TEKSers

Part No. 061-2564-01
Product Group 16

4114

COMPUTER DISPLAY
TERMINAL

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

First Printing JUN 1981
Revised FEB 1983

Tektronix

COMMITTED TO EXCELLENCE

Copyright © 1981, 1982 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved.
Contents of this pubiication may not be reproduced in any
form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one
or more US. or foreign patents or patent applications.
Information provided on request by Tektronix, Inc., P.O. Box
500, Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in accordance
with the instruction manual, may cause interference to radio
communications. It has been tested and found to comply with
the limits for Class A computing devices pursuant to Subpart J
of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference when operat-
ed in a commercial environment. Operation of this equipment
in a residential area is likely to cause interference in which
case the users at their own expense will be required to take
whatever measures may be required to correct the
interference.

MANUAL REVISION STATUS

PRODUCT: 4114 Computer Display Terminal

This manual supports the following versions of this product: Serial Numbers BO10100 and up.

REV DATE DESCRIPTION
JUN 1981 Original Issue
JUL 1981 Revised: pages 2-2, 3-6, 5-2, 6-6, 6-7, 6-15, 7-2, 7-3, 9-3, 94, C4, C-45, and C46.
OCT 1981 Revised: pages vii through x.
OCT 1981 Added: pages xi and 12-2 through 12-22.
JAN 1982 Revised: page 11-16.
AUG 1982 Revised: pages iii, 4-10, 5-6, 12-12, 12-19, and C-48.
AUG 1982 Added: page 4-11.
OCT 1982

Manual Part No. changed to 061-2564-01. Revised: pages 1-1,4-2,4-3,4-4,5-7,6-2, 6-3,
6-4, 13-1, and C-5.

FER 1983 Revised: pages 2-7 and &-

~l

4114 HOST PROGRAMMER'S REV, FEB 1983

4114 HOST PROGRAMMER'S

CONTENTS

Section 1 INTRODUCTION
About the Manual Package ..., 1-1
L U THISMANUAL .ot e 1-1
Other4114Manualsccoiiiiiiinennnnnninnnns. 1-1
HowtoUse ThisManualt 1-2
Basic Organizationoiiiiiiiiiiii 1-2
Where To Look For Information....................... 1-2
Aboutthe 4114 i e e 1-3
Y- (0 | (= PP 1-3
Aipha, Vector, and Marker Modes 1-3
Segments e 1-3
The DialogArea ... ian., 1-3
TwoKindsof Text i 1-4
Section 2 COMMAND SYNTAX
Syntax Notation oo, 2-1
Syntax Rules ... 2-1
EXaMDIES ..t e e e 2-2
Command SYNtaxc.ovuiiriirii i 2-3
One-Character Commandsccoviiiiiiiinanns 2-3
Two-Character Commandsccvviiinnn.. 2-3
Commands of Three or More Characters 2-3
Defaults for Missing Parameters 2-4
Parameter TYPeSoivveiie e iiii i 2-5
<Int> and <Int+ > Parameters 2-5
Example ... s 2-5
<Int-Array> Parametersooiiia 2-7
<Real> Parametersciiiiiiiiiineennnns 2-7
<Char> Parametersc.cccvviiiiineennnnnenn 2-8
< String> or < Char-Array> Parameters 2-8
<Xy> Parameterscociiiiiiiiiiiiiiian, 2-8
Report Parameter Types e 2-8
Section 3 THE PROGRAMMING TASK
Graphics Program Architecture 3-1
The Applications Programl 3-1
Graphics Subroutine Package 3-2
ReferenCeS i it e 3-2
High-Level Graphics Routines 3-2
ReferenCescociiiiiiii i 3-2
Device DriverRoutines, 3-3
Communications Interface Routines 3-3
Changing the Terminal’s Settings 3-3
Handshakingcooiiiiiiiiiiiiiiiii i, 3-3
Preventing the Input Queue
fromOverflowingc.cociiiiiiiiiiiiiininn 3-4
issuing Commands to the Terminal 3-5
Routines Which !ssue Several Commands............. 3-5
Routines to Issue a Single Command 3-6
Routines to Issue Command Parameters 3-7
SUMMAIY .« ottt ettt eee e 3-7
Parsing Report Messages from the Terminal3-7
AnExample ...l 3-7
Parsing < EOM-Indicator>s 3-8
Signature Characterscooiiiiiiiinns 3-9
@

Section 4 DISPLAY AND KEYBOARD SETTINGS

Controllingthe Displayciiiiii.. 4-1
Controlling Effects of (CR)and (LF) 4-1
Controlling the Keyboard and Defining Macros 4-1
LockingtheKeyboard 4-1
Defining Macros (and Programming Keys) 4-2
< Key-Execute-Character> 4-2
Examples ... 4-3
Programming a Key to Type a Message
totheHost 4-3
Programming a Key to Display a Message
Locallyo 4-3
Programming a Key to Execute a Command
Locallyo 4-4
Displaying Alphatext 4-5
Entering and Leaving Alpha Mode 4-5
Controlling Character Sizec....... 4-6
< Set-Alphatext-Size> Command 4-6
< Set-4014-Alphatext-Size> Command 4-6
ControllingtheMargins 4-7
TheDialogArea ..., 4-7
Introduction 4-7
< Enable-Dialog-Area> Command 4-8
< Set-Dialog-Area-Visibility> Command 4-9
Setting Dialog Area Size and Position 4-9
< Set-Dialog-Area-Writing-Mode> Command 4-9
Using the Optional APLFont 4-10
ControlCharactercooiiiii i 4-10
Section 5 DISPLAYING GRAPHIC INFORMATION
Introduction 5-1
Terminal Space Coordinates 5-1
<Xy> Parameters i, 5-1
Format of < Xy> Coordinate Bytes 5-2
Order and Meaning of the <Xy> Bytes 5-2
<Xy> Syntax Summary 5-4
Considerations When Sending < Xy> Coordinates to
theTerminal i i 5-4
Drawing Linesoiuiiiiiinann.. 5-5
VectorMode i, 5-5
Entering and Leaving VectorMode 5-5
The Graphic Beam Position 5-5
Drawing Lines in VectorMode 5-5
AnExample 5-6
Draws Without Moves: (GS)(BEL) 5-7
<Move> and <Draw> Commands 5-7
Attributesof Lines 5-8
LineStyle ... 5-8
< Set-Line-Style> Command 5-8
< Set-Line-Width> Command 5-8
< Set-4014-Line-Style> Command 5-8
Lineldndex 0o 5-8
Markers 5-10
MarkerModecooiiiiiii 5-10
< Set-Marker-Type> Command 5-10
Entering and Leaving Marker Mode 5-10
Example 5-10
The < Draw-Marker> Command 5-10

iii REV, AUG 1982 4114 HOST PROGRAMMER'S

Section 6

Section 7

4114 HOST PROGRAMMER'S

SEGMENTS
Introduction 6-1
Definitions 8-1
CreatingaSegment, 6-1
Including Other Segments
in a Segment Definition 6-2
Retained and Non-Retained Segments 6-2
Static and Dynamic Attributes 6-2
Static Attributes ... 6-4
PivotPoint 6-4
Primitive Altributes 6-4
Dynamic Segment Attributes 6-5
Position 8-5
Scalingand Rotation 6-8
Examples ... 6-8
Visibility ... i 6-8
WritingMode 6-8
Highlighting i i 6-11
Detectability 6-11
Display Priority 6-11
Special SegmentNumbers 8-12
SegmentZero i 6-12
SegmentMinusOneiiien.. 6-12
SegmentMinus TwWo 6-12
SegmentMinus Three 6-12
Segment Classesc.oiiiiiiiiiiiiiiii 6-13
Introduction 6-13
Procedure for Using Segment Classes 6-13
< Set-Segment-Class> Command 6-13
Using Special Segment Numbers 6-14
< Set-Current-Matching-Class> Command 6-15
Additional Information 6-15
DEFINING GRAPHTEXT CHARACTERS
DisplayingGraphtext7-1
<Graphic-Text> Command 7-1
< Set-Graphtext-Size> Command 7-3
< Set-Graphtext-Rotation> Command 7-4
< Set-Graphtext-Precision> Command 7-4
Predefined GraphtextFonts 7-6
Fonts Provided With Keyboard Options............. 7-6
< Set-Graphtext-Font> Command 7-7
Defining Your Own Graphtext Characters7-8
General Procedureccviiiiinnnnn.. 7-8
< Delete-Graphtext-Character> Command 7-8
< Set-Graphtext-Font-Grid> Command 7-9
< Set-Pivot-Point> Command 7-10

< Begin-Graphtext-Character> Command 7-10
< End-Graphtext-Character> Command

Section 8 GRAPHIC INPUT

Introduction ... 8-1
Enabling for Graphiclnput 8-1
<Enable-GIN> Command 8-1
Device-FunctionCode 8-1
Numberof GINEvents 8-2
Examples i 8-2
GINDevices ...t 8-2
Thumbwheels, 8-2
Tablet ... 8-2
Plotter ... i 8-2
GINFunctions i i 8-2
Locator Function, 8-2
Pick Functiono i i 8-3
Stroke FUNCHION 0ot 8-3
< Disable-GIN> Command 8-3
Other GINCommandsout 8-3
Locator Function 8-4
Preparing for Graphic Input 8-4
Operator and Host Interaction 8-4
Pick Function 8-8
Introduction 8-8
Preparing Segments for Picking 8-8
Operator and Host Interaction 8-10
Stroke Function 8-10
Introduction 8-10
Stroke Filtering 8-12
INKING .. 8-12
Stroke ReportFormat 8-12
A Typical Stroke Report Sequence 8-12
Signature Characters 8-12
KeyCharacters ..., 8-14
< Xy-Report>s e 8-14
Fitting More Than One Stroke Report on
Eachline i 8-14
Using Several GIN Devices AtOnce 8-15
Signature Charactersoo... 8-15
CUISOIS it e 8-15
Section 9 REQUESTING REPORTS FROM THE TERMINAL
Controlling the Formatof Reports 9-1
Report Syntax ... 9-1
<Eom-Indicator>s oo 9-1
< Set-Report-Eom-Frequency> Command 9-2
< Set-Report-Max-Line-Length> Command 9-2
Examples 9-3
< Set-Report-Sig-Chars> Command 9-5
Non-GinReportsc.coiiiiiiiii i, 9-5
< Report-Device-Status> Command 9-5
< Report-Errors> Command 9-5
< Report-Port-Status> Command 9-6
< Report-Segment-Status> Commaand 9-6
< Report-Terminal-Settings> Command 9-6
Example: Querying the Terminal for its Baud
RateSettingsl 9-6
Special InquiryCodes 9-7
< Report-4010-Status> Commands8-7

@ 4114 HOST PROGRAMMER'S

Section 10

Section 11

114 HOST PROGRAMMER'S

COMMUNICATIONS SETTINGS
Introduction
The Most Important Communications Settings............
DataRatesCommands
< Set-Baud-Rates> Command
< Set-Transmit-Rate-Limit> Command
Examples
<Set-Echo> Commandcccoeet...
< Set-Parity> Command
< Set-Stop-Bits> Command
Less Important Communications Settings
< Set-Break-Time> Command
Coping With (DEL) Filler Characters
TheProblem it
TheRemedy ... i
Full Duplex Data Communications
The Communications Input Queue and “Handshaking”
Protocols ..., B
< Set-Queue-Size> Command
The Need for Handshakingccouv....
< Set-Flagging-Mode> Command
PromptMode ... i
Prompt Mode Operation
< Prompt-Mode> Command
< Set-Prompt-String> Command
Lines of Text and the TransmitDelay
The TransmitBuffer

HALF DUPLEX AND BLOCK MODE
Full and Half Duplex Data Communications
< Set-Dupiex-Mode> Command
FullDuplexModeot
Haif Dupiex Data Communications
Half DuplexNormal
Half Duplex With Automatic Requestto Send
Half Duplex With Supervisor.......................
BlockMode i

Overall Syntaxccoii i iiiiienennnnn.
Blocks Sent From the Host to the Terminal
Blocks Sent From the Terminal tothe Host
Entering and LeavingBlock Mode
EnteringBlockMode
ExitingBlockMode oo,
Maximum Linelength,
PackingdataintoaBlock
Packed and UnpackedData
Maximum Block Lengthc..o.....
< EOM-Char>s and <EOM-Indicator>s
Non-Transmittable Characters
Packing Algorithmo..l.
AnExample i

D

—

—

—_

—_

—_

- b

-

—

—

—t —
-t b wh bk b eh ek b wd b b b eh —h ed b wd A
1

—

GO bhbhbhbhboolill

-

vi

vii

Section 11 (cont)

Section 12

The Block ControlBytescovents. 11-9
<Control-Byte-1> 11-9
<Control-Byte-2> 11-10
< Control-Byte-3> and < Control-Byte-4> 11-10

RetransmittingBad Blocks 11-11
ACK Blocks and NAKBlocks 11-11
Normal, Error-Free Transmission 11-12
Effect of Occasional Errors 11-14
Effect of MultipleErrors 11-14
< Set-Block-Timeout> Command 11-16

Programming Considerations 11-16

PERIPHERAL DATA TRANSFERS

Introduction. ... 12-1
Overviewof Commands......................oviviinin, 12-1
CommandFormat....................coiiiiiiinan. 12-1
Device Specifiers ...t 12-2
FileNames i, 12-3
Data-TransferCommandscovvinn... 12-3
Formatting and Parameter-Setting Commands......... 12-4
Commands to Report Peripheral Status 12-4
Usingthe DiskDrives.............c.ciiiiiiinn... 12-5
< Format-Volume> Command........................ 12-5
< Copy> from Hostto DiskFile....................... 12-5
< EOF-String> s and the < Set-EOF-String>
Commandscovviiiiiiiii e e 12-6
AnExample.............. o 12-6
< Copy> from Disk FiletoHost....................... 12-7
< Directory> Command.........................cve. 12-7
< Directory> toaPrinter 12-9
< Directory> toaPlotter 12-9
< Directory> to the Host Computer 12-9
< Rename-File> Command 12-10
<Delete-File> Command 12-10
<load> Command.................................. 12-10
<Save> Command.......................c .. 12-11
Initializing the RS-232 Peripheral Ports 12-12
<Port-Assign>Command 12-12
Other Commands For Initializing Peripheral Ports....... 12-13
< Set-Port-Baud-Rate> Command................. 12-13
< Set-Port-EOF-String> Command 12-13
< Set-Port-EOL-String> Command 12-14
< Set-Port-Flagging-Mode> Command............. 12-14
< Set-Port-Parity> and < Set-Port-Stop-Bits>
ComMMAaNdSot e e 12-15
UsingaPrinter ...t 12-16
Initializingthe Port................l 12-16
<Copy>toaPrinter...................cociiiiinn.. 12-17
<Directory> toaPrinter...........................L. 12-17
<Spool>toaPrinter.................... ... 12-17

REV, OCT 1981 4114 HOST PROGRAMMER'S

Section 12 (cont)

Section 13

Appendix A
Appendix B

Appendix C

4114 HOST PROGRAMMER'S

UsingaPlotter ... 12-1
Connecting the Plotter to the Terminal 12-18
InitializingthePort......... il 12-18
<Spool>tocaPlotterl 12-1
< Save>ing SegmentstoaPlotter.................... 12-20

Details of Data Sent When < Save>inga
Segment............. i 12-20
Using the < Spool> Command..................... 12-20
<Plot>Command...........ccoeiiiii i 12-20
<Port-Copy> Command............................. 12-21
Using Other RS-232Devices............covviiinea, 12-22
USING 4010-SERIES GRAPHICS PROGRAMS
‘Running Existing 4010 Series Programs 13-1

Emulating 4010 Series Terminals With 4953/4954

Graphics Tabletso 13-1

ASCII CODE CHARTS

<INT> PARAMETERS

EXAMPLES OF CODE
A Pascal Graphic Input Program C-2
FORTRAN Block Mode Communications Drivers.......... C-16

REV, OCT 1981

viii

ILLUSTRATIONS

Figure Description Page
1-1 The 4114 Computer Display Terminal Frontis
1-2 Samples of Alphatext, 1-4
1-3 Samplesof Graphtext 1-5
2-1 Example of <Int> and <Int+ > Packing Scheme 2-6
3-1 Graphics Program Architecture 3-1
3-2 A HandshakingRoutine i 3-4
3-3 An Example With Several Commands 3-5
3-4 A Device Driver Routine to Issue Several Commands 3-6
3-5 A Device Driver Routine Which Issues One Command 3-6
3-6 Example of a Parsing Routine 3-8
4-1 Standard and APL CharacterFonts 4-10
5-1 Formatof <Xy> Bytesciiiiiiiiiininnn.... 5-2
5-2 A Sample Figure Requiring “Moves” and “Draws” 5-6
5-3 A “Draw” Without a Preceding “Move” 5-7
5-4 Line Styles Availableinthe 4114 5-9
5-5 DisplayingMarkersccooiiiiiiiiiiii 5-11
6-1 Segment One, A Square With Diagonals 6-1
6-2 Including One Segment in the Definition of Another 6-3
6-3 Effect of < Set-Segment-Position> Command 6-6
6-4 Positioning a Segment at the Edge of the Screen 6-7
6-5 Examples of < Set-Segment-Image-Transform>

Command i e 6-9
6-6 More Examples of < Set-Segment-Image-Transform> 6-10
7-1 Effect of < Graphic-Text> Command 7-2
7-2 Effect of < Set-Graphtext-Size> Command 7-3
7-3 Effect of < Set-Graphtext-Rotation> Command 7-4
7-4 Effect of < Set-Graphtext-Preceision> Command 7-5
7-5 Fonts Provided With Keyboard Options 7-6
7-6 Effect of < Set-Graphtext-Font> Command 7-7
7-7 Font Grids for User-Defined Characters 7-9
7-8 Displaying User-Defined Graphtext Characters 7-11
8-1 Typical < GIN-Report-Sequence> for the Locator

Function ...t e 8-5
8-2 Graphic Input Example: Thumbwheels-Locator Device-

FunctionCodeo 8-7
8-3 Preparing Segments for Picking 8-9
8-4 Typical < GIN-Report-Sequence> for the Pick Function8-11
8-5 Typical < GIN-Report-Sequence>> for the Stroke Function ..8-13
8-6 Fitting Multiple Stroke Reportson Each Line 8-14
9-1 Controlling the Format of a < GIN-Report-Sequence> 9-3
9-2 Controlling the Format of < Errors-Report> Messages 9-4
11-1 Error-Free Transmission from Host to Terminal 11-13
11-2 Effect of Occasional Errors in Block Mode Transmission11-14
11-3 Effect of Multiple Errors in Block Mode Transmission 11-15
12-1 <Directory> Command Report Format 12-8

REV, OCT 1981 4114 HOST PROGRAMMER'S

Section 1

INTRODUCTION

ABOUT THE MANUAL PACKAGE

THIS MANUAL

This 4114 Host Programmer's Manual is for the
programmer who is writing a package of host computer
subroutines to communicate with the TEKTRONIX
4114 Computer Display Terminal (Figure 1-1). This
manual describes the 4114 commands and tells how to
issue them by sending sequences of ASCII characters
o the terminal.

NOTE

This manual is intended to be used together with
the 4110 Series Command Reference Manual.
That manual has, in alphabetical order, descrip-
tions of all the 4114 commands, parameter types,
and other syntactic constructs. There you will find
the exact syntax of each command, a description
of the command'’s function, a list of error codes
for that command, and references to other, relat-
ed commands.

For operator information (such as the use of SETUP
mode), see the 4114 Operator’'s Manual.

Any reference in this manual to the 4114 applies equally to
the 4114A, 4114A30, 4116A, and 4116A30. The 4114Ais a
newer version of the 4114, The 4116A responds to the same
commands as the 4114A, but uses a larger display. The
4114A30 and 4116A30 are desk configurations of the 4114A
and 4116A.

4114 HOST PROGRAMMER'S

OTHER 4114 MANUALS
The following related manuals may prove useful:

® 4114 Computer Display Terminal Operator’s
Manual. This manual is written for the terminal
operator. Here are descriptions of all the keys and
of the “SETUP mode” commands by which the
operator can change terminal settings.

® 4110 Series Command Reference Manual. The
Command Reference Manuai contains definitive
descriptions of all commands, parameter types,
report messages, and other syntactic constructs.
Once you have become acquainted with the termi-
nal, you will use this manual more than any other.

o Manuals for the TEKTRONIX 4010C01 PLOT 10
Interactive Graphics Library. The Interactive
Graphics Library (IGL) is a package of FORTRAN
subroutines for use in writing computer graphics
applications programs. If IGL is available at your
computer installation, the easiest way to control the
terminal will be through calls to IGL subroutines.

Service manuals are also available; however, these are
probabiy not of use to the host computer programmer.

REV, OCT 19882 11

INTRODUCTION

HOW TO USE THIS MANUAL

BASIC ORGANIZATION

The sections of this manual are arranged in approxi-
mate order of increasing complexity. That is, later

sections describe more complex subject matter and
may employ concepts introduced in earlier sections.

This manual is intended to be read in conjunction with
the 4110 Series Command Reference Manual. Be sure
to have that manual close at hand; you will need it for
descriptions of the exact syntax of the different
commands.

Read Section 2 of this manual before reading later
sections, and before referring to the 4110 Series
Command Reference Manual. Section 2 describes the
syntax notation used in the two manuals and describes
the general format of 4114 commands.

Section 3 provides an overview of the graphics pro-
gramming task. If you are already well acquainted with
programming techniques, then you may wish to skip
this section. Terms such as device drivers and commu-
nications interface routines are defined, and examples
of how to write host device driver subprograms are
given.

The remaining sections describe different aspects of
the terminal, and how to perform common tasks:
displaying alphanumeric text, displaying graphic
information, using the terminal’s local storage of pic-
ture segments, etc. If you wish, you may skip to the
section describing the task before you. Sooner or later,
however, you should read through all these sections to
become acquainted with the terminal’s most important
features.

1-2

WHERE TO LOOK FOR INFORMATION

If you are writing a subroutine to issue a single
command to the terminal, see the description of that
command in the 4110 Series Command Reference
Manual. There you will find the command’s exact
syntax, a description of its function, a list of possible
errors which the terminal may detect while executing
that command, and so on.

If you a writing a program or subroutine to perform
some higher-level function, see the description of that
function in this manual. The examples in those sec-
tions should help you decide which commands to send
to the terminal. You will probably then call subroutines
to issue those commands.

4114 HOST PROGRAMMER’'S

INTRODUCTION

ABOUT THE 4114

FEATURES

The 4114 Computer Display Terminal permits the
terminal’s operator to communicate with a host compu-
ter. Besides sending and receiving characters of text,
the terminal can:

® Dispiay pictures sent from the computer or stored
locally on its optional disk drives.

©® Store and manipulate picture segments locally
(within itself). This relieves the host computer of the
burden of manipulating those segments. It also
makes more efficient use of the data communica-
tions line between the terminal and the host
computer.

® Cope with imperfect data communications lines by
means of a optional block mode communications
protocol.

¢ Create (on command from the host computer) alter-
nate character fonts, and use these fonts to display
alphanumeric information.

® Define ‘macros‘ which can be expanded on
command. Macros numbered from 0 to 143 can also
be invoked by pressing keyboard keys; thus the
macro facility allows the operator or the host
computer to program alternate meanings into most
of the terminal’s keys.

@ Store picture segments and macro definitions on its
optional disk drives, and retrieve them later to use
again.

ALPHA, VECTOR, AND MARKER MODES

The 4114 has three main modes of operation: alpha
mode, vector mode, and marker mode. There are also
several other modes which it enters temporarily while
executing certain commands.

® |n alpha mode, the 4114 displays characters re-
ceived from the host. This is the mode used when
logging in on a host computer or when running non-
graphics programs.

® |n vector mode, the 4114 interprets alphanumeric
characters coming from the host as xy coordinates
for ‘moves’ and ‘draws' of vectors (straight line
segments) on the screen.

® |n marker mode, the 4114 interprets alphanumeric
characters coming from the host as xy coordinates
at which to display markers — small symbols.

4114 HOST PROGRAMMER'S

SEGMENTS

The 4114 can manipulate segments (short for ‘picture
segments‘) and use them to build complex pictures. For
instance, segments holding symbols for transistors,
resistors, capacitors, etc., might be used to compose an
electrical schematic diagram.

The 4114 can store and manipulate these segments
locally. This relieves the host computer of some
computations. More importantly, the 4114’s local seg-
ment-handling capability drastically reduces the num-
ber of characters which must be sent over the data
communications line. (The communications line is the
main ‘bottleneck’ inhibiting the rapid display of
computer graphics. Graphic coordinates can be trans-
mitted over typical communications lines only at rates
far siower than those coordinates can be computed by
the host computer, or displayed by the 4114 terminal.)

THE DIALOG AREA

The operator or the computer can create a dialog area:
a part of the screen used for conversational dialogs
between the operator and (a) the host computer or (b)
the terminal. Text dispiayed in the dialog area does not
interfere with pictures which the terminal may also be
displaying.

1-3

INTRODUCTION

TWO KINDS OF TEXT

The 4114 can display two kinds of text: alphatext and
graphtext. Alphatext is used primarily for dialogs
between the operator and the computer. Graphtext is
used only in graphic displays.

Alphatext is the ordinary text displayed by the 4114
while it is in alpha mode. Alphatext can be displayed in
a wide variety of character sizes. If the optional APL
keyboard is installed, then alphatext can also be
displayed in a alternate font for use with the APL
programming language. Figure 1-2 shows samples of
alphatext.

Graphtext is text occurring within a graphic-text com-
mand. (The graphic-text command is described in

Section 5, and in the 4110 Series Command Reference

Manual) Graphtext is used for fancy or high-quality
lettering, especially within pictures or graphs. Graphic
text may be displayed on the screen, or it may be
included within the definition of a picture segment.
However, it may not be displayed in the dialog area.

You can display graphtext in either of two degrees of
‘precision’ (text quality): stroke precision or string
precision. Stroke precision lets you rotate the text; it
also lets you define your own character fonts. (Stroke
precision is the default precision for graphtext.) Graph-
text displayed with only ‘string precision® appears the
same as alphatext. String-precision graphtext cannot
be rotated, nor can you define your own string-
precision text fonts.

Figure 1-3 shows examples of graphtext.

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghi jklmnopgrstuvwxyz

12345678390

3675-40

Figure 1-2. Samples of Aiphatext.

4114 HOST PROGRAMMER'S

INTRODUCTION

This is pre-defined graphtext font 4.

3675-41

Figure 1-3. Samples of Graphtext.

4114 HOST PROGRAMMER'S @ 15

Table

Ah##?hhhl\)l\)
O~NOORWN—=2N—

4114 HOST PROGRAMMER'S

TABLES

Description Page
Examples of <Int> Parameters 2-7
Host-to-Terminal and Terminal-to-Host Parameter Types ... 2-8
Controlling the Effects of (CR) and (LF) Characters 4-1
Locking and Unlocking the Keyboard 4-1
Displaying Alphatext using Fortran 4-5
Displaying Alphatext UsingPascal 4-5
Useful Alphatext Settingsc.oooiiiiiiaLL. 4-6
Using the < Set-4014-Alphatext-Size> Command 4-6
Using the < Set-Margins> Command 4-7
Features Affected By the < Enable-Dialog-Area>
Commandccoiiiiiiii 4-8
Commands to Draw a Square With Diagonals 5-6
Graphic Primitives and Primitive Attributes 6-4
Graphtext Fonts Supplied With Optional Keyboards 7-7
Device-Function ID Code Numbers 8-1
Setting the Terminal's DataRates 10-2
Setting the Terminal’'s LocalEcho 10-3
Packed Psuedo-Byte Characteristics 11-8
Meanings of Low-Order Biis in < Controi-Byte-i>.......... 11-10
Device Specifiers ...ttt e 12-2
Data-Transfer Commandsciiiii... 12-3
Formatting and Parameter-Setting Commands 12-4
Commands to Report Peripheral Status 12-4
4641 Interface Card Switch Settings 12-16
4662 Plotter Settings ...ttt e 12-18
4663 Plotter Settingso i 12-19
ASCII (150-7-US) Code Chart c.viiiiinnnn... A-1
Characters Used in <Char> Parameters...................... A-2
Characters Used in <Int> and <Int> Parameters A-3
Characters Used in <Int-Report> Parameters A-4
Characters Used in <XY> Parameters A-5
Characters Used in <XY-Report> Parameters A-6
Representing Numbers as < INT> Parameters B-1

REV, OCT 1981

Figure 1-1. 4114 Computer Display Terminal.

REV,OCT 1981 4114 HOST PROGRAMMER'S

Section 2

COMMAND SYNTAX

SYNTAX NOTATION

All commands to the 4114 terminal are uitimateiy sent
as a sequence of individual ASCIl characters. However,
io describe each operation in terms of those individual
characters would be both tedious and confusing.
Therefore, a number of notational conventions are used
throughout this manual.)

SYNTAX RULES

In this manual, command syntax is represented ac-
cording to the following rules.

Rule One. Individual ASCII characters sent to or from
the terminal are enclosed in parentheses. {in the jargon
of compilers and parsers, these are the “terminal
symbols” of the 4114 command language.)

Examples:

(A) The ASCIl uppercase “A” character.

(a) The lowercase “a” character.

(ESC) “Escape” control character.

(DEL) “Del:ate” character (also called “rub
out”),

(us) “Unit separator” control character.

(s0) “Shift out” control character.

The parentheses characters are an exception; to
decrease confusion, they are represented as follows:

()
(W)

“Left parenthesis” character.
“Right parenthesis” character.

4114 HOST PROGRAMMER'S @

Ruie Two. Expressions enclosed in “angie brackets”
represent sequences of ASCIl characters which might
be sent to or from the 4114. {in the jargon of compilers
and parsers, these are the “non-terminal symbols” of
the “4114 command language.”)

NOTE

You can find the exact syntax of any such “angle
bracket” expression by referring to the 4110
Series Command Reference Manual.

For example, the following expressions, since they are
enclosed in “angle brackets,” represent syntactic
constructs defined in the 4110 Series Command
Reference Manual:

< set-baud- A command that sets the transmit and

rates> receive baud rates (data rates) for
communicating with the host compu-
ter.

<int> An integer number as encoded for
transmission to the terminal.

< Xy> A pair of x- and y-coordinates as

encoded for transmission to the termi-
nal as a part of a command.

Rule Three. To represent specific examples of com-
mands or other syntactic constructs, specific values
are included between the angle brackets. For example:

< set-baud- A command to set receiving and trans-

rates: 1200, mitting data rates to 1200 baud (1200

1200> bits/second).

<int: —35> The number —35, as encoded for
transmission to the terminal.

< Xy: The coordinate pair x=0, y= 100, as

(0,100)> encoded for transmission to the termi-

nal.

COMMAND SYNTAX

Rule Four. In defining the syntax of a command, the
equals sign (=) means “has the following syntax.” For
example:

< set-baud-rates> = (ESC)(N) (R)< int+ > <int+ >

Rule Five. In syntax definitions, the word “or’ means
“or alternatively.” For example:

< set-alphatext-font> = (ESC)(SI)
or (ESC)(S0)

Rule Six. In syntax definitions, square brackets delimit
items which may be omitted. For example:

<int>=[<Hil>][<Hil>]< Lol>

This could be expressed in words as, “An <int>
consists of zero, one, or two < Hil> s, followed by a
<Lol>."

Rule Seven. Syntactic constructs which may be re-
peated any number of times are followed by three dots.
For example:

< fill-pattern-definition> = < begin-fill-pattern>
[< pixel-def>..]
< end-fill-pattern>

This could be expressed in words as, “A < fill-pattern-
definition> consists of a < begin-fill-pattern> com-
mand, followed by zero or more < pixel-def> s, followed
by an < end-fill-pattern> command.”

EXAMPLES

Since the < begin-segment> command is represented
with “angle brackets,” it has a syntax definition in the
4110 Series Command Reference Manual. In that
manual, the <begin-segment> syntax is given as
follows:

< begin-segment> = (ESC)(S)(O)< int>

This means that the < begin-segment> command is
sent to the terminal as three ASCIi characters —
“escape,” “uppercase S,” and “uppercase O,” followed
by an <int> parameter.

Since the <int> parameter is represented with angle
brackets, it too has a syntax definition in the Command
Reference Manual.

2-2 REV, JUL 1881

A particular example of the < begin-segment>
command is the < begin-segment: 1> command. That
can be represented as follows:

< begin-segment: 1>=(ESC)(S)(O)<int: 1>

Referring to the Command Reference Manual's discus-
sion of the <int> parameter type, notice that <int: 1>
is the single ASCII character for the digit 1:

<int: 1>=(1)

Thus, you can expand the < begin-segment: 1> com-
mand as follows:

< begin-segment: 1>= (ESC)(S)(O)<int: 1>
= (ESC)(8)10)({1)

Again, consider the < set-baud-rates: 600, 600> com-
mand. The 4110 Series Command Reference Manual
gives the syntax for < set-baud-rates> as follows:

< set-baud-rates> = (ESC)(N)(R) < int+ > < int+ >

Referring to the discussion of the Command Reference
Manual on <int+ >, you can expand the < set-baud-
rates: 600, 600> command as follows:

< set-baud-rates: 600, 600>
= (ESC)(N)(R) <int+: 600> <int+: 600>
= (ESC)(N)(R) (e)(8) (e)(8)

Thus, a < set-baud-rates: 600, 600> command is sent
to the terminal as the following sequence of ASCII
characters:

(ESC)(N)(R)(e)(8)(e)(8)

The same notation may be used to express the
meaning of parameters, especially in the more compli-
cated syntax definitions. For instance, the meaning of
the < set-baud-rate> command’s two parameters can
be expressed as follows:

< set-baud-rates> = (ESC)(N)(R)
<int+: transmit-rate>
<int+: receive-rate>

Here, the italicized expressions transmit-rate and re-

ceive-rate tell the meanings of the <int+ >
parameters,

4114 HOST PROGRAMMER'S

COMMAND SYNTAX

COMMAND SYNTAX

All commands to the 4114 are sent from the host
computer as a sequence of ASCIl characters. A few of
these commands consist of a single character; some
are comprised of two characters; however, most
consist of three or more characters.

ONE-CHARACTER COMMANDS

The foliowing commands consist of oniy one ASCIi
character. Like all commands, they are described fully
in the Command Reference Manualv.

< enter-alpha-mode> = (US)
< enter-vector-mode> = (GS)
< enter-marker-mode> = (FS)

TWO-CHARACTER COMMANDS

Most commands consist of escape sequences —
sequences of ASCII characters beginning with the
(ESC) character. A few of these commands consist of
only two characters:

<enable-4010-GIN>= (ESC)(SUB)

< enter-bypass-mode> = (ESC)(CAN)

< page> = (ESC)(FF)

< report-4010-status> = (ESC)(ENQ)

< set-alphatext-font> = (ESC)< (SI) or (SO)>
< set-4014-line-style>= (ESC)< char>

< 4010-hard-copy> = (ESC)(ETB)

COMMANDS OF THREE OR MORE
CHARACTERS

Most of the 4114 commands are escape sequences of
three or more characters. These commands take the
following format:

1. The first character is (ESC). This serves as a “flag”
to tell the 4114 that the following characters
comprise a command for it.

2. The next two characters comprise an op code to
identify the command.

4114 HOST PROGRAMMER'S

After the op code there may be one or more
parameters of the following types:

<int> or A sequence of characters repre-
<int+ > senting an integer number.

<int- An array of <int> parameters, in-
array> cluding a “count” for the array sent

as an <int> parameter at the be-
ginning. (See the discussion of

< array> parameter types in the
4110 Series Command Reference
Manual.)

<real> A sequence of two <int> parame-
ters which together represent a
singie reai number:

<real>=<int><int>

(Exactly how these two <int>s
represent a real number is de-
scribed in the 4110 Series Com-
mand Reference Manual in the
discussion of the <real> parame-
ter type.)

< Xy> A sequence of characters repre-
senting x- and y-coordinates for
some location on the 4114’s
screen.

< char> A single ASCII character in the
range from (SP) to (~): ASCII deci-

ma! equivalents from 32 {0 126.

< char- An array of <char> parameters,
array> or preceded by a count, expressed as
< string> an <int> parameter.

When the terminal is receiving the parameter for a
command, it ignores any characters (a) which are
not valid characters for the parameter being re-
ceived, and (b) which ars not the “command
terminator”’ characters: (ESC), (US), (GS), and (FS).
For instance, most ASCII control characters are
ignored; thus (CR) characters or other interline
characters can be inserted within the command'’s
parameters with no ill effect. (This is useful if the
parameter is a very long < string> or <int-array>)

COMMAND SYNTAX

4. Finally, the command is “terminated” — it comes to

an end. A command can be terminated in two ways:

The command ends when all its parameters have
been sent to the terminal.

A command may be terminated early (before all
its parameters have been sent) by sending any of
the following characters:

(ESC). A command ends with the (ESC) character
that begins another command.

(US), (GS), and (FS). A command ends whenever
the terminal receives a (US), (GS), or (FS) charac-
ter. These characters have their usual effects as
< enter-alpha-mode>, < enter-vector-mode>,
and < enter-marker-mode> commands.

Defaults for Missing Parameters

When a command is terminated early, the 4114
assigns default values to the missing parameters.

2-4

These defaults are usually:
® O for <int> parameters
® 0.0 for <real> parameters
® (0,0) for <xy> parameters
e (NUL) for < char> parameters
® O for <code> parameters
® an array of O elements for < array> parameters
Assigning (NUL) as the defauit for missing < char>
parameters is an exception to the rule that <char>
parameters must represent characters in the range
from (SP) to (~).

NOTE

Some commands are exceptions. When those
commands are terminated early, the 4114 as-
signs other defaults than those just listed. The
only reliable way to determine the defaults used
by a particular command is to consult the de-
scription of that command in the 4110 Series
Command Reference Manual.

4114 HOST PROGRAMMER'S

COMMAND SYNTAX

PARAMETER TYPES

Parameters for escape-sequence commands may be
variables of several different data types. Each such
data type has its own syntax and coding scheme. The
parameter types are:

<int> and
<int+ >

Integer numbers are sent to the termi-
nal as <int> or <int+ > parameters.
These two parameter types have the
same syntax and the same coding
scheme; they differ only in the range
of valid values. <Int> parameters
represent integers in the range from
—32768 to + 32767. < int+ > param-
eters represent integers from 0 to

+ 65535.

<int— - An array of integers consists of an

array> and <int> {or <int+ >) teiling how many

<int+ items are in the array, followed by

—array> <int>s for each of the items in the
array.

<real> < Real> parameters represent num-
bers which can assume fractional val-
ues. Each <real> parameter consists
of two < int> parameters. The first
<int> represents a number, while the
second < int> represents a power of
two by which that number is to be
multiplied.

< Real> parameters can.assume val-
ues from —32767.0 to + 32767.0.

< Char> parameters are individual
ASCII characters in the range from
(SP) to (~). (They have decimal equiv-
alents in the range from 32 to 126.)
They represent the displayable ASCII
characters.

< char>

4114 HOST PROGRAMMER'S

< string> or < String>s, or <char-array>s, con-

< char- sist of an <int> (or <int+ >) telling

array> how many characters are in the string,
followed by < char>s for each of
those characters.

< Xy> An (x,y) coordinate pair as encoded for

transmission to the terminal. The

< xy> parameter syntax is described
in Section 5, and in the 4110 Series
Command Reference Manual.

<INT> AND <INT+> PARAMETERS

The <int> and <int+ > parameter types have the
same packing scheme and the same syntax. These
parameter types differ only in the range of valid vaiues:
—32768 to + 32767 for <int> parameters, and O to
65535 for <int+ > parameters. The <int> and

<int+ > syntax is as follows:

<int>=[<Hil>] [<Hil>] < Lol>
<int+ >=[<Hil>] [< Hil>] < Lol>

where

<Hil>= an ASCII character in the range from (@) to
(DEL) — except that the character sequence
(ESC)(?) may be used instead of (DEL).

< Lol>= an ASCII character in the range from (SP) to
(?).

Example

Figure 2-1 shows the packing scheme, using the
number + 31416 as an example.

25

COMMAND SYNTAX

The number to be sent is represented as a 16-bit signed binary numeral:
+31416,,= +0111101010111000,
That binary numeral is arranged in groups of 6, 6, and 4 bits:

+,011110,101011,1000,

If the most-significant six bits are all zero, then the first <Hil> character may be omitted. In this case, they
are not all zero, so they are used (together with a “tag” bit of 1) to form the first <Hil> character:

first <Hil> =

+

101011 1000

If the most-significant twelve bits are all zero, then BOTH < Hil> characters may be omitted. That is not the
case in this example. The second < Hil> character is formed from the next least-significant six bits:

+ 01111010101 1]1000

second < Hil> = = (k)

The < Lol> character’s least-significant bits are the four least-significant bits of the binary numeral. The
fifth least-significant bit is 1 if the number is positive, and zero if it is negative. The two high-order bits (“tag
bits") are “01” so as to make the < Lol> character fall in the range from (SP) to (?):

011110101011

Y ¥
<|.ol>=u)1{1|1ooo|=(s)

The characters to be sent to the terminal, then, are () (k) (8):

<int : 31416> = (") (K)(8)

3675-2

Figure 2-1. Example of <Int> and < Int+> Packing Scheme.

®

4114 HOST PROGRAMMER'S

Table 2-1 lists several examples of <int> parameters.

(For a more complete list, see Appendix B in the 4110
Series Command Reference Manual.)

Table 2-1
EXAMPLES OF <INT> PARAMETERS

Number <Int> Parameter

0 (0)

1 (1)

2 (2

3 (3)

4 (4)

5 (5)

6 (6)

7 (7)

8 (8)

9 (9)

10 ()

11 8

15 M

16 (A1)

17 (A1)

-1 0]

-2)

-15 0

—16 (A)(SP)

-17 (A

1023 (DEL)(?) or (ESCH{(P)(?)

1024 (AN (@)(0)

1025 (A (@)(1)

—1024 (A(@)(SP)

—1025 (LY{@I()]
4114 HOST PROGRAMMER'S

COMMAND SYNTAX

<INT-ARRAY> PARAMETERS

Some commands take < int-array> (or

<int+ —array>) parameters. These consist of se-
quences of <int> (<int+ >) parameters. The first
<int> or <int+ > tells how many items are in the
array. Subsequent <int> s represent the individual
array items.

For instance the array of integers (1,5, —1, 16) would
be sent to the terminal as follows:

<int-array: (1,5,—1,16)
= <int: 4> {the count of 4}
<int: 1> <int: 5> <int: —1> <int: 16>

= (4) (1) (5) (1) (A)(0)

For more information on <int> and <int+ > parame-
ters, see the description in the 4110 Series Command
Reference Manual.

<REAL> PARAMETERS

A “real” number is a variable which may assume non-
integer (that is, fractional) values. Real numbers be-
tween —32767.0 and + 32767.0 are sent to the
terminal as <real> parameters. These consist of a pair
of <int>s. The first <int> represents a number; the
second < int> represents the power of two by which
that number is to be multiplied.

For instance, the number 3.25 may be represented as
13 multipled by two raised to the power —2. Thus,

<real: 3.25>=<int: 13> <int: —2>
=(=) ()

For more information about < real> parameters, see
the description in the 4110 Series Command
Reference Manual. Included there is an example of a
routine which sends <real> parameters to the termi-
nal.

REV, FEB 1963 27

<CHAR> PARAMETERS

The <char> parameter type represents displayable
ASCII characters. Each < char> parameter is a single
ASCII character in the range from (SP) to (~). (The
decimal equivalent of a < char> character is in the
range from 32 to 126)

<STRING> OR < CHAR-ARRAY>
PARAMETERS

Strings, or arrays of displayable ASCI| characters, are
sent to the terminal as < char-array> parameters.
Each such parameter consists of an <int> (or

< int+ >) telling how many items are in the array,
followed by one < char> for each array item. For more
information, see the description in the 4110 Series
Command Reference Manual.

<XY> PARAMETERS

The <xy> parameter type represents spatial coordi-
nates. < Xy> parameters are sent as a group of one to
five ASCII characters. (The packing scheme used is the
same as that used for eartier TEKTRONIX terminals.)
The x- and y-coordinates in an <xy> parameter can
range from 0 to 4095. For more details, see Section 5
and the 4110 Series Command Reference Manual.

REPORT PARAMETER TYPES

The parameter types described so far are for sending
command parameters to the terminal. When the termi-
nal sends messages back to the host computer, it
packs the information in a different format. Thus, for
each host-to-terminal parameter type there is a corre-
sponding terminal-to-host parameter type. Table 2-2
lists the types:

2-8

Table 2-2

HOST-TO-TERMINAL AND
TERMINAL-TO-HOST PARAMETER TYPES

Data to Host-To-Terminal Terminal-To-Host
Be Sent Parameter Type Parameter Type
Integer <int> <int-report>
(—32768 to

+ 32767)

Integer (Oto | <int+ > < int-report>
65535) -

Array of <int-array> or <int-array-report>
Integers <int+ —array>

Real <real> < real-report>
(—32767.0

to

+ 32767.0)

Displayable <char> < char-report>
Character

String of <string> or <char-| < string-report>
Characters array>

Spatial < Xy> < xy-report>
Coordinates

For more information on <int-report> s, < int-array-
report>s, < real-report> s, < char-report> s, < string-
report>s, and < xy-report> s, see the descriptions in
the 4110 Series Command Reference Manual.

4114 HOST PROGRAMMER'S

Section 3

THE PROGRAMMING TASK

This section provides an overview of the graphics
programming task. Included are examples of how to
use this manual to write device driver routines for the
4114,

Experienced programmers may find this section to be
too elementary for them. These programmers should
feel free, if they wish, to skip this section and proceed
to Section 4.

GRAPHICS PROGRAM ARCHITECTURE

Figure 3-1 shows the architecture of a typical compu-
ter graphics program. The user’s program consists of a
main applications program and a graphic subroutine
package. All graphic functions are performed through
calls to subprograms in the graphics subroutine pack-
age. In turn, that subroutine package communicates
(through host computer system software and the data
communications line) with the 4114 terminal.

The graphic subroutine package includes high-level
graphics routines, device driver routines, and commu-
nications interface routines.

It helps to define standard, uniform interfaces between
these modules. For instance, a standard interface to
the communications interface module lets you
substitute different communications interface modules
for use with different host operating systems. Likewise,
you may wish to substitute different device drivers for
uss with different cutput devices {terminals, plotters,

etc.).

THE APPLICATIONS PROGRAM

The applications program is the main program; you
write this program to perform the particular task you
have in mind. The design of applications programs is
beyond the scope of this manual.

4114 HOST PROGRAMMER'S

HOST COMPUTER

USER
APPLICATIONS
PROGRAM

HOST SYSTEM
SOFTWARE

DATA COMMUNICATIONS
LINE
4114
COMPUTER
DISPLAY
TERMINAL

s |

Figure 3-1. Qraphics Program Architecturs.

THE FROGRAMMING TASK

GRAPHICS SUBROUTINE PACKAGE

There should be a standard, uniform interface between
the applications program and the graphics subroutine
package. (That way, you can use the same subroutine
package with different applications programs.)

It is not good practice for the applications program to
interface directly to the terminal, issuing commands to
the terminal itself. Such a program is difficult to change
for use with another graphics output device, such as a
plotter or another terminal. Your applications program
should interface to the terminal only by calls to
standard routines in the graphics subroutine package.

For FCRTRAN programmers, IGL (the TEKTRONIX
4010C01 PLOT 10 Interactive Graphics Library) is one
such subroutine package.

Whatever graphics subroutine package you use
(whether it be IGL or one which you write yourself), that
package will typically be subdivided into high-level
graphics routines, device driver routines, and commu-
nications interface routines.

References

For information on the TEKTRONIX 4010C01 PLOT 10
Interactive Graphics Library, see the following TEK-
TRONIX manuals:

® 4010C01 PLOT 10 Interactive Graphics Library
User's Manual

® 4010C01 PLOT 10 IGL Option 4A Graphic Seg-
ments Support User's Manual

HIGH-LEVEL GRAPHICS ROUTINES

The high-level graphics routines provide the interface
to the applications program. These routines perform
functions such as selecting a graphic output device,
moving graphic objects from place to place in the
user's coordinate space, and manipulating graphic
objects.

3-2

The graphics package may provide for performing
these high-level functions on a variety of graphic
output devices (different terminals, different plotters,
etc.). In order to do this, the high-level graphic routines
use calls to standard routines in device driver
subroutine packages.

As far as it is possible, there should be identical
interfaces between the high-level graphics routines
and the device driver routines for different terminals or
plotters.

References

Degcribing how to write high-leval granhics routines
and applications programs is beyond the scope of this
manual. For more information on these subjects, you
may wish to consult the following references:

® William M. Newman and Robert F. Sproull, Principles of
Interactive Computer Graphics. Second Edition.
McGraw-Hill Book Co., New York, 1979.

e Association for Computing Machinery, Special Interest
Group on Graphics, Graphics Standards Planning
Committes, ‘‘Status Report of the Graphics Standards
Planning Committee.” Computer Graphics, Volume 13,
Number 3, August 1979. (Available from ACM, P.O. Box
12105, Church Street Station, New York, New York
10279)

4114 HOST PROGRAMMER'S

DEVICE DRIVER ROUTINES

The device driver subroutines are the ones which
actually issue commands to the terminal. The more
primitive of these routines each issues just one
command. For instance, there may be a routine which
causes the terminal to draw a line between two points
on its screen; that routine probably calls more primitive
routines to issue < enter-vector-mode> commands
and <xy> parameters.

When writing device driver routines, you will definitely
be referring to this manuai and to the 4110 Series
Command Reference Manual; writing device driver
routines is discussed more fully later in this section,
under “Issuing Commands to the Terminal” and “Pars-
ing Messages From the Terminal.”

COMMUNICATIONS INTERFACE
ROUTINES

The device driver routines must have a way to send
and receive individual ASCII characters. The tech-
niques for doing this may be different on different host
computers. To enhance portability from one host
computer to another, therefore, it is wise to send and
receive characters only through calls to standard
communications interface routines.

This latter point is especially important if you will be
using the 4114’s block mode communications feature.
While the terminal is in block mode (which requires
Option 01), all characters sent to and from the terminal
must pass through the communications interface rou-
tines which handle the details of the block mode
protocol.

Another task of the communications interface routines
is to ensure that no data is lost in the transmissions
between the host computer and the 4114 terminal. In
this regard, problems may occur (a) when sending
commands to change the terminal’s communications
settings, and (b) when sending a large number of
commands to the terminal.

4114 HOST PROGRAMMER'S

THE PROGRAMMING TASK

Changing the Terminal’s Settings

When sending commands to change the terminal’s
communications or display settings, you should pause
after sending the commands before sending more data
to the terminal. The pause lets the terminal finish
executing the commands. If you do not pauss, the first
few characters of data may be processed incorrectly
before the terminal’s settings are changed.

How do you make the host program wait until the
terminal is ready? Either by “handshaking,” by putting
your program in a “wait”’ state, or by sending a number
of “no-op” characters. Handshaking is useful primarily
for arming and disarming block mode, while waiting is
preferable for entering prompt mode. Some computers
allow programs to enter a “wait” state for a programm-
able amount of time. For other systems, transmitting
no-op characters — siich as (SYN) or (NUL) — for
about half a second should suffice.

Handshaking

“Handshaking' means exchanging controi signais
between the host program and the terminal. Its purpose
is to ensure that the terminal does not receive data
while it is busy changing its communications settings,
and that the terminal does not receive commands
faster than it can execute those commands.

To handshake after sending commands to change the
terminal’s settings, send a <report-4010-status>
command. (Other “report” commands can be used; but
< report-4010-status> consists of only two charac-
ters: (ESC)(ENQ).)

When the terminal is finished changing its settings, it
then executes the < report-4010-status> command
and sends a < 4010-status-report> to the host com-
puter. The host receives the < 4010-status-report>;
only after reading this report message does it proceed
to send more data to the terminal.

33

THE PROGRAMMING TASK

Figure 3-2 shows a FORTRAN routine which may be The 4114 can display simple alphatext and graphics,
used to perform this “handshake’” operation. continuously, at data rates up to 19200 bits per

Preventing the Input Queue From

second. However, there are many commands (such as
< include-copy-of-segment> or <load>) which take
an indeterminate amount of time to execute. Thus, if

Overflowing commands come thick and fast, it is possible to

If the average rate at which the host sends commands
exceeds the average rate at which the terminal can

overrun the terminal’s communications input queue.
Should this occur, data would be lost; the terminal
would not execute all the commands it receives.

execute those commands, then, sooner or later, the
terminal’s communications input queue will overflow.

OO0 OO0 0

OO0

o O

SUBRCUTINE HNLSHK

Send <report-4010-status> commznd, (ESC)(ENQ).

This routine uses the subroutine SENDCH. The SENDCH
routine, given a number in the renge from 0 to 127,
sends the corresponding ASCII chereacter to the terminel.
Thus CALL SENDCH(27) sends the (ESC) cheracter, and

CALL SENDCH(5) sends the (ENQ) character.

CALL SENDCH(27)
CALL SENDCH(5)

Read (end ignore) the <401C-status-report>. (This report
consists of five cheracters, followed by a cerrisge return
or other end-of-line indicator.)

READ (ITTY,100) REPORT

100 FCRMAT(AS)

If the host computer provides an echo of characters which the
the terminal sends, then the lsst character of the "echo"

can serve as the terminal's <bypass-cancel-charzcter>. In thet
cese, the following statement can be omitted. This statment
sends & (LF) as the <bypzass-cencel-character>.

CALL SENDCH(10C)

Cnce the report hes been read, it is safe to proceed to other
tasks, and perhaps send more characters to the terminel.

RETURN

3675-4

34

Figure 3-2. A Handshaking Routine.

@ 4114 HOST PROGRAMMER'S

The terminal’'s prompt mode and flagging modes, and
its optional block mode, provide a variety of handshak-
ing techniques. Any of these techniques will prevent
the terminal’s input queue from overflowing. The user
applications program need not concern itself with
these handshaking techniques; they can be handled by
routines in the device driver or communications inter-
face modules. (See Section 10 for information on
prompt mode and flagging, and Section 11 for informa-
tion on block mode.)

THE PROGRAMMING TASK

Of course, the communications routines can also do
handshaking, using (for instance) the < report-4010-
status> command: (ESC)(ENQ). That is, the
communications routines can set the terminal input
queue size to N characters (< set-queue-size> com-
mand). Then, after sending N characters, those rou-
tines can send a < report-4010-status> command and
input the < 4010-status-report> that the terminal
returns. This handshaking guarantees that the termi-
nal’s input queue is empty, ready to receive more
characters.

ISSUING COMMANDS TO THE TERMINAL

ROUTINES WHICH ISSUE SEVERAL
COMMANDS

The examples given in the later sections of this manual
will give you clues on how to write higher-leve! device

driver routines. For instance, Figure 3-3 shows one
such example.

Thus, to initialize the terminal’s dialog area in exactly
the way shown in the Figure 3-3, you may write a
device driver routine like that in Figure 3-4.

< set—alphatext—size: 6,4,14>
< set—dialog—area—lines: 40>
< set—dialog—area—chars: 50>

< set—diaiog—area—position: (0,0)>

< enable—dialog—area: 1>

< set—dialog—area—visibility: 1>

To prepare a dialog area, you might issue the following commands:

Selects a fairly small size for the alphatext to be displayed.

Up to 40 iines of the dialog area can be viewed at any one time.
Each line can hold up to 50 characters.

The ‘“‘diaiog viewport™ is to be in the iower ieft corner of the
screen.

Alphatext from the host will be be displayed in the dialog area
rather than the graphic area.

Make the dialog area visible.

3675-5(

Figure 3-3. An Example with Several Commands.

4114 HOST PROGRAMMER'S

35

THE PROGRAMMING TASK

In 3-4, several procedures are invoked to change the
terminal’s dialog area settings. (Each of these pro-
cedures sends a single command to the terminal) The
Handshake procedure guarantees that the terminai's
settings have been changed before the host sends
more characters to the terminal. (This procedure is just
a PASCAL version of the HNDSHK FORTRAN subrou-
tine shown earlier in this section.)

ROUTINES TO ISSUE A SINGLE
COMMAND

Of course, the procedure in Figure 3-4 only works if
you also write device driver routines to issue each of
the commands it invokes. To write these routines, you
should consulit the 4110 Series Command Reference
Manual. For instance, that manual gives the < set-
dialog-area-lines> syntax as follows:

< set-dialog-area-lines> = (ESC)(L)(L)< int>

From this syntax definition, you can write a routine like
that in Figure 3-5.

BEGIN

Handshake;

PROCEDURE InitializeDizloghres;

SetAlphatextSize(6,4,14);
SetDialogArealLines(40);
SetDialogAreaChars(50);
SetDialogAreaPosition(0,0);
SetDialogAreaWritingMode(0);
EnableDialogArea(1);
SetDialogArea(1);
SetDialogAreaVisibility(1);

END; {¥* of InitislizelialoghArea procedure ¥¥}

3675-6A

Figure 3-4. A Device Driver Routine to Issue Several Commands.

BEGIN
SendAscii(27);
SendAscii(76);
SendAscii(76);

PROCEDURE SetDieslogArealines(NumberOfLines

INTEGER);

{*¥%* Send the (ESC) character ¥*#¥}

{*¥* letter L *¥}

{** Jetter L %%}
SendInt(NumberQOfLines);

END; {¥* of SetDialogArealines procedure *¥}

3675-7

Figure 3-5. A Device Driver Routine Which Issues One Command.

36 REV. JUL 1881

4114 HOST PROGRAMMER'S

ROUTINES TO ISSUE COMMAND
PARAMETERS

The example in Figure 3-5 in turn calls two lower-level
procedures. SendAscii issues a single character to the
terminal (possibly using block mode, if the terminal is
in block mode). Sendint sends a single <int>
parameter to the terminal.

When writing routines to issue command parameters,
you should again consult the 4110 Series Command
Reference Manual. For instance, when writing a routine
to send an <int> parameter to the terminal, you should
consult that manual about the <int> parameter type.

THE PROGRAMMING TASK

SUMMARY

When writing higher-level device driver routines, which
issue several commands to the terminal, see the
examples given in other sections of this manual. When
writing lower-level device driver routines, which issue
single commands (or single parameters) to the termi-
nal, see the 4110 Series Command Reference Manual.

PARSING REPORT MESSAGES FROM THE TERMINAL

Certain commands, such as < enabis-GIN> or <rs-
port-terminal-settings>, cause the terminal to send a
“report” message back to the host computer. When
writing device driver routines to parse (read and accept
data from) these reports, you must consuit the 4110
Series Command Reference Manual. There you will find
the exact syntax of each report message; use those
syntax specifications when writing routines to parse
the different report messages.

4114 HOST PROGRAMMER’S

AN EXAMPLE

Suppose, for instance, that you are writing a routine to
parse a < 4010-status-report>. (This is the message
which the terminal sends in response to the <report-
4010-status> command.) According to the 4110
Series Command Reference Manual, this report has the
following syntax: :

< 4010-status-report> = < 4010-GIN-status-report>
or < 4010-non-GIN-
status-report>

< 4010-GIN-status-report> = < 4010-xy-report>
< eom-indicator>

< 4010-non-GiN-status-repori> = < 401 O-slatus-
byte>
< 4010-xy-report>

< eom-indicator>

3-7

THE PROGRAMMING TASK

(The <4010-GIN-status-report> is used if the terminal
has been enabled for GIN (graphic input) with an

< enable-4010-GIN> command. Otherwise, the

< 4010-non-GIN-status-report> is used.)

A routine to parse < 4010-status-report> may look like
the one shown in Figure 3-6. In this example, a global
flag variable (In4010GinMode) and other parsing rou-
tines are needed. Those routines would be written in a
similar manner.

PARSING < EOM-INDICATOR>S

The syntax of many report messages includes < eom-
indicator>s. Sometimes these are “optional” — the
terminal may or may not send them, depending on
conditions listed in footnotes to the syntax of the
particular report.

If the terminal is in block mode (which requires

Option 01), then it sends each < eom-indicator> by
terminating the block and setting the end-of-message
bit in that block’s < block-control-bytes> . (See the
description of block mode in Section 11 for details.)
The host program's communications interface routines
should handle the block mode protocol. The parsing
routines in the host program’s device driver module
should never see the < eom-indicator> s.

If the terminal is not in block mode, then when it sends
an <eom-indicator>, it sends the < eom-indicator> as
the current <eol-string> . The < eol-string> is a
sequence of one or two characters, set by the most
recent < set-EOL-string> command.The < eol-string>
is typically (CR) or (CR)(LF).

BEGIN

EEGIN

StatusEyte := 0;

PROCEDURE ParseA4C10StatusReport(VAR StatusEyte
IF Ind4010GinMode {¥*¥¥*¥ 2 globel flag ** }
THEN {¥¥* parse a <401C-GIN-status-report)> ¥*#¥}
{¥* Clear the StatusEyte veriable ¥¥}

ParseA4C1CXyReport(Xy);

INTEGER;

VAR Xy XyType);

ParseAnEomIndicator;
In4C10GinMode := FALSE;
END

ELSE {*¥* if NCT In4010GinMode ¥*¥*}

ParseAU010StatusEyte(StatusEyte);
ParseA4010XyReport(Xy);
ParseAnEomIndiceator
END

END;

EEGIN {*¥ parse 2 <UQ1C-non-GIN-status-report)> ¥¥}

{¥*%¥ of ParseAl010StatusReport procedure ¥#¥}

3675-8

Figure 3-8. Example of a Parsing Routine.

4114 HOST PROGRAMMER'S

To make it easier to parse reports from the terminal,
you shouid choose an < eoi-siring> which consisis
only of ASCII control characters. These are ASCII
characters — such as (CR) or (LF) — with numeric
equivalents in the range from O to 31. The other parts
of the report (the parts other than the <eom-indica-
tor>) typically do not include control characters. Thus,
if the terminal is not in block mode, it can skip over any
control characters it encounters.

4114 HOST PROGRAMMER'S

@

THE PROGRAMMING TASK

SIGNATURE CHARACTERS

Most of the report messages which the terminal sends
to the host begin with “signature characters.” When
severa! graphic input devices are enabled at the same
time, the reports from different devices are marked with
different signature characters. The signature charac-
ters indicate which type of report message is being
sent and thus help you parse the report.

For more information on signature characters, see
Sections 8 and 9.

Section 4

DISPLAY AND KEYBOARD SETTINGS

CONTROLLING THE DISPLAY

CONTROLLING EFFECTS
OF (CR) AND (LF)

Normaliiy, one must send the 4114 both (CR) and (LF)
to cause its cursor to move to the start of a new line:
{CR) to move the cursor left to the current margin, and
{LF) to move it down one line. However, some hosts
may send only (CR), or oniy (LF); to cope with these
hosts, the 4114 has the < set-crif> and < set-Ifcr>
commands. Table 4-1 shows exampies of these; for
more information (such as the command syntax), see
the descriptions of these commands in the 4110 Series
Command Reference Manual.

