TEK PROGRAMMING INFORMATION GPIB
FOR IEEE 488 CONTROLLERS - MADE EASY

4052A GPIB
Programming Guide

S

COMMITTED TO EXCELLENCE

070-5012-00

Abinderis available from Tektronix for your GPIB Programming Guides. Contact your
local Field Office or representative and ask for part number 062-6433-00.

Additional Application and Programming Resources from Tektronix

e Application Engineers at many local field offices

¢ HANDSHAKE—Newsletter of Signal Processing and Instrument Control
e Tektronix Instrumentation Software Library

® Application Notes

e Other GPIB Programming Guides

® Instrument Interfacing Guides (11Gs)

e Utility Software for programmable instruments

For more information, contact your local Tektronix Field Office or representative.

The information presented in this programming guide is provided for instructional
purposes only. Tektronix, Inc. does not warrant or represent in any way the accuracy or
completeness of any program herein or its fitness for a user's particular purpose.

This Programming Guide was written by Harold Mendoza and produced by the ISD
System Support Group.

Copyright © 1983 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved.

First Printing NOV 1983

Preface

What This Programming Guide Is

The GPIB can be a smooth path to automated test and measurement, or it can be a
rough road, strewn with pitfalls. Choosing the right controller and instruments and
writing efficient control programs can make the difference. This programming guide
provides some guidelines for selecting system components and implementing a system
based on the 4052A Desktop Computer.

Section 1 is a brief introduction to 4052A GPIB capabilities.

Section 2 discusses guidelines for choosing system components and configuring the
system.

Section 3 reviews the fundamentals of 4050 BASIC.

Section 4 gets down to the specifics of GPIB system programming with the 4052A.
Section 5 is devoted to techniques for processing and displaying acquired data.
Section 6 describes the factors that affect system performance.

Section 7 provides some hints for improving system performance.

Section 8 describes how to make GPIB programming easier with the 4052R14 GPIB
Enhancement ROM pack.

Though this guide is for the 4052A, it also applies to the 4054A, and much of itapplies
to the 4051. The 4052 has its own programming guide that also applies to the 4054.
Specific language differences for the 4051, 4052, 4052A, 4054 and 4054A are contained
in the 4050 Series Graphic System Reference Manual.

What This Programming Guide Is Not

This programming guide is not a GPIB reference book—that function is provided by
the IEEE standard 488-1978. Neither is it 4052A reference manual or an instrument
reference manual-—these books already exist.

Rather, this programming guide is a practical approach to a 4052A-controlled GPIB
system with only enough reference information and theory to enable you to configure
and understand a GPIB system to fit your needs.

Table of Contents

Section 1 — The 4052Aasa GPIBController..................ccovvviineeinnn.., 1
Defining the System Controller's Jobttt i, 1
Program Developmentooiiiiiiiiiiiiiiiii ittt 1
Controlling the Systemttt ittt it iiiiiiiainnenns 2

Addressing INStrumMeNtS.ttt ettt tiiiine i rerernnnnns 2
Sending data and coOmMmMANAScviiretininntteriirteriiiieiieeeas 3
Transmitting and receivingdatacccoiiiiiiiiiiiiiiiiiiiiieiieenean, 4
Handling interrupts ettt ettt e e e 4
Processingthe Datac.coiiiiiiiiiiiiiiii ittt iiiiiiiiiiieneennes 4
Storing and Displayingthe Data.........coviiiiiiiiiiiiiin it 4
GPIB Capability—More than GPIB Compatibilityccciviiiinnnnn.. 4

Section 2 — Configuring a 4052A GPIB Systemcovvvvvnnnnn. 7
Defining the System’s JObiiiiiiiiiiiiiiiiiiii it iiiiieenanan. 7
Gettingonthe Right Path i i i, 7
Selecting System Componentscviiiiiiiier it ittt eiiiiiiiians 7

Is the instrument really programmable?............... oo i, 7
How fastis the instrument? it i i i it 8
What interface functions are implemented?, 8
X Lo 1 =TT T T A 8
Talkers and listenersttt i ittt itiniee e innnans 10
Message formatot e e et e e 10
Message terminatorsttt it i i e, 1
Getting It Togethert ittt e ettt it i iiiiiienneneas 11
Settingthe bus addressttt i ittt tiiaiiie e iraaanns 11
Setting the message terminatorottt i 11
Cabling the instrumentscciiiiiiiiiiiiiii it e iiinennnns 11

Section 3 — Programming the 4052Acoiiiiiiiiiiiiiniinnennnnn 13
Introduction to 4050 BASIC ciiiiit ittt et ettt e e, 13
1I/0 Addressing in 4050 BASICot iiiiiiiiiiiii ittt 13
@ R - 1 (=10 T=T o | APt 14
Interrupt Handling. ..o i e i s et 15
Program Structuring in 4052A BASICottt e, 15
Binary OperatioNsouiuiii i ittt ittt itire it eriiaernreersnenens 15

Section 4 — Programming a4052A GPIBSystem.....................co0ivnnnn, 17
53T (=T (T 01T U o 17

PoWer Up test ... i i e e e e 17
POWEr UP SR .ottt it i i ittt it i et i e, 17
Poll statement. i e e e et e 17
Configure roUtineo ittt i i i e e e 17
Device Dependent MeSSagesvveiiiiiiiinieneeeeeernniieeeennennennns 18
Device dependent message I/0iiiiiiiiiiniennrereiniineanrernnnnnns 19
ST QTeT 411 44 F- Y3 o - 20
QUErY COMMANTS ..o it ttiiiineet sttt tetrsasnaeesososesanssnnenanenaaenas 20
Sending ASCIldatacooiiiiiiiiii it i e e e e i s 21
Reading ASCIIdatac.cvviiiiiiiniiiiiiieeeeeeereeennnnnnnnnanenns 21
Using alternate delimiters on INPUTottt iiiiiiiiiininneens 22
Binary waveformdataformat............ciiiiiiiii i i e 23

Table of Contents

Sending binary datac.vviiiiiiiiiiiii e i e e 23
Generating the byte count for block binary...............c.oieiiviiiiin 24
Generating the CheCKSUMttt 24
Sending block binary datat 24
Reading binarydatacoiiiiiiiiiieiiiiiiiiii i s 25
Sending Interface MeSSagesuvvrrieatintiiertraennennenraiiitiiines 25
Transfers Among GPIB Devicesoviiiiiieieriiiiiiiiiiiiiiienennnns 26
Interrupts and Instrument Status ...t i 26
Interrupt conditionso i 26
Enabling and disabling interrupts. ..ot e 26
0 T 4} (=Y g] o) - S 27
=T 0T IR T 21 (=Y VT o (- S I T IS S 27

£ Y 1S 1= (1] o] (S 27
TIMEOU T intermuUptS . . viiiieeit ittt iatitninaessrereannnnnnnnns 27
SR INMIEITUPES . .ottt it ittt rranranaannrreessssssaonans 27
Status byte format.coovitir it i it e e 28
Processing the statusbyteco vt i 29
Processing device-dependentstatus............ .o 30
Using the WAIT statementottt 30
Using GPIB Peripherals.o.ouviiiiiiiiin ittt rerneeerniatesaness 31
4907 Flexible Disk File Manageroiiiiiiiiiiieiiiineiiinerreneaanss 31
4924 Digital Cartridge Tape Recorder.............ooiiiiiiniiiiiiiiiness 32
4662 Interactive Digital Plotterccoiiiiiiiiiii i, 32
4956 Graphic Tabletoiiiiiiii it i i i i e e 33
Section 5 — Processing and DisplayingData............................. ... 35
Using the ROM pack routinesc.cvvvviviiieiiiiniienenninnnnnne, 36
Signal Processing ROM Packso.ovuiiiieniiinnenieeeniieeenenan, 36
Real-Time CIOCK ROM PaCK.vvvtiiiiiiiiiiin i ireeinaiiinnnnaaessss 36
Graphing dataccveiiiiiiiniiiiiii et reiniiiai ettt 36
SaMPIE PrOgraAM ...ttt iiiiiiiiiiie sttt 37
Section 6 — Estimating GPIB System Performance 39
Data Transfer Timeou it iiit ittt iiiitiitiie s ians s enannssananss 39
The asynchronouS bUScoiiiiiiiie it iiiiiiiiiinee e iiaennans 39
GPIB datatransfer timingooviuiiiiiiiiriiiiinnieaeeneereneeinnns 40
Estimating data transfer rate for PRINTt 4
Estimating data transferrate for INPUTooiiiiiiiiiiiii i 42
Estimating data transfer rate for WRITE ...t 43
Estimating data transferrate for READ......... ..ot 43
Estimating data transfer rate for WBYTEot 43
Estimating data transferrate for RBYTE. ... 43
Multiline interface message trafficot il 43
Processing Timecciiiiiiiinenniinniennnnnss et 44
Controller ProCesiNgoiriiiiirir e tereriirnnnioasasssenansonssons 44
INStrumMeNnt ProCEeSSING ... ov vttt iiiiiireenrsrrenneaeoenstsanosstasossenns 44
Data ACQUISILION ...ttt iiiitiiiiiinar st terrrasernnnsiaenssssasensns 46
B e T L= [- 46
Digitizing time i i e e e a7
Signal averaging .. .ov.veeereetirerinneatte ettt ronnanatet et 48
Human Interactioniiiiiiiiiriiiiirninrtotanectansseanarsonossoes 48

Table of Contents

Section 7 — Improving GPIB System Performance 49
Know Your Instruments. ... ittt ettt iinnee s 49
Choosing the Right I/0 Statementt iiiiiiiiiiieeens 49

g] 1 49
LN L 49
L2 L 49
Y 5 49
L4 = 0 N 49
T N O 50
Minimizing Bus Traffic In PRINTot ittt e ieenas 50
Synchronizing the Controller and Instruments.c.coviiviiienennnn. 51
Interrupts Boost Performancecciiiiiiiiir it it ei i et 51
Using the operation complete interrupt iiiiiiiiiiiiinennn, 51
Prioritizing serial poll reSpoNSe. .. .oviiiiiiii ittt 52
Local Data Processing........... I b et s e s ettt e et e e 53
ASCII vs. Binary—Simplicity vs. Speediviiiiiiiiiiiiiiiiiiniiieanas 54
(-1 ¢ T 8o Yo T T[4 Vo [55

Section B — The GPIBROMPACKoiiiiiiiiiiiiiiiiettinnnananiinns 57
L) e To o 4 To T o 57
Binary Transfers ..ottt i it ettt e, 58
Sending Interface Messagesviieiiiiirireeirineerrnnteenenineannnns 58
Binary Operations .. .ottt ittt e et i e, 59
LI VoL 0 o1 -1 (T o T 60
(Lo g I = o o7 4T P 60
Error Codes, Event Codes, and Status Bytes b e 61
Parallel POHiNg ...oo it i i ittt e e et e e 61
Miscellaneous ROUtINES. ...ttt iiiiiiiiiii ittt iennenainninnnnns 61

Appendix A — Subsets Describe GPIB Interface Functions...................... 63

Appendix B — GlOSSaryciiiiiiiiiiiiiii i i 67

T T 73

Section 1 — The 4052A as a GPIB Controller

Defining the System Controller’s Job

A typical GPIB system (Fig. 1-1) could include a
controller, such as the Tektronix 4052A Desktop
Computer, a signal generator only able to listen, a
digital counter, able to talk and listen, and a
magnetic tape drive, able to talk and listen. These
instruments can work together to perform a task, but
they must be directed—and that's where the
controller comes in.

Atthe heart of the GPIB system is its controller. In
all but the simplest data-logging applications, some
form of controlier is required to make the system
work. But, taking full advantage of the controller’s
power requires a good understanding of its job in the

GPIB system. The controller's job can be broken
into four major tasks:

1. Program development

2. Instrument control

3. Data processing

4. Display and storage

Program Development

The first task for many GPIB controllers is
program development—writing, editing, and
debugging the applications software that will
control the system. This puts some special demands
on the controller. For example, it should have a
complete easy-to-use keyboard. In addition, user-
definable keys, though not absolutely necessary,
make menus or other input functions much simpler
to implement and easier to use.

4052A

CONTROLLER

(ABLE TO TALK,
LISTEN, AND CONTROL)

SIGNAL DIGITAL MAGNETIC

GENERATOR COUNTER TAPE DRIVE

(ONLY ABLE TO (ABLE TO TALK JABLE ™S
LISTEN) AND LISTEN) LI TEN)

Fig. 1-1. A typical GPIB system includes a controller and a variety of GPIB-interfaced devices with different
capabilities.

Section 1
The 4052A as a GPIB Controller

A full-size display is important for easy program
listing and debugging. And, a convenient, powerful
editor should be provided to create and modify
program text. Finally, efficient mass storage is
important for storing programs and data. A
standard, transportable media allows programs
developed on one controller to be transferred and
run on many other systems.

Controlling the System

Next, consider the task of instrument control. No
matter how powerful the system components are, if
their actions are not coordinated, the system is like
an orchestra without a conductor. The controller
directs the entire system in performing its intended
function. It assigns tasks to the instruments,
coordinates communication, handles error
conditions, and monitors the system’s progress. The

instrument control task can be further divided into
five functions:

Addressing instruments

Sending commands

Transmitting and receiving data

Handling interrupts

Monitoring device status

Let's look at each of these functions individually:

Addressing instruments. The controller selects an
instrument or set of instruments to be involved in an
operation by addressing them. Every instrument is
assigned a unique primary address in the range
0-30. The controller uses this address to assign a
device totalk or listen. In addition, some instruments
have secondary addresses that select sub-sections
or functions within the instrument. For example, Fig.
1-2 shows that the Tektronix 7612D Programmable

4052A

MAINFRAME
SECONDARY
ADDRESS 0
6120
FG 5010
PRIMARY DM 5010
PROGRAMMABLE
PROGRAMMABLE
ADDRESS 0 | l7atep| |7at6p FUNCTION oMm - DhE
GENERATOR
PRIMARY PRIMARY
CHANNEL A CHANNEL B ADD;:ESS AD‘:';ESS
PLUG-IN PLUG-IN
SECONDARY SECONDARY
ADDRESS 1 ADDRESS 2

Fig. 1-2. Each instrument on the bus is assigned a unique primary address. Secondary addresses are used in
some instruments to select sub-sections or functions within the instrument.

2

Section 1
The 4052A as a GPIB Controller

Digitizer has a secondary address for its mainframe
and one for each programmable plug-in.

Sending data and commands. The controlier
sends two basic types of messages: device-
dependent messages and interface messages (Fig.
1-3).

Interface messages are commands that control
interface functions. Interface messages come intwo
types: uniline and multiline. Multiline messages can
be further subdivided into universal commands and

addressed commands. Figure 1-4 shows how the
different types of GPIB messages are related.

Multiline interface messages are sent by placing a
byte on the GPIB with ATN asserted. Multiline
interface messages may be either universal
commands, affecting all devices on the bus, or
addressed commands affecting only the addressed
instruments, or addresses themselves.

Uniline interface messages are sent by asserting
one line of the GPIB. Uniline interface messages

e INTERFACE FUNCTIONS

—

(e.g., 492P)
GPIB

I
l
INSTRUMENT I
: INTERFACE

GPIB

I

|

l 4052A
INTERFACE :

Fig. 1-3. The controller sends interface messages with Attention (ATN) asserted. These messages control
interface functions. Device dependent messages, sent with ATN unasserted, control instrument functions.

GPIB MESSAGES

|
DEVICE-DEPENDENT

(UNT, UNL, SPE)

INTERFACE
MESSAGES MESSIAGES
| |
MULTI-LINE UNI-LINE
MESSAGES MESSAGES
I I i] (ATN, SRQ, REN)
UNIVERSAL ADDRESSES ADDRESSED
COMMANDS COMMANDS

(SDC, GET, GTL)

Fig. 1-4. Messages sent over the GPIB can be divided into two general types—interface messages and device-
dependent messages. Interface messages are further divided into universal multi-line messages, addressed

multi-line messages, and uni-line messages.

3

Section 1
The 4052A as a GPIB Controller

include ATN (attention), IFC (interface clear), SRQ
(service request), REN (remote enable), and EOI
(end or identify).

Device-dependent messages consist of
commands or data that control instrument
functions. The content and format of these
messages is not specified in the IEEE 488 standard;
it is left to the instrument designer. The messages
may consist of queries that return instrument
settings or data, commands that control instrument
settings, or other data, such as waveforms. Device-
dependent messages are always sent with the GPIB
attention (ATN) line unasserted.

Transmitting and recelving data. Most
instruments send data to and/or receive data from
the system controller. A digitizer, for example,
acquires waveform data and transmits it to the
controller for processing and storage. A
programmable spectrum analyzer, such as the
Tektronix 492P might receive processed waveform
data from the controller for display on its CRT. Data
may be transmitted using a variety of codes
including binary or ASCII.

Handling Interrupts. Devices in the system
generate interrupts to inform the controller of error
conditions, the completion of an operation, or other
asynchronous events that require the controller’s
attention. The controller finds the device that
generated the interrupt (if there is more than one
instrumentin the system), reads its status, and takes
appropriate action.

Processing the Data

The second major task of a GPIB system
controller is processing the data acquired from
instruments. Often, a few important parameters
must be extracted from a mass of raw acquired data.
Again, the system controller takes over. A few
instruments, such as the 492P Programmable
Spectrum Analyzer and the 7854 Programmable
Oscilloscope, can do some processing internally.
But many can only send raw data to the controller,
depending on it for processing.

This processing may involve simple operations,
such as signal averaging or finding the amplitude of
an acquired pulse. More advanced applications may
require operations such as the fast Fourier
transform (FFT) or convolution. Powerful high-
speed minicomputers have made lengthy and

4

complex calculations feasible even in a small GPIB
system controller, a task once left to large
mainframe computers. With this power, the
controller can set-up the instruments, acquire test
data, and compute the desired parameters from the
acquired data—all without human intervention.

Storing and Displaying the Data

Once data is acquired and processed, the
controlier is responsible for storing and/or
displaying the results. Non-volatile mass storage,
such as floppy disks or magnetic tape, provides a
convenient means of logging data or results. In
addition, the controller can generate graphic
displays that make visual analysis of the data much
easier. Hard copy (paper) output is also important
for documentation of test results and displays. This
output may be provided by a hard copy unit that
copies the screen contents or by a plotter, or a
printer.

GPIB Capability—
More than GPIB Compatibility

An efficient, powerful GPIB system requires more
than just a computer with an IEEE 488 interface—it
requires a capable controller with the hardware,
software, and peripherals to handle the tasks. Many
a frustrated user has found that an I|IEEE-488
interface and a plug on the rear panel do not make a
good GPIB controller. There is a considerable
difference between GPIB compatibility and GPIB
capability!

The Tektronix 4050-Series Desktop Computers
have long been known as the leader in high-
performance graphics computers. But, they are also
very capable GPIB controllers. The 4052A integrates
a high-speed bit-slice minicomputer, a high-
resolution graphics display (1024 x 780 points), an
internal magnetic tape mass storage (up to 600
Kbytes), and a GPIB interface in a single compact
unit (Fig. 1-5).

The 4052A's powerful hardware is supported by a
greatly enhanced version of the popular, easy-to-
learn 4050 BASIC originally implemented on the
4051. 4050 BASIC incorporates a flexible 1/0
structure that allows simple addressing of GPIB
instruments and peripherals. It also includes
extensions for signal processing, graphics, and

Section 1
The 4052A as a GPIB Controller

GPIB
INSTRUMENT
CONTROL

DATA
PROCESSING

PROGRAM
DEVELOPMENT

e Smaen ==

FEpATR 4eRg |

./

MASS
STORAGE

GRAPHIC
DISPLAY

Fig. 1-5. The 4052A is more than a GPIB-compatible desktop computer—it’'s a capable system controller.

GPIB control. 4052A Basic has several features that
facilitate programming and program maintenance:

® Program structuring
Subprograms with parameters and local
variables
DO loops
IF .. THEN .. ELSE constructs
Multicharacter variable names

Thus, the 4052A houses all the essential ingredients
of a powerful, flexible, and capable GPIB system
controller in a single cabinet.

Section 1
The 4052A as a GPIB Controller

Section 2 — Configuring a 4052A GPIB System

The GPIB is a flexible interface—it can efficiently
link many different types of instruments together to
perform a variety of jobs. We have looked at the
system controller's job and discussed some of the
qualifications of a capable GPIB controller. But,
choosing the right instruments and the right
configuration for your system is also important. A
clear definition of what you want the system to do
and a basic understanding of the system
components is the key.

Defining the Systern’s Job

The first step in configuring a system is to define
its job. Consider these questions:

1. Whatis the system's operating environment? Will
it be performing repeated tests on a production line?
If so, speed is probably a primary concern. On the
other hand, accuracy is often more important in a
research environment, where an operator sitting ata
keyboard probably won’t notice an extra second or
two of delay.

2. Will the system need to generate test stimuli? If
s0, one or more signal sources will be required. And
if the output of the source must be changed during a
test, the generator(s) should be programmable.

3. Will the system acquire data? If the system is
intended to make automated measurements, some
type of data acquisition instrument is needed. The
acquisition could be as simple as a DC voltage
measurement, or as complex as a high-speed
digitization of a transient waveform. The important
points to consider here are the type of data to be
acquired, number of data channels, and the GPIB
capabilities required in the acquisition instrument.
Also remember that the 4052A must be programmed
to receive the acquired data. A variety of data
formats are used, so be sure you know the specifics
of how your instrument transmits its data. We'll talk
more about this later.

4. Will the data need to be processed? If the
acquired data requires processing, the controller or
instrument must be capable of performing the
necessary computations in the available time.

5. WIil data or test results be logged to a peripheral
device? In some cases, where data must be captured
very quickly, data logging may be necessary. Data
can be written to a peripheral device, sometimes
without even passing through the 4052A. Later,

when the acquisition is complete, the 4052A can
read and process data from the peripheral at a
slower rate. It may even be set up to log data from an
acquisition, initiate the acquisition, and process the
data from the last acquisition whilethe nextoneisin
progress.

Getting on the Right Path

These are some of the questions that need
answers as you begin configuring your GPIB
system. It's not an exhaustive list, but answering
these questions will get you on the path to a clear
definition of your system'’s job. And that’s a big step
toward a well-designed, efficient system.

Selecting System Components

With a clear definition of the system’s purpose in
mind, you can begin selecting the specific
instruments to accomplish that purpose. This
discussion focuses on the GPIB considerations
of selecting components. Other required
specifications will be determined by the application.

Is the instrument really programmable? Often,
instruments that are described as “IEEE 488
programmable” in catalogs and sales brochures are
actually only partially programmable. Some
functions can only be set from the front panel or by
internal controls. It's important to know which
functions, if any, are NOT programmable when you
are selecting instruments. For each component in
the system, you should have a list of the functions
that must be programmable. if, for example, you
need a function generator, your list might include
programmable frequency, phase, and symmetry. As
you look for programmable function generators,
look at the specifications carefully. Are these
functions programmable? Don’t assume that the
functions you need will be programmable just
because the brochure says the instrument is
“programmable”.

In addition, most Tektronix programmable
instruments provide a convenient query command
that returns the current instrument settings to the
controller. The settings are returned in a format that
can be stored directly and transmitted back to the
instrument as commands. Query commands are
also included to return individual instrument
settings or parameters.

Section 2
Configuring a 4052A GPIB System

This feature is especially valuable in interactive
systems where the operator may make manual
adjustments to the instrument through the front-
panel controls. The operator may set-up the
controls manually and send the settings to the
controller by pressing a front-panel button or
issuing a command from the controller.

How fast Is the Instrument? Speed can be an
important factor in choosing GPIB system
components, particularly for systems that are
intended to perform high-speed tests in a
production environment. The speed of a GPIB
instrument is determined by three basic factors: the
time required for acquisition, internal processing,
and data transfer. If your system will be performing
in an environment where speed is critical, take a
careful look at the data transfer rate and other speed
specifications of the instruments. Section 6
describes some techniques for estimating the
performance of a GPIB system.

