REFERENCE
. TEK wanuac

Part No. 061-3393-00
Product Group 07

TEKTRONIX
SMALLTALK

Please Check at the
Rear of this Manual
for NOTES and

CHANGE INFORMATION

First Printing JUNE 1987

Copyright © 1987, Tekironix, Inc. All rights reserved.

“Feklronix products’ are ‘covered by U.S. and foreign patents, issued and
“pending:-

=This-d8&umént may not be copied in whole or in part, or otherwise
reproduced except as specifically permitted under U.S. copyright law,
without the prior written concent of Tektronix, Inc. P.O. Box 500,
Beaverton, Oregon 97077.
Specifications subject to change.
TEKTRONIX ,TEK, and UTek are registered trademarks of Tektronix, Inc.
UNIX is a trademark of AT&T Bell Laboratories.
PELLUCIDA is a trademark of Bigelow & Holmes.
HELVETICA and TIMES are registered trademarks of Linotype Corp.

UniFLEX is a registered trademark of Technical Systems Consultants,
Inc.

Smalltalk-80 and XEROX are trademarks of Xerox Corporation.

Revision Information

MANUAL: Tektronix Smalltalk Reference

This manual supports the following versions of this product: Imag‘_e_Vgrsioh(:\, TB?.?J ,

REV DATE DESCRIPTION

JUNE 1987 Original Issue

Tektronix Smalltalk Reference Manual

LRI

Contents

Introduction
Classes

AbstractFileStatus
AbstractSystemCall
AimSystemCall
DisplayState
ExternalBinaryData
ExternalData
ExternalPointerData
FileDirectory
FileStream
FixedSizeExternalPointerData
Inaddr
IntegerPointer
lovec

ltimerval

Ltchars

Msghdr

OSFilter

Pipe
PipeReadStream
PipeStream
PipeWriteStream
PointerArray

Rlimit

Rusage
ScreenView

Sgttyb

Sockaddrin
SockaddrUn

Stat

StrikeFont
StrikeFontManager
StructOutputTable
StructureArray
Subtask

Tchars

TextStyle
TextStyleManager
Timeval

Tektronix Smalltalk Reference Manual

‘ Contents

Timezone

- UniflexFileStatus
UniflexSystemCall

- UTekFileStatus
UTekSystemCall
Utsname
VirtualStrikeFont
Wait
WorkspaceController

il

BRIV

Introduction ' | T

This manual, as its name implies, is meant to be a source of reference information
about Tektronix Smalltalk. Use this manual when you seek information about a
class, such as its protocol, background to relate the class to other Smalltalk classes
and the world outside Smalltalk, and examples of how to use the class. If you are
new to Smalltalk or need a topical approach to a problem, you should read the
Tektronix Smalltalk Users manual before, or in addition to, looking here. Since this
manual does not cover all Smalltalk classes, you might want to refer to other
Smalltalk texts.

The first edition of the Tektronix Smalltalk Reference manual contains Smalltalk
classes added to the system by Tektronix and classes which appeared in Smalltalk-
80 but have been substantially revised or enlarged by Tektronix. This edition
includes 47 classes that fit those criteria for inclusion. Future editions of the manual
will document classes meeting the same criteria as this edition, plus classes which
have not been previously documented in print. Other information which has been
proposed for inclusion in future editions includes

o Pool Dictionaries,
e Global Variables,
e Error Messages, and

e File Formats.

Arrangement of this Book

Following this introduction you will find the classes arranged alphabetically. The
alphabetic arrangement of classes will continue in future editions, and additional
sections for the information outlined above will follow the classes.

There are some classes in Tektronix Smalltalk images which are operating system
specific. They only appear in an image released for a particular operating system.
For example, UniflexSystemCall does not appear in the TB2.2.1 image released
with the UTek operating system. The system dependency (e.g., (UniFLEX only)) is
noted in the upper right corner of the class” documentation in the manual. Classes
in this release which are UTek-dependent are not indicated in that manner, because
all users of this manual have the image for the UTek operating system.

Tektronix Smalltalk Reference Manual 1

Introduction

Contents of Class Entries
The figure below is an example of the standard format which begins each class

entry.
AbstractSystemcCall OS-Interface
Object subclass: #AbstractSystemCall
instanceVariableNames: ‘operationType operation *
classVariableNames: ‘ErrorMessages *
poolDictionaries: ‘ErrorConstants OSConstants *
category: ‘OS-Interface”
Summary
@ This is an abstract class which represents operational requests to some underlying

operating system. Several assumptions are ...

3393-6

Partial Class Entry (Sample)

Explanation
@— class name

@— class category

@— class definition

@— class comment
Parts 1 through 4 of every entry contain information extracted directly from the
image. If a class is operating system-dependent (or otherwise release-specific), that

restriction is included in Part 2.

Additional Parts of Class Entries

After the Summary, class entries vary. The following is a complete list of sections
which appear in various classes, in the order of their appearance.

Introduction :: ;

Instance Variables
An alphabetic list of instance variables, their default class, and a brief
description of each variable.

Inherited Instance Variables
Sometimes this is included to explain class-specific usage of inherited
variables. It follows the format of the Instance Variables.

Class Variables
An alphabetic list of class variables, their default class, and a brief description of
each variable. An exception to the usual format was made for concrete classes
in the ExternalData hierarchy. The conventions established for defining their
class variables are discussed under the appropriate superclass,
ExternalBinaryData or ExternalPointerData.

Inherited Class Variables
Sometimes this is included to explain class-specific usage of inherited
variables. It follows the format of the Class Variables.

Pool Dictlonaries
An alphabetic list of shared pools and a brief description of each dictionary.

Inherited Pool Dictionaries
Sometimes this is included to explain class-specific usage of inherited shared
pools. It follows the format of the Pool Dictionaries.

Instance Methods
message category

messageSelector
method comment

NameOfClass class

instanceVariableNames: ‘name1 name?2 etc.’

The box above only appears if a class has class instance variables.

NameOfClass class — Instance Variables
An alphabetic list of class instance variables, their default class, and a brief
description of each variable.

Tektronix Smalltalk Reference Manual 3

Introduction

Class Methods

message category

messageSelector
method comment

Rationale
The purpose of this class — why it"s in the image.

Background
Information relating this class to other classes and, sometimes, to the operating
system.

Discussion
Implementation information, a description of the class” protocol, practical
advice.

Examples ,
"How to" information, sample code using the class and an explanation of the
sample code. When the example is taken from the image, its class location is
given.

Related Classes
Classes are listed if they would be helpful in the understanding of this class.
The list might include subclasses (if any), other classes often used with this
class, and the superclass. Classes are listed here even if they are not currently
included in this manual.

Typeface and Font Conventions

Some conventions were established for the use of fonts and typefaces in the
Summary, Rationale, Background, Discussion, Examples, and Related Classes
sections of each entry. Different fonts and typefaces were usually not used in
method comments, nor in the descriptions of instance variables, class variables,
pool dictionaries, and class instance variables. Those parts are derived from the
released image. Occasionally, an engineer has used the “#" symbol to denote a
global variable in method or variable comments (e.g., . . . global variable #0S . . .).

e Code fragments and example code appear in a serif font, for example:

Transcript show: .. .

e Information that you would type at the keyboard appears in a monospaced
(typewriter-style) font, for example:

... bring up the standard image by typing smalltalk,you...

Introduction

e Abold face is used for the names of classes, instance and class variables, pool
dictionaries, global variables, and message selectors.

global variables:

. .. install the appropriate subclass as OS. . .
. .. path relative to Disk . . .

class name and message selector:
. . . using the PositionableStream method nextCNumber . . .
instance variables and shared variables:
.. the value at DefaultTextStyle in the TextConstants dictionary . . .
(TextConstants is a shared pool.)
. deal with the Forms in the glyphs instance variable . . .

. . the class variable BrkcDatalndex holds the offset . . .
. . the sizelnBytes class instance variable . . .

e ltalic is used for the names of UTek system calls and utilities, for file and path
names, the names of protocols (also called "message categories”), and
temporary variables in example code.

UTek system calls and utilities:

.. . access the UTek program wc.

. . . some filters such as car, which . ..

... the accept(2) system call . . .

book titles and sections of UTek Command Reference:

.. . documented under inef(4) in the manual UTek Command Reference,
Volume 2.

temporary varlables:

.. . the three temporary variables in, out, and err

Tektronix Smalltalk Reference Manual 5

Introduction

file names and path names:

... Examples are BertrandVariablel2 font . . .
.. . structure is found in sys/un.h.

protocols (message categories):
... the initialize-release method InitializeFrom:.

About Preliminary Manuals

The first time a manual is published it may contain some inaccuracies or be
incomplete — this manual is considered a preliminary manual. Your comments
and corrections are encouraged, so that the next edition of this manual will be an
improvement and no longer be preliminary. In the case of this particular manual, the
term "preliminary” is appropriate because important information that is expected in a
reference manual has not been included. As explained above, new sections
providing information in addition to the classes will appear in future editions.

What Do You Think?

Eventually, it would be great if this manual documented every class in Tektronix
Smalltalk. That’s a long-range plan. Until that time, you might want to make known
your nominations for the classes or class categories that you want documented.
Aside from that, write about your gripes (or even what you like!) and someone
responsible for this documentation will respond — that’s a promise.

Send your correspondence about this manual to:

Tektronix, Inc.
P.O. Box 500, M.S. 50-470
Beaverton, OR 97077
Attn: Tektronix Smalltalk Reference Manual

AbstractFileStatus OS-Interface

Object subclass: #AbstractFileStatus

instanceVariableNames:
classVariableNames:
poolDictionaries:
category: ‘OS-Interface’

2,

’e

Summary

AbstractFileStatus is an abstract class which represents the status of an operating
system file. Instances of concrete subclasses of this class encapsulate information
about a file status.

A file status is returned by the portable operations named
status:
and

statusName:

which are defined by the system call class for your operating system, referred to by
the global variable OS.

Instance Methods
accessing
buffer

Answer the buffer which holds the file status information. Subclass
responsibility.

description
Answer a String that contains a short description (file size and last
modification time) of the receiver.

fileSize
Answer the file size in bytes. Subclass responsibility.

IsDirectory
Answer whether the receiver describes a directory. Subclass responsibility.

Tektronix Smalltalk Reference Manual 7

AbstractFileStatus OS-Interface

isReadable
Answer true if the file represented by the receiver is readable. Subclass

responsibility.

IsWritable
Answer true if the file represented by the receiver is writable. Subclass
responsibility.

lastModified
Answer the time of the last modification to the file. Subclass responsibility.

comparing
= aFileStatus

Answer true if the receiver and aFileStatus describe the same file. Subclass
responsibility.

hash
Hash is reimplemented because = is implemented. Subclass responsibility.

copying

copy
Answer another instance just like the receiver.

Rationale
The operating system maintains many pieces of information about a file, such as
read and write permissions. File status information is available directly through the
file status class for your operating system, or indirectly through FileStream.

AbstractFileStatus establishes the pattern of protocol to be included in concrete
subclasses for different operating systems. As an abstract class it provides a
portable view of file status.

To obtain information about a file, the message selectors defined by this class are
preferred. Methods are implemented in the appropriate subclass for your operating
system. The subclass for your operating system may have additional methods to
provide pieces of file status information unique to your operating system.

Related Classes

Subclasses:
UTekFileStatus
UniflexFileStatus

You might want to review the protocol for accessing file status information provided
by FileStream. -

AbstractSystemcCall OS-Interface

Object subclass: #AbstractSystemCall
instanceVariableNames: ‘operationType operation *
classVariableNames: ‘ErrorMessages *
poolDictionaries: ‘ErrorConstants OSConstants *
category: ‘OS-Interface’
Summary

This is an abstract class which represents operational requests to some underlying
operating system. Several assumptions are made about this operating system:

e It has multiple directories that contain files and/or other directories.

e It has files that have some form of status information and can be randomly read,
written, and truncated.

e It has some means of running other programs. Multi-tasking is not assumed.

e [t has some facility, such as pipes, for communicating with other running
programs.

e [t has file descriptors, which are used for uniquely identifying files and pipes.

e |t has some means of receiving and sending interrupts.

Instances of concrete subclasses of this class encapsulate all information involved
in making a single request to the operating system. This typically includes
arguments, results, and control information.

System calls are performed by creating an instance containing the arguments for the
call and then sending an "execution” message to the instance. Subclasses will
typically define instance creation messages for all possible system calls supported
by the host operating system.

The class protocol also defines a set of "portable” or generic operations. These high
level functions are expected to be supported by any modern operating system.
These operations are performed by sending a message directly to the class, which
will cause the operations to be performed and the result returned. Itis the
responsibility of the subclasses to provide the system dependent implementation of
these operations.

Tektronix Smalltalk Reference Manual 9

AbstractSystemCall OS-Interface

Wherever possible, the "portable” operations should be used to ensure operating
system independence. The global variable OS is set to a subclass of
AbstractSystemCall, as appropriate for the system. OS should be used in code
(instead of the name of your system call class) to insure the portability of the code.

Instance Variables
operation <Smalllnteger>
Operation code passed to the operating system.

operationType <Symbol>
Identifies which type of operating system interface (which primitive) this call
uses.

Class Variables

ErrorMessages <Array>
An Array of error messages Strings indexed by the integer returned by the
message errorCode.

Pool Dictionaries
ErrorConstants
Symbolic names are associated with error codes.

OSConstants
Symbolic names are associated with constants used by the various
operating systems.

Instance Methods
constants

constant: aString
Return a value from the OSConstants or ErrorConstants pool that
corresponds to aString. If aString is not found, notify the user that it is a
bad key. This method need only be used for keys that are illegal Smalltalk
identifiers (i.e., contain the underscore character), otherwise, the pool key
name can be used directly by classes that declare the appropriate pool
dictionaries.

10

AbstractSystemCall OS-Interface

errors

errorCode
Return an integer which identifies an error condition. This may not be valid
if no error has occurred. Subclass responsibility.

errorCodeFor: errorString
Answer a value from the ErrorConstants pool that corresponds to aString.
If aString is not found, notify the user that it is a bad key.

errorKeyword
Return a keyword associated with the present error condition.

errorKeywordFor: errorindex
Answer a keyword from the ErrorConstants pool that corresponds to
errorindex. If none is found, return a String representation of the
errorindex.

errorString
Return a long, descriptive string describing the present error condition. If
there is no string available, return aString representation of the error code.

issueError
Issue a notifier with a string that is associated with the present error code.
If there is no string available, issue a notifier with the error code.

execution

environmentinvoke
Return various system information depending on the value of the operation
instance variable. Possible values of operation are:

operation system information

command line arguments” address

environment variables” address

hardware configuration block address (UTek only)
interpreter version string” address

copyright string address

OS and machine identification

Smallinteger time correction

NO A ON -

Tektronix Smalltalk Reference Manual 11

AbstractSystemCall OS-Interface

invoke
Perform the system call, return true if it executed without error, return false
otherwise. Users of #invoke must check the return value if they expect
valid results! Subclass responsibility.

value
Evaluate the system call represented by the receiver. Create an error
notifier if the system call results in an error.

valuelfError: aBlock
Evaluate the system call represented by the receiver. Evaluate aBlock if
the system call resulted in an error.
operation type

environmentOperation
The desired operation involves an environment request.

Class Methods

class initialization

initialize
Initialize the pool dictionaries and class variables used by
AbstractSystemCall and its subclasses. This should be overridden by a
concrete subclass.

install
This message is normally executed by a concrete subclass of
AbstractSystemCall, causing that subclass to become known by the global
variable #OS.

whoAml
This message attempts to determine which concrete subclass is a valid
value for the global variable #0S.

constants

constant: aString
Return a value from the OSConstants or ErrorConstants pool that
corresponds to aString. If aString is not found, notify the user that it is a
bad key. This method need only be used for keys that are illegal Smalltalk
identifiers (i.e., contain the underscore character), otherwise, the pool key
name can be used directly.

12

AbstractSystemCall OS-Interface

errorKeywordFor: errorindex
Return a String from the ErrorConstants pool that corresponds to
errorindex. If none is found, return a String representation of the
errorindex.

errorValueFor: errorString
Return a value from the ErrorConstants pool that corresponds to aString. If
aString is not found, notify the user that it is a bad key. This method need
only be used for keys that are illegal Smalltalk identifiers (i.e., contain the
underscore character, for example, ‘EDFS_CD’), otherwise, the variable
names can be used directly.

keysAtValue: val
Return a SortedCollection of all OSConstants keywords that are associated
with the value val.

keywordsForConstant: val
Return a SortedCollection of all OSConstants keywords that are associated
with the value val.

Jile names

backupFileNamae: aFileName
Answer a string which is a backup file name for the file named, aFileName.
Subclass responsibility.

checkFileName: aFileName fixErrors: fixErrors
Check aFileName for validity as a file name. If there are problems (e.g.,
illegal length or characters) and fixErrors is false, notify an error. If there
are prablems and fixErrors is true, make the name legal (by omitting illegal
characters) and answer the new name. Otherwise, answer the name.
Subclass responsibility.

completePathname: aDirectoryName
Answer the complete path name of the string, aDirectoryName, starting at
the root of the file system. A trailing path name separator is considered
part of a directory name even if not explicitly stored. Subclass responsibility.

Tektronix Smalltalk Reference Manual 13

AbstractSystemCall OS-Interface

14

currentDirectoryPseudonym
Answer the string which represents the name for the current directory.
Subclass responsibility.

fileDirectory: aFileDirectory directoryName: aFileName
Answer a file directory name derived from the string, aFileName, and the
file directory, aFileDirectory. Subclass responsibility.

fullDirectoryName: aDirectoryName
Answer the full path name of the string, aDirectoryName, starting at the
directory Disk. A trailing path name separator is considered part of a
directory name even if not explicitly stored. Subclass responsibility.

isBackupFileName: aFileName
Does aFileName correspond to a name that is usually a backup file name?
Subclass responsibility.

IsFileDirectoryName: aFileName
Is aFileName the name of a directory? Subclass responsibility.

isIinvisibleFileName: aFileName
Is aFileName such that it would normally not be displayed in a file listing?
Subclass responsibility.

separateDirectoryNameAndFileName: aFileName
Split the string, aFileName, into a directory name and a file name within the
directory. Return an Array of two elements. Array at: 1 is the directory
name, Array at: 2 is the file name. Subclass responsibility.

general inquiries

asTime: osSeconds
Convert the operating system’s notion of time to a Time. Subclass
responsibility.

defaultinterruptCode
Answer an operating system representation of the default interrupt action.
Subclass responsibility.

fileStatusClass
Return the class used to store file status returned by system calls that
return information about files. Subclass responsibility.

AbstractSystemCall OS-Interface

fontDirectory
Return the FileDirectory which contains font files. Each file contains a font
in external font format. Subclass responsibility.

ignorelnterruptCode
Answer an operating system representation of the ignore interrupt action.
Subclass responsibility.

IsValid
Does this class represent the operating system running on this machine?
(This method must return true in only one subclass.)

‘maxFileNameSize
Answer the maximum number of characters permissible in file names.
Subclass responsibility.

maxOpenFiles
Answer the maximum number of files that may be open at one time.
Subclass responsibility.

smalltalklnitializationDirectory
Return the FileDirectory which contains initialization files. Each file
contains Smalltalk readable data used during class initialization. Subclass
responsibility.

smalltalk InterpreterVersionString
Return a String identifying the Smalltalk interpreter that is currently running.
Subclass responsibility.

textLineDelimiter
Answer a String containing the characters which delimit a ‘line” in a file.
Subclass responsibility.

portable directory operations

changeDirectory: directoryName
Change the current directory to the specified directory. Subclass
responsibility.

createDirectory: directoryName
Create a new directory with the name directoryName. Subclass
responsibility.

Tektronix Smalltalk Reference Manual 15

AbstractSystemCall OS-interface

16

currentDirectoryName

Return a String with the name of the current working directory. Subclass
responsibility.

nextFileName: directoryStream

Answer the next file name in directoryStream. Advance the directory
stream beyond that name. Answer nil if none. Avoid recursion; do not
return the current directory, even if it is next. Subclass responsibility.

removeDirectory: directoryName
Remove the directory named aDirectoryName. Subclass responsibility.

portable file operations

closeFile: aFileDescriptor
Close the file referred to by aFileDescriptor. Subclass responsibility.

create: aString
Create a new file named aString. Answer a writeOnly fileDescriptor for the
file. Subclass responsibility.

existingName: fileName
Answer true if a file or directory named fileName exists. Subclass
responsibility.

freeFileDescriptors
Answer the number of available file descriptors. For some operating
systems this might be a very large number! Subclass responsibility.

open: fileName
Open the file named fileName. Answer a readWrite fileDescriptor for the
file. Subclass responsibility.

openForRead: fileName
Open the file named fileName. Answer a readOnly fileDescriptor for the
file. Subclass responsibility.

openForWrite: fileName
Open the file named fileName. Answer a writeOnly fileDescriptor for the
file. Subclass responsibility.

read: fileDescriptor into: aStringOrByteArray
Fill aStringOrByteArray with data from the file referred to by fileDescriptor.
Return the number of bytes read, or zero if at end. Subclass responsibility.

AbstractSystemCall OS-Interface

read: fileDescriptor into: aStringOrByteArray size: count
Fill aStringOrByteArray with, at most, count data elements from the file
referred to by fileDescriptor. Return the number of bytes read, or zero if at
end. Subclass responsibility.

remove: fileName
Remove the file named fileName. Subclass responsibility.

rename: fileName as: newFileName
Rename the file named fileName to have the name newFileName. Notify
an error if fileName does not exist; but not if newFileName exists. Subclass
responsibility.

seek: aFileDescriptor to: aFilePosition
Position the file known by aFileDescriptor to aFilePosition bytes from its
beginning. Subclass responsibility.

shorten: fileDescriptor
Shorten afile to its current position. Subclass responsibility.

size: {d
Return the count of available bytes from the file or pipe known by the file
descriptor fd. Subclass responsibility.

status: fileDescriptor
Answer a FileStatus for the file referred to by its fileDescriptor. Subclass
responsibility.

statusNamae: fileName
Answer a FileStatus for the file named fileName. Subclass responsibility.

validFileDescriptor: fileDescriptor
Answer true if an open file with the specified file descriptor exists. Subclass
responsibility.

write: fileDescriptor from: aStringOrByteArray size: byteCount
Wirite byteCount bytes of data from aStringOrByteArray to the file known by
fileDescriptor. Subclass responsibility.

portable subtask operations

defaultinterrupt: aninterruptiD
Set the specified interrupt to its default action.

Tektronix Smalitalk Reference Manual 17

AbstractSystemCall OS-interface

executeUtility: aCommand withArguments: anOrderedCollection
Execute a binary program and return the entire results generated by the
program as a string. No mechanism for input to the executable program is
provided. Notify an error if the program cannot be executed or if the
program terminates abnormally. Subclass responsibility.

executeUtllityWithErrorMapping: aCommand
withArguments: anOrderedCollection
Execute a binary program and return an array of two strings. The first
string contains the entire normal output generated by the program. The
second string contains any error message output from the program. No
mechanism for input to the executable program is provided. Notify an error
if the program cannot be executed or if the program terminates abnormally.
Subclass responsibility.

ignorelnterrupt: aninterruptiD
Set the specified interrupt to be ignored.

setinterrupt: interruptlD to: aSemaphoreOrParameter
Override the default action for the interrupt known by interruptiD by
connecting it to a semaphore or some system specific parameter. If
specified, the semaphore is posted on interrupt. The state of the interrupt
once it has been received is system dependent. Subclass responsibility.

shell
Cause control to be passed to the operating system command interpreter.
Return to Smalitalk is system dependent. Subclass responsibility.

Rationale

18

There was a desire to move system call dependencies from individual classes like
FileStream, Pipe, and Subtask to one hierarchy and implement them there so that
they are more easily maintained for different operating systems. A hierarchy was
established to deal with multiple operating systems. AbstractSystemCall was
created to define a minimum set of services to be provided to Smalltalk by any
operating system. AbstractSystemCall defines those services with selector names
that an application program can use and guarantee portability to any Tektronix
Smalltalk operating system.

AbstractSystemCall establishes the pattern of protocol to be included in concrete
subclasses. Some protocol for generic services is implemented in this class
(instead of being a subclass responsibility), but much of it is reimplemented in
subclasses. A concrete subclass of this class is assigned as the value of the global
variable OS. In code, OS is used for portability, instead of the name of a system call
class, unless the application is meant to be used only with a specific operating
system.

AbstractSystemCall OS-Interface

The class variables are declared in AbstractSystemcCall so that they are named in
one place, and are initialized by separate system call classes.

Discussion
Since it is an abstract class, there is no instance creation protocol for this class. The
protocol here is a template for subclasses. To make a system call, create an
instance of a subclass. Read about the system call class for your operating system
in this manual. It will implement the protocol found here, plus additional protocol
which is operating system dependent.

Class Protocol

Class initialization methods intialize the class variables and pool dictionaries, install
the appropriate subclass as OS, and determine which subclass should be OS. The
initialize method returns self, because that method should be overridden by a
subclass. You might have use for the whoAml message in operating system
dependent code. If you want to specify a certain operating system in the code, you
could include something like

AbstractSystemCall whoAml name = #ParticularSystemCall ifTrue:[. . .

Use of the message name and the symbol are needed so that a correct boolean will
be returned instead of a notifier that ParticularSystemCall is not recognized.

Constants methods access the pool dictionaries, ErrorConstants and
OSConstants. Two methods, constant: and errorValueFor:, access a pool for an
argument String which contains an underscore or other illegal identifier character.
Another use for the constant: message is in a workspace, for example, where the
pool dictionary is not directly accessible.

File names methods are implemented by a subclass.

General inquiries methods are implemented by a subclass.

Portable directory operations methods are implemented by a subclass.

Portable file operations methods are implemented by a subclass.

Portable subtask operations methods are implemented by a subclass, except for
defaultinterrupt: and Ignorelnterrupt:, which may be overridden by a subclass.

Tektronix Smalltalk Reference Manual 19

AbstractSystemCall OS-interface

Instance Protocol

Constants has one method, constant:, which calls the class method of the same
name.

Errors has several methods for accessing ErrorConstants and specifies one
method, errorCode, to be implemented by a subclass. Some of the methods
implemented here are overridden in a subclass.

Execution has several methods to execute a system call and one method,
environmentinvoke, that executes the system call primitive for environment
operations. Some of the methods implemented here are overridden in a subclass.

Operation type has one method to set the operationType instance variable for an
environment operation.

Examples

The following code can be executed in a workspace. It will cause the name of your
system call class to display in the System Transcript. There are no other messages
that you are likely to send to this class.

Transcript cr; show: AbstractSystemCall whoAml printString.

Related Classes

20

Subclass:
AimSystemCall

AimSystemcCall OS-Interface

AbstractSystemCall subclass: #AimSystemCall
instanceVariableNames: ‘DOIn DOOut D1In D10ut D2In AOIn AOOut errno
classVariableNames: ‘StringTerminator *
poolDictionaries: ”
category: ‘OS-Interface’
Summary

This is an abstract class which defines the basic mechanism used to perform
operating system calls on the various Tektronix 4000 series bitmapped workstations.
It also provides interfaces for accessing the display subsystem, operating system
environment variables, and the command line arguments used when Smalltalk was
invoked.

These system call objects contain all of the information normally used to perform a
system call by an assembly language programmer. This includes the values of
machine registers passed to or returned from the system call, any parameters lists,
the operation ID of the function to be performed, and any error information. Since
there may be several different interfaces to the underlying operating system,
instances also contain a field which identifies which particular type of interface
needs to be used. Input and output parameter descriptors are defined in
subclasses.

Instance Variables
AOIn <Object>
An input parameter descriptor for the value to be passed in A0.

A0Out <Object>
An output parameter descriptor for the value to be returned in AO.

DOIn <Object>
An input parameter descriptor for the value to be passed in DO.

D0Out <Object>
An output parameter descriptor for the value to be returned in DO.

D1In <Object>
An input parameter descriptor for the value to be passed in D1.

Tektronix Smalltalk Reference Manual 21

AimSystemCall OS-interface

D10ut <Object>
An output parameter descriptor for the value to be returned in D1.

D2In <Object>
An input parameter descriptor for the value to be passed in D2.

errno <Smallinteger or nil>
Error code return by the operating system, nil if no error.

Class Variables

StringTerminator <String>
This must be appended to strings before sending them to the operating
system.

Instance Methods
initialize-release
DOIn: din DOOut: dout AOIn: ain A0Out: aout

Set D and A registers. Set unspecified input registers to nil and
unspecified output registers to false.

DOIn: d0in DOOut: dOout D1iln: d1in D10ut: diout D2In: d2in
Set D registers.

D1in: d1in D10Out: d1out
Set D1 registers.

operation: opcode with: arg0

operation: opcode with: arg0 with: arg1

operation: opcode with: arg0 with: arg1 with: arg2

operation: opcode with: arg0 with: arg1 with: arg2 with: arg3

operation: opcode with: arg0 with: arg1 with: arg2 with: arg3 with: arg4

operation: opcode with: arg0 with: arg1 with: arg2 with: arg3 with: arg4
with: arg5
Set up the arguments for a system call. Set the operation to the proper
code.

accessing

AOQut
Return the value of the instance variable AOOut.

DOOut
Return the value of the instance variable DOOut.

22

AimSystemCall OS-Interface

D10ut
Return the value of the instance variable D10ut.

errors

errorCode
Return an integer which identifies an error condition. This may not be valid
if no error has occurred.

execution

displaylnvoke
Perform a display system call.

invoke
Perform the system call, return true if it executed without error, return false
otherwise. Users of #invoke must check the return value if they expect
valid results!

systeminvoke
Make a system call. Return success or failure of that system call. Notify if
the primitive failed.

operation type

displayOperation
The desired operation involves the display.

operation
Return the current operation.

operation: opcode
Set the code of the operation.

systemOperation
The desired operation involves the operating system.

portable subtask operations

terminatedSubtaskExitCode
Return a portion of the status returned from the wait system call. This
portion represents the value of the argument supplied by the exit system
call causing termination. The high order bit of the portion indicates whether
the terminated task has made a core dump. The receiver must be an
instance representing a wait system call that has been executed. Subclass
responsibility.

Tektronix Smalltalk Reference Manual 23

AimSystemCall OS-Interface

terminatedSubtaskExitinterrupt
Return a portion of the status returned from the wait system call. This
portion represents the value of the signal causing termination. The
receiver must be an instance representing a wait system call that has been
executed. Subclass responsibility.

terminatedSubtaskID
Return the ID returned from the wait system call. The receiver must be an
instance representing a wait system call that has been executed.

Class Methods

class initialization

initialize
Initialize the class variables used by AimSystemCall subclasses.

environment variables

argCount
Return the number of arguments on the command line used to invoke
Smalltalk. Subclass responsibility.

originalEnvironment
Return the operating system environment variables in use when Smalltalk
was invoked. Subclass responsibility.

file names

checkFileName: aFileName fixErrors: fixErrors
Check aFileName for validity as a file name. If there are problems (e.g.,
illegal length or characters) and fixErrors is false, notify an error. |f there
are problems and fixErrors is true, make the name legal (by omitting illegal
characters) and answer the new name. Otherwise, answer the name.
Control characters, spaces, rubouts, and all characters with an ASCII value
greater than 127 will be considered illegal.

completePathname: aDirectoryName
Answer the complete path name of the string, aDirectoryName. A trailing
path name separator is considered part of a directory name even if not
explicitly stored.

currentDirectoryPseudonym
Answer the string which represents the name for the current directory.

24

AimSystemCall OS-interface

fileDirectory: aFileDirectory directoryName: aFileName
Answer a file directory name derived from the string, aFileName, and the
file directory, aFileDirectory.

fullDirectoryName: aDirectoryName
Answer the full path name of the string, aDirectoryName, starting at the
directory Disk. A trailing path name separator is considered part of a
directory name even if not explicitly stored.

isFileDirectoryName: aFileName
Is aFileName the name of a directory?

isInvisibleFileName: aFileName
Return true if the string, aFileName, is the name of a file which is normally
not displayed in a directory listing.

pathNameLevelSeparator
Answer the character which delimits directory names in a file name path.

pathNamelLevelSeparatorString

Answer a string containing the character which delimits directory names in
a file name path.

separateDirectoryNameAndFileName: aFileName
Split the string, aFileName, into a directory name and a file name within the
directory. Return an Array of two elements. Array at: 1 is the directory
name, Array at: 2 is the file name.

general inquiries

abnormalTerminationCode
Return the code for abnormal task termination. Subclass responsibility.

brokenPipelnterrupt
Return the interrupt number for the broken pipes interrupt. Subclass
responsibility.

deadChildinterrupt

Return the interrupt number for the terminated child process interrupt.
Subclass responsibility.

getMachineName
Return the type of machine Smalltalk is running on. Subclass responsibility.

Tektronix Smalltalk Reference Manual 25

AimSystemCall OS-Interface

26

nonBlockingWait
Does this class” #wait method return immediately rather than blocking?
Subclass responsibility.

pack: upperinteger intoRegisterWith: lowerinteger
Answer a 32 bit value created by packing the upper and lower Integers
together.

prioritylnterval
Return the interval of valid priorities in order of descending priority for this
task and effective user. Subclass responsibility.

returnKeyCode
Answer Smalltalk character value which should be assigned when the
return key is pressed. Subclass responsibility.

smalltalkinterpreterVersionString
Return a String identifying the Smalltalk interpreter that is currently running.

stringTerminator
Return the Character that must be appended to strings before sending
them off to the operating system.

terminatelnterrupt
Return the interrupt number for the terminate interrupt. This interrupt can
be caught. Subclass responsibility.

terminateUnconditionallyinterrupt
Return the interrupt number for an unconditional termination interrupt. This
interrupt cannot be caught. Subclass responsibility.

textLineDelimiter
Return a String containing the characters that delimit a “line” in a file.

validPriority: aPriority
Is aPriority a valid priority for this task and user? Subclass responsibility.

portable file operations

closeFile: aFileDescriptor
Close the file referred to by aFileDescriptor.

duplicateFd: fileDescriptor
Return a new file descriptor that references the same open file as
fileDescriptor. Subclass responsibility.

AimSystemCall OS-Interface

duplicateFd: oldFileDescriptor with: newFileDescriptor
Cause newFileDescriptor to reference the same open file as
oldFileDescriptor. If newFileDescriptor currently references an open file,
that file is first closed. Subclass responsibility.

newPipe
Return an instance of Pipe. Subclass responsibility.

remove: fileName
Remove the file named fileName.

portable subtask operations

brokenPipesProcessWith: aBlock
Return a process that monitors broken pipes. ABlock is executed after the
receipt of each broken pipe signal. Subclass responsibility.

execute: program withArguments: args withEnvironment: environment
Answer an instance of the exec system call. It has not been invoked yet.
Subclass responsibility.

executeUtility: aCommand withArguments: anOrderedCollection
Execute a binary program and return the entire results generated by the
program as a string. No mechanism for input to the program is provided.
Notify an error if the program cannot be executed or if the program
terminates abnormally.

executeUtilityNoCheck: aCommand withArguments: anOrderedCollection
Execute a binary program and return the entire results generated by the
program as a string. No mechanism for input to the program is provided.
Some utilities (rsh, grep) return abnormal termination status after executing
successfully — use this method for such programs.

executeUtilityWithErrorMapping: aCommand
withArguments: anOrderedCollection
Execute a binary program and return an array of two strings. The first
string contains the entire normal output generated by the program. The
second string contains any error message output from the program. No
mechanism for input to the executable program is provided. Notify an error
if the program cannot be executed or if the program terminates abnormally.

exit: exitParam
Answer an instance of the exit system call. It has not been invoked yet.
Subclass responsibility.

Tektronix Smalltalk Reference Manual 27

v

AimSystemCall OS-interface

28

fork
Answer an instance of the fork system call. It has not been invoked yet.
Subclass responsibility.

forkShell
Fork an operating system shell. Exit the shell to return to Smalltalk.
Subclass responsibility.

sendinterrupt: interruptiD to: taskiD
Send the interrupt known by interruptID to the task known by taskID.
Return true if the operation was successful, false otherwise. Subclass
responsibility.

setTaskPriority: priority
Set the priority of Smalltalk to the value priority. Subclass responsibility.

startSubtask: executeCall withBlock: childBlock
Fork a copy of Smalltalk. in the child copy, execute childBlock and invoke
executeCall, which must be an instantiated ‘exec” system call. Subclass
responsibility.

terminate: taskiD
Using an interrupt, attempt to terminate the task known by task!D. This
termination is requested in a manner which can be intercepted. Subclass
responsibility.

terminatedSubtasksProcessWith: aBlock
Return a Process that monitors spawned child tasks. ABlock is executed
after the termination of each child task. The dead child signal is
automatically reset by the operating system. Subclass responsibility.

terminateUnconditionally: taskID
Terminate this task unconditionally. Subclass responsibility.

wait
Answer an instance of the wait system call. It has not been invoked yet.
Subclass responsibility.

system-display operations

blackOnWhite
Normal video.

cursorOff
Turn off the cursor.