= (ESC)(K)(R)<int: 1>
= (ESC)(K)(R)(1)

4114 to respond to a single
(CRY) character as if it were
{CR)LF).

Table 4-1
CONTROLLING THE EFFECTS OF (CR) AND (LF)
CHARACTERS
. Example :L Description
< set-crif: 1> This command causes the

< get-ifer: 1>
= (ESC)(K)(F)<int: 1>
= (ESC){KI(F)(1)

This command causes ihe
4114 to respond to a single
(LF) as if It were (LF)(CR).

< set-crif: 0>
= (ESC){K)(R)<Int: 0>
= (ESC)(K)(R)(0)

< set-fcr: 0>
= (ESC)H{K)(F)<int: 0>
= (ESCHK)(F)(0)

disables the effect of any

< set-Ifer: 1> commands.

Issuing both thess commands

preceding < set-crif: 1> and

CONTROLLING THE KEYBOARD AND DEFINING MACROS

LOCKING THE KEYBOARD

The host computer can prevent the terminal’s operator
from typing inappropriate commands by locking the
keyboard during critical operations. To do this, the host
issues the < lock-keyboard> command:

< lock-keyboard> = (ESC)(K)(L)< int>

Here, the <int> I8 one to lock the keyboard, and zero
to unlock it. When the keyboard is locked, the KBD
LOCK light turns on and typing on the keyboard only
rings the bel!l. Table 4-2 shows how to Issue the
command.

4114 HOST PROGRAMMER'S

LOCKING AND UNLOCKING THE KEYBOARD

Table 4-2

Example

< lock-keyboard: 1>
= (ESC)K)(L)<Int: 1>
= (ESC){K)(L)(1)

Deecription

Locks the keyboard.

< lock-keyboard: 0>
= (ESC}(K)(L)<Int: O>
= (ESC)K)(L)(0)

Unlocks the keyboard.

4.1

DISPLAY AND KEYBOARD SETTINGS

DEFINING MACROS (AND PROGRAMMING
KEYS)

The < define-macro> command defines a *‘macro” - a se-
quence of characters that is referred to by a macro number.
“Invoking™ a macro means to use a macro in place of one of
its representations. A macro is invoked in one or more of the
following ways:

® The terminal receives an < expand-macro> command.
® The terminal receives a byte corresponding to the macro.
® The operator presses a key corresponding to the macro.

Macros are referenced by macro numbers in the following
ranges:

32768 through ~-32742 byte macros

-32740 through -32737 byte macros
-32608 through -32513 byte macros

-1 deletes all macros
0 through 143 key macros

144 through 32767 host macros

Key and host macros can be invoked with the < expand-
macro> command. An <expand-macro> command speci-
fies a particular macro number and invokes the correspond-
ing macro. In effect, the terminal replaces the < expand-
macro> command with the characters in the macro’s defi-
nition and responds as if it received those characters in its
input stream.

Key macros can also be invoked by pressing the key (or key
combination) that produces the ASCII decimal equivalent
equal to the macro number. For example, the ASCII decimal
equivalent of the uppercase P is 80. If macro number 80 has
been defined, pressing uppercase P invokes that macro.
Function keys also correspond to macro numbers as de-
scribed later.

Byte macros are invoked whenever the terminal receives a
character that matches a defined macro number. A charac-
ter is matched to a macro number by adding the character’s
decimal equivalent to -32768. For example, the EM charac-
ter, whose decimal equivalent is 25, invokes macro -32743
(-32768 + 25). Note that several characters that might cause
problems if defined as macros match invalid macro num-
bers. For example, ESC (ASCII decimal equivalent 27)
matches -32741, an invalid macro number.

The < define-macro> command has this syntax:
< define-macro> = (ESC){K)(D)< int> < int-array>

Here, the <int> parameter names the macro to be
defined. The < int-array> Is an array of numeric
equivalents for the characters being programmed into
the macro. For instance, you can program the “upper-
case A" key to mean “Hi!" by Issuing the following
command:

4-2 REV, OCT 1882

< define-macro: 65, “Hil”>

= (ESC)(K)(D)
<int: 65>
<int-array: (7 2,1 05,33)>

= (ESCYK)(D)
<int: 65>
<int: 3><int: 72> <int: 105> <int: 33>

= (ESC)(K)(D)
(D){(1)
(3) (D)(8) (F)(9) (B)(1)

= (ESC)(K)(D)(D)(1)(3)(D)(8)(F)(9)(B)(1)

In the example, the three ASCIl characters (H)(i)(!) are
represented in the <ini-ariay.> parameier by their
decimal equivalents: 72, 105, 33. Since 65 is the ASCII
decimal equivalent for the letter A, macro number 65
can be invoked by typing the ASCII character A on the
keyboard.

This macro may also be invoked from the host by
means of the < expand-macro> command:

< expand-macro: 65>
= (ESC)(K)(X)< Int: 65>
(ESCHKHX)(D)(1)

Macro numbers in the range from 128 to 143 corre-
spond to the programmable function keys, as follows:

128 Function key F1
129 Function key F2
130 Function key F3
131 Function key F4
132 Function key F5
133 Function key F6
134 Function key F7
135 Function key F8
136 Function key S1 (SHIFT-F1)
137 Function key S2 (SHIFT-F2)
138 Function key S3 (SHIFT-F3)
139 Function key S4 (SHIFT-F4)
140 Function key S5 (SHIFT-F5)
141 Function key S6 (SHIFT-F6)
142 Function key S7 (SHIFT-F7)
143 Function key S8 (SHIFT-F8)

Host macros (numbered 144 through 32767) can only be in-
voked by the <expand-macro> command. Although it
might seem easier to always use byte macros, since they
are easier to invoke, you can have only 127 byte macros de-
fined at any one time. Using host macros lets you use many
more macros.

For more information, see the Command Reference
Manual for descriptions of the < define-macro> and
< expand-macro> commands.

4114 HOST PROGRAMMER'S

<KEY-EXECUTE-CHARACTER>

Normally, when the operator presses a key which has
been programmed (with the < define-macro> com-
mand), the characters programmed into the key are
sent to the host computer, just as if the operator had
typed those characters on the keyboard. This includes
characters which comprise an escape-sequence com-
mand for the terminal; instead of executing such a
command, the terminal sends the characters which
comprise that command to the host computer.

The < key-execute-character> provides a way around
this difficulty. You issue a < set-key-execute-
character> command to designate one of the ASCII
characters as the <key-execute-character>. Then,
when programming a key (that is, when defining a
macro numbered from 0 to 143), you can place < key-
execute-character>s at the start and end of part of the
text being programmed into the key. Later, when the
operator presses that key, the characters between the
< key-execute-character> s are not sent to the host
computer. Instead, the terminal responds to those
characters iocally, as if it were receiving them from the
host.

The < key-execute-character> within a macro has its
special effect only if the macro is invoked by pressing
a key. If the macro is invoked with the < expand-
macro> command, then any < key-execute-charac-
ter> s within it have no special effect.

4114 HOST PROGRAMMER'S

DISPLAY AND KEYBOARD SETTINGS

EXAMPLES

Programming a Key to Type a Message to
the Host

Suppose you want to program a function key to log you
off the host computer, and that your host computer
accepts the following characters as a command to log
off:

(L)(O)(G)O)F)(F)CR)

From an ASCII chart (Appendix A), you find that those
characters have the following decimal equivalents:

L 76
(0) 79
@) 71
(0) 79
(F) 70
] 70
(CR) 13

You can program function key F1 by sending the
following command to the terminal:

< define-macro: 128, (76,79,71,79,70,70,13)>

= (ESC)(K)(D)

<int: 128>

<int-array: (76,79,71,79,70,70,13)>
= (ESC)K)(D)

H©

(7) D)(<) (D)(?) (D)(7) (D)(?) (D)(B) (D)(6) (=)
= {ESCHK){DI{HI{0){7) (D) (<) (D)(7)

(D)7 (D)(?)(D)(B)(D)(B)(=)

REV, OCT 1982 4.3

DISPLAY AND KEYBOARD SETTINGS

Programming a Key to Display a Message
Locally

The following commands program function key F1 to
display the message “HI THERE!"” on the terminal’s
screen. (The message is not sent to the host computer,;
it is only displayed locally in the terminal.)

< set-key-execute-character: 126>
= (ESC)(K)(Y)<int: 126>
= (ESCH{KIYNG)(>)

< define-macro: 128, “~HI THERE~">

= (ESC)(KND)
<int: 128>
<int-array: (126,72,73,32,84,72,69,82,69,126)>

= (ESC)(K)(D)
(H)(0)
<int: 10> <int: 126> <int: 72> .. <int: 126>

= (ESC)(K)(D) (H)(0) (1) (G)(>) (D)(8) (D)(9) (B)(O)
(E)(4) (D)(8) (D)(5) (E)(2) (D)(5) (G)(>)

The first command sets the < key-execute-character>
to (~), which has an ASCII decimal equivalent of 126.

The second command defines macro number 128,
which can be invoked by pressing function key F1.The
numbers in this command’s < int-array> are the ASCI|
decimal equivalents of the characters in the “~—HI
THERE~" message. Note that the message begins and
ends with the (~) character, which is the current

< key-execute-character>. When you press function
key F1, the “HI THERE” message is executed (dis-
played) locally, as if it had come from the host
computer.

Recall, however, that the < key-execute-character>
has its special effect only when the macro is invoked
by pressing the corresponding key (in this case,
function key F1). If the macro is invoked by an

< expand-macro: 128> command from the host com-
puter, then the terminal behaves as if it had received
the entire macro contents (including the (~)
characters) from the host computer.

4-4 REV, OCT 1082

Programming a Key to Execute a
Command Locally

You can program a key (define a macro) using the
characters that comprise an escape-sequence com-
mand.

For example, one easy command is the < page>
command, (ESC)(FF). You can program the < page>
command into function key F2 as follows:

< define-macro: 129, (126,27,12,126)>

= (ESC)(K)(D)
<int: 129>
<int-array: (126,27.12,126)>

= (ESC)(K)(D)
<int: 129>
<int: 4> <int: 126> <int: 27> <int: 12> <int: 126>

= (ESC)(K)(D)
(H(1)
(4) @)(>) (A)G) (<) @)

Here, the < int-array> contains the numbers 126, 27,
12, 126; these are the ASCIl decimal equivalents for
the characters (—~)(ESC)(FF)(~). The (~) characters
are the < key-execute-character> s, while the charac-
ters between them comprise the < page> command.

4114 HOST PROGRAMMER'S

DISPLAY AND KEYBOARD SETTINGS

DISPLAYING ALPHATEXT

ENTERING AND LEAVING ALPHA MODE

The 4114 Computer Display Terminal enters alpha

mode whenever (a) it is turned on, or (b) it receives the

< enter-alpha-mode> command: the character (US).

In addition, the < enable-dialog-area> command has
an effect on other ways of entering alpha mode. (This
command is described later in this section, in connec-
tion with the dialog area.) If the 4114 is emulating

earlier TEKTRONIX terminals (dialog area not enabled),

then it enters alpha mode whenever:

a. itreceives a (CR) character,
b. it receives a < page> command, or
c. the operator presses the PAGE key.

The terminal leavas alpha mode on receiving an

< enter-vector-mode> or < enter-marker-mode> com-

mand.

The next two tables show how to put the 4114 in alpha

mode and display a message on its screen. For each
command, the table shows the individual ASCII
characters sent to the terminal; also shown are high-

Table 4-3

level language (FORTRAN or PASCAL) statements to
cause the host to send those characters to the
terminal.

NOTE

The SENDCH subroutine {in Table 4-3) and the
SendASCII procedure (in Table 4-4) accomplish
the same purpose. Given the decimal equivalent
of an ASCII character, these subprograms send
that character to the terminal.

The “characters sent” in the two examples are
those sent by the host computer (a-DEC-system
10) used to test the examples.

In FORTRAN, the FORMAT statement has a
“carriage control character” which generates a
(LF) before the text; the FORMAT statement also
puts a (CR) after the text. In PASCAL, on the other
hand, the Writeln statement generates a (CR)(LF)
sequence after the text. These differences are
minor and should cause no concern.

DISPLAYING ALPHATEXT USING FORTRAN

Command Characters Sent FORTRAN Statements
< enter-aipha-mode> : (us) CALL SENDCH(31)
< alpha text: “Hi Mom!”> (LRY(H) () (SP)(M){a) WRITE(ITTY,100)
(m)(N(CR) 100 FORMAT(’ HI Mom!’)
Table 4-4

DISPLAYING ALPHATEXT USING PASCAL

Command Characters Sent PASCAL Statements
]
< enter-alpha-mode> (us) SendASCII(31);
< alpha text: “Hi Moml|' > HY () (SP) (M} o) (m) Writeln(TTY 'Mi Mom!');
(D (CR)LF)

4114 HOST PROGRAMMER'S

45

DISPLAY AND KEYBOARD SETTINGS

CONTROLLING CHARACTER SIZE

< Set-Alphatext-Size> Command

You can change the character size for alphatext with
the < set-alphatext-size> command:

< set-alphatext-size>

= (ESC)(M)(2)
<int: scale-factor>
<int: inter-character-spacing>
<int: inter-line-spacing>

This command may also be given by the operator, using
the SETUP mode keyword, ALPHASIZE. See the 4114
Operator's Manual for details.

Table 4-5 gives examples of several useful < set-
alphatext-size> settings.

Table 4-5
USEFUL ALPHATEXT SIZE SETTINGS

< Set-4014-Alphatext-Size> Command

To be compatible with software written for TEKTRONIX
4014 and 4015 Computer Display Terminals, the 4114
also has a < set-4014-alphatext-size> command:

< set-4014-alphatext-size> = (ESC)(8)

or (ESC)(9)
or (ESC)(:)
or (ESC)(;)
Table 4-6 gives examples.
Table 4-6
USING THE < SET-4014-ALPHATEXT-SIZE>
COMMAND
Command Effect

< set-4014-alphatext-size: largest>
= (ESC)(8)

Equivalent to

< set-alphatext-size:
110,6,28>; fits up to 74
'characters per line.

Command Effect

< set-alphatext-size: 10, 6, 28> Fitsup to 74
characters per

= (ESC)(M)(2) line.

<int: 10> <int: 6> <int: 28>

= (ESC)(M)(2Z) (:) (B) (A)(<)

< set-alphatext-size: 9, 6, 28> Fits up to 81
characters per

= (ESC)(M)(2) line.

<int: 9> <int: 6> <int: 28>
= (ESC)(M)(2) (9) (8) (A)(<)

< set-alphatext-size: 6, 4, 14> Fits up to 133
characters per
= (ESC)(M)(2) line.

<int: 6> <int: 4> <int: 14>
= (ESC)(M)(Z) (6) (4) (>)

< set-alphatext-size: 4, 5, 12> Fits up to 164
characters per
line, permitting
two columnns,
each holding

80 characters.

= (ESC)(M)(2)
<int: 4> <int: 5> <int: 12> -

= (ESCHM)(2)(4)(5)(<)

4-6

B

< set-4014-alphatext-size: large>
= (ESC)(9)

Equivalent to

< set-alphatext-size:
9,-6,28> ; fits up to 81
characters per line.

< set-4014-alphatext-size: small>
= (ESC)(:)

Equivalent to

< set-alphatext-size:
6,-4,17>; fitsupto 121
characters per line.

< set-4014-alphataxt-size: smallest>
= (ESC)(;)

Equivalent to

‘< set-alphatext-size:

" 16,-6,18>; fits up to 133
characters per line.

4114 HOST PROGRAMMER'S

CONTROLLING THE MARGINS

The < set-margins> command determines the number
of margins (or number of columns) which the terminal
uses when displaying text on the screen. In doing so, it
also defines when it is that a *page full” condition
occurs. The < set-margins> command has this syntax:

< set-margins> = (ESC)(K)(M)
< int: number-of-margins>

In this command, the < int> parameter may range from
1 to 8. For more details, see the < set-margins>
command description in the 4110 Series Command
Reference Manual. Table 4-7 shows how the < set-
margins> command might be used.

DISPLAY AND KEYBOARD SETTINGS

Table 4-7
USING THE <SET-MARGINS> COMMAND

Command Effect

< set-alphatext-size: 4,5,17>| Selects a character size which
< set-margins: 2> is small enough to display two
columns of 80 characters
each, and sets the terminal to
display alphatext in two col-
umns.

< set-alphatext-size: 4,5,17>1 If the lines of text do not

< set-margins: 3> exceed 54 characters, then al-
phatext may be displayed in
three columns without text
from one column overprinting
text in an adjacent column.

The < set-margins> command may also be typed by
the operator in SETUP mode; see the 4114 Operator’s
Manual for details.

THE DIALOG AREA

INTRODUCTION

The 4114 provides a dialog area for displaying alpha-
text without interfering with graphics drawn on the
screen. The dialog area is like a scroll of text, part of
which is displayed in a part of the screen. called the
dialog viewport. This text is displayed in refresh mode,
so as not to interfere with storage mode graphics on
the screen.

The < enable-dialog-area> command controis whether
or not alphatext is directed to the dialog area.

< Enabie-dialog-area: 0> disables the dialog area; this
makes the 4114 compatible with software written for
earlier TEKTRONIX terminais which lack a dialog area.
With the dialog area disabled, alphatext is directed to
the screen (graphics area) and may be used, for
instance, as labels on graphs.

4114 HOST PROGRAMMER'S

< Enable-dialog-area: 1> enables the dialog area and
directs alphatext to the dialog area. The alphatext is
stored in an internal memory buffer (the dialog scroll).
The operator can display the dialog scroll contents by
pressing the DIALOG key, which makes a portion of the
dialog scroll visible on the screen. Likewise, the host
can issue a < set-dialog-visibility> command to make
the dialog scroli visible.

When visible, the dialog area is displayed in refresh
mode in a limited part of the screen called the dialog
viewport. Using refresh mode avoids interfering with
graphics stored on the screen. Limiting the extent of
the dialog viewport avoids overtaxing the terminal's
refresh capability. (if too much text is displayed in
refresh mode, the text will flicker.)

DISPLAY AND KEYBOARD SETTINGS

<ENABLE-DIALOG-AREA> COMMAND

The < enable-dialog-area> command has the following
syntax:

< enable-dialog-area> = (ESC)(K)(A)<int>

If the <int> is zero, the terminal emulates earlier
TEKTRONIX terminals which lack a dialog area. Alpha-
text and graphics are both sent to the same destination
within the terminal: the main graphics display area.

If the <int> is one, alphatext and graphics are sent to
different destinations within the terminal. Graphics
goes, as before, to the main graphics display area.
Alphatext, however, is directed to the dialog scroll,
regardiess of whether that scroll is currently visible. To
~ make the scroll visible, the DIALOG key or the < set-
dialog-area-visibility> command must be used.

The < enable-dialog-area> command affects the oper-
ation of several other terminal features. With the dialog
area disabled, these features emulate earlier
TEKTRONIX terminals which lack a dialog area. With
the dialog area enabled, these features operate in a
way which is more appropriate for use with a dialog
area.

Table 4-8 lists the differences between operation with
and without the dialog area enabled. For more details,
see the descriptions in the 4110 Series Command
Reference Manual of the < enable-dialog-area>, < en-
able-4010-GIN>, < page>, and < renew-view> com-
mands, and of the (CR) character.

Table 4-8
FEATURES AFFECTED BY THE <ENABLE-DIALOG- AREA> COMMAND

Effect With Dialog Effect With Dialog
Feature Area Disabled Area Enabled
PAGE Key, Erases the screen. Erases the screen.

< Page> Command
Redraws all visible segments.

Exits the terminal from 4010 GIN mode.
Resets line style to line style 0.
Resets the line width to 0.

Puts margin number 1 in effect.
Puts the terminal in alpha mode.

“Homes" the graphic beam. (X=0, Y=3071)

Redraws all visible segments.

< Renew-View>
Command

Erases the screen.

Redraws all visible segments.

Erases the screen.

Redraws all visible segments.

(CR) Character Puts terminal in alpha mode.

Performs “carriage return” action.
Resets line style to line style O.
Resets iine width to 0.

Removes the terminal from 4010 GIN mode.

If in alpha mode, performs “carriage return”
action for the aiphatext cursor in the dialog area.

If In vector or marker mode, does nothing.

D

4114 HOST PROGRAMMER'S

<SET-DIALOG-AREA-VISIBILITY>
COMMAND

The < set-dialog-area-visibility> command determines
whether text stored in the dialog scroll is visible to the
terminal’s operator. This command has the following
syntax:

< set-dialog-visibility> = (ESCHL}{V)<int>

Here, the <int> is one to make the dialog area visible,
or zero to make it invisible.

When the terminal is turned on, the dialog area is
visible only if the dialog area is enabled. (The terminal
“remembers” whether the dialog area was enabled
when it was turned off.)

The operator can control dialog area visibility by the
DIALOG key and the SETUP mode command DAViS.
For more details, see the 4114 Operator's Manual.

SETTING DIALOG AREA SIZE AND
POSITION

When creating a dialog area, you set several parame-
ters to control such things as its size and location.
Each of the parameters has its own command.

The < set-dialog-area-chars> command sets the width
of the dialog viewport (number of characters per line).

The < set-dialog-area-lines> command sets the height
of the dialog viewport (number of lines of text which are
visible at the same time).

The < set-dialog-area-buffer-size> command sets the
size of the internal memory which holds the dialog area
scroll.

The < set-dialog-area-position> command sets the
position of the dialog viewport's lower left corner.

The following commands show how to create a dialog
area. For details on the syntax of these commands, see
the 4110 Series Command Reference Manual.

< set-dialog-area-chars: 40>

< set-dialog-area-iines: 10>

< set-dlalog-area-buffer-size: 30>
< set-dialog-area-position: (0,0)>
< enable-dialog-area: 1>

< set-dialog-area-visibility: 1>

4114 HOST PROGRAMMER'S

DISPLAY AND KEYBOARD SETTINGS

Herse, the dialog viewport will be 40 characters wide
and 10 lines high. The dialog buffer size is made large
enough to hold 1200 alphatext characters. (That is 30
full-size 40-character lines; if the lines are shorter,
more lines can be stored in the dialog scroll.) The
dialog viewport is positioned at the lower left corner of
the screen. Finally, the < enable-dialog-area>
command directs alphatext to the dialog area, and the
< set-dialog-area-visibility> command makes the dia-
log area visible to the operator.

< SET-DIALOG-AREA-WRITING-MODE>
COMMAND

The < set-dialog-area-writing-mode> command deter-
mines how text is displayed in the dialog area. There
are two writing modes, “overstrike” mode and “re-
place” mede.

The command syntax is as follows:
< set-dialog-area-writing-mode> = (ESC)(L)(M)<int>

The <int> parameter is zero for replace mode, and
one for overstrike mode.

The operator can also type this command in SETUP
mode, using the SETUP mode keyword, DAMODE. See
the 4114 Operator's Manual for details.

DISPLAY AND KEYBOARD SETTINGS

USING THE OPTIONAL “APL” FONT

if your 4114 is equipped with Option 4E (the APL The character sequence (ESC)(SO) causes the
keyboard), then you may switch between two alphatext terminal to switch to the APL character font for
fonts by means of the < set-alphatext-font> command: displaying alphatext. The character sequence

< set-alphatext-font: standard> = (ESC)(SI) (ESC)(SI) causes the terminal to switch back to the

standard ASCII font.
< set-alphatext-font: APL > = (ESC)(SO)

Figure 4-1 shows the standard ASCII font and the
optional APL font.

| "#$%& ' ()x+,—-./8123456789: : {=>7?
@ABCDEFGHI JKLMNOPQRSTUVWXYZIN\1"™
‘abcdefghi jklmnopgqrstuvwxyz{i»~

T)<<=>]VA#:, +, /0123456783 ([x:\
Talnle VA1 'O Tox?p M ~luwdtCet»>—
OCABCDEFGHIJTKLNNOPQRSTUVHNXYZ{>$

B. APL FONT.

3675-9

Figure 4-1. Standard and APL Character Fonts.

CONTROL CHARACTERS

The control characters, their keyboard equivalent, and
how they are interpreted by the 4114 are listed here.
For further details, see the 4110 Series Command
Reference manual.

410 REV, AUG 1982 4114 HOST PROGRAMMER'S

DISPLAY AND KEYBOARD SETTINGS

Table 2-1
CONTROL CHARACTER EFFECT
Keyboard Keyboard
Control} Equivaient 4114 Terminal interpretation Control} Equivalent 4114 Termina! Interpretation
ACK CONTROL F None. FS SHIFT- This is a single-character
CONTROL L < ENABLE-MARKER-MODE>
BEL CONTROL G BEL character. command.
BS ggﬁﬁ:’éﬁcﬁ OR| Backspace character. GS SHIFT- This is the single-character
CONTROL M < ENABLE-VECTOR-MODE>
CAN CONTROL X As a second character in the ESC command.
CAN sequencs, it enables a
Bypass Condition to inhibit HT gg?q%'q oLl Horizontal tab character.
terminal response to echoed data.
CR "1 RETURN OR Carriage return character. LF EBEETROL J Linefeed character.
CONTROL M
DC1 CONTROL Q Flagging character. NAK CONTROL U None.
NUL SHIFT- None.
DC2 CONTROL R None. CONTROL P
DC3 CONTROL S Flagging character. RS SHIFT- None
DC4 CONTROL T None. CONTROLN
DLE CONTRCL P Nons. si CONTROL O As a second character in the ESC
Sl sequence, this completes a
EM |CONTROLY | None. < SET-ALPHATEXT-FONT>
ENQ CONTROL E As a second character in the ESC command.
E‘:%gg‘g’:_’m' gf‘ss.(?.r"b%‘;“’s 8 SO |CONTROLN | Asasecond character in the ESC
command SO sequencs, this completes a
’ < SET-ALPHATEXT-FONT>
EOT CONTROL D None. command.
ESC ESC or SHIFT- | Starts all commands to the SOH CONTROL A None.
CONTROL K termninal of two or more
characters. STX CONTROL B None.
BT-} faYal Vs 1 - -~ = aa b Abaw 1o Shha ~
ETB |CONTROLW | Asasecond character in the ESC SUB |CONTROLZ 1 Asasscond haractar in the ESC
. SUB sequence, this completes an
ETB sequence, this completes a <ENABLE-4110-GIN>
< 4110-HARDCOPY> command. command
ETX |CONTROLC None. SYN | cONTROLV None
FF CONTROL L As a second character in the ESC us SHIFT- This Is the single-character
FF sequence, this completes & CONTROLO | <ENABLE-ALPHA MODE>
< PAGE> command. command
vT CONTROL K Vertical tab character.
4114 HOST PROGRAMMER'S ADD, AUG 1982 41

Section 5

DISPLAYING GRAPHIC INFORMATION

INTRODUCTION

This section teils how to make the 4114 draw pictures
on its screen. Topics discussed here are:

e Terminal Space Coordinates. The coordinate system
used to express the locations of graphic objects,

and the <xy> coding scheme used to send terminal

space coordinates to the 4114.

e Drawing Lines. How to draw line segments on the

4114’s screen.

® Attributes of Lines. Varying how iines are dispiayed.
e Markers. Displaying markers (small, standard graph-

ic objects).

TERMINAL SPACE COORDINATES

Graphics in the 4114 are drawn in so-called “terminal
space.” This is a discrete two-dimensional space in
which x- and y-coordinates are integers in the range
from O to 4095. There are 16,777,216 addressable
points in terminal space (4096 x 4096 = 16,777,216).

When sending graphic coordinates to the terminal, x-
and y-coordinates can range from 0 to 4095. However,
the screen is not square, so not all points in the
square-shaped terminal space are visible. (Points with
y-coordinates greater than about 3150 fall outside the
screen.) Only points in the range from x= 0 to x= 4095,
and from y= 0 to y= 3127, are guaranteed to be visible.

4114 HOST PROGRAMMER'S

XY PARAMETERS

To send a pair of x- and y-coordinates to the terminai,
you must encode them in a certain way. In this manual,
the term < xy> refers to a pair of x- and y-coordinates
as encoded for transmission to the terminal. The term
< xy: (100,200)> refers to the coordinate pair
(100,200), as encoded for transmission to the terminal.

5-1

DISPLAYING GRAPHIC INFORMATION

FORMAT OF < XY> COORDINATE BYTES Order and Meaning of the < XY> Bytes

Each <xy> parameter consists of from one to five 1. The <HiY> (high-order y) byte comes first. This
ASCII characters (seven-bit bytes). The bytes are sent byte contains the most-significant five bits of the
in this order: <HiY> <Extra> <LoY> <HiX> binary numeral representing the y-coordinate.

< LoX>.Figure 5-1 shows the formats of the

five bytes. 01yyyyy

yyyyy : high-order five bits of the y-coordinate.

You can omit the <HiY> byte if the high-order five
bits of the y-coordinate have not changed since
the last < xy> coordinate sent to the terminal.

<xy: (62,1000)>

x-coordinate = decimal 52 y-coordinate= decimal 1000
= binary 00000 01101 00 = binary 00111 11010 00
T Nt et et e~y

<HiY> = = (")

.

<Extra> = n

0] - 0

<LoY> = 11010 [= (@)

'

<HiX> = = (SP)
<Loxs - -
<xy: (62,1000)> = ()") {(2)(SP)(M)

3675-10A

Figure 5-1. Format of <XY> Bytes.

5-2 REV, JUL 1881 4114 HOST PROGRAMMER'S

Next comes the <Extra> byte. This byte contains
the least-significant two bits of the x-coordinate,
and the least-significant two bits of the y-coordi-
nate.

112yyxx

? : “don't care” — may be either O or 1
yy : least-significant bits of y-coordinate
xx : least-significant bits of x-coordinate

You can omit the < Extra> byte if the least-
significant bits of the x- and y-coordinates have
not changed since the last <xy> coordinate sent
to the terminal. If you do send the < Extra> byte,
you must follow it with the <LoY> byte.

Next comes the < LoY> (low-order y) byte. Despite
its name, this byte contains the intermediate five
bits of the 12-bit y-coordinate.

11yyyyy
yyyyy : intermediate five bits of y-coordinate.
You can omit the <LoY> byte provided:

@ you are sending neither the < Extra> byte nor
the < HIX> byte In this <xy> coordinate, and

e the intermediate five bits of the y-coordinate
have not changed since the last <xy>
coordinate sent to the terminal.

Next comes the < HIX> (high-order x) byte. This

DISPLAYING GRAPHIC INFORMATION

5. Finally comes the <LoX> (low-order x) byte. Again,

despite its name, this byte contains the intermedi-
ate five bits of the x-coordinate.

10XXXXX
xxxxx : intermediate five bits of x-coordinate.

This byte is always required, because it serves to
terminate the < xy> byte sequence.

NOTE

The <LoY> and < Extra> bytes each have high-
order bits of 11. Thus the (DEL) character (binary
1111111) is a possible <LoY> or < Extra> byte.
Since some host computers use (DEL) as a filler
character, this could be a problem in some
installations.

The 4114 includes two features for overcoming
this difficulty. First, it treats (ESC)(?) as a syno-
nym for the (DEL) character. Secondly, the 4114
can be set to ignore (DEL) characters. (Use the
< Ignore-deletes> command described in the
4110 Series Command Refsrence Manual.)

It your host computer uses (DEL) as a filler
character, then you should use these features.
Have the host send (ESC)(?) in place of

(DEL) in < xy> parameters, and send an

< ignore-deletes: 1> command to the terminal.

See the 4110 Series Command Reference Manual for
more information on sending <xy> parameters to the
terminal.

byte contains the high-order (most-significant) five
bits of the x-coordinate.

01T xxXXXX
xxxxx : most-significant five bits of x-coordinate.

You can omit the < HIX> byte If the x-coordinate’s
most-significant bits have not changed since the
last <xy> parameter sent to the terminal. If you do
send the < HIX> byte, then you must precede it
with the <LoY> byte.

4114 HOST PROGRAMMER'S @ 5—3

DISPLAYING GRAPHIC INFORMATION

< XY> Syntax Summary

The following summarizes the formal syntax of <xy>
coordinates:

<xXy> = [<HiY>]
[[<Extra>] <LoY>I[<HiX>]]
<LoX>

<HiY> = (SP)or (1) or () or (#) or ($) or (%) or

&) or (Yor (“¢) or (")")or (*) or (+) or
() or (=) or () or (/) or (0) or (1) or

(2) or (3) or (4) or (5) or (6) or (7) or
8 or (9 or (:)or ;) or (<) or(>)or
(7).

{ASCII characters with htgh-order bits
‘", 01 ” }

<Extra> = () or (a) or (b) or (c) or (d) or (e) or
() or (g) or (h) or (i) or (j) or (k) or
(1) or (m) or (n) or (o) or (p) or (q) or
(r) or (s) or () or (u) or (v) or (w) or
(x) or (y) or (z) or ({) or (|) or () or
(~) or (DEL) or (ESC)(?).

{ASCII characters with high-order bits
“11", and with (ESC)(?) as a synonym for
(DEL))

<LoY> = () or(a) or (b) or (c) or (d) or (e) or
(f) or (g) or (h) or (i) or {j) or (k) or
(1) or {m) or (n) or (o) or {(p) or (q) or
(r) or (s) or (t) or (u) or (v) or (w) or
(x) or (y) or () or ({) or (|) or {) or
{~) or (DEL) or (ESC)(?).

{ASCH characters with high-order bits

“11”, and with (ESC)(?) as a synonym for .

(DEL))

5-4

<HiIX> = (SP)or (1) or () or (#) or ($) or (%) or
& or (Y or (“CYor (M) or(*)or(+)or
()or(—=)or()or(Nor()or(1)or

(2) or (3) or (4) or (5) or (6) or (7) or
(8) or (9) or () or ;) or (<) or (>) or

(.

{ASC}II characters with high-order bits
“01",

<LoX> = (@) or(A)or (B) or (C) or (D) or (D) or
(F) or (Q) or (H) or (1) or (J) or (K) or
(L) or (M) or (N) or (O) or (P) or (Q) or
(R) or (S) or (T) or (U} or (V) or (W) or
() or (Y) or (Z) or (D or (\) or Q) or

(ryor(_)
{ASCII characters with high-order bits
“ 1 on.)

CONSIDERATIONS WHEN SENDING
<XY> COORDINATES TO THE TERMINAL

The terminal interprets <xy> coordinates correctly
(rather than displaying them as alphatext) only if at
least one of the following conditions is met:

® The <xy> coordinate is sent as a parameter for an
“@scape sequence” command.

e The terminal is in vector mode, having received an
< enter-vector-mode> command (the (GS) charac-
ter).

o The terminal is in marker mode, having received an
< enter-marker-mode> command (the (FS)
character).

The host program should, therefore, send <xy> coor-

dinates to the terminal only when at least one of those
conditions is met.

4114 HOST PROGRAMMER'S

DISPLAYING GRAPHIC INFORMATION

DRAWING LINES

There are two ways to draw lines on the screen. One
way is by putting the terminal in vector mode and then
sending < xy> coordinates to it. Another way is by
means of < move> and <draw> commands.

VECTOR MODE

As mentioned in Section 1, the 4114 has three main
modes of operation: alpha mode, vector mode, and
marker mode. When the terminal is in alpha mode, it
interprets alphanumeric characters coming from the
host as letters and symbols to be displayed. in vector
and marker modes, however, such characters are
interpreted as < xy> coordinates representing points
in terminal space. In vector mode, the terminal draws
lines (“vectors”) between these points.

Entering and Leaving Vector Mode

The terminal can entsr vector mode from alpha mode,
but not from marker mode. Therefore, if the terminal is
in marker mode, you must first place it in alpha mode.
You do this by sending a (US) character, which
comprises the < enter-alpha-mode> command.

Once the terminal is in alpha mode, send the <enter-
vector-mode> command: the single character, (GS).

To remove the terminal from vector mode, send it an
< enter-alpha-mode> command (the (US) character)
or an < enter-marker-mode> command (the (FS)
character).

The Graphic Beam Position

The 4114 maintains a pointer in its memory to the
current location in terminal space where it will display
graphic information. This pointer is called the graphic
beam position.

4114 HOST PROGRAMMER'S

If the terminal is emulating earlier TEKTRONIX termi-
nals which lack a dialog area (that is, if the dialog area
is not enabled), then the graphic beam position aiso
determines where alphatext will be displayed. (If the
terminal enters alpha mode, the lower left corner of the
next alphatext character will be at the graphic beam
position.)

If the terminal is not emulating earlier terminals (that is,
if the diaiog area is enabied), then aiphatext is directed
to the current cursor location in the dialog area scroll.
In that case, the graphic beam position has no effect on
alphatext.

Drawing Lines in Vector Mode

Once the terminal is in vector mode, it interprets any
ASCII characters in the range from (SP) to (DEL) —
decimal equivalents from 32 to 127 — not as charac-
ters to be displayed, but as < xy> parameters.

While in vector mode, the terminal ignores most of the
ASCII control characters (characters with decimal
equivalents less than 32). The exceptions are: (ESC),
which signals the start of a new command; (BEL),
which sounds the terminal’s bell and makes the next
vector a draw; the (US) and (FS) characters, which
comprise < enter-alpha-mode> and < enter-marker-
mode> commands; and — sometimes — the (CR)
character. If the terminal is emulating earlier TEKTRO-
NIX terminals (dialog area disabled), then the (CR)
character puts the terminai back into aipha mode. if the
terminal is not emulating earlier TEKTRONIX terminals
(dialog area enabled), then it ignores any (CR)
characters It receives while in vector mode.

5-5

DISPLAYING GRAPHIC INFORMATION

Moving the Graphic Beam. While in vector mode, the
terminal interprets an < xy> coming immediately after
a (GS) character as a command to move the graphic
beam to the point specified by the < xy> coordinates.
The current graphic beam position is updated, but
nothing is drawn on the screen.

Drawing Lines. Any subsequent < xy> parameter, not
immediately following a (GS), causes the terminal to
draw a line from the current graphic beam position to
the point specified by the < xy> parameter. The beam
position is updated to refer to the point at the end of
the line just drawn.

The sequence (GS)(BEL)< xy> puts the terminal in
vector mode, sounds the bell, and draws a line to the
point specified by the < xy> coordinate. (This is
described later in this section.)

To make the terminal “lift its pen” (move the beam
without drawing anything), send another (GS). An
<xy> coming immediately after a (GS) moves the
graphic beam, while < xy> s that follow draw lines to
the corresponding points.

An Example

Figure 5-2 shows commands which draw a square with
diagonals. Table 5-1 expands these commands into the
individual ASCII characters which are sent to the
terminal.

5-6

< enter—vector—mode>

<xy: (0,0)>

< xy: (200,0)>

< xy: (200,200) >
<xy: (0,200) >

< xy: (0,0)>

<xy: (200,200) >

< enter —vector—mode>

<xy: (0,200)>
<xy: (200,0)>

(0,200)

(200,200)

0,0)

(200,0)

3675-11

Figure 5-2. A Sample Figure Requiring “Moves” and

“Draws.”
Table 5-1
COMMANDS TO DRAW A SQUARE
WITH DIAGONALS
Command Characters Sent
< enter-vector-mode> (GS)
<xy:(0,0)> (SP)O)(SP) (@)
<xy : (200,0)> MO(R)
<xy : (200,200)> 0ONR)
<xy : (0,200)> (N(SP)(e)
<xy: (0,0)> (SP)(Y(@)
<xy : (200,200)> MMR)
< enter-vector-mode> (GS)
<xy : (0,200)> (n(sP)(a) .
<xy: (200,0)> (SP)OYR)

REV, AUG 1982 .

4114 HOST PROGRAMMER'S

Draws Without Moves: (GS)(BEL)

There are times when you may want to put the terminal
in vector mode and then immediately draw a vector
from the current beam position to some point — despite
the fact that you do not know exactly where the graphic
beam is positioned. To do this, precede the first < xy>
parameter with a (BEL) character. The (BEL) prepares
the terminal for a “draw’” without changing the current
beam position.

For example, in Figure 5-3 the graphic beam is moved
to (0,1000), and an alphatext string is displayed there.
Then a (GS)(BEL)< xy> sequence draws a line from
where the next alphatext character would appear (if the
terminal were to stay in alpha mode) to the point
(2000,1000). (In this example, the < enable-dialog-area:
0> command disables the dialog area. This ensures
that the aiphatext is dispiayed together with the
graphics, rather than being sent to the dialog area.)

< enable—dialog—area: 0>
< enter—vector—mode>
<xy: (0,1000)>
< enter—alpha—mode>
(N)(a)(m)(e)(SP)(:)(SP)
< enter—vector—mode>
(BEL)
< xy: (2000,1000)>

Name :

A
h (0,1000) (2000, 1000)"

3675-12A

Figure 5-3. A “Draw” Without a Preceding ‘‘Move.”

4114 HOST PROGRAMMER'S

DISPLAYING GRAPHIC INFORMATION

<MOVE> AND <DRAW> COMMANDS

Another way to draw lines is with the < move> and
< draw> commands. These commands have the fol-
lowing syntax:

<move> = (ESCHL)(F)< xy>
<draw> = (ESC)(L)(G)< xy>

The < move> command moves the graphic beam
position to the point specified in its <xy> parameter.
The <draw> command draws a line from the current
graphic beam position to the point specified in its

< Xy> parameter.

Notse that the <draw> command is like the
(GS)(BEL)< xy> construct in that it causes an immedi-
ate draw from any location.

These commands do not change the terminal’s operat-
ing mode. if the terminai is in aipha mode when it
receives a < move> or <draw> command, then it is
still in alpha mode after the command has been
executed. Likewise, if the terminal Is in vector mode or
marker mode on receiving a < move> or <draw>,
then it is in that mode after executing the command.

REV, FEB 1963 5-7

DISPLAYING GRAPHIC INFORMATION

ATTRIBUTES OF LINES

LINE STYLE

You can draw lines in different line styles: solid,
dashed, etc. To do this, send the terminal a < set-line-
style> command before drawing the lines. After that
command, all subsequent lines are drawn in the line
style specified by the command.

< Set-Line-Style> Command

The < set-line-style> command has the following
syntax:

< set-line-style> = (ESC)(M)(V)< int>

Figure 5-4 shows examples of the different line styles.

< Set-Line-Width> Command

The < set-line-width> command lets you defocus the
4114’s electron beam, so that it draws lines which are
thicker than normal. The command has the following
syntax:

< set-line-width> = (ESC)(M)(W)< int>

The < int> parameter is zero for normal width lines
and one for broad (defocused) lines.

< Set-4014-Line-Style> Command

The < set-4014-line-style> command is included for
compatibility with software written for earlier TEKTRO-
NIX terminals. This command combines the capabilities
of the < set-line-style> and < set-line-width>
commands. See the 4110 Series Command Reference
Manual for details.

LINE INDEX

The < set-line-index> command allows you to specify
a “line index” for use when drawing subsequent lines.
The line index does not affect how the line is displayed
on the 4114’s screen. However, it does affect how the
line is drawn on an accessory plotter when a < plot>
command is executed. (The < plot> command is
described in the 4110 Series Command Reference
Manual))

4114 HOST PROGRAMMER'S

DISPLAYING GRAPHIC INFORMATION

Line Style
(100,1500) (1000,1500)
< set—line—style: 0> ‘
< enter—vector—mode> 7
<xy: (100,100)> s - - - - Tm T T
<xy: (1000,100)>
< set—line—style: 1> e 6
< enter—vector—mode>
< xy: (100,300) >
<xy: (1000,300) > 5
< set—line—style: 2> T T T T T
< enter—vector—mode>
<xy: (t00,5000> 4
<xy: (1000,3000> = T T T T
_______________________ 3
< set—line—style: 7>
<enter—vector—mode> e i 2
<xy: (100,1500)>
<xy: (1000,1500) >
... 1
f 0
(100,100) (1000,100)
3675-13
Figure 5-4. Line Styles Available In the 4114.
4114 HOST PROGRAMMER'S @ 5-9

DISPLAYING GRAPHIC INFORMATION

MARKERS

Markers are small, predefined, graphic shapes which
the 4114 can display anywhere in its 4096-by-4096
“terminal space.” You can display them in two ways: by
putting the terminal in marker mode and sending

<Xy> coordinates, or by issuing individual < draw-
marker> commands for each marker to be displayed.

MARKER MODE

One way to display markers is as follows:

1. Select the marker type to be displayed. To do this,
send the terminal a <set-marker-typse>> command.

2. Send an < enter-marker-mode> command to the
terminal. (This is just the single ASCII character,
(FS))

3. Send the terminal an < xy> coordinate for each
marker to be displayed.

4. When done, issue an < enter-alpha-mode> com-
mand — the (US) character — to remove the
terminal from marker mode.

< Set-Marker-Type> Command

The < set-marker-type> command has the following
syntax:

< set-marker-type> = (ESC)(M)(M)< int>
Here, the <int> parameter may be in the range from

zero to ten to select any of eleven predefined markers
provided with the 4114,

5-10

Entering and Leaving Marker Mode

To put the terminal in marker mode, send it an (FS)
character; this comprises the < enter-marker-mode>
command.

While the terminal is in marker mode, (GS) characters
(< enter-vector-mode> commands) have no effect.
Therefore, the only way to remove the terminal from
marker mode is to place it in alpha mode. This is
usually done by sending a (US) character, which
comprises the < enter-alpha-mode> command.

Example

Figure 5-5 shows commands which cause the terminal
to display markers in each of the eleven predefined
marker types.

THE <DRAW-MARKER> COMMAND

Another way to display a marker is to send the terminal
a <draw-marker> command:

< draw-marker> = (ESC)(L)(H)< xy>

This causes the terminal to display one marker, of the
current marker type, at the position specified by the
command'’s <xy> parameter. The graphic beam posi-
tion is updated to the position specified by the < Xy>
coordinate.

When the terminal has finished executing the < draw-
marker> command, it returns to the mode it was in
before executing that command. For instance, If the
terminal was in alpha mode when it received the
<draw-marker> command, then it is in alpha mode
after displaying the marker, and likewise for vector and
marker modes.

4114 HOST PROGRAMMER'S

DISPLAYING GRAPHIC INFORMATION

< set—marker—type: 0> Marker Type
< enter—marker—mode>
<xy: (100,1200)> o 0
<xy: (200,1200)> .
<xy: (300,1200)>
< set—marker—type: 1> +
<xy: (100,1100)> x
<xy: (200,1100)>
< xy: (300,1100)> 0O
< set—marker—type: 2>
X
J
(o
&

x
x

<xyv: (100,1000)>
< xy: (200,1000)>
<xy: (300,1000)>

© O N O O h DN =

< set—marker—type: 10> @
<xy: {100,100)>
<xy: (200,100)>
<xy: {300,100)>

< enter—alpha—mode>

B EO OXO *x +
Be TC OxO *x +

-
o

3675-14

Figure 5-5. Displaying Markers.

4114 HOST PROGRAMMER'S @ 5-11

Section 6

SEGMENTS

INTRODUCTION

DEFINITIONS

Segmsnits {short for “picture segments”) are graphic
objects which can be manipulated by commands to the
terminal. Each segment is referenced by its name,
which is a number in the range from 1 to 32767.

For instance, suppose segment one has been defined
to be a square with diagonals. Once segment one has
been defined, you can issue commands to change its
apnsesarance and position. You can rotate and scale it
about its “pivot point,” move it from one position to

another in terminal space, make it invisible (“turn it

off”), cause it to “blink” on and off, and even use it as
the graphic cursor for GIN (graphic input) operations.

Each segment has a pivot point, which is set at the time
the segment is created. It is the pivot point within a
segment which serves to define the segment’s position.
Thus, a < set-segment-position> command to position
segment one at the point (100,500) actually positions
only the pivot point for that segment at the point
(100,500).

The pivot point is also the point about which scaling
and rotation occurs. These operations are described
later, under “Scaling and Rotation.” :

CREATING A SEGMENT

The < begin-segment> and < end-segment> com-
mands mark the beginning and end of a segment
definition. The syntax for these commands is as
follows:

< begin-segment> = (ESC)(S)(0O)
< int: segment-number>

< end-segment> = (ESC)(S)(C)

4114 HOST PROGRAMMER'S

Figure 6-1 shows commands which create a simpie
segment. (All these commands are described in more
detali in the 4110 Series Command Reference Manual.)

This segment, segment one, is a square with diagonals,
200 units on a side. Its pivot point is at (100,100), the
center of the square, where the diagonals intersect.

< set—pivot~poini: {i00,100)>
< delete—segment: 1>
< begin—segment: 1>
< enter—vector—mode>
<xy: (0,0)>
<xy: (200,0)>
<xy: (200,200)>
<xy: (0,200)>
<xy: (0,0)>
<xy: (200,200)>
< enter—vector—mode>
<xy: (0,200)>
<xy: (200,0)>
< end—segment >

{0,200)

©,0) {200,0}

3875-15

Figure 6-1.Segment One, A Square With Diagonals.

6-1

SEGMENTS

In Figure 6-1, the < set-pivot-point> command is
issued before the < begin-segment> command. This is
necessary because, once a segment has been defined,
its pivot point cannot be changed. A < set-pivot-point>
command, therefore, affects only the pivot points of
segments which are defined after that < set-pivot-
point> command.

The < delete-segment> command deletes any “seg-
ment one” which might already exist. This is necessary
because one cannot create a new segment with a
segment number equal to that of an existing segment.

If segment one does not exist, and the terminal’s error
threshold is set to one or less, then the < delete-
segment> command causes the terminal to display a
type SK10 warning message: “Existence Problem in
Parameter 1 of (ESC)(S)(K) Command.” You can sup-
press this message by setting the error threshold to 2
or more. For details, see the description of the < set-
error-threshold> command in the 4110 Series
Command Reference Manual; see also Appendix C,
“Error Codes,” in that manual.

The < begin-segment> and < end-segment> com-
mands begin and end the segment definition. Any
commands which occur between those two commands
are included in the definition of the segment. Figure 6-1
has < enter-vector-mode> commands and < xy>
coordinates which perform moves and draws to create
the square and its two diagonals.

See the 4110 Series Command Reference Manual for
detalled descriptions of the < set-pivot-point>,

< begin-segment>, < end-segment>, and < delete-
segment> commands. There you will find the details of
the command syntax, which you can use to write
subroutines to issue these commands.

The <begin-higher-segment> command provides an alter-
nate method for creating segments. This command closes
the segment currently being defined and begins a new seg-
ment with a segment number that is one greater than the
segment just closed. The pivot point and position of the new
segment is set to the current beam position. The < begin-
higher-segment > command does the work of several com-
mands. Note that a segment must be in the process of being
defined when this command is issued. The current pivot
point and default segment position are not changed by this
command.

The <begin-lower-segment> command works like the
< begin-higher-segment > command except that segment
number decreases by one, rather than increases.

6-2 REV, OCT 1982

The <begin-new-segment> command also works similarly
to the <begin-higher-segment> command. Rather than in-
crementing the segment number by one, < begin-new-
segment> lets you specify a segment number for the new
segment.

INCLUDING OTHER SEGMENTS IN A
SEGMENT DEFINITION

When defining a segment, you can include a copy of
another segment in the segment definition. To do this,
use the <inciude-copy-of-segment> command:

< include-copy-of-segment>
= (ESCHLYK) < int: segment-number>

This command causes an image of the specified
segment, in its current position, to be included as part
of the segment being defined.

Figure 6-2 illustrates the process. In the figure, < set-
segment-position> and < set-segment-image-trans-
form> commands are used to reposition segment one
before inluding copies of segment one in the definition
of segment two. The < set-segment-position> and

< set-segment-image-transform> commands are de-
scribed later in this section.

RETAINED AND NON-RETAINED
SEGMENTS

In the computer graphics literature, you may find the
terms retained segment and non-retained segment.
Retained segments are segments which are retained in
memory (by the host computer or by the terminal) after
they have been drawn. All the 4114’s segments are
retained segments.

The so-called non-retained segment consists of all
graphics which are drawn but are not retained. For the
4114, this is everything not included within the defini-
tion of a numbered segment.

Graphics not stored in segments (that is, graphics in
the so-called non-retained segment) are lost whenever
a <page> or <renew-view> command (or the PAGE
key) erases the screen.

4114 HOST PROGRAMMER'S

SEGMENTS

< begin—segment: 2>
< sot—line—style: 2>
< enter—vector—mode>
<xy: (0,0)>
<xy: (2000,1000)>
<xy: (1000,3000)>
<xy: (0,0)>
< set—segment—position: 1,(2000,1000)>
<include—copy-—of—segment: 1>
< set—segment —position: 1,(1000,3000)>
<include—copy—of—segment: 1>
< sei—segment—image—transform: 1,2.0,2.0,30.C
<include—copy—of—segment: 1>
< set—segment—position: 1,(2500,2500)>
<Include—copy—of—segment: 1>
<end—segment>

(3

000,3000)>

o

(1000,3000) [
/

e

E«—(zooon 000)

(3000,3000)

(2500,2500)

\

3675-16

Figure 6-2. Including One Segment in the Definition of Another.

Graphics stored In segments, however, are not lost
when a <page> occurs. Instead, after erasing the
screen, the terminal redraws all graphics stored in
visible segments. (if you want a segment to disappear
when you erase the screen, you can make it invisible .
with the < set-segment-visibility> command, de-
acribed later in this section. Or, you can delete the
segment — Issue a < delete-segment> command)

4114 HOST PROGRAMMER'S

'REV,OCT 1982 -

STATIC AND DYNAMIC ATTRIBUTES

Those attributes, or properties, of a segment which
cannot be changed once the segment has been defined
are called static attributes of the segment. Those
attributes which can be changed after segment defini-
tion are called dynamic segment attributes.

6-3

SEGMENTS

STATIC ATTRIBUTES

PIVOT POINT

There is just one static segment attribute: the pivot
point. Once a segment has been defined, its pivot point

Table 6-1

GRAPHIC PRIMITIVES AND PRIMITIVE ATTRIBUTES

cannot be changed. (To set a segment's pivot point, you

must issue the < set-pivot-point> command before Graphic Primitive Related
defining the segment. A < set-pivot-point> command Primitives Attributes Commands
issued after the segment is defined affects only Lines | comeeee <Enter-vector-
segmentg defined later.) mode> , <xy>,
The pivot point is important when moving a segment: <Move>, <Draw>
changing its position in terminal space, rotating it, or
changing its size. A segment's "‘position” is defined by Line Style <Set-line-style>
the position of its pivot point. Also, the pivot point is the Line Index < Set-line-index>
only point of the segment which does not move when
the segment is scaled in the x- and y-directions or Line Width < Set-line-width>
rotated. These operations are described later in this
section, under “Position” and “Scaling and Rotation.” Graphtext | -----—-- < Graphic-text>
They are also described in the Command Reference
Manual, under the < set-segment-position> and < set- Graphtext size < Set-graphtext-
segment-image-transform> commands. size>

Graphtext font < Set-graphtext-
PRIMITIVE ATTRIBUTES font>
A segment’s pivot point, howe_ler, is not thp only thing QGraphtext precision | < Set-graphtext-
about a segment which is static. All graphic primitives precision>
within a segment (lines, graphtext font, graphtext size,
alphatext font, etc.) are static, unchangeable parts of Graphtext rotation | < Set-graphtext-
the segment. That is, once a segment has been created, rotation>
it cannot be edited; it can only be deleted and defined
again. Text index < Set-text-index>
Any attributes of the graphic primitives within a Alphatext | -ee-ee- <Enter-alpha-
segment are also static and unchangeable. For ' mode>
instance, the lines within a segment are graphic
primitives; the line styles used to draw those lines are Aiphatext size < Set-alphatext-
attributes of those lines. Thus, if a segment is defined size>, <Set-4014-
with its lines drawn in line style two (dashed lines), alphatext-size>
then it will always be drawn with its lines in that style. text-size>
Again, graphtext within a segment is deemed to be a Alphatext font < Set-alphatext-
graphic primitive. The graphtext font and graphtext size font>
are attributes of the graphtext graphic primitive. As
primitive attributes, they are static, unchangeable parts Text index < Set-text-index>
of the segment. Thus, if a segment is defined with
graphtext in a certain graphtext font and a certain size, Markers o <Enter-marker-
then it will always be drawn with that graphtext in that mode>, <xy>
font and that style. Marker type < Set-marker-type>
Table 6-1 lists the graphic primitives and their primitive Line index <Set-line-index>

attributes, together with the commands which embed

those primitives and primitive attributes in a segment.
Once a segment has been defined, the primitives and
primitive attributes in Table 8-1 are static, unchange-
able parts of the segment.

64 REV, OCT 1982

4114 HOST PROGRAMMER'S

Information about the commands in Table 6-1 can be
found, in alphabetical order, in the 4110 Series Com-
mand Reference Manual. Descriptions of the com-
mands can also be found in various sections of this
manual:

Section 4: < set-alphatext-font>
< set-alphatext-size>
< set-4014-alphatext-size>

SEGMENTS

Section 5: < enter-vector-mode>

<mgove>
<draw>
< set-line-style>

Section 7: < graphic-text>

< set-graphtext-font>

< set-graphtext-size>

< set-graphtext-rotation>
< set-graphtext-precision>

DYNAMIC SEGMENT ATTRIBUTES

The dynamic attributes of a segment are those attri-
butes, or qualities, which can be changed after the
segment is defined. These attributes are: position,
scale factors, rotation, visibility, writing mode, highiight-
ing, detectability, display priority, and segment class.

POSITION

When a segment is defined, its “position” is the same
location in the terminal’s 4096-by-4096 coordinate
space as its pivot point. In the example earlier in this
section, segment one was a square with diagonals,
defined with the pivot point at the center of the square
— the point (100,100). Thus, the initial position of
segment one is also the point (100,100).

4114 HOST PROGRAMMER'S

The < set-segment-position> command moves the
segment so that its pivot point is displayed at some
new position. (If the segment was originally drawn in
storage mode, then the oid image remains on the
screen. When a < page> command — or the PAGE key
— erases the screen, the segment is redispiayed at its
current position; the screen erasure eliminates the old
image.)

The < set-segment-position> command has the
following syntax:

< set-segment-position> = (ESCHS)(X)<xy>
Here, the < xy> parameter names the point in terminal

space where the segment’s pivot point is to be
displayed.

6-5

SEGMENTS

Figure 6-3 demonstrates the < set-segment-position> segment is moved so that the pivot point is displayed at
command. In Part A of the figure, the segment is (1000,1000); then the screen is erased (< page>
defined with the pivot point at (100,100). In Part B, the command) in order to eliminate the old image.

< set—pivot—point: (100,100)> Yo AN

< delete—segment: 1>
< begin—segment: 1>
< enter—vector—mode>
<xy: (0,0)>
<xy: (200,0)>
<xy: (200,200)>
<xy: (0,200)>
<xy: (0,0)>
<xy: (200,200)>
< enter—vector—mode>
<xy: (0,200)>
<xy: (200,0)>
< end—segment>

P
e L HA3ER Lk

A. Defining a Segment.

¥ o X
< set —segment—position: 1,(1000,1000)> AXIS

3
< page> 1
(1000,1000)— T/

Lo 40
/’/
s

o K-AXIS

B. Repositioning the Segment.

3675-17

Figure 8-3. Effect of the < Set-Segment-Position> Command.

6-6 REVY, JUL 1981- 4114 HOST PROGRAMMER'S

Figure 6-4 shows what happens when you move a
segment to the edge of the screen. That part of the

SEGMENTS

segment which is to the left of X=0 (or to the right of
X=4095) is not displayed.

< set—pivot—point: (100,100)>

¥-AXiE

< delete—segment: 1>
<begin—segment: 1>
< enter—vector—mode>
<xy: (0,0)>
<xv: (200,0)>
<xy: (200,200)>
<xy: (0,200)>
<xy: (0,0)>
<xy: {200,200)>
< enter—vector—mode >
<xy: (0,200)>
<xy: {(200,0)>
< end—segment>

/| _—1100.100)

» X-AXIS

A. Defining a Segment.

¥-AXIS

< set—segment —position: 1,(0,0)> i

<page>

The part of the segment {0 the

left of x=0 is not displayed. \

B. Repositioning the Segment.

(0.0

» X-AXIS

3675-18

Figure 8-4. Positioning a Segment at the Edge of the Screen.

4114 HOST PROGRAMMER'S

REV, JUL 1981 6-7

SEGMENTS

SCALING AND ROTATION

The < set-segment-image-transform> command per-
forms three operations on a segment: scaling, rotation,
and positioning. The syntax of this command is as
follows:

< set-segment-image-transform>
= (ESC)(S)(l) <int> < real> < real> < real> < xy>

Here, the first parameter is an <int> specifying the
segment number, the second and third parameters are
the x- and y-scaling factors, the fourth parameter is the
rotation angle in degrees, and the fifth parameter
specifies the point at which the segment is positioned
after the scaiing and rotation has been performed.

First, the segment is scaled in the x- and y-directions
about its pivot point. That is, the pivot point is the
invariant point for the scaling operation — the only
point which does not “move” because of the x- and y-
scaling.

Second, the segment is rotated about its pivot point by
the number of degrees given in the “‘rotation” parame-
ter.

Finally, the segment is positioned (translated) so that
its pivot point is displayed in the location specified by
the final <xy> parameter. (if you only want to change
a segment’s position without affecting the other image
transform parameters, use the < set-segment-
position> command rather than the < set-segment-
image-transform> command)

All three operations begin with the segment as it was
originally defined. That is, they are “‘absolute” rather
than “relative” operations.

Examples

Figure 6-5 shows commands which do the following,
and the effects of those commands:

1. Define a segment: segment one, a square of side
200 with diagonals, pivot point at (100,100).

2. Scale segment one in the x-direction by a factor of
three, and position it at its original position:
(100,100). Then page the screen to remove the old
image of the segment.

3. Scale segment one in the y-direction by a factor of
three, move it to (1000,1000), and then page the
screen to remove the old image.

6-8

)

Figure 6-6 shows more examples, continuing from
those of Figure 6-5:

4. Scale segment one in the x-direction by a factor of
2.0 and in the y-direction by a factor of 3.0; rotate
it counterclockwise by 30 degrees; position it at
(1000,1000). Then erase the screen to remove the
old image.

5. Scale segment one in the x-direction by a factor of
0.0 and in the y-direction by a factor of 4.0; rotate
it clockwise by 30 degrees (counter-clockwise by
—30 degrees); position it at (1000,1000). Then
erase the screen to remove the old image.

VISIBILITY

You can make a segment visible or invisible with the
< set-segment-visibility> command:

< set-segment-visibility> = (ESC)(S)(V)<Int> <int>

Here, the first <int> is the segment number. The
second < int> is one to make the segment visible, or
zero to make the segment invisible. An invisible
segment is retained in memory but is not redisplayed
when the screen is erased.

For more detalils, see the description of the < set-
segment-visibility> command in the 4110 Series Com-
mand Reference Manual.

WRITING MODE

The < set-segment-writing-mode> command lets you
control whether a segment is to be displayed in storage
mode on the direct view storage tube, or in refresh
mode. The command has this syntax:

< set-segment-writing-mode>
= (ESC)(S}(M)< int> < int>

Here, the first <int> is the segment number, while the
second < int> specifies the writing mode: one for
storage mode, or two for refresh mode.

