte to the 4051. The peripheral device must issue the status
byte at this time, because POLL IN PROGRESS is active true.

The 4051 examines the status byte and sees bit 7 set to a logic 1.

The 4051 then sets ATN low, issues UNTALK and SPD (serial poll disable) then releases ATN.
This action clears D-latches, U18A, U18B, and U19B, and returns the interface to an idle state.

At this point the serial poll is over. Assuming that the 4051 is programmed to service this
peripheral device, the 4051 branches to the service routine for this device via a GOTO OF
statement, then readdresses this peripheral device according to directions in the service
routine.

2-38 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Maximum Sustained Data Rates

In cases where this interface is not requesting service, the 4051 issues the next primary talk
address in the POLL statement address list after receiving the status byte. This action is an
automatic "implied” UNTALK command to our interface and the "implied” UNTALK circuitry
returnsthe TALK latches (U18A and U18B) to a "reset” state, as previously described. The SPD
command at the end of the serial poll then resets U19B and the POLL IN PROGRESS signal
goes inactive. This tells the peripheral device that the serial poll is over.

OBTAINING THE MAXIMUM SUSTAINED DATA RATE FOR
ASCII INPUT

INTRODUCTION

In many applications, peripheral devices must collect large amounts of datain ashort period of
time and pass the data as quickly as possible to the 4051, before the data is lost. Time is of the
essence; any delays in the transfer can cause valuable data samples to be lost (forever). If a
peripheral device outputs data in ASCIl code format, the INPUT statement in 4051 BASIC is a
logical choice for receiving the data and assigning the data to variables in memory. The INPUT
statement is very flexible—allowing a multitude of different ASCII formats to be transmitted. In
an INPUT operation, the ASCll datais sorted as itcomes into the 4051 I/O buffer; ail non-valid
characters are thrown out and only valid data is retained and assigned to the specified
variables. This INPUT sorting operation does take time, however, and is not ideal for
operations where the data format is known and fixed, and sustained data bursts over a iong
period of time are critical to the success of an operation.

USING THE READ STATEMENT TO INPUT ASCIlI DATA

The READ and WRITE statements are in the 4051 BASIC language to speed up data transfers
between system components. The normal data formatting routines are bypassed and the data
is taken directly from the 4051 memory and passed back and forth between peripheral devices.
Since very few peripheral devices can correclly interpret the 4051 internal format, READ and
WRITE data transfers are usually directed toward mass storage devices which store the data
rather than interpret the data.

2-39

4051 GPIB Hardware Support @

4051 GPIB HARDWARE INTERFACE DESIGNS
Maximum Sustained Data Rates

A special format is used to speed up the transfer. The 4051 generates a two-byte header for
each data item. The header tells the receiving device the data item type (string or numeric) and
the data item length in bytes. After the header is issued to the receiving device in a WRITE
operation, the data item is lifted directly from the 4051 internal memory and transferred to the
receiving device. Since the length of the data item is specified in the header, the receiving
device does not have to "look” at the data as it is being received. The only action required by
the receiving device is to count the number of bytes as they come in and delimit the data item
after the specified number of bytes are received.

The 4051 follows the same rules when receiving data viaa READ operation. The 4051 finds out
the data item length from the header, then inputs the specified number of bytes without
“looking" at the data as it is being received. Once the specified number of bytes are received,
the 4051 delimits the data item and assigns the data to a variable. The 4051 assumes the data
item is in the correct 4051 internal binary format.

4051 INTERNAL DATA FORMATS
NUMERIC DATA

Each numeric value is stored in the 4051 internal memory as an eight-byte floating-point
number. This format is difficult to generate from scratch—therefore it is usually not practical to
design a peripheral interface that converts ASCIlI numbers to 4051 internal binary floating
point. In those cases where the conversion is practical, however, it is usually best to use a
microprocessor based interface that is driven by firmware rather than try to handle the
conversion with TTL logic. (A complete description of the 4051 internal floating point format is
given in Appendix A.)

STRING DATA

ASClIlI string datais stored in the 4051 memory using the same binary numbers as the external
format. That is, an ASCIl "A” is represented internally by a binary bit pattern equivalent to
decimal 65—the same as the external format.

When character strings are transferred from the 4051 memory using READ and WRITE, the
4051 generates the two-byte header describing the data item type and length, just like it does
when transferring numeric data. The string is then transferred in ASCII code after the header is
issued, the same as in a PRINT statement, only without the formatting delays.

2'40 @ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Maximum Sustained Data Rates

When the 4051 executes a READ statement with a string variable as a parameter, such as READ
@2:A$%, the 4051 assumes that peripheral device (2) is sending an ASCI| character string
preceded by the proper two-byte header. Therefore, the 4051 receives and checks the first two
bytes transferred from device 2. If the 8-bit bytes are in the correct header format and specify
"character string X bytes long,” then the 4051 inputs X bytes in a sustained burst and assigns
the bytes to the specified string variable (A$ in this case). Since the 4051 assumes that the data
is in the correct ASCII format, the character string is transferred at the maximum rate and the
4051 does not look at the data as it is being received. This method of transfer is much faster
than an INPUT operation because the data scanning routines are bypassed. Data bursts of up

to 8192 ASCII characters (maximum) can be achieved in this way as a sustained rate of 5.2K
bytes/second.

PROGRAMMING A PERIPHERAL DEVICE TO CREATE A TWO-BYTE
HEADER

If an ASCII| peripheral device can be programmed to disregard the first two bytes received, then
the WRITE statement can be used to transfer ASCI character strings at a 8K byte/sec
sustained burst to the peripheral. Likewise, if an'ASCII peripheral device can be programmed
to issue a two-byte header prior to transferring an ASCII character string, the transfer can be
done with a READ statement.

The 4051 HEADER FORMAT

Each data item transferred in 4051 machine dependent binary code with READ and WRITE is
preceded by a two byte (16 bit) header. This is true whether the data item is numeric data or
character string data. The two byte header contains information which tells the receiving
device the data item type (numeric, string, or End of File mark) and the data item length (in
bytes). The Fig. 2-7 illustrates how information is stored in the two byte header.

The three high order bits of the first byte represent a binary number from @ through 7. This
number indicates the data item type. A binary 1 (801) means the data item is a numeric value.
Binary 2 (310) means the dataitemis a character string. And binary 7 (111) means the dataitem
is an End of File Character. All other bit combinations are undefined.

4051 GPIB Hardware Support @ 2-41

4051 GPIB HARDWARE INTERFACE DESIGNS
Maximum Sustained Data Rates

BYTE 1 BYTE 2
- -
/ \/ ~\
4096 2048 1024 512 256 128 64 32 16 8 2 |
@ 0 1 0 7] 0 0 1] u (1] (0] (1] 0 1 0 7]
\ J\ J
——— S
Data Length
Type
DATA TYPE
CODE MEANING
000 Undefined
o 01 Numeric Value
010 Character String
011 Undefined
100 Undefined
101 Undefined
110 Undefined
1T 11 End of File
2270-15

Fig. 2-7. 4051 binary header format for READ and WRITE.

The five remaining low order bits in the first byte of the header and the eight bits of the second
byte of the header form a binary number which tells how many bytes are in the dataitem. Each
bit carries a decimal weight as shown in the illustration. In this case, the data type is numeric
(001) and the body of the data item (which follows the header) is eight bytes long.

As a general rule, each numeric data item is eight bytes long with a two byte header for a total
length of 10 bytes. Each character string requires one byte for each character plus the two byte
headerfor atotal length of LEN+2 (where LEN is the Length function). The maximum length of

a string in this format is 8192 bytes.

242 @

4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Building a Header Generator

BUILDING AHEADER GENERATOR FOR AN ASCII PERIPHERAL
DEVICE

Ifthe output of an ASCII peripheral device cannot be programmed to issue a two-byte header,
the only alternative is to build a header generator out of TTL logic and attach the device to the
peripheral’'s GPIB connector. The rest of this section discusses how a header generator can be
built. A practical design for a header generator is used for illustration. This design has been
tested and works satisfactorily. However, remember that it is presented for educational
purposes only and we can not guarantee that it will work in your particular application.

AN OVERVIEW ON HOW THE HEADER GENERATOR WORKS

The header generatorin Fig. 2-8is a little black box that has an IEEE Standard 488-1975 plug on
each end—one male and one female. The box is designed to be connected in series with the
ASCII peripheral device and the 4051 GPIB cable. Power to the box must be supplied by the
peripheral device or an external power supply. Data transferred back and forth between the

4051 and the peripheral device passes through the box.

Normally, the 4051 uses PRINT statements to send messages to the peripheral device and
INPUT statements to receive data from the peripheral device. With the header generatorin the
cdata path, PRINT statements can still be used to send messages to the peripheral device.
However, both INPUT and READ statements can be used to receive messages from the
peripheral device. The header generator contains GPIB handshake circuitry (both listen and
talk), an address decoder which responds to the same addresses as the address decoder in the
peripheral device, and two data registers that hold predefined header bytes.

ASCIHI
HEADER PERIPHERAL
GENERATOR | DEVICE
GPIB
2270-16

Fig. 2-8. 4051 binary header configuration for an ASCIi peripheral device.

@ 243

4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

244

Operation

During PRINT operations, the address decoder in the header generator and the address
decoderin the peripheral device decode the primary listen address and the secondary address
for PRINT atthe same time. Because the operationisa PRINT operation, the header generator
remains passive and allows the data to pass through the box to the peripheral device
"untouched.”

On INPUT and READ operations, the header generator is set-up to respond to secondary
address 14 (for READ). A two-byte header is then issued.

During a READ operation, the 4051 issues the peripheral’s primary talk address and the
secondary address 14 for READ. Both the header generator and the peripheral device receive
these addresses at the same time. The header generator takes over and keeps the peripheral
device "in-check” while a two byte header is issued to the 4051.

The 4051 receives the header bytes and, while the 4051 is examining the bytes, the header
generator gets off the bus and allows the peripheral device to look at the 4051 handshake lines.
When the 4051 says it’s ready to receive the data, the peripheral device places the first ASCII
data byte on the GPIB Data Bus and there're off and running. The 4051 starts receiving the
ASCII data bytes as fast as it can without looking at the data. As soon as the 4051 receives the
number of bytes specified in the header, the 4051 terminates the transfer by issuing UNTALK to
the header generator and the peripheral device.

INPUT operations can also be performed, but in a slightly different manner. First, the
secondary address 14 must be specified in the INPUT statement, such as INPUT @2,14:A$.
This makes the operation appear to be a READ operation to the header generator. The header
generator issues the two-byte header, then lets the peripheral device transfer the character
string. The difference in this case is that the header is treated like the first two characters in the
ASClI string. The INPUT data scanning and sorting routines are active and the data transferis
handled like a normal INPUT operation. When an CR delimiter is received, the 4051 terminates
the operation. Because the first two bytes in the string are known to be the header, they are
deleted using the REP function in BASIC.

HEADER GENERATOR CIRCUIT DESCRIPTION
Introduction

Diagram C in the back of this manual is the schematic diagram for the header generator just
described. The 4051 GPIB interconnecting cable plugs into the female connector J1 on the left.

The male connector J2 on the right can be plugged directly into the GPIB connector on the
peripheral device or is connected to the peripheral device with a standard GPIB

interconnecting cable.

@ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

Data traveling to and from the peripheral device over the 4051 GPIB Data Bus passes through
the bus regulation network U19, U20, U21, and U22. This network allows data to travel over the
bus in one direction atatime. The direction of the data flow is controlled by D-latch U17Ain the
top center position on the schematic.

Peripheral addresses are taken off the 4051 GPIB Data Bus by transceivers U1 and U2. The
addresses are placed on the input terminals of address decoder U6 and U7 where they are
decoded and passed on to the memory elements U9A and U9B, (if they are valid). The address
decoder is set-up to respond to primary talk address 2 (decimal 66), which clocks D-latch U9A
into a set state. Secondary address 14 for READ (decimal 110) clocks D-latch U9B into a set
state.

The TALK and LISTEN handshake circuits, located just below the address decoder, are similar
to the handshake circuits described in the General Purpose Interface description. The details
on how this circuit works will be discussed in a moment.

When the header and the peripheral device are addressed simultaneously during a READ
operation, the header generator inhibits the peripheral device from talking by holding the
NRFD signal line on connector J2 in a low state.

Atthe same time, header generator uses the bus regulation network U19,U20, U21, and U22to -
keep the peripheral data off the 4051 GPIB Data Bus.

While inhibiting the peripheral device from talking, the header generator handshakes with the
4051 twice and sends two predefined header bytes from data registers U13-U14 and U15-U16.
After these bytes are transferred, the header generator allows the peripheral data to pass
through the bus regulation network. The handshake signals are also reconnected so that the
peripheral device can freely handshake with the 4051 until the data transfer is over. The
following text describes in detail how the above circuit action takes place.

A Few Words about the Handshake Circuitry

The listen and talk handshake circuitry is a simplified version of the handshake circuit
described in the beginning of this section. Components have been eliminated and the circuit
has been designed to respond specifically to 4051 handshake characteristics. The major
differencein this handshake circuit over the one previously described is that this circuit always
stays on the GPIB handshaking in alisten mode, even if the header generatoris not addressed.
The header generator, however, does not listen to the data unless the 4051 activates ATN. The
header generator handshake is so fast that is can never slow down a transfer between the 4051
and another peripheral device. Therefore, its presence on the GPIB is not detrimental.

4051 GPIB Hardware Support @ 2-45

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

2-46

Initializing the Header Generator Circuits

Itisimportant that D-latches U9A and USB be placed in a "reset” state beforea READ or INPUT
operation is executed by the 4051. Normally, an INIT state is executed by the 4051 at the
beginning of every BASIC program. During an INIT operation, the 4051 pulses the IFC
(Interface Clear) signal line on the GPIB. The header generator responds to IFC as follows:

The low-going IFC signal makes pin 6 on GPIB transceiver U4 go high. This makes the output
of NOR gate U23B go low and set the CLEAR inputs to D-latches U9A and U9B low. This resets
both latches (Q output low and Q output high).

The Circuit Action During a READ Operation

Responding to ATN. The 4051 starts the READ operation by setting ATN active low. The
header generator circuitry responds to ATN as follows:

1. Thelow ATN signal makes pin 15 on Transceiver U4 go low. Pin 14 on U4 goes high making
the output of inverter USA go low. This low signal enables addresses decoders U6 and U7 to
function.

2. Sincedatais notvalid at this time, the DAV signal onthe GPIB is high (inactive). This makes
pin 9 on transceiver U4 go high and pin 10 go low. Pin 10 on U4 is the source of the header
generators NRFD and NDAC signal response.

3. Thelowon U4 pin10causes pin 2on NOR gate U23A to go low. Assuming at this point that
the peripheral device is ready to receive addresses, pin 3 on U23A is low. This makes the
output of U23A go high, the output of inverter U18D go low, and the output of the NRFD bus
driver (U3, pin 9) go high. This high NRFD signal tells the 4051 that the header generator
(and the peripheral device) are both ready to receive addresses over the GPIB.

4. Ifthe peripheral device is not ready to receive addresses when ATN goes low, the peripheral
indicates its unready state by setting pin 7 on GPIB plug J2 to a low state (right side of
schematic). This causes the following chain reaction: The output of bus receiver U18A goes
high making pin 13 on AND gate U10D go high. Since D-latch U9A is reset at this time, the
high on pin 6 makes pin 12 on U10D go high. The output of U10D also goes high making the
output of U23A go low, and the output of inverter U18D go high. Pin 9 on GPIB transceiver
U3 goes low as a result and tells the 4051 that the peripheral device is not ready to receive
addresses. When the peripheral device is ready, pin 7 on J2 goes high, the chain reaction
occurs in reverse, and NRFD on the GPIB goes high.

5. Atthe same time the NRFD response is being generated, the header generator sets NDAC
low as follows. The low at pin 10 on transceiver U4 causes the output of inverter U5B to go
high. This high is fed directly to the input of the NDAC driver (U3, pin 13) and causes the
output ofthe driver (U3, pin 15) to go low. This tells the 4051 that the header generator (and
the peripheral device) have not yet received a data byte.

@ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

Receiving and Decoding the Primary Talk Address. After NDAC is low and NRFD is high on the
GPIB, the 4051 continues the addressing operation. First, the 4051 places the primary talk
address for the header generator (and the peripheral device) on the GPIB Data Bus. In this

example, both devices are set to respond to primary talk address number two (decimal 66).

Since the GPIB Data Bus transceivers U1 and U2 are in a listen state (drivers disabled by a high
pin 12), the primary talk address is passed to the input of address decoders U6 and U7. The
address is also presented to the Data Bus regulation network U19, U20, U21, and U22.

The Data Bus Regulator Network allows the header generator to control the data transmissions
to and from the peripheral device. In the present state, the network is in a listen mode—
allowing data to travel from the 4051 GPIB to the peripheral device and preventing data from
traveling in the opposite direction.

With the primary talk address at the input ports to both address decoders, the 4051 sets DAV
low. The header generator responds as follows:

1. Pin 10 on transceiver U4 goes high. This makes the output of NOR gate U23A go low, the
output of inverter U18D go high, and the output of the NRFD driver (U3 pin 9) go low.
(Setting NRFD low is the first step in receiving an address byte.)

2. The high on U4 pin 10 also causes the output of inverter U5SB to go low, making the output of
the NDAC driver (U3, pin 15) go high. This tells the 4051 that the header generator has
accepted the address byte.

3. Although the header generator’'s handshake response is practically instantaneous, the
peripheral’s handshake is also occurring at the same time. The peripheral’s NRFD response
is ORed with the header generators respcnse at U23A. The peripheral’s NDAC response
occurs independently on pin J2-8 on GPIB plug J2 and keeps the NDAC line low foras long
as it takes the peripheral device to accept and decode the address.

4. While the handshake is being completed, the header generator's address decoder
examines the address on the GPIB Data Bus. Since decimal 66 is on the lines, pin 5 on U6
and pin 3 on U7 go low. This makes the output of AND gate U8A go high and clock D-latch
U9A. D-latch U9A enters a set state making pin 5 go high and pin 6 go low.

Receiving the Secondary Address. After the primary talk address is transferred, the 4051
places the secondary address for READ (decimal 110) onthe GPIB Data Bus and sets DAV low.
Both the header generator and the peripheral device complete the handshake as before. The
address decoder in the header generator passes the address to pin 11 on D-latch U9B as a low
to high transition. This clocks the latch into a “set” state—making pin 9 on U9B go high.

4051 GPIB Hardware Support @ 2'47

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

2-48

Ending the Address Sequence. After the handshake on the secondary address is completed,
the 4051 assigns itself as a listener, sets NRFD and NDAC low, then releases ATN to a high
state. This causes pin 3 on AND gate U10A (located just to the right of D-latch U9B) to go high
and places the header generator in a talk state.

The Header Generator Keeps the Peripheral From Talking. Since the header generator must
issue two header bytes before the peripheral device is allowed to transfer its ASCII string, the
header generator must immediately hold the peripheral device "in check.” This is how the
generator does it. '

1.

D-latch U17A is the key element controlling the action of the peripheral device. Normally
U17A is "reset” with the Q output (pin 5) low and the Q output (pin 6) high. These two
outputs control the direction of data to and from the peripheral device via the Data Bus
Regulation network U19, U20, U21, and U22. With U17A in a reset state, pin 12 on U19 and
U20is highand pin 12on U21 and U22 is low. This allows data to travel from the 4051 to the
peripheral device over the Data Bus. Data traveling in the opposite direction is blocked.
Only after U17A is clocked into a set state can data reach the 4051 Data Bus from the
peripheral device. (This does not happen until after the header generator issues the two-
byte header to the 4051).

In addition to keeping peripheral data off the 4051 Data Bus, the outputs on U17A keep the
peripheral’s NRFD signal line low. When the primary talk address is received by the header
generator and D-latch U9A is in a "reset” state, pin 9 on U12C (upper right corner) is also
high. These two high inputs make the open-collector output of U12C go low and stay low.
This tells the peripheral device that the "4051" is not ready to accept data. The peripheral
device, therefore, does not set DAV low. Instead, the peripheral, thinking that NRFD is being
controlled by the 4051, waits for NRFD to go high.

The Generator Prepares to Transfer the First Header Byte. In addition to keeping the peripheral
device "in-check,” the header generator prepares to transfer the first data byte as follows:

1.

2.

The output of AND gate U10A goes high after D-latch U9B is "set” and ATN goes inactive.
This action "arms” the talk handshake circuit and places the first header byte on the 4051
GPIB Data Bus.

The talk handshake circuit consists of D-latch U11A and inverter U5D. Like the talk
handshake circuit in the General Purpose Interface previously described, the D-latch
remains inactive until the D-input to U11A also goes high and the latch is allowed to
respond to the clock pulses from U3 pin 10.

@ 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

3. In addition to "arming’ the talk D-latch U11A, the high from U10A reverses the state of pin
12 on GPIB transceivers U3 and U4—making them enter a "talk” configuration. The high
from U10A also "arms” D-latch U11B by releasing the clear input (pin 13) and setting the D-
input (pin 12) high. The drivers in the GFIB Data Bus transceivers U1 and U2 are also
enabled. These drivers place the first header byte from U15and U16 on the 4051 GPIB Data
Bus at this time.

The Header Byte Configuration. The 16-bit header is generated from a series of open-collector
AND gates connected in parallel. The eight AND gates located in chips U15 and U16 make up
the first header byte. These gates are controlled by acommon enable coming from pin 9 on D-
latch U11B. The second byte is generated by the eight AND gatesin chipsU13 and U14. These
gates are controlled by acommon enable from pin 8 on U11B. The second inputon each AND
gate is tied high or low, making the output of the gate represent a binary 1 or a binary 0,
respectively. The configuration shown in the schematic diagram generates the following
header on the 4051 GPIB Data Bus and tells the 4051 that the peripheral device is about to send
a character string 8000 bytes long.

HEADER BYTE 1 HEADER BYTE 2

4096 2048 1024 512 256 128 64 32 16 8 4 2 1
Lo [+ Jof+[oJa[1]1fJof1[ofoJoJoJo]o]
AN —— S\ —~— S

Data Type Length is 800 @ bytes
is String

Transferring the First Header Byte. A shorttime after the 4051 releases ATN (37 us to be exact),
the 4051 sets NRFD high to indicate that it is ready to receive the first header byte. The header
generator responds as follows:

1. The high NRFD signal line makes pin 10 on transceiver U3 go low. This makes the output of
inverter U5D go high and clock D-latch U11A into a "set” state.

2. Pin5on D-latch U11A goes high making the output of the DAV driver (pin 9 on U4) go low.
This tells the 4051 that the data on the 4051 GPIB Data Bus is valid.

3. The 4051 responds by setting NRFD low. The 4051 captures the header byte, then set NDAC
high.

4. The high NDAC signal makes pin 14 on transceiver U3 go low. This low transition clocks the
CLEAR input to D-latch U11A and returns the latch to a “reset” state.

4051 GPIB Hardware Support @ 2-49

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

250

5. Pin5on U11A goes low and returns the DAV signal line to a high (inactive) state. Pin 6 on
U11A goes high and clocks D-latch U11B into a "set"” state. This action disables the AND
gates in U15 and U16, and enables the AND gates in U13 and U14. As a result, the second
header byte is placed on the 4051 GPIB Data Bus.

6. While the 4051 is examining the first header byte, the second header byte is settling on the
GPIB Data Bus. As soon as the 4051 is ready, the 4051 sets NRFD high to indicate its
willingness to receive the second header byte.

7. The handshake on the second header byte takes place the same as the first. The high going
NRFD signal clocks D-latch U11A into a "set” state and DAV goes low on the GPIB. The
4051 captures the second header byte, then sets NDAC high. This activates the clear input
on U11A, returns the latch to a "reset” state, and sets DAV on the GPIB to a high (inactive)
state.

Turning the Data Transfer Over to the Peripheral Device. At this point, the header generator
has finished its function and turns the Data Transfer over to the peripheral device. The turn-
over operation occurs as follows:

1. Asthe second header byte is placed on the GPIB Data Bus, the enable pulse from pin 9 on
U11B make the D-input to U17A go high. When the 4051 completes the second handshake
by setting NDAC high, D-latch U11A is "reset” and the low to high transition at pin 6 on
U11A clocks D-latch U17A into a "set” condition.

2. With U17Ainaset condition, the Q outputs (pins 5 and 6) reverse state. This causes the Data
Bus Regulation Network (U19, U20, U21, and U22) to switch direction and place the first
ASCIl data byte from the peripheral device on to the 4051 GPIB Data Bus.

3. Atthe same time, open-collector AND gate U12D is enabled. This allows the peripheral device to

“see’ the true state of the NRFD signal line on the 4051 GPIB. In addition, the low at pin 6 on D-
latch U17A causes AND gate U10B to be disabled. Pin 12 on GPIB Data Bus transceivers U1 and
U2 goes high and the second header byte from the header generator is taken off the 4051 GPIB
Data Bus. U17A pin 6 in the low state disqualifies U10C, which inhibits the header generator
from issuing NRFD, turning control of the bus over to the peripheral.

From this point on, the header generator is effectively out of the picture and the peripheral
device transfers ASCII data to the 4051 until the specified number of bytes (8000 in this case)
aretransferred. At that time, the 4051 ends the transfer by setting ATN low, issues the UNTALK
command, then released ATN.

REV A, MAR 1979 4051 GPIB Hardware Support

4051 GPIB HARDWARE INTERFACE DESIGNS
Header Generator Circuit Description

Ending the Transfer and Clearing the Bus

The header generators response to ATN occurs as follows:

4.

6.

. The low ATN signal makes the output of AND gate U10A go low. This returns handshake

transceivers U3 and U4 to a listen configuration; the address decoder (U6 and U7) is
enabled and the talk handshake D-latches U11A and U11B are disabled (the D-inputs go
low). The header generator is now ready to receive and decode addresses from the 4051
controller.

. The peripheral device responds in a similar manner. When ATN goes low, the peripheral

device prepares to receive and decode acdresses from the 4051 controller. At the same
time, the CLEAR input (pin 1) on D-latch U17A goes low; this "resets” U17A making the Q
outputs (pins 5 and 6) reverse state and returns the Data Bus Regulation Network to a listen
configuration (allows data to pass from the 4051 to the peripheral device).

. After ATN goes low, the 4051 issues the command UNTALK (decimal 95) over the GPIB

Data Bus. Both the header generator and the peripheral device receive the command at the
same time.

The header generator address decoder passes the UNTALK command to NOR gate U23B
and makes the output go low. This low is applied to the CLEAR inputs on D-latches U9A and
U9B and returns both latches to a "reset” state, returning the header generator to an IDLE
condition.

. The peripheral device also decodes the UNTALK command and returns to an IDLE state.

After the UNTALK command is transferred, the 4051 issues the UNLISTEN command (for
good measure), then releases ATN and the transfer is over.

Allowing the 4051 to Pass Data to the Peripheral Device. It is important that the header
generator allow ASCII data to be transferred from the 4051 to the peripheral device with a
PRINT statement, a WRITE statement, a SAVE statement, a DRAW statement, or any other
output statementin 4051 BASIC. This header generator allows the datato pass because of the
following design considerations.

1.

2

[N

When the 4051 goes through an addressing sequence, both the header generator and the

peripheral device are allowed to "see” and decode the addresses. Although the header
generator only responds to a primary talk address 2, the peripheral device can receive and
respond to primary listen addresses when they are issued by the 4051.

When the header generatoris notin atalk mode of operation, data is allowed to pass on the
peripheral device via the Data Bus Separation Network U19, U20, U21, and U22. In addition,
the peripheral device is allowed to handshake on the data because the header generators
listen handshake circuitry is always active when the rest of the header generator is idle.

4051 GPIB Hardware Support @

2-51

Section 3

A MICROPROCESSOR-BASED GPIB INTERFACE

INTRODUCTION

This section describes a working implementation of a microprocessor controlled |IEEE 488
peripheral interface. The hardware and firmware described within are used to interface a
peripheral mass storage device (the TEKTRONIX 4924 Digital Cartridge Tape Drive) to the
IEEE 488 general purpose interface bus (GPIB). This implementation is suitable for medium
speed applications (about 5k bytes/second) which contain a Motorola M68@@ microprocessor.
The design goal was to achieve a reasonable trade-off among transfer speed, cost, and
firmware complexity.

Before starting the description of this particular interface, a brief review of the IEEE 488-1975
standard’s characteristics will be presented. The |IEEE 488-1975 standard is also called the
ANSI MC1.1-1975 standard, the proposed IEC bus, the ASCII bus, the HP-1B, the GPIB and
other names.

BACKGROUND

The |IEEE 488 interface bus provides an internationally-standardized communication link
between several instruments whether they be measurement devices, computers, mass storage
devices, or other peripherals limited only by one’s imagination. The charter of the IEEE 488
standard is meant to provide the logistics for signal management along the bus connecting the
system devices. The standard describes the means of addressing, handling interrupt
conditions and data interchange between devices as well as the electrical and mechanical
specifications for the bus. As with many other standardization documents, this standard
suffers from lack of readability and ease of understanding. However, it is complete and
thorough. It is the objective of this document to aid in the understanding of the GPIB via a
specific example.

With the advent of inexpensive microprocessors, reasonably sophisticated instruments and
systems will become cost-effective and popular. Since microprocessors allow for greater
flexibility and device local processing, the GPIB will likely provide a sufficient means for local
date interchange for all but the highest speed applications.

4051 GPIB Hardware Support . @

31

MICROPROCESSOR-BASED GPIB INTERFACE
Background

Devices on the bus are grouped into three functional categories:

1. Listeners—devices which can receive data from the bus.
2. Talkers—devices which can send data along the bus.

3. Controllers—devices which provide the management function of assigning who talks to
whom and when.

A device may have the capability to assume the role of any, or all, of the above three functions.
Additionally, there may be only one active controller and one active talker at any one time
along with any number of listeners, (up to 14, as limited by the electrical bus loading). When the
controller is giving commands, it is the talker. All other instruments are forced to be listeners,
listening to the commands. After the controller has finished giving commands, the bus is free
for data interchange among the devices which have been instructed to communicate by the
controller. Although the standard does specifically describe the logistics of addressing and
datatransfer, it does not make any attempt to describe the content of data messages which are
passed along the bus. Although uncompatible messages may seem like a major point, it has
proved to be only a minor inconvenience. This stems from two related phenomena:

1. Devices are somewhat "intelligent” in that they can perform some local data processing to
format data into a palatable state, and . . .

2. Mostmanufacturers are using the ASCII character code for use in communicating dataand
status information.

The GPIB is a byte serial—8 bit parallel communication bus. In addition to the 8 bi-directional
data lines there are 3 handshake control lines and 5 bus management lines.

The 3 control lines are used to provide a fully synchronized byte transfer on the 8 data lines
(DIO lines). Thus, byte transfers occur under the control of a three wire handshake. The
control lines, names and functions, are described below:

DAV —Data Valid. Asserted by the current talker when data is valid.

NRFD —Not Ready For Data. Asserted when one or more listening devices are not ready to
receive data.

NDAC—Not Data Accepted. Asserted when the current data has not been read by all listening
devices.

3'2 @ 4051 GPIB Hardware Support

MICROPROCESSOR-BASED GPIB INTERFACE
The Design

The five bus management lines provide the required functions to manage the usage of the bus.
In some cases they augment information that appears on the data lines. The names and
functions of these management lines are:

ATN —Attention. Asserted by the controller when it is issuing commands on the data lines.
IFC —lInterface Clear. Asserted by the controller to reset all devices to the idle state.

SRQ —Service Request. Asserted by devices to request service. This is an asynchronous
interrupt request line.

REN —Remote Enable. Asserted by the controller to activate the bus.

EOI —End or Identity. Optionally asserted by the talker to end messages. Also defined for
use in a high speed parallel poll of interrupting devices.

THE DESIGN

The M68@@ microprocessor, and associated firmware, is used to drive the GPIB interface
hardware shown in Diagram D, and is also used to control other functions within the
peripheral. The interface hardware consists of 1 and 1/2 PIA’s (M682@—peripheral interface
adapter), a handful of SSI and TTL devices and the required bus transceivers. The interface
firmware uses about 75@ bytes of ROM out of a total of 6K bytes of ROM contained in the 4924.
The interface also requires some of the 768 bytes of R/W memory.

The hardware has three modes of operation:

1. IDLE—Thisisthe unaddressed state where the bus drivers are disabled and the hardware is
only "listening” to attention (ATN) and interface clear (IFC—system reset).

2. LISTEN—In this mode, the hardware is driving the NRFD and NDAC handshake lines while
listening to the DAV handshake line as well as the associated data and management lines.
The management lines used are ATN and EOI (end or identify) although REN (remote
enable) is available for use if necessary.

3. TALK—In this mode, the hardware is driving the DAV handshake line and the appropriate
data lines in addition to the EOl bus management line while listening to the NRFD and
NDAC handshake lines. The hardware also has the capability of driving SRQ to request
service.

The microprocessor is interrupted by the GPIB hardware under the following conditions:

1. IFC is asserted—Asserting IFC informs the firmware that a reset function is required.

2. ATN transitions—Both the assertion and unassertion of ATN causes the M680@ to be
interrupted because some intervening action is required.

4051 GPIB Hardware Support @ 33

MICROPROCESSOR-BASED GPIB INTERFACE
Two Handshake Examples

3. A handshake cycle relevant to the device. Revelant means that the microprocessor is not
interrupted for handshake cycles for data transfers that occur on the bus when the
microprocessor has NOT been addressed as a listener or talker. (See IDLE above.) Ifin the
LISTEN mode, the hardware generates an interrupt when DAV is asserted. Ifin TALK mode,
the hardware generates an interrupt when the last (slowest) current listener indicates a
readiness to receive data by allowing NRFD to go high.

TWO HANDSHAKE EXAMPLES

The commands in these examples are given to the system controller which is assumed to be a
TEKTRONIX 4051. Furthermore, the 4051 provides the other necessary complementary
function, i.e., the talker function in the first sequence and the listener function in the second
sequence.

The Listener

For the first example we execute an ASCII transfer of a locial record, i.e., the four character
data sequence ABC<cr>, where <cr> represents the ASCI| character CARRIAGE RETURN.
The command is:

PRINT @1,12: "ABC"

which tells device #1 on the bus (our mass storage device) to receive (and store) the four data
characters A, B, C and <cr>>. The packets of information presented on the bus are shown in Fig.
3-1. A detailed handshake sequence is shown in Fig. 3-2.

PRINT @1 : “ABC”

DIO 1-8 — MLA-1— MSA-12 A E cr UNL UNT —

ATN

2270-17

Fig. 3-1. PRINT @1,12: "ABC".

34 @ 4051 GPIB Hardware Support

MICROPROCESSOR-BASED GPIB INTERFACE
Two Handshake Examples

HANDSHAKE TIMING

S I e VA

DAV —
D)
NRFD $ -
¥)
NDAC
2270-18
Fig. 3-2. Detailed Handshake Timing.
MLA-1 ... The 4051 controller is setting up peripheral device #1 as a listener.