AimSystemCall OS-Interface

cursorOn
Turn on the cursor.

disableCursorPanning
Disables panning when the cursor reaches any viewport boundary.

disableJoydiskPanning
Disables panning with the joydisk.

enableCursorPanning
Enables panning when the cursor reaches any viewport boundary.

enableJoydiskPanning
Enables panning with the joydisk.

getDisplayState: buff
Return the 36 word status report of the display system.

getMouseBounds
Get the limits of mouse movement as a rectangle — upper left in DO, lower
rightin D1.

getViewport
Return the upper left position of the viewport within the display bitmap.

setMouseBounds: upperXY lowerRight: lowerXY
Set the limits of mouse movement to a rectangle — upper left in D1, lower
right in D2.

setViewport: xyCoord
Set the upper left position of the viewport in the display bitmap.

timeOutOff
Disables automatic screen saver.

timeOutOn
Enables automatic screen saver.

turnDisplayOff
Sets the display to be blanked.

turnDisplayOn
Sets the display to be visible.

whiteOnBlack
Inverse video.

Tektronix Smalltalk Reference Manual 29

AimSystemCall OS-Interface

30

system-environment

configurationAddress
Get the address of the configuration block of the machine running this
Smalltalk.

copyrightAddress
Get the address of the copyright string for this Smalltalk interpreter.

interpreterVersionAddress
Get the address of the string identifying the version of this Smalltalk
interpreter.

invocationArgumentsAddress
Get the address of the argument array for this invocation of Smalltalk.

invocationEnvironmentAddress
Get the address of the environment array for this invocation of Smalltalk.

machinelDAddress
Get the address of a string that identifies the operating system and
machine upon which Smalltalk is running.

timeCorrectionDifference

Get a Smalllnteger representing the number of seconds difference between
UTek time (GMT) and local time.

System-event operations

clearAlarm
Clear the alarm used by the graphics.

eventsDisable
Turn off events.

eventsEnable
Turn on events. A side effect of this call is to set keyboard code to zero.

eventSignalOn
Produce event signals.

getAlarmTime
Get the millisecond timer.

AimSystemCall OS-Interface

setAlarmTime: time
Set the millisacond timer to the desired time.

setKeyboardCode: aCode
Set the keyboard code — O sets keyboard to output event codes and 1
sets the keyboard to output ANSI terminal code. Event codes are what
Smalitalk expects.

terminalOff
Turn off the terminal emulator.

terminalOn
Turn on the terminal emulator.

Rationale

AimSystemcCall is an abstract class that implements protocol related to the display
subsystem of Tektronix 4000 series bitmapped workstations. These display
operations are implemented at this level to be inherited by concrete subclasses for
various operating systems. Other system call protocol that concrete subclasses
have in common has been implemented at this level. Instance variables are defined
for data passed in registers when making a system call. A class variable is defined
for the string terminator that subclass operating systems have in common.

Discussion

The protocol here is a template for subclasses. There is no occasion upon which
you should send a message to this class. To make a system call, create an
instance of a subclass. Read about the system call class for your operating system
in this manual. it will implement the protocol found here, plus additional protocol
which is operating system dependent.

Class Protocol

Class initialization contains one method which sets the value of the class variable. It
calls the abstract superclass method of the same name, which returns self. The
major work of initializing is done in a subclass method.

Environment variables methods are implemented by a subclass.

File names methods answer information about file and directory names, including the
complete path from root, the path relative to Disk, the character which separates

levels of the path, the backup file suffix, and concatenates or separates file and
directory names. These methods are generally used for parsing.

Tektronix Smalitalk Reference Manual 31

AimSystemCall OS-Interface

32

General inquiries methods are implemented by a subclass, except for
stringTerminator, which returns the character the operating systems expect at the
end of strings, pack:intoRegisterWith:, which packs two integers into a 32 bit word,
and smalltalkinterpreterVersionString, which returns the version number of the
interpreter in a String.

Portable file operations methods are implemented by a subclass, except for
closeFile:, which closes a file, and remove:, which removes a file from its directory.
Those two operations are implemented here because subclasses use the same
selector to achieve the result of each portable message.

Portable subtask operations are operations that Smalltalk requires from the operating
system in order to run a Subtask, a spawned child process from the operating
system’s point of view. AimSystemCall implements the "executeUtility” methods
which start a subtask. The other methods in this message category are
implemented by a subclass.

System-display operations are methods which enable or disable display attributes.
They are implemented here because they are applicable for all immediate
subclasses.

System-environment methods return the address of environment variables at the time
Smalltalk was invoked, the address of command line arguments, and information
about the software, including the copyright address, the address of the interpreter
version, and the adjustment amount between UTek and Smalltalk time. An address
returned by one of these methods can be converted to a String by sending the
address as the argument to the String instance creation message fromCString:.

System-event operations are methods which enable or disable event attributes. Events
are user-interface occurrences, such as a key-press, mouse movement, and joydisk
movement. The built-in alarm (timer) and terminal emulator are also included in the
category of events. Events are implemented here because they are applicable for
all immediate subclasses.

Instance Protocol

Initialize-release has three methods which set the values of the register instance
variables plus several methods, overridden by subclasses, which set up the
operation and arguments to a system call.

Accessing methods return the values of the "out” instance variables.

AimSystemCall OS-Interface

Errors has one method that returns the value of errno.

Execution has two methods, displaylnvoke and invoke, which call the proper
primitive to communicate with the operating system, and systeminvoke which calls
a subclass method to make a primitive call.

Operation type has methods to set the operationType instance variable and a
method that sets and one that returns the value of operation.

Portable subtask operations are operations which an instance of a subclass would
perform for a Subtask, such as answer the exit code, the interrupt ID, or the task ID
of the Subtask. The methods are implemented by a subclass, except
terminatedSubtaskID, which returns the value of DOOut.

Related Classes

Subclasses:
UniflexSystemCall (UniFLEX only)
UTekSystemCall (UTek only)

You might also want to look at the superclass, AbstractSystemcCall.

Tektronix Smalltalk Reference Manual 33

34

DisplayState

OS-Parameters

instanceVariableNames:
classVariableNames:

poolDictionaries:
category:

ExternalBinaryData variableByteSubclass: #DisplayState

‘BlackOnWhiteBitPosition CursorDatalndex
CursorlinkedBitPosition CursorOffsetXDatalndex
CursorOftfsetXYDatalndex
CursorQtfsetYDatalndex CursorOnBitPosition
CursorPanningBitPasition DisplayOnBitPosition
EventsBitPosition HeightDatalndex
JoyPanningBitPosition KeyboardCodeDatalndex
KeyCapsLockLEDBitPosition
LinelncrementDatalndex
MouseBoundLrDatalndex
MouseBoundUIDatalndex
ScreenSaverBitPosition StateBitsDatalndex
TerminalEmulatorBitPosition TotalSizeDatalndex
ViewportDatalndex ViewPortHeightDatalndex
ViewPortWidthDatalndex WidthDatalndex *

‘OS-Parameters’

Summary

DisplayState captures all of the information about the state of the display in a single
class. This class is represented in the operating system as the C structure below.
DisplayState provides creation and accessing protocol for the structure.

struct displaystate {
int disp_stateBits;

/= bit definitions as below */

int disp_viewport; /* upper left corner point of viewport */

int disp_mouseBound_ul; /* upper left corner point of mouse
bounds */

int disp_mouseBound_Ir; /+ lower right corner point of mouse
bounds */

short disp_cursor[16]; /* the cursor image */

char disp_keyboardCode; /+ current keyboard encoding:

O=events, 1=ansi */

char disp_reservedi; /* reserved for future use */
short disp_linelncrement; /* number of bytes between scan lines */

short disp_width;

Tektronix Smalltalk Reference Manual

/* width of virtual display bitmap */

35

DisplayState = ©S-Parameters

short disp_height;

short disp_viewPortWidth;
short disp_viewPortHeight;
short disp_cursorOffsetX;
short disp_cursorOffsetY;
int disp_reserved[2];

/* height of virtual display bitmap */
/+ width of viewport */

/* height of viewport */

/* X graphic cursor offset */

/+Y graphic cursor offset */

/* reserved for future use */

}
stateBits Definition

name bit position * comment
displayOn 1 1 means on/ 0 means off
screenSaver 2 1 means screen saver on / 0 means off
blackOnWhite 3 1 means black on white / 0 means white on black
terminalEmulator 4 1 means emulator output enabled / 0 disabled
keyCapsLockLED 5 1 means the Caps Lock LED is illuminated
cursorOn 9 1 means graphics cursor is enabled
cursorlinked 10 1 means mouse is linked to cursor
cursorPanning 11 1 means cursor movement can cause panning
joyPanning 12 1 means joydisk causes viewport panning
events 17 1 means events mechanism is turned on

* Smalltalk bit positions are counted from position 1, not 0 as in the C structure

statebits field.

The structure is documented under getDisplayState in the system call section of the
manual that documents platform-specific extensions for your operating system.

Class Variables

36

BlackOnWhiteBitPosltion
CursorDatalndex
CursorLinkedBitPosition
CursorOffsetXDatalndex
CursorOffsetXYDatalndex
CursorOffsetYDatalndex
CursorOnBitPosition
CursorPanningBitPosition
DisplayOnBitPosition

DisplayState OS-Parameters

EventsBitPosition

HeightDatalndex

JoyPanningBitPosition

KeyboardCodeDatalndex

KeyCapsLockLEDBItPosition

LinelncrementDatalndex

MouseBoundLrDatalndex

MouseBoundUIDatalndex

ScreenSaverBItPosltion

StateBitsDatalndex

TerminalEmulatorBitPosition

TotalSizeDatalndex

ViewportDatalndex

ViewPortHelghtDatalndex

ViewPortWidthDatalndex

WidthDatalndex
Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string ‘Dataindex” appended. For example,
the class variable StateBitsDatalndex holds the offset of the

"disp_stateBits" field. For this structure, each bit position in the
"disp_stateBits" field has its own class variable.

Instance Methods
accessing

cursorOffsetX
Return the value of the structure field named cursorOffsetX.

cursorOffsetY
Return the value of the structure field named cursorOfisetY.

height
Return the value of the structure field named height.

Tektronix Smalltalk Reference Manual 37

DisplayState 0s-Parameters

38

keyboardCode :
Return the value of the structure field named keyboardCode.

linelncrement
Return the value of the structure field named linelncrement.

mouseBoundLr
Return the value of the structure field named mouseBoundLr.

mouseBoundLrX
Return the X coordinate of the value of the structure field named
mouseBoundLr.

mouseBoundLrY
Return the Y coordinate of the value of the structure field named
mouseBoundLr.

mouseBoundUl
Return the value of the structure field named mouseBoundUI.

mouseBoundUIX
Return the X coordinate of the value of the structure field named
mouseBoundUI.

mouseBoundUlY
Return the Y coordinate of the value of the structure field named
mouseBoundUL.

stateBits
Return the value of the structure field named stateBits.

viewport
Return the value of the structure field named viewport.

viewPortHeight
Return the value of the structure field named viewPortHeight.

viewPortWidth
Return the value of the structure field named viewPortWidth.

viewportX
Return the X coordinate value of the structure field named viewport.

viewportY
Return the Y coordinate value of the structure field named viewport.

width
Return the value of the structure field named width.

DisplayState ©Os-Parameters

accessing-status

blackOnWhite
Answer true if the blackOnWhite state bit is set.

cursorLinked
Answer true if the cursorLinked state bit is set.

cursorOn
Answer true if the cursorOn state bit is set.

cursorPanning
Answer true if the cursorPanning state bit is set.

displayOn
Answer true if the displayOn state bit is set.

events
Answer true if the events state bit is set.

joyPanning
Answer true if the joyPanning state bit is set.

keyCapsLockLED
Answer true if the keyCapsLockLED state bit is set.

screenSaver
Answer true if the screenSaver state bit is set.

terminalEmulator
Answer true if the terminalEmulator state bit is set.

printing

printOn: aStream
Print the receiver on aStream.

Tektronix Smalltalk Reference Manual 39

DisplayState = 0OS-Parameters

Class Methods

class initialization

initialize
Assign offset values to the class variables and define the size of the

structure.

Rationale

The display state structure stores in one place all important attributes that affect the
current environment of the display. The structure is used in support of the following
system call:

getDisplayState

Discussion

DisplayState does not provide protocol to modify the C structure in the operating
system. lts purpose is to provide access to the information in the structure.

AimSystemcCall provides protocol for changing the state of the display. Under
system-display operations you will find methods to enable and disable display
attributes, for example, inverse/normal video, cursor panning, and joydisk panning.

See the manual that documents platform-specific extensions for your operating
system for more information about display attributes and the fields in the
displaystate structure.

Related Classes

AimSystemCall implements the system call getDisplayState which uses the
displaystate structure.

40

ExternalBinaryData OS-Parameters

ExternalData variableByteSubclass: #ExternalBinaryData

instanceVariableNames:

classVariableNames:

poolDictionaries:

category: ‘OS-Parameters’

Summary

ExternalBinaryData is an abstract class for non-Smalltalk data structures that do
not have imbedded pointers. The concrete classes representing non-Smalltalk data
structures are used to pass information between Smalltalk and the operating
system, for example, when making system calls. The indexable fields of instances
of subclasses represent the same bytes as the named fields of the external
language’s data structure. This is explained in the "Discussion” section.

Subclasses implement creation and accessing methods for specific non-Smalltalk
data types such as displaystate, a C structure, and wait, a C union.

Instance Methods
accessing

dataArea
Answer the data portion of the receiver.

replaceFrom: start to: stop with: replacement startingAt: repStart
This destructively replaces elements from start to stop in the receiver,
starting at index repStart in the Collection replacement. Answer the
receiver.

conversion

asStringFrom: start to: stop
Create a string from the receiver’s bytes between start and stop, inclusive.

ExternalBinaryData class

instanceVariableNames: ‘sizelnBytes *

Tektronix Smalltalk Reference Manual 41

ExternalBinaryData OS-Parameters

ExternalBinaryData class — Instance Variables

sizelnBytes <Integer>
Number of bytes required to represent the data area of an instance.

Class Methods

accessing

numberOfPointers
Return the number of pointers imbedded in the structure represented by an
instance of the receiver.

pointersSize
Answer the pointers size of any instance.

sizeof
Answer the number of bytes in the data section of any instance.

instance creation

new
Return a new instance of the receiver.

Rationale

Since all external data classes either do or do not contain pointers, the
ExternalData hierarchy splits at this level into ExternalBinaryData and
ExternalPointerData. ExternalBinaryData is an abstract class which implements
protocol common to all of its concrete subclasses which, by definition, do not contain
pointers. Inherited protocol designated as subclass responsjbility is implemented in
this class. All subclasses of the ExternalBinaryData branch of the external data
hierarchy have a class instance variable, sizelnBytes, defined here as the number
of bytes in the data area of all instances of a subclass.

Discussion
Naming Conventions for Subclasses’ Class Varlables

Most of the time (exceptions are explained below), there is one class variable for
each named field in the external data structure represented by a Smalltalk class.
Each external data structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name, stripped of
its prefix, with the string "Datalndex” appended. The bytes of a named field in an
external structure reside in the byte array starting at the offset indicated by the class
variable for the field. For example, in the following figure, the bytes of a field called
"foo” would begin at position FooDatalndex in the data area (byte array) of the

42

ExternalBinaryData 0OS-Parameters

Phoney object representing the structure with "foo” in it. See Figure 1 for a simple

example.

c | Smalltalk

struct phoney { |0] 0] 0|1 |# | (dataArea, aByteAnay,
| of instance of Phoney)

long foo;

char bar; I FooDatalndex (1)

} sample; BarDatalndex (5)

sample.foo=1; I
sample.bar = 'a";

data in the "foo" field is accessed by the message foo
data in the "bar" field is accessed by the message bar

3393-5

Figure 1

An example will help to illustrate the class variables néming convention. The
following is the definition of the C structure which the Rusage class represents.

struct rusage {
struct timeval
struct timeval
long
long
long
long
long
long
long
long
long
long
long
long
long
long

Tektronix Smalltalk Reference Manual

ru_utime;
ru_stimse;
ru_maxrss;
ru_ixrss;
ru_idrss;
ru_isrss;
ru_minflt;
ru_majflt;
ru_nswap;
ru_inblock;
ru_oublock;
ru_msgsnd;
ru_msgrev;
ru_nsignals;
ru_nvcsw;
ru_nivcsw;

/* user time used */
/+ system time used */

/+ integral shared memory size */
/* integral unshared data size */
/* integral unshared stack size */
/* page reclaims */

/* page faults */

/+ swaps */

/* block input operations */

/* block output operations */

/* messages sent ¥/

/* messages received */

/* signals received */

/+ voluntary context switches */
/* involuntary */

43

ExternalBinaryData OS-Parameters

44

The first two fields of struct rusage are of type struct timeval, defined as follows.

struct timeval {
long tv_sec; /xseconds */
long tv_usec; /* microseconds */

}

There are fourteen class variables for the Rusage fields with simple data types (all
the fields of type long). In addition to the fourteen class variables for the simple
fields of struct rusage, Rusage has class variables for the fields whose data type is
a structure — rusage fields ru_utime and ru_stime are of type struct timeval. The
additional variables are named StimeSecDatalndex, StimeUsecDatalndex,
UtimeSecDatalndex, and UtimeUsecDatalndex. These names are derived from
the field name in struct rusage and the name of the field in struct timeval. Field
names are stripped of their prefix, as usual, to arrive at the "structure within a
structure” class variable names.)

If an external data structure has fields which are not presently used, usually
indicated by "reserved” in the field comment, the Smalltalk class for the structure
does not have class variables for the "reserved” fields.

Naming Conventions for Subclasses’ Protocol

Each concrete subclass of ExternalBinaryData has protocol for accessing the data
of the structure. Message selectors are the field name, stripped of its prefix. For
example, sending the message inblock to an instance of Rusage will return the
value of the ru_inblock field. The message sec:, sent to an instance of Timeval, will
set the value of the tv_sec field to the specified argument. Depending upon whether
the structure is exclusively filled in by the operating system, or whether Smalltalk will
send data to the operating system in the structure, accessing methods are provided
to access or to access and set the values of fields. In the case of Rusage, protoco!
is provided to only access the field data, not to set the fields, since the purpose of
the structure is to obtain data from the operating system. Since a Timeval is used
to send and receive data, protocol is provided to access and set the values of fields.

When the value of a field is dependent upon the value of another field, no separate
method is provided to set the value of the dependent field. The method which sets
the value of the field it depends upon sets the value of the dependent also. This
pattern of accessing protocol for field values which are dependent upon other fields
has been followed in the concrete subclasses of FixedSizeExternalPointerData
and ExternalBinaryData.

ExternalBinaryData OS-Parameters

When a structure field is another structure, separate accessing messages are
provided for the fields in the imbedded structure. For example, the Rusage method
stimeSec returns the value of the tv_sec field of the timeval structure addressed by
the struct rusage ru_stime field.

Protocol to set the value of a field which is an imbedded structure takes an instance
of the class representing the imbedded structure as an argument. For example, the
Itimerval method Interval: takes an instance of Timeval as an argument and sets
the value of the it_interval field, which is of type struct timeval.

ExternalBinaryData Class Protocol

Accessing methods implement inherited protocol to return the numberOfPointers (0
for all subclasses) and the sizeOf all instances of a subclass, the sizelnBytes class
instance variable. The pointersSize method exists to parallel the
ExternalPointerData method of that name; it returns 0 since no subclasses contain
pointers.

Instance creation defines the method new to return an instance with the correct
number of indexable variables. As an abstract class, you would not send the
message new to ExternalBinaryData to create an instance of this class. The
method is implemented here for use in subclasses. Instance creation methods in
concrete subclasses return an instance of the class with the fields filled, either with
data obtained via a system call or data supplied as arguments to the instance
creation message. There is no pattern for subclasses’ instance creation protocol — it
varies according to the common uses of individual structures.

ExternalBinaryData Instance Protocol

Accessing has one method, dataArea, which returns the receiver, since all instances
of subclasses are strictly data (no pointers). Subclasses of the other branch of
external data, ExternalPointerData, have an instance variable, dataArea, which is
returned when the message dataArea is sent to an instance of a subclass. The
inherited method replaceFrom:to:with:startingAt: is reimplemented; it invokes a
primitive to perform a memory to memory data copy.

Conversion has one method which converts a specified range of the receiver from
bytes to a String and returns the String. The purpose of this method is to convert a
string as represented in an external language (for example, an array of chars in C)
to a Smalltalk String.

Tektronix Smalltalk Reference Manual 45

ExternalBinaryData OS-Parameters

Adding Classes to this Hierarchy

If you are adding a subclass of ExternalBinaryData and the conventions just
described are unclear to you, the best idea is to find a structure class similar to the
structure you are adding and model your class on the similar one. Your new class’
protocol must include a class initialization method which initializes the class
variables and sizelnBytes. Remember to execute the initialize method for the new
class.

Related Classes

Subclasses:
DisplayState
Inaddr
IntegerPointer
Itimerval
Ltchars
Riimit
Rusage
Sgttyb
Sockaddrin
SockaddrUn
Stat
Tchars
Timeval
Timezone
Utsname
Wait

You might also want to look at ExternalData, the superclass. If you are adding a
class for a structure with imbedded pointers, read about ExternalPointerData —
your new class should be a subclass of that class or its subclass,
FixedSizeExternalPointerData.

46

ExternalData OS-Parameters

Object subclass: #ExternalData

instanceVariableNames:

classVariableNames: ‘Char Int Long Pointer Short

poolDictionaries: ”

category: ‘0S-Parameters’
Summary

ExternalData is an abstract class for defining data structures suitable for
communicating with non-Smalltalk languages. Translation must occur to change
Smalltalk objects to the data structure of another language, and vice versa. This
class reimplements some ByteArray protocol.

Naming Conventions for Subclasses and Subclass Protocol

A class is created for each external language structure. A structure with imbedded
machine pointers is made a subclass of ExternalPointerData. A structure without
imbedded machine pointers is made a subclass of ExternalBinaryData. The class
name is the same as the structure name. For example, the class Sockaddrin
provides creation and accessing protocol for a C structure of that name. Fields are
accessed by the names given in the structure, stripped of the prefix. For example,
in Sockaddrin, the "sin_family" field is accessed with the message family. Offsets
into the structure are provided as class variables.

Class Variables

Char <Integer>
Number of bytes for a C char type.

Int <Integer>
Number of bytes for a C int type.

Long <Integer> :
Number of bytes for a C long type.

Pointer <integer>
Number of bytes for a C pointer type.

Short <Integer>
Number of bytes for a C short type.

Tektronix Smalitalk Reference Manual 47

ExternalData OS-Parameters

Instance Methods
accessing

at: index
Answer the value of the indexable field, index, of the receiver’s dataArea.

at: index put: anObject
Store the value, anObiject, in the indexable field, index, of the receiver’s
dataArea.

dataArea
Answer the data portion of the receiver. Subclass responsibility.

doubleWordAt: index put: value
Set the value of the double word (4 bytes) starting at byte index.

numberOfPointers
Return the number of pointers imbedded in the structure represented by
the receiver.

replaceFrom: start to: stop with: replacement startingAt: repStart
This destructively replaces elements from start to stop in the receiver,
starting at index repStart in the Collection replacement. Answer the
receiver. No range checks are performed.

signedintegerDoubleWordAt: index
Answer the value of the double word (4 bytes) starting at byte index. Treat
the value as a 2°s complement signed integer.

signedintegerWordAt: index
Answer the value of the word (2 bytes) starting at byte index. Treat the
value as a 2’s complement signed integer.

sizeof
Answer the number of bytes in the data section of the receiver.

unsignedintegerDoubleWordAt: index
Answer the value of the double word (4 bytes) starting at byte index. Treat
the value as an unsigned integer.

unsignedintegerWordAt: index
Answer the value of the word (2 bytes) starting at byte index. Treat the
value as an unsigned integer.

wordAt: index put: value
Set the value of the word (2 bytes) starting at byte index.

48

ExternalData OS-Parameters

Class Methods

class initialization

initialize
Initialize the class variables.

accessing

numberOfPointers
Return the number of pointers imbedded in the structure represented by
the receiver. Subclass responsibility.

sizeof
Answer the number of bytes in the data section of any instance. Subclass
responsibility.

Rationale

ExternalData is an abstract class which implements protocol common to all of its
subclasses. This class and its subclasses were created to provide a mechanism for
Smalltalk to exchange data with the operating system when making system calls.

Discussion

As an abstract class, there is no instance creation protocol in ExternalData. The
instance and class protocol includes message selectors that will be sent to
subclasses, not to this class. If you are adding a class that represents an external
language structure, you should look at the abstract subclasses of ExternalData and
make your new class a subclass of one of them, not a subclass of this class.

Class Protocol

Class initialization has one method which sets the values of the class variables.
Accessing methods return the number of pointers in the structure, and the number of
bytes in the dataArea of the structure — implementation of these functions is left to
a subclass.

Instance Protocol

Since the data of an external structure are represented in a Smalltalk object as a
ByteArray, this class reimplements some ByteArray accessing protocol.

Tektronix Smalltalk Reference Manual 49

50

ExternalData ©S-Parameters

Accessing methods return or set the values of indexable fields in the dataArea of the
receiver. There are different accessing methods for the different sizes of data —
one byte, two bytes, or four bytes — and for signed or unsigned integers. One
method, replaceFrom:to:With:startingAt:, replaces a chunk of data in the receiver
The work of two methods, dataArea and slzeof, is ultimately done by a subclass.

Related Classes

Subclasses:

ExternalBinaryData
ExternalPointerData

ExternalPointerData OS-Parameters

ExternalData subclass: #ExternalPointerData

instanceVariableNames: ‘dataArea pointers *
classVariableNames: o

poolDictionaries:
category: ‘OS-Parameters’

Summary
ExternalPointerData is an abstract class for a non-Smalltalk data structure
containing machine pointers. It holds the binary data for the non-Smalltalk data
structure and an array of Smalltalk objects whose machine addresses will be
inserted into the binary data. The addresses are inserted by the interpreter when
certain primitives are invoked.

Instance Variables
dataArea <ByteArray>
Binary data of a non-Smalltalk data structure.

pointers <Array>
Pairs offsets into the binary data portion (dataArea) with objects.

Instance Methods
accessing

dataArea
Return the dataArea of the receiver.

dataArea: aByteArray
Update the dataArea of the receiver with aByteArray.

dataArea: aByteArray pointers: anArray
Update the dataArea of the receiver with aByteArray and the pointers with
anArray.

numberOfPointers
Return the number of pointers imbedded in the structure represented by

Tektronix Smalltalk Reference Manual 51

ExternalPointerData 0©OS-Parameters

the receiver.

pointers
Return the pointers of the receiver.

pointers: anArray
Update the pointers of the receiver.

sizeof
Return the size of the data area in bytes.
copying

copy
Return a copy of the receiver. Insure that pointers of the copy reference

the same objects as the pointers of the receiver.

Rationale

Since all external data classes either do or do not contain pointers, the
ExternalData hierarchy splits at this level into ExternalBinaryData and
ExternalPointerData. ExternalPointerData is an abstract class which implements
protocol common to all of its concrete subclasses which, by definition, contain one
or more pointers. Inherited protocol designated as subclass responsibility is
implemented in this class.

Discussion

52

Naming Conventions for Subclasses’ Class Variables

The name of a class variable is constructed from a field name, stripped of its prefix,
with one of the following strings appended, as appropriate: ‘Datalndex’ or
‘Pointerindex’. Fields without pointers have one class variable, <field-
name>Datalndex. For fields with a data type having imbedded machine pointers,
two class variables are created:

e one for the offset of the binary data, and

e one for the index of the pointer to that field, with respect to other pointers in the
structure.

The <field-name>Datalndex indicates the index of the first byte of the data in the
dataArea. The <field-name>Pointerindex is used in accessing protocol to access or
set the value of a pointer field in pointers.

An example will help to illustrate the naming convention for class variables. The
following is the definition of the C structure which the Msghdr class represents.

ExternalPointerData

OS-Parameters

struct msghdr {
caddr_t
int
struct iovec
int
caddr_t
int

}

msg_name;
msg_namelen;
*msg_iov;
msg_iovlen;
msg_accrights;
msg_accrightslen;

/* optional address */

/* size of address */

/* scatter/gather array */

/* # elements in msg_iov */

/* access rights sent/received */

The third field, *msg_iov, is a pointer to a struct iovec, which is defined as follows.

struct iovec {
caddr_t

iov_base;

int iov_len;

}

There are six fields in struct msghdr. The first, third and fifth fields are pointer types
(caddr_t is defined as a pointer to a char). The class variables for the pointer fields
are shown in the following table.

Pointer Fields’ Class Variables

field name

class variables

contents

msg_name

*msg_iov

msg_accrights

NameDatalndex

NamePointerindex

lovDatalndex

lovPointerindex

AccrightsDatalndex

Tektronix Smalltalk Reference Manual

offset (1) of the first
byte of msg_name data
in dataArea

index (1) of this
pointer with respect to
other pointers in the
structure

offset (9) of the first
byte of *msg_iov data
in dataArea

index (2) of this
pointer with respect to
other pointers in the
structure

offset (17) of the first
byte of msg_accrights
data in dataArea

53

ExternalPointerData 0OS-Parameters

AccrightsPointerindex

index (3) of this
pointer with respect to
other pointers in the
structure

Msghdr has three other class variables for the three fields which are not pointers.

Other Fields’ Class Variables

field name class variable contents (offset)
msg_namelen NamelenDatalndex 5

msg_iovlen lovienDatalndex 13-
msg_accrightslen AccrightsienDatalndex 21

If an external data structure has fields which are not presently used, usually
indicated by "reserved” in the field comment, the Smalltak class for the structure

does not have class variables for the "reserved” fields.

~ dataArea and pointers Instance Variables

This section describes the two instance variables, dataArea and pointers, provides
an illustration of their relationship, and gives details of the elements of the value-

offset pairs in pointers.

The dataArea instance variable is a ByteArray of the data in the structure. The
index of the first byte of each structure field in the dataArea is indicated by the
<field-namesDatalndex class variable for the field. A pointer field’s "Datalndex”
class variable is also the second element of the field’s value-offset pair in the

pointers array.

The pointer array, pointers, is an instance of Array which stores pairs of elements
(i.e., "anArray at: 1:" together with "anArray at: 2" make up a "pair”). For each
pointer in a structure, there is one pair (two elements) in pointers. For example,
since a Msghdr contains three pointers, its pointers array has three pairs — six

elements.

The figure below depicts an instance of Msghdr to show the value of its instance
variables. The code preceding the figure is an example that creates the objects

needed for the figure.

anlovecArray « StructurcArray new: 2 class: Iovec.

anlovecArray at: 1 put: (Iovec base: “first”).
anlovecArray at: 2 put: (Iovec base: “second”).

54

|enueyy aouaIBjEY YIENEWS XiuonyaL

SS

‘1 ainbi4

asybs|y jo souelsu| uy

5 ¢b°+
s+) X
S & & 3
b°+ \‘2}(‘ N ‘\\60 'b\'b\ (9'0
A& i P N s \@
2 & N 5* g N
& & 00@ & &% &®
- ¥ & & ¥ ¥
1]l2134al516)7181910111{12113114]15116]17118119120121]22]23 |24
dataArea
(a ByteArray) 0003 0002 0006
msg_name msg_namlen ‘msg_lov msg_lovlen msg_accrights msg_accrightslen
value offset value olfset i value offset
pointers ¥ 5 T
(an Array) 'foo’ NameDatalndex aStructureArray lovDatalndex ‘rights’ AccrightsDatalndex
object (1) object (9) object (17)

3393-4

The spaces reserved for addresses in the

dataArea are filled by the systemv/display call primitive. The
dotted lines point to the Smalitalk objects whose addresses are in the dataArea.

+,s1ySu, s1ySuooe Aewryoaao[ue a0l ,00), dweu IpySsy — Ipydsw

BlEQI9)UIOd|RUISIXT

sisjowesed-so

ExternalPointerData 0OS-Parameters

56

In the figure, the dataArea has space for three machine addresses which will be
filled by a system call or display primitive. The dotted lines indicate that the
addresses filled in by the primitive will refer to objects in the pointers array.

Value

The first element of a pair (the odd indexed element) contains a Smalltalk object
which is conceptually referenced by the field of the non-Smalltalk structure. This
element is called the value. If the function of the system call is to return data from
the external language structure to Smalltalk, then the appropriate value locations in
pointers will be changed after the system call.

Offset

The second element of a pair (the even indexed element) is called the offser. It
contains the index into the dataArea, a ByteArray, where the first byte of the
pointer (i.e., an address) is stored. Indices in the dataArea are counted from 1.
The offset identifies the position where a reference to a Smalltalk object is
considered to virtually exist. The space reserved for addresses in dataArea is filled
in by a display or system call primitive; however, after the call is completed the
addresses may no longer be valid for the Smalltalk objects they referenced when
the call was invoked.

Primitive Action on dataArea

If the offset is nil, indicating an unused map pair, the associated value is ignored.
This might be useful for representing “union” types in which some fields must be
empty. If the value is the object nil, the primitive will replace the associated field in
the dataArea with the binary value 0. If the value is a Smallinteger or a 4-byte
LargePositivelnteger or LargeNegativelnteger, the primitive will replace the
associated field in the dataArea with the machine representation of the integer
value. If the value is an ExternalBinaryData object (or a variableByte or
variableWord class without instance variables), then the field is replaced with the
machine address of the data part of the object. Otherwise, the value is assumed to
be an ExternalPointerData object; the associated field in the dataArea is replaced
with the address of the data part of the ExternalPolinterData object and above rules
are recursively applied. When the recursion is completed, all pointers in the
dataArea will contain valid addresses and the pointers in the dataArea of each
referenced object will also contain valid addresses. This allows a structure to contain
pointers to other structures.

The following table summarizes the possible meanings of the pointers array.

ExternalPointerData OS-Parameters

Offset Value Primitive Action on dataArea
nil anything value is ignored
X nil at x store the machine integer whose value is
0
X Smallinteger at x store machine integer
X 4-byte LargePositivelnteger at x store machine integer
X 4-byte LargeNegativelnteger at x store machine integer
X ExternalBinaryData at x store machine address of data portion
X ExternalPointerData at x store machine address of data portion

and recurse

(x is an integer)
Naming Conventions for Subclasses’ Protocol

Each concrete subclass of ExternalPointerData has protocol for accessing the data
of the structure. Message selectors are the field name, stripped of its prefix. For
example, sending the message accrights to an instance of Msghdr will return the
value of the msg_accrights field. The message accrights:, sent to an instance of
Msghdr, will set the value of the msg_accrights field to the specified argument.
Since the value of the msg_accrightslen field is dependent upon the length of the
string in msg_accrights, there is no method provided to set the value of
msg_accrightslen. The accrights: method sets the value of both fields. This
pattern of accessing protocol for field values which are dependent upon other fields
has been followed in the concrete subclasses of FixedSizeExternalPointerData
and ExternalBinaryData.

Depending upon whether the structure is exclusively filled in by the operating
system, or whether Smalltalk will send data to the operating system in the structure,
accessing methods are provided to access or to access and set the values of fields.

Protocol to set the value of a field which is an imbedded structure takes an instance
of the class representing the imbedded structure as an argument. At present there
are no subclasses of FixedSizeExternalPointerData which represent a structure
with an imbedded structure.

ExternalPointerData Instance Protocol

This protocol is present to be inherited by concrete subclasses. Since this is an
abstract class, there is no instance creation protocol and no messages should be
sent to this class.

Accessing has one method, dataArea, which returns the dataArea instance variable,

and another method to set the dataArea. There are two methods to access and set
the value of the pointers instance variable. Another method, dataArea:pointers:,

Tektronix Smalltalk Reference Manual 57

ExternalPointerData 0OS-Parameters

sets the value of both instance variables. The numberOfPolnters method returns
the number of pointers in the structure, and the slzeOf method answers the size of

the dataArea in bytes.

Copying has one method which returns a copy of the receiver.

Related Classes

Subclasses:
FixedSizeExternalPointerData
PointerArray
StructureArray

You might also want to look at the superclass, ExternalData, and the parallel
abstract class for structures which do not contain pointers, ExternalBinaryData.

58

FileDirectory OS-Streams

FileStream subclass: #FileDirectory

instanceVariableNames:
classVariableNames:
poolDictionaries:
category: ‘0S-Streams’

s

,r

Summary
Instances of FileDirectory are a special kind of FileStream that represent
directories. The instance variable name identifies the directory instances refer to.
Directories can be viewed as a collection of files — enumerating protocol is
provided. Instances of FileDirectory can be found in dictionaries, or another
FileDirectory, though often this is implicit.