For more details, see the description in the 4110 Series
Command Reference Manual of the < set-segment-
writing-mode> command.

4114 HOST PROGRAMMER'S

SEGMENTS

< set—plvot—point: (100,100)>
< delete—-segment: 1>
< begin—segment: 1>
< enter—vector—mode>
<xy: (0,0)>
<xy: (200,0)>
< xy: (200,200)>
<xy: (0,200)>
<xy: (0,0)>
<xy: (200,200)>
< enter—vector—mode>
<xy: (0,200)>
<xy: (200,0)>

'y
Y-AXIS

/ (100,100)

Ve
<end—segment> X-AXIS
< set-—-segment—image—transform: 1,3.0,1.0,0.0,(100,100)> 4 Y-AXIS
< page>
/(1 00,100)
X-AXIS
- - - . A L7
: ::tg " ;egment image—transform: 1,1.0,3.0,0.0,{1000,1000)> Y-AXIS /
(1000,1000)
X-AXIS
N srs-18
Figure 8-5. Examples of < Set-Segment-image- Transform> Command.
4114 HOST PROGRAMMER'S @ 6-9

SEGMENTS

< set-segment—image—transform: 1,2.0,3.0,30.0,(1000,1000)>
< page>

Y-AXIS

- (1000,1000)

> X-AXIS

< set—segment—image—transform: 1,0.0,4.0,—30.0,(1000,1000)>
< page>

(1000,1000)
Y-AXIS T~

)

> X-AXIS

3675-20

Figure 8-6. More Examples of < Set-Segment-image- Transform> .

6-10 @ 4114 HOST PROGRAMMER'S

HIGHLIGHTING

You can draw the operator’s attention to a segment by
causing it to “blink” on and off (alternately become
visible and invisible). To do this, use the < set-
segment-highlighting> command:

< set-segment-highlighting>
= (ESC)(S)(H)< Int> <int>

Here, the first <int> is the segment number. The
second < int> is one if the segment is to be highlight-
ed, zero if the highlighting feature is to be turned off.

Highlighting is especially effective if the segment is
displayed in refresh mode. '

For more details, see the description in Section 9 of the
< set-segment-highlighting> command.

DETECTABILITY

A segment’s “detectability” attribute determines
whether or not the segment can be “picked” during a
graphic input “pick” operation. For more details, see
Section 8, which describes graphic input; see also the
descriptions of the <enable-GIN> and < set-segment-
detectability>> commands in the 4110 Series Com-
mand Reference Manual.

The < set-segment-detectability> command has this
syntax:

< set-segment-detectability>

= (ESC)}(S)(D)< int> < int>

The first <int> parameter is the segment number. The
second < int> is one if the segment is to detectable
(pickable), and zero if it is not to be detectable.

4114 HOST PROGRAMMER'S

SEGMENTS

DISPLAY PRIORITY

A segment’s “display priority” is a number which
determines the order in which segments are redrawn
when the screen is erased and the order in which
segments are traversed during a graphic input “pick”
operation. The display priority may be any integer in
the range from —32768 to + 32767. On power-up, the
default display priority for new segments is zero.

When segments are redrawn after the screen is erased,
segments with high display priority are drawn before
those with lower priority.

During a graphic input pick operation, the highest-
priority segments are examined first. That way, if parts
of several segments fall within the pick aperture, the
highest-priority segment is the one which is picked.

The < set-segment-display-priority> command has
this syntax:

< set-segment-display-priority>
= (ESCHS)(S)<int> < int>

The first <int> parameter is the segment number. The
second parameter is the display priority.

6-11

SEGMENTS

SPECIAL SEGMENT NUMBERS

All the segments which you define (with the < begin-
segment> and < end-segment> commands) must
have segment numbers in the range from 1 to 32767.
However, in the commands which change the dynamic
attributes of segments, you can use four other special
segment numbers: 0, —1, —2, and —3.

SEGMENT ZERO

“Segment Zero” is the crosshair graphics cursor. The
crosshair cursor is generated by special circuitry
within the terminal, and you cannot manipulate it i all
the ways that other segments can be manipulated. You
can move the crosshair cursor by specifying segment
zero in the < set-segment-position> command. How-
ever, you cannot rotate or scale the crosshair cursor,
so “segment zero” is not allowed as a parameter in the
< set-segment-image-transform> command. To see
whether segment number zero is allowed for a particu-
lar command, refer to that command'’s description in
the 4110 Series Command Reference Manual.

SEGMENT MINUS ONE

“Segment Minus One” means "all segments currently
defined.” (That is, all segments with numbers from 1 to
32767; segment zero is not included.) For instance,
you can make all segments invisible by specifying
segment minus one in a < set-segment-visibility>
command:

< set-segment-visibility: —1,0>

Likewise, you can position all segments at a given
point, force all segments to be displayed in storage
mode, and highlight all segments:

< set-segment-position: —1, (1000,1000)>
< set-segment-writing-mode: —1, 1>
< set-segment-highlighting: —1, 1>

No doubt other examples will occur to you. To see
whether “segment minus one” is allowed as a parame-
ter for a particular command, see that command’s
description in the 4110 Series Command Reference
Manual.

NOTE

Commands to change the attributes of “segment
—1" are not allowed if any segment is currently
being defined.

3

SEGMENT MINUS TWO

“Segment Minus Two”’ means “the default for all
segments not yet defined.” That is, if you want to
control a segment’s visibility, or writing mode, or
whatever, even before that segment is created, you can
use a command specifying segment minus two before
the < begin-segment> command which starts the
definition of that segment.

For example, the following commands cause a segment
to be defined and to be displayed only after the
segment definition 1s compiete:

< set-segment-visibility: —2, 0>
< begin-segment: 1>
< enter-vector-mode>
< Xy>
< xXy>

< enter-vector-mode>
< Xy>
< Xy>

< end-segment>
< set-segment-visibility: 1, 1>

Using “segment minus two,” you can specify default
values (for new segments) of the following dynamic
segment attributes: detectability, display priority,
highlighting, visibility, position, and writing mode. (You
can also set the “segment classes” to which new
segments belong; this section discusses “segment
classes” later in more detail.)

SEGMENT MINUS THREE

“Segment Minus Three”” means “all segments in the
current segment matching class.”

To understand “current segment matching class,” you
must understand the concept of “segment classes,”
which is the next topic in this section.

4114 HOST PROGRAMMER'S

SEGMENTS

SEGMENT CLASSES

INTRODUCTION

You can classify segments into as many as 64 different
“segment classes” or sets of segments. (The segment
classes are numbered from 1 to 64)

Once you have put segments in those classes, you can
manipulate whole classes of segments with only a few
commands, rather than issuing separate commands to
manipulate every one of the affected segments.

For example, you can make all segments in class 13
invisible. Or, you can highlight all segments which
belong to class 1 and class 2, but do not belong to
class 3.

In a electronic drafting application, segment class 1
might inciude aii segments which represent resistors.
Segment class 2 might include all the segments
representing capacitors. Segment class 9 might in-
clude all segments representing “‘new” components
(components added during the last engineering
change).

You might then issue a command to set the “current
segment matching class” to include all segments
representing resistors added during the last engineer-
ing change. This would be a < set-current-matching-
class> command specifying that “segment —3”
means “all segments which belong to segment class 1
and also belong to segment class 9.”

With the “current segment matching class” set that
way, you could then issue a command to highlight all
segments in the current matching class (that is, to
highlight all resistors added during the last engineering
change). This would be a < set-segment-highlighting:
—3, 1> command.

4114 HOST PROGRAMMER'S

PROCEDURE FOR USING SEGMENT
CLASSES

To use the terminal’s “segment class” features, do the
following:

1. Use the < set-segment-class> command to assign
segments to segment classes. Each segment class
includes exactly those segments which have been
assigned to it with the < set-segment-ciass> v
command. There may be as many as 64 segment
classes, numbered from 1 to 64.

2. Use the < set-current-matching-class> command
to define the segment matching class. The current
matching class is defined in terms of other (num-
bered) segment classes. (You cannot place a
segment directly in the matching class; however,
you can place it in a numbered class, and then
define the segment matching class so as to include
all segments in that numbered segment class.)

3. In commands to set segment attributes, you can
refer to all segments in the current matching class
by using the special segment number, —3.

< SET-SEGMENT-CLASS>
COMMAND

To place a segment in a segment class (or remove it
from a segment class), you use the < set-segment-
class> command. This command has the following
syntax:

< set-segment-class>
= (ESC)(S)(A) <int> <int-array> < int-array>

The first parameter, an <int> parameter, is the
segment number.

The second parameter, an < int-array>, is the “removal
array.” It lists the segment classes from which the
specified segment is to be removed.

The third parameter, another <int-array>, is the
“addition array.” It lists the segment classes to which
the specified segment is to be added.

The operation of the < set-segment-class> command
is as follows. The segment specified In the first
parameter is removed from (made a non-member of) all
the segment classes listed in the removal array. Once
that is done, the segment is added to (made a member
of} all the classes listed in the addition array.

- 6-13

SEGMENTS

For instance, to make segment one a member of
exactly classes 1, 5, and 7, you could issue the
following command:

< set-segment-class: 1, (—1), (1,5,7)>

= (ESC)(S)(A) <int: 1>
<int-array: (—1)> <int-array: (1,5,7)>

= (ESC)(S)(A) (1) (1)(1) (B)(1)(5)(7)

Here, segment one is first removed from “segment
class —1,” that is, from all segment classes. Then it is
made a member of segment classes 1,5,and 7.

If you want to remove segment one from segment class
5, but make it a member of class 6, vou can issue the
following command:

< set-segment-class: 1, (5), (6)>

= (ESC)(S)A)<int: 1>
< Int-array: (5)> <int-array: (6)>

= (ESC)(S)(A) (1) (1)(5) (1)(6)

Here, the removal array has one class number, namely
5. The addition array also has one class number,
namely 6. Thus segment one is removed from class 5
and added to class 6. It now belongs to exactly classes
1,6,and 7.

Using Special Segment Numbers

In the < set-segment-class> command, you can use
the special segment numbers —1, —2, and —3. For
instance, you can include all segments in segment
class 9 as in the following command:

< set-segment-class: —1, (empty array), (9)>
= (ESC)(S)(A)<int: —1>

<int-array: empty>
<int-array: (9)>

= (ESCHS)(A) (1) (0) (1)(9)

Here, the first parameter specifies segment —1, mean-
ing “all segments.” The removal array is empty, so the
command does not remove “all segments” from any
class. The addition array holds a single class number,
9; thus all segments are added to class 9.

6-14

Again, by specifying segment —2, you can cause any
segments which may be defined later to be members of
certain segment classes. (On power-up, “segment —2"
— the default for new segments — does not belong to
any segment class.)

For example:

< set-segment-class: —2, (—1), (1,2,3)>
< begin-segment: 1>
< enter-vector-mode>
<Xy>
< Xy>

< enter-vector-mode>
<Xy>
<Xy>

< end-segment>
< begin-segment: 2>

< end-segment>
< set-segment-class: —2, (1,2), (4,5,6)>
< begin-segment: 3>

< end-segment>

Here, the first < set-segment-class> command re-
moves “segment —2" from all segment classes, and
then adds it to classes 1, 2, and 3. Since “segment —2"
means “the default for new segments,” when segments
1 and 2 are created, they are automatically included in
segment classes 1, 2 and 3.

The next < set-segment-class> command removes
“segment —2" from classes 1 and 2 and then adds it to
classes 4, 5, and 6. Thus, when segment 3 is defined, it
automatically becomes a member of segment classes
3,4,5,and 6.

4114 HOST PROGRAMMER'S

By specifying segment —3 in the < set-segment-
class> command, you can cause all segments in the
current matching class to be added to or deleted from
specified numbered segment classes. For example,
consider the following command:

< set-segment-class: —3, (4,5,6), (1,2,3)>

= (ESC)(S)}(A)<int: —3>
<int-array: (4,5,6)> <int-array: (1,2,3)>

= (ESC)(S){A) #) (3}(4)(5)(6) (3)(1)(2)(3)

Here, the segment number is —3, meaning “ali seg-
ments in the current matching class.” The removal
array holds the class numbers 4, 5, and 6, while the
addition array holds class numbers 1, 2, and 3. This
command causes all segments in the current matching
class tc be removed from classes 4, 5, and 6 and
added to classes 1, 2, and 3.

<SET-CURRENT-MATCHING-CLASS>
COMMAND

The current segment matching class is defined by the
most recent < set-current-matching-class> command.
That command has the following syntax:

< set-current-matching-class>

= (ESC)(S)(L)
<int-array>
<int-array >

The first < int-array> parameter is the “inclusion
array.” The second <int-array> parameter is the
“exclusion array.”

The < set-current-matching-class> command sets the
current segment matching class so as to be the class
of all segments which belong to all classes in the
inclusion array, but which do not belong to any classes
in the exclusion array.

4114 HOST PROGRAMMER'S

SEGMENTS

This can be expressed mathematically as follows. Let
segment ciasses A, A,, .., A_ be the ciasses whose
class numbers are listed in the inclusion array. Let
segment classes B,, B,, .. ., B, be the segment classes
whose numbers are listed in the exclusion array. Let
segment class C be the current segment matching
class. Then segment class C is the intersection of
classes A, to A with the complements of classes B, to
B_:

n

C=ANA,N..NANBNB,N...nB

For instance, consider the following command:
< set-current-matching-class: (1,2,5), (3,7,9)>

= (ESC)(S)(L)
<int-array: (1,2,5)> <int-array: (3,7,9)>

= (ESC)(S)(L) (3)(1)(2)(5) (3)(3)(7)(9)

This command defines the current matching class as
follows: the class of aii segments which belong to
classes 1, 2, and 5, and which do not belong to any of
the segment classes 3, 7, and 9. That is, the current
matching class is the intersection of classes 1, 2, and 5
with the complements of classes 3, 7, and 9.

ADDITIONAL INFORMATION

For more information on segment classes, see the
descriptions in the 4110 Series Command Reference
Manual of the < set-segment-class> and < set-cur-
rent-matching-class> commands.

REV, JUL 1981 6-15

Section 7

GRAPHTEXT

DISPLAYING GRAPHTEXT

This section describes how to display graphtext and
how to define your own characters in graphtext fonts.

There are two ways of displaying text together with
graphics on the terminal’s screen:

the 4114 is capable of displaying alphatext together
with graphics. However, to do this, ihe diaiog area
must be disabled (< dialog-area-enable: 0> com-
mand). (If the dialog area is enabled, all alphatext is
directed to the dialog area.)

o A better way to display text together with graphics is
by means of the < graphic-text> command. Text
included in a < graphic-text> command is called
graphtext. Graphtext is never displayed in the dialog
area, regardliess of whether the dialog area is
enabled.

4114 HOST PROGRAMMER'S

<GRAPHIC-TEXT> COMMAND

The < graphic-text> command has this syntax:

< graphic-text>
= (ESC)(L)(T)< string: text-to-be-displayed>

The text to be displayed is sent to the terminal as a

< string> parameter. Since <string> s are <char-
array> s, the only characters which may be displayed
are those which are valid <char> parameters: the
ASCII characters from (SP) to (~) — decimal equiva-
lents from 32 to 126. Characters outside this range are
ignored if they occur within a <string> parameter.

The first character of the text string is displayed with
its lower left corner at the current graphic beam
position. Figure 7-1 shows the effect.

71

GRAPHTEXT

The < graphic-text> command displays its graphtext If displaying a character moves the graphic beam out of

with the lower left corner of the text string at the terminal space, that character (and the rest of the
current graphic beam position. As each character of string) is not displayed, and the graphic beam position
the string is displayed, the graphic beam position is does not change.

moved to the lower left corner of the next character
cell. At the end of the < graphic-text> command, the
graphic beam position is just beyond the end of the
graphtext string.

< enter—vector—mode>

<xy> Draw picture.
< Xy>

<move: (350,2912)>
a < graphic—text: “A”>
<move: (469,288) >
< graphic—text: “B”>

> Label the points with
<graphic —text> commands

<move: (973,1231)>
< graphic—text: “H (Orthocenter)”>

J

H (Orthocenter)

3675-21A

Figure 7-1. Effect of <Graphic-Text> Command.

7-2 REV,JUL 1881 4114 HOST PROGRAMMER'S

GRAPHTEXT

< SET-GRAPHTEXT-SIZE> COMMAND The three < int> parameters are in terminal space
units. The width and height must be in the range from 1

The < set-graphtext-size> command lets you set the to 4095, while the spacing may range from O to 4095.

width, height, and spacing of graphtext characters. The

command has the following syntax: Figure 7-2 shows the effect of this command. In this

figure, a < set-graphtext-size: 50,100,25> command
was sent just before the < graphic-text: “H (Orthocen-
ter)”> command.

< set-graphtext-size> = (ESC)(M)(C)
<int: character-width>
<int: character-height>
< int: inter-character-spacing>

< set —graphtext—size: 50,100,25>

character width

character height
inter-character spacing CHARACTER WIDTH
A
CHARACTER
HEIGHT
E INTER-CHARACTER
SPACING

3675-22

Figure 7-2. Effect of < Set-Graphtext-Size> Command.

4114 HOST PROGRAMMER'S REV, JUL 1981 7-3

GRAPHTEXT

<SET-GRAPHTEXT-ROTATION>
COMMAND

The < set-graphtext-rotation> command lets you
specify the counterclockwise rotation angle (in de-
grees) for all subsequent graphtext strings. (A negative
rotation angle causes clockwise rotation.) The com-
mand has the following syntax:

< set-graphtext-rotation>
= (ESC)M)(R) < real: angle-in-degrees>

Figure 7-3 shows the effect. In the figure, a <set-
graphtext-rotation: 30.0> comand was sent just before
the < graphic-text: “H (Orthocenter)”> command.

< SET-GRAPHTEXT-PRECISION>
COMMAND

The < set-graphtext-precision> command sets the
precision level for subsequent graphtext. The command
has the following syntax:

< set-graphtext-precision> = (ESC)(M)(Q)< int>

The < int> parameter is 2 for stroke precision and 1
for string precision. Figure 7-4 shows the command's
effect. String precision graphtext (and alphatext) can-
not be rotated, nor can its size be changed with the

< set-graphtext-size> command. (Instead, use the

< set-alphatext-size> command.)

The < set-graphtext-font> command, described later
in this section, does not affect string precision graph-
text.

< set —graphtext—rotation: 30.0>

3875-23

Figure 7-3. Effect of < Set-Graphtext-Rotation> Command.

4114 HOST PROGRAMMER'S

GRAPHTEXT

A. STROKE-PRECISION GRAPHTEXT.

H (Orthocenter)

B. STRING-PRECISION GRAPHTEXT.

3075-24

Figure 7-4. Effect of < Set-Graphtext-Precision> Command.

4114 HOST PROGRAMMER'S @ 75

GRAPHTEXT

PREDEFINED GRAPHTEXT FONTS Fonts Provided with Keyboard Options

You can select alternate graphtext fonts with the < set- If the terminal has an optional keyboard (Option 4A, 4C,
graphtext-font> command. When the terminal is turned 4E, or 4F) then Font O is not the only predefined

on, there is always at least one predefined font: Font O, graphtext font. Such a terminal also has predefined

the standard ASCII font. You can also create your own Fonts 1, 3, 7, and 9. Table 7-1 lists these fonts.
graphtext fonts. Such fonts are called user-defined However, when the terminal is turned on, the default
fonts; how to create them is described later in this graphtext font is always the ASCII font, Font 0. This is
section. true even for terminals equipped with optional key-

boards. If you want to select another predefined font,
you must do so explicitly with a < set-graphtext-font>
command. The optional keyboard fonts are shown in
Figure 7-5.

P"HSZ& () %x+,-./0123456788: ; <{=>"7
i @ABCDEFGHI JKLMNOPQRSTUVWXYZI\1~_
‘abcdefghi jklmnopgrstuvwxyz{i»~

FH$%& () x+,-./8123456789: ; {(=>7
FONT1 @ABCDEFGHI JKLMNOPQRSTUVWXYZAUA
‘abcdefghi jklmnopgrstuvwxyzdod™

| "E$%8 () k+, —. /B12345678Q: ; (=D7
(omiaa Kingdom) @ABCDEFGHI JKLMNOPQRSTUVWXYZ I\ 1~
‘abcdefghi jklmnopgrstuvwxyz{i~

ConT 7 _TT)<<=>1VA#Z+, +,/0123456789([x: \
(APL) arnle_VAre 'O T0x?pl~iuwdtCer»>-
OCABRCDEFGHIJKLXNOPQRSTUVHWXYZ{4}$%

| "#$%8& " ()x+,-./0123456788:;<{=>7
i @ABCDEFGHI JKLMNOPQRSTUVWXYZABA™ _
‘abcdefghi jklmnopgqrstuvwxyzead”

3675-26

Figure 7-5. Fonts Provided with Keyboard Options.

7-6 @ 4114 HOST PROGRAMMER'S

Table 7-1
GRAPHTEXT FONTS SUPPLIED WITH
OPTIONAL KEYBOARDS
Font Number Graphtext Font
0 Standard ASCII font
1 Swedish font
3 United Kingdom font
7 APL font
9 Danish/Norwegian font

GRAPHTEXT

< SET-GRAPHTEXT-FONT> COMMAND

The < set-graphtext-font> command lets you select
any of these fonts for displaying subsequent graphtext.
The command has the foliowing syntax:

< set-graphtext-font>
= (ESC)(M)}(F)< int: font-number>

Figure 7-6 shows the effect of the < set-graphtext-
font> command. In this figure, Font 2 is assumed to be
a user-defined font. (Defining such a font is described
later in this section)

H (Orthocenter)

3675-26

Figure 7-8. Effect of <Set-Graphtext-Font> Command.

4114 HOST PROGRAMMER'S

77

GRAPHTEXT

DEFINING YOUR OWN GRAPHTEXT CHARACTERS

GENERAL PROCEDURE

The following steps show examples of commands for
defining your own graphtext characters. These com-

mands are described in more detail later in this section.

1. < Delete-graphtext-character: 2, —1>
< Set-graphtext-font-grid: 2, 60, 80>

Delete all user-defined characters in graphtext
Font 2, and then specify a “font grid” for defining
your own Font 2 graphtext characters.

2. < Set-pivot-point : (0,0)>

The pivot point for subsequent graphtext charac-
ters will be (0,0). When the character is displayed
{by a < graphic-text> command), its pivot point
appears at the current graphic beam position.

3. < Begin-graphtext-character: 2, 65>
< enter-vector-mode>
< xXy>
<Xy>

< enter-vector-mode>
< xXy>
<xXy>

< end-graphtext-character>

Define character number 65 (uppercase A) in
graphtext Font 2. The character definition starts
with the < begin-graphtext-character> command
and ends with the < end-graphtext-character>
command. The character is defined as a series of
vectors, or line segments. The vectors may be
drawn with < enter-vector-mode> commands —

(GS) characters — and < xy> parameters. Alterna-

tively, they may be drawn with < move> and
< draw> commands.

4. Repeat Steps 2 and 3 for each subsequent
character definition. You can omit Step 2 (the
< set-pivot-point> command) if the the character

being defined is to have the same pivot point as the

previous character defined.

@

<DELETE-GRAPHTEXT-CHARACTER>
COMMAND

The < delete-graphtext-character> command has this
syntax:

< delete-graphtext-character>

= (ESC)(S)(2)
<int: font-number>
< int: character-number>

Font Number. The font number must be —1, or in the
range from O to 32767. “Font —1" means “all user-
defined fonts.”

Character Number. The character number must be
—1,orin the range from 32 to 126.

Specifying character number —1 deletes all user-
defined characters in the specified font and also
deletes the font grid for that font. if the font is not one
of the predefined fonts (Font 0 in a standard terminal;
Font 0, 1,3, 7, or 9 in a terminal with a keyboard
option), then specifying character number —1 also
makes that font inaccessible. (The < set-graphtext-
font> command results in an error if an attempt is
made to select a font which is not predefined and does
not have a font grid for user-defined characters.)

Specifying a character number from 32 to 126 deletes
that particular user-defined graphtext character. The
user-defined character is superceded by the corre-
sponding pre-defined character. In most cases, this is
the corresponding standard ASCII (Font 0) character.
For Fonts 1, 3, 7, and 9, if an optional keyboard is
installed, this is the corresponding character from the
same predefined font.

4114 HOST PROGRAMMER'S

< SET-GRAPHTEXT-FONT-GRID>
COMMAND

The < set-graphtext-font-grid> command has the fol-
lowing syntax:

< set-graphtext-font-grid>
= (ESC)(S)G)
<int: font-number>
<int : width-of-grid>
<int : height-of-grid>

This command seis the width and height of a graphtext
font grid used in defining graphtext characters. For

GRAPHTEXT

each user-defined character in the specified font, the
graphtext font grid is a rectangle extending above and
to the right of that character’s pivot point.

Suppose, for instance, that the width of the grid is 30,
and the height is 40. If the uppercase A character
(character number 65) is defined with its pivot point at
(0,0, then its font grid extends from X= 0 to X= 30, and
from Y= 0 to Y= 40. Likewise, if the lowercase g
character is defined with its pivot point at (0,15), then
its font grid extends from X=0 to X= 30, and from

Y= 15 to Y= 55. Figure 7-7 illustrates this.

'« GRID WIDTH = 30 4-»|

Y
le——— GRID WIDTH = 30 —————»|
—_]

A [=]
<
\ 1
-
\ s
i
7 b o
a
[4
S

\ 9

]

/ =

X

/ S

AN g NG -
T y
[S
\ PIVOT POINT
AT (0,15)
\
/
/ ‘ bt b2y ‘
™~ PIVOT POINT \(0,0)
AT (0,0)
3675-27
Figure 7-7. Font Grids For Two User-Defined Characters.
4114 HOST PROGRAMMER'S @ 7-9

GRAPHTEXT

Later, when the character is displayed, the width and
height of the font grid are mapped onto the current
graphtext-size width and height, while the pivot point is
mapped onto the current graphic beam position. Figure
7-8 illustrates this.

All user-defined characters in a graphtext font share
the same font grid. Therefore, issuing a < set-graph-
text-font-grid> command is not allowed if there
already exists a font grid for the specified font. (The
terminal detects a type SGO3 error; see the 4110
Series Command Reference Manual for details.)

Before sending a < set-graphtext-font-grid> command,
therefore, you should delete any font grid which may
already exist for that font. To do this, issue a < delete-
graphtext-character> command with “minus one’ as
the character number; that not only deletes all the
user-defined characters in the font, but also deletes
the font grid.

In order to select a graphtext font which is not one of
the predefined fonts, it is necessary that a font grid has
been established for that font. For example, if no < set-
graphtext-font-grid> command has been issued for
Font 2, then the < set-graphtext-font: 2> command
results in an error.

7-10

o)

<SET-PIVOT-POINT> COMMAND

The < set-pivot-point> command has this syntax:
< set-pivot-point> = (ESC)(S)(P)< xy>

This command sets the pivot point for subsequent
graphtext character definitions, as well as for subse-
quent segment definitions. (See Section 6 for a de-
scription of segment definitions.)

<BEGIN-GRAPHTEXT-CHARACTER>
COMMAND

The < begin-graphtext-character> command has this
syntax:

< begin-graphtext-character>

= (ESC)(S)T)

< int: font-number>
< int: character-number>

This command starts the definition of a particular user-
defined graphtext character. The font number must be
in the range from O to 32767; the character number
must be in the range from 32 to 126.

<END-GRAPHTEXT-CHARACTER>
COMMAND

Each graphtext character definition ends with the
< end-graphtext-character> command:

< end-graphtext-character> = (ESC)(S)(U)

For more information on these commands, see the
4110 Series Command Reference Manual.

4114 HOST PROGRAMMER'S

GRAPHTEXT

3675-28

Figure 7-8. Displaying User-Defined Graphtext Characters.

4114 HOST PROGRAMMER'S @ 7-1

Section 8

GRAPHIC INPUT

INTRODUCTION

This section shows exampies of GIN (graphic input)
operations. Like all sections of this manual, it should be
read with the 4110 Series Command Reference Manua!
close at hand. You will need the Command Reference
Manual for detailed descriptions of the individual GIN
commands. ‘

In this section under the heading “Enabling for Graphic
Input” is a description of the < enable-GIN> command
and of GIN functions and GIN devices. Here also is a
brief iist of other GIN commands.

The next three major headings (“Locator Function,”
“Pick Function,” and “Stroke Function”) give examples
of how to perform graphic input. These examples also
show how to use other GIN features:

e Locator function. The example of the locator func-
tion also shows how to use the “gridding” and
“rubberbanding” features.

@ Pick function. The example of the pick function aiso
shows how to insert < pick-ID> s in the display list
for a segment.

e Stroke function. The example of the stroke function
shows how to use “stroke filtering” and “inking”
features.

By the time you have studied these examples, you
shouid know how to do graphic input with the 4114
terminal. The remaining major head describes a more
advanced topic: “Using Severai GiN Devices at Once.”

ENABLING FOR GRAPHIC INPUT

<ENABLE-GIN> COMMAND

The < enable-GIN> command enables the terminal for
graphic input. The command has this syntax:

<enable-GIN> = (ESC)(IME)< int> <int+ >

Device-Function Code

The first parameter is an < int> holding a device-
function code. This code specifies the GIN device
which is enabled, and the GIN function for which that
device is enabled.

Table 8-1 lists the valid device-function codes.

4114 HOST PROGRAMMER'S

Table 8-1
Device-Function ID Code Numbers

| Code Device-Function Code
e
0. Thumbwheels-Locator
1 Thumbwheels-Pick
8 Tablet-Locator
9 Tablet-Pick
10 Tabiet-Stroke
24 Plotter at Port 0 — Locator
25 Plotter at Port 0 — Pick
32 Plotter at Port 1 — Locator
33 Plotter at Port 1 — Pick
40 Plotter at Port 2 — Locator
41 Plotter at Port 2 — Pick

81

GRAPHIC INPUT

Number of GIN Events

The < enable-GIN> command's second parameter
specifies for how many GIN events the device is being
enabled. You can enable a device “permanently” (that'
is, until the terminal is turned off or a <disable-GIN>
command is received) by specifying a large number,
such as 65535, as the number of GIN events.

Each GIN event occurs when the terminal receives a
single point’s location from the operator and sends to
the host a report including that position. If the graphic
input device is the thumbwheels, the operator enters a
point (signals a GIN event) by typing a character on the
keyboard. For the optional graphics tablet, the operator
signals a GIN event with the tablet pen or optional
cursor. With the optional plotter, the operator signals a
GIN event with a switch on the plotter. In any case, a
GIN event occurs when a point’s position is entered for
graphic input.

The terminal remains enabled for graphic input from
the specified device until one of the following occurs:

¢ The <enable-GIN> command'’s second parameter
is satisfied. That is, the specified number of GIN
events have occurred.

® A <disable-GIN> command is received.

® A <cancel> command is received, or the operator
presses the CANCEL key.

Examples

‘Enables the thumbweels
device and locator function
for one GIN event.

<enable-GIN: 0, 1>

<enable-GIN: 1, 3> Enables the thumbwheels

for three pick events.

< enable-GIN: 8, 30> Enables the tablet for 30

locator events.

< enable-GIN: 10, 65535> Enables the tablet for a
large number of stroke

events.

8-2

GIN DEVICES

There are three types of GIN devices: thumbwheels,
tablet, and plotter.

Thumbwheels

The operator uses the thumbwheels to position the
graphic cursor and then signals a GIN event by

" pressing any ASCII key on the keyboard.

Tablet

The operator positions the graphic cursor by moving a
stylus or tablet cursor over the surface of the optional
graphic tablet. The operator signals a GIN event by
pressing the stylus against the tablet, or by pressing a
button on the tablet cursor. (in the case of the stroke
function, GIN events occur automatically throughout
the stroke. This is described later in this section.)

Plotter

If the 4114 is equipped with Option 10 (Three Port
Peripheral Interface), then a TEKTRONIX 4662 or 4663
Interactive Digital Plotter may be attached to one of the
three peripheral ports. Such a plotter may be specified
as a graphic input device. If a plotter is the GIN device,
then the operator positions the graphic cursor by
moving the plotter pen with the plotter joystick. The
operator signals a GIN event by pressing a switch on
the plotter.

GIN FUNCTIONS

There are three GIN functions: locator, pick, and stroke.

Locator Function

When the locator function is enabled, a graphic cursor

appears on the screen. (The default graphic cursor is a
large pair of crosshairs; however, any segment can be

used as the graphic cursor.)

The operator positions the cursor at some point on the
screen, and then signals a “GIN event.” Just how the
operator does this depends on which GIN device has
been enabled. For instance, if the thumbwheels are the
GIN device, then the operator moves the cursor by
manipulating the thumbwheels and signals a GIN event
by pressing a keyboard key.

4114 HOST PROGRAMMER'S

When the operator signais the GIN event, the terminal
responds by sending a < GIN-locator-report> to the
host computer. (An optional signature character is sent
at the start of this report; this is described later in this
section.) The < GIN-locator-report> tells the host (a)
which key the operator pressed, and (b) the location of
the graphic cursor in 4096-by-4096 terminal space.

Pick Function

When the pick function is enabled, a graphic cursor
appears. The operator “picks” a segment (or part of a
segment), and the terminal sends a < GIN-pick-re-
port> to the host computer.

To pick a segment, the operator moves the graphic
cursor to the desired segment (or part of a segment)
and signals a GIN event. The operator does this just as
for the locator function. For instance, he or she may
move the thumbwheels to position the graphic cursor
and press a key to signal the GIN event.

in response to the GIN event, the terminai sends a

< GIN-pick-report> to the host computer. This report
tells which key the operator pressed, where the cursor
was when the operator pressed that key, which seg-
ment was picked, and what part of that segment was
picked. The < GIN-pick-report>, like the < GIN-
locator-report>, may be preceded by an optional
signature character.

Stroke Function
The stroke function is valid only for the tablet.

When the stroke function is enabled, the graphic
cursor appears at a point on the screen which
corresponds to the position on the tablet of the tablet
pen or tablet cursor. If you want to rely only on the
tablet pen or cursor and would rather not see a graphic
cursor on the screen, then use an empty segment as
the graphic cursor.

Each “stroke” is deemed to be many separate GIN
events, each of which causes a < GIN-stroke-report>
to be sent to the host computer. The operator begins a
stroke by pressing the tablet pen against the tablet, or
by pressing a button on the tabiet cursor. The operator
then moves the pen (or cursor) across the tabiet
surface and ends the stroke by releasing pressure on
the pen (or cursor button).

4114 HOST PROGRAMMER’S

GRAPHIC INPUT

During the stroke, the terminal sends many < GiIN-
stroke-report> s to the host computer. The format of
these reports, and details of when they are sent, are
described later in this section.

<DISABLE-GiN> COMMAND

The < enable-GIN> command specifies a number of
GIN events for which the GIN device and function are
enabled. You can, however, disable graphic input from
that device-function combination before all those GIN
events have occurred. To do so, use the < disable-
GIN> command:

< disable-GIN> = (ESC)()(D)<int>

Here, the < int> parameter is the device-function code
for the GIN device and function which are to be
disabied.

OTHER GIN COMMANDS

There are a variety of other GIN commands, which set
other parameters associated with graphic input opera-
tions. These let you select alternate graphic cursors,
choose the signature characters used in GIN reports,
constrain the cursor to lie only on the intersection
points of an imaginary grid, enable or disable “rubber-
banding” and “inking,” and so on. These commands
are demonstrated in the examples which follow.

These commands pertain to GIN operations:

< enable-GIN>

< disable-GIN>

< set-GIN-cursor>

< set-GIN-gridding>

< set-GIN-rubberbanding>

< set-GIN-stroke-filtering>

< set-pick-1D>

< set-report-sig-chars>

< set-report-EOM-frequency>
< set-report-max-line-length>

You can find detailed information on these commands
in the 4110 Series Command Reference Manual.

83

GRAPHIC INPUT

LOCATOR FUNCTION

The following example of the locator function also
shows how to use the terminal’s ‘‘gridding” and
“rubberbanding” features.

PREPARING FOR GRAPHIC INPUT

To prepare the terminal for graphic input from the
thumbwheels, using the locator function, you might
issue the following commands:

< set-report-EOL-string: (13)>

< set-report-sig-chars: 0,87, 119>
< set-repont-EOM-irequency. 1>

< set-GIN-gridding: 0, 100, 100>
< set-GIN-rubberbanding: 0, 1>

< enable-GIN: 0, 5>

The < set-report-EOL-string> command sets the ter-
minal's end-of-line string to be the single (CR)
character, which has a decimal equivalent of 13:

< set-report-EOL-string: (13)>
(ESC)(N)(T)< int-array: (13)>
(ESCHN)(T)<int: 1> <int: 13>
(ESC)IN){(TY(1) (=)

The < set-report-sig-chars> sets the “signature char-
acters” used in the < GIN-report-sequence> which the
terminal sends to the host. The command sets signa-
ture characters for device-function code zero:
thumbwheels device, locator function. The < sig-char>
sent before each < GIN-locator-report> is (W), which
has a decimal equivalent of 87. The <term-sig-char>,
which marks the end of the < GIN-report-sequence>,
is (w), which has a decimal equivalent of 119.

< set-report-sig-chars: 0, 87, 119>
= (ESC)(){(S)<int: 0> <int: 87> <int: 119>
(ESCHN(SYONE)NTHGNHT)

The < set-report-EOM-frequency> command causes
the terminal to send an < EOM-indicator> after each
< GIN-locator-report> in the < GIN-report-se-
quence> . If the terminal is not in block mode, this

< EOM-indicator> is just the current <EOL-string>,
which has been set to (CR).

< set-report-EOM-frequency: 1>
= (ESC)(N{M)<int: 1>
= (ESCH{I{M)(1)

8-4

The < set-GIN-gridding> command enables gridding
for device-function code zero. The graphic cursor is
constrained to points in terminal space which have x-
and y-coordinates that are both multiples of 100.

< set-GIN-gridding: 0, 100, 100>

= (ESC)()(G)<int: 0> <int: 100> <int: 100>
(ESCY()(G)(0)(F)(4)(F)(4)

The < set-GIN-rubberbanding> command enables the
“rubberbanding” feature for device-function code zero.
After the first point is entered, the terminal displays a
“rubberband line” between the previous point and the
current cursor position.

< set-GIN-rubberbanding: 0, 1>
= (ESC)(D(R)<int: 0> <int: 1>
= (ESC)(1}(R)(0)(1)

After all these GIN parameters have been set, the

< enable-GIN> command enables device-function
code zero (thumbwheels device, locator function) for
five GIN events.

< enable-GIN: 0, 5>
= (ESCH)(E)<int: 0> <int: 5>
= (ESC)INE)(0)(5)

OPERATOR AND HOST INTERACTION

The following steps show one way the preceding
commands might be used in a host application
program:

1. The program begins by issuing a < begin-seg-
ment> command and instructing the operator to
“type M to move, D to draw, or X to exit this
program.”

2. The program then sets various graphic input
parameters, and enables the device-locator func-
tion for a large number of GIN events. To do this,
the program sends the following commands to the
terminal:

< set-report-sig-chars: 0, 87, 119>
< set-report-EOM-frequency: 1>

< set-GIN-gridding: 0, 1>

< set-GIN-rubberbanding: 0, 1>

< enable-GIN: 0, 32767>

3. Asthe terminal executes the < enable-GIN>
command, it displays the crosshair cursor.

4114 HOST PROGRAMMER'S

4. The operator moves the thumbwhesls, using them

to position the cursor at a desired point on the
screen.

Because gridding is enabled, the cursor only
moves to points on an invisible grid. That is, it only
moves to points which have x- and y-coordinates
that are both muitiples of 100.

After the first point has been entered, the terminal
displays a ‘rubberband line‘ from the last point
entered to the current cursor location.

(W)(m) (=) (SP) (=) () (+) (CR)

(W)d) (=) (SP) (=) () () (CR)
W)d) (8) (sP) (3) (2) (8) (CR)
Wi () (sP) (0 () () (CR)
(W)m) () (SP) () (&) (0) (CR)
W) () (SP) () (6) (5) (CR)
W) (=) (SP) (=) ()} (>) (CR)

GRAPHIC INPUT

5. The operator enters each point by pressing a

kevboard key. (The operator has been instructed to
press M for a “move,” D for a “draw,” and X to exit
the program.)

When the operator presses a key, the terminal
blinks the crosshair cursor and sends a < GIN-
locator-report> to the host computer. Each < GIN-
locator-report> is preceded by (W) — the
signature character — and followed by (CR) — the
end-of-line string. Figure 8-1 shows a typical

< GIN-report-sequence> for the locator GIN
function.

p<+—— < GIN—report—item>s

(w) \(m)(=)(SP)(=)(")(+) (CR)

T

< GIN—Iocator—repért>

(m) (=)(SP)(=)(")(+)
e —

key which the
operator pressed

< xy-report> for
the cursor position

< eom—indicator>

< final—GIN—report—item>

(w) (CR)
< term-sig-char>

< eom-indicator>

Figure 8-1. Typical < GIN-Report-Sequence> for the Locator Function.

4114 HOST PROGRAMMER'S

)

85

GRAPHIC INPUT

8-6

The host applications program parses (reads) the
< GiIN-report-item> and takes appropriate action.

To parse the < GIN-report-item>, the program
reads characters coming from the terminal until it
finds the signature character (W). It then calls a
subroutine to parse the following six characters,
which comprise a < GIN-locator-report> .

To parse the < GIN-locator-report>, the host reads
the first character, which tells which key the
operator pressed. It then calls another subprogram
to parse the next five characters, which comprise
an < xy-report>.

When done parsing the < GiN-iocalor-report>, the
host knows (a) which key the operator pressed,
and (b) where the cursor was when the operator
pressed that key. Based on this information, the
host then takes appropriate action.

If a “move” was requested (operator typed M or m),
the host issues a < move> command for the point

just reported as the cursor position. (Alternatively,

it could issue an < enter-vector-mode> command

and an <xy> parameter.)

If a “draw” was requested (operator typed D or d),
the host issues a < draw> command for the point
just reported as the cursor position.

If an “exit” was requested (operator typed X or x),
the host issues a < disable-GIN: 0> command.
This disables graphic input for the thumbwheels
device and locator function.

If the operator typed some other character, then
the host sends instructions to the operator.

10.

it.

12.

Steps 4 through 7 are repeated again and again,
until the operator signals an *exit” from the
program. (That is, until the operator types X or x.)

When the operator types X or x, the terminal stops
displaying the graphic cursor and sends the host a
< final-GIN-report-item> . This < final-GIN-report-
item> consists of the < term-sig-char> (the
lowercase w character) and an < EOM-indicator>
{the carriage return character, which is the current
end-of-line string).

The host parses the < final-GIN-report-item> and
uses it as a signal to exit its program loop.

The host sends an < end-segment> command to
the terminal. All the <move>s and <draw>s
which it sent during the graphic input operation are
now included in a segment.

This is the end of this graphic input example. The
example program exits, returning control to the
host operating system.

Figure 8-2 shows a PASCAL program fragment for this
graphic input example. (The complete PASCAL pro-
gram is reproduced in Appendix C.)

4114 HOST PROGRAMMER'S

GRAPHIC INPUT

.PRNOEDURE ParseGinReportTtemandTakeappronriateactions (I (P} {}{}{} (1 {}{}

{} aEGIN {}
{} {#» Look for signature character ##) A R ; {}
{} WHILF NOT (TTY" IN_[°W", %’]){# while next char is not & #} {}
{) DO REGIN {## skip past the non=W character ##} {)
{) IF Eoln(TTY) {#x If next character is a (CR) #») {}
O THEN _ {
{} Readln(TTY) {(## advance to 1St char of next line ##}{}
{} ELSF) {}
) Gat({TTY) {=z advance to next char aa} {}
{} ENDs {}
{} read(TTY,SianatureChar): {}
{} IF (SignatureChar = *W°*) {}
{} THEN (## parse a <GIN=locCcatorereport>, #»} {
{} BEGIN {}
{} Read(TTY,KevChar): {}
{} ParseAnXyReport(xy)y . T 0
{} IF KevChar IN [°M°,°m","D%,"d", %%, x"] i
() THFN {## take the appropriate action x#} {)
g CASF XevChar OF i)
{} {} "M%, ’m’ : Move(Xy): {}
O {}y *p*, *d° : Draw(Xy): 8
{) {} °X°, *x° : DisableGi{n(0): 8
8 {} END (%% of CASF statement ##} {}
{} ELSE {## Tf he typed an invalid key char ##} {1}
{} DisplayInstructionss {}
{) END} {})

{} END3 {# of ParseGinReoortItemAndTakeAppropriateAction procedure s} ({}
QOGO 000000000000000000000004041{}{)

BEGIN {#® Main proaram »s}

{#» Prepare dialog area =}
FnableDpialogArea(1):
SetDialogAreavisinbility(1);

{#% Prepare for GIN #x)

{#s <set«FOLestring : (13)> ##}
InftializeNewIntArrav(IntArray):
ApnendToTntArray(IntArrav.113);
SetEolString(IntArrav)s

SetReportSiaChars(0,87,119): (x (W), (w) #}

SetReportFomFreauency(1): {# "more frequent " #}

SetReportMaxLineLenatn(72); R

setGinGriddina(0,100,100): {# enable aridding ws}

SetGinRubberbanding(0,1); {# enable rubberhanding «)

{## Tell operator what to do ##}

Jandshake: {# Be sure previous commands have been executed #}

DisplayInstructions:

{#% Open a segment ##}
nNeletesegment(=1): {(## Delete all old seaments, ##}
ReginSeagment(1):

{## Enable for GIN ##}

“nableGin(0,32767); {(#% "32767" means_"many points" «a}

{## Loop until a <terme=sigechar> s received, s}

REPFAT
ParseGinReportItemAndTakeAppropriateAction

"INTIL SignatureChar = °‘w’

{## Close the seagment, #&}
TndSegment;

END,

3675-30)

Figure 8-2. QGraphic Input Example: Thumbwheels-Locator Device-Function Code.

4114 HOST PROGRAMMER'S @ 8-7

GRAPHIC INPUT

PICK FUNCTION

INTRODUCTION

The graphic input “pick” function lets the operator
choose one segment from among several which may be
defined. For instance, in a drafting application, the
operator might pick one of several circuit symbols.

A typical pick operation proceeds as follows:

1. The host computer enables a graphic input device
for the pick function.

2. Using the enabled device (thumbwheels, tablet, or
plotter), the operator moves the graphic cursor
until it is at the image of the segment which is to be
picked. The operator then presses a keyboard key
(or plotter switch, or tablet pen, etc.) to signal the
“pick event.”

3. The terminal responds to the pick event by sending
a < GIN-pick-report> to the host computer. This
report tells the host (a) which key the operator
pressed, (b) which segment the operator selected,
(c) which part of that segment was selected, and
(d) the graphic cursor location.

8-8

PREPARING SEGMENTS FOR PICKING

For a segment to be picked, several conditions must be
met:

® Obviously, the segment must exist: it must have
been defined with < begin-segment> and <end-
segment> commands.

® The segment must be detectable — that is, pickable.
A segment’s detectability is set by the < set-
segment-detectability> command.

® Part of the segment must fall within the current pick
aperture. The pick aperture is a rectangle whose
center is at the current graphic cursor position. (The
size of this rectangle is determined by the < set-
pick-aperture> command.)

® The part of the segment which falls within the pick
aperture must have a pick ID number (pick identifi-
cation number) which is greater than zero. Parts of a
segment may be given different pick ID numbers
with < set-pick-ID> commands. These commands
must be included in the segment definition at the
time the segment is defined.

Figure 8-3 shows how to prepare segments for picking.

4114 HOST PROGRAMMER'S

GRAPHIC INPUT

< delete-segment: —1> <«——————————Delete all existing segments.

Begin segment one. Each new segment
starts with a pick-1D of one.

< begin-segment: 1>

< enter-vector-mode>
<Xy>
<Xy>

. Commands to define
< enter-vector-mode> ; part of segment one.
<xy>
< Xy>

< set-pick-ID: 2>
< enter-vector-mode>

<Xy>
< Xy>
Define ancthisr part of the
. -+—— segment, assigning it to
< enter-vector-mode> pick-I1D two.
<xy>
<xy>
J
< end-segment> = End of segment one.
3
< begin-segment>
< enter-vector-mode>
< Xy>)
<xy> Define segment two. Because there
. are no < set-pick-ID> commands
><— in the segment definitions, all of
: segment two has the default
< enter-vector-mode > pick ID of one.

< end-segment>

J

< set-segment-detectability: —1, 1> -«——Make all segments detectable.

L 3675-

Figure 8-3. Preparing Segments for Picking.

4114 HOST PROGRAMMER'S @ 89

GRAPHIC INPUT

OPERATOR AND HOST INTERACTION

The following steps show one way a host applications
program might use the “pick’” graphic input function:

1. The program begins by defining several segments
at different locations on the screen.

2. Next, the program issues commands to prepare the
terminal for five GIN pick events, using the tablet
as the graphic input device (“tablet-pick” is de-
vice-function code 9):

< set-EOL-string: (13)>

< set-report-sig-chars: 9, 84, 116>
< set-report-EOM-frequency: 1>

< enable-GIN: 9, 5>

3. As the terminal executes the <enable-GIN>
command, it displays the crosshair cursor.

4. The operator moves the tablet pen (or tablet
cursor); this causes the crosshair cursor to move
around the screen. When the cursor is at the image
of the desired segment, the operator presses the
tablet pen against the tablet (or presses a button
on the tablet cursor). This signals a GIN pick event.

5. The terminal responds by sending a < GiN-report-
item> to the host computer. The < GIN-report-
item> consists of an uppercase letter T (the
< sig-char>), a < GIN-pick-report>, and the car-
riage return character (the < EOM-indicator>).

The < GIN-pick-report> tells the host (a) which
segment the operator picked, (b) the pick ID
number for the part of the segment which is near
the graphic cursor, and (c) the location of the
graphic cursor.

The terminal also “blinks” the graphic cursor. This
provides feedback to reassure the operator that
the pick operation was successful.

6. The host program reads the < GIN-pick-report>
and takes whatever action is appropriate.

7. In Step 2, the < enable-GIN> command specified
five pick events. Therefore Steps 4, 5, and 6 are
repeated four more times.

@

After sending the fifth < GIN-pick-report>, the
terminal sends the < final-GIN-report-item> . This
consists of the lowercase t character (the < term-
sig-char>) and a carriage return character (the
< EOM-indicator>).

Figure 8-4 shows a typical sequence of reports which
the terminal might send the host for this graphic input
example.

STROKE FUNCTION

INTRODUCTION

The graphic input “stroke” function is valid only when
the Option 13 or Option 14 graphics tablet is the
graphic input device.

The operator begins each stroke by pressing the pen
against the tablet, or by placing an optional cursor on
the tablet surface and pressing a switch on that cursor
The operator then moves the pen (or cursor) along the
tablet surface. As he does so, the terminal sends a

stream of < GIN-stroke-report> s to the host computer.

Each < GIN-stroke-report> reports one xy-coordinate
to the host. Each such report counts as a separate GIN
event for purposes of the <enable-GIN> command’s
“count” parameter.

8-10

A stroke ends when either of the following occurs:

® The <enable-GIN> command’s count parameter is
satisfied.

® The operator stops pressing the pen against the
tablet, stops pressing the button on the tablet
cursor, lifts the pen or cursor away from the tablet,
or moves the pen or cursor outside the tablet's
“presence area.”

The stroke function is enabled by specifying device-
function code 10 (tablet device, stroke function) in an
< enable-GIN> command.

4114 HOST PROGRAMMER'S

&)

(W) (C) (1) (SP)(2) (6) (SP)(SP)(SP)(5) (SP)(SP)(6)
(SP) (SP) (5) (SP)(SP) (4)
(W) (e} (1) (SP)(2) (1) (4) (SP)(SP)(4) (SP)(SP)(2)
(—) (SP)(6) (1) (4) (SP)(SP)(4) (SP)(SP)(5)
(“(") (SP) (SP) (3) (SP)(SP)(2)
(“(") (SP) (SP) (3) (SP) (SP) (4)

W) (d) (1) (SP)(2) (0) ()

w) ()
(W) (g} (-) (sP)(&) ()
W) (h) ()" (sPy () ()

%

(W) (a) (8) (SP) (&) (4) (SP) (SP) (SP) (6) (SP) {SP) (4) (CR)

N—

|

h'd

< sig—char> < GIN—pick—report>

(8) (SP) (8) (4) (SP)

.

hd

key which the
operator pressed

< xy—report> for
the cursor position

<int—report> for

< EOM—indicator>

< term—sig—char>

‘< EOM—indicator>

(SP) (SP) (6)
N—)

#

- the segment number

<int—report> for the pick-iD

GRAPHIC INPUT

> — < GIN—report—item>s

< final—GIN—report —item>

(SP) (SP) (4)
\— p——

P

identifying a part of the segment

Figure 8-4. Typical < GIN-Report-Sequence> for the Plck Function.

4114 HOST PROGRAMMER'S @

8-11

GRAPHIC INPUT

STROKE FILTERING

One feature useful with strokes is “stroke filtering.”
Both “distance filtering” and “time filtering” are avail-
able.

The distance filter prevents a GIN event from occurring
until the operator has moved the pen (or tablet cursor)
a minimum distance. {For this purpose, “minimum
distance” means “a minimum change in x or y.") With
distance filtering, a stationary pen does not cause the
terminal to send many < GIN-stroke-report> s for the
same point on the tablet.

The time filter prevents a GIN event from occurring
until a minimum time has eiapsed since the last GIN
event.

Stroke filtering is enabled with the < set- GIN stroke-
filtering> command:

< set-GIN-stroke-filtering>

= (ESC)()(F)
< int: device-function-code>
< int: minimum-distance>
< int: minimum-time>

Here, the first <int> parameter should be 10, which is
the device-function code for the tablet device and
stroke function.

The second parameter specifies the distance filter. A
new GIN event does not occur until the cursor has
moved so that either its x-coordinate or its y-coordi-
nate has changed by at least the distance specified in
this parameter. If this parameter is zero, the distance
filter is disabled.

The third parameter specifies the time filter, in milli-
seconds. A new GIN event does not occur until at least
this number of milliseconds has elapsed since the
preceding GIN event.

8-12

INKING

Another useful feature with strokes is “inking.” For
each stroke, the terminal draws line segments on its
screen connecting the points specified’in the < GIN-
stroke-report> s for that stroke.

(The inking feature may also be used with the locator
function. For details, see the descripion in the 4110
Series Command Reference Manual of the < set- GIN-
inking> command.)

The inking feature is enabled with the < set-GIN-
inking> command:

< set-GIN-inking> = (ESC)() (i)
< int: device-function-code>
< int: inking-mode>

The second parameter (inking mode) is one to enable
inking and zero to disabie inking.

STROKE REPORT FORMAT

During a stroke function, the terminal reports the
coordinates of the tablet pen or cursor using the

< GIN-report-sequence> format, in which the
individual < GIN-stroke-report>s each report one
coordinate position. The formal syntax is described in
Section 4 of the 4110 Series Command Reference
Manual, under “< GIN-Report-Sequence> Message
Type" and “< GIN-Stroke-Report> "

A Typical Stroke Report Sequence

Figure 8-5 shows a typical stroke report sequence.
This example assumes that the report-EOM-frequency
setting is “more frequent,” that the terminal is not in
block mode, and that the < EOL-string> is set to (CR).
Under these circumstances, each < GIN-Stroke-Re-
port> is followed by a (CR). (For more information on
the report-EOM-frequency setting, see Section 9. For
information on the < EOL-string>, see Section 10)

Signature Characters

In Figure 8-5, the <sig-char> and < term-sig-char>
are (T) and (), respectively. Thus, each < GIN-report-
item> begins with the character (T), while the end of
the < GIN-report-sequence> is marked with the char-
acter (t).

4114 HOST PROGRAMMER'S

“eMe @) ¢
9 &) (%)
@’
() (%) (8) (9

&) (=) ()

(CR)

>0

() (CR))

0 (©PY()

() (CR) p

()"} (CR)
(8) (CR)
(+) (CR)

(=) (CR)
(<) (CR)

GRAPHIC INPUT

&-4— < GIN—-report—item>s

for the first stroke

><4—— < GiN—repori—item>s
for the second
{and last) stroke

P

final—GIN—report—item>

M Q) @ 0)0

< sig—char>

< GIN—stroke—report>

() (CR)
7/

< EOM~—indicator>

0 @ 0)0 0

“key” character:

(M) or (Z) or (1) or (2) or (3} < xy—report> for the
for the first point in a stroke; cursor location

(J) for subsequent points;

(O) for the last point

< term-—sig—char>—-4

< EOM—indicator>

Figure 8-5. A Typical < GIN-Report-Sequence> for the Stroke Function.

4114 HOST PROGRAMMER'S

8-13

GRAPHIC INPUT

Key Characters

After the (T), each < GIN-stroke-report> begins with a
“key” character. For the first point in a stroke, this is
(M); for the last point in the stroke, it is (O). For
intermediate points, the key character is (J).

If the operator used the tablet cursor rather than the
tablet pen, then the key character for the first point in
the stroke would be (2), (1), (2), or (3), depending on
which of the cursor buttons is pressed. The intermedi-
ate points would still have (J) for their key character,
and the last point would still have (O) for its key
character.

There is a command, < set-tabiet-header-chars>,
which can change the key characters for the last point
and intermediate points of the stroke. This command
does not change the key character for the first point of
a stroke. See the 4110 Series Command Reference
Manual for details.

< Xy-Report>s

After the key character, each < GIN-stroke-report>
contains five more characters. These comprise an

< xy-report> telling the position of one point in the
stroke. For more information on < xy-report> s, see the
< xy-report> description in the 4110 Series Command
Reference Manual.

Fitting More Than One Stroke Report On
Each Line

If you like, you can cause more than one < GIN-report-
item> to occur on each “line of text” that the terminal
sends to the host. To do this, you wouid issue a < set-
report-EOM-frequency: 0> command to make the
terminal send (CR) characters “less frequently.” You
would also issue a < set-report-max-line-length> com-
mand to specify the maximum length for each line of
the report. (These commands are described in

Section 9.)

If the maximum report line length is 25, and the report
EOM frequency is “less frequent,” then a typical stroke
report sequence is like that in Figure 8-6.

(THIZI(TI+) (=) HI(B) (TYCII(TI(&) (=) (#)(6) (TICIY(TY(1)(*¥)(#)(5)(CR)
(TYCITICMYM (D (#)(3) (TYIBY (Y1) (#)(0) (TI(II(5)(=)(8)(#)(/)(CR)
(T (B8Y(#)(0) (TICI)(3YH) (/) (#)(3) (TY(II(2)($)(SPY(#)(;)(CR) > First stroke
(TY(II0)(¥)(2)($)(+) (TIIN(/) (L) (F)(B)(M) (THIIC.)(')(/) (&) (SP)(CR)
(TIICH B I&) (TIW DB (O2) (TII)C)(+)(U)(*) (") (CR))
(TYII) (=) (+)(+)(2) (THI0)(CY(,) (&) (,)
(TY(Z)(8)(/)(=)(1)(9)(CR))
(TY(IIBY(,)(=)(1)(=) (TIIN8I(,)(=)(2Y(#) (TI(I)I(8I(/)(=)(2)(*)(CR)
(TY(IIBI(/)(=)(2)(1) (TI(II(8)(,)(=)(2)(8) (TI(JI)I(8I(/)(=)(2)(:)(CR)
(TY(I)(8Y (=) (=)(2)(T) (THII(TIM("("M(2)(,) (TIII(5)#)(>)(1)(:)(CR) (Second stroke
(T)CIIHY(+)(2)(1)($) (TI(II(3)(X)(¥)(0)(+) (TI(I)(2)(.)(&) (/) (/)(CR)
(T) (F) () (2) (TII)0)($)(H)(=)(5) (T)(I)(0)(=)(%)(,)(8)(CR))
(T)OY(/) (")™Y (=) (+)(+)
(TH(Z)(3)O))Y (%) (T ("M (B) (I (CR))
(T OB () (TIII2)I(N)(3)(B) (T)(J)(2)(*)(=)(%)(,) (Ck)
(T (=) (BI(=) (TYWIICI(N) (D) (T)(J)(0) (&) (#)(%)(4)(CR) Third
(T DEYO) (TIWI)CH () (1) (&) (T)(JI)(=)(&)($) (") (1) (CR) (Third stroke
(TYI DM DY) (TIINC) (1) (SEY (T 8) (TY(JI)(+)(")(9)(™) ™) (9)(CR)
(TYCI+) ("™ (9) (%) (=) (T)I(J)(,)(/)(SP) 1 (TG (B (=) (=) (") (CR)
(TYOY(,D (YOI ()
(t)(CR)
\<flnal—G|N—report—ltem>
3675-34
Figure 8-8. Fitting Multiple Stroke Reports on Each Line.
8-14 4114 HOST PROGRAMMER'S

GRAPHIC INPUT

USING SEVERAL GIN DEVICES AT ONCE

You can enable several GIN devices at once. For
instance, the terminal can simultaneously be enabled
for graphic input from the thumbwheels device, locator
function (device-function code 0) and the tablet device,
pick function (device-function code 9).

SIGNATURE CHARACTERS

When several graphic input devices are enabled, the
reports which they send to the host are interleaved. In
order that the host may parse the reports correctly,
each device-function code should have Its own distinct
signature characters. For instance, you might assign
(W) and (w) as the <sig-char> and <term-sig-char>
for the thumbwheels, and assign (T) and () as the
corresponding signature characters for the tablet.

4114 HOST PROGRAMMER'S

CURSORS

The different device-function codes should have differ-
ent cursors. If you use the default crosshair cursor
(“segment zero”) for one device-function code, you
should assign other segments to serve as the cursors
for the other device-function codes. To do this, use the
set-GIN-cursor> command:

< set-GIN-cursor>
= (ESC)()(C)<int><int>

Here, the first <int> parameter names the device-
function code, and the second < int> parameter is the
segment number for the segment being assigned as the
graphics cursor.

8-15

Section 9

REQUESTING REPORTS FROM THE TERMINAL

This section describes the commands by which you
can request reports from the terminal, and by which
you can control the format of those reports. Not
included here are descriptions of the graphic input
commands; those are described in Section 8. Topics
hers are:

o Controliing the format of reports. This includes
setting the signature characters, “EOM frequency,”
the maximum line length for reports, and so on. The
commands described here affect GIN reports (de-

scribed in Section 8) as well as the non-GIN reports

described in this section.

o Non-GiIN reports. This section aiso covers how to
obtain information on the terminal’s settings, on the
status of devices attached to the terminal, and on
segments stored in the terminal’s RAM memory.