MSA-12 . . . The 4051 controlleris furthertelling device #1 to perform the PRINT function. This
is interpreted as My Secondary Address (MSA) #12 or alternatly interpreted as My
Command. This byte tells the peripheral device that an ASCII transfer is comming from a
talker on the bus.

ABC<lcr> . . . Thecontroller has now changed roles and is now an ordinary talker transmitting
data. The datasentis the ASCH data to be stored in the buffer and eventually stored on the
magnetic media.

UNL. . . The controller has finished the command and is telling the peripheral to get off the
bus (stop listening). The UNT (UNTalk command) is ignored by the listener.

The text which follows, along with Figs. 3-1 and 3-2 and Diagram D, describe in detail the
hardware/firmware/bus interactions.

1. ATN is asserted—This tells all peripherals on the GPIB that the controller is going to
send a command (or address) to all peripherals and they must listen. The assertion of ATN
causes an interrupt in the M680@ to inform the firmware of the event. ATN also causes the
NRFD and NDAC handshake drivers to be placed on the bus in preparation for receiving the
address byte.

4051 GPIB Hardware Support @

35

MICROPROCESSOR-BASED GPIB INTERFACE
Two Handshake Examples

36

2. DAV (data valid) is asserted—This informs the devices connected to the GPIB that the
data appearing on the DIO (data) lines is valid and ready for action. Since ATN is also
asserted, the peripherals interpret the data byte asa command (the primary address—MLA-
1in Fig. 3-1). The assertion of DAV causes an interruptin the M6800 via the handshake line
CA1—U315 pin 4@ in Diagram D (note: this line is alternately used in TALK mode when
NRFD goes high). The information presented on the data lines is interpreted by the
peripheral to be its primary listen address. This is determined by the firmware looking at the
backpanel hardware address switches and comparing them with the address received over
the bus. Upon determining that the peripheral has been addressed, the firmware proceeds
to enable the addressed bit (P86—U315 pin 16 in Diagram D) so that the hardware will be in
the proper listen state after the controller is through talking, e.g. ATN goes high. Then the
firmware advances to the next state. Meanwhile the hardware has caused NRFD (Not
Ready For Data) to go low, indicating that the device is not ready to receive data.

3. A SHAKE pulse is issued by the firmware. This shake pulse causes the R-S flip-flop

(Usa—U5b in Diagram D) to enter the reset state which in turn allows NDAC (Not Data
Accept) to go high indicating to the controller that the data has been accepted. Uponseeing
NDAC high, the controller proceeds to un-assert DAV (set high) while it prepares the next

byte. DAV going high causes the hardware to set NRFD high as well as setting the R-S flip-
flop allowing NDAC to go low. The hardware is now ready to receive the next byte.

4. The controller now issues the secondary address 12 which the peripheral accepts as
before. The information passed across the GPIB thus far has set device #1 (our devices) asa
listener (MLA-1), and has told it via the secondary address (MSA-12) to prepare fora PRINT
operation, where the data following shall be interpreted as data to be stored in the current

open file.

5. ATN goes high. Attention going high informs the peripherals on the bus that the
controller is finished giving orders and the bus is now free for data interchange. This second
transition of attention again causes an interrupt in the M6800 to inform the firmware of the
change of state and the hardware acts accordingly. Since this peripheral was instructed to
enter the listen state, the hardware stays on the bus in the LISTEN mode as determined by
the ADDRESSED, and TALK/LISTEN lines which were set appropriately in step 2. If the
peripheral had not been addressed, the ADDRESSED line would have been left un-asserted
and the drivers would have been off the bus so data interchange among other peripherals
could proceed at a rate unrelated to the speed of this device.

6. The talker (also the controller in this example) proceeds to send the four characters of
information as data. Once again, DAV is asserted which causes an interrupt in the Me800
and the data to be read. This process is repeated until all appropriate data is sent and
received, at which point the controller steps in again and sends the unlisten (UNL) or
unaddress command.

@ 4051 GPIB Hardware Support

MICROPROCESSOR-BASED GPIB INTERFACE
Two Handshake Examples

7. Upon receiving the unaddress command the peripheral gets off the bus and begins
executing the command requested which in this case was to store four characters of data.

Note that normal data transfers, those without ATN asserted, caused the firmware to store the

data received in a buffer rather than being acted upon one byte at a time. This buffering is done
for three reasons:

1. To allow data transfers at a maximum rate so that the talker can get about other business.
This also maximizes the availability of the GPIB.

2. It is somewhat simpler to write conversion routines and scanners when a whole buffer is
available at a time.

3. This peripheral is a magnetic tape drive and requires data to be buffered into physical
blocks before accessing the actual recording media.

When looking at the firmware listing that follows this discussion, note that occasionally the
hardware can be placed into a suspended state. These suspended states are envoked when a
buffer becomes full or when the monitor (overall peripheral control program) is off doing
something more important, like completing the execution of the last command. While in one of
these suspended states, the hardware is left "'sitting” on the bus refusing to handshake which
effectively holds everything. When the monitor has completed the condition that caused the
suspended state to be envoked, it can subsequently restart the handshake. One aspect of this
buffer management scheme is that it is typical to receive an unaddress command (UNL or
UNT) as a prerequisite to start the peripheral active as specified by the secondary address
(MSA). The unaddress forces the peripheral monitor to come out from the idle state and

process the current buffer even thoughitis not full. This generates a clean solution in that each
command is explicitly delimited.

The Talker

A peripheral talk sequence proceeds in much the same way as the listen sequence previously

discussed and will be illustrated by executing an input data request. The command being
performed is:

INPUT @1:A$

This command requests device #1 to send a data stream from the currently open file. The bus
information packets are shown in Fig. 3-3. The handshake detail is shown in Fig. 3-2.

4051 GPIB Hardware Support @

MICROPROCESSOR-BASED GPIB INTERFACE
Two Handshake Examples

3-8

INPUT @1 : A$

DIO 1-8 - MTA -1 MSA - 13 AP BMHCf— ecr UNL 1 UNT [—

JUu U Uy
ATN—I_ ’_

2270-19

Fig. 3-3. INPUT @1:AS.

A detailed discussion of Fig. 3-3:

1.

The first two command bytes, those sent with ATN asserted, are handled by the peripheral’s
hardware/firmware in much the same way as the previous example. However, since the first
byte instructed the peripheral device to enter the talk mode, communicated by the
designation MTA-1 (My Talk Address), the firmware asserts the ADDRESSED line and sets
the TALK/LISTEN line to the TALK mode. This allows the hardware to enter the TALK state
after ATN goes away. '

When ATN does go away, the processor is interrupted, at which point it reverses the data
registers so that they can be used for output.

As the last (slowest) listening device becomes ready to receive data, the NRFD line goes
high. NRFD going high causes an interruptviathe HAND line. Thisin turn, tells the firmware
to put a data byte on the DIO (data) lines and to issue the SHAKE pulse.

While in the TALK state, a SHAKE pulse controls a second R-S flip-flop (U5¢c—U5d in
Diagram D). SHAKE places the flip-flop into the Set state which in turn asserts the DAV line
on the bus, indicating that the data is valid. As the slowest listener accepts the data, the
NDAC line is driven high. This action Resets the flip-flop, taking away DAV, and allows the
listeners to once again enter the RFD (Ready For Data) state.

Asthe RFD state of the listener is reached, an interrupt is once again received on the HAND
line and the process repeats itself until the controller is satisfied that enough data has been
passed, at which point attention (ATN) is reasserted.

This example is a special case where the controller and listener are the same device. In

general, the TALKER asserts EOI with the last byte of the transfer, thereby signalling the
CONTROLLER that the data transfer is complete.

@ 4051 GPIB Hardware Support

MICROPROCESSOR-BASED GPIB INTERFACE
Miscellaneous Comments

7. ATN is asserted by the CONTROLLER. At this point, the hardware is forced into a listen
state by some appropriate gating. The firmware is informed of this action by an interrupt on
the attention line and proceeds to interpret further interrupts of the HAND line as being data
to be received (note: the data register must be turned around to receive data). Since the
message received was an Untalk (UNT), the firmware informs the hardware of this change
in state by clearing the ADDRESSED line and setting the TALK/LISTEN bit back to the
LISTEN mode. (The UNL command was received and ignored.)

While in the TALK mode, the bus can be suspended by running out of data in a buffer. This
generally calls on the monitor to get another physical buffer from the tape. After getting more
data to work with, the handshake is continued.

MISCELLANEOUS COMMENTS

The following are some general implementation comments and/or suggestions.

The EOI (End or Identify) line is presented as a level and can be received or transmitted by the
firmware when required. In this particular implementation, the EOI line is used during some
operations to indicate the end of informaticn or end of file.

The SRQ line may be activated by the firmware for requesting service. In the 4924, it is used
primarily to indicate that an error condition exists. For example, SRQ is activated when a write
operation is commanded with the media in a write-protected state.

A digital debounce chip (U115 M14490@ in Diagram D) is included on the control lines to help
control noise problems. However, the delay also slows down the bus and it may be eliminated.

The careful observer will note that the hardware does not really get off the bus when IFC is
asserted. The IFC function is executed by the firmware and as such may take a while to
execute. This is not considered too serious, but can be corrected with the addition of a latch
and some appropriate gates and a clearing mechanism.

NOBODY—This line is asserted anytime both NRFD and NDAC are sensed high. This
condition means that nobody is listening to the bus which is considered an error state if
someone istalking. Itis appropriate that the talking device either exit from its talk state or wait
until someone is listening. In this implementation, it was decided that the device would wait if
nobody was on the bus and it was operating in the normal on-line mode. However, if it was
operating in the off-line data logging mode (with no controller, it uses front panel controls), the
device would exit from the current command.

4051 GPIB Hardware Support @ 39

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

MACROASSEMBLER LISTING

The following is a macroassembler listing which is substantially the same as the interface
driver program used in the TEKTRONIX 4924. This list is believed to be accurate and correct,
however, Tektronix can not guarantee that it is. This list is presented here for educational
purposes only.

NNN NNN 000000000 ISAARARRARARARA) EEFLEEEEEECEEEE 2o2r2222e
NN NAN 000000000 TITITTITITTTITICIY EEELEEEEFEFEFEE 222222222
NN NNN aouoooouo TYTITTTITYTITITIT t EFEFEEFEEEEEEFE rea22z22222
NNNNNi NNN 000 nuo TIY ELE 222 222
NNNNNN NNN [al8]s] Qoo T11 EEE 222 222
NNNNNN NNN Q00 oon 17T . LEE 222 _ . _..2e2 e e
NANNNNN NNN noo ono 1T EFE 222 222
NNNRNNY NNN 200 ono TTY EEE 222 222
NNNNNN NN ang ooo 7T EEE 222 222
NNN NN NNN 000 000 T EEEEEEEEFEEE 222
NNN NAN NNN 0Qo 0eo LR ELEEEEEEREEE 222
NNN NAN MNN 000 000 TrY CEEEEEEEECEE L. PRR - S
NNN NNNNNN 000 000 T LLE 222

NN NNANAN 000 avo T EFE 222

NNN NNNNNN noa 000 711 FELE fe2

NNN NNNNHN 000 000 17T FLE 222

NNN NN NN oue oo 1 EEF 2ere

NNN NNANNY 090 non 1T EEF . Re2 .
NNN NNN 0pconuoo0o T EEFEEEEEFEEEELE 2a2r22222222222
NNN HNN 0QuOo0000 TTY EEEEEEREEEEEEEE 222p2222222222
NNN NAN noeeanuno TrY EELELEEFEELEEEED 222222222222222
200D0HDLNONT uueenooon ceeeeecee

DODLLDOHDDDD 00e0000ue cececeeeec

DODODRDHEIDD QoGEo0noonn cceeececee

Doo ann nuo ooe cce cce

nop nep - 000 oon ceC cee

npn roe aoo 000 ccce cce

oDo npo neon 000 cce

oD opD 000 000 ccc

nopo nop noQ 000 CCC L L e
nopn oD N0 ouL ccC

LoD (211 TV 0ouo cce

DDO npp - oee oce cCC

nno aoo 000 ouo ccc

opon oD Ouo 000 ccCce

oo ooD 000 oo ¢ce

oo oon o uon 000 CCC cce

DD nep 000 [cee

npp npR 000 Qoo cce cce

0DHODONPODOD noupnoony ceeeeeccc

npopDODNDDDDD nopnNanoao cceeecccee

DOONPDRLDODND 0pcoouo0o ceceeeecce

[[{€ccc<ccc<FHFIFEE5B
[[[<€<<<<c<<SFFHFFHFE]

JoB = NOTE
Fl

LE SYINOTER,DOC[70, 8)

feL
e

CCCKGCLC<FFFEFBIERLILNILIL
€< <hPFIFETFILILILL

IERRERRE!
IR RRREN!

HHHHRUAANRZTRR2220==
HARLRUARE222222022
SWITUHES

LIHNHBRURART2RTRDI
LILBURBHRUBET 2?2227

= /RESTART: 0

BPRINTED ON #8=0ct=76 AT 03329 PM FOR USER [70,3]
/DELETES: N /COPY | OF 1

STOUCADAVDOXA A AXKAARUEREBEBRA+H 4+ +++AXAAAAAXL>>D>3>32>]])
QODABANDOR kX Xk k AXARBREBRAREA++++++4 4 AXLRXXLLX>>>>>2>>3]]]

=TSARBOUADIDAA K AR A A KB RERRARLR HH+ 444+ +XXXNLAAAA>>>> 253321]]

220000QRNADK A Ak k x kKRR EEBAREARE+++ ¢+ + ++ UKL XLAKKXD>>D>>>>>]]]

4051 GPIB Hardware Support

GPIB INTERFACE AN FXAMP|F RI=11 MMAC yMi2=1ip
TABLE CF CONTENTS . . R

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

P-L N ¢ HWISRY INTERFACE INTERRUPT HANDLER
3= 1 UTILS=== IFC, UNDRES, SETSRQ
4o | ATNTRUme= ATN, HAS BECOME TRUE
G= 1 ATNFAL=== ATN, HAS BECOME FALSE
RECLEE Y HANDSK=me= DAV, QR NRFD CONIROL. =~ _ . - —
7= 1 ATNRYTewa ACCEPT ATNENWTION COMMAND BYTE
8= 1 MLASUB, MTASUK === PRIMARY ADQRESS REQUEST
9= 1 SPlm=ew=e SERIAL POLL CONTROL
1= 1 RCYDYT=== ENTER A DATA BYTE INTO BUFFER
1= 4 SNDBYT=== SEND A DATA RYTE FROM THE BUFFER
13= 1 TLKIBL, LSNIBL === GEC, ADR. TABLES _ .
14m 1 1FCRST=== RESTARTS HANDSHAKES AFTER A SUSPENSION
GPIB INTERFACE AN EXAMPLE RT=11 MMAC VM@2=10 8wiot=76 14321832 PAGE 1
1 «TITLE GPIB INTERFACE AN EXAMPLE
2 JENABLE I.C
3 ' .
4 t Some globals and constants,
- S o S 1
6 +GLOBL HWMODE } Hardware mode byte
7] Hwlan = 1 t Yisten mode
8 1] Hutlk = 128, } talk mode
9 ' Hwlsns = 4 1 listen suspended
10 ' Hwtlks = 8 } talk suspended
A4 e V. Humas = 16 1. ori, aders, suspended
12] Hwunos = 2) unaddress suspended
13 ' HwIFCs = 32 . 1 IFC syspended
14 1] Hwsusp a hwisnsthwtlkashwmasshwunasshwlfCs
15 } Hwsyen = 255, =hwsysp '
16 +GLOBL EQIPTR)} Pointer to EOI byte
17 . e e o -aGLOBL SPEEG 1 Flag for serfs} poll enableqd e
18 »GLOBL ATNFG) Flag for ATN true
19 2GLOBL CNREGA 1} Cont reg and out rey ysed with ldx
2e +GLOBL DTREGA 3 Clears control reg and stores
21 } Cont req and out reg
22 »GLOBL CNHEGB) Same except {ts sttention
23 .~aGLOBL OTREGB_ - e e
24 WGLOBL ALTFLG 3} Set {f (n alternate format mode
25 #+GLOBL NEWCMD) Pointer to new command block
26 3} e~== ysed by monitor
27 3 And {s the main commymication between
28 ? Interupt level and program level
29 e e s+ e e e e
30 WGLOBL PIAGPA t} lec data PIA
31 LGCLOBL PIAGPB t lec control line PIA
32 «GLOBL PLAADR + loc address switch PIA
33 «GLOBL 4NDBYT } Routine to send a byte fpom
34 t The current output buffer
35 2GLOBL RCVBYT ..p Roytine to ptyuff new chepy, into
36 t Current input buffer,
37 2CLOBL OFFLIN) Set by monitor {¢ {n off|(ne mode
38 H
39 1o ATNLVL = 16,) Atn, dc level {nput
he I HNDLVL = 8, ;} Hand dec level input
4051 GPIB Hardware Support @ 3-11

MICROPROCESSOR-BASED GPIB INTERFACE

Macroassembler Listing

GPIB INTERFACE AN EXAMPLE

HWIGRY

312

-
DL BN S

e
BN

'

16

voeo
anue
wees
vae7
00r9
agac
QaaE
LRy
neLe
a4ty
ee17
@219
©wais
QU1E
@029
aa22
w24
vA26
nues
Po2A
waac
AA2E
gaso
vas3
w3y
0a36
ne3s
003A
[/KE)

nL19r

RT=14 MMAC VM(2=1@
INTERFACE INTERRUPT HANDLER

g=0ct=76 14121132 PAGE 2

HWISRY INTERFACE INTERRUPT HANDLER

interrupt service routine
After servicing one interrupt request control {e passed back to
The. beginning <hwisrv> UNT{l no more interrupts are . -

Cnrega,cnregb save the contents of control regs, A and B
Respectively before resetting the Interrupt bits {n the PIA,
and "pecursivness” make ft sych that

is configured sych that

resd the control reg, then

-

~- ~ v~ ~

~ o~

<which clears the hardware {nterpupt reg,»

Maintatn homogi{niefty
Lets close off that w(ndoullltl

Go around {f no {nterrupt there
Get A side .

Go around 1f no interrypt thepe

Get B side

1fc asserted?
Yeswservice {¢
Nom ATN asserted?
No=ATN gotng awey?

Seryice ATN, falge
Service ATN true

Handaheke {nterrupt
Yesrservice interprupt

JSHBTTL
} This {a & "recursive"
i
i
1 Pending {n the fec bus registers,
'
}
3 The soaved control regs,
t No {nterrupts can be missed,
- H -
i
)} Notei the hardware
} An we= [DX PIAXXX=l === will
3 The data reg,
i
i
bLuRL HwISRY
HWISRV: LDA CNREGA,D
LDA B PlAGPA=1
BIT B “HBCA, I
AEQ 3%
LDX PIAGPA~1
81X CNREGA, L
ORA A CNREGA,D
STA A CNREGA,D
353 LDA A CNREGH,D
LDA B PIAGPBw1
BIT B8 *HACQ, T
HEG 43
LbX PIAGPB~1
STX CNREGB, D
ORA A CNREGB,D
STA A CNREGB, D
4% LDA A CNREGA, D
AIT A “HUB, 1
BNE 1FC
LDA A CNREGB,D
BIT A “HY40, 1
BLo 2%
JMP ATNFAL
2%t TST A
BMI ATNTRU
LDA A CNREGA, D
AMI 1%
RTI
182 Jmp HANDSK
@

4051 GPIB Hardware Support

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

GPIB INTFRFACE AN EXAMPLF RT=11 MMAC VMA2~10 BeOct=76 14321332 PAGE 3
UTILS~== [FC, UNDRFS, SETSRG)

1 «SBTTL UTILS=== IFC, UNDRFS, SETSRQ
2 '
3 [
4)y Sarvice IFC-reset interface functians,
Y 5 1t SRU was asserted,reset 1t too,
6 3 Whenm 4924 is addressed aqain,5RQ will be asserted
7 JoAGaing(aeeree0r??2722)
A ;
9 +GLOBL TECPIA, PIASET
10 »GLOBL HWSUSP
11 »GLOAL DTREGSH -
12 i
13 “a3E an ve IFCs BSR IFC1L
14 nogqa 20 BE BRA HWISRY
15 }
1¢ s
17 . #GLOBL _ IFC1, HWIFCS e e e I —
18 wau2 96 ves IFCt: LDA A CNREGHE, D 3 8ave ATN status
19 Aaun 36 PSH A
20 @DANS 96 nag LDA A CNREGA,D 3 Save other status
21 adn7 36 PSH A
22 2048 CE avuuc LDX IECPIA,I 3} Reset P1A®s and edge’s
23 a4 RD @aneus JSR PIASET | e e e e e e
24 eyt 96 206 LDA A HWMODE, D }] See {t have anything suspended
25 fasa 85 206 BIT A HWSUSP, 1
26 nias2 27 ws BER 1%
27 uwasS4y 87 anAue6 STA A PIAADR } 1t syspended clean yp hardweare
28 09257 aF 181 CLR A t Reset some flags
29 2058 97 wee | STA A HWMODE,D . . i e+
30 f35A 97 (1’19 STA A SPEFG,D
31 205¢C 32 PUL A } Restore byte status
32 0asp 84 80 AND A *HBE, T
33 AB5F 9A ane ORA A CNREGA,D
34 ade6l 97 anG STA A CNREGA,D
35 @863 32 e PUL_A .)_Reset ATN statys .
36 0A64 84 co AND A “HOCO, I
37 266 94 anc ORA A CNREGB, D
38 vU68 97 266 STA A CNREGB, D
39 NA6A 20 09 BRA IFCDON
49 1
L j_This _{s the program/intercupt level routine to clear the
42 } Monitor status,
43 2« GLOBL IFCCLR
44 !
45 agsee DE [1]']¢] IFCCLRY LDX NEWCMD, D) See {f can set up clear command
46 @B6E 27 as BEQ IFCDLON
e 47 79 86 296 LDA_A HWIFCS, 1 3 Set IFC syspended
48 on72 97 206 STA A HWMODE, D
49 074 39 _ RTS o . e :
s@ e87s 96 206 IFCDONt LDA A CMMODE, D 1 Allready (dle?
Si oar7 27 05 . BEQ IPCy,
52 0079 CE 20006 LDX CLRCMD, I
5% 297C DF ¢06 STX NEWCMD, 0
54 ¢e7E 39 IFCeed RTS
S5 e M S . it e .
56]
87 o) Uneddress functie e I ~ - e ——

4051 GPIB Hardware Support @ 3'1 3

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

GPIB INTERFACE AN EXAMPLE

RT=11 MMAC

C VMP2=18

BeOct~76 14121132 PAGE 3+

UTIL§w=== IFC, UNDRES, SETSRQ
58). 1t interface onabled e=w» dinable the hardware and tell
59] The monitor that an unaddress occyred,
69 ' .
61 o»GLOBL CLRCMD, NEWCMD
02 .. GLOBL UUNDRES, HWUNAS
63 90TF 96 206 UNDRESt LDA A HWMODE, D 1 Check {t enabled
64 ne81 TF 200Y6 CLR HWMODE
65 0084 85 81 BIT A *HB1,1) Len or tik?
66 2286 217 ey BEQ 2% .
67 foss 8D E2 88R IFCCLR
..._bB _ 908A .96 . _@eG . . _LDA A __ DIREGH.D —_—
69 ansc 8A 6f ORA A “H6D, 1 } Lnm>y
70 YoBE 97 uesc STA A DYREGH, D
71 angy 87 ©voaue STA A PIAGPB
72 0y93 a7 2AV0G 2% SYA A PIAARR) Toggle sheke
73 0096 39 RTS8
74 S SO R
75 § Assert SRQ on the bus
76 } Notel this routine raises, then lowers the SRG
77 ; Line in order to fix en early production 4@51 bug,
78)
79 «GLOBL SFTSRQ
&n . I R R I R [O
81 w097 96 (1414 SETSKQL LDA A DTREGRA, D
82 a9y 8A nz ORA A 2,1 1 This is to fix 4AS1 bug
83 0e9R 97 L1 STA A DTREGH,D
84 ©a9p B7 ogans 8TA A P1AGPB
8 "eAQ By D AND A 375,1 1 Assert SRQ
86 waA2 97 onG STA A DTREGB,D e e - -
87 0AA4 R7 wWwnac STA A PIAGPH
BE VNAT 39 RTS
GPIR INTFRFACE AN EXAMPLE RTell MMAC VMU2=10 BeOct-76 14321832 PAGE 4
ATNTRYm== ATN, HAS BECOMF TRUF . - B -
1 «SBTTL ATNTRU==~ ATN, HAS BECOME TRUE
2 '
3 !
4 3 Controller hag esserted ottention
) ; So erm handshake {nterpypt and -
& } Get ready to listen,
7 i
B 0na8 8D a3 ATNTRUt BSR ATNTR
9 YAAA 7€ ['X'1"1' 14 L HWISRY
10 [}
11 H - — . - -~ S
12 +GLOBL ATNTR
13 }
14 QUAD 96 a6 ATNTRT LDA A CNREGB, D
1Y . ORAF 84 TF AND A =1=128,,1
16 nenRt 97 oan6 STA A CNREGB, b
17 @aB3 86 F 151 LDA A THOEF,] y.Set AIN flg ... - . R
16 2ABS 97 naG STA A ATNFG,D .
19 0uR7 96 VG LDA A CNREGA,D) Arm hesndshake interrupt
24 a0R9 8a yi ORA A 1,1
21 9a8sn 97 06 STA A CNREGA,D
22 2980 87 FFFFG STA A PIAGPAwY
23 oace 96 (2119 LDA A DTREGB,D e _
24) } Set up for listen
25 wuce 8A 20 ORA A “Ha@, I
26 #9CY 97 206 STA A DTREGH, D
27 0ace a7 aenec STA A PIAGPB
28 aac9 2A "7 BPL 3%
29 aocs a4 FE AND A *HOFE,I t Clesr EOI B
32 Raco 97 [dd STA A DYREGH, D
31 [L1432 B LCELTId STA A PIAGPB
32 7902 39 381t RTS

314

4051 GPIB Hardware Support

GPIB LVTERFACE AN EXAMPLF

ATNFAL=~=_ ATN,. HAS BECOME FALSF

RY=§1 MMAC VMPA2«1D

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

A=Qct=~76 14121832 PACE S

{ WSBTTL ATNFAL=== ATN, HAS BECOME FALSE
2 H
3 H
4 3 Controller hes released attention,
3 . 1.80 ¢heck whether 4924 has _—
&6 t Boen assigned os talker or listener,
7) If so set up the interface accoprdingly,
3 t It not, disarm the handshake interrupt
9 } And remain {n {dle atate,
12 H
11 - b O —
12 '
13 ' . e
14 «GLOBL TEVEN, TLODD,LEVEN,LSEVEN, TKEVEN,LSODD,CMDODD, TKODD
15 «BLOBL MSAOK, ALTFLG,ALTCMD,CMDACT
16 3
17 - F — R
tA 9an3 /o 03 ATNFALt 8BSR ATNFLS
19 @ans 78 Qpen* JMp AHISRY
20 1
21]
22 . 2GLOBL ATNFLS
23 .] . L S - _
24 nepa 96 (41 ATNFLSt LOA A CNREGH, D
25 0ADA 84 BF AND A wim6l,,T § 127 or 3¢ the hard way
26 nopeC 97 (418 STA A INREGB,D
ras Qape 96 114 LDA A ATNFG,D } Atn flag aset?
28 NAFB 2A i BPL 4%
29 ARE2 7F LT CLR . 3 Clear flag
e GIES 96 wes LDA A } Am I {nm talk?
31 noET 2n 15 BMI ? Yeswset up to talk
32 QWE9 26 12 BNE ? It {dle, dissrm handshake {nt
33 PUEB 96 naeG LDA A GCNRELGA, D
34 BUED 84 Ft AND A HAFE, I
35 QOEE 97 006 ... SIA A GCNREGA,D. __
36 BOF1 BY FFFFG STA A PIAGPA=}
37 BoFy 96 286 LOA A DTREGB, D .) Roset address 1(ne
3a BAF6 8A K17 ORA A 10¢,1
39 QoF8 97 206 8TA A DTREGB,D
40 GUFA BT @0906 STA A PIAGPB

e . IS W %] 39, 483 RIS
42 '
43 ! P .
44 AQAFE De 0a6 28t LDA B DTREGB, D } Go to tealk state
45 o100 4 1E AND B THIE, I } Make sure EOI (s not tpye
46 niaz 07 096 STA B DTREGB,D

— a7 2194 F1 9006 SYA B PIAGPB

48 2197 96 UG LDA A CNREGA,D) Address direction pag
49 @109 84 _FB AND A "HDFB,I e e e . - S
58 9108 87 FFFFG STA A PIAGPAm!
51 o0t €6 __FF LDA B “HBFF,1 1._8ey up all outpyuts
52 o110 F7 08006 SYA '8 T HIAGPA
53 0113 8A 94 ORA A 4,1
54 2115 87 FFFFG SYA A PIAGPA=]
55 2118 39 - RTS8 — B _

4051 GPIB Hardware Support @ 3-15

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

GPIB INTERFACE AN EXAMPLE .
HAND3K=we= DAV, OR NRFD CONTROL

RT=41 MMAC YM@2mi0

8=Qetm76 14321132 PAGE & S

1
2
3
4
S
SRR -
7
8
9
10 ai19
11 a118
12. . eilo.
13 A11LF
14 g124
15 @123
16 4125
17 niet
18 nLa9
19 @128
20 h120
21 ntin
22 w132
23 2134
24 0136
25 @139
26 A13C

GPIB INTEFRFACE

1

2

3

4

5

6

7 A13F
8 aLat
9 0142
19 ALas
11 al4e
12 @148
13 014A
14 ai4c
15 ¢14E
16 9150
17 152
18

19 atss
26 0157
21 @159
22

23 aLse
24 A150
25 O15F
26
27 el
2R 0163
29 @16
3n o #1e7
34 @te9
72 @168
33 @16D
34 WLl6F
35 @172
16 AL7S
37

3-16

96 206
84 TF
.970%GC
D6 NG
96 auG
27 24
80 18
24 13
96 .. BoG
28 as
8n e216*
290 @A
96 uac
27 a3
7E niny"
80D B263"
1€ noan’
AN EXAMPLF

4anucG
[1dode)

"8BTTL HANDSKe=ea DAV, OR NRFD CONTROL

'
7 This roytine may pe seryicing DAY or NRFD.

1 Depending whethar the 4924 {s
e 1 Tolk stote,

¥

in listen or

2GLOBL OTRECA

’
HANDSK: LDA A CNREGA,D) Get preaent control req,
AND A ®HTF,1
e - BTA A CNREGA,D
LDA B DTREGA,O) Retrieve data reg,
LDA A ATNFG,D) Attneion on?
BEQ 1$ } Newbranch
B8R ATNBYT) Decode command
BRA HANDXT
. 153 LDA A _HWMODE.D . . p Am_ 1 in talk? e e e+ o ez e
BMI TALK } Yesmget talk byte
JSR RCVBYT) Get byte and try to stash it
BRA HANDXT
TALK? LDA A SPEFG,D } Wes aerial polling enabled?
8La 3%) Norunload byte from data buffer
JMP SPE -) Seryice septel polling . . o R
383 JSR SNOBYT 3 Try to send byte
HANDXTt JMP HWISRY

RT=11 MMAC VMA2~10
ATNBYT=== ACCEPT ATNENTION COMMAMD BYTE .

'
ATNBYTS

181

}
283

481

SHAKER1®

.5B81TL

Bullct=76 14121132 PAGE 7

ATNBYT=== ACCEPT ATNENTION COMMAND BYTE
j Atnbyt=routine to decode attention command groups
} And diapatches accordingly,

LGLOBL MSACMD
C.aBLOBL. ATNBYT. .
LOA B DTREGA,D

TBA

AND B “HIF,I
AND A “HAEY, I
BEQ... 38 __
CMP A *H6U,1
BNE i$

LOA A HWMODE,D
BIT A *HB1,1
BEQ SHAKER
JMP MSACMD_ ..
CMP A “H4U,1
HNE 2%

BRA MTASUB
P A “H24, I
BNE SHAKER
BRA MLASUB
cMP B *H18,1
BNE 48

LDA A 3717.1
STA A SPEFG,D
BRA SHAKER
CMP B 31,1
BNE SHAKER
CLR SPEFG
STA A PIAADR
RTS

Get data byte

& e._.—1.Do control functions
SA7

M

—_d

~

~

Nomkeep checking

Check {f addressed

Do %t {f eddreseed . ..

MTA?
Nowgontinue
Yeswservice ¢

_Mla? .

Norcontinue

Serial pol) enable?

Yesrset spe flag

Serial pol} disable?

Yes=clear spe flag
Togale shake .