What interface functions are implemented? A
device's GPIB interface provides the link between
the GPIB and the programmable device functions.
The IEEE 488 standard allows a designer to choose
from a list of optional functions when implementing
the device interface. These interface functions are
defined in terms of the following “interface subsets™:

Source Handshake
Acceptor Handshake
Talker

Listener

Service Request
Remote/Local
Parallel Poll

Device Clear

Device Trigger
Controller

The instrument designer can choose to implement
all, part, or none of each of these functions, as
defined by the function subsets in the standard. You
should find a list of the interface subsets in the
specifications for any GPIB instrument. The list may
sound strange until you realize that it's just a
shorthand way of describing the device's interface
functions. CO, for instance, says that an instrument
has no capability as a controller. DT1 means that an
instrument can be triggered to perform a designer-
chosen function when it receives the group execute
trigger interface message. A summary of the
interface subsets is contained in appendix A.

8

As you select instruments for the system, keep
these interface subsets in mind, but don’t confuse
them with the programmable functions of a device.
The interface subsets only describe the capabilities
of the device’'s GPIB interface, not the
programmable functions of the device itself.

Allinstruments in a system do not need to have the
same interface subsets. But, the capabilities of some
instruments may not be useable unless other
instruments in the system, or the controller also
implement the same interface subsets.

Consider, for example, the Device Trigger (DT)
interface subset. Instruments that have the device
trigger function implemented (DT1 interface subset)
can be set up to start acquiring data or initiate some
other process when they receive the Group Execute
Trigger (GET) interface message. This function is
useful when several instruments must be
synchronized to perform atest. However, if only one
of the instruments in the system has the DTt
interface subset, the device trigger feature won’t be
very useful, since the other instruments in the
system don’t understand the GET message and can’t
be triggered by it (Fig. 2-1).

Addressing. The |IEEE 488 standard defines the
basic addressing scheme for GPIB instruments.
However, it leaves several options open to the
instrument designer, so it's also important to know
the individual addressing requirements of the
instruments you are considering.

Al GPIB instruments have at least one primary
address in the range 0-30. In most cases, this is the
only address the user must be concerned with. The
instrument actually has one address for talking (if it
can talk) and one address for listening (if it can
listen). But the 4052A automatically generates these
“absolute” talk and listen addresses from the single
primary address (except for the low-level WBYTE
and RBYTE statements). When you use an output
statement like PRINT, the controller adds 32 to the
primary address to generate the absolute listen
address of the instrument. When you use an INPUT
statement, the controller adds 64 to the primary
address to generate the absolute talk address. In
most cases, this process is automatic, so the user
need only remember the single primary address.

Some instruments also have one or more
secondary addresses. This address selects a sub-

Section 2
Configuring a 4052A GPIB System

TRIGGER

DT

DTO

CONTROLLER

Fig. 2-1. An example system using Group Execute Trigger (GET) to initiate an operation. Both the function
generator and the digitizer must implement the DT1 interface subset (Device Trigger capability).

function or part of the instrument to take part in the
operation. The specific use of this secondary
address is not defined in the standard, so
manufacturers use it in several different ways.
Again, the user specifies an address in the range
0-30, and the controller automatically adds 96 to this
address to generate the absolute secondary
address.

Primary GPIB addresses are usually set by a set of
five switches inside the instrument or on the rear
panel. These switches allow you to set the address
from 0 to 31, but there are some limitations. Some
controllers, such as the 4052A, reserve address zero
for themselves, so you can't use address zero with
these controllers. Also, 31is not a valid address—it is
used for the universal UNTalk and UNListen
commands. Setting a device to address 31
effectively eliminates it from the bus since it can
never be addressed. A typical set of address
switches is shown in Fig. 2-2.

ream = 9 01 TALK/ LISTEN
LF OR EO%—E‘I 0§ »—TALK ONLY MODE

1 1 LISTEN ONLY

ON LINE

E 570 488 PORT

GPIB

Fig. 2-2. 7854 Oscilloscope’s GPIB connector and
selection switches for setting primary address and
communication mode.

Section 2
Configuring a 4052A GPIB System

If a secondary address is required, it is usually set
by a separate switch. In the 7912AD and 7612D, the
secondary address switch sets the mainframe
secondary address. The secondary address of the
left plug-inis the mainframe secondary address plus
one. The right plug-in address is the mainframe
address plus two. So, to address the left plug-in to
listen, the primary listen address is sent, followed by
the secondary address of the left plug-in. We'll look
at some specific examples of how this is
accomplished in 4050 BASIC later.

Talkers and listeners. Instruments in the system
can take one of three roles: Talker, Listener, or
Controller. Since the 4052A will not allow any other
device to take control of the bus, we'll only consider
talkers and listeners.

At this point, it's important to understand what the
IEEE 488 standard refers to as a “talk-only” or
“listen-only” instrument. These terms refer to
instruments that can be manually configured
(usually with a switch) as permanent talkers or
permanent listeners. When configured in this mode,
the instruments do not need to be addressed by a
controller. They are permanently addressed and
they participate in every bus transaction. Other
instruments may only be capable of talking or
listening, but if they must be addressed by a
controller, they are not considered “talk-only” or
“listen-only” devices as defined by the standard.

Talk-only and listen-only instruments are useful
when a small system is set-up without a controlier.
Often, the system simply consists of a talk-only

acquisition instrument, such as the 468 Digital
Storage Oscilloscope, and a peripheral configured
for listen-only operation, such as the 4924 Digital
Cartridge Tape Drive (Fig. 2-3). In this
configuration, the acquisition instrument sends its
datato the tape drive forlogging. No other bus traffic
occurs and a controller is unnecessary.

When talk-only or listen-only instruments are not
used, the controller assigns the role of talker or
listener to an instrument by issuing its talk or listen
address, respectively. Unaddressed instruments do
not participate in the transaction.

When choosing system components, it's
important to know which instruments need to talk,
which ones need to listen, and which ones need to
do both.

Message format. Another important consideration
when you are configuring a GPIB system is the
message format used by each instrument. The
syntax and coding of device-dependent messages is
not specified in the IEEE 488 standard. As a resulit,
there is no universal standard for message coding.
This can be a source of frustration when
programming the system, because of the widely
different message formats used.

Tektronix has developed a codes and formats
standard designed to enhance compatibility among
its GPIB instruments. The standard specifies
message coding and syntax designed to be
unambiguous, correspond to those used by similar
devices, and be as simple and obvious as possible.
This standard makes programming a system of

468
DIGITAL STORAGE

4924
DIGITAL CARTRIDGE

OSCILLOSCOPE
SET FOR

TAPE DRIVE
SET FOR

TALK-ONLY MODE

LISTEN-ONLY MODE

Fig. 2-3. Some instruments can be manually set to permanent talker (talk-only mode) or permanent listener
(listen-only mode). This allows small systems, such as the 468/4924 system shown here, to operate without a
controller. These instruments may also be operated with a system controller.

10

Section 2
Configuring a 4052A GPIB System

Tektronix GPIB instruments easier and simpler,
because the messages for all instruments are similar
and easy to remember. And since the commands
consist of simple English-like mnemonics,
programs are easier to read and understand.

Message terminators. Manufacturers also use
different techniques to indicate the end of a
message. Some instruments assert the EOI bus line
when they are finished talking, others send a special
character, such as line-feed. Again, the key is
knowing what the instruments require. Using
Tektronix instruments eliminates most of these
problems, since they are designed to conform to the
codes and formats standard, which specifies EQl as
the message terminator. Most Tektronix
instruments can also be configured to use the line-
feed terminator when operated with other
controllers.

Getting It Together

Now that you understand the capabilities and
requirements for each instrument in your system,
the job of actually configuring the system should be
simpie. The following paragraphs provide a few
guidelines for connecting the instruments together
and setting the bus addresses.

Setting the bus address. The first step is setting
the bus addresses for each instrument. Remember
that every device must have a unique address. Valid
primary addresses are 0-31, but don’t use address
zero—the 4052A reserves this address for itself.
Also, selecting address 31 logically removes the
device from the bus; it does not respond to any
address, but remains both unlistened and untalked.

If you change the address switches after an
instrument is powered-up, the address may not
actually be updated until you return to local, re-
initialize, or turn power off and back on. Check the
instrument manuals for more details.

Since the 4052A POLL command allows you to
sequentially poll instruments in any order, it is not
necessary to arrange the addresses according to
interrupt handling priority. As you set the addresses,
write each one down for reference when writing
programs.

Setting the message terminator. The message
terminator on most instruments is selected with a
switch on the rear panel or an internal strap. The

most common delimiters are line feed and EOI.
Tektronix controllers use EOI, but line feed option is
available for compatibility with other controllers.

Cabling the instruments. The next step is cabling
the instruments together. Up to 15 devices,
connected by not more than 20 meters total cable
length, can be interfaced to a single IEEE 488 bus. In
some cases, more than 15 devices can be interfaced
if they do not connect directly to the bus, but are
interfaced through another device. For example, this
scheme is used for programmable plug-ins housed
in a 7612D or 7912AD Programmable Digitizer.

The system can be cabled in a star or linear
configuration (Fig. 2-4). To maintain the bus
electrical characteristics, a device load must be
connected for each two meters of cable. Although
devices are usually spaced no more than two meters
apart, they can be separated farther if the required
number of device loads are lumped at any point. If a
single instrument is interfaced to a controller, the
two-meters-per-instrument rule allows the
controller and instrument to be separated by four
meters of cable.

Generally, at least two-thirds of the instruments
on the bus should be powered-up for correct
operation. In some cases, the bus will operate
properly with fewer instruments powered-up. Check
the standard for more details.

11

Section 2
Configuring a 4052A GPIB System

“&T%"muuiﬂu}

Fig. 2-4. The GPIB system can be configured in either a star or linear manner.

12

Section 3 — Programming the 4052A

Introduction to 4050 BASIC

The 4052A runs an enhanced version of 4050
BASIC. 4050 BASIC contains extensions in
graphics, file system access, I/0 operations, matrix
operations, character string manipulation, high-
level language interrupt handling, and operating
system facilities. The 4052A implementation adds
the following capabilities:

GPIB enhancements

Program structuring
Multi-character variable names
Binary operations

Additional graphics commands
Additional array handling

Although these extensions provide considerably
more power than standard BASIC, most of the
extensions are exercised through optional entries in
the statements. This enhances compatibility with
most other BASIC languages.

Additional language extensions in GPIB
operations, signal processing, real-time control,
enhanced graphics, and file editing are available
using optional ROM packs.

The 4052R14 Option 1A GPIB Enhancement ROM
pack eases the GPIB programmer’s job by offering
routines that do binary transfers, error trapping,
parallel polling and several other operations.

If your controller will have to process waveforms
or other array data, the signal processing ROM
packs (4052R07 and 4052R08) will be particularly
valuable. These two ROM packs provide 15
waveform and array processing functions, including
differentiation, integration, maximum, minimum,
and cross functions, fast Fourier transform, inverse
Fourier transform, convolution, correlation, and
others.

In process control and other real-time
applications, the 4052R09 Real Time Clock ROM
Pack is also very useful. It provides five time and date
functions with elapsed time measurement and a
programmable interrupt.

All ROM pack routines are accessed with a simple
CALL statement. More information on the ROM
packs is provided in Section 5—"Processing and
Displaying Data.”

1/0 Addressing in 4050 BASIC

4050 BASIC uses a powerful I/O addressing
technique that handles all peripherals—internal and
external—the same. For example, the same PRINT
statement can be used to write data on the internal
magnetic tape or to send ASCI| data to an external
GPIB-interfaced device. The only difference is the
address specified in the statement. Let’s look at a
typical PRINT statement to see how this addressing
technique works:

PRINT @33,12:“THIS IS ASCII DATA”

The keyword PRINT tells BASIC that data is to be
output. The next two numbers are primary and
secondary addresses. If they are not specified, the
PRINT statement causes the data to be printed on
the graphic display screen. When the addresses are
included in the statement, the data is sent to the
specified address. Addresses may be specified as
constants, variables, or numeric expressions.

Each peripheral device in the system is assigned a
primary address. For example, the above PRINT
statement sends the ASCII string “THIS IS ASCII
DATA" to the device at address 33, the internal
magnetic tape drive. Primary addresses are
assigned as shown in Table 3-1.

TABLE 3-1
DEVICE NUMBER ASSIGNMENTS
Device Number Device

1-30 External devices on the GPIB
31 4052A Keyboard
32 4052A graphic display
33 4052A magnetic tape drive
34 DATA statement
35-36 Unassigned
37 Processor status
38-40 4050E01 ROM Expander
41 Left-most ROM slot
42-50 4050E01 ROM Expander
51 2nd-from-left ROM slot
52-60 4050E01 ROM Expander
61 3rd-from-left ROM slot
62-70 4050E01 ROM Expander
7 4th-from-left ROM slot
72-80 Unassigned

Each 1/0 statement in 4050 BASIC has a default
primary address that refers to the internal peripheral
usually accessed with that keyword. However, any
valid primary address may be substituted for the

13

Section 3
Programming the 4052A

default value. Table 3-2 lists the default addresses
for each 1/0 statement.

TABLE 3-2
DEFAULT I/0 ADDRESSES

BASIC Statement Default 1/0 Address
APPEND @33,4:
CLOSE @33,2:
COPY @32,10:
DRAW @32,20:
FIND @33,27:
FONT @32,18:
GIN @32,24:
HOME @32,23:
INPUT @31,13:
KILL @33,7:
LIST @32,19:
MARK @33,28:
MOVE @32,21:
oLD @33,4:
PAGE @32,22:
PRINT @32,12:
RDRAW @32,20:
READ @34,14:
RMOVE @32,21:
SAVE @33,1:
SECRET @37,29:
TLIST @32,19:
WRITE @33,15:

The second number in the BASIC statement is a
secondary address. internal 4052A peripherals and
some external peripherals use the secondary
address to determine what type of 1/0O action is
required. For example, if a KILL statement is
executed, the internal tape drive is addressed by
default. The default secondary address of 7 tells the
tape drive that a KILL operation is being executed.
The same operation could be executed using a
PRINT statement by specifying the primary address
of the tape drive, and the secondary address for the
KILL operation. Thus, these two statements are
equivalent:

PRINT @33,7:n = KILL n

where n is the number of the file to be KILLed.

If a secondary address is specified in an 1/O
statement, itis sentin place of the default address. If
you specify 32 as the secondary address, no
secondary address is sent.

Some instruments, like the Tektronix 7912AD and
7612D Programmable Digitizers share a single

14

primary address among the mainframe and up to
two programmable plug-ins installed in the
mainframe. These instruments use the secondary
address to select the mainframe or one of the plug-
ins for involvement in an I/0 operation. Others, like
the TM 5000 series of programmable instruments,
use a separate primary address for each instrument.
Since the Tektronix TM 5000 mainframe has no
programmable functions, it is not assigned an
address. When addressing instruments that use the
secondary address for selecting a sub-function,
simply specify the correct primary and secondary
address for all 1/0 to the device.

4050 BASIC also simplifies addressing of external
GPIB devices. A primary address in the range of 1 to
30 is used to address a device, whether to talk or
listen. When an instrument is addressed to listen,
4050 BASIC adds 32 to the primary address to
generate an absolute listen address. When an
instrument is addressed to talk, 64 is added to the
primary address. For example, if an instrument’s
primary address is set to 1, it listens at absolute
address 33 and talks at absolute address 65. The
4052A automatically generates these absoiute
addresses from the primary address specified in the
1/0 statement.

The secondary address is also specified as a
number in the range 0-30. 4050 BASIC adds 96 to
this value to generate the absolute secondary
address.

1/0 Statements

The 4052A’s I/0 statements can be separated into
three levels as illustrated in Fig. 3-1. The highest
level of statements perform special /0 functions
that make programming easier and more efficient.
For example, the DRAW statement makes graphics
much simpler and faster than implementing the
same function with PRINT statements.

The next level of I/0O statements are designed for
simple operations such as sending or receiving
ASCIl data. The PRINT and INPUT statements
provide some data formatting for ASCII input or
output. The READ and WRITE statements perform a
similar operation for machine-dependent binary
input and output.

The lowest level of I/0 statements are the RBYTE
and WBYTE statements. These statements are
intended to provide line-level control of the GPIB

Section 3
Programming the 4052A

/

AN

Fig. 3-1. 4052A 1/0 statements can be divided into
three levels, from high-level statements like DRAW
and GIN that implement special graphics 1/0
functions, to low-level statements like WBYTE and
RBYTE that provide line-level control of the GPIB
data bus.

data bus at the expense of speed and increased
complexity. RBYTE and WBYTE are exceptions to
the standard addressing rules in 4050 BASIC. The
absolute talk or listen address and the absolute
secondary address (if required) must be specified,
instead of the primary addresses used in higher level
statements.

Bytes are transferred in straight binary code. The
programmer is responsible for checksums or other
error checks. These statements give you full control
of the GPIB data bus, and the ATN (Attention) and
EOI (End or Identify) lines. The statements also
allow you to set up a transfer between two
instruments, without passing the data through the
4052A.

GPIB datatransfers are discussed in more detail in
Section 4.

Interrupt Handling

4050 BASIC also provides a simple high-level
facility for handling service request (SRQ) and other
interrupts. Statements are included to perform serial
polis, transfer program control asynchronously on
an interrupt condition, wait for an interrupt

condition, or disable interrupts. Interrupt handling
capabilities of 4050 BASIC are discussed in more
detail in Section 4.

Program Structuring in 4052A BASIC

4052A BASIC has features that enable you to write
structured programs. These features include:

e Subprograms with local variables and parameter
passing

e |F.. THEN ... ELSE constructs

e DO loops

4052A BASIC also allows you to use
multicharacter identifiers and comment tails, thus
improving readability.

Binary Operations

4052A BASIC allows you to perform the following
binary operations:

AND

OR

exclusive OR
complement
rotate

shift

test

set

These binary operations are performed bit-by-bit
on string quantities. If you want to perform binary
operations on numeric quantities, you must first
translate the numeric into an appropriate string.

_Figure 3-2is a subprogram that AND’s two numerics

and stores the result in a numeric.

500 SUB _AND(IN1,IN2,_RESULT)
510 LOCAL IN1$,IN2$,0UTS

520 IN1$=STR(IN1)

530 IN2$=STR(IN2)

540 CALL “BITAND",IN1$,IN2$,0UT$
550 _RESULT=VAL(OUTS$)

560 END SUB

Fig. 3-2. This program AND’s two numerics and
stores the result in a numeric.

15

Section 3
Programming the 4052A

16

Section 4 — Programming a 4052A GPIB System

Writing the programs that control a GPIB system
is often the most time consuming and difficult part of
building the system. But, with a clear definition of
the system’s purpose, carefully chosen
components, and a powerful programming
language like 4050 BASIC, the job is greatly
simplified.

This section provides a guide for writing 4050
BASIC programs for a 4052A-controlled GPIB
system. The details of reading and writing
commands and data, interrupt handling, and
interface control are covered. A generous supply of
sample programs are included. We'll also take a brief
look at GPIB peripherals, such as floppy disk drives,
tape drives, and plotters.

System Power Up

Power up test. When it's time to power your
system up, there are a few things you'll need to be
ready for. First, remember that most programmable
instruments automatically perform some kind of
self-test procedure on power up. The instruments
usually won’t respond to any front-panel or GPIB
input until the power up test is complete—all you
can do is wait. The time required to complete this
procedure varies from milliseconds to several
seconds.

If all goes well in the test, the instrument powers
up normally. Otherwise, errors are usually reported
on the front panel and by setting the status byte to
indicate the error. When the self-test is complete or
errors are detected, the instrument asserts the GPIB
SRQ line to tell the controlier that its status can be
read.

Power up SRQ. In its initialized state (after power
up or INIT), SRQ’s are disabled (ignored) on the
4052A. To enable SRQ's, your program must
execute an ON SRQ THEN statement. The following
statement enables SRQ’s and specifies statement
2000 as the beginning of the SRQ handling routine.

100 ON SRQ THEN 2000

After executing this statement, the 4052A responds
to SRQ’s by doing an implicit GOSUB to line 2000.

Since the SRQ line is shared among all
instruments on the bus, the 4052A can't tell which
instrument(s) are asserting it. Nor can it tell, at this
point, whether the instruments completed their
power up tests normally, or if errors were detected.

The solution is to read the status byte from each
instrument. This accomplishes two things: First, it
tells the 4052A if the instruments powered up
normally, and if they didn't, what's wrong. This
information can be passed on to the system operator
via the controller's display. Second, reading the
status byte clears the SRQ.

Poll statement. Use the POLL command to read
the status byte from each instrument. Thecommand
format is:

POLL Device,Status;<primary address,[secondary address}>

(The secondary address is optional—use only when
required.)

In the simplest case, where a single instrument is
connected to the 4052A and set for bus address 1,
the command is:

POLL Device,Status;1

The instrument's status byte is returned in the
variable STATUS and a 1 is returned in DEVICE,
indicating that the first device polled was asserting
SRQ. Several addresses may be specifiedin asingle
POLL command by separating each address with a
semicolon. Secondary addresses may also be
included by separating them from the primary
address with a comma. For example:

POLL Device,Status;1,1;2;3

This statement first polls the device at address 1 with
secondary address 1. This might be a programmable
plug-in installed in a programmable mainframe. If
this device is not requesting service, the next device
in the list (address 2) is polled. If this one isn't
asserting SRQ, the last instrument (address 3) is
polled.

When the instrument that is asserting SRQ is
found, its position in the list of addresses is returned
in the first variable (DEVICE in our example). The
status byte from this instrument is returned in the
second variable (STATUS). The polling stops with
the first instrument that is found asserting SRQ. If
several instruments are asserting SRQ, the POLL
statement must be executed once for each device
asserting SRQ. With an ON SRQ statement and an
appropriate address list in the POLL statement, the
repeated polling will happen automatically.

Contigure routine. Instead of listing each address
you want to poll in the POLL statement, you can put

17

Section 4
Programming a 4052A GPIB System

the addresses in an array and just specify the array
name in the POLL statement. You don't have to load
the array element-by-element; the CONFIGURE
routine will do it for you.

To illustrate, assume that a system contains the
following instruments set for the addresses shown:

Primary Secondary
Instrument Address Address

7612D Digitizer 3
7A16P Amplifier plug-in 3
7A16P Amplifier plug-in 3

2
2

TN =2 O

DC 5010 Counter/Timer
FG 5010 Function Generator

When the system is powered up, all five
instruments assert SRQ. The program shown in Fig.
4-1 polls the instruments, and prints the status bytes
on the 4052A screen.

100 DIM A_list(30,2)

110 CALL “CONFIGURE",E,A_list

120 ON SRQ THEN 2000

1980 WAIT

1990 GOTO 1980

2000 DO ! SRQ HANDLING ROUTINE

2010 POLL Device,Status;A_list

2020 EXIT IF Device=0

2030 PRINT “SRQ FROM DEVICE AT ADDRESS ";
2040 PRINT Allist(Device,1);". STATUS ";Status
2050 LOOP

2060 RETURN ! END OF SRQ HANDLING ROUTINE

Fig.4-1. Aprogramto pollinstruments and print the
status bytes on the 4052A screen.

Line 100 dimensions the address list array (A_LIST)
to 30 rows (the maximum number of primary
addresses) and two columns (column 1 for primary
addresses, column 2 for secondary addresses).

Line 110 calls the CONFIGURE routine to fill A_LIST
with the addresses of all the devices on the GPIB that
have a listen address. After the CONFIGURE routine
is executed, A_list looks like this:

3 0
3 1
3 2
20 -1
22 -1

18

A “-1" in the second column indicates there is no
secondary address. When you use an address list
array with the POLL statement, the “-1" is properly
interpreted.

Line 120 enables SRQ’s and specifies line 2000 as
the beginning of the SRQ handling routine.