Inherited Instance Variables

name <String> _
This inherited instance variable contains a relative or absclute path
specifying this directory. Relative paths are relative to Disk.

directory <nil>
This inherited instance variable is not used.

Instance Methods
accessing

completePathname
Answer the complete path name of the receiver, starting with the root
directory. A trailing path name separator is considered part of a directory
name even if not explicitly stored.

contents
Answer the names of all files in this directory.

directoryName
Answer the name of the receiver.

fullName
Answer the full path name of the receiver, relative to Disk if appropriate. A
trailing path name separator is considered part of a directory name even if

Tektronix Smalitalk Reference Manual 59

FileDirectory 0S-Streams

not explicitly stored.

versionNumbers
Answer true if version numbers are supported.

adding

addKey: aFileName
Create a new file whose name is aFileName. The method newFile:
produces an error if the file already exists.

enumerating

do: aBlock
Sequence over all possible files (or directories) in the receiver, evaluating

aBlock for each one.

filesMatching: patternString
Answer an Array of the names of files (or directories) that match
patternString.

namesDo: aBlock
Sequence over all possible file (or directory) names in the receiver,
evaluating aBlock for each one. A collection of file names is created so
that the operating system will not dynamically increase the directory size
when backup files are created.

file accessing

checkName: aFileName fixErrors: fixErrorsBoolean
Check aFileName for validity as a file in this directory.

directoryNamed: aString
Answer an instance of myself whose name is aString. Answer Disk if
aString matches Disk.

file: aFileName
Answer a FileStream on an old or new file whose name is aFileName.

fileClass
Answer the proper class whose instances represent files in the receiver.

60

FileDirectory OS-Streams

isLegalFileName: aString
Answer whether aString is a legal file name.

isLegalOldFileName: aString
Answer whether aString is a legal file name and if the file exists in the
receiver.

newDirectory: aDirectoryName
Answer a FileDirectory on a new directory whose name is aDirectoryName;
notify if the argument is not a new file name.

newFile: aFileName
Answer a FileStream on a new file whose name is aFileName; notify if the

argument is not a new file name.

oldFile: aFileName
Answer a FileStream on an old file whose name is aFileName; notify if the
argument is not an old name.

oldWriteOnlyFile: aFileName
Answer a FileStream on an old file (write only) whose name is aFileName;
notify if the argument is not an old name.

rename: aFile newName: newName
Rename the file, aFile, to have the name newName; notify if a file by the
name, newName, already exists.

file capying

append: aFileName1 to: aFileName2 ‘
Append the contents of a file whose name is aFileName1 to the end of a
file whose name is aFileName2.

copy: aFileName1 to: aFileName2
Copy the contents of a file whose name is aFileName1 to a file whose
name is aFileName2.

removing

removeKey: aFileName
Remove the file whose name is aFileName; notify if not found.

removeKey: aFileName ifAbsent: absentBlock
Remove the file whose name is aFileName; answer the result of evaluating
absentBlock if not found.

Tektronix Smalltalk Reference Manual 61

FileDirectory 0S-Streams

testing

includesKey: aFileName
Answer whether a file or directory whose name is aFileName is included in

the receiver.

iIsEmpty
Answer whether there are any files in the receiver.

statusOf: aFileName
Answer the status of aFileName without opening it.
xerox file compatability

findKey: aFileName
Answer an instance of the file class which represents a file with the name

aFileName.

Class Methods

instance creation

currentDirectory
Answer an instance of me representing the current directory.

directoryFromNamae: fileName setFileName: aBlock
Answer the file directory implied from the designator fileName. This
directory contains the designated file. Evaluate the block with only the file

name portion of the designator.

directoryNamed: aString
Answer an instance of me whose name is aString. Answer Disk if aString
matches Disk.

fileNamed: aFileName
Not appropriate for a FileDirectory.

Rationale ,
FileDirectory is a representation of a directory on the disk. It provides protocol for
looking at the files in a directory.

Discussion
Disk is a global variable, an instance of FileDirectory. In the standard image Dlsk
is setto ".", the current directory. This means that Disk "floats” to whatever
directory you are in when you invoke Smalltalk. The Smalltalk home directory
concept is used throughout file creation and referencing methods. There is example

62

FileDirectory OS-Streams

code in the System Workspace for changing the value of Disk.
Class Protocol

Instance creation provides several ways to create an instance of FileDirectory.
Instances can be created from the current directory, from the directory implied in a
full path name, or by naming a directory. The inherited fileNamed: method is
intercepted.

Instance Protocol

Accessing methods answer the directory name, answer a collection of the file names
in the receiver, answer the name instance variable, and answer false to indicate that
version numbers are not supported. Complete path means begin at root and fully
specify the path. Full name means the name relative to Disk if Disk is part of the
path, or the complete path relative to root (/) if Disk is not in the file’s path.

Adding has one method which creates a new file with the specified name.

Enumerating has two methods which evaluate a block for all entries in the directory
and a method, filesMatching:, that returns an array of file names matching an
ambiguous file name — the ambiguous name provides the ability to use wildcard
characters such as # or *,

File accessing methods perform many types of functions. You can check for invalid
characters (less than ASCII 33 or greater than ASCIl 126) in a file name and,
optionally, remove the illegal characters. Two methods return true if a specified file
name does not contain illegal characters; in addition, one of them checks that the
file exists before answering true. One method answers the appropriate class of
Smalltalk objects representing files in these directory objects — this allows some
independence for FileDirectory.

Several file accessing methods return instances of this class and FileStream. You
can choose among methods that check whether a file exists before creating a
stream on it, that further specifies that the stream be write-only, or one that creates
the stream without testing for the file’s existence. This message category also has
methods to create a new file or directory and rename an existing file.

If you don’t want to always fully qualify the path of a file (or files) that you access
frequently, you can use the following method.

e Create an instance of FileDirectory on the directory which contains the file(s).
Keep the instance of FileDirectory in your image.

Tektronix Smalltalk Reference Manual .) 63

FileDirectory . 0OS-Streams

e Send a message to the FileDirectory to create a FileStream on the file when
you want to access it (e.g., aFileDirectory oldFile: nameOfFile). The
FileStream will be created relative to the path of the FileDirectory.

The above approach can be used for any directories you access often — just keep
the instances of FileDIrectory in your image. '

File copying contains one method which appends the contents of a specified file to
another file and one method which copiss the contents of one file to another file.

Removing methods let you remove a disk file from the directory and, optionally,
specify a block to be evaluated if the disk file does not exist.

Testing methods check whether a disk file exists, whether the directory is empty, and
answer an instance of the file status class for your operating system.

The single xerox file compatibility method, findKey: calls fileClass and returns an
instance of the class that method specifies. This method is retained for backward
compatibility.

Examples

The following example can be executed in a workspace. If you do so, you might
want to change the ambiguous file name to yield files you actually want to file in.
For ease of use, afile list is better for filing in one file at a time. If you want a group
of files to file in, the example code is a fast way to do it.

dir « Disk directoryNamed: “/usr/lib/smalltalk/fileln”.
(dir filesMatching: “a*.st”) do:
[:eachFile | (dir file: eachFile) fileIn]

The global FileDirectory, Disk, is sent an instance creation message with the full
path name as an argument. The instance is assigned to dir. An enumerating
message, filesMatching:, is sent to dir with an ambiguous file name as the
argument. For each file whose name begins with a and has the extension .st, an
instance of FileStream is created. A FileDirectory file accessing message, file:,
creates the instances. Each instance is sent the message fileln, which incorporates
the contents of the file into the image.

Related Classes

You are probably familiar with the results of some of this class” protocol, because
FileDirectory is used in FileLists. Look in your System Workspace under "Create
File System" for example code using FileDirectory and FileStream.

64

FileStream OS-Streams

ExternalStream subclass: #FileStream
instanceVariableNames: ‘name directory mode fileDescriptor filePosition
fileMode *
classVariableNames: ‘OpenFileStreams *
poolDictionaries: ”
category: ‘OS-Streams’
Summary

Instances of FileStream represent stream interfaces to mass storage files. Read
and write data are buffered to minimize operating system calls. The buffer size is
arbitrary; it need not reflect the physical disk block size. The buffer is either a
ByteArray or a String depending on Smalltalk’s view of the data. Characters and
bytes are stored identically in mass storage.

Instance Variables

directory <FileDirectory>
This instance variable represents the directory containing the file, nil if
unknown.

fileDescriptor <Smallintegers
This instance variable represents the file identifier assigned by the
operating system, or nil if the file is not open.

fileMode <Symbol>
This instance variable indicates the current permissions (#ReadOnly,
#ReadWrite, or #WriteOnly) of this fileDescriptor. The value of fileMode
reflects the last file activity in the file (e.g., #ReadWrite if the file was written
to and then read). It can be #WriteOnly if FileStream opens the file write
only or if the file is created by methods in this class.

filePosition <Integer>
This instance variable indicates the position of the operating system file
pointer in the file.

mode <Symbol>
This instance variable indicates the intended reading/writing mode
(#ReadOnly or #ReadWrite), nil if unknown.

Tektronix Smalltalk Reference Manual 65

FileStream 0sS-Streams

name <String>
This instance variable identifies the file within a directory.

Inherited Instance Variables

collection <ByteArray> or <String>
This inherited instance variable is the buffer for either reading or writing
data.

position <Smallinteger>
This inherited instance variable represents the current position in the
buffer.

readLimit <Smallinteger>
This inherited instance variable represents the maximum position before
the butfer is filled. When the buffer is empty, both position and readLimit
are 0.

writeLimit <Smalllnteger>
This inherited instance variable represents the maximum position before
buffer is flushed.

Class Variables

OpenFileStreams <OrderedCollection>
All open FileStreams are listed here.

Instance Methods
accessing

contentsOfEntireFile
Read all of the contents of the receiver.

next
Answer the next character (or byte) from the receiver. Answer nil if at the
end of the receiver’s file.

next: aninteger
Answer the next aninteger bytes from the receiver.

66

FileStream OS-Streams

next: aninteger Into: aCollection
Copy the next anlnteger bytes from the receiver into aCollsction. If
aCollection has word-sized elements, each element is filled with byte-sized
numbers. Answer aCollection.

nextPut: aCharacterOrByte
Place the character or byte in the buffer and return that character. If the
buffer is full, flush the buffer. If the file is not writable, make it writable. Call
nextPut: again.

nextPutAll: aCollection
Write the elements of aCollection onto the receiver. If aCollection will fit in
the receiver’s buffer then buffer it, otherwise, write it directly to the
receiver’s file. If aCollection is not a String or ByteArray (a Set of
Characters, for example) write each of its elements individually.

nextPutAll: aCollection startingAt: startindex
Append the elements of aCollection, if it is of an appropriate type, onto the
receiver starting at startindex. Answer aCollection.

nextPutAll: aCollection startingAt: startindex to: stoplndex
Append the elements of aCollection, if it is of an appropriate type, onto the
receiver starting at startindex and stopping at stoplndex. Answer
aCollection.

> Answer the size of the receiver’s file in characters (or bytes).
converting
asFileDirectory
Return the file directory representing the receiver.
copying

copy
Answer a copy of the file with a nil file descriptor.

Tektronix Smalltalk Reference Manual 67

FileStream 0S-Streams

editing

edit
Create and schedule a FileModel on the contents of the receiver. The label
of the view is the name of the receiver.

file accessing

description
Answer a String describing the receiver’s file.

directory
Answer the directory that contains the receiver.

fileName
Answer the name of the receiver’s file.

fuliName
Answer the full path name of the file represented by the receiver.

name
Answer the name of the receiver’s file.

remove
Remove the receiver from its parent directory. Discard the mass storage
associated with the receiver.

rename: newFileName
Change the name of the receiver to newFileName.
file modes

binary
Set the receiver’s file to be buffered in binary mode. Copy any already
buffered data to the new buffer, a ByteArray.

readOnly
The receiver will be used for reading only.

readWrite
The receiver will be used for reading and writing. Do not backup on first
write.

68

FileStream 0OS-Streams

readWriteShorten
Same as readWrite. We don’t support the shorten operation, so senders
must explicitly close to truncate the file at the current position.

text
Set the receiver’s file to be buffered in text mode. Copy any already
buffered data to the new buffer, a String.

writeShorten
Same as readWrite. We don’t support writeOnly, or the shorten operation.
Senders must explicitly close to truncate the file at the current position.

file status

close
Disassociate the receiver with its file in mass storage. If write data are
buffered, flush the buffer. If read data are buffered, discard the data and
adjust filePosition to reflect the loss.

fill Fill the read buffer, collection, with data from mass storage. Flush the write
buffer if required.

flush
Flush the output buffer, collection, to mass storage. Do nothing if the buffer
is empty or is not an output buffer.

shorten
This operation is preserved for historical reasons. The structure of the
existing file system does not encourage use of this file truncating method.
The native use of backup files is suggested instead.

file testing

exists
Answer whether the file represented by the receiver exists in mass storage.

IsBackup
Return true if the name of the file associated with this FileStream follows
the convention for naming backup files.

Tektronix Smalltalk Reference Manual 69

FileStream 0S-Streams

isBinary
Answer whether the receiver is reading binary bytes (as opposed to
characters).

isDirectory .
Answer true if the receiver is a directory.

isOpen
Answer whether the receiver is open, that is, if the file represented by the
receiver has been located and a file descriptor assigned.

isReadable
Answer whether it is possible to read from the receiver.

isStandard
Answer true if the receiver represents one of the standard descriptors —
in, out, or error.

isText
Answer whether the receiver is reading characters (as opposed to binary
bytes).

isWritable
Answer whether it is possible to write on the receiver.
Sileln-Out

fileln
Guarantee fileStream is readOnly before fileln for efficiency and to
eliminate remote sharing conflicts.

fileOutChanges
Append to the receiver a description of all system changes.

printOutChanges
Print to the receiver a human-readable description of all system changes.
nonhomogeneous positioning

padTo: bsize
Skip to next boundary of bsize characters, and answer how many
characters were skipped.

padTo: bsize put: aCharacterOrByte
Pad using the argument, aCharacterOrByte, to the next boundary of bsize
characters, and answer how many characters were written.,

70

FileStream OS-Streams

positioning
position
Answer the position of the receiver in characters (or bytes) from its

beginning. Compute this from the file’s physical position considering any
read ahead (reflected in readLimit) and the current position in the buffer.

position: aninteger
Position the receiver to start reading (or writing) at an offset of aninteger
characters (or bytes) from the beginning of the file. Flush buffered output;
discard (wastefully) buffered input. Position the receiver’s file, if open.

reset
Set position to beginning of file.

setToEnd
Set position to end of file.

skip: byteCount
Advance position by byteCount. A negative byteCount will backspace.
Preserve buffered read data if possible; always flush buffered write data.

printing
printOn: aStream
If the receiver is a file in the Disk directory, print with its path name relative
to Disk. Otherwise, print its full path name.
testing

atEnd
Answer true if current position is >= end of file position. Fill the input buffer
if necessary to access the next character.
xerox file compatability

asFileStream
Answer the file stream representing the receiver.

file Answer the file representing the receiver.

Class Methods

class initialization

Tektronix Smalltalk Reference Manual 71 .

FileStream 0OS-Streams

initialize
Make a new collection for holding open files.

external references

closeExternalReferences
Close all open instances of the receiver and its subclasses. Use the
bypassClose message to bypass the Smalltalk file tracking system. Only
subtasks (child tasks) should execute this method.

releaseExternalReferences
Close all open instances of the receiver and its subclasses.

instance creation

fileNamed: aString
Answer a FileStream on an old or new file designated by aString. Do not
(yet) try to open.

fileNamed: aString In: aDirectory
Answer a FileStream on an old or new file designated by aString and
located in aDirectory.

newFileNamed: aString
Answer a FileStream on the new file designated by aString. Go ahead and
create the file to be sure we can.

newFileNamed: aString in: aDirectory
Answer a FileStream on the new file designated by aString and located in
aDirectory. Go ahead and create the file to be sure we can.

oldFileNamed: aString
Answer a FileStream on the old file designated by aString. Go ahead and
open the file to be sure we can.

oldFileNamed: aString in: aDirectory
Answer a FileStream on the old file designated by aString and located in
aDirectory. Go ahead and open the file to be sure we can.

oldWriteOnlyFileNamed: aString
Answer a FileStream on the old file designated by aString. Go ahead and
open the file for writing to be sure we can.

oldWriteOnlyFileNamed: aString in: aDirectory
Answer a FileStream on the old file designated by aString and located in
aDirectory. Go ahead and open the file for writing to be sure we can.

72

FileStream 0Os-Streams

Rationale

FileStream provides a buffered streaming interface to mass storage files. The
interface keeps the number of system calls to access files in the operating system to
a minimum. It reopens files automatically (sources and changes files after a
snapshot, for example). FileStreams are positionable, unlike pipe streams.

Discussion
Class Protocol

Class initialization contains the Initialize method to assign values to the class
variables. It would be used when you are working with a different operating system,
for example, or want to change the size of the buffer.

External references methods enable you to close all open file streams or the streams
with the file descriptors of stdin, stdout, and stderr. The method
closeExternalReferences should only be sent by instances of Subtask to bypass
the file tracking system and close all open file streams. It is important to remember
that file descriptors are a limited resource, so file streams should be closed when
they are no longer needed. Closing them releases their file descriptor for use in a
new instance of FileStream or another object that requires an operating system file
descriptor. The instance of FileStream will still exist after it is closed, and it can be
reopened to the same state it was in when it was closed (i.e., at the same
filePosition with the same mode and fileMode).

Instance creation methods return an instance of a stream interface to existing files
and new files. You have the option of using a message beginning “file” which
creates the stream without opening its associated file; ‘file” methods automatically
create backup copies of existing files. "‘New file” methods determine whether the
specified file exists; if it does, a notifier displays to give you the option to "proceed”
to rename the existing file as a backup. ‘Old file” methods determine whether the
specified file exists; if it does, a notifier displays to give you the option to "proceed”
to create the file. Two methods will open an old file for writing only. They determine
whether the specified file exists; if it does, a notifier displays to give you the option to
"proceed” to create the file.

Instance Protocol

Some of the contents of the accessing message category is determined by what
FileStream inherits from the Stream hierarchy. These methods are necessary to
appropriately reimplement certain methods for this class. Accessing methods read
and return the entire contents of a file, return the next one or more characters or
bytes in a file, write one or more characters or bytes to the file, and return the
effective size of the file in mass storage, were you to close the file at that point. The

Tektronix Smalitalk Reference Manual 73

FileStream 0S-Streams

74

method size includes data in the buffer which would be written to the file via flush if
you sent the close message when the file was open for writing.

The converting method returns an instance of FileDirectory with the complete path
name of the receiver.

The editing method creates a view containing the file contents for editing.

File accessing methods return information about the file obtained from instance
variables or from a system call. FuliName returns the full path of the receiver’s
directory concatenated with the receiver’s name or a name relative to Disk. You
can also remove or rename a file.

File modes methods allow you to set the mode instance variable to #ReadWrite or
#ReadOnly. The method binary replaces the collection String with a ByteArray .
The method text does the inverse of binary. Two “shorten” methods call readWrite
because the shorien operation is not supported. To shorten a file you must close it
when the file is at the desired position.

File status methods close a file after flushing the buffer, fill the buffer for reading,
flush the write data in the buffer to the file, and shorten the file. The shorten
method is retained for backward compatibility — its use is not recommended.

File testing methods answer whether a file exists in mass storage, and returns true or
false for the following file attributes: is a backup file, is binary, is text, is open, is
readable, is writable, is a directory, and is a standard stream (in, out, or error known
by file descriptors 0, 1, and 2).

FileIn-Out methods incorporate the contents of an external file into the image, and
enable you to file out or print out changes from the current project.

Nonhomogeneous positioning methods implement the inherited methods of the same
name. The methods pad the file to a specified boundary with a specified
character/byte or skip over characters or bytes in the file to the next specified
boundary. This message category name is used for compatibility with protocol
inherited from ExternalStream, although nonhomogeneous does not apply here.

Positioning methods answer the current location of the last character/byte
conceptually read or written (buffered data are counted) or set the file pointer. The
file pointer can also be set to the beginning or end of the file. The method sklp:
moves the FileStream pointer forward or backward and, if necessary, moves the
operating system file pointer also. The poslition: method sets the file pointer to the
specified location relative to the beginning of the file.

FileStream 0©S-Streams

The following diagram describes the relationship of positions and the FileStream
buffer. The instance variable position denotes the position within the buffer. The
instance variable filePosition denotes the operating system file pointer associated
with the file descriptor. Sending the message position returns the position the
application thinks it should be at, taking into account unread data in the buffer. The
instance variable readLimit describes the size of the buffer.

Relation of Position to the Buffer and the File in Mass Storage

|— position ———>]|

|———— self position >|
filefilefilefilefilefilefilefilefilefileBUF-BUF-BUF-BUF-BUF-BUFfilefilefilefilefilefile
|————filePosition >

|— readLimit —————w|

Printing has one method that prints a representation of the instance on a stream.
The output would resemble ‘a FileStream cn “testFile’”. The menu selection
"printlt” calls printOn:.

Testing has one method that answers whether the end-of-file has been reached.

Xerox file compatibility methods return the receiver. They are present for
compatibility with earlier implementations which distinguished between files and file
streams.

Examples
The following code can be executed in a workspace.

f « Disk file: “testFile”.

f nextPut: $A.

f space.

f nextPutAll: “file for reading *.
fer.

f tab; nextPutAll: “and writing”; cr.

f reset.

first < f next.

all « f contentsOfEntireFile.
Transcript cr; show: all.

Tektronix Smalltalk Reference Manual 75

FileStream 0Os-Streams

Disk removeKey: “testFile”.

First, the file accessing message file: is sent to the global FileDirectory, Disk. An
instance of FileStream on “testFile” is created and assigned to f. Accessing
message nextPut: writes the character $A and nextPutAll: writes the string to
‘testFile” via f (actually, the data are buffered and written to the file before it is
closed). WriteStream character writing messages are used to put a space, a tab,
and a carriage return in the file. The message reset sets the file pointer to the
beginning of the file. Accessing messages next and contentsOfEntireFile return a
character and the contents of the entire file, respectively. The entire file contents,
all, are displayed in the System Transcript. Finally, ‘testFile’, is removed from the
global FileDirectory, Disk. The output in the System Transcript looks like this:

A file for reading
and writing

In the System Workspace under "Create File System"” are several examples of
FileStream and FileDirectory being used by the system. In a workspace you can
execute SourceFiles inspect and see the array of two FileStreams on the
sources file and changes file. You can further inspect the elements of the array to
ses the values of their instance variables.

Related Classes

76

Subclasses:
FileDirectory

Other classes of interest are
e the PipeStream hierarchy, and

e ExternalStream, the superclass, has useful methods for accessing different
data types in nonhomogeneous accessing.

FixedSizeExternalPointerData' OS-Parameters

ExternalPointerData subclass: #FixedSizeExternalPointerData

instanceVariableNames:

classVariableNames:

poolDictionaries:

category: ‘OS-Parameters’

Summary
FixedSizeExternalPointerData is an abstract class for a non-Smalltalk data
structure containing machine pointers. Each subclass defines a particular data
structure whose size is fixed. The concrete classes representing non-Smalltalk data
structures are used to pass information between Smalltalk and the operating
system, for example, when making system calls.

Instance Methods
accessing

numberOfPointers
Return the number of pointers imbedded in the structure represented by
the receiver.

pointersSize
Answer the size of the pointers array of the receiver.

FixedSizeExternalPointerData class

instanceVariableNames: ‘sizelnBytes prototype *

FixedSizeExternalPointerData class — Instance Variables

sizelnBytes <integers
The size of the structure in bytes.

prototype <aSubclass>
An instance of the concrete subclass which has the pointers array
initialized.

Tektronix Smalltalk Reference Manual 77

FixedSizeExternalPointerData 0OS-Parameters

Class Methods

accessing

numberOfPointers
Return the number of pointers imbedded in the structure represented by
the receiver.

pointersSize
Answer the size of the pointers array.

sizeof
Answer the number of bytes in the data section of any instance.

instance creation

new
Return a new instance of the receiver.

Rationale

Since all external data classes either do or do not contain pointers, the
ExternalData hierarchy splits into ExternalBinaryData and ExternalPointerData.
FixedSizeExternalPointerData, a subclass of ExternalPointerData, is an abstract
class which implements protocol common to all of its concrete subclasses which, by
definition, contain pointers and are a fixed size. Objects which are not a fixed size
but contain pointers, such as an array of pointers or an array of structures which may
contain pointers, are direct subclasses of ExternalPointerData.

Inherited protocol designated as subclass responsibility by ExternalData is
implemented. All subclasses of this branch of the external data hierarchy have two
class instance variables. SizelnBytes is defined here as the number of bytes in the
data area of all instances of a subclass. Prototype is defined here as an instance
of a subclass with its peinters array initialized.

Discussion

78

You will find it helpful to read the "Discussion” under ExternalPointerData for an
explanation of the instance and class variables of concrete subclasses of this class.

Class Protocol

This protocol is present to be inherited by concrete subclasses. Since this is an
abstract class, there is no instance creation protocol and no messages should be
sent to this class.

FixedSizeExternalPointerData 0OS-Parameters

Accessing methods answer the number of pointers in the structure, the number of
bytes of data in the structure, and the number of elements in pointers.

Instance creation defines new to return a copy of the prototype.
Instance Protocol

Accessing has one method which calls the class method pointersSize to answer the
number of elements in pointers and another method which calls the class method
to return the number of pointers.

Adding Classes to this Hierarchy

If you are adding a subclass of FixedSizeExternalPolnterData and the conventions
described in this manual under ExternalPointerData are unclear to you, the best
idea is to find a structure class similar to the structure you are adding and model
your class on the similar one. Your new class’ protocol must include a class
initialization method which initializes the class variables, sizelnBytes, and
prototype. Remember to execute the initialize method for the new class.

Related Classes

Subclasses:
lovec
Msghdr

You might also want to look at ExternalPointerData and ExternalData.

Tektronix Smalltalk Reference Manual 79

80

Inaddr

OS-Parameters

instanceVariableNames:
classVariableNames:

poolDictionaries:
category:

ExternalBinaryData variableByteSubclass: #Inaddr

e

“AddrDatalndex B1Datalndex B2Datalndex
B3Datalndex B4Datalndex W1Datalndex

W2Datalndex *

‘OS-Parameters’

Summary

Inaddr provides accessing protocol for the following C structure.

struct in_addr {

union {

}S_un;
#define s_addr
#define s_host
#define s_net
#define s_imp
#define s_impno

#define s_lh

struct { u_chars_b1, s_b2, s_b3,s_b4;} S _un_b;
struct { u_short s_w1, s_ w2;} S_un_w;

u_long S_addr;
S_un.S_addr

S_un.S_un_b.s_b2
S_un.S_un_b.s_b1

S_un.S_un_w.s_w2
S_un.S_un_b.s b4
S_un.S_un_b.s b3

/* can be used for most
tcp and ip code */

/= host on imp */

/* network */

[+ imp */

/* imp # */

/* logical host */

The structure is referred to under inet(4N) in the manual UTek Command Reference,
Volume 2. The structure is found in netinet/in.h. Protocol is provided to set the values
from an integer and from a string.

Class Variables
AddrDatalndex

B1Datalndex
B2Datalndex

Tektronix Smalltalk Reference Manual

81

Inaddr ©OS-Parameters

B3Datalndex
B4Datalndex
W1Datalndex
W2Datalndex

Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string ‘Datalndex’ appended. For example,
the class variable B3Datalndex holds the offset of the "s_b3" field.

Instance Methods
accessing

addr
Return the value of the internet address as an integer.

addr: aninteger
Assign the argument, aninteger, as the internet address.

converting

asString
Return the value of the internet address as a string.

printing

printOn: aStream
Print the receiver in internet format on aStream.

private

fromString: aninternetAddress
Assign aninternetAddress string (in dot notation) to the receiver.

Class Methods

class initialization

initialize

Assign offset values to the class variables and define the size of the
structure.

82

Inaddr OS-Parameters

instance creation

addr: aninteger
Return an instance constructed from the internet address, aninteger.

fromString: aninternetAddressString
Return an instance constructed from the internet address,
aninternetAddressString.

Rationale
This class is the C structure which holds an internet address. It holds a network
address, and is used by the class Sockaddrin. The structure is used in support of
the following UTek system calls:

accept(2)
bind(2)
connect(2)
getpeername(2)
getsockname(2)
recvfrom(2)
sendto(2)

Related Classes
UTekSystemCall implements the system calls listed above.

Tektronix Smalltalk Reference Manual 83

84

IntegerPointer OS-Parameters

ExternalBinaryData variableByteSubclass: #IntegerPointer

instanceVariableNames:
classVariableNames:

poolDictionaries:
category: ‘OS-Parameters’

o

Summary
IntegerPointer provides creation and accessing protocol for integer pointers.
Integer pointers are defined in C with the type-specifier “int **. A four-byte buffer
stores integer values.

Instance Methods
accessing

Integer
Return the signed integer that the receiver represents.

integer: anint
Assign the value, anlnt, to the receiver.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization
initialize
Define the size of the structure.
instance creation

integer: anint
Return an instance whose value is the machine integer for anint.

Tektronix Smalitalk Reference Manual 85

IntegerPointer OS-Parameters

Rationale

An argument to a system call that needs an integer pointer uses an instance of class
IntegerPolinter. An example use is in getpeername(2), where the size of the remote
machine name returned is an instance of this class.

86

lovec OS-Parameters

ExternalPointerData subclass: #lovec

instanceVariableNames:

classVariableNames: ‘BaseDatalndex BasePointerindex LenDatalndex
poolDictionaries: ”
category: ‘OS-Parameters’

Summary

lovec provides creation and accessing protocol for the following C structure.

struct jovec {
caddr_t iov_base;
int iov_len;

}

Each iovec entry specifies the base address and length of an area in memory. The
structure is documented under read, readv(2) in the manual UTek Command Reference,
Volume 2.

Class Variables
BaseDatalndex

BasePointerindex

LenDatalndex

Each C structure class variable holds the offset of a single field in the

structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string “Datalndex” appended. For example,
the class variable BaseDatalndex holds the offset of the "iov_base" field.

For fields with a pointer data type, a class variable is created for the index
of that pointer in the structure; the name is constructed from the field name,
stripped of its prefix, with the string ‘Pointerindex” appended. For example,
the class variable BasePointerIndex holds the index "1" becauss it is the
first pointer in the iovec structure.

Tektronix Smalltatk Reference Manual 87

lovec OS-Parameters

Instance Methods
accessing

base .
Return the value of the structure field named base.

base: aString
Assign the argument aString to the structure field named base, and assign
aString’s size to the structure field named len.

len Return the value of the structure field named len.
printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

initialize
Assign offset values to the class variables, define the size of the structure,
and initialize the prototype.
instance creation
base: aString
Return an instance with the values of the fields assigned.

Rationale
The iovec C structure is used in support of the following UTek system calls:

readv(2)
writev(2)

Related Classes
UTekSystemCall implements the system calls listed above.

88

ltimerval OS-Parameters

ExternalBinaryData variableByteSubclass: #ltimerval

instanceVariableNames:

classVariableNames: “IntervalDatalndex IntervalSecDatalndex
IntervalUsecDatalndex ValueDatalndex
ValueSecDatalndex ValueUsecDatalndex *

poolDictionaries: ”

category: ‘OS-Parameters’

Summary
Itimerval provides creation and accessing protocol for the following C structure.

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

}

The structure is documented under getitimer(2) in the manual UTek Command
Reference, Volume 2.

Class Variables
IntervalDatalndex

IntervalSecDatalndex

IntervalUsecDatalndex

ValueDatalndex

ValueSecDatalndex

ValueUsecDatalndex
Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string ‘Datalndex’ appended. For example,

the class variable IntervalDatalndex holds the offset of the "it_interval”
field.

Tektronix Smalltalk Reference Manual 89

RRimerval OS-Parameters

When a field in a structure is another C structure, separate class variables
are created for each field in the other structure. For example, the class
variable IntervalSecDatalndex holds the offset of the "sec” field of the
"it_interval” structure.

Instance Methods
accessing

interval
Return the value of the structure field named interval.

interval: aTimeval
Assign the argument, aTimeval, to the structure field named interval.

interval: aTimeval value: anotherTimeval
Assign values to all the fields of the structure.

intervalSec
Return the sec field of the structure at the field named interval.

intervalUsec .
Return the usec field of the structure at the field named interval.

value
Return the value of the structure field named value.

value: aTimeval
Assign the argument, aTimeval, to the structure field named value.

valueSec
Return the sec field of the structure at the field named value.

valueUsec
Return the usec field of the structure at the field named value.

printing

printOn: aStream
Print the receiver on aStream.

20

Itimerval OS-Parameters

Class Methods

class initialization

Initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation

interval: aTimeval value: anotherTimeval
Return an instance with the values of the fields assigned.

Rationale
The structure is used in support of the following UTek system calls:

getitimer(2)
setitimer(2)

Related Classes
UTekSystemCall implements the system calls listed above.

Tektronix Smalltalk Reference Manual 91

92

Ltchars OS-Parameters

ExternalBinaryData variableByteSubclass: #Ltchars

instanceVariableNames:

classVariableNames: ‘DsuspcDatalndex FlushcDatalndex
LnextcDatalndex RprntcDatalndex
SuspcDatalndex WerascDatalndex *
poolDictionaries: ”
category: ‘OS-Parameters’

Summary
Ltchars provides accessing protocol for the following C structure.

struct ltchars {
char t_suspc; /* stop process signal */
char t_dsuspc; /*delayed stop process signal */
char t_rprtc; /+ reprint line */
char t_flushc; /+ flush output (toggles) */
char t_werasc; /+ word erase */
char t_lnextc; /* literal next character */

}

The structure is documented under tty(4) in the manual UTek Command Reference,
Volume 2.

Class Variables
DsuspcDatalndex

FlushcDatalndex
LnextcDatalndex
RprntcDatalndex
SuspcDatalndex

Tektronix Smalltalk Reference Manual 93

Ltchars OS-Parameters

WerascDatalndex

Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string ‘Datalndex” appended. For example,
the class variable DsuspcDatalndex holds the offset of the "t_dsuspc”
field.

Instance Methods
accessing

dsuspc
Return the value of the structure field named dsuspc.

dsuspc: aCharacter
Assign the argument, aCharacter, to the structure field named dsuspc.

flushe
Return the value of the structure field named flushc.

flushe: aCharacter
Assign the argument, aCharacter, to the structure field named flushc.

Inexte
Return the value of the structure field named Inextc.

Inextc: aCharacter
Assign the argument, aCharacter, to the structure field named Inextc.

rprontc
Return the value of the structure field named rprntc.

rprntc: aCharacter
Assign the argument, aCharacter, to the structure field named rprntc.

suspec
Return the value of the structure field named suspc.

suspc: aCharacter
Assign the argument, aCharacter, to the structure field named suspc.

suspc: sCharacter dsuspc: dCharacter rprnte: rCharacter
flushe: fCharacter werasc: wCharacter Inexte: ICharacter
Assign values to all the fields of the structure.

94

Ltchars OS-Parameters

werasc
Return the value of the structure field named werasc.

werasc: aCharacter
Assign the argument, aCharacter, to the structure field named werasc.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

initialize
Assign ofiset values to the class variables and define the size of the
structure.

instance creation
default
Return an instance containing the detault characters.

Rationale
The structure is used in support of the following UTek system call:

ioctl(2)

Related Classes
UTekSystamCall implements the system call listed above.

Tektronix Smalltalk Reference Manual 95

96

Msghdr

OS-Parameters

instanceVariableNames:
classVariableNames:

poolDictionaries:

ExternalPointerData subclass: #Msghdr

,0

‘AccrightsDatalndex AccrightslenDatalndex
AccrightsPointerindex lovDatalndex
lovlenDatalndex lovPointerindex NameDatalndex
NamelenDatalndex NamePointerindex *

category: ‘OS-Parameters”
Summary
Msghdr provides creation and accessing protocol for the following C structure,
struct msghdr {
caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;
}

The structure is documented under recvmsg(2) in the manual UTek Command

Reference, Volume 2.
Class Variables
AccrightsDatalndex
AccrightslenDatalndex
AccrightsPointerindex
lovDatalndex
lovlenDatalndex
lovPointerindex
NameDatalndex

Tektronix Smalltalk Reference Manual

97

Msghdr

OS-Parameters

Instance Methods

98

NamelenDatalndex

NamePo

accessing

interindex

Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from the field name,
stripped of its prefix, with the string ‘Datalndex” appended. For example,
the class variable AccrightsDatalndex holds the offset of the
"msg_accrights” field.