4051 GPIB Hardware Support

GPIB INTERFACE AN EXAMPLE

RY=11 MMAC VMQ@2=10

MLASUB, MTASUB === PRIMARY ADDRESS REQUEST

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

Buwlct=76 1431211332 PAGE 8

1 WSBITL MLASUR, MTASUB === PRIMARY ADDRESS REGUESY
2 }
3 t Look at listen address
4 H
5 0176 c1 1F MLASUBY CAP B "HIF,1 _. - 5. Unl{sten commend .. = . - —
6 n178 26 n3 ANE 1% 3 Noepetuprn
7 a17A e BeTF* JMP UNDRES
) 0Lrn ;D a3 181 BSR EDADOR 3 Check wadress switch
9 “17F 26 Fy BrE SHAKER 3 11 not mine then Just shake
14 0181 DF noG LDX NEWCMD, L 1 Elset {f command pending set ausp, bit
1 0183 26 a5 BNE MASUSP .
12 “185 ab 02 BSR MLASET 3 Elset set Haten mode and shoke
13 Y187 2n E9 BRA SHAKER
14 H
15 '
16 t Routine to get hardwere {nto listen mode
17 ! . - e e e N
18 «GLOBL MLASET
19 n189 9 et MLASETT LDA A CTREGB, D
2@ 4188 a4 -1 AND A “HOBF, I } Set hardware {nto addressed mode
21 180 7 ane STA A DTREGH, D :
22 #18F By aenuc STA A PIAGPB
25 Qw192 8a a4 LDA A 1,1 . .4 Flag lieten mede
24 A194 27 ['rlg STA A HWMOUE,O
25 “196 39 RTS
26 H
27 } Look ot talk address
28 1
29 2107 [+ {F MTASUBY CMP_ B *HAFl ... 1 Js_th{s UNTalk? [R
30 w199 26 13 BNE 18 3 Nomcheck for MTA
3 7198 BD AQTF* 35t JSR UNDRES $ Untalkl really clean yp hardware alao
32 A19€ 96 vo6 LDA A CNREGA,D } Address direction reg
33 d1A0 84 FB AND A “HOFB, 1
34 A1A2 nY FFFFG STA A P1AGPA=-1 .
35 01A5 TE. _owees . .___ . CLR___ PIAGPA __ 3 Set yp all inpute -
36 B1A8 8A aq ORA A 4,1
37 U1AA 87 FFFFG STA A PIAGPA~1
38 B1AD 39 RTS
39 W1AE ap 12 183 BSR RDADOR)} Read addrees switches
49 0n1iBA 26 A BNE 2% } Not mine so do Implted UNT
41 @182 DE Aa6 kDX NEWCMD,D) Elset 1! command pending set susp, bit
42 2184 26 14 BNE MASUSP
43 MiB6 86 80 LDA A *H8g,1 } Elsesr set talk tlag
44 [:3Y:1.] 97 206 STA A HKWMODE, D
45 B1BA 2 Be6 BRA SHAKER } And shake
46)
- o 47 @1BC 96 119 283 LDA A HWMODE,D 3 Am 1 talker?
48 W1RE 2A Be 8PL SHAKER) No so no actfon
49 dice 20 D9 BRA 3s } Elae do UNTalk
-1 '
52 ? This {8 the place where we read the sddress switch
33]
94 []
55 .e1c2 Be 000G RDADORY LDA A __PIAADR 1.Get addrese :
56 PICS 43 COM A 1 Compiement to get true date '
_ 57 Q1Ce .84 AF ___AND A__ 37,1). Tuen off extra bite 3
4051 GPIB Hardware Support @ 3-17

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

GRIB INTERFACE AN EXAMPLE
MARY

RTwi1 MMAC VMO2w~10
ST

BaOqtw76 14121132 PAGE B8+

~MLASUB, L]
58 aLcs 1§ CRA . e . - -
59 81C9 39 RTS
69 ! -
61 '
62 ;_Suspend primary address handsheke
63 []
64 U . .
65 +GLOBL HWMAS 3 Suspend primary adrs,
66 O1CA 86 L1 MASUSPt LDA A HWMAS, 1 .
67 atcc 9a (4] ORA A HWMODE, D
— 68 . OICE __ 2 026 9TA A HAMODE, D
69 nwine 39 RTS8
GPIB INTERFACE AN EXAMPLE RT=11 MMAC VMR2=1{0 Bw0ct~76 143121332 PAGE 9
SPEm=~=== SERTAL POLL CONTROL
1 VWSBTTL SPE-===== SERIAL POLL CONTROL
2 4 -
3]
4 3 Service serfal pol!
5 } Send statys byte . - -
])
7 i
8 LGLOBL ERRCD, CMMODE, ALTFLG, PIAKYS8, ONLIN
9 2101 96 nneG SPE1 DA A OTREGE, D
19 nio3 36 PSH A) Save for later
11 @104 AA a2 ORA A 2,1 } Reset SRQ _ N .
12 »ine A7 waves STA A PLAGPH
13 @109 97 BuG STA A OTREGH, D
14 DB a0 ie BSR POLSTT } Go get status byte
15 2100 32 PUL A ? See it 1 was one who caused SRQ
16 Y1DE 85 ne BIT A 2,1
17 a1F@ 26 ve BNE _5%
18 ¥1E2 ca a¢ ORA B 6l,,1
19 NLEA F7 vuoes 581 STA B PIAGPA)} Store byte
20 D1ET 87 (A 1'1]] STA A PIAADR }) Like shaker
21 NIEA TE (271210 Jup HWISRY
22 ’
23 1 R .
24 H £stoblish poll status byte
25 ' .
26 «GLOBL EREQF, LREOM
27 LGLOBL POLSTT
28 WI1ED 5F POLSTT1 CLR B t Form status byte
29 BILE 96 1] LbA A ERRCD,D
39 @1Fa 27 E HEG 1%
31 fir2 CA 20 ORA B 32,,1 } Set error bit
32 BiF4 81 e CMP A EREQF, I
33 U1F6 26 a2 BNE 58
34 01F8 CA 731 ORA B 1,1) Set EOF bit
15 @1FA 81 BuG 581 CcMP A EREOM, L ~ i
16 @1FC 26 0e BNE 1%
37 AIFE CA B2 QRA H 2,1) Set EOM bft
3a n2ae 96 vac 181t LDA A CMMODE, D
39 2ee 27 02 REQ 2%
49 @204 ca 1a . ORA B 16441)} Set busy bit
41 w26 96 026 2%t LDA A ALTFLG,OQ .
42 1288 27 ve ae 3%
43 az20a CA us ORA B Bygl } Set slternate mode bit
44 @2u0C 86 004G 3% LDA A P1AKYB
45 A20F ay a6 BIT A OMLIN, I
46 n211t 26 a2 BNE 4%
av na3 CA 2] ORA B 4,1 } Set online bit
44 a215 39 4s1e RTS8
3-18 @ 4051 GPIB Hardware Support

GPIB LINTERFACE AN EXAMPLE
RCVBYT=== ENTER A DATA BYTE INTO BUFFER

RT=11 MMAC VMO2=19

Bedgt=76 14321832 PAGE 10

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

.

ENTER A DATA BYTE INTO BUFFER

1 ASBTTL RCVBYT==w
2 7 This {s the Interrupt leve! routine to enter a byte into the
3 ; Present output butfer .
4 ?
5 WGLOBL A INg AgQUT. A MAX .. 4 Buttfer pointera
] !
7 2 GLOBL RCYRYT
8 L.GLOBL, ERRCD,PLAADR, BFRFUL, BFRSYT, NEWCMD, DTREGA
9 LGLOBL DTREGB,CMDACT
10 1
11 i - - S e - -
12]
13 naan CMDVRB=*HA4D
14]
15)
16 anne CMDVAL="HBO
17 2216 DE noeG RCVBYTs LDX NEWGHMD,D .
18 nets 26 42 BNE NOGOQD
19 B21A 96 236 LDA A ERRCD, D
2@ ar1C 27 23 HEQ 48
21 U2lE 7€ Qa2c4” 581 JHp SHAKEY) [t error set thenm jyst sheke
22 w22y 96 QoG 'FH LDA A CMMODE, D) Look at monftopr statys'
23 0223 a7 F9 REG 58) It no commang precesaing then throw out byte _ .
24 v22s 96 1’1 1LDA A BFRSTT,D 1 Test (f buffer available
25 0227 26 33 BNE NOGOQD } If byffers full then set suap, bit
26 0229 e V06 LDX AgIN,D 3 Get pointer
27 na2z2s 96 (444 LOA A DTREGA,D) Get byte
28 @220 A7 49 STA A Ay X 3 Save the byte
29 02eF e . . TN e e e e e+ e 1 e e e . —
30 n23n OF a6 STX AgIN,D
34 nasa 96 vac LDA A ASCENC,D } Need to look at £OI?
32 Q234 27 98 BEQ 6%
38 0236 ap 16 ASR DTBSAY) Save current hapdware status
34 8238 2A a7 BPL 68
35, 923A OF... 296 - o LOX. ApINeD oo b Mork EOL byte {f EOI set
36 @a23c w9 DEX
37 223D OF a6 8TX EQIPTR,D
38 Q23F 20 a7 BRA 33 } Also {ssue end so mon{tor can act on {t
39 Q241 DE ae6 6381 LDX AgIN/D
40 0243 29 DEX
_ 4. 9344 .9c.. eee _.EPX A MAX,D } Byffep tyll?

42 0246 26 BNE SHAKEY
a3 a248 86 1] 3se LDA A BFRFUL, 1) Set buffer fyi)
44 N24A 97 396 STA A BFRSTT, D
45 @a24¢C 28 76 BRA SHAKEY
46 4

——— 47]
48 1 Routi{ne to carefully look at fec bys control {ne
49)} Regfeter without losing {nterryptn, L . _ _
50]
51 Q24E Do 006 . DTBSAV: LDA B CNREGB,D ..).Corefylly so don’t lose {nterrupts
52 @250 FE FFFFG LDX PIAGPBw{
530253 DF 006 STX CNREGB,D
S4 2e55 DA 206 ORA B CNREGS,D
55 e2%7 07 206 STA B CNREGB,D S
56 8259 D6 006 LDA' B OTREGB,D) 8eo (¢t EO] asserted
S7 @ase 39 RTS S)

4051 GPIB Hardware Support @ 3-19

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

GP1IB INTFRFACE AN EXAMPLE

- e e
EwWN- S ODNO VB W

925¢
A25F
0260
a262

0263
n265
0267
7269
0268
A26D
826F
nart
v273
8275
0277
n279
v278
2270
027F
7281
0283
n28s
nas?
v289
azag
928D

028F
nagy
0293
@295
2297
@299
A29R

GPLB INTERFACE

58
59
60
61

62.

63
bl
65
66
67

»GLOBL EREOF, ASCFNC
LGLOBL CLNYP
2904 HELLO £ 4 } Bit to eee {f anybedy listening on
! The bus,
) Only ysed {n off)l{ne mode,
'
'
§ These routines are used to put the hardware {n a syspended
! State so that a petyrn from the {nterrupt level cen be effected,
} A suspended state will be envoked (f buffers are not av_oi]cbh
1.Qr pest commends heven't finjahed g¢leaning up, . - -
'
86 a6 NOGOQD: (DA A HWLSNS, 1 } Set listen euspended
9A 906 EXSUSP2? ORA A HWMODE, D } Shaped euspension exit
97 ou6 8TA A HWMODE, D
39 RTS
S S - -
i
]
OE :1'Jd SNDBYT: LDX NEWCMD, D) See {f can send a byte
26 ec ANE 1% } Nope 8o set suspended
96 [L'l4 LPA A ERRCD,D) If error set send back “*h@ftn
26 49 BNE 3% . I I
96 119 LDA A BFRSTT,D) Cheek (¢ buffer available
27 24 BFO 1s
86 vee LDA A HWTLKS,I 1 Set talk suspended (s encoyunter empty buffer,
en EB BRA EX8USP
96 [4dd] 15t LDA A CMMQDE, D) It no gommand then send dummy byte
er 3D BEQ B -
DE nos LDX A,QUT,D } Get char polinter
AS '1Y LDA A By X) Get char
24 12 BPL 4% t Donft worpy about 1t (f high bit off
D& 206 LDA B ASCFNC,D) Need to cheek for ASCII logice} EQF
27 13 BEG us
81 FF CHMP A 255,91) Rea)ly ASCII EOF e e e e o
26 Aa ANE 4%
re [Jde) LDA B EREOF, ! 1 Set EOF
D7 »oG STA B ERRCD, D
B6 206 LDA A BFREMP, 1 } Set buffer empty to force action by dispatchep
97 P14 STA A BFRSTT,D o
29 25 o CBRA L3S
!
1 Work on sending the dats byte
}
Do ees 4s: LDA B OFFLIN,D
2A aB BPL 5%
8p .. B9 BSR . DIBSAY_) 1f eofflfne check hello bit R N
cs a4 8IT B HELLO, I
27 25 8EQ 58 } If nobody thepe then abort commend
86 (‘2] LDA A CLNUP, I)
97 0ac STA A CMMODE, D } Set abort
AN EXAMPLE RT=11 MMAC VMO2~10 8=0ct=76 14321132 PAGE 11l¢
SNDBYTw== SEND A DATA BYTE FROM THE BUFFER . . . o o _ -
39 RTS
97 U6 5% STA A DTREGA,D 3} Set date byte on bus
87 L0 STA A . PlAGPA
DE voG LDX A,0UT,D 1 At end?
. 5¢. .0eG . LPX. AJMAX,D . — [.
26 06 BNE 28
86 006 1.DA A BFREMP, 1
97][] STA & BFRST1,D) It endl set buffer sampty flag
20 15 BRA SHAKEY
08 281 INX } Update pointer
WDF L Sege STX ... A,QUT,D. [J—
20 10 BRA SHAKEY ¢} Finish handshake
!
t} Send EOF with EOL
t Thia {8 also used for the dummy byte {f haven’t anything/better
1 To send,
-1 This ceuses the 4931 _to eport the current {nput ceadition
t Beceuse {t looke 1ike an EOF,
;
86 FF 381 LDA A 255,,1
97 006 STA A DTREGA,D
B7 veaes STA A PIAGPA
96 vac LDA A DTREGB,P 3. Set EQL _ . . — - -
8a 21 ORA A 1,1
97 026 STA A DTIREGB,D
87 20006 STA A PIAGPB
B7 anoac SHAKEY: STA A PIAADR 3} Finiah handshake
19 RTS
1
@ 4051 GPIB Hardware Support

3-20

2290
N29E
02An
B2A3

245

02A7
02A9
naAy
“2AD
B24AF
neBe
[FLF

8284
n286
4288
2288
“28D
A2BF
paci
uecy
az2cy

RT=11 MMAC
.. SNDBYT=== SEND A DATA BYTE _FROM THE BUFFER__ .

vHMa2e19d 8=0ct=76 14121832 PAGE 11

2SBTTL
3 This is the interruypt level
3} Deta buffer

]
»GLOBL 9NDBYT, BFREMP, PJAGPA

SNDBYT~== SEND A DATA BYTE FROM THE BYFFER

routine to send & byte from the present

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembler Listing

GPIB INYERFACE AN EXAMPLE RT={1 MMAC VMp2=10 B=ct=76 14121832 PAGE 2 e
SNDRYTm== SEND A DATA BYTE FROM THE BUFFER e [
! #6LOBL OFFLIN, IOFUNK
2 ,GLOBL MSACMD
3 «GLOBL DTREGA
4 ?
S 1 Look at secondary address to set up_new command for the monitor, . . . e -
6 1
7 1
B]
9 nace 96 286G MSACMD: LDA A OFFLIN,D 1 It offline
1a nacA 28 Fa SHAKEY) Then {gnore sec, adr,
13 nacc CE_. . B2Fa* okOX_LSNIBL,L1 3 Assyme liaten address S
12 Q2CF 96 neG LDA A DTREGA,D 5 Get the MSA byte
13 a2nt a4 1F AND A “HiIF, 1 } Serip off excesns
14 az2p3 D6 06 LDA B WWMODE, D 3 Is {t really tatk?
15 f205 2A @93 BPL i$
16 92n7 CE a3as” DX TLKTBL, I 3 Then get talk table
A7 . A2DA Ee B M3 . _WDA B _0,X 5. Dore with table?
18 @20¢ 2B £6 BMI SHAKEY) Then (11eoal sec, addr, 80 just shake
19 A2DE 11 CBA } Have we foyund command
2e 92DF 27 a7 BEQ MSAOK
21 22E1 o8 INX
22 92E2 1] INX
23 Q2E3 _ 08 INX
24 02EY ne INX
25 R2ES a8 INX
26 R2E6 28 Fa2 BRA %]
27 ¥2E8 Ab 23 MSAOKS | .DA A L 7). S) _Get {ofyne code
28 B2EA 97 "1'14] 8TA A [OFPUNK, D
29 _ BREC EE 24 LDX LeX 1 _Gat eommand eddress
e @2EE DF 206 STX NEWCMD, D
31 92F0 20 b2 BRA _ SHAKEY R _ -
GPIB INTERFACE AN EXAMPLE RY=]1 MMAC VM@2=~10 BmOctm76 14321832 PAGE 13
TLKTAL, LSNTBL === SEC. ADR, TABLES
L #SBTTL TLKTBL, LSNTBL ==~ SEC, ADR, TABLES
2 “MACRO MSA Ayr Boy Cy
3 «GLOBL B,
4 «BYTE A, } Secondary address
5 - e e e e e . WORD. By 3. Command locatiom . - e ——
6 »BYTE Cy 3 Iotune
7 +ENDM
a '
9 4o0A +RADIX 19
10 +GLOBL LSNTBL
Al 02f2 e WENTBLE . MSA_ . 12,PRINT.12 1. Peint S, - —— S
12 0N2F6 MSA 15,PRINT, 15) Hpite
13 aera MSA 1/PRINT, 1) Save
14 W2FE MSA 27,FIND,@ t Find
15 w302 MSA 28, MARK, ¥) Mark
16 a1ge MS A TeKILL, O 7 KV
17 N30A e e .. . MBA L SECRET,Q_ . ..)_Secret —— e
18 930E MSA 2,CLOSE, ¥ t Close
19 0312 MSA B,STATIN,®) Statys write
20 @316 MSA 17,PRINT,18)} Binapy save
21 W3tA MSA 25,PRINT,17) Listen
22 A3E MSA 16,PRINT, 20 t Binary mem save
25 0322 FF «BYTE . 255b.End of table R,
24]
25 «GLOBL TLKTBL
26 w323 TLKTBLS MSA 13, INPUT,13 1 Input
27 0327 MSA 14, INPUT, 14 } Read
26 0323 MSA 4, INPUT, 4 1 0ld
29 032F HMSA . B STATQT,.®. . 1. Stetys read i e
3p n333 MSA 6, TYPE, B 1 Type
31 w37 MSA 30,ERROR, @ } Error
32 A330 MSA 9)HEADER, @) Header
33 V33F MSA 26, INPUT, 16) Talk
34 0343 MSA 17, INPUT, 19 } Binary old
35 o347 MSA R4y TERR, D _..1._Send magtepe reed erroee
36 @348 FF WBYTE 255 t End ot teble
37 wooa ZRADIX 8
4051 GPIB Hardware Support @ 3-21

GPIB INTERFACE AN EXAMPLE
IECHKST=== RESTARTS HANDSHAKES AFTER A SUSPENSION

MICROPROCESSOR-BASED GPIB INTERFACE
Macroassembiler Listing

RT=§1 MMAC

VMA2=10

BeOct=76 14121132 PAGE 14

_ERRORS DETECTED: @
snote2,docx{eee, app

3-22

Warnings Postedy @

.. .FREE_CORE) 3093, WORDS . . . _

i +SBTTL IECRST~== RESTARTS HANDSHAKES AFTER A SUSPENSION
2 »GLOBL JECRST
3 H
4 3 This routine {s called by the monftor to restart the hsndsheke
5) Attor the monftop has cleaned up the reason for syspension, e e e e
6 3 This routine attempts to pestart the hardwapre (n an ordenly Moh'on.
7]
8 #»GLOBL IFCCLR
9 .GLOBL HWTLKS, HWLSNS, HWMAS, ATNBYT
10 .GLUBL ALTCMD, CLRCMD
Y . - s «GLOBL UNDRES, HWSUSP, HWIUSN, HWUNAS, HWIFCS [
12 @34¢C D6 06 TECRST1 LOA B HWMODE , D } Check for suspended hand-hnku
13 Q34E c5 21"19 BIT B HWSUSP, 1) Check {t anything suspended
14 9350 27 1A BEQ RSTXIT
15 3352 a7 TPA) Disellow {nterrupte
16 7353 oF SEI
A7 354 . 36 - PBH_ A e i e - S - —
18 2355 17 TBA
19 2356 84 "I AND A HWSUSN, 1 } Clear suspended flags
2@ 2358 97 206 STA A HWMODE, O
21 335A CE B36D* RBTAGNL DX RSTTBL,1 3} Go tind suspended function
22 @350 ES (‘1) 183 A1T B a,Xx 1 This bit?
23 A35F 26 a5 BNE RSTSRV . e e e . i
24 2361 @8 INX
25 0362 as INX
26 h363 a8 INX
27 #364 20 F1 BRA 18
28]
29 8366 EE 81 . RSTSRVE LDX 3, X . _ _ ..1.Greb_appropriate service roytine -
19 V368 AD aa J8R @y X 1 Go service f{t
31 !
32 036A TECXITS } Clean up and exit
33 336A 32 PUL. A
34 7368 w6 TAP
35 836C 39 RSTXIT1 RTS e [e e
36 '
37 '
38 '
39 !
40 «MACRO RT AyoBy) Reset table entry
4y BY1E Ag_ U -
u2 LWORD B,
43 LENDM
[} [}
45 }
a6 236D RSTTBL: RT 32,42, IFCCLR } Both UNListen and IFC
47 a370 A 3 My primary address R e e e e
48 0373 t Telk suspension
49 2376 } Listen suspension
50 4379 eg
51 aeetr +END
GPIB INTERFACE AN EXAMPLE RT=11 MMAC VMER2~10© B=Uct=76 14121132 PAGE 14+
COBYMBOL TABLE . . e
ALTCMDE wankax G ALTFLGZ axaxux G ASCFNCE *xxkkx G ATNBYT B13FRG ATNFAL @ep IR
ATNFG = xwka*x § ATNFLS @ODBRG ATNLVL= weie ATNTR @0ADRG ATNTRY QQABR
AJIN = *xknikx G AGMAX = kxaxkx G Ay QUT & wkxkrn BFREMPE *thknk { BFRFULE wakwak G
BFRSTTS wxxakwx G CLNUP = #arswx G CLOSE & kxaxkda § CLRCMDE kkwaxx CMDACTE® wannax G
LMDUDDE axxx*x G . . . CMOVAL= _ 0080 _. CMDYRDE Q@040 CMMODE® *%xwwxk G CNREGA® whgrwi
CNREGB= akxxkh G DTBSAY O24ER DTREGA® *xkaxk&n G ODTREGR® wxwwxs G EQIPTRE anwisk G
EREQF 2 akxwin G EREQM = wiaxxa G ERRCD = tisxax G ERRQR ® wxkkakn G EXSUSP " 02SER
FIND = wankan G HANDSK P119R HANDXT 913CR HEADER® waaxwax G HELLO = [I'TY]
HNDLYL= ?¥R98 HWIFCSE xaxkaxx G HA18RY BRVRRG HALSNS® Xxxamin G HNMAS .8 saansd G
HWMODEE xikwiaxs G HWSUSNZ txkawx G HASUSPE wxkawa G HHTLKSE wakanx § HWUNASE wakkar G
LECPIAE wwaxxx G JECRST ~ W3ACRG ~ IECXIT O30AR 6CRG
IFCOON BATKR IFCyo BOTER 1FCH QQ42RG INPUT =& waamax G IOFONKE aaxaxk G
KILL ® wxwxax G LEVEN = manasx G LSEVENa wxauan G . LSNTBL . @2F2RG _LSQDD = waskax G e
MARK = xxxxan G MASUSP O1CAR MULASET 2189R6 MLASUB @376R MSACMD B2CBRG
MSAQK 02EBRG MTASUB 2397R NEWCMD® wanwan G _NOGOQD . . H2SCR.. QFFLINB wawksk G
ONLIN & xkwxan G PIAADR® aakax% G PIAGPAR wawkak G PIAGPBE® xakinn PIAKYB® #ikkkkk G
PIASETE saxwa% G POLSTY @1EQRG PRINT & xxawak G RCVBYT @216RG RDADDR f1C2R
RSTAGN B35AR RSTSRY @366R RSTYBL @360R RETXIT 836CR SECRET® anaks# G
SETSRQ PASTRE SHAKER 0172R - SHAKEY _B2C4R __SNDBYT ___@263RG _8PE_ _O101R R
SPEFG = *asxa#w G STATINSE #auxnnn G STATOTE wikakan G TALK 9432R TERR & waniak §
TEVEN & wawxws G _TKEVENZ wwxuww G _TKODD = _wamans G LILKT8L @323R6. TLOOD = waxiwk §
TYPE = answin G UNDRES @ATFRG) T
_J_ABL__B_D.M []']
@374 a1

4051 GPIB Hardware Support

Section 4

4051 GPIB TIMING DETAILS

INTRODUCTION

The timing events on the GPIB are discussed in detail in this section. First, ASCll| data transfers
are examined starting with the PRINT statement and the INPUT statement. Internal binary
transfers are covered next, looking first at WRITE operations for binary output and READ
operations for binary input. Finally, the lower order commands WBYTE and RTYTE are
examined. These commands are used in special cases to individually transfer eight-bit binary
numbers, one at a time, over the GPIB.

Timing diagrams are used extensively as visual aids in the discussions. Because each 1/0

transfer takes several milliseconds, a single timing diagram cannot cover the entire operation.

Therefore, acomplete transfer is broken into segments called “events.” The details of an event
are covered in one timing diagram. By mentally placing these timing diagrams side by side, the
activity on the GPIB for an entire transfer can be visualized.

The timing diagrams are usually sufficient in themselves to tell an experienced electrical
engineer the entire story about the bus operation. To a novice, however, the timing diagrams
may be confusing and meaningless. Therefore, each diagram is followed by a step-by-step
explanation of the events as they occur on the bus. The events are explained in terms of how a
peripheral device responds to the 4051 and how the 4051, in turn, responds to a peripheral
device.

The importance of the timing diagrams can not be over-emphasized. These diagrams actas a
foundation for the discussions about every phase of the GPIB operation; from the discussions

about the maximum data transfer rates, to the discussions about practical interface circuits
designs. If you're not too sure how the GPIB works, how the signal lines are defined and how
the handshake sequence works, we suggest you review the material in Section 1 of this manual
and Section 1 of the IEEE Standard 488-1975. In addition, read the material in Appendix C of

the 4051 Graphic System Reference Manual, starting on page C-13 and ending on page C-18.

4051 GPIB Hardware Support @

4-1

4051 GPIB TIMING DETAILS
Timing Details for PRINT

4.2

TIMING DETAILS FOR THE PRINT STATEMENT
INTRODUCTION

The following text and illustrations describe the detailed timing events that occur on the GPIB
during the execution of a PRINT statement. Three events occur on the bus; the peripheral
addressing sequence, the data burst, and the peripheral unaddressing sequence.

Since the numeric data and the character string data in the PRINT statement are combined into
one ASCII character string and transferred, no distinction is made between numerical data and
string data. Therefore, the handshake timing for transferring numbers is the same as the
handshake timing for transferring letters.

If the data to be transferred contains more than 72 characters, then periods of inactivity occur
onthe bus during the data burst. These periods are caused by the statement “setup” period, in

which the 4051 prepares the next 72 characters for transfer. The set up time can range from

17.5 ms to 1080 ms, depending on the data to be transferred.

ADDRESS TIMING FOR PRINT WITH SECONDARY ADDRESS NOT
SUPPRESSED.

If the secondary address 32 (which says "don’t send a secondary address”) is not specifiedina
PRINT statement, a default secondary address (12) is issued after the primary listen address
during the initial addressing sequence. Fig. 4-1 illustrates the timing events that occur on the
GPIB during this address sequence. The statement PRINT @2:"A" is used as an example.

The following is a step-by-step description of the events as they occur on the GPIB during the
PRINT addressing sequence.

Responding to Attention

1. The GPIB is normally in an idle state prior to the execution of the PRINT statement. All
signal lines are high (inactive) except NRFD and NDAC which are held low by the 4051.

2. At the beginning of the PRINT statement, the 4051 analyzeé the parameter data list and
prepares the first 72 characters for transfer. (Less characters are prepared, cf course, if there
are not 72 in the parameter list.) The GPIB staysin an idle state during this time. When the 4051

is ready, the 4051 sets ATN (Attention) active low. This tells the peripheral devices on the GPIB
that addresses and controller commands are about to be issued by the 4051.

3. According to the IEEE Standard, each peripheral device on the bus must respond to ATN
within 200 ns by setting NDAC low and NRFD either high or low. (IEEE Standard, page 93). The

4051, however, allows a peripheral device up to 45 us to respond.

@ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for PRINT

PRINT @2:"A"
1
1 |
[|
ATN | 310 4 —»]
I 1
L L | -
DAY ‘ 160 ug > 95 us > 55 us \
| |
| |
l !
HS —>—
lw—45 45 ! |
| _>-| i
' |
' |
NRFD | |
I I
' I
! !
| 1
| |
NDAC | i
| |
I I
| 20 us —>| I
| |
DATA BUS | AIMARY LISTE TRDOrL+o) e o SO
: ADDRESS SECO”DARYADDRESS
2270-20

Fig. 4-1. Addressing Sequence for the PRINT Statement with the Secondary Address Not Suppressed.

4. After 45 us,the 4051 releases NRFD and checks to see if NRFD and NDCA are not both high.
If they are both high, the 4051 assumes that there is an error and the PRINT operation is
aborted. The 4051 prints a GPIB interface error message on the screen (message 69). If NDAC
is low and NRFD is low, the 4051 waits for NRF D to go high before continuing with the address
operation. If NDAC is low and NRFD is high, the 4051 assumes that all devices are ready to
receive the first peripheral address and the 4051 prepares to place the primary listen address
on the Data Bus.

Transferring the Primary Listen Address

1. When all the devices are ready, the 4051 places the primary listen address for the specified
device on the Data Bus. Normally this occurs 140 us after ATN goes low. After waiting 20 us for
the bus lines to settle, the 4051 sets DAV (Data Valid) to an active (low) state. This tells each
peripheral device on the GPIB that the address on the Data Bus is valid and can be captured.

2. The peripheral devices respond individually by setting NRFD low; they capture the address
byte, then set NDAC high. The total time to complete this part of the handshake depends on the
slowest peripheral device on the bus. If NDAC never goes high due to a peripheral interface
failure, the 4051 will wait foreverin a"hung" state due to the asynchronous nature of the GPIB
protocal.

4051 GPIB Hardware Support @ 4-3

4051 GPIB TIMING DETAILS
Timing Details for PRINT

3. When NDAC goes high, the 4051 assumes that all devices on the bus have received the data
byte; 18 us later, the 4051 sets DAV high to tell the devices that the address is no longer valid.

4. When DAV;goes high, the peripheral devices reset NDAC to a low (active) state. Each device
then sets NRFD high, when the device is ready to receive the next address byte. (The NRFD
signal line goes high, only after the last peripheral device sets it high.)

Transferring the Secondary Address

1. After DAV goes high (inactive) on the primary listen address, the 4051 prepares to transfer
the secondary address. This preparation takes 57 us. The 4051 then places the secondary
address on the Data Bus, waits 20us for the bus lines to settle, and checks to see if NRFD is
high. If NRFD is high, the 4051 sets DAV low. If NRFD is low, the 4051 assumes that a peripheral
device is still busy digesting the primary listen address, so the 4051 waits. When NRFD goes
high, the 4051 sets DAV active low.

2. The handshake sequence to transfer the secondary address occurs exactly the same as the
handshake sequence to transfer the primary listen address. Again, the total time to complete
the handshake depends on the slowest peripheral device on the bus.

3. After DAV goes high on the secondary address, the 4051 waits 37 us, then sets ATN high
(inactive). At this time, only the device who received the primary listen address while ATN was
low can listen to the data transfer. The 4051 executes the entire addressing sequence in 310 us
(minimum).

SUPPRESSING THE PRINT SECONDARY ADDRESS

If 32 is specified as the secondary address in a PRINT statement (PRINT @2,32: for example),
the 4051 suppresses the secondary address and issues only the primary listen address.
Although this suppression adds time to the statement overhead (approximately .5 ms), the
addressing activity on the GPIB is cut by 86 us.

Fig. 4-2 illustrates the address timing events on the GPIB when the secondary address in a
PRINT statement is suppressed. The events are identical to the events just described, except
that the secondary addressisn’'tissued. The minimum time to execute this sequence is 224 us.

HANDSHAKE TIMING DURING A PRINT DATA BURST

When the addressing sequence is over, the 4051 prepares to issue the data specified in the
PRINT statment parameter list. Since only 72 characters can be prepared for transfer at a time,
the data burst lasts for 72 characters maximum. The 4051 then stops and prepares the next 72
characters for transfer. If the data to be transferred contains more than 72 characters, then the
data stream will be intermixed with periods of maximum activity, followed by periods of total
inactivity.

@ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for PRINT

PRINT @2,32:"A"

ATN I 224 us

160 us i 64 s

,a,,s*|>(g
)

93 |
DAV us |

SN [, PP [S
i
T

DATA BUS

I
|
I
|
|
|
|
!
!
|
1
NRFD |
!
|
|
|
I
|
]
|
|
|
|

2270-21

Fig. 4-2. Addressing Sequence for the PRINT Statement with the Secondary Address Suppressed.

Fig. 4-3 illustrates the activity on the GPIB when data bytes are being transferred at the
maximum rate. This activity starts approximately 73 us after ATN goes high to end the
addressing sequence.

The following is a step-by-stpe description of the events as they occur on the GPIB during a
PRINT data burst.

1. If the handshake sequence occurred properly when the primary listen address was issued,
the 4051 assumes that the correct device received the address and is prepared to receive the
ASCII data specified in the PRINT statement,

2. After ATN goes high to end the addressing sequence, the 4051 prepares the first data byte
for transfer (an ASCII "A" in Fig. 4-3) and places the data byte on the Data Bus. This
preparation takes 73 us. The 4051 waits 20 us for the bus lines to settle, then checks NRFD. If
NRFD is high, the 4051 sets DAV low to start the handshake sequence. If NRFD is low it
indicates that the peripheral is not yet ready to receive the byte, so the 4051 waits for NRFD to
go high before setting DAV low.

4051 GPIB Hardware Support @ 4-5

4051 GPIB TIMING DETAILS
Timing Details for PRINT

PRINT @2:"ABCD"
Cycle Time = 126 us Data Rate = 7936.5 BYTES/SEC

ATN

93 us | |
DAV “ 126 us | 126 us

NRFD

NDAC

18 ,us—-»{ r«—— 18 pus —» |<— 18 us —=1 |<—
|
|
|
|
|
|
|
|
|
|

20 us —>| }«t—— 20 us b 20 s —>~|

e

DATA BUS

2270-22

Fig. 4-3. Handshake Sequence During a PRINT Data Burst.

3. The handshake sequence occurs the same as the handshake during the addressing
sequence, except that only one peripheral device is taking part. The peripheral device
respondes to DAV by setting NRFD low; it captures the data byte, then sets NDAC high. The
4051 responds to NDAC by setting DAV high. This sequence takes a minimum of 18 us to
complete (plus a few nanoseconds).

4. Once DAV goes high, the 4051 prepares the next data byte for transfer. The peripheral
device, in the meantime, sets NDAC low, then sets NRFD high when it is ready to receive the
next data byte.

5. The 4051 places the next data byte on the Data Bus 88 us after DAV goes high, waits 20 us,
then checks NRFD. If the peripheral device has set NRFD high by this time, the 4051 sets DAV
low, and the next handshake cycle begins. If NRFD is low, the 4051 waits.

The minimum time to complete the handshake cycle is 127 us. This provides a maximum data
transfer rate of 7936.5 bytes/sec during a PRINT Data Burst.

4-6 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for INPUT

PRINT @2:A$

| |
ATN | 830 us |

-

DAV

|
|
NRFD 160 us i-(— 85 us —>!<-— 100 us _—>‘ 485 us

NDACH

DATA BUS
|

|
f
!
|
|
I
I
I
|
I
|
|
|
|
i
|
!
|
|
|
|
|

2270-23

Fig. 4-4. Unaddressing Sequence for the PRINT Statement.

THE UNADDRESSING SEQUENCE FOR THE PRINT STATEMENT

After the ASClI data in the PRINT statement is transferred, the 4051 returns the GPIB to an idle
state by activating ATN, issuing UNTALK and UNLISTEN, then releasing ATN. This
unaddressing sequence takes 830 us (minimum) and frees the peripheral device to go on about
its business. The timing events that occur on the GPIB during the unaddressing sequence are
illustrated in Fig. 4-4.