Line 1980 causes the 4052A to wait for an interrupt.

Line 1990 jumps to the WAIT statement after the
SRQ handling routine returns.

Lines 2000t0.2050 containa DO loop that repeatedly
polls the devices on the GPIB until none is asserting
SRQ.

Line 2010 polls the devices whose addresses are in
A_LIST. When it polls a device that is asserting SRQ
(the instrument sets bit 7 in the status byte wheniitis
asserting SRQ), the polling routine stops and places
the status byte in STATUS and the device position
(the corresponding indexinto A_LIST) in DEVICE. If
no device is asserting SRQ, DEVICE is set to zero.

Line 2020 exits the DO loop when no more devices
are asserting SRQ.

Lines 2030 and 2040 print a message containing the
GPIB primary address and the status byte of adevice
that was asserting SRQ.

Line 2060 returns control to the program line
following the line that was executing when the SRQ
occurred.

SRQ interrupts can also occur for a number of
reasons other than power up. We'll discuss interrupt
handling in more detail later in this section.

NOTE

To locate a device on the GPIB, the
CONFIGURE routine sends a listen address
and waits for a device to assert NDAC. If
NDAC is not asserted after a prescribed
amount of time (1 ms default), the
CONFIGURE routine goes on to the next
address. Thus, the CONFIGURE routine will
not locate a device that can not be listen
addressed.

Device Dependent Messages

Device dependent messages compose the
vocabulary of a GPIB instrument. The content and
format of these messages is not defined by the IEEE
488 standard; it is determined by the instrument

Section 4

designer to suit the needs of the particular
instrument. Device dependent messages may
include queries that return instrument settings or
acquired data, commands that control instrument
settings, or data such as waveforms or measurement
results.

This subsection describes the format of device-
dependent messages for Tektronix instruments as
well as the techniques for transmitting and receiving
these messages with the 4052A.

Device dependent message I/0. Regardless of the
message content, coding, or format, the basic
process of transferring a device-dependent
message is the same. The message is always
transferred from a device addressed as a talker to
one or more devices addressed as a listener. The
process is illustrated in Fig. 4-2.

First, the talker and listener(s) must be assigned.
The controller asserts the ATN line and puts the

Programming a 4052A GPIB System

appropriate address on the bus. If a secondary
address is required, it directly follows the primary
address. If, for example, the 4052A is sending a
message to a device, the listen address of that device
is placed on the bus. The 4052A automatically
assumes the role of talker when outputting a
message and that of a listener when receiving a
message.

When the addressing sequence is complete, the
4052A releases attention and puts the first byte of
the message on the bus. The bytes are transferred
one at a time at the rate of the slowest listener until
all bytes are sent. Then, the 4052A asserts ATN
again and sends the universal UNTalk and UNListen
commands to clear the bus.

Fortunately, most of the mechanics of transferring
messages is transparent to the user; the 4052A takes
care of it. In the special cases, low-level commands
are provided that allow you to control bus activity
more directly.

RrE>-~ZC

I m—=<m MO>NOMIT —n>r

son

»OMIOO> <VPIT—-IV

I m=<®W MOPNOOMIT —4NI—T
I »EMI00P> <TPOZOOM®

ATTENTION
ASSERTED

N, vy’ et e’

EOI
ASSERTED

*\~

ATTENTION
ASSERTED

Fig. 4-2. The basic process of transferring device-dependent messages is the same, regardless of the content and
format. A primary address is sent first, followed by a secondary address (if required). Then, the data bytes are sent,

followed by the UNTalk and UNListen commands.

19

Section 4
Programming a 4052A GPIB System

Set commands. Device dependent messages that
set instrument operating modes or parameters are
called set commands. In all Tektronix GPIB
instruments, these commands take the following
form:

<header>[<space><arguments>][<semicolon>]

The header is a mnemonic or keyword that
identifies the command. If the command requires
arguments, they are separated from the header by a
space. The arguments specify the values or
parameters required by the command. For example,
the TIME AUTO command in the 492P
Programmable Spectrum Analyzer sets the
time/division to automatic mode. TIME is the
command header and AUTO is an argument. Using
the MAN argument (TIME MAN), sets the
time/division to manual mode. Other commands,
such as FREQ 1MHZ (set center frequency to one
megahertz), require numeric arguments. Still others
require no arguments at all, such as SIGSWP (single
sweep).

Multiple set commands can be grouped together
and sent as a single message by separating the
commands with semicolons. For example:

TIME AUTO;FREQ 1MHZ

combines the TIME and FREQ commands into a
single message.

Since these commands are composed of ASCII
characters, a 4052A PRINT statement can be used to
send the command string to the instrument.
Assume, for instance, that a 492P is connected to the
bus at address 10. The commands shown above
could be sent using the statement:

PRINT @10:“TIME AUTO;FREQ 1MHZ"

Alternately, the command string could be stored
in a string variable, say COMMANDS$, and
transmitted by specifying the variable name in the
PRINT statement as shown below.

Command$="TIME AUTO;FREQ 1MHZ"

PRINT @10:Command$

Expanding this technique allows you to build
command strings dynamically within a program. In
the program below, the 4052A prompts the operator
to enter the desired center frequency for the 492P.

20

The operator's response is used to build the
command string.

10 PRINT “ENTER THVE DESIRED CENTER FREQUENCY :";

20 INPUT C_freq$
30 PRINT @10:*TIME AUTO;FREQ ";C_freq$

Line 10 prompts the user for the center frequency
and line 20 stores the response in the variable
C_FREQS$. Then, line 30 appends C_FREQ$ to the
end of the command string and sends the completed
string to the instrument. Expanding this concept
with a few simple statements would allow the
program to check the response for validity, report
errors to the operator, and request valid input.

A numeric variable could also be used in the above
example in place of the string variable, C_FREQ$.
When a numeric variable is used in the PRINT
statement, the value is automatically converted to a
string of ASCII digits before it is transmitted. The
original variable is unaffected. Numeric variables
can also be used with INPUT statements. The
conversion from ASCII input to internal numeric
format is automatic.

Query commands. Query commands are device-
dependent messages that cause the instrument to
return information about its settings or operation.
The form of the query commands is:

<header><question mark>[<semicolon>]

Many query commands are simply set command
headers with a question mark added. For example,
the FREQ command for the 492P Programmable
Spectrum Analyzer becomes a query simply by
changingitto FREQ?. The FREQ? query returns the
current center frequency setting.

Query commands can be sent in a PRINT
statement just like set commands. However, since
the instrument returns a message in response to the
command, the 4052A must also accept the response.
Most query responses are sent in ASCII, so an
INPUT statement can be used to receive it. The
format of the query response is:

<header><space><response>[<semicolon>]

where response is the setting, value, or function
returned by the query.

For example, to get the current center frequency
setting from an FG 5010 Programmable Function
Generator, send the FREQ? command. When the FG

Section 4
Programming a 4052A GPIB System

5010 receives this command, it expects to be
addressed to talk so it can send the reply. The
following program segment illustrates this process.

10 PRINT @24:"FREQ 2E6”
20 PRINT @24:“FREQ?”
30 INPUT @24:C_freq$

Line 10 sets the output frequency to 2 megahertz.
Then, line 20 sends the FREQ? query. Line 30 gets
the complete reply (header and value) and puts itin
the string variable C_FREQ$. In this example,
C_FREQS$ would contain the string:

FREQ +2.0E+6;

If you only want the numeric value from the
response, simply specify a numeric variable in the
INPUT statement, instead of a string variable. The
header (FREQ) will be ignored and the value will be
returned in the specified variable. In the previous
example, if a numeric variable had been specified,
say FO, the FREQ header would be ignored and the
value of the current frequency returned in FO.

Set and query commands may be grouped
together in a single message by separating the
commands with semicolons. For example, the two
PRINT statements in the previous example could be
condensed into a single statement by combining the
set and query commands as follows:

10 PRINT @24:“FREQ 2.0E+6;FREQ?"

In most instruments several queries may be
included in a single message. However, the specific
rules for multiple commands in a message vary
slightly among instruments, so refer to the
Operator’'s or Programmer’'s Manuals for your
instruments.

Sending ASCII data. The controller may send
waveform or other data to instruments for
processing or display. The format of this data
depends on the instrument, but many accept it in
ASCIl-coded decimal numbers. For example, the
492P can accept ASCIl waveform data using the
CURVE command. Several options are available
with this command, but for the sake of example,
consider its simplest form:

CURVE <data value><comma or space><data value>
<comma Or space>...

A typical CURVE command might be:
CURVE 27,28,29,31,33,36,39,44,...

The 4052A can transmit the CURVE command and
ASCII| data using a simple PRINT statement such as

PRINT @1:“CURVE ";Curve_data;

where CURVE_DATA is an array. When this
statement is executed, the 4052A addresses the
492P and sends the CURVE command header. Then,
it begins sending the contents of array
CURVE_DATA. Transmission starts with the first
element, CURVE_DATA(1), and ends with the last.
The semicolon on the end of the statement
suppresses the extra spaces added by the 4052A
between array elements. It is not required, but it
reduces the number of bytes sent by eliminating the
extra spaces and, thus, speeds up the transfer.

Array elements may not be sent using separate
PRINT statements because each statement asserts
EOI with the last byte transmitted, so each value is
sent as a separate message. The instrument requires
that all data points be sent in a single message.

The data can also be transmitted from a string
array by substituting the string variable name for the
numeric variable and deleting the trailing
semicolon, as shown below.

PRINT @1:“CURVE ";A$

When the data is transmitted from a string
variable, the contents of the string are transmitted
without modification. Processing the data is more
difficult when it is stored in a string, since individual
data elements cannot be easily accessed. But,
transmitting data from ASCII strings is faster than
transmitting from a numeric variable because the
4052A does not have to perform any data
conversion. For simple waveform storage, when no
processing is required, storage in string variables is
probably best. When processing is required, the
data should be stored in numeric variables.

Reading ASCII data. Data can also be received
from an instrument in ASCll-coded decimal
numbers. The 4052A INPUT statement accepts data
from the instrument and stores it either in numeric
variables or string variables. For example, the
statement

INPUT @10:A

reads a single ASCIl number and stores it in the
variable A. If A was previously dimensioned as an
array, the 4052A attempts to read one number for

21

Section 4
Programming a 4052A GPIB System

each element in the array (or until the input device
asserts EOI). When more than one number is
received with a single INPUT statement, individual
numbers must be delimited by a non-numeric
character (valid numeric characters are 0-9, +, -, and
in scientific notation, E). Most instruments delimit
each data value with a space or comma.

Also, since non-numeric characters are ignored in
numeric input, this can be a handy way to strip off
unwanted data headers and store only the numbers.
For example, when the 492P sends a waveform in
response to a CURVE? query, a waveform header
precedes the data. A typical CURVE? query
response is shown below.

CURVE CRVID:FULL,27,28,29,31,...

If a numeric array is specified in the INPUT
statement, the 4052A ignores the ASCIl header
characters and begins storing data with the first
waveform value (27). Each value is stored in
successive array elements.

ASCII data can also be read into a string variable
by specifying a string variable in the INPUT
statement. When data is read into a string, all ASClI
characters are stored exactly as sent. Reading data
into a string is faster than reading into numeric
variables because no data sorting or conversion is
necessary. And, since query responses can be
directly transmitted back to the instrument as a
command, string storage is an efficient means of
saving instrument parameters, waveforms, or
settings for sending back to the instrument later.

Using alternate delimiters on INPUT. When
multiple variables or an array is received with a
single INPUT statement, the individual elements
must be properly delimited. For numeric input to
multiple variables or arrays, the delimiter is simple.
Any non-numeric character (characters other than
0-9, +, -, and E in scientific notation) is a valid
delimiter.

INPUT to string variables isn't always so simple.
The problem is that the only valid delimiters for
stringinput are EOI, carriage return, or a designated
alternate delimiter.

String input can be broken into parts using the
alternate input delimiter feature in the 4052A. If a
percent sign (%) is specified in place of the at sign
(@) in the I/0 address for the INPUT statement, the

22

4052A uses a previously specified ASCIl character
for a delimiter. The delimiter character is defined by
modifying the processor status parameters with a
PRINT statement.

PRINT @37,0:N1,N2,N3

The first number (N1) specifies the ASCII decimal
code for the alternate INPUT delimiter. It must be in
the range of 0-255. If, for example, 65 is specified,
the ASCII letter “A” delimits string INPUT just as
non-numeric characters delimit numeric input. But
remember, the alternate delimiter is only used when
the INPUT %N form is used.

The second number (N2) specifies the ASCII
decimal code for the end-of-file character. This
value must be in the range 0-255, and it must be
specified, whether or not it is changed from the
default (255).

The third number (N3) specifies the ASCII
decimal code for the character that will be deleted
from incoming ASCII strings. If, for example, 67 is
specified, all upper case C's are deleted from the
input. This value must be specified whether or not
the default (255) is changed.

Once the alternate delimiter is specified, an
INPUT %N: statement can be used to read dataup to
the delimiter character. If, for example, you want to
read ASCII CURVE data from a 492P and store the
waveform identifier separately from the data, the
routine shown in Fig. 4-3 will do the job.

10 REM » x * SPECIFY ALTERNATE DELIMITER %
20 PRINT @37,0:44,255,255

30 REM % x *x NOW READ THE DATA » % %

40 PRINT @10:“CURVE?”

50 INPUT %10:W$,A

Fig. 4-3. A program to read ASCI! data from the
492P using alternate delimiters.

Line 20 changes the INPUT delimiter to a comma
(ASCII code 44). Then, line 40 sends the CURVE?
query and line 50 begins by reading the curve
identifier into W$. The identifier is separated from
the first data value by a comma, so data storage in
W$ stops at the end of the header. The remaining
data values are stored in array A.

Section 4
Programming a 4052A GPIB System

Binary waveform data format. The 4052A can also
transmit waveform data in binary as required by
some instruments. For example, the 492P can
accept waveform data in binary as well as ASCII.
Binary data transmission is slightly more complex
than ASCII transmission, but it's considerably
faster.

The Tektronix codes and formats standard
specifies two formats for binary data transmission.
Some instruments, like the 492P, can accept data in
either format. Others, like the 7912AD
Programmable Digitizer, require one format. Check
your instrument Operators or Programming manual
for the required format.

The first format is called the “end block binary”
format. It is simple, but has no provision for error
checking. The format is:

@<data value><data value>...

@ is the ASCII code for the “@” character. This tells
the instrument that binary data in the end block
binary format follows.

DATA VALUE is an 8-bit binary number. If the
instrument requires 16-bit values, two bytes are sent
for each value, most significant byte first. EOI is
asserted with the last byte in the data block.

The second format, called the block binary format,
is more complex since it includes a byte count and
checksum for error checking. This format is:

%<byte count><data value><data value>...<checksum>

% is the ASCII code for a “%” character. This tells
the instrument that a binary block with error
checking follows.

BYTE COUNT is a 16-bit binary number that
indicates the number of bytes remaining in the
message, including the checksum. The byte count is
sent as two bytes, most significant byte first.

DATA VALUE is an 8-bit binary number. If the
instrument requires 16-bit values, two bytes are sent
for each value, most significant byte first.

CHECKSUM is an eight-bit binary number that is
the two’s complement of the modulo-256 sum of all
preceding bytes except the first (%). That is, the
two’'s complement of the eight-bit sum of the
preceding bytes, ignoring the carry. If the receiver
computes a modulo-256 sum of all the bytes except
the percent sign, but including the checksum, the

result should be zero. Thus, the checksum provides
an error check for the binary block transmission.

Sending binary data. Binary data can't be
transmitted with the PRINT statement because the
4052A converts all data in a PRINT statement to
ASCII before sending it. However, 4050 BASIC
provides a low-level 1/0 statement that gives the
programmer line-level control of the GPIB: WBYTE
(Write Byte). WBYTE can send any byte on the GPIB
with or without attention (ATN) and/or EOl asserted.
In its general form, the syntax of the WBYTE
statement is:

WBYTE @<attention byte>...:<device-dependent bytes>

When WBYTE is used to send device-dependent
messages, the syntax is:

WBYTE @«<listen address>[,<secondary address>...]:bytes>...

All bytes sent before the colon are sent with
attention asserted; all bytes after the colon are sent
with attention unasserted. Any byte in the range
+255 through -255 may be sent. The magnitude (0-
255) determines the byte sent; the sign determines
the state of the EOl line. Positive values are sent with
EOI not asserted; negative values cause the byte to
be sent with EOI asserted.

The addresses specified in the WBYTE statement
must be absolute physical addresses, instead of the
peripheral device number. The listen address for an
instrument is simply its peripheral device number
plus 32, the talk address is the peripheral device
number plus 64, and the secondary address is the
peripheral device number plus 96. For example, to
address an instrument set for primary address 1and
secondary address 1, use the statement:

WBYTE @33,97:<data bytes>...

This statement tells the 4052A to assert attention
and send the listen address (32+1=33). Then, with
attention still asserted, it sends the secondary
address (96+1=97). After releasing attention, the
device-dependent data bytes following the colon are
sent.

As an example, the following program segment
addresses the 492P to listen and sends binary data
stored in array A.

10 WBYTE @33:ASC(“@"),A,-255
20 WBYTE @63:

23

Section 4
Programming a 4052A GPIB System

Line 10 of the program first sends the 492P listen
address (33) with attention asserted. Then, with
attention unasserted, the ASCII code for “@" is sent,
followed by the data array (A). The -255 byte is sent
as a message terminator. The 492P receives this
byte, butitis notincluded in the waveform data. The
last byte of the waveform data could also be negated
and used as a message terminator, eliminating the
need for the -255 byte. Line 20 uses the general form
of WBYTE to send an interface message, UNListen
(63) with attention asserted. This message tells all
addressed listeners to stop listening.

If an ASCII command header, such as CURVE or
LOAD, is required, the header is sent before the @ or
% characters.

Generating the byte count for block binary. The
block binary format includes a byte count for error
detection. The byte count indicates the number of
bytes remaining in the message, including the
checksum.

To compute the byte count, simply add 1 to the
size of the data array to account for the checksum.

The byte count is a 16-bit quantity; it must be
divided into two bytes before being transmitted
(most significant byte first). If the byte count is
smaller than 255, set the high-order byte to zero.
Dividing the byte count into two bytes requires only
two lines of 4050 BASIC. The following program
segment takes a byte count value stored in
BYTECOUNT and converts it to an equivalent two-
bytevaluein BYTECOUNT_HIand BYTECOUNT_LO.

10 Bytecount_hi=INT(Bytecount/256)
20 Bytecount_lo=Bytecount MOD 256

To see how this works, consider an example. A
byte count of 515 is represented in binary as:

1000000011

Since this number is expressed in ten bits, it must
be divided into two bytes. Line 10 of the program
divides the byte count by 256, truncates the result to
an integer, and stores itin BYTECOUNT_HLI. In this
case, BYTECOUNT_HI contains a 2. Since the value
of the least significant bitin BYTECOUNT_Hl is 256,
the 2in BYTECOUNT_HI actually represents a value
of 512.

Line 20 of the program finds the smallest number
that is congruent to BYTECOUNT, modulo 256, and
stores it in BYTECOUNT_LO. Thus, the byte count
is represented in two bytes as:

BYTECOUNT_HI BYTECOUNT_LO
00000010 00000011

With the byte count separated into two bytes, it
can be transmitted with a WBYTE statement.

Generating the checksum. The block binary
format also includes a checksum byte for error
checking. The checksum is computed by taking the
modulo-256 sum of all bytes in the block except the
% character and the checksum. The result is
converted to its two's complement before
transmission. When the instrument receives the
bytes, it computes the modulo-256 sum of the bytes
and adds the checksum. If the result is zero, the
transmission is assumed to be correct.

The following statement computes a checksum
for binary data stored in array A.

10 Checksum=256-(SUM(A)+Bytecount_hi+Bytecount_lo MOD 256)

Subtracting from 256 converts a byte value to its
two’s complement.

Sending block binary data. With the byte count
and checksum computed, the complete binary block
can be sent with two simple statements. The
programin Fig. 4-4 shows the process of computing
the byte count and checksum, transmitting the
binary block, and unaddressing the instrument.

10 Bytecount=UBOUND(A,-1)+1

20 Bytecount_hi=INT(Bytecount/256)

30 Bytecount_lo=Bytecount MOD 256

40 Checksum=256-(SUM(A)+Bytecount_hi+Bytecount_lo MOD 256)
50 WBYTE @34:ASC (“%"),Bytecount_hi,Bytecount_lo,A,-Checksum
60 WBYTE @63:

Fig. 4-4. A few simple 4050 BASIC statements calculate the byte count and checksum, and transmit the binary
block.

24

Section 4
Programming a 4052A GPIB System

Line 10 uses the UBOUND function to determine the
number of elements in array A. Lines 20 and 30 split
BYTECOUNT into two bytes and line 40 computes
the checksum. Then, line 50 transmits the binary
block. The block begins with the ASCII code for “%",
followed by the byte countin BYTECOUNT_HI and
BYTECOUNT_LO. Next comes the data array (A)
and the checksum (CHECKSUM). Negating
CHECKSUM causes the 4052A to assert EOl when it
is sent. Line 60 sends the UNListen message to
unaddress the instrument.

Reading binary data. Many instruments send
waveform or other data to the controller in binary.
Tektronix instruments send binary data in either the
block binary or end block binary format previously
described. In either case, the RBYTE statement in
4050 BASIC is used to read the data.

The syntax of the RBYTE statement is:
RBYTE <numeric variabie>,[<numeric variable>]...

RBYTE simply accepts bytes from the talker and
assigns them to the variables in the list. If an array
variable is specified in the list, the 4052A reads data
from the bus and begins filling the array starting with
the first element. It continues to read data into the
array until it is full. If EOI is asserted with a byte, the
value is negated before it is stored in the variable.

Before RBYTE can receive data from an
instrument, the instrument must be told what to say.
This is usually accomplished with a PRINT
statement (e.g., PRINT @1:"CURVE?"). Then, it
must be addressed to talk. When receiving ASCII
data with the INPUT statement, this process is
automatic. When receiving binary data with RBYTE,
the talk address must be manually sent using the
WBYTE statement.

The program in Fig. 4-5 illustrates this process by
reading a waveform from the 492P.

Line 10 changes an internal status flag in the
4052A. It tells the 4052A to delimit INPUT strings
with the character whose ASCII code is 37 (%).
Then, line 20 sends a message to the 492P that tells it
to transmit data in binary and requests the data.
Since the ASCII waveform header comes first, the
INPUT statement in line 30 reads this header. The
INPUT operation stops when the alternate delimiter
selected by line 10 (%) is reached.

The first character in the binary block is a “%”, so
the INPUT operation stops reading at that point.
Line 40 addresses the 492P to talk again, and line 50
gets the waveform data. The first two bytes are the
byte count. They are stored in BYTECOUNT_HIl and
BYTECOUNT_LO. The data is read into the
previously dimensioned array A. The last byte is a
checksum, which is stored in CHECKSUM. Line 60
sends the UNTalk message to unaddress the 492P.
Line 70 adds the bytes that were received by the
RBYTE statement. The sum should be congruent to
zero, modulo 256. If not, a data transmission error
has occurred and line 80 prints an error message.

Sending Interface Messages

Sometimes it may be necessary to send an
interface message or sequence of messages thatare
not implemented in a high-level 4050 BASIC
statement. With the 4052A, you can send any GPIB
interface message except SRQ.

Multiline messages are sent with the WBYTE
statement. The following statement sends the DCL
(Device Clear) interface message.

WBYTE @20:

10 PRINT @37,0:37,255,255

30 INPUT %1:Header$
40 WBYTE @65:

60 WBYTE @95:

90 STOP
100 ENDIF

20 PRINT @1:"WFMPRE ENC:BIN;CURVE?"

50 RBYTE Bytecount_hi,Bytecount_lo,A,Checksum

70 IF Checksum+Sum(A)+Bytecount_hi+Bytecount_lo MOD 256 = 0 THEN
80 PRINT “CHECKSUM ERROR”

Fig. 4-5. A program to read binary data from the 492P using alternate delimiters.