For fields with a pointer data type, a class variable is created for the index
of that pointer in the structure; the name is constructed from the field name,
stripped of its prefix, with the string ‘Pointerlndex” appended. For example,
the class variable AccrightsPointerindex holds the index "3" because it is
the third pointer in the msghdr structure.

accrights

Return the value of the structure field named accrights.

accrights: aString

Assign the argument, aString, to the structure field named accrights, and
assign aString’s size to the structure field named accrightsien.

accrightslen

fov

jov:

Return the value of the structure field named accrightslen.
Return the value of the structure field named iov.

anlovecArray
Assign the argument, anlovecArray, to the structure field named iov, and
assign anlovecArray’s size to the structure field named iovien.

fovilen

Return the value of the structure field named iovlen.

name

Return the value of the structure field named name.

name: aString

Assign the argument, aString, to the structure field named name, and
assign aString’s size to the structure field named namelen.

name: aString lov: anlovecArray accrights: anotherString

Assign values to all the fields of the structure.

Msghdr OS-Parameters

namelen
Return the value of the structure field named namelen.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

inltialize
Assign offset values to the class variables, define the size of the structure,
and initialize the prototype.

instance creation

name: aString lov: anlovecArray accrights: accString
Return an instance with the values of the fields assigned.

Rationale
The msghdr C structure is used in support of the following UTek system calls:

recvmsg(2)
sendmsg(2)

Related Classes
UTekSystemCall implements the system calls listed above.

Tektronix Smalltalk Reference Manual 99

100

OSFilter | OS-Streams

PipeReadStream variableSubclass: #OSFilter

instanceVariableNamaes: “task stdin stderr *
classVariableNames: ”
poolDictionaries:

category: ‘OS-Streams’

Summary ,

An OSFilliter provides bi-directional communication with a utility program, which may
be either an operating system utility or a user supplied program. It understands
accessing protocol for both PipeReadStream and PipeWriteStream. Writing to an
OSFilter causes its task to receive standard input. Reading an OSFilter causes the
task to supply its standard output. The utility is not required to read standard input
(in which case writing protocol has no effect), nor to write standard output or
standard error (in which case reading protocol never shows data available). Note
that the utility may not produce output immediately, depending on how it buffers its
output.

Instance Variables

stderr <PipeReadStream>
The stream that collects the utility’s standard error output.

stdin <PipeWriteStream>
The stream that supplies the utility with standard input.

task <Subtask>
The system utility being used as a filter.

Instance Methods
initialize-release
initializeErrorOn: aPipe

Initialize the error output side of the filter stream with the supplied pipe
which contains an open read file descriptor.

InitializeErrorOnFd: {d
Initialize the error output of the filter stream with the supplied file descriptor,
which is assumed to be the reading end of a Pipe.

Tektronix Smalltalk Reference Manual 101

OSFilter ©s-Streams

initializelnputOn: aPipe
Initialize the input side of the filter stream with the supplied pipe which
contains an open write file descriptor.

initializelnputOnFd: fd
Initialize the input side of the filter stream with the supplied file descriptor,
which is assumed to be the writing end of a Pipe.

accessing

inputBinary
Set the mode of this OSFilter to binary.

inputText
Set the mode of this OSFilter to text.

nextError
Answer a String containing the next line from the error stream.

nextPut: aCharacter
Place aCharacter in the task’s input stream.

nextPutAll: aCollection
Place all the data in aCollection in the task’s input stream.

outputBinary
Set the OSFilter’s output to be buffered in binary mode.

outputText
Set the OSFilter’s output to be buffered in text mode.

opening-closing

abort
Clean up. Close all PipeStreams and terminate the task.

close
Close the standard input to the task. Return whatever might be produced
in standard output. Close standard output and standard error and
terminate the task.

closeError
Close the error output from the task. Return whatever might have been
there.

closelnput
Close the standard input to the task. Normally this causes the task to
terminate.

102

OSFilter 0s-Streams

openOn: aCommand withArguments: aCollection
Initialize the filter by opening input and output streams and starting the
task.
positioning

flush
Chase something through the filter with multiple line terminators.

flushWith: aCharacter blockSize: count
Chase something through the filter with count occurrences of the given
character.
printing

printOn: aStream
Place in aStream a String that describes the program and arguments of an
OSFilter. If the task is inactive, so state.

testing

isActive
Is this filter’s task active?

Class Methods

examples

example
Use sed and cpp to extract key-value pairs from the C header file,
“errno.h’.

valuesFromHeader: aHeaderFile
Use sed and cpp to extract a Dictionary of key-value pairs from a C header
file. This may take a few minutes.

instance creation

openOn: aCommand
Create a new OSFilter, with its input and output streams directed toffrom
aCommand.

openOn: aCommand withArguments: aCollection
Create a new OSFilter, with its input and output streams directed tofrom
aCommand. Pass aCollection of arguments to aCommand upon
execution.

Tektronix Smalltalk Reference Manual 103

OSFilter 0S-Streams

Rationale

OSFilter was designed as a general purpose tool for programmers to be able to use
operating system utilities or user supplied programs from within Smalltalk.

Background

Filters

Filters are programs which process a character stream — usually, they modify the
stream. There are some filters, such as cat, which do not modify their input, but they
are not used as examples here. The filter has an input side and an output side — in
UTek the reading is usually done from standard input.

In building the operating system interface to Tektronix Smalltalk, it quickly became
apparent that many of the utility programs available could find use within Smalltalk.
Without OSFilter, Smalltalk could receive output from an operating system program
using the UTekSystemCall method executeUtility:withArguments:, but it couldn't
provide input to the operating system program. The background menu item "OS
Shell” would allow user interaction with various programs, but there was no simple
means for a Smalltalk method to interact with a program.

Two-Way Communication

What was needed was a facility for bi-directional communication with a utility
program. OSFilter accomplishes this by running a utility program with individual
PipeStreams for the program’s standard input and standard output. OSFilter is
designed for portability across operating systems.

Examples

104

The following example illustrates the use of an instance of OSFilter to access the
UTek program we, This code can be executed in a workspace.

wc « OSFilter openOn: “bin'we”. "path for UTek only”
wc nextPutAll: ‘How many lines, words and characters are there
in this string?”.
wc closelnput.
lines «~ wc nextCNumber.
words ¢ wc nextCNumber.
characters « wc nextCNumber.
wc close.
Transcript cr; show: lines printString, * lines, *,
words printString, “ words, and *,
characters printString, “ characters are in the string.”

OSFilter 0OS-Streams

When the preceding code is executed in a workspace, this output appears in the
System Transcript:

2 lines, 11 words, and 62 characters are in the string.
An Example from the Image

A more complex example of an OSFIlter application is found in the OSFllter class
method valuesFromHeader: under the examples protocol.

valuesFromHeader: aHeaderFile

"Use sed and cpp to extract a Dictionary of key-value pairs from a C
header file. This may take a few minutes.”
“(OSFilter valuesFromHeader: “Jusrlincludelsysimax.h’) inspect.”

| sed cpp key symbolTable |
symbolTable « Dictionary new: 128.
"Open a sed filter that will extract just C preprocessor symbols from a
given file.”
sed ¢ OSFilter openOn: “/bin/sed” withArguments: (OrderedCollection
with: “-n”
"A space and a tab are inside the square brackets below that appear empty.”
with:
st Ixdefinel I[I¥([A-Za-z_][0-9A-Za-z 1+)[1*Alip”
with: aHeaderFile).
sed closelnput.
"Open a C preprocessor filter, feed it the given file, and discard whatever
that might produce.”
cpp « OSFilter openOn: “/lib/cpp”.
cpp nextPutAll: “#include ", aHeaderFile, .
cpp flush; nextAvailable. "Discard uninteresting output.”
"Feed each symbol from sed into cpp, collect its output in a Dictionary."
[sed atEnd]
whileFalse:
[key « sed nextLine,
key ~= “" ifTrue:
[cpp nextPutAll: key.
cpp flush.
symbolTable at: (key copyUpTo: Character cr) asSymbol
put: cpp nextCNumber.
cpp nextAvailable]]. "Discard the flush characters.”
sed close.

Tektronix Smalltalk Reference Manual 105

OSFilter 0©OS-Streams

cpp close.
TsymbolTable

Here is a description of what the code is doing. The method valuesFromHeader:
takes a ".h" file (a C header file) and finds all the non-argument defines in the form

#define identifier token-string

and creates dictionary entries with the defined identifier and its associated token-
string, a CNumber. This method only creates dictionary entries for defined identifiers
whose associated token-string is a valid C number, using the PositionableStream
method nextCNumber.

The sed filter only extracts simple identifiers, not parameterized ones (with
arguments). For example,

#define sqr(x) (x * x),
will not cause sqr to be entered in the dictionary.

First the dictionary called symbolTable is created. Then a sed OSFilter is run on the
header file with the operating system sed command that causes only the defined
identifiers to appear in the output stream, one per line. Input to sed is closed,
causing all of the data from sed to become available. A cpp OSFilter is opened and
given the header file as input. Cpp is flushed and a loop begins in which sed output
is sent to cpp, one line at a time, and the identifier from sed is placed into the
dictionary symbolTable with its associated CNumber from cpp. After each line from
sed goes into key and then to cpp, cpp is flushed. Cpp buffers its output and we want
it to deal with one identifier at a time. (Flush outputs multiple line terminators, so
they must be discarded by sending ¢pp the message nextAvailable.) When the
data from sed are exhausted the loop terminates, both filters are closed, and
symbolTable is returned.

Related Classes

106

An instance of Subtask is the program, residing in the operating system, that is
serving as the filter in the OSFilter. In addition to reading about Subtask, it will also
be useful to look at the Stream hierarchy, in particular, OSFilter’s superclass,
PipeReadStream.

Pipe OS-Interface

Object subclass: #Pipe

instanceVariableNames: ‘readFd writeFd fileDescriptor *
classVariableNames: ”
poolDictionaries:

category: ‘OS-Interface’

ve

Summary
An instance of Pipe represents an operating system pipe in Smalltalk. Operating
system pipes are unidirectional communication links, usually between Smalltalk and
a child task in our context. A pipe has two file descriptors, one for each end of the
pipe. One end of the pipe is for reading, the other for writing. A system buffer holds
the contents of the pipe.

Communication between tasks is accomplished via a PipeStream which is opened
using one of the two descriptors, depending on the direction. Two way
communication between two tasks requires two pipes.

Instance Variables

fileDescriptor <Integer>
The read or write file descriptor used to access the parent’s end of the
pipe.

readFd <Integers
The file descriptor used to access the reading end of the pipe.

writeFd <Integers
The file descriptor used to access the writing end of the pipe.

Instance Methods
initialize-release

readFd: readingEnd writeFd: writingEnd
Initialize a new Pipe with the given reading and writing file descriptors.

release
Close both ends of the pipe.

Tektronix Smalltalk Reference Manual 107

Pipe OS-Interface

accessing

fileDascriptor '
Return the file descriptor to be used for streaming over data, either th
readFd or the writeFd.

readFd
Return the file descriptor representing the read end of the pipe.

writeFd
Return the file descriptor representing the write end of the pipe.
copying

copy
Inappropriate for a Pipe.

opening-closing

closeRead
Close the read side of the pipe.

closeWrite
Close the write side of the pipe.

fileDescriptor: fd
Fd, which is either this Pipe’s readFd or its writeFd, becomes the
descriptor to be accessed for streaming over data.

mapReadTo: {d
Map the read side of the pipe to the specified descriptor fd.

mapWriteTo: {d
Map the write side of the receiver’s pipe to the specified descriptor fd.

Class Methods

instance creation

new
Return an instance of Pipe.

readFd: readingEnd writeFd: writingEnd
Create a new Pipe, with the given reading and writing file descriptors.

108

Pipe OS-Interface

Rationale
An instance of Pipe is a temporary holding place for file descriptors. Once a Pipa’s
file descriptor is passed to a PipeStream, the Pipe is no longer needed, and should
not be referenced.

Discussion
Instances of Pipe are created using either of two instance creation messages. The
message new causes the operating system to return the pipe’s file descriptors. The
message readFd:writeFd: creates a new Pipe using file descriptors obtained by
some other means (e.g., OS duplicateFd:).

To insure portability, instead of sending the message new to the class Pipe,
instances should be created this way:

OS newPipe.

The initialize-release message release closes the reading and writing ends of the
pipe. Closing pipes is often accomplished using the separate opening-closing
messages closeRead and closeWrite.

Accessing messages return the values of a Pipe’s three instance variables.

Protocol exists for mapping ends of the pipe to arbitrary file descriptors. The
methods mapReadTo: and mapWriteTo: make operating system calls to duplicate
the argument, a file descriptor. Mapping allows communication between parent and
child tasks.

Examples

The OSFilter method openOn:withArguments: contains several examples of
typical pipe usage:

openOn: aCommand withArguments: aCollection

"Initialize the filter by opening input and output streams and
starting the task.”

| in outerr|

in « OS newPipe.

out « OS newPipe.

err « OS newPipe.

self initializeOn: out.

self initializeInputOn: in.
self initializeErrorOn: err.

Tektronix Smalltalk Reference Manual 109

Pipe OS-Interface

self task: (Subtask
fork: aCommand
withArguments: aCollection
standardIn: in
standardOut: out
standardError: err).
self task start isNil
ifTrue:
[self stdin close.
self close.
Transcript show: self closeError.
self error: “Cannot execute * , aCommand].
in closeRead.
out closeWrite.
err closeWrite

The three temporary variables in, out, and err each receive new instances of Pipe
via the message newPipe. Newpipe is always sent to the current operating system
call class (referred to by the global variable OS). The following initialization
messages cause the OSFilter to get the proper file descriptors of the three Pipes —
the OSFilter doesn’t get the Pipes themselves. In the Subtask creation message,
the new Subtask gets the file descriptors for the opposite ends of the three Pipes.
Finally, the ends of the Pipes not needed by the OSFilter (i.e., those given to the
Subtask) are closed. When this method completes, the three Pipes are no longer
referenced and are garbage collected.

The method above is a succinct example of a portable system call, subtasking, and
the use of pipes in the class OSFilter.

Related Classes
These classes are related to Pipe:
OSFllter
PipeStream
PlpeReadStream

PipeWriteStream
Subtask

110

PipeReadStream OS-Streams

PipeStream subclass: #PipeReadStream

instanceVariableNames: ‘foundEnd *
classVariableNames: ”
poolDictionaries:

category: ‘0S-Streams’

7

Summary
PipeReadStreams are used for reading from an operating system pipe. Data are
buffered from the pipe to avoid excessive reads. Protocol for reading all the data
available from the pipe is provided by using the size of the pipe as an indicator of
how much to read — reading more data than are available can result in blocking.

Instance Variables

foundEnd <Boolean>
True if the end of the pipe has been encountered.

Instance Methods
initialize-release

InitializeOn: aPipe
Initialize this PipeStream with aPipe, which must contain an open read file
descriptor.

initlalizeOnFd: {d
Initialize this PipeStream with the supplied open file descriptor, which must
refer to a Pipe.

accessing

binary
Set the receiver’s file to be buffered in binary mode. Copy any already

buffered data to the new bufier, a ByteArray.

contentsOfEntireFile
Read all of the contents of the receiver. If the PipeReadStream buffer
contains something, prepend it to the results.

Tektronix Smalltalk Reference Manual 11

PipeReadStream Os-Streams

next
Return the next character or byte from the PipeReadStream. Answer nil if
at the end of the stream.

next: aninteger
Return the next anlnteger bytes from the PipeReadStream. Return a
ByteArray if the stream is binary, return a String if the stream is text.

next: aninteger into: aCollection
Copy the next aninteger bytes from the receiver into aCollection. Answer
aCollection.

nextAvailable
Answer a collection containing all available data from the pipe. Answer an
empty collection if no data are available. Answer nil if something is wrong
with the pipe.

nextPut: anObject
Not apropriate for a PipeReadStream.

text
Set the receiver’s file to be buffered in text mode. Copy any already
buffered data to the new buffer, a String.

enumerating

doAvallable: aBlock
Evaluate aBlock for each object in the pipe.

doByLine: aBlock
Evaluate aBlock for each string ending with a line terminator in the pipe.
Do not include the line terminator in the string.
positioning
skip: count
Discard the next count items in the stream.

testing

atEnd
Return true if the end was previously found or answer a guess based on
the size of the contents of the pipe.

dataAvailable
Return true if there are any data ready to be read from the pipe.

112

PipeReadStream OS-Streams

IsEmpty
Return true if the pipe contains no data.

Rationale

This class allows the reading of data from an operating system pipe. Using a
PipeReadStream, a Smalltalk process can obtain data from a related process.

Discussion

The abstraction of a pipe stream is used outside of Smalltalk, for example, several C
functions use a stream for reading, including fscanf, gets, and getc. Most users are
familiar with the standard input stream, stdin.

Streams make accessing data easier, because they "know" the position where
reading or writing can occur. It isn’t necessary for you to keep track of how many
characters have been read so that you can specify which character to read next. A
stream knows when it has reached the end of its data and when it is empty.

Protocol

To create an instance of PipeReadStream, you should use an instance creation
message inherited from the superclass, PipeStream — for example, send the
message openOn: to PipeReadStream.

Initialize-release methods initialize appropriate instance variables and add this
PipeReadStream to the class variable OpenPipeStreams.

Accessing methods set the mode instance variable and, if the mode was incorrect,
copy the data into the correct type of buffer (ByteArray or String). Data in the
stream can be read — the entire file, only the contents of the buffer, a single byte,
or a specified number of bytes. Data from the stream can be read and returned in a
Collection. The inherited message nextPut: is intercepted because this is a
stream for reading.

Enumerating methods evaluate a block for each byte/character or each line in the
stream.

Positioning allows you to skip over (discard) a specified number of bytes/characters
in the stream.

Testing methods answer whether the end of the stream’s data has been reached,
whether there are data available for reading, and whether the pipe is empty.

Tektronix Smalitalk Reference Manual 113

PipeReadStream Os-Streams

Examples

114

The following method is found under SystemDictionary initialize-release.

startUp
"Do all that is necessary to begin execution of a Smalltalk image.”

| stdin |
ScheduledControllers restore.
OS notNil ifTrue:
[(OS status: 0) fileSize = 0
ifFalse:
[stdin « PipeReadStream openOnFd: (OS duplicateFd: 0 with: 5).
Transcript refresh; cr; cr; show: Filing in from: standard input’; cr.
stdin fileln; close].
Subtask markAndSignalAll; install].
Sensor cursorPoint: Display viewport topLeft

In addition to starting Smalitalk, the method above provides the ability for you to
pass a file or "dolt” to Smalltalk from the command line when you invoke an image.
It makes a system call to determine if the pipe for standard input (file descriptor = 0)
has size 0. If there is anything in that pipe, an instance of PipeReadStream is
created on standard input, but using a different file descriptor — the duplicateFd:
message links the new stream with standard input. Next the ™iling in” message is
displayed in the System Transcript. Smalltalk then attempts to "file in" whatever is
present in standard input. If the standard input is not in "file in" format, a syntax
error will result. Typical fileln files have names ending in .st or .ws. Here are two
examples of command lines which pass arguments to Smalltalk:

echo "Transcript show: “Your message here.”.!" | <smalltalk or imageName>

cd <smalltalk fileln directory>
smalltalk < Clock.st

In the first example you would type smalltalk or the name of your image in the
position indicated by the angle brackets (< >). The string you type as the argument
to show: will be displayed in the System Transcript when the image comes up. In
the second example, you first cd to the directory which contains the fileln files.
Without moving to that directory, you could accomplish the same thing by giving the
full path of Clock.st on line two. The clock code will be filed in when the image
comes up. The first example uses a shell pipe operator (|); the second example
uses a shell I/O redirection operator ("<" for input).

PipeReadStream OS-Streams

Related Classes

Subclasses:
OSFilter

You will find it helpful to look at the following classes for a further understanding of
this class:

e the PipeStream hierarchy,
e Pipe, and

e methods nextLine and nextCNumber in PositionableStream.

Tektronix Smalltalk Reference Manual 115

116

PipeStream OS-Streams

ExternalStream subclass: #PipeStream
instanceVariableNames: “fileDescriptor mode *
classVariableNames: ‘OpenPipeStreams *
poolDictionaries: ”
category: ‘OS-Streams”

Summary

PipeStreams are stream-based interfaces to operating system pipes. PipeStream
is an abstract class implementing protocol common to PipeReadStream and
PipeWriteStream, such as opening, closing, and accessing methods.

Instance Variables
fileDescriptor <Integer>
The file descriptor by which the underlying pipe is accessed.

mode <Symbol>
Either #binary or #text, depending on what type of data is expected to be
used on the underlying pipe.

Class Variables

OpenPipeStreams <OrderedCollection>
All open PipeStreams are listed here.

Instance Methods
initialize-release
initializeOnFd: anFd

Initialize the pipe stream with the supplied open file descriptor, which must
refer to a Pipe.

accessing

binary
Set the mode of this PipeStream to binary.

bufferClass
Return the class that is used as a buffer for this PipeStream, depending on
the data type which has been selected.

Tektronix Smalltalk Reference Manual ' 117

PipeStream Os-Streams

118

contents
Not appropriate for a PipeStream.

fileDescriptor
Answer the descriptor to be accessed for streaming over data.

fileDescriptor: fd
Store the argument as the descriptor to be accessed for streaming over
data.

size
Return the size of the PipeStream contents as reported by the operating
system.

text
Set the mode of this PipeStream to text.
copying

copy
Not appropriate for a PipeStream.

opening-closing

close
Disassociate this PipeStream with its underlying pipe. Make sure that the
pipe exists, then make sure it is closed.

positioning

padTo: aninteger
Not appropriate for a PipeStream.

padTo: bsize put: aCharacter
Not appropriate for a PipeStream.

position: aninteger
Not appropriate for a PipeStream.

reset
Not appropriate for a PipeStream.

resetContents
Not appropriate for a PipeStream.

setToEnd
Not appropriate for a PipeStream.

PipeStream OS-Streams

skip: aninteger
Not appropriate for a PipeStream.

wordPosition: wp
Not appropriate for a PipeStream.
testing

atEnd
Is this PipeStream at the end of its data?

isBinary v
Does this PipeStream contain binary data?

IsText
Does this PipeStream contain textual data?

isValid
Does this PipeStream reference an open pipe?

Class Methods

class initialization
initialize
Initialize the class variable used for tracking open PipeStreams.
external references

numberOfExternalReferences
Return the number of references to open PipeStreams.

releaseExternalReferences
Close all the open PipeStreams known to Smalltalk.

instance creation

openOn: aPipe
Create a new PipeStream, streaming over aPipe.

openOnFd: fd .
Create a new PipeStream, streaming over a Pipe, which is known by the
open file descriptor fd.
Rationale

PipeStream is an abstract class whose subclasses are the primary means of
communication with child tasks. Operating system pipes are usually implemented in

Tektronix Smalltalk Reference Manual 119

PipeStream 0OS-Streams

Smalltalk using PipeStream. An important function of this class is to intercept
inherited methods which are inappropriate for a PipeStream. Pipes are not
positionable, so PipeStream removes much of the positioning protocol from the
inheritance chain via "self shouldNotimplement”.

Background

Terminology

Here is a clarification of some of the terms used in the description of the classes in
the Stream hierarchy, and in particular, the PipeStream and FileStream
hierarchies.

File has a variety of meanings, depending upon your operating system. In the
context of these classes, a file is a collection of data in external storage, referred to
by a name. In this respect, files differ from operating system pipes, which are not
named by the user. In Unix-like operating systems, the distinction between files and
directories (and other non-file objects, as well) is blurred. The implementations of
FileStream and FileDirectory maintain that ambiguity, to some extent. See those
classes for additional information.

Pipes share a similarity with files in that both are holding places for data. The
primary differences between the two are that pipes are transient (they do not reside
in mass storage), they cannot be reopened once they are closed, and they are not
positionable. Like files, the operating system identifies pipes by a file descriptor.
Pipes are conduits through which data "flow™ in one direction. For two-way
communication between two tasks, two pipes are needed.

Streams are an abstraction for accessing data. Two types of streams are character
streams and binary (integer) streams. Smalltalk has classes which represent
internal streams and external streams. Stream classes assume that they are
accessing an indexable Collection, such as a String. The external streams serve
as interfaces to data in the operating system. ExternalStream establishes protocol
for accessing nonhomogeneous collections of data.

Discussion

120

There is a fixed number of open file descriptors allowed by the operating system.
To avoid running out of file descriptors, pipes should always be closed when they
are no longer needed. The class variable OpenPipeStreams manages the file
descriptors held by PipeStreams. All open PipeStreams can be closed with the
message releaseExternalReferences.

PipeStream 0OS-Streams

Snapshots

If you make a snapshot and continue execution, any open PipeStreams will still be
open. Reloading a snapshot causes all the PipeStreams in the class variable
OpenPipeStreams to be closed. Any subtasks that were running when a snapshot
was made will no longer be running when the snapshot image is reloaded. In fact,
any communication between an application and the operating system via a
PipeStream will be terminated when a saved image is reloaded. The operating
system closes file descriptors and terminates child tasks when the Smalltalk task
terminates.

Class Protocol
Class initialization creates a new collection to record OpenPipeStreams.

External References answers the count of open PlpeStreams and provides a
message to close all PipeStreams.

There are two instance creation methods — one takes an instance of Pipe as an
argument, the other takes as an argument a file descriptor which is assumed to refer
to an operating system pipe.

Instance Protocol

The initialize-release method is called by the instance creation methods. It sets two
instance variables and adds the new PipeStream to the class variable
OpenPipeStreams.

Methods under accessing set the instance variable mode to either #binary or #text;
set or return the instance variable fileDescriptor; return the class, String or
ByteArray, used as the buffer for this PipeStream; and return the size of the buffer.
The message contents, inherited from ReadWriteStream, is intercepted with "self
shouldNotimplement” in PipeStream — PipeReadStream provides the method
contentsOfEntireFile, which is appropriate for that class.

Copying and positioning methods are intercepted.

The message close disassociates the PipeStream from the operating system pipe
and removes it from the OpenPipeStreams collection. Note that the PipeStream
may still be referenced by other objects, but typical accessing protocol for it will fail.

Testing protocol answers whether the mode is binary or text, whether fileDescriptor

references an open operating system pipe, and whether the PipeStream is at the
end of its data.

Tektronix Smalltalk Reference Manual 121

PipeStream 0OS-Streams

Related Classes

Subclasses:
PipeReadStream
PipeWriteStream

You may also want to lock at Pipe.

122

PipeWriteStream OS-Streams

PipeStream subclass: #PipeWriteStream

instanceVariableNames:
classVariableNames:
poolDictionaries:

category: ‘OS-Streams’

Summary
PipeWrliteStreams are used for writing to an operating system pipe. Data are not
buffered to the pipe.

Instance Methods
initialize-release
initializeOn: aPipe

Initialize this PipeStream with aPipe, which must contain an open write file
descriptor.

accessing

next
Not appropriate for a PipeWriteStream.

next: aninteger
Not appropriate for a PipeWriteStream.

next: aninteger into: aCollection
Not appropriate for a PipeWriteStream.

nextPut: aCharacterOrByte
Place aCharacterOrByte into the pipe. Do not buffer the data. Answer the
data written.

nextPutAll: aCollection
Write the contents of the collection to the pipe. Don’t buffer data into the

pipe.

peek
Not appropriate for a PipeWriteStream.

Tektronix Smalltalk Reference Manual 123

PipeWriteStream 0S-Streams

peekFor: anObject
Not appropriate for a PipeWriteStream.

Rationale
‘ PipeWriteStream allows data to be passed to another operating system task.

Discussion

The abstraction of a pipe stream is used outside of Smalltalk, for example, several C
functions use a stream for writing, including fprintf and putc. Most users are familiar
with the standard output stream, stdout.

Instance creation messages from the superclass should be sent to PipeWriteStream
to create an instance. Most of the inherited class protocol is not very practical for
this class.

The initialize-release method initializes appropriate instance variables and adds this
PipeWrlteStream to the class variable OpenPlpeStreams.

Accessing methods intercept inappropriate inherited messages and implement
nextPut: and nextPutAll: to write a single byte/character or a collection to the
stream.

Examples
The following code can be executed in a workspace.

stderr « PipeWriteStream openOnFd: 2.
stderr nextPutAll: “This gets printed on the screen.”

The example opens a PipeWriteStream on the file descriptor (2) associated with
standard error output, then writes a message on the standard error stream. This
might be useful for debug messages while modifying the Transcript.

Related Classes
e OSFilter uses this class.
¢ The PlpeStream hierarchy contains protocol available to PipeWriteStreams.

e Pipe may also be of interest to you.

124

PointerArray OS-Parameters

ExternalPointerData subclass: #PointerArray

e

instanceVariableNames:
classVariableNames:
poolDictionaries:
category: ‘OS-Parameters’

’e

’”

Summary

Instance Methods

Tektronix Smalltalk Reference Manual

Instances of PointerArray represent an array of integers or pointers to objects.
Elements of the array may be instances of concrete subclasses of ExternalData (or
other variableByte or variableWord classes with no instance variables) or Integer.
Every ExternalData object is given a pointer to it by the interpreter when certain
primitives are invoked. Integers (Smallintegers or Largelntegers up to four bytes
long) are given the value of the integer in question, not a pointer to the integer.
Since Integers are thus treated differently than other objects, the ExternalData
concrete subclass IntegerPointer is used to create a pointer to an integer.

Protocol exists for instance creation, accessing array elements, initializing the
inherited pointers instance variable, and printing the array.

initialize-release

initialize
Store the proper offsets into the pointers array.

accessing

at: anindex
Return the object at anindex in the pointers area.

at: anlndex put: anObject
Place anObject at anindex in the pointers area.

printing

printOn: outStream
Print a representation of the objects on the receiver.

125

PointerArray OS-Parameters

Class Methods

instance creation

new
Return an empty instance.

new: count
Create an instance with enough space for count data objects.

Rationale

PointerArray is used by the system call class for your operating system to pass
arguments to system calls. .

Discussion ,
in the current release (TB2.2.1), PointerArrays are only used for arrays of pointers
to strings. The pointers instance variable of a PointerArray has a null-terminated
String as the object half of each object-offset pair. The interpreter uses pointers to
fill in the addresses in the space reserved for them in dataArea.

Examples
The following code spawns a child task to run the UTek Is utility with two arguments,
-l and /ust/lib/smalltalk. You could execute the code in a workspace with "printlit” to
see the long listing of the contents of the directory /usr/lib/smalitalk.

OS executeUtility: “/bin/ls” withArguments: (OrderedCollection
with: *-1” with: “/usr/lib/smalltalk”).

From the shell, the command line would be 1s -1 /usr/lib/smalltalk. The
example accomplishes its work by making an execve(2) system call. The execve(2)
system call is one that expects an array of pointers to strings (actually, pointers to
chars) as an argument. The following code (extracted from non-portable code found
in the UTekSystemCall execute:withArguments:withEnvironment: method)
constructs the PointerArray needed by the spawned task given in the example
above. ArgCollection is an OrderedCollection specified in
executeUtility:withArguments:. ArgCollection has two elements: ‘-l and
‘lustflib/smalltalk’.

args « PointerArray new: argCollection size + 1. "nil at end"
ie1.
argCollection do:

[:arg| args at: i put: arg, StringTerminator.

126

PointerArray OS-Parameters

je—i+ 1l

An instance of PointerArray is created, one element larger than the number of
arguments — the extra element (nil) is required by the operating system to mark the
end of the array. The temporary variable, i, is the index into the PointerArray. The

PointerArray is filled by copying the elements from argCollection with a
StringTerminator appended to each element.

Related Classes
UTekSystemcCall uses this class.

Tektronix Smalltalk Reference Manual 127

128

Rlimit OS-Parameters

ExternalBinaryData variableByteSubclass: #Rlimit

e

instanceVariableNames:

classVariableNames: “CurDatalndex MaxDatalndex *

poolDictionaries: ”

category: ‘OS-Parameters’
Summary

Rlimit provides creation and accessing protocol for the following C structure.

struct rimit {
long rlim_cur; /* current (soft) limit */
long rlim_max; /* maximum value for rlim_cur */

}

The structure is documented under getrlimit(2) in the manual UTek Command
Reference, Volume 2.

Class Variables
CurDatalndex

MaxDatalndex

Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string “Datalndex” appended. For example,
the class variable CurDatalndex holds the offset of the "rlim_cur” field.

Instance Methods

accessing

cur Return the value of the structure field named cur.

cur: anint
Assign the argument, anlint, to the structure field named cur.

Tektronix Smalltalk Reference Manual 129

Rlimit OS-Parameters

cur: anint max: anotherint
Assign values to all the fields of the structure.

max
Return the value of the structure field named max.

max: anlint
Assign the argument, anlint, to the structure field named max.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

Initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation
cur: anint max: anotherint
Return an instance with the values of the fields assigned.

Rationale
The structure is used in support of the following UTek system calls:

getrlimit(2)
setrlimit(2)

Related Classes
UTekSystemCall implements the system calls listed above.

130

Rusage

OS-Parameters

instanceVariableNames:
classVariableNames:

poolDictionaries:
category:

.

ExternalBinaryData variableByteSubclass: #Rusage

“IdrssDatalndex InblockDatalndex IsrssDatalndex
IxrssDatalndex MajfitDatalndex MaxrssDatalndex
MinfltDatalndex MsgrcvDatalndex
MsgsndDatalndex NiveswDatalndex
NsignalsDatalndex NswapDatalndex
NvcswDatalndex OublockDatalndex
StimeSecDatalndex StimeUsecDatalndex
UtimeSecDatalndex UtimeUsecDatalndex *

‘OS-Parameters’

Summary

Rusage provides creation and accessing protocol for the following C structure.

struct rusage {
struct timeval
struct timeval
long
long
long
long
long
long
long
long
long
long
long
long
long
long

}

ru_utime;
ru_stime;
ru_maxrss;
ru_ixrss;
ru_idrss;
ru_isrss;
ru_minflt;
ru_maijflt;
ru_nswap;
ru_inblock;
ru_oublock;
ru_msgsnd;
ru_msgrev;
ru_nsignals;
ru_nvesw;
ru_nivesw;

/* user time used */
/* system time used */

/* integral shared memory size */
/% integral unshared data size */
/* integral unshared stack size */
/+ page reclaims */

/+ page faults */

/* swaps */

/* block input operations */

/* block output operations */

/+ messages sent */

/* messages received */

/* signals received */

/+ voluntary context switches */
/* involuntary context switches */

The structure is documented under getrusage(2) in the manual UTek Command

Reference, Volume 2.

Tektronix Smalltalk Reference Manual

131

Rusage OS-Parameters

Class Variables

132

IdrssDatalndex

InblockDatalndex

IsrssDatalndex

IxrssDatalndex

MajfltDatalndex

MaxrssDatalndex

MinfltDatalndex

MsgrcevDatalndex

MsgsndDatalndex

NiveswDatalndex

NsignalsDatalndex

NswapDatalndex

NveswDatalndex

OublockDatalndex

StimeSecDatalndex

StimeUsecDatalndex

UtimeSecDatalndex

UtimeUsecDatalndex
Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,

stripped of its prefix, with the string ‘Datalndex” appended. For example,
the class variable IdrssDatalndex holds the offset of the "ru_idrss” field.

When a field in a structure is another C structure, separate class variables
are created for each field in the other structure. For example, the class
variable UtimeSecDatalndex holds the offset of the "sec" field of the
"ru_utime” structure, timeval.

Rusage

OS-Parameters

Instance Methods

accessing

idrss
Return the value of the structure field named idrss.

inblock
Return the value of the structure field named inblock.

Isrss
Return the value of the structure field named isrss.

ixrss .
Return the value of the structure field named ixrss.

majfit
Return the value of the structure field named majflt.

maxrss
Return the value of the structure field named maxrss.

minfit
Return the value of the structure field named minflt.

msgrcv
Return the value of the structure field named msgrev.

msgsnd
Return the value of the structure field named msgsnd.

nivesw
Return the value of the structure field named nivcsw.

nsignals
Return the value of the structure field named nsignals.

nswap
Return the value of the structure field named nswap.

nvesw
Return the value of the structure field named nvesw.

oublock
Return the value of the structure field named oublock.

stime
Return the value of the structure field named stime.

Tektronix Smalltalk Reference Manual

133

Rusage OS-Parameters

stimeSec
Return the sec field of the structure at the field named stime.

stimeUsec
Return the usec field of the structure at the field named stime.

utime
Return the value of the structure field named utime.

utimeSec
Return the sec field of the structure at the field named utime.

utimeUsec
Return the usec field of the structure at the field named utime.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization
initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation

callingProcess
Return the rusage structure for the calling process.

terminatedChildProcesses
Return the rusage structure for all terminated child processes of the current
process.

Rationale
The rusage C structure is used in support of the following UTek system calls:

getrusage(2)
wait3(2)

Related Classes
UTekSystemCall implements the system calls listed above.