TIMING DETAILS FOR THE INPUT STATEMENT
INTRODUCTION

The following text and illustrations describe the detailed timing events that occur on the GPIB
during the execution of an INPUT statement. Three events which occur on the bus: the
peripheral addressing sequence, the data burst, and the peripheral unaddressing sequence.

Since numeric data and the character string data is received as one ASCII character string, no
distinction is made between numeric data and string data until the data is analyzed in the I/0
buffer. Therefore, the handshake timing for transferring numbers is the same as the handshake
timing for transferring letters.

4051 GPIB Hardware Support @

4-7

4051 GPIB TIMING DETAILS
Timing Details for INPUT

When the 4051 finds a delimiter (CR for example) in the data stream, or after 72 characters are

input (whichever comes first), the 4051 stops to analyze and dump the contents of the buffer.
During this buffer dump, the 4051 picks out the valid data and throws away the rest, then

converts the data to internal binary format and stores it away in the RAM under the specified
variable name.

Since the I/0 bufferis dumped after every delimiter is received, the input data burstis sprinkled
with periods of inactivity (the buffer overhead periods). These periods cannot be illustrated in
the INPUT timing diagrams, however, they must be considered when computing the effective
data rates for INPUT operations. (Refer to Section 5 for details.)

ADDRESS TIMING FOR INPUT WITH THE SECONDARY ADDRESS NOT
SUPPRESSED.

If the secondary address 32 is not specified in an INPUT statement, a default secondary
address (13) is issued after the primary talk address during the initial addressing sequence.
Fig. 4-5illustrates the timing events that occur on the GPIB during this address sequence. The
statement INPUT @2:A$ is used as an example. A detailed step-by-step description of these
events follows the figure.

INPUT @2:A$
] I
1
ATN 380 us :
: |
l le]
oav | 160 us I 95 us I 125 s |
| |
| |
! \ / |
]
18 us —> |<— 18 us —» I<—
(P s —» - | “ | |-<—40 ,us—»II
I l | |
: | ! [
I
NRFD | / | AN !
| | | [
! I | 1
| ' ' |
I , / : |
NDAC |] | |
| 1 |) 1
I i |
! 20 s —»l e !
DATA BUS mFIRST)
 DATA)
: BYTE &
2270-24

Fig. 4-5. Addressing Sequence for the INPUT Statement with the Secondary Address Not Suppressed.

4'8 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for INPUT

Responding to Attention

1. The GPIBisnormally in an idle state prior to the execution of an INPUT statement. All signal
lines are high (inactive), except NRFD and NDAC which are held low by the 4051.

2. Atthe beginning of an INPUT statement, the 4051 analyzes the parameter variable list and
prepares to input the specified data. The GPIB staysin an idle state during thistime. When the
4051 is ready, the 4051 sets ATN (Attention) active low. This tells the peripheral devices on the
GPIB that addresses and controller commands are about to be issued by the 4051.

3. According to the IEEE Standard, each peripheral device on the bus must respond to ATN
within 200 ns by setting NDAC low and NRFD either high or low. (IEEE Standard, page 93). The
4051, however, allows a peripheral device up to 45 us to respond.

4. After45 us, the 4051 releases NRFD and checks to see if NRFD and NDAC are not both high.
If they are both high, the 4051 assumes that there is an error and the INPUT operation is
aborted. The 4051 prints a GP Interface Error message on the screen (message no. 69). If
NDAC is low and NRFD is low, the 4051 waits for NRFD to go high before continuing with the
address operation. If NDAC is low and NRFD is high, the 4051 assumes that all devices are
ready to receive the first peripheral address and the 4051 prepares to place the primary talk
address on the Data Bus.

Transferring the Primary Talk Address

1. When all the devices are ready, the 4051 places the primary tatk address for the specified
device on the Data Bus. Normally this occurs 140 us after ATN goes low. After waiting 20 us for
the bus lines to settle, the 4051 sets DAV (Data Valid) to an active (low) state. This tells each
peripheral device on theGPIB that the address on theData Bus is valid and can be captured.

2. The peripheral devices respond individually by setting NRFD low; they capture the address
byte, then set NDAC high. The total time to complete this part of the handshake depends on the
slowest peripheral device on the bus.

3. When NDAC goes high, the 4051 assumes that all devices on the bus have received the data
byte; 18 us later, the 4051 sets DAV high to tell the devices that the address is no longer valid.

4. When DAV goes high, the peripheral devices reset NDAC to low (active) state. Each device

. then sets NRFD high, when the device is reacly to receive the next address byte. (The NRFD
signal line goes high, only after the last peripheral device sets it high.)

4051 GPIB Hardware Support @ 4‘9

4051 GPIB TIMING DETAILS
Timing Details for INPUT

Transferring the Secondary Address

1. After DAV goes high (inactive) on the primary talk address, the 4051 prepares to transfer the
secondary address. This preparation takes 57 us. The 4051 then places the secondary address
on the Data Bus, waits 20 us for the bus lines to settle, and checks to see if NRFD is high. If
NRFD is high, the 4051 sets DAV low. If NRFD is low, the 4051 assumes that a peripheral device
is still busy digesting the primary talk address, so the 4051 waits. When NRFD goes high, the
4051 sets DAV active low.

2. The handshake sequencetotransferthe secondary address occurs exactly the same as the
handshake sequence to transfer the primary talk address. Again, the total time to complete the
handshake depends on the slowest peripheral device on the bus.

3. Since the 4051 must listen to the GPIB during an INPUT operation, the 4051 must at this
time assign itself as a listener while ATN is still down. It does this 85 us after the secondary

address is issued, The 4051 takes the secondary address off the Data Bus, assigns itself as a
listener, then pulls both the NRFD and NDAC signal lines low; 40 us later, the 4051 releases
ATN and prepares to receive data bytes from the talker over the GPIB.

4. The entire address sequence takes a minimum of 380 us to execute. Immediatly after ATN
goes high, the addressed peripheral device is free to place the first data byte on the Data Bus
and wait for the 4051 to set NRFD high.

INTERFACE DESIGN NOTE

It is important for the peripheral device to wait for ATN to go high before it starts transmitting
data over the GPIB. If the peripheral device starts talking as soon as it receives it s talk address,
it will interfere with the transmission of the secondary address.

SUPPRESSING THE INPUT SECONDARY ADDRESS

If 32 is specified as the secondary address in an INPUT statement (INPUT @2,32:A$ for
example), the 4051 suppresses the secondary address and issues only the primary talk
address. Although this suppression adds time to the statement overhead (approximately
1.7 ms), the addressing activity on the GPIB is cut by 86 us.

Fig. 4-6 illustrates the address timing events on the GPIB when the secondary address in an
INPUT statement is suppressed. The events are idential to the events just described, except

that the secondary address isn’tissued. The minimum time to execute this sequence is 224 us.

4-1 0 @ 4051 GPIB-Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for INPUT

INPUT @2,32:A$

NRFD

ATN } 296 us —
| [
| ! >l
DAV | 160 us I 136 us 1
| | Il
| |
. \ /] L/
| |_(_ 37 us —»—| J—
45 us 40 |
H— yZ —-)-‘ l-(— us —H |
y

I4——21 us

NDAC

DATA BUS

{{FIRST DATA BYTE ;¥
FROM TALKER

PRIMARY TALK
__ADDRESS

X
adifd

2270-25

Fig. 4-6. Addressing Sequence for the INPUT Statement with the Secondary Address Suppressed.

THE INPUT DATA BURST

After the 4051 addresses a peripheral device during an INPUT operation, the 4051 assigns itself
as a listener, pulls both NRFD and NDAC low, then releases ATN. The 4051 is now ready to
receive data bytes from the addressed peripheral device. Fig. 4-7 illustrates the events that
occur after ATN is released. The following is a step-by-step description of these events as they
occur on the bus.

1. After the 4051 releases ATN, the peripheral device is free to place the first data byte on the
Data Bus, but must wait until the 4051 sets NRFD high.

2. 38 us after ATN goes high, the 4051 sets NRFD high. If the peripheral device has placed the
first byte on the Data Bus by this time and waited at least 2 us, then it is free to set DAV low.

3. When DAV goes low, the 4051 responds by setting NRFD low. This takes at least 21 us. Next,
the 4051 captures the data byte and places the byte in the I/O buffer. As soon as that is
accomplished, the 4051 sets NDAC high which tells the peripheral device that the data byte has
been received. It takes the 4051 a minimum of 84 us to set NDAC high after DAV goes low.

4051 GPIB Hardware Support @

4-11

4051 GPIB TIMING DETAILS
Timing Details for INPUT

INPUT @2:A$
Data Rate = 4098.4 BYTES/SEC

ATN

DAV ||<— 39 us IIA 84 us | 160 us i 84 s >
!
|
|
|- 38 us »| 124 us
| — |e— 21 us 21 us —»]<—

NRFD

NDAC

ma| | mo |-
|

*NOTE: DAV and the Data on the DATA BUS are peripheral controlled. 2270-26

Fig. 4-7. Handshake Sequence During an INPUT Data Burst.

4. The peripheral device responds to the high NDAC signal by setting DAV high to indicate
that the data byte is no longer valid. The peripheral device then prepares to place the next byte
of data on the Data Bus.

5. In the meantime, the 4051 sets NDAC low, then examines the data byte to see if itis a CR
delimiter. This takes a minimum of 160 us. If an alternate delimiter is specified with a % sign in
the 1/0O address instead of an @ sign, then the 4051 must also check to see if the data byte
matches the alternate delimiter. This check takes an additional 7 us.

6. Afterthe 4051 is finished examining the data byte, the 4051 sets NRFD high, and prepares to
receive the next data byte. Data bytes are received in this fashion until a CR delimiter is
received, an alternate delimiter is received, or until 72 characters are received, whichever
occurs first.

4'1 2 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for INPUT

7. After one of the above occurs, the 4051 stops the data transfer by holding NRFD low, then
processes the information in the 1/0 buffer. If a numeric variable or an array variable is
specified as the target variable in the INPUT statement, the 4051 searches the contents of the
1/0 buffer for valid numeric data. When a numeric dataitem is found, the 4051 converts the data
item from the ASCII format to internal floating-point format and assigns the data item to the
specified variable in RAM. If a string variable is specified in the INPUT statement, then all of the
characters in the 1/0 buffer up to the first CR (or alternate delimiter) are converted to internal
ASCII format and are assigned to the string variable. If a valid delimiter is not found, the 4051
resumes the data transfer until a delimiter is found, then assigns all the characters up to the first
delimiter to the string variable.

The time it takes the 4051 to process the information in the I/0 buffer and get back to the GPIB
and input more data is variable, depending on the contents of the I/0 buffer and the kind of data
the 4051 is looking for at the time. Normally, it takes 4 ms to 12 ms to dump the buffer.

It can be seen from Fig. 4-7 that the handshake cycle during the normal INPUT data burst is
244 us. This sets the maximum data input rate at 4098.4 bytes/second during the data burst. In
the "%" mode, the minimum handshake cycle is 251 us. This sets the maximum INPUT rate to
3984.1 bytes/second during the data burst.

8. After the information in the 1/0O buffer is processed, the 4051 returns to the bus to receive
more data from the talker. After more data is received, followed by a delimiter, or after 72 more
characters are received, the 4051 stops again and processes the contents of the |/O buffer. This
action repeats itself until all the target variables in the INPUT statement have assigned values.

THE UNADDRESSING SEQUENCE

After the 4051 has assigned data to each variable specified in the INPUT parameter list, the
4051 terminates the opertion by activating ATN and issuing an UNTALK/UNLISTEN sequence
over the GPIB. Fig. 4-8 illustrates the events on the GPIB during the unaddressing sequence. A
step-by-step description of these events follows the figure.

1. The 4051 starts the unaddressing sequence after it checks to make sure that all the specified
variables have assigned data. During this check, the 4051 keeps the talker held up by holding
down on NDAC.

2. When the 4051 is ready to terminate, the 4051 activates ATN as shown in Fig. 4-8.

3. The talker must respond to ATN within 45 us (or 200 ns as per |[EEE 488-1975) by setting
NDAC low and NRFD either high or low; after 45 us, the 4051 releases NRFD and NDAC and
makes a check of the lines. If NRFD is low, the 4051 waits until the peripheral devices on the bus
set NRFD high. If NRFD is high, the 4051 proceeds with the unaddressing sequence.

4051 GPIB Hardware Support @ 4-13

4051 GPIB TIMING DETAILS
Timing Details for INPUT

4-14

INPUT @2:A$
| |
ATN t 380 us > |
| | | |
e

DAV : 160 us I 84 us 1 :
| |
| |
' |
| | I 1 I |
l<-—45ys—>l 18 us] 18ys—>| |<-40/15>1
i | ! I
i] ! i I

I] ! |
NRFD | I | |
l [}
| I ! |]
| It | | |
| i | | I
| | i |
NDAC | [] |
t | | |
[| | |
DATA BUS | 20us —'-| — 20 —>1 ~ :
S DATA: |
3 BYTE ;2 |

2270-27

Fig. 4-8. Unaddressing Sequence for the INPUT Statement.

4. 140 us after ATN goes down, the 4051 places the data byte for UNTALK (decimal 95) on the
Data Bus, waits 20 us, then checks the condition of NRFD. If NRFD is low, the 4051 waits until
NRFD goes high. If NRFD is high, the 4051 sets DAV low and the handshake for transferring the
UNTALK data byte begins.

5. The handshake cycle proceeds the same as any other handshake. Each peripheral device
on the GPIB individually sets NRFD low, captures the UNTALK command byte, then sets
NDAC high.

6. After NDAC goes high, the 4051 sets DAV high which indicates that the UNTALK command
is no longer valid. The peripheral devices respond by setting NDAC low. After they are ready to
receive the next data byte, the peripheral devices individually set NRFD high. When all are
ready, the NRFD signal line goes high.

7. In the meantime, the 4051 prepares to transfer an UNLISTEN command; 65 us after DAV
goes high (invalid), the 4051 places the UNLISTEN byte on the Data Bus, waits 20 us for the
lines to settle, then checks NRFD. If NRFD is high (all are ready), the 4051 sets DAV low which
tells the peripheral devices that the address on the Data Bus is valid. If NRFD is still low,
indicating that some device is not yet ready for the next byte, the 4051 waits before setting DAV
low. Assoon an NRFD goes high, the 4051 sets DAV low, and the next handshake cycle begins.

@ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for INPUT

L
..................... - il e S el Rttt ettt bt B T ity Sl
A-I L mll L L - L B L mll N
2
e
<3 A a
1] ﬂ 3

380 us
380 us

U
i
[1

L'

g

o

| _ [

) B it S A "l ~—— 3

gl
|

Buifer Overhead
+
Statement Termination

s
L <
=)
£
I 4
el
—_—ct

|
|
|
—»{-(-850
I
|
|
|
|
!
I
|
|
!
1
|
I
|
|
|
|
|
|
|
!
'
i
|
|
1
|
|
|
1

84 us

[1

166 us

Il

DATA BYTES RECEIVED: 95, 64, 0

st
l<
[

i

I

I

|

I

]

a

84 us

25 us —
)

I

160 us

PRINT @37,0:0,0,255
365 us

INPUT %2,14:A$

|
J|__|l

50 us |
95

ys—->1<—>!
|

|

|

|

|

|

]

1

1]

|

|

|

]

1

'

|

|

1}

380 us
190

v

95 us ——'4—
|

I

|

|

|

1

I

|

|

|

|

|

]

]

l

. |
|

|

|

|

|

I

|

|

|

’

|

!

I

NOTE: When the 4051 Output Register is Enabled,

s NN et N N SO I

|

|
j«——————— Addressing Period
|

t——160 us
|

i

|

|

|

|

|

|

|

|

|

!

|

[

—>|<— 95 us _>|<_ 125 us

the Last Byte Transferred (UNLISTEN) Comes on

the Bus.

|
Dios |
|
D07 !—1———140;15
|
|
: 70 us
DIOS |
|
|
|
|
DIO5
|
|
|
1
DI04
1
|
|
|
DI03
|
|
1
|
pio2 |
|
|
|
|
Dlo1 !
]
|
I
| -
1

DAV
NRFD
ATN

Fig. 4-9. The Complete Timing Events for an INPUT Operation.

4051 GPIB Hardware Support @ 4-15

4051 GPIB TIMING DETAILS
Timing Details for WRITE

8. The second handshake cycle proceeds the same as the first and the total time for
completion depends on the slowest peripheral device on the bus.

9. 82 us after NDAC goes high on the UNLISTEN command, the 4051 sets NRFD and NDAC
low. Atthe same time, the 4051 takes the UNLISTEN data byte off the Data Bus; 485 us later, the
4051 sets ATN high, and the GPIB returns again to an idle state.

A COMPLETE INPUT OPERATION

Fig. 4-9 shows the timing events for a complete INPUT operation over the 4051 GPIB. In this
diagram, the alternate delimiter mode for INPUT is used to transfer a character string from
peripheral device 2. The alternate delimiter is first set to decimal 0 with aa PRINT
@37,0:0,79,255 statement. The statement INPUT %2:A$ is then executed to start the transfer.
The talker (device 2) sends decimal 94 (an ASCII _character) as the first data byte, decimal 64
(an ASCII @ character) as the second data byte, and decimal 0 (an ASCII NULL) as the
delimiter. The firsttwo characters are assigned to A$, then the INPUT operation is terminated.

TIMING DETAILS FOR THE WRITE STATEMENT
INTRODUCTION

The following text and illustrations describe the detailed timing events that occur on the GPIB
during the execution of a WRITE statement. Three events occur on the bus: the peripheral
addressing sequence, the data burst, and the peripheral unaddressing sequence.

Since the data transferred in a WRITE statement is formatted in 4051 internal binary code, the
number of data bytes transferred during the data burst is predictable. Each numeric value in
the data stream consists of a two-byte header plus eight bytes of internal floating-point
notation. Each character string contains atwo-byte header plus one byte for each characterin
the string (i.e. LEN A$). The maximum length of any one string is 8192 bytes plus the header.

In addition to the predictable length of each data item, the gaps in the data burst are
considerable reduced when compared with the PRINT statement. Since the conversion from
internal binary format to ASClI code format is not necessary, the data is taken directly from the
internal RAM memory and is placed on the GPIB Data Bus. The statement setup period is
virtually eliminated, so the total time to complete the data transfer is considerably less than a
PRINT statement data transfer.

4-16 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for WRITE

ADDRESS TIMING FOR WRITE WITH THE SECONDARY ADDRESS NOT
SUPPRESSED.

If the secondary address 32 is not specified in a WRITE statement, a default secondary address
(15) is issued after the primary listen address during the addressing sequence. Fig. 4-10
illustrates the timing events that occur on the GPIB during this address sequence. The
statement WRITE @2:"A" is used as an exarnple.

The following is a step-by-step description of the events as they occur on the GPIB during the
WRITE addressing sequence.

Responding to Attention

1. The GPIB is normally in an idle state prior to the execution of the WRITE statement. All
signal lines are high (inactive) except NRFD and NDAC which are held low by the 4051.

2. At the beginning of the WRITE statement, the 4051 analyzes the parameter data list and
prepares to transmit the data. The GPIB stays in an idle state during thistime. When the 4051 is
ready, the 4051 sets ATN (Attention) active low. This tells the peripheral devices on the bus that
addresses and controller commands are about to be issued by the 4051.

WRITE @2:"A"

ATN

310 us -

160 us

DAV

|<—45,us—>-1

NRFD

NDAC

DATA BUS : PRIMARY LiSTE

ADDRESS

2270-29

Fig. 4-10. Addressing Sequence for the WRITE Statement with the Secondary Address Not Suppressed.

4051 GPIB Hardware Support @ 4-17

4051 GPIB TIMING DETAILS
TFiming Details for WRITE

3. According to the IEEE Standard, each peripheral device on the bus must respond to ATN
within 200 ns by setting NDAC low and NRFD either high or low. (IEEE Standard, page 93). The
4051, however, allows a peripheral device up to 45 us to respond.

4. After 45 us,the 4051 releases NRFD and checks to see if NRFD and NDAC are not both high.
If they are both high, the 4051 assumes that there is an error and the WRITE operation is
aborted. The 4051 prints a GPIB Interface Error Message on the screen (message 69). If NDAC
is lowand NRFD is low, the 4051 waits for NRFD to go high before continuing with the address
operation. If NDAC is low and NRFD is high, the 4051 assumes that all devices are ready to
receive the first peripheral address and the 4051 prepares to place the primary listen address
on the Data Bus.

Transferring the Primary Listen Address

1. When all the devices are ready, the 4051 places the primary listen address for the specified
device on the Data Bus. Normally this occurs 140 us after ATN goes low. After waiting 20 us for
the bus lines to settle, the 4051 sets DAV (Data Valid) to an active (low) state. This tells each
peripheral device on the GPIB that the address on the Data Bus is valid and can be captured.

2. Theperipheral devices respond individually by setting NRFD low; they capture the address
byte, then set NDAC high. The total time to complete this part of the handshake is determined
by the slowest peripheral device on the bus.

3. When NDAC goes high, the 4051 assumes that all devices on the bus have received the data
byte; 18 us later, the 4051 sets DAV high to tell the devices that the address is no longer valid.

4. When DAV goes high, the peripheral devices reset NDAC to alow (active) state. Each device
then sets NRFD high, when the device is ready to receive the next address byte. (The NRFD
signal goes high, only after the last peripheral device sets it high.)

Transferring the Secondary Address

1. After DAV goes high (inactive), the 4051 prepares to transfer the secondary address. This
preparation takes 57 us. The 4051 then places the secondary address on the Data Bus, waits
20 usforthe buslinesto settle, and checks to see if NRFD is high. If NRFD is high, the 4051 sets
DAV low. If NRFD is low, the 4051 assumes that a peripheral device is still busy digesting the
primary listen address, so the 4051 waits. When NRFD goes high, the 4051 sets DAV active low.

2. The handshake sequenceto transfer the secondary address occurs exactly the same as the
handshake sequence to transfer the primary listen address. Again, the total time to complete

the handshake depends on the slowest peripheral device on the bus.

4- 1 8 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for WRITE

3. After DAV goes high on the secondary address, the 4051 waits 37 us, then sets ATN high
(inactive). At this time, only the device that received the primary listen address while ATN was
low can listen to the data transfer. The 4051 executes this addressing sequence in 310 us
(minimum). ‘

SUPPRESSING THE WRITE SECONDARY ADDRESS

If 32 is specified as the secondary address in a WRITE statement (WRITE @2,32:"A" for
example), the 4051 suppresses the secondary address and issues only the primary listen
address. Although this suppression adds time to the statement overhead (approximately
.5 ms), the addressing activity on theGPIB is cut by 86 us to 224 us.

Fig. 4-11 illustrates the address timing events on the GPIB when the secondary address in a
WRITE statement is suppressed. The events are identical to the events just described, except
that the secondary address isn’tissued. The minimum time to execute this sequence is 224 us.

WRITE @2,32:"A"

ATN i 224 s i

160 us i 64 us -

=
)

93 us >
DAV s |

NRFD

NDAC

DATA BUS

|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|

2270-30

Fig. 4-11. Addressing Sequence for the WRITE Statement with the Secondary Address Suppressed.

4051 GPIB Hardware Support @ 4' 1 9

4051 GPIB TIMING DETAILS
Timing Details for WRITE

THE WRITE DATA BURST
Starting the Data Transfer

If the handshake sequence occurred normally while the primary listen address was on the bus,
the 4051 assumes that the correct peripheral ddevice received the listen address and is
prepared to receive the binary data. The 4051, therefore, prepares the header for the first data
item in the parameter list and places the first byte of the header on the Data Bus. This takes
73 us after ATN goes high, as shown in Fig. 4-11.

Transferring Numeric Data

Each numeric dataitem specified in a WRITE statement is transferred as an eight byte floating-
point number preceded by a two-byte header. (This format is described in Appendix A.) If a
numeric array is specified, each array element is transferred as an eight-byte floating-point

number with a two-byte header, one after another in row major order. Fig. 4-12 illustrates the

timing events that occur on the GPIB when a number is transferred in floating-point using the
WRITE statement.

WRITE @2:123.2, 1.38E-5

ATN

G680

-l
| 13%6us 26 | 882 us ' 660 us 136 us
— 320 s)
oav | [| c ! e
) R
L L U U L L L L
—>| '4—13 us
NRFD ..
)5 %)
L) L] L L) .J L] L) L U
r -1 . - F B r r B
NDAC
|
¥
DATA BUS

. FIRST }': SECOND

" SECOND

HEADER {~; HEADER =
—— BYTE 1 BYTE :
1 JL
J T
123.2 1.38E-5
2270-31

Fig. 4-12. Handshake Sequence for a WRITE Numeric Data Burst.

4'20 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for WRITE

The following is a step-by-step description of the events as they occur on the GPIB as the
numeric data item is transferred.

1. The transfer begins when the 4051 places the first byte of the header (decimal 32) on the
Data Bus. The 4051 waits 20 us for the lines to settle, then checks NRFD. If NRFD is high, the
4051 sets DAV low and the handshake with the peripheral device begins.

2. The handshake to transferring data byte during a WRITE operation is the same as the
handshake for any other statement. After DAV goes low, the peripheral device sets NRFD low,
captures the data byte, then sets NDAC high. The 4051 responds to NDAC by setting DAV high.
The minimum time to accomplish this action is 18 us for each data byte. The rest of this
discussion concentrates on the time lapse between each handshake.

3. After the first byte of the header is transferred to the peripheral device, the 4051 prepares
the second byte of the header for transfer. This takes 136 us as shown in Fig. 4-12.

4. After the second byte of the header is transferred, the 4051 prepares to transfer the eight
bytes of the floating-point number. This preparation takes 320 us.

5. The data burst lasts for eight handshake cycles and the minimum time to complete one
handshake cycle is 126 us. The first seven cycles are completed in 882 us. The last cycle is
intermixed with the set up time for the next numeric data item. The total (last handhake cycle
plus set up time for the next data item) is 660 us.

6. Adding all the time increments up, the total time to transfer one numeric value in 4051
internal floating-point notation is 1998 us. This means thatin acontinuous burst, the effect rate
for transferring data samples (or data points) is 500.5 data samples/sec.

Transferring Character String Data

Each character string specified in a WRITE statement is transferred as a two-byte header
followed by a stream of data bytes, one for each character in the string. The header identifies
the data as a character string and also specifies the length (in bytes).

Fig. 4-13 illustrates the timing events that occur on the GPIB when a character string is
transferred using the WRITE statement. The timing is similar to the time for transferring
numeric data, except that the delay after the second header byte is 300 us instead of 320 us.
The handshake cycle during the data burst is variable, depending on the length of the
character string. The time lag at the end of the data burst is also different; 800 us as opposed to
660 us for a numeric data item.

4051 GPIB Hardware Support @ 4-21

4051 GPIB TIMING DETAILS
Timing Details for WRITE

WRITE @2:"ABC","DEF"

ATN

136 us 126 us 126 us 136 us
300 us 800 s ?1' <

DAV |

NRFD

T
R
J T

DATA BUS

JHEADER
{BYTE2

2270-32

Fig. 4-13. Handshake Sequence for a WRITE String Data Burst.

Computing the Data Sample Rate for Character Strings

Since it takes 436 us to transfer the header and 126 us to transfer each byte in the character
string, followed by an 800 us delay, the data sample rate is computed as follows:

Sample Rate=1/(436 + ((characters in string-1)x126) -+ 800)E-6

So, forexample, a series of character strings with 8 characters each can be transferred at arate
of:

1/(436 + ((8-1)x126) + 800)E-6 samples/sec

which is equal to:

1/2118E-6 samples/sec

which is equal to:

472.2 samples/sec

4-22 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for WRITE

THE UNADDRESSING SEQUENCE FOR THE WRITE STATEMENT

After the last data byte is transferred in a WRITE operation, the 4051 clears the GPIB by
activating ATN, issuing UNTALK and UNLISTEN, then releases ATN. This returns the GPIB to
an idle state and frees the peripheral device to process the information just received. Fig. 4-14
illustrates the timing events which occur on the GPIB when the unaddressing sequence is
executed at the end of a WRITE statement.

WRITE @2:A$
| |
ATN f 382 s [
| |
! 160 | 84 | |
DAV i e I - | i
| |
| |
| |
| | | |
18 us —>| l—<—- 18 us ->| |<—

wRITE | [| f<s0ss ":

i I ! I
1 | - [:
! ! | .
| I [| |
| 1 | | |
| :! ' i I
| | |
| | i 1
NDAC [!] I
| | | |
| | | |
DATA BUS ! 20 l‘-"—>| :4— 20 ﬂs—ﬂ < :
i
I

2270-33

Fig. 4-14. Unaddressing Sequence for the WRITE Statement.

4051 GPIB Hardware Support @ 4-23

4051 GPIB TIMING DETAILS
Timing Details for READ

4-24

TIMING DETAILS FOR THE READ STATEMENT
INTRODUCTION

The following text and illustrations describe the detailed timing events that occur on the GPIB
during the execution of a READ statement. Three events which occur on the bus; the peripheral
addressing sequence, the data burst, and the peripheral unaddressing sequence.

Since the data transferred in a READ statement must be formatted in 4051 internal binary code,
the number of data bytes transferred during the data burst is predictable. Each numeric value
in the data stream consists of two-byte header plus eight bytes of internal floating-point
notation. Each character string contains a two-byte header plus one byte for each characterin
the string. The maximum length of any one string is 8191 bytes plus the header.

In addition to the predictable length of each data item, the gaps in the data burst are
considerably reduced when compared with the INPUT statement. Since the conversion from
ASCllcode format to internal binary format is not necessary, the data is taken directly from the
1/0 buffer and placed in the internal RAM memory. The buffer overhead is virtually eliminated,
so the total time to complete a READ data transfer is considerably less than the time it takes to
complete an INPUT data transfer.

ADDRESS TIMING FOR READ WITH THE SECONDARY ADDRESS NOT
SUPPRESSED.

If the secondary address 32 is not specified in a READ statement, a default secondary address
(14) is issued after the primary talk address during the addressing sequence. Fig. 4-15
illustrates the timing events that occur on the GPIB during this address sequence. The
statement READ @2:A$ is used as an example. A step-by-step description of the events of
GPIB follow the figure.

Responding to Attention

1. The GPIBis normallyin anidle state prior to the execution of the READ statement. All signal
lines are high (inactive), except NRFD and NDAC which are held low by the 4051.

2. At the beginning of the READ statement, the 4051 analyzes the parameter data list and
prepares to assign datato the variables. The GPIB stays in an idle state during this time. When

the 4051 is ready, the 4051 sets ATN (Attention) active low. This tells the peripheral devices on

the bus that addresses and controller commands are about to be issued by the 4051.

3. According to the |IEEE standard, each peripheral device on the bus must respond to ATN
within 200 ns by setting NDAC low and NRFD either high or low. (IEEE Standard, page 93). The

4051, however, allows a peripheral device up to 45 us to respond.

@ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for READ

READ @2:A$

ATN ¢ 380 us |

160 us i4 95 us i 125 us

— 45 ys —»

NRFD

.
1
i

NDAC

>

=

L
T~ |
— __I>

I
DATA BUS

[

(T]

2270-34

Fig. 4-15. Addressing Sequence for the READ Statement with the Secondary Address Not Suppressed.

4. After 45 us,the 4051 releases NRFD and checks to see if NRFD and NDAC are not both high.
If they are both high, the 4051 assumes that there is an error and the READ operation is
aborted. The 4051 prints a GP Interface Error Message on the screen (message no 69). If NDAC
islow and NRFD is low, the 4051 waits for NRFD to go high before continuing with the address
operation. If NDAC is low and NRFD is high, the 4051 assumes that all devices are ready to
receive the first peripheral address and the 4051 prepares to place the primary talk address on
the Data Bus.

Transferring the Primary Talk Address

1. When all the devices are ready, the 4051 places the primary talk address for the specified
device on the Data Bus. Normally this occurs 140 us after ATN goes low. After waiting 20 us for
the bus lines to settle, the 4051 sets DAV (Data Valid) to an active (low) state. This tells each
peripheral device on the GPIB that the address on the Data Bus is valid and can be captured.

2. The peripheral devices respond individually by setting NRFD low; they capture the address
byte, then set NDAC high. The total time to complete this portion of the handshake is

determined by the slowest peripheral device on the bus.

4051 GPIB Hardware Support @ 4-25

4051 GPIB TIMING DETAILS
Timing Details for READ

3. When NDAC goes high, the 4051 assumes that all devices on the bus have received the data
byte; 18 us later, the 4051 sets DAV high to tell the devices that the address is no longer valid.

4. When DAV goes high, the peripheral devices reset NDAC to a low (active) state. Each device
then sets NRFD high, when the device is ready to receive the next address byte. (The NRFD
signal goes high, only after the last peripheral device sets it high.)

Transferring the Secondary Address

1. After DAV goes high (inactive), the 4051 prepares to transfer the secondary address. This
preparation takes 57 us. The 4051 then places the secondary address on the Data Bus, waits
20 usforthe buslinesto settie, and checks to see if NRFD is high. IfNRFD is high, the 4051 sets
DAV low. If NRFD is low the 4051 assumes that a peripheral device is still busy digesting the
primary talk address, so the 4051 waits. When NRFD goes high, the 4051 sets DAV active low.

2. The handshake sequencetotransferthe secondary address occurs exactly the same as the
handshake sequence to transfer the primary talk address. Again, the total time to complete the
handshake depends on the slowest peripheral device on the bus.

3. Sincethe 4051 mustlisten to the GPIB during a READ operation, the 4051 must at this time
assign itselfasalistener while ATN is still down. It does this 85 us after the secondary address
is issued. The 4051 takes the secondary address off the Data Bus, assigns itself as a listener,
then sets both the NRFD and NDAC signal lines low; 40 us later, the 4051 releases ATN and
prepares to receive data bytes from the talker over the GPIB.

4. Theentire address sequence takes a mimimum of 380 us to execute. Immediately after ATN
goes high, the addressed peripheral device is free to place the first data byte on the Data Bus
and wait for the 4051 to set NRFD high.

INTERFACE DESIGN NOTE
It is important for the peripheral device to wait for ATN to go high before it starts transmitting

data over the GPIB. If the peripheral device starts talking as soon as it receives it s talk address,
it will interfere with the transmission of the secondary address.

4'26 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for READ

SUPPRESSING THE READ SECONDARY ADDRESS

If 32 is specified as the secondary address in a READ statement (READ @2,32:" A" for
example), the 4051 suppresses the secondary address and issues only the primary talk
address. Although this suppression adds time to the statement overhead (approxiamately
1.7 ms), the addressing activity on the GPIB is cut by 86 us to 296 us.