CONTROLLING THE FORMAT OF REPORTS

REPORT SYNTAX

For each report which the terminal sends the host
computer, there is a syntax specified in the 4110
Series Command Reference Manual. You will need to
consult that syntax description when you write a
routine to parse that report. See the following descrip-
tions in the Command Reference Manual:

® < GIN-report-sequence>

< GIN-locator-report>

< GIN-pick-report>

< GIN-stroke-report>

< Port-status-report>

< Segment-status-report>
< Terminal-settings-report>
< 4010-GiN-report>

< 4953-tablet-GIN-report>

4114 HOST PROGRAMMER'S

<EOM-INDICATOR>S

Most of these reports have < EOM-indicator> s in their
syntax. Some of the < EOM-indicator> s are optional
parts of the reports; in the syntax definitions, these are
enclosed in square brackets (e.g., “[< EOM-indica-
tor>]"). Footnotes explain under what circumstances
the optional < EOM-indicator> 8 are included in the
report message.

If the terminal is in block mode (which requires Option
01), then it sends an < EOM-indicator> by terminating
the block and setting the end-of-message bit in the

< block-control-bytes> . This is described in

Section 11.

If the terminal is not in block mode, then it replaces
each < EOM-indicator> with its current < EOL-
string> (end-of-line string). This Is typically the single
character, (CR), although other < EOL-string>8 may be
selected with the < set-EOL-string> command.

In either case (whether the terminal is in block mode or
not), each < EOM-indicator> marks the end of a “line
of text” in a report message which the terminal sends
to the host.

9-1

REPORTS

< SET-REPORT-EOM-FREQUENCY>
COMMAND

The < set-report-EOM-frequency> command lets you
control how often the terminal sends < EOM-indica-
tor> s in report messages.

Consider, for instance, the syntax specified for < GIN- -
report-sequence> . This syntax is specified in the
4110 Series Command Reference Manual. For this
discussion, the pertinent part of the syntax is as
follows:

< GIN-report-sequence>
= [< GIN-report-item> ..]
< finai-GiN-report-item>

where

< GIN-report-item> = [< EOM-indicator>]
[< sig-char>]
< GIN-report>
[<EOM-indicator>]

By issuing a < set-report-EOM-frequency: 1> com-
mand, you can cause the terminal to send an < EOM-
indicator> at the end of each < GIN-report-item> .
(This is the < EOM-indicator> shown in bold type.)
That way, if the terminal is not in block mods, each
individual < GIN-report> is followed with a (CR) (or
other < EOL-string>). If the terminal is in block mode,
each individual < GIN-report> is in a block of its own.

By issuing a < set-report-EOM-frequency: 0> com-
mand, you can suppress the < EOM-indicator> s at the
end of the < GIN-report-item> s. That way, several

< GIN-report-item> s can fit on the same line of text.

The < set-report-EOM-frequency> command has this
syntax:

< set-report-EOM-frequency> = (ESC)(I)(M)< int>
The < int> parameter is one if <EOM-indicator> s are

to be sent “more frequently;” it is zero if <EOM-
indicator> s are to be sent “less frequently.”

< SET-REPORT-MAX-LINE-LENGTH>
COMMAND

If you decide to allow several reports to be sent on the
same line of text (using the < set-report-EOM-frequen-
cy: 0> command), then the question arises, “How
many reports should the terminal send on each line of
text?” Another way to phrase this is, “What is the
maximum length permitted for each line of text?”

You set the maximum line length permitted in reports
with the < set-report-max-line-iength> command:

< set-report-max-line-length>
= (ESC) (L)< int>

Here, the <int> parameter specifies the maximum
number of characters allowed on each line of the report
message, not counting any characters in the < EOM-
indicator> which terminates the line. (If the terminal is
not in block mode, the < EOM-indicator> is the current
< EOL-string>, as set by the < set-EOL-string> com-
mand)

To see how the < set-report-max-line-length> com-
mand affects the report messages which the terminal
sends to the host, consider once again, the < GIN-
report-sequence> syntax:

< GIN-report-sequence> = [< GIN-report-item> ..]
< final-GIN-report-item>

where

< GIN-report-item> = [< EOM-Iindicator>]
[< sig-char>]
< GIN-report>
[< EOM-indicator>]

If the <report-EOM-frequency> is set to “less
frequent,” then the terminal does not send the optional
< EOM-indicator> at the end of each < GIN-report-
item> . In that case, the < GIN-report-item> syntax is
simplified:

< GIN-report-item> = [< EOM-indicator>]
[< sig-char>]
< GIN-report>

The optional < EOM-indicator> at the start of each

< GiN-report-item> (shown above in bold type) is only
sent if the terminal’s “maximum report line length” is
about to be exceeded. This maximum line length Is
determined by the < set-report-max-line-length>
command.

4114 HOST PROGRAMMER'S

Suppose, for instance, that the terminal is enabled for
graphic input using the locator function, and that the
maximum line length is set to 78 characters. Then each
< GIN-report> in the < GIN-report-sequence> is a

< GIN-locator-report>, and consists of six characters.
If the < sig-char> is not (NUL), it is sent before each

< GIN-report>, so each < GIN-report-item> has seven
characters, not counting the optional < EOM-indica-
tor> . Without exceeding the maximum line length,
eleven seven-character < GIN-report-item> s can fit on
each line.

When the terminal has sent eleven < GIN-report-
item> s, it has filled up a line of text. If the terminal has
a tweifth < GIN-report-item> to send, it begins by
sending an < EOM-indicator>. This < EOM-indicator>

REPORTS

serves to terminate the preceding line of text, so that
the maximum line length is not exceeded. The remain-
der of the < GIN-report-item> — the <sig-char> and
< GIN-locator-report> — occupies the first seven
characters of the next line of text.

EXAMPLES

Figure 9-1 shows two typical < GIN-report-
sequence> s for the locator function. In the first part of
the figure, the EOM-frequency is “more frequent,” so
that each < GIN-report-item> is on a separate line of
text. In the second part of the figure, the EOM-
frequency is “less frequent,” and the maximum report
line length is 25; this fits three seven-character < GIN-
report-item>> s on each line of text.

CAY(MY(EYLSPY(H(M)YCYICLY(CR)
(YD) (=YI(SPY(™"I™I(’)(!)ICR)
(RICDI(=)(SPI("I")(RI(+/)(CR)
(A)ED)(OI(SPI(=)(I(")(CR)
(AY(D)(=)(SPY(")I")(E)(B)(CR)
(WD) (=)(SPY(")")(S)I(R)(CR)
(WY(D)CEICSPIC"(")(5)(#)(CR)
(HYCENICRI(SPYIC"(")C(*I(L)(CR)
(WICM)(&YC(SPI(M(")(2)Y(R)(CR)
(WICD)(H)I(SPI(X)(2)(R)(CR)
() (D) (#)(SP)(X)C(1)(&)(CR)
(AYCN)CRI(SPI("(")C1I(&)(CR)
(WY(D)(SP)(SP)(SP)(0)(=)(CR)
(MY(W) (M) (SPI(SPI(SPI(3)(1)(CR)
(WD) (&I (SPIC("(")(2)(8)(CR)
(W) (M)($I(SPI(6)(SP)ICSP)(CR)
(WYDXCICSPYCEIC?ICLI(CRY
(WY(MI(*)(SPI(+,)1(5)(#)(CR)
(YD) CI(SPYI(eIC2I(M(M)CCR) -
(WYEX)CRICSPICS)IC(R2IC(™(")(CR)
(W) (CR)

A. <Set—-EOM-—Frequency: 1>

CAY (MY (&) CSPY (" (™) (YL CWICDI (=) (SPIC™I")I(I (LI IWI(DI(=)(SPI("I") (%) (+/)(CR)
(WY (DI COI(SPI (=) () (")CWI(DIC(=)(SPI(™)I")(6)(5)(WI(DIC=)I(SPI(")")(5)(#)(CR)

(W) (DI (&I (SPI((") (SI(#ICWIDICEICSPIC"(™IC I CLICWI(MI(RICSPIC™(")(2)(8)(CR)
(WI(D)(#)(SPI(%)(2)(B)CWI(D)(#I(SPI (%) (1) C&ICWI(DIC&ICSPI(" (") (1) (&) (CR)
(W)(D)(SP)(SP)(SP)(0) (=) (MI(W)(MI(SP)(SPI(SPI(I)(1)(WICDIC(EI(SPIC (") (2)(R)(CR)
(W) (M) (S)(SPI(6)(SP)ICSP)(WI(DIC I(SPICLIC ICLICHICMICHICSP)(+.)(5)(#)(CR)
(WICDI(LI(SPICL)E2ICM (") CWICXI(HI(SPI(8IC2IC((") (W)(CR)

B. <Set—EOM—Frequency: 0>,< Set—Report—Max—Line—Length: 25>

3676-36A

Figure 8-1. Controlling the Format of a < GIN-Report-Sequence> .

4114 HOST PROGRAMMER'S

REV, JUL 1981 9-

[7A]

REPORTS

Likewise, Figure 9-2 shows two < errors-report> se-
quences which the terminal might send in response to
a <report-errors> command. (The < report-errors>

mand Reference Manual.)

command is described later in this section and in the
the Command Reference Manual. For details of the
< errors-report> syntax, see the 4110 Series Com-

(NYINY(RYI(2ICLICSPI(SPY(2)(SPY(SP)(1)(CR)
(NYICNYCRY (L) CLII(SPYI(SPYI(2)(SP)(SPYI(1)(CR)
(NYCOXCTICLYCLY(SPYI(SPYI(2)(SP)(SP)(IY(CR)
(NYCD)I(PY(2)C1I(SPI(SPY(?2)(SPI(SP)(1)(CR)
(9 DINYI (1) CLICSPI(SPI(?2)(SPY(SP)(2)(CR)
(NY(ZYCNY(OYICOYCSPY(SPY(1)(SPY(SP)(1)(CR)
(n)fCK)

A. <Set—EOM-—Frequency: 1>

(NIAN)CRI(2)CLI(SPI(SPI(2)(SPYCSPICIYI(N)IINI(RICLIICIDI(SPYI(SP)I(2)(SPI(SPI(1)(CR)
(VI O)CTI(1)I(II(SPI(SPI(2)(SPYISPICLII(NI(NYI(P)I(2)(1)(SP)(SP)(2)(SPI(SP)I(1)(CP)
CHMIMNICEICIICSPY(SPI(2)(SPY(SPIC2Y(NI(ZI(N)ICOY(O)(SPI(SP)(1)(SP)(SPYI(1)(Nn)(CR)

B. < Set—EOM —Frequency: 0>,< Set—Report—Max—Line—length: 25>

3675-36A

9-4

Figure 9-2. Controlling the Format of <Errors-Report> Messages.

REV, JUL 1981

4114 HOST PROGRAMMER'S

< SET-REPORT-SIG-CHARS > COMMAND

The < set-report-sig-chars> command sets the < sig-
char> and <term-sig-char> signature characters,
which are used in < GIN-report-sequence> messages
and also in non-GIN report messages. The command
has the following syntax:

< set-report-sig-chars>
= (ESC){(1)(S)<int> <int> < int>

The first <int> parameter specifies the type of report
for which the signature characters are being specifisd.
For GIN reports, this is a GIN device-function code.
(See Section 8 for information on device-function
codes.) For other reports (“non-GIN” reports), this
parameter is minus three. (All non-GIN reports have the
same < sig-char> and < term-sig-char> signature
characters.)

REPORTS

If this parameter is minus one, then the < set-report-
sig-chars> command sets the signature characters for
all reports: all GIN device-function codes, and all non-
GIN reports as well.

The second and third <int> parameters specify the
ASCII characters to be used as the < sig-char> and
< term-sig-char> in the reports of the type specified
by the first parameter. Each character is specified by
its numeric equivalent. For instance, <int: 65> repre-
sents the (A) character, since the ASCII decimal
equivalent of A is 65.

Setting a signature character to (NUL) — ASCII decimal
equivalent of zero — causes that character not to be
sent in reports to the host computer.

For more information, see the description in the 4110
Series Command Reference Manua! of the <set-
report-sig-chars> command.

NON-GIN REPORTS

Besides the commands for graphic input, the following
commands cause the terminal to send report messages
to the host computer:

® < report-device-status>

< report-errors>

< report-port-status>

< report-segment-status>
< report-terminal-settings>
< report-4010-status>

The following descriptions summarize the purposes of
these commands. For more information, see the de-
scriptions of these commands in the 4110 Serles
Command Reference Manual.

<REPORT-DEVICE-STATUS> COMMAND

The < report-device-status> command causes the
terminal to send a < device-status-report> to the host
computer. The < device-status-report> tells the host
certain status information about the peripheral device
specified in the < report-device-status> command.
The command has the following syntax:

< report-device-status>= (ESC)(J)(O)< string>

If Option 10 (Three Port Peripheral Interface) is
Installed, the < string> may be "“P0:", “P1:", or “P2:",
to specify one of the RS-232 peripheral ports. If Option

4114 HOST PROGRAMMER'S

42 or 43 (disk drive or drives) is installed, the
<string> may be “F0:” or “F1:”, to specify a particular
flexible disk drive.

For more details, see the following descriptions in the
4110 Series Command Reference Manual:

® < Report-device-status> command
® < Device-status-report> message type

<REPORT-ERRORS> COMMAND

The < report-errors> command causes the terminal to
send an < errors-report> message to the host compu-
ter. In that message, the terminal reports the eight
most-recently detected error codes, their severity
levels, and how many times each error was detected.
The command has the following syntax:

< report-errors> = (ESC){K)(Q)

For details, see the following descriptions in the 4110
Series Command Reference Manual:

® <Report-errors> command

® < Errors-report> message type

See also Appendix C of the Command Reference
Manual, “Error Codes.”

REPORTS

<REPORT-PORT-STATUS> COMMAND

The <report-port-status> command is available only if
Option 10, the Three Port Peripheral Interface, is
installed. The command has the following syntax:

< roport-port-status> = (ESC)(P)(Q)< string>

Here, the < string> parameter is “P0:”, “P1:”, or “P2:".
It names the RS-232 peripheral port for which a status
report is requested. In response to the command, the
terminal sends a < port-status-report> message to the
host computer. This message contains information
about various settings for the specified peripheral port:
baud rate, parity, flagging mode, etc.

For details, see the following descriptions in the 4110
Series Command Reference Manual:

® < Report-port-status> command
® < Port-status-report> message type

<REPORT-SEGMENT-STATUS>
COMMAND

The < report-segment-status> command causes the
terminal to send a < segment-status-report> message
to the host computer. The command has the following
syntax:

< report-segment-status>
= (ESC)(S)Q)<int> < char-array>

Here, the <int> parameter names the segment for
which status information is requested. The parameter
may be in the range from 1 to 32767, in which case
information about one specified segment is returned.
Or, the parameter may be one of the “special segment
numbers” described in Section 6: *‘—1" means “all
segments,” “—2" means “default values for segments
not yet defined,” and “‘—3" means “all segments in the
current segment matching class.”

The < char-array> tells the terminal which information
about the specified segment (or segments) is desired.

For detalils, see the following descriptions in the 4110
Series Command Reference Manual:

® < Report-segment-status> command
¢ < Segment-status-report> message type

<REPORT-TERMINAL-SETTINGS >
COMMAND

The < report-terminal-settings> command is an ex-
tremely versatile command by which the host can
obtain a wealth of information about the terminal’s
settings. The command has the following syntax:

< report-terminal-settings>
= (ESC)(N{(Q)< char> < char>

Here, the two < char> parameters comprise the op
code for one of the terminal’s commands. The terminal
responds by sending the host a < terminal-settings-
report> telling what the current values are for the
specified command's parameters.

Example: Querying the Terminal for its
Baud Rate Settings

For instance, the < set-baud-rates> command has this
syntax:

< set-baud-rates>
= (ESC}N)(R)< int+ > <int+ >

Since the op code for this command is NR, the host can
learn the terminal’s baud rates by issuing the following
command:

< report-terminal-settings: (N),(R)>
= (ESC)(IN(Q)(N){(R)

in response to this command, the terminal sends the
host a < terminal-settings-report>, as follows:

< terminal-settings-report>

= [<sig-char>]
(NXR)
<int-report: transmit-rate>
< int-report: receive-rate>
< EOM-indicator>

4114 HOST PROGRAMMER'S

Assume that the < sig-char> for non-GIN reports is
(T), that the terminal’'s < EQL-string> is (CR), that the
terminal is not in block mode, and that it is set to
transmit characters at 300 baud and receive them at
600 baud. Under these circumstances, the <terminal-
settings-report> would be as follows:

< terminal-settings-report>

= (T)
(N)(R)
< int-report: 300>
< int-report: 600>
(CR)

= (T)
(N)(R)
(SP)(1)(>)
(SP)(C)(<)
({CR)

= (MN)R)SP)(1)(>)(SP)(C)(<)(CR)

Special Inquiry Codes

There are also a number of “special inquiry codes,”
which can be used instead of command op codes in the
< report-terminal-settings> command. For instance,
you can find out how much free memory the terminal
has available by the “?M” inquiry code:

< report-terminal-settings: (?)(M)>
= (ESC)(N{(Q)(?)(M)

For information on these inquiry codes, and for full
details on the < report-terminal-settings> command,
see the following descriptions in the 4110 Series
Command Reference Manual: .

& < Report-terminal-settings> command

® < Terminal-settings-report> message type

4114 HOST PROGRAMMER'S

REPORTS

<REPORT-4010-STATUS> COMMAND

The < report-4010-status> command is provided for
compatibility with TEKTRONIX 4010 Series terminals.
It has the following syntax:

< report-4010-status> = (ESC)(ENQ)
In response to this command, the terminal sends a
< 4010-status-report> to the host computer. For de-

tails, see the following descriptions in the 4110 Series
Command Reference Manual:

® < Report-4010-status> command
® < 4010-status-report> message type

9-7

Section 10

COMMUNICATIONS SETTINGS

INTRODUCTION

This section tells how to control the 4114’s standard
communications settings. Not included are the settings
associated with Option 01 (Half Duplex and Block
Mode); those settings are described in Section 11.

Topics discussed in this saection are:

® The most important communications settings: data
rates, echo, parity, and number of stop bits.

® Less important settings: the break time, and coping
with (DEL) filler characters which some hosts send.

® Full duplex data communications.

® The terminal's communications input queue, and the
handshaking protocols used to keep it from over-
flowing.

4114 HOST PROGRAMMER'S

® The concept of “lines of text” in data sent from the
terminal to the host, and the transmit delay that
occurs at the end of each such line.

All the terminal’s communications settings (those set-
tings described in this section or in Section 11) are
remembered by the terminal even when it is turned off.

All the communications settings can be set by the
operator, using SETUP mode commands. See the 4114
Operator's Manual for details.

10-1

COMMUNICATIONS SETTINGS

THE MOST IMPORTANT COMMUNICATIONS SETTINGS

DATA RATE COMMANDS

< Set-Baud-Rates> Command

You can set the 4114’s host-to-terminal and terminal-
to-host data transmission rates (also known as “baud
rates’). Normally, these rates should be set by the
terminal’s operator, using the SETUP mode BAUD
command. However, an “escape sequence” < set-
baud-rates> command does exist.

g CAUTION g

It is usually unwise to issue the < set-baud-
rates> command from the host computer. (The
terminal cannot understand the command unless
its baud rates are already set correctly for
communicating with the host; changing the baud
rates could only serve to make further communi-
cation with the host impossible.)

The < set-baud-rates> command, may, however,
be included in a file of terminal commands stored
in the terminal’s optional disk drives. That way,
the operator can initialize the terminal for
operation with a particular host computer by
typing a LOAD command (in SETUP mode) to
load that command file into the terminal.

The < set-baud-rates> command has this syntax:
< set-baud-rates> = (ESC)(N)(R)< int> <int>
(For more details, see the < set-baud-rates> command

description in the 4110 Series Command Reference
Manual.)

< Set-Transmit-Rate-Limit> Command

You can specify a “transmit data rate limit” — an
effective maximum speed for terminal-to-host commu-
nications, which may be less than the rate at which the
terminal sends each individual character. A transmit
data rate limit of 300, for instance, means that the
terminal, in sending characters to the host, will space
those characters apart for an effective average data
rate of 300 bits/second. This is useful at high baud
rates, where the host computer’s input processor may
not be able to accept characters “back to back” at the
full data rate.

For instance, even though the terminal may be set to
transmit each character at, say, 9600 bits/second, it
can space its characters apart for an average data
transmission rate of only 300 bits/second.

The < set-transmit-rate-limit> command has this syn-
tax:
< set-transmit-rate-limit> = (ESC)(N)(X)< int>

Here, the < int> parameter specifies the maximum
effective transmit rate in bits per second.

For more details, see the description of the < set-
transmit-rate-limit> command in the 4110 Series
Command Reference Manual.

Examples

Table 10-1 shows examples of the < set-baud-rates>
and < set-transmit-rate-limit> commands.

Table 10-1
SETTING THE TERMINAL’S DATA RATES

Example Description

< set-baud-rates: 1200, 1200>
= (ESC)(N)(R)< int: 1200> < int:1200>
= (ESC)(N)(R) (A)(K)(0) (A)(K)(O)

Sets the terminal’s transmit (terminal-to-host) and receive (host-to-terminal) date
rates to 1200 bits/second.

(For information on how the <int: 1200> parameters expand to (A)(K)(0), see the
description of the <int> and <int+ > parameter types in the 4110 Series
Command Reference Manual.)

< set-baud-rates : 1200, 600 >
= (ESC)(N)(R)<int: 1200> < Int: 600>
= (ESC)(N)(R) (A)(K)(0) (e)(8)

Sets the terminal’s transmit (terminal-to-host) rate to 1200 bits/second, and its
receive rate to 600 bits/second.

< set-xmt-limit: 300>
= (ESC)(N)(X)<int: 300>

Although the 4114 sends each character at the rate specified in the most recent

= (ESC)(N)(X) (R} (<)

< set-data-rates> command, it spaces the characters apart for an effective average
rate of 300 bits/second (about 30 characters/second).

10-2

@ 4114 HOST PROGRAMMER'S

<SET-ECHO> COMMAND

Except in LOCAL mode or SETUP mode, when you type
on the 4114’s keyboard, the characters typed go to the
host computer. They do not necessarily appear on the
terminal’s screen. They only appear on the screen if (a)
the host (or modem) sends the same characters back
to the terminal — provides a “remote echo” — or (b) the
terminal provides its own “local echo” of the transmit-
ted characters.

The operator can specify whether the terminal provides
a local echo by means of the ECHO command in
SETUP mode; see the 4114 Operator's Manual for
details. This command can also be issued by the host,
or by a command file <load> ed from the terminal’s
optional disk drive. The command syntax is as follows:

< set-echo> = (ESC)K)(E)<int>

In this command, if the <int> is 1, the terminal
provides its own echo; if the <int> is zero, the terminal
does not. In the latter case, it is the responsibllity of the
host computer (or other external equipment) to provide
the echo.

Table 10-2 shows examples of the < echo> command.
For more details, see the command description in
Section 10.

COMMUNICATIONS SETTINGS

<SET-PARITY> COMMAND

The 4114’s parity setting controis how the 4114 sets
the eighth bit (parity bit) in each character it sends to
the host. (Except in block mode, the 4114 ignores the
parity bit in characters it receives from the host.)

The choices on the use of the eighth bit are:

® Low parity. When the 4114 sends a character to the
host, it sets the parity bit to zero.

® Odd parity. When sending a character to the host,
the 4114 sets the parity bit so that there are an odd
number of ones in the character’s eight bits.

® Even parity. When sending a character to the host,
the 4114 sets the parity bit so that there are an even
number of ones in the character’s eight data bits.

@ High parity. Sets the parity bit to one in characters it
transmits to the host.

® “Data” parity. The parity bit is used for data, just as
are the other seven bits in each eight-bit character.
(This mode is not normally used, since it implies a
different code than the standard ASCIl seven-bit
code.)

The host computer controls the terminal’s parity setting
with the < set-parity> command:
< set-parity> = (ESC)(N)(P)<int>

where the <int> is 0, 1, 2, 3, or 4 for “low parity,” “odd
parity,” “even parity,” “‘high parity,” and “parity bit used
for data,” respectively.

Table 10-2
SETTING THE TERMINAL’S LOCAL ECHO

Example Description

<echo: 0> = (ESC)(K)(E)<int: 0>

= (ESC)(K)(E) (0) computer.

Specifies “no local echo.” Any echo must be provided by the modem or the host

<echo: 1> = (ESC)K)(E)<Int: 1>
= (ESC)(K)(E) (1)

Specifies “local echo.” The 4114 displays the characters it sends to the host.

4114 HOST PROGRAMMER'S

10-3

COMMUNICATIONS SETTINGS

<SET-STOP-BITS> COMMAND

In communicating with the host, the terminal sends and
receives each character serially, as a sequence of 10
or 11 bits. (This is called “asynchronous serial” data
communications.) The first bit for each character is a
start bit, always a zero (or “space”) bit. The next seven
bits determine the particular ASCll character, after
which comes a parity bit, described earlier. The
character ends with one or two ‘““stop bits,” which are
always ones (or “mark” bits). The communications line
then remains in the marking condition until the start bit
for the next character.

In receiving characters from the host, the terminal will
always operate correctly, regardiess of whether the
host sends one or two stop bits in each character.

The terminal includes one or two stop bits in each
character it transmits to the host. The number of stop
bits can be set with the < set-stop-bits> command:

< set-stop-bits> = (ESC)(N)(B)< int>

Here, the <int> parameter specifies the number of
stop bits; it must be either one or two.

The operator can also set this parameter, with the
SETUP mode STOPBITS command. See the 4114
Operator's Manual for details.

LESS IMPORTANT COMMUNICATIONS SETTINGS

<SET-BREAK-TIME> COMMAND

Pressing the BREAK key sends a ‘‘break” signal to the
host computer. This signal is not an ASCII character,
but it is a signal to the host computer. In full duplex
communications, the break is sent by holding the
communications line in the “space’’ condition for
longer than the duration of a single ASCII character. In
half duplex with supervisor mode (described in Section
11), a break is sent by turning off the secondary
carrier.

As shipped from the factory, the break signal is set to
last 200 milliseconds. This is adequate for most host
computers. The < set-break-time> command lets you
change this value for use with hosts for which 200
milliseconds is too short or too long. The command has
the following syntax:

< set-break-time> = (ESCHN)(K)< int>

10-4

Here, the <int> parameter specifies the number of
milliseconds that the break signal is to last. This value
can also be set by the operator, using the SETUP mode
BREAKTIME command; see the 4114 Operator's
Manual for details. Like all communications settings,
the break time is remembered by the terminal even
when it is turned off.

Some host computers are intolerant of break signals.
(They may, for instance, respond to a break by logging
the user off and disconnecting the telephone line.) For
such hosts, it may be convenient to set the break time
to zero; this causes the terminal not to send a break
signal.

Besides sending the break signal, the BREAK key has
a few other effects. For details, see the description of
the BREAK key in the 4110 Series Command Refer-
ence Manual.

4114 HOST PROGRAMMER'S

COPING WITH (DEL) FILLER
CHARACTERS

The Problem

Some host computers intersperse (DEL) characters
(also known as (RUBOUT) characters) among the
characters they send to a terminal. These extra “filler”
characters are inserted automatically by the host
operating system, so that the user's applications
program has no control over them. Since the 4114
interprets (DEL) as a valid character in <int>,

<int+ >, and <xy> parameters, these extra (DEL)
characters can cause problems.

COMMUNICATIONS SETTINGS

The Remedy

The 4114 terminal includes two features which help
you cope with this problem. Firstly, the terminal
accepts the character sequence (ESC)(?) as a syno-
nym for (DEL). Secondly, the < ignore-delete> com-
mand causes the terminal to ignore any (DEL) charac-
ters which the host may send it. (It does not, however,
ignore (ESC)(?) sequences.)

Thus, if your host uses (DEL) as a filler character, you
should do the following two things:

1. Write your device driver routines so that they
always send (ESC)(?) when they would otherwise
send the (DEL) character. The routines to change
are the ones which issue <int>, <int+ >, and
< Xy> parameters.

2. At the start of each applications program, send an
< ignore-deletes> command to the terminal.

For more information on the <ignore-deletes>
command, see Its description in the 4110 Series
Command Reference Manual.

FULL DUPLEX DATA COMMUNICATIONS

Many time-sharing systems use the “full duplex, re-
mote echo” data communications protocol. “Full du-
plex’’ means that the data communications line can
simultaneously support transmissions in both direc-
tions. “Remote echo” means that the host ‘‘echoes”
back to the terminal each character which the terminal
sends. It Is the echo, rather than the original
transmitted character, which is displayed on the termi-
nal’s screen. An echo from the host computer is
possible only In a full duplex system.

4114 HOST PROGRAMMER'S

If the 4114 is not equipped with Option 01, then it is
always configured for full duplex data communications.
To use full duplex, remote echo data communications,
It is only necessary that the terminal’s local echo be
turned off (with a < set-echo: 0> command).

If the 4114 has Option 01 installed, then it can be used
with either full duplex or half duplex data communica-
tions. In that case, a < set-duplex: 0> command is

- used to set the terminal for full duplex operation. The

< set-duplex> command is described in Section 11.

10-5

COMMUNICATIONS SETTINGS

THE COMMUNICATIONS INPUT QUEUE AND “HANDSHAKING”
PROTOCOLS

<SET-QUEUE-SIZE> COMMAND

The terminal has an input buffer, or queue, where it
accumulates the characters it receives from the host
computer. When characters arrive faster than the
terminal can process them, the terminal stores them in
its communications input queue until it has a chance to
process them — or until the memory allocated for that
queue is exhausted. (If the queue memory is exhaust-
ed, incoming characters are lost.)

For instance, the terminal cannot display characters
while it is in the process of erasing its screen.
Therefore, while the screen is being erased (as, for
instance, in response to the PAGE key), any characters
coming from the host are stored in the input queue until
the erase operation is finished. When the screen
erasure is complete, the terminal reads the characters
from the queue and displays them.

Again, while in SETUP mode the terminal does not
display characters coming from the host. Instead, such
characters accumulate in the input queue. The terminal
waits to process those characters until the operator
presses the SETUP key to remove the terminal from
SETUP mode. The same is true for LOCAL mode.

As shipped from the factory, the communications
queue can hold up to 300 ASCII characters. However,
this value can be changed with the < set-queue-size>
command:

< set-queue-size> = (ESC)(N)(Q)< int+ >

Here, the < int+ > parameter specifies how many
characters the input queue can hold.

The < set-queue-size> command can also be typed by
the operator, as the SETUP mode QUEUESIZE
command. See the 4114 Operator's Manual for detalls.

10-6

THE NEED FOR HANDSHAKING

The 4114 can display simple alphanumeric text and
graphics only up to a maximum continuous data rate of
19200 baud (19200 bits per second). At higher data
rates, or for more complex operations, some “hand-
shaking” protocol should be used to prevent the
terminal's communications input queue from
overflowing.

Even at slow data rates, it may be prudent to use a
handshaking protocol. The terminal can take an appre-
ciable amount of time to execute some commands
which can be issued using only a very few characters.
Examples are the <include-copy-of-segment>,

< directory>, <load>, and < save> commands. If a
handshaking protocol is not used, the terminal’s input
queue may overflow while executing such commands.

Such a handshaking protocol might be as simple as
issuing < report-4010-status> from time to time, and
waiting to receive the reply before sending more
characters to the terminal. Alternatively, either of two
data communications protocols may be used: flagging
mode or block mode. (Or both modes may be used at
the same time.) Either of these communications
protocols will prevent the terminal’s input queue from
overflowing. (Block mode is available only if the
terminal is equipped with Option 01. It is described in
Section 11))

4114 HOST PROGRAMMER'S

< SET-FLAGGING-MODE> COMMAND

The terminal’s flagging mode can be set by the
operator using the SETUP mode FLAGGING command.
(See the 4114 Operator's Manual for details.) It can
also be set by the host computer, using the < set-
flagging-mode> command:

< set-flagging-mode> = (ESC)(N)(F)<int>

Here, the < int> parameter specifies the flagging
mode; it is in the range from O to 4.

Mode O (No Flagging). DC1/DC3 and DTR/CTS flag-
ging are both disabled. _

Mode 1 (DC1/DC3 Flagging for Input). The terminal
uses the “DC1/DC3” flagaing protocol when receiving
characters from the host.

If the host is sending characters to the terminal faster
than the terminal can process them, so that the
terminal’s input queus is in danger of overflowing, then
the terminal sends the host a (DC3) character. The host
is then expected to suspend transmission of charac-
ters to the terminal.

When the terminal is ready for more characters, it
sends the host a (DC1) character. This signals the host
that it may resume transmission of characters to the
terminal.

Mode 2 (DC1/DC3 Flagging for Output). The
terminal uses the “"DC1/DC3” flagging protoco! when
transmitting characters to the host.

The host can send the terminal a (DC3) character when
the host's input buffer is in danger of overflowing. The
4114 sends at most one or two more characters and
then stops transmitting to the host.

When the host is ready for more characters, it sends
the terminal a (DC1) character. When the 4114 re-
ceives a (DC1), It resumes transmission to the host.

Mode 3 (DC1/DC3 Flagging for Both Input and
Output). The terminal uses the DC1/DC3 flagging
protocol both when recelving characters from the host
and when transmitting characters to the host.

4114 HOST PROGRAMMER'S

COMMUNICATIONS SETTINGS

Mode 4 (DTR/CTS Flagging). In DTR/CTS flagging,
the terminal uses two signal lines at the RS-232
connector to regulate the flow of data between the
terminal and the host computer. These signal lines are
DTR (Data Terminal Ready) and CTS (Clear To Send).

NOTE

DTR/CTS flagging is usually not practical when
the host is connected to the terminal over
telephone lines by the use of modems. In such
circumstances, the host does not have direct
access to the DTR and CTS signal lines. This
flagging mode is only practical if the host is
connected directly to the terminal.

in DTR/CTS fiagging, the terminal indicates that it
wishes to transmit data by asserting RTS (Request To
Send); that is, it places a positive voltage on the RTS
signal line at the RS-232 connector. If the host is ready
to receive the data, it asserts CTS (Clear To Send). The
terminal is only allowed to transmit when CTS is
asserted.

Shouid the terminai be transmitting characiers faster
than the host can process them, so that the host’s input
buffer is in danger of overflowing, the host can drop
CTS (place a negative voltage on the CTS signal line).
When the host is ready to receive more characters, it
asserts CTS again, and the terminal resumes its
transmission.

When receiving characters from the host, the terminal
uses the DTR (Data Terminal Ready) signal line in the
same way that the host uses the CTS line. If the host is
sending characters faster ihan the ierminai can pro-
cess them, so that the terminal’s input queus is in
danger of overflowing, then the terminal drops DTR. (it
places a negative voltage on the DTR signal line.) The
host is then expected to stop transmitting to the
terminal. When the terminal is ready for more charac-
ters, it asserts DTR (places a positive voltage on the
DTR line), and the host resumes Its transmission to the
terminali.

10-7

COMMUNICATIONS SETTINGS

PROMPT MODE

Besides flagging mode (just described) and block
mode (described in Section 11), the terminal has a
third handshaking protocol: prompt mode.

The prompt mode protocol is useful for preventing the
host's input buffer from overflowing when the terminal
has much data to send to the host. However, prompt
mode does not protect the terminal’s input queue from
overflowing when the host sends data to the terminal.
For that, you should use flagging mode or block mode.

Prompt Mode Operation

When the terminal is in prompt mode, it waits to send
each line of text until it receives a prompt string from
the host computer. (The prompt string is a sequence of
ASCII characters, determined by the most recent < set-
prompt-string> command.)

On receiving the prompt string, the terminal waits for
the “transmit delay” amount of time and then sends
one line of text to the host computer. Here, “one line of
text” means all the characters it has to send, up to and
including the next <EOM-char> or < EOL-string>.
This is described in more detail later in this section.
Typically, this means all characters up to and including
the next carriage return (CR) character.

The prompt string must be the last characters received
by the terminal, or else the terminal will not recognize it
as a prompt.

The following steps summarize prompt mode operation:

1. The terminal sends a line of text, up to and
including the <EOM-char> or < EOL-string> that
marks the end of the line.

2. The terminal receives a prompt string from the
host.

3. The terminal waits for the transmit delay.

4. Steps 1 through 3 are repeated again and again,
until the terminal is removed from prompt mode.

End of a Line of Text. As just mentioned, the end of a
line of text occurs when the terminal encounters an

< EOM-char> or <EOL-string> in the data it is
sending to the host.

10-8

Typically, an < EOM-char> is a (CR) chracter typed by
the operator or occurring in a file being transferred to
the host with the < copy> command. (The < copy>
command is described in Section 12.) However, other
characters can be chosen as the < EOM-char>. For
details, see the description of the < set-EOM-chars>
command in the 4110 Series Command Reference
Manual.

If the terminal is not in block mode, then it sends

< EOL-string> s wherever < EOM-indicator> flags
occur in a report it is sending to the host computer.
(Examples of such reports are < GIN-report-se-
quence> s and < terminal-settings-report> s. See Sec-
tions 8 and 9 for details; see also the Command
Reference Manual for the syntax of the different report
messages.) The < EOL-string> s are typically (CR)
characters, although other characters or character
sequences can be chosen with the < set-EOL-string>
command.

If the terminal is in block mode, it sends an <EOL-
string> at the end of each line of a block being sent to
the host. (Block mode is described in Section 11.)

< Prompt-Mode> Command

You can put the terminal in prompt mode or remove it
from prompt mode with the < prompt-mode> com-
mand:

< prompt-mode> = (ESC)(N)(M)<int>

If the <int> parameter is zero, the terminal exits
prompt mode. (it is not an error to send a < prompt-
mode: 0> command when the terminal is already out
of prompt mode.)

if the <int> parameter is two, the terminal enters
prompt mode as soon as it processes the < prompt-
mode: 2> command. Even if the terminal is in the midst
of sending characters to the host, it stops sending
those characters. (it waits for a prompt from the host
before resuming transmission.)

If the <int> parameter is one, and the terminal is
sending characters to the host, then it finishes sending
the current line of text before entering prompt mode.
That is, the terminal continues to transmit characters
until it encounters an < EOM-char> or < EOL-string>
in the data being sent to the host. After sending that

< EOM-char> or < EOL-string> — typically, the (CR)
character — the terminal enters prompt mode.
Thereafter, it will not send more characters until the
transmit delay elapses and it receives a prompt from
the host.

4114 HOST PROGRAMMER'S

The operator can remove the terminal from prompt
mode by typing the SETUP mode command, PROMPT-
MODE NO, or by pressing the CANCEL key. The host
can remove the terminal from prompt mode by sending
the < cancel> command or the < prompt-mode: 0>
command.

< Set-Prompt-String> Command

The prompt string is determined by the < set-prompt-
string> command:

< set-prompt-string> = (ESC)(N)(S)< int-array>
Here, the < int-array> is an array of up to ten integers.

Each integer in the array is the numeric equivalent of
an ASCII character.

COMMUNICATIONS SETTINGS

For instance, to set the prompt string to “GIMME:,” you
can send the following command to the terminal:

< gset-prompt-string: “GIMME:"">
= (ESC)(N)(S)
<int-array: (71,73,77,77,69,58)>

= (ESC)(N)(S)
<int: 6>
<int: 71><int: 73> <int: 77>
<int: 77> <int: 69> < int: 68>

= (ESC)(N)(S) (8) (D)(7) (D)(9)
{Di{=) (D}{=) (D)5} (T}

Here, the integer 6 is the number of <int> s in the
<int-array>.The integers 71, 73,77,77, 69, and 58
are the decimal equivalents of the ASCII characters
(G), (1), (M), (M), (E), and (:).

LINES OF TEXT AND THE TRANSMIT DELAY

The preceding description of prompt mode mentioned
the concept of a “line of text” in data being sent to the
host, and the transmit delay which occurs after the
terminal sends each such line of text. The following
description explains these in more detail.

THE TRANSMIT BUFFER

The terminal has an internal transmit buffer to hold any
characters which are waiting to be sent to the host
computer. When the operator types on the keyboard,
the characters he or she types go into the transmit
buffer. Likewise, when the terminal has a report
message to send to the host, the characters of that
message go into the transmit buffer.

The terminal sends the characters in the transmit
buffer to the host a line at a time; that is, it reads
characters from the transmit buffer and sends them to
the host until it encounters the end of a iine of text.
Then it waits for a short time to elapse (the “transmit
delay”) before sending the next line of text. If in prompt
mode, the terminal also waits to recelve a prompt from
the host before sending the next line of text.

For this purpose, a “line of text”” means “all the
characters walting to be transmitted, up to and includ-
ing the next <EOM-char> or <EOL-string>.” As the -
terminal is shipped from the factory, its only < EOM-
char> Is (CR), and the < EQOL-string> consists of one
character, (CR). Thus, if the terminal is set as it is when
shipped from the factory, then a “line of text” means
“all characters to be transmitted, up to and including
the next (CR) character.”

4114 HOST PROGRAMMER'S

If there are no characters waiting in the transmit buffer,
then each character the operator types enters the
transmit buffer and is immediately sent to the host
computer. (This is true even if the terminal is in prompt
mode.) Only if the operator could type faster than the
terminal’s transmit rate would more than one character
be in the transmit buffer. When the operator presses
RETURN, a (CR) goes into the transmit buffer and is
sent to the host. Since (CR) Is the usual < EOM-char>,
this also marks the end of a line of text. The terminal
then waits.a short time before sending the next
character typed. This transmit delay, however, is
usually so short as to be imperceptible to the operator.
(However, in half duplex mode — described in Section
11 — the transmit delay does last long enough to give
the host a chance to seize the communications line and
send a message to the terminal)

< SET-TRANSMIT-DELAY> COMMAND

The < set-transmit-delay> command has this syntax:
< set-transmit-delay> = (ESC)(N)(D)<int>

Hers, the < int> parameter specifies the approximate
number of milliseconds in the transmit delay. The
operator can also change this setting by means of the
SETUP mode XMTDELAY command. As shipped from
the factory, the delay is set to 100 milliseconds.

109

Section 11

HALF DUPLEX AND BLOCK MODE

This section describes the half duplex and block mode
data communications protocols, which are available if
the 4114 has Option 01 installed.

With Option 01, the terminal supports three types of
half duplex communications protocol, which are dis-
cussed in this section along with full duplex mode.
Option 01 also provides block mode protocol, which is
a method of formatting data for transmission to and
from the host.

FULL AND HALF DUPLEX DATA COMMUNICATIONS

< SET-DUPLEX-MODE> COMMAND

Terminals not equipped with Option 01 are always set
to use the full duplex communications protocol. If the
terminal has Opticn 01 {Half Duplex and Block Mode)
installed, then you can select the duplex mode with the
< set-duplex-mode> command:

< set-dupiex-mode> = (ESCHO)(Di<int>

Here the < int> parameter is zero for full duplex mode,
one for half duplex normal, two for half duplex with
automatic request to send, or three for half duplex with
supervisor mode.

Normally, however, the operator (rather than the host
computer) selects the duplex mode. To do this, the
operator uses the SETUP mode command, DUPLEX.
See the 4114 Operator's Manual for detaiis.

FULL DUPLEX MODE

In full duplex mode, the data communications line can
simultaneously carry data to and from the host
computer.

In full duplex mode, the terminal sends break signals
by sending a “space” for longer than the duration of a
single ASCII character. That is, the terminal puts a
positive voltage on the TDATA (transmitted data) line at
the RS-232 connector for a period of time determined
by the < set-break-time> command. (See Section 10
for a description of the < set-break-time> command.
See also the description of that command in the 4110
Series Command Reference Manual.)

4114 HOST PROGRAMMER'S

If Option 01 is installed, the operator can select full
duplex mode with the SETUP mode command, DUPLEX
FULL. There is also an escape-sequence version of
this command, < set-duplex-mode: 0>, as follows:

< set-duplex-mode: 0> = (ESC)(O)(D)<int: 0>
= (ESC)(0)(D)(0)

if Option 01 is noi instalied, the terminal is aiways set
to operate in full duplex mode.

HALF DUPLEX DATA COMMUNICATION

Some computer systems use the “half duplex” method
of data communication, in which the terminal and the
host computer take turns using the same data com-
munications channel. Half duplex mode offers faster
data rates than full duplex.! For the faster data rates,
however, there is a price: it is not possibie in a haif
duplex system for the host computer to provide a
“remote echo” of data which the terminal sends.

With Option 01 installed, the 4114 supports three

variations of the halif duplex communications protocol:
half duplex normal, half duplex with automatic request
to send, and half duplex with supervisor. These proto-
cols differ primarily in how they “turn the line around.”

Unfortunately, even systems programmers often are not
aware of the subtle differences between the various
half duplex protocols. This makes It difficult to get the
information you need to set the terminal correctly. For
instance, you might be told that your host computer
uses “half duplex” protocol, when in fact it uses “ful!
duplex,” but with the terminal required to provide its
own local echo.

1For simple modems using frequency-shift-keying over volce-grade telephone
lines, full dupiex modems typically run at a maximum of 300 bits/second, while
half duplex modems run at up to 1200 bits/second. Higher data rates are
possible with more sophisticated modems or higher-quality communications
lines; in general, however, the half dupiex modems still offer higher data rates
than comparable full dupiex modems.

111

OPT. O01: HALF DUPLEX & BLOCK MODE

Half Duplex Normali

In half duplex normal mode, there is only one
communications channel. The terminal and the host
computer take turns using this one communications
channel.

Host to Terminal. When the host transmits to the
terminal, it seizes the communications line. It does this
by sending the RTS — Request To Send — signal to its
modem. This causes the modem to place a carrier tone
on the telephone line.

While the host has control of the line, the terminal
cannot transmit data to the host. (The terminal's
modem detects the carrier tone, and sends a DCD —
Data Carrier Detect — signal to the terminal. While the
DCD signal is present, the terminal is inhibited from
transmitting.) If the terminal has data to send, it stores
that data in an internal transmit queue, unti! the host
finishes its transmission and releases the line.

Terminal to Host. Suppose the host is not using the
communications line. Then, as soon as the terminal has
data to send, the terminal seizes the line. (As soon as
the operator types the first character of a message, the
terminal asserts RTS, causing its modem to send a
carrier tone over the telephone line.)

The terminal continues to hold the line (continues to
assert RTS) until it encounters an < EOM-char> or

< EOL-string> in the data which it sends to the host.
The < EOM-char> or < EOL-string> marks the end of
the “line of text.” The terminal sends the < EOM-char>
or <EOL-string> and then pauses for a short time.
(This is the “transmit delay,” described in Section 10)

During the transmit delay, the terminal relinquishes
control of the communications line. (It turns off the RTS
signal, causing its modem to stop transmitting the data
carrier tone.) This gives the host computer a chance to
size the communications line and send data to the
terminal.

NOTE

For half duplex normal mode (or any half duplex
mode) to work properly, it is important that the
transmit delay should be set to a sufficiently long
time for the host to respond and seize the
communications line.

11-2

e

If the terminal has more data to send and the transmit
delay time expires without the host’s seizing the line,
then the terminal seizes the line again (asserts RTS
again) and sends another sequence of characters to
the host. As before, the terminal continues to hold the
line until it reaches the end of the line. (That is, the
terminal continues to assert RTS until it has transmit-
ted the <EOM-char> or <EOL-string> marking the
end of the line of text.)

For more information on < EOM-char>s and <EOQL-
string> s, see “Lines of Text and the Transmit Delay” in
Section 10. See also the 4110 Series Command
Reference Manual for descriptions of < EOM-char>,

< EOM-indicator>, < EOL-string>, < set-EQM-
chars>, and < set-EOL-string>.

Selecting Half Duplex Normal Mode. The operator
can place the terminal in half duplex normal mode with
the SETUP mode command, DUPLEX NORMAL. (See
the 4114 Operator’'s Manual for details.) There is also
an escape sequence version of this command, < set-
duplex-mode: 1>, as follows:

< set-duplex-mode: 1> = (ESC)(O)(D)<int: 1>
= (ESC)(0)(D)(1)

Half Duplex with Automatic Request to
Send

The half duplex with automatic request to send mode
differs only slightly from half duplex normal mode.

In half duplex normal mode, if neither the host nor the
terminal has any data to send, then neither one seizes
the communications line. (Neither host nor terminal
asserts RTS, so neither modem sends a carrier tone
over the telephone line.)

Some computers, however, will disconnect from the
telephone line if there is no carrier tone being sent over
that line.

The half duplex with automatic request to send mode is
provided for use with such host computers. In this
mode, the terminal seizes the line all the time {asserts
RTS all the time), except only for the short transmit
delay time which occurs at the end of each line of text
sent to the host. If the host does not seize the line
during that transmit delay, then the terminal will seize
the line again (assert RTS again). The terminal does
this whether or not it has any data to send.

4114 HOST PROGRAMMER'S

The operator can place the terminal in half duplex with
automatic request to send mode by typing the SETUP
mode command, DUPLEX ARTS. There is aiso an
escape sequence command, < set-duplex: 2>, as
follows:

< set-duplex: 2> = (ESC)(O)(D)<int:2>
= (ESC)(0)(D)(2)

Half Duplex with Supervisor

In half duplex with supervisor mode there is, besides
the main data communications channel, a secondary
slow-speed channel. This secondary channel is called
the “supervisory channel,” and the host computer can
use it to control line turnaround operations.

Terminal to Host, When the terminal is transmitting
data to the host, the host sends a signal on the
sacondary channsl. {The host sends an SRTS —
Secondary Request To Send — signal to its modem;
this causes the modem to place a “secondary carrier”
on the telephone line.) The secondary carrier serves to
notify the 4114 that the host is listening.

As with the other half duplex modes, the terminal
pauses at the end of each line, dropping RTS (Request
To Send) for the duration of the transmit delay. As with
the other half duplex modes, this pause is intended to
give the host a chance to seize the communications
line and send data back to the terminal.

Unlike the other half duplex modes, however, the half
duplex with supervisor mode allows the host to seize
the communications line at any time — not just during
the transmit delay at the end of each line. To seize the
line, the host stops sending the SRTS (Secondary
Request To Send) signal. This causes its modem to
stop transmitting the secondary carrier. When the
terminal's modem detects this, it turns off the SDCD
(Secondary Data Carrier Detect) signal at the terminal’s
RS-232 connector. The terminal is then obliged to
relinquish control of the communications line. The
terminal may send no more than two characters before
relinquishing control and turning off its RTS signal.

4114 HOST PROGRAMMER'S

)

OPT. 01: HALF DUPLEX & BLOCK MODE

Host to Terminal. When the host transmits data to the
terminal, it asserts RTS, causing its modem to send a
data carrier tone to the terminal. The terminal’s modem,
on receiving the carrier, notifies the terminal of this by
asserting the DCD (Data Carrier Detect) signal at the
RS-232 connector. The terminal asserts SRTS, causing
its modem to send the secondary carrier signal to the
host's modem. This notifies the host that the terminal is
to receive data.

The terminal cannot transmit to the host until the host
relinquishes control of the data communications line.
That is, it cannot transmit until the host turns off the
data carrier (stops sending the RTS signal). This would
normally happen when the host is done transmitting
data to the terminal.

While the host is transmitting to the terminal, the
terminal’s operator can, if he wishes, press the BREAK
key. (He would do this if he wanted to interrupt the
host.) Pressing BREAK causes the terminai to drop the
secondary carrier (stop asserting SRTS) for a short
period of time. (This time can be set by the < set-
break-time> command.) By ceasing to send the secon-
dary carrier, the terminal is, in effect, telling the host
that the terminal would like a chance to use the
communications line.

However, the host computer need not honor the
“break” request. It can just keep transmitting. In half
duplex supervisor mode, if the host sends a “break”
(drops the secondary carrier), the terminal must relin-
quish the line. But if the terminal sends a “break,” the
host need not relinquish the line.

Selecting Half Duplex With Supervisor Mode. The
operator can put the terminal in half duplsex with
supervisor mode by typing the SETUP mode command,
DUPLEX SUPER. There is also an escape-sequence
version of this command, < set-duplex-mode: 3>, as
foliows:

< set-duplex-mode: 3> = (ESC)(O)(D)< int: 3>
= (ESC)(O)(D)(3)

113

OPT. 01: HALF DUPLEX & BLOCK MODE

BLOCK MODE

INTRODUCTION

The terminal’s block mode protocol is provided as part
of Option 01. Block mode is a method of formatting
data when sending it to and from the host.

Some host operating systems make it difficult for the
user’'s program to send or receive the full ASCII
character set. The block mode protocol lets you send
and receive messages which use the full ASCll charac-
ter set (including lowercase characters and control
characters), even though your host’s operating system
makes it difficult to send and receive certain ASCII
characters. (Indeed, even full eight-bit binary data
bytes may be sent to or from the terminal in block
mode.) This is accomplished by means of a packing
scheme, in which messages using the full character set
are packed into character strings using a subset of that
character set.

Also, the block mode protocol provides error detection
and automatic retransmission of bad data blocks. This
lets you transfer data to and from the terminal, without
errors, despite occasional noise on the
communications line.

Block mode is completely independent of whether or
not prompt mode is used and of whether the terminal is
using full duplex or half duplex communications.

When in block mode, data is packed into blocks and
transmitted as a unit. The host must send the first
block. The terminal will send a block only in response
to the host.

Each block contains an “even/odd” counter (block
control byte one, bit one) which is used in an
“ACK/NAK" protocol. This protocol lets the host and
terminal inform each other when a block has been
received incorrectly. (The block received incorrectly is
then retransmitted.)

114

BLOCK FORMAT

Overall Syntax

Blocks sent from the host and from the terminal have
the same overall format. Each block consists of one or
more lines of data, as follows:

<block> = [<block-“other-than-last”-line> ..]
< block-last-line>

where

< block-*'other-than-last”-line>
= <block-header>

< block-packed-data>

< block-continue-char>

< EOL-string>

and

< block-last-line> = <block-header>
< block-packed-data>
< block-end-char>
< EOL-string>

Each line begins with a special <block-header>
character sequence, which is set by the < set-block-
headers> command. After the header comes the
packed data, followed by a special character to mark
the end of the line. This is the < block-end-char> for
the last (or only) line of a block, or the < block-
continue-char> if the line is not the last line of the
block. After the < block-end-char> comes an end-of-
line string. For blocks sent from the terminal to the
host, this is the terminal’s current < EOL-string>, as
set by the most recent < set-EOL-string> command.
For blocks sent from the host to the terminal, the end-
of-line-string can be any sequence of characters.

As the terminal is shipped from the factory, the header
strings are “"HEADRX" for blocks sent from the host to
the terminal, and “HEADTX” for blocks sent from the
terminal to the host. The < block-continue-char> s for
transmission to the host and to the terminal are both
(&). The < block-end-char> s are both ($). The

< EOL-string> for transmission to the host is the
single character, (CR). All these values can be changed
by commands to the terminal.

4114 HOST PROGRAMMER'S

Blocks Sent From the Host to the Terminal

Using these default settings, a single-line block from
the host to the terminal might take the following form:

(HH{E)A)(DYR)X) < block-packed-data> ($){CR){LF)

(Here, it is assumed that the host ends each line with
the character sequence (CR)(LF).)

Likewise, a three-line block from the host to the
terminal would take this form:
{H{E)(A)(D)(R){X)< packed-data> (&)(CR)(LF)
(H{E)(A) (D) (R}(X) < packed-data> (&) (CR)(LF)
(H)(E)(A) (D}(R)(X) < packed-data> ($)(CR)(LF)

Blocks Sent From the Terminal to the Host

Assuming that the terminal’s < EOL-string>, as set by
the most recent < set-EOL-string> command, is the
single (CR) character, then a three-line block from the
terminal to the host would take this form:

{H)(E)(A) (DT (X) < packed-data> (&)(CR)
(H)(E)(A)(D)(T)(X) < packed-data> (&) (CR)
(H)(E)(A)(D)(T)(X) < packed-data> ($)(CR)

In these examples, the < block-header> s, < block-
continue-char> s, and < block-end-char> s all have
their default settings. These settings can be changed
on command. The settings for blocks sent to the
terminal can be different from those for blocks sent
from the terminal to the host. See the 4110 Series
Command Reference Manual for descriptions of the
< set-block-headers>, < set-block-continue-chars>,
and < set-block-end-chars> commands. -

ENTERING AND LEAVING BLOCK MODE

Entering Block Mode

The procedure for putting the terminal in block mode is
as follows:

1. First, the host computer or the terminal’s operator
issues commands to set the various block mode
parameters. (These commands must be sent before
the terminal is armed for block mode.)

4114 HOST PROGRAMMER'S

OPT. 01: HALF DUPLEX & BLOCK MODE

Escape Sequence Command SETUP Mode Command
(From Host Computer) (From Operator)

< set-block-continue-chars> BCONTINUECHARS
< set-block-end-chars> BENDCHARS

< set-block-master-chars> BMASTERCHARS

< set-block-non-xmt-chars> BNONXMTCHARS
< set-block-headers> BHEADERS

< set-block-length> BLENGTH

< set-block-line-length> BLINELENGTH

< set-block-packing> BPACKING

< set-block-timeout> BTIMEOUT

(These settings are remembered by the terminal
even when it is turned off.)

2. Next, the terminal is armed for block mode:

Escape Sequence Command SETUP Mode Command

< arm-for-biock-mode> BLOCKMODE

3. Finally, the host sends a block to the terminal. The
terminal enters block mode on receiving the head-
er characters that begin the first line of that block.

Exiting Block Mode

From the Host. The host removes the terminal from
block mode by sending it a special biock containing an
“exit protocol” command in that block’s block control
bytes. (The block control bytes are described later in
this section. The “exit protocol” command consists of
sending < block-control-byte-1> with its Bit 2 set to
one rather than zero.)

From the Keyboard. The operator can remove the
terminal from block mode with the SETUP mode
command, BLOCKMODE NO.

MAXIMUM LINE LENGTH

There is no maximum line length for blocks sent from
the host to the terminal. If you like, you can have the
host send each block to the terminal as one long line.
On the other hand, if you find it convenient to break the
block into several lines, you can do that, too.

115

OPT. 01: HALF DUPLEX & BLOCK MODE

There is, however, a maximum length for lines which
the terminal sends to the host. This value is set with the
< set-block-line-length> command. (As shipped from
the factory, the terminal is set for a maximum line
length of 70 characters.) For this purpose, the length of
a line in a block is the number of characters in the
header string, plus the number of characters of packed
data on that line, plus one for the < block-end-char>

or < block-continue-char>. The < EOL-string> is not
included in this count.

For instance, suppose that the host computer can
reliably accept up to 80 characters of data on each
line, not counting (CR)s as ‘“‘characters of data.” In that
case, you can set the terminal’s maximum block line
length to 80. To do this, issue a < set-block-line-
length> command as follows:

< set-block-line-length: 80>
= (ESCHO)(S)<int: 80>
= (ESC){O)(S)(E)(0)

PACKING DATA INTO A BLOCK

Packed and Unpacked Data

The “unpacked data” for a block includes the charac-
ters of the message (if any) being sent in the block,
plus four more characters, the block control bytes:

< unpacked-data> = < characters-of-message>
< block-control-bytes>

The block control bytes are described later in this
section. They are also described, under "< Block-
Control-Bytes>," in Section 4 of the 4110 Series
Command Reference Manual.

In packing the data into the block, the < unpacked-
data> character sequence is transformed into another
character sequence which uses a restricted subset of
the ASCII character set. This character sequence is the
“packed data.” The transformation from unpacked data
to packed data is done according to a particular
packing algorithm:

< packed-data> = a sequence of ASCIl characters
which is produced by applying
the packing algorithm to the

< unpacked-data> character

sequence

11-6

Maximum Block Length

The terminal has a “maximum block length” for the

< unpacked-data> in blocks sent from the terminal to
the host, and a another maximum block length for the

< unpacked-data> in biocks sent from the host to the
terminal. When the terminal is shipped from the factory,
both these maximums are set to 256 characters. These
values can be changed with the < set-block-length>
command; see the 4110 Series Command Reference
Manual for details.

Assume that the maximum block length is 256 charac-
ters. If the terminal is in block mode, and the operator
tvpes 500 characters before pressing RETURN, then
the terminal splits that 500-character message into two
blocks. The first block’s < unpacked-data> consists of
the first 252 characters that the operator typed, plus
the four block control bytes. The second block holds
the remaining 248 of the 500 characters, plus the (CR)
character typed by pressing RETURN, plus four block
control bytes: a total of 253 characters of <unpacked-
data>.

Likewise, if the host has a message of more than 252
characters to send the terminal, it must split that
message into more than one block. The first block sent
to the terminal would have, in its < unpacked-data>,
the first 252 characters of the message, plus four block
control bytes for that block. The remainder of the
message would go into the < unpacked-data> for
subsequent blocks.

< EOM-Char>s and < EOM-Indicator>s

When the terminal is sending data to the host, it groups
the data into “messages.” Each message text ends with
an < EOM-char> (end-of-message character) or

< EOM-indicator> (end-of-message indicator).

< EOM-Char>s. Typically, the <EOM-char> is (CR).
Thus, each time the operator presses RETURN, he
terminates one “message.” If the terminal is in block
mode, the (CR) is packed into the block and causes the
terminal to end that block.

4114 HOST PROGRAMMER'S

< EOM-indicator>s. If the data being sent to the host
is a report message, then there are one or more

< EOM-indicator> s in the syntax for that report. (The
syntax for each report message type is given in the
4110 Series Command Reference Manual) Every re-
port has an < EOM-indicator> at its end. In addition,
some reports may have optional < EOM-indicator>s
embedded within their syntax to split the report into
several “lines of text.”” Examples are the < GIN-report-
sequence>, < segment-status-report>, and <error-
report> message types.

In block mode, when the terminal encounters an

< EOM-indicator> in a message being sent to the host,
it terminates the current block and sets an “end-of-
message” bit in one of the block control bytes.

The effect of < EOM-indicator> s is similar to that of

< EOM-char> s. Both < EOM-indicator>s and < EOM-
char> s cause the terminal to end the current block
and set the end-of-message bit in the biock controi
bytes. However, < EOM-char> s are packed into the
block, while < EOM-indicator> s are not.

Non-Transmittable Characters

Certain “non-transmittable characters” are not allowed
to occur within packed data. For instance, the <block-
end-char> and < block-continue-char> may not oc-
cur in the packed data, for they signal the end of lines
in the block.

When < unpacked-data> is packed into the block, any
non-transmittable characters occuring in the

< packed-data> are replaced with two-character se-
quences. The first character is the <block-master-
char>, while the second is an uppercase letter.

To tell the terminal which characters are non-transmit-
table, you issue a < set-block-non-xmt-chars> com-
mand:

< set-block-non-xmt-chars>
= (ESC)(0)(N) < int-array> < int-array>

The first < int-array> holds the numeric equivalents of
the non-transmittable characters for blocks sent from
the host to the terminal. Likewise, the second < int-
array> holds numeric equivalents for the host-to-
terminai non-transmittable characters. During block
transmission, the first character specified in each

< int-array> is replaced with <block-master-

char> (A); the second character is replaced with

< block-master-char> (B); and so on.

4114 HOST PROGRAMMER'S

E)

OPT. 01: HALF DUPLEX & BLOCK MODE

If the < block-continue-char>, < block-end-char>, or
< block-master-char> could otherwise occur in <un-
packed-data>, then they must be included in the set of
non-transmittable characters.