134

ScreenView Interface-Support

View subclass: #ScreenView

instanceVariableNames:

classVariableNames: ‘DefaultModel *

poolDictionaries: o

category: “Interface-Support’
Summary

ScreenView is the view for the parts of the display screen that have no window on
them. It responds to restore:, so that when views erase themselves, the
background gets restored. Its model must respond to displayOn:fill:. An
InfiniteForm whose patternForm is 16x16 (a halftone) makes a good model,
because such a form quickly refreshes the screen. The default color is gray.

The following message can be used as a sample to change the model of the current
screenController. It will require you to provide a form by framing a section of the
screen.

ScreenController backgroundFromUser.

Class Variables

DefaultModel <InfiniteForm>
The default model for new screen views. New screen views are created
upon opening a project.

Instance Methods
initialize-release

Initialize
Specifies the default model for this view. lts controller is ScreenController.

controller access

defaultControllerClass
Answer the class of ScreenView’s controller.

Tektronix Smalltalk Reference Manual 135

ScreenView Interface-Support

displaying
displayView
Paint the Display using the ScreenView’s model.

restore: rectangleCollection
Redisplay those portions of the receiver that intersect rectangles within
rectangleCollection. Answer an empty collection of rectangles, since the
screen is everywhere.

Class Methods

examples

backgroundFromUser
Frame a small portion of the display and it will become the model for the
background.

darkGrayBackground
Change the background to dark gray.

grayBackground
Change the background form to gray.

whiteBackground
Change the background form to white.
model accessing

defaultModel
Answer the default background model. I it is nil, set it to a grayMask (a
16x16 form).

defaultModel: aForm
Change the background form to aForm.

Rationale

This class allows you to change the background on the screen to any pattern or
mask that you prefer. Individual projects can have their own unique background.

Discussion

Initialize-release protocol initializes the default model and the controller for a
ScreenView.

136

ScreenView Interface-Support

Controller access protocol answers the controller for this class.
Displaying protocol paints and restores the display.

Examples contains several methods to change the background color (to white, gray,
or dark gray) and one method that requires you to frame a small section of the
display to become the model for the background.

Model accessing protocol allows you to set the default mode! for the background to
any form you choose. It also answers the default background or sets it to gray if it
isn't already set.

Examples

See the methods in the metaclass examples message category for ideas on how to
use this class.

Related Classes

Form
InfiniteForm
ScreenController

Tektronix Smalltalk Reference Manual 137

138

Sgttyb OS-Parameters

ExternalBinaryData variableByteSubclass: #Sgttyb
instanceVariableNames: ”
classVariableNames: ‘EraseDatalndex FlagsDatalndex
IspeedDatalndex KillDatalndex
OspeedDatalndex *
poolDictionaries: ”
category: ‘OS-Parameters’

Summary
Sgttyb provides creation and accessing protocol for the following C structure.

struct sgttyb {
char sg_ispeed; /+input speed */
char sg_ospeed; /+ output speed */

char sg_erase; /* erase character */
char sg_kill; /% kill character */
short sg_flags; /+ mode flags */
}
The structure is documented under #ty(4) in the manual UTek Command Reference,
Volume 2.

Class Variables
EraseDatalndex

FlagsDatalndex
IspeedDatalndex
KiliDatalndex

OspeedDatalndex
Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,

stripped of its prefix, with the string "Datalndex” appended. For example,
the class variable EraseDatalndex holds the offset of the "sg_erase" field.

Tektronix Smalltalk Reference Manual 139

Sgttyb OS-Parameters

Instance Methods
accessing

erase
Return the value of the structure field named erase.

erase: aCharacter
Assign the argument, aCharacter, to the structure field named erase.

flags
Return the value of the structure field named flags.

flags: anint
Assign the argument, anint, to the structure field named flags.

ispeed
Return the value of the structure field named ispeed.

ispeed: anint
Assign the argument, anlint, to the structure field named ispeed.

Ispeed: anint ospeed: anotherint erase: eCharacter
kill: kCharacter flags: lastint
Assign values to all the fields of the structure.

kill Return the value of the structure field named Kill.

kill: aCharacter
Assign the argument, aCharacter, to the structure field named kill.

ospeed
Return the value of the structure field named ospeed.

ospeed: anint
Assign the argument, anlnt, to the structure field named ospeed.

printing

printOn: aStream
Print the receiver on aStream.

140

Sgttyb OS-Parameters

Class Methods

- class initialization

Initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation
default
Return an instance containing the default characters.

Rationale
The structure is used in support of the following UTek system call:

ioctl(2)

Related Classes
UTekSystemCall implements the system call listed above.

Tektronix Smalltalk Reference Manual 141

142

Sockaddrin OS-Parameters

ExternalBinaryData variableByteSubclass: #Sockaddrin
instanceVariableNames: ”
classVariableNames: ‘AddrDatalndex FamilyDatalndex PortDatalndex
ZeroDatalndex ZerolLength *
poolDictionaries: ”
category: ‘OS-Parameters’

Summary
SockaddrIn provides creation and accessing protocol for the following C structure.

struct sockaddr_in {

short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

}

The structure is documented under inet(4N) in the manual UTek Command
Reference, Volume 2. It is used as an internet domain socket address.

Class Variables
AddrDatalndex

FamilyDatalndex
PortDatalndex

ZeroDatalndex

Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string “Datalndex” appended. For example,
the class variable PortDatalndex holds the offset of the "sin_port” field.

ZerolLength <Integer>
This variable holds the constant, 8, of the sin_zero field.

Tektronix Smalltalk Reference Manual 143

Sockaddrln OS-Parameters

Instance Methods
accessing

addr
Return the value of the structure field named addr.

addr: aninternetAddress
Assign the argument, aninternetAddress, to the structure field named addr.

port
Return the value of the structure field named port.

port: anint
Assign the argument, anlnt, to the structure field named port.

port: anint addr: aninternetAddress
Assign values to all the fields of the structure.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation

port: anint addr: anlnternetAddress
Return an instance with the values of the fields assigned.

144

Sockaddrin OS-Parameters

Rationale
This class is the C structure which holds an internet domain socket address. It
holds the network address and the port number, for accessing processes such as
fip, telnet, and finger. The structure is used in support of the following UTek system
calls:

accept(2)
bind(2)
connect(2)
getpeername(2)
getsockname(2)
recvfrom(2)
sendto(2)

Related Classes
UTekSystemCall implements the system calls listed above.

Tektronix Smalltalk Reference Manual 145

146

SockaddrUn OS-Parameters

ExternalBinaryData variableByteSubclass: #SockaddrUn

0

instanceVariableNames:

classVariableNames: ‘FamilyDatalndex PathDatalndex PathLength *
poolDictionaries: "
category: ‘OS-Parameters’

Summary

SockaddrUn provides creation and accessing protocol for the following C structure.

struct sockaddr_un {
short sun_family; /+ AF_UNIX */
char sun_path[108]; /* path name */

}

The structure is found in sys/un.h. It is used as a UNIX domain socket address.

Class Variables
FamilyDatalndex

PathDatalndex

Each C structure class variable holds the offset of a single field in the

structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string ‘Datalndex” appended. For example,
the class variable PathDatalndex holds the offset of the "sun_path" field.

PathLength <integer>
This variable holds the constant, 108, of the sun_path field.

Instance Methods
accessing

family: anint path: aByteArray
Assign values to all the fields of the structure.

Tektronix Smalltalk Reference Manual 147

SockaddrUn OS-Parameters

path
Return the value of the structure field named path.

path: aString
Assign values to all the fields of the structure.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation

family: anint path: aByteArray
Return an instance with the values of the fields assigned.

path: aString
Return an instance with the values of the fields assigned.

Rationale

This class represents the C structure which holds a UNIX domain socket address. It
allows access to unrelated processes running on the local machine. The structure is
used in support of the following UTek system calls:

accept(2)

bind(2)
connect(2)
getpeername(2)
getsockname(2)
recvfrom(2)
sendto(2)

Related Classes
UTekSystemCall implements the system calls listed above.

148

Stat

OS-Parameters

.

instanceVariableNames:
classVariableNames:

poolDictionaries:
category:

ExternalBinaryData variableByteSubclass: #Stat

‘AtimeDatalndex BlksizeDatalndex
BlocksDatalndex CtimeDatalndex DevDatalndex
GidDatalndex HostidDatalndex InoDatalndex
ModeDatalndex MtimeDatalndex NlinkDatalndex
RdevDatalndex SizeDatalndex Spare1Datalndex
Spare2Datalndex Spare3Datalndex
Spare4Datalndex UidDatalndex *

‘0OS-Parameters”

Summary

Stat provides accessing protocol for the following C structure.

struct stat {

dev_t st_dev;
ino_t st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid;
dev_t st_rdev;
off_t st_size;
time_t st_atime;
int st_spare1;
time_t st_mtime;
int st_spare2;
time_t st_ctime;
int st_spare3;
long st_blksize;
long st_blocks;
long st_hostid;
long st_spared4;

Tektronix Smalltalk Reference Manual

/* ID of device containing a directory entry
for this file */

/* this inode’s number */

/* file mode */

/* number of hard links to the file */

/* user ID of the file’s owner */

/* group ID of the file’s group */

/+ ID of device — this entry is defined only
for character special or block special files */
/* total size of file */

/+ time of last access */

/* time of last data modification */
/* time of last file status change */
/* optimal blocksize for file system I/O ops */

/* actual number of blocks allocated */
/* hostid of machine where file is located */

149

Stat ©OSs-Parameters

The structure is documented under stat(2) in the manual UTek Command Reference,
Volume 2.

Class Variables
AtimeDatalndex
BlksizeDatalndex
BlocksDatalndex
CtimeDatalndex
DevDatalndex
GidDatalndex
HostidDatalndex
InoDatalndex
ModeDatalndex
MtimeDatalndex
NlinkDatalndex
RdevDatalndex
SizeDatalndex
SpareiDatalndex
Spare2Datalndex
Spare3Datalndex
Spare4Datalhdex

UidDatalndex
Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,

stripped of its prefix, with the string ‘Datalndex” appended. For example,
the class variable AtimeDatalndex holds the offset of the "st_atime" field.

150

Stat

OS-Parameters

Instance Methods

accessing

atime
Return the value of the structure field named atime.

blksize
Return the value of the structure field named blksize.

blocks
Return the value of the structure field named blocks.

ctime
Return the value of the structure field named ctime.

dev
Return the value of the structure field named dev.

gid Return the value of the structure field named gid.

hostid
Return the value of the structure field named hostid.

ino Return the value of the structure field named ino.

mode
Return the value of the structure field named mode.

mtime
Return the value of the structure field named mtime.

nlink
Return the value of the structure field named nlink.

rdev
Return the value of the structure field named rdev.

size
Return the value of the structure field named size.

spare1
Return the value of the structure field named spare1.

spare2
Return the value of the structure field named spare2.

Tektronix Smalltalk Reference Manual

151

Stat 0OSs-Parameters

spared
Return the value of the structure field named spare3.

spare4
Return the value of the structure field named spare4.

uid Return the value of the structure field named uid.

accessing-status
ifdir
If the receiver is a status for a directory, return true.
printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

Initialize
Assign offset values to the class variables and define the size of the
structure.

Rationale
The structure is used in support of the following UTek system calls:

fstar(2)
Istat(2)
stat(2)

Related Classes
UTekSystemCall implements the system calls listed above.

152

StrikeFont

Graphics-Support

Object subclass: #StrikeFont

instanceVariableNames:

classVariableNames:

poolDictionaries:
category:

‘xTable glyphs name stopConditions type
minAscii maxAscii maxWidth strikeLength ascent
descent raster subscript superscript emphasis
ascentForStdAsciiChars
descentForStdAsciiChars *

‘ASClICompatible DefaultStopConditions
DefaultStopConditionsForMonospaceFonts
FaceNames *

“TextConstants *

‘Graphics-Support’

Summary

StrikeFonts are a compact encoding of a set of Forms corresponding to characters
in the ASCII character set. Additional characters, other than standard ASCII, may
be present depending upon the type of font. All the forms are placed side by side in
a large form whose height is the font height, and whose width is the sum of all the
character widths. The xTable gives the left x-coordinates of the sub-forms
corresponding to the characters.

Instance Variables
ascent <Integer>

Maximum extent of characters above the baseline.

ascentForStdAsciiChars <Integer>
Maximum extent of characters above the baseline for ASCIl decimal
equivalent 32 through 126.

descent <Integer>

Maximum extent of characters below the baseline.

descentForStdAsciiChars <Integers
Maximum extent of characters below the baseline for ASCIl decimal
equivalent 32 through 126.

emphasis <Integer>

This code indicates that the face is achieved synthetically by altering
another face: O=none, 1=bold, 2=italic, 4=underline, 8=strike-out,
16=subscript, and 32=superscript.

Tektronix Smalltalk Reference Manual

153

StrikeFont Graphics-Support

154

glyphs <Form>
An instance of Form containirg bits representing the entire set of
characters in this font.

maxAscii <Integer>
Highest ASCII value supported by this font.

maxWidth <Integer>
Width of widest character. Not presently used, but may be for font
modification.

minAscii <Integer>
Lowest ASCII value supported by this font.

name <String>
Name of this font.

raster <integer>
Actual width of glyphs (strikeLength + 15 \\ 16), given Forms are padded to
multiples of 16 bits.

stopConditions <Array>
Array at least as large as xTable with an entry for each character in the
font. Nil indicates no special processing; any other entry causes special
processing to be executed for the character (e.g., tab, linefeed) by the
CompositionScanner.

strikeLength <Integer>
Width of glyphs.

subscript <Integer>
Additional vertical offset relative to the baseline.

superscript <Integer>
Additional vertical offset relative to the baseline.

type <Integer>
Code indicating font type:

Code Font
1 Tektronix monospaced
2 Tektronix proportional
3 Xerox
n A font from other sources

xTable <Array>
Left x-coordinate of character sub-forms in glyphs. The xTable entry of a
character is the answer from aCharacter asciiValue plus one. For example,

StrikeFont Graphics-Support

the left x-coordinate of $A is the 66th entry in the xTable of the default font
in the default text style (in the standard image).

Class Variables
ASCIICompatible <Integer>
Constant used when the font is loaded to determine whether it is ASCII
compatible (0 = unknown type, 1 = ASCII).

DefaultStopConditions <Array>
DefaultStopConditions is a class variable containing a stop condition entry
for each character in a standard ASCII proportional font (type 2 or 3).
Unless another stopCondition array is initialized when the StrikeFont is
loaded, a newly created standard proportional StrikeFont’s stopCondition
array will refer to DefaultStopConditions.

DefaultStopConditionsForMonospaceFonts <Array>
DefaultStopConditionsForMonospaceFonts is a class variable containing a
stop condition entry for each character in a monospace font (type = 1).
Unless another stopCondition array is initialized when the StrikeFont is
loaded, a newly created standard monospace StrikeFont’s stopCondition
array will refer to DefaultStopConditionsForMonospaceFonts.

FaceNames <Dictionary>
Dictionary of valid face names (e.g., ‘Bold’, ‘Bold ltalic’) and associated
font name sub-strings (e.g., ‘B’, "X").

Pool Dictionaries
TextConstants :
A dictionary of symbols for non-printing characters, symbols related to text
composition and text emphasis, and default values for text composition and
text emphasis.

Instance Methods
initialize-release

InitlalizeFrom: aFontFile)
Read a font from aFontFile which must be in Tektronix format. Return a
StrikeFont or, in case of error, nil.

Tektronix Smalltalk Reference Manual 155

StrikeFont Graphics-Support

accessing

ascent
Answer the font’s maximum extent of characters above the baseline.

ascentForStdAsciiChars
Answer the font’s maximum extent of characters above the baseline for
ASCII decimal equivalent 32 through 126.

bottomLead: character
Answer the amount of white space or leading imbedded in the character
form at the bottom.

characterForm: character
Answer a Form copied out of the glyphs for this character.

descent
Answer the font’s maximum extent of characters below the baseline.

descentForStdAsciiChars
Answer the font’s maximum extent of characters below the baseline for
ASCII decimal equivalent 32 through 126.

glyphs
Answer a Form containing the bits representing the characters of the
receiver.

height
Answer the height of the font — the total of maximum extents of characters
above and below the baseline.

leadinfo
If this is a fixed pitch font, compute the leading by adding the font’s
imbedded top and bottom leading. If this is a proportional font, return a
recommended leading adjusted according to the height of the font. [f the
font size is not standard, return a nominal leading.

maxAscli
Answer the integer that is the last ASCIl character value of the receiver.

maxWidth
Answer the integer that is the width of the receiver’s widest character.

minAscii
Answer the integer that is the first ASCII character value of the receiver.

156

StrikeFont Graphics-Support

name
Answer the receiver’s name.

name: aString
Set the receiver’s name.

raster
Answer an integer that specifies the layout of the glyphs” form.

stopConditions
Answer the array of selectors to be performed in scanning text made up of
the receiver’s characters.

subscript
Answer an integer that is the additional vertical offset relative to the
baseline for positioning characters as subscripts.

subscript: aninteger
Set the subscript instance variable that is the additional vertical offset
relative to the baseline for positioning characters as subscripts.

superscript .
Answer an integer that is the additional vertical offset relative to the
baseline for positioning characters as superscripts.

superscript: anlnteger
Set the superscript instance variable that is the additional vertical offset
relative to the baseline for positioning charac;ers as superscripts.

tightLeadinfo
If this is a fixed pitch font, compute the leading by adding the font’s
imbedded top and bottom leading. If this is a proportional font, return a
minimum recommended leading of 4.

topLead: character
Answer the amount of white space or leading imbedded at the top of the
character form.

type
Answer the receiver’s compatibility mode.

type: aninteger
Set the receiver’s compatibility mode.

Tektronix Smalltalk Reference Manual 157

StrikeFont Graphics-Support

unprintableCharacter
Return a character that represents all unprintable characters in the font.

widthOf: aCharacter
Answer the width of the argument aCharacter.

XTable
Answer an array of the left x-coordinates of characters in glyphs.

converting
asTextStyle
Return a TextStyle composed of the StrikeFont which received this
message.

displaying

characters: aninterval in: sourceString displayAt: aPoint
clippedBy: clippingRectangle rule: rulelnteger mask: aForm
Simple, slow method for displaying a line of characters. No wrap-around is

handled.

composeWord: aTextLinelnterval in: sourceString beginningAt: xinteger
Return the sum of the widths of characters in sourceString starting at
xInteger for aTextLinelnterval count. This method is similar to performance
of the scanning primitive, but ignores stop conditions.

displayLine: aString at: aPoint
Display the characters in aString, starting at position aPoint.

emphasis

emphasis
Answer the integer code for one of the following: synthetic bold, italic,
underline, or strike-out. |f the font has no synthetic emphasis, a zero value

will be returned.

emphasis: code
Set the emphasis code to synthesize one of these: bold=1, italic=2,
underlined=4, struck out=8, subscript=16, superscript=32. Zero means no
synthetic emphasis.

158

StrikeFont Graphics-Support

emphasilzed: code
Answer a copy of the receiver, and set the returned StrikeFont’s emphasis
to code.

emphasized: code named: aString
Answer a copy of the receiver, with emphasis set to code and name set to
aString.

printing
printOn: aStream
Print the name and emphasis of this font on aStream.

writeOn: aStream
Write out the representation of this font on aStream using the Tektronix font
file format.

writeOnFile: aString
Create a Tektronix font format file named aString. Types 1 (monospace), 2
(proportional) and 3 (Xerox) can be reread with an instance creation
message without a warning notice in the System Transcript.

testing

checkCharacter: character
Return a character if it is a valid printable character in the receiver;
otherwise return the default character for unprintable characters.

isFixedPitch
Answer true if all legal characters of the font are the same width.

isVirtual
Since the receiver is not a VirtualStrikeFont, return false.

Class Methods

class initialization

initialize
Set up FaceNames dictionary and the default stop conditions.

Tektronix Smalltalk Reference Manual 159

StrikeFont Graphics-Support

fleln-Out

readAll: aFontDirectoryName
Read in all the fonts in aFontDirectoryName. These fonts are assumed to
be in Tektronix format. Skip over files with illegal names, and files that
return ‘nil” when read.

readFrom: aFontFileStream
Read in a font from aFontFileStream. This font is assumed to be in
Tektronix format.

Rationale

StrikeFont enables characters to display, so that when you type on the keyboard,
graphic representations of the ASCIl codes will echo to the display. Since Smalltalk
is graphically oriented, instances of StrikeFont allow you to choose among
collections of characters with different physical appearances.

Background

Terminology

Before the Smalltalk implementation of fonts is discussed, you might find it helpful to
understand some of the terms used in the descriptions of the Graphics — Support
classes in this manual.

Face is the emphatic property of a font. For Tektronix and Xerox fonts, the last one
or two characters in the StrikeFont name will signify the face, as discussed
later under "StrikeFont Names”. Face is represented in StrikeFont by the
emphasis instance variable when it is necessary to synthesize a particular
face. Basalis the "base" or standard face from which other fonts are
synthesized. Synthesizing is discussed below under "Available Fonts".

Family refers to the basic look of a set of characters that makes it distinguishable
from another set. Family is the intrinsic property of a font. Families are
named and frequently protected by copyright. Examples include
"Helvetica" and "Pellucida”. The array of fonts which are returned by the
message to the global TextStyleManager

StyleManager styleName: "Pellucida Serif 10-12° baseNames:
#(“PellucidaSerif10” “PellucidaSerif12°)

will all belong to the "Pellucida” family. Usually, the fonts in a TextStyle
will all be in one family, although you may mix families in a TextStyle. This
manual was produced using fonts in three families, "Helvetica",
"TimesRoman", and "Courier".

160

StrikeFont Graphics-Support

A font, in the days before computer typesetting, was a set of letters and symbols,
such as punctuation, that a printer would assemble in lines, coat with ink,
and press — to put impressions on paper. In Smalltalk, a font is an
instance of StrikeFont, a collection of Forms with the bitmaps for each
character and symbol available in the font.

The size of a font is measured vertically in points in the world of printing. A point is
1/72 of an inch. For historical reasons, the point size has been retained in
the font names in Smalltalk, although the size on the display will be an
approximation of point size. To draw a parallel to a Smalltalk instance
variable, the ascent of a StrikeFont is close to the "size" in the
corresponding font file’s name.

Leading is the sum, in points, of the font size and the white space below a line of
printed text. The scale of leading in Smalltalk is pixels, not points. In
printing the spoken phrase "10 on 12" would indicate 10 point type on 12
point leading. Smalltalk’s parallel to leading is the lineGrid in a TextStyle.
Several StrikeFont accessing methods answer the amount of white space
imbedded at the top or bottom of a character, answer the recommended
leading for a font, or the minimum leading for a font. Fixed pitch fonts in
this product have "leading” imbedded at the top and bottom of the forms in
glyphs, so no extra leading is recommended when you create a TextStyle
with the "Pellucida Typewriter” family.

Font Files

The Smalltalk fonts are derived from font files in the Utek operating system residing
in the directory name returned by .

OS fontDirectory fullName.

This directory contains quite a number of font files. The files having Pellucida and
Xerox as part of their names are completely compatible with Tektronix Smalltalk. By
compatible is meant that the files are in Tektronix font file format, and the methods
for installing fonts will work properly. Other fonts in this directory may be loaded in
the FontManager, but they may have a character set that differs from familar ones.

The font files are grouped into font families: Pellucida Sans-Serif, Pellucida Serif,
Pellucida Typewriter, Xerox Sans-Serif, and Xerox Serif. The Pellucida Sans-Serif,
Pellucida Serif, and Xerox families are proportionally spaced (individual characters
within the same font have varying widths); the Pellucida Typewriter family is
monospaced (individual characters within the same font have the same width). The
Pellucida families have been specially designed for Tektronix Smalltalk; the Xerox
families are the standard Smalltalk-80 Version 2 fonts.

Tektronix Smalltalk Reference Manual 161

StrikeFont Graphics-Support

162

Reading and Writing Font Files

StrikeFont has methods for reading and writing Tektronix font files. Note that
whenever Smalitalk reads a Tektronix font file, it switches the character position of
the up arrow character (T) and left arrow () with the caret () and underscore (_)
characters. If you ask the character T, for instance, what its asciiValue is you get
94.

The method to write a StrikeFont takes care to switch the positions of the T, «, °,
and _ characters if the type of the StrikeFont is either 1 (Tektronix monospaced) or
2 (Tektronix proportionally spaced). This ensures that the proportional or
monospaced fonts written by Smalltalk have consistent ordering for standard ASCII
characters.

Available Fonts

In some cases a face other than Basal is created for an instance of StrikeFont by
synthesizing it from another face. Synthesizing involves bitmap manipulation, for
example, shearing Basal to create ltalic, copying and offsetting Basal to create Bold.
The underlined fonts are synthesized from their corresponding font, for example,
Bold Underlined is synthesized from Bold. Non-synthetic faces usually have a better
appearance than synthetic faces.

There are 64 non-synthetic Pellucida fonts. The Pellucida sans-serif and serif fonts
are available in four non-synthetic faces (Basal, Bold, ltalic, and Boldltalic) and
seven sizes (8, 10, 12, 14, 18, 24, and 36 point). The Pellucida Typewriter fonts are
available in two non-synthetic faces (Basal and Bold) and four sizes (10, 12, 16, and
18 point).

There are 11 non-synthetic Xerox fonts. The serif and sans-serif fonts are available
in 10 and 12 point size and Basal, Bold, and ltalic. The sans-serif 10 point ltalic,
however, is synthesized.

Font File Names

Font file names are made up of four parts:

e A name descriptive of the family the font belongs to. Examples are
PellucidaSans-Serif, PellucidaSerif, PellucidaTypewriter, and XeroxSans-Serif.

s The point size of the font. This is usually an even number from 8 to 36.

e Optionally, one of the following emphasis characters: B standing for bold, I for
italic, and X for bold italic. Absence of one of those three characters denotes
basal.

StrikeFont Graphics-Support

e The required suffix font, denoting a font file.

Note that some font files are not entirely compatible (a clue is that they do not have
Pellucida or Xerox in their name). Examples are BertrandVariablel2 font,
MagnoliaFixedI?2 font, and MicroS5 font. The primary incompatibility of these files is
that underscore is not mapped to the Smalltalk assignment (left) arrow and the caret
(shift-6) is not mapped to the Smalltalk return (up) arrow. In general, even fonts wnth
compatibility code other than 1, 2, or 3 can be loaded as StrikeFonts.

StrikeFont Names

The names of StrikeFonts are closely related to font file names, however,
StrikeFont names are not constructed from font file names themselves, but from
information in a font file.

The name of a StrikeFont is a String with three components (family, size, and face)
and no imbedded spaces. The family component is the family name with spaces
removed; the size component is the printString of the numeric size; and the face
component is a String of length zero, one, or two signifying the face. The supported
face codes are ™" (Basal), B (Bold), I (ltalic), X (Boldltalic), U (Basal Underlined), BU
(Bold Undetlined), IU (ltalic Underlined), and XU (Boldltalic Underlined). The face
codes for synthetic fonts are not taken from the font file; for example, the U for
"underlined” does not appear in the font file. Examples of names include
‘PellucidaSans-Serif8’, "XeroxSerif121", and "PellucidaTypewriter18BIl". The
underlined face codes are assigned when a styleName:baseNames: message is
sent to the global StyleManager to create an instance of TextStyle.

Discussion
Class Protocol

Class initialization contains one method to initialize the class; it is not a message a
user would typically send.

FileIn-Out methods file in StrikeFonts from the fonts directory on the disk — either
one font or all the fonts in a specified directory. The recommended way to install
fonts is to use a TextStyleManager accessing message.

Instance Protocol

You are not likely to use the initiglize-release method initializeFrom:. It is called by
the class method readFrom:.

Tektronix Smalitalk Reference Manual 163

StrikeFont Graphics-Support

Accessing methods return the values of instance variables. One method,
characterForm:, returns a form with a sub-form from glyphs; you could use the bit
editor to modify the form or simply display the single character. You can set the
name and type of a StrikeFont, and the amount to subscript and superscript the
characters. You shouldn‘t change the type of a StrikeFont unless you have
modified it, for example, by adding or removing characters. -

A converting method converts a StrikeFont to a TextStyle and returns the
TextStyle.

Displaying methods enable you to compose and display characters without including
them in typical displayable objects such as a Paragraph. You can determine the
width of part of a string, display part or all of a string in a form, or display a string at
a point you specify. The two methods for displaying do not wrap the characters at
the right boundary of the form or display.

Emphasis methods answer or set the emphasis of the StrikeFont, return a copy of
the StrikeFont with emphasis set to the previous value plus the specified additional
amount, and return a copy with the specified additional emphasis and a specified
name.

Printing method printOn: prints the class name, name instance variable, and
emphasis instance variable of a StrikeFont on a stream. Two methods, writeOn:
and writeOnFile:, write the StrikeFont on a stream or a disk file, respectively. The
font is written in a form which is readable by the method which loads fonts.

Testing methods check whether a character is within the ASCll range of the
StrikeFont and answer whether all the characters in the StrikeFont are the same
width (fixed pitch).

Examples

164

The code below shows one way to insert in a string a character for which there is no
key on your keyboard. To see what Character value: 2 is, try executing the code in a
workspace.

s « “This is a test.”.
s at: 15 put: (Character value:2).
s asDisplayText displayAt: Sensor waitClickButton.

The tables of characters available in the Pellucida fonts show you the argument to
value: to create an instance of the character. The argument should be the number
in the box with the character you want. (See tables at the end of this class.)

StrikeFont Graphics-Support

Related Classes

StrikeFontManager
TextStyle
TextStyleManager
VirtualStrikeFont

Tektronix Smalltalk Reference Manual 165

StrikeFont

Graphics-Support

166

Tektronix Proportional Fonts
Pellucida Serif and Sans-Serif
(Compatibility Code = 2)
Characters 0 - 127

. | space @ P ‘
0 1w |32 a8 |ed |so Jos J112
v -
! A
1 1;ﬁ I 33" 491 65 BIQ 97a 1 19
¢ | fil] » B|R|b]|r
2 18 34 |s0° Jes |s2 |98 J11a
em dashy
3 19 35# 513 67C 833 a9 1 1?
. e H t
4 201:I 3s$ 5?" seD 84T 1ood 116
“{fll%|5|E|U u
5 21 37 |s3 les |ss 101|117
ﬁ endash| & 6 FIlV]f Vv
6 22 las |54 70" |86 102 | 118
e v ’ 7 G W g w
7 23 |38 |ss 7 87 |13 |19
i | — 8 | H| X |h|x
8 24 {a0° |s6 |72 |sg 104 |20
spve |) LY [ily
9 25 |41 57 |73 |e9 105 |12
co | « [= | J|Z|]|2Z
10 26 42 58 74 90 106 122
AN ;
11 27l |a3 |so |75 o 107 |12
LN [
2 |t |4e® |6 |76 le2 108|126
d-1=[{M| T |m
13 fos "las e 77 les” e 125
- ~ > N A n ~
14 |laoc |46" |e2” |78 foa 110 |126
spgcl:le ° / ? O| - 0 I
15 31 47" |e3” |7 |es 12 |127

The number in the lower left corner of each cell is the ASCII decimal

value (returned by sending the message asciiValue to the Character).

3393-1

StrikeFont Graphics-Support

Tektronix Monospace Font
Pellucida Typewriter
(Compatibility Code =1)
Characters 0-127

space| () @ P ¢ P
0 16 32 48 64 80 96 112
'{1|AlQl|algq
1 17 33 49 65 81 97 113
» | 2| B|R|[b]|Tr
2 18 34 50 66 82 98 114
#]13|C|S|c|s
3 19 35 51 67 83 99 115
4 | D(T|d]|t
4 20 36 52 68 84 100 116
%| 5 E|lU]| e u
5 21 37 53 69 85 101 117
&| 6| F| V]| flv
6 22 38 54 70 86 102 118
| 7T G| W[9| W
7 23 39 55 71 87 103 119
8| H| X X
8 24 40 56 72 88 104 120
n .
space) | Y | y
9 25 |41 57 73 |89 105|121
bl x| 1 d]2 ! z
10 26 42 58 74 90 10 122
<+ s | K k
1 27 45*. 59 75 91[107 123
’ < |[_. L]\ | |
12 28 44 60 76 92 108 124
-l =|M[1]|m|?}
13 29 45 61 77 93 109 125
. > N A n| ~
14 30 46 62 78 94 110 126
m
space / ?210|-1]0 .
15 31 47 63 79 95 111 127

The number in the lower left corner of each cell is the ASCIi decimal value
(returned by sending the message asciiValue to the Character).

3393-2

Tektronix Smalltalk Reference Manual 167

StrikeFont

Graphics-Support

168

Tektronix Monospace Font

Pellucida Typewriter

(Compatibility Code = 1)

Characters 128-255

~

Nu|lDLlsp|l o | - | n|®lO
128 144 160 176 182 208 224 240
SHiD | il |¢|d|H
129 145 161 177 193 209 225 241
Sx{DP2|a|z2|1]|¢|HT|H
130 146 162 178 194 210 226 242
Ex{Ds| A | s | t| i |FF|H
131 147 163 179 195 211 227 243
Er|pala |« |0/ a|Cr|[H
132 148 164 180 186 212 228 244
EQ|NkK| £| s || s |LF

133 149 165 181 187 213 229 245
AK|[Sy|= | ¢ | @ | t ° B
134 150 166 182 198 214 230 246
BL EB a 7 r *

135 151 167 183 199 215 231 247
BS{CN| G |8 | ¢ |1 |NL [D
136 152 168 184 200 216 232 248
Hr[Em|é | o | 1 [Z |VT]| <
137 153 169 185 201 217 233 249
LEisg|l e | u Q >
138 154 170 186 202 218 234 250
VT|Ec| 0| b (n
139 155 171 187 203 [219 235 251
FF|Fs| 5 | © J +
140 156 172 188 204 220 236 252
CrR|{Gs| o | T +«[4] ¢
141 1157 173 1189 lpos 221 1237 1253
SolRs| U |§ | =] = H;] -
142 158 174 180 206 222 238 254
Si1|Us| u "™ | | T B DT
143 159 175 191 207 223 239 255

The number in the lower left corner of each cell is the ASCIl decimal value
(returned by sending the message asciiValue to the Character).

3393-3

StrikeFontManager Graphics-Support

Dictionary variableSubclass: #StrikeFontManager

instanceVariableNames:

classVariableNames: ‘Emphases *

poolDictionaries: ‘TextConstants *

category: ‘Graphics-Support’
Summary

StrikeFontManager is a Dictionary which maps instances of StrikeFont and
VirtualStrikeFont to String names.

Class Variables

Emphases <Dictionary>
Contains associations between a valid emphasis string and its
corresponding emphasis code.

Pool Dictionaries

TextConstants
A dictionary of symbols for non-printing characters, symbols related to text
composition and text emphasis, and default values for text composition and
text emphasis.

Instance Methods
accessing

at: aString put: aStrikeFont
Install aStrikeFont named aString.

familySizeFace: name

Return an array with name <String>, pointSize <Integer>, and
emphasis <Integers.

fontDirectorylncludesFontFileNamed: aString
Return true if the file named aString is in the font directory.

Tektronix Smalltalk Reference Manual 169

StrikeFontManager Graphics-Support

Class Methods

fontFileStream: aString
Return a file stream for the font named aString.

fontNames: anArray
Answer an Array of StrikeFonts corresponding to anArray of String names.
Load or synthesize the fonts, if necessary, and register the elements of the
array in the FontManager.

install: aString
Instali the font named aString if necessary. Load or synthesize the font if
necessary. Complain if the font is missing.

install: aString ifAbsent: aBlock
Install the font named aString if necessary. Load or synthesize the font if
necessary. Answer the result of evaluating aBlock if the font is missing.

virtualFontNames: anArray
Answer an Array of StrikeFonts or VirtualStrikeFonts corresponding to
anArray of font names, and register the elements of the array in the
FontManager.

virtuallylnstall: aFontName
Virtually install the font named aFontName if necessary. Create virtual
fonts to load or to synthesize the font if necessary. Complain if the font
cannot be constructed.

class initialization

initialize
Install the global FontManager, if none exists. Create an Emphases
dictionary of associations between the emphasis string in a font name and
the corresponding emphasis code.

Rationale

170

StrikeFontManager insures that all the StrikeFonts you reference are recorded in
one place. Once a TextStyle is installed and used, its StrikeFonts are recorded in
the StrikeFontManager. The StrikeFontManager keeps track of whether a
StrikeFont has been loaded in the image or whether it is a VirtualStrikeFont and
needs to be loaded when it is used the first time. When a StrikeFont is registered
with the manager, it is accessible throughout the system. There are 64 fonts of
compatibility types 1, 2, and 3 plus several other fonts in the directory returned by
Os fontDirectory. When you bring up the standard image the first time by typing
smalltalk, the FontManager has the StrikeFonts needed by the default text
style.

StrikeFontManager Graphics-Support

Discussion

The global FontManager is used in Smalltalk code to refer to the one instance of
StrikeFontManager that will exist at all times. It is possible to create a new
instance of this class, but you are not likely to do so.