Fig. 4-16 illustrates the address timing events on the GPIB when the secondary address in a
READ statement is suppressed. The events are identical to the events just described, except
that the secondary address isn’tissued. The minimum time to execute this sequence is 296 us.

READ @2,32:A$

ATN

296 us

160 | k
DAV Hs 136 us

|-<—45us—>1

NRFD

NDAC

DATA BUS

ADDRESS

2270-35

Fig. 4-16. Addressing Sequence for the READ Statement with the Secondary Address Suppressed.

4051 GPIB Hardware Support @ 4'27

4051 GPIB TIMING DETAILS
Timing Details for READ

THE READ DATA BURST
Starting the Data Transfer

If the handshake sequence occurred normally while the primary talk address was on the bus,

the 4051 assumes that the correct peripheral device received the talk address and is prepared
to transmit 4051 internal binary data. The 4051, therefore, prepares to receive the first data
item. This preparation takes 37 us after ATN goes high, as shown in Fig. 4-16.

Transferring Numeric Data

If a numeric variable is specified in the READ parameter list, then the talker must transfer a
numeric data item formatted in 4051 internal floating-point notation. Each numeric dataitemis
transferred as an eight-byte floating-point number preceded by a two-byte header. (This
format is described in Appendix A.) If a numeric array is specified, each array element is
transferred as an eight-byte floating-point number with a two-byte header, one after anotherin
row major order. Fig. 4-17 illustrates the timing events which occur on the GPIB when a
number is transferred in floating-point using the READ statement. A step-by-step description
of the events follows the figure.

READ @2:A,B

ATN

379 s >} 424 | 1330 us | 730 !
pav [3724 ne—>1 u | - 379 ks |

I | U

84 us | l:?%m» |<-340u5->|<—>| 84 us —>| |<—

190 us
—{ |20 us

| | N | I o (| 1

DATA BUS
{ FIRST ['“SECOND
HEADER[:;: HEADER

BYTE [!i\ BYTE

Fig. 4-17. Handshake Sequence for a READ Numeric Data Burst.

4-28 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for READ

1. After ATN goes high atthe end of the addressing sequence, the talker is allowed to place the
first data byte on the Data Bus and wait for the lines to settle. The talker then waits for the 4051
to set NRFD high.

2. Whenthe 4051 is ready to receive the first data item, the 4051 sets NRFD high. This happens
37 us after ATN goes high.

3. Sinceanumericvariableis specified firstin the READ parameter list, the talker must send a
two byte header which tells the 4051 to prepare for an eight-byte floating-point number. The
first header byte must be decimal 32; the second header byte must be decimal 8. If the first two
bytes are not 32 and 8 respectively, then a data item mis-match occurs and the 4051 aborts the
READ operation.

4. Afterthe 4051 sets NRFD high, the talker sets DAV low. The 4051 responds by setting NRFD
low; the 4051 then captures the data byte on the Data Bus and sets NDAC high. This action
takes a minimum of 84 us.

5. When NDAC goes high, the talker sets DAV high, then places the second header byte on the
Data Bus. The 4051, in the meantime, analyzes the header byte to make sure that is is decimal
32. 295 us after DAV goes high, the 4051 sets NRFD high, indicating that it is ready to receive
the second byte of the header.

6. The handshake for the second byte of the header occurs the same as the handshake for the
first byte of the header. It takes 84 us (minimum) to execute.

7. The 4051 analyzes the second header byte to make sure that it is a decimal 8. In the mean
time, the talker places the first byte of the floating-point number on the Data Bus and waits for
the 4051 to set NRFD high. After 340 us of analyses, the 4051 sets NRFD high and the 8-byte
floating-point number is transferred as fast as the 4051 can gulp it in.

8. Since the header tells the 4051 all it needs to know about the numeric data item, the 4051
doesn’t analyze the next eight data bytes as thiey are brought into memory. The 4051 assumes
that the data is in the correct format, so all the 4051 does is receive the data bytes and place
them in memory. In this case, the first eight cata bytes after the header are assigned to the
variable A. The data burst during this part of the transfer is much faster. Each handshake cycle
is 190 us; this gives a burst rate of 5263.2 bytes/sec.

9. Aftertheeight data bytes arein memory, the 4051 has to stop and figure out where to store
the next eight bytes. This time, coupled with the last handshake cycle takes 730 us.

10. While the 4051 is placing the first numeric data item in memory, the talker prepares to

transfer the second data item. During the 730 us time lapse, the talker places the first byte of the
next header on the Data Bus and waits for the 4051 to set NRFD high.

4051 GPIB Hardware Support @ 4-29

4051 GPIB TIMING DETAILS
Timing Details for READ

Computing the Data Sampling Rate for Character String Data

Fig. 4-17 shows that the total time to transfer a complete numeric value over the GPIB is
2863 us. This gives an effective data sample rate of 349.3 samples/second.

Transferring Character String Data

If a string variable is specified in a READ statement parameter list, then the peripheral device
(acting as a talker) must send a character string preceded by a two-byte header. The header
must identify the data as a character string and tell the 4051 how many bytes are in the string.
The header byte can be any byte from decimal 64 to decimal 127. The second header byte can
be any byte from decimal 0 to decimal 255. (Refer to page 7-168 of the 4051 Graphic System
Reference Manual for a complete explanation of the header format).

After the header is analyzed by the 4051, the 4051 transfers the number of bytes specified by
the header. Each byte is treated as an ASCII character. For example, decimal 65 is converted to
an "A,” decimal 90 a "Z," and so on.

Fig. 4-18 illustrates the events on the GPIB when character strings are transferred during a
READ operation. Two character strings are transferred in this sequence and are assigned to A$
and BS$, respectively. Although A$ and B$ are dimensioned to eight characters each by a
previous DIM statement, the controlling factor which determines the size of the character
strings is the header. If the incoming character string is larger than the dimensioned size of the
target variable, all of the characters in the string are still transferred, but those characters
which fall out side the dimensioned size of the variable are discarded.

The events in Fig. 4-18 are discussed in a step-by-step fashion following the diagram.

-
1. Whenthe 4051 finds a string variable in a READ parameter list, the 4051 prepares to receive
acharacter string from the assigned talker. When the 4051 is ready, the 4051 sets NRFD high.
The talker, having already placed the first byte of the header on the Data Bus, responds to
NRFD by setting DAV low.

2. When DAV goes low, the 4051 goes through the handshake sequence and captures the data
byte. The 4051 then checks the data byte to make sure that the byte meets the requirements for

a character string header byte. If it doesn’t, the 4051 aborts the READ operation at this point.

3. While the 4051 is checking the first byte of the header, the talker places the second byte of
the header on the Data Bus and waits for the 4051 to set NRFD high.

4. Ittakes the 4051 system 211 us to analyze the first header byte. When the 4051 is finished,
the 4051 sets NRFD high.

5. Thetalkerrespondsto NRFD by setting DAV low, and the handshake on the second header
byte takes place.

4-30 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for READ

DIM A$(8), B$(8)

READ @2:AS$, B$
ATN

295 395 us 1330 '4 -
DAV t(— us —>t<— u —>!<———-—— us 910 us I 295 us —>|

Il i)
N ””T L1

—

)
I

p—]
—

1st
CHAR

2270-37

Fig. 4-18. Handshake Sequerice for a READ String Data Burst.

6. The 4051 checks the second header byte and determines how many bytes are in the
character string; in this example, eight bytes are in each string.

7. The analysis on the second header byte takes 311 us. The 4051 then sets NRFD high, and
the data burst for the character string starts.

8. Sincethe 4051 knows at this point how many bytes are in the character string, checking the
data stream for delimiters is not necessary. The 4051, therefore, stuffs the specified number of
data bytes into memory as fast as it can without looking at the data. Since the minimum
handshake cycle during this burst is 190 us, the burst rate during this phase of the transfer is
5263.2 bytes/sec.

9. Afterthelast byteinthe characterstringistransferred, the 4051 prepares to receive the next
data item. This time period plus the last handshake cycle is 910 us in duration.

4051 GPIB Hardware Support @ 4-31

4051 GPIB TIMING DETAILS
Timing Details for READ

Computing the Data Sampling Rate for Character String Data

Fig. 4-18 shows that the total time to transfer a character string into a 4051 memory with a
READ statement depends on the length of the string. For an eight-byte string, the time to
swollow the header is 690 us; the data burst for the first 7 bytes lasts for 1330 us, and the clean-
up period lasts for 910 us. The total time is 2930 us, so the data sample rate is 341.3
samples/second in this case.

In general:

Data Sample Rate=1/(690+((No. of Characters — 1) x 190)+910) E-6

THE UNADDRESSING SEQUENCE FOR THE READ STATEMENT

After the last data byte is transferred in a READ operation, the 4051 clears the GPIB by
activating ATN, issuing UNTALK and UNLISTEN, then releases ATN. This returns the GPIB to
anidle state and frees the peripheral device to go on aboutits business. Fig. 4-19illustrates the
timing events that occur on the GPIB when the unaddressing sequence is executed at the end
of a READ statement.

READ @2:A$

ATN t 380 us [

160 us | |
DAV X | 84 us |

"45”3_>l 18 s —>| |<— 18 us —>| J< |<-40us~>l
|
|
!

NRFD*

NDAC*

20 us—>] — 20 —»I

“NOTE:NRFD and NDAC are peripheral dependent responses. 2270-38

Fig. 4-19. Unaddressing Sequence for the READ Statement.

4‘32 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for WBYTE

TIMING DETAILS FOR WBYTE
INTRODUCTION

The WBYTE statement is used to individually transfer peripheral addresses and data bytes over
the GPIB, one at a time. Normally, this statement is used to communicate with peripheral
devices which cannot talk in ASCIl code or 4051 internal binary code. Unlike PRINT and
WRITE, the WBYTE statement gives complete control over all eight lines on the Data Bus. Any
binary bit pattern from 00000000 to 11111111 (decimal 0-255) can be sent to a peripheral device
over the Data Bus with ATN active or inactive, EOI active or inactive, or both ATN and EOI
active or inactive.

WBYTE gives complete control over the GPIB, however, the tradeoff for this versatility is
slower speed. The reason that WBYTE is slower than PRINT or WRITE is that the statement
overhead which normally occurs at the beginning of statements like PRINT and WRITE is
sprinkled through the data transfer during WBYTE operations. Normally, the necessary
conversions and preparations are made before activity occurs on the GPIB in statements like
PRINT. Inthe case of WBYTE, however, each parameter in the parameter listis converted to the
appropriate binary bit pattern just before it is transferred over the bus. The handshake cycle for
each data byte is also different, because the conversion time for each decimal value is different.

In addition to slower speed, the WBYTE statement calls for more detail in the parameter list.
The reason is that WBYTE is a more primative command (lower level) and much of the GPIB
protocol is not taken care of automatically. For example, specifying a peripheral device
numberin a WBYTE statement foran I/O address is not enough. The decimal equivalent of the
primary listen address or the primary talk address must be specified. Secondary addresses are
notissued automatically either, noris an UNTALK/UNLISTEN sequence issued automatically
to clear the bus at the end of the statement. All of these events must be specified in detail in the
WBYTE parameter list in order to make them happen.

TIMING DETAILS

Although the bus protocol (handshake sequence) for WBYTE is the same as in other BASIC
statements, the time delays between signal transitions is different; furthermore, the delays vary
as the parameters change. Because of this, two timing diagrams are discussed in detail to give
you an idea about the relative time required to execute a WBYTE statement. The timing events
for the statement WBYTE @66: are discussed first to give you an idea on how long it takes to
issue a primary talk address. Remember, however, that changing 66 to another value, say 67,
changes the total time it takes to execute the statement.

4061 GPIB Hardware Support @ 4-33

4051 GPIB TIMING DETAILS
Timing Details for WBYTE

The second discussion centers around the statement WBYTE @35:A, where A is a three
element array with the value of Pl (3.14159265359) for each element. When this statement is
executed, the primary listen address 35 is issued with ATN active low; ATN is released, then
each elementinarray Ais rounded to the integer 3 and the decimal 3 (00000011) is issued over
the bus three times. This is not only illustrates how a variable in the WBYTE parameter list is
automatically rounded to an integer, but it also illustrates how an array can be used to specify
data bytes in a WBYTE statement.

TRANSFERRING MY TALK ADDRESS FOR DEVICE 2 WITH WBYTE

Fig. 4-20 illustrate the timing events that occur on the GPIB when the statement WBYTE @66: is
executed by the 4051. A detailed discussion of these events follows the figure.

1. Normally, the GPIB is in an idle state (all line high, except NRFD and NDAC) before a
WBYTE statement is executed, (however, the GPIB doesn’thave to be idle). Since the firstitem
specified in the WBYTE parameter list in Fig. 4-20 is an @ sign, the 4051 starts the bus activity
by activating ATN (Attention).

780 us

A

NRFD

WBYTE @66:
| :]
ATN | 1640 us)
|
DAV 1165 ps I‘ 475 us :
|
|
|
18 us —*{ |-<— :
|
I
I
L

48 ,us-——»l

NDAC

— ‘

s

DATA BUS
1

2270-39

Fig. 4-20. Transferring One Peripheral Address with WBYTE.

4-34 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for WBYTE

2. 780 us after ATN goes down, the 4051 releases NRFD and NDAC checks to make sure that
both signals are not both high (inactive). If NRFD and NDAC are both high, the 4051 assumes
that a peripheral isn't out there, so the WBYTE opertion is aborted and the message GP
INTERFACE BUS I/0 ERROR is printed on the display. If NDAC and NRFD are both low, the
4051 waits until NRFD goes high, before proceeding. And if NDAC is low and NRFD is high, the
4051 assumes that all devices on the GPIB are ready to receive the first byte.

3. If the peripheral devices are ready, the 4051 places the binary equivalent of decimal 66 on
the Data Bus 780 us after ATN goes low. 385 us later, the 4051 sets DAV low which tells the
peripheral devices that the data byte on the Data Bus is valid and can be captured.

4. The peripheral devices individually respond at their own pace by first setting NRFD low.
They capture the data byte, then set NDAC high. The NDAC signal line goes high only after the
last device sets NDAC high. ‘

5. The 4051 responds the NDAC by setting DAV high. This indicates that the data byte is no
longer valid. The total time to complete this handshake sequenceis ata minimum 18 us (plus a
few nanoseconds).

B. Sincethecolon (:) isthe nextitem inthe parameter list, the 4051 knows that it should end the
addressing sequence. So, 409 us after DAV goes high, the 4051 takes the data off the Data Bus
and sets NRFD and NDAC low; 48 us after that, the 4051 releases ATN which ends the activity
on the bus.

Atthis point, device 2is authorized to place a cata byte on the Data Bus, but is not authorized to
activate DAV until NRFD goes high. Since the WBYTE statement is over, the 4051 thinks the
operation is finished and proceeds to the next BASIC statement in memory. If the next BASIC
statementis notan RBYTE statement which allows the 4051 to receive data bytes from device 2,
or if the next BASIC statement is not another WBYTE statement which assigns another
peripheral device onthe line to listen to device 2, then the bus will hang in this unfinished state
with device 2 trying to talk and no one to listen.

4051 GPIB Hardware Support @ 4_35

4051 GPIB TIMING DETAILS
Timing Details for WBYTE

4-36

TRANSFERRING MY LISTEN ADDRESS AND THREE DATA BYTES WITH

WBYTE

Fig. 4-21 illustrates the activity on the GPIB when the statement WBYTE @34: A is executed by
the 4051. Inthis case, A is athree element array with each element equal to Pl (3.14159265359).
A detailed step-by-step description of these events follows the diagram.

Transferring the Address

1. Whenthe WBYTE statementin Fig. 4-21 is executed, the GPIBisinan idle state with all lines
high, except NRFD and NDAC. Normally the bus is in an idle state, but doesn’t have to be.

2. The WBYTE statement in Fig. 4-21 starts with @34:, so the 4051 starts the bus activity by
setting ATN low; 910 us later, the 4051 places the binary equivalent of decimal 34 on the Data

Bus and releases NR

FD and NDAC.

3. Atthis point, the 4051 checks to make sure that NRFD and NDAC are not both high. If they
are both high, the 4051 assumes that nobody is out there and aborts the WBYTE operation. If
NRFD and NDAC are both low, then the 4051 assumes that a peripheral device is busy and
waits for NRFD to go high. If NDAC islow and NRFD is high, then the 4051 assumes that all the
peripheral devices on the bus are ready to receive the data byte.

DATA BUS

DIM A(3)
A =PI
| 17 [WBYTE @34:A
ATN | 80 4 [@3a:
| |
| l< ! |
| 1320 184 |
oav | us | ' 840 us I 830 us |
| |
| |
| U | LU U
! -»{ }1—18 |
- us
[910 us i i‘ 1000 43 |
| | |
| |
NRFD | !
L U 1
: |
|
| _ | _
| l I
npac! :
| 1
| |
| 1020 us

Varles as the Data Byte Varles.

NOTE: Since the Parameters Are Converted One ata Time Before They Are Issued, The Time Increment Between Each Data Byte

2270-40

Fig. 4-21. Transferring an Array of Data Bytes with WBYTE.

4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for WBYTE

4. If all are ready, the 4051 sets DAV low.

5. Each peripheral device on the bus must respond to DAV, because ATN is low. The devices
respond individually at their own pace by setting NRFD low and capturing the data byte; when
the byte is captured, the peripheral devices individually set NDAC high.

6. When allthe peripheral devices have set NDAC high, the signal line goes high. This tells the
4051 that all have captured the data byte, so the 4051 responds by setting DAV high. This tells
the peripheral device that the data byte is no longer valid.

7. Atthis point, the 4051 knows that it has issued decimal 34 with ATN down, but doesn’t know
whether 34 is a primary listen address, a primary talk address, or a secondary address. So, the
4051 returns the GPIB to its previous idle state before ATN was set low.

8. Approximately 400 us after the DAV is set high, the 4051 sets NRFD and NDAC low, then
releases ATN 48 us after that.

Transferring the Data Bytes

1. After the address 34 is transferred, the 4051 assumes that the correct peripheral device
received the address and is prepared to respond accordingly. In this case, 34 is the My Listen
Address for device 2 and the 4051 assumes that device 2 is prepared to receive the data bytes
about to be placed on the bus.

2. When ATN s set high, the 4051 leaves the bus momentarily to prepare the first data byte for
transfer. In this case, array A is specified as the data source, so the 4051 retrieves the value
assigned to the first element A(1), rounds the value to an integer, converts the integer to its
binary equivalent, and places the data byte on the Data Bus. In this case, the value of Pl is
rounded to decimal 3, and the binary number 00000011 is placed on the Data Bus. The
conversion time in this case is 952 us after ATN is released, but it varies in each case.

3. When the first data byte is placed on the Ciata Bus, the 4051 releases NRFD and NDAC and
checks the condition of the peripheral device. If NRFD is high and NDAC is low, the 4051 waits
for the data lines to settle, then starts the handshake by setting DAV low.

4. After the first data byte is transferred, the 4051 retrieves the value assigned to the second
element in array A, converts the value to its binary equivalent and places the byte on the Data
Bus. This cycle takes 830 us in this case.

5. The 4051 repeats the above operation until all the data assigned to array A is transferred
over the GPIB.

4-37

4051 GPIB Hardware Support @

4051 GPIB TIMING DETAILS
Timing Details for RBYTE

At this point, the statement is over and the 4051 moves on to the next BASIC statement in
memory. Normally, the next statement is a WBYTE @95,63: statement which clears the bus by
issuing UNTALK/UNLISTEN, or another WBYTE statement which contains more data bytes
for device 2. If device 2 is not released at this point with an UNLISTEN command, then the GPIB
hangs in this state until power is removed from the 4051 or until an INIT statement is executed
to reset the peripheral interface.

TIMING DETAILS FOR RBYTE
INTRODUCTION

The RBYTE statement is a primitive command (lower order) and can only be executed if an
active talker is waiting on the GPIB to talk to the 4051 or to another listener device. The only
way to set up this arrangement is to execute a WBYTE statement prior to the RBYTE statement
and assign a peripheral device as a talker.

If only one target variable is specifiedinan RBYTE statement, then the 4051 comes on the bus,
handshakes with the talker, captures a data byte, then leaves the bus. The decimal equivalent
of the data byte is assigned to the target variable; the 4051 then moves on to the next BASIC
statement in memory. The above activity on the GPIB lasts for 110 us.

If more than one target variable is specified in the RBYTE parameter list, then the 4051 keeps
handshaking and receiving data bytes until each variable has an assigned value. The
handshake cycle for simple numeric variables is 1.78 ms. The handshake cycle for array
variables is a little faster at 1.48 ms.

RECEIVING ONE DATA BYTE

Fig 4-22 illustrates the activity on the GPIB when the statement RBYTE A is executed (where A
is not an array). A detailed explanation of these events follows the figure.

1. After a peripheral device is assigned as a talker with a WBYTE statement (WBYTE @66: for
example), all the GPIB signal lines are high, except for NRFD and NDAC which the 4051 keeps
low. At this point, the talker should have the first Data Byte ready on the Data Bus and should be
monitoring NRFD, waiting for the line to go high so the transfer can begin.

2. The 4051 starts the RBYTE sequence by setting NRFD high. This tells the talker that the
4051 is ready to receive the first data byte.

4-38 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for RBYTE

RBYTE A

ATN* ~— 110 us

84 us g

DAV

:-4—21 us—>1

NRFD

26 us

DATA BUS |

*NOTE: The TALKER Must Already be Addressed by a Previous
WBYTE Statement. 2270-41

Fig. 4-22. Handshake Sequence for RBYTE.

3. Thetalker responds to NRFD by setting DAV low. This tells the 4051 that the data byte on
the Data Bus is valid and can be captured.

4. The 4051 responds 21 us later by setting NRFD low; 80 us after that, the 4051 captures the
data byte and sets NDAC high.

5. The talker responds to NDAC by setting DAV high. Since this is the only data byte that the
4051 wants, the 4051 terminates the RBYTE statement at this point; 26 us after DAV goes high,

the 4051 sets NDAC low, keeps NRFD low, then moves on to the next BASIC statement in
memory.

6. At this point, the operation is over as far as the 4051 is concerned. However, the talker
doesn’t know this because an UNTALK command has not been issued. The talker thinks the
4051 is busy digesting the first data byte, so it waits for NRFD to go high. If the next BASIC
statement is not a WBTYE @95: statement, then the talker might wait forever in this state and
not be allowed to continue its operations.

4051 GPIB Hardware Support @ 4-39

4051 GPIB TIMING DETAILS
Timing Details for RBYTE

RECEIVING MORE THAN ONE DATA BYTE

Fig. 4-23 illustrates the GPIB activity when more than one target variable is specified in the
RBYTE parameter list. A detailed explanation of these events follows the figure.

1. The handshake timing for receiving multiple data bytes with an RBYTE statement is the
sameas shownin Fig. 4-22. The only difference is that the 4051 keeps handshaking with atime
delay between each handshake. The time delay is of primary importance when determining the
data rate over the bus.

2. Thetime delay between handshakes is illustrated in Fig. 4-23. If simple numeric variables
are specified in the parameter list, then the handshake cycle is repeated every 1.78 ms until
every target variable has an assigned value.

3. If an array variable is specified in the parameter list, the handshake cycle is reduced to
1.48 ms until each element in the array has an assigned value.

4. After the last vaiable in the parameter list has an assigned data byte, the statement is over
and the BASIC interpreter starts executing the next BASIC statement in memory (or monitors
the 4051 keyboard for further input).

Fig. 4-23 shows that the input data rate for numeric variables is 1/1.78 ms which computes to
561.8 bytes/second.

RBYTEA,B,.C

ATN*

|€——————(1.48 ms if A is an Array) ——————>|

! |
1
| 1.78 ms 0 1.78 ms |

! | !

—| '4—34 us | 1
| | l
|

| | 1
F

NDAC

|

*NOTE: The TALKER Must Already Be Addressed by a Previous
WBYTE Statement. 2270-42

Fig. 4-23. Receiving Three Data Bytes with RBYTE.

4-40 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for Serial Poll

TIMING DETAILS FOR SERIAL POLL
INTRODUCTION

When a peripheral device on the 4051 GPIB needs service, the device requests service by
setting the GPIB signal SRQ (Service Request) active low. Because SRQ is a common line on
the GPIB, and shared by all devices, 4051 must execute a serial poll to determine which device
is requesting service. Serial poll operations are implementated within the 4051 BASIC
language. Normally, an ON SRQ THEN statement is executed firstin a BASIC program before
the main program in run. This statement tells the 4051 microprocessor where to branch in the
BASIC program when a GPIB device sets SRQ low. The branch normally directs the
microprocessor to a POLL statement in the BASIC program. This statement causes the 4051
controller to execute a serial poll on the GPIB. Since the parameters of the polling operation
are specified in a POLL statement, this statement gives the 4051 keyboard operator complete
control over the priority interrupt structure on the GPIB. The POLL statement returns with two
pieces of information: (1) the device requesting service, (2) the status byte for the device
requesting service. From this information, the BASIC program can select alternate courses of
action. Normally, a GOTO. . .OF statement is placed after the POLL statement to direct the
4051 to the beginning of the device service routine which is located elsewhere in the BASIC
program. On the bases of the status byte information, the BASIC program can be determined
whatkind of service the device needs and then take the appropriate action. Complete details on
how to use the POLL statement are given in the 4051 Graphic System Reference manual in
Section 7.

The rest of this text concentrates on the actual serial poll sequence itself and explains what
takes place on the 4051 GPIB during the execution of a POLL statement.

SERIAL POLL FLOW DIAGRAM

The flow diagram (Fig. 4-24) illustrates the 4051 controller routine during the execution of a
POLL statement. Refer to this flow diagram as you need to in orderto get a clear picture of the
serial poll sequence.

THE 4051 POLL STATEMENT TIMING DETAILS

Fig. 4-25 is a timing diagram that illustrates the events on the 4051 GPIB during the execution
of the statement 500 POLL M,W;2, 13;3;5. Three peripheral devices are connected to the GPIB.
Device number 2is a frequency scannerand is given the highest priority position in the address
list. In this case, device 2 needs a device dependent secondary address 13 to indicate that it
should send its status byte. Device 3 is a digital voltmeter connected to the GPIB. In this
example, device 3 requests service by holding the SRQ line low on the GPIB. Because device 3
is requesting service, bit 7 in its status byte is set to a binary 1. Device 5 is a Tektronix 4924
digital tape unit. Because the 4924 tape unit requires the least amount of service in this
arrangement, the tape unit is listed last in the POLL statement address list.

4051 GPIB Hardware Support @ 4-41

4051 GPIB TIMING DETAILS
Timing Details for Serial Poll

START
SERIAL POLL

Set ATN Low

!

Issue UNLISTEN
and SERIAL POLL ENABLE

!

Issue Primary Talk
Address and Secondary =
Address (If Specified)

!

Assign Self as Listener
and Release ATN

!

Receive Status
Byte from Talker

!

Set ATN Low

Have All
Addresses Been

Issued
?

Assign @ to both
Issue UNTALK e———————— Variables in POLL

and Serial Poll Disable

t

Release ATN

END
SERIAL POLL
2270-43

Fig. 4-24. 4051 Serial Poli Flow Diagram.

Statement

4-42 @ 4051 GPIB Hardware Support

. 4051 GPIB TIMING DETAILS
Timing Details for Serial Poll

SERIAL POLL
DISABLE (25)
UNTALK (95)

114
|
]
]
|
]
us
e |
1 1
i
|
—
]
|
|
i
|
1
1
|
|
A\

385 s —|
1
1
[
us
™
n
i
|
[
[
133 us
[
1
T us '
1
i
i
|
2l
-I143us
i
|
|
N

385 us
|

STATUS BYTE
to 4051 (64)

BIT 7 IS SET

653 us

=

“SDEVICE 3

—»‘J-—
180 us
120;;5'.._..,
!
1
|
|
I
|
RS
1
i
1
200 us
1
1
1
1
|
|
|
I
|
I
!
|

620 us

|
|
[}
—
|
[
i
—
i
|
I
—
I
|
1
I
=

I
Je
1

350 ps ——>|=—200 prs {653 113
;
I
TALK (67)

\ \PRIMARY
RY
620 us
440 us

DEVICE 3 SETS SRQ
500 POLL M, W; 2, 13; 3
o
PRIMARY
SECON
|
)
|
1
|
100 us
68 us
| 44 ”s_,l l"'—
‘%'
1
|
1
1
I
70 us
|
T<>1
|
i i
70 us
——fe— 308
|
1
1
|
T
|
|
t
i
[
[
0 us :l
1
|
|
|
|
1
i
1
|
!
1
STATUS BYTE
TO 4051 (9)

1
1
1
us

7
i
!
f\

653 us

—
—
be

%

¥

|

T

1

}

—

1

|

¥

|

I

1

—

|

1

|

v

'

s p—

I

1

]

T

| b

i

70 us

I:_—G53

—

i

|

]

¥ 4

|

|

1

1

—

I
3 e

I

—

|

|

i

I

|

)
SECONDARY
ADDRESS (109)

110 us
1
|
|
|
1
|
|
!
!
!

18 us —»{
350 us
DEVICE 2
TALK (66)

|
~
|

(]
T
|
|
-

700 us

1020 us
18 us —>J<-

s .| 1
{ } 360 us
84 us
J 1
o
1
1 i
-
i 1
| |
[
| . 490 us
| 1
| Yoo
e [oV
700 s
]
[i
1
490 us
o
o
o
I
|
I
|
\ I
e
95 s !
]
1
[}
Lo
! !
I
1
|
) I
]
b
:\ SERIAL POLL
!\ ~

:
z _ 4

o

- & 1A

kB oo B | [

wed -L el P === FI-- - - -=|--=- il --

£ @ _\r. g g 78 g

- o 3

=5y S SN A NI & SRS S N
- 0 -

535 ¢ 2 m_ HIEE 5 5| s | %3 3 5

- a8 < o z 2zl @ o o o o o o o

Fig. 4-25. 4051 serial poll timing diagram.

@ 4-43

4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for Serial Poll

Assume that the 4051 is executing a BASIC program and device 3 (the digital voltmeter) sets
SRQ on the GPIB to a low state. This causes the 4051 to branch to a previously executed ON
SRQ THEN 500 statement to see how to handie the SRQ interrupt. The 4051 then branches to
the statement 500 POLL M,W:2,13;3;5 and executes at serial poll on the GPIB as follows:

1. The 4051 controller starts the serial poll operation by releasing NRFD and NDAC, then set
ATN low. This causes all peripheral devices on the GPIB to stop what they are doing and
prepare to receive and decode addresses and controller commends.

2. After 45 us, the 4051 places the command UNLISTEN (decimal 63) on the bus, waits 21 us
for the lines to settle, then sets DAV low.

3. Thethree devices on the bus handshake with the 4051 in unison and receive the UNLISTEN
command byte. This clears the listen state of every device on the GPIB.

4. Next, the 4051 issues the command SPE (serial poll enable—decimal 24). The devices on
the GPIB handshake in unison and receive this command. SPE tells each device that the 4051 is
executing a serial poll. Each device at this time updates its status byte and prepares to transmit
its status byte to the 4051 when device is the assigned to be a talker. The SPE command is
issued 84 us after the handshake is finished on the UNLISTEN command byte.

5. After SPE is transferred over the GPIB, the 4051 prepares to transfer the primary talk
address and the secondary address (if one is specified) to the first device listed in the POLL
statement address list. In this case, device 2 is listed first with secondary address 13. The 4051,
therefore, issues decimal 66, followed by decimal 109. This tells device 2 to be ready to transfer
its status byte.

6. After secondary address 13 is transferred, in this case, the 4051 assigns itself as a listener,
sets both NRFD and NDAC low, then releases ATN.

7. Device 2 responds to the high (inactive) ATN signal by placing its status byte on the GPIB
Data Bus. In this case, assume the status byte for device 2 is decimal 0 (all lines high).

8. After 485 us,the 4051 handshakes with device 2 and receives the status byte. Since bit 7 (on
the D107 line) is not set to a binary 1, the 4051 assumes that device 2 is not requesting service.

9. Sixty-eight microseconds after the status byte for device 2 is received, the 4051 sets ATN
low. This causes all devices on the GPIB to listen again to the GPIB.

10. The 4051 places the talk address for device 3on the GPIB (decimal 67), then sets DAV low.
All devices handshake with the 4051 and receive the talk address.

11. Device 3 prepares to send its status byte. Device 2 at this time must interpret the talk
address for device 3 as an "implied” untalk command and gets off the bus. Device 5 does not

recognize the device 3 talk address and remains idle.

4-44 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Timing Details for Serial Poll

12. The 4051 then assigns itself as a listener again, holds both NRFD and NDAC low, then
releases ATN.

13. Thistime device 3 places its status byte on the GPI1B Data Bus and waits for the 4051 to set
NRFD high. Since device 3 is holding SRQ low on the GPIB, bit 7 in its status byte is set low
(true).

14. 485 us after the 4051 releases ATN, the 4051 handshakes with device 3 and receives the
status byte. This action tells device 3 to release SRQ. SRQ goes high at this time (unless device
5 is also requesting service, or unless device 2 has set SRQ low after it was polled).

15. Since bit 7 is set to binary 1 in the status byte for device 3, the 4051 knows that device 3 is
requesting service. The 4051, therefore, assigns the number 2 to the variable M, because device
3 is the second device in the POLL statement address list. The 4051 also assigns the decimal
equivalent of the status byte (decimal 64 in this case) to the variable W. This allows the BASIC
program to analyze the meaning of the status byte in BASIC the statements to follow.

16. The 4051 terminates the serial poll operation at this point. The 4051 sets ATN low, then

issues the command UNTALK (to unaddress device 3) and SPD (serial poll disable—decimal

25). SPD tells each device on the GPIB that the serial poll is over. The 4051 then releases ATN
and leaves the GPIB.

At this point, the 4051 executes the next BASIC program statement in memory (the line
following the POLL statement). If the next statement is a RETURN statement, the 4051
branches back to the pointin the BASIC program where it was interrupted in the first place and
continues with the main program. Normalily, however, the next statement after the POLL
statement is a GOTO M OF statement or a GOSUB M OF statement that directs the BASIC
interpreter to the service routine for device M (device 3 in this case). A RETURN statement
following the service routine directs the 4051 back to the point in the main program where the
SRQ interruption first occuered. (See Section 7 in the 4051 Graphic System Reference manual
for full details.)

4051 GPIB Hardware Support @ 4-45

4051 GPIB TIMING DETAILS
Using EOI to Terminate a Data Transfer

USING EOI TO TERMINATE A DATA TRANSFER

The EOl signal line onthe 4051 GPIB is a general purpose control line normally used to signal
the end of a data transfer. Although EOI can take on additional meaning at the option of the
peripheral designer, the 4051 always interprets EOIl as meaning "End of Transfer”.

If the transmitting device activates EOl to mark the end of a data transfer, EOl must be activated
just prior to DAV going low on the last data byte transferred. EOl must then stay low until the
handshake is complete and the receiving device sets NDAC inactive high. The timing for this
event is shown in Fig. 4-26.