When the terminal is shipped from the host, its non-
transmittable characters are set to (#), ($), and (&), in
that order. This is because (#) is the default <block-
master-char>, ($) is the default < block-end-char>,
and (&) is the default < block-continue-char>. Thus,
any (#) character which otherwise would occur in the
< unpacked-data> is replaced with (#)(A); any ($)
occurring in the < unpacked-data> is repiaced with
(#)(B); and any (&) is replaced with (#)(C).

Packing Algorithm

The packing algorithm is as follows.

Step One. Examine the number of bits per unpacked .
data byte, and the number of bits per packed “pseudo-
byte,” as set by the < set-block-packing> command. If
they ars equal, proceed to Step Four. If they are
unequal, proceed to Step Two.

Step Two. The block’s < unpacked-data> is regarded
as a sequence of 7-bit or 8-bit bytes laid “end to end,”
forming one long stream of binary bits. The first bit is
the high-order bit of the first byte; the last bit is the
low-order bit of the last byte.

The < set-block-packing> command determines
whether the < unpacked-data> consists of 7-bit or 8-
bit bytes. (The factory default setting is “7-bit bytes,”
since ASCII characters have seven data bits.) For
details, see the < set-block-packing> description in
the 4110 Series Command Reference Manual.

Step Three. Next, the bit stream is divided into a series
of “pseudo-bytes” of six, seven, or eight bits each. An
offset is added to each pssudo-byte, thereby
converting it into a standard ASCII character. Again, it
is the < set-block-packing> command which
determines whether each pseudo-byte consists of six,
seven, or eight bits.

11-7

OPT. 01: HALF DUPLEX & BLOCK MODE

Table 11-1 shows the offset which is added for each
allowable pseudo-byte size.

Table 11-1

® The host has just sent an odd-numbered block to
the terminal, with the end-of-message bit set.

® The terminal’s operator types “BEGIN .PROGRAM"”
and presses RETURN.

PACKED PSEUDO-BYTE CHARACTERISTICS

Then the packing proceeds as follows:

No. of Offset Added Range of

Meaningful To Make a Possibie Decimal 1. The characters

Data Bits per Standard ASCIl | Equivalents for (BY(ENG) (HN)(-)(P)(R)(O)G)(R)(A}(M)(CR), plus

Pseudo-Byte Character :sgll Characters four < block-control-bytes>, comprise the < un-
T:’a“:mme g packed-data> for a block. The (CR) — typed by

pressing RETURN — is an <EOM-char>; as such,

6 32 32095 it signals the terminal to compute the block control
ASCIi characters bytes, pack them into the current block, and send
from (SP) to () that block to the host.

7 0 Oto127 2. The <unpacked-data> consists of the text “BE-
Full ASCHI GIN_PROGRAM”", the (CR) character, and the four
character set control bytes, as follows:

8 0 0to 255 character: (B) (E) @)

Full eight-bit data binary: 1000010 1000101 1000111
bytes character: ()} (N) (=)
binary: 1001001 1001110 1011111

If there are not e_nough bits to fill out the last pseudo- character: P) R) (0)

byte, an appropfuate number 9f zeroes are appended to binary: 1010000 1010010 1001111

the end of the bit stream. On input, these extra zeroes

are ignored. The extra zeroes are inserted only at the character: (G) (R) (A)

end of a block — not at the end of lines (other than the binary: 1000111 1010010 1000001

last line) within the block. character: (M) (CR) (A)

binary: 1001101 0001101 1000001

Step Four. If any of the resulting characters are among

th t ittabl ters, th | character: (NUL) (BEL) F

e non-transmittable characters, they are replaced binary: 0000000 0000111 1000110

with two-character sequences, starting with the
“master character.” The first non-transmittabie
character specified in the < set-block-non-xmt-chars>
command is replaced, wherever it occurs, with the
master character followed by the letter A; the second
non-transmittable character is replaced by < master-

char> (B); and so on. 3.

An Example

Suppose the following:

® The terminal is in block mode, and the block mode
parameters are at their factory settings. That is, the
< block-continue-char>, < block-end-char>, and
< block-master-char> are (&), ($), and (#), respec-
tively; the non-transmittable characters are (#), ($),
and (&), in that order; the terminal-to-host and host-
to-terminal header strings are “HEADRX" and
“HEADTX,” respectively; (CR) is the < EOM-char>;
the <EOL-string> is the single character, (CR); and
the unpacked and packed bits-per-byte settings are
seven and six, respectively.

11-8

B)

(The last four characters — (A)(NUL)(BEL)(F) —
are the < block-control-bytes> . They are de-
scribed later in this section, and in the 4110 Series
Command Reference Manual.)

The terminal regroups the stream of binary bits into
six-bit pseudo-bytes, as follows:

decimal: (33) (17) (24) (60)
binary: 100001 010001 011000 111100
decimal: (38) (29) (31) (40)
binary: 101000 100110 011101 O11111
decimal: (20) (41) (60) (30)
binary: 010100 101001 111100 011110
decimal: (37) (1) (38) (35)
binary: 100101 000001 100110 100011
decimal: (24) (8) 0 (15)
binary: 011000 001000 000000 001111
decimal: (3)]

binary: 000110

4114 HOST PROGRAMMER'S

4. Since the unpacked pseudo-byte size is six, Table
11-1 calls for an offset of 32 (binary 100000) to be
added to each pseudo-byte. This converts each
pseudo-byte to an ASCII character in the range
from (SP) to (_):

decimal: (65) (49) (56) (92)
binary: 1000001 0110001 0111000 1011100
character: (A) (1) (8) \})
decimal: (70) 61) (63) (72)
binary: 1000110 0111101 0111111 1001000
character: (F) =) (?) H)
decimal: (52) (73) (92) 62)
binary: 0110100 1001001 1011100 0111110
character: (4) ()] o) (>)
decimal: (69) (33) (70) 67
binary: 1000101 0100001 0100110 1000011
character: (E) {i) {F {C)
decimal: {58) (40) (32) (47)
binary: 0111000 0101000 0100000 0101111
character: (8) (" (SP) ()
decimal: (38)

binary: 0100110

character: (&)

5. The <block-continue-char>, (&), occurs at the
end of this sequence. Since it is the third non-
transmittable character, it is replaced by < block-
master-char> (C), or (#)(C). This gives the follow-
ing sequence of characters holding the packed
data:

< packed-data> = (A)(1)(8)A\)(F)(=)(?)(H)(4)(D(\)
>)E)YOF)C)BI(“()
(SP)(N)(#)(C)

6. The terminal composes and sends a one-line block
using this < packed-data>:

< block> = <block-header>
< packed-data>
< block-end-char>
< EOL-string.

= (HH{E)(A)(D)T)H(X)
(A1) (B)\)(F) (=) (?) (H)(4)(N(\)
:/>) YE)YM(FIC)(B)(“(“}(SPHN(#)(C)
(CR)

4114 HOST PROGRAMMER'S

®

OPT. 01: HALF DUPLEX & BLOCK MODE

(Actually, the block is composed and transmitted
“on the fly’”’ — character by character — as the
operator types the data on the keyboard. When the
operator presses RETURN, the (CR) and block
control bytes are packed and sent. Then the final
characters of the block are sent: the < biock-end-
char> and < EOL-string>)

THE BLOCK CONTROL BYTES

In block mode, when the terminal or host composes a
block to be sent over the data communications line, it
appends four “block control bytes” to the characters or
other data being packed into the block:

< unpacked-data> = < characters-of-message>
< block-control-bytes>

< block-control-bytes> = < control-byte-1>
< control-byte-2>
< control-byte-3>
< control-byte-4>

The four control bytes are packed into the block along
with the other unpacked data. if the “‘unpacked byte
size” (as set by the < set-block-packing> command)
is seven, then each control byte consists of seven
binary bits. If the unpacked byte size is eight, then
each control byte consists of eight binary bits.

Every block contains at least the four block control
bytes, even if it contains no other characters of
< unpacked-data>. :

< centré!-Byte-1 >

Let Bit 1 be the least-significant bit of the byte; then Bit
7 or Bit 8 is the most-significant bit of the byte. (Bit 7 is
the most-significant bit if the “unpacked byte size” is
seven, since Iin that case there is no Bit 8) The
individual bits are assigned as foliows:

e Bits 1 and 2: Block count and end-protocol.

e Bit3,4,5: Reserved (always zero)

e Bit6: End of file

® Bit7: End of message

e Bit8: Unused (not present in 7-bit bytes;

always zero in 8-bit bytes)

119

OPT. 01: HALF DUPLEX & BLOCK MODE

Bits 1 and 2. In < control-byte-1>, Bits 1 and 2
together serve two functions: they determine whether
the terminal is to exit block mode, and — while the
terminal is in block mode — they maintain an
“odd/even” modulo two counter of blocks sent over the
data communications line. Table 11-2 lists the four
possible states of these bits, together with their
meanings.

End-of-File Bit. Bit 6, the end-of-file bit, is set to one
at the end of a file transfer; setting this bit serves the
same purpose as the “end-of-file string” used when the
terminal is not in block mode.

End-of-Message Bit. in blocks which the terminal
sends to the host, Bit 7, the end-of-message bit, when
set to one, indicates that the terminal has terminated
the block because it encountered an < EOM-char> or
< EOM:-indicator> in the data being sent. When set to
zero, this bit indicates that the block was terminated
only because the maximum block length was reached,
and that another block follows which contains more of
the same message.

In blocks sent from the host to the terminal, Bit 7 has a
different meaning. If the bit is zero, the terminal is
requested to acknowledge the block immediately (by
sending an ACK block in reply). The terminal sends the
ACK block immediately, whether or not it has a
message to pack into that block. (The ACK block
contains only the four block control bytes.)

If, however, the host sets Bit 7 to one, then the terminal
does not acknowledge the block immediately. Instead,
it waits until it has a block full of data to send, or until it
encounters an < EOM-char> or < EOM-indicator> in
the data it has to send to the host.

When sending a block to the terminal, the host should
set Bit 7 to zero, except when it expects a response
message from the terminal. If a response message is
expected, the host should set Bit 7 to one.

< Control-Byte-2>

All the bits of < control-byte-2> are reserved; they are
always zero.

< Control-Byte-3> and
< Control-Byte-4>

The last two control bytes carry a “check code” by
which the receiving device (the terminal or the host
computer) can verify that it has received the block with
no errors. The check code is derived from all the
unpacked data bytes which precede it: all the 7- or 8-
bit bytes of meaningful data, plus the first two control
bytes. The process is as foliows:

1. Two “checksum bytes” — called H and L for this
explanation — are both set equal to MaxByte. Here,
MaxByte is 127 (for 7-bit bytes) or 255 (for 8-bit
bytes).

Table 11-2
MEANINGS OF LOW-ORDER BITS IN < CONTROL-BYTE-1>

Bit 2 Bit 1 Meaning

This is an “even” block, and no attempt is being made to remove the terminal from block mode.

This Is an “odd"” block, and no attempt is being made to remove the terminal from block mode.

for block mode.”

In a block sent from the host to the terminal, these two bits comprise a command to the terminal: “Exit
from block mode, but remain armed for block mode. Before exiting block mode, however, acknowledge this
command by sending an ‘ACK’ block to the host.”

In a block sent from the terminal to the host, these two bits mean, “This Is an 'ACK’ block acknowledging
receipt of a command to exit block mode. The terminal is now leaving block mode, but will remain armed

block to the host.”

In a block sent from the host to the terminal, these two bits comprise a command to the terminal: “Exit
from block mode, but remain armed for block mode. Exit block mode immediately; do not send an 'ACK’

In a block sent from the terminal to the host, this combination of bits Is not allowed.

11-10

4114 HOST PROGRAMMER'S

2. Each byte in the preceding unpacked data is
regarded as a binary numeral and added to L. The
sum is computed as with “modulo 7 (or modulo 8)
end-around-carry.” That is, for a 7-bit “unpacked
byte size,” whenever the sum exceeds the maxi-
mum 7-bit numeral (127), the “carry” bit is omitted
and one is added to the least-significant bit of the
sum. Likewise, if the unpacked byte size is 8-bits,
then whenever the sum exceeds 255, the carry bit
is omitted and one is added to the least-significant
bit of the sum.

This process is equivalent to the following algor-
ithm, in which MaxByte = 127 (for 7-bit bytes) or
255 (for 8-bit bytes):

BEGIN

L:= L + Byte;

IF (L > MaxByte) THEN L := L — MaxByte
END

3. Aseach byte is added to L, the new value of L is
added to H. The same “end-around-carry” method
is used:

BEGIN

H:=H+ L;

IF (H > MaxByte) THEN H := H — MaxByte
END

4. When Steps 2 and 3 have been performed for each
of the unpacked bytes preceding the check code
bytes, then the two check code bytes are comput-
ed as follows:

BEGIN
C1:= MaxByte — H — L;
IF (C1 < 1) THEN C1 := C1 + MaxByte;

ControlByte3 := C1;
ControlByte4 := H
END

Packing the Control Bytes into the Block. When all
four control bytes have been computed, they are
packed into the block along with any other unpacked
data bytes; see the description of the < set-block-
packing> command for detalils.

4114 HOST PROGRAMMER'S

®

OPT. 01: HALF DUPLEX & BLOCK MODE

Checking a Recelved Block. When a block is received
and unpacked, the H and L checksum bytes are
computed as described previously. As each byte is
unpacked, the “unpacked byte” is added to L (with
end-around carry), and L is added to H (with end-
around carry). This is done on all bytes as they are
unpacked, including all four control bytes. When the

< block-end-char> is detected, H and L should both
equal MaxByte. That is, if the unpacked bytes are 7-bit
bytes,then H = L = 127; if they are 8-bit bytes, H= L
= 255.If this is not the case, then a data transmission
error has occurred. (In that case, the terminal or the
host receiving the block would retransmit the last block
it had sent.)

RETRANSMITTING BAD BLOCKS

ACK Blocks and NAK Blocks

Recall, from the description of the block control bytes,
that the least significant bit of < control-byte-1>
serves as a modulo two “odd/even” counter. This
counter is used o identify a biock as an “ACK biock”
or a “NAK block.”

Host to Terminal. When the host sends a block to the
terminal, the terminal acknowledges correct reception
of that block by sending an “ACK block” back to the
host. This is a block with the same block count bit as
the block which was correctly received.

If, however, the terminal detects a checksum error in
the block, then it retransmits to the host the last
previous block that it sent the host. The retransmitted
block has a block count bit which is different from that
in the block just (incorrectiy) received. The fact that the
block count bit is different identifies that block to the
host as a “NAK block.”

If the host receives a NAK block, it retransmits the
block it just sent to the terminal. If the host receives an
ACK block, then the next block it sends will contain
new data.

Terminal to Host. Likewise, when the terminal sends a
block to the host, the host acknowledges correct
reception of the block by sending an “ACK block” back
to the terminal. In this case, however, an ACK block is
defined as a block with the opposite block count bit.

111

OPT. 01: HALF DUPLEX & BLOCK MODE

If the host, by means of the checksum bytes, detects an
error in the block, it retransmits to the terminal the
previous block it had sent the terminal. That
retransmitted block has a block count bit which is the
same as the block count bit in the block which the host
just (incorrectly) received. The fact that the block count
bit is the same identifies that block to the terminal as a
“NAK block.”

If the terminal receives a NAK block, it retransmits the
block it just sent. If, on the other hand, the terminal
receives an ACK block, then the next block it sends to
the host can contain new data.

Normal, Error-Free Transmission

Figure 11-1 shows normal transmission of data from
the host to the terminal. If the terminal has been armed
for block mode, then it enters block mode on receiving
the header for the first block sent from the host.

11-12

Host’s Point of View. From the host's point of view,
each “block transaction” consists of sending a block of
data to the terminal and receiving an ACK block in
return. (Here, an ACK block is a block with the same
even/odd count as the biock just sent.) Figure 11-1
shows three such transactions. In the first block
transaction, the host sends an odd-numbered block to
the terminal and receives an odd-numbered block in
return. In the second transaction, the host sends an
even block and receives an even block in return. In the
third transaction, the host sends an odd block and
receives an odd block in return.

Terminal’s Point of View. From the terminal’s point of
view, each “block transaction” consists of sending a
block to the host and receiving an ACK block in return.
(Here, an ACK block is a block with the opposite
odd/even count as the block just sent.) From the
terminal’s point of view, Figure 11-1 shows two com-
plete block transactions, plus a third transaction which
is not yet complete.

4114 HOST PROGRAMMER'S

OPT. 01: HALF DUPLEX & BLOCK MODE

HOST TERMINAL
.
1ST BLOCK (ODD) %)
Puts Terminal in Block Mode —> Recelved Correctly
Block
Transaction
N
Recelived Correctly —<«— — ACK BLOCK (ODD)
N Block
; Transaction
-
2ND BLOCK (EVEN)
Serves as ACK Block > Recelved Correctly J
Block
Transaction
N\
\ Received Correctly ~<«—————— ACK BLOCK (EVEN)
Block
> Transaction
-
3RD BLOCK (0DD) -3 Received Correctly
Serves as ACK Block /
Block
Transaction N
Received Correctiy < ACK BLOCK (0DD) Biock
\ . Transaction
$ (Which is
Not Yet
Complete)

3675-37

Figure 11-1. Error-Free Transmission from Host to Terminal.

4114 HOST PROGRAMMER'S @ 1113

OPT. 01: HALF DUPLEX & BLOCK MODE

Effect of Occasional Errors

Figure 11-2, a continuation of Figure 11-1, shows the
effect of an occasional noise burst on the data
communications line. When the host sends the fourth
block to the terminal, noise on the communications line
causes that block to be received incorrectly by the
terminal. The terminal detects a checksum error and
retransmits the previous block. The host interprets that
block as a NAK block, and retransmits the fourth block.
This time, the terminal receives the block correctly.

Effect of Multiple Errors

Figure 11-3, which continues from Figure 11-2, shows
the effect of multiple data communications errors.
Whenever the checksums do not agree, the host and
terminal keep retransmitting the previous blocks sent.
Provided the noise on the data communications line is
not continuous, eventually the data will be successfully
transferred.

HOST

Transaction <

(But isn’t an ACK)
Block

Transaction <

NAK was Received

3RD BLOCK (ODD) >————> Recelved Correctly
Block

Recelved Correctly <«——————

.
N7
NOISE
4TH BLOCK (EVEN) —N Checksum Error
Serves as ACK Block R Block
e > Transaction
Recelved Correctly NAK BLOCK (ODD)

4TH BLOCK (EVEN)
Retransmitted Because a ———— Received Correctly
Y,

ACK Received Correctly -<+————u

TERMINAL

ACK BLOCK (ODD)

Same as Last Block Sent

N\

ACK BLOCK (EVEN)

Incomplete
> Block
Transaction

3675-38

Figure 11-2. Effect of Occasional Errors in Block Mode Transmission.

11-14

4114 HOST PROGRAMMER'S

OPT. 01: HALF DUPLEX & BLOCK MODE

Block
Transaction ﬁ

HOST TERMINAL

5TH BLOCK (ODD) > — —» Received Correctly

\1/
- ROISE -
Checksum Error T ACK BLOCK (ODD)
s \
~ 7.
5TH BLGCK (ODD) N?/IS\E\ Checksum Error
(Serves as NAK) =~
Q~$
NOISE
A NAK BLOCK (ODD)
Checksum Error __:‘//I) Same as Previous Block
-
5TH BLOCK (CDD) —————————» Received Correctly
(Serves as NAK) : (Since It's Odd, It’s a NAK)
Received Correctly +———— ACK BLOCK (ODD)
(SSTH BL&%; (EVEN) ——————3 Recelved Correctly
erves a

> Block
Transaction

Block
Transaction

3675-39

Figure 11-3. Effect of Multiple Errors In Block Mode Transmission.

4114 HOST PROGRAMMER'S @

11-15

OPT. 01: HALF DUPLEX & BLOCK MODE

< Set-Block-Timeout> Command

After receiving a block from the host, the terminal
ignores further characters coming from the host until it
receives the header string that starts a new block.

But what happens if the header string itself is garbled
by noise on the line? In that case, the terminal would
not detect the start of a new block and so could not
send a NAK block in response to the (garbled) block.
The system would “hang,” with the terminal waiting for
a block that never comes.

All is not lost; there is provision for that situation, too.
The terminal has a “block timeout” feature, which can
be set with the < set-block-timeout> command.

Before arming the terminal for block mode, the host
issues a < set-block-timeout: 10> command, as fol-
lows:

< set-block-timeout: 10> = (ESC)(O)(T)<int: 10>
= (ESCHO)T(:)

This sets the block timeout to ten seconds. With this
setting, if the terminal sends a block to the host and
does not receive any block back within ten seconds,
then the terminal interprets the absence of a reply as a
NAK, and re-transmits the block just sent.

You can disable the timeout feature with a < set-block-
timeout: 0> command. If you use the timeout feature,
you should set the timeout period to a duration which is
longer than your host’s maximum expected response
time.

The operator can also issue the < set-block-timeout>
command, using the SETUP mode command,
BTIMEOUT. See the 4114 Operator’s Manual for
details.

11-16

REV, JAN 1882

PROGRAMMING CONSIDERATIONS

The following hints should help you when programming
the host computer for block mode.

® The first block sent, which puts the terminal in block
mode, should be an odd-numbered block. (If the
terminal receives this block with a checksum error,
the NAK block it sends in reply is even-numbered.
For the host to interpret the NAK correctly, it should
be set to interpret even-numbered blocks as NAKs.
That is the case if the host has just sent an odd-
numbered block to the terminal.)

® All block mode parameters should be set before
issuing the < arm-for-block-mode> command. (The
commands to set these parameters are invalid if the
terminal is armed for block mode.)

® When the host expects the operator to type on the
keyboard (or the terminal to send a report message),
it should send a block to the terminal with the end-
of-message bit set to one. When the host is sending
commands to the terminal and does not expect a
reply (other than ACK blocks), it should set the end-
of-message bit to zero in blocks sent to the terminal.

If the terminal receives a block in which the end-of-
message bit is zero, it acknowledges that block
immediately: it sends an ACK block which contains
only the four block control bytes. If, however, the
end-of-message bit is one, then the terminal does
not immediately acknowledge the block. Instead, it
waits until it has data (besides the block control
bytes) to pack into the ACK block.

4114 HOST PROGRAMMER'S

Section 12

PERIPHERAL DATA TRANSFERS

INTRODUCTION

This section describes data transfers between the
terminal, the host computer, and optional peripheral
devices such as a flexible disk drive or a plotter. The
following major topics are included:

® Overview of Commands. This introduces the abbre-
viations for the different peripheral devices, and
shows how these abbreviations are used in one data
transfer command, the < copy> command. The
commands described later in the section are then
listed, with brief descriptions of each command.

@ Using the Disk Drives. The commands associated
with Option 42 (single disk drive) and Option 43
{two disk drives) are given hers, with examples of
their use.

¢ Initializing the RS-232 Peripheral Ports. This
introduces commands to set parameters for the
Option 10 Three Port Peripheral Interface.

¢ Using a Printer. This gives examples of commands
to configure an RS-232 peripheral port for use with
an external printer, and of commands to print
information on that printer.

® Using a Piotter. This gives examples of commands
to configure a peripheral port for use with a
TEKTRONIX 4662 or 4663 Interactive Digital Plotter,
and of commands to send graphic information to that
plotter.

o Using Other RS-232 Devices.

OVERVIEW OF COMMANDS

COMMAND FORMAT

The terminal’s data transfer commands can be typed
oy the operator in SETUP mode or sent io ine terminai
as escape sequences from the host. The escape-
sequence versions of the commands closely resembie

the SETUP mode versions.

For instance, consider the COPY command. in SETUP
mode, the operator can type the following command:

COPY HO: TO FO:FILE1

4114 HOST PROGRAMMER'S

This causes the terminal to copy data coming from the
host computer (“HO:") to a file named FILE1 on disk
drive zero (“FO:FILE1").

Note that there are three parameters in this COPY
command. The first parameter (“HO:") denotes the
source of the data. The second parameter (“TO”) is
included to remind the operator of the direction of data
transfer. The third parameter (“FO:FILE1”) names the
destination for the data transfer.

REV, OCT 1981 12-1

PERIPHERAL DATA TRANSFERS

The corresponding escape-sequence < copy> com-
mand has this syntax:

< copy>= (ESC)(J)(C)
< string: source-specifier>
< string: empty-string or “TO”>
< string: destination-specifier>

Note that there are three parameters, all of type

< string>, corresponding to the three parameters in
the SETUP mode COPY command. The second param-
eter may be the empty < string>, or it may be the

< string> holding only the letters T and O.

Since the host computer must issue commands to the
terminal as escape sequences, it wouid send the
“COPY HO: TO FO:FILE1.DAT” command as follows:

< copy: from host to FO:FILE1 DAT>

= (ESC)(J)(C)
< string: “HO:">
< string: empty-string>
< string: “FO:FILE1.DAT">

= (ESC)(J)(C)
(3)(H(O)()
(0)
(<LIAOEOEMLIEIN) O DHANT)

= (ESC)(J)(C)(B)(H)O) () (0N (<) (F)(O)(:)
FYMLIE) (1)) D)ANT)

12-2 @ ,0CT 1981

DEVICE SPECIFIERS

In data transfer commands, the source and destination
devices are represented with three-character device
specifiers. Examples of these are “HO:” and “FO:",
used in the preceding example to represent “the host
computer” and “flexible disk drive number zero.” Table
12-1 lists the valid device specifiers.

Table 12-1
DEVICE SPECIFIERS

Device Specifier Meaning
HO: The host computer.
FO: F1: Disk drives zero and one. (Requires

Option 42 or 43)
PO: P1; P2: | RS-232 peripheral ports. (Requires

Option 10.)

4114 HOST PROGRAMMER'S

FILE NAMES

If the source or destination for a data transfer is a disk
file, that file is represented by a < string> parameter
such as “FO:FILENAME”, “F1:FILENAME", or just
“FILENAME”. Here, “FO:” or “F1:” is the device specifi-
er for the disk drive. “FILENAME?” is the name of the file
on that drive; it is a sequence of up to nine letters,
digits, and periods (decimal points). The terminal does
not distinguish between uppercase and lowercase
letters; “t0:file1” refers to the same disk file as “FO:
FILE1”. If the disk drive specifier (“FO:” or “F1:”) is
omitted, disk drive zero is assumed.. That is,
“FILE2.DAT” refers to the same file as “FO:FILE2.DAT".

DATA-TRANSFER COMMANDS

Table 12-2 lists the data-transfer commands. These
commands are described later in this section. For more
detailed information, see the command descriptions in
the 4110 Series Command Reference Manual.

4114 HOST PROGRAMMER’S

PERIPHERAL DATA TRANSFERS

Table 12-2
DATA-TRANSFER COMMANDS

Command Name Description

Copies data from a “source” to a “desti-
nation.”

< Copy>

< Spool> Similar to < copy>, but the terminal can
be used for other functions while the

< spool> operation proceeds.

< Port-Copy> Establishes a bidirectional data path to

a peripheral port.

< Save> Encodes a macro definition or a graphic
segment as a series of escape-se-
quence commands, and sends those

commands to the destination device.

Takes commands from the specified
source device and executes them. For
instance, after a segment has been
<save>d to a disk file, it can be re-
created by <load> ing that disk file.

< Load>

-< Directory>

Compiles a directory of the files on a
diskette and sends that directory to the
specified destination. If no destination is
specified, the directory is displayed for
the operator to see.

< Plot> < Save> s all visible segments, sending
the segment definitions, as escape-se-
quence commands, to the specified

destination.

If the destination is an RS-232 peripher-
al port to which a TEKTRONIX 4662 or
4663 plotter is attached, and a < port-
assign> command has assigned the
appropriate plotter device driver to that
port, then the < plot> command causes
all visible segments to be drawn on the
plotter. '

@ ,OCT 1981 12-3

PERIPHERAL DATA TRANSFERS

FORMATTING AND PARAMETER-SETTING
COMMANDS

Table 12-3 lists commands which prepare the terminal
(or, in the case of the < format-volume> command, the
flexible diskette) for subsequent data-transfer com-
mands.

COMMANDS TO REPORT PERIPHERAL
STATUS

Table 12-4 lists commands by which the host compu-
ter can obtain status information about peripheral
devices.

Table 12-4
COMMANDS TO REPORT PERIPHERAL STATUS

Command Name Description

Table 12-3
FORMATTING AND PARAMETER-SETTING
COMMANDS
Command Name Description

< Format-Volume> Writes formatting information
on a flexible diskette to pre-
pare the diskette to hold data

files.

< Port-Assign> Assigns a “‘device-driver
protocol” to an RS-232 peri-
pheral port. It is by the < port-
assign> command that you
inform the terminal what kind
of device is attached to the

specified port.

< Report-Device-Status> | Causes the terminal to send a

< device-status-report> to the
host computer. The report con-
tains a status integer in which is
encoded such information as:
whether the device is present,
whether the device is busy, etc.

< Set-Port-Baud-Rate>

< Set-Port-EOF-String>

< Set-Port-Flagging-Mode>
< Set-Port-Parity>

< Set-Port-Stop-Bits>

< Set-Port-EOL-String>

These commands set baud
rate, parity, and other settings
for RS-232 peripheral ports.

< Report-Port-Status> Causes the terminal to compose a
< port-status-report> for the
specified peripheral port, and to
send that < port-status-report>
to the host computer. The report
message contains information on
such settings as baud rate, parity,

stop bits, etc.

12-4 @ ,0CT 1981

4114 HOST PROGRAMMER'S

PERIPHERAL DATA TRANSFERS

USING THE DISK DRIVES (OPTIONS 42 AND 43)

Option 42 includes a single disk drive, while Option 43
includes two disk drives. These options provide local
mass storage of graphic segments, macro definitions,
and other sequences of commands to the terminal.

<FORMAT-VOLUME> COMMAND

Before a diskette can store data, it must be formatted.
Normally, this is done by the operator, using the SETUP
mode FORMAT command; see the 4114 Operator’s
Manual for details. However, this can also be done from
the host computer, using the escape-sequence com-
mand, < format-volume>:

< format-volume> = (ESC)(J)(F)
: < string: volume-specifier>
< int: number-of-files>

The volume-specifier contains a volume name which
will be displayed in response to <directory> com-
mands for that diskette; e.g., “VOLUME1.” This name
may contain up to nine letters and digits. If you wish,
you can precede the volume name with the characters
“FO:” or “F1:”, which stand for “fiexible disk drive
number zero,” or “flexible disk drive number one,”
respectively: “FO:VOLUME1"” or “F1:VOLUME1". If you
omit these characters, the terminal assumes that you
mean drive zero, the right-hand disk drive.

The < int> parameter specifies the number of files
permitted in the diskette being formatted. The number
actually formatted is a multiple of sixteen; the smallest

multiple of sixteen which is at least as large as the
number specified in this parameter.

Of course, the diskette must not be protected with a
write-protect switch or write-protect notch. (See the
4114 Operator's Manual for details.)

<COPY> FROM HOST TO DISK FILE

A host program can use the < copy> command to
create a data file on a diskette in the terminal’s disk
drive. The process is as follows:

1. lIssue a <copy> command to the terminal. The
first parameter in this command is < string:
“HO:">, specifying the host as the source of the
data to be transferred. The second parameter is the
empty string or <string: “TO”> . The third parame-
ter is a < string> specifying the file to which the
data is to be copied. For example:

< copy: “HO:"”, empty-string, “FO:DATA” >

= (ESC)(H)(C)
< string: “HO:">
< string: empty-string>
< string: “FO:DATA”>

= (ESC)()(C)(3)(H)(O) () (0)(7) (F) (0)
(:)(DMAN(THA)

2. Send to the terminal the data which is to be
included in the file. (This could, for instance,
consist of escape-sequence commands which are
later to be < load> ed from the disk file)

3. Send to the terminal the current < EOF-string>, as
set by the most recent < set-EOF-string>
command. This is a sequence of up to ten charac-
ters which signals the end of the data transfer.
(The < set-EOF-string> command is described
later in this section. Like all commands, its defini-
tive description is to be found in the 4110 Series
Command Reference manual.)

4114 HOST PROGRAMMER'S @ ,0CT 1881 12-5

PERIPHERAL DATA TRANSFERS

< EOF-String>s and the < Set-EOF-
String> Command

When the < copy> command transfers data to or from
the host, the end of the data transfer is marked with an
< EOF-string> (end-of-file string). This is a sequence
of up to ten ASCII characters, set by the < set-EOF-
string> command. That command has the following
syntax:

< set-EOF-string>

= (ESC)(N)(E)
<int-array: ASClI-decimal-equivalents>

The numbers in the <int-array> parameter are the
numeric equivalents of the ASCIl characters which
make up the end-of-file string.

An Example

You can create a disk file which the operator can later
<load> into the terminal so as to initialize the terminal
for a certain task. For instance, the file might contain

< define-macro> commands to to program certain of
the terminal’s function keys. Or, it might contain
commands to set the terminal’s baud rate, parity, etc.,
for communicating with a certain host computer. To do
this, send a sequence of commands from the host such
as the following:

< set-EOF-string: (47,42,42,47)>
<copy: “HO:”, “TO", “FO:COMMANDS ">
< define-macro>
< define-macro>
< define-macro>

< set-baud-rates>
< set-parity>

N
< set-EOF-string: empty-array>

12-6 @ .OCT 1881

Here, the first < set-EOF-string> command specifies
“/**/" as the end-of-file string. (The numbers 47 and 42
are the decimal equivalents of the characters (/) and
(*), used in the < EOF-string>)

The <copy> command starts the data transfer. The
host is the source of data, and the file named
COMMANDS on disk drive zero is the destination.

The following commands (< define-macro>, < set-
baud-rates>, etc.) are part of the data being trans-
ferred. The terminal does not execute these commands,
but just copies them into the destination file (the file
named COMMANDS, on disk drive zero).

The characters (/)(*)(*)(/) are the < EOF-string> ; they
mark the end of the data transfer. When the terminal
encounters these characters, it closes the disk file FO:
COMMANDS and ceases to execute the < copy>
command.

The final < set-EOF-string> command sets the < EOF-
string> to the empty string. This command is as
follows:

< set-EOF-string: empty-array>

= (ESC)(N)(E)
<int-array: empty>

= (ESC)(N)(E)(0)

You may be wondering why this last command is
necessary. It is needed because the terminal
suppresses < EOF-string> s in the data it reads from
the host. After the file transfer, it is possible that the
host might have occasion to send the character
sequence (/)(*)(*)(/), perhaps as < xy> coordinates in
graphic data, or as <int> parameters for some
command. Should that occur, the terminal would still
recognize those characters as the current < EOF-
string>, and would remove them from the data it
receives. This could cause undesired results. The
problem can be avoided by (a) choosing an < EOF-
string> which is unlikely to occur in data sent to the
terminal, or (b) by setting the < EOF-string> to the
empty string except when it is needed for a data
transfer. The latter approach was used in this example.

4114 HOST PROGRAMMER'S

<COPY> FROM DISK FILE TO HOST

The < EOF-string> plays the same role in a < copy>
to the host computer as it does in a < copy> from the
host to the terminal. This time, however, it is the
terminal which issues the < EOF-string>, and the host
which must recognize that < EQF-string> as marking
the end of the data transfer.

<DIRECTORY> COMMAND

The < directory> command prepares a disk directory
for the specified disk drive, and sends that directory to
a specified destination. (If no destination is specified,
the directory information is sent to the terminal's
display.} The escape-sequence command has the
following syntax:

< directory>= (ESC)(J)(D)
< string: disk-drive-specifier>
< string: empty-string or “TO”>
< string: destination-specifier>

The SETUP mode version of this command is described
in the Operator's Manual. The following examples show
how it might be used:

DIRECTORY FO: Displays a directory of the files
on the diskette in disk drive zero.
(Since the second and third par-
ameters are omitted, the directo-
ry is sent to the terminal’s dis-
play: to the dialog area if the
dialog area is enabled, otherwise
to the current graphic beam
position.)

4114 HOST PROGRAMMER'S

PERIPHERAL DATA TRANSFERS

DIRECTORY FO: TO FO:DIRECTORY
Composes a directory of the files
on the diskette in disk drive zero,
and records that directory in the
file named DIRECTORY on that
disk drive.

DIR FO: TO P1: Composes a directory of the files
on disk drive zero, and sends
that directory to RS-232 peri-
pheral port number one. If a
printer is attached to that port,
then the file directory is printed.
If a plotter is attached to that
port, then the plotter “prints” the

file directory.

DIR FO: TO HO: Sends to the host computer a
directory of the files on disk
drive zero. At the end of the data
transfer, the termina! sends the
current < EOF-string>, as set by
the most recent < set-EOF-

string> command.

The host computer can issue < directory> commands
by using the escape-sequence syntax just described.
For instance, the host’s equivalent of DIR FO: TO PO:
would be the following:

< directory: “FO:”, empty-string, “P0:">

= (ESC)(J)(D)
< string: “F0:">
< string: empty-string>
< string: “PO:">
= (ESC)(V)(D)
R)(F0)()
(¥
(3)(P)(O)(:)

= (ESC)(J)(D)(3)(F) (0) (:)(0)(3)(P)(0) (:)

@ ,0CT 1981 12-7

PERIPHERAL DATA TRANSFERS

Figure 12-1 shows the result of a typical <directory>
command, as displayed on the terminal’s screen.

-ENTRIES LISED:
-EMTRIES FREE:

DSTRE
ELMP
OREGON
GREINCH
a5
LASERGUN
MAZE
MAGIC
MICEEY
FAREAE
~2De
SHOORY
STARE
SYMEOL
HIZARD
SEGMENTH
FRTTERNHS
FATTERMSC

-ELOCKS USED:
-ELDCES FREE:

-LARGEST FREE:

ELOCE

3

n.
=
[

K

Y

1

o —)

na

5 Ja 5 o I_I': I g AR I O Rl e R et B Yo BN o I S o S T I A N A

—
)

EYTES

&
S
24

187
154

o REr

B BRI I S TR BT o B TR SN v I g W e o

. .

U O o I IS

— OO =
)

My —

Mo O -] R — O

PEOTECT

HO
HO
HO
HO
MO
HO
M
HO
HO
HO
HO
HO
Hd
Hi
HO
HO
Mo
HO
HO
HO

38082-4

12-8

Figure 12-1. <Directory> Command Report Format.

@ ,0CT 1981

4114 HOST PROGRAMMER'S

< Directory> to a Printer

If the terminal is equipped with Option 10 (Three Port
Peripheral interface), then you can send < directory>
reports to a printer attached to one of the RS-232
peripheral ports. For this to work properly, the following
conditions must be met:

® The peripheral port must have a “4643" device
protocol assigned to it. (See the description of the
< port-assign> command, later in this section.)

® The peripheral port’s end-of-line string must be set
to (CR)(LF). (See the < set-port-EQOL-string> com-
mand description for details.) This is necessary in
order for the terminal to send (CR)(LF), rather than
just (CR), at the end of each line in the < directory>
message.

® The peripheral port baud rate, parity, etc., must be
set to match the corresponding values for the printér
connected to that port.

Once these conditions are met, the operator and host
computer can issue a <directory> command with the
printer port as the specified destination device. For
instance, if a printer is attached to peripheral port
number one, the operator might type the following
SETUP mode command:

DIRECTORY FO: TO P1:

This causes a directory of the files on disk drive zero
(“FO:”) to be printed on a printer attached to peripheral
port number one (“P1:”). The corresponding escape-
sequence command from the host computer would be:

< directory: “FO:", empty-string, “P1:"> .

= (ESC)(J)(D)
< string: “FO:">
< string: empty-string>
< string: “P1:">

= (ESC)(J (D)) (F)O)(:)(0) (R)(P)(1)(:)

< Directory> to a Plotter

if the terminal is equipped with Option 10 (Three Port
Peripheral Interface), then you can send < directory>
reports to a TEKTRONIX 4662 or 4663 Interactive
Digital Plotter. For this to work properly, the following
conditions must be met:

® The plotter must be set for “CR implies CR-LF"”
mode. This is because each line of the directory
report ends with a singie (CR) character — not
(CR)(LF).

4114 HOST PROGRAMMER'S

PERIPHERAL DATA TRANSFERS

® Other plotter parameters must be set as follows:

Attention character (ESC)
Address character (A)

@ The peripheral port must have a “4662/NT” or
“4663/NT" protocol assigned to it. (See the descrip-
tion of the < port-assign> command, later in this
section.) The port baud rate, stop bits, etc., must be
set to agree with the corresponding plotter settings.

® The operator must position the plotter pen (with the
joystick) to the upper left corner of the plotter’s
viewport.

Once the plotter and the peripheral port have been set
up this way, the operator or the host computer can
issue a < directory> command and let the plotter draw
the resulting file directory. For instance, if the plotter is
at peripherai pori zero, the operator types the foilowing
SETUP mode command:

DIRECTORY FO: TO PO:

To produce the same result, the host computer would
issue the corresponding escape-sequence command:

< directory: “FO:”, empty-string, “PO:">

= (ESC)(J)(D)
< string: “FO:">
< string: empty-string>
< string: “P0O:”">

= (ESC)(J)(D)(3)(F)(0)(:)(0)(3) (P) (0)(:)

< Directory> to the Host Computer

The host can cause the terminal to send it a file
directory, as follows:

< directory: “F0:"”, empty-string, “HO:">

= (ESC)(J)(D)
< string: “FO:">
< string: empty-string>
< string: “HO:">

= (ESC)(J)(D)(3) (A (0)(:)(0) (3} (H)(O)(:)

As with the < copy> command, the end of the data
transfer is marked with an < EOF-string> . (In block
mode, the end of the data is marked with the end-of-
message bit in the biock controi bytes. See Section 11
for details.)

Each line of the message sent to the host ends with a
single (CR) character — not the character sequence
(CR)(LF).

@, OCT 1981 129

PERIPHERAL DATA TRANSFERS

<RENAME-FILE> COMMAND

The < rename-file> command lets you assign a new
name to a disk file. For instance, in SETUP mode, the
operator can type:

RENAME FILE1 TO FILE2

This takes the file FO:FILE1 (the file named FILE1 on
disk drive zero) and renames it FO:FILE2.

The escape-sequence syntax for this command is as
follows:

< rename-file> = (ESC)(J)(R)
< string: old-file-specifier>
< string. empty-string or “TO" ">
< string: new-file-specifier>

For more details, see the description of the < rename-
file> command in the 4110 Series Command Refer-
ence Manual.

<DELETE-FILE> COMMAND

The < delete-file> command lets you delete a disk file.

For instance, in SETUP mode, the operator can type:
DELETE FO:FILE1
This deletes the file named FILE1 from the diskette in

disk drive zero. The escape-sequence syntax for this
command is as follows:

< delete-file> = (ESC)(J)(K)
< string: file-specifier>
For instance, to delete the file FO:ABCDEF, the host
program can issue the following command:
< delete-file: “FO:ABCDEF” >
= (ESC)(J)(K)< string: “FO:ABCDEF">
= (ES)()(K)(9)(F)(0)(:)(A)(B)(C)(D)(E)(F)

For more details, see the description of this command
in the 4110 Series Command Reference Manual.

12-10 @ ,0CT 1981

<LOAD> COMMAND

The <load> command causes a disk file to be
executed by the terminal, just as if the commands (or
other data) in the file were sent to the terminal by the
host computer.

Suppose, for instance, that the command file
FO:INITIALIZ has been created by < copy> ing data
from the host computer. in the file are escape-
sequence commands for the terminal. To cause these
commands to be executed, the operator puts the
terminal in SETUP mode and types:

LOAD FO:INITIALIZ

In response to this command, the terminal reads the
data in the file, treating that data in the same way as it
treats data coming from the host computer. The
terminal executes any escape-sequence commands
which it finds in the file.

The escape-sequence version of this command is as
follows:
< load> = (ESC)(J)(L)

< string: file-specifier>

For more details, see the description of this command
in the 4110 Series Command Reference Manual.

4114 HOST PROGRAMMER'S

<SAVE> COMMAND

The < save> command lets you save macro definitions
or graphic segments as escape-sequence commands
in a disk file. Later, the file can be <load> ed to restore
to the terminal the information which was <save>d.

The operator can type this command in SETUP mode,
or it may be sent as an escape-sequence command
from the host computer. The following examples show
how an operator might use this command:
SAVE SEG 1 TO FO.SEGMENT1
Saves graphic segment number
one as a series of escape-
sequence commands on disk
drive zero, in the file named
SEGMENT1.

SAVE MAC 128 TO MACRO .65
Saves macro definition number
128 (the macro which may be
invoked with function key F1) as
a series of escape-sequence
commands in the file named
MACRO.65 on disk drive zero.

SAVE SEG -1 TO SEGMENTS
Saves the definitions of all
graphic segments in a file named
SEGMENTS on disk drive zero.

The escape-sequence syntax for this command is as
follows:

< save> = (ESC)(J)(V)
< siring: code-for-thing-io-be-saved>
<int: item-number-or-count>
< string: empty-string or “TO">
< string: destination-specifier>

< string: code-for-thing-to-be-saved>
= <string: “SEG">
or < string: “MAC”">

4114 HOST PROGRAMMER'S

PERIPHERAL DATA TRANSFERS

For instance, the host computer could define a seg-
ment, save it on a disk file, and delete the segment
definition by issuing commands such as the following:

< delete-segment: 5>
< begin-segment: 5>
< enter-vector-mode>
< Xy>
< Xy>

< enter-vector-mode>
< Xy>
< Xy>

< end-segment>
< save: “SEG”, 5, “TO", "FO:SEGMENT5">
< deiete-segment: 5>

Later, the segment definition can be recalled from the
disk with a <load> command:

< load: “FO:SEGMENTS" >

The < save> command can have other destinations
than a disk file. For instance, the operator can type the
following in SETUP mode:

SAVE SEG 3 TO PO:

If a plotter is connected at port zero, this command
would cause segment 3 to be drawn by that plotter.
(For this to work properly, port zero must have the
appropriate plotter protocol assigned to it, and the
plotter itself must be set up properly. These details are
described later in this section.)

For other information about the < save> command, see
the command description in the 4110 Series Command
Reference Manual.

@, OCT 1981 12-11

PERIPHERAL DATA TRANSFERS

INITIALIZING THE RS-232 PERIPHERAL PORTS (OPTION 10)

The Option 10 Three Port Peripheral Interface provides
three RS-232 peripheral ports to which may be at-
tached such peripheral devices as a TEKTRONIX 4641
Printer, or TEKTRONIX 4662 or 4663 Interactive Digital
Plotters.

<PORT-ASSIGN> COMMAND

The < port-assign> command assigns a “device proto-
col” to a particular RS-232 peripheral port.

The SETLIP mode name for this command is PASSIGN.
The following examples show how the operator uses
the PASSIGN command when attaching peripherals to
the terminal:

PASSIGN PO: PPORT Assigns a general-purpose RS-
232 protocol to RS-232 peri-
pheral port zero. The PPORT
protocol makes no assumptions
about the nature of a device
which may be attached to this
port.

PASSIGN P1: 4643 Assigns the 4643 protocol to
peripheral port one. This is
similar to the PPORT protocol.
However, any (CR) characters
occurring in data sent to this port
will be replaced with the port's
current end-of-line string, as set
by the < set-port-EOL-string>
command.

If you want to print data (such as
a <directory> report) in which
lines end with (CR) rather than
(CR)(LF), set the port’'s <EOL-
string> to (CR)(LF). (Use the

< set-port-EOL-string> com-
mand, described later in this
section.) That way, each (CR) in
the file is replaced with (CR)(LF),
and the printer displays each
line of the file on a new line of
the output paper. This is espe-
cially convenient for doing

< directory> commands with the
printer as a destination.

If the data to be printed aiready
includes (CR)(LF) sequences at
the end of each line, then you
would set the port’'s end-of-line
string to just (CR).

12-12

PASSIGN PO: 4662

PASSIGN PO: 4662/NT

PASSIGN PO: 4662/MP

PASSIGN P2: 4663

REV, AUG 19882

Assigns a “4662" device-driver
protocol to peripheral port zero.
With this protocol assigned, the
terminal assumes that a TEK-
TRONIX 4662 Interactive Digital
Plotter is connected to the peri-
pheral port.

Any data being sent to port zero
is sent using the 4662’s block
mode communications protocol.
Carriage returns and line feeds
are translated into “move’” com-
mands for the plotter, and 4110-
style escape-sequence
commands are translated into
equivalent plotter-language com-
mands.!

Similar to the above; the terminal
assumes that the device at-
tached to this port is a 4662
plotter, and uses the plotter's
block mode protocol for data
sent out this port. However, NO
TRANSLATION of carriage re-
turns, line feeds, or 4110-series
escape-sequence commands is
performed.!

Informs the terminal that a 4662
plotter with the MULTIPLE PEN
option is connected to port zero.
As with the “4662" protocol, the
plotter's block mode is used, and
4110-series commands are
translated into corresponding
commands for the plotter.

Assigns a “4663" protocol to
peripheral port two. This informs
the terminal that a TEKTRONIX
4663 Interactive Digital Plotter is
connected to the port.!

As with the “4662" protocol, the
plotter’s block mode is used. As
with the “4662" protocol, car-
riage returns, line feeds, and
4110-series escape-sequence
commands are translated into
corresponding plotter-language
commands.!

"Sn NOTE under “Using a Piotter.”

4114 HOST PROGRAMMER'S

PASSIGN P2: 4663/NT Similar to “4663" protocol, ex-
cepi that NO TRANSLATION to
plotter language is performed.

PASSIGN P2: 4663/NB Similar to “4663” protocol, ex-
cept that the plotter’s block

mode communications feature is

not used.

OTHER COMMANDS FOR INITIALIZING
PERIPHERAL PORTS

Besides the < Port-Assign> command, severai other
commands are needed to initialize a peripheral port for
use with a particular peripheral device. These com-
mands are: < set-port-baud-rate>, < set-port-EOF-
string>, < set-port-EOL-string>, < set-port-flagging-
mode>, < set-port-parity>, and < set-port-stop-bits>.

All these commands (including < port-assign>) are
remembered by the terminai even when it is turned off.
Thus these commands normally need be issued only
once, when the operator attaches the peripheral device
to the terminal’s peripheral port.

< Set-Port-Baud-Rate> Command

The SETUP mode name for the < set-port-baud-rate>
command is PBAUD. For instance, in SETUP mode, the
operator can type:

PBAUD PO: 300
This sets the transmit and receive baud ratés at

peripheral port zero to 300 bits per second. The
equivalent escape-sequence command for this is:

< set-port-baud-rate: “P0:”, 300>

= (ESC)(P)(B)
<int: 300>

= (ESC)(P)BIRI (<) .

4114 HOST PROGRAMMER'S

PERIPHERAL DATA TRANSFERS

< Set-Port-EOF-String> Command

The < set-port-EOF-string> command sets the end-of-
file string used at a peripheral port. If the peripheral
port does not have a plotter protocol < port-assign>ed
to it, then the port’s end-of-file string, as set by this
command, is appended to the end of any data sent to
that port. Likewise, if the peripheral port is the source
for a data transfer, the port’s end-of-file string serves to
mark the end of the data transfer in a < copy>,
<load>, < spool>, or < port-copy> operation.

The SETUP mode name for < set-port-EQF-string> is
PEOF. Thus, the operator can type the following
command in SETUP mode:

PEOF P1: «/**/”
This sets peripheral port one's end-of-file string to the

following four-character sequence: (/)(*)(*)(/). The es-
cape-sequence version for this exampie is:

< set-port-EOF-string: “P1:”, (47,42,42,47)>

= (ESC)(P)(E)
< string: “P1:">
<int-array: (47,42,42 47)>

= (ESC)(P)(E)B)(P)(1)(:)(4)(B)(?)(B)(:)(B)(:)(B)(?)

@ ,0CT 1981 12-13

PERIPHERAL DATA TRANSFERS

< Set-Port-EOL-String> Command

The < set-port-EOL-string> command sets a peripher-
al port’s “end-of-line string.” The port end-of-line string
is used only if the “4643" protocol has been < port-
assign> ed to that port. If that is the case, every (CR)
character which otherwise would be sent to the port is
replaced with the port’s end-of-line string.

For example, suppose you want to print a file directory
on a printer attached to peripheral port one. The

< directory> command produces text in which each
line ends with {(CR) — not (CR)(LF). So, you type the
following commands in SETUP mode:

PEOL P1: Crb¢"
PASSIGN P1: 4643
DIRECTORY FO: TO P1:

Here, the PEOL command is the SETUP mode version
of < set-port-EOL-string> . It assigns the character
sequence (CR)(LF) as the end-of-line string for peri-
pheral port one. The PASSIGN command assigns the
“4843" protocol to that port, so that any (CR)s in the
data will be replaced with (CR)(LF) sequences. Finally,
the DIRECTORY command sends a directory of the
files on disk drive zero the printer attached to
peripheral port one.

The escape-sequence version of this PEOL command
is as follows:

< set-port-EOL-string: “P1:”, (13,10)>

= (ESC)(P)(M)
< string: “P1:">
<int-array: (13,10)>

= (ESC)PHMB)(P)(1) () (2)(=)()

If the data to be transferred to a peripheral port has
(CR)(LF) sequences at the end of each line, then you
can set the port’s end-of-line string to just (CR).
Alternatively, the PPORT protocol can be < port-
assign>ed to the peripheral port.

12-14

77, OCT 10881

< Set-Port-Flagging-Mode> Command

The < set-port-flagging-mode> command chooses the
flagging mode used at a peripheral port, just as the

< set-flagging-mode> command selects the flagging
mode used for communicating with the host computer.

In SETUP mode, the name of the command is PFLAG,
and the keyword options for the first parameter are
NONE, DTR/CTS, and CHAR. If CHAR (for character
flagging) is chosen, the operator can enter single
character third and fourth parameters to indicate the
“go” and “stop” characters. The following examples
illustrate this:

PFLAG PO: NONE Disables flagging at peripheral

port zero.

PFLAG P1: DTR/CTS Enables DTR/CTS flagging at
peripheral port one. A peripheral
device at this port indicates that
it is ready to receive data by
asserting the DTR (Data Terminal
Ready) signal at the RS-232 per-
ipheral port connector. The ter-
minal indicates when it is ready
to receive data from a peripheral
by asserting CTS (Clear To
Send) at the port connector.

PFLAG P2: CHAR P- D3 Enables “character flagging” at
peripheral port two. A peripheral
device at this port indicates
when it is not ready for data by
sending a (DC3) character to the
terminal. When it is ready for
more data, it sends a (DC1) to
the terminal. Likewise, when the
terminal accepts data from the
peripheral device, it uses (DC1)
as a “go" character and (DC3) as
a ''stop” character.

PFLAG P2: CHAR Same as above; if the “go” and
“stop” characters are omitted
from the command, (DC1) and

(DCA3) are used as defaults.

4114 HOST PROGRAMMER'S

The escape-sequence syntax for the < set-port-flag-
ging> command is as follows:

< set-port-flagging> = (ESC) (P)(F)
< string: port-identifier>
<int: flagging-mode>
<int: “GO”"-character>
<int: “STOP”-character>

The port-identifier < string> is either “P0:”, “P1:”, or
“p2:”. The flagging-mode < int> is either zero (no
flagging), one (for character flagging), or two (for
DTR/CTS flagging). The GO and STOP characters are
represented by their numeric equivalents (range O to
127), sent in the <int> parameters.

For example, to enable CHAR flagging at peripheral
port two, with {DC1) as the GO character (ASCII
decimai equivaient of 17), and with (DC3) as the STOP
character (decimal equivalent 19), the host computer
could send the following escape sequence:

< set-port-flagging: “P2:”,1,17,19>
(=)

(ESC)(P)\I !

< string: “P2:">
<int: 1>

<int: 17>
<int: 19>

(ESC)(P)F) (3} (P)2) () (1)(A)(1) (A)(3)

114 HOST PROGRAMMER'S

<

-4

PERIPHERAL DATA TRANSFERS

< Set-Port-Parity> and < Set-Port-Stop-
Bits> Commands

The < set-port-parity> and < set-port-stop-bits> com-
mands are described in detail in the 4110 Series
Command Reference Manual. (The SETUP mode
names for these commands are PPARITY and PBITS,
respectively.) The commands set a peripheral port’s
parity and number of stop bits to conform with the
requirements of a peripherai device attached to that
port.

The following examples show how these commands
might be used in SETUP mode:

PPARITY PO: NONE Sets port zero sc that characters
PBITS 18 at that port have eight data bits,
no parity bit, and one stop bit.

PPARITY PO: EVEN
PBITS 27

Sets port zero so that characters
at that port have seven data bits,
one parity bit using even parity,
and two stop bits.

For more details, see the descriptions of the < set-port-
parity> and < set-port-stop-bits> commands in the
4110 Series Command Reference Manual.

PERIPHERAL DATA TRANSFERS

USING A PRINTER

INITIALIZING THE PORT

When the operator attaches a printer to one of the
terminal’s RS-232 peripheral ports, he should also type
several SETUP mode commands to configure the
peripheral port for use with that printer.

4641 Printer. Before connectinga TEKTRONIX 4641

printer to one of the terminal’'s RS-232 peripheral ports,

you should check to be sure that the 4641 is equipped
with Option 30 (RS-232 Interface). The internal switch-
es on the 4641 Bufiered Seriai interface Card must
also be set correctly; Table 12-5 lists one possible

switch configuration.

Table 12-5
4641 INTERFACE CARD SWITCH SETTINGS
Switch Condition
St OFF
S2 ON
S3 OFF
S4 ON
S5 OFF
S6 ON
S7 ON
S8 OFF

The switch settings in Table 12-5 set the 4641 printer
to operate at 9600 baud, with DTR flagging when the

printer’'s buffer is full.

With the 4641’s switches set as in Table 12-5, you can
type the following SETUP mode commands to initialize
the terminal’s peripheral port number one:

PBAUD P1: 9600

12-16

Sets port one for 9600 baud. If
the printer is set for a different
baud rate, then use that baud
rate in this command. (See
“Technical Data,” in Part One of
the 4641/4641-1 Operator's
Manual for details about setting
the printer’s baud rate.)

PPARITY P1: HIGH
PBITSP1:17

or

PPARITY P1: NONE
PBITSP1:18

PEOL P1: “Cal¢”

PASSIGN P1: 4643

PFLAG P1: DTR/CTS

The first two commands set port
one to send ASCII characters
consisting of seven data bits, a
parity bit (always one), and one
stop bit. The second two com-
mands will also work; they set
the port for eight data bits, no
parity bit, and one stop bit.

Both of these settings assume
that the 4641 is set for “no
parity.” (See “Jumper Func-
tions,” in Part Two, Section 3 of
the 4641 Operator's Manual for
information on setting the 4641
for “no parity.”)

Sets port one’s end-of-line string
to (CR)(LF). This assumes that
the 4641’s jumper W8 is in-
stalled, thereby disabling the
4641’s “CR implies CR-LF"” fea-
ture. (See “Jumper Functions,” in
Part Two, Section 3 of the 4641
Operator’s Manual)

Assigns the “4643" protocol to
peripheral port one. Any (CR)
characters in text sent to this
port will be replaced with the
port’s end-of-line string:
(CR)(LF).

Sets port one for “DTR/CTS”
flagging. This is necessary to
prevent data over-run when
sending text to a printer at port
one.

4642 Printer. The TEKTRONIX 4642 Printer is not
compatible with Tektronix 4110-series terminals.

i+, OCT 1981

4114 HOST PROGRAMMER'S

<COPY> TO A PRINTER

Onice the printer port has been initialized, the operator
or the host computer can issue < copy> commands to
transfer data to the printer. For example, the operator
can create a file holding a directory of disk files, and
then < copy> that file to a printer at port one, as
follows:

DIRECTORY FO: TO FO:FILE1
COPY FO:FILE1 TO P1:

<DIRECTORY> TO A PRINTER

The following SETUP mode command causes a disk
directory to go directly to a printer port number one:

DIRECTORY FO: TO P1:

<SPOOL> TO A PRINTER

If you have much data to send to a printer, you may
wish to use the < spool> command rather than

< copy>. With the <spool> command, the data trans-
fer occurs “in the background.” That is, the terminal
can be used for other purposes while it is <spool>ing
data to a printer.

For example, the operator might type these two com-
mands in SETUP mode:

DIRECTORY FO: TO FO:DIRECTORY
SPOOL FO:DIRECTORY TO P1:

Here, the DIRECTORY command creates a disk file
named DIRECTORY, and the SPOOL command copies
that file to a printer attached to port number one. Unlike
the COPY command, the SPOOL command lets the
operator use the terminal for other purposes while the
file is being printed out.

4114 HOST PROGRAMMER'S

@, OCT 1981

PERIPHERAL DATA TRANSFERS

The escape-sequence version of the < spool> com-
mand has the following syntax:

< spool>= (ESC) (J)(S)
< string: source-specitier>
< string: empty-string or “TO”>
< string: destination-specifier>

For example, the escape-sequence version of the
SETUP mode command, “SPOOL FO:DIRECTORY TO
P1:” would be:

< spool: “FO:DIRECTORY”, empty-string, “P1:">

= (ESCHJ)(S)
< string: “FO:DIRECTORY” >
< string: empty-string>
< string: “P1:">
= (ESC){J)(S) (<) RO MDY (RME)C)
MOHRIMO)B)P(1)()

To abort a < spool> operation before it is finished, use
the < stop-spooling> command. (The SETUP mode
name for this command is STOP))

< stop-spooling> = (ESC)(J)(E)

For more information on the < spool> and < stop-
spooling> commands, see their descriptions in the
4110 Series Command Reference Manual.

1217

PERIPHERAL DATA TRANSFERS

USING A PLOTTER

CONNECTING THE PLOTTER TO THE

TERMINAL

When using a TEKTRONIX 4662 or 4663 Interactive
Digital Plotter, connect the plotter's “modem” connec-
tor to one of the terminal’s three RS-232 peripheral
ports.

NOTE

Do not connect the plotter between the terminal’s
host port and the hest computer. Although the
plotter is designed to run in this configuration, the
terminal design assumes that the plotter is con-
nected to one of the RS-232 peripheral ports.

INITIALIZING THE PORT

To use a TEKTRONIX 4662 or 4663 Interactive Digital
Plotter with the terminal’s RS-232 peripheral port, you
must set the plotter’'s switches and the peripheral port
settings in a compatible way. For instance, if the plotter
is set to operate at 1200 baud, then the peripheral port
to which it is attached must also be set for 1200 baud.

4662 Plotter. Table 12-6 shows one way the switches
on the TEKTRONIX 4662 Digital Plotter can be set for
communicating with the terminal through the terminal’s
Option 10 Three Port Peripheral Interface.

Table 12-6
4662 PLOTTER SETTINGS
Switch Setting
A 3
B 3
C 2
D 3

These switch positions set the 4662 as follows:

Copy mode.

CR implies CR-LF.

GIN terminator = CR.
Number of stop bits = 1.
No Parity.

Plotter device address = A.
Baud rate = 1200.

12-18 @ OCT 1981

With the 4662’'s switches set as in Table 12-6, the
following SETUP mode commands will then initialize
peripheral port zero for communicating with the plotter.
The terminal remembers these settings even when
turned off; thus the commands need only be issued
once, when attaching the plotter to the terminal.