Instance Protocol
Accessing

Various methods are provided to access a StrikeFont in the dictionary, put a
StrikeFont into the dictionary, and return an array of StrikeFonts after loading or
synthesizing them (if necessary). You can register a StrikeFont without actually
loading it into the image by sending the message virtuallylnstall:.

You are more likely to use a TextStyleManager instance creation message to load
a StrikeFont than to use one of these accessing messages. lt is reasonable,
however, to add a font to the dictionary under these cases:

e You have modified a font, for example, by changing characters.

¢ You have modified a font by changing its emphasis (extra bold underlined, for
example).

e Yourename the font.

You might have occasion to use the messages virtualFontNames:, fontNames:,
and install:. FontNames: guarantees that the fonts are installed in the image —
this makes your image bigger. Install: is easier to use than the other two since it

takes a string, not an array, as an argument.

Related Classes

StrikeFont
TextStyle
TextStyleManager
VirtualStrikeFont

Tektronix Smalltalk Reference Manual 171

172

StructOutputTable System-Support

Object subclass: #StructOutputTable

instanceVariableNames: ‘globalDict mapArray idCount *
classVariableNames: ”
poolDictionaries:

category: ‘System-Support’

,e

Summary
StructOutputTable is a table used to store mappings for an object. This mapping
detects and preserves the cycles of circular objects. This table is used in the
process of storing objects in an external format (called a structure), usually invoked
by the message storeStructureOn: or storeStructureOnFlle:.

Instance Variables
globalDict <Dictionary>
A dictionary containing all unique values in the Smalltalk dictionary.
Because these values are unique for each Smalltalk image, they are not
written out.

idCount <Integer>
This instance variable is used to assign identification numbers to objects as
they are written out. It is incremented as each new object gets an
identification number assigned.

mapArray <Array>
An array of subcollections pairing the identification number derived from
idCount with the object to which it is assigned. This pairing allows
StructOutputTable to reference previously written objects instead of
rewriting them, thus allowing the methods that write structures to deal with
circularity.

Instance Methods
initialize-release

new: arraySize globalDict: dict
Initialize the receiver.

Tektronix Smalltalk Reference Manual 173

StructOutputTable System-Support

accessing

idOfElement: anObject ifNew: aBlock
Answer the integer ID of anObject in the receiver’s structure, evaluating
aBlock if the object has not been previously encountered.

if: anObject isGlobal: aBlock
Evaluate aBlock if anObject is in the receiver’s global dictionary.

Class Methods

instance creation

new
Answer a new instance of the receiver.

Rationale

The Smalltalk compiler has a limit on the size of objects it can reconstruct. Also,
methods which rely on the compiler cannot recognize the circularity of objects.
StructOutputTable provides a means for objects exceeding the size limit, or
circular objects, to be stored externally and transferred between images.

Background

The messages fileOut: and fileln: can only be used with objects in a specific
format. This format is one the compiler can read.

Other methods which use the compiler format, such as storeOn:, cannot correctly
file circular objects into or out of an image, because they do not keep track of which
objects they have already handled. Objects can contain references (direct or
indirect) to themselves. This circularity can send these methods into an infinite loop.

Unlike compiler-based methods, the messages storeStructureOn: and
readStructureFrom: make use of StructOutputTable to keep track of each
structure as it is processed. Using this class, it is possible to move large circular
objects into and out of an image.

Discussion

Discussion of the methods for copying Smalltalk structures may be found in
Section 5, Programming in Smalltalk, of the manual Tektronix Smalltalk Users.

The class protocol instance creation includes one method which returns a new
instance of the receiver, ready for use by the structure-storing methods.

174

StructOutputTable System-Support

The instance protocol initialize-release includes one method which creates a new
array and reads the Smalltalk global variables into the instance variable globalDict.
It is called by the instance creation method.

The instance protocol accessing includes the method idOfElement:ifNew: which
evaluates whether an object has been encountered previously. If it has, it returns
the identification number of the object. If it has not, it creates a unique identification
number for the object passed in and stores the object-ID pair in the mapArray. This
is how StructOutputTable keeps track of circularities. Accessing also includes the
method If:isGlobal: which determines if the object is in the global dictionary. If it is,
the method evaluates the block passed in. These methods are called every time an
object that is part of the structure is written.

Examples
Forms can be written in a format readable by the compiler, using the message
storeOn:, however, they can also be written in structure format. The following
example code uses the method storeStructureOn: to write a Form out to the disk,
and the method readStructureFrom: to read the Form back into the image. It can
be executed in a workspace. In doing so, the class StructOutputTable is used.

aFileStream « Disk file: “example.struct’.

Form fromUser storeStructureOn: aFileStream. “write it out”
aFileStream reset. "move the file pointer back to the start”
newForm « Object readStructurcFrom: aFileStream. “read in”
aFileStream close. “clean up”

newFormdisplay "prove that it worked"

Related Classes

Methods which write structures using StructOutputTable are implemented in class
Object. Object is also the class which contains methods to read the structures.
Classes with unusual format, such as ContextPart, override certain internal
methods.

Tektronix Smalltalk Reference Manual 175

176

StructureArray OS-Parameters

ExternalPcinterData subclass: #StructureArray

instanceVariableNames: ‘numberOfElements elementClass *
classVariableNames: "

poolDictionaries:

category: ‘OS-Parameters’

Summary

StructureArray represents an array of ExternalData structures which may contain
embedded pointers. Each element must be an instance of the same structure.
StructureArray provides protocol for accessing and updating elements and protocol
for creating instances.

Subclasses can be made to provide protocol for accessing, by name, fields from an
element of an instance.

Instance Variables

elementClass <Class>
The class of each element of the array.

numberOfElements <Integer>
The number of elements in the array.

Instance Methods
accessing

at: anindex
Return the instance of elementClass at anindex.

at: anindex put: anElem
Update the receiver’s element at anindex with anElem.

elementClass
Return the class of elements of the receiver.

elementNumberOfPointers
Answer the number of pointers in each element.

elementPointersSize
Answer the pointersSize of each element.

Tektronix Smalltalk Reference Manual 177

StructureArray OS-Parameters

elementSize
Answer the size of each element.

numberOfElements
Answer the number of elements in the receiver.

size
Return the size of the receiver.

Class Methods

instance creation

new: numberOfElems class: aClass
Return an instance capable of holding numberOfElems elements of class,
aClass.

Rationale

StructureArray is used by the system call class for your operating system to pass
arguments to system calls which use arrays of structures. Examples of such system
calls include readv(2) and writev(2).

Related Classes
UTekSystemCall uses this class.

178

Subtask OS-Interface

Object subclass: #Subtask

instanceVariableNames: "accessProtect arguments environment
exceptionValue initBlock priority program status
taskID terminateBlock terminationValue
waitSemaphore *

classVariableNames: "
poolDictionaries:
category: ‘OS-Interface”

s

Summary

An instance of Subtask represents a spawned operating system task. Its parent
task is the Smalltalk task. For clarity, threads of control in the operating system are
referred to as "tasks”, and threads of control in Smalltalk are referred to as
“"processes”. Subtask contains protocol for testing and controlling the spawned
task. A subtask can be waited for in a manner which suspends the entire Smalltalk
parent task, or in a manner which suspends only the controlling Smalltalk process.
The Subtask metaclass contains protocol for the management of spawned
subtasks.

Instance Variables

accessProtect <Semaphore>
A semaphore used to protect accessing and setting of the status instance
variable.

arguments <OrderedCollection>
A collection of strings, each of which is an argument to the program.

environment <Dictionary>
A dictionary of operating system environment variables, keyed by
environment variable. Dictionary values are the values of the environment
variables.

exceptionValue <integer>
This instance variable contains the interrupt number of the signal causing
termination. Non-zero values represent error conditions.

initBlock <Block>
A block to be executed between the fork call and the exec call. Usually this
block involves signals and communication.

Tektronix Smalltalk Reference Manual 179

Subtask OS-interface

prlority <Integer>
An integer representing the operating system priority of the subtask.

program <String>
A string containing the path of the program to be executed.

status <Symbol>

A symbo! indicating the status of the task. Possible values:

nil

#running

#terminatedNormally

#waitedOn

#terminationSignaled

#terminatedWithCode

#terminatedWithSignal

#nonexistent.

Transition State Changes
Old State Cause of Change New State
nil start #running
#running wait #waitedOn
#running . s s
#waitedOn successful interrupts #terminationSignaled
exit status > 0 #terminatedWithCode
#waitedOn signal status > 0 #erminatedWithSignal
exit and signal status =0 #terminatedNormally

any snapshot #nonexistent

taskiD <Integer>
A unique identifying number assigned by the operating system.

terminateBlock <BlockContext>
A block containing code to terminate the spawned subtask. A value of nil
means terminate using the default action, sending a terminate interrupt.

terminationValue <Integers
This instance variable represents the code assigned by the exit system
call. Non-zero values represent error conditions.

waitSemaphore <Semaphore>
A semaphore used to block the initiating process until the child task has
terminated.

180

Subtask OS-Interface

Instance Methods

initialize-release

Initialize

Set the subtask data to reflect the parent’s environment.

release

accessing

Remove the receiver from the list of scheduled subtasks.

arguments

Answer an OrderedCollection of arguments used in invoking this subtask.

enhancedPriority

Set the priority of the subtask to the highest possible priority.

environment

Answer the environment for this subtask in a dictionary format.

environment: envDictionary

Store the environment variables for this subtask. See ‘environment
variables” protocol in the metaclass.

priority

Answer the absolute priority of the subtask.

priority: aPriority

Set the priority of the subtask.

program

Answer the name of the executable program.

status

Answer the status of the receiver. Access with the protocol critical: to
prevent inconsistencies in the status instance variable.

taskiD

Answer an identifying unique integer assigned by the operating sytem.

terminateBlock

Answer the block that specifies the receiver’s termination.

terminateBlock: aBlock

Record a block that allows the receiver to terminate in its own manner.

Tektronix Smalltalk Reference Manual 181

Subtask OS-Interface

controlling

interrupt: aninterruptiD
Send an interrupt to my task. AnlinterruptiD is a system dependent integer
indicating which interrupt to send. The usual result of an interrupt is task
termination.

start
Start the receiver by spawning a child, executing code to set up the child
task (mainly communication and signal processing), and executing the
program. [f the execute fails terminate the child task. The child task will
inherit the priority of the Smalltalk process.

terminate
Attempt to terminate the receiver’s task in a manner which can be
intercepted.

terminateUnconditionally
Terminate this task unconditionally.

wait
Wait for the receiver to terminate.

waltWithSmalltalkSuspended
Bypassing the dead child signal management, a wait system call is made.
This call suspends the execution of the Smalltalk task. The list of
scheduled subtasks is updated accordingly and the status of the
termination is recorded for each child process until the receiver’s subtask is
found. This method replaces the use of the wait message, and is designed
for use with non-interactive tasks that require the shutting down of the
Smalltalk process for efficiency.

copying

copy
Inappropriate for a Subtask.

testing

abnormalTermination
Answer true if the status indicates abnormal termination, otherwise false.

isActive
Answer a boolean indicating if the receiver is running.

IsNonEXxistent
Answer a boolean indicating if the receiver’s task is not present.

182

Subtask OS-Interface

IsTerminated
Answer a boolean indicating if the receiver has been terminated.

notTerminated
Answer a boolean indicating if the receiver has not been terminated.

Subtask class

instanceVariableNames: ‘brokenPipesProcess scheduledSubtasks
scheduledSubtasksAccessProtect
unscheduledSubtasks waitProcess *

Subtask class — Instance Variables

brokenPipesProcess <Process>
This process runs forever, forking error notifiers upon signal receipt.

scheduledSubtasks <Dictionary>
Contains all the current subtasks keyed by taskID. Subtasks are added to
the list when started. Management of these tasks is done by the metaclass.

scheduledSubtasksAccessProtect <Semaphore>

Semaphore for mutual exclusion to protect accessing of list of currently
scheduledSubtasks.

unscheduledSubtasks <Dictionary>
Contains unscheduled subtask termination information keyed by taskiD.
This information, in the form of an executed wait system call, is collected
and saved by the subtask management system. It is produced when a task
dies, and it is not in the scheduled task list.

waitProcess <Process>
This process runs forever. Each time a "dead child” signal is received, a

wait system call is made and the subtask management information
updated.

Class Methods

class initialization

initialize

Create the accessing semaphore. Using the accessing semaphore, create
a new dictionary of scheduled subtasks.

Tektronix Smalltalk Reference Manual 183

Subtask Os-Interface

install
This method is invoked when resuming after a snapshot. When resuming,

connections to the task controlling and signaling mechanisms in the
operating system must be re-established. Create these connections by
forking processes to catch the dead child signal and the broken pipe signal.
Also, create and initialize a new list of scheduled subtasks.

installBrokenPipeProcess
Install a process to catch broken pipe signals. Each time the signal is

received, fork an error notifier.

installSubtaskTerminationProcess
Install a process to monitor spawned subtasks. If a signal indicating a child
task termination is received, update the current data about spawned
subtasks. If possible (wait call is non-blocking), continue updating until
there are no more terminated subtasks.

environment variables

currentEnvironment
Answer the current environment. For modification on a per subtask basis,

senders should copy.

initializeEnvironment
Initialize the internal record of the environment with which this image was

invoked.

instance creation

fork: commandName then: aBlock
Return a new instance of Subtask containing all the necessary information
to execute the subtask. There are no arguments and the initialization block

is empty.

fork: commandName withArguments: arguments
Return a new instance of Subtask containing all the necessary information
to execute the subtask. Arguments is an OrderedCollection of arguments
to the executable program specified by commandName. The initialization

block is empty.

fork: commandName withArguments: arguments standardin: in
standardOut: out standardError: err
Return a new instance of Subtask containing all the necessary information
to execute the subtask. Arguments is an OrderedCollection of arguments
to the executable program specified by commandName. Three pipes are
specified by the arguments in, out and err. Unused ends of the pipes are
closed in the child process only. Senders must close the pipes for the

184

Subtask OS-Interface

parent task.

fork: commandName withArguments: arguments standardin: in
standardOutAndError: out
Return a new instance of Subtask containing all the necessary information
to execute the subtask. Arguments is an OrderedCollection of arguments
to the executable program specified by commandName. Two pipes are
specified by the arguments in and out. Unused ends of the pipes are
closed in the child process only. Senders must close the pipes for the
parent task.

fork: commandName withArguments: arguments then: aBlock
Return a new instance of Subtask containing all the necessary information
to execute the subtask. Arguments is an OrderedCollection of arguments
to the executable program specified by commandName. ABlock is an
initialization block executed by the spawned task upon startup.

fork: commandName withArguments: arguments withEnv: anEnvironment
then: aBlock
Return a new instance of Subtask containing all the necessary information
to execute the subtask plus specification of a list of environment variables.
Arguments is an OrderedCollection of arguments to the executable
program specified by commandName. ABlock is an initialization block
executed by the spawned task upon startup.

scheduled subtasks

addSubtask: aSubtask
Add a subtask to the dictionary of scheduled subtasks. Check the
unscheduled subtask list to see if the task terminated before this method
was called. If it terminated, update the task accordingly.

addUnscheduledSubtask: aSubtask!D with: syscall
Add a subtask to the list of unscheduled subtasks.

locateSubtask: aSubtaskID
Given a subtask’s ID, answer the subtask object stored in the dictionary of
subtasks.

removeSubtask: aSubtask
Remove a subtask from the dictionary of subtasks.

scheduledSubtasks
Answer a dictionary of subtasks, keyed by subtask ID.

Tektronix Smalltalk Reference Manual 185

Subtask OS-Interface

task management

markAndSignalAll
Mark the status #nonexistent and signal the wait semaphore of each
previously scheduled subtask. This method is used when restoring after a
snapshot.

terminate: aTask
Terminate aTask and remove it from the task list.

terminateAll
Terminate all the scheduled tasks and remove them from the task list.

terminateUnconditionally: aTask
Terminate the spawned task and remove it from the task list.

Rationale

Tektronix Smalltalk adds support for subtasks to make the job of creating, running,
and communicating with the subtasks straightforward. Interfaces to operating
system signals, program parameters, environment variables, and subtask priorities
are also supported.

Background

186

Multi-tasking

Most operating systems support multi-tasking. To the operating system, your
running Smalltalk program is another task. Although Smalltalk has its own
processes, Smalltalk can also create and communicate with operating system tasks.

Operating system subtasks provide access to other executable programs. By using
the class Subtask, you can create a child task so that you can use some resource
— an operating system command, or a program you have written in the C language,
etc. — outside of the Smalltalk process.

By spawning new tasks, multi-tasking is accessible without leaving the Smalltalk
environment. A newly spawned task is called a child task or a subtask. The original
task is referred to as the parent task. The child task is a "copy” of the parent task —
it shares resources with the parent task. Since only one task can execute at a time,
CPU time is also shared, initially in a predetermined fashion. Common practice is
for the spawned child task to perform some chore, and then report back to the
parent task. After reporting, the child task terminates. A parent may choose to
relinquish use of the CPU until a subtask terminates. It does this by an operation
called waiting. While waiting, the parent task is blocked and cannot do anything
else until the child task terminates.

Subtask OS-Interface

The child task’s chore is often accomplished by finding some other program to do
the work. The use of this other program is known as an exec operation (for
execute). In an exec operation, the spawned task "turns itself into” the other
program.

Pipes

A pipe is used to convey data from one process (task) to another. Pipes are data
structures set up in computer memory to be transient, even though they share other
characteristics with files.

Frequently, a parent task may want to communicate with a child task. Information
can be sent to and from the child task by using pipes; however, each pipe can send
information in only one direction. If communication in two directions is desired, two
pipes must be used. Pipes are similar to files with two critical differences.

e Files can be reopened many times. Pipes can only be opened once. Once a
pipe is closed it is gone.

e Files can be reset and repositioned. It is not possible to reposition a pipe.

Usually the parent task creates a pipe. Each end of the pipe is assigned a file
descriptor, one for reading and one for writing. When a subtask is created it inherits
these open file descriptors. The parent task saves one file descriptor, the one which
is appropriate for its direction of communication. For example, if the parent task
wants to send information to the child, the parent saves the file descriptor for writing.
Since the parent will not be using the reading end of the pipe, it should close this
unused end. The child task must also save the appropriate file descriptor and close
the file descriptor corresponding to the unused end of the pipe. Neglecting to close
these unused pipe file descriptors might mean the task could run out of file
descriptors, since there is a limit on the number of open file descriptors per task.

Sometimes it is not possible for the child task to know that it should use the pipe’s
file descriptors for reading and writing. For instance, the child task might execute a
program that writes on standard output. It is possible for the child task to redirect its
I/O by mapping its pipe descriptors to known file descriptors. Redirection allows a
file descriptor to capture all the data intended for another descriptor. Tektronix
Smalltalk Pipe protocol supporis this functionality. Once a pipe’s file descriptor is
mapped, it becomes obsolete and should be closed. For example, the child task
may want to write to the pipe, but the program is designed so write operations go to
standard output. The write file descriptor of the pipe must be mapped to standard
output’s file descriptor (1), and the pipe’s original write file descriptor should be
closed. The effect of the mapping in this example is for the child task’s write
operations going to standard output to be performed on the write end of the pipe

Tektronix Smalltalk Reference Manual 187

Subtask OS-nterface

instead.
Operating System Multi-tasking — Implementation

In a multi-tasking operating system, programs generally execute by duplicating the
parent program (task), transforming the duplicate (child) task into the new program.
Upon termination of the new program, the parent task is signaled; if it suspended
execution, the parent task resumes. Specific system calls are used to accomplish
these tasks. A fork call causes the duplication of the parent task. An exec call
causes the duplicate task (i.e., the child task) to "transform” into a desired
executable program. An exit call terminates the sending task and causes the
operating system to send a "dead child signal” to the parent task — this indicates
that a spawned task has terminated. A wait call executed by the parent task,
besides suspending the parent task until termination of the child task, returns the
termination status of the child task. Termination status includes information such as
which signal caused the termination and whether the termination was abnormal.

For example, suppose you type the command Is at the keyboard. As you know, the
shell program is waiting to interpret your keystrokes. Here the shell is a parent task.
If the shell determines that you have typed Is correctly, it forks another shell task —
achild task. This task then executes an exec call which overlays the child task with
the Is program. Is executes, outputs directory information to the screen, and exits
normally. The shell task receives the termination status via a wait call and resumes
its /O wait for more input from you.

Discussion

188

A subtask is spawned in a Unix-like operating system in three phases:
¢ afork system call,
e aset-up phase, and

e the exec system call.

Most of the code for what takes place in the set-up phase is encapsulated in the
subtask at the point of instance creation. Between fork and exec the subtask is
running Smalltalk, but it is limited. The keyboard and the mouse cannot be used to
communicate with Smalltalk, so no debugging can take place if the set-up code
doesn’t execute as anticipated.

In the set-up phase, depending upon which instance creation message selector is
used and the values of instance variables, several things can take place, such as:

Subtask OS-interface

e ablock of code executes concerning signals and communication;
e priority of the subtask is set;

e the environment is changed from the environment that the subtask inherited
from its parent task.

Subtask Instance Protocol

Accessing methods enable the user to set and access the values of instance
variables. Some instance variables control what happens in the set-up phase,
others contain information about the termination of the subtask.

Controlling methods start the subtask, wait for the subtask, and allow the task to be
interrupted or terminated.

Testing methods provide information about the subtask, such as whether it is active,
terminated abnormally, is or is not terminated, and whether the subtask exists.

Subtask Class Protocol

Environment variables methods provide information about the current environment
and allow the environment of the subtask to be modified. The default environment
for a subtask is the environment of the parent task.

Instance creation methods provide the encapsulation of data to be used in the set-up
phase of the subtask.

Scheduled subtasks and task management methods deal with the subtask management
system and you will probably not use them directly.

Relation to the System Call and Pipe Classes

The system call class is used for the implementation of fork, exec, and wait. It also
contains protocol for various other operations used by a subtask, including setting
up signals and priorities. Communication between tasks is currently provided by the
pipe classes. Access to other communication implementations, such as sockets, is
available through system calls.

Management of Subtasks
A subtask management process is part of Tektronix Smalitalk — it is implemented
in the metaclass of Subtask. Unlike the C programming environment where the

only type of waiting available is complete suspension until the child task terminates,
the task management system allows two types of waiting, described below.

Tektronix Smalitalk Reference Manual 189

Subtask OS-Interface

The subtask manager runs continuously, monitoring child tasks. When a task is
started, it is registered with the task management system. Two lists are used to
keep track of subtasks — class instance variables scheduledSubtasks and
unscheduledSubtasks.

When a subtask terminates, the manager receives a dead child signal. The
manager releases a terminated task from its list; if the parent process has been
suspended, the manager sends a signal for it to resume.

Waiting

There are two methods that deal with waiting by the parent task — wait and
waitWithSmalltalkSuspended. The message walit causes the suspension of only
the parent pracess of the subtask. When the subtask ends, the parent is signaled to
resume.

The message waitWithSmalltalkSuspended causes the entire Smalltalk task to
suspend. While Smalltalk is suspended there is no way to interact with the Smalltalk
task using the keyboard or the mouse. This version of waiting is used for efficiency,
for example, while a Fortran program doing a lot of calculations is running — like a
fast Fourier transform.

Concurrent subtasks may use either form of waiting — their terminations are
handled appropriately by the subtask manager.

Snapshots

If a subtask is running when a snapshot is made, certain things occur. Inthe
Smalltalk image that continues to run after the snapshot, the subtask is not affected.

When you quit, any running subtasks are terminated by the operating system.
When a Smalltalk image is "brought up” (loaded by the Smalltalk interpreter), the
subtask management system is installed with empty task lists. If subtasks were
running when the snapshot was made, they will be marked as #nonexistent. Their
status can be checked and they can be restarted by application programs.

Examples

See the file /usr/lib/smalltalk/fileln/Examples-Subtasking st (this path correct for UTek
only) for some examples illustrating how to use Subtask in an application example.
Read further for an introduction to using Subtask.

190

Subtask

OS-Interface

The Simplest Example

Here is a very simple example that uses Subtask.

"Execute a simple binary program with no arguments.”

| task |

task « Subtask
fork: “fusr/bin/pretend”
then: [1.

task start.

task wait

The code above can be executed in a workspace, assuming that the

"Just/bin/pretend” file exists. It contains the simplest form of subtask instance
creation, since it has no arguments and does not include a block of code to be
executed between fork and exec. The default set-up takes place, not a user-
specified set-up. The task then starts and the parent waits for the subtask to

terminate.

Add Some Interest

Here is a method which executes a program requiring two arguments. lt illustrates

some variations of Subtask protocol and adds error checking code.

executeUtility; aCommand withArgumentl: argumentString1
withArgument2: argumentString2

"Execute a binary program with two arguments. Set the priority
of the subtask to the highest possible, and ignore dead child
signals in the child task. Create an error if the program cannot
be executed or if the program terminates abnormally.”

| argumentList task envDictionary |
argumentList «~ OrderedCollection
with: argumentStringl with: argumentString2.

task « Subtask

fork: aCommand

withArguments: argumentList

then: [OS ignorelnterrupt: OS deadChildInterrupt].
envDictionary « Subtask currentEnvironment copy.
envDictionary at: #PARENT put: “smalltalk”,
task environment: envDictionary.

Tektronix Smalltalk Reference Manual

191

Subtask OS-Interface

task enhancedPriority.
task start isNil
ifTrue: [self error: “Cannot execute * , aCommand].
Cursor execute
showWhile: [task wait].
task abnormalTermination
ifTrue: [self error: “Abnormal termination from *, aCommand]

In the code above, we begin by placing the arguments in an OrderedCollection,
since the instance creation method expects arguments in that form. This example
uses an instance creation message different from the first example — this one
allows us to pass arguments to the executable program.

Set-up Phase

The block of code after then: is executed only by the child task; it is done in the set-
up phase. Here the set-up changes the action of an interrupt — the dead child
interrupt is ignored. The current environment is stored in a temporary variable,
envDictionary, and the association of #Parent->"smalltalk’ is added to it. Then the
subtask’s environment instance variable is set to the value of the temporary
variable, envDictionary. The subtask is given the highest possible priority. The start
message causes the execution of the set-up code.

Start and Finish

If start returns an error, a notifier is displayed. While the subtask is executing and
the parent process waits for the subtask to terminate, the cursor is in the form of a
star (Cursor execute showWhile:). If the subtask terminates abnormally, an error
notifier is displayed.

Related Classes

192

in Smalltalk code, the typical reference to the system call class is OS, a global
variable which is the appropriate system call class for your operating system. You
might want to refer to these classes in this manual for further information:

e the system call class for your operating system and its superclasses,
s the PipeStream hierarchy of classes, and
e Pipe.

Pipe is not directly used in the implementation of Subtask, but it is essential to
complete usage of subtasks.

Tchars OS-Parameters

ExternalBinaryData variableByteSubclass: #Tchars

instanceVariableNames:
classVariableNames: ‘BrkcDatalndex EofcDatalndex IntrcDatalndex
QuitcDatalndex StartcDatalndex StopcDatalndex

poolDictionaries:
category: ‘OS-Parameters’

Summary
Tchars provides accessing protocol for the following C structure.

struct tchars {
char t_intrc; /* interrupt */
char t_quitc; /* quit */
char t_starc; /* start output */
char t_stopc; /* stop output */
char t_eofc; /+ end-of-file */
char t_brkc; /* input delimiter (like nl) */

}

The structure is documented under #y(4) in the manual UTek Command Reference,
Volume 2.

Class Variables
BrkcDatalndex
EofcDatalndex
IntrcDatalndex
QuitcDatalndex
StartcDatalndex

StopcDatalndex
Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,

stripped of its prefix, with the string ‘Datalndex” appended. For example,
the class variable BrkcDatalndex holds the offset of the "t_brkc" field.

Tektronix Smalltalk Reference Manual 193

Tchars OS-Parameters

Instance Methods
accessing

brkc
Return the value of the structure field named brkc.

brke: aCharacter
Assign the argument, aCharacter, to the structure field named brkc.

eofc
Return the value of the structure field named eofc.

eofc: aCharacter
Assign the argument, aCharacter, to the structure field named eofc.

intrc
Return the value of the structure field named intrc.

intrc: aCharacter
Assign the argument, aCharacter, to the structure field named intrc.

intrc: iCharacter quitc: gCharacter startc: startCharacter
stopc: stopCharacter eofc: eCharacter brke: bCharacter
Assign values to all the fields of the structure.

quite
Return the value of the structure field named quitc.

quitec: aCharacter
Assign the argument, aCharacter, to the structure field named quitc.

startc
Return the value of the structure field named startc.

startc: aCharacter
Assign the argument, aCharacter, to the structure field named startc.

stopc
Return the value of the structure field named stopc.

stopc: aCharacter
Assign the argument, aCharacter, to the structure field named stopc.

194

Tchars OS-Parameters

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation

default
Return an instance containing the default characters.

Rationale
The structure is used in support of the following UTek system call:

ioctl(2)

Related Classes
UTekSystemCall implements the system call listed above.

Tektronix Smalltalk Reference Manual 195

196

TextStyle Graphics-Support

Object subclass: #TextStyle

instanceVariableNames: ‘fontArray lineGrid baseline alignment firstindent
restindent rightindent tabsArray marginTabsArray
outputMedium lineGridForLists baselineForLists
lineGridForMenus baselineForMenus *
classVariableNames: ”

poolDictionaries: ‘TextConstants *
category: ‘Graphics-Support’
Summary

An instance of TextStyle is a grouping of fonts that "look nice together" and display
characteristics used in composing text in these fonts.

Instance Variables

alignment <Integer>
Indicates the mode for placement from the margins:
0 = flush left, 1 = flush right, 2 = centered, 3 = justified.

baseline <Integer>
The amount to be added to the top of a line to find the baseline of the line.
The baseline is the point from which the ascent of a font should rise.

baselineForLists <Integer>
Copied into baseline while constructing a TextStyle for a list.

baselineForMenus <Integer>
Copied into baseline while constructing a TextStyle for a menu.

firstindent <Integer>
Amount to inset from the left margin for the first line of a paragraph. Initial
value for paragraph associated with this TextStyle.

fontArray <Array>
A collection of fonts available in this TextStyle. These may be either
StrikeFonts or VirtualStrikeFonts. The emphasis portion of a Text (the runs
instance variable) returns a value for indexing into the fontArray.

lineGrid <Integer>
The amount to be added to the top of a line to find the top of the next line.

Tektronix Smalltalk Reference Manual 197

‘TextStyle Graphics-Support

lineGridForLists <integers
Copied into lineGrid while constructing a TextStyle for a list.

lineGridForMenus <Integer>
Copied into lineGrid while constructing a TextStyle for a menu.

marginTabsArray <Array>
Each value in the array is a tuple indicating inset values fo tab to relative to
the left and right margin of this paragraph. Allows for inset paragraphs.

outputMedium <Symbol>
Currently only #Display is supported.

restindent <Integer>
Amount to inset from the left margin for all but the first line of a paragraph.
Initial value for paragraph associated with this TextStyle.

rightindent <Integer>
Amount to inset from the right margin for all the lines of the paragraph.
Initial value for paragraph associated with this TextStyle.

tabsArray <Array>
Tab stops. Values are relative to the left margin of the paragraph.

Pool Dictionaries

TextConstants
A dictionary of symbols for non-printing characters, symbols related to text
composition and text emphasis, and default values for text composition and
text emphasis.

Instance Methods
accessing

alignment
Answer the code for the current setting of the alignment.

alignment: aninteger
Set the current setting of the alignment to anlnteger — O=flush left, 1=flush
right, 2=centered, 3=justified.

198

TextStyle Graphics-Support

baseline
Answer the distance from the top of the line to the bottom of most of the
characters (by convention, bottom of A).

baseline: anlnteger
Set the distance from the top of the line to the bottom of most of the
characters.

baselineForLists
Answer the baseline for a list composed from this TextStyle.

baselineForLists: aninteger
Set the instance variable baselineForLists.

baselineForMenus
Answer the baseline for a menu composed from this TextStyle.

baselineForMenus: aninteger
Set the instance variable baselineForMenus.

defaultFont
Answer the first font in fontArray.

descent
Answer the distance from the bottom of most of the characters (by
convention, bottom of A) to the top of the next line.

firstindent
Answer the horizontal indent of the first line of a paragraph in the style of
the receiver.

firstindent: aninteger
Set the horizontal indent of the first line of a paragraph in the style of the
receiver.

fontArray
Answer the fontArray of this TextStyle.

fontArray: aFontArray
Install aFontArray of fonts; recompute lineGrids and baselines.

fontAt: index
Return the StrikeFont at index. Make sure whenever a font is accessed, it
is coerced into a StrikeFont and registered in the global FontManager.
Recompute the listStyle and menuStyle based on the font returned.

Tektronix Smalltalk Reference Manual 199

TextStyle Graphics-Support

200

fontAt: index put: font
Set the fontArray element at index to font.

fontFor: fontindex emphasis: emphasisBlock
Select and return the index of the first font in fontArray which has the same
size and family as the font at fontindex, and where emphasisBlock
evaluates true.

fontFor: fontindex face: face
Select and return the index of the first font in fontArray which has the same
size and face as the font at fontindex.

fontNamed: aString
Return the font named aString. If it is not found in fontArray, return the
basal font for the TextStyle.

lineGrid
Answer the relative space between lines of a paragraph in the style of the
receiver.

lineGrid: aninteger
Set the relative space between lines of a paragraph in the style of the
receiver.

lineGridForLists
Answer the relative space between lines of a list in the style of the receiver.

lineGridForLists: anlnteger
Set the relative space between lines of a list in the style of the receiver.

lineGridForMenus
Answer the relative space between lines of a menu in the style of the
receiver.

lineGridForMenus: aninteger
Set the relative space between lines of a menu in the style of the recsiver.

nestingDepth
Return the number of entries in the marginTabsArray.

outputMedium
Answer the outputMedium for this style.

outputMedium: aSymbol
Set the outputMedium for this style (currently only #Display is recognized).

TextStyle Graphics-Support

restindent
Answer the indent for all but the first line of a paragraph in the style of the
receiver.

restindent: aninteger
Set the indent for all but the first line of a paragraph in the style of the
receiver.

rightindent
Answer the right margin indent for the lines of a paragraph in the style of
the receiver.

rightindent: aninteger
Set the right margin indent for the lines of a paragraph in the style of the
receiver.

upperLead: upperLeadinteger lowerLead: lowerLeadInteger
Collect all fonts that are in the largest point size in this TextStyle. Use this
subset of the fonts to compute the appropriate baseline and line gridding
including the additional leading amounts specified.

converting

asListStyle
Answer a copy of the receiver with lineGrid and baseline set for lists.

asMenuStyle
Answer a copy of the receiver with lineGrid and baseline set for menus.

tabs and margins

clearindents
Reset all the margin (index) settings to 0.

leftMarginTabAt: marginindex
Set the “nesting” level of left margin indents of the paragraph in the style of
the receiver to marginindex.

nextTabXFrom: anX leftMargin: leftMargin rightMargin: rightMargin
Tab stops are distances from the leftMargin. Answer either the first tab
stop after anX (normalized relative to leftMargin) or rightMargin, whichever
is greater.

Tektronix Smalitalk Reference Manual 201

TextStyle Graphics-Support

rightMarginTabAt: marginindex ,
Set the ‘nesting” level of right margin indents of the paragraph in the style
of the receiver to marginindex.

tabWidth
Answer the width of standard tab.

Class Methods

kY

constants

default
Answer the system default text style.

default: aTextStyle
Change the system default text style to aTextStyle.

examples

allDefaultFontNames
When you see the star and arrow cursor, select a point (by clicking a
mouse button) for each font in the DefaultTextStyle. Each font in the
default text style will be displayed.

defaultStyleHi
When you see the star and arrow cursor, select a point by pressing a
mouse button. The greeting will be displayed there in the system default
text style.

instance creation

fontArray: anArray
Return a TextStyle constructed from the fonts given in anArray.

Rationale

A TextStyle is used for text composition. It includes a grouping of fonts that "go
together”, often from the same family, and look attractive together interspersed in
text. In addition to one or more fonts contained in the instance variable fontArray, a
TextStyle contains information (lineGrid, baseline, and more) computed from the
largest font in the array. The information aids in the physical layout of multiple lines
of text. Additionally, you can specify things such as indentation, tabs, and
alignment.

202

TextStyle Graphics-Support

Discussion

If you are not familiar with some of the terminology in this class, refer to StrikeFont
in this manual for an explanation of some of the terms.

Class Protocol

Ordinarily, you would not use the instance creation message, fontArray:, to create an
instance of TextStyle. Instead, use a TextStyleManager text style instance creation
message or send the message asTextStyle to a StrikeFont. If you want to create a
text style for lists or menus in your application, you could use the fontArray:
message, or use a TextStyleManager message if you want it to be generally
available. The protocol in the TextStyleManager registers the text style when it is
created, so that it is accessible to others. Read about the advantages of using the
TextStyleManager under that class in this manual.