DAV

DIO1-DIO8 :

EOI

2270-45

Fig. 4-26. Activating EOI with the last data byte.

Normally, the receiving device captures the active state of the EOI signal at the same time the
last data byte is captured and treats the EOl signal as a ninth data bit in the byte. The receiving
device should interpret EOl data byte combination the same as it would if a CR delimiter is
received. For example, if the 4051 is executing the statement INPUT @2:A$,B$ and the
transmitting device issued EOl with a data byte, the 4051 assigns all the characters received up
to that point to A$ (including the data byte that was being passed when EOI went active). The
transmitting device then continues to send characters to the 4051 until EOl goes active again,
or until CR is issued, or until both events occur simultaneously. At that point, the 4051
terminates the INPUT because B$ is the last variable specified in the INPUT statement. In all
cases, the 4051 treats the data byte/EOI combination as data byte/CR.

If the 4051 is transmitting data over the GPIB, the 4051 always activates EOI with the last byte
transferred, except during a WRITE operation. Since WRITE operations transfer internal
binary data and each data item has a header describing the iength of the item, the 4051
assumes that the receiving device is able to read the header and determine when the last byte is
being transferred. (See Appendix A for the details on interpreting the binary header format.)

4-46 @ 4051 GPIB Hardware Support

4051 GPIB TIMING DETAILS
Using EOI to Terminate a Data Transfer

Using EOI to Terminate a Peripheral to Peripheral Transfer

Sometimes it is desireable to have one peripheral device talk directly to another peripheral
device on the GPIB without involving the 4051. For example, you might want to transfer data
from a digital voltmeter to a line printer or a storage device. The following example illustrates
how one peripheral device is assigned a talker role and several other peripheral devices are
assigned listener roles. This sequence starts a direct transfer from one peripheral device to
another peripheral device. The transfer is terminated when the transmitting device activates
the EOI signal line on the GPIB for at least 350 microseconds.

140 REM Set Up Transfer

150 ON EOI THEN 180

160 WBYTE %95,63,70,109,52,35:

170 WAIT

180 WBYTE @95,63:

190 REM Continue with BASIC program

When line 150 is executed under program control, the EOI (End or Identify) interrupt facility is

activated. This tells the BASIC interpreter to be on the lookout for an active EOI signal line on
the GPIB. When EOI goes active at a later time, the BASIC interpreter will transfer program

control to line 180.

Line 160 is executed next. The UNTALK and UNLISTEN commands make sure the GPIB is
clear. Primary talk address 70 then tells peripheral device number 6 that it is going to be the
talker for the upcoming data transfer. Secondary address 109 tells device 6 to start sending
ASCll data overthe GPIB as soon as the ATN signal line is released. The primary listen address
for device 20 is issued next (decimal 52), followed by primary listen address for device 3
(decimal 35). This tells peripheral device 20 and peripheral device 3 to start listening to the
talker when the ATN signal line is released. The percent sign (%) is specified in this case
instead of the "at” sign (@); this tells the 4051 BASIC interpreter to get off the bus and let the
assigned talker take over when the ATN line is released. The colon inthe WBYTE statement (;)
causes the BASIC interpreter to release ATN.

At this point, the talker (device number 6) takes over the bus and starts sending data to device
number 20 and device number 3. The BASIC program in the meantime goes to line number 17@
and waits patiently for the talker to activate EQ! as the last byte of data is transferred over the
bus. When EOl is activated (for at least 350 us), program control is tranferred to line 180 where
the BASIC interpreter activates the ATN signal line and issues the universal commands
UNTALK/UNLISTEN over the GPIB. This places all active peripheral devices on the GPIBin a
known quiescent state and terminates the 1/O operation. BASIC program execution continues
on normally from that point.

4051 GPIB Hardware Support @ 4-47

Section 5

4051 GPIB DATA RATES

FACTORS THAT CONTROL GPIB DATA RATES

This section discusses the methods used to calculate GPIB data rates for the 4051 Graphic
System. The variables that control the data rates are also examined. Fixed values are then
established for these variables to illustrate how accurate data transfer rates can be calculated
for a given application. This section also contains the technical details about the data rates and
their origin.

MAXIMUM IEEE STANDARD 488-1975 DATA RATES

The IEEE Standard 488-1975 defines the maximum rate of transfer on the GPIB to be 250K
bytes/second using 48 mA open-collector bus drivers and 1 mega bytes/second using 48 mA
tri-state drivers (clause 31 on page 99). These figures are based only on the electrical
limitations of the bus. More important are the design limitations of the devices connected to the
bus. These design limitations are the dominant and controlling factors that determine the
maximum transfer rates for any one system.

THE GPIB IS AN ASYNCHRONOUS BUS

Asynchronous means that the GPIB operates at the speed of the slowest device taking partina
transfer at any one time. If two devices are relatively fast, then the data transfer rate will be
relatively fast. But, if a fast device is transferring data to a slower device, the bus operates at the
speed of the slower device. If many devices are connected to the bus at one time, then the data
rate will vary according to the devices that are taking part in a particular transfer.

WHY GPIB DATA RATES ARE DIFFICULT TO COMPUTE

Data rates for asynchronous GPIB operations are difficult to compute because the data rate
varies as different devices are connected to the system. Furthermore, a device may be fast
during some phases of its operation and slower during others. And, in some cases this speed
variance depends on the type of data being transferred at the time (character string data or
numeric data) and the data format (ASCII code, binary code, BCD, etc.). In addition, the data
rate may also depend on the programed state of a transmitting or receiving device, if the device
is programmabile.

4051 GPIB Hardware Support @

5-1

4051 GPIB DATA RATES
Factors That Govern the 4051’s Performance on the GPIB

52

Taking all these factors into account, it can be seen that general statements about GPIB data
rates need to be well qualified and the system parameters well defined. The details of each
application must be investigated before an attempt can be made to calculate the data rate. In
some cases, a system must be puttogether and placed in operation, then timing measurements
made with an oscilloscope or logic analyzer to determine the actual data rates for each type of
data transfer.

FACTORS THAT GOVERN THE 4051’'s PERFORMANCE ON THE GPIB
Essentially three factors govern the 4051’s speed on the GPIB.

1. The 4051 is a Microprocessor Controlled Device. The microprocessor within the 4051 gives
the 4051 the advantage of low cost and versatility — while maintaining a high degree of
reliability. The microprocessor itself is fast, running on a 1.2 microsecond cycle. On the
average it takes 4 clock cycles to execute a microprocessor instruction, and it takes several
microprocessor instructions to respond to an event on the bus. Because of this, the 4051’s
response to an event on the GPIB is governed by how many microprocessor instructions are
programmed into the routine which responds to the event. The number of microprocessor
instructions usually depends on how the 4051 is programmed at the time of the transfer; that s,
it depends on which BASIC statement is being executed and how that statement is
constructed.

2. The 4051 is an Intelligent Device. Any device which can be programmed, can perform a
multitude of tasks not normally possible with a strictly hardware design interface. Forexample,
the 4051 not only has the ability to receive information over the GPIB, but at the same time it has
the ability to analyze and process the information as it is being received. The more the 4051 has
to "think” during a process, the more time it takes to perform the task. As an example, if the "%"
mode is specified in an INPUT operation, the 4051 must check the incoming data stream for
alternate delimiters along with the many other tasks it must perform. This additional task adds
more time to the transfer and the effective data rate is decreased.

3. The General Purpose Input/Output Data Buffer is 72 Characters in Length. ASCI| data

traveling into and out of the 4051 memory passes through a general purpose input/output data
buffer. The length of this buffer corresponds to the maximum length of a BASIC program line
(72) and also to the default length of a character string (72).

During ASCII data transfers to and from peripheral devices over the GPIB, the data appears to
travel in 72 character bursts. The time between the bursts represents the time it takes the 4051
microprocessor to load, process, and remove the data from the I/0 buffer. This time is called
buffer overhead.

@ 4051 GPIB Hardware Support

4051 GPIB DATA RATES
Assumptions that Must Be Made When Using 4051 Data Rates

The 4051 buffer overhead depends on what the microprocessor has to do with the data in the
buffer. On an INPUT operation involving numeric data, the buffer sorting characteristics are
dependent on the data format. If numeric variables are specified in the INPUT statement, for
example, the microprocessor stops the data transmission after a delimiter is encountered or
after 72 characters are received, whichever occurs first. The data stream is then examined for
valid numeric data. In this process, the microprocessor ignores all non-numeric characters;
the processor converts the numeric data iterns from ASCII code to internal floating-point
format, then stores each data item in memory.

Floating-point conversions take time, and it's hard to predict how much time; it depends on the
data format. If, forexample, 72 characters are input and each data item contains 10 characters
each, then only seven floating-point conversions have to be made before the microprocessor
can get back to the bus and input more data. But if each data item in the buffer is one character
in length with a one character delimiter (i.e., 1,2,3,4,...) then 36 floating point conversions have
to be made before the processor can get back to the bus to input more data. The buffer
overhead time in the latter case is approximately five times longer. It is apparent then that the
data format plays a major role in determining the buffer overhead and the over-all effective data
rate.

ASSUMPTIONS THAT MUST BE MADE WHEN USING 4051 DATA RATES

Because there are so many variables which affect the data rates on the GPIB, a few
assumptions must be made concerning the 4051’s performance on the GPIB. The data rates
quoted in this manual assume that all peripheral devices respond instantly to the 4051 at all
times. If the peripheral device slows the 4051 up at any point, then the stated data rates may not
be achieved. Second, each data rate depends on a specific set of conditions. |If these conditions
change, then the data rates will change accordingly.

4051 GPIB DATA RATE SUMMARY

Table 5-1 lists the maximum effective data rates that can be achieved on the 4051 GPIB with the
4051 taking part in the transfer. This table summarizes the conclusions that can be drawn from

material in the rest of this manual. Note that these figures are approximate values. Also be
aware that the figures are valid only if the 4051 is not slowed down by a peripheral device taking
part in the transfer.

In most cases, the number of data samples (or readings) that can be transferred to and from the
4051 in one second is different than the number of data bytes that can be transferred on one
second. |n most cases the data byte transfer rate is misleading. On the other hand, the data byte
transfer rate is sometimes easier to specify exactly. Forexample, the chart shows thatduring a
READ operation, data bytes are transferred at a rate of 5236 bytes/second. However, the
maximum data sample rate is 350 samples/second. This data sample rate is fixed for READ
operations; it varies with INPUT operations, depending on the number of data bytes in each
sample.

4051 GPIB Hardware Support @ 5-3

4051 GPIB DATA RATES

Maximum Effective 4051 GPIB Data Rates

Exercise caution when you use these figures. Make sure you understand where the figures
come from by studying the rest of this manual. Then you can be reasonably sure that your

GPIB data rate calculations are accurate.

Table 5-1

MAXIMUM EFFECTIVE 4051 GPIB DATA RATES

DATA SAMPLE

DATA SAMPLE

DATA BYTE TRANSFER RATE TRANSFER RATE
BASIC TRANSFER RATE (10 Bytes/Sample) (10 Bytes/Sample)
STATEMENT | DURING A BURST (<72 hyte total) (=>72 byte total)
PRINT @2:A; 7936.5 Bytes/Sec 793.7 Samples/Sec UNKNOWN (Depends
on the Format)
PRINT @2:A$; | 7936.5 Bytes/Sec 793.7 Samples/Sec UNKNOWN (Depends
on the Format)
DIM A (100)
INPUT @2:A 4098.4 Bytes/Sec 409.8 Samples/Sec 293.5 Samples/Sec
INPUT %2:A$ 3984.1 Bytes/Sec 398.4 Samples/Sec 368.5 Samples/Sec
WRITE @2:A 7936.5 Bytes/Sec 500.5 Samples/Sec 500.5 Samples/Sec
WRITE @2:A$ | 7936.5 Bytes/Sec 421.9 Samples/Sec 421.9 Samples/Sec
DIM A (100)
READ @2:A 5263 Bytes/Sec 350 Samples/Sec 350 Samples/Sec
DIM A$ (1000)
READ @2:A$% 5236 Bytes/Sec 731 Samples/Sec 731 Samples/Sec
WBYTE A
(A is an Array)| =~1190 Bytes/Sec ~1190 Samples/Sec* ~1190 Samples/Sec*
RBYTE A,B,C 561.8 Bytes/Sec 561.8 Samples/Sec* 561.8 Samples/Sec*
DIM A (1000)
RBYTE A 675.7 Bytes/Sec 675.7 Samples/Sec* 675.7 Samples/Sec*

*Assumes a 1 Byte Sample

5-4

4051 GPtB Hardware Support

4051 GPIB DATA RATES
Computing 4051 GPIB Data Rates

COMPUTING 4051 GPIB DATA RATES

During the course of an input or output operation over the 4051 GPIB, six events occur in
sequence. These events are graphically illustrated in Fig. 5-1.

STATEMENT | ADDRESSING DATA BUFFER STATEMENT UNADDRESSING
OVERHEAD SEQUENCE BURST | OVERHEAD | TERMINATION SEQUENCE
2270-46

Fig. 5-1. Six Timing Events During a GPIB Data Transfer

THE STATEMENT OVERHEAD TIME PERIOD

When the 4051 BASIC interpreter executes an input or output statement, the interpreter first
examines the statement to see what's there. The interpreter must determine whether the
statement is an INPUT statement, a READ statement, or a PRINT statement, etc. The
interpreter must look at the I/0 address and analyze the address to see if default values are
needed. The interpreter must look at the parameter list to see if string variables, numeric
variables, or array variables are specified. If numeric expressions are specified for output, the
interpreter must reduce the expressions to numeric constants before anything else is done.

This analysis time is called "statement overhead”. This time period starts when the program
line counter advances to the BASIC statement and ends when the first activity occurs on the
bus. The statement overhead is variable and depends entirely on how the statement is
constructed. Furthermore, the overhead may involve the execution of other BASIC statements
and functions. Details on how to compute the statement overhead for PRINT, INPUT, WRITE,
READ, WBYTE, and RBYTE are given later on in this section.

THE ADDRESSING SEQUENCE

The first activity on the bus marks the beginning of the second timing event; the BASIC
interpreter activates ATN, issues the 1/0O address for the peripheral device specified in the I/0
statement, then releases ATN. This is called the Addressing Sequence and is shown in Fig. 5-1.

4051 GPIB Hardware Support @

55

4051 GPIB DATA RATES
Computing 4051 GPIB Data Rates

THE DATA BURST TIME PERIOD

The data burst is the third event in the 1/O operation and starts when ATN goes inactive high
after the addressing sequence. At this time, the BASIC interpreter starts transferring data bytes
over the GPIB at the maximum rate for the given operation. On input operations, data bytes are
received over the bus from the specified peripheral device and are placed in the general
purpose input/output buffer (henceforth called "1/0 buffer”). On output operations, the BASIC
interpreter takes data bytes out of the I/0 buffer and places them on the GPIB Data Bus. Since
the ASCII data 1/0O buffer can hold a maximum of 72 characters, the data burst may last as long
as it takes to transfer 72 characters.

THE BUFFER OVERHEAD TIME PERIOD

The buffer overhead time period (henceforth called "buffer overhead”) begins at the end of
every data burst and lasts for a variable amount of time, depending on the operation being
performed. On output operations like PRINT, for example, the buffer overhead is the time it
takes the BASIC interpreter to convert the specified data from internal binary format to
external ASCIl format and to load the data into the I/0O buffer. On input operations like INPUT,
the buffer overhead is the time it takes the BASIC interpreter to analyze the data from the /0
buffer and place the data in the random access memory (RAM). In all cases, the buffer
overhead depends on the quantity of data in the buffer and the format of that data; this time
varies in each case. If the data stream contains more than 72 characters, then the data bursts
and buffer overhead time periods will be intermixed. This must be taken into account when
calculating the data rate for a particular transfer.

STATEMENT TERMINATION TIME PERIOD

This time period occurs at the end of every data transfer on the GPIB. During this time, the
BASIC interpreter checks to ensure that all the specified data has been output on output
operations and verifies that enough data and the right kind of data has been received on input
operations.

UNADDRESSING SEQUENCE TIME PERIOD

After the BASIC interpreter is sure that the conditions of the 1/O operation have been satisfied,
the interpreter activates ATN, issues the universal commands UNTALK and UNLISTEN, then
releases ATN. This clears the bus and returns every peripheral device to an idle state. After this
sixth and last event, the 4051 program line counter advances to the next line number in memory
and program execution continues from that point.

5-6 @ 4051 GPIB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for PRINT

The rest of this section examines each of these six events in detail for PRINT, INPUT, READ,

WRITE, WBYTE, and RBYTE operations. Details are given on methods that can be used to
compute the time for each event for a particular data format. Examples at the end of each
statement show how data rates are calculated for typical data formats.

COMPUTING EFFECTIVE DATA RATES FOR PRINT
Introduction

The PRINT statement is used to transfer data in ASCII code format to a peripheral device over
the GPIB. Only one peripheral device can receive the ASCII data string at a time (unless
another device has been previously addressed as a listener with a WBYTE statement and is still
on the bus.)

Any sequence of ASCII characters (decimal 0 through 127) can be transferred over the bus;
and, for all practical purposes, the length of the output data string is unlimited if a PRINT
USING format string is specified. (Refer to the PRINT statement and the IMAGE statement in
the 4051 Graphic System Reference Manual for details.)

Because of this versatility and infinite variation, the PRINT statement overhead and setup time
is practically impossible to calculate. The set-up time depends on how the parameter list is
constructed; a slight variation in the statement (like replacing a semicolon with a comma, for
example) may cause a significant variation in the setup time.

When a PRINT statement is executed, the BASIC interpreter prepares 72 characters at atime
for transfer. The datain the parameterlistis formatted into an ASCH character string according
to the guidelines set forth in the IMAGE format string or the default print format, which ever is
specified. As soon as the I/0O buffer receives 72 characters, the 4051 stops the formatting
operation and transmits the data as fast as it can (7936.5 bytes/sec. maximum). After the 72nd
byte is transferred, the 4051 resumes the formatting operation until the 1/0 buffer is full again.
This procedure continues until all of the data in the PRINT parameter list is transferred.

Since the IMAGE format string determines the number of characters that are added and

deleted from the data string at any one time, the setup time (time between data bursts) is
differentin each case. Generally, thistimeis close to 15 ms, but may be as iong as one second.

4051 GPIB Hardware Support @ 5-7

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

Computing Data Sample Rates For 72 Characters or Less

Since the first 72 character data burst in a PRINT statement has an upper limit of 7936.5
bytes/second for a data rate, the maximum data sample rate is computed by dividing the
number of characters in the data sample into 7936.5. The following examples illustrate how to
compute the data sampling rate for PRINT.

Example 1
PRINT @2: 1;2;3;4,5;6;7;8;9

Knowing that the default PRINT format inserts a space before each numberin the ASCII string,
each number (or sample) contains two characters. The data sample transfer rate is therefore
7936.5/2 = 3968.5 samples/second.

Example 2
PRINT @2: 1,2,3,4,5,6,7,8,9

Knowing that the comma delimiter in the parameter list calls for a TAB, the default PRINT
format places each data sample in a 18 character field. Space characters are used to fill in the
fulfilled slots in the field. With 18 characters per sample, the data sample transfer rate is
7936.5/18 = 440.9 samples/second.

It can be seen from these two examples that aslight difference in the PRINT parameter list can
make a big difference in the data sample rate; a detailed knowledge of the PRINT format is
necessary when it comes to computing the PRINT data sample rate.

COMPUTING EFFECTIVE DATA RATES FOR INPUT

Introduction

The INPUT statement is used to transfer data in ASCII format from a peripheral device on the
GPIB to the 4051 random access memory. Only one peripheral device can take part in the
transfer at any one time. Since most peripheral devices on the market today transfer data in
ASCII format, the INPUT statement is the most commonly used statement to input data. The
data does not have to be formatted in ASCII code, but the 4051 treats the data as ASCI| code by
stripping off the eighth bit in each byte, then converts each byte to its ASCII character
equivalent. The data is treated as a character string or numeric data, depending on the target
variable specified in the INPUT statement. If a string variable is specified, forexample, then the
incoming data bytes up to the first CR (or alternate delimiter, if one is specified) are treated as a
character string. If a numeric variable, an array variable, or a subscripted array variable is
specified, then the BASIC interpreter searches through the incoming data stream for valid
numeric data items; when numeric data is found, the interpreter assigns the data to the
specified numeric variable. Numeric data must be separated by one or more non-numeric
characters such as spaces, commas, etc.

5-8

®

4051 GPIB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

Advantages of Using the INPUT Statement

1. The data format (ASCII code) conforms to the format of many peripheral devices on the
market. :

2. The numeric format can be a "free” format; that is, any sequence of digits 0 through 9. An
embedded decimal point and scientific format (E notation) are allowed. (Refer to page C-17 in
the 4051 Reference Manual for details.)

3. When numeric variables are specified in an INPUT statement, all non-valid numeric
characters, such as NULL characters or extraneous alphanumerics, are automatically thrown
out.

Disadvantages of Using the INPUT Statement

1. It's a slower form of input. Since a great deal of freedom is given to the data format, the
BASIC interpreter must constantly scan the data stream for valid data and valid delimiters; this
slows down the transfer rate.

2. Theperipheral device must activate EOI, send a valid delimiter, such as CR, or an alternate
delimiter as specified in a PRINT @37,0: statement. (See page 2-25 in the 4051 Reference
Manual.) If a valid delimiter is not sent to the 4051, then the 4051 continues to address the
peripheral device asking for more data, even if all the target variables in the INPUT statement
have assigned values. This continues until a valid delimiter is sent, or until the BREAK key on
the 4051 keyboard is pressed twice and program exeuction is aborted.

Procedure for Computing INPUT Date Rates

INPUT data rates are the most difficult to compute. The data rate depends on many factors and
is different in each application. Basically, the time it takes to complete an INPUT operation is
computed by determining the INPUT statement overhead time period, the addressing period,
the data burst periods, the buffer overhead period for each data burst, the statement
termination period, and the unaddressing period. These time increments are then added
together to arrive at a total time for the 1/O operation. After this time has been determined, the
datarate is computed by dividing the number of data bytes transferred by the total time taken to
complete the operation. The data sampling rate can be determined by dividing the number of
data samples transferred into the total time.

4051 GPIB Hardware Support @ 5-9

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

Computing the Statement Overhead for INPUT

The statement overhead is a function of the statement format. First determine what the format
of the 1/O address is, then look up the time for that format in Table 5-2. Next, examine the
paramter list and determine how many numeric variables, array variables, subscripted array
variables, and string variables are listed. Add .8 milliseconds for each numeric variable, array
variable, and string variable. Add 5.4 millisconds for each subscripted array variable. Add all
these time increments together to determine the statement overhead period for that particular
statement: this specifies the delay from when the BASIC interpreter first looks at the BASIC
statement to the time when the first activity occurs on the GPIB.

Table 5-2

COMPUTING THE STATEMENT OVERHEAD FOR INPUT
STATEMENT T format COMMENTS TIME INCREMENTS FORTARGET VARIABLES
INPUT @2: 58 ms T rumeric = .8 ms
INPUT @P: 5.2 ms P=2
INPUT @2,13 7.8 ms Tarray = .8 ms
INPUT @2,S: 7.2 ms S #32
INPUT @P,13 7.0 ms P= Tslring = .8 ms
INPUT @P,S: 6.6 ms S #32
INPUT @2,32: | 7.5 ms Tsub array = 5.4 ms
INPUT @P,32: | 7.0 ms pP=2
INPUT @P,S: 6.6 ms S =32
INPUT @2,S: 7.2 ms S =32

The Formula

Statement Overhead = Tromat & N X Toumeric + N X Tamay T N X Toring = N X Taub armay

where n = number of variables in each category

Example 1 DIM A (100)
INPUT @2:A,B$,C,D,E(4,3)
Statement = 58ms+2x.8ms+ .8ms+.8ms+ 54 ms=14.4 ms.
Overhead
Example 2 INPUT @P,S: A$,B$,C.D,E

Statement Overhead =6.6 ms+5x.8 ms =10.6 ms

5'1 0 @ 4051 GPiB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

The Addressing Period for INPUT

Calculating the addressing time period is simple. If a primary address and/or a secondary
address other than 32 is specified in the INPUT statement, then the BASIC interpreter issues
one primary address and one secondary address. This takes 308 us (minimum). If the
secondary address 32 is specified, then the secondary address is suppressed, and the BASIC
interpreter issues only the primary address. This takes 224 us (minimum).

~omputing the Data Burst Periods for INPUT

After the peripheral device is addressed, the 4051 inputs data bytes until a delimiter is received,
or until 72 data bytes are received, whichever occurs first. Knowledge of the peripheral devices
data format is important at this point. If, for example, the peripheral device sends a five digit
data sample with a CR delimiter, then the data burst will last for six bytes. If on the other hand,
the peripheral device sends a sign byte followed by 10 digits with an embedded decimal point,
followed by four bytes of status information, followed by a CR/LF delimiter, then the data burst
will last for 18 bytes. (The 4051 delimits on the CR as a default, but inputs the LF as the first
character in the next data burst.) Once the data format is known, the total time for the data burst
is calculated as follows:

In @ Mode: Twuwst = Number of Bytes X 244 us
In % Mode: Twuss = Number of Bytes X 251 us

If the 1/0 address in the INPUT statement begins with an @ sign, then CR is used as the data
item delimiter. In this case, it takes a minimum of 244 us to transfer a data byte into the 4051 1/0
buffer.

If the 1/0 address starts with a % sign, then an alternate delimiter is used, as specified in a
previous PRINT @37,0: statement. It takes the BASIC interpreter longer to check the data
stream for the alternate delimiter, so each data byte is transferred in 251 us (minimum).

Remember, the above figures assume that the peripheral device is driving the 4051 at a
maximum speed. If the peripheral device slows down, then the data burst will take longer.

Computing the Buffer Overhead for INPUT

After the 4051 has detected a valid delimiter in the data stream or has input 72 data bytes, the
4051 stops, converts the data to internal format, then stores the data in the read/write random
access memory. The time it takes to do this depends on the number of samples in the buffer and
the format of each sample. Generally, the buffer overhead takes from 3 ms to 12 ms. During
this period, all activity on the GPIB ceases. |f large amounts of data are transferred, many data
bursts will occur, followed by periods of inactivity as the 1/0 buffer is dumped. To calculate the
total transfer time, these time increments should be added together.

4051 GPIB Hardware Support @ 5-1 1

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

5-12

After the last data burst, the BASIC interpreter emptiesthe I/0 buffer, then checks to make sure
that all the target variables in the INPUT statement have assigned values. This is called the
statement termination time period. Depending on the statement it may take the BASIC
interpreter a longer time or a shorter time to execute this operation than the buffer overhead
time period.

Buffer Overhead for Numeric Data. If a numeric variable, array variable, or subscripted array
variable is specified in an INPUT statement, the buffer overhead is a function of the number of
data samples in the |/O buffer at the time of analysis, and the number of digits in each sample.
Roughly speaking, the time to convert a 1 digit sample from ASCIl format to internal floating-
point format is 3.6 milliseconds. For each addition digit in the sample, it takes an extra .3 ms.
The total time to dump the whole I/0O buffer can-be calculated by converting each sample, then
adding the subtotals for an overall total.

EXAMPLE 1: INPUT @2: A,B,C,D,E(3)
When the above statement is executed, device 2 sends the following data:
25000,50,125CR82

In this example, the digits up to the first CR are input into the 4051 1/0 buffer. The 4051 then
assigns the first data item 25000 to A, the second dataitem 50 to B, and the third dataitem 125 to
C. Next, the 4051 returns to the GPIB, inputs the fourth data item 82, then terminates the I/0O
operation.

Since 13 characters are included in the first three samples (CR included) the first data burst
lasts for 13 X 244 us = 3172 us. The 4051 then converts and stores the contents of the 1/O
buffer. It takes (3.6 +5 x.3) ms=>5.1 msto convert the firstsample, (3.6 +2x.3) ms=4.2 msto
convertthe second sample, and (3.6 + 3 x.3) ms=4.5 msto convert the third sample. The total
time to empty the I/O buffer and returntothe busis 5.1 ms +4.2ms + 4.5 ms =13.8 ms. Since
the datavalue 82isinputas the last sample, the conversion time is mixed in with the statement
termination time and cannot be measure accurately.

EXAMPLE 2: DIM A(1000)
INPUT @2:A

When the above program is executed, device 2 sends five digit data samples with a CR delimiter
after each sample. The data burst is intermixed with periods of maximum activity followed by

periods of total inactivity. How long are the periods of maximum activity and how long are the
periods of inactivity?

@ 4051 GPIB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

ANSWER: Since each datasample is followed by a CR, the 4051 stops aftereach CR s received
and processes the data sample in the 1/0 buffer. Each sample is five digits plus a CR, so six
characters are transferred in each burst. The handshake of each character takes 244 us, so the
total time for each burst of data is 1464 us.

The gaps in the bus activity occur when the 4051 stops to convert each sample. Since each
sample contains five digits, the conversion time is 3.6 + 5 x .3 ms = 5.1 ms. Therefore, each
buffer overhead gap in the data burst is approximately 5.1 ms.

EXAMPLE 3: DIM A(1000)
INPUT @2:A

When the above program is executed, device 2 sends eight digit-data samples with a comma
delimiter after each sample. During the data burst, how long is each period of maximum
activity, and how long is each period of total inactivity (buffer overhead)?

ANSWER: Since comma delimiters are used between each data sample, the 4051 inputs 72
characters before it stops to process the contents of the I/0 buffer. Each sustained data burst
lasts 244 us x 72 = 17.568 ms.

Each sample contains nine characters. This means that eight samples are in the buffer when
the 4051 starts processing. It takes 3.6 ms + (8 x .3) ms = 6 ms to process each sample.
Therefore, eight samples x 6 ms = 48 ms to dump the buffer and get back to the bus.

CONCLUSION: The data burst consists of a 17.568 ms sustained burst, followed by a 48 ms
period of bus inactivity, followed by a 17.568 ms burst, etc., until 1000 data samples are input.

Buffer Overhead for Character Strings. The buffer overhead for processing a character string
in the 1/0 buffer is a function of the number of characters in the buffer. If a CR is the only
characterin the buffer, ittakes 1.5 ms. Add .1 milliseconds for each additional characterin the

buffer.

EXAMPLE 1: INPUT @2: A$,B$,C$,D$

When the above statement is executed, device 2 sends four data samples to the 4051 via the
GPIB. The samples are assigned to A$,B8$,C$, and D$ respectively. Each sample contains 35
characters and is terminated with a CR. How long does it take to transfer each character string
and what is the delay between the transmission of each string?

ANSWER: Since each character string contains 35 characters, it takes 36 x 244 us =8.78 msto

transfer each string. After acharacter string isin the 4051 1/0 buffer, ittakes 1.5 ms+35x.1 ms
=5 ms to take the string out of the buffer and place the string in the RAM memory.

4051 GPIB Hardware Support @ 5-13

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

EXAMPLE 2: PRINT @37,0: 4,255,13
DIM A$(20000)
INPUT %2: A$

When the above program is executed, device 2 sends a 20,000 byte character string over the
GPIB. What does the data burst look like on the bus during the transfer?

ANSWER: In this operation, the 4051 inputs 72 characters, dumps the 1/O buffer, inputs 72
more characters, dumps the 1/0O buffer, and so on, until the EOT (End of Transmission
character—decimal 4) is received from device 2. Since CR (decimal 13) is specified in the
PRINT @37,0: statement as the character to be deleted from the data stream, all CR delimiters
are ignored when the % mode INPUT operation is executed.

The data bursts last for 72 x 2561 us = 18.072 ms each. And, it takes 1.5 ms + (72 x .1 ms) =
8.7 ms to dump the I/0 buffer each time it fills.

Statement Termination Period

The statement termination period starts when the last character is placed into the 1/0 buffer
(the last time DAV goes high) and ends when the 4051 sets ATN low to start the unaddressing
period. The statement termination period includes (1) the time it takes to dump the remaining
contents of the I/0 buffer and (2) the time it takes the 4051 to prepare to issue UNTALK and
UNLISTEN. Table 5-3 lists the statement termination periods for typical INPUT statements.

Table 5-3
TERMINATION PERIODS FOR TYPICAL INPUT STATEMENTS
STATEMENT TERMINATION PERIOD

INPUT @2: A 3050 us
DIM A(1000)

INPUT @2: A 3150 us
INPUT @2: A(1) 3000 us
INPUT @2: A$ 760 us

Statement Unaddressing Period

It takes the 4051 approximately 380 us to terminate an INPUT operation each time. This is the
time it takes the 4051 to activate ATN, issue UNTALK and UNLISTEN, then release ATN.

5' 1 4 @ 4051 GPIB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for INPUT

Putting It All Together

The effective data rates for INPUT are computed by dividing the total elapsed time for the
INPUT operation by the number of data bytes transferred, or the number of data samples
transferred, whichever is appropriate. In some cases, it may not be appropriate to include the
statement overhead as part of the overall transfer period. In these cases, add the addressing
period, the data bursts with their associated buffer overhead periods, the statement
termination period, and the unaddressing period, then divide by the number of data bytes or
data samples transferred. The following examples illustrate this procedure:

EXAMPLE 1 INPUT @2: A,B,C,D$,E,F(9)
Device 2 sends the following data string:
55,890,763977264,H1 MOM CR44CR
Statement Overhead =58 ms + 5 x .8 ms + 5.4 ms = 15.2 ms
Addressing Period = .380 ms
First Data Burst = 25 x 244 us = 6.1 ms
First Buffer Overhead Period
First Data Sample =36 ms +2x .3 ms =42 ms
Second Data Sample =36 ms +3x.3ms=45ms

Third Data Sample = 3.6 ms + 9 x .3 ms = 6.3 ms
Fourth Data Sample =1.5ms-+7 x .1 ms=22ms

Total 17.2 ms

Second Data Burst = 3 x 244 us = .732 ms

Statement Termination = 3.05 ms

Unaddressing Period = .380 ms

Total Time Including Statement Overhead = 43.042 ms

Total Time Excluding Statement Overhead = 27.842 ms

Effective Data Byte Rate for the Entire Operation = 1/(43.042E-3/28) = 650.53 bytes/sec

Effective Data Byte Rate (excluding statement overhead) = 1/(27.842E-3/28) = 1005.67
Bytes/sec

4051 GPIB Hardware Support @ 5-15

4051 GPIB DATA RATES
Computing Effective Data Rates for WRITE

5-16

EXAMPLE 2: DIM X(1000)
INPUT @4,32: X

Device 4 sends 1000 data samples with five digits in each sample. CR delimiters separate each
sample.