PBAUD PO: 1200 Sets port zero to communicate
with the 4662 at 1200 bits per

second.

PASSIGN PO. 4662 Assigns the standard “4662”
device protocoi to peripherai port
zero. (If the 4662 is equipped
with multiple pens — Option 31
— then the second parameter in
this command should be
“4662/MP” rather than “4662.")

PPARITY PO: NONE Sets peripheral port zero to send

PBITSPO: 18 ASCII characters which have
eight data bits, no parity bit, and
one stop bit.

PFLAG P0O: NONE Disables DTR/CTS and charac-
ter flagging at the peripheral
port. (Instead, the plotter's block
mode is used to prevent data

overrun.)

4114 HOST PROGRAMMER'S

4663 Plotter. Table 12-7 shows one way to set the
4663 plotter's parameter entry switches for use with a
4110 series terminal.

Table 12-7

4663 PLOTTER SETTINGS
Parameter Setting
initiai aspect ratio 4X:3Y
Initial axis orientation Y vertical, X horizon-

tal

Interface select 1 (RS-232 interface)
Initial command response format 3
Serial device address A
Receive baud rate 9600
Transmit baud rate 9600
Transmit baud rate limit Full speed

Character format

Receive parity/transmit parity
Communications conirol mede
Interface functions

8 data bits, 1 stop bit
Ignore/logic zero

Fuli dupiex

CR generates LF=

YES, DEL IGNORE= NO
Attention character ESC

Output terminator CR

Suppose the plotter switches have been set as shown
in Table 12-7. In that case, the following SETUP mode
commands initialize peripheral port zero in the terminal
for proper communication with the plotter:

PBAUD PO: 9600 Sets peripheral port zero to
communicate with the plotter at

9600 bits per second.

PASSIGN PQ: 4863 Assigns the “4663” device pro-
tocol to peripheral port zero.

PPARITY PO: NONE
PBITSPO: 18

Sets peripheral port zero to send
ASCII characters which have
eight data bits, no parity bit, and
one stop bit.

PFLAG PO: NONE Disables DTR/CTS and charac-
ter flagging. (Instead of flagging,
the plotter's block mode protocol

is used to prevent data over-run.)

4114 HOST PROGRAMMER'S

REV, AUG 1982

PERIPHERAL DATA TRANSFERS

<SPOOL> TO APLOTTER

One way to transfer data from the host computer to a
plotter is with the < copy> command. If the plotter is
connected to port zero, this command would be:

< copy: HHO:”, uTon' 5(P0:ll>

However, this will tie up the terminal, and the host-to-
terminal data communications line, for the entire time
that it takes the plotter to draw the picture being sent.

If the terminal is equipped with a disk drive, a better
technique wouid be to < copy> the data to a file on the
disk drive, and then < spool> the data from that disk
file to the plotter:

< copy: “HO:"”, “TO”, “FO:TEMPFILE” >
< spool: “FO:TEMPFILE”, “TO”, “P0:" >

Here, the < copy> operation takes a comparatively
short time, since data can be transferred to a disk file
at a far faster rate than the plotter can plot that data.
The < spool> command then sets up a “background”
data transfer. The operator (and the host computer)
can use the terminai for other purposes whiie the data
is being < spool> ed from the disk file to the plotter.

The terminal’s operator can gain similar benefits by
using the SETUP mode SPOOL command. For instance,
rather than typing

SAVE SEG 5 TO PO:

the operator might type

SAVE SEG 5 TO FO:TEMPFILE
SPQOL FO:TEMPFILE TO PO:

Once the SPOOL command has been typed, the
operator can then type other commands to the terminai
(or to the host), while the < spool> operation proceeds
in the background.

NOTE

< Set-Graphtext-Size> and < Set-Graphtext-
Rotation> are not translated to plotter com-
mands by the plotter device drivers. If you have a
file with either of these commands in it, make the
file into a segment (if it does not already contain
segments) by using the < Begin-Segment> com-
mand, loading the file, and the < End-Segment>
command. Then save the segment to the plotter.

12-19

PERIPHERAL DATA TRANSFERS

<SAVE>ING SEGMENTS TO A PLOTTER

Details of Data Sent When < Save>ing a
Segment

When a segment is <save>d, the data sent to the
< save> command’s destination is arranged so as to
permit a plotter to draw that segment correctly.

That is, the data sent to a <save> command’s
destination consists of 4110-series escape-sequence
commands, in the following order:

1. A <set-pivot-point> command, establishing the
pivot point for the segment whose definition fol-
iows.

2. Commands to set segment attributes for “segment
minus two.” “Segment minus two” means “the
default for segments not yet defined.” Thus, these
commands establish segment attributes for the
segment whose definition follows. These attributes
include visibility, display priority, writing mode,
image transform parameters (x- and y-scale fac-
tors, rotation angle, position), highlighting,
detectability, and the segment classes to which the
segment belongs.

3. Finally comes the segment definition itself. This
includes a < begin-segment> command, the con-
tents of the segment (moves, draws, alphatext,
graphtext, primitive attributes, etc.), and an <end-
segment> command.

The segment attributes are sent before the segment
definition (as attributes of “segment minus two”). That
way, the plotter “knows” these attributes before it
draws the segment.

Consequently, if you < save> a segment to a disk file,
and then later <load> that file, you also < load>
attributes for “segment minus two.” That is, <load>ing
a segment also changes the attributes for “segment
minus two.”

12-20 @,0CT 1981

Using the <Spool> Command

You can, of course, issue a < save> command to send
a segment definition directly to a plotter. For instance,
if a plotter is connected to port zero, the operator can
type this SETUP mode command:

SAVE SEG 3 TO PO:

However, this ties up the terminal for the entire time it
takes for the data to be sent to the plotter. A better way
would be to use the < spool> command:

SAVE SEG 3 TO FO:SEGMENTS3
SPOOL FO:SEGMENT3 TO PO:

<PLOT> COMMAND

The < plot> command is similar to the < save>
command; the difference is that is saves all visiblie
segments. In SETUP mode, the operator types this
command as follows:

PLOT TO PO:

or

PLOT TO FO:THISVIEW
SPOOL FO:THISVIEW TO PO:

The first example < plot> s all visible segments directly
to the plotter attached at peripheral port zero. The
second example is more efficient of the operator’s time:
it saves all visible segments as escape-sequence
commands in the file FO:THISVIEW, and then

< spool> s the data in that file to the plotter at port
zero. Once the SPOOL command has been typed, the
operator can use the terminal for other purposes while
the data is transferred to the plotter.

The escape-sequence syntax for the < plot> command
is as follows:

< plot> = (ESC)(P)(L)
< string: empty-string or “TO">
< string: destination-specifier>

4114 HOST PROGRAMMER'S

<PORT-COPY> COMMAND

The commands described so far for drawing pictures
on an external plotter all take advantage of the .
terminal's capability of translating 4110-series es-
cape-sequence commands to equivalent commands for
the plotter.

However, you may wish to control the plotter directly
from a host program, without the terminal’s firmware
intervening. The < port-copy> command provides this
capability.

The < port-copy> command establishes a bidirection-
al data path between the host computer and an RS-232
peripheral port, or between two RS-232 peripheral
ports. The command has this syntax:

< port-copy>= (ESC)(P)(C)
< string: source-specifier>
< string: empty-string or “TO">
< string: destination-specitier>

Here, the “source’” and “destination” are the two ends
of the data path. For instance, the following command

establishes a bidirectional data path between the host
computer and peripheral port one:

< port-copy: “HO:”, empty-string, “P1:">

= (ESC)(P)(C)
< string: “HO:">
< string: empty-string>
< string: “P1.">

= (ESC)(PNC)(3)(H(O)(:)(0) (R)(P)(1)(:)

4114 HOST PROGRAMMER'S

@.0CT 19881

PERIPHERAL DATA TRANSFERS

The data path remains in effect (that is, the terminal
continues to execute the < port-copy> command) until
either the “source” or the “destination” sends an end-
of-file string. (if the terminal’s block mode is being used
at the host port, then the host terminates the < port-
copy> by sending a block with the end-of-file bit set.)
At the host port, the “end-of-file string” is the < EOF-
string> set by the most recent < set-EOF-string>
command. At an RS-232 peripheral port, the “end-of-
file string” is the string set for that port by a < set-port-
EOF-string> command.

For an RS-232 peripheral port to be valid as a source
or destination in the < port-copy> command, a < port-
assign> command must have assigned the “PPORT”
device protocol to that port.

For more details on the < port-copy> command, see
the description of that command in the 4110 Series
Command Reference Manual.

12-21

PERIPHERAL DATA TRANSFERS

USING OTHER RS-232 DEVICES

You can use the terminal’s Option 10 Three Port In particular, the PPORT (general purpose peripheral
Peripheral Interface with other RS-232 devices than port) device protocol should be < port-assign> ed to
those described in this sectin. Of course, you must be any port which is not being used with plotters or
sure to set the port parameters in a way which is printers.

compatible with those devices.
: The other port settings (port baud rate, port parity, etc.)

will depend on the requirements of the particular
peripheral device.

12-22 @, OCT 1981 4114 HOST PROGRAMMER'S

Section 13

USING 4010-SERIES GRAPHICS PROGRAMS

RUNNING EXISTING 4010 SERIES PROGRAMS

Programs written for earlier TEKTRONIX terminals
(4010 Series) were written without a dialog area in
existence. They assume alphatext will be output begin-
ning at the current graphic cursor position. This is not
the case on the newer 4114 terminal if the dialog area
is enabled. To run eariier programs on the 4114,
without modifying those programs, the 4114’s dialog
area must be disabied. (See the descriptions of the
enable-dialog-area in Section 4 of this manual and in
the 4110 Series Command Reference Manual.)

NOTE

On the other hand, if you want to take advantage
of, and allow for, the 4114’s dialog area, you can
very easily modify earlier programs to do so. This
involves making sure the program uses the

< graphic-text> command to output all alphatext
destined for the graphics area. (See the descrip-
tions of the < graphic-text> command in Section
7 of this manual and in the 4110 Series Com-
mand Reference Manuai.j

The 4114A can emulate the character sizes of both the 4014
and the 4016. The <select-alphatext-size-group> com-
mand changes the results of the < set-4014-alphatext-
size> to emulate either 4014 or 4016 sizes.

The easiest way to emulate 4014 or 4016 character sizes is
to specify which one you want to emulate with <select-
alphatexi-size-group > and then issue a < set-4014-
alphatext-size > command. The <set-4014-alphatext-
size> command lets you select one of four standard text
sizes. The <set-alphatext-size> command can do the
same thing, but is less convenient to use, since you must
supply complete specifications for the text size. See the
4110 Series Command Reference Manual for details of
these commands.

EMULATING 4010 SERIES TERMINALS WITH
4953/4954 GRAPHICS TABLETS

The 4114 can emulate 4010 Series terminals with
accessory graphics tablets. To do this, the 4114 must
have a graphic tablet installed (Option 13 or 14). With
Option 13 or 14 installed, the 4114 can emulate a
TEKTRONIX 4010 Series terminal which has an

accessory TEKTRONIX 4953 or 4954 Graphics Tablet.

There are four commands used for the emulation:

® < Enable-4953-Tablet-GIN>

e < Disable-4953-Tablet-GIN>

® < Set-Tablet-Header-Characters>
® < Set-Tablet-Status-Strap>

4114 HOST PROGRAMMER'S

For descriptions of these commands, see the 4110
Series Command Reference Manual. The description of
the < enable-4953-tablet-GIN> command is especial-
ly important; it includes a table showing the commands
which you can give the 4114 in order to emulate strap
settings on the 4953/4954 Tablet Controller board.

REV, OCT 1982 13-1

Appendix A

ASCII CHARTS

This appendix includes a standard ASCII code chart
and additional ASCII code charts which define the
specific characters used as parameters (indicated by

unshaded areas).

The code charts are:
Table Description

Tabie A-1

A-1
A-2
A-3

A-4

A-5
A-6

ASCII Code Chart

Characters Used in < Char> Parameters
Characters Used in <Int> and <Int+ >
Parameters

Characters Used in < Int-Report>
Parameters

Characters'Used in < Xy> Parameters
Characters Used in < Xy-Report>
Parameters

ASCII (1S0-7-US) CODE CHART

87 [} [} [[} 1 1 [1
BlTsBsBs 00 01 10 17 (2)0 ID1 i 19 11
smme| CONTROL FIGURES UPPERCASE LOWERCASE
olojojof NUL|DLE SP | 0 | @ P \
0 16 32 48 64 80 96 112
eleloj1] SOH | DC1 | ! 1 A 0 a
1 17, 33 49 65 81 97 113
olel1|e| STX DC2 | 2 B R b r
2 18 34 50 66 82 98 114
olo[1|1{ ETX DC3 | # 3 C S C S
3 19 35 51 67 83 99 115
ol1leigl EQT | DC4 | § 4 D T d t
4 20 36 52 68 84 100 116
ol1jo1[ENQ NAK| % 5 E U e u
5 21 371 53, 69| 85 101 117
2110/ ACK SYN & 6 F Vv f v
L 6, 22, 38] 54 70 86 102 118
o111 BEL ETB' /4 7 G W g W
: 7: 23i 39 55, 71 87, 103 119]
1elele|] BS CAN (8 H X h X
8 24 40 56; 72| 88, : 104 120
1ieje|1| HT | EM) 9 | Y iy
9 25 41 57| 73 89| 105! 121
1010/ LF | SUB =*) Z | oz
10 26] 42! 58 74| 90 106 122
velit] VT ESC + K Ik {
1 N 11, 27. 43; 59, 75 91 107, 123]
1i1iale] FF FS , < L A R
12 28 44 86, 76 92 108 124
1i1jein] CR GS = - = M] om 1}
| 13 29| 25| 61 77 93| 109 125
1.1)1je1 SO RS > N A on o~
: 14 30] 46 62 78 94 110) 126
il SETUS T/ 0 0 oo | Ry
| 15 31 47| 63| 79 95 111 127

*1

1 o0 some keyboards or systems

4114 HOST PROGRAMMER'S

A-1

ASClli CODE CHARTS

Table A-2

CHARACTERS USED IN < CHAR> PARAMETERS

0 @ P \ p
48 64 80 96 112
1 A 0 a
49 65 81 97 113
2 B R b r
50 66 82 98 114
3 C S C S
51 67 83 99 115
4 D T d t
52 68 84 100 116
5 E U u
53 69 85 101 117
6 F V f v
54 70 86 102 118
] G W g W
55 71 87 103 119
8 H X h
56 72 88
9 | Y
57 73 89
J VA
58 74 90
: K [
59 75 91
< L \
60 76 92
= M 1
61 77 93
> N VAN
62 78 94
? 0
63 79l T 95

*

l on some keyboards or systems

A2 @ 4114 HOST PROGRAMMER'S

ASCIl CODE CHARTS

Table A-3

CHARACTERS USED IN <INT> AND <INT+> PARAMETERS

<Hil> Characters < Lol> Characters

@ | P \
64 80/ 96 112,
A !
65 Q 81 97 113
B R b r
66 82 98 114
C S c s
67, 83 99 115
D T d t
68} 84 100 @q
E U € U
69| 85 101 117]
F v f v
70! 86 102| 118
G W g w
710 87| 103 119)
H o X h X
72) 88, 104 120|
| Y i y
73 89 105 121
J l j Z
74, 90| 106 122
K [k {
75, 91 107] 123
1 \ 1 1*
L \ 1
76| 92| @# 124
M] m | 1
77 93 109 125
oL 12
N A n o~
78, 94 110! 126
RUBOUT
0 —_ 0 ot
79| 95 111 127

*1

| on some keyboards or systems

4114 HOST PROGRAMMER'S @ A-3

ASCIlI CODE CHARTS

Table A-4

CHARACTERS USED IN <INT-REPORT> PARAMETERS

< Hil-Report> Characters < Lol-Report> Characters

>
Y
=
=

[
&
o
=

&

o
3
[
(%]

o
£y

18

2
o
@
[«

\,
e
©
3

&)
N

| o | m o o m = O

71|

o
=3

~
>
oo
©

N| < x| B <| C| - » O] ©

~
N

—

~
o

~
=)

~
~

~
®

~
©

| on some keyboares or sysiems

D)

A-4 4114 HOST PROGRAMMER’S

ASCIli CODE CHARTS

Table A-5

CHARACTERS USED IN < XY> PARAMETERS

<HiY>,<HiX> Characters

<LoY>,<Extra> Characters

< LoX> Characters

£
o

| 3>
Y @
S8 &
o

(=3 R

81

2

- MmO
S B
At

3
i

x| T < | 4] »»| D D ©

ju 4

(]
iy
o
S

~
N
2y
&

| o some kayboacas or systems

~

&)
—<

£

©

—
~N

~
N
o
S

=

~
R

N
o

-
~N

~
&3

ol Zz| =

~
S

3

4114 HOST PROGRAMMER’S

A5

ASCIli CODE CHARTS

* |

Table A-6

CHARACTERS USED IN < XY-REPORT> PARAMETERS

< HiY-Report>, <Extra-Report>, <LoY-Report>,
< HiX-Report>, and < LoX-Report> Characters

N
o

w
)

A
@

w
wW

-
~

W
A

3=

W
(431

$)]

AN
©

[$)]
S

Rg

W
=]

=

W
~

[$)]
W

Qo

W
[o2]

(¢}
N

[$,]
()]

[$)]
D

oy
N

O] OO | OO O] B Wl N —| ©

(6]
N

| on some keyboards or systems

A-6

4114 HOST PROGRAMMER'S

Table B-1 lists <int> parameters for integers between —1049 and + 1048.

EXAMPLES OF <INT> PARAMETERS

Appendix B

Table B-1

REPRESENTING NUMBERS AS <INT> PARAMETERS

n <int:n> -n <int:-n> n <int:n> —n <int:-—n> n <int:n> —-n <int:—n>
0) —0 (SP) 50 (C)(2) —50 (C}{") 100 (F)(4) —~100 (F)($)
1 (1) -1 () 51 (C)(@3) —51 (C)(#) 101 (F)(5) —101 (F){(%)
2 (2) -2 () 52 (C)(4) —52 (Ci($) 102 (F)(6) —102 (F)(&)
3 (3 -3 # 53 (C)(5) —53 (C)(%) 103 (A7) —-103 (A(")
4 (4 —4 (9 54 (C)(6) —54 (C)(8) 104 (F)(8) —104 (A(“(")
5 (5) —5 (%) 55 (C)}(7 —-55 (C)(’) 105 (F)(9) —-105 (A"
6 (6) —6 (&) 56 (C)(8) —-56 (C)(“(") 106 (F)(:) —106 (F)(+)
7 (D 7.0 57 (C)(9) -57 (€9 107 (FI(;) —107 (FI{+)
8 (8) -8 (“(" 58 (C)(2) —58 (C){*) 108 (F)(<) —-108 (F)()
9 (9 -9 () 59 (C)(;) —59 (CH+) 109 (F(=) —109 (F)(-)
10 () —10 (%) 60 (C)(<) —60 (C)(,) 110 (A>) —110 (F)()
1 () —-11 (+) 61 (C)(=) —-61 (C)() 111 (F)(?) —-111 A
12 (<) —-12 () 62 (C)(>) —62 (C)() 112 (G)(O) —112 (G)(SP)
13 (=) -13 () 63 (C)(?) —63 (C) 113 (G)1) —-113 (@)
14 (>) -14 () 64 (D)(0) —64 (DNSP) 114 @2 —114 (@)(")
15 (?) -15 (/) 65 (D)(1) —65 (D)) 115 (G)(3) —115 (G)(#)
16 (A)(0) —16 (A)(SP) 66 (D)(2) —-66 (D)) 116 (G)(4) —116 (G){($)
17 (A1) —-17 (AH 67 (D){3) —67 (D)(#) 17 (G)5) —117 (G)(%)
18 (A)(2) —18 (A)(") 68 (D) (4) -68 (D){($) 118 (G){(6) —118 (G)(&)
19 (A)3) —19 (A#) 69 (D)(5) —69 (D)(%) 119 (G)7) —-119 (G)(")
20 (A)(4) —20 (A)N(®) 70 (D)(6) —70 (D)(&) 120 (G)8) —-120 (@) (“(")
21 (AN5) —21 (A% 71 (D)}7) -71 (D)) 121 (G)(9) —121 (G)}(*)")
22 (A)6) —22 (A)&) 72 (D)(8) =72 DM“() 122 (GN:) —122 (G}
23 (A7) —-23 (A)(") 73 (D)(9) -73 (O)(*)”) 123 (G)(;) —-123 (G)(+)
24 (A)(8) —24 (A)("(M 74 (D)(2) —74 (D)(» 124 (G)(<) —124 (G)(,)
25 (A)(9) —25 (A)(")") 75 (D)) -75 (D){+) 125 (G)(=) —-125 (G)()
26 (A)) —26 (A)(*) 76 (D){<) —76 (DN, 126 (G)(>) —-126 (G)(.)
27 (A —-27 (A+) 77 O)=) —-77 (D)) 127 (G)(?) —-127 (@G
28 (Al(<) —28 (A)(,) 78 (DI(>) -78 (D)) 128 (H)(0) —128 (H)(SP)
29 (A=) —29 (A)(-) 79 (DN?) —-79 D) 129 (H)(1) —-129 (H)()
30 (A(>) —30 (A).) 80 (E)(0) —80 (E){(SP) 130 (H)(2) —130 (H)(")
31 (A7) =31 (AW 81 (E)1) —-81 B 131 (H)(3) —131 (H}{#)
32 (B)(0) —32 (B)(SP) 82 (B)(2 —82 -(E)") 132 (H)(4) —132 (H)($)
33 (B}{1) —-33 (B)1 83 (E)3) —-83 (E)(# 133 (H)(5) —133 (H){(%)
34 (B)(2 —34 (B)(") 84 (E)(4) —84 (E)9%) 134 (H)(6) —134 (H)(&)
35 (BX3) —35 (B)(#) 85 (E)5) —85 (E){(%) 135 (H)(7) -135 (H)(")
36 (B)(4) —-36 (B)($) 86 (E)(B) —-86 (E)(&) 136 (H)(8) —136 (H)(“(")
37 (B){(5) -37 (B)(%) 87 (EN7) —-87 B)X’) 137 (H)(9) —137 (H()")
38 (B)(6) —-38 (B)(&) 88 (E)(8) -88 (E)"(") 138 (H)() ~138 (H)(+)
39 (B{7) -39 (BI(’) 89 (E)(9) -89 (E)X(")") 139 (H)(;) —139 (H{(+)
40 (B){(& —40 (B)(“(") 90 (E)(:) —90 (E)+) 140 (H){(<) —140 (H)(,)
41 (B)(9) -41 (B)()") 91 (B)(;) —981 (B)(+) 141 (H)}(=) —-141 (H)(-)
42 (B)()) —42 (B)(») 92 (EM<) -92 (EX,) 142 (H)(>) —142 (H)()
43 (B)(;) —43 (B)(+) 93 (EX=) -93 (B)(-) 143 (H)(?) —143 (H\(/)
44 (B)(<) —44 (B)(,) 94 (E)>) —94 (EN.) 144 ()0} —144 ()(SP)
4114 HOST PROGRAMMER'S @ B-1

<INT> PARAMETERS

REPRESENTING NUMBERS AS <INT> PARAMETERS

Table B-1 (Cont)

n <int:n> -n <int: -—n> n <int:n> ~n <int:-—n> n <int:n> —-n <int:-n>
45 (B){(=) —45 (B)(-) 95 (E)X?) —-95 (E)(/) 145 ()(1) —145 ()
46 (B)(>) —46 (B)(.) 96 (F)(0) —96 (F)(SP) 146 (1(2) —146 (I)("
47 (B)(?) —47 (B)() 97 (F(1) -97 (A 147 ()(3) —147 (V#)
48 (C)(0) —48 (C)(SP) 98 (F)(2) -98 (A" 148 (1)(4) —148 (($)
49 (C)(1) —49 (C)() 99 (F)(3) —-99 (F)(#) 149 ()(5) —149 (D(%)
150 ()(6) —150 (1)(3) 200 (L)(8) —200 (L){(*(") 250 (0)() —250 (O)(*)
151 (IM?) —151 (") 201 (L)(9) —201 (L) 251 (O)(;) —251 (0O)(+)
152 (1)(8) —1562 (M“(") 202 (L)(2) —202 (L)(=) 252 (O)<) —-252 (O)(,)
153 (1)) —153 (")) 203 (U(;) —203 (L}{+) 253 (O)(=) —253 (0)(-)
154 ((:) —154 (I(#) 204 (L(<) —204 (L)(,) 254 (0){>) —254 (0)(.)
155 (0(;) —155 (){(+) 205 {(L)(=) —205 (L)) 255 (0)7) —255 (O)(/)
156 (<) -156 (M) 206 L) —208 (L)) 256 (P)(0) —256 (PI{SF)
157 (M=) —-157 (M) 207 (L(?) —-207 LK) 257 (P)(1) —257 (PH1)
158 (N(>) —158 (I)(.) 208 (M)(0) —208 (M)(SP) 258 (P)(2) —258 (P)(")
159 (1)(?) —-159 () 209 (M)(1) —209 (M){) 259 (P)(3) —259 (P)(#)
160 (J)(0) —160 (J){SP) 210 (M)(2) —210 (M)(M 260 (P)(4) —260 (P)(8)
161 (1) —161 () 211 (M)X(3) —-211 (M)(#) 261 (P)(5) —261 (P){(%)
162 (J)(2) —162 (") 212 (M)(4) —212 (M)($) 262 (P)(6) —262 (P)(&)
163 (U)(3) —163 (I)#) 213 (M)(5) —~213 (M){(%) 263 (P)(?) —263 (P)(’)
164 (J)(4) —164 (J)($) 214 (M)(6) —214 (M)(8) 264 (P)(8) —264 (P)(“(")
165 (J)(5) —165 (JN%) 215 (M)(7) —-215 (M)(") 265 (P)(9) —265 (P){(*)")
166 (J)(6) —166 (J)(&) 216 (M)(8) —216 (M)(“(") 266 (P)(:) —266 (P)(»)
167 (A7) —167 UN") 217 (M)(9) -217 (M) 267 (P)(;) —267 (P)(+)
168 (J)(8) —168 (I(“(") 218 (MI() —218 (M)(*) 268 (P)(<) —268 (P)(,)
169 (J)(9) —169 A)(“)") 219 (M)(;) —219 (M)(+) 269 (P){(=) —269 (P)(-)
170 () —-170 (I)(») 220 (MM{(<) —220 (M)(,) 270 (P}{>) —270 (P)(.)
171 (D) —171 (I(+) 221 (M)(=) =221 (M}(-) 271 (P){?) 271 (P)()
172 (I(<) —-172 (I() 222 (M)(>) —222 (M)(.) 272 (Q)(0) —272 (Q)(SP)
173 (=) —173 (I(-) 223 (M)(7) —223 (M)() 273 (Q)(1) —-273 (Q)()
174 (J(>) —174 (W) 224 (N)(0) —224 (N)(SP) 274 (Q)(2) —274 (Q)(")
175 (NH(?) —175 (W) 225 (N)(1) —-225 (N)(1 275 (Q)(3) —-275 (Q)(#)
176 (K)(0) —~176 (K){(SP) 226 (N)(2) —226 (N)(") 276 (Q)(4) —276 (Q)(%)
177 (K)(1) —-177 (K)() 227 (N)(3) —227 (N@®) 277 (Q)(5) —277 (Q){(%)
178 (K)(2) —178 (K)(") 228 (N)(4) —228 (N)($) 278 (Q)(6) —278 (Q)(&)
179 (K)(3) —179 (K)(#) 229 (N)(5) —229 (N)(%) 279 (Q)(7) —279 (Q)(")
180 (K)(4) ~180 (K)($) 230 (N)(6) —230 (N)8) 280 (Q)(8) —280 (Q){“("
181 (K)(5) —181 (K)(%) 231 (N)(7) —231 (N)(") 281 (Q)9) —281 (Q()™
182 (K)(6) —182 (K)(8) 232 (N)(8) —232 (N){("(") 282 (Q):) —282 (Q)(»)
183 (K){(7) —-183 (K)() 233 (N)(9) —233 (N}{(")") 283 (Q):) —283 (Q){+)
184 (K)(8) —184 (K)(“(") 234 (N)(2) —234 (N)(») 284 (Q)(<) —284 (Q)()
185 (K)(9) —185 (K){(*)") 235 (N)(;) —235 (NM{+) 285 (QN=) —285 (Q)(-)
186 (K)(:) —186 (K)(») 236 (N)(<) —236 (N){(,) 286 (Q)(>) —286 (Q)(.)
187 (K)(;) —187 (K){(+) 237 (N)(=) —-237 (N)() 287 (Q)(?) —287 (Q®
188 (K){(<) —188 (K)(,) 238 (N)(>) —238 (N)(.) 288 (R)(0) —288 (R)(SP)
189 (K){(=) —189 (K)(-) 239 (N)(?) —239 (N)(») 289 (R)(1) —289 (R)(1)
190 (KH{>) —190 (K)(.) 240 (0)(0) —240 (O)(SP) 290 (R)(2) —290 (RM(™
191 (KN?) —-191 (K} 241 (0)(1) —241 (0)() 291 (R)(3) —291 (R)(#)
192 (L(0) —182 (L){SP) 242 (0)(2) —242 (0)(") 292 (R)(4) —292 (R)($)
193 (L)1) -183 (L 243 (0)(3) —243 (0)(#) 293 (R)(5) —293 (R)(%)
194 (L)(2) —194 (L)(") 244 (0)(4) —244 (O)($) 294 (R)(6) —294 (R)8&)
195 (L)(3) —195 (L}# 245 (0)(5) —245 (0)(%) 295 (R)(7) —295 (R)(")
196 (L)(4) —-196 (L)($) 246 (0)(6) —246 (0)(8) 296 (R)(8) —296 (R)(*(")
197 (L)(8) —-197 (L){(%) 247 (0)(7) —247 (0)(") 297 (R)(9) —297 (R)(")")
198 (L)(6) —198 (L)(8) 248 (0)(8) —248 (OM(“() 298 (R)(:) —298 (R)(»)
199 (L)(7) —-199 (L)(") 248 (0)(9) —249 (0)(")) 299 (R)()) —299 (R){(+)

B-2 4114 HOST PROGRAMMER'S

Table B-1 (Cont)
REPRESENTING NUMBERS AS <INT> PARAMETERS

<INT> PARAMETERS

n <int:n> —n <int:-—n> n <int:n> —n <int:-—n> n <int:n> —n <int:—n>
— — — —
300 (RI<) ~300 (R)(,) 350 (U)(>) —350 (U)(.) 400 (Y)(0) —400 (Y)(SP)
301 (R)I(=) —-301 (R)() 351 (U)(?) —351 (LN 401 (V)(1) —401 (V)()
302 (R(>) -302 (R)(.) 352 (V){(0) —352 (V)(SP) 402 (Y)(2) —402 ()(")
303 (R)(?) —303 (RN 353 (VI(1) —353 (V)() 403 (V)(3) —403 (V)(#
304 (S)(0) —304 (S)(SP) 354 (V)(2) —354 (V)(") 404 (Y)(4) —404 (Y)($)
305 (S)(1) —305 (S){(1 355 (V}{3) —355 (){#) 405 (Y)(5) —405 (Y)(%)
306 (S)(2) —-306 (S)(”) 356 (V)(4) —356 (V)($) 406 (Y)(6) —406 (Y)(8)
307 (S)(3) —307 (S)(#) 357 (V)(5) —357 (V)(%) 407 (Y)(D) —407 (V)()
308 (S)(4) —308 (S)($) 358 (V)(6) —358 (V)(&) 408 (Y)(8) —408 (Y)(“(")
309 (S)(5) —308 (S)(%) 359 (W(7) -359 (V)(") 409 (Y)(9) —409 (V)(*)")
310 (S)(6) —310 (S}{&) 360 (V)(8) —360 (W)(“(") 410 (Y)(2) —410 (Y)(%)
311 (S)(7) -311 (8)(") 361 (V)(9) —361 (V)(*)") 411 ()(;) —-411 ((+)
312 (8)(8) —312 (S)(“(") 362 (V)(2) —362 (V)(% 412 (V)(<) —412 (V)(,)
313 (9)(9) —-313 (8)(*) 363 (W)() —-363 (V)(+) 413 (Y)(=) —-413 (V)
314 (S)(2) —~314 (S)(») 364 (V<) —364 (V)(,) 414 ()(>) —414 (V)()
315 (S)(;) —315 (S)(+) 365 (V)(=) —365 (V)(-) 415 (Y)(?) —415 (V)(/)
316 (SM<) —318 (S)()) 368 (Vi(>) —366 (V){) 418 (2){0) —416 (2)(SP)
317 (S)(=) —317 (S} 367 (V)(?) —-367 (M) 417 (1) —417 (2)()
318 (S)(>) —318 (S)(.) 368 (W)(0) —368 (W)(SP) 418 (2)(2) —418 (2)(
319 (8)(7) —-319 (8} 369 (W)(1) —369 (W)() 419 (2)(3) —419 (2)(#)
320 (T)(0) —320 (T)(SP) 370 W)(2) —-370 (W)(") 420 (2)(4) —420 (2)($)
321 (M) -321 (MO 371 (W)(3) —371 (W)(#) 421 (2)(5) —421 (2)(%)
322 (M(2) —-322 (M) 372 (W)(4) —-372 (W)($) 422 (2)(6) —422 (2)(8)
323 (T)(3) -323 (T)(#) 373 (W)(5) —373 (W)(%) 423 (2)(7) —423 2
324 (T)(4) —324 (T)$) 374 (W)(6) —-374 (W)(8) 424 (2)(8) —424 (2)(«(")
325 (T){5) —325 (T){(%) 375 (W)(7) —375 (W)(’) 425 (2)(9) —425 Q)"
326 (T)(6) —326 (T)(8) 376 (W)(8) —-376 (W)(“(") 426 (2)(:) —-426 2)(»
327 (M@ —327 (M) 377 (W)(9) ~377 (W)(*)") 427 (2)() —427 (2D(+)
328 (T)(8) -328 (M) 378 (W)(:) —378 (W)(») 428 (2)(<) —428 (2)(,)
329 (T)9) —-329 (M) 379 (W)()) —-379 (W)+) 429 (Z)(=) —429 (2)(-)
330 (M() —330 (T)(*) 380 (W)(<) —380 (WK, 430 @(>) —430 (2)()
331 (M) —331 (TH{+) 381 (W)(=) -381 (W)(-) 431 (2(7) —431 (2
332 (M(<) —332 (T(,) 382 (Wi(>) -382 (W) 432 (D(O —432 (DsP)
333 (T)(=) -333 (T)(-) 383. (W)(?) —383 (WX 433 (D(1) -433 (DO
334 M) —334 (TH.) 384 (X)(0) —384 (X)(SP) 434 (D(2) —434 (D)
335 (M(?) —335 (M 385 (X)(1) —385 (X)(1) 435 (D(3) —435 (D(#)
336 (U)(0) —336 (U)(SP) 386 (X)(2) —-386 (X)(") 436 (D(4) —-436 (D(%)
337 (W) -337 (U1 387 (X)(3) —387 (X)(#) 437 (D(5) —437 (D(%)
338 (UX2) —-338 (W) 388 (X)(4) -388 (X)($) 438 (D(6) —438 (D(@&)
339 (V)3 —339 (U)(#) 389 (X)(5) —389 (X)(%) 439 (DM —439 (D()
340 (U)(4) —340 (UX($) 390 (X)(6) -390 (X)(&) 440 (D(8) —440 (D¢
341 (U)(5) —341 (U){(%) 391 (X)(7) —391 (X)() 441 (D(9) —441 (D))
342 (u)e) —342 (U)8) 392 (X)(8) —392 (X)(“(") 442 (D(:) —442 (D%
343 (U)(?) —343 (U(") 393 (X)(9) —-393 (X)(*)") 443 (D) —443 (D(+)
344 (U)(8) —344 (V) 394 (X)(2) —394 (X)(#) 444 (D(<) —444 (D(,)
345 (U)(9) —-345 (V)M 395 (X)(;) —395 (X)(+) 445 (D(=) —445 (D(-)
346 (U)(:) —346 (U)(%) 396 (X)(<) -396 (X)(,) 446 (D(>) —446 (D()
347 (U)() —-347 (UM+) 397 (X}(=) —397 (X)) 447 (D(?) —447 (D)
348 (U)(<) —-348 (U()) 398 (X)(>) —398 (X)(.) 448 (\)(0) —448 (\)(SP)
349 (U)(=) —349 (U)(-) 399 (X)(?) —-399 (X1 449 (\)(1) —449 ()0
4114 HOST PROGRAMMER'S @ B-3

<INT> PARAMETERS

Table B-1 (Cont)
REPRESENTING NUMBERS AS <INT> PARAMETERS

n <int:n> —n <int: —-n> n <int:n> -n <int: —n> n <int:n) —-n <int: —n>
450 (\)}2) —450 ()" 500 (_)(4) —500 (_}$) 550 (b)(6) —550 (b)(&)
451 (\)(3) —451 (\)(#) 501 (_)(5) —501 (_){(%) 551 (b)(7) —551 (b)(")
452 (\)}(4) —-452 (\)N($) 502 (_)(6) —-502 (_)(&) 552 (b)(8) —552 (b)(“(")
453 (\)(5) —453 (\)(%) 503 (_)(7) —503 () 553 (b)(9) —553 (b)(")")
454 (\)(6) —454 (\)(&) 504 (_)(8) —~504 (_)(“(") 554 (b)(:) —554 (b)(*)
455 (\)(7) —455 (\)(") 505 (_)(9) =505 (_)()") 555 (b)(;) —555 (b)(+)
456 (\)(8) —456 (\)(“(" 506 (_)() —506 (_)(2) 556 (b)(<) —556 (b)(,)
457 (\)(9) —457 ()" 507 (_)G) —-507 (_)(+) 557 (b)(=) —557 (b)(-)
458 (\)(2) —458 (\)(») 508 (_)(<) -508 (_)(,) 558 (b)(>) —558 (b)(.)
459 ();) —459 (\)(+) 509 (_)(=) —509 (_)(-) 559 (b)(?) —559 (b)(/)
460 (\M<) —460 ()(,) 510 (L)) —510 {_)() 560 (c)(0) —560 (c)(SP)
4681 (=) —481 0)(-) 511 ()7 511 (M2 561 (1) —581 {c)h)
462 (\)(>) —462 (\)(.) 512 ()(0) —512 ('}{(SP) 562 (c)(2) —562 (c)("
463 (\)(?) —463 (\)() 513 (9(1) -513 ('} 563 (c)(3) —563 (cH#)
464 (1)(0) —464 ()(SP) 514 (')(2) —514 ()0 564 (c)(4) —564 (c)($)
465 (1) —465 () 515 ()(3) —515 ()(#) 565 (c)(5) —565 (c){%)
466 (1)(2) —466 ()(") 516 (')(4) —-516 ()($) 566 (c)(6) —566 (c}&)
467 ()(3) —467 () 517 ()(5) =517 () (%) 567 (c)(7) —567 (c)(’)
468 (1)(4) —-468 ()(9) 518 ()(6) —518 (')(8) 568 (c)(8) —568 (c)(“(")
469 ()(s) —469 (1(%) 519 ()(7) —-519 (9() 569 (c){(9) —569 (c)(*)")
470 ()(8) —470 (1)(&) 520 (‘')8) —520 ()(") 570 (c)(2) —570 (c)(*)
471 (IN7) —-471 (D() 521 ()(9) =521 () 571 (c)(;) —571 {(c)H+)
472 ()(8) —472 ()¢ 522 ()() —522 ()(») 572 (c)(<) —572 (c)()
473 (0)(9) —-473 () 523 ((;) -523 ()(+) 573 (c)(=) -573 (c)(-)
474 () —474 ()(») 524 ()(<) —524 (N, 574 (c)(>) —574 (c)(.)
475 (0)() —475 (0)(+) 525 (')(=) —525 ()(-) 575 (c)(?) —575 (c){/)
476 (N(<) -476 (. 526 ()(>) —-526 ()(.) 576 (d)(0) —576 (d)(SP)
477 (=) —477 ()(-) 527 ()(?) —-527 (W) 577 (d)(1) ~577 (A1)
478 ()(>) —478 ()() 528 (a)(0) —528 (a)(SP) 578 (d)(2) —578 (d)(")
479 (N?) —479 (H) 529 (a)(1) —529 (a)() 579 (d)(3) —579 (d)}(#)
480 (A)(0) —480 (A)(SP) 530 (a)(2) —530 (a)(" 580 (d)(4) —580 (d)($)
481 (A)(1) —481 (A 531 (a)(3) —531 (a)(#) 581 (d)(5) —581 (d)(%)
482 (A)(2) —482 (A 532 (a)(4) —532 (a)($) 582 (d)(6) —582 (d)(&)
483 (A)(3) —483 (A)#) 533 f(a)(5) —533 (a){%) 583 (d)(7) —583 (d)(*)
484 (A)(4) —484 (A)(9) 534 (a)(6) —534 (a)(8) 584 (d)(8) —584 (d)(“(")
485 (A)(5) —485 (A)(%) 535 (a)(7) —-535 (a)(") 585 (d)(9) —585 (d)(*)")
486 (A)(6) —486 (A)(8) 536 {a)(8) —536 (a)(“(" 586 (d)(:) —586 (d){*)
487 (A7) —487 (A)() 537 (a)(9) —537 (a)(*)") 587 (d)(;) —587 (d)(+)
488 (A)(8) —488 (A)(“(") 538 (a)(:) —538 (a)(») 588 (d}{(<) —588 (d)(,)
489 (A)(9) —489 (A)()) 539 (a)(;) —539 (a)(+) 589 (d)(=) —589 (d)(-)
490 (A)(2) —490 (A)(%) 540 (a)(<) —540 (a)(,) 590 (d)(>) —590 (d)(.)
491 (A)() —491 (AN+) 541 (a)(=) —541 (a)(-) 591 (d)(?) —591 (A
492 (A)(<) —492 (A)() 542 (a){>) —542 (a)(.) 592 (e)(0) —592 (e)(SP)
493 (A)(=) —493 (AN-) 543 (a)(?) —543 (@) 593 (e)(1) ~593 (e)()
494 (A)(>) —494 (A)() 544 (b)0) —544 (b)(SP) 594 (e)(2) —594 (e)(")
495 (A)(?) —495 (A)() 545 (b)(1) —545 (b)() 595 (e)(3) —595 (e)(#)
496 (_)(0) —496 (_)(SP) 546 (b)(2) —546 (b)(") 596 (e)(4) -596 (e)($)
497 (_)(1) —497 () 547 (b)(3) —547 (b)(#) 597 (e)(5) —597 (e)(%)
498 (_)(2) ~498 (_)(" 548 (b)(4) —548 (b)($) 598 (e)(6) —598 (e)(8)
499 (_)(3) —499 (_)(#) 549 (b)(5) —549 (b)(%) 599 (e)(7) —599 (e)(’)

B-4 @ 4114 HOST PROGRAMMER'S

Table B-1 (Cont)
REPRESENTING NUMBERS AS <INT> PARAMETERS

<INT> PARAMETERS

n <int:n> —n <int:-—-n> n <int:n> -n <int:—n> n <int:n> -n <int:-—n>
600 (e)(8) —600 (e)(*(") 650 (h)(:) —650 (h)(») 700 (k){<) —700 (K)(,)
601 {(e)(9) —601 (e)(*)") 651 (h)(;) —651 (h)(+) 701 (k) (=) —701 (K}(-)
602 (e(:) —602 (e){*) 652 (h)(<) —652 (h)(,) 702 (K)(>) —702 (K)(.)
603 (e)(;) —603 (e)(+) 653 (h)(=) —653 (h)(-) 703 (k) (?) —-703 (k)N
604 (e)(<) —604 (e)(,) 654 (h)(>) —654 (h){(.) 704 ()(0) —704 (1}{SP)
605 (e)(=) —605 (e){-) 655 (h}(?) —655 (h)(/) 705 (1) —705 (I)(1)
606 (e)(>) —606 (e)(.) 656 (i)(0) —656 (i)(SP) 706 ()(2) —706 ()(")
607 (e)(?) —607 (e)(/) 657 (i)(1) —657 ()1 707 (N(3) —707 (A
608 (f)(0) —608 (f)(SP) 658 (i)(2) —658 (i)(") 708 (I)(4) —708 ()($)
609 (f)(1) —609 () 659 (i)(3) —659 (i)(#) 709 ()(5) —709 (N(%)
610 (A(2) -610 (H(") 660 (i)(4) —660 (i)($) 710 (H(e) —-710 (D(&)
611 {H3) —-611 {f)(#) 661 {i)(5) —661 (i) (%) 711 (H(7) =711 (1))
612 (iH4) —-612 (f)($) 662 (i)(6) —662 (i)(&) 712 ()(8) -712 (H{“()
613 (f(5) —613 (%) 663 (i)(7) —663 (i)(’) 713 (1MQ) —713 ()"
614 (f)(6) —614 (H(8) 664 (i)(8) —684 G)(“(") 714 (0() —714 (M=)
615 ()N7) —-615 ()(") 665 (i)(9) —665 (i)(*)") 715 ()(;) -715 (IM(+)
8i6 8 —818 {H{{) 866 (ijil:) —666 (i){*) 7i8 {li{<) —~718 (i},
617 (f)(9) —-617 (H(*)") 667 (i)(;) —667 (i)(+) 717 (M=) =717 ()
618 (f)(:) —-618 (f)(+) 668 (i)(<) —668 (i)(,) 718 ()(>) —-718 ()
619 () -619 f)(+) 669 (i)(=) —669 (i)(-) 719 ()(?) -719 (M)
620 (f(<) —-620 (f)(,) 670 ()(>) —670 (i) 720 (m)(0) —720 (m)(SP)
621 (i(=) —621 (f)(-) 671 (i)(?) —671 (i) 721 (m)(1) =721 (m)(1)
622 (H(>) —622 () 672 ()0 —672 (j}(SP) 722 (m)(2) —722 (m)(")
623 (f)(?) -623 () 673 () (1) —673 ()1 723 (m)(3) —723 (m)(#)
624 (g)(0) —624 (g)(SP) 674 ()(2) 674 ()" 724 (m)(4) —724 (m)($)
625 (g){1) —-625 (g)() 675 ()(3) —675 (j)(#) 725 (m)(5) —725 (m)(%)
626 (g)(2) —626 (g)(") 676 ()(4) —676 (j)($) 726 (m)(6) ~726 (m)(&)
627 (g)(3) —627 (g)(#) 677 ()5) —677 (){(%) 727 (m)(7) =727 (m)(")
628 (g)(4) —628 (g)($) 678 (j)(6) —678 (j}(8) 728 (m)(8) -728 (m)(*{")
629 (g)(5) —629 (9)(%) 679 ()7 —679 ()}(’) 729 (m)(9) —729 (m)(“)”)
630 (g)(6) —630 (g)(8) 680 ()(8) —680 (H(M 730 (m)(:) —730 (m)(»)
631 (g)(7) —-631 (g)(") 681 (j)(9) —681 () 731 (m)(;) —-731 (m)(+)
632 (g)(8) —632 (g)(“(") 682 ()(:) —682 (j)(» 732 (m)(<) —732 (m)(,)
633 (g)(9) —-633 (@) 683 ()(;) —683 (){+) 733 (m){(=) —-733 (m)(-)
634 (g)(2) —634 (g)(») 684 ()(<) —684 (i)(,) 734 (m)(>) —-734 (m)())
635 (g)(;) —635 (g)(+) 685 (j)(=) —685 (j)(-) 735 (m){(?) —735 (m)(/)
636 (g)(<) —636 (g)(,) 686 ()(>) —686 ()(.) 736 (nN0) —736 (n)(SP)
637 {g){=) —837 (@i~ 687 (i)(?) —687 ()N 737 (n)(1) —737 (n)(1)
638 (g)(>) —638 (g)(.) 688 (k)(0) —688 (k)(SP) 738 (n)(2) —738 (n)(")
639 (g)(?) —639 (@} 689 (k)(1) —689 (k)() 739 (n)(3) —739 (n)(#)
640 (h)(0) —640 (h)(SP) 690 (k)(2) —690 (k)(”) 740 (n)(4) —740 (n)(®)
641 (h)(1) —641 (h)() 691 (k)(3) —691 (k}{(#) 741 (n)(5) —741 (n)(%)
642 (h)(2) —642 (h)(") 692 (k)(4) —692 (k}{($) 742 (n)(6) —742 (n)(8)
643 (h)(3) —643 (h)(#) 693 (k)(5) —693 (k)(%) 743 (n)N(7) —-743 (n)(")
644 (h)(4) —644 (h)($) 694 (k)(6) —694 (k) (&) 744 (n)(8) —744 (n)(“()
645 (h)(5) —645 (h){(%) 695 (K)(7) —695 (K)(') 745 (n)(9) —745 (nN)(*)”)
646 (h)(6) —646 (h){(&) 696 (k)(8) —696 (k)(“(") 746 (n)(:) —748 (n)(#)
647 ()(7) —647 (") 697 (k)(9) —697 (K)(")") 747 (n)(;) —747 (n)(+)
648 (h)(8) —648 (h){("(") 698 (k)(:) —698 (k)(#) 748 (n)(<) —748 (n)(,)
649 (h)(9) —649 (h(")") 699 (KI(;) —699 (k) (+) 749 (n)(=) —~749 (n)(-)

4114 HOST PROGRAMMER’S @ B-b

<INT> PARAMETERS

Table B-1 (Cont)
REPRESENTING NUMBERS AS <INT> PARAMETERS

n <int:n> —-n <int:—n> n <int:n> -n <int: —-n> n <int:n> —-n <int: —-n>
750 (n)(>) —750 (n)(.) 800 (nN(0) —800 (r)(SP) 850 (u){(2) -850 (u)(")
751 (n){(?) —-751 (n){N 801 (N(1) —801 (N 851 (u)(3) —-851 (u)(#)
752 (0)(0) —752 (0)(SP) 802 (n(2) —802 (N(") 852 (u){4) —852 (u)($)
753 (o)(1) —753 {0)(1) 803 (n(3) —803 (N(# 853 (u)(5) —853 (u)(%)
754 (0)(2) —754 {(0)(") 804 (r)(4) —804 (r)($) 854 (u)(6) —854 (u)(8)
755 (0)(3) —~755 (0)(#) 805 (r)(5) —805 (r{%) 855 (u)(7) —855 (u)(’)
756 (0)(4) —756 (o)($) 806 (r)(6) —806 (r)(&) 856 (u)(8) —856 (u)(“(")
757 (0)(5) —757 (0)(%) 807 (r)(7) —807 (N() 857 (u)(9) —857 (u){")")
758 (0)(6) —758 (0)(&) 808 (r)(8) —808 (N(“(M 858 (u)(2) —858 (u)(+)
759 (0)(7) -759 (0o)(’) 809 (r){9) —809 (N{()™ 859 (u)(;)) —859 (u)(+)
760 (0)(8) —760 {(o){((810 (n() -810 ()% 860 (u){<) 860 {ul(,)
761 (0)(9) —761 (0)(")") 811 (nN(;) —811 (N(+) 861 (u)(=) —861 (u)(-)
762 (0)(:) —762 (0)(») 812 (MN<) —812 (n(,) 862 (u){(>) —862 (u)(.)
763 (0)(;) —763 (0)(+) 813 (nN(=) —813 (r(-) 863 (u)(?) —-863 (u)(/)
764 (0)(<) —764 (0)(,) 814 (N(>) —814 (r)(.) 864 (v)(0) —864 (v){SP)
765 (0)(=) —765 (0)(-) 815 (1(?) —815 (N 865 (v)(1) —865 (vi{()
766 (0)(>) -766 (0)(.) 816 (s)(0) —816 (s)(SP) 866 (v)(2) —866 (v){(")
767 (0)(?) —-767 (o) 817 (s)(1) —817 (s){(!) 867 (V)(3) —867 (v)(#)
768 (p)(0) —768 (p){SP) 818 (s)(2) —818 (s)(™ 868 (v)(4) —868 (v)($)
769 (p)(1) —769 (P)(Y 819 (s)(3) —819 (s)(#) 869 (v)(5) —869 (v)(%)
770 (p)(2) —770 (pM™ 820 (s)(4) —820 (s)($) 870 (v)(6) —870 (v)(&)
771 (p)(3) —771 (p}(# 821 (s)(5) —821 (s)(%) 871 (W(7) —871 (W()
772 (p)(4) —772 (pH$) 822 (s)(6) —822 (s)(8) 872 (vi8) —872 (v}{“(")
773 (p)(5) —773 (pX%) 823 (s)(7) —823 (s){) 873 (v)(9) —873 (v)()")
774 (p)(6) —774 (pN&) 824 (s)(8) T —-824 (s)(*(") 874 (v)(:) —874 (v)(»)
775 (p)(7) —-775 (p)(") 825 (s)(9) —825 (s)(*)") 875 (W(;) —875 (v)}{(+)
776 (p)(8) -776 (P)(“(") 826 (s)(:) —826 (s)(*) 876 (v)(<) —-876 (v)(,)
777 (p)(9) 777 (P)(*)) 827 (s)()) —827 (s){+) 877 W(=) —877 (W)
778 (p)(2) —778 (p)(*) 828 (s)(<) —828 (s)(,) 878 (V)(>) —878 (v(.)
779 (p)(;) —779 (P)(+) 829 (s)(=) —829 (s)(-) 879 (v)(?) —879 (V)(n
780 (p)(<) —780 (p)(.) 830 (s)(>) —830 (s){.) 880 (w)(0) —880 (w)(SP)
781 (p)(=) —781 (p)(-) 831 (s)(?) —831 (s)/) 881 (w)(1) —881 (w)()
782 (p)(>) —782 (p)(.) 832 (t)(0) —832 (1)(SP) 882 (w)(2) —882 (w)(")
783 (p)(?) —-783 P}/ 833 (t)(1) —833 ()Y 883 (w)(3) —883 (w)(#)
784 (g)(0) —~784 (q)(SP) 834 (1)(2) —834 (t(") 884 (w)(4) —884 (W)($)
785 (g)(1) —-785 (@) 835 (1)(3) —835 ()(#) 885 (w)(5) —885 (W)(%)
786 (9)(2) —786 (Q)(") 836 (1)(4) —836 (($) 886 (w)(6) —886 (w)(&)
787 (9)(3) —787 (@(#) 837 (t)(5) —837 (1)(%) 887 (w)(7) —887 (w)(')
788 (q)(4) —788 (g)($) 838 (t)(6) —838 (1)(&) 888 (w)(8) —888 (w)(“(")
789 (g)(5) —789 (qQ)(%) 839 (7 —839 (1)(") 889 (w)(9) —889 (w)())
790 (g)(6) —790 (q)(&) 840 (t)(8) —840 ®(*() 890 (w)(:) —890 (w)()
791 @)(7) ~791 {Q)(") 841 (1(9) —841 (1)) 891 (w)() —891 (W)(+)
792 (q)(8) —792 (@(“(") 842 (t)(:) —842 ()(») 892 (w)(<) —892 (wi(,)
793 (q)(9) —793 (@) 843 (1(;) —843 ((+) 893 (w)(=) —893 (W)(-)
794 (Q)(:) —794 (g)(*) 844 (t(<) —844 ()(,) 894 (w)(>) —894 (w)(.)
795 @) —-795 (Q)(+) 845 (t)(=) —845 ((-) 895 (w)(?) —895 (wW)(/)
796 (g)(<) —796 (q)(.) 846 ((>) —846 ()(.) 896 (x)(0) —896 (x)(SP)
797 (Q)(=) —-797 (@) 847 (1)(?) —847 (1 897 (x)(1) —897 (X))
798 (@(>) —798 (q)(.) 848 (u)(0) —848 (u)(SP) 898 (x)(2) —898 - (x)(")
799 (Q)(?) —-799 (@) 849 (u)(1) —849 (u)(1) 899 (x)(3) —899 (x)(#)
B-6 @ 4114 HOST PROGRAMMER'S

Table B-1 (Cont)
REPRESENTING NUMBERS AS <iNT> PARAMETERS

<INT> PARAMETERS

n <int:n> —n <int:—n> n <int:n> —n <int:—n> n <int:n> —-n <int: —n>
900 (x)(4) —800 (X)(8$) 950 ({)(6) —950 ({}(8&) 1000 (~)(8) —1000 (~)(“(")
901 (x)(5) —901 (x}(%) 951 (()(7) —-951 () 1001 (~)(9) —1001 (~)(*)")
902 (x)(B) —902 (x)}{&) 952 ({)(8) —952 ([)(“(") 1002 (~)(:) —1002 (~)(»
903 (x)(7) —-903 (X)(") 953 ({}(9) —953 ({)()") 1003 (~)(;) —1003 {(~){(+)
904 (x)(8) —904 ()(“(") 954 (D0 -954 ({0 1004 (~)(<) —1004 (~){,)
905 (x)(9) —905 (x)(*)") 955 ({)(;) —-955 ({[)(+) 1005 (~)(=) —1005 (~)(-)
906 (x)(:) —906 (x)(*) 956 ({}(<) —956 ({)(,) 1006 (~)(>) —1006 (~)(.)
907 (x)(;) —907 (x)(+) 957 ()(=) —957 (M) 1007 (~)(?) —1007 (~)(/)
908 (x)(<) —908 (x)(,) 958 ()(>) -958 ({)(.) 1008 (DEL)(0) —1008 (DEL)(SP)
909 (x)(=) —909 (x)(-) 959 ({)(?) —-959 ()N 1009 (DEL)(1) —1009 (DEL)(!)
910 X)(>) —-910 (x)(.) 960 ()(0) —960 ()(SP) 1010 (DEL)(2) —1010 (DEL)(")
911 (x}{(?7) —-911 (X 961 {H(1) —981 ()Y 1011 (DEL}(3) —1011 (DEL)(#)
912 (y)(O) —912 (y)(SP) 962 ()(2) —-962 ()(") 1012 (DEL)(4) —1012 (DEL)($)
913 (y)(1) —-913 (y)() 963 ()(3) —963 ()(#) 1013 (DEL)(5) —1013 (DEL)}{%)
914 (v)(2) —214 (v)(") 964 ()(4) —9684 ()($) 1014 (DEL)S) —1014 (DEL){(8&)
915 (y)(3) —915 (y)(#) 965 ()(5) —965 ()(%) 1015 (DEL)7) —1015 (DEL)(’)
318 (y}{4) —818 (y}{$) 968 (){®) —$68 {H{3) 1016 (DELI{8) —1i018 (DELI(“(
917 (y)(5) —917 (y)(%) 967 (N7) —967 ()" 1017 (DEL)(9) —1017 (DEL)(*)")
918 ({y)(6) -918 (y)(&) 968 ()(8) —968 () 1018 (DEL)(:) —1018 (DEL)(*)
919 (y)(7) —919 () 969 ()9 —969 (}()) 1019 (DEL)(;) —1019 (DEL)(+)
920 (y)(8) —920 (y){“(") 970 ()(:) —970 ()(» 1020 (DEL) (<) —1020 (DEL)(,)
921 (y)(9) —921 (y)(*)") 971 (() —-971 (M(+) 1021 (DEL)(=) —1021 (DEL)(-)
922 (y)(:) —922 (y){* 972 (M<) —-972 (I(,) 1022 (DEL)(>) —1022 (DEL)(.)
923 (V)(;) —-923 (y)(+) 973 ()(=) —-973 ()(-) 1023 (DEL)(?) —1023 (DEL)}(/)
924 (y)(<) —924 (y)(,) 974 (){(>) —-974 ()() 1024 (A)(@)(0) —1024 (A)(@)(SP)
925 (y){=) —925 (y)(-) 975 ()(?) —-975 ()1 1025 (AX(@)(1) —1025 (A)@)()
926 (y)(>) —926 (y)(.) 976 (})(0) —976 (})(SP) 1026 (A)(@)(2) —1026 (A)(@)(")
927 (yN?) —927 () 977 (})(1) -977 () 1027 (AH@)(3) —1027 (A)(@)(#)
928 (2)(0) —928 (2)(SP) 978 (})(2) —-978 (})(") 1028 (A)(@)(4) —1028 (A)(@)($)
929 (z)(1) —929 (2)(1) 979 (1)(3) —979 (})(#) 1029 (A)(@)(5) —1029 (A)(@){%)
930 (2)(2) —930 @)(") 980 (})(4) —980 ()9 1030 (A){@)(6) —1030 (A)(@N&)
931 (2)(3) —931 (@ 981 (J)(5) —981 (})(%) 1031 (AM@N7) —1031 (A){(@)(’)
932 (2)(4) -932 (2)($) 982 (})(6) —-982 (})(8) 1032 (A){@)(8) —1032 (A)@)(“(")
933 (2)(5) —933 (2)(%) 983 (})(7) —983 (1)(") 1033 (A){@)(9) —1033 (A)(@)(")"™)
934 (z)(6) —934 (2)(8) 984 (})(8) —984 (1)(“(") 1034 (A)M@)(:) —1034 (A)(@)(*)
935 (z)(7) —935 (2)(’) 985 (})(9) —985 (})()) 1035 (A)@)(;) —1035 (A)(@)(+)
936 (2)(8) —936 (@)(“(") 986 (})(:) —986 (J)(*) 1036 (A){@)(<) —1036 (A)@)(,)
937 {zM9) —837 (")) 987 ()(;) —987 ()(+) 1037 (Al{@)(=) —1037 (A){@){-)
938 ()(:) —938 (2)(») 988 (})(<) —988 {})(,) 1038 (A)@)(>) —1038 (A)(@)(.)
939 (z)(;) —9839 (2)(+) 989 (J)(=) —989 (})(-) 1039 (A)(@)X(?) —1039 (A(@)(n
940 (2)(<) —940 (2)(,) 990 (})(>) —990 (1)) 1040 (A)(A)(0) —1040 (A)(A)(SP)
941 (2)(=) —941 (2)(-) 991 ()(?) -991 () 1041 (A)(A)(1) —1041 (AA(
942 (2)(>) —942 (2){.) 992 (~)(0) —992 (~)(SP) 1042 (A)(AN2) —1042 (A)AN")
943 (2)(?) —943 (2)(1) 993 (~){(1) —993 (~)(1) 1043 (A)(A)(3) —1043 (A)(A)(#)
944 ({)(0) —944 ({)(SP) 994 (~)(2) —994 (~)(") 1044 (A)(A)(4) —1044 (A)(A)(S)
945 ({)(1) -945 (M) 995 (~)(3) —995 (~)(#) 1045 (A)(A)(S) —1045 (A)(A)(%)
946 ({){2) —946 (N() 996 (~)(4) —996 (~)($) 1046 (A)(A)(6) —1046 (A)(A)(&)
947 (I)3) —947 ()(# 997 (~)(5) —-997 (~)(%) 1047 (A)(AN?) —1047 (A)J(A(")
948 ({)(4) —948 ()($) 998 (~)(6) —998 (~)(&) 1048 (A)(A)(8) —1048 (ANA)N(“(")
949 ({)(5) —949 ({)(%) 999 (~)(7) —999 (~)(") 1049 (A)(A)9) —1049 (A)(A)(*)")
4114 HOST PROGRAMMER'S @ B-7

Appendix C

EXAMPLES OF CODE

This appendix contains two examples of host computer
code used to control the 4114 terminal.