Constants methods allow you to set the default text style or get a copy of the current
default text style.

Instance Protocol

Accessing methods allow you to set or access the values of the instance variables.
Additionally, methods install a font or array of fonts, set an element in fontArray to
the supplied font, or return the index of a font matching a supplied fontlndex” size,
family, face, or emphasis. One method adjusts the lineGrid and baseLine to
include supplied "leading” at the top and bottom of the characters.

Converting methods return a copy of the TextStyle with lineGrid and baseLine
adjusted for lists or menus.

Tabs and margins methods clear all the indents, set the left and right "nesting” level of
indents, and answer the DefaultTabWidth (from the TextConstants pool
dictionary). The method nextTabXFrom:leftMargin:rightMargin: answers either
the first tab stop after a place on the line specified by the user or the right margin,
whichever is greater.

Tektronix Smalltalk Reference Manual 203

TextStyle Graphics-Support

Examples

204

The following method is in the TextStyle class examples message category.

a

defaultStyleHi

"When you see the star and arrow cursor, select a point by pressing a mouse button.
The greeting will be displayed there in the system default text style.”

(DisplayText text: “Hi there\How are you?” withCRs asText
textStyle: (TextStyle default))
displayAt: Scnsor waitClickButton

First, the instance creation message text:textStyle: is sent to DisplayText. The first
argument must be a Text, so the string is converted to a Text. The message
withCRs was sent to the string to replace the backslash (\) with a carriage return in
the string. The second argument is a TextStyle — the one returned by the default
message is the value at DefaultTextStyle in the TextConstants dictionary. The
DisplayObject message displayAt: is sent to the instance of DisplayText with the
argument of the Point created by Sensor waitClickButton. Sensor is a global
variable, an instance of InputSensor.

The following method is in the TextStyle class examples message category.
allDefaultFontNames \

"When you see the star and arrow cursor, select a point (by clicking a mouse button) for
each font in the DefaulTextStyle. Each font in the default text style will be displayed.”

(TextConstants at: #DecfaultTextStylc) fontArray do:

: strikcFont |

(DisplayText text: strikcFont name asText textStyle: strikeFont asTextStyle)
displayAt: Sensor waitClickButton]

This method takes defaultStyleHi one step farther, and makes use of additional
TextStyle methods. TextConstants at: #DefaultTextStyle returns the same result as
TextStyle default, used in the preceding example. The instance of TextStyle is sent
the message fontArray, and the returned array of StrikeFonts is enumerated with a
block similar to the code in the first example. Instead of the greeting, the argument
to text: is the string returned by sending the message name to the StrikeFont. The
argument to textStyle: is the TextStyle returned when the message asTextStyle is
sent to the StrikeFont. When this example is executed in the standard image
(assuming that you have not changed the default text style), 16 font names are
displayed using a separate TextStyle for each one. One point of this example is
that text must be converted to a displayable object, in this case a DisplayText, in

TextStyle Graphics-Support

order to display it. Infact, all text that you see in Smalitalk is converted to a
displayable object, but that is handled for you and you aren’t required to do the
converting in everyday use. Unless you want to deal with the Forms in the glyphs
instance variable of a StrikeFont, the only way to see a StrikeFont is to make it a
TextStyle and display some text using the TextStyle.

Related Classes
DisplayText
Paragraph
StrikeFont
StrikeFontManager
String
Text
TextStyleManager
VirtualStrikeFont

Tektronix Smalltalk Reference Manual 205

206

TextStyleManager Graphics-Support

Dictionary variableSubclass: #TextStyleManager

instanceVariableNames:

classVariableNames: "MenuDependents TextStyleMenu
TextStyleNames *
poolDictionaries: o
category: ‘Graphics-Support’
Summary

This class is the central repository of all TextStyles. TextStyleManager maps
TextStyle names (Strings) to TextStyles.

Class Variables

MenuDependents <OrderedCollection>
The list of MenuDependents is kept so that whenever the default text style
changes, all cached menus are flushed. To add a menu to the list, send
the message addMenuDependents: to the global StyleManager. Each
element of MenuDependents is itself a collection of three elements:

e The symbol name of a Smalltalk class or other entry in the system
dictionary.

e The symbol #class or #instance.

e The symbol name of a unary message selector.

TextStyleMenu <PopUpMenu>
A menu of available TextStyle selections.

TextStyleNames <Dictionary>
A dictionary of TextStyle names and associated TextStyles.

Instance Methods
accessing

at: aString put: aTextStyle
Install aTextStyle named aString.

Tektronix Smalltalk Reference Manual 207

TextStyleManager Graphics-Support

removeAssociation: anAssociation ifAbsent: aBlock
Remove the key and value association, anAssociation, from the receiver.
Cause all MenuDependents to be flushed. Answer anAssociation.

removeKey: aString ifAbsent: aBlock
Remove the TextStyle named aString else answer aBlock value.

default text style

changeDefaultTextStyle

Present a menu of TextStyles. If one is selected, change the default
TextStyle.

changeDefaultTextStyle: aTextStyle
Change the default TextStyle to aTextStyle.

menu initialization

initializeMenus
Initialize all of the system menus. New classes cacheing menus or other
dependencies upon TextStyle should be added to the list of
MenuDependents by sending the message addMenuDependents: to
TextStyleManager.

selecting

fromUser

Present a menu of TextStyles. Answer with the selected TextStyle. If no
TextStyle is available or selected, return nil.

fromUser: aBlock

Present a menu of TextStyles. If one is selected, evaluate aBlock with the
selected TextStyle and return the selected TextStyle. Return nil if no
TextStyle is selected.

text style instance creation

styleNamae: aString baseNames: anArray
Create and install a TextStyle named aString with fonts specified by
anArray of base String names. Load or synthesize the fonts if necessary.
Set the leading to zero. Answer the TextStyle.

Each base name in anArray represents a set of eight fonts (Basal, Bold,
ltalic, Boldltalic, Basal Underlined, Bold Underlined, ltalic Underlined, and
Boldltalic Underlined). The font order within the new TextStyle is best
explained by the following example: '

208

TextStyleManager Graphics-Support

StyleManager styleName: “Pellucida Sans-Serif 10/12” baseNames:
#(“PellucidaSans-Serif10” “PellucidaSans-Serif12°)

The code above generates a TextStyle with font order:

‘PellucidaSans-Serif10°
‘PellucidaSans-Serif10B*
‘PellucidaSans-Serif10l”
‘PellucidaSans-Serif10X”

‘PellucidaSans-Serif12°
‘PellucidaSans-Serif12B’
‘PellucidaSans-Serif12l”
‘PellucidaSans-Serif12X”

"PellucidaSans-Serif10U”

‘PellucidaSans-Serif10BU”

‘PellucidaSans-Serif10lU”

"PellucidaSans-Serif 10XU’

‘PellucidaSans-Serif12U’

‘PellucidaSans-Serif12BU”

‘PellucidaSans-Serif12IU°

"PellucidaSans-Serif12XU”"

(Basal)
(Bold)
(Italic)
(Bold italic)

(Basal)
(Bold)
(Italic)
(Bold ltalic)

(Underlined)

(Bold Underlined)
(Italic Underlined)
(Bold Italic Underlined)

(Underlined)

(Bold Underlined)
(Italic Underlined)
(Bold ltalic Underlined)

styleNamae: aString baseNames: anArray lead: leadlnteger

Similar to styleName:baseNames:, but divide the leading equally between
upper and lower leading (odd pixel on top).

styleName: aString baseNames: anArray upperlLead: upperLeadinteger
lowerLead: lowerLeadInteger
Similar to styleName:baseNames:, but set the upper and lower leading.

styleName: aString fontNames: anArray
Create and install a TextStyle named aString with fonts specified by
anArray of explicit String names. Set the leading to zero. Answer the
TextStyle.

styleName: aString fontNames: anArray lead: leadinteger
Similar to styleName:fontNames:, but divide the leading equally between
upper and lower leading (odd pixel on top).

Tektronix Smalltalk Reference Manual 209

TextStyleManager Graphics-Support

styleName: aString fontNames: anArray upperlLead: upperleadinteger
lowerLead: lowerLeadInteger

Similar to styleName:fontNames:, but set the upper and lower leading.

Class Methods

class initialization

flushMenus
Set the TextStyleMenu to nil.

initialize

Install a new style manager if necessary. Build a new MenuDependents
list.

initializeStyleManager
Install standard text styles into the StyleManager.

examples

bigHi
When you see the star and arrow cursor, move the cursor where you want

it and press a mouse button. The greeting will be displayed in large ltalic
letters.

instance creation

new: aninteger

Flush the style menu because the new instance will probably be installed
as StyleManager.

menu initialization

addMenuDependents: aCollection
Extend the list of MenuDependents by the list contained within aCollection.
Each element of aCollection should itself be a collection of three elements:

¢ The symbol name of a Smalitalk class or other entry in the system
dictionary.

e The symbol #class or #instance.

e The symbol name of a unary message selector.

210

TextStyleManager Graphics-Support

When an instance of the receiver (typically the Smalltalk global
StyleManager) receives the message initializeMenus, for each menu
dependent the unary message is sent either to the class (#class) or to all
instances of the class (#instance).

menuDependents
Answer the list of MenuDependents.

Rationale

This class maps names to TextStyles and provides a user-friendly interface to
TextStyles, enabling the user to change the default text style, select from a menu of
TextStyles, and add TextStyles to the menu. It keeps a list of TextStyles — once
it is registered with the TextStyleManager, a TextStyle can be used anywhere in
Smalltalk. When a TextStyle is removed from the menu, it will still be available to
anything in Smalltalk that uses that TextStyle.

The TextStyleManager insures that when the default text style is changed all menu
dependents are updated to the new default.

Discussion
Class Protocol

Ordinarily there is only one TextStyleManager, referred to by the global variable
StyleManager. You are not prevented from creating an instance of
TextStyleManager which is not the global manager. This implementation assumes,
however, that a new TextStyleManager will be installed as StyleManager, so when
the message new: is sent to the class, the TextStyleMenu is set to nil. Besides
setting the TextStyleMenu to nil, class initialization includes a method to initialize
this class.

Menu initialization methods allow you to add menu dependents or access
MenuDependents. The message addMenuDependents: should be sent to the
global StyleManager whenever you add a menu to the system, so that if the default
text style is changed the menu(s) you added will be updated.

Instance Protocol
Accessing methods enable you to add a TextStyle to the manager, or remove a style
from the manager by specifying either the String name of the TextStyle or the

Association of a String name and a TextStyle. Either adding or removing a
TextStyle causes the TextStyleMenu to be set to nil.

Tektronix Smalltalk Reference Manual 211

TextStyleManager Graphics-Support

Default text style methods enable you to set the default text style by selecting one
from the menu or specifying one.

Menu initialization contains one method to initialize all of the menus listed in
MenuDependents. This message is sent by another method and is one you
probably won't use.

Selecting contains two methods, fromUser and fromUser:, which return a TextStyle
you select from a menu and evaluate a block with the selected TextStyle,
respectively.

Text style instance creation includes a number of methods to create a TextStyle by
providing a String name for the style (any name you prefer) and an Array of base
String names (actual names of font families — found in the directory answered by
OS fontDirectory fullName.). An alternative to base names is to provide an Array of
fonts (either StrikeFonts or VirtualStrikeFonts). You also have the option of
specifying "leading” 10 be divided equally at the top and bottom or separate "leading”
at the top and bottom of a "line" of characters. Using the messages in this message
category, TextStyles can be arbitrarily named, however, the convention is to use a
name that reflects the grouping of fonts. The difference between the "baseName” -
and "fontName" methods is that the former load a group of eight fonts in a default
order for each base name, the latter only load the fonts explicitly named in the array
and in the order they are listed in the array.

The messages in text style instance creation are the preferred way to create text
styles, instead of the TextStyle class instance creation message fontArray:. The
messages here will register the new style with the manager.

Examples

212

The following method is in the TextStyleManager class examples message
category.

bigHi

“When you see the star and arrow cursor, move the cursor where you want it and press
a mouse button. The greeting will be displayed in large Italic letters.”

| lines styleName |

styleName « “BigStyle’.

StyleManager styleName: styleName fontNames: #(’PellucidaSans-Serif361°).

lines « “Hi there!\How are you?” withCRs.

(DisplayText text: (lines asText) textStyle: (StyleManager at: styleName))

displayAt: Sensor waitClickButton.
StyleManager removeKey: styleName ifAbsent: [1.

TextStyleManager Graphics-Support

First, a text style instance creation message is sent to the global StyleManager to
create a TextStyle. On style menus its name is "BigStyle’. ‘BigStyle” has one font,
Pellucida Sans-Serif 361, in its fontArray. If a TextStyle is not registered with the
manager, it cannot be referred to by name and cannot be accessed throughout
Smalltalk.

Next, a String is created with two lines of characters — note the use of a backslash
to indicate the carriage return and the message withCRs. The simplest way to
display the string using a TextStyle is to make it a DisplayText. The instance
creation message takes a Text and a TextStyle as arguments, then the
DisplayText is displayed where you press a mouse button. Finally, ‘BigStyle” is
removed from the global StyleManager.

Related Classes

StrikeFont
StrikeFontManager
TextStyle
VirtualStrikeFont

Tektronix Smalltalk Reference Manual 213

214

Timeval OS-Parameters

ExternalBinaryData variableByteSubclass: #Timeval

instanceVariableNames:

classVariableNames: “SecDatalndex UsecDatalndex *
poolDictionaries: °
category: ‘OS-Parameters’

Summary

Timeval provides creation and accessing protocol for the following C structure.

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

}

The structure is documented under gettimeofday(2) in the manual UTek Command
Reference, Volume 2.

Class Variables
SecDatalndex

UsecDatalndex

Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string ‘Datalndex” appended. For example,
the class variable SecDatalndex holds the offset of the "tv_sec" field.

Instance Methods
accessing

sec
Return the value of the structure field named sec.

sec: anint
Assign the argument, anlnt, to the structure field named sec.

Tektronix Smalltalk Reference Manual } 215

Timeval OS-Parameters

sec: anint usec: anotherint
Assign values to all the fields of the structure.

usec
Return the value of the structure field named usec.

usec: anint
Assign the argument, anint, to the structure field named usec.

converting
asTime
Return an instance of Time equivalent to the receiver.
printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization
initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation

sec: anint usec: anotherint
Return an instance with the values of the fields assigned.

Rationale
The timeval C structure is used in support of these UTek system calls:

adjtime(2)
cfsettimeofday(2)
gettimeofday(2)
select(2)
settimeofday(2)
utimes(2)

Related Classes

UTekSystemCall implements the following system calls which use the timeval
structure:

216

Timeval OS-Parameters

gettimeofday(2)
select(2)
utimes(2).

The other system calls which use this structure have not been implemented
because they are only available to the superuser (root).

Tektronix Smalltalk Reference Manual 217

218

Timezone OS-Parameters

ExternalBinaryData variableByteSubclass: #Timezone

instanceVariableNames:

classVariableNames: ‘DsttimeDatalndex MinuteswestDatalndex *
poolDictionaries: "
category: ‘OS-Parameters’

Summary

Timezone provides creation and accessing protocol for the following C structure.

struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */

int tz_dsttime; /* type of dst correction */

}

The structure is documented under gettimeofday(2) in the manual UTek Command
Reference, Volume 2.

Class Variables
DsttimeDatalndex

MinuteswestDatalndex

Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name,
stripped of its prefix, with the string "Dataindex” appended. For example,
the class variable DsttimeDatalndex holds the offset of the "tz_dsttime”

field.

Instance Methods
accessing

dsttime
Return the value of the structure field named dsttime.

Tektronix Smalltalk Reference Manual 219

Timezone OS-Parameters

dsttime: anint
Assign the argument, anlint, to the structure field named dsttime.

minuteswest
Return the value of the structure field named minuteswest.

minuteswest: anint
Assign the argument, anint, to the structure field named minuteswest.

minuteswest: anint dsttime: anotherint
Assign values to all the fields of the structure.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization
initialize
Assign offset values to the class variables and define the size of the
structure.
instance creation
minuteswest: anint dsttime: anotherint
Return an instance with the values of the fields assigned.

Rationale
The structure is used in support of the following UTek system calls:

cfsettimeofday(2)

gettimeofday(2)

settimeofday(2)
Related Classes

UTekSystemCall implements the following system call which uses the timezone
structure:

gettimeofday(2).

The other system calls which use this structure have not been implemented
because they are only available to the superuser {root).

220

UniflexFileStatus OS-Interface (UniFLEX only)

AbstractFileStatus variableWordSubclass: #UniflexFileStatus

instanceVariableNames:

classVariableNames:

poolDictionaries:

category: ‘OS-Interface”

Summary

An instance of this class is a buffer which contains information about a file. The
following questions are answered by file status information.

e s the file a directory?

e When was the file last modified?

e What is the file descriptor?

The file status class is usually not used in isolation, but in conjunction with the
system call class or with FileStream. As a result of the following code, three things

happen — an instance of UniflexFileStatus is created, the buffer is filled, and the
instance is returned:

OS status: aFileDescriptor
In the code above, UniflexSystemCall is referred to by the global variable OS. See

the 4400 Series Assembly Language manual, Section 4 System Calls, "status” for
details about the contents of the buffer.

Instance Methods
accessing

buffer
The receiver is the buffer which holds the file status information.

fileSize
Answer the file size in bytes.

Tektronix Smalltalk Reference Manual 221

UniflexFileStatus OS-Interface (UniFLEX only)

isDirectory
Answer whether the file represented by the receiver is a directory.

IsReadable
Answer true if the file represented by the receiver is readable.

IsWritable
Answer true if the file represented by the receiver is writable.

lastModified
Answer the time of the last modification to the file.

longDescription
Answer a String that contains a description of the receiver which looks like
a line from a dir command.
comparing

= aFileStatus
Answer true if the fdn and device number are the same.

hash
Hash is reimplemented because = is implemented.

Class Methods

instance creation
new
Answer a new instance of the receiver.

Rationale

This class is a concrete subclass of AbstractFileStatus and uses the protocol
framework established there. UniflexFileStatus serves as an interface to the
operating system structure which holds file status information.

222

UniflexSystemcCall OS-Interface (UniFLEX only)

AimSystemCall variableSubclass: #UniflexSystemCall

instanceVariableNames:
classVariableNames:
poolDictionaries:
category: ‘OS-Interface”

Summary
This is the concrete class used to interface to the operating system on the Tek 4404,
4405 or 4406. It defines instance creation and portable operations implementation
for the UniFLEX operating system used by these workstations.

Instance Methods

execution

systeminvokeQuietly
Make a system call. Return success or failure of the system call, or nil i

the primitive fails.

portable subtask operations

terminatedSubtaskExitCode
Answer the low byte of the status returned from the wait system call. This
portion represents the value of the argument supplied by the exit system
call causing termination. The high order bit of the portion indicates whether
the terminated task has made a core dump. The receiver must be an
instance representing a wait system call, which has been executed.

terminatedSubtaskExitinterrupt
Answer the high byte of the status returned from the wait system call. This
portion represents the value of the signal causing termination. The
receiver must be an instance representing a wait system call, which has
been executed.

Tektronix Smaliltalk Reference Manual 223

UniflexSystemCall OS-Interface (UniFLEX only)

terminatedSubtaskID
Answer the ID returned from the wait system call. The receiver must be an
instance representing a wait system call, which has been executed.

Class Methods

class initialization
initialize
Initialize the error message array used by UniflexSystemCall objects.
environment variables

argCount
Return the number of arguments used to invoke Smalltalk.

originalEnvironment
Return the environment used to invoke Smalltalk.
file names

backupFileName: aFileName
Answer a string which is a backup file name for the file aFileName.

isBackupFileName: aFileName
Does aFileName correspond to a name that is usually a backup file name?

general inquiries

abnormalTerminationCode
Answer the code for abnormal task termination.

asTime: osSeconds
Convert the operating systems notion of time to a Time. The operating
system has corrected for time zone and daylight savings time. Add in the
total seconds from Jan. 1, 1901 (the start of Smalltalk time) up to Jan. 1,
1980 (the start of Uniflex time).

brokenPipelnterrupt
Answer the interrupt number for the broken pipes interrupt.

224

UniflexSystemCall OS-Interface (UniFLEX only)

deadChilldinterrupt
Answer the interrupt number for the dead child interrupt.

defaultinterruptCode
Answer an operating system representation of the default interrupt action.

fileBufferSize
Return the preferred size of a buffer used for reading files.

fileStatusClass
Answer the class whose instances hold the file status returned by system
calls that are instances of the receiver.

fontDirectory
Return the directory which contains font files. Each file contains a font in
external font format.

getMachineName
Return the type of machine Smalltalk is running on.

ignorelnterruptCode
Answer an operating system representation of the ignore interrupt action.

isValid
Does this class represent the operating system running on this machine?
(This method should return true only if the underlying operating system is
Uniflex.)

maxFileNameSize
Answer the maximum number of characters permissible for file names.

maxOpanFiles
Answer the maximum number of simultaneously open files.

nonBlockingWait
Answer true if the wait instance creation method returns a non-blocking
call, false otherwise. Uniflex has a blocking wait call.

priorityinterval
Answer the interval of valid priorities in ascending order for this operating
system. Maximum values range from 0 to 25, zero being the highest and
25 being the lowest; however, this range is restricted for most users.

Tektronix Smalltalk Reference Manual 225

UniflexSystemCall OS-Interface (UniFLEX only)

returnKeyCode
Answer the Smallltalk character value which should be assigned when the
return key is pressed. The Uniflex operating system uses the CR
convention.

smalltalklnitializationDirectory
Return the directory which contains initialization files. Each file contains
Smalitalk readable data used during class initialization.

terminatelnterrupt
Answer the interrupt number for the terminate interrupt. This interrupt can
be caught.

terminateUnconditionallyInterrupt
Answer the interrupt number for the terminate unconditionally interrupt.
This interrupt cannot be caught.

validPriority: aPriority
Answer the validity of this priority for this task.

portable directory operations

changeDirectory: aString
Change directory to the specified directory.

createDirectory: aString
Make aString, a full path name, be a new directory.

currentDirectoryName
Answer the complete path name of the current working directory.

nextFileName: directoryStream
Answer the next file name in directoryStream. Advance the directory
stream beyond that name. Answer nil if none.

Directories are formatted into 16-byte entries, the last 14 of which contain
the characters of the file names. Short names use one entry with zero fill if
required. Long names use multiple consecutive entries all of which are
marked in the high-order bit of their first character position. A zero byte
(ignoring marks) is guaranteed.

removeDirectory: aString

Remove the directory named aString. The directory must be empty (i.e.,
contain only . and ..).

226

UniflexSystemCall OS-Interface (UniFLEX only)

portable file operations

create: aString
Create a new file named aString. Answer a writeOnly fileDescriptor for the

file.

duplicateFd: fileDescriptor
Return a new file descriptor that references the same open file as
fileDescriptor.

duplicateFd: oldFileDescriptor with: newFileDescriptor
Cause newFileDescriptor to reference the same open file as
oldFileDescriptor. If newFileDescriptor currently references an open file,
that file is first closed.

existingName: fileName
Answer true if a file or directory exists by the name fileName, a String.

freeFileDescriptors
Answer the number of available file descriptors.

newPipe
Return an instance of Pipe.

open: aString
Open the file named aString. Answer a readWrite fileDescriptor for the file.

openForRead: aString
Open the file named aString. Answer a readOnly fileDescriptor for the file.

openForWrite: aString
Open the file named aString. Answer a writeOnly fileDescriptor for the file.

read: fileDescriptor Into: aStringOrByteArray
Fill aStringOrByteArray with data from the file referred to by fileDescriptor.
Answer the number of bytes read. Answer zero if at end.

read: fileDescriptor into: aStringOrByteArray size: count
Fill aStringOrByteArray with, at most, count data elements from the file
referred to by fileDescriptor. Return the number of bytes read, or zero if at
end.

Tektronix Smalltalk Reference Manual 227

UniflexSystemCall OS-Interface (UniFLEX only)

rename: aFileName as: newFileName
Rename the file named aFileName to have the name newFileName.
Create an error if aFileName does not exist; but not if newFileName exists.

seek: aFileDescriptor to: aFilePosition
Position the file represented by aFileDescriptor to aFilePosition bytes from
its beginning.

shorten: fileDescriptor
Shorten a file to its current position.

size: {d
Return the count of available bytes from the file or pipe known by the file
descriptor fd.

status: fd
Return a UniflexFileStatus for the file known by the file descriptor fd.

statusNama: fileName
Answer a UniflexFileStatus for the file referred to by fileName, a String.

validFileDescriptor: fileDescriptor
Answer true if an open file with the specified file descriptor exists.

write: fileDescriptor from: aStringOrByteArray size: byteCount
Write byteCount bytes of data from aStringOrByteArray to the file referred
to by fileDescriptor.

portable subtask operations

brokenPipesProcessWith: aBlock
Answer a process that monitors broken pipes. ABlock is executed after the
receipt of each broken pipe signal.

executeUtility: aCommand withArguments: anOrderedCollection
Execute a binary program and return the entire results generated by the
program as a string. No mechanism for input to the program is provided.
Notify an error if the program cannot be executed or if the program
terminates abnormally.

executeUtilityWithErrorMapping: aCommand
withArguments: anOrderedCollection
Execute a binary program and return an array of two strings. The first
string contains the entire normal output generated by the program. The
second string contains any error message output from the program. No
mechanism for input to the executable program is provided. Notify an error
if the program cannot be executed or if the program terminates abnormally.

228

UniflexSystemCall OS-Interface (UniFLEX only)

forkShell
Fork an operating system shell with history. Type “exit” to the shell to
return to Smalltalk.

sendInterrupt: aninterruptID to: aTaskID
Send an ‘interrupt’ to a task by specifiying an interruptiD and a taskID.
Return true if the operation was successful, false otherwise. First check to
see if aTasklID is a valid task ID.

setinterrupt: aninterruptiD to: aSemaphoreOrParameter
Override the default action for an “interrupt” by connecting it to a
semaphore or some system specific parameter. If specified, the
semaphore is posted on interrupt. After the interrupt is received, the
interrupt must be reconnected or it will return to its default action. The
exception to this is the DeadChildInterrupt, number 26.

setTaskPriority: priority
Set the priority of this task to a value which should be included in this class”
priority interval.

shell
Fork an operating system shell with history. Type “exit’ to the shell to
return to Smalltalk.

startSubtask: executeCall withBlock: childBlock
Start the subtask by spawning a child task. Then, the child task only
evaluates the childBlock, and executes the executeCall to transform the
child task into another program. If the executeCall fails, terminate the child
task. The child task will inherit the priority of the Smalltalk task. Answer
the spawned child task ID, nil if none.

terminate: aTaskiD
Using an interrupt, attempt to terminate the task associated with the
specified ID. This termination is requested in a manner which can be
intercepted.

terminatedSubtasksProcessWith: aBlock
Answer a process that monitors spawned child tasks. ABlock is executed
after the termination of each child task. The dead child signal is
automatically reset by the operating system.

terminateUnconditionally: aTaskID
Terminate this task unconditionally.

Tektronix Smalltalk Reference Manual 229

UniflexSystemCall OS-Interface (UniFLEX only)

230

system-environment variables

invocationArgCountAddress
Get the address of the argument count used in this Smalltalk.

system-files

chace: fileName mode: perminteger
Check the accessibility of the file fileName.

chdir: directoryName
Change directory.

chown: fileName to: ownerlD
Change owner of a fileName to ownerID.

chprm: fileName to: permissions
Change permissions for a file.

close: fileDescriptor
Close a file.

controlPty: fileDescriptor command: cmd mode: modeByte
Control, via the master end, the slave side of a pty. The fileDescriptor is a
master mode pseudo-terminal file descriptor. The state of the channel is
returned in DO. The argument cmd is a subfunction and modeByte is the
argument to the subfunction.

create: fileName mode: modeBits
Create a new file.

createPty
Create a pseudo terminal master/slave device pair, known as a channel.
The file descriptor for slave access is returned in DO and the file descriptor
for master access is returned in A0. Once the channel has been created,
additional slave accesses may be created using UniflexSystemCall
open:mode:. UniflexSystemCall ofstat:buffer: may be used to get
information about the status of master and slave sides.

crtsd: newName mode: mode addr: addr
To create a directory, mode should be 8r04077 and addr should be 0.

defacc: permissions
Set the default permissions.

UniflexSystemCall OS-Interface (UniFLEX only)

dup: fileDescriptor
Duplicate the file descriptor; open the file again.

dups: fileDescriptor with: specifiedDescriptor
Duplicate the file descriptor, specifying the file descriptor of the duplicated
open file.

fentl: fileDescriptor function: controlFunction
Change or interrogate the behavior of a file. The state of the modifiable
behaviors is returned in DO.

controlFunction Result
0 Get the state (1 = noblock, 2 = block).
2 Answer file descriptor of last file which sent INPUT
READY signal, -1 if none.
3 Subsequent reads on this descriptor do not block.

Error ENOINPUT is returned if no data and signal
INPUT READY sent when data becomes available.
4 Subsequent reads do block.

filtime: fileName to: time
Set last modified time of file.

link: fileName to: linkName
Link a file to a link name.

ofstat: fileDescriptor buffer: buff
Get the status of an open file.

open: fileName mode: modeBits
Open a file.

status: fileName buffer: buf

Read the status of file fileName into the buffer buf. Buf should be
aWordArray of size 11.

unlink: fileName
Unlink a file.

Tektronix Smalltalk Reference Manual 231

UniflexSystemCall Os-Interface (UniFLEX only)

system-information

time: tbuff
Get the system time. Tbuff should be a WordArray of size 5.

ttime: tbuff
Get the current task’s time. Tbulf should be a WordArray of size 8.

system-input output

read: fileDescriptor buffer: buff nbytes: numberOfBytes
Perform a read operation with the appropriately sized buffer.

seek: fileDescriptor offset: position whence: start
Change the position in the file.

truncate: fileDescriptor
Truncate the file at the current position.

ttyget: fileDescriptor buffer: ttybuff
Get the tty description of the specified open file. Ttybuff should be a
WordArray of size 3.

ttynumber
Get the number of the calling task’s terminal.

ttyset:fileDescriptor buffer: ttybuff
Set the tty information as described in ttyget.

update
Update the contents of system disks.

write: fileDescriptor buffer: buff nbytes: numberOfBytes
Write numberOfBytes from buff to a file.

system-resources

Irec: fileDescriptor howmany: count
Make an entry in system’s locked record table.

rump: resourceName operation: resourceOperation
Create, destroy, enqueue or dequeue a named resource. Used to provide
a mechanism for controlling access to physical resources. The
resourceName must be no larger than 15 characters. ResourceOperation
should be a Smallinteger , 1 representing enqueue, 2 representing
dequeue, 3 representing create, and 4 representing destroy.

232

UniflexSystemCall OS-Interface (UniFLEX only)

urec: fileDescriptor
Unlock a file record.

system-subtasks

alarm: seconds
Set alarm to go off in seconds. Return previous value of seconds in DO.

cpint: interrupt to: aSemaphoreOrAddress
Set an interrupt from the operating system to signal a semaphore or tell the
operating system upon interrupt to branch to an address. It may be used
to restore the old interrupt address also. The old address (or semaphore)
is returned in DO.

crPipe
Create a pipe.

exec: fileName with: arglList
Execute a binary file specified by fileName. FileName is a character string.
ArgList is an OrderedColiection of character strings. The task ID is
returned in DO.

execute: program withArguments: argCollection
withEnvironment: environmentDictionary
Answer an instantiated instance of the exec system call with arguments
and environment variables in the proper format. The exec call has not
been invoked yet.

execve: pathName withArgs: argList withEnv: envList
Execute a binary file specified by pathName. PathName is a character
string. Arglist is an OrderedCollection of character strings. EnvList is an
OrderedCollection of environmental strings in the following format:
environment name = the corresponding environment value string (no
spaces around equal). For example, "HOME=/public’.

If the executable program is /bin/shell or /bin/script, it will create a default
environment if it is passed a null environment. The task ID is returned in
Do.

exit: exitParam
Answer an instance of the exit system call. It has not been invoked yet.

fork
Answer an instance of the appropriate fork system call. It has not been
invoked yet.

Tektronix Smalltalk Reference Manual 233

UniflexSystemCall Os-interface (UniFLEX only)

forkProcess
Create a new task. The new task receives a copy of the entire address
space. Return the task’s ID in DO.

getld
Get the running task’s ID.

getuld
Get the actual user ID and the effective user ID.

setpr: priority
Set the priority.

setuld: userlD
Set the actual user ID and the effective user ID.

spint: taskNumber an: interrupt
Send a task, specified by taskNumber (ID), an interrupt.

term: terminatingStatus
Terminate a task with an error indicating status (zero = no error).

viork
Create a new child task. The new task does not receive a copy of the
entire address space, instead the parent and child processes share
memory. Return the child task ID in DO.

wait
Wait for a child or a program interrupt. DO returns taskID and AO returns
termination status.

yleldCPU
Yield the CPU to tasks of equal priority.

Rationale

UniflexSystemcCall is the primary interface between Smalltalk and the operating
system on Tektronix 4400 series workstations. Smalltalk requires operating system
services, the very least of which is being able to interact with the UniFLEX operating
system file system. Additionally, there are many other functions/programs
accessible via the operating system that should be usable from within Smalltalk.

Related Classes

AbstractSystemCall
AimSystemcCall
Subtask

234

UTekFileStatus OS-Interface

AbstractFileStatus subclass: #UTekFileStatus

instanceVariableNames: ‘buffer *

classVariableNames: o

poolDictionaries: ”

category: ‘OS-Interface”
Summary

An instance of this class contains a buffer holding information about a file.
Information may be things like

e Is the file a directory?,
e Last time the file was modified, and

e File descriptor.
The file status class is not usually used in isolation, but in conjunction with the
system call class or with FileStream. As a result of the following code, three things

happen — an instance of UTekFileStatus is created, the buffer is filled, and the
instance is returned:

OS status: aFileDescriptor.
In the code above, UTekSystemCall is referred to by the global variable OS.

Instance Variables

buffer <Stat> .
The C structure which contains the file information.

Instance Methods
accessing

buffer
Answer the buffer which holds the file status information.

fileSize
Answer the file size in bytes.

Tektronix Smalltalk Reference Manual 235

UTekFileStatus OS-Interface

IsDirectory
Answer true if the receiver is a directory.

isReadable
Answer true if the file represented by the receiver is readable.

isWritable
Answer true if the file represented by the receiver is writable.

lastModified
Answer the time of the last modification to the file.
comparing

= aFileStatus
The combination of device name (major and minor numbers) and i-number
serves to uniquely name a particular file.

hash
Hash is reimplemented because = is implemented.

Class Methods

instance creation

new
Answer a new instance of the receiver containing an instance of the C
structure class Stat.

Rationale

This class is a concrete subclass of AbstractFileStatus and uses the protocol
framework established there. UTekFileStatus serves as an interface to the
operating system C structure which holds file status information.

236

UTekSystemCali OS-Interface

AimSystemCall variableSubclass: #UTekSystemCall

instanceVariableNames:

classVariableNames: ‘SystemCallKeywords *

poolDictionaries: °

category: ‘OS-Interface’
Summary

UTekSystemCall is the class used to interface to the operating system on Tektronix
UTek workstations. It is normally accessed through the global variable OS. In
practice, a specific instance creation message is sent to the UTekSystemCall in
order to create a data object with the proper format, then the message invoke is
sent to the new system call object to actually cause the execution of the system call,
with success or failure being returned. A similar message, value, causes a notifier
upon system call failure, and returns the system call return value upon success.

This class is responsible for implementing all the protocol defined in its abstract
superclasses, AimSystemcCall and AbstractSystemCall.

Instance Variables
Inherited Instance Variables

AOIn <PointerArray>
This inherited variable contains the argument(s), if any, to the system call.

DOIn <Integer>
This inherited variable contains the value of the opcode symbol in the
SystemCallKeywords dictionary.

DOOut <integer>
This inherited variable contains the value returned from the system call.

D10ut <Integer>
This inherited variable sometimes contains supplementary return value

information.

errno <Integer>
This inherited variable contains an error number upon system call failure.

Tektronix Smalltalk Reference Manual 237

UTekSystemCall OS-interface

operation <Symbol>
This inherited variable contains the symbolic name for the system call.

operationType <Symbol>
This inherited variable contains a message selector identifying the action to
take upon receiving the #invoke or #value message.

All other inherited instance variables are ignored.

Class Variables

SystemCallKeywords <Dictionary>
Symbols corresponding to the system call names are associated with
system call indices.

Inherited Class Variables

ErrorMessages <Array>
This inherited variable contains strings associated with error numbers.