Statement Overhead = 7.5 ms + .8 ms = 8.3 ms

Addressing Period = .224 ms

Each Data Burst = 6x244E-6 = 1.46 ms

Buffer Overhead for each sample =36 ms +5x .3 ms=56.1 ms
Statement Termination = 3.05 ms

Unaddressing Period = .380 ms

Total Time including statement overhead = 8.3 ms +.224 ms + 1000 x 1.46 ms + 999 x 5.1 ms
+ 3.05 ms + .380 ms = 6.57 seconds

Effective Data Byte Transfer Rate = 1/(6.57/6000) = 913.24 bytes/sec

Effective Data Sample Transfer Rate = 1/(6.57/1000) = 152.2 samples/sec

COMPUTING EFFECTIVE DATA RATES FOR WRITE
Introduction

The WRITE statement is used to transfer data to a peripheral device in 4051 internal binary
code. Each data item is preceded by a two byte header which identifies the data item type
(numeric or string) and the length of the item (in bytes). (Refer to the Appendix for details.) The
length of a numeric data item is always eight bytes plus the header. The length of a character
string is one byte per character plus the header.

Since each numeric data item is formatted in 4051 internal binary floating point notation, it is of
little practical use to send this information to a peripheral device other than a storage device.
Most peripheral devices cannotinterpret this format. Character strings, however, are different.
After the two byte header, the bytes representing the data are the same as ASCII code. For
example, A is represented by decimal 65, B is represented by decimal 66, etc. A peripheral
device that can interpret ASCII code could, for example, throw away the first two bytes of the
READ string (the header) and correctly interpret the rest of the string. This would be
advantageous when transmitting a character string with more than 72 characters, because the
gap (or setup time) found in the PRINT statement is virtually eliminated. Therefore, the 7936.5
bytes/sec burst rate can be sustained over the entire I/0 operation.

@ 4051 GPI1B Hardware Support

4051 GPI1B DATA RATES
Computing Effective Data Rates for WRITE

Advantages of Using the WRITE Statement

1. Forstoring numbers, the data is often more compact and the space required is predictable.

2. ASCII character strings greater than 72 characters can be transferred faster, because the
7936.5 bytes/sec burst rate is sustained throughout the transfer.

Disadvantages of Using the WRITE Statement

1. Most peripheral devices cannot interpret the 4051 internal floating-point notation for
numeric data. Therefore, the only practical use for transferring numeric data with WRITE is to
store the data on tape or a suitable storage media, then bring it back into the 4051 at a later time,
when it is needed.

2. Character string data can be interpreted as ASCI| data, but the peripheral device must be
programmed to ingore the first two bytes of the string (the header).

Procedure for Computing WRITE Data Rates

The Addressing Period. The addressing period for WRITE is the same as any other I/O
statement. It takes 380 us to issue a primary address and a secondary address. If 32 is specified
as the secondary address, then only the primary address is issued. This takes 224 us.

The Data Burst for Numeric Data. The handshake cycle during different phases of the burst is
different. Therefore, to state a burst rate is misleading. The shortest transfer period for a 10-
byte numeric data item is 1998 us (5005 bytes/sec). This places the maximum output data
sample rate at 500.5 samples/second.

The Data Burst for Character String Data. The burst rate for the header part of a character
string is slower than the main part of the string; a termination time period must also be
considered.

The burst rate during the main part of the string is 7936.5 bytes/second. On long strings, the
burst rate will be slightly less than 7936.5 bytes/second.

If each character string is treated as a data sample, then the data sample rate is computed as
follows:

Data Sample Rate = 1/(1236 + ((No. of Characters - 1) x 126))} E-6

4051 GPIB Hardware Support @ 5-17

4051 GPIB DATA RATES
Computing Effective Data Rates for WRITE

EXAMPLE 1:

A series of character strings are output with a WRITE statement. Each string is 10 charactersin
length. What is the data sample rate?

ANSWER: Data Sample Rate = 1/(1236 + ((10-1) x 126)) E-6
Data Sample Rate = 1/(1236 + 1134) E-6
Data Sample Rate = 1/2370 E-6
Data Sample Rate = 421.9 samples/second

EXAMPLE 2:

A series of character strings are output with a WRITE statement. Each string is 72 charactersin
length. What is the data sample rate?

ANSWER: Data Sample Rate = 1/(1236 + ((72-1) x 126)) E-6
Data Sample Rate = 1/(1236 + 8946) E-6
Data Sample Rate = 1/10182E-6
Data Sample Rate = 98.2 samples/second

Note that if a series of data values are stored in the 4051 memory as one long character string,
then the data burst rate is approximately 7936.5 bytes/second throughout the entire transfer.
Therefore, the data sample rate is equal to 7936.5 divided by the number of characters in each
sample (include the delimiter).

EXAMPLE 3:

A series of data samples are stored in the 4051 memory as one long character

string. Each sample is five characters in length with a linefeed delimiter (i.e.,
A$="12345J12345J12345J12345J12356J"). The data is transferred to a peripheral device
which throws out the first two bytes of the string (the header), then reads each sample as
thoughitisafive digit ASCIl number with an LF delimiter. What is the data sample rate over the
GPIB when the character string is being transferred?

ANSWER: Data Sample Rate = 7936.5/6 = 1322.8 samples/second.

Computing the Unaddressing Time Period. The unaddressing sequence for the WRITE
statement is the same in all cases—380 us.

5-1 8 @ 4051 GPIB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for READ

COMPUTING EFFECTIVE DATA RATES FOR READ
Introduction

The READ statement is generally used to bring back 4051 internal binary format data from a
storage device. Getting non-storage peripheral devices to format numeric data into 4051
internal floating-point notation is a complicated task and generally not practical in most
applications.

Transferring character strings to the 4051 with a READ statement can be done, however, since
the 4051 stores character strings internally in ASCII code. The 4051 will accept an incoming
ASClI stringifitis preceded by the proper 2-byte header. Therefore, if a peripheral device can
generate a two-byte header, an ASCII character string can be transferred to the 4051 with the
READ statement at a high effective data rate.

Advantages of Using READ Over INPUT

The advantages in using READ instead of INPUT to transfer an ASCII character string are as
follows:

1. READ is faster. If the header is set up to say “character string—8000 bytes long,” the 4051
will input 8000 ASCII characters from a peripheral device in a sustained burst at 5263
bytes/sec. The INPUT statement accomplishes the same task at an effective burst rate of about
2000 bytes/sec. The reason is that the INPUT burst is intermixed with buffer overhead gaps of
up to 12 ms, where the READ burst doesn't.

2. Delimiters in the READ data stream do not stop the input burst during a READ operation.
When an INPUT statement is executed, the 4051 stops after every delimiter (CR) is transmitted
and processes the contents of the I/0 buffer. In a READ operation, the 4051 doesn’tlook at the
data stream. The header tells the 4051 how many data bytes to input, so the specified amount
are input without stopping.

Disadvantages of Using READ Over INPUT

When using READ to input ASCII numeric data, the data all goes into a large character string in
memory and can’t be used in math operations until the data is converted with the VAL function.
This conversion can take up to 60 seconds or more after the data is in memory. So, using READ
to input ASCII data is only practical in applications where the data is perishable and must be
transferred to the 4051 as fast as possible. But, once the data is in memory (or stored on the
internal tape), the time it takes to process the data must not be critical.

4051 GPIB Hardware Support @ b-19

4051 GPIB DATA RATES
Computing Effective Data Rates for READ

Computing Sample Data Rates For READ

Discussing burst rates for the READ statement is not relevant here, because the handshake
timing differs throughout the data sample. The data sample transfer rate, however, is
computed as the following topics illustrate.

Transferring Numeric Data (Two byte header + eight bytes floating point)

The maximum rate is fixed at 350 samples/second.

Transferring Character Strings

The maximum rate is determined by the number of characters in each string.
Data Sample Rate = 1/(1600 + ((No. of Characters-1) x 126)) E-6

EXAMPLE 1:

Adigital voltmeter is connected to the 4051 GPIB. The voltmeter interface is designed to output
a two-byte header before each sample reading. Each reading contains five ASCII digits,
followed by a decimal point, followed by two more ASCII digits, plus a CR. What is the
maximum data sample rate that can be achieved over the GPIB?

ANSWER: From the above information, each data sample (voltmeter reading) contains a two-
byte header followed by eight ASCII characters. Assuming that the voltmeter is faster than the
4051 during all phases of the transfer, the maximum data sampling rate is computed as follows:

Data Sample Rate =1/(1600+ ((8-1) x 126)) E-6
Data Sample Rate = 1/(1600 + 882) E-6

Data Sample Rate = 1/2482 E-6

Data Sample Rate = 402.9 samples/second

EXAMPLE 2:

A system designer connects a peripheral device to the 4051 GPIB which scans a field of data,
then transmits 1000 readings to the 4051. The readings are taken in parallel, then transmitted in
digit serial format, one after another, over the GPIB. Each reading contains 3 ASCII digits with
no delimiter. Since the data is perishable, the system designer chooses to transmit two header
bytes to the 4051 which says “ASCIl character string—3000 bytes long.” All the data samples
are then input into the 4051 memory at maximum speed and assigned to one string variable
with a READ @2:A$ statement.

After the data is in the memory, the designer uses the BASIC string functions to separate and
convert each sample to a numeric value and assign the value to an array element.

5-20 @ 4051 GPIB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for WBYTE

Assuming that the peripheral device is faster than the 4051 during all phases of the data
transfer, how long does it take to input the 1000 samples into the 4051 memory?

ANSWER: Since all 1000 samples are transferred as one ASCII string, the answer is found by
computing the total transfer time for a 3000 byte character string. The time to transfer each
sample is then found by dividing the total time by 3000; the reciprocal of the result is the
answer.

Total Time to Transfer the ASCII String = 1600 us + ((No. of Characters-1) x 126) us
= 1600 us + ((3000-1) x 126) us
= 1600 us + 377874 us
= 379474 us
= .379 seconds

Data Sample Transfer Rate = 1/(379474E-6/1000)
Data Sample Transfer Rate = 1/3.79474E-4

Data Sample Transfer Rate = 2635.23 samples/second.

COMPUTING EFFECTIVE DATA RATES FOR WBYTE
Introduction

The WBYTE statement is used to issue a series of peripheral addresses, controller commands,
and special eight-bit data bytes to peripheral devices on the GPIB. Normally the WBYTE
statementis used only if the facilities in the PRINT statement and the WRITE statement cannot
be used to setup a transfer. For example, if two or more peripheral devices must listen to the
same data transfer from the 4051, then the WBYTE statement must be used to set it up; if one
peripheral device on the bus needs to talk to another peripheral device on the bus, then the
WBYTE statement must be used to set it up; and, if a peripheral device needs a special series of
binary bit patterns in order to work, the WBYTE statement can be used to issue those bit
patterns to the device.

Asarule of thumb, if the PRINT and WRITE statements cannot be used to get the job done, then
use WBYTE. Although WBYTE provides maximum flexibility through very primitive
operations, the trade off for this flexibility is a slower data rate.

Advantages in Using WBYTE

Any combination of peripheral addresses and controller commands can be issued over the
GPIB, along with any series of eight-bit binary numbers (bytes). ATN, or EOI, can be activeas a
byte, or series of bytes, are transferred.

4051 GPIB Hardware Support @ 5-21

4051 GPIB DATA RATES
Computing Effective Data Rates for WBYTE

Disadvantages in Using WBYTE

1. There isn’'t automatic addressing and unaddressing as there is in the PRINT and WRITE.

2. Each data byte (or character) must be specified as the decimal equivalent of the binary bit
pattern.

3. The byte transfer rate is considerably less than the rates for PRINT and WRITE.

Computing the Statement Overhead for WBYTE

The statement overhead for WBYTE is the time from when the 4051 starts working on the

statement until the time when the first activity occurs on the GPIB. Generally, the statement
overhead for WBYTE is less than the overhead for PRINT and WRITE, because part of the
overhead is carried out after the transfer begins. The conversion of each decimal value to a

binary bit pattern is not carried out, however, until just before the value is placed on the Data

Bus. This means that the data byte conversions occur during the handshake cycles all through
the transfer. More on this in a minute.

The statement overhead for WBYTE generally falls in the range from 4 milliseconds to 6
milliseconds. Table 5-4 lists the statement overhead for several WBYTE statement formats. The
following conclusions can be drawn from the data in Table 5-4.

1. Thestatement overhead is reduced if adecimal value is assigned to a numeric variable, then
specified as a variable in the WBYTE statement.

2. Specifying one peripheral address in a WBYTE statement results in a statement overhead of
4 milliseconds. Each additional address adds approximately 1.25 milliseconds to the statement
overhead.

3. If addresses are specified as variables, each additional address adds approximately .5
millisecond to the statement overhead.

4. Each numeric data byte which is specified after the colon (:) in a WBYTE statement adds
approximately 1.3 millisconds to the statement overhead.

5. Each data byte which is specified as a variable after the colon (:) adds approximately .4
millisecond to the statement overhead.

5-22 @ 4051 GPIB Hardware Support

4051 GPIB DATA RATES
Computing Effective Data Rates for WBYTE

Table 5-4
EXAMPLES OF WBYTE STATEMENT OVERHEAD PERIODS

Statement Set-up Period
WBYTE @66: 40 ms
WBYTE @66,67: 5.3ms
WBYTE @66,67,68: 6.5 ms
WBYTE @66,67,68,69: 7.8 ms
WBYTE @P: 3.7 ms
WBYTE @P,Q: 42 ms
WBYTE @P,Q,R: 4.6 ms
WBYTE @67:100 53 ms
WBYTE @67:100,100 6.5 ms
WBYTE @66:100,100,100 7.8 ms
WBYTE @67:A 4.5 ms
WBYTE @67:A,B 4.9 ms
WBYTE @67:A,8,C 5.3 ms
WBYTE @66:A,8,C,D 5.8 ms

Computing the Data Burst Rate for WBYTE

Since the internal to external format conversions occur before every handshake during a
WBYTE operation, every handshake cycle is different. Therefore, general statements cannot
be made aboutthe maximum data rate during a WBYTE data burst. Data sample rates fall in the
same category because WBYTE transfers are primarily used to get the rightinformation to the
right device. WBYTE is not generally used to get data samples transferred at maximum speed.

To determine accurate rates for WBYTE, itis bestto hook up the equipment in the system, use

an oscilloscope, and observe a particular WBYTE statement in action. To give you a general
idea about how fast WBYTE is, the statement WBYTE @34:A, (where A is an array of bytes)
transfers bytes at a rate of 1190 bytes/second.

4051 GPIB Hardware Support @ b-23

4051 GPIB DATA RATES
Computing Effective Data Rates for RBYTE

COMPUTING EFFECTIVE DATA RATES FOR RBYTE

Introduction

The RBYTE statement is used by the 4051 to receive individual data bytes one at atime over the
GPIB. The advantage of using RBYTE to receive data bytes is that ail eight data lines on the
Data Bus can be used to transfer data. Thatis, a full eight-bit byte can be transferred; any byte
from decimal O to decimal 255. This cannot be done with INPUT and READ.

Normally, the RBYTE statement is used in special applications such as receiving data from a
16-bit Analog to Digital (A/D) Converter. The first eight bits are transmitted as one byte and the
second eight bits are transmitted as another byte. Specifying an array variable with 200
elements in an RBYTE statement, for example, allows 100 readings (200 bytes) to be input into
the 4051 memory at 337.9 readings/second. Once the data bytes are in memory, the two data
bytes for each reading can be mathematically combined to reflect the true nature of the
reading, then processed according to the directions in the BASIC program.

The RBYTE statement can be used to transfer ASCII character strings a byte at atime, but this
method is extremely slow (counting the conversion time) and it is much more practical to use
the INPUT statement to transfer ASCII data.

Computing the Statement Overhead for RBYTE

Using the RBYTE statement requires that a previous WBYTE be used to address a peripheral
device as a talker. This means that when an RBYTE statement is execute, a talker is already on
the GPIB waiting to talk.

The only time periods in the RBYTE statement are the statement overhead and the Data Burst
as the 4051 receives the data bytes. After a data byte is received for each target variable, the
statement ends. There is no statement termination period or unaddressing sequence. The

BASIC interpreter at this point continues to the next BASIC statement in memory which is
generally a WBYTE @63,95: statement. This statement clears the GPIB of listeners and talkers.

The statement overhead period starts when the BASIC interpreter starts working on the
RBYTE statement. During this time the interpreter examines each target variableinthe RBYTE
parameter lists and prepares to assign data bytes to these variables. The statement overhead
period ends when the first activity on the GPIB begins.

5-24 @ 4051 GPIB Hardware Support

4051 GP1B DATA RATES
Computing Etfective Data Rates for RBYTE

The RBYTE statement overhead is computed as follows:
Statement Overhead = 2.9 ms + No. of Variables x .6 ms

Example 1: RBYTE A,B,C
Statement Overhead = 2.9 ms + 3 x .6 ms =47 ms

Example 2: DIM A(100)
RBYTE A

Statement Overhead =29 ms -+ 1x .6 ms =3.5ms

Computing the Data Burst Rate for RBYTE

If only one target variable is specified in an RBYTE statement, the 4051 comes on the bus,
handshakes with the talker, captures a data byte, then leaves the bus. This activity takes 100 us
{(minimum).

If several numeric variables are specified in the RBYTE parameter list (RBYTE A,B,C for
example) the 4051 stays on the bus handshaking until each variable has an assigned value. The
data burst is uniform (no buffer overhead gaps) with a handshake cycle of 1.78 ms. This gives
an effective input data rate of 561.8 bytes/second.

If an array variable is specified inthe RBYTE parameter list, the 4051 keeps receiving data bytes
until each element has an assigned value. The handshake cycle is a little faster (1.48 ms) so the

effective input data rate is 675.7 bytes/second.

Since an unaddressing sequence doesn’t occur at the end of an RBYTE statement, the
statement is over as soon as the last data byte is received.

4051 GPIB Hardware Support @ 5'25

APPENDIX A

THE 4051 INTERNAL FLOATING-POINT FORMAT

INTRODUCTION

All numeric values that enter the 4051 Random Access Memory are stored in a special eight-
byte floating-point format. INPUT operations from the keyboard, the internal magnetic tape,
and the GPIB bring numbers into the memory formatted in ASCIl code. These numbers must
be converted to the special floating-point format before they are stored in memory. Likewise,
all numbers leaving the memory during a PRINT operation are converted back to ASCII code
before they are output to the specified peripheral device. Because the conversions between
ASCII code and the internal floating-point format take time, the READ and WRITE facility was
implemented in the 4051 BASIC language to transfer data directly in internal binary code.
These two statements by-pass the ASCII conversion routines and thus increase the data
transfer rate. The device communicating with the 4051 must be able to correctly interpret the
data in the 4051 internal format or store the data received via the WRITE statement for later
retrieval with the READ statement.

Fig. A-1illustrates the format that must be used to send numeric values back and forth overthe
GPIB during a READ operation and WRITE operation. Each number contains ten bytes (two
header bytes + eight bytes floating point). In the illustration, the ten bytes are being transferred
froma peripheral device on the right to the 4051 on the left. Byte number 1 is leading the pack
on the left. If these bytes are rotated counter-clockwise as shown in the illustration and stacked
end-to-end, the floating-point format becomes clearly visible.

4051 GPIB Hardware Support @

A-1

v

yoddng aiempleH g1d9 LS0v

S — —— — — —
B B B B B B blog
Y Y Y Y Y Y
T T T T T T
E E E E E E
1 2 4 5 6 10

| L] | L |] | Dio1

«4———— TO 4051

r r- <

N

/') o mo<w |

i

AN

/‘3 [~ ma<w |

{ Byte1 | BYyTE2 | BYTE3 | BYTE4 | BYTEsS | BYTE6 | BYTE? BYTES | BYTEO BYTE10 |
\ S\ J\ J
HEADER
| STATUS & EXPONENT
BINARY FRACTION B

Fig. A-1. How the 4051 Internal Floating-Point Format is Transferred over the GPIB.

V XIAN3ddV

1ewo4 Julod-6upeold eusau) LSOy Byl

APPENDIX A
The 4051 Internal Floating-Point Format

THE HEADER

The first two bytes contain the header information. The header tells the 4051 that an eight-byte
floating point number is coming next. Since every floating point number is the same length
(eight bytes), the header is always the same. The header format is shown below:

BYTE 1 BYTE 2
/ . / —
4096 2048 1024 512 256 128 64 32 8 4 2 1
l@*lﬂ’l1 I0 l@'lwlwlmllwlowﬂ [1 oo o]
_J
Data Length
Type (8 bytes)

(Numeric)

THE STATUS AND EXPONENT INFORMATION

The third byte and the fourth byte contain status and exponent information. The format for
these two bytes are shown below:

BYTE 3 BYTE 4
Ve — \, / \
1024 512 256 128 64 32 16 8 4 2 1
Crrr—r 171 1 © [[|
4 b\ /\ —— S
Must Be @ Exponent

Undefined Number Bit
@ = Defined Number
1 = Undefined Number

Sign Bit
@ = Plus (+)
1 = Minus (-)

The Sign Bit

The bit on the far left (bit 8 in byte 3) is the sign bit. This bit tells the 4051 whether the numeric
value is positive or negative. If the bit is @, the number is positive. if the bit is 1, the number is
negative.

The Undefined Number Bit

The second bit from the left (bit 7 in byte 3) is the undefined number bit. If this bitis setto 1, the
4051 assumes the number is undefined. The 4051 uses this bitin the following way. If a number
is assigned to a numeric variable in memory (such as A=1) and a DELETE statement is

4051 GPIB Hardware Support @

APPENDIX A
The 4051 Internal Floating-Point Format

executed (such as DELETE A), the 4051 sets the undefined number bit to 1. When the 4051
needs more memory (at a later time), the eight bytes occupied by this undefined number are
reclaimed automatically.

Three Bits must be set to Zero
Three bits in byte 3 must be set to zero. These bits are bit 6, bit 5, and bit 4.

The Exponent

The three least significant bits in byte 3 and all the bits in byte 4 form a binary number that
serves as the exponent. The exponent range for 4051 numbers is 27'°* to 2'°*, To keep the
exponent representation positive, 1024 is added to each exponent to make the range 0 - 2047.
This means that if bit 3 in byte 3 (the most significant in the exponent) is set to 1, the exponent is
@ or positive. If bit 3 in byte three is set to @, the exponent is negative.

Example 1. Bit3inbyte 3and bit2in byte 4 are setto 1. The rest of the exponent bits are set to 0.
What is the true exponent of the floating-point number?

ANSWER: This binary bit pattern represents 1026. The true exponent is found by subtracting
1024 from this number. The exponent is 2 (i.e., 2%).

Example 2. The statement A=.0625 is entered into the 4051 from the keyboard. How is the
exponent for the number .0625 stored in the 4051 memory?

ANSWER: The number .0625 is equal to 27*. The exponent is —4, therefore the binary number
representing the exponent must be 1024 — 4 = 1020. This bit pattern is shown below:

BYTE 3 BYTE 4
S \ J/ AW
1024 512 256 128 64 32 16 8 4 2 1
loJofoJofojo 1111 [1]1[1]1]a7]o]
\ J
Exa)?ent

A-4 @ 4051 GPIB Hardware Support

APPENDIX A
The 4051 Internal Floating-Point Format

THE BINARY FRACTION

The remaining bytes in the floating point number form a binary matissa which allows numbers
to be represented with 64 bits of precision. This representation is shown below:

BYTE S BYTE 6
N N
S 1 N\ /S N
> -2 -3 2 2 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 -1

|

1o [1]0 m[mlo[ollo[m]o[mlﬂo]olz

‘ ’ l 0625 f— 001953125
125

H\/IPLIED RADIX POINT

BYTE 7 BYTE 8

o ~— A~
[\. S \

2-17 2-18 2-19 2-20 2-21 52-22 2-23 2‘24 2-25 2-26 2-27 2-28 2-29 2-30 2-31 2-32

[0[ofoJofoJoJoJoJoJoJoJo]o]oo]o]

7.629394531E-6 2.980232239E-8
BYTE 9 BYTE 10
Ve g N \ Vs e .

-33 35 - - . . - . - - - - -
;35 536 37 ,38 30 .40 41 ,42 ,43 44 45 46 47 48

G5 To [oTs oo oo sTeloleTalelels]

L_ 1.164153218E-10 L__ 4.547473509E-13

N

If bit 6 and bit 8 in byte 5 are set to 1 as shown above, and the rest of the bits are @, the binary
mantissa is equal to 27 + 27 which is equal to .625 in base 10. In another case, if bit8 in byte 6
and bit8in byte 9are setto 1and the rest of the bits are zero, the binary mantissa is equalto2”
+ 27 This number is equivalent to .00195312511642 (base 10).

It is apparent that this representation method allows numbers to be entered into the 4051
memory with a great deal of precision.

4051 GPIB Hardware Support @ A'5

APPENDIX A
The 4051 Internal Floating-Point Format

PUTTING IT ALL TOGETHER

The complete floating point representation is expressed in the following formula:

N = (—1)*x My x 2' ® 7199

where N = the decimal number entered into the 4051.
Mo = the decimal equivalent of the binary mantissa (last six bytes).

s = the sign bit (1 or 0).
E = the decimal equivalent of the binary exponent.

A COMPLETE EXAMPLE

Fig. A-2is awork sheet which is filled in to express the floating point equivalent of the decimal
number 2184.00881958 (additional work sheets are provided for your convenience and may be
removed from the manual). Here is how the floating point representation in Fig. A-2 is
converted to a decimal number.

The sign bitS =10
The exponent E = 10000001100, = 103610

The mantissa Mo = 27" + 27 + 279 + 27 + 272 4 2777 4 2™ = (533205278218

The decimal number N = (—1)° x 0.533205278218 x 2!'0%¢71024)
N = 0.533205278218 x 2"
N = 0.533205278218 x 4096
N = 2184.00881958

@ 4051 GP{B Hardware Support

A-6

APPENDIX A
The 4051 Internal Floating-Point Format

4051 INTERNAL FLOATING-POINT WORKSHEET

BYTE 1 BYTE 2
S \ /s —

409 2048 1024 512 266 128 64 32 16 8 4 2 1.
Lo [o [r[oJofofofJo[foJoJo[ao]1[ofo[o]

N '\ — s
Data Length
Type (8 Bytes)
(Numeric)
BYTE 3 BYTE 4
e e
S N\ S/ .

1024 512 256 128 64 32 16 8) 2 1
1@0]]|awww11mo

UNDEFINED NUMBER BIT
BYTE 6
N\ S — .
26 7 8 0 510 11,12 13 14 15,16

oTo [Jofoe] [eloloolole]o
0625 L__ .001953125

125
.25
b
BYTE 7 BYTE 8
e N
/ N/ S

2-17 2-18 2-19 2-20 2-21 2—22 2-23 2—24 2-25 2-26 2-27 2-28 2-2 2—30 2-31 2-32

[oJo[1JoJo 1 JoJo]oJoJiJoJo]o]oa]

7.629394531E-6 2.980232239E-8

BYTEQ BYTE 10
233 ,34 35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47
LwlwlolololwlolollwlwﬁlwlolwlwIﬂ
1.164153218E-10 L_ 4.547473509E-13

x(-1)S x 2(E-1024) \ihare: n=decimal number

F=decimal equivalent of binary
number (bytes 5-10)
s=sign bit (1 or @)

n=.Fig

Fig. A-2. An Example of a Filled-Out 4051 Floating-Point Worksheet.

4051 GPIB Hardware Support @ A'7

APPENDIX A
The 4051 Internal Floating-Point Format

FLOATING POINT NUMBERS COMING IN MUST BE
NORMALIZED

Itisimportant that floating-point numbers coming into the 4051 from the GPIB be normalized;
that is, the binary bits in the mantissa must be shifted left as far as possible and the difference

made up in the exponent. The following examples illustrate the difference between a floating
point number that is not normalized and a number that is normalized. Both numbers represent

the same decimal value.

Example 1. A Floating Point Number that is not Normalized

BYTE3 BYTE 4 BYTES BYTE 6

Vi NS . Vs \ /
[ef]eJoJoJoJ1JoJaJoJoeJo[oJa[eJe[e] [@]o]el 1 1] 1]1]oJelolo]o]alo]a 0
A /\.5.25.125

\
]

J

Exponent
Mantissa

Decimal Equivalent = .1171875

Example 2. The Same Floating Point Number After Normalization

BYTE 3 BYTE4 BYTE 5 BYTE 6

S

S N\ S N A4 \

ColeToefo o [a]r v+ [+ [+ [+]efo ool I Telololelolelololelolo]e]
N ,\.5 26 125

Exponent Mantissa

Decimal Equivalent = .1171875

In the first example, the floating point number is not normalized because there are leading
zeros in the mantissa. It is important to normalize this number before the number is placed in
memory because the 4051 firmware math routines assume that all floating point numbers in
memory are normalized. The decimal equivalent of this number is computed as follows:

The sign bitS=20
The exponent E = 1024
The mantissa Mo =27 + 27° + 2%+ 27 = 1171875

The decimal number N = (—1)° x .1171875 x 2102471024
N = .117875

4051 GPIB Hardware Support

A-8 @

APPENDIX A
The 4051 Internal Floating-Point Format

This floating point number is normalized in Example 2 by shifting the mantissa bits three places
to the left. To make up for the increase in the value of the mantissa, the exponent is decreased
by 27. To illustrate that the decimal value of this normalized number is the same, the decimal
equivalent of the number is computed as follows:

The sign bitS =0

The exponent E = 1021

The mantissa Mo = .9375

The decimal number N = (—1)° x .9375 x 2(102171024)

N = .9375 x 2°°
N =.117875

4051 GPIB Hardware Support @ A-9

APPENDIX A
The 4051 Internal Floating-Point Format

NOTES

A-10 @ 4051 GPIB Hardware Support

APPENDIX A
The 4051 Internal Floating-Point Format

4051 INTERNAL FLOATING-POINT WORKSHEET

BYTE 1 . BYTE2
Ve L N

N\ s A
4096 2048 1024 512 256 128 64 32 16 4 2

L0l0l110IWIOI@IOHGIGI@I@MI@I@Iﬂ

Data Length
Type (8 Bytes)
(Numeric)
BYTE 3 BYTE 4
e N N
S N/

1024 512 256 128 64 32 16 8 4 2

L 11

} \
f___ UNDEFINED NUMBER BIT ~
SIGN BIT
0=+
1 = .
BYTE 5 BYTE 6
s — N\ /S —~

0625 L___ .001953125

BYTE 7 BYTE 8
Y e — N s A~ N
SN 18 19 20 21 22 23 24 26 26 27 28 ,29 ,30 31 32
LI TP T T T T T T T]
L 7.629394531E-6 L__ 2.980232239E-8
BYTE 9 BYTE 10
S — N\ N
233 538 235 ,36 ,37 ,38 ;39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48

Lt L T T
t

1.164153218E-10

4.547473509E-13

n= .F10 x(-1)% x 2(E'1024) where: n=decimal number
F=decimal equivalent of binary
number (bytes 5-10)
s=sign bit (1 or @)

4051 GPIB Hardware Support

@ A-11

APPENDIX A
The 4051 Internal Floating-Point Format

4051 INTERNAL FLOATING-POINT WORKSHEET

BYTE 1 BYTE 2

4096 2048 1024 512 256 128 64 32 16 8 4 2 1\
(0 [o [1]o o JoJo]ooeJoJo[e[1]o]o o]

\ I —— 4
Data Length
Type . (8 Bytes)
(Numeric)
BYTE 3 BYTE 4
e e
S N/ \

1024 512 256 128 64 32 16 8 4 2

\ J
' L_. UNDEFINED NUMBER BIT

-

SIGN BIT
D=+
1=-
BYTE 5 BYTE 6
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2~10 2-11 2-12 2-13 2-14 2-15 2-16
| [T [[1 L L1 1 []
1 ‘P L_ 0625 L_. .001953125
5 125
L 5
BYTE 7 BYTE 8
y ~— \ A — N

[I (N N N I

7.629394531E-6 ,— 2.980232239E-8

BYTE 9 BYTE 10
S — ™ s — "
233 34 ,35 ,36 537 ,38 ,39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48

N I N O I

1.164153218E-10 4.547473509E-13

n=.Fqo x(-1)% x 2(E-1024) here: n=decimal number
F=decimal equivalent of binary
number (bytes 5-10)
s=sign bit (1 or @)

4051 GPIB Hardware Support @ A-12

APPENDIX A
The 4051 Internal Floating-Point Format

4051 INTERNAL FLOATING-POINT WORKSHEET

BYTE 1 BYTE 2
Vs . \ S M
4096 2048 1024 512 256 128 64 32 16 4 2

L010I1IﬂlwIOIQI@IIGIOWNMI@IOl<ﬂ

—

Data Length
Type (8 Bytes)
(Numeric)
BYTE 3 BYTE 4
Vg — \ s — 2N

1024 512 256 128 64 32

[T T] | |

} L_UNDEFINE\D NUMBER BIT g
SIGN BIT
0=+
1=-
BYTE & BYTE 6
s — \ — \
2-1 22 2-3 2-4 25 2-6 2-7 2-8 29 2-10 2-11 2-12 2-13 2-14 2-15 2-16
| I [[T T T | [[|
t I 0625 f_ .001953125
125
| 25
L5
BYTE 7 BYTE 8
Vs - ~ /S N \

2 2 277 2 2 27°° 277 a2 20 2 227 ;28 ,29 2 2

LI 1 T [|

7.629394531E-6

2.980232239E-8

BYTE9 BYTE 10
s N — N/ N — ~
2-33 2-34 2-35 2736 2-37 2-38 2-39 440 2-41 242 2-43 244 ,45 2-46 2-47 2748

N I I I O

L L[] |

1.164153218E-10

4.547473509E-13

n= F1 x(-1)% x 2(E 1024) where: n=decimal number
F=decimal equivalent of binary
number (bytes 5-10)
s=sign bit {1 or Q)

4051 GPIB Hardware Support

APPENDIX A
The 4051 Internal Floating-Point Format

4051 INTERNAL FLOATING-POINT WORKSHEET

BYTE 1 BYTE 2
Vs —- \ S —

4096 2048 1024 512 246 128 64 32 16 8 4 2 1
[0 Je 1 JoJoJoJo o] eJaJe[e]1[afa o]

N ——\ — s
Data Length
Type (8 Bytes)
{(Numeric)
BYTE 3 BYTE 4
N e N
S \ f AW

1024 512 256 128 64 32 16 8 4 2 1

[T 1

A \ —~——
1—— UNDEFINED NUMBER BIT
SIGN BIT
0=+
1=-
BYTES BYTE 6
N e e,
S N S \
2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2~10 2-11 2-12 2-13 2-14 2-15 2-16

4

BYTE 7 BYTE 8

L___ 7.629394531E-6 L_. 2.980232239E-8

BYTE9 BYTE 10
2-33 2-34 2-35 2-36 2-37 2-33 2-39 2-40 2-41 2-42 2-43 2-44 2-45 2-46 2-47 2-48
Crrrrrrrur 1o o1 [[1 |
1.1641563218E-10 t___ 4.5647473509E-13
n=.Fqgx(-1 8 x 2(E-1024) \here: n=decimal number

F=decimal equivalent of binary
number (bytes 5-10)
s=sign bit (1 or)

4051 GPIB Hardware Support @ A-14

DIAGRAMS

Symbols used on the diagrams are based on ANSI Standard Y32.2—1975. Logic symbols are
based on ANSI Y32.16—1975. Logic symbols depict the logic function performed and may
differ from the manufacturer's data. The following explanations and accompanying schematic
example (Fig. A) show typical usage of symbols and their meaning.