25

Section 4
Programming a 4052A GPIB System

Since the byte (decimal 20) is before the colon,
attention is asserted and the byte is interpreted as an
interface message. Any multiline interface message
can be sent by substituting the proper byte code(s)
for the 20 in the statement above.

Uniline messages are sent in various ways
depending on which one you are sending.

® ATN-You can assert ATN with any byte you put on the
GPIB by placing it before the colon in the WBYTE
statement.

® |FC-Youcansend the Interface Clear message with the
CALL “IFC” statement.

® REN - You can assert REN with the CALL “RENON"
statement. To unassert REN, use the CALL “RENOFF”
statement.

® EOI - You can assert EOI with any byte you put on the
GPIB with the WBYTE statement by negating the byte
(X becomes -X).

Transfers Among GPIB Devices

The 4052A can also set up a transfer between two
or more devices on the bus without being involved in
the transfer. For example, you might want to transfer
data fromatape drive to a plotter directly. If the data
is stored in a format that the plotter understands, the
4052A does not need to be involved and the transfer
may be faster without its involvement.

The WBYTE statement allows you to assign a
talker and one or more listeners and then relinquish
control of the bus to the talker, waiting for the EOI
line to indicate that the transfer is complete. The
following example illustrates how this is
accomplished.

150 ON EOI THEN 180
160 WBYTE %70,109,52,35:
170 WAIT

180 WBYTE @63,95:

When line 150 is executed, the 4052A is toid to
transfer control to line 180 when EOl is asserted (the
ON statement will be described more fully later in
this section). Line 160 sends primary talk address 70
followed by secondary address 109. The primary
address assigns this device as a talker. In this case,
the secondary address teils the peripheral that it
should transmit ASCIH data in the upcoming
transfer. Next, primary listen address 52 and primary
listen address 35 are sent to assign these devices as
listeners. The percent sign (%) in the WBYTE
statement tells the 4052A to get off the bus and let

26

the assigned talker take over when the ATN line is
released.

At this point, the talker takes over the bus and
starts sending data to the two listeners. Meantime,
the 4052A waits at line 170 for the transfer to
complete. The talker must assert EOI with the last
byte of the message to signal the 4052A that the
transferis complete. When EQl is asserted, program
control is transferred to line 180 and the 4052A
assumes control of the bus again. It asserts ATN and
sends the UNListen (63) and UNTalk (95) messages.

When specifying primary and secondary
addresses in a WBYTE statement, only one device
may be assigned as a talker, but up to 14 devices may
be assigned as listeners (there can only be 15
devices on the bus). Secondary addresses and
interface messages may also be sentin the message
as necessary.

interrupts and Instrument Status

Interrupt conditions. Sometimes special
conditions, called interrupts, occur that cause the
4052A to temporarily suspend normal program flow.
You can specify routines to handle these interrupts.

The five interrupt conditions are:

SRQ (Service Request) from an external GPIB device.
EO! (End Or Identify) from an external GPIB device.
EOF (End Of File) from the internal magnetic tape unit.
SIZE errors caused by numeric underflow or overflow in
a program.

o TIMEOUT caused by a GPIB transfer that takes
longer than a specified time period.

Enabling and disabling interrupts. All interrupts
are disabled upon power up and INIT. Being
“disabled” doesn’t mean the same thing for all
interrupt conditions.

With SRQ and TIMEOUT, “disabled” means the
4052A ignores SRQ’'s and TIMEOUT's. No error
occurs if an instrument asserts SRQ or an 1/0
transfer times out.

With SIZE and EOF, “disabled” means there is no
link between the interrupt and an interrupt handler.
If one of these interrupts occur when it is disabled,
an error is processed and program execution is
terminated.

With EOI, “disabled” means the same as it does for
SIZE and EOF except that when the 4052A is
involved in a GPIB transfer (as opposed to the

Section 4
Programming a 4052A GPIB System

situation where the 4052A only sets up the transfer
between other devices), EOI interrupts are always
enabled and handled internally.

The starting line number of each interrupt service
routine is specified with an ON statement. This
statement tells the 4052A where to transfer control
when a specified interrupt occurs. One ON
statement must be included for each interrupt
service routine. The syntax of the ON statement is:

EOF (0)
SIZE

ON EOI
SRQ
TIMEOUT

THEN line number

When an ON statement is executed, the 4052A
establishes a link between the specified interrupt
condition and pragram line number. Nothing else
happens when the statement is executed. But when
the interrupt condition occurs, the 4052A finishes
executing the current statement, and then does an
implicit GOSUB to the previously specified interrupt
handling routine.

For example, a program might contain the
statement

ON SRQ THEN 120

This statement tells the 4052A to GOSUB to line
120 when an SRQ occurs. When it is executed,
nothing obvious happens, butalink is established in
the 4052A between the SRQ condition and line 120.
This link remains valid until another ON SRQ
statement is executed, the 4052A power is turned
off, an INIT statement is executed, or an OFF SRQ
statement is executed.

To disable an interrupt, use the OFF statement.
OFF provides a convenient means of disabling
interrupt conditions set up with a previous ON
statement. The syntax of the OFF statement is:

EOF(0)
SIZE

OFF EOI
SRQ
TIMEOUT

EOF Interrupts. The EOF interrupt occurs when
the internal magnetic tape unit reaches the logical
end of a file. When the EOF condition is specified in

an ON statement, the logical unit number (0) must
be specified along with the keyword EOF. For
example, the statement

ON EOF(0) THEN 500

transfers program control to line 500 when the
logical end of the current magnetic tape file is
reached. This facility can be used to read datafrom a
file of unknown length or to find the end of an
existing file to append data.

EOI Interrupts. An EOI interrupt is generated
whenever an external device asserts the EOIl line on
the GPIB. In most cases, EOI is used to indicate the
last byte of a message. The talker asserts this line
with the last byte in the message.

This interrupt is normally only used when a
transfer is set up between two devices without the
4052A’s involvement. The 4052A relinquishes
control of the bus to the talker for the duration of the
transfer. Since EOLl is asserted with the last byte in
the message, it can be used to tell the 4052A when
the external transfer is complete and it can take
control of the bus again. The use of the EOl interrupt
is described more fully in Transfers among GPIB
instruments, earlier in this section.

The ON EOI statement has no effect when the
4052A is involved (talking or listening) in the data
transfer. The EOIl is handled internally.

SIZE Interrupts. A SIZE interrupt is generated
when a numeric overflow occurs in the current
program. In general, SIZE errors are caused by
computations that result in out-of-range numbers.
The numeric range of the 4052A is -1.0E+308 to
1.0E+308.

TIMEOUT interrupts. A TIMEOUT interrupt
occurs when a GPIB I/0 operation takes longer than
a previously specified time period. The default
timeout period is infinite at power up and INIT. Use
the CALL “TIMSET” statement to change the
timeout period.

SRQ Interrupts. Part of the GPIB system
controller’s responsibility is to handle SRQ
interrupts from instruments on the bus. An
instrument may assert SRQ for any number of
reasons, including power up, command errors,
internal errors, operation complete, etc. In any case,
the instrument expects the controller to respond by

27

Section 4
Programming a 4052A GPIB System

reading its status byte. Reading the status byte
accomplishes two things: it tells the controller why
the instrument asserted SRQ, and it clears the
interrupt.

The status byte contains information about the
instrument’s internal operations, error conditions,
or other information that is important to the
controller. The IEEE 488 standard reserves bit 7 of
the status byte to indicate whether an instrument is
asserting SRQ or not. If the instrument is asserting
SRQ, it sets bit 7; if not, it clears bit 7.

Since the SRQ line is shared among all
instruments on the bus, any one asserting SRQ
causes theline to be asserted. As aresult, the 4052A
can't tell which instrument is asserting SRQ. It must
read the status bytes of each instrument, looking for
one with bit 7 (SRQ) set. This process is called a
serial poll and it is implemented with the POLL
command in 4050 BASIC. A typical POLL statement
is shown below.

POLL Device,Status;7;1,1;2

Two numeric variables are specified in the POLL
statement (DEVICE and STATUS in our example),
followed by a list of GPIB addresses. The addresses
are delimited by semicolons. If a secondary address
is included it is separated from the primary address
by a comma.

The 4052A begins by reading the status byte from
the first instrument in the list (address 7), then the
second (primary address 1, secondary address 1),
then the third (address 2), and so on until the device
that is asserting SRQ is found (indicated by bit 7
being set in the status byte). When the device that is
asserting SRQ is found, its position in the address
list is returned in the first variable (DEVICE), and its
status byte is returned in the second variable
(STATUS).

Normally, the POLL statement is executed as part
of an interrupt service routine specified by an ON
SRQ statement. The program in Fig. 4-6 illustrates a
simple case of an SRQ handling routine called by an
ON SRQ statement.

Lines 10-40 set up a three-element array that

contains the device addresses. The first device is set
for primary address 7, the second is set for address

28

10 DIM Device_nums(3)
20 Device_nums(1)=7
30 Device_nums(2)=1
40 Device_nums(3)=2
50 ON SRQ THEN 200
60 WAIT

70 GOTO 60

200 POLL Device,Status;7;1,1;2

210 PRINT “SRQ FROM DEVICE NUMBER ";

220 PRINT Device_nums(Device);" STATUS: ";Status
230 RETURN

Fig.4-6. Asimple SRQ handling routine called by an
ON SRQ statement.

1, and the third is set for address 2. Then, line 50 tells
the 4052A to GOSUB to line 200 when an SRQ
occurs on the GPIB. Line 60 causes the 4052A to
suspend program execution until an interrupt
occurs.

When the SRQ occurs, the 4052A GOSUB's to line
200 and begins polling the devices. The first device
found asserting SRQ causes the polling process to
stop. The POLL command returns the status byte of
this instrument in STATUS and the index into the
address list in DEVICE. The value returned in
DEVICE selects the element of array
DEVICE_NUMS that contains that instrument's
address and lines 210 and 220 print the address and
status byte. Finally, line 230 returns control to the
loop at line 70, where it jumps to line 60 and waits
until another SRQ occurs.

Status byte format. Status bytes returned by
Tektronix instruments fall into two categories:
system status bytes and device status bytes. System
status bytes define conditions that are common
among all instruments that conform to the Tektronix
Codes and Formats Standard. Device status bytes
define conditions that may be unique to the type of
instrument.

System status bytes are further divided into
normal and abnormal system status. Normal
conditions include power up and operation
complete. Abnormal conditions include command
error and internal error. These two types of status
bytes are differentiated by the state of bit 6.

Section 4
Programming a 4052A GPIB System

In general, the status byte contains the following
information:

BIT 8 - System status=0
Device status=1

7 - SRQ not asserted=0
SRQ asserted=1

6 - Normal condition=0
Abnormal condition=1

[3,]
]

Not busy=0
Busy=1

»
1

Encoded device/system status

w
'

Encoded device/system status
2 - Encoded device/system status

1

Encoded device/system status

The system status bytes and device status bytes
and their meanings are defined in the instrument
manuals.

Processing the status byte. Once the status byte
for an instrument has been read, the 4052A may
need to take some action based on what the status
byte says. Status byte processing for Tektronix
instruments can be broken into two major parts—
processing system status bytes and processing
device status bytes.

The meaning of system status bytes iscommon to
all Tektronix instruments; they can be processed
without regard for the specific instrument that
generated them. For example, a decimal 97 status
byte means that an instrument has received a
command that it does not understand.

System status bytes all have a zero in bit 8, so their
decimal value is 127 or less. This provides a
convenient means of testing whether a status byte is
a system status or device status. If the byte is a
system status byte, it can be processed by a
common routine for all instruments. If it is a device
status byte, separate routines that handle the
device-specific status bytes are called.

200 POLL Device,Status;7,1
220 IF Status>=128 THEN 500
230 IF Status<96 THEN 250
240 Status=Status-29

250 Status=Status-64

270 RETURN

290 RETURN

310 RETURN

330 RETURN

350 RETURN

370 RETURN

390 RETURN

410 RETURN

430 RETURN

450 RETURN

210 PRINT “SRQ FROM INSTRUMENT ";

260 GOSUB Status OF 280,300,320,340,360,380,400,420,440
280 PRINT “» % POWER UP » %"

300 PRINT “+#% OPERATION COMPLETE * "

320 PRINT “+% USER REQUEST # "

340 PRINT “** COMMAND ERROR * "

360 PRINT “x+ EXECUTION ERROR * %"

380 PRINT “» % INTERNAL ERROR * *"”

400 PRINT “+» % POWER FAIL » %"

420 PRINT “»» EXECUTION WARNING * %"

440 PRINT “» % INTERNAL WARNING * %"

500 REM » x DEVICE DEPENDENT STATUS PROCESSING STARTS HERE * »

Fig. 4-7. A routine for processing system status bytes from Tektronix instruments.

29

Section 4
Programming a 4052A GPIB System

The program starts in line 200 by polling the
instrument at primary address 7, secondary address
1. A single instrument is assumed, but the same
technique could be expanded to handle several
instruments. Line 210 prints the first half of the
message. The semicolon at the end of the PRINT
statement inhibits the carriage return usually added
to the end of the print statement so that the rest of
the message can be printed on the same line.

Then, line 220 checks that the status byte is a
system status. If it is greater than or equal to 128
(decimal), it is a device dependent status, and
separate routines are called to process the byte.
These routines could be added starting at line 500.

Line 230 separates the byte into normal condition
and abnormal condition. If the status byte is less
than 96, it is a normal condition system status. Line
250 subtracts 64 from the status byte to reduce the
byte to a number between 1-3. If the status byte is
greater than or equal to 96, line 240 subtracts 29
from it and line 250 reduces it to a number between
4-9. The resulting value is used as an index to select
one line number from the list in the GOSUB
statement.

Assume, for instance, that the instrument has just
been powered up. When line 200 is executed the
power up status byte (65) is returned in Y. Line 210
prints the first half of the message. Since the status
byte is less than 128, the condition of line 220 is not
satisfied, and the GOTO 500 is not executed.
Instead, line 230 is executed. The byte is less than
96, so control is passed to line 250, where 64 is

subtracted from the status byte. Theresultis 1sothe
GOSUB statement in line 260 sends control to the
first line number in the list, line 280. Line 280 prints
the last half of the message—* * POWER UP **.
The complete message printed on the terminal is:

SRQ FROM INSTRUMENT * * POWER UP * *

Processing device-dependent status. Since the
device-dependent status bytes are often unique to
each instrument, individual routines are usually
required to process the status bytes. When a status
byte is determined to be device-dependent (greater
than or equal to 128), individual processing routines
can be called, based on which instrument generated
the interrupt.

The simplest method of calling the individual
routines is to use a computed GOTO or GOSUB
statement. The first variable returned from the POLL
statement can be directly used as the index for the
GOTO or GOSUB statements. Consider, for
example, the program segment shown in Fig. 4-8.

Fourinstruments are polledinline 10. If the status
byte is a system status byte, control is passed toline
400 regardless of which instrument generated the
SRAQ. If the status byte is a device-dependent byte,
the value returned in DEVICE indicates which
instrument was asserting SRQ. Line 30 uses this
value to select the interrupt handling routine for that
instrument. Notice that similar instruments may use
the same routine, as the first and third instruments
do in this example.

Using the WAIT statement. The WAIT statement in
4050 BASIC provides a way of temporarily

20 IF Status<128 THEN 400

40 RETURN

10 POLL Device,Status;5;10;7;2

30 GOSUB Device OF 100,200,100,300

100 REM PROCESS STATUS BYTES FROM INSTRUMENTS #1 AND #3
200 REM PROCESS STATUS BYTES FROM INSTRUMENT #2
300 REM PROCESS STATUS BYTES FROM INSTRUMENT #4

400 REM PROCESS SYSTEM STATUS BYTES

Fig. 4-8. The computed GOTO and GOSUB statements make calling individual device-dependent status
processing routines simple. This routine illustrates the use of a computed GOSUB.

30

Section 4
Programming a 4052A GPIB System

suspending execution of a program while waiting for
an interrupt to occur. An ON statement should be
executed for the interrupt. When the interrupt
occurs, control is transferred to the line number
specified in the ON statement.

The WAIT statement can be used to synchronize
instrument and controller operations. For example,
many acquisition instruments generate an SRQ
when an acquisition sequence completes. The WAIT
statement can be used to delay reading the data
from an instrument until the acquisition-complete
interrupt occurs. The program in Fig. 4-9 illustrates
this technique used with a 492P Programmable
Spectrum Analyzer.

10 ON SRQ THEN 100

20 Eos=0

30 PRINT @1:“SIGSWP;EOS ON;SIGSWP”
40 WAIT

50 IF Eos=0 THEN 40

60 PRINT @1:“CURVE?”

70 INPUT _data

100 POLL Device,Status;1
110 IF Status<>66 THEN 130
120 Eos=1

130 RETURN

Fig. 4-9. A sample program using WAIT to
synchronize the 4052A with a 492P Programmable
Spectrurm Analyzer.

The program sets the 492P to single sweep mode,
turns on the end-of-sweep interrupt and arms the
sweep in line 30. Line 40 suspends execution of the
program until an interrupt occurs. When it does,
control is transferred to line 100. The instrument is
polled and the status byte is tested. If the end-of-
sweep status (66) is returned, aflag variable, EOS, is
set to 1. Any other status byte causes the flag to
remain zero.

After the interrupt is serviced, control returns to
line 50. If the flag is set, indicating that the end-of-
sweep interrupt occurred, execution continues.
Otherwise, control is returned to the WAIT
statement. Lines 60 and 70 send the CURVE? query
and read the data into array _DATA.

Using GPIB Peripherals

A variety of GPIB-interfaced peripheral devices
are also available for program and data storage,

graphic and alphanumeric output, and datalogging.
Tektronix manufactures several GPIB peripheral
devices particularly designed for compatibility with
the 4052A. When these devices are used, the
mechanics of addressing and controlling the
peripherals are handled automatically with high-
level 4050 BASIC statements.

The 4052A’s powerful 1/0 system allows you to
address Tektronix GPIB peripherals with the same
high-level BASIC statements used to address
internal devices, such as the graphic display or tape
drive. All you have to do is specify the peripheral
device number of the external peripheral device in
the I/0 statement. For example, to draw a line on a
GPiB-interfaced 4662 plotter, use the statement:

DRAW @1:X,Y

This statement draws a line on the plotter from the
current pen position to the coordinates specified in
Xand Y. Theonly difference between this statement
and the equivalent statement for for 4052A’s internal
graphic display is the peripheral device number.

This section takes a brief look at four Tektronix
GPIB peripherals and their operation with the
4052A. More complete information on their
operation is contained in their Operators manuals.

4907 Flexible Disk File Manager. One such
peripheral device is the Tektronix 4907 File
Manager. The 4907 provides fast random access
flexible disk storage for 4050-series Desktop
Computers. Up to 630K bytes of program and data
storage is available on each disk with up to three
disks per system. The 4907 comes with a special
ROM pack that adds several new commands to the
4052A’s vocabulary. These commands provide the
following functions:

File naming

File security with passwords

Automatic increase in file space when necessary
File copying

Multiple file access

Recording time and date of all file activities

File renaming

Five file storage levels
Fast random access files

Like the other 4050 ROM packs, the 4907
operating system software occupies no RAM
memory, so space is left free for user programs and
data. The easy-to-learn, plain English commands
also make programming the 4907 a simple task. For

31

Section 4
Programming a 4052A GPIB System

example, to create a new file, use the CREATE
command. A typical CREATE command is shown
below.

CREATE “FILE.JNK";100,128

This command creates a file named FILE.UNK in
the current library with 100 records of 128
bytes/record. (For more information on the
CREATE command, refer to the 4907 Operator's
Manual.)

The 4907 also provides five levels of file storage
through the use of “libraries.” A library contains the
names of other files or libraries, and it is used to
group files. Figure 4-10 shows the simplest form of
file structure on a 4907 disk. This disk contains a
single level of files. No libraries are used.

file file

Fig. 4-10. The simplest file storage structure on the
4907 contains only a single level with no libraries.

When a library is added, files are placed on the
next lower level, as shown in Fig. 4-11. This structure
can be extended for up to five levels as shown in Fig.
4-12.

file library file 1st level

file file file 2nd level

Fig. 4-11. Libraries are used to group files on the
subsequent levels. Files and libraries may be mixed
on any level except the last.

32

This five-level storage structure allows an almost
limitless variety of file storage arrangements to meet
your individual needs and make data access easier
and more logical.

4924 Digital Cartridge Tape Recorder. The 4924 is
a general purpose cartridge tape drive with a GPIB
interface. It uses the same tape cartridge and
records data in the same format as the 4052A’s
internal tape drive. Thus, the 4924 can be used as an
extension of the internal tape.

The 4924 can be operated in two basic modes. The
first mode employs commands issued over the
GPIB. Secondary addresses are used to send
commands as previously discussed under 1/0
Addressing in 4050 BASIC. Since the command
codes are the same for the 4924 and the internal
4052A tape drive, the interface is simple. For
example, to kill a file on an external 4924, use the
KILL command:

KILL @2:56

This command kills file number 5 on a 4924 set for
primary address 2. The 4052A automatically sends
the secondary address that tells the 4924 to execute
a KILL operation.

In addition, commands can be sent to the 4924
using device-dependent ASCII messages in place of
the secondary address. For example, to execute the
KILL command described above, the controller
sends the command primary address (separate
command and data primary addresses are used in
this mode). Then, with attention unasserted, the
letter “K” is sent followed by a delimiter (space,
comma, or semicolon), the file number, and a
carriage return. Finally, the UNListen message is
sent with attention asserted.

In the second mode, the 4924 operates manually
from the front panel. The front-panel buttons are
used to perform basic tape operations such as
advance forward or reverse, talk, or listen. This
mode is most useful when the 4924 is operated as a
data-logging device without a controller.

4662 Interactive Digital Plotter. The Tektronix
4662 is an interactive plotter with RS-232C and GPIB
interfaces. The plotter can print alphanumerics and
graphics on paper or other media up to 11 by 17
inches. In addition, it can perform as a graphic input
device.

Section 4
Programming a 4052A GPIB System

file library library file 1st level
I
file file file library 2nd level
I
orary | [more fhes, 3rd level
|
fi!e Iibrlary ub.I-a.-y 4th level
I I
file file file file 5th level

Fig. 4-12. The 4907 file structure can be expanded to five levels. Files and libraries can be mixed on any level

except the fifth.

When interfaced via the GPIB, the 4662, like the
4924 tape drive, accepts commands in one of two
modes. In the first mode, commands are sent as
secondary addresses. The command codes
correspond to those used in the 4052A, so the plotter
can be fully controlled using simple high-level
BASIC statements. Forexample, to move the plotter
pen to a specific location, execute the MOVE
command:

MOVE @1:X,Y

where: X is the horizontal coordinate in Graphic
Display Units; Y is the vertical coordinate in Graphic
Display Units.

4050 BASIC includes statements to execute
relative and absolute MOVEs and DRAWSs, to
generate axes, rotate and scale alphanumerics, and
to window and scale graphic data.

The 4662 also implements another command
mode for interfacing with other controllers. In this

mode, device-dependent messages are used to send
plotter commands. Normally, this mode is not used
with 4050-series controllers, since the secondary
address scheme is implemented automatically in
4050 BASIC. The 4662 Operator’'s manual contains
complete information on using this mode.

4956 Graphic Tablet. The 4956 Graphic Tablet
converts pen position, on its platen, to horizontal
and vertical coordinates. You can use it to digitize
drawings or schematics by placing the article to be
digitized on the platen and tracing it with the pen
provided.

To obtain the horizontal and vertical coordinates,
you simply use the INPUT statement:

INPUT @1:X,Y,Status$

After this statement executes, STATUS$ will
contain a status byte that gives you additional
information about the state of the graphic tablet.