The first example is a PASCAL program which does
graphic input using the thumbwheels and locator
function. It includes PASCAL device driver routines to
issue a variety of commands to the terminal.

4114 HOST PROGRAMMER'S

The second exampile is a collection of FORTRAN

subprograms which were used to test the terminal’s

block mode communications protocol.

EXAMPLES OF CODE

A PASCAL GRAPHIC INPUT PROGRAM

{***

This program shows how to do graphic input with the thumbwheels

67;
71;
75;
79;
83;
87;

IS 2EEEEEESEE RS SRS Rl ll il

LetterD
LetterH
Letterl
LetterP
LetterT
LetterX

*
*
*
*
*
L *
*
1

68;
725
763
80;
84;
88;

nwnwnn

13-May-81 TEK Pascal v3.00

10 PROGRAM Example;

20

30 *

4o ¥ device and locator function.

50 * The program also shows how device driver routines might be
60 ¥ written in PASCAL.

70 * The PASCAL dialect used has the following peculiarities:
80 * (a) the native character set is ASCII; thus Chr(65) =
90 *¥ (b) the special file identifier TTY refers to the user's terminal.
iG ¥

110

120 CONST

130 {** Mnemonic names for ASCII decimal equivalents ¥¥}
140 Esc = 27; Us 31; Gs = 29; Fs = 28;

150 LetterA = 65; LetterB = 66; LetterC =

160 LetterE = 69; LetterF = 70; LetterG =

170 LetterI = 73; Letterd = T4; LetterK =

180 LetterM = 77; LetterN = 78; LetterC =

190 LetterQ = 81; LetterR = 82; LetterS =

200 LetterU = 85; LetterV = 86; LetterW =

210 LetterY = 89; LetterZ = 90;

220
230 TYPE

240 {%¥% Data types used by I/0 routines #¥¥}
250
260 TwelveBitType = 0..4095;

270 SevenBitType = 0..127;

280 IntType = -32768..+32767;

290 CharType = ' A

300

310 {*¥*% IntArrays are linked lists of IntRecords ¥¥}
320 IntRecordPtrType = “IntRecordType;

330 IntRecordType = RECORD

340 Item IntType;

350 Next IntRecordPtrType;

360 END;

370 IntArrayType = RECORD

380 Count IntType;

390 First IntRecordPtrType;

400 END;

410

420 XyType = RECORD

430 X : TwelveBitType;

440 Y : TwelveBitType;

450 END;

460

C-2

4114 HOST PROGRAMMER'S

EXAMPLES OF CODE

PAGE 2
470 VAR
480 {*¥% Variables used by I/O routines ¥¥}
490 {¥* Used by SendXy ¥¥}
500 Ol1dHiY, OldExtra, 0ldLoY, Ol1dHiX : 0..127;
510 HaveSentXY : BOOLEAN;
520 {*¥* Used by ReceiveAscii ¥#¥}
530 EndOfLine : BOOLEAN;
540
550 {** Variables used by the mainline. ¥¥}
560 Xy : XyType;
570 IntArray : IntArrayType;
580 SignatureChar, KeyChar : CHAR;
590
600

610 {*¥* Data structure manipulation routines : IntArrayType variables ¥#¥}

620

630 PROCEDURE InitializeNewIntArray(VAR IntArray : IntArrayType); {}{}{}{}{}

640 {} BEGIN {1}

650 {} IntArray.Count :

660 {} IntArray.First :

670 {} END;

280 {HHHMIOOOOOOO0O0O OO OO D
90

0;
NIL

el L
(SR U W WY

700 PROCEDURE ClearIntArray(VAR IntArray : IntArrayType); {}{}{}{}{}{}{}{}ii
710 {} VAR

720 {1 Pointer : IntRecordPtrType; {}
730 {} BEGIN {}
740 {} IF (IntArray.Count > 0) {}
750 {} THEN BEGIN {}
760 {} IF (IntArray.First”.Next = NIL) {1
770 {} THEN BEGIN {}
780 {} Dispose(IntArray.First); {}
790 {} IntArray.First := NIL; {}
800 {} IntArray.Count := 0 {}
810 {1 END {}
820 {1 ELSE {}
830 {} BEGIN {}
840 {} Pointer := IntArray.First; {1}
850 {} WHILE NOT (Pointer”.Next”.Next = NIL) {}
860 {} DO Pointer := Pointer”.Next; {}
870 {1} Dispose(Pointer” .Next); {}
880 {1 Pointer”.Next := NIL; {1
890 {} IntArray.Count := IntArray.Count - 1; {}
900 {} ClearIntArray(IntArray) {1}
910 {1} END {}
920 {} END; {}
930 {} END; {}
940 (MMM IO O OO OO OO OO OO MO YO MO O U3
950

960 PROCEDURE GetNewIntRecordAndLoadIt(VAR Pointer : IntRecordPtrType;

970 {} Int : IntType); {H{ I MM HI{H I}
980 {} BEGIN {}
990 {} New(Pointer); {1
1000 {} Pointer”.Item := Int; {}
1010 {} Pointer” .Next := NIL {}
1020 {} END; {1
1830 {fHMHHH MO OO OO O OO OO O S
1040

4114 HOST PROGRAMMER'S @ c-3

EXAMPLES OF CODE

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610

c4

OCEDURE AppendTolIntArray(VAR IntArray : IntArrayType;
Int : IntType); {}{ M M I MMM}
VAR

Pointer : IntRecordPtrType;

PR

{1}

{}

{}

{1

{} BEGIN

{} IF (IntArray.Count = 0)

{} THEN BEGIN

{} GetNewIntRecordAndLoadIt(IntArray.First,Int);
{1 IntArray.Count := IntArray.Count + 1

{} END

{} ELSE IF (IntArray.Count > 0)

{1 THEN BEGIN

{} Pointer := IntArray.First;

{} WHILE NOT (Pointer” .Next = NIL)

{} DO Pointer := Pointer”.Next;

{1} GetNewIntRecordAndLoadIt(Pointer” .Next,Int);
{1 IntArray.Count := IntArray.Count + 1

{1 END;

{} END;
fHHH MO OO OO OO OO OO MO OO O OO O

~— p oy ki ey R iy A T A Ay b Ay b b P i ek ey
L L A T L S R SV VU P T NS0 W ST G S

{

{*¥* Routines for output from host to 411X terminal ¥#¥}

PROCEDURE SendASCII(CharCode : SevenBitType); {}{}{}{}{}{}{}{}{}{}{}{}i
{} BEGIN

{} Write(TTY,Chr(CharCode)); {
{} END; {
{HIMHHH MMM OO OO OO MO OO MO OO

P?OCEDURE SendXY(XY : XYType); {}{{ {30000}
{

—~—
—~—

TYPE
FiveBitType = 0..37;
TwoBitType = 0..3;

VAR
HiFiveX, HiFiveY, MidFiveX, MidFiveY : FiveBitType;
LoTwoX, LoTwoY : TwoBitType;
HiY, Extra, LoY, HiX, LoX : 0..127;
GottaSendExtraByte, GottaSendLoYByte,
GottaSendHiXByte : BOOLEAN;

OCEDURE Split(Coordinate : TwelveBitType;
VAR HighFiveBits : FiveBitType;

VAR MiddleFiveBits : FiveBitType;
VAR LowTwoBits : TwoBitType); {}{H{}{I{I{I{ I I{I{}H}

{
{
{
HighFiveBits := Coordinate DIV 128; {
MiddleFiveBits := (Coordinate MOD 128) DIV 4; {
LowTwoBits := Coordinate MCD 4; {
END; {

{

PR
{}
{}
{1}
{1
{} BEGIN
{1
{1}
0
{H MMM MO PO OO O O OO O O O O O OO O O OO O O O

{}
{1
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
{}
}o{}
Pl
Pl
b {}
}{}
{1}
Po{}
b}
{1

Lo W e W o e B W Tase Rase N o R Nane Rasa Nace Kame Rams Rasn Nase Lasa)
Mt St et Mnd St gt St Nt gt St Semgod St St St gt St gt et V] Smgd Ayt St

REV, JUL 1981 4114 HOST PROGRAMMER'S

EXAMPLES OF CODE

PAGE 3
1620 {} BEGIN {}
1630 {} {** partition the X- and Y- coordinates into 5-, 5-,2-bit fields*} {}
1640 {1 Split(XY.X, HiFiveX, MidFiveX, LoTwoX); {}
1650 i1 Split(XY.Y, HiFiveY, MidFiveY, LoTwoY); {}
1660 {} {#** Compute all five bytes of the <xy> paramter ¥¥} {}
1670 {1 HiY := HiFiveY + 32; {}
1680 {} Extra := 4 ¥ LoTwoY + LoTwoX + 96; {}
1690 {} LoY := MidFiveY + 96; {1
1700 {1} HiX :=z HiFiveX + 32; {}
1710 {1} LoX := MidFiveX + 64; {1
1720 {} {¥%* Send only those bytes which are needed ¥*¥} {1}
1730 {} IF NOT HaveSentXY {1
1740 {1 THEN {}
1750 {1 BEGIN- {}
1760 {} SendASCII(HiY); OldHiY := HiY; {}
1770 {1} SendASCII(Extra); OldExtra := Extra; {1
1780 {} SendASCII(LoY); 0ldLoY := LoY; {}
1790 - {1} SendASCII(HiX); OldHiX := HiX; {}
1800 {} SendASCII(LoX); {1
1810 {1 HaveSentXY := TRUE; {}
1820 {1 END {1
1830 {} ELSE {*% IF HaveSentXY ¥¥} {}
1840 {1 BEGIN {}
1850 {} IF (HiY <> 01dHiY) {1
1860 {} THEN BEGIN {}
1870 {1 SendASCII(HiY); OldHiY := HiY; {}
1880 {} END; {}
1890 {} GottaSendExtraByte := (Extra <> OldExtra); {}
1900 {} GottaSendHiXByte := (HiX <> 01dHiX); {}
1910 {1 GottaSendLoYByte := (LoY <> 01dLoY) {}
1920 {1} OR GottaSendExtraByte {1}
1930 {} OR GottaSendHiXByte; {1}
1940 {1 IF GottaSendExtraByte {1}
1950 {} THEN BEGIN {1
1960 {1 SendASCII(Extra); OldExtra := Extra; {1
1970 {} END; . - {}
1980 {} IF GottaSendLoYByte {1
1650 {} THEN BEGIN {}
2000 {1} SendASCII(LoY); 0OldLoY := LoY; {1
2010 {} END; {1
2020 {} IF GottaSendHiXByte {1}
2030 {} THEN BEGIN {}
2040 {} SendASCII(HiX); Ol1dHiX := HiX; {}
2050 {} END; {}
2060 {1} SendASCII(LoX); {}
2070 {} END; {}
2080 {} END; {1
2090 IO OO OO O O OO OO OO OO O O OO OO OO

4114 HOST PROGRAMMER'S REV, OCT 1982 C5

EXAMPLES OF CODE

PAGE 4

2100 PROCEDURE SendInt(I : IntType);

2110 R R R RN R R AR AR AR R RN R RN RN RN RN RN RN RN R RN RN R RERRRRRRRRARR)
2120 {* Encodes I as a sequence of bytes in the <packed-integer> ¥}
2130 {*¥ format and sends those bytes to the terminal. *}
2140 {¥ Calls the SendASCII procedure; also uses the following %}
2150 {* globally-declared data types: *}
2160 {* ¥}
2170 {* TYPE *}
2180 {* SevenBitType = 0..127; ¥}
2190 {* %}
2200 S T T Ty !
2210 {1} {}
2220 {} CONST i}
2230 {} MaxNumberBytes = 3; {*¥¥¥ I should be in the range from } {}
2240 {} { -32768 to +32767, so no more than } {1
2250 {} { three bytes are needed. kex} {1}
2260 {} VAR {}
2270 {} StackPointer, J : 0..MaxNumberBytes; {}
2280 {1 Stack : ARRAY[1..MaxNumberBytes] OF SevenBitType; {}
2290 {} HiI : 64..127; {}
2300 {} Lol : 32..63; {1
2310 {} Negative : BOOLEAN; {}
2320 {} {1}
2330 {} PROCEDURE Push(Byte : SevenBitType); {** Push byte on stack *¥} {}
2340 {} {HIOOH IO OO O OO O OO OO O O OO O) {1}
2350 {} {} BEGIN {} {1}
2360 {} {} StackPointer := StackPointer + 1; {} {1
2370 {} {} Stack[StackPointer] := Byte {1} {1}
2380 {} {} END; {1 {}
2390 {} (THHM MMM MMM OO O O OO O O MO) {1}
2400 {} {}
2410

C-6 @ 4114 HOST PROGRAMMER'S

EXAMPLES OF CODE

PAGE 5

2420 {1} {}
2430 {1} BEGIN {¥%%* statement-part of SendInt procedure ¥¥¥} {}
2440 {} {1}
2450 {} {¥%% Initialize things. ¥%¥%*} {1
2460 {} StackPointer := 0; {}
2470 {} Negative := FALSE; {1}
2480 {1 {1}
2490 {1} {*%% Compute bytes, push them ontc the stack. *¥#¥} {}
2500 {1} IF I KO0 {}
2510 {} THEN BEGIN 1}
2520 {} I :=-1; {}
2530 {} Negative := TRUE; {}
2540 {1} END; {}
2550 {} : {1
2560 {} {¥%% Compute Lol byte, push it on the stack. ¥¥¥} {1
2570 {1} {*%%% (IoI> : binary 01sdddd; s = sign bit, d = data bitf.¥¥*¥}{}
2580 {1} {*%% s-1 for positive numbers, s=z0 for negative numbers. ¥¥}{}
2590 - {1} Lol := I MOD 16 + 32; {1}
2600 {3 IF NOT Negative THEN LoI := Lol + 16; {1
2610 {1 Push(LoI); {1
2620 {1 I :=1I DIV 16; {1
2630 {} {1}
2640 {} {*¥%¥* Compute HiI bytes, push them on stack. ¥¥¥} {}
2650 {1} {*%%® CHiI> : binary 1ddddd. ¥*#*¥} {1}
2660 {} WHILE I > O {}
2670 {} DO BEGIN {r
2680 {} HiI := (I MOD 64) + 64; {}
2690 {} Push(HiI); {}
2700 {} I := I DIV 64 {1
2710 {} END; {}
2720 {} {1
2730 {} {¥%% Pop bytes off stack and send them to the terminal ., ¥¥¥} {1
2740 {} FOR J := StackPointer DOWNTO 1 {}
2750 {} DO SendASCII(Stack[J]) {}
2760 {} i}
2770 {1} END; {¥%¥¥ of SendInt procedure ¥#¥¥} {1}
2780 {HHHMHHHH MMM OO OO OO OO OO OO O

4114 HOST PROGRAMMER'S @ C-7

EXAMPLES OF CODE

PAGE

2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210

C-8

6

OCEDURE SendIntArray(IntArray : IntArrayType); {}{}{H I I HI{H I}

{1}

{}

VAR {}

I : IntType; {}

Pointer : IntRecordPtrType; %i

BEGIN {}

SendInt(IntArray.Count); {1

IF (IntArray.Count > 0) THEN {}

BEGIN {*¥¥*¥ Find the <int>s in the linked list, send 'em off.¥¥} {}

Pointer := IntArray.First; {1

FOR I := 1 TO IntArray.Count DO {}

BEGIN {}

SendInt(Pointer”.Item); {1}

Pointer := Pointer”.Next {}

END; {}

END; {1}

END; {}

OO OO OO OO OO OO OO OO IO OO OO
¥ 411X I/0 routines ... for input to host from 411X terminal ¥¥}

OCEDURE ReceivelAscii(VAR CharacterCode : SevenBitType); {}{}{}{}{}{}E%

{}

{}

VAR ' {}

Ch : CHAR; {1

i}

BEGIN {}

IF Eoln(TTY) {1

THEN {}

BEGIN {1

CharacterCode := 13; {%* (CR) ¥¥} {}

Read1n(TTY) {}

END {}

ELSE {*¥% IF NOT Eoln(TTY) ¥#¥} {1}

BEGIN {}

Read(TTY,Ch); {}

CharacterCode := Ord(Ch) {}

END; {1

END; {}

MO0 00O OO OO OO

@ 4114 HOST PROGRAMMER'S

EXAMPLES OF CODE

PAGE 7

3220 PROCEDURE ParseinXyReport(VAR Xy : XyType); {M MMM MMM}
3230

{} {1}
3240 {} VAR < {1}
3250 {1} HiYReport,ExtraReport,LoYReport, HiXReport, {}
3260 {} LoXReport : SevenBitType; {}
3270 {} X, Y : TwelveBitType; {}
3280 {} {1}
3290 {} PROCEDURE SkipPastIrrelevantCharacters(VAR Ch : SevenBitType);{}{} {}
3300 {} {1} BEGIN {1 {1}
3310 {} {} ReceiveAscii(Ch); {} {}
3320 {} {} WHILE ((Ch < 32) OR (Ch > 63)) DO {} {}
3330 {} {} Receivelscii(Ch); {} {}
3340 {} {} END; ‘ {} {}
3350 (F (MMM OO OO OO O OO OO OO MO O O O O3 Y
3360 {} {1}
3370 {} BEGIN {1
3380 {} {¥% grab the five characters ¥#¥} {1}
3390 . {} SkipPastIrrelevantCharacters(HiYReport); {1
3400 {i SkipPastIrrelevantCharacters(ExtraReport); {1
3410 {} SkipPastIrrelevantCharacters(LoYReport); {}
3420 {1 SkipPastIrrelevantCharacters(HiXReport); i}
3430 {1} SkipPastIrrelevantCharacters(LoXReport); {}
3440 {} {¥* Compute the x- and y-coordinates ¥#¥} {}
3450 {1} X := 32%(HiXReport - 32) + (LoXReport - 32); {}
3460 {} X := U*X + (ExtraReport MOD 4); {}
3470 {} Y := 32%(HiYReport - 32) + (LoYReport - 32); {}
3480 {} Y := 4%Y 4+ (ExtraReport DIV 4) MOD i; {}
3490 {} Xy.X := X; {}
3500 {} Xy.Y i= Y; {}
3510 {} END; {}
%ggg (MM MMM MMM OO OO MO OO O O3 U
3540 PROCEDURE ParseAGinLocatorReport(VAR Key : CHAR;
3550 {} VAR Xy : XyType); {H{H{ I {H{}{}{}
3560 {} {1
3570 {1 VAR | {}
3580 {} AsciiDecimalEquivalent : SevenBitType; {}
3590 {} {}
3600 {} BEGIN {}
3610 {} {%¥%* Parse the <ASCII-char : "key"> ¥¥} {1}
3620 {1} ReceiveASCII(AsciiDecimalEquivalent); {}
3630 {} Key := Chr(AsciiDecimalEquivalent); {}
3640 {} {** Parse the <xy-report : "cursor-position"> {1}
3650 {} ParseAnXyReport(Xy) {1}
3660 {} END; {}
32%0 (HMH MMM OO OO OO OO
3680
3690

4114 HOST PROGRAMMER’S @ C9

EXAMPLES OF CODE

PAGE 8

%g?g {¥%* Routines to issue commands to the terminal ¥¥}

3720 PROCEDURE BeginSegment(SegmentNumber : IntType);{}{}{}{}{}{}I{{}{}{}H{1{}
3730 {} BEGIN 0
3740 {} {** (ESC)(S)(0) ¥**} {1
3750 {} Send ASCII(Ese); {}
3760 {1 SendASCII(Letters); {1
3770 {} SendASCII(LetterO); {1
3780 {} SendInt(SegmentNumber) {}
3790 {} END; {}
3800 QOO OO OO IO OO O OO H YOO OO
3810

3820 PROCEDURE DeleteSegment(SegmentNumber : IntType); {}{}{H{ I{I{}}I{}{}{}{}
3830 {} BEGIN {}
3840 {} {*% (ESC)(S)(K) #*¥} {}
3850 {} Send ASCII(Esc); {}
3860 {1 SendASCII(LetterS); {1
3870 {} SendASCII(LetterK); {1
3880 {} SendInt(SegmentNumber); {}
3890 {} END; {}
3900 OO OO OO OO OO O O OO OO OO OO
3910

3920 PROCEDURE DisableGin(DeviceAndFunction : IntType); {}{}{}{I{{}{}I{I{}{}{}
3930 {} BEGIN 0
3940 {} {** (ESC)(I)(D) #*¥*} {}
3950 {} SendASCII(Esc); {}
3960 {1 SendASCII(LetterI); {1
3970 {1 SendASCII(LetterD); {}
3980 {} SendInt(DeviceAndFunction) . {1
3990 {} END; {}
38?8 OO0 00O OHCH IO
4020 PROCEDURE Draw(Xy : XyType); {H I{I{I{I{I{I (IO MMM}
4030 {} BEGIN {}
4OUO {} {** (ESC)(L)(G) *¥} {}
4050 {} SendASCII(Esc); {1
4060 {} Send ASCII(LetterlL); {1
4070 {} SendASCII(LetterG); {1
4080 {} SendXy(Xy) {}
4090 {} END; {}
4100 U000 0000 OO OO0

C-10 @ 4114 HOST PROGRAMMER'S

EXAMPLES OF CODE

PAGE 9

4110 PROCEDURE EnableDialogArea(EnableMode : IntType); {H{I{3{}{}{}{}{}{}{}{}
4120 {} BEGIN {1}
4130 {} {¥% (ESC)(K)(A) %%} {}
4140 {} SendASCII(Esc); {1
4150 {1 SendASCII(Letterk); {1
4160 {1} SendASCII(LetterA); {}
4170 {} SendInt(EnableMode) {}
4180 {} END; {}
3190 {(HHHHHHHH MO O OO0 0000 0000000000000

200

4210 PROCEDURE EnableGin(DeviceAndFunction,

4220 {} NumberOfEvents : IntType); {F{I{I{ LI {I{I{}{}I{}{}
4230 {} BEGIN {}
4240 {} {*% (ESC)(I)(E) *¥} {}
4250 {} SendASCII(Esc); {1
4260 {} SendASCII(LetterI); {}
4270 {1 SendASCII(LetterE); {1
4280 {} SendInt(DeviceAndFunction); {1}
4290 {} SendInt(NumberOfEvents); {}
4300 {} END; {1
3310 SN E e IR IO IR RN N IR IR IR IR RN SRR IO INIOIRININININININIIRINIOINISININEN;

320

4330 PROCEDURE EndSegment; {}{}{I{I{I{I{I{I{I{ {3}
4340 {} BEGIN {1
4350 {} {*¥% (ESC)(S)(C) *¥} {}
4360 {} SendASCII(Esc); {}
4370 {} SendASCII(LetterS); {1
4380 {} SendASCII(LetterC); {1}
4390 {} END; {}
3300 {(HHHHHHHMHIO OO OO0 00000000000 0000000 00

10

4420 PROCEDURE Move(Xy : XyType); {}I{I{}{ I M I{I{IYOHMIOYOIOMOII Y30
4430 {} BEGIN {}
4y40 {} {%*% (ESC)(L)(F) %%} {}
4450 {1 SendASCII(Esc); 1}
4460 {3} SendASCII(LetterlL); ' {}
4u70 {} SendASCII(LetterF); {1
4480 {} SendXy(Xy); {}
4490 {} END; {}
ﬁg?g (HHHHHIIOO OO OO0 0000000000 0000000000010
4520 ~ PROCEDURE SetDialogAreaVisibility(VisibilityMode : IntType); {}{}{}{}{}{}
4530 {} BEGIN {1
4540 {} {*¥% (ESC)(L)(V) %*¥} {}
4550 {} SendASCII(Esc); {}
4560 {} SendASCII(LetterL); {}
4570 {} SendASCII(LetterV); {1
4580 {} SendInt(VisibilityMode) {1
4590 {} END; _ {}
4600 {HHHHHH IO OO OO OO 0000 IO OO 0000

4114 HOST PROGRAMMER'S @ C-11

EXAMPLES OF CODE

PAGE 10

4610 PROCEDURE SetEolString(EolString : IntArrayType); {{I{}{I{I{I{I{}{}{}{}
4620 {} BEGIN {}
4630 {} {¥% (ESC)(N)(T) ¥¥} {}
4640 {} Send ASCII(Esc); {1
4650 {} SendASCII(LetterN); {}
4660 {} SendASCII(LetterT); {}
4670 {} SendIntArray(EolString); {}
4680 {} END; {}
3690 {HHHM MMM MMM OO OO OO OO MO OO O U

700

4710 PROCEDURE SetGinGridding(DeviceAndFunction : IntType;

4720 {} XGridSpacing, YGridSpacing : IntType); {}{}{}{}
4730 {} BEGIN {}
4740 {} {*¥* (ESC)(I)(G) *¥} {1}
4750 {} Send ASCII(Esc); {}
4760 {1 SendASCII(LetterI); {1
4770 {} SendASCII(LetterG); {}
4780 {} SendInt(DeviceAndFunction); {}
4790 {} SendInt(XGridSpacing); {}
4800 {} SendInt(YGridSpacing); {}
4810 {} END; {}
3220 {IHHHHHHHH OO O

30

4840 PROCEDURE SetGinRubberbanding(DeviceAndFunction : IntType;

4850 {1} Rubberbanding : IntType); {}{}{}{}{}{}{}{}
4860 {} BEGIN {}
4870 {} {*% (ESC)(I)(R) ¥*¥} {}
4880 {1 Send ASCII(Esc); {}
4890 {} SendASCII(LetterI); {1
4900 {} SendASCII(LetterR); {}
4g10 {} SendInt(DeviceAndFunction); {}
4920 {} Sendint(Rubberbanding); {1
4930 {} END; {1
3940 {(HHHHH MO IO OO OO OO OO OO S
950
4960 CCEDURE SetReportEomFrequency(FrequencyCode : IntType); {}{}{}{}{}{}
4970 BEGIN
4980 {¥% (ESC)(I)(L) ¥*¥*}
4990 SendASCII(Esc);

5010 SendASCII(LetterM);
5020
5030
5040

SendInt(FrequencyCode);
END;
}

PR
{}
{}
{}
5000 {} SendASCII(LetterI);
{}
§
DUODOOOO0UOO00LDOLDOOOOODNUODOOOO00TH

A e oty ey b, e, A by P,
Mgt ot Mg Semgd "ot Mgt gt St Nyt

{

C-12

®

4114 HOST PROGRAMMER'S

EXAMPLES OF CODE

PAGE 11
5050 PROCEDURE SetReportMaxLineLength(Length : IntType); {HH MMM
5060 {} BEGIN {1
5070 {} {*% (ESC)(I)(M) #*¥} {}
5080 {} SendASCII(Esc); {}
5090 {} SendASCII(LetterI); {}
5100 {1} SendASCII(Letterl); {}
5110 {} SendInt(Length); {** a length of zero disables the feature *#%} {}
5120 {} END; {}
5]30 {}
5140
5150 OCEDURE SetReportSigChars(ReportTypeCode,

160 SigChar,
5170 TermSigChar : IntType); {} I{I{I{I{}{}{}{}
5180 BEGIN

PR

{}

{1

{1 '

5190 {} {** (ESC)(I)(S) *%}
5200 {} SendASCII(Esc);
5210 {} SendASCII(LetterI);
5220 {} SendASCII(LetterS);
5230 {} SendInt(ReportTypeCode);
5240 {} SendInt(SigChar);
5250 {} SendInt(TermSigChar);
5260 {} END;
5270 OO OO O OO OO OO O O O O O O OO OO OO O
5280
5290 {*¥¥ Routines used by the mainline *#%}
5300 '

AN A iy o A A b A 6y i, A
[VP U WY S S S VR VP RN W)

5310 PROCEDURE Handshake; {}M I MM I MIOMIIIOIOIOIOOOOO00MIOOL
5320 {} VAR {}
5330 {1} I: 1..5; {1
5340 {} {1
5350 {} BEGIN 0}
5360 {} {¥* Issue <report-4010-status> command **%} {}
5370 {} SendASCII(Esc); {}
5380 {1} SendASCII(5); {** (ENQ) #*#*) {1}
5390 {} {** Parse the <4010-status-report>, crudely *¥} {}
5400 {1 IF Eoln(TTY) THEN Readln(TTY); {}
5410 {1} FOR I := 1 TO 5 DO Get(TTY); {}
5420 {} END; {}
5330 (HHHHHHHMYO OO0 000000000 0000000000000 00
5440

5450 PROCEDURE DisplayInstructions;{HHH IO OIGOOLOLIOOOOL
5460 {} BEGIN {}
5470 {} Writeln(TTY); {}
5480 {} Writeln(TTY,'Type - '); {}
5490 {} Writeln(TTY,' M to move,'); {1}
5500 {} Writeln(TTY,' D to draw,'); {}
5510 {} Writeln(TTY,' X to exit this program.'); {1}
5520 {} END; {}
5530 {}

5540

4114 HOST PROGRAMMER’S @ C-13

EXAMPLES OF CODE

PAGE 12

5550 PROCEDURE ParseGinReportItemAndTakeAppropriatefction; {}{}{}{}{}{}{}{}{}
5560 {} BEGIN {}
5570 {} {** Look for signature character ¥¥} {}
5580 {} WHILE NOT (TTY" IN ['W', 'w']){¥* while next char is not W *} {}
5590 {} DO BEGIN {%** skip past the non-W character ¥¥} {}
5600 {} IF Eoln(TTY) {** If next character is a (CR) ¥¥} {1}
5610 {} THEN {}
5620 {} Read1n(TTY) {** advance to 1st char of next line ¥¥*}{}
5630 {} ELSE {1}
5640 {} Get(TTY) {** advance to next char ¥#¥} {1}
5650 {} END; {1
5660 {} Read(TTY,SignatureChar); {1
5670 {} IF (SignatureChar = 'W') {1}
5680 {} THEN {*¥¥ Parse a <GIN-locator-report>. ¥*#¥} {1
5690 {} BEGIN 0}
5700 {1 Read (TTY,KeyChar); {}
5710 {} ParseAnXyReport(Xy); {1
5720 {} IF KeyChar IN ['M','m','D','d','X','x"] {}
5730 {1} THEN {** take the appropriate action *¥} {}
5740 {} CASE KeyChar OF {}
5750 {} {} 'M', 'm : Move(Xy); {}
5760 {} {} 'D*, 'd' : Draw(Xy); {1}
5770 {} {} 'X', 'x'* : DisableGin(0); {1}
5780 {} {} END {¥%¥ of CASE statement ¥*¥} {1
5790 {1} ELSE {%*¥%¥ If he typed an invalid key char ¥¥} {}
5800 {} DisplayInstructions; {}
5810 {} END; {}
5820 {} END; {* of ParseGinReportItemAndTakelppropriatefction grocedure ¥} {}
5830 CHOOHM OO OO O O O O OO OO O O O O H OO O Y

Cc-14 @ 4114 HOST PROGRAMMER'S

{¥ "more frequent " ¥}

{* enable gridding ¥*¥}
{* enable rubberbanding ¥}

EXAMPLES OF CODE

Handshake; {* Be sure previous commands have been executed ¥}

DeleteSegment(-1); {¥*¥ Delete all old segments. ¥¥}

EnableGin(0,32767); {¥*¥*¥ "32767" means "many points" #¥¥}

PAGE 13

5840 BEGIN

5850 {¥* Prepare dialog area ¥¥}

5860 EnableDialogArea(1);

5870 SetDialoghAreaVisibility(1);

5880 {¥% Prepare for GIN ¥¥}

5890 {¥% <set-EOL-string (13)> %%}
5900 InitializeNewIntArray(IntArray);
5910 AppendToIntArray(IntArray,13);
5920 SetEolString(IntArray);

5930 SetReportSigChars(0,87,119);

5940 SetReportEomFrequency(1);

5950 SetReportMaxLineLength(72);

5960 SetGinGridding(0, 100, 100);

5970 SetGinRubberbanding (0, 1);

5980 {¥%¥ Tell operator what to do ¥¥}
5990

6000 DisplayInstructions;

6010 {¥% Open a segment ¥#}

6020

6030 BeginSegment(1);

6040 {¥* Enable for GIN ¥¥}

6050

6060 {¥% Loop until a <term-sig-char> is received. ¥¥}
6070 REPEAT

6080 ParseGinReportItemAnd TakeAppropriateAction
6090 UNTIL SignatureChar = ;

6100 {*% Close the segment. ¥¥}

6110 EndSegment;

6120

6130

6140 END
0 Error messages issued.
0 Warning messages issued

4114 HOST PROGRAMMER’S

C-15

EXAMPLES OF CODE

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C-16

FORTRAN BLOCK MODE COMMUNICATIONS DRIVERS

INTRODUCTION.

This example I/0 system for the TEKTRONIX 411X Computer Display
Terminals was implemented during the development of these terminals
and is presented as one way to do it. The FORTRAN is very close to
the 1966 ANSI FORTRAN standard, deviating in ways acceptable to
most modern compilers. This I/0 system supports not only the new
471X block mode but also the 466X Interactive Digital Plotter block
mode as well, allowing direct access to plotter features through
the use of the 411X <PORT-COPY> command. This system assumes the
presence of two 1/0 routines from PLOT 10 Terminal Control System,
ADEIN and ADEOUT. 1In fact, this system may be integrated with TCS
to provide access to the new terminals via block mede.

USER INTERFACE.

These routines from this I/0 system are the ones the user must
call to drive the system.

IOINIT initializes the I/O system and the terminal.

IOEND shuts down the I/0 system.

KYBDIN gets input from the keyboard, out of block mode.
FILIN gets input from a terminal file during a <COPY> transfer.
SNDEOF sends an end-of-file to the terminal to end a <CCOPY>.
BLOKGO starts block mode transmissions.

BLKEND ends block mode transmissions.

PLTRBM turns plotter block mode on and off.

EMPTIN empties the input buffer of any extraneous characters.
STIN is the primary input routine.

DUMP flushes the output buffer.

STOUT is the primary output routine.

INTRAY translates an integer array into terminal format.
ADERAY translates an ADE array into terminal format.

INTPAK translates an integer into terminal format.

RELPAK translates a real into terminal format.

XYTRN translates an XY pair into terminal format.

INTUNP translates a terminal int-report into an integer.
RELUNP trnaslates a terminal real-report into a real.

XYUNP translates a terminal XY-report into an XY pair.
KIN2AS translates an integer into a string of digits.

KAS2IN translates a string of digits into an integer.

B

4114 HOST PROGRAMMER'S

EXAMPLES OF CODE

In general, IOINIT is called once at the beginning of a program.
TOEND is likewise called once at the end. KYBDIN is useful during
block mode to allow the operator to use the normal system input
features to edit the input. FILIN and SNDEOF are of use during
<COPY> operations between the host computer and the terminal. BLOKGO
must be called to put the software into blcck mode, and BLKEND may

be called to exit block mode. PLTRBM may be used to enable or
disable plotter block mode. Plotter block mode is of use either

when the plotter is connected between the terminal and the host
computer or, if connected to a peripheral port, between a <PORT-COPY>

address is 'A', and it sends plotter on and plotter off commands on
entering and leaving plotter block mode. EMPTIN is used to make
sure no unwanted characters are in the system input buffer before

a call to STIN (or KYBDIN or FILIN). STIN is the input 'hole’
through which all input flows. DUMP is used to force STOUT to flush
the system output buffer, and should be called seldomly if ever by
the typical program. STOUT is the output 'hole' through which all

output flows, taking care of plotter block mode if enabled. Terminal
block mode is handled by lower level routines called by STIN and
STOUT and is not directly accessible to the user. The last five
routines on the above 1ist are very useful in formatting arguments

in commands to the terminal, but only XYTRN is of any use with the

plotter.
INSTALLING THIS SYSTEM.

In implementing this system, you may wish to make the buffers and
line lengths smaller. To do this, change the size of the arrays in
/COMM/ common to match your needs, change the initial values of
KBUFSZ in IOINIT and BLKEND and the values of JBLINE and JLINLN in
IOINIT. The dimension of the arrays in BLKOUT and BLKIN may also
be made smaller. Other installation considerations are discussed
in the following sections.

ADEIN and ADEOUT.

These routines are part the PLOT 10 Terminal Control System, but if
you do not have them, here is a brief description of them. ADEOUT
outputs an array of ASCII-decimal-equivalent (ADE) characters to
the terminal. It should be able to transmit all 128 of the ASCII
characters, although only (ESC) and from (SP) to (_) are required
for this I/0 system, if block mode with six-bit packing is used.
ADEIN inputs a line of characters from the terminal, ending with
but not including a carriage return. Its first argument is the
number of characters in the line, not counting trailing spaces, and
its second argument is the array for the characters.

leXeReleoReReitkeieisRekeke koo lie ko Ko ke ks ke ke ke R o Ee N o RS RO RS N @] OO0 00000000

4114 HOST PROGRAMMER'S @

command and an end-of-file indicator. This system assumes the plotter

C-17

EXAMPLES OF CODE

INTEGRATING WITH TCS.

To use this I/0 with the PLOT 10 Terminal Control System, replace
TOUTST with STOUT and have TINSTR simply call STIN. 1In addition,
have INITT call IOINIT and FINITT call IOEND. If you had to use
buffer type 1 or 2, use block mode now by calling BLOKGO from

INITT. If you have 4662A01 or U4663A01 PLOT 10 Utility Routines,
integrate calls to PLTRBM into PLON and PLOFF, with calls to do a
<PORT-COPY> and to SNDEOF in PLINIT, PLON and PLOFF as needed.
ANMODE should call BLKEND to dump the buffer in block mode, but
should contain a copy of /COMM/ common and set the variable KBMODE
back to one so that the software will reenter block immediately.
XYCNVT would benefit from a replacement of much of its code with a
call to XYTRN, which was modelled after XYCNVT anyway. ANSTR should
have the variable MAXLEN removed, including both executable lines of
code containing it.

TRIMMING THIS SYSTEM.

Since this is just an example of an I/0 system, any portion of it
may be trimmed out as desired. The plotter block mode part of STOUT
is fairly easy to be rid of if attention is paid to the statement
numbers. The terminal block mode packing and unpacking routines

may be reduced in size by removing one or the other of the two methods
provided in each, the 'easy way' and the 'hard way'. Which part to
remove depends on the packing factors being used. See the first
executable line of PACKER and UNPACK for clerification of this. It
is also possible to remove many or all of the calls to the parameter
setting routines in IQINIT if the terminals being accessed are
already appropriately set up. However, the variables in /COMM/ must
still be set properly so the software can do its job.

eNeReleRels oo ks ke ke ks o Ee ke Ee ke N N Eo i N N R RS NS NS RO R N Ne N o]

c-18 @ 4114 HOST PROGRAMMER'S

THE CODE OF THE EXAMPLE I/O SYSTEM:

C
C
C
Commmmm - SUBROUTINE--IOINIT--~-
C
SUBROUTINE IOINIT
C ¥
C ¥
c ¥
C * INPUT AND OUTPUT - LARGER LINE,
C ¥
C *

COMMON /COMRAY/ JCODE(256)

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS (4) ,KBUFSZ,KBPLOT,KBPSW,
KBARM,KBMODE,KHLENH,KHEADH(10),KHLENT,KHEADT(10),KCONTH,
KCONTT,KENDH,KENDT,KNXNOH,KNXMTH(ZO),KNXNOT,KNXMTT(ZO),
KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH,KPACKT,KBLENH,KBLENT,
KBLINE,KBLOKH,KEOPH,KECMH, KEOFH, KEOMT,KEOF T

Re RO RO RO RO Ro

IOINIT INITIALIZES ALL BLOCK MODE PARAMETERS AND ALL STANDARD
COMM PARAMETERS TC SET UP THE SOFTWARE AND TERMINAL
THESE VALUES SHOULD WORK ON MOST SYSTEMS CAPABLE OF FULL ASCII
BLOCK AND BUFFER SIZES MAY BE
DESIRABLE FOR SYSTEMS ABLE TC HANDLE THEM
SOME STANDARD COMM VALUES MAY NEED ADJUSTMENT FOR YOUR SYSTEM

DIMENSION JPSTRG(2),JEOFST(1),JEOLST(1)
DIMENSTION JHEADT(5),JHEADH(5),INXMTT(1),INXMTH(E)
C * BLOCK MODE PARAMETER DATA STATEMENTS

c ¥ TERMINAL-TO-HOST

DATA JHEADT /33,34,35,36,37/,JHEADH

DATA JNXMTT /126/,
DATA JMASTT /126/,

DATA JCONTT /97/,
DATA JENDT /98/,
DATA JBYTET /7/,
DATA JPACKT /6/,

DATA JBLENT /516/,

DATA JBLINE /256/

JNXMTH
JMASTH
JCONTH
JENDH

JBYTEH
JPACKH
JBLENH

C *¥ STANDARD CCMM DATA STATEMENTS

DATA JPSTRG /63,32/

DATA JPRMOD /0/

NATA T
DATA JEOFST /0/

DATA JEOMC1,JEOMC2 /13,0/

DATA JIGDEL /0/
DATA JRESLU /12/

DATA JXMTLM /2400/

DATA JXMTDL /100/
DATA JBREAK /200/
DATA JFLAG /3/

DATA JQUEUE /1000/

DATA JEOLST /13/
DATA JBYPAS /10/
DATA JLINLN /256/
DATA JREOMF /1/

4114 HOST PROGRAMMER'S

HOST-TO-TERMINAL

/38,125,125,41,42/
/96,97,98,17,19,0/
/96/

/97/

/98/

/17

/71

/516/

EXAMPLES OF CODE

C-19

EXAMPLES OF CODE

SET THE FIRST CHARACTER IN THE COMMAND ARRAY COMMON TC <ESC>
JCODE(1)=27
SET 1/0 BUFFER POINTERS
KOUTPT=0
KINPT=0
KINEND=0
INITIALIZE XY CHARACTERS
DO 10 I=1,5
KCHARS(I)=0
CONTINUE
SET OUTPUT BUFFER SIZE (SHOULD BE AS LARGE AS POSSIBLE)
(ALSO SET IN BLKEND)
KBUFSZ=256
SET TERMINAL AND PLOTTER BLCCK MODES TO OFF
KBARM=0
KBMCDE =0
KBPLOT=0D
KBPSW=0
SET ALL STANDARD COMM PARAMETERS FIRST
CALL PSTRNG (2,JP3TRG)
CALL PROMPT (JPRMOD)
CALL EOMCHR (JEOMC1,JECMC2)
CALL EOFSTG (0,JEOFST)
CALL IGNDEL (JIGDEL)
CALL XMTDLY (JXMTDL)
CALL XMTLMT (JXMTLM)
CALL BREAKT (JBREAK)
CALL FLAG (JFLAG)
CALL QUEUES (JQUEUE)
CALL ECLSTG (1,JECLST)
CALL BYPCAN (JBYPAS)
CALL LINLEN (JLINLN)
CALL REOMF (JREOMF)

C * SET INTERNAL RESOLUTION FLAG TO 12-BIT (10-BIT IS FASTER BUT UGLIER)

CALL RESLUT (JRESLU)

C * SET ALL BLOCK MODE PARAMETERS

CALL BHEADR (5,JH4EADT,S5,JHEADH)

CALL BNONCR (1,JNXMTT,6,JNXMTH)

CALL BMASTC (JMASTT, JMASTH)

CALL BCONTC (JCCNTT,JCONTH)

CALL BENDCH (JENDT, JENDH)

CALL BLKLEN (JBLENT,JBLENH)

CALL BLINE (JBLINE)

CALL BPACK (JBYTET,JPACKT,JBYTEH, JPACKH)
CALL BTOUT (5)

C * ARM BLOCK MODE FOR USE AFTER CALL TO BLOKGO

C

C-20 @ 4114 HOST PROGRAMMER'S

CALL BLKARM (1)
RETURN
END

C

C----------SUBROUTINE--IOEND=-=-

C

C

(]

[oNeNe!

OO0 00

M K OOk K W ok kN

SUBROUTINE IOEND
IOEND SHUTS DOWN THE SOFTWARE I/0 SYSTEM
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL, KPRMOD, KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS(4),KBUFSZ ,KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT, KHEADT (10) ,KCONTH,
KCONTT,KENDH, KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH, KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH, KEOMT, KEOF T
TURN OFF BLOCK MODE

CALL BLKEND (2)

CALL BLKARM (0)
TURN OFF PROMPT MODE IF IT WAS ON

IF {(KPRMOD.GT.O0) CALL PROMPT (O)
CLEAR THE OUTPUT BUFFER

CALL DUMP

N

R0 Ro RO Ro Re RO

——————— SUBROUTINE--KYBDIN=---

SUBROUTINE KYBDIN (IREQ,IREC,ISTRNG)
KYBDIN GETS KEYBOARD INPUT, EXITTING AND REENTERING
TERMINAL AND PLOTTER BLOCK MODES IF NECESSARY
IREQ - NUMBER OF CHARACTERS REQUESTED
IREC - NUMBER OF CHARACTERS RECEIVED <= IREQ
ISTRNG - STRING FOR ADE CHARACTERS
KBMODE - S/W BLOCK MODE FLAG
JBMODE - TEMPORARY FOR REMEMBERING KBMODE
KBPLOT - PLOTTER BLOCK MODE FLAG
JBPLOT - TEMPCRARY FOR REMEMBERING KBPLOT
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),

KRESLU, KDELOY, KPRMOD, KPRLEN, KPSTRG(10) ,KEOFLN, KEOFST(10),
KEOMC1,KEOMC2,KCHARS () ,KBUFSZ ,KBPLOT, KBPSW,

KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT, KHEADT(10) ,KCONTH,
KCONTT, KENDH, KENDT , KNXNOH, KNXMTH(20) ,KNXNOT, KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH, KEOMT,KEOF T

DIMENSION ISTRNG(1)

JBMODE =K BMODE

JBPLOT=KBPLOT

KBPLOT=0

CALL BLKEND (2)

CALL STIN (IREQ,IREC,ISTRNG)

IF (JBMODE.EQ.1) CALL BLOKGO

KBPLOT=JBPLOT

RETURN

END

Re Ro Ro Re RO R

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-21

EXAMPLES OF CODE

aan

OO0
K kK

C-22

------- SUBROUTINE--PLTRBM=--

SUBROUTINE PLTRBM (IBMODE)
PLTRBM SETS THE PLOTTER BLOCK MODE FLAG

IBMODE - MODE TO BE ESTABLISHED: 0=CONTINUOUS, 1=PLOTTER BLOCK

KBPLOT - NEW MODE TO BE USED AFTER NEXT DUMP
KBPSW - MODE CURRENTLY IN USE BY SOFTWARE
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU, KDELOY, KPRMOD, KPRLEN, KPSTRG(10) , KEOFLN, KEOFST(10),
KEOMC1,KEOMC2 KCHARS (4) ,KBUFSZ , KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH (10) , KHLENT, KHEADT (10) ,KCONTH,
KCONTT, KENDH , KENDT , KNXNOH, KNXMTH(20) ,KNXNOT, KNXMTT(20),
KMASTH, KMASTT, KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH,KEOMT,KEOFT
COMMON /COMRAY/ JCODE(256)
BRING VALUE WITHIN VALID RANGE
JBPLOT=MINO(1,MAX0(0O, IBMODE))
EXIT IF NO CHANGE IN MODES
IF (JBPLOT.EQ.KBPSW) RETURN
IF ENTERING PLOTTER BLOCK MODE, ENABLE PLOTTER
IF (KBPLOT.NE.1) GO TO 10
JCODE(2)=65
JCODE(3)=69
CALL STOUT (3,JCODE)
KBPLOT=JBPLOT
CALL DUMP
KBUF SZ=KBUFSZ-11
RETURN
IF EXITTING PLOTTER BLOCK MCDE, DISABLE PLOTTER
KBPLOT=JBPLOT
CALL DUMP
KBUFSZ=KBUFSZ+11
JCODE(2)=65
JCODE(3)=70
CALL STOUT (3,JCODE)
RETURN
END

Re Ro R R RO Qo

4114 HOST PROGRAMMER'S

[eNe!

(@]

QOO0

10

20

¥ K Ok W K

---------- SUBROUTINE--FILIN---

SUBROUTINE FILIN (IREQ,IREC,ISTRNG,IEOF)
FILIN INPUTS LINES FROM A TERMINAL FILE, SCANNING FOR EOF
IREQST - NUMBER OF CHARS REQUESTED
IRECVD - NUMBER OF CHARS RECEIVED
ISTRNG - CALLERS INPUT ARRAY
IEOF - 1 IF EOF DETECTED, O IF NOT
COMMON /COMM/ KOUTPT, KOUTBF(512) KINEND,KINPT,KINBUF(512),
KRESLU,KDELOY, KPRMOD KPRLEN, KPoTRG(10) KEOFLN KEOFST(10),
KEOMC1,KEOMCZ2, KCHARS(), KBUFQZ KBPLCT, KBPSW
KBARM, KBMODE KHLENH KHEADH(10) KHLENT, KHEADT(10) KCCNTH,
KCONTT KENDH,KENDT, KNXNOH KNXMTH(ZO) KNXNOT KNXMTT(EO)
KMASTH, KMASTT KBYTEH KBYTET KPACKH, KPACKT KBLENH KBLENT
KBLINE,KBLOKH,KEOPH, KEOMH KEOFH KEOMT KEOFT
DIMFNSION ISTRNG(1)
ZERO THE RETURN LENGTH
IREC=0
BRANCH IF BUFFER HAS CHARACTERS IN IT
IF (KINEND.GT.0) GO TO 40
BRANCH TC GET MORE INPUT VIA BLOCK MODE
IF (KBMODE.EQ.1) GO TO 30
DUMP THE OUTPUT BUFFER TO BE SURE COMMANDS ARE SENT
CALL DUMP
SIMULATE PROMPT FOR NON-PROMPTING SYSTEMS
REMOVE THIS LINE FCR PROMPTING SYSTEMS
IF (KPRMOD.GT.0) CALL ADEOUT (KPRLEN,KPSTRG)
GET LINE OF INPUT FROM TERMINAL
CALL ADEIN (KINEND,KINBUF)
KINPT=0
BACK SCAN FOR EOQOF STRING
KEQOFT=0)
IF (KEOFLN.LE.O .OR. KINEND.LT.KEOFLN) GO TO &40
JINEND=KINEND
JEOFPT=KEOFLN
IF (JEOFPT.EQ.0) GO TO 2

T £ 17 ntt T
IF (KINBUF{JINEND).NE.KEQFST(JECFPT)

JINEND=JINEND-1
JEOFPT=JEOFPT-1
GO TO 10
KINEND=JINEND
KEOF T=1

GO TO 20

Qe R0 @e RO Qo RO

Nt
o
o
v~
o
=
o

C * GET INPUT VIA BLOCK MODE

30

KEOMH=1
CALL BLOKIO
KEOMH=0
KINPT=0

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-23

EXAMPLES OF CODE

* ok

MOVE CHARACTERS FROM INPUT BUFFER TO USER ARRAY
EXIT IF REQUEST SATISFIED
0 IF (IREC.GE.IREQ) GO TO 70
CHECK FOR EMPTY BUFFER
IF (KINPT.GE.KINEND) GO TO 50
IREC=IREC+1
KINPT=KINPT+1
ISTRNG(IREC)=KINBUF(KINPT)
GO TO 40
C * PAD WITH BLANKS
50 JFIRST=IREC+1
DO 60 I=JFIRST, IREQ
ISTRNG(I)=32
60 CONTINUE
C * EXIT IF BUFFER NOT EMPTY
70 IF (KINPT.LT.KINEND) GO TO 80
C * ZERO THE INPUT BUFFER
KINEND=0
KINPT=0
C * SET END-OF-FILE ONLY IF NO MORE CHARS IN BUFFER
80 TEOF=0
IF (KEOFT.EQ.1 .AND. KINEND.EQ.O) IEOF=1

OO0

*

RETURN

END
C
Commmmmeee- SUBROUTINE--SNDEOF---
C

SUBROUTINE SMDEOF
C * SNDEOF SENDS AN END-OF-FILE INDICATCR TC THE TERMINAL
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU, KDELOY, KPRMOD, KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS(4) ,KBUFSZ,KBPLOT,KBPSW,
KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT ,KHEADT(10) ,KCONTH,
KCONTT,KENDH, KENDT ,KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET, KPACKH,KPACKT,KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH,KEQOFH,KEOMT,KEQF T
C * BRANCH FOR BLCCK MODE

IF (KBMODE .EQ. 1) GO TO 20
C * SEND ECF STRING TO TERMINAL

IF (KEOFLN.GT.0) CALL STOUT (KEOFLN,KEOFST)

RETURN
C * FOR BLOCK MODE, SET EOF BIT AND DUMP BUFFER
20 KEOFH=1

CALL DUMP

KEOFH=0

RETURN

END

Ro Re Ro RO RO R

Cc-24 @ 4114 HOST PROGRAMMER'S

a0

(@}

-------- SUBROUTINE--BLOKGO---

SUBROUTINE BLOKGO
BLOKGO STARTS BLOCK MODE IN OPERATION
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD, KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS(4),KBUFSZ ,KBPLOT, KBPSW,
KBARM,KBMCDE , KHLENH, KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,
KCONTT,KENDH,KENDT,KNXNOH,KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, KPACKT,KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH, KEOMT,KEOFT
IF BLOCK MODE NOT ARMED, EXIT

IF (XKBARM.NE,1) RETURN
IF ALREADY IN BLOCK MODE, EXIT

IF (KBMODE.EQ.1) RETURN
DUMP BUFFER TO GET CLEAN ENTRY INTO BLOCK MODE

CALL DUMP
SET CONTROL BYTE BITS

KBLOKH=1

KEOPH=0

KEOFH=0

KEOMH=0
PUT SOFTWARE INTO BLOCK PROTOCOL

KBMODE =1
CHANGE OUTPUT BUFFER SIZE TO BLOCK SIZE

KBUFSZ=KBLENH-4

IF (KBPSW.EQ.1) KBUFSZ=KBUFSZ-11
TURN TERMINAL ECHO ON

CALL ECHO (1)

RETURN

END

R® RO Qo R Qo Ro

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-25

EXAMPLES OF CODE

Commmmm - SUBROUTINE--BLKEND---

SUBROUTINE BLKEND (IACK)
C * BLKEND ENDS THE BLOCK MODE PROTOCOL BUT DOES NOT DISARM BLOCK MODE
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD, KPRLEN, KPSTRG(10),KEOFLN,KEOFST(10),
KEOMC1,KEOMC2, KCHARS (4) ,KBUFSZ,KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT, KHEADT (10) ,KCONTH,
KCONTT, KENDH, KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT ,KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KECMH, KEOFH, KEOMT, KEOF T
NOT IN BLOCK MODE, EXIT
IF (KBMODE.EQ.0) RETURN
C * TURN OFF TERMINAL ECHO (IF IT SHOULD NOT BE ON NORMALLY)
CALL ECHO (0)
C % SET TUE CONTROL BITS TO END THE RLOCK PROTOCOL
KBLOKH=0
KEOPH=MINO(3,MAX0(2, IACK))
C * DUMP THE BUFFER AND TURN OFF SOFTWARE BLOCK MODE
CALL DUMP
KBMODE =0
C * RESTORE OUTPUT BUFFER SIZE
KBUFSZ=256
IF (KBPSW.EQ.1) KBUFSZ=KBUFSZ-11
RETURN
END

T Re R0 Re RO Re RO

c *1I

........... SUBROUTINE--BLKARM---

OO0

SUBROUTINE BLKARM (IARM)
BLKARM ARMS/DISARMS BLOCK MODE
TARM - BLOCK MODE ARM/DISARM
JCODE - COMMAND ARRAY
LEN - LENGTH OF IONOFF AS PACKED INTEGER
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL, KPRMOD KPRLEN, KPSTRG(10) KEOFLN KEOFST(10),
KEOMC1,KEOMC?2, KCHARS(H) KBUFSZ KBPLOT, KBPSW
KBARM, KBMODE KHLENH KHEADH(10) KHLENT, KHEADT(10) KCONTH,
KCONTT KENDH, KENDT, KNXNOH KNXMTH(ZO) KNXNOT KNXMTT(ZO),
KMASTH, KMASTT KBYTEH KBYTET KPACKH, KPACKT KBLENH KBLENT,
KBLINE,KBLOKH,KEOPH, KEOMH KEOFH KEOMT KEOFT
COMMON /COMRAY/ JCODE(256)
DIMENSION JINRAY(5),JENQ(2)
DATA JENQ/27,5/
JCODE(2)=79
JCODE(3)=66
CALL INTPAK (IARM,LEN,JCODE(4))
CALL STOUT (LEN+3,JCODE)
KBARM=MINO(1,MAX0(0,IARM))
C * REQUEST STATUS TO ALLOW TERMINAL TIME TO CHANGE MODES
CALL STOUT (2,JENQ)
CALL EMPTIN
CALL STIN (5,JREC,JINRAY)
RETURN
END

[eNeoNeNe!
ok Xk K

Re Re Ro Ro Qo Ro

C-26 @ 4114 HOST PROGRAMMER'S

OOO0O0O0

[eNeNe!

aoOoOoaOo0n
B W e e Wk ke

---------- SUBROUTINE--BLKLEN---

w M M M kN

SUBROUTINE BLKLEN (IBLENT, IBLENH)

BLCOKL SETS THE BLOCK LENGTHS
IBLENT - TERMINAL'S BLOCK LENGTH
IBLENH - HOST'S BLOCK LENGTH

Jc
LE
LE

Re Re Re Ro Qo Qo

ODE - COMMAND ARRAY
N1 LENGTH OF IBLENT AS PACKED INTEGER
N2 LENGTH OF IBLENH AS PACKED INTEGER

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),

KECOMC1,KEOMC2,KCHARS(4) ,KBUFSZ,KBPLOT,KBPSW,

KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,
KCONTT,KENDH, KENDT , KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, KPACKT,KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH,KEOMT,KEOFT

COMMON /CCMRAY/ JCODE(256)

JCODE(2)=79

JCODE(3)=83

KBLENH=IBLENH

KBLENT=IBLENT

CALL INTPAK (IBLENT,LEN1,JCODE(4))

CALL INTPAK (IBLENH,LEN2,JCODE(LEN1+4))

CALL STOUT (LEN1+LEN2+3,JCODE)

RETURN

END

---------- SUBROUTINE--BENDCH=---

BE
IE
IE
JC
LE

&
&
&
&
&
&

SUBROUTINE BENDCH (IENDT,IENDH)

NDCH SETS THE BLOCK END CHARACTERS

NDT - TERMINAL'S BLOCK END CHARACTER

NDH - HOST'S BLOCK END CHARACTER

ODE - COMMAND ARRAY

N1 - LENGTH OF IENDT AS PACKED INTEGER

LEN2 - LENGTH OF IENDH AS PACKED INTEGER

™ TR 7T !ﬂ'"-l!'1

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(5

2)
KRESLU,KIGDEL,KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10):

KEOMC1,KEOMC2, KCHARS (4) ,KBUFSZ ,KBPLOT, KBPSW,

KBARM, KBMODE , KHLENH , KHEADH (10) ,KHLENT, KHEADT (10) ,KCONTH,
KCONTT, KENDH, KENDT , KNXNOH, KNXMTH(20) ,KNXNOT , KNXMTT (20),
KMASTH, KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE, KBLOKH,KEOPH, KEOMH, KEOFH, KEOMT,KEOF T

COMMON /COMRAY/ JCODE (256)

JCODE(2)=79

JCODE(3)=69

KENDH=IENDH

KENDT=IENDT

CALL INTPAK (IENDT,LEN1,JCODE(4))

CALL INTPAK (IENDH,LEN2,JCODE(LEN1+4))

CALL STOUT (LEN1+LEN2+3,JCODE)

RETURN

END

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-27

EXAMPLES OF CODE

o NeRe]

BC
IC
IC
JC
LE
LE

OO0
L B B IR BE 3

&

Ko RO Qo Re Ro

OOOO000 aan
W ok Wk ok W ok

Re Re Ro Qo Re Re

c-28

----- SUBROUTINE--BCONTC=-~-

SUBROUTINE BCONTC (ICONTT,ICONTH)

ONTC SETS THE BLOCK CONTINUE CHARACTERS
ONTT TERMINAL'S BLOCK CONTINUE CHARACTER
ONTH HOST'S BLOCK CONTINUE CHARACTER

ODE - COMMAND ARRAY

N1 - LENGTH OF ICONTT AS PACKED INTEGER
N2 - LENGTH OF ICONTH AS PACKED INTEGER

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD, KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),

KEOMC1,KEOMC2, KCHARS (4) ,KBUFSZ ,KBPLOT , KBPSW,

KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT, KHEADT (10) ,KCONTH,
KCONTT,KENDH, KENDT , KNXNOH, KNXMTH(20) ,KNXNOT, KNXMTT (20),
KMASTH,KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLCKH,KEOPH, KEOMH, KEOFH,KEOMT,KECF T

COMMON /COMRAY/ JCODE(256)

JCODE (2)=79

JCODE (3)=67
KCONTH=ICONTH

KCONTT=ICONTT

CALL INTPAK (ICONTT,LEN1,JCODE(4))

CALL INTPAK (ICONTH,LEN2,JCODE(LEN1+4))

CALL STOUT (LEN1+LEN2+3,JCODE)

RETURN

END

---------- SUBROUTINE-~-BMASTC---

SUBROUTINE BMASTC (IMASTT,IMASTH)

BMASTC SETS THE BLOCK MASTER CHARACTERS
IMASTT - TERMINAL'S MASTER CHARACTER
IMASTH - HOST'S MASTER CHARACTER

JCODE - COMMAND ARRAY

LEN1
LEN2

LENGTH OF IMASTT AS PACKED INTEGER
LENGTH OF IMASTH AS PACKED INTEGER
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL, KPRMOD KPRLEN, KPSTRG(10) KEOFLN KEOFST(10),
KEOMC1,KEOMC2, KCHARS(H) KBUFSZ KBPLOT, KBPSW
KBARM, KBMODE KHLENH KHEADH(10) KHLENT, KHEADT(10) KCONTH,
KCONTT KENDH, KENDT, KNXNOH KNXMTH(ZO) KNXNOT KNXMTT(20)
KMASTH, KMASTT KBYTEH KBYTET KPACKH, KPACKT KBLENH KBLENT
KBLINE,KBLOKH,KEOPH, KEOMH KEOFH KEOMT KEOFT
COMMON /COMRAY/ JCODE(256)
JCODE(2)=79
JCODE(3)=T77
KMASTH=IMASTH
KMASTT=IMASTT
CALL INTPAK (IMASTT,LEN1,JCODE(4))
CALL INTPAK (IMASTH,LEN2,JCODE(LEN1+4))
CALL STOUT (LEN1+4LEN2+3,JCODE)
RETURN
END

4114 HOST PROGRAMMER’S

o
Commmmmme o= SUBROUTINE--BPACK-=-=-
C
SUBROUTINE BPACK (IBST,IPKT,IBSH,IPKH)
C % BPACK SETS THE BIT PACKING VALUES
C *¥ IBST - TERMINAL'S UNPACKED BITS/CHAR
C * IPKT - TERMINAL'S PACKED BITS/CHAR
C * IBSH - HOST'S UNPACKED BITS/CHAR
C *¥ IPKH - HOST'S PACKED BITS/CHAR
C * JCODE - COMMAND ARRAY
C * LEN1 - LENGTH OF PARAMETER AS PACKED INTEGER
C * LEN2 - TOTAL LENGTH OF COMMAND
COMMON /COMM/ KOUTPT KOUTBF(512),KINEND,KINPT,KINBUF(512),
& KRESLU,XIGDEL, KPRMOD KPRLEN, KPSTRG(10) KEOFLN KEOFST(10),
& KEOMC1,KECMC2, KCHARS(N) KBUFSZ KBPLOT, KBPSW
& KBARM, KBMODE KHLENH KHEADH(10) KHLENT, KHEADT(10) KCONTH,
& KCONTT KENDH, KENDT, KNXNOH KNXMTH(20) KNXNOT KNXMTT(ZO)
& KMASTH, KNASTT KBYTWH KBYTET,KPACKH KPACKT KBYENH KB'ENT
& KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH,KEOMT,KEOFT
COMMON /COMRAY/ JCODE(256)
JCODE(2)=79
JCODE (3)=80
KBYTEH=2%*IBSH
KBYTET=2**IBST
KPACKH=2**IPKH
KPACKT=2**IPKT
LEN2=4
CALL INTPAK (IBST,LEN1,JCODE(LEN2))
LEN2=LEN2+LEN1
CALL INTPAK (IPKT,LEN1,JCODE(LEN2))
LEN2=LEN2+LEN1
CALL INTPAK (IBSH,LEN1,JCODE(LEN2))
LEN2=LEN2+LEN1
CALL INTPAK (IPKH, LEN1 JCODE(LEN2))
LEN2=LEN2+LEN1-1
CALL STOUT (LEN2,JCODE)
RETURN
END
o
Commmmmmmmam SUBROUTINE--BTOUT ==~
C
SUBROUTINE BTOUT (ITIME)
C * BTOUT SETS THE TERMINAL'S BLOCK TIMEOUT
C ¥ ITIME - SECONDS BEFORE RETRANSMITTING BLOCK
C * JCODE - COMMAND ARRAY
C * LEN - LENGTH OF ITIME AS PACKED INTEGER

COMMON /COMRAY/ JCONDE(256)
JCODE(2)=79

JCODE(3)=84

CALL INTPAK (ITIME,LEN,JCODE(4))
CALL STOUT (LEN+3,JCODE)

RETURN

END

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-29

EXAMPLES OF CODE

C
Commmmmem e SUBROUTINE--BNONCR---
C

SUBROUTINE BNONCR (INXNOT,INXMTT,INXNOH,INXMTH)

C * BNONCR SETS THE BLOCK NON-TRANSMITTABLE CHARACTERS

C * INXNOT - NUMBER OF TERMINAL NON-XMT CHARS

C * INXMTT - ARRAY OF TERMINAL'S NON-XMT CHARS

C * INXNOH - NUMBER OF HOST'S NON-XMT CHARS

C * INXMTH - ARRAY OF HOST'S NON-XMT CHARS

C ®* JCODE - COMMAND ARRAY

C * LEN1 - LENGTH OF TERMINAL ARRAY AS PACKED INTEGERS
C ¥ LENZ - LENGTH OF HOST ARRAY AS PACKED INTEGERS

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),

KRESLU,KIGDEL,KPRMOD, KPRLEN,KPSTRG(10) ,KECFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS (4) ,KBUFSZ ,,KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH (10) ,KHLENT, KHEADT (10) ,KCONTH,
KCONTT,KENDH,KENDT, KNXNOH, KNXMTH(20) , KNXNOT, KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH, KEOMT, KEOF T

COMMON /COMRAY/ JCODE (256)

DIMENSION INXMTT(1),INXMTH(1)

JCODE(2)=79

JCODE(3)=78

KNXNOH=MINO(20,MAXO(0, INXNOH))

IF (KNXNOH.EQ.0) GO TO 20

DO 10 I=1,KNXNOH
10 KNXMTH(I)=INXMTH(I)

20 KNXNOT=MINO(20,MAX0(0, INXNOT))

IF (KNXNOT.EQ.0) GO TO 40
DO 30 I=1,KNXNOT

30 KNXMTT(I)=INXMTT(I)

40 CALL INTRAY (INXNOT,INXMTT,LEN1,JCODE(4))

CALL INTRAY (INXNOH,INXMTH,LEN2,JCODE(LEN1+4))
CALL STOUT (LEN1+LEN2+3,JCODE)

RETURN

END

Re Qo R Ro Re Re

C-30 @ 4114 HOST PROGRAMMER'S

Commmmmmmm e SUBROUTINE--BHEADR---

(@]

OO0

10
20

30
40

ok R W kK K K

SUBROUTINE BHEADR (IHLENT,IHEADT,IHLENH, IHEADH)

BHEADR SETS THE BLOCK HEADERS
THLENT - LENGTH OF TERMINAL'S HEADER

THEADT

IH
IH
Jc
LE

TERMINAL'S HEADER

LENH LENGTH OF HOST'S HEADER

EADH HOST'S HEADER

ODE - COMMAND ARRAY

N1 - LENGTH OF TERMINAL HEADER AS PACKED INTEGERS

LENZ - LENGTH OF HOST HEADER AS PACKED INTEGERS

Re Ro Ro Qo Ro Ro

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL, KPRMOD, KPRLEN, KPSTRG(10) , KEOFLN, KEOFST(10),
KEOMC1.KEOMC2, KCHARS (4) ,KBUFSZ , KBPLOT, KBPSW,

KBARM , KBMODE , KHLENH , KHEADH (10) , KHLENT, KHEADT (10) ,KCONTH,
KCONTT, KENDH KENDT, KNXNOH, KNXMTH(20) ,KNXNOT, KNXMTT(20),
KMASTH . KMASTT, KBYTEH, KBYTET, KPACKH , KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH,KEOMT,KEOFT

COMMON /COMRAY/ JCODE(256)

DIMENSION IHEADT(1),IHEADH(1)

JCODE(2)=79

JCODE(3)=72

KHLENH=MINO(20,MAX0(0, THLENH))

IF (KHLENH.EQ.0) GO TO 20

DO 10 I=1,KHLENH

KHEADH(I)=THEADH(I)

KHLENT=MINO(20,MAX0(O, IHLENT))

IF (KHLENT.EQ.O0) GO TO 40

DO 30 I=1,KHLENT

KHEADT (I)=THEADT(I)

CALL INTRAY (IHLENT,IHEADT,LEN1,JCODE(4))

CALL INTRAY (IHLENH,IHEADH,LEN2,JCODE(LEN1+4))

CALL STOUT (LEN1+LEN2+3,JCODE)

RETURN

END

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-31

EXAMPLES OF CODE

[N NeNe!