1. TRUE HIGH and TRUE LOW Signals

All signal names on the schematics will be followed by —1 or —0. ATRUE HIGH signal will
be indicated by —1 and a TRUE I_OW signal will be indicated by —0.

SIGNAL —1 = TRUE HIGH
SIGNAL —0 = TRUE LOW

2. Cross-References

Schematic cross-references (from/to information) will be included on the schematics (Fig. B).
The "from" reference will only indicate the signal “source,” and the "to” reference will list all
loads where the signal is used. All from/to information will be enclosed in parenthesis.

To schematic 1, sheet 5
From J350 pin 6 and

etc
schematic 1, sheet 5
e
»

*(J350-6,1-5) X—0
(J350-8,1-5) X :::DO’ XY=1 (1-5,3-7,4-6)
{(1-6) Y—0

Y ?
INPUT SIGNAL OUTPUT SIGNAL
/l (TRUE LOW) (TRUE HIGH)

From Schematic 1,
sheet 6

Fig. B

*In special cases where a signal has more than one source (wire OR for example) orcomes
from “the outside world,” the multiple sources or connectors will be indicated by an
asterisk preceding the reference.

3. Board Edge Information

|
L
> Berg or Amphenol Connector
| (Edge Board Connector)
I

- Harmonica Type Connector
| (Square Pin Connector)

]
——@— Solder Connection

1
! Signal Arrow

(To/From Another Diagram on Same Board).

\
-— =4 Board Edge {shown in some cases)
@ Fig. C

4051 GPIB Hardware Support

4. Jacks and Plugs

The fixed portion of a connector shall be labeled J for Jack and the movable portion shall be
labeled P for Plug. If neither is more moveable than the other, the female connector shall be

labeled P and the male connector, J.

5. Schematic Example

DENOTES
COMPONENT PULL-UP
LOCATION RESISTOR
AND
TYPE CHASSIS GND
+V
INPUT SIGNAL \I\ \\\
(TRUE HIGH) TIME
(WET-A Y J)
\y\ 1400 3 @ I_) DELAY
4
- O -1 0 ;
O D sy | LR
& 9 SIGNIFIES 0 | CAUTION-O
1" CLOCK
| OUTPUT
CONNECTORS SIGNAL
~S JT10-2 _ (TRUE LOW)
| Tp
A’. d> 4 .
SOLDER
CONNECTION ADJUSTMENT +V
+15V,
JACK
4 CROSS

POI-A3 U9-AY
V4

}\\
PLUG

é REFERENCE \\
‘b

+I5V

A4 g
. %
OFF BOARD NN -V
COMPONENT
-5V (g~ DECOUPLED
VOLTAGE

e
\\S\ I\
]
A

BOARD EDGE

GND

SIGNAL

NCH

_» GONE (3-9)

ISOLATED SIGNAL
GND

1A/V

=
+5V ®
PULL-UP /7./ SHEET NUMBER
RESISTOR BOARD \/\
IDENTIFICATION
S:(SSlBJSL NUMBER
INSTRUMENT "\ DIAGRAM NAME 1-T
@ G10-XXXX-XX P
Fig. A. SCHEMATIC NUMBER

@

4051 GPIB Hardware Support

:

o
A
i ;
L
L
i y
o o
- - m
e
.
e
. o
| e o .
»“; e . e
‘!”“‘* o m:,mzww,“x@m e ’
e i
DATA -
MING IN _—
FROM GP _
'8 o S e oy R i
e : - e
L i e o _—
e i i u»xr»m.xi L —
- "»“néx i "’2 ‘;s”‘" ?ﬁmi e ’T’,,’"‘“xiw, QM
i L o - e o i 'xxm\xsxz«biznfx\rﬂ :
e Uuumx),u‘ RS e e i
"‘""“’w'“ 7 B D v .
. i . m“ s N i B e M:W
| :’ § D7, i = ”;ﬁ“”aﬂwwfﬁi’
1 : i : m;‘mmnx«x s
- ’g LQ z 4 ¢ e 5\2’“"“; ;;;; Q:szg
el 5 0 i
i & i
L i] p G
. : i wsxl«xxx; e
e e * il
B e —a- 03 L 'NMim o o
i i D12 ,g,‘%z AT -
; f ey %u
) s i q’}’w”«’ i v
i wmw:mwm
o

o ;ﬁmnxxp -
1
e i .
L e
it e e —
“i:iiﬁ ;u%mw y. i Mf’::‘“i:@’zx s .
i R b - i
;‘w - Hmw m«svwmixemw” i:{wgcx;ym%;{{ m*g i X‘;
S i o
il o
S i
e

.
-

i
o

i
L
L
i o w.s i i
"‘3"(,;4 i i i
L e
B o shn (e

-
-

e s
%w,‘iif‘*@-fv
-

T
e R R
Mm‘;u:"
e
w(x e !@ -
! e
i i S e
e i il
T mmx.«ss e
w i! e “55‘;“;
i
i

m‘im

i

o

,}
i
e

s
=

i
=
s
i
o
Sl

L
.

,};{f}’ e

ah

v “&w
e
L

= wh
,.i@?@_; s

e
= e

Eht
sl
=

i
il S
e i ‘ ,g
e o

i

L

i
ms s
i

ﬁ-!

T
.
o

sl
e e
e
cuibing
s
L
wan
misxrm
ws;'ugm’
e
<

i
!

1
Toait

o
o
2

=

e
.

%
B
e

e

o
e
L
P i
A e
siﬁﬂ,k i
PIB T '
ey
= “?;;::2%2‘:4:“.“,
' Rin
i # i
R
i it
il
;

B
arr
o
-

-

o

B

-

ADDRE
S
DECODE:

e
i
L o
el -
T
S
e
13

.
.

-

LISTEN

o
<
it
-

ADDRESSES

e
e
e

o
o
a2
e Ci
o SOMING
: N
al
.
o
i
o
-
i ¥
o i
b “
; i e
s : i
| i 5
e :
#i e
kf.i L i
i "a‘s&!}‘“k
s

e

o

e
e
e
o

Iieen
=

-

-
1o
S
%
T

b

ﬁ;&t
o

-

il

-

g
i

it

i
i

s e i

ek
g mm!d!ex

it
E

e

E

L
i
el
%‘\M«
L
o
s y
r(:&“w i
ks N “ :
ke Gt i .
i o
: B o -
o m@ [
i A mguf“ . . -
L - ;
‘E ViR T i
' | "'& e i
= W&&*‘,w % Lt; i ,M sthw,
o . i sw“‘m,,,(. . . : N*’”M‘
- o DAT. et e m};;m ae e 1 i
. : A B & i gt B i VF&
o DRIV s i »w,) i o ;:ﬂw“ o . -
e o o «“ e
o B
. o ”“ d Lm;xsssfmo‘,?xwwm e
it il i i
i | smw v s w,xs. 0 (e‘ .
W.mw 2 ;2;‘%? . ‘“M,«! smng{m»: 2&32’«:??»2‘», msﬁ;::zﬁ; , wm"“ o
g ‘M‘ e i i et xm‘ nped
g ,*::*a::::‘*“ﬁf“;**w, = ‘;“‘"“\:* o
xmwx T e R L Ws
i £ G Ao ﬂwiiﬁ J(WMWA i A
""’;ﬁ»;ﬁé,&xxs n«;“ ’Z“” w«fm mm m!wwu»m’m;ﬁﬂ
e S
i ’M ‘ e trym i
‘,‘fgmxl b ww gx e «;;memm o ffjv
f‘“‘&”’“ et “ 5»»:3‘ s WW £
S e o ,w:xs et “Mf‘ﬁl" ;;‘ e
i o lxmc i 2 22‘ o
A vm‘ i w . ;‘
“@m? e :gi «m ,Jm
- ﬂ‘ x
e i
i b
%5
= : ;
o
: - : "~
wi’f-‘i, i;‘i:;ﬁ]
i i =
i f by 2 4
- f;’:;,ﬁii .
i .

o

AND

DATA
GOING OUT TO GP|
1B

55

5

T
it
“’?g

.

-
-
it

=
=

o .
L e
1?}‘?‘!’?22?%32 . RECE
e 3
L IVERS
i
e
.
>
i
o
.
i
il Pvl :
i i ’
x,m@;,:,;xj i | z
@ e : X
5 i =
;
; = =
! l. : il %5?
o s o o : e
i &mm — ;
s w:;;;:m
o v Y‘ ’ Mlmivp ¢ .
Mxmm'ww ot it ‘”‘“‘Zﬁ»s ‘f‘ix;xmx, o
e - f T o L @9;« o o
91 ‘u:s; i @‘m o e e
e ' .
mxm& il mmm - f;,ﬂ“
i e iS’x&;sdwx;(L
i At
A

Ww(g o o it Sl
-X o
S i
S t
- s S
e i e) ,1 L e i
o W:wmzx !x:'x‘;w‘: ’:}ﬁ“i&:fs’ G e
e e e
‘ﬁ e i
; pwsm,«

e
i e et
i . o

o HANDSHAK|
e D E .
o
L R :
S A'VERS -
%}%‘ HECE’I‘VDE il i
. . i i itiid
e RS g] 3
! i i oot —
o g ¢ e
)l 5 i i i i
4 e : - —
)) y: e
& — it et dmmx e *
. no ot ssmumm ‘1
X e iulww»ﬂ i 885 xﬁk‘s}«v s R
i mn;ysrﬁw:«wx» e w(;m‘ . »:: -
i et P
e . L s e
——) ME e i i it nﬁ-m-“-’-—'—p&—“——v—“&
: e, o i e
- S L RS
B L “ s",«’ eid L ot e e W
o & qx‘l‘!ﬂim;yﬂ v T o
Umxﬂ s i mmj\!x x!iuyiv!“(! ot my”““WG& »,‘,
.,sxm,\smxs e e s T TR ;“ ¢
- o el i igumxwi;{asgyx 1 e
. 4 L i e o e 7l : o e
" & “"" e sk ;ff\ff’”;‘illu cré?imfi,' ol o gf“ndxf» R i N e w«xuw”“x ol s
o e e Asm;vh;sm o if?ii‘f“”’:’tiii“ A “J’Ix‘ﬁi“"“f}, St .
i "”uﬁ«ff}”*‘?&"‘ u’mw” s ‘23@‘,2”?‘“2%hxw§s’¢g “’;g‘*“‘“ ”;’,‘fﬁ*““’*‘ o ;w" o
. ' i e i A S W)
— o Lier B i e
e i «««wmmy st qus:‘(v e i s o “"""“I”“"”’f“xvm’ 4
D ‘u,«’“,m»,,w B x,‘,,mmwmm i ‘?‘N;;ﬂ 0 G G «»<M;;;;m552 i
e e L S o ey e
“»ffu-mm e i el o ss#smﬁxm'm‘*ﬁ;&ﬁs i
vt el s i <;W;’ ‘,ii‘&»
P AE u‘,ﬁ;mﬁ}:,, ,f";“ ‘mu&t:g e
Ea el ;‘,m .
e

e
L
mxrm» it
lcsx“ﬁ?wi .
o
e
i m—
o
s
s
L
L
i ;
i
i
i

—
i
bt :Gﬁ
.
x,»“ﬂ

G
MANAG!
BUS T T
D e
RIV me,, s s o o
ER W o g
i . émfmﬂ” -
2 : e L La
! | n i) a0 g
= Sl e - ’iv e e :A‘m S(‘Ny\n&xs;é ot e
& s i . e
B 4 xm i , ; ’” o ’n“’ e mmun‘i o N o
i Rl e L i i i mmum‘ o o
il enn s o el AR
Sh el 5 o mm“ e m zh i v’m!mx wmq; :;"w,;;g(
i zxuxvm(xmw i mmxsﬂ aw S :;‘ : i
G i) «x«mﬂw s S W wm«smxzuxstﬂﬂ?‘“
aii M“VW o “mmx il il e i
"“‘*""“‘:“t,x,‘,m e e&xwmmssm;n = —
i eid) 3; &«ﬁw
o ﬂ il xmw ik
S wiwwu i i s
el) e S "
e ’,;,‘” ,fafffw",” i «s‘ Hux.«ux e i b ey
i Pt i vzzmwmu , e i M;f“ ‘g’“ﬁ Ms*““‘“ e it e
Ly fsinfts o1t ‘ piie i e i i e
gt w«mv i e ke ,,,N‘,‘sb&x!?&,mc,’x?‘ﬂi&“?m&;s”’:« e
‘“’“m ‘ ‘imx“ UN“‘ s S‘!SH mmiimmuum if @ il .
Wswsw i w“ iy o o P Mmmww W i
5 ‘m“m"mw o 1 i il w%v'v“sxw,s e, s ot kil
. i ;vwmwww uw R T e
. gt L o w“mwnwm, e o o 7,,x,;,¢,mm
mm»“xmmxx e mw e w;vf;;;‘,:z“”r ’,“2,,::‘*“’“,“‘::",“:;;";»;g“‘;;;:‘,m e
et e e et i i il i
s “";i{’ "M‘ufmsex e : ﬂ"9‘:;5‘%;««mrxwmuwu‘# ‘tjg,,“’ o
s w,m«» iy “;, ,(i b S
s z‘ b o w»::-ﬁsznz.‘m, i 2 xw 1
i s ,,'“;,Mn i i
mmvm“x,.x,, i e
(;‘,‘,,,MW i ux,m(«w;«
Eee s
4o il
fec]

,,m»»«s
m'vmxm«xw,x :
o
i
; B
s RS
s
o
i
T
i A!xﬂim‘i = »»m,»umm e
_END.O
! R, M;;x. &“ w“ ks
> gl A .
NSFER
. potdle m SRl o
S
i

i
QI
B 2 sl
o e

b8
sim»
e e

‘W (
e g
e
e
M
he o
4
e
it 2 i 5% e i
wx BTN et (i il
& p) R
e . HM e i
2 Gl - 5’@?. :
5 i Mm, £ o : i
an g S <‘ ';§< i
o i - —
. . .
e : i e
: I - R
e i L e i s i
%‘”,:W;Ji“ rs‘ P D ”u"’5»3‘3553«%’”*
e s ng,};;jj;;, o o amwmsx? -
G {(tx:,y:m’,;‘g;, i i e o (,,,m:x
i v ‘% e L ;Iz,:&;“% 2 :;:;‘:
S o ity o
(e o
e s
G WM f
£ . wW,M):m,:;gm’;“:w
;g it *,,4:‘,50,‘,,% b sl i o i
i ,m,y»«v*’ e ‘;uwgms e A:;‘«; s ‘ti"”i’;‘f"’l“w« . e
«WJSUM” i e "»ww«“ i St
o M,MW, M,,,, s 9 e M,W [ehiesr «««c g
. ‘ if " el mxxov.‘w,ﬁ 4 m» ai
S *:;‘

s
o
«xww g
o w,m,
et
L
el
ekl)
e fm

ot
il il
i G
4 ! -
. 0
o .,z o
‘, i 2
4 po s o
f e e it i
i 2o
i

e e
a . xm;l - mw 2
& Dl
- sw«u,s 9
i

580y et m!msmm
i thmfw mw it
ol u’xuxsmx
:

| it e
i e
y xemw e
.
e i
e e
- mxmm,u(x» o :
i s i
mux«wis e e i
nmxsmr e Y .
”i”’mcm i Lo
- o
R w,.m Dol
L .
I i e
o :
i
s i
(A S
g
o

m e
et
i

i ',,‘ et
i
e
i ’g«m,

G
it

S

ym
i
vt s
i m i
e 'M st .
wvmm; e AR g
e e eru i oy e
pas r,;g,,,»«,«;,xx’“ e 5 "
st i o i
m»,ww, i g
: e e «x,x
P s
sy
it

=
a w!mmxv 5 A
wi i 3 3
>x>$xx:ﬂvmi}mi" txs ;»Mux.\imm, r(é i
e ft e
e
e
E o
, =
i ARy
Ay Vs;w!xw o
g et W
s e «[xmm(v“
g ((«y»«m»,‘

M” ittt i
o "‘S““
«“ .
3
i
s
o
e i

b
mmn .
LS
s ﬁ,xm X S
e -
it i u\muwi i i o
xxmtmm,&s»«wm L i i
e . i
e ‘ he i wwx
e e,
. . T ;2 e
SN L e
M J s,‘,m e mmm A
e ot I $‘W4x«,>!x e)
m,mm,mM,,“«u e i ds
i wmwﬁsmu o »mmffw ;
WL L;xxuvxm.w;x‘ i e
e . .
AT R xh e o
T o e
2 : ’ 1 . .
A "‘Y' . S fo I wm
- i ek o s e x:;w:«m,yzxi’v S
i 2 % e S Mum :
- G e b e dmmvgctrz,ﬂ v MM
“ v A e
L 3x,muw‘ e m»mme e ,"7 o
L A o °
v Ww«w o i e
o T e o i
b e W ’"'””Z‘""i""z" :
O] mmt o WM f
kRt e e o
i <u4,,,),»«»%(,"4 o (u,«xzw s
o A g
e m»»uwmw o w«vﬂ G o P
“i‘ii‘ bt ”“’“TT»"IY‘:I% J?iy?,, ",Z""»f,»“ m;,m,««, o ,x»-x,x«m,z(x,;m‘ (e i
it o s i i ‘“““‘““f ity i«i« i e
s S »»«r(ﬂx,x»»«m,(fo ;uxmw&x;« e ©
Lol o i e »mm«(ol mum,, T
L L s
e i B p o M:Mxx i x,
e (I
i S w, i
i
e i W

RAL P
CE FOR 4051 GPI
B
ICE

oY)
D7
—8 Do
~ oz | PERIPHERAL
> s | INPUT
DATA BUS
- D3
bz
1
ADDRESS
DECODER.
U1A
ey 402
- z) POLL 1Nl PROGRESS
E 3
R ume
. 5 J402
I © 4
5 feoLL.
& Jue
F41De
i
20| ui1e
b LI >7J o 7407
g wl. 2h2 10 & LiISTEN TO ME
T S apk)
B el 4P2 UiD
g B ospl 3402
s ob? "
23| @13
— 1z fsTeEN
61 62
Iy | AT
w1
U1ZA
14154 2 1402 4 7402
j)1 ED TALK TO ME
200y 2 c—i 2
b2 uizB
4 30\0 g 1407
14
12p _j N4
225 43plS o Jie gTT_'K“
‘lsoﬂ 8 101402 NOTE: SINCE THE WIRING ARRANGEMENT
23, s) BETWEEN THE INTERFACE AND THE
o1 62 we PERIPHERAL DEVICE VARIES IN EACH
EXTERNAL frev —@ 0oV ot 13 "™ CASE, A SPECIFIC WIRING ARRANGEMENT
BNER \eno—mo—p 2] @ 1S NOT SHOWN.
1z
u14D
oA U14A 1402
7404 U138 z
Az 1408 o 74021 ng)_1'\
4 UASA
CONNECTOR TO 3J>> > Te0z s
4021 GPIB LRLE.
+5V
1 . ‘elw10l 6|3
DI0S —a-e 09) L u - - D5
D107 —me og B 1 - - D7
010¢ e 1 5 - DG
DIos —we—13g Z 4 - DS
45V PERIPHER AL
‘ l ohajole] 3] 8] 1] yg 3%,‘?“;\;3
4 -
DI04 et g 1 13 et - D&
DIOd w2 g) D3
| T s - Dz
Dioz—<->-—|%l O——- 2 % o1
—a—u - e
prot ul [PERIPHERAL OLTFUT DATA BUS
| ‘ 8] 1] 1% mC3441
8, 1 10111
—a——0 4
GND & 119, DATA BUS usc | ke 03D l_l:;f_<,L
GND 7 e TRANCEIVERS 1404 7404 TA04
GND 8 »
TUE
B
24 g3 [UGA J4D g7] [43 UoD
7407 7408 o ey
! 12, /15 — = GRAB IT
GOT IT
UABF
uan 7404
7408 "¢c<1,‘3 - I'M BUSY
> u3ze
7404
@ —aww— 43V
4] s
+uv
udw
1610 e‘s 7408
SRQG—we— g 015y LT 1 [8
NDAC—w-10m O 8y ‘5‘
NEFD—‘-‘,—:' D———zo ry ILISTEN WANDSHAKE CIRCUITRY
REN—a-»— 1@ O %y =D =
&l e 1 & T SHIP 1T
Jz [ure
MC3440 U3A U3F . i—, %
1404 1404 D Q
] B0 3
3le IT'S GOME
T T
SHAKE 1
PR ANCEIVERS ITALK _HANDSHAKE CIRCUITRY
- END OF TRANSFER
REMOTE CONTROL

SERVICE PLEAST
2270- 48

405/ GPIB HARDWARE SuPPORT REV. A, MAR {979 4057 GPIB GENERAL PURPOSE INTERFACE DIAGRAM B

IC LIST

COMPONENT TYPE

U1 MC 3441
U2 MC 3440
u3 SN 7404
U4 SN 7408
us SN 7408
ue SN 7402
uz7 MC 3441
us MC 3441
U9 SN 74154
u10 SN 74154
(S SN 7402
u12 SN 7402
u13 SN 7404
u14 SN 7402
uU15 SN 7402

_.u16 } SN 7474
u17 SN 7408
uis SN 7474
u1g SN 7474

» D7
Do
» o5 | PERIPHERAL
> po | INPUT
- DATA BUS
D3
- D2
= D1
ADDRESS
DECODER.
A
1402
» 2z = POLL !N PROGRESS
P - 1
E
R Uiie
. 5 J402
H o] Y
E
3
us
- 74154
| uiic
N Wiy 12 7402
U 23| 2 2 10 LISTEN TO ME
T 3 : S
B 22 i UAD
Y] B 5 1140t
S ep? 13 S5Nc°
Lo 7.) 1-° LISTEN
9 v
- 178
1 wmsc 1 Yite
7402 iz o le 4 P
10 e ? ED TALK TO ME
ale
U13D &
7404 =
SN B
L [Taix
o NOTE: SINCE THE WIRING ARRANGEMENT
10 BETWEEN THE INTERFACE AND THE
2] i U13E LD PERIPHERAL DEVICE VARIES IN EACH
%I;NE;{!AL (feV — @ O——+5V 4, 1402 7404 7402 CASE, A SPECIFIC WIRING ARRANGEMENT
—= A ,
R0 lewo b—> @ 13 MNI0 s > IS NOT SHOWN
U14D
7402
N
2
jju_‘;‘,\
. Ja02 o
CONNECTOR T
4051 GPIB oy ARLE.
+ 1
I_‘ n 10[1el10[6|3 :
10 i) 13 o8&
ooe ns: DD B XH - =
DI0G g g— 14 > Do
- 13 2 4 [53Y
DIOS —= m O = g PERIPHERAL
| } 10 6] 3 8‘9 }_)711” U&M vAx':U;US
s &
moa—.———’i—. o— ‘? - - 23
DIO3-—w»—2m 7]
"-’JL. 5 Dz
DIz I r 4 g
-
oror | u7 JPERIPHERAL OUTPUT DATA BUS | Sm
‘ l MC3441 . 23
18 #1011 m >
GND © 119 DATA BUS usc s U3D e TE
GND 7 —->—1"8 TRANCEIVERS 7404 1504 o
120, 1408
GND 3 i TUE >C
GND Q—Q—T. 4 l"?! %
GND S
23 (e}
—ae—Lg
GND\S Tza 1]
Losic —4-.—|—«T ufoA u4g AN m
7402 74
2
SHIELD —e>——@ O—F
+eV U1
l | o (,,I MC3441 i GRAB T
11 13 5] [0 1| [42 GOT T
ATM«’_.I@ o0— T‘ usc uso UARF
DAV —ato— 2@ O— A 408 408
s 5 4 7404 4o 13 .
\FC —a-— 2@ 00— 408 B " G I'™M BUSY
EOl o | 4 5
2 yap 0%
7304 7402
10
[Gero @ —mv— 45V
+8V r ° " %ac
160l o] 3] 7408 T0d
s O — 15 43 A ?
- O
noAC = om 12 i - |
17 7 Y
NRFD—-=— T8 03— s Z FLISTEN HANDSHAKE CIRCUITRY
REN—a»—@ 00—
|
‘ T || § py— e i
o
Uz <% : wIe
MC3440 U3A o 2 P ls | 1408
1404 B 5P ®
3l —e |T'S GOME
% LAOA
v 7474
NN Céfisi] FTALK HANDSHAKE CIRCUITRY
< END OF TRANSFER
» REMOTE CONTROL
SERVICE PLEASE
2270- 48 AT AT ATHICD AL MDD DAMT W ITET D TA T NIACITIANA D
4057 GPIR HarowaRe Sueporr REV. A, MAR {973 40U QFID QUNTRAL FTURKIUDLD 1N LRUACL LimnONAIYE D

IC LIST

COMPONENT TYPE
U1 MC 3441
u2 MC 3441
U3 MC 3441
U4 MC 3441
us SN 7404
U6 SN 74154
uz SN 74154
us - SN 7402
U9 SN 7474
uU10 SN 7408
U1 SN 7474
uU12 SN 7438
U13 SN 7438
U114 SN 7438
u1s SN 7438
u16 SN 7438
u17 SN 7474
U18 8837
u19 MC 3441
u20 MC 3441
u21 MC 3441
u22 MC 3441

—_— — —_ —_— —_—— - = - - 2
: !D—-:T ATN
—8 0%-0AY
— 1¥C
e
o 0&h\oAc
U6 10 N w
14154 S
[29[O—a YU Hize
| 2lc ab> rar wn 2 o 14
X3 > PRI "TALK' oo
B @
By spe 3l |
Gl G ' Al TEY i
Erit.— OUHE UIZA
745\24 \0&74-’ 1438 X
— usB USC Zp 2 L
2 1402 1404 (11 W
°
| 2i|¢ S N sle_arsee AV
| 3 I L) c Netd oS Ul
BIA g2 usbD UZ3B 1 438 A 1438 LA 31428
T407 7402 dlon WY 4 Y
G G Ue—i2 5 Colen ™o
\50 \9 \ © 4‘ ?‘Vz 4A WY p— 12 it ZY l
FIRST BYTE 5 2B & R =) I
seesse 2t] Sl |
DECODE 1 3
| O unAa 1] SET FOR. Qe 41T 3las P
USA , ol Haa CHE. STRING ”YE_ — i
I e hao4 usbd L;- “8PPF BYTES " [PUTORE SWE NP N QR SR W\ PV IR S R - -
ZS 1404 o Q2 . +9 2 +5Vz
2 }-3 3 3
A3 o2 3% _ Sha WE sy
us® e : B 2B
“* 9204 c e, lo 10138, lo |
3 = SECOND BYTE a2 Blag 2Y |
4. 1
1410]
wEl] = . s N 28 alh WY
ATN -~ O— e o \2] s
le | S RV 4A \1 3A 1
DAV~ ® O 3 U wocT Oy 4Y P ANES S
1¥C O SIMC3441 7408 RA ney
+sIV — 1438 1438 s
d 1310|\0[14 P
] uz3A G005
N AE oM ji uzas 7408 . Jz
©% o S e e)
NDAC-—S' = 1404 15 us HEADER W
17 B MC34.4.1 BYTE UieA
NRFDL1@ O— X \
GND 029 o REGISTER 883
s A) USF [S]1e}:Y
e el O T« Yoo 1SR
GNDSo:t—,‘EI_ : LNGE bC“-» ‘
GND 10~ O ey o NS RIS 5V SV %5V |
Lg:D\\c‘.'j: | 16)a 10]3] e uc2A 41 nhiponiet AL
GND \ =
SWIELD e D_E| 14 -
2 { 3[_ i —l +5VM83?-4?3,|
z“’g Guo -8 U—|(> TEV aEV FEV iV \zail el - STl
£03| av v & THTTOT [bS8 00108
SOl o=V folels] OV P AL AL AL D%—<————:—-l O3 o107
\ 3 D;_—4-’—1—. ™ D106
sav & : bE a8 O-2+D105
l \ r & fio[6 T3Te I |
| 8 T5ST ® 8 DI-o106
ue ——MA— +5V W [}7e-0103
MC3441 © -8 D2 o102
8 O 1ol
+ | S
d 31 ! T =GN
D108 In! 1S i D——m GND&
o107 T o] 9] Ooy=GNDS
»10G :‘ : [}: 7] 8 (O -GADIO
DIOS~—8 O 5 T
| L N ol A gES | izl GND
Caaai ichalioje}s S Vizo I agt !
. 15 3 MC3A 4l WD SHIELD 3
proz-Cu o EX il 2
D102~ W O L S I
DIO| =@ O z 4 m
VY2 [}
405! BINARY HEADER GENERATOR v] m
L % Plsrg o
am_—if! o | - CEPN m
8 O=+E0I 2
i | m
e e o | L e z
I % >
— — —_— — e —— c——————————— —~Sr— ~a— e —eres S . — — [————— Y — — — — o
ARE L A B LIADMAUADBE &LIDDADT 2270-49 »
4051 GPiB HARDWARE SUPPORT REV A, MAR 977 DIAGRAM C

uais TP205% @
i -
¢ZL(|)] L 25N S — ot d 2z J3oz
AZ-| - = = -)
a0 > 22lcep Uaes - 2 5 - pD1o1-0 &
& > “icet pag |2 T4LEDET — 3 > l——<—>—%?‘ DI0Z-0 o
(o] - < > 2 3
(-4 TP 231252 a1 12 o 2 o [e *]° uzon ®
RESET-Q — selex - 5 + o 2441 «»d 2
AG SET |4 . > DiIOo3>-0 2
-?‘ 43 26 PAZ - i A -] z
Al o A ' PAR L a— s o IDATA BUS IZF .4 g
(- l\] ~ 35 rS1 . - o 0104'0 -n
R.wocrt‘) - 212w TR e 2
IRR-O - a7 o1 m
(=1 A IRQB o s L 2441
8 PA4 e > > 2 o3 z__ .
BD@-1 << l PAS 7 - 5 4;" b - '>
-4 33 @ a P s - 7D305 o
BD4-l _qp 52| o1 PAG <> 1 10 10) \—‘_>_>
> 14
BO2- 31D2PA79<= s 2y T DI10G-0
uz2o%
G- | BD™- - 20| pa 415367 > - =
804 e u1iD ¢ | > <=5 D107-0
- <> 22! p4. 741904 Ly > [
P>l e 28/05 RS SH =§u.:1<:5t:> U TP1o1 ! Saar T Toe p1og-e
BDG-l g Y = 105A g RANS BU
BN 27 06 \li_T4LS08 741508 (7:3:22 TP 2441 ANS BUS
| BDT-1 e 26| o7 ' v »—41ho Al g p
2 =[) 5 S—Do * sla > DAV-0O
; o) > 7 a
PlAs] ™ . 2o ﬁ)‘/ ° & et > NRFD-O
' R P 140332 He3lco cl® epl® ubac-o
U321 RrRIZ N _rL‘sJLoss »11Dg ole o =
gL 25 PBY (4% 74L$Oos°$ Al BI €1 DI_E - EQl-0©
NEZ- o 'EN ION +5Y] 3 o a loTiz
22 DAV- i
= ¢ el ltl PB 5&’“ == SRQ-1 N XCVR;' - YYVT S
sy |2 Freen CahgEee u2asc Lo i 1loo o2 - BN
Koo lz7 PB2[1Z4 NOBODY-1 = 5] o =ico <= <!> aTN-O
R0 | s=—m== PBa 12, US41B 5B 1
sty RESET B3 P NDACDLY-1 [REC/XMIT | U411 g Talsoz © 4 -« 2 [FC-O
\‘—‘i?é-p.so PB4 14 Ullic |STEERING || 7432 NP A2 PRt
25 402 E lAH l Al BlLCI E - REN-O
A Flrs1 102 1% TR A
rwoc 21 > HAND !
\——>m‘ > R{W Pes 1% | ~Z 204 l ATING U111A Lo Ul
NG== " 1RQB uTIA unie o7y VAP ERa
TRQ-03Q IRRA PRole 74104 TaL50a -?4‘.3—22’ 9| he M} T2 NRFD-}
-] B
) P < x ®
32 o¢ o) HAND-1 valiA = RDAC-1
=Dl CAl -— 2 ! Uil
\t—p D1 2 |TFCDLA = 1S 7432 74-!.;22.
poz 31 A 23 - 1 2 2. TRANS BUS
\‘—; D2 ce1 L& { it IEC-1 RCVR STEERING
BDOS - 11-3
a3 D> ATNDLY-1 o ' ATN-1
B4+ 29 ez 12 uls +5v 5
oot 221 pa Mci4do0 1] L | GiiE <] »ot e TPIS
W RATY
FBYOLTS o, 4V N 32| o5 JoeBouNcERSciin .] %4.7)« ;%‘bo'* ut11s
(__“210 430%-2 o 27 pe, €BZ 12 p SHAKE-O £o1-1 otz ADDRESS-1 Loz
(23-v) BOT 26 DEVICE -
LG POINT-00-) ma ! iy :; pag[10 ADDRESS 1303 r
SKIP P.&vr;pse.o."”!’ 5 2 < ‘9008
3-1) y305-6 PAD pesq |11 - 1 8
P r—O\Z-WARD o._.___>___§_ il Juopsl YW
=-) J2on-8 PAl pez|12 - T oA
ON- \.th—_-—1 » “ - cn D—D|- VWA o
(D j305-7 PAZ ppal13 - © R
LISTEN-O > 5 = - 29 O0—0|® RES
&Y ymom-o > PAD PBaLl4 L . 5 PAC
e i P 5 R - “
N ‘ ye v
TM_'&; c:3 - - 1| pas . 2 D—Dlt EDP
NOCART -4 > 8 = - MOSESW! g ohie- 2
-2 JSO‘> 4 PAC bg7 11 _, MODE SW2Z A‘Nﬁ]
VALID - 4 - olpar =~ - o—ole Lo | 1 ’ Jzoz
(3D w0 Az 39\ W +) | | >
oAl — p— ‘K —ai0—0 #— +5V
NIRRT PIAADR | | >t N 2 2 2 Q I
sev_zo| o 8 . 7 ? ° 9 0 0 S I
=< P"»”&""""“'W, : . l] i ? T
* + + Il 1] ic
AN L * ' AIB—U —t
MODE ADDRESS (6T0-4524-00)
J305-3
s | PR_O?: RSE5ET~O]
405! GPIB Haroware SupporT -
4924 GPIB INTERFACE
@ LT70-4
525-00 DIAGRAM D :

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09_4924