33

Section 4
Programming a 4052A GPIB System

34

Section 5 — Processing and Displaying Data

Most GPIB systems make some type of
measurement as part of their job, whether it be a
simple voltage measurement or a complete
waveform acquisition. The first step in making the
measurement is to acquire the signal and convert it
to a digital format. That is the job of the acquisition
instrument (i.e., waveform digitizer, digital
voltmeter, etc). The output of this instrument is then
sent to the controller over the GPIB (Fig. 5-1).

Once data is acquired and transferred to the
4052A, some processing is often required to derive
the desired information. It's important to remember
that the 4052A is processing a digital representation
of the input signal—a string of numbers—not the
signal itself. The numbers usually represent vertical
signal amplitudes at discrete sample points along
the signal. The position of each number in the series
represents its horizontal time location on the signal
(Fig. 5-1).

When the data is processed, the 4052A
manipulates only the numbers stored in its memory.
Almost without exception, the processing is done on
an element-by-element basis, starting with the first
elementin the array and progressing to the last one.

For example, let’'s say you have acquired a
waveform, and it has been transferred into an array
in the 4052A. Now, maybe you want to add a
constant to it. The data might represent a voltage
waveform to which you want to add a four-volt bias.
The 4050 BASIC statement is:

Waveform=Waveform+4

When this statement is executed, the 4052A adds
four to the first element in array WAVEFORM. Then
it adds four to the second element, and the third, and
so on until all the elements have been processed.

This same element-by-element process is also
used in subtracting a constant from an array,
multiplying an array by a constant, or most any other
arithmetic operation. Itis also used when two arrays
are processed in a statement, such as multiplying
two arrays. For example, the statement

A=BxC

causes the 4052A to multiply each element of array B
by the corresponding element in array C, and store
the result in array A.

This all seems so simple. And itis—if you avoid the
more common pitfalls by keeping the following DOs
and DON'Ts in mind:

DON'’T attempt to combine (add, subtract, multiply,
or divide) arrays of different lengths since the
element-by-element processing won’t complete. If
you attempt such an operation, the 4052A will
remind you by printing an error message.

DON'T attempt to combine data arrays acquired at
different sampling intervals. For example, don't add
a waveform array that was acquired at a 5-
microsecond sampling interval with a waveform
sampled at 15 microseconds/sample. The time
scaling may lead to erroneous or confusing results.

DO be cautious of dividing by zero or very small
numbers (such as occur at zero crossings on
repetitive waveforms) since this can lead to SIZE
errors or erroneous resuits.

DO keep in mind the limits of the 4052A’s calculation
accuracy. All math operations are computed to 14
digits of accuracy, so for all but the most lengthy
calculations, the round-off error is insignificant. But,
it's important to remember that round-off error can
accumulate in lengthy calculations until it becomes
significant.

ANALOG
SIGNAL

ARG

ACQUISITION
INSTRUMENT

(e.g., 468
OSCILLOSCOPE)

DIGITIZED
DATA

DISPLAYED OR
LOGGED RESULTS

RISE TIME: 20 nS.
PULSE WIDTH: 10 uS.
OVERSHOOT: 3.2%

Fig. 5-1. Automated measurement begins with the acquisition instrument. It sends digitized data to the 4052A.
The data may either be logged or processed and the results logged or displayed.

35

Section 5
Processing and Displaying Data

Using the ROM pack routines. Most signal
processing needs go beyond simple mathematical
combinations of constants and waveforms. Often,
special signal processing or array operations are
required, such as finding the maximum or minimum
of an array, integrating, differentiating, or other
complex operations. To facilitate this type of
processing, many of the common signal and array
processing functions are provided in a series of
ROM (Read-Only Memory) packs that plug into the
slots in the rear of the 4052A.

The ROM pack commands execute much faster
than equivalent programs written in BASIC. Some
commands execute as much as ten times faster!
Also, the ROM pack commands do not occupy any
user memory space.

ROM pack routines are executed with a simple
CALL statement. The syntax of the statement is

CALL “routine name”[,parameter...]

For example, to find the maximum value in an
array, use the 4052R07 ROM call, MAX. The MAX
routine can be called with this statement:

CALL “MAX”,A,_value,_index

Where A is the source array that is searched. The
maximum value of the array is returned in _VALUE,
and the location (subscript) in the array of the
maximum value is returned in _INDEX.

The routine name may also be stored in a string
variable and substituted for the name in the CALL
statement, as illustrated below.

MAX$="MAX"

CALL MAX$, A, _value,_index

Signal Processing ROM Packs. The Signal
Processing ROM Packs (4052R07 and 4052R08)
provide 15 common waveform and array processing
functions. The functions are listed and briefly
described below.

4052R07 Signal Processing ROM Pack No. 1
MAX—finds the maximum of an array.
MIN—finds the minimum of an array.

CROSS—finds the location of a specified crossing level
within an array.

DIF2—performs a two-point differentiation of an array.

36

DIF3—performs a three-point differentiation of an array.
INT—integrates an array

DISP—displays a graph of an array in raw form (without
axes).

4052R08 Signal Processing ROM Pack No. 2

FFT—computes the fast Fourier Transform of a one-
dimensional array.

IFT—computes the inverse Fourier transform of a one-
dimensional array.

CONV—convolves two one-dimensional arrays.
CORR—correlates two one-dimensional arrays.

POLAR—converts an array of complex data from
rectangular form (real and imaginaries) to polar form
(magnitude and phase).

TAPER—multiplies an array by a cosine window of
program-selectable weights.

UNLEAV—sorts an array of interleaved FFT data into two
arrays, one containing real and one containing imaginary
components.

INLEAV—interleaves the real and imaginary data from two
input arrays into.a third array whose format is acceptable to
the IFT command.

Real-Time Clock ROM Pack. in many real-time
applications, such as automated testing, the time
when an event occurs can be as important as the
event or measurementitself. The 4052R09 Real Time
Clock ROM Pack provides time and date, elapsed
time, and vectored time interrupt capabilities for the
4052A. Commands provided by this ROM pack are:

SETIME—sets the clock to the desired time and date.
RDTIME—reads the time and date.

STARTW-—resets and starts the stopwatch incrementing in
0.1 second steps.

STOPIT—reads the elapsed time from the stopwatch.

ONTIME—sets the programmable interrupt delay. When
the delay expires, control is transferred to line 84 of the
user program.

Graphing data. The old adage “a picture is worth a
thousand words” may be overworked but it's still
true—particularly in the realm of science and
engineering. An important relationship involving
two or more variables may be difficult, if not
impossible, to understand when presented as a
column of numbers. Yet, by means of a graph or

Section 5
Processing and Displaying Data

chart, the same relationship can often be recognized
at a glance.

In addition, ideas or information that are difficult
to convey in words can often be easily conveyed in
pictures. For example, describing a test set-up in
words can be difficult, especially when low-skill
operators are involved. But a picture of the test set-
up provides the same, if not more, information for
the operator in simple terms that are easily
understood.

The 4052A’s powerful, high-resolution graphics
capability and extended BASIC language make
generating and displaying graphics a simple task.
Statements are included in 4050 BASIC to scale
data, map itinto a defined window, move the window
anywhere on the screen, and perform a variety of
graphic functions within that window.

Data can be defined in any units appropriate to the
application. For example, a program that tests
frequency response of a system might use decibels
for vertical axis units and frequency for the
horizontal axis units. Once these units are declared
and their limits defined, the 4052A automatically
maps the user’s data units into the graphic display.

Sample program. The program in Fig. 5-2
illustrates the use of several signal processing ROM
pack functions as well as some simple graphics
functions. It performs some basic pulse analysis on
awaveform storedin array A. The program assumes
a simple pulse is stored in array A and that its
horizontal scale factor is stored in H.

The output of the program is a graph (without
axes) of the input waveform and a pulse parameter
summary printed below the graph.

The program begins by setting the base of the
pulse equal to zero to simplify processing. Line 110
finds the minimum value and line 120 subtracts this
value from the entire waveform, to set the base of the
pulse to zero. Line 130 returns the maximum value of
the pulse in _MAX. Then, lines 140 and 150 use this
maximum value to find the 90% and 10% amplitude
points and return the location of these points in T90
and T10, respectively. The difference between these
points, multiplied by the horizontal scale factor (H),
is the rise time for the pulse. Lines 170-190 do the
same thing for the fall time.

Line 200 finds the first 50% point and line 210 finds
the second 50% point. The difference between these

100 REM 4052A BASIC PULSE ANALYSIS
110 CALL “min”,A,_min,Index_min
120 A=A-_min

130 CALL “max”,A,_max,Index_max
140 CALL “cross”,A,0.9%x_max,T90
150 CALL “cross”,A,0.1%_max,T10
160 Risetime=(T90-T10)xH

170 CALL “cross”,A,0.9x_max,T90,2
180 CALL “cross”,A,0.1x_max,T10,2
190 Falltime=(T10-T90)xH

200 CALL “cross”,A,0.5x_max,T50_1
210 CALL “cross”,A,0.5%_max,T50_2,2
220 Width=(T50_2-T50_1)%xH

230 REM GRAPH RESULTS

240 VIEWPORT 10,70,40,100

250 WINDOW 1,UBOUND(A,-2),0,_max
260 CALL “disp”,A

270 VIEWPORT 0,130,0,100

280 WINDOW 1,130,0,100

290 MOVE 1,25

300 PRINT “RISE TIME=";Risetime
310 PRINT “FALL TIME=";Falltime

320 PRINT “50% WIDTH=";Width

330 END

Fig. 5-2. A sample program to compute some basic
pulse parameters on a waveform stored in array A.
The routine also graphs the waveform without axes.

points multiplied by the horizontal scale factor is the
50% pulse width.

Line 240 reduces the size of the viewport to leave
room for the pulse parameter information to be
printed below. The WINDOW statement sets the
limits of the datato be graphed. Line 260 displays the
waveform in the current WINDOW and VIEWPORT.

Finally, lines 270-320 reset the VIEWPCRT and
WINDOW and print the pulse parameters below the
graph. Figure 5-3 shows a sample output from the
program,

37

Section 5
Processing and Displaying Data

RISE TIHE=1.6E-5
FALL TIME=1.6E-5
56% WIDTH=6.0E-S

Fig. 5-3. Sample output from the pulse analysis
program.

38

Section 6 — Estimating GPIB System Performance

One of the most frequently asked questions about
any GPIB system is “how fast will it go?” This
question is often critical to the design and
implementation of a system. Yet, it is often very
difficult to answer. The complete performance
picture is composed of a multitude of parts, many
that are difficult to estimate. However, a good
understanding of the basic factors that contribute to
the performance of the system will help develop a
good estimate of the system'’s overall performance.

GPIB system performance is affected by several
factors. The key factors are:
Data transfer time
Processing time

Data acquisition time
Human interaction time

Data Transfer Time

A certain amount of time is required for messages
to be transferred across the GPIB. This time is called
the data transfer time. It includes time to transfer

interface messages as well as device dependent data
across the bus.

The asynchronous bus. The GPIB is an
asynchronous bus. That is, data is transferred at a
rate determined entirely by the instruments on the
bus; there is no clock signal. The maximum data
transfer rate is determined by the slowest device
involved. When the talker or controller places a byte
on the bus, all listeners must accept the data byte
(indicated by releasing the NDAC line) before the
talker can proceed to the next byte. Any listener can
delay the transfer simply by holding NDAC low
(asserted).

This asynchronous bus allows a variety of
instruments with different speeds to work together.
But, it also means that any slow device involved in a
transfer slows the entire transfer down toits rate. To
illustrate, consider the system shown in Fig. 6-1. The
maximum data transfer rate for each device is shown
in the figure.

DIGITIZER
(15,000 BYTES/SEC)

MAGNETIC
TAPE
DRIVE

(800 BYTES/SEC)

CONTROLLER

CONTROLLER
(7500 BYTES/SEC)

Fig. 6-1. A typical GPIB system showing the maximum data transfer rates for each device in the system. All
transfers are limited to the speed of the slowest device involved.

39

Section 6
Estimating GPIB System Performance

When data is transferred between the digitizer and
tape drive, the transferis limited to 800 bytes/second
by the tape drive. When data is transferred between
the controller and digitizer, the transfer can proceed
at up to 7500 bytes/second, since the tape drive is
not involved. In no case will the full speed capability
of the digitizer be realized, since the other two
devices limit the speed of the transfers.

In practice, the data transfer rate is usually lower
than the rate of the slowest listener. This is because
the bulk of the processing performed by the output
device must be done before data is transferred,
whereas the input device must do most of its
processing after it receives data. The two processes,
therefore, can not be done in parallel but must be
done sequentially.

GPIB data transfer timing. When a 4052A 1/0
statement is used to transfer data on the GPIB, up to
five events occur, though they don't all occur in
every 1/0O statement. These events are graphically
represented in Fig. 6-2.

STATEMENT OVERHEAD—Every 1/O statement
has statement overhead. When an |/O statement is
executed, the 4052A first examines the statement for
content and syntax. For high-level 1/0 statements,
such as PRINT or INPUT, the I/O address is checked
to see if default values are necessary (e.g., when no
secondary address is specified). The parameter list
is also examined to see if string variables, string or
numeric constants, numeric variables, or array
variables are specified. If numeric expressions are
specified, they must be reduced to constants before
going on. The statement overhead time is variable
and depends entirely on the type of statement and its
parameter list.

ADDRESSING SEQUENCE—Every 1/0 statement
except the low-level RBYTE and WBYTE has an
addressing sequence. First, the 4052A asserts ATN
and issues the UNTalk interface message followed
by the absolute primary talk or listen address for the
peripheral device specified. The secondary address

is sent next, unless secondary address 32 is
specified (secondary address 32 tells the 4052A to
send no secondary address). After the primary and
secondary addresses are sent, ATN is released.

DATA TRANSFER—For ASCII data transfers, the
actual data transfer occurs in segments called data
bursts. Data is transferred at the maximum rate
determined by the slowest device involved in the
transfer. On input operations, the 4052A receives
bytes from the talker and stores them in an
intermediate buffer memory (called the /0 buffer).
On output operations, data is transmitted from the
1/0 buffer over the bus to the listener(s).

Binary data transfers are done two different ways.
With RBYTE and WBYTE, each byte is processed as
it is transferred. With READ and WRITE, no
processing is necessary; data is moved directly to or
from 4052A memory. Both binary transfer methods
result in continuous data transfers (no data bursts).

BUFFER OVERHEAD—The 1/0 buffer can hold a
maximum of 72 characters. If an ASCI| data transfer
involves more than 72 characters, the transfer is
performed in 72-character bursts. On output, the
4052A converts the first 72 characters from internal
binary format to the correct format for transmission
and loads the formatted data into the 1/O buffer.
Then, the contents of the I/0 buffer are transmitted.

On input, 72 characters are received and loaded
into the I/0 buffer. Then, this data is converted to the
correct format for the variables specified in the
statement and the data is stored.

Between each burst of input or output, a variable
amount of time is required for refilling the /O buffer
on output or emptying it on input. This operation is
called buffer overhead and the amount of time
required depends entirely upon the type and amount
of data.

UNADDRESSING SEQUENCE—Every 1/0
statement except RBYTE and WBYTE has an
unaddressing sequence at the end of the data

Statement
Overhead

Addressing
Sequence

Data
Burst

Buffer
Overhead

Unaddressing
Sequence

Fig. 6-2. GPIB data transfers are composed of five parts, each contributing to the total data transfer time.

40

Section 6
Estimating GPIB System Performance

transfer. The 4052A asserts ATN, sends the
universal commands UNTalk and UNListen, and
releases ATN.

Table 6-1lists the GPIB timing information for the
PRINT, INPUT, WBYTE, RBYTE, WRITE, and READ
statements. The rates given are the maximum rates
for the 4052A. The information presented in the
table is discussed in more detail in subsequent
subsections.

Estimating data transfer rate for PRINT. Because
of the versatility and many variations in PRINT

statements, the statement overhead times are very
difficult to calculate. The time can vary from about 3
milliseconds to a few tens of milliseconds. For
simple variables (not expressions), add about 2
milliseconds per variable to the 1.5-millisecond
minimum to get a rough estimate of the statement
overhead time.

The addressing period for PRINT is constant,
regardless of the format of the statement. Unless the
secondary address is suppressed, the addressing
period takes about 1.7 milliseconds (minimum).

TABLE 6-1
4052A GPIB TIMING INFORMATION
Statement Addressing Data Transfer Buffer Unaddressing
Overhead Sequence Rate Overhead Sequence
PRINT 1.5 ms 1.7 ms 111,000 bytes/sec strings 1.35 ms
+ 1-4 ms/element with secondary burst rate 285 us + 86 us/char
1.36 ms 9 us/byte numerics
primary only integers
=3.0 ms/sample
non-integers
=3.4 ms/sample
INPUT 19 ms 1.82 ms 71,000 bytes/sec strings 1.35 ms
+ 180 ws/variable with secondary burst rate 395 us + 37 us/char
1.42 ms 14 us/byte numerics
primary only 600 us/sample +
58 us/digit
WBYTE 0.75 ms N/A array N/A N/A
+ 150 us/element 1646 bytes/sec
608 us/byte
single element
1500 bytes/sec
665 us/byte
RBYTE 600 us N/A array N/A N/A
+ 270 us/element 1481 bytes/sec
675 us/byte
single element
1344 bytes/sec
744 us/byte
WRITE 1.9 ms 1.72 ms string N/A 1.35 ms
+ 180 ws/element with secondary 112,000 bytes/sec
1.34 ms 8.9 us/byte
primary only numeric
1850 numbers/sec
540 us/number
READ 1.9 ms 1.79 ms string N/A 1.35 ms
+ 180 us/element with secondary 82,700 bytes/sec
1.50 ms 12.1 us/byte
primary only numeric
1850 numbers/sec
540 us/number

41

Section 6
Estimating GPIB System Performance

With the secondary address suppressed, the
addressing period takes about 1.4 milliseconds
(minimum).

Buffer overhead for strings takes about 285
microseconds plus 86 microseconds for each
character. Buffer overhead for numerics is about 3
milliseconds per sample for integers and about 3.4
milliseconds per sample for non-integer numbers.
(A sample is one or more digits that make up a
value.)

When a buffer of characters is prepared for
transmission, the 4052A can transmit them at about
111,000 bytes/second. This, of course, assumes that
the listener is significantly faster, and does not affect
the transfer rate. With a slower listener on the bus,
the overhead time will not be affected, but the
maximum data burst rate will be the listener’s slower
rate.

The unaddressing period takes about 1.35
milliseconds, regardiess of the statement format.

Consider this simple print statement:
PRINT @2:1;2;3;4,5.6,7.8,9

In this example, less than 72 characters are sent,
so burst data rate of 111,000 bytes/second applies.
Since the default PRINT statement format inserts a
space before each number, the samples each
contain two bytes. Therefore, 111,000/2 or 55,000
samples can be transmitted in a second. If each
sample was a two-digit number, the rate would be
reduced to 111,000/3 or 37,000 samples per second.

This same idea applies to numeric arrays
transmitted in the form:
DIM A(10)
A=1
PRINT @2:A;

Here, two-byte samples are transmitted as above
at a rate of 55,000 samples/second.

If a comma is substituted between variables or
constants in the PRINT statement or the trailing
semicolon is left off an array variable, the 4052A
formats each element into an 18-character field by
adding spaces. Thus, every element, no matter how
many digits it contains, takes 18 bytes to transmit. As
a result, data samples are transmitted at 111,000/18
or 6167 samples/second.

Notice that simply removing the trailing
semicolon from the statement above reduces the
data rate from 55,000 samples/second to 6167

42

samples/second! It's easy to see how a minor
change in a statement can drastically affect the data
rate.

Estimating data transfer rate for INPUT. The
statement overhead for INPUT is a function of the
statement format and the number of variables in the
statement. The basic statement overhead time is
about 1.9 milliseconds plus 180 microseconds for
each variable in the statement.

The addressing period for INPUT is essentially the
same as the PRINT statement addressing period—
1.8 milliseconds with the secondary address; 1.4
milliseconds without the secondary address.

Data bursts up to 72 characters can be received at
about 71,000 bytes per second (14 us per byte).
Again, this assumes that the talker can send data at
least this fast.

The buffer overhead period depends on the
number of characters in the buffer and the type of
variable they are destined for. For numeric variables,
each variable requires about 600 microseconds fora
single digit plus about 58 microseconds per
additional digit. So, to convert a single five-digit
variable requires about 890 microseconds (600 us +
5 % 58 us).

For string variables, the first character takes about
395 microseconds. Each additional character
requires about 37 microseconds.

At the end of a transmission, the buffer is emptied
whether it is full or not, and the data is assigned to
variables.

Finally, it takes the 4052A about 1.35 milliseconds
to assert ATN, send the UNTalk and UNListen
commands, and release ATN.

For example:

10 DIM X(1000)
20 INPUT @4,32:X

Device 4 sends 1000 data samples with five digits
in each sample. A comma delimits each sample. A
typical data stream might look like this:

36524,37428,39266,39694...<996 more samples>

The time to execute the INPUT statementin line 20
is estimated as shown below.

Section 6
Estimating GPIB System Performance

Statement overhead 1.9 ms + 180 us = 2.08 ms
Addressing period= 1.35 ms
Actual data transfer time (6000 bytes/71,000)= 845 ms
Buffer overhead:

600 s » 1000 samples + 58 us * 5000 digits = 890.0 ms
Unaddressing period = 1.35 ms
Total data transfer time = 979.33 ms

Effective data sample transfer rate = 1020 samples/sec.

Estimating data transfer rate for WRITE. The
WRITE: statement transfers data over the GPIB in
4052A internal binary format. Each data item is
preceded by a two-byte header which identifies the
data item type (number or string) and the length of
theitem (in bytes). The length of a numeric data item
is always eight bytes plus the header. The length of a
character string is one byte per character plus the
header.

Since data is sent in 4052A internal binary format,
no conversion (and therefore no buffer overhead) is
necessary and a WRITE data transfer is very fast.
However, because the data is in 4052A internal
binary format, WRITE can generally only be used for
sending data to a storage device (such as the 4907
File Manager). Data written to a storage device can
later be loaded directly back into the 4052A with the
READ statement.

The addressing period for WRITE is about the
same as any other high-level 1/0 statement. It takes
about 1.7 milliseconds to send a primary and
secondary address. The primary address alone
takes about 1.3 milliseconds to send.

The data rate for strings is about 112,000
bytes/second (8.9 us/byte). For numbers, the data
rate is about 1850 samples/second.

The unaddressing period for WRITE, like all other
high-level 1/0 statements, takes about 1.35
milliseconds.

Estimating data transferrate for READ. The READ
statement is generally used to bring data in 4052A
internal binary format back from a peripheral
storage device. It is usually not practical to receive
data from an instrument with READ, since most
instruments cannot transmit data in the required
format.

When receiving numeric data, each sample
consists of two bytes of header plus eight bytes of
floating-point binary data. The maximum sustained
data rate for numeric data is 1850 samples/second
(540 us/sample).

Character strings can be received at 82,700
bytes/second (12.1 us/byte).

Estimating data transfer rate for WBYTE. The
WBYTE statement is normally used in situations
where PRINT or WRITE can’t be used or where a
binary transfer would be faster. It can be used to
transmit binary data to an instrument (not 4052A
internal binary format), or to set up a transfer
between two or more devices. It can also be used to
transmit multiline interface messages.

Remember that WBYTE does not perform the
automatic addressing and unaddressing functions
that PRINT and WRITE do. Therefore, the
addressing and unaddressing periods do not apply
to WBYTE.

The conversion of each value specified in a
WBYTE statement to binary occurs just before the
value is transmitted. As a result, the data rate
depends on the type of variable. WBYTE can
transmit an array at 1646 bytes/sec (608 us/byte).
Single element numerics (not arrays) can be
transmitted at 1500 bytes/second.