[eNe]

[eNeNe]

[eoNeNe RS}

---------- SUBROUTINE--BLINE---

SUBROUTINE BLINE (ILENTH)
* BLINE SETS THE BLOCK LINE LENGTH
* ILENTH - BLOCK LINE LENGTH
¥ JCODE -~ COMMAND ARRAY
* LEN - LENGTH OF ILENTH AS PACKED INTEGER

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD,KPRLEN,KPSTRG(10),KEOFLN,KEOFST(10),

KEOMC1,KEOMC2, KCHARS (4) ,KBUFSZ , KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH (10) ,KHLENT, KHEADT (10) , KCONTH,
KCONTT, KENDH, KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT (20) ,
KMASTH, KMASTT, KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH, KEOMH, KEOFH, KEOMT, KEQF T

COMMON /COMRAY/ JCODE (256)

JCODE(2)=79

JCODE(3)=76

CALL INTPAK (ILENTH,LEN,JCODE (4))

CALL STOUT (LEN+3,JCODE)

KBLINE=MINO(256,MAX0(50, ILENTH))

RETURN

END

Re Ro Ro Ro Re Qo

---------- SUBROUTINE--ECHO~--

SUBROUTINE ECHO (IECHO)
* ECHO TURNS THE TERMINAL ECHO ON OR OFF
* TECHO - O FOR OFF, 1 FOR ON
COMMON /COMRAY/ JCODE(256)
JCODE(2)=75
JCODE(3)=69
CALL INTPAK (IECHO,LEN,JCODE(4))
CALL STOUT (LEN+3,JCODE)
RETURN
END

----------- SUBROUTINE--FLAG---

SUBROUTINE FLAG (IFLAG)
* FLAG SETS THE FLAGGING MODE AT THE TERMINAL
* IMODE - FLAGGING MODE [0,5]
*¥ JCODE - COMMAND ARRAY
* LEN - IMODE AS PACKED INTEGER
COMMON /COMRAY/ JCODE(256)
JCODE (2)=78
JCODE(3)=70
CALL INTPAK (IFLAG,LEN,JCODE(4))
CALL STOUT (LEN+3,JCODE)
RETURN
END

C-32 @

4114 HOST PROGRAMMER'S

[oNeNe]

OO0

OO0

OMOO

OO0

L N B

W e W XK

E N I

________ SUBROUTINE--XMTLMT-=~

SUBROUTINE XMTLMT (LIMIT)
XMTLMT SETS THE TERMINAL-TO-HOST TRANSMIT LIMIT
LIMIT - BAUD RATE LIMIT [110,19200]
JCODE - COMMAND ARRAY
LEN - LENGTH OF LIMIT AS PACKED INTEGER
COMMON /COMRAY/ JCCDE(256)
JCODE(2)=78
JCODE(3)=76
CALL INTPAK (LIMIT,LEN,JCODE(4))
CALL STOUT (LEN+3,JCOCDE)
RETURN
END

........ SUBROUTINE--BREAKT~--

SUBROUTINE BREAKT (IDELAY)
BREAKT SETS THE TERMINALS BREAK TIME DELAY
IDELAY - BREAK DELAY IN MILLISECONDS
JCODE - COMMAND ARRAY
LEN - LEN OF IDELAY AS PACKED INTEGER

COMMON /COMRAY/ JCODE(256)

JCODE(2)=78

JCODE(3)=75

CALL INTPAK (IDELAY,LEN,JCODE(4))

CALL STOUT (LEN+3,JCODE)

RETURN

END

-------- SUBROUTINE--PROMPT---

SUBROUTINE PROMPT (IONOFF)
PROMPT TURNS TERMINAL PROMPT MODE ON AND OFF
IONOFF - PROMT MODE ON/OFF [0,2]
JCODE -~ COMMAND ARRAY
LEN - LENGTH OF IONOFF AS PACKED INTEGER

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KDELOY,KPRMOD, KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),

KEOMC1,KEOMC2,KCHARS(4),KBUFSZ,KBPLOT, KBPSW,

Re Ro Ro Qo Ro Qo

KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH, KEOMT,KEOFT
COMMON /COMRAY/ JCODE(256)
JCODE(2)=78
JCODE(3)=77
CALL INTPAK(IONOFF,LEN,JCCDE(4))
CALL STOUT(LEN+3,JCODE)
KPRMOD=IONOFF
RETURN
END

4114 HOST PROGRAMMER'S @

KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT ,KHEADT (10) ,KCONTH,
KCONTT,KENDH, KENDT,KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, KPACKT,KBLENH, KBLENT,

EXAMPLES OF CODE

C-33

EXAMPLES OF CODE

Commnmmmee SUBROUTINE--EOMCHR~--

(@]

OO0
W, oK ok K K X

SUBROUTINE EOMCHR (ICHAR1,ICHAR2)

ECMCHR SETS THE TERMINAL EOM CHARACTERS

IC
IC
JC
LE
LE

Ro Ro Ro RO RO R

HAR1 - FIRST EOM CHARACTER

HARZ2 - SECOND EOM CHARACTER

ODE - COMMAND ARRAY

N1 - LENGTH OF ICHAR1 AS PACKED INTEGER
N2 - LENGTH OF ICHAR2 AS PACKED INTEGER

COMMON /CCMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KDELOQY, KPRMCD KPRLEN, KPSTRG(10) KEOFLN KEOFST(10),
KEOMC1,KEOMC?2 KCHAR°(U) KBUFSZ KBPLOT, KBPSW
KBARM, KB“ODE KHLENH KHEAPH(10) KHLENT KHEADT(10) KCONTH,
KCONTT KENDH, KENDT, KNXNOH KNXMTH(20) KNXNOT KNXMTT(ZO)
KMASTH, KMASTT KBYTFH KBYTFT KPACKH, KPACKT KRirNH KRIFMT
KBLINE,KBLOKH,KEOPH, KEOMH KEOFH KEOMT KFOFT

COMMON /COMRAY/ JCODE(256)

JCODE(2)=78

JCODE (3)=67

CALL INTPAK (ICHAR1,LEN1,JCODE(4))

CALL INTPAK (ICHAR2,LEN2,JCODE(LEN1+4))

CALL STOUT (LEN1+LEN2+3,JCODE)

KEOMC1=ICHAR1

KEOMC2=ICHAR?2

RETURN
END
C
Commmmmeee - SUBROUTINE--XMTDLY~---
C
SUBROUTINE XMTDLY (IMSEC)
C * XMTDLY SETS THE TERMINAL TRANSMIT DELAY TN MILLISECCNDS
C * IMSEC - MILLISECCNDS OF DELAY
C * JCODE - COMMAND ARRAY
C * LEN - LENGTH OF IMSEC AS PACKED INTEGER

C-34

COMMON /COMRAY/ JCODE(256)
JCODE(2)=78

JCODE(3)=68

CALL INTPAK (IMSEC,LEMN,JCODE(4))
CALL STOUT (LEN+3,JCODE)

RETURN

END

4114 HOST PROGRAMMER'S

OO

aoOoOaaon
WO M W N

100

(e NaNe!

aOOO0n
L B

[eNeoKe!

[eEeEeNe!
* oK kW

________ SUBROUTINE--PSTRNG---

SUBROUTINE PSTRNG (NUM,IARRAY)

PSTRNG SETS THE TERMINAL'S PROMPT STRING

NUM - NUMBER OF CHARACTERS IN THE PROMPT STRING

TARRAY - ARRAY CONTAINING ADE OF PROMPT STRING

JCODE COMMAND ARRAY
LEN - LENGTH OF PROMPT STRING AS PACKED INTEGERS

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KDELOY,KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS (4) ,KBUFSZ,KBPLOT,KBPSW,

KBARM, KBMODE , KHLENH, KHEADH (10) ,KHLENT ,KHEADT(10) ,KCONTH,
KCONTT,KENDH, KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET,KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH,KEOMT,KEOFT

COMMCN /COMRAY/ JCODE(256)

DIMENSION IARRAY(1)

JCODE(2)=78

JCODE(3)=83

CALL INTRAY (NUM,IARRAY,LEN,JCODE(4))

CALL STOUT {(LEN+3,JCODE}
KPRLEN=MINO(10,MAXO(NUM,0))

IF (KPRLEN.EQ.C) RETURN

DO 100 I=1,KPRLEN

KPSTRG(I)=TARRAY(I)

CONTINUE

RETURN

END

[}

Ro Qo Ro e Re RO

-------- SUBRCUTINE-~EOLSTG-=--

SUBROUTINE EOLSTG (NUM,ICHAR)
EOLSTG SETS THE TERMINAL END-OF-LINE STRING
NUM - NUMBER OF CHARACTERS IN THE EOL SEQUENCE (TERM-STRING)
ICHAR - ARRAY HOLDING ADE OF EOL SEQUENCE (...)
JCODE - CCMMAND ARRAY
LEN - LENGTH OF EOL SEQUENCE AS PACKED INTEGERS
COMMON /COMRAY/ JCODE(256)
JCODE(2)=78
JCODE (3)=84
CALL INTRAY (NUM,ICHAR,LEN,JCODE(4))
CALL STOUT (LEN+3,JCODE)
RETURN
END

-------- SUBROUTINE--BYPCAN---

SUBROUTINE BYPCAN (ICHAR)
BYPCAN SETS THE TERMINAL'S BYPASS CANCEL CHARACTER
ICHAR - BYPASS CANCEL CHARACTER
JCODE - COMMAND ARRAY
LEN - LENGTH OF ICHAR AS PACKED INTEGER
COMMON /COMRAY/ JCODE(256)
JCODE(2)=78
JCODE(3)=85
CALL INTPAK (ICHAR,LEN,JCODE(4))
CALL STOUT (LEN+3,JCODE)
RETURN
END

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-356

EXAMPLES OF CODE

Commmmm e SUBROUTINE--QUEUES~--

aooaon

SUBRCUTINE QUEUES (IBYTE)

* QUEUES SETS THE TERMINAL'S INPUT QUEUESIZE
¥ IBYTE - SIZE OF QUEUE IN BYTES

¥ JCODE - COCMMAND ARRAY

* LEN - LENGTH OF IBYTE AS PACKED INTEGER

COMMCN /COMRAY/ JCODE(256)
JCODE(2)=78

JCODE(3)=81

CALL INTPAK (IBYTE,LEN,JCODE(4))
CALL STOUT (LEN+3,JCODE)

RETURN

END

Commmmmee - SUBROUTINE--EOFSTG---

Ro RO Qo Ro Ro Ro

SUBROUTINE EOFSTG (NUM,IARRAY)

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KDELOY,KPRMCOD, KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS(4) ,KBUFSZ,KBPLOT, KBPSW,
KBARM,KBMODE , KHLENH, KHEADH(10) ,KHLENT,KHEADT(10) ,KCONTH,
KCONTT,KENDH, KENDT ,KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH, KEOMT,KEOFT

COMMON /COMRAY/ JCODE(256)

DIMENSION IARRAY(1)

JCODE(2)=78

JCODE(3)=69

CALL INTRAY (NUM,IARRAY,LEN,JCODE(Y4))

CALL STOUT (LEN+3,JCODE)

KEOFLN=MINO(10,MAXO(NUM,0))

IF (KEOFLN.EQ.O0) RETURN

DO 100 I=1,KEOQFLN

KEOFST(I)=IARRAY(I)

CONTINUE

RETURN

END

Commmmmeaae SUBROUTINE--IGNDEL---

C-36

o Re Ro Qo Qo Ro

SUBROUTINE IGNDEL (IGNORE)

CCMMON /COMM/ KOUTPT,KOUTBF(512) ,KINEND,KINPT,KINBUF(512),
KRESLU,KDELOY,KPRMOD, KPRLEN, KPSTRG(10) ,KEOFLN,KEQFST(10),
KEOMC1,KEOMC2,KCHARS(4) ,KBUFSZ,KBPLOT,KBPSW,
KBARM,KBMODE, KHLENH, KHEADH(10) ,KHLEMNT, "11EADT (10) ,KCONTH,
KCONTT,KENDH,KENDT, KNXNOH VMY1TH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH, KPACKT,KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH, KEOMT,KECFT

COMMCN /COMRAY/ JCODE(256)

JCODE(2)=75

JCODE(3)=73

CALL INTPAK (IGNORE,LEN,JCODE(4))

CALL STOUT (LEN+3,JCODE)

KDELOY=MINO(1,MAXO(0, IGNORE))

RETURN

END

@ 4114 HOST PROGRAMMER'S

Commmmmmm== SUBROUTINE--LINLEN-~--

SUBROUTINE LINLEN (ILEN)
C * LINLEN SENDS THE SET=- MAX-LINE—LENGTH CCMMAND
COMMON /COMRAY/ JCODE(256)
JCODE (2)=73
JCODE(3)=76
CALL INTPAK (ILEN,JLEN,JCODE(4))
CALL STOUT (JLEN+3,JCCDE)

RETURN

END
C
Crmmmmmm = SUBROUTINE--REOMF---
C

SUBRCUTINE REOMF (IREOMF)
C * REOMF SENDS SET-REPORT-EOM-FREQUENCY COMMAND
COMMON /COMRAY/ JCODE(256)
JCODE(2)=73
JCODE(3)=77
CALL INTPAK (IREOMF,JLEN,JCODE(4))
CALL STOUT (JLEN+3,JCCDE)

RETURN
END
C
Commmmmmmee SUBROUTINE--RESLUT=--
C
SUBROUTINE RESLUT (IRESLU)
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
& KRESLU,KDELOY, KPRMOD KPRLEN, KPSTRG(10) KEOFLN KEOFST(10),
& KEOMC1,KEOMC2, KCHARS(H) KBUFSZ KBPLOT, KBPSW
& KBARM, KBMODE KHLENH KHEADH(10) KHLENT, KHEADT(10) KCONTH,
& KCONTT KENDH, KENDT, KNXNOH KNXMTH(ZO) KNXNOT KNXMTT(ZO),
& KMASTH, KMASTT KBYTEH KBYTET KPACKH, KPACKT KBLENH KBLENT,
& KBLINE,KBLOKH,KEOPH, KEOMH KEOFH KEOMT KEOFT
KRESLU:12
IF (IRESLU.LT.12) KRESLU=10
RETURN
END
C :
Commmmmmm SUBROUTINE--EMPTIN--
C

SUBROUTINE EMPTIN
C * EMPTIN ZEROES THE INPUT BUFFER
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
& KRESLU,KIGDEL, KPRMOD KPRLEN, KPSTRG(10) KEOFLN KEOFST(10),

& KEOMC1,KEOMC2, KCHARS(U) KBUFSZ KBPLOT, KBPSW
& KBARM, KBMODE KHLENH KHEADH(10) KHLENT, KHEADT(10) KCONTH,
& KCONTT KENDH, KENDT, KNXNOH KNXMTH(ZO) KNXNOT KNXMTT(ZO)
& KMASTH, KMASTT KBYTEH KBYTET KPACKH, KPACKT KBLENH KBLENT
& KBLINE,KBLOKH,KEOPH, KEOMH KEOFH KEOMT KEOFT

KINEND:O

KINPT=0

RETURN

END

4114 HOST PROGRAMMER’'S @

EXAMPLES OF CODE

C-37

EXAMPLES OF CODE

SUBROUTINE STIN (IREQ,IREC,ISTRNG)
STIN RETURNS CHARACTERS FROM ITS INPUT BUFFER, GETTING MORE
INPUT FROM THE TERMINAL IF THE BUFFER IS EMPTY .

IT PADS THE USER ARRAY WITH SPACES IF LESS THAN REQUESTED IS RECEIVED
IREQ - NUMBER OF CHARACTERS REQUESTED
IREC - NUMBER OF CHARACTERS ACTUALLY RETURNED
ISTRNG - ARRAY FOR RETURNED ADE STRING
KINEND - POINTER TO END OF INPUT IN KINBUF
KINPT - POINTER TO CURRENT POSITION IN KINBUF
KINBUF - INPUT BUFFER
KPRMOD - PROMPT MCDE FLAG: O - OFF, 1 - ON
KPRLEN - LENGTH OF PROMPT STRING
KPSTRG - ARRAY FOR PROMPT STRING
COMMCN /CCOMM/ KOUTFT,KOUTBF(51i2),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD, KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2,KCHARS (4) ,KBUFSZ,KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH (10) ,KHLENT , KHEADT (10) ,KCONTH,
KCONTT,KENDH, KENDT , KNXNOH, KNXMTH(20) ,KNXNOT, KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET, KPACKH, KPACKT , KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH,KECFH, KEOMT, KEOF T
DIMENSION ISTRNG(1)
C * ZERO THE RETURN LENGTH
IREC=0
C * BRANCH IF BUFFER HAS CHARACTERS IN IT
IF (KINEND.GT.0) GC TO 20
C * BRANCH TO GET MORE INPUT VIA BLOCK MODE
IF (KBMODE.EQ.1) GC TO 10
C * DUMP THE OUTPUT BUFFER TO BE SURE COMMANDS ARE SENT
CALL DUMP
C * SIMULATE PROMPT FOR NON-PROMPTING SYSTEMS
C * REMOVE THIS LINE FOR PROMPTING SYSTEMS
IF (KPRMOD.GT.0) CALL ADEOUT (KPRLEN,KPSTRG)
C * GET LINE OF INPUT FROM TERMINAL
CALL ADEIN (KINEND,KINBUF)
KINPT=0
GO TO 20
C * GET INPUT VIA BLOCK MODE
10 KEOMH=1
CALL BLOKIO
KEOMH=0
KINPT=0

oNeoNeoNoNeoloNoNoNoNeoNeNe!
oK ok K K Kk N K K K K K

Re Ro Ro Qo Ro RO

C-38 @ 4114 HOST PROGRAMMER'S

30

190

50
C *

[eNeoNe]

MOVE CHARACTERS FRCM INPUT BUFFER TO USER ARRAY
EXIT IF REQUEST SATISFIED
IF (IREC.GE.IREQ) GO TC 50
CHECK FOR EMPTY BUFFER
IF (KINPT.GE.KINEND) GO TO 30
TREC=IREC+1
KINPT=KINPT+1
ISTRNG(IREC)=KINBUF(KINPT)
GO TO 20
PAD WITH BLANKS
JFIRST=IREC+1
DO 40 I=JFIRST,IREQ
ISTRNG(I)=32
CONTINUE
EXIT IF BUFFER NOT EMPTY
IF (KINPT.LT.KINEND) RETURN
ZERO THE INPUT BUFFER
KINEND=0
KINPT=0
RETURN
END

SUBROUTINE DUMP

DUMP DUMPS THE OUTPUT BUFFER
DIMENSION IDUMMY(1)
CALL STOUT (0, IDUMMY)
RETURN
END

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-39

EXAMPLES OF CODE

OO0

OOO0OOOO0O0O0O00O00

50
60

C-40

WMok K M K K Nk K K K XK

---------- SUBROUTINE--STOUT ----

SUBROQUTINE STOUT (ILEN,ISTRNG)
STOUT IS THE GENERAL OUTPUT ROUTINE WHICH SHOULD BE USED FOR ALL
OUTPUT TO THE 411X TERMINALS
IT BUFFERS OUTPUT, BREAKING THE INPUT STRING INTO BUFFER-SIZE
CHUNKS IF THE STRING IS TOO LONG
ILEN - NUMBER OF CHARACTERS TO BE TRANSMITTED

ISTRNG - ARRAY HOLDING ADE STRING TO BE TRANSMITTED
JBSIZE - SIZE OF BUFFER (LINESIZE OR BLOCK LENGTH)

JNUM - NUMBER OF CHARACTERS TO BE BUFFERED 'THIS TIME’
JSENT - NUMBER OF CHARACTERS ALREADY MOVED INTO BUFFER
KOUTBF - OUTPUT BUFFER

KOUTPT - POINTER TO END OF OUTPUT BUFFER
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL, KPRMOD, KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2', KCHARS(4) ,KBUFSZ ,KBPLOT,KBPSW,
KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT,KHEADT (10) ,KCONTH,
KCONTT,KENDH, KENDT, KNXNOH,KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH,KBYTET,KPACKH,KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH, KEOMH,KEOFH,KECMT,KEOF T
DIMENSION ISTRNG(1)
SET NUMBER ALREADY SENT TO ZERO
JSENT=0
DUMP BUFFER IF ILEN IS NOT POSITIVE
IF (ILEN.LE.O) GO TO 40
GET NUMBER TO BUFFER 'THIS TIME'
JNUM=MINO(ILEN-JSENT,KBUFSZ-XOUTPT)
IF BUFFER EMPTY AND IN PLOTTER BLOCK MODE, PUT BLOCK START IN
IF (KOUTPT.GT.O0 .OR. KBPSW.NE.1) GO TO 20
KOUTPT=3
KOUTBF(1)=27
KOUTBF(2)=65
KOUTBF(3)=40
INSERT CHARACTERS INTO BUFFER
DO 30 I=1,JNUM
KOUTPT=KOUTPT+1
JSENT=JSENT+1
KOUTBF(KOUTPT)=ISTRNG(JSENT)
CONTINUE
IF BUFFER NOT FULL, EXIT
IF (KOUTPT.LT.KBUFSZ) RETURN
DUMP THE BUFFER
SEE IF IN PLOTTER BLOCK MODE WITH SOMETHING IN BUFFER
IF (KBPSW.NE.1 .OR. KOUTPT.EQ.0) GO TO 80
COMPUTE CHECKSUM, PUT END-OF-BLOCK SEQUENCE INTO BUFFER
JCHKSM=1T3
DO 50 I=z4,KOUTPT
IF (KOUTBF(I).EQ.22) GO TO 50
JCHKSM=JCHKSM+KOUTBF (1)
CONTINUE
IF (JCHKSM.LT.4096) GO TO 70
JCHKSM=JCHKSM-4095

Qe Ro Re Re Re 20

@ 4114 HOST PROGRAMMER'S

70

GO TO 60
KOUTPT=KOUTPT+1
KOUTBF(KOQUTPT)=27
KOUTPT=KOUTPT+1
KOUTBF(KOUTPT)=65
KOUTPT=KOUTPT+1
KOUTBF(KOQUTPT)=41
KOUTPT=KOUTPT+1
CALL KIN2AS (JCHKSM, 4,0, JLEN, KOUTBF(KOUTPT))
KOUTPT=KOUTPT+JLEN
KOUTBF(KOUTPT)=13
KEOMH=1

C * BRANCH FOR BLOCK MODE

80

90

IF (XBMODE.EQ.1) GO TO 90

IF (KOUTPT.GT.O) CALL ADEOUT (KOUTPT, KOUTBF)
IF (KBPSW.EQ.1) CALL ADEIN (KINEND, KINBUF)
GO TO 100

CALL BLOKIO

C * IF IN PLOTTER BLOCK MODE, SEE IF POSITIVE ACKNOWLEDGE

100

110

IF (KBPSW.NE.1) GO TO 120

IF (KINEND.LT.1 .OR. KINEND.GT.2) GO TGO 80
IF (KINBUF(KINEND).EQ.65) GO TO 110
JTRY=JTRY+1

IF (JTRY.LE.3) GO TO 80

KEOMH=0

KINEND=0

KINPT=0

C * BUFFER EMPTY NOW

120

KOUTPT=0
KBPSW=KBPLOT

C * DO REST OF STRING IF THERE IS SOME LEFT

IF (JSENT.LT.ILEN) GO TO 10
RETURN
END

4114 HOST PROGRAMMER’S @

EXAMPLES OF CODE

C-41

EXAMPLES OF CODE

---------- SUBROUTINE--BLOKIO~-~

(eNeXe!

SUBROUTINE BLOKIO
BLOKIO CALLS BLKOUT AND BLKIN TO PERFORM ONE BLOCK 'EXCHANGE'

JNACK NEGATIVE ACKNOWLEDGE INDICATOR

JREPET - REPETITION COUNTER

KEOPH END-OF-PROTOCOL INDICATOR

KBLOKH - BLOCK COUNTER (0 OR 1)

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),

KRESLU, KIGDEL,KPRMOD, KPRLEN, KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2, KCHARS (4) ,KBUFSZ ,KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT , KHEADT (10) ,KCONTH,
KCONTT,KENDH,KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT , KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH, KEOMH, KEOFH, KEOMT,KEOF T

C * INITIALIZE REPETITION COUNTER AND ACKNOWLEDGE FLAG

JREPET=0
JNACK=0
C * OUTPUT BLOCK TO TERMINAL
10 CALL BLKOUT (JREPET)
JREPET=JREPET+1
C * GET BLOCK FROM TERMINAL UNLESS NO-ACK END OF PROTOCOL
IF (KEOPH.NE.3) CALL BLKIN (JNACK)
C * IF FOURTH REPETITION, ASSUME OKAY
TF (JREPET.EQ.4) GO TO 30
C * IF NEGATIVE ACKNOWLEDGE, RETRANSMIT
IF (JNACK.EQ.1) GO TO 10
C * FLIP BLOCK CCUNT, ZERO OUTPUT BUFFER
20 KBLOKH=1-KBLOKH
KOUTPT=0
RETURN
C * GET OUT OF BLOCK MODE
30 KBMODE =0
CALL ADEOUT (KOUTPT,KOUTBF)
KOUTPT=0
KINEND=0
RETURN
END

AOO0O0
*’ ok K K K

Ro Re Qo Qo R RO

c42 @ 4114 HOST PROGRAMMER'S

C¥ COMPUTE JCTL(1) BLOCK COUNT,

_______ SUBRCUTINE--BLKOUT ---

SUBROUTINE BLKOUT (IREPET)

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL, KPRMOD KPRLEN, KPSTRG(10) KEOFLN KEOFST(10),
KEOMC1,KEOMCZ2, KCHARS(U) KBUFSZ KBPLOT, KBPSW
KBARM, KBMODE KHLENH KHEADH(10) KHLENT, KHEADT(10) KCONTH,
KCONTT KENDH, KENDT, KNXNOH KNXMTH(ZO) KNXNOT KNXMTT(ZO)
KMASTH, KMASTT KBYTEH KBYTET KPACKH, KPACKT KBLENH KBLEhT
KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH,KEOMT,KEOFT

DIMENSION JLINE(256),JBUF(684),JCTL(H4)

Re Qo Qo Qo Ro Qo

DATA JCTL(2)/0/
IF (IREPET.GT.0) GO TO 15

C* QOF FILE, END OF MESSAGE

JCTL(T) =KBLOKH+KEOPH+KEOFH*32+KEOMH*64

C * COMPUTE CHECKSUM ON KOUTBF AND THE
C ¥ FIRST TWO CONTROL BYTES.

CALL CHKSUM (KOUTPT,KOUTBF,JCTL,KBYTEH, JCHK1, JCHK2)

JCTL(3)=JCHK1
JCTL(4)=JCHK2
CALL PACKER (JCTL,JBUFLN, JBUF)

C* PUT BLOCK HEADER IN OUTPUT LINE

10

DO 10 I=1,KHLENH
JLINE(I)=KHEADH(I)
CONTINUE

C * BUILD AND SEND LINES TO THE TERMINAL

15
20

JBUFPT=0
JLINPT=KHLENH

C * GET NEXT CHARACTER FROM PACKED BUFFER

30

JBUFPT=JBUFPT+1

C *¥ SEE IF PACKED BUFFER IS EMPTY

C * SUBSTITUTE NON-TRANSMITTABLE CHARACTERS IF NEEDED

40

50

IF (JBUFPT.GT.JBUFLN) GO TO 80
JCHAR=JBUF (JBUFPT)

JCNTR=0

JCNTR=JCNTR+1

IF (JCNTR.GT.KNXNOH) GO TO 50
IF (JCHAR.NE.KNXMTH(JCNTR)) GO TO 40
JLINPT=JLINPT+1

JLINE(JLINPT) = KMASTH
JLINPT=JLINPT+1
JLINE(JLINPT)=64+JCNTR

GO TO 60

JLINPT=JLINPT+1
JLINE(JLINPT)=JCHAR

C * TEST FOR END OF PACKED CHARACTERS

60

IF (JBUFPT.GE.JBUFLN) GO TO 80

C * TEST FOR END OF LINE

4114 HOST PROGRAMMER'S

IF (JLINPT.GE.KBLINE-2) GO TO 70

END PROTOCOL, END

EXAMPLES OF CODE

c43

EXAMPLES OF CODE

C*¥ GO GET ANOTHER CHAR

GO TO 30
C * PUT IN CONTINUE CHAR AND SEND LINE TO TERMINAL
70 JLTNPT=JLINPT+1

JLINE(JLINPT)=KCONTH

CALL ADEOUT (JLINPT,JLINE)

GO TO 20
C ¥ PUT IN END CHAR AND SEND LINE TO TERMINAL
80 JLINPT=JLINPT+1

JLINE(JLINPT)=KENDH

CALL. ADEOUT (JLINPT,JLINE)

RETURN

END
C
R e SUBROUTINE--PACKER---
C

SUBROUTINE PACKER (ICTL,ITNUM, ITBUF)

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),

KRESLU,KIGDEL,KPRMOD, KPRLEN, KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2, KCHARS (4) ,KBUFSZ ,KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT, KHEADT (10) ,KCCNTH,
KCONTT,KENDH,KENDT , KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET,KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH, KEOMT, KEOF T

DIMENSION ICTL(1),ITBUF(1)

Ro Ro Qo RO Qo Qo

C * FIRST, SEE IF NO PACKING IS NEEDED, IF SO BRANCH TO EASY PART

IF (KBYTEH.EQ.KPACKH) GO TO 60
C * INITIALIZE VARIABLES
ITNUM=0
JRPOW=1
JREGSR=0
JFCNT=0
JCCNT=0
JOFSET=0
IF (KPACKH.EQ.64) JOFSET=32
C ¥ GET A BYTE TO PUT INTO REGISTER
10 JFCNT=JFCNT+1
IF (JFCNT.GT.KOUTPT) GO TO 20
C * GET RYTE FROM 'FROM' BUFFER
JFEBYTE=KOUTBF(JFCNT)
GO TO 30
C * GET BYTE FROM CONTROL BYTE ARRAY
20 JCCNT=JCCNT+1
IF (JCCNT.GT.4) GO TO 50
JFBYTE=ICTL(JCCNT)
C * SHIFT REGISTER BY 'FRCM POWER', ADD 'FROM BYTE'
30 JREGSR=JREGSR*KBYTEH+JFBYTE
JRPOW=JRPOW*KBYTEH
C * SEE IF ENOUGH IN REGISTER, IF NOT GET ANOTHER 'FROM' BYTE
Lo IF (JRPOW.LT.KPACKH) GO TO 10
C * COMPUTE 'TO' SHIFT FACTOR
JSHFT=JRPOW/XPACKH
C * GET 'TO' BYTE
JTBYTE=JREGSR/JSHFT
C * RESET REGISTER
JREGSR=JREGSR-JTBYTE*JSHFT
JRPOW=JSHFT
C * PUT 'TO' BYTE INTO BUFFER
ITNUM=ITNUM+1
ITBUF(ITNUM)=JTBYTE+JOFSET
GO TC 40

C44 @

4114 HOST PROGRAMMER'S

C * ALL DONE WITH DATA, NOW PAD LAST BYTE IF NECCESSARY

50 IF (JRPOW.EQ.1) RETURN
JREGSR=JREGSR*KPACKH/JR POW
JRPOW=KPACKH
GO TO 40

C * 'EASY PART' - JUST MOVE BYTES STRAIGHT ACROSS

60 IF (KOUTPT.LE.O) GO TO 80
DO 70 I=1,KOUTPT
ITBUF (I)=KOUTBF(I)

70 CONTINUE

80 DO 90 I=1,4
J=KOUTPT+I
ITBUF(J)=ICTL(I)

90 CONTINUE
ITNUM=KOUTPT+!

RETURN
END

c

Commmmmmmm SUBROUTINE--BLKIN---

c
SUBROUTINE BLKIN (INACK)

C * BLKIN GETS A BLOCK FROM THE TERMINAL

COMMON /COMM/ KOUTPT,KOUTBF(512) ,KINEND,KINPT,KINBUF(512

),
KRESLU,KIGDEL,KPRMOD,KPRLEN,KPSTRG(10) ,KEOFLN,KEOFST(10),

KEOMC1,KEOMC2,KCHARS (4) ,KBUFSZ ,KBFLIM,KBPLOT,

KBARM, KBMODE , KHLENH, KHEADH (10) ,KHLENT , KHEADT(10) ,KCONTH,
KCONTT, KENDH , KENDT , KNXNOH , KNXMTH(20) ,KNXNOT,KNXMTT (20),
KMASTH, KMASTT ,KBYTEH, KBYTET , KPACKH, KPACKT , KBLENH, KBLENT,

Ro RO Ro Qo Ro Qo

KBLINE,KBLOKH,KEOPH,KEOMH,KEOFH, KEOMT,KEOFT

DIMENSION JBUF(684),JLINE(256),JCTL(4)

DATA JCTL(2)/0/

C * INITIALIZE NUMBER OF PACKED CHARACTERS RECEIVED
JNUM=0

C *®¥ INITIALIZE MASTER CHARACTER FOUND FLAG
JMASTR=0

C ¥ GET A LINE OF INPUT FROM THE TERMINAL

C * SIMULATE PROMPT MODE IF TURNED ON

10 IF (KPRMOD.GT.O) CALL ADEOUT (KPRLEN,KPSTRG)
CALL ADEIN(JLEN,JLINE)

C * IF WRONG LAST CHARACTER, NACK BLOCK

IF (JLINE(JLEN).NE.KENDT .AND. JLINE(JLEN).NE.KCONT

C * SCAN LINE FOR START OF HEADER
JLINPT=0
20 JLINPT=JLINPT+1
IF (JLINPT.GE.JLEN) GO TO 90
IF (JLINE(JLINPT).NE.KHEADT(1)) GO TO 20
C *¥ SCAN FOR REST OF HEADER
JHEDPT=1
30 JHEDPT=JHEDPT+1
IF (JHEDPT.GT.KHLENT) GO TO 35
JLINPT=JLINPT+1 ~
IF (JLINE(JLINPT).NE.KHEADT(JHEDPT)) GO TO 90
GO TO 30

4114 HOST PROGRAMMER'S REV, JUL 1981

m
i

EXAMPLES OF CODE

0 90

C-45

- EXAMPLES OF CODE

C * FILL TEMP BUFFER, TOTAL IN JNUM, DO NOT INCLUDE LAST CHAR
C *¥ IF MASTER CHAR DETECTED, THEN DO SUBSTITUTION
35 IF (JMASTR.EQ.1) GO TO 50
40 JLINPT=JLINPT+1

IF (JLINPT.GE.JLEN) GO TO 60

IF (JLINE(JLINPT).EQ.KMASTT) GO TO 50

JNUM=JNUM+1

JBUF (JNUM) =JLINE (JLINPT)

GO TO 40
50 JMASTR=1

JLINPT=JLINPT+1

IF (JLINPT.GE.JLEN) GO TO 10

JSUB=JLINE(JLINPT)-6U

JNUM=JNUM+1

JBUF (JNUM)=KNXMTT (JSUB)

JMASTR=0

GO TO 4o
C *¥ GET ANOTHER LINE IF THIS WAS NOT THE LAST
60 IF (JLINE(JLEN).EQ.KCONTT) GO TO 10
C ¥ UNPACK THE BUFFER, INTO STIN BUFFER IF EOM BIT SET

IF (KEOMH.NE.1) GO TO 70

CALL UNPACK (JNUM,JBUF,KINEND,KINBUF,JCTL)

IF (MOD(JCTL(1),4).NE.KBLOKH+KEOPH) GO TO 90

CALL CHKSUM (KINEND,KINBUF,JCTL,KBYTET,JCHK1,JCHK2)
C * STRIP FINAL EOM CHAR

IF (KINBUF(KINEND).EQ.KEOMC1 .OR. KINBUF(KINEND).EQ.KEOMC2)

& KINEND=KINEND-1

GO TO 80
C * IF EOM IS NOT SET, THEN PUT RETURNING EMPTY BLOCK IN JLINE
70 CALL UNPACK (JNUM,JBUF,JLEN,JLINE,JCTL)

IF (MOD(JCTL(1),4).NE.KBLOKH+KEOPH) GO TO 90

CALL CHKSUM (JLEN,JLINE,JCTL,KBYTET,JCHK1,JCHK2)
80 IF (JCHK1.NE.JCTL(3) .OR. JCHK2.NE.JCTL(4)) GO TO 90
C * POSITIVE ACKNOWLEDGE

INACK=0

KEOMT=JCTL(1)/64

KEOFT=JCTL(1)/32-KEOMT¥2

RETURN
C * NEGATIVE ACKNOWLEDGE
90 INACK=1

RETURN

END

C-46 REV, JUL 1981 4114 HOST PROGRAMMER'S

—_ O

20

———————— SUBROUTINE--UNPACK=---

SUBROUTINE UNPACK (IFNUM,IFBUF,ITNUM,ITBUF,ICTL)

COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),

KRESLU,KIGDEL, KPRMOD, KPRLEN, KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KECMC2,KCHARS (4) ,KBUFSZ ,KBPLOT,KBPSW,
KBARM, KBMODE , KHLENH, KHEADH(10) ,KHLENT, KHEADT (10) ,KCONTH,
KCONTT, KENDH, KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH, KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT , KBLENH, KBLENT,
KBLINE,KBLOKH,KECPH, KEOMH, KEOFH, KEOMT, KEOF T

DIMENSION IFBUF(1),ITBUF(1),ICTL(1)

SEE IF PACKING NEEDED, IF NOT BRANCH TO 'EASY WAY'

IF (KBYTET.EQ.KPACKT) GO TO 70
INITIALIZE VARIABLES
JOVER=0 -
ITNUM=0
JRPOW=1
JREGSR=0
JFCNT=0
JOFSET=0
IF (KPACKT.EQ.64) JOFSET=32
GET A BYTE TC PUT INTO THE REGISTER
JFCNT=JFCNT+1
IF (JFCNT.GT.IFNUM) GO TO 40
GET NEXT 'FROM' BYTE
JFBYTE=IFBUF(JFCNT)-JOFSET
SHIFT REGISTER BY 'FROM POWER', ADD 'FROM BYTE!
JREGSR=JREGSR*KPACKT+JFBYTE
JRPOW=JRPOW¥KPACKT
SEE IF ENOUGH IN REGISTER, IF NOT GET ANOTHER 'FROM' BYTE
IF (JRPOW.LT.KBYTET) GO TO 10
DETERMINE 'TO' SHIFT FACTOR
JSHFT=JRPOW/KBYTET
GET 'TO' CHARACTER FROM REGISTER
JTBYTE=JREGSR/JSHFT
RESET REGISTER
JREGSR=JREGSR-J
JRPOW=JSHFT
PUT 'TO' BYTE INTO SYSTEM INPUT BUFFER OR CONTROL BYTE ARRAY
IF (ITNUM.LT.KBLENT-4) GO TO 30
CONTROL BYTE ARRAY (OVERFLOW CONDITION)
JOVER=JOVER+1
ICTL(JOVER)=JTBYTE
GO TO 20
SYSTEM INPUT BUFFER
ITNUM=ITNUM+1
ITBUF (ITNUM)=JTBYTE
GO TO 20

RO RO RO RO RO R

TRVTC¥® 1QuUCT
iDr1L vonn

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

c47

EXAMPLES OF CODE

cC *
40

50

60

C *
70

80
90

100

10
Cc *
20

30

C-48

UNPACKING DONE, SHIFT FINAL CHARS INTO CONTROL BYTES

IF (JOVER.EQ.4) RETURM
JCPT=4
IF (JOVER.EQ.0) GO TO 60
ICTL(JCPT)=ICTL(JOVER)
JOVER=JOVER-1
JCPT=JCPT-1
IF (JOVER.GT.0) GO TO 50
IF (JCPT .EQ. O) RETURN
ICTL(JCPT)=ITBUF (ITNUM)
JCPT=JCPT-1
ITNUM=ITNUM-1
GO TO 60

THE 'EASY WAY'
ITNUM=0
IF (KEOMH.EQ.0) GO TC 90
ITNUM=IFNUM=4
IF (ITNUM.LE.0) GO TO 90
DO 80 I=1,ITNUM
ITBUF(I)=IFBUF(I)
CONTINUE
DO 100 I=1,U
J=ITNUM+I
ICTL(I)=IFBUF(J)
CONTINUE
RETURN
END

------- SUBROUTINE--CHKSUM=-=~-

SUBROUTINE CHKSUM (ILEN,IARRAY,ICTL,IPOWER,ICHK1,ICHK?2)
CHKSUM COMPUTES THE CHECKSUM OF THE INPUT ARRAYS

DIMENSION TARRAY(1),ICTL(1)
INITIALIZE CHECKSUM ACCUMULATORS
MAXBYT=IPOWER-1
ICHK1=MAXBYT
ICHK2=MAXBYT
DO MAIN ARRAY IF NOT EMPTY
IF (ILEN.LE.O) GO TO 20
DO 10 I=1,ILEN
ICHK1=JADRND(ICHK1, IARRAY(I),MAXBYT)
ICHK2=JADRND(ICHK2, ICHK1,MAXBYT)
CONTINUE
DO FIRST TWO CONTROL BYTES
DO 30 I=1,2
TCHK1=JADRND(TCHK1, ICTL(I),MAXBYT)
ICHK2=JADRND(ICHK2, ICHK1,MAXBYT)
CONTINUE
RETURN CHECKSUM CHARACTERS
ICHK1=MAXBYT-ICHK1-ICHK2
IF (ICHK1.LT.1) ICHK1=ICHK1+MAXBYT
RETURN
END

_______ FUNCTION--JADRND---

FUNCTION JADRND (INUM1,INUM2,MAXBYT)

JTEMP=INUM1+INUM2
IF (JTEMP.GT.MAXBYT) JTEMP=JTEMP-M@XBYT

JADRND=JTEMP
RETURN
END

REV, AUG 1882

4114 HOST PROGRAMMER'S

SUBROUTINE RELPAK (RNUM, ILEN, ISTRNG)

C * RELPAK TRANSLATES A REAL NUMBER INTO 411X FORMAT

C * THE MANTISSA IS ALWAYS EITHER O OR FROM 2%*14 TQO 2%¥¥15-1
DIMENSION ISTRNG(1)

C * FIRST BRING THE NUMBER INTOC THE VALID RANGE
SNUM=AMIN1(32767.0,AMAX1(-32767.0, RNUM))

C * SEE IF IT IS NEAR ZERO
IF (ABS(SNUM).LT..0001) GO TO 10

C ® COMPUTE MANTISSA AND EXPONENT USING LOGS
JEXP=IFIX(ALOG(ABS(SNUM))/ALOG(2.})-14
JMANT=IFIX(SNUM*FLOAT(2¥¥(-JEXP)))

GO TO 20
C * NUMBER CONSIDERED TO ZERO
10 JEXP=0

JMANT=0

C * USE INTEGER PACKING ROUTINE TO TRANSLATE
20 CALL INTPAK (JMANT,L1,ISTRNG(1))
CALL INTPAK (JEXP,L2,ISTRNG(L1+1))

ILEN=L1+L2

RETURN

END
c
Covomnmmnn SUBROUTINE--INTRAY--
C

SUBROUTINE INTRAY (LENINT, INTS,LENADE, IADE)
C * INTRAY TRANSLATES AN INTEGER ARRAY INTO 411X FORMAT
DIMENSION INTS(1),IADE(1)
CALL INTPAK (LENINT,LENADE,IADE(1))
IF (LENINT.LE.O) RETURN
DO 10 I=1,LENINT
CALL INTPAK (INTS(I),LEN1,IADE(LENADE+1))
LENADE=LENADE+LEN1
10 CONTINUE

RETURY

END
C .
Commmmmm e SUBROUT INE--ADERAY--
c

SUBROUTINE ADERAY (LEN,IRAY,LENRET,JRAY)
C * ADERAY TRANSLATES AN ADE ARRAY INTO 411X FORMAT

DIMENSION IRAY(1),JRAY(1)

CALL INTPAK (LEN,LENRET,JRAY(1))

IF (LEN.LE.O) RETURN

DO 10 I=1,LEN

LENRET=LENRET+1

JRAY(LENRET)=IRAY(I)
10 CONTINUE

RETURN

END

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

c49

EXAMPLES OF CODE

Commmmmmm e SURRCUTINE-~ADERAY--

SURROUTINE ADERAY (LEN,IRAY,LENRET,JRAY)
C % ADFRAY TRANSLATES AN ADE ARRAY INTO 411X FORMAT
DIMENSTON IRAY(1),JRAY(1)
CALL INTPAK (LEN,LENRET,JRAY(1))
IF (LEN.LE.O) RETURN
DO 10 I=1,LEN
LENRET=LENRET+1
JRAY(LENRET)=IRAY(I)
10 CONTINUE

RETURM

END
C
Cocmmmm o= SUBROUTINE--INTPAK---
C

SUBROUTINE INTPAK (INT,ILEN,ISTRNG)
C * INTPAK TRANSLATES AN INTEGER INTO 411X FORMAT
COMMON /COMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512),
KRESLU,KIGDEL,KPRMOD, KPRLEN, KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1, KEOMC2, KCHARS (4) ,KBUFSZ ,KBPLOT, KBPSW,
KBARM, KBMODE , KHLENH, KHEADH (10) ,KHLENT, KHEADT (10) ,KCONTH,
KCONTT, KENDH, KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT,, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH,KEOMT, KEOF T
DIMENSION ISTRNG(1)
C * INTIALIZE LENGTH OF ARRAY RETURNED
ILEN=0
C * FIRST BRING NUMBER INTO VALID RANGE
JINT=MINO(65535, IABS(INT))
C * COMPUTE THE TWO HI-I'S AND THE LO-I
JHI1=JINT/1024+64
JHI2=MOD(JINT/16,64)+64
JLOI=MOD(JINT, 16)+32
IF (INT.GE.0) JLOI=JLOI+16
C * SEE IF HI-I'S NEEDED
IF (JHI1.NE.64) GO TO 10
IF (JHI2.NE.€U4) GO TO 30
GO TO 50
C * INSERT FIRST HI-I (EXPANDING TOC <ESC><?> IF NEEDED)
10 IF (JHI1.EQ.127 .AND. KIGDEL.EQ.1) GO TO 20
ILEN=1
ISTRNG(1)=JHI1
GO TO 30
20 ILEN=2
ISTRNG(1)=27
ISTRNG(2)=63
C * INSERT SECOND HI-I (EXPANDING TC <ESC><?> IF NEEDED)
30 IF (JHI2.EQ.127 .AND. KIGDEL.EQ.1) GO TO 40
ILEN=ILEN+1
ISTRNG(ILEN)=JHI2
GO TO 50
0 ILEN=ILEN+2
ISTRNG(ILEN-1)=27
ISTRNG(ILEN)=63
C * INSERT LO-I
50 ILEN=ILEN+1
ISTRNG(ILEN)=JLOI
RETURN
END

Re Re Qo Re Qo Re

C-50 @ 4114 HOST PROGRAMMER'S

[oNeNe]

EXAMPLES OF CODE

---------- SUBROUTINE--XYTRN=---

SUBROUTINE XYTRN (IX,IY,LEN,ICHARS)

IX,IY -
LEN -
ICHARS -
JCHARS
KCHARS
KRESLU -
KIGDEL -

COMMON

OO0 0O0O0
ELE I B N R R A

Ro R0 RO RO RO Re

XYTRN TRANSLATES X-Y COORDINATES INTO OPTIMIZED ADE STRING

X,Y COORDINATES TO BE TRANSLATED

LENGTH OF OPTIMIZED STRING <=7

OPTIMIZED STRING ARRAY

LOCAL TRANSLATION ARRAY

COMMON ARRAY TO REMEMBER LAST TRANSLATION (EXCEPT LOX)
RESOLUTION OF TRANSLATION [10,12]

IGNORE DEL (ADE 127) FLAG

/CCMM/ KOUTPT,KOUTBF(512),KINEND,KINPT,KINBUF(512);

KRESLU,KIGDEL,KPRMOD, KPRLEN, KPSTRG(10) ,KEOFLN,KEOFST(10),
KEOMC1,KEOMC2, KCHARS (4) ,KBUFSZ ,KBPLOT,KBPSW,
KBARM,
KCONTT, KENDH, KENDT, KNXNOH, KNXMTH(20) ,KNXNOT,KNXMTT(20),
KMASTH,KMASTT,KBYTEH, KBYTET, KPACKH, KPACKT, KBLENH, KBLENT,
KBLINE,KBLOKH,KEOPH,KEOMH, KEOFH,KEOMT, KEOF T

KBMODE , KHLENH, KHEADH (10) ,KHLENT , KHEADT (10) ,KCONTH,

DIMENSION ICHARS(1),JCHARS(5)
C * FIRST BRING COORDINATES INTO VALID RANGE

JX=MINO(4095,MAX0(0,IX))

JY=MINO

(4095,MAX0(0,1IY})

C *¥ CALCULATE 10-BIT RESOLUTION CHARACTERS
JCHARS(1)=JY/128+32
JCHARS(3)=JY/4-JY/128%32+96
JCHARS(U4)=JX/128+32
JCHARS(5)=JX/U4-JX/128%32+64

C * INITIALIZE ARRAY LENGTH

LEN=0

C * SEE IF HI-Y NEEDED
IF (JCHARS(1).EQ.KCHARS(1)) GO TO 10
C * INSERT HI-Y

LEN=1

ICHARS(1)=JCHARS(1)
KCHARS(1)=JCHARS(1)

*

*

C SEE IF 12-BIT RESOLUTION
10 IF (KRESLU,NE.12) GO TO 20
C

COMPUTE EXTRA-LO-Y

JCHARS(2)=(JY-JY/U¥4)¥U+ (JX-IX/U*4)+06
C *¥ SEE IF EXTRA-LO-Y NEEDED
IF (JCHARS(2).EQ.KCHARS(2)) GO TO 20
C * INSERT EXTRA-LO-Y
LEN=LEN+1
ICHARS(LEN)=JCHARS(2)
KCHARS(2)=JCHARS(2)

GO TO

30

4114 HOST PROGRAMMER'S @ C-51

EXAMPLES OF CODE

C * SEE IF LO-Y NEEDED

20 IF (JCHARS(3).NE.KCHARS(3)) GO TO 30
IF (JCHARS(Y4).EQ.KCHARS(4)) GO TO 50

C * INSERT LO-Y

30 LEN=LEN+1
ICHARS(LEN)=JCHARS(3)
KCHARS(3)=JCHARS(3)

C * EXPAND LO-Y TO <ESC><?> IF NECESSARY
IF (JCHARS(3).NE.127 .OR. KIGDEL.EQ.0) GO TO 40
ICHARS(LEN)=27
LEN=LEN+1
ICHARS(LEN)=63

C * SEE IF HI-X NEEDED

40 IF (JCHARS(4).EQ.KCHARS(4)) GO TO 50
LEN=LEN+1
ICHARS(LEN)=JCHARS(Y4)
KCHARS(4)=JCHARS(4)

L * ALWAYS INCLUDE LO-X

50 LEN=LEN+1
TCHARS(LEN)=JCHARS(5)

RETURN

END
C
Commmmmme- SUBROUTINE--RELUNP--~
C

SUBROUTINE RELUNP (ISTRNG, RELPAR)
C * RELUNP UNPACKS A REAL-REPORT

DIMENSTON ISTRHG(1)

CALL INTUNP (ISTRNG,JMANT)

CALL INTUNP (ISTRNG(4),JEXP)

RELPAR=JMANT*2¥JEXP

RETURN

END
C
Commemmm == SUBRCUTINE--INTUMP---
C

SUBROUTINE INTUNP (ISTRNG,INTPAR)

C * INTUNP UNPACKS AN INT-REPORT
DIMENSION ISTRNG(1)
INTPAR=(ISTRNG(1)-32)%¥1024+(ISTRNG(2)-32)*¥16+MOD(ISTRNG(3),16)
IF (ISTRNG(3).LT.48) INTPAR=-INTPAR

RETURN
END
C
Commmmmmem- SUBRCUTINE--XYUNP---
C
SUBRCUTINE XYUNP (IRAY,IX,IY)
C * XYUNP UNPACKS TERMINAL-TO-HOST X-Y FORMAT

DIMENSION IRAY(1)
IX=(IRAY(4)-32)*128+(TRAY(5)-32)*4+IRAY(2)-IRAY(2) /4%y
IY=(IRAY(1)-32)%128+(IRAY(3)-32)*%4 +(IRAY(2)-32)/4
RETURN

END

C-b2 @ 4114 HOST PROGRAMMER'S

C
Commmmmmm SUBROUTINE--KAS2IN--
C

OO0 n

10

20
30

SUBROUTINE KAS2IN (LEN,IADE,INT)

TRANSLATES ADE CHARACTERS TO THEIR INTEGER VALUE
LEN - NUMBER OF CONSECUTIVE ADE CHARACTERS

IADE - ADE CHARACTERS TO BE TRANSLATED

INT - INTEGER VALUE AFTER TRANSLATION

DIMENSION IADE(1)

INT=0

J=LEN+1

POWER=.1

J=J-1

IF (J.LE.O) GO TO 30
ICHAR=IADE(J)

IF (ICHAR.EQ.45) GO TO 20

IF (ICHAR.LT.48 .OR. ICHAR.GT.57) GO TO 10
POWER=POWER¥10Q.
INT=INT+(ICHAR-U8)¥IFIX(POWER)

GO TO 10
INT=-INT

RETURN
END

4114 HOST PROGRAMMER'S @

EXAMPLES OF CODE

C-53

EXAMPLES OF CODE

eNeoNoNeoNeReNeoNeoReNake! O
KoK K Ok K K K K XK

(@]
*

C-54

_______ SUBROUTINE--KIN2AS-~

SUBROUTINE KIN2AS (INT,LENLIM,IFILL,LENRET,IADE)

TRANSLATES INTEGER VALUES INTO ADE CHARACTERS
INT ~ INTEGER VALUE TO BE TRANSLATED

LENLIM - LIMIT ON NUMBER OF CHARACTERS

IFILL FILL CHARACTER

>0 RIGHT JUSTIFY, FILL WITH IFILL
=0 LEFT JUSTIFY, NO FILL
<0 LEFT JUSTIFY, FILL WITH ARBS(IFILL)

LENRET - NUMBER OF CHARACTERS RETURNED

TADE - ADE CHARACTER ARRAY

DIMENSION IADE(1),JADE(16)

SET UP WORKING VARIABLES
JNT=IABS(INT)
LENRET=0

TRANSLATE INTEGER INTO WORK ARRAY
LENRET=LENRET+1
IF (LENRET.GT.LENLIM) GO TO 100
JADE(LENRET)=JNT-JNT/10%10+U8
IJNT=JNT/10
IF (JNT.NE.O) GO TO 10

ADD MINUS SIGN IF NEGATIVE
IF (INT.GE.C) GO TO 20
LENRET=LENRET+1
IF (LENRET.GT.LENLIM) GO TO 100
JADE (LENRET)=U5

LEFT JUSTIFIED OR NO FILL
IF (IFILL.GT.C) GO TO 50
DO 20 T=1,LENRET
J=LENRET-T+1
IADE(I)=JADE(J)
CONTINUE
IF (IFILL.EQ.0) RETURN

4114 HOST PROGRAMMER'S

C * LEFT JUSTIFIED

Lo

IF (LENRET.EQ.LENLIM) RETURN
J=LENRET+1

DO 40 I=J,LENLIM
IADE(I)=-IFILL

CONTINUE

RETURN

C * RIGHT JUSTIFIED

50

60
70

80

J=LENLIM-LENRET
IF (J.EQ.0) GO TO 70
DO 60 I=1,Jd
IADE(I)=IFILL
CONTINUE

K=d+1

DO 80 I=K,LENLIM
J=LENRET-I+K
IADE(I)=JADE(J)
CONTINUE

RETURN

C * OVERFLOW - FILL WITH ASTERISKS

100

110

DO 110 I=1,LENLIM
IADE(I)=42
CONTINUE
LENRET=LENLIM
RETURN

TND
iNw

4114 HOST PROGRAMMER’S

EXAMPLES OF CODE

C-55

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	010
	011
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	13-01
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55