Estimating data transfer rate for RBYTE. The
RBYTE statement is used to receive binary data
bytes from the GPIB. Since INPUT receives ASCII
data and READ requires 4052A internal binary
format, RBYTE is the only choice for binary data
sent by some instruments (unless you have a
4052R14 Option 1A GPIB Enhancement ROM Pack).

The statement overhead period for RBYTE can be
estimated as follows:

Statement overhead = 0.6 ms + no. of variables » 0.270 ms
EXAMPLE: RBYTE A,B,C
Statement overhead = 0.6 ms + 3 * 0.270 ms = 1.41 ms

RBYTE can receive data at about 1344
bytes/second (744 us/byte). When an array variable
is specified, the bytes can be received at 1481
bytes/second (675 bytes/second). These data rates
can be sustained for any number of bytes.

Since no unaddressing occurs at the end of the
RBYTE statement, the execution is complete as
soon as the last byte is received.

Multiline interface message traffic. GPIB message
traffic also includes multiline interface messages.
These messages include the primary and secondary

43

Section 6
Estimating GPIB System Performance

addresses used to set up device-dependent
transfers, as well as other messages that implement
a serial poll, device clear, or other functions.
Multiline interface messages are always sent with
ATN asserted, and all devices on the bus must
handshake the message, whether they are
addressed or not. Thus, the slowest device on the
bus regulates the transfer rate.

Multiline interface messages consist of addresses,
universal commands, and addressed commands.
The addresses are automatically implemented in
high-level 1/0 statements like PRINT and INPUT.
They may also be sent with WBYTE. The most
commonly used interface commands are
implemented in high-level statements such as POLL
and INIT. (POLL implements Serial Poll Enable and
Serial Poll Disable; INIT implements Device Clear).
The remainder of the commands must be sent with
WBYTE. Estimating the transfer rate of these bytes
was discussed earlier in this section, under
Estimating the transfer rate for WBYTE.

The serial poll process (implemented witha POLL
statement) is often an important part of interface
message traffic. Sometimes itis important to service
an SRQ interrupt quickly. You need a way to
estimate the time it will take to perform a poll. Figure
6-3 illustrates the process of executing a POLL
statement. The times shown in Fig. 6-3 will help you
estimate the time required for the 4052A to execute
the polling process. The times shown are minimum
times. As always, the slowest device on the bus
regulates the speed of the transfer.

The following example demonstrates how to
estimate the time required for the polling process.
Assume you want to know how long it will take to
execute the following POLL statement:

POLL X,Y;2;1,7

Assume, further, that the second device in the
POLL listis a 7854 Programmable Oscilloscope and
that the 7854 is requesting service. The address of
the 7854 is 1.

Referring to the timing values given in Fig. 6-3, the
time required to execute the POLL statement can be
estimated as follows.

44

Statement overhead and bus initialization = 1.5 ms
Assert ATN and issue UNL and SERIAL POLL ENABLE = 14 ms
Address 1st instrument to talk (without sec. addrs.) = 05 ms
Get status byte from 1st instrument = 06 ms
Test bit 7 of status byte and loop = 06 ms
Address 2nd instrument to talk (without sec. addrs.) = 05 ms
Get status byte from 2nd instrument = 06 ms

Test bit 7 of status byte, send UNT and SERIAL POLL DISABLE = 1.356 ms

Total time to execute serial poll = 7.05 ms

Processing Time

Another significant factor in GPIB system
performance is processing time—the time required
by the controller and instruments to execute
commands and process data. It's important to
remember that in a GPIB system at least two
programs are running. One program is running in
the 4052A, and another is running in each of the
programmable instruments in the system. Each of
these programs take time to execute, and that time
must be accounted for in making an estimate of the
system’s performance.

Controller processing. In most systems, the
controllers job goes far beyond simply setting up
bus transfers, and collecting data. A significant
amount of processing may be required in some
applications to extract the desired results from the
raw acquired data.

The controller processing time can be brokeninto
two major parts:

1/0 Processing
Data processing

The first of these tasks, 1/O processing, involves
the transfer of data over the GPIB. Estimating the
datatransfertimeis discussed in detail earlier in this
section.

The data processing task is as varied as are the
applications for GPIB systems. The time required to
perform the processing depends on the length and
complexity of the program, the speed of the
controller, and the number of tasks it is assigned
(e.g., how many instruments are on the bus that may
interrupt the program, etc). Since these factors are
very difficult to quantify, the most practical method
of measuring this performance is usually actual
testing. A number of programming hints are given in
the next section to help improve the performance of
4052A GPIB systems.

Instrument processing. Most programmable GPIB
instruments have a microprocessor system inside
that controls the GPIB and internal instrument

Section 6
Estimating GPIB System Performance

I (START)
1_1"“ SERIAL POLL

| Set ATN Low
1.38 ms

I

Issue UNLISTEN
and SERIAL POLL ENABLE

\ |

Issue Primary Talk
Address and Secondary

WITHOUT SEC. ADRS. Address (If Specified))
S5ms
WITH SEC. ADRS. |
9ms

Assign Self as Listener
and Release ATN
!

]

Receive Status
Byte from Talker

6 ms 6 ms

Set ATN Low
Have All

Is Bit 7 Set? Addresses Been
Issued

?
Issue UNTALK - Assign @ to index
1.35ms

and Serial Poll Disable Variable in POLL

Statement

Release ATN

|

END
SERIAL POLL

Fig. 6-3. A flow chart of the POLL process. Approximate timing values are shown as an aid to estimating the
execution time.

45

Section 6
Estimating GPIB System Performance

functions. This microprocessor has three major
tasks, though not all of these tasks are implemented
in every instrument.

GPIB control and message processing

Instrument control

Data handling

When an instrument receives a message from the

GPIB, the internal microprocessor goes to work
decoding the message, checking it for errors, and
taking the appropriate action. This processing takes
time. However, the amount of time is often not
specified in instrument manuais. As aresult, the only
practical way to estimate the time is by direct
measurement.

The second task, instrument control, involves
accepting and processing front-panel input and
monitoring and controlling internal instrument
functions.

When the instrument is set-up and the
measurement taken, there may be some local
processing required to get the data ready for
transmission to the controller. For example, code
conversions may have to be performed. in some
instruments, local processing such as signal
averaging or interpolation may be performed. Again,
this processing takes time. If the instrument is
capable of sending raw data and processed data,
comparing the time required to do each task
provides a reasonable estimate of the internal
processing time.

Data Acquisition
The third major component in system
performance is the time required to actually acquire

data. In some instruments this may be an
insignificant amount of time. In others, such as
waveform digitizers, data acquisition can be the
most time consuming operation in the system. At
least two factors must be considered in data
acquisition——triggering and digitizing time. And, in
some applications a third component must be
considered—signal averaging.

Trigger delay. Triggering is the process of starting
the data acquisition at a desired point. For example,
to acquire a single-shot pulse, a waveform digitizer
might be set to trigger when its input rises to a
certain level. Often, the system controller sets an
instrument up to acquire data, but the acquisition
cannot begin until a trigger occurs (Fig. 6-4).

If the trigger conditions are not satisfied, the
acquisition never completes, and the whole system
waits. The lesson here is: make sure the
instrument(s) get the necessary trigger to begin
their acquisition, and account for the time between
when the controller sets up the acquisition and when
the trigger occurs. Also, remember that a trigger that
occurs before the controller finishes setting up the
instrument is of no value.

Some instruments, like the 7612D Programmable
Digitizer, have a pre-trigger and/or post-trigger
feature that allows the digitizer to start acquisition
before or after the trigger. In this mode, the 7612D
acquires pre-trigger data before it becomes
triggerable. While it is acquiring this data, triggers
areignored. This pre-trigger delay must be added to
the trigger delay when performance estimates are
being made.

TRIGGER

|
1
I
|
1
1
1
i
I
|
|
I
|
|
|
S
!

< DELAY DIGITIZING TIME o
[}
START OF TRIGGER END OF
ACQUISITION POINT acENDOF

Fig. 6-4. The total acquisition time is made up of trigger delay and digitizing time. In some digitizers, pre-trigger

delay may also be added to this time.

46

Section 6
Estimating GPIB System Performance

Digitizing time. When the instrument begins
digitizing data, some time is required to complete
the digitizing process. The time depends on the type
of digitizer, the sample interval, the number of
samples, and, in some cases, the sweep speed.

Digitizers fall into two basic classes—sequential
and equivalent-time digitizers. Sequential digitizers
acquire all data samples sequentially. The signal
need not be repetitive because the complete
waveform is acquired in a single pass.

Equivalent-time digitizers acquire their data in
multiple passes or sweeps. If samples cannot be
taken at a rate fast enough to acquire the waveform
with sufficient resolution, the digitizer can acquire
several cycles of a repetitive waveform. On each
sweep, the samples are taken at a slightly different
point on the waveform, so that after several sweeps
enough samples are captured to accurately describe
the input signal. Figure 6-5 illustrates the difference
between sequential and equivalent-time digitizing.

TRIGGER TRIGGER

SWEEP
1

SWEEP

2

TRIGGER

TRIGGER

SWEEP SWEEP
3 e 4

[
\
[

INPUT
SIGNAL

PSEUDO-
RANDOM .
DIGITIZING

SEQUENTIAL
DIGITIZING ®

\
[
\
[

Fig. 6-5. Equivalent-time digitizers sample a repetitive signal on several successive sweeps, gradually collecting
enough samples to fully define the waveform. Sequential digitizers, on the other hand, acquire all the samples in a
single pass. They must be capable of sampling the signal much faster than an equivalent-time digitizer.

47

Section 6
Estimating GPIB System Performance

The acquisition time for a sequential digitizer is
simple to calculate. It is just the number of samples
times the sample interval. However, in an equivalent-
time digitizer, samples are taken on several passes
of a repetitive waveform. The acquisition is
completed when a pre-defined number of points
have been acquired. Thus, the acquisition time
depends on the number of sweeps required to
capture the points, the duty cycle of the waveform,
and several other factors. The total digitizing time
may be difficult to predict.

Signal averaging. Some digitizers offer the
capability to repetitively acquire a waveform and
average the data to remove random noise. This
technique is very useful in many applications, but it
is also time consuming. A complete acquisition is
required for each average as well as time to compute

48

the average. If an equivalent-time digitizer is used,
the signal average may take quite a long time since
every acquisition requires several sweeps and signal
averaging requires multiple acquisitions.

Human Interaction

Sometimes human intervention is required to
enter parameters, make adjustments to non-
programmable instruments’ settings, or set up tests.
Human interaction time is an important
consideration if the system will require input or
other assistance from an operator. This interaction
can often be minimized with careful system design
and the use of fully programmable instruments. If
execution speed is a critical factor in the system
design, the amount of human interaction should be
minimized.

Section 7 — Improving GPIB System Performance

Improving the performance of a GPIB system can
be an elusive goal. The first step is to identify the
components that affect the system performance and
estimate how each component contributes to the
overall performance. The previous section
described each of these components and discussed
techniques for estimating the time required for each.
This section provides some hints and techniques to
improve system performance.

Know Your Instruments

To write efficient programs for controlling GPIB
instruments, a good understanding of the
instruments is essential. It's important to know how
they buffer and execute commands and how the
commands interact. Know the data formats used to
transmit and receive data. And, if several formats are
available, know which ones the controller can
transmit or receive fastest.

Also, know how the instrument acquires data.
Does it respond to requests for waveform data while
an acquisition is in progress? Does it signal the
controller with an SRQ when data acquisition is
complete?

Know the different conditions that can cause the
instrument to assert SRQ. The programs you write
will have to deal with any of these conditions that
might occur during execution. Many instruments
provide commands to disable specific interrupt
sources, as well as the entire SRQ function.

The Operators or Programmers manuals should
provide the specific information you need about the
instruments. Read the programming and operation
information carefully before beginning to write
programs. A few minutes spent familiarizing
yourself with the instruments can save hours of
programming problems and frustrations, as well as
produce a far more efficient system.

Choosing the Right I/0 Statement

In many GPIB systems, data transfer takes a
significant part of the total execution time.
Significant performance improvements can be
realized by carefully choosing the right 1/0
statements for each transfer and by carefully
constructing the statement to minimize the amount
of bus traffic.

PRINT. The PRINT statement provides a
convenient means of transmitting ASCH data over

the GPIB. It provides automatic addressing and
unaddressing and data conversion and extremely
flexible data formatting. Since the majority of GPIB
instruments and peripherals communicate with
ASCII, the PRINT statement is usually the best
choice for sending device-dependent messages.

INPUT. The INPUT statement is the counterpart of
PRINT for receiving data from the GPIB. It can
receive data in a variety of formats and store it in
string variables, numeric variables, or arrays. Like
PRINT, the addressing and unaddressing functions
are handled automatically. Most GPIB instruments
transmit data and query responses in ASCII, so
INPUT is usually the easiest way to receive the data.

WRITE. The WRITE statement is designed to
transmit data on the GPIB in 4052A internal binary
format. Since few GPIB instruments understand this
format, it is not particularly useful for instruments.
However, it can be used to write data to GPIB
storage peripherals. Since no data conversion is
necessary on input or output, the transfer is
considerably faster than with other means.
Addressing and unaddressing are handled
automatically as with PRINT and INPUT.

READ. The READ statement is designed
particularly to accept data in 4052A internal binary
format. It is seldom useful for communicating with
GPIB instruments, but can be used with GPIB
storage peripherals. When data is written to a
storage peripheral with WRITE, the READ statement
can recover this data at high speed since no data
conversion is necessary for internal binary format.
Addressing and unaddressing is automatic.

WBYTE. The WBYTE statement is designed to
provide low-level control of the GPIB for functions
that cannot be implemented with the high-level
statements. It gives you complete control over the
GPIB data bus and the GPIB attention (ATN) and
EOI lines. Any byte can be transmitted. However,
WBYTE cannot transmit data from string variables—
all data must be numeric constants, numeric
variables, or numeric expressions that reduce to a
value of -255 to +255.

WBYTE is useful for transmitting binary data (not
internal 4052A binary format), setting up peripheral-
to-peripheral transfers, and sending interface
messages. The added complexity of using WBYTE
can be offset by considerable speed advantages of

49

Section 7
Improving GPIB System Performance

transferring data in binary rather than ASCII. This
subject is discussed in detail under the heading
ASCII vs. Binary—Simplicity vs. Speed, later in this
section.

With WBYTE, addressing and unaddressing are
not done automatically; you use the WBYTE
statement to address or unaddress an instrument.
Addresses that you specify in a WBYTE statement
must be absolute addresses.

RBYTE. The RBYTE (Read Byte) statement is the
low-level counterpart of WBYTE. It accepts data
from addressed talkers and assigns it to numeric
variables. RBYTE can only store data it receives in
numeric variables, and the largest value it can
receive is 255 (the largest value that can be sentina
single byte). No addressing is required with RBYTE,
because it assumes that a device has already been
assigned to talk with WBYTE.

Minimizing Bus Traffic In PRINT

The PRINT statement provides an almost infinite
variety of output formats. This variety allows you to
format the output data almost any way an instrument
needs it. But, it also means thataslight difference in
the format of the parameter list can make a big
difference in the number of bytes added for
formatting a message and, as a result, the transfer
rate.

The most striking example is the use of the
semicolon or comma delimiter between variables in
the PRINT statement. If a semicolon is specified
between variables or constants in the parameter list,
samples (variables or array elements) are delimited
by one space. Thus, one extra byte per sample is
transmitted. If a comma is specified between
variables, samples are formatted into an 18-
character field by adding spaces. For a typical four-
digit data sample, 14 spaces are added, for a total of
18 bytes transmitted with each sample.

When array variables are transmitted, using the
semicolon delimiter causes the elements to be
separated by a single space. For example:

10 DIM A(100)
50 PRINT @4:A;
60 PRINT @4:A

Transmitting four-digit data samples, the PRINT
statement in line 50 transmits 5 bytes per sample

50

compared to 18 bytes per sample if transmitted by
line 60. The result is that the statement in line 50
executes about 3.6 times faster!

If an instrument or peripheral requires a delimiter
other than spaces between array elements, the
PRINT USING statement can insert just about any
delimiter or series of delimiters between the array
elements.

A simple example is an instrument that requires
each data sample delimited by a carriage return.

10 DIM A(100)
50 PRINT @4:USING 100:A

100 IMAGE 100(5D,/)

The PRINT statement in line 50 tells the 4052A to
transmit array A using the format specified in the
IMAGE statement of line 100. The IMAGE statement
specifies that 100 five-digit numbers will be printed.
All samples are formatted into five-character fields
by adding spaces. The slash indicates that each
sample should be followed by a carriage return.

Any character can be used as a delimiter by
replacing the slash in the above example with the
desired character placed in quotes. For example, ifa
comma is required, the following statement could be
used:

100 IMAGE 100(5D,*,")

Be sure you know the format of the data when
setting up the IMAGE statement. Attempting to
transmit a value with more digits than specified in
the IMAGE statement causes an error. Specifying
too large a data field slows the transmission down
because the samples are padded with spaces to fill
the field.

The program in Fig. 7-1 generates an array of
numbers from 1 to 100 and prints each value,
delimited by commas, on the 4052A screen. Using a
carefully constructed IMAGE statement, extra
“padding” bytes are eliminated, increasing the data
transfer rate. Though the values are only printed on
the screen in this example, the same technique
applies to transmitting data over the GPIB.

The first four lines of the program generate the
array. Then, line 50 prints the array on the graphic
system display with each element delimited by a

Section 7
Improving GPIB System Performance

comma. The “FD” field operator in the IMAGE
statement (line 60) prints the values in fields just
large enough for the number with no added spaces.
For the first nine samples (1-9), a single digit field is
printed. The next 90 samples (10-99) are printed in
two-digit fields, and the last sample (100) is printed
in a three-digit field. All samples except the last one
are followed by a comma.

10 DIM A(100)
20 FOR =1 TO 100

30 A=

40 NEXT |

50 PRINT USING 60:A
60 IMAGE 99(FD,""),FD

1,2,3,4,56,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,
40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,
58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,
76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,
94,95,96,97,98,99,100

o

Fig.7-1. Asimple program illustra;ing the use of the
PRINT USING statement. The output printed on the
screen is also shown. '

Synchronizing the Controlier and Instruments

When a GPIB instrument is operating under
program control, two programs are running, not just
one. One program is running in the controller, and
another in the microprocessor system in the
instrument. It is important that these two programs
be synchronized. Fortunately, synchronizing the
programs is easy with Tektronix instruments.

Program execution in a Tektronix programmable
instrument is controlled by the messages it receives
from the GPIB. Messages go into an input buffer as
they are received. Message processing begins when
the instrument receives a message terminator or
when the instrument’s input buffer fills up. While the
instrument is busy processing the message, it sets
bit 5 (the busy bit) in its status byte and asserts
NRFD (Not Ready For Data) to hold off further input.

While NRFD is asserted, the 4052A cannot send
any more messages to the instrument or get any
output from it. To illustrate, the following program
repeatedly sends the FREQ command to a 492P
Spectrum Analyzer incrementing the value on each
pass through the loop.

100 FOR I=11t0 10
110 PRINT @1:“FREQ ";1;"GHZ”
120 NEXT |

This loop is executed much slower than it would if
the message in line 110 were simply printed on the
display. That's because the 492P will not accept the
message until the message from the last loop is
processed. Thus, the 4052A waits at line 110 on each
loop for the 492P to finish execution of the last
message.

This also works for input (for most Tektronix
instruments). The program below increments the
center frequency for a 492P just like the last one did,
but it also asks for the frequency range at the end of
each message.

100 FOR I=1TO 10

110 PRINT @1:*FREQ ";I;"GHZ,FRQRNG?"
120 INPUT Freq(l)

130 NEXT |

On each pass through the loop, the FREQ
command is sent and the frequency range is
queried. Immediately after the message is sent in
line 110, program control advanced to line 120. The
talk address for the 492P is sent, but it does not begin
talking until the message in line 110 is completed
and the frequency range query response is ready.

Interrupts Boost Performance

Using the operation complete interrupt. A large
part of a system’s execution time can be consumed
by waiting for asynchronous events, such as the
completion of an acquisition. If the system
controller is tied up waiting for these events, the
performance of the system can be seriously
degraded. The SRQ interrupt feature of many GPIB
instruments can be used to minimize this waiting
time and therefore, improve the performance of the
system.

Consider, for example, a system consisting of a
4052A and one or more 7612D Programmable
Digitizers. A simple program to acquire a waveform
from the 7612D is shown in Fig. 7-2.

10 DIM Data(512)

20 PRINT @1,0:"ARM A;READ A"

30 WBYTE @65,96:

40 RBYTE Header,Bytecount_hi,Bytecount_lo,Data,Checksum
50 WBYTE @95:

Fig. 7-2. A simple program to acquire a waveform
from a 7612D Programmable Digitizer.

51

Section 7
Improving GPIB System Performance

This program sends the 7612D an ARM command
to prepare channel Ato acquire data. When atrigger
is received, the acquisition begins. Until the
acquisition is complete, channel A data cannot be
read.

Immediately following the ARM command is a
READ command. Since the channel A data cannot
be read yet, the 7612D buffers the command and
waits for the acquisition to complete. Line 30 assigns
the 7612D to talk, but since data cannot be read from
channel A yet, the 7612D holds the bus in a waiting
state until the acquisition is complete. As a result,
program execution is held at line 40, waiting for the
7612D to begin transmitting its data.

During this waiting period, no device-dependent
message traffic can occur and no other processing
takes place—the time is essentially wasted. If the
4052A could be freed to perform other tasks during
this period, the system performance could be
significantly improved. The problem is how to signal
the 4052A when the acquisition is complete so that
the process of reading the data can be initiated.

That's where SRQ interrupts come in. The 7612D,
like most other acquisition instruments from
Tektronix, have an Operation Complete or
Waveform Readable interrupt feature that allows
them to generate an SRQ when data becomes
available for the controller. The program shown in
Fig. 7-3is the one shown in Fig. 7-2 with statements
added to use the Waveform Readable interrupt
feature of the 7612D.

10 DIM Data(512)

20 ON SRQ THEN 2000

30 PRINT @1,0:"WRI ON;ARM A"

40 REM » x * PROGRAM LINES TO PERFORM OTHER * *
50 REM »x x SYSTEM TASKS ARE ADDED HERE =~ % %%

2000 POLL Device,Status;1,0

2010 IF Status>127 AND INT(Status/4) MOD 2=1 THEN

2020 PRINT @1,0:"READ A”

2030 WBYTE @65,96:

2040 RBYTE Header,Bytecount_hi,Bytecount_lo,Data,Checksum
2050 WBYTE @95:

2060 ENDIF

2070 RETURN

Flg. 7-3. Adding a few lines to the program in Fig.
7-2 takes advantage of the waveform readable
interrupt feature of the 7612D.

This program begins by settingupan ON... THEN

statement for the SRQ interrupt. Then, line 30 sends
the WRI ON and ARM A commands to the 7612D.

52

These commands enable the WRI (Waveform
Readable Interrupt) and arm channel A for
acquisition. At this point, the 4052A is free to
perform other tasks, such as process data from the
last acquisition or service other instruments.

When the 7612D completes the acquisition, it
asserts SRQ. This interrupts the currently executing
routine and causes control to be passed to the
routine starting at line 2000. Line 2000 polls the
7612D (other instruments could be added to the
POLL list, but are omitted for clarity). Line 2010 tests
the state of bits 3 and 8. If they are both set, a
Waveform Readable interrupt for channel A has
occurred and the binary data is read in lines 2020
through 2050. Otherwise, control is passed directly
to the RETURN statement and the interrupt is
ignored.

The performance improvement gained with this
technique is a function of the instrument’s
acquisition time. For example, if the 7612D is
acquiring a 2048-point waveform at one millisecond
sampling interval, the total acquisition time is over 2
seconds (excluding pre-trigger delay time). By
using interrupts, this time can be used for
processing. For faster sampling intervals or
waveforms with fewer points, the gain will be less
dramatic.

Prioritizing serial poll response. When a system
consists of several instruments that can assert SRQ,
it is possible that more than one instrument will
assert SRQ at the same time. It may be more
important to respond to an SRQ from one
instrument or group of instruments than from others
inthe system. For example, a digital voltmeter might
take a new sample every 300 milliseconds and assert
SRQ each time it does. Since the sample will be
overwritten by a new one every 300 milliseconds, it's
important to respond to the DVM's interrupt and
read the data before the next sample is taken.

If the system also contains other devices whose
interrupts don’t need such timely response, the
response to these interrupt must somehow be
prioritized so that the most important devices are
serviced first. Prioritizing the serial poll response is
simple—just list the devices’ numbers in the POLL
statement in priority order from highest to lowest
priority. If the DVM in the previous example is the
highest priority device in the system, it should be
listed as the first device in the POLL address list,

Section 7
Improving GPIB System Performance

followed by the next most important device, and so
on until all devices that can assert SRQ are listed.

For example, Fig. 7-4 shows an interrupt handling
routine for a system with adigital voltmeter (DVM), a
function generator, and a magnetic tape drive.

When an SRQ occurs, program control is
transferred to line 100. The POLL statement beginsa
serial poli process, starting with the first device in
the list. Since the DVM's interrupt is the most
important, it is checked first. If it is asserting SRQ, it
is serviced first even if other devices are also
asserting SRQ. If the DVM is not asserting SRQ, the
next device in the list is polied, and so on until the
device that is asserting SRQ is found.

Local Data Processing

Many GPIB instruments are capable of
performing some on-board processing. This
processing may be faster than sending data over the
bus to the controller and performing the processing
in the controller, especially if the processed data
must be shipped back to the instrument for display
or further processing.

A good example is the signal average function
provided on many instruments. To signal average in
the controller, each waveform must be sent to the
4052A. If alarge number of waveforms are averaged,
the time to transmit the waveforms can become
quite substantial. If the same function is performed
in the instrument, the data can be acquired and
averaged and a single averaged waveform sent to
the controller. in most cases, this process is
considerably faster than performing the average in
the 4052A.

Anotherexampleisillustrated in the two programs
shown Fig. 7-5. Part a of the figure shows a program
that acquires a spectrum from a 492P Spectrum
Analyzer and finds its maximum value using the
4052R07 ROM Pack MAX function. The program in
part b of the figure accomplishes the same function
using the 492P FMAX and POINT commands.

10 PRINT @1:“CURVE?"
20 INPUT _curve
30 CALL “MAX”,_curve,_max,_point

(a) Finding the maximum value of the waveform
in the 4052A.

10 PRINT @1:" FMAX;POINT?"
20 INPUT _max,_point

(b) Finding the maximum value of the waveform
in the 492P.

Fig. 7-5. Two programs to find the maximum value
of a digitized spectrum acquired by the 492P. The
program in part a performs the operation in the
4052A, while the program in part b performs the
same operation in the 492P.

The program in part a executes considerably
slower because it takes about 2 seconds to transmit
1024 points of ASCII data to the 4052A. (This time
could be reduced to about 800 milliseconds if the
data is transmitted in binary). In program b only a
single point is transmitted since the 492P finds the
maximum value itself and transmits it to the 4052A.
As a result, this technique is much faster.

100 POLL Device,Status;4;1;3

120 RETURN
190 RETURN
290 RETURN

390 RETURN

110 GOSUB Device OF 130,200,300

130 REM % * * SRQ HANDLING FOR THE DVM * x %
200 REM * % * SRQ HANDLING FOR THE FUNCTION GEN. * % *

300 REM x * SRQ HANDLING ROUTINE FOR THE MAG TAPE DRIVE x %

Fig. 7-4. An interrupt handling routine for a GPIB system with a DVM, function generator, and a tape drive.

53

Section 7
Improving GPIB System Performance

ASCII vs. Binary—Simplicity vs. Speed

GPIB instruments and controllers usually transfer
numeric data such as waveforms in one of two
formats—ASCli-coded decimal numbers or binary
numbers. Sometimes you have no choice which
format to use because the instruments or controller
require one format. Otherinstruments, like the 492P
Programmable Spectrum Analyzer can transmit
data in either format.

The questionin this caseis; Which format shouid |
use? Each format has its advantages. ASCI| data
transmission is usually simpler. But, binary data
transmission can be significantly faster because
fewer bytes are transferred.

In the 4052A, ASCII data can be transmitted and
received using simple PRINT and INPUT
statements. Data storage formatis also more flexible
with ASCIl. Numeric data may be stored in string
variables or numeric variables. A wide variety of
input terminators are also available to simplify
breaking the data into manageable blocks.

However, ASCIl data transmission is slow
compared to binary transmission. In ASCI|, a single
numeric value is converted to a string of ASCII
characters before transmission (Fig. 7-6). For
example, the value 237 is converted to the ASCII
code for “2”, followed by the ASCII code for “3” and
the ASCll code for “7". Usually, a delimiter character
(such as space or comma) is appended before or
after the string, for a total of four bytes.

Binary data transmission is considerably faster,
since a one or two-byte binary equivalent of the
number istransmitted. Any value between 0-255 can
be transmitted in a single byte, and any value
between 0-65,535 can be transmitted in two bytes.
However, binary transfers are more complex to
implement. Data is always stored in numeric
variables and if the value is larger than 255, it
requires two variables—one for each byte.

Though the low-level RBYTE and WBYTE
statements in 4050 BASIC transfer data slower than
the PRINT and INPUT statements, the number of
bytes sent is drastically reduced, which usually

10 A=237
20 PRINT @N:A
7 vy
0 0 10 LA | 0|
0 0 | 0] [0
! ! A |1 LA
1 1 1A o
0 0 | 0 LA 10
1 0 10 LA 10
1 1 i_ LA 0
1 1 0 | 0
55 51 50 33
u7n us" 112!7 SPACE

Flg. 7-6. Transmitting a numeric value in ASCII. The addressing sequence is omitted for clarity.

54

Section 7
Improving GPIB System Performance

more than compensates for the slower transfer rate.
If the instrument you are using can not
transmit/receive as fast as the 4052A INPUT/PRINT
data burst, the full speed of the ASCII transfer can
not be realized and the difference in speed between
the binary transfer and the ASCII transfer will be
even more pronounced.

To get an idea of the speed difference between
ASCII and binary data transfers, refer to Table 7-1.
This table shows some typical times to transfer a
1024-point waveform from the 7D20 to the 4052A in
both ASCII and binary format. It's easy to see from
this example why a slightly more complex program
is a small price to pay when speed is important.

TABLE 7-1
WAVEFORM TRANSFER TIMES FOR
7D20/4052A SYSTEM
Binary transfer 800 ms
ASCI (input to string) 2.1 sec
ASCH (input to numeric array) 2.17 sec

In some cases, binary data may require some
special processing to put it into a useable format.
The time required to perform this processing must

also be considered when choosing data transfer
mode.

For example, some instruments send binary data
in two bytes for each point. The controller has to
assemble these two bytes into a single numeric
value before the data can be processed. If
performing this process requires a significant
amount of time, it may be more efficient to transfer
data in ASCII, even though the data transfer itself is
slower.

Data Logging

In some cases, there simply isn't enough time to
perform all the necessary processing on acquired
dataatthetimeitisacquired. Acommon solution to
this problem is data logging, where data is captured
and stored on a peripheral device at high speed.
Then, after the acquisition is complete, the data is
processed at a slower rate.

The WBYTE statement allows the 4052A to set up
transfers between an acquisition instrument, for
example, and a peripheral storage device. The
process of setting up such a transfer is described in
Transfers Among GPIB Devices in Section 4.

55

Section 7
Improving GPIB System Performance

56

Section 8 — The GPIB ROM Pack

Introduction

This section describes the GPIB Enhancement
ROM pack routines as they pertain to the GPIB
programmer. The GPIB Enhancement ROM Pack
{4052R14 Option 1A) is a useful tool for the GPIB
programmer. It allows the following operations to be
programmed more easily and executed more
quickly:

Binary transfers

Sending mulitiline interface messages

Bit-level operations (set, clear, test)

Tape operations

In addition, the GPIB ROM pack allows you to do
parallel polling and error handling operations that
are not possible without the ROM pack. Table 8-1
lists the GPIB ROM pack routines along with a brief
description of each.

TABLE 8-1

GPIB ROM PACK ROUTINES

ARSIZE Returns the currently dimensioned size of an
array.
ASKERR Returns information that identifies the last error

that was trapped.
BININ Receives binary block data on the GPIB.

BINOUT Sends binary block data over the GPIB.

CLRREP Sets the error repetition counter to zero.
DCL Sends the Device Clear interface message.
DECHEX Converts decimal value to hexadecimal in ASCI|

representation.

ERRHLP Returns information about Tektronix Standard
Codes and Formats error codes.

ERRLIST Enables you to specify which errors are to be

without addresses.

HEXDEC Converts an ASCII hexadecimal to decimal.

the tape in the 4052A internal tape drive.

unasserting REN.

cartridge status.

PPD Unconfigures specified devices for parallel polls.

PPE Configures specified devices for parallel polls.

PPOLL Performs paraliel poll.

PPU Sends the Parallel Poll Unconfigure interface
message.

trapped.

GET Sends the Group Execute Trigger interface
message.

GTL Sends the Go To Local interface message with or

LAST Finds and returns information about the last file on

LISTEN Sends the listen addresses of the specified devices
over the GPIB.

LLO Sends the Local Lockout interface message.

LOCS Puts all devices on the GPIB in local state by

NEWTAP Finds the present file location and returns the tape

PRISTR Outputs a string over the GPIB without carriage
return or EOI.

RBIN Receives binary data from the GPIB.

RETRY Does a RETURN to the statement where the error
occurred.

RWLS Puts specified devices in Remote With Lockout
State.

sDC Sends the Selected Device Clear interface

' message.

SRQOFF Causes SRQ interrupts to be ignored.

SRQON A NOP in the 4052R14 option 1A ROM pack.
Provides compatibility with software written for
previous versions of the 4052R14 ROM pack.

STBHLP Returns information about status byte codes.

TALK Sends the talk addresses of the specified devices
over the GPIB.

TAPEIN Reads an entire ASCII file into a string variable.

TAPEAPP Reads an entire ASCII file and appends the data to
the end of a string variable.

THEADER Finds the beginning of the current file and returns
the file header or file number.

TNAME Assigns a name to a file on the magnetic tape.

TRIM Changes the current length of a string variable.

UNDEF Determines whether a variable is defined or
undefined.

UNL Sends the Unlisten interface message.

UNT Sends the Untalik interface message.

VARCLR Clears specified bits in a target variable.

VARSET Sets specified bits in a target variable.

VARTST Tests specified bits in a variable.

VLIST Returns all current variables and their values and
types.
WBIN Sends binary data.

57

Section 8
The GPIB ROM Pack

Binary Transfers

The GPIB ROM pack provides four routines to do
binary transfers:

e BININ—Receives data in binary block format.
o BINOUT—Outputs data in binary block format.
¢ RBIN—Receives binary data.

¢ WBIN—OQutputs binary data.

All four routines can handle data in one or two-byte
format. Unpacked mode, the default, is for one-byte
data. Packed mode is for two-byte data. If you are
dealing with an instrument that transfers data in
two-byte binary format, these ROM pack routines
offer a substantial savings in programming time and
execution speed. For example, the 390AD
Programmable Digitizer sends binary waveform
data in two-byte format. The following program
uploads 2048 points of waveform data from the
390AD (in dual mode) to the 4052A in about 3.8
seconds:

10 DIM Waveform(2048)
20 PRINT @1:“READ cht”
100 CALL “BININ",“PACK”,Waveform,Error;1

The BININ routine (instead of RBIN) is used
because the 390AD transmits binary waveform data
in block binary format. “PACK” specifies two-byte
data.

The following program uploads 2048 points of
waveform data from the 390AD to the 4052A without
using any GPIB ROM pack calls. It takes about 4.5
seconds to execute.

10 DIM Waveform(2048), Wave_tmp(2048,2),Constant(2,1)
20 Constant(1,1)=256

30 Constant(2,1)=1

40 PRINT @1:“READ cht"

100 WBYTE @65:

110 RBYTE Header,Bytecount_hi,Bytecount_lo,Wave_tmp,Checksum,Semicolon

120 WBYTE 285:
130 Waveform=Wave_tmp MPY Constant ! Do a matrix multiply.

So, inthis case, one ROM call takes the place of six
statements and reduces the execution time by about
15 percent. The real benefit (besides the simplicity)
is the memory savings afforded by the ROM pack
routine. Uploading the waveform, using the ROM
pack routine, only requires storage for 2048
numbers (2048 numbers * 8 bytes/number + 18
bytes for symbol table entry) plus 72 bytes for the
CALL statement—a total of 16,834 bytes. Uploading

58

the waveform with the fast matrix method requires
storage for 6144 numbers (6144 numbers * 8
bytes/number + 18 bytes for symbol table entry) plus
432 bytes for the six statements—a total of 49,602
bytes. As you see, the fast matrix method requires
over 3 times as much memory space as the ROM
pack routine. |f the 390AD was in “Channel 1 Only”
mode, you could not use the fast matrix method
because the 390AD then has 4096 points to send.

An alternative to the fast matrix method is to
process each number (2 bytes) asitis received. This
takes about the same amount of memory as that
required with the ROM pack routine, but it is much
slower (about 3 times slower). So the binary transfer
ROM pack routines offer increased speed, more
efficient memory usage and programming
simplicity.

If you want to do error checking, the ROM pack
routines can save you even more time. The binary
transfer ROM pack routines automatically check for
errors and return an error code.

You may use string variables instead of numeric
variables with the four binary transfer ROM calls.
Storing waveform data in strings can save memory
space. To store an unpacked 2048 point waveformin
anumeric array takes 16,402 bytes (2048 numbers *
8 bytes/number + 18 bytes for symbol table entry).
To store the same information in a string takes 4114
bytes (2 hexadecimal digits/byte * 2048 bytes + 18
bytes for symbol table entry). But processing data
stored in strings takes longer.

The data in strings used by the binary transfer
routines is hexadecimal digits in ASCII format. To
help process data in ASCII hexadecimal format, the
GPIB ROM pack contains two routines to make
conversions. HEXDEC converts a string of -
hexadecimal digits (maximum of four) to 4052A
internal numeric format. DECHEX does the reverse.

Sending Interface Messages

The GPIB ROM pack provides routines to make it
easy to send the following interface messages:

DCL—Device Clear

GET—Group Execute Trigger - addressable
GTL—Go To Local - addressable
LLO—Local Lockout

Section 8
The GPIB ROM Pack

® SDC—Selected Device Clear - addressable
e UNL—Unlisten
e UNT—-Untalk

In addition, there are routines to:

® Make a device a talker (TALK) - addressable

® Make a device a listener (LISTEN) - addressable

® Put a device into Local State (LOCS)

e Put a device into Remote With Lockout State (RWLS)
- addressable

The routines marked addressable have optional
address parameters. Without addresses, of course,
TALKand LISTEN do nothing and RWLS withoutan
address is the same as LLO.

These routines are easier to program than their
equivalent in WBYTE statements. You can refer to
the interface messages by mnemonic names and
you don’t have to add offsets for the listen, talk, and
secondary addresses. This also makes programs
easier to read. The operations performed by the five
ROM pack routines that are not addressable are
slightly faster using the ROM pack routines instead
of WBYTE. The operations performed by the six
addressable ROM pack routines are faster using
WBYTE. However, the speed gained by using the
low-level WBYTE would only be significant in time-
critical applications or where the operation is done
repeatedly.

Table 8-2 lists some execution times for the ROM
pack routines and for equivalent operations using

WBYTE. Times given are minimum. As always, the
slowest listener on the GPIB determines the speed
of the transfer. (An exception is the LOCS operation.
REN is unasserted for a period of time that is
independent of devices on the GPIB.)

Binary Operations

Three routines are available in the GPIB ROM
pack to make binary operations easier: VARSET,
VARCLR, and VARTST. With them you can set,
clear, or test one or more bits in a numeric variable or
array. The value of the object to be operated upon
must fit in two bytes (-32768 to 65535).

One of the most common binary operations is
testing the state of a bit in the status byte obtained
with a POLL statement. The following statements
test bits 3 and 8 of a status byte returned by a 7612D
Programmable Digitizer to see if a Waveform
Readable interrupt for channel A has occurred.

100 Bits_3_8=132
110 CALL “VARTST",Status,Bits_3_8,Is_it_set
120 IF Is_it_set=Bits_3_8 THEN

The VARTST routine does a bitwise AND on the
integral parts of the first two parameters (STATUS
and BITS_3_8 in this example) and stores the result
in the third parameter (IS_IT_SET). Afterwards,

TABLE 8-2
Some Execution Times for Sending Interface Messages with
the ROM Pack Routines and for Equivalent Operations Using WBYTE

ROM pack call Execution Equivalent operation Execution
time without ROM pack time

CALL “DCL” 1.01 ms WBYTE @20: 1.19 ms
CALL “LLO" 1.03 ms WBYTE @17: 1.19 ms
CALL “UNT” 1.06 ms WBYTE @95: 1.19 ms
CALL “UNL” 1.06 ms WBYTE @63: 1.19 ms
CALL “TALK";1 ' 1.75ms WBYTE @65: 1.19ms
CALL “LISTEN";1 2.02 ms WBYTE @33: 1.19 ms
CALL “LISTEN";1;2;3;4 4.24 ms WBYTE @33,34,35,36: 2.43 ms
CALL "GET” 1.44 ms WBYTE @8: 1.19 ms
CALL “GET";1;2;3;4 5.77ms WBYTE @33,34,35,36,8,95,63: 3.67 ms
CALL “GTL” 1.44 ms WBYTE @1: 1.19 ms
CALL “GTL";1;2;3;4 5.77 ms WBYTE @33,34,35,36,1,95,63: 3.67 ms
CALL “LOCS” 0.62 ms CALL “RENOFF"

CALL “RENON” f 0.94 ms

59

Section 8
The GPIB ROM Pack

IS_IT_SET and BITS_3_8 are equal if and only if the
corresponding bits in STATUS are set. If, on the
other hand, you wanted to know if any of the
specified bits were set, comparing IS_IT_SET to
zero would suffice.

Tape Operations

There are six routines in the GPIB ROM pack to
facilitate tape operations:

e | AST—Finds and returnsinformation about the last file
on the tape in the 4052A internal tape drive.

e NEWTAP—Finds the present file location and returns
the tape cartridge status.

e TAPEIN—Reads an entire ASCII file into a string
variable.

¢ TAPEAPP—Reads anentire ASCII fileand appends the
data to the end of a string variable.

e THEADER—Finds the beginning of the current file and
returns the file header or file number.

e TNAME—Assigns aname to a file on the magnetic tape.

These are general utility routines whose use is not
limited to the GPIB programmer. As with the other
ROM pack routines, these routines offer a savingsin
programming time and execution speed.

Error Trapping

Four routines are included in the GPIB ROM pack
to enable you to trap 4052A system errors:

¢ ERRLIST—Enables you to specify which errors are to
be trapped.

¢ ASKERR—Returns information that identifies the error
that occurred.

e CLRREP—Sets error repetition counter to zero.

e RETRY—Does a return to the statement where error
occurred.

To trap an error, call the ERRLIST routine and
specify the error number or numbers you want to
trap. You must write an error handler and specify its
starting statement number in an ON SIZE THEN
statement. Then, when any error specified in the
ERRLIST call occurs, the 4052A does an implicit
GOSUB to the statement number specified in the
ON SIZE THEN statement. Of course, ifa SIZE error
occurs, the same action will be taken. The error
handler must take action appropriate to the error

60

that occurred. “Appropriate” could mean anything
from an attempt to fix the problem, to ignoring it, to
halting execution.

The following program segment is part of an error
handler for a program that reads raw data from a
measurement device on the GPIB and stores the
data on the 4052A internal magnetic tape.

100 ON SIZE THEN 5000
110 CALL “ERRLIST",56,57,69

5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260

REM ERROR HANDLER

CALL "ASKERR",Index,Rp_count

IF Rp_count>2 THEN
PRINT “Three strikes - You're out”
STOP

END IF

IF Index=1 THEN
PRINT “The magnetic tape is write-protected. Please rotate the”
PRINT “write-protect cylinder, on the tape, so the arrow points”
PRINT “away from SAFE."
PRINT “Press RETURN when when you have replaced the tape.”;
INPUT Tmp$
GO TO 5260

END IF

IF Index=2 THEN
PRINT “Please insert a tape in the”
PRINT “4052A tape slot and press RETURN";
INPUT Tmp$
GO TO 5260

END IF

IF Index=3 THEN
PRINT “There has been an error on the GPIB. Please check that”
PRINT “all cables are connected and the instruments are”
PRINT “powered up. Press RETURN to continue.”;
INPUT Tmp$

END IF

CALL “RETRY"

Line 100 tells the 4052A that the error trap handier
starts in statement 5000.

Line 110 tells the 4052A that we want to trap errors
56, 57, and 69.

Line 5000 is the beginning of the error handler.

Line 5010 asks the 4052A to identify the error that
caused the error trap. The repetition count is
returned in RP_COUNT.

Lines 5020-5050 check the repetition count and bail
outifthe same error has occurred three consecutive
times. The value of the repetition countis always one
less than the number of successive times the error
has occurred.

Lines 5060-5130 handle error 56.
Lines 5140-5190 handle error 57.
Lines 5200-5250 handle error 69.

Section 8
The GPIB ROM Pack

All three parts of the error handler converge to line
5260 where the RETRY routine transfers control to
the statement where the error occurred.

Error Codes, Event Codes, and Status Bytes

The 4052R14 GPIB ROM pack provides two
routines to help decipher error and event codes, and
status bytes:

¢ ERRHPL—Returns information about Tektronix
Standard Codes and Formats error codes.

® STBHLP-—Returns information about system status
byte codes.

These routines map error and event codes, and
status bytes to English explanations, thus
eliminating the need for the programming time and
memory space to accomplish the same task. The
codes and status bytes recognized by the routines
are those defined in the Tektronix Standard Codes
and Formats. STBHLP only recognizes system
status bytes. Your 4052R14 ROM pack manual lists
the error and event codes that ERRHLP recognizes.

Parallel Polling

Four routines provided in the GPIB ROM pack
enable you to perform paraliel polls on instruments
that implement the PP1 or PP2 subset:

® PPD—Unconfigures selected instruments for parallel
polls.

e PPE—Configures selected instruments for parallel
polls.

e PPU—Unconfigures all instruments for parallel polls.
¢ PPOLL—Performs parallel poll.

The first three operations can be accomplished with
the WBYTE statement but are facilitated by the ROM
pack routines. The last operation (PPOLL) can only
be accomplished with the ROM pack because the
4052A. must read a byte from the GPIB while
asserting ATN and EOI.

Parallel polling is faster than serial polling and, if
there are alarge number of devices on the GPIB, can
offer significant savings in polling time.

Before you can do a parallel poll, the devices you
want to poll must be configured for parallel polling.
When you configure a device for parallel polis, you
tell the device to participate in upcoming parallel
polls, on which data line (1 to 8) to respond, and
what sense (logical 0 or 1) to use. The following
ROM call configures devices at addresses 1and 2to
use data line 1 and negative logic (0 is true):

CALL “PPE",0,1;1;2

Now, whenever you do a parallel poll, devices at
address 1and 2 will participate (along with any other
configured devices). The following ROM call does
the parallel polt:

CALL “PPOLL",P_status

It takes about 2.25 milliseconds to do a parallel
poll. Unlike other GPIB operations, the speed of the
parallel poil is not regulated by the devices on the
bus. The participating devices must set the state of
their assigned data lines within 200 nanoseconds.
The amount of time it takes to read the data lines and
unassert ATN and EOI is dependent solely upon the
controlier.

Miscellaneous Routines

There are nine miscellaneous utility routines in
the GPIB ROM pack:

¢ ARSIZE—Returns the current dimensions of an array.

e DECHEX—Converts decimal value to hexadecimal in
ASCII representation.

¢ HEXDEC—Converts an ASCII hexadecimal to decimal.

® PRISTR—Outputs a string over the GPIB without
carriage return or EOI.

¢ SRQOFF—Causes SRQ interrupts to be ignored.

¢ SRQON—A NOP in the option 1A ROM pack. Provides
compatibility with software written for previous
versions of the 4052R14 ROM pack.

¢ TRIM—Changes the current length of a string variable.

e UNDEF—Determines whether a variable is defined or
undefined.

e VLIST—Returns all current variables and their values
and types.

The DECHEX and HEXDEC routines are useful
with the string versions of BININ, BINOUT, RBIN,
and WBIN. See the discussion of Binary Transfersin
this section for more information.

The PRISTR routine is useful, in conjunction with
WBYTE, for sending strings. With WBYTE, you can
not send strings directly.

The functions of ARSIZE and UNDEF can also be
performed by the more general UBOUND
statement. The SRQOFF routine performs the same
function as the OFF SRQ statement.

61

Section 8
The GPIB ROM Pack

62

Appendix A —

Subsets Describe GPIB Interface Functions

The IEEE 488 standard allows a designer a great
deal of flexibility in implementing an instrument’s
GPIB interface. The functional capability of the
interface is divided into ten interface functions.
From this list of functions, a designer may choose to
implement all, part, or none of each function, as
defined by the interface subsets listed in the
standard.

The standard also specifies a shorthand way of
describing which optional functions are
implemented in a device’s interface. Each function is
assigned a mnemonic (e.g., AH for Acceptor
Handshake, DT for Device Trigger). A number
appended to the end of the mnemonic indicates how
many, if any, of the optional features of that function
are implemented. Zero indicates that the function is
notimplemented at all. SHO, for instance, means that
no source handshake capability is implemented in
theinterface. SH1 means that full source handshake
capability is implemented.

Several of the interface functions have only two
options—full capability or no capability. Others,
such as the talker and controller functions, offer
many options. Table 1 shows a summary of the
interface subsets with a brief explanation of each
function. The controller function is not included in

the chart since it contains an extensive list of
options. Refer to the |EEE 488 Standard for
information on controller interface subsets.

It's important to remember that the interface
subsets describe the repertoire of the interface only.
They don't say anything about the programmable
functions of the instrument. But, they're still
important, because the programmable features of
the instrument can't be used to full advantage
without the appropriate interface functions. For
example, if an instrument sends data over the bus,
the talker and source handshake functions must be
implemented in its interface. However, the designer
may choose from one of nine levels of basic talker
capability or nine levels of extended talker
capability. The choice is based on which of the
optional functions are required. If the instrument
implements the T7 talker subset, it will have basic
talker capability with talk-only mode, no serial poll
capability and it will not remain a talker when
addressed to listen.

- The key is knowing which interface subsets your

application requires. The interface subsets are
usually listed in the specifications for GPIB
instruments. Some instruments even print the
subsets on the panel near the GPIB connector.

63

Appendix A —
Subsets Describe GPIB Interface Functions

SOURCE HANDSHAKE SHO | SH1
Full capability Allows a device to generate X
the handshake cycle for
transmitting data
No capability X
ACCEPTOR HANDSHAKE AHO | AH1
Full capability Allows a device to generate X
the handshake for receiving
data
No capability X
TALKER TO | T1 T2 T3 | T4 TS T6 T7 T8
(EXTENDED TALKER)* (TEOQ)|(TE1){(TE2){(TE3)|(TE4)|(TES)|(TE6)|(TE7)|(TES8)
Basic Talker Allows an instrument to X X X X X X X X
(Basic Extended Talker) transmit data
Talk Only Mode Allows an instrument to X X X X
transmit data without a
controller on the bus
Unaddressed {f My Prevents an instrument X X X X
Listen Address (MLA) from being a tatker and
a listener at the same
time
Serial Poll Allows an instrument to X X X X
send a status byte in
response to a serial
poll
No capability X
LISTENER Lo L1 L2 L3 L4
(EXTENDED LISTENER)* (LEO)}(LE1)](LE2)|(LE3)|(LE4)
Basic Listener Allows an instrument to X X X X
(Basic Extended Listener) | receive data
Listen Only Mode Allows an instrument to X X
receive data with a
controlier on the bus
Unaddress if My Prevents an instrument X X
Talk Address (MTA) from being a talker and
a listener at the same
time
No capability X

64

Appendix A —

Subsets Describe GPIB Interface Functions

SERVICE REQUEST

SRO

SR1

Full capability

Allows an instrument to
request service from
the controller with the
SRQ line

No capability

REMOTE-LOCAL

RLO

RL1

RL2

Basic Remote-Local

Allows the instrument to
switch between manual (local)
control and programmable
(remote) operation

Local Lock-Out

Allows the return to local
function to be disabled

No capability

PARAL

LEL POLL

PPO

PP1

PP2

Basic Parallel Poll

Allows an instrument to
report a single status
bit to the controller on
one of the data lines
(D101-D108)

Remote configuration

Allows the instrument to be
configured for parallel poll
by the controller

No capability

DEVICE CLEAR

DCo

DC1

DC2

Basic Device Clear

Allows all instruments on
the bus to be initialized
to a predefined state
cleared

Selective Device Clear

Allows individual instruments
to be cleared selectively

No capability

DEVICE TRIGGER

DTO

DT1

Full capability

Allows an instrument or group
of instruments to be triggered
or some action started upon
receipt of the Group Execute
Trigger (GET) message

No capability

X

* Extended talkers and listeners use secondary addresses; other talkers and listeners do not.

65

Appendix A —
Subsets Describe GPIB Interface Functions

66

Appendix B — Glossary

absolute address-—A talk address, listen address or
secondary address. All absolute addresses are inthe
range 32 to 126. Absolute addresses are used with
low-level WBYTE and RBYTE statements.

address—A numeric code that represents a unique
device. The |IEEE 488 standard defines three types of
GPIB addresses; talk addresses, listen addresses
and secondary addresses. Listen addresses are in
the range 32-62. Talk addresses are in the range
64-94. Secondary addresses are in the range 96-126.
Primary addresses 0-30 are used in GPIB 1/0
statements (except WBYTE and RBYTE) and are
automatically mapped to the correct talk or listen
address. For example, PRINT @1:A$ refers to
primary address 1 and the 4052A automatically
converts primary address 1 to listen address 33.

AND—A binary Boolean algebraic operation that
yields a value of true or “1” when both values are true
or “1",

argument—A value or parameter included in a
command. In a CALL statement, the parameters
passed to the subprogram are called arguments. Ina
command for a Tektronix GPIB command, the
arguments follow the command header.

array—A collection of numeric data items
referenced by a single variable name. In 4052A
BASIC, arrays may be one- or two-dimensional (i.e.,
organized as rows, or rows and columns).

ASCIll-—American Standard Code for Information
Interchange. The ASCII code assigns a particular
7-bit code to all the alphanumeric characters, a
standard set of punctuation characters, and a
standard set of control characters (see control
character).

ATN—The GPIB Attention line. The controller
asserts ATN when it is transferring interface
messages. When ATN is asserted, all devices must
listen and bytes on the bus are interpreted as
interface messages instead of device-dependent
messages.

asynchronous—An operation that is not
synchronized by a clock signal or other timing
information. The GPIB is said to be an
asynchronous bus because the process of sending
messages is not timed by a clock signal—the
transfer proceeds at the rate of the slowest device
involved in the transfer.

BASIC—AnN acronym for Beginner's All-Purpose
Symbolic Instruction Code. BASICisa simple easy-
to-learn computer programming language. 4052A
BASIC is a highly enhanced version of standard
BASIC that provides many extensions for
instrument control and programming ease.

binary—A number system used by computers in
which there are only two possible values for each
place—1 (on) or 0 (off). Each place in the binary
number system has a value of 2" where n is the
position of the place. Thus, the value of the least
significant place is 1 (29), the value of the next place
is 2 (21), the next is 4 (22), etc., so that decimal 9 in
binary is 1001.

binary block—A data format defined by Tektronix
Standard Codes and Formats. in this format, a block
of binary data is transferred starting with the ASCI!I
“o,” character followed by two bytes thatindicate the
number of bytes in the block, followed by the data
bytes, a checksum, an optionally, a terminator
character.

Boolean—An algebra system developed by George
Boole. This system uses logical operations, such as
AND, NOT, OR, NOR, etc., instead of mathematical
operations such as addition, subtraction, division,
etc.

buffer—An area of memory used as temporary
storage for data. In the 4052A, the I/0 buffer is an
area of memory where data is stored temporarily
during an input or output operation.

byte—A group of binary bits, usually eight bits, that
is operated on as a unit. A single ASCII character is
stored in one byte.

call—To branch to or transfer control to a specified
subprogram or ROM routine.

checksum—An error detection scheme used to
check the validity of stored or transmitted data. The
checksum is computed by adding the value of all the
bytes involved. In Tektronix Standard Codes and
Formats binary transfers, the checksum is a single-
byte value that is the sum of all the bytes in the block
including the byte count bytes but excluding the
block header. i the sum is larger that can be
contained in 8 bits, it is truncated to the least
significant 8-bits.

controller—A computer whose major task is control.
In a GPIB system, the controller is the device that

67

Appendix B
Glossary

manages the bus. It sends commands to set up data
transfers and control bus operations.

DAV—Data Valid. A GPIB line that is asserted when
the talker has a valid byte on the bus.

DCL—Device Clear. A universal GPIB message that
tells all instruments on the bus to execute a device-
specific “clear” function (see SDC).

device-dependent message—A message
transferred on the GPIB with ATN unasserted. The
message content and syntax is not specified by the
IEEE 488 standard, it is determined by the
instrument requirements. Device-dependent
messages control instrument settings and
parameters, in contrast to interface messages which
control message traffic over the GPIB.

delimiter—A character or signal used to separate
one data item from another or to terminate a set of
data. For example, a comma may be used to
separate one numeric value from another when
transferring several ASCII numeric values. The EOI
(End-Or-ldentify) signal on the GPIB is often used
as a delimiter to terminate message transfers.

end binary block—A data format defined by
Tektronix Standard Codes and Formats for
transferring binary data. The end binary block starts
with the “@" character followed by the binary data
values.

EOI—The End Or Identify signal line on the GPIB.
EOl is used in Tektronix instruments as a message
terminator. When the talker sends the last message
byte it asserts EOIl to indicate the end of the
message. EOI is also used during the paraliel poll
process.

equivalent-time digitizing—A technique of digitizing
where samples are taken over several repetitions of
the input signal. On each repetition, the digitizer
captures one or more samples, gradually building a
complete acquisition from many repetitions.

error code—A code, usually a number, that
identifies an error. Two kinds of error codes you will
find in a 4052A controlled GPIB system are 4052A
system errors and instrument errors. 4052A system
error codes are reported on the 4052A display
screen when an error occurs. 4052A system error
codes may also be returned by the ERRLIST routine
if you have a GPIB ROM pack. Instrument errors are

68

returned by an instrumentin response toan ERR? or
EVENT? query.

error trapping—When an error occurs in a program,
the computer’s operating system normally takes
control and reports an error message to the user.
Error trapping allows a program to call a user-
written error handler routine when an error occurs in
lieu of the normal operating system error
processing.

event code—A numeric code returned by a
Tektronix GPIB instrument in response to an
EVENT? or ERR? query. It's the same as an
instrument error code except that it doesn't
necessarily connote an error condition—some event
codes denote normal conditions, such as power-up
or operation complete.

functlon—A special type of 4050 BASIC statement
that returns a single numeric.

GET—Group Execute Trigger. An addressed GPIB
interface message. All addressed listeners that
implement the device trigger function (DT1 subset)
initiate an instrument-dependent trigger function
when they receive this message. For example, a
digitizer might be set to trigger its acquisition on
receipt of GET.

handler—A special subprogram or subroutine that is
called when a specified condition occurs. For
example, an error handler routine may be called
when an error occurs (see error trapping). Handlers
may be written to process error conditions,
interrupts such as SRQs from a GPIB device, or /0
device conditions, such as end-of-file on a tape
drive.

handshake—The process of coordinating a data
transfer from one device to another. Some form of
signal or flag is exchanged between the
communicating devices to insure the integrity of the
data transfer. In GPIB data transfers, three control
lines are used to control the transfer of each byte.
These lines are called “handshake” lines.

hard copy—A paper copy or printout of information
stored in a computer.

header—A character or group of characters that
identifies the following command or data. In a Tek
Standard Codes and Formats command, the header
is the first word that identifies the command, such as

Appendix B
Glossary

FREQ for a command to set the frequency. The first
characterin a binary block is also called a header, in
that it identifies the data format the follows.

IFC—The GPIB Interface Clear signal line. The
system controller can assert this line to reset all
interfaces to a known state.

interface—The connection of two devices, or the
circuits and programs that allow two devices to
communicate, such as a computer and a printer.
Several standard interfaces have been defined, such
as GPIB and RS-232C that allow a variety of
computers and peripheral devices from different
manufacturers (printers, terminals, etc.) to be
connected. “Human interface” is the interaction
between computers and operators.

interface messages—A GPIB message that controls
interface operations in contrast to device-
dependent messages which control device
functions. Interface messages may either be uniline
messages (a single line asserted, such as REN, SRQ,
EOI, etc.) or muitiline messages (bytes sent on the
data lines with ATN asserted). Multiline interface
messages may either be universal messages,
affecting all devices on the bus (such as DCL) or
addressed messages, affecting only the addressed
listeners (such as SDC).

interface subsets—A shorthand way of defining the
interface capabilities of a GPIB device. The
functions of a GPIB interface are divided into ten
basic functions. These functions are further divided
into subsets that describe which optional parts of
each function are implemented in the interface.
Appendix A describes the interface subsets.

interrupt—A condition that causes a program to
temporarily suspend execution of the current
program and begin executing another task. When
the new task is complete, execution may return to
the point the original task was suspended, or it may
be transferred to another point.

interrupt trapping—When an interrupt occurs, such
as an SRQ from a GPIB device, the computer’s
operating system normally processes the interrupt.
Interrupt trapping allows the user to write a handler
(see handler) routine to process the interrupts
instead of using the operating system’s interrupt
processing routine (see error trapping).

1/0—Shorthand for Input/Output.

keyword—Some words have special pre-defined
meanings to a computer. These words cannot be
used as variable names within a program. For
example, the word PRINT always means “output
data” to the 4052A. As a result, PRINT is not a valid
variable name. These reserved words are called
keywords.

listen address—The primary address of a GPIB
device plus 32. The listen address is the address
used by the controller to address a device to listen.
The address switches on the instrument set the
primary address, which determines both the listen
address and talk address of the instrument (see talk
address and primary address).

listen-only—A GPIB device that has been manually
configured as a permanent listener. The device does
not need to be addressed by the controller to listen.
A listen-only device and a talk-only device can work
together on the bus without a controller.

listener—A GPIB device that has been addressed to
listen by the controller or that is setto the listen-only
mode. There can be any number of listeners in a
system at any time (up to the limit of the number of
devices on the bus).

local variable—A variable that can only be
referenced within the program segment where it is
defined, in contrast to a global variable that can be
referenced anywhere in a program.

message terminator—Indicates the end of a
message. Tektronix instruments usually assert EOI
to indicate the end of message. Some devices send
the line-feed character as a terminator atthe end ofa
message.

NDAC—Not Data Accepted. A GPIB handshakeline
asserted by a listener when it has NOT captured the
byte currently on the bus. All listeners must release
NDAC before the talker can change the data byte on
the bus or release DAV.

NOP—No Operation. An operation that has no
effect.

NRFD—Not Ready For Data. A GPIB handshake line
asserted by a listener when it is not ready to accept
another data byte. All listeners must release
(unassert) NRFD before the talker may place
another byte on the bus and assert DAV.

69

Appendix B
Glossary

peripheral device number—A number that
represents a device or a GPIB address. Peripheral
device numbers 0-30 correspond to GPIB primary
addresses 0-30. The peripheral devices (internal
magnetic tape drive, keyboard, ROM slots, etc.) are
assigned peripheral device numbers greater than 30.

primary address—A numeric code from 0-30 that
uniquely identifies a particular device on a GPIB
bus. This code is usually set by a switch or switches
on the GPIB device. The primary address actually
defines two addresses—a talk address used to
address a device to send data on the bus, and a listen
address used to address a device to receive data
from the bus. The listen address is the primary
address plus 32 and the talk address is the primary
address plus 64 (see listen address and talk
address). 4052A peripheral device numbers 0-30
correspond to GPIB primary addresses 0-30.

real-time clock—A clock that measures time in
terms of actual clock time (seconds, minutes, etc.),
in contrast to a clock which measures some relative
units, such as execution cycles for a computer.

record—A group of related information. In a
waveform digitizer, a record is the set of samples
that defines a waveform. In a computer file, such as
onthe 4052A tape, a record is one set of information,
often terminated by a carriage return or other
special character.

record length—The number of elementsin arecord.
In a waveform digitizer, the record length is the
number of samples in the record. In computer file,
the record length is the number of characters or
bytes in each record.

RAM—Random Access Memory. This term refers to
memory that is organized such that any memory
location can be read at any time. Though read-only
memory (ROM) is also random-access in nature, the
term RAM is usually reserved for memory that can
both be read as well as written to. RAM is used in the
4052A for storing BASIC programs and data.

REN—The Remote Enable GPIB line. The controller
asserts this signal to allow devices on the bus to
operate in remote control from the bus. When REN is
not asserted, devices must return to local (front
panel) control.

ROM-—Read Only Memory. 4052A BASIC and the
ROM routines are stored in integrated circuits that

70

are programmed at the factory with the operating
system program. This information can only be read
by the computer; it cannot be modified or written.

sample—A number that represents the value of
something. That something may be the magnitude
of a signal (from a digitizer or a multimeter), a
frequency (from a spectrum analyzer), a time
interval (from a timer) or anything else that can be
characterized by a number.

sampling interval—The period between samplesina
digitizer or other sampling device, usually
expressed in seconds.

sampling rate—The reciprocal of the sampling
interval.

scalar—A single numeric value.

secondary address—A numeric code that is used on
the GPIB in addition to the primary address to
identify either a sub-function of an instrument or to
indicate a command. For example, in the 7612D
Programmable Digitizer, the secondary address
indicates whether the mainframe or programmable
plug-ins will be involved in a data transfer. In the
4924 Digital Cartridge Tape Recorder, secondary
addresses are used as commands, such as rewind,
find file, etc.

sequential digitizing—A technique of digitizing a
waveform where samples are taken at fixed intervals
along the input waveform. All samples are captured,
in order, on a single input repetition (compare
equivalent-time digitizing).

SDC—Selected Device Clear. An addressed GPIB
interface message that tells the addressed device to
execute a device-specific clear function. The SDC
message is similar to the DCL message except that
SDC affects only the addressed devices, where DCL
affects all devices on the bus.

serial—Handling or transferring data one item at a
time, in contrast to parallel, where several data items
are handled or transferred at once.

serlal poll—A protocol used on the GPIB to read the
status of devices on the bus. The controller reads
one status byte from each device polled. If several
devices are polled, their status bytes are read one at
a time.

SPE—Serial Poll Enable. A universal GPIB interface
message that tells all devices on the bus to prepare

Appendix B
Glossary

to send their status bytes when they are addressed
to talk.

SRQ—The GPIB Service Request line. A device on
the bus asserts this line to request service from the
controller. The controller usually conducts a serial
poll or a parallel poll to determine which device is
asserting SRQ and to read the device status.

status byte—A byte returned by a GPIB instrument
during a serial poll that contains information about
the state of the instrument.

subprogram—A program segment in 4052A BASIC
that is bounded by a SUB and an END SUB
statement is called a subprogram. The subprogram
is given aname in the SUB statement and is called by
that name using a CALL statement. A subprogram
can have independent (local) variables that are
defined only within that subprogram. In addition,
parameters may be passed between the caller and
subprogram through the CALL statement.

subroutine—A part of a 4052A BASIC program that
is called with a GOSUB statement and is terminated
with a RETURN statement. Subroutines, in contrast
to subprograms, share all their variables with the
context they are in. In addition, the GOSUB
statement cannot pass parameters to the subroutine
like a CALL statement can.

talk address—The primary address of a GPIB device
plus 64. The tatk address is the address used by the
controller to address a device to talk. The address
switches on the instrument set the primary address,
which determines both the listen address and talk
address of the instrument (see talk address and
primary address).

talk-only—A GPIB device that has been manually
configured as a permanent talker. The device does
not need to be addressed by a controller. Atalk-only
device can work together with a listen-only device
without a controller.

talker—A device on the GPIB that has been
addressed to talk by the controller or is set to the
talk-only mode. There can only be one talker in a
system at any time, though there may be any number
of listeners (see listener).

Tektronix Standard Codes and Formats—A
standard published by Tektronix that defines the
content and syntax of device-dependent messages
for Tektronix GPIB instruments. The standard
provides for consistent syntax across all
instruments that conform to the standard.

71

Appendix B
Glossary

72

Index

4050 BASIC extensions, 13
4662, 32

4907, 31

4924, 32

492P, 20, 31

4956, 33

7612D, 2, 14, 52

7912AD, 14

A

absolute address, 8
addresses, 2, 8
addressing sequence, 40
alternate delimiters, 22
ASCI| transfers, 54
asynchronous bus, 39

binary data format, 23
binary data

reading, 25

sending, 24
binary operations, 15, 59
binary transfers, 54, 58
block binary, 23
buffer overhead, 40
byte count, 23, 24

C

cabling, GPIB, 11
checksum, 23, 24
configure routine, 17
connecting instruments, 11

D
data logging, 55

decimal-hexadecimal conversion, 58

default I/0 addresses, 14

device-dependent messages, 4, 18

device numbers, 13

end block binary, 23
EOF interrupts, 27
EOI interrupts, 27

equivalent-time digitizers, 47

error codes, 61
error trapping, 60
event codes, 61

F
FG 5010, 20

G

GPIB ROM pack, 57
graphing data, 36

H

hexadecimal-decimal conversion, 58

IMAGE statement, 50

INPUT statement, 21, 49

interface messages, 3, 25
sending, 58

interface subsets, 8

interrupts, 4, 26, 51

I/0 statements, 14

L

listen-only, 10

message terminators, 11

multiline interface messages, 3, 25

P

packed mode, 58
parallel polling, 61

peripheral device numbers, 13

POLL statement, 17, 28
polis, 62

power up SRQ, 17
primary addresses, 9
PRINT statement, 21, 49

programmable instruments, 7

Q

query commands, 20

R

RBYTE statement, 50
READ statement, 49

real-time clock ROM pack, 36

ROM pack routines, 36
round-off error, 35

S

secondary address, 8, 10
sequential digitizers, 47
set commands, 20

signal averaging, 48

signal processing ROM pack, 36

SIZE interrupts, 27
SRQ interrupts, 27, 52
statement overhead, 40
status byte, 17, 28, 61
structures, program, 15

synchronizing the controller and instruments, 51

system status byte, 28

73

Index

T

talk-only, 10
tape operations, 60
Tektronix Standard Codes and Formats, 10
terminators, message, 11
TIMEOUT interrupts, 27
timing, GPIB, 41
TM 5000, 14
transfer rates

INPUT, 42

PRINT, 41

RBYTE, 43

READ, 43

WBYTE, 43

WRITE, 43

multiline interface messages, 43
trigger delay, 46

U

unaddressing sequence, 40
uniline interface messages, 3, 26
unpacked mode, 58

w

WAIT statement, 30
WBYTE statement, 23, 49
WRITE statement, 49

74

	0001
	0002
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74