Pool Dictionaries
Inherited Pool Dictionaries

ErrorConstants
This inherited pool contains symbolic names for error numbers.

OSConstants
This inherited pool contains symbolic names for commonly used numeric

constants.

Instance Methods
initialize-release

operation: opcode
Set up a system call with no arguments. Set the operation to the proper
code.

operation: opcode with: arg0

operation: opcode with: arg0 with: arg1

operation: opcode with: arg0 with: arg1 with: arg2

operation: opcode with: arg0 with: arg1 with: arg2 with: arg3

operation: opcode with: arg0 with: arg1 with: arg2 with: arg3 with: arg4

operation: opcode with: arg0 with: arg1 with: arg2 with: arg3 with: arg4
with: arg5
Set up the arguments for a system call. Set the operation to the proper
code.

238

UTekSystemCall OS-interface

accessing

at: index put: argument
Place a system call argument in the desired stack position.

constants

systemCallKeywordFor: syscalllndex
Answer a String from the SystemCallKeywords dictionary that corresponds

to syscalllndex.

systemCallValueFor: aSymbol
Answer a value from the SystemCallKeywords dictionary that corresponds
to aSymbol. If aSymbol is not found, notify the user that it is a bad key.

errors

error: errorLabel
Report a system call error with a verbose explanation.

errorString
Return a string that is associated with the present error code. If there is no

string available, return a String representation of the error code.

issueError
Issue a notifier with a string that identifies the failed UTekSystemCall.

execution

returnD1
Cause the system call primitive to return a value in D10ut.

signallnvoke
Perform signal/semaphore mapping.

systeminvokeQuietly
Make a system call. Return success or failure of the system call, or nil if

the primitive fails.

value
Evaluate the system call represented by the receiver. Answer the return
value for a successful call; create an error notifier otherwise.

valuelfError: aBlock
Evaluate the system call represented by the receiver. Evaluate aBlock if
the system call resulted in an error. Return the result of the system call

otherwise.

Tektronix Smalltalk Reference Manual 239

UTekSystemCall OS-interface

waitinvoke
Make a wait call. Return success or failure of that system call. Notify if the

primitive failed. This method is necessary because wait and wait3 have an
assembly code interface that differs from all other system calls.

operation type

signalOperation
The desired operation involves a signal/semaphore link.

waitOperation
The desired operation involves a wait or wait3 system call.

portable subtask operations
terminatedSubtaskExitCode
Return a portion of the status returned from the wait system call. This
portion represents the value of the argument supplied by the exit system
call causing termination. The high order bit of the portion indicates whether
the terminated task has made a core dump. The receiver must be an
instance representing a wait system call, which has been executed.

terminatedSubtaskExitinterrupt
Return a portion of the status returned from the wait system call. This

portion represents the value of the signal causing termination. The
receiver must be an instance representing a wait system call, which has

been executed.

printing

printOn: function
Print a representation of the system call similar to that used in the UTek

manual.

Class Methods

class initialization

firstTime
Initialize a brand new image under Smalltalk. This method assumes that

Disk and SourceFiles are initialized.

initialize
Read in the constants and messages needed for UTek System Calls.

240

UTekSystemCall OS-Interface

initializeErrorMessages
Load the ErrorConstants pool. Load the class array ErrorMessages using
the UTek "msghlp” utility.
constants

constant: aString
Return the value associated with aString.

keysAtValue: val
Return a set of symbols that are associated with the value val.

systemCallKeywordFor: syscallindex
Return a Symbol from the SystemCallKeywords dictionary that
corresponds to syscallindex.

systemCallValueFor: aSymbol
Return a value from the SystemCallKeywords dictionary that corresponds
to aSymbol. If aSymbol is not found, notify the user that it is a bad key.

environment variables

argCount
Return the number of arguments used to invoke Smalltalk.

originalEnvironment
Return the environment used to invoke Smalltalk.

file names

backupFileName: aFileName
Answer a string which is a backup file name for the file aFileName.

isBackupFileName: aFileName
Does aFileName correspond to a name that is usually a backup file name?

general inquiries

abnormalTerminationCode
Return the code for abnormal task termination.

Tektronix Smalltalk Reference Manual 241

UTekSystemCall OS-Interface

242

asTime: osSeconds
Convert the operating system’s notion of time 1o a Time. Add in the total
seconds from Jan. 1, 1901 (the start of Smalitalk time) up to Jan. 1, 1970
(the start of UTek time). Add a correction value for time zone and daylight
savings time.

brokenPipelnterrupt
Return the interrupt number for the broken pipes interrupt.

deadChildinterrupt
Return the interrupt number for the dead child interrupt.

defaultinterruptCode
Answer the code that will restore the default interrupt action.

fileBufferSize
Return the preferred size of a buffer used for reading files.

fileStatusClass
Answer the class of objects returned from system calls that return file
status.

fontDirectory
Return the directory which contains font files. Each file contains a font in
external font format.

getMachineName
Return the type of machine Smalltalk is running on.

ignorelnterruptCode
Answer the code that will cause interrupts to be ignored.

isValid
Does this class represent the operating system running on this machine?
(This method should return true only if the underlying operating system is
UTek.)

maxFileNameSize
Answer the maximum number of characters permissible for file names.

maxOpenFiles
Answer the maximum number of simultaneously open files.

UTekSystemCall OS-interface

nonBlockingWait
Does the UTekSystemCall #wait method return immediately rather than
blocking?

prioritylnterval
Return the interval of valid priorities in order of descending priority for this

task and effective user.

returnKeyCode
Answer Smalltalk character value which should be assigned when the
return key is pressed. UTek returns a linefeed.

smalltalkinitializationDirectory
Return the directory which contains initialization files. Each file contains
Smalltalk readable data used during class initialization.

terminatelnterrupt
Return the interrupt number for the terminate interrupt. This interrupt may

be caught.

terminateUnconditionallyinterrupt
Return the interrupt number for an unconditional interrupt. This interrupt
may not be caught.

validPriority: aPriority
Is aPriority a valid priority for this task and user?

portable directory operations

changeDirectory: aDirectoryName
Change the current directory to the specified directory.

createDirectory: directoryName
Create a new directory with the name directoryName.

currentDirectoryName
Return a String with the name of the current working directory.

nextFileName: directoryStream
Return the next existing file name in directoryStream. Advance the
directory stream beyond that name. Answer nil if none. UTek directories
have the following variant structure:

Tektronix Smalltalk Reference Manual 243

UTekSystemCall OS-interface

244

struct direct {
u_long d_ino; /«xinode number for the filex/
short d_reclen; /+length of this record, dword padded*/
short d_namlen; /xlength of the file name*/

char d_nameld_namlen+1]}; /+file name itself*/

To tell if a directory entry is unused, one must look at the previous entry to
see if d_reclen is bigger than would be expected. This is not terribly easy
to do with a Stream on variant records, so we take the coward’s way out:
get the name of the file, see if it exists, and either return the validated
name, or go get the next one.

removeDirectory: directoryName
Remove the directory named directoryName.

portable file operations

create: fileName
Create a new file named fileName. Answer a writeOnly fileDescriptor for
the file.

duplicateFd: fileDescriptor
Return a new file descriptor that references the same open file as
fileDescriptor.

duplicateFd: oldFilelD with: newFilelD
Duplicate the existing file descriptor oldFilelD, to the specified new file
descriptor newFilelD. If newFilelD already existed, it is first closed. The
old and new descriptors share an open file. The new file descriptor is
returned.

existingName: fileName
Answer true if a file or directory exists by the name fileName.

freeFileDescriptors
Answer the number of available file descriptors.

newPipe
Return an instance of Pipe.

UTekSystemCall OS-interface

open: fileName
Open the file named fileName. Answer a readWrite fileDescriptor for the

file.

openForRead: fileName
Open the file named fileName. Answer a readOnly fileDescriptor for the

file.

openForWrite: fileName
Open the file named fileName. Answer a writeOnly fileDescriptor for the
file.

read: fileDescriptor into: aStringOrByteArray
Fill aStringOrByteArray with data from the open file known by
fileDescriptor. Return the number of bytes read, or zero if at end.

read: fileDescriptor into: aStringOrByteArray size: count
Fill aStringOrByteArray with, at most, count data elements from the file
referred to by fileDescriptor. Return the number of bytes read, or zero if at
end.

rename: fileName as: newFileName
Rename the file named fileName to have the name newFileName. Create
an error if fileName does not exist, but not if newFileName exists.

seek: aFileDescriptor to: aFilePosition
Position the file known by aFileDescriptor to aFilePosition bytes from its
beginning. Return the resulting position.

shorten: fileDescriptor
Shornten a file to its current position.

status: fd
Return a FileStatus for the file known by the file descriptor fd.

statusName: fileName
Return a FileStatus for the file named fileName.

validFileDescriptor: fd
Answer true if an open file with the specified file descriptor exists.

write: fileDescriptor from: aStringOrByteArray size: byteCount
Write byteCount bytes of data from aStringOrByteArray to the file known
by fileDescriptor. Return the actual number of bytes written.

Tektronix Smalltalk Reference Manual 245

UTekSystemcCall ' OS-Interface

portable subtask operations

brokenPipesProcessWith: aBlock
Return a process that monitors broken pipes. ABlock is executed after the
receipt of each broken pipe signal.

defaultinterrupt: aninterruptiD
Set the specified interrupt to its default action. The previous action is
returned.

execute: program withArguments: argColliection withEnvironment: envDictionary
Answer an instance of the exec system call that has not yet been invoked.

forkShell
Set up the display and signal environment for terminal emulation, and turn
it over to a forked shell Subtask. Block on the Subtask until it terminates,
then restore the display and signal environment for Smalltalk.

ignorelnterrupt: interruptiD
Set the specified interrupt to be ignored. The previous action is returned.

sendinterrupt: interruptID to: taskiD
Send the interrupt known by interruptID to the task known by taskiD.
Return true if the operation was successful, false otherwise. First check to
see if tasklD is a valid task ID.

setinterrupt: interruptiD to: aSemaphoreOrAddress
Override the default action for the interrupt known by interruptID by
connecting it to aSemaphore or the address of a subroutine. The
semaphore is posted on interrupt. The old semaphore (or address) is
returned.

setTaskPriority: priority
Set the priority of Smalltalk to the value priority.

shell
Set up the display and signal environment for terminal emulation. Either
suspend Smalltalk (for shells that support it) or fork a new shell. Restore
the display and signal environment for Smalltalk upon resumption.

startSubtask: execCall withBlock: childBlock
Fork a copy of Smalltalk. In the child copy, execute childBlock and invoke
execCall, which must be an instantiated ‘exec” system call. If execCall
returns, there is an error: terminate the child task. Meanwhile, the parent
task returns the child task ID.

246

UTekSystemCall OS-Interface

terminate: tasklD
Using an interrupt, attempt to terminate the task known by taskID. This
termination is requested in a manner which can be intercepted.

terminatedSubtasksProcessWith: aBlock
Return a Process that moniters spawned child tasks. ABlock is executed
after the termination of each child task. The dead child signal is
automatically reset by the operating system.

terminateUnconditionally: aTaskID
Terminate this task unconditionally.

wait
Answer an instance of the wait system call that has not yet been invoked.

system-files

access: pathName mode: modeBits
Access returns the value 0 in DO if the file pathName is accessible for
reading, writing, or executing according to the modeBits.

chdir: pathName
Change the current working directory to pathName.

chmod: pathName mode: modeBits
Change the file pathName to have a mode described by modeBits.

close: filelID
Delete the file referenced by the file descriptor, filelD, from the reference
table. If this is the last reference to the underlying object, it will be
deactivated.

dup2: oldFilelD newfd: newFileID
Duplicate the existing file descriptor oldFilelD, to the specified new file
descriptor newFilelD. If newFilelD already existed, it is first closed. The
old and new descriptors share an open file. The new file descriptor is
returned in DO.

dup: oldFilelD
Duplicate the existing file descriptor oldFilelD, by creating a new file
descriptor. The old and new descriptors share an open file. The new file
descriptor is returned in DO.

fchmod: fileID mode: modeBits
Change the file denoted by filelD to have a mode described by modeBits.

Tektronix Smalltalk Reference Manual 247

UTekSystemCall OS-Interface

248

fentl: filelD emd: commandiD arg: commandArg

Fentl is used to control various aspects of the open file known by the
descriptor filelD, depending on the Integer arguments, commandID and
commandArg. An Integer value is returned in DO. The following table
describes the various actions of fentl (X means don’t care or undefined).

commandlD commandArg DOOut Action

F_DUPFD anfd new fd return a new fd >=

. commandArg

F_GETFD X flag return close-on-exec flag

F_SETFD Oor1 X set close-on-exec flag to
commandArg

F_GETFL X status flags return current status flags

F_SETFL status flags X set status flags

F_GETOWN X pg negated return process group

F_SETOWN pg negated X set process group to pg

F_SETOWN pid X set process group to that

of process pid

Status flags are defined as a bitOr: of the following values:

FNDELAY FilelD is in non-blocking mode. If a read or write would
block, the call fails with the error code EWOULDBLOCK.

FAPPEND Wirites to filelD are appended to the end of the file.

FASYNC Send SIGIO to the process group when l/O is possible.

flock: filelD operation: operationiD

Flock controls advisory locks that cooperating processes may associate
with files. Locks can be applied either exclusively or shared, and may be
set non-blocking. OperationlD is a set of bit flags used to determine the
type of lock that will be applied to the open file descriptor fileiD.

fstat: filelD buf: statStructure

Fstat returns information in statStructure about the open file known by the

descriptor filelD.
link: oldPathName path2: newPathName

Create a new directory entry newPathName for the file oldPathName. Both

paths must be on the same file system.

UTekSystemCall OS-Interface

Istat: pathName buf: statStructure
Lstat returns information in statStructure about the file or symbolic link
pathName.

mkdir: directoryName mode: modeBits
Mkdir creates a new directory directoryName with the mode being
modeBits combined with the current mode mask.

open: pathName flags: options mode: modeBits
Open the file pathName under the control of options. If the file does not
exist and options specify creation, set the new file’s mode to modeBits, in
combination with the current mode mask. A file descriptor by which the
open file is known is returned in DO.

readlink: symbolicLinkPathName buf: linkByteData bufsiz: linkSize
Readlink returns in linkByteData the contents of the symbolic link
symbolicLinkPathName. LinkByteData must be at least linkSize. The
number of characters read is returned in DO.

rename: oldFileName to: newFileName
Rename causes the file oldFileName to be known as newFileName.

rmdir: directoryPathName
Rmdir removes the directory known as directoryPathName.

stat: pathName buf: statStructure
Stat returns information in statStructure about the file pathName.

symlink: oldPathName path2: newPathName
Symlink creates a symbolic link to oldPathName in a file named
newPathName.

umask: newUmask
Umask sets the file creation mode mask for Smalitalk to newUmask. The
previous mode mask is returned in DO.

unlink: pathName
Unlink removes the reference to pathName from its directory. The file will
not go away if there are other links to it or it is open in any process.

utimes: pathName tvp: timevalStructurePair
The last access and last modified times, respectively, for the file pathName
are returned in timevalStructurePair.

Tektronix Smalltalk vReference Manual 249

UTekSystemCall OS-Interface

system-information

getdtablesize
Getdtablesize returns the number of files that may be open at any given
time in DO, which is the size of the descriptor table. This value exists in a
constant and is obtained quickly via the expression:

UTekSystemCall constant: “NOFILE".

getegid
Getegid returns the actual group ID of the user running Smalltatk in DO and
the effective group ID of the user running Smalltalk in D1. This may be
different than the actual group ID of the user running Smalltalk if Smalltalk
has the set-group-ID bit set.

geteuid
Geteuid returns the actual user ID of the user running Smalltalk in DO and
the effective user ID of the user running Smalltalk in D1. This may be
different than the actual user ID of the user running Smalltalk if Smalltalk
has the set-user-ID bit set.

getgid
Getgid returns the actual group ID of the user running Smalltalk in DO and
the effective group ID of the user running Smalltalk in D1. This may be
different than the actual group ID of the user running Smalltalk if Smalltalk
has the set-group-ID bit set.

gethostname: hostName namelen: hostNameSize
Gethostname places this machine’s name in hostName, which must
contain room for at least hostNameSize characters.

getitimer: timerType value: timerStructure
Getitimer returns in timerStructure information for one of three interval
timers, determined by timerType.

getpagesize
Getpagesize returns the number of bytes in a Memory Management Unit
page in DO.

getrlimit: resourcelD rlp: rlimitStructure ,
Return in rlimitStructure the resource limits imposed on the Smalltalk
process and its chiidren.

gettimeofday: timevalStructure tzp: timezoneStructure
Return the system’s notion of the current Greenwich Mean Time and the
local time zone in timevalStructure and timezoneStructure.

250

UTekSystemCall OS-interface

getuid
Getuid returns the actual user ID of the user running Smalltalk in DO and
the effective user ID of the user running Smalltalk in D1. This may be
different than the actual user ID of the user running Smalltalk if Smalitalk
has the set-user-ID bit set.

mstat: memoryType addr: startAddress len: length vec: processString
Return in processString information describing the process clusters of a
particular memoryType beginning at startAddress and continuing for length
bytes.

profil: tallyByteArray bufsiz: tallySize offset: pcStart scale: granularity
Profil allows execution time profiling by examining the user program
counter each clock interval. Offset is subtracted from the PC, multiplied by
granularity, and tallied in tallyByteArray if the result is within tallySize.

setitimer: timerType value: timerStructure ovalue: oldTimerStructure
Setitimer sets one of three interval timers, determined by timerType, to the
value specified in timerStructure. The previous vaiue for that timer is
returned in oldTimerStructure.

setregid: realGrouplD egid: effectiveGrouplD
Setregid sets the real and effective group IDs of Smalltalk to realGroupID
and effectiveGrouplD, respectively. Only root may change the real group
ID, others may only set the effective group ID to the real group ID.

setreuid: realUserID euid: effectiveUserlD
Setreuid sets the real and effective user IDs of Smalltalk to realUserID and
effectiveUserID, respectively. Only root may change the real user ID,
others may only set the effective user ID to the real user ID.

setrlimit: resourcelD rlp: rlimitStructure
Setrlimit changes the resource limits for Smalitalk and its chlldren to the
limits described in rlimitStructure.

uname: utsnameStructure
Uname returns in utsnameStructure information identifying the current
operating system.

system-input output

fsync: filelD
Fsync causes an open file descriptor filelD, to have a disk representation
consistent with its memory representation.

Tektronix Smalltalk Reference Manual 251

UTekSystemCall OS-Interface

ftruncate: filelD length: truncatedSize
Ftruncate causes a file that is open for writing known by the descriptor
filelD to be reduced to a given size, if it is currently larger than that size.
Truncated data are lost.

ioctl: fileID request: commandID argp: argByteArray
Set or get the operating characteristics of the open device file known by the
descriptor filelD according to commandID and argByteArray. CommandID
is an Integer that both identifies the request and describes argByteArray:

union commandID {

int command;

struct field {
short in:1; /«set if argByteArray gets input+/
short out:1; /xset if argByteArray gets output*/
short unused:7;
short len:7; /+length of argByteArray, max 128+/

short request}} /xioctl request codex/

(The fields in commandID are built properly by the "OS constant:
requestString” expression.) loctl requests are device dependent. The
following table links devices, available requests, and UTek manual pages
from Command Reference, Volume 2, Section 4:

Device Manual Requests
ethernet ARP, ILAN, LNA, LO, Manipulate network interfaces.
NETWORKING
parallelpot HC Set/clear CRM/RCSM modes.
tape MTIO Control operation of raw cartridge
tape device.

RS-232 port RSA Control operation of RS-232 port.
terminals TTY Control operation of console, tty

port, and pseudo-ttys.

Terminals and RS-232 ports are the devices most often sent ioctl requests.
The following requests are available for controliing these devices:

252

UTekSystemCall OS-Interface

Request Action

TIOCSETD, TIOCGETD Set/get line discipline: old, new, or retwork.
TIOCSPGRP, TIOCGPGRP Set/get process group for current process.
TIOCMODS, TIOCMODG Set/get RS-232 port control lines.

TIOCSETP, TIOCGETP Set/get parameters as in stty/gtty.
TIOCSETC, TIOCGETC Set/get special characters.
TIOCFLUSH Flush buffers.

TIOCSTI Simulate terminal input.
TIOCPKT Set/clear pseudo-tty packet.

... and many, many more. See TTY(4) for details.

Iseek: filelD offset: bytes whence: offsetType
Lseek moves the file pointer associated with the descriptor filelD by bytes
positions, and returns the new value of the file pointer in DO. OffsetType
specifies absolute, incremental, or extending movement.

read: filelD buf: byteData nbytes: byteDataSize
- PRead data from the file known by the descriptor filelD into byteData, which
must be of at least byteDataSize. The number of bytes actually read is
returned in DO.

readv: filelD iov: bufferArray iovent: bufferArraySize
Read data from the file known by the descriptor filelD into the buffers
referenced in bufferArray, which must be of at least bufferArraySize.
Readv may not be used on raw devices or across a network. The number
of bytes actually read is returned in DO.

select: fileCount readfd: readFiles writefd: writeFiles exceptfd: pendingFiles
timeout: timevalStructure
Select examines the open files corresponding to the bit masks readFiles,
writeFiles, and pendingFiles to see if they are ready for reading, writing, or
have exceptional conditions pending, respectively. At most, fileCount
descriptors are examined. ReadFiles, writeFiles, and pendingFiles then
return a bit mask corresponding to those descriptors that were found ready,
with the total number of ready descriptors returned in DO. If
iimevalStructure is zero, select blocks until all descriptors are ready,
otherwise timevalStructure indicates how long to wait for ready descriptors.

sync
Sync causes all in-core information that should be on disk to be written out.

Tektronix Smalltalk Reference Manual 253

UTekSystemCall 0OS-Interface

truncate: pathName length: truncatedSize
Truncate causes the file pathName to be reduced to a given size, if it is
currently larger than that size. Truncated data are lost.

write: filelD buf: byteData nbytes: byteDataSize
Write writes byteDataSize bytes from the buffer byteData inta the open file
known by descriptor filelD. The number of bytes actually written is returned
in DO.

writev: filelD lov: bufferArray lovent: bufferArraySize
Writev writes the number of buffers specified by bufferArraySize into the
open file known by descriptor filelD These buffers are described
iovecStructures contained in bufferArray. The number of bytes actually
written is returned in DO.

system-sockets

accept: socketlD addr: sockaddrStructure addrlen: sockaddrSize
Accept a connection on a socket by creating a new socket. The new
socket has the same properties as the socket denoted by socketID. This
operation follows blocking/nonblocking protocol. The length argument (a
4-byte quantity) initially contains a pointer to the size of the socket address
buffer, and returns the new size of the buffer. The descriptor of the new
socket is returned in DO.

bind: socketID name: sockaddrStructure namelen: sockaddrSize
Bind a name to a socket. After use, this socket must be deleted by the
user with the unlink call. The socket, denoted by socketID, is bound to a
name described by sockaddrStructure of length sockaddrSize.

connect: socketiD name: sockaddrStructure namelen: sockaddrSize
Either specify the peer to which datagrams are sent or initiate a connection
on another socket, socketID. The length of the socket name is specified by
sockaddrSize.

getpeername: socketID name: sockaddrStructure namelen: sockaddrSize
Getpeername returns the name of the peer connected to socket socketlD
in sockaddrStructure. SockaddrSize is a pointer to the actual size of
sockaddrStructure, which returns the actual size of the returned
sockaddrStructure.

254

UTekSystemCall OS-Interface

getsockname: socket!D name: sockaddrStructure namelen: sockaddrSize
Return in sockaddrStructure the name of the socket socketlD.
SockaddrStructure must be of size sockaddrSize, and the size of the
returned name is returned in sockaddrSize.

getsockopt: socketlD level: optionType optname: optionID optval: optionString
optlen: optionSize
Return the options of optionType and optionID assaciated with the socket
socketlD in optionString. OptionSize is the length allocated for
optionString, and is modified to indicate the actual size of the returned
optionString.

listen: socketlD backlog: maximumQueuelength
Establish a backlog queue of maximumQueuelength for the socket
socketID.

recv: socketiD buf: byteData len: byteDataSize flags: options
Recv returns a message from the connected socket socketID in byteData,
which must be of at least byteDataSize. The number of bytes actually
received is returned in DO.

recvfrom: socketID buf: byteData len: byteDataSize flags: options
from: sockaddrStructure fromlen: sockaddrSize
Recvfrom returns a message from the socket socketlD in byteData, which
must be of at least byteDataSize. f sockaddrStructure is zero, no source
address is received, otherwise sockaddrStructure returns the source
address. SockaddrStructure must be at least sockaddrSize bytes. The
number of bytes actually received is returned in DO.

recvmsg: socketlD msg: msghdrStructure flags: options
Recvmsg returns a message from the socket socketID as directed by the
msghdrStructure, which locates the sockaddr structure, output buffers, and
access rights to be used. The number of bytes actually received is
returned in DO.

send: socketID msg: byteData len: byteDataSize flags: options
Send transmits the message byteData of length byteDataSize to the
connected socket socketlD, as contralled by options. The number of
characters actually sent is returned in DO.

sendmsg: socketiD msg: msghdrStructure flags: options
Sendmsg transmits the message described by msghdrStructure to the
socket socketlD, as controlled by options. The number of characters
actually sent is returned in DO.

Tektronix Smalltalk Reference Manual 255

UTekSystemCall 0OS-interface

256

sendto: socketlD msg: byteData len: byteDataSize flags: options
to: sockaddrStructure tolen: sockaddrSize
Senc'to transmits the message byteData of length byteDataSize to the
socket socketlD described by sockaddrStructure, as controlled by options.
The number of characters actually sent is returned in DO.

setsockopt: socketlD lavel: optionType optname: optionlD optval: optionString
optlen: optionSize
Set the options of optionType and optionID associated with the socket
socketlD to the values described in optionString, which is of size
OptionSize.

shutdown: socketID how: endID
Shutdown causes all or part of a full-duplex connection with socket
socketID to be closed. The part disconnected is described by endID.

socket: addressType type: sacketType protocol: pratocol
Socket creates a socket of socketType using the address format

addressType and the given protocol. A new socket descriptor is returned
in DO.

socketpair: domain type: socketType protocol: protocol sv: socketlDs
Socketpair creates a pair of connected sockets of socketType in the given
domain using the given protocol. A pair of new socket descriptors is
returned in socketIDs.

system-subtasks

execve: pathName argv: arguments envp: environmentVariables
Transform Smalltalk into a new UTek process. The file specified by
pathName is either an executable object file, or a data file for an
interpreter. Arguments is an array of null-terminated strings, the first of
which must be the name of the executable program, pathName.
EnvironmentVariables is an array of nuil-terminated strings, each of which
is in the form "name=value". There is no return from this system call.

exit: status
Terminate Smalltalk with the given status. All descriptors are closed, the
parent process may be notified of the status throught the wait system call,
and existing child processes have their parent ID changed to 1. There is
no return from this system call.

UTekSystemCall OS-Interface

fork
Fork causes a copy of the current Smalltalk process to be created. The
parent finds the new task ID in DO and the value 0 in D1. The new task
finds the parent task ID in DO and the value 1 in D1.

getgroups: maxEntries gidset: groupSet
Getgroups stores the group access list for the Smalltalk process in the
groupSet array, which contains at least maxEntries.

getpgrp: processIiD
Getpgrp returns the process group of the process processID, which, if zero,
specifies this Smalltalk. The group ID is returned in DO.

getpid
Return the process ID of Smalltalk in DO.

getppid
Return the process ID of Smalltalk in DO. Return the process ID of

Smalltalk’s parent in D1.

getprlority: priority Type who: identifier
Return the scheduling priority of a process, process group, or user as
determined by priorityType. Identifier is either a process ID, process group
ID, or user ID, as appropriate. The priority is returned in DO.

getrusage: whoFlag rusage: rusageStructure
Return in rusageStructure information about resource usage of Smalltalk or -
its terminated children, as indicated by whoFlag.

kill: process!D sig: signallD
Send the process known by processiD the signal signaliD.

kill: processl|D sig: signallD arg: signalArgument
Send the process known by process|D the signal signallD with the
argument signalArgument.

killpg: processGrouplD sig: signallD
Send the process group known by processGrouplD the signal signallD.
pipe
Pipe creates an interprocess communication channel. The read end of the
pipe is known by the descriptor in DO, while the write end of the pipe is
known by the descriptor in D1.

Tektronix Smalltalk Reference Manual 257

UTekSystemCall Os-Interface

258

ptrace: actionCode pid: process|D addr: processAddr data: processData
Ptrace allows interactive control of a child process processiD. The
actionCode argument controls interpretation of the processAddr and
processData arguments.

setpgrp: processID pgrp: grouplD
Setpgrp sets the process group of the process processiD to groupID.

setpriority: priority Type who: identifier prio: newPriority
Set the scheduling priority of a process, process group or user as
determined by priority Type to the value newPriority. Identifier is either a
process ID, process group D, or user ID, as appropriate.

sigblock: blockedSignalsMask
Sigblock causes signals specified in blockedSignalsMask to be added to
the set of signals currently blocked. A mask representing the signals
previously blocked is returned in DO.

sigpausae: blockedSignalsMask
Sigpause causes signals specified in blockedSignalsMask to become the
set of signals currently blocked. It then waits for a signal to arrive, finally
restoring the previous blocked signal mask.

sigsetmask: blockedSignalsMask
Sigmask causes signals specified in blockedSignalsMask to become the
set of signals currently blocked. A mask representing the signals
previously blocked is returned in DO.

wait3: waitStructure options: blocking rusage: rusageStructure
Wait3 checks the status of child processes, optionally without suspending,
as controlled by blocking. Upon return from wait, waitStructure contains
both the exit code and the termination status of the child that died, unless
waitStructure was set to zero before the call, in which case no status is
returned. If rusageStructure is non-zero, information concerning the
resource usage of terminated children is returned in rusageStructure. The
process ID of the stopped or terminated child process is returned in DO.

wait: waitStructure
Wait suspends Smalltalk until it receives a signal or one of its children dies.
Upon return from wait, waitStructure contains both the exit code and the
termination status of the child that died, unless waitStructure was set to
zero before the call, in which case no status is returned. The process ID of
the stopped or terminated child process is returned in DO.

UTekSystemCall OS-Interface

Rationale

UTekSystemCall is the primary interface between Smalltalk and the operating
system. Smalltalk requires operating system services, the very least of which is
being able to read operating system files. Additionally, there are many other
functions/programs accessible via the operating system that should be usable from
within Smalitalk.

Background

Essential operating system services are defined in protocol found in either
AbstractSystemcCall or AimSystemCall. Those two classes establish the pattern
of protocol to be implemented or overridden by methods in the subclasses for
specific operating systems. Examples of essential services are open: and
closeFile: to open and close files in the operating system; read:into: and
write:from:size to read and write files; changeDirectory: to move to a different
directory; and caiis to fork and execve needed for subtasking. In addition to
implementing or overriding protocol in its two immediate superclasses,
UTekSystemCali contains specific protocol needed for the UTek operating system
interface and UTek-specific services such as network access.

System Calls

Often the intended outcome of a system call is the side effect of the call (e.g., writing
to afile) rather than what the call returns. In the UTek operating system, system
calls are generally used by C functions that directly invoke UTek system operations.
In Smalltalk, however, the UTek system operations are invoked via Smalltalk
primitives. There are three types of system interface operations:

e display operations (primitive method displaylnvoke),
e semaphore or signal operations (primitive method signalinvoke), and

e system and wait operations (primitive method systeminvokeQuietly).

When one of the three types of calls is made, the communication between Smalltalk
and the operating system is accomplished through one of the three primitives — the
second and third types of system interface operations are implemented in
UTekSystemCall. These are system calls which are found in Section 2 of the
manual UTek Command Reference. Display operations are implemented in
AimSystemcCall.

You should read the introf2) section in Utek Command Reference for additional
information about system call error messages and terminology.

Tektronix Smalltalk Reference Manual 259

UTekSystemCall 0OS-interface

Discussion

260

Most system calls will be accomplished by methods found in the message
categories with "portable” in their name, for example, portable directory operations.
Under those categories are the message selectars that will fulfill the most common
system call requirements.

UTekSystemcCall also provides non-portable methods under "system-" categories
for every system call in Section 2 of the UTek Command Reference except

e calls that could destroy the running Smalltalk process/task (e.g., memory
management calls), and

e system calls which are only accessible to root.

Before using these non-portable calls, the documentation of the call in Section 2 of
UTek Command Reference should be reviewed.

Naming Convention

The naming convention for the message selectors under "system-" categories is as
follows. The first keyword is the name of the UTek system call. The first argument
is the first argument expected by the system call. Succeeding keywords and
arguments name and supply, respectively, the remaining arguments to the system
call. For example, the C specification newfd = dup2 (oldfd,newfd) (dup2(2)in

 UTek Command Reference) is implemented as this UTekSystemCall class message

selector: :
dup?2: oldFilelD newfd: newFilelD

dup? is the system call name.
oldFilelD is the first argument.
newid: names the second argument, newFilelD.

Class Protocol — Portable and System- Methods

Wherever possible, the "portable” operations should be used to ensure operating
system independence. In images released for the UTek operating system, the
global variable OS is set to UTekSystemCall. OS should be used in code (instead
of the name of your system call class) to insure the portability of the code.

UTekSystemCall OS-Interface

The class message categories beginning with "portable” should be checked first
when you need to make a system call. Those categories will be the ones you use
most frequently. The "portable” methods often send messages found under
"system-" categories, but most of the "system-" methods can be thought of as
private.

For example, suppose you want to duplicate a file descriptor. The portable file
operations category contains the method duplicateFd:. This is the message that
you should use. It works by calling dup:, which is found under system-files. The
message dup: is sent to the global variable OS. If the system call fails, a notifier is
displayed; otherwise, dup: returns the new file descriptor.

There is no way to tell from looking at the dup: meiiiod that the preferred message
for your purpose is duplicateFd: — just follow the rule of thumb to look under
"portable” first for the message you need. If you use a non-portable message
selector, it will work but may not be as "user-friend!y” as the portable one — dup:
doesnt display the notifier that duplicateFd: displays when appropriate. In
addition, moving your code to other Tektronix Smalitalk images will be much easier
if you use the "portable” operations.

Portable directory operations allow you to manipulate directories, such as changing
the current directory, enumerating the files in a directory, and creating or removing a
directory.

Portable file operations allow you to perform common operations on files, such as
creating, checking for existence, various file descriptor operations, renaming,
opening, reading, positioning, creating pipes, writing, and obtaining file status
information.

Portable subtask operations allow you to create new processes, send interrupts to
processes, and change the response to interrupts.

The protocol is arranged with all the direct-map system calls together under
"system-". "Direct-map” methods are those described under the preceding section
called "Naming Convention™. If no portable message exists for what you need to do,
for example, socket operations or ioct/, the direct syztem call message should be
used.

System-files methods are system calls that deal with testing, opening, closing, status,
names, and descriptors of files.

System-information methods are system calls that return information from the system,

such as user and group ID, host name, and timers. They are primarily concerned
with returning information, as opposed to taking some action.

Tektronix Smalltalk Reference Manual 261

UTekSystemCall 0OS-interface

262

System-input output methods are system calls that read, write, seek, and deal with
input and output in other ways.

System-sockets methods are system calls that are concerned with creating,
connecting, receiving, and sending data on sockets.

System-subtasks methods are system calls that are concerned with UTek processes
— creating, interrupting (signaling), and process ID.

Class Protocol — Other Message Categories

Class initialization methods initialize the class variables and pool dictionaries, if
necessary. The firstTime method initializes the Smalltalk image for a specific
operating system.

Certain operating system information is available (without making a system call)
using class protocol for constants, file names, and general inquiries. The environment
variables protocol supplies information about the environment at the time Smalltalk
was invoked.

Instance Protocol

Note: The only instance messages the typical user would
send to an instantiated UTekSysytemCall are value
or invoke (inherited from AimSystemcCall).
Remember that invoke does not perform error handling.

Initialize-release methods set up the instance variables and operation type of a
system call, and set up arguments, if any, to be passed to the call.

The accessing method at:put: places an argument to the call in the position
specified.

Constants methods return symbols or corresponding values, as specified, from the
SystemCallKeywords dictionary. Superclass constants methods return information
from the OSConstants and ErrorConstants pools.

Errors methods provide several formats of error messages.
Execution methods set instance variable D10ut to true, provide methods to execute

a system call with error handling, and invoke the Smalitalk primitives for signal and
system operations.

UTekSystemCall OS-Interface

The operation type methods set instance variable operationType to #signallnvoke in
order to invoke a signal/semaphore primitive or to #waitIinvoke to make a wait or
wait3 system call. The superclass implements the methods displayOperation and
systemOpaeration.

Portable subtask operations is also found under class protocol. Class protocol named
“portable” causes creation of an instance of UTekSysytemCali; then the system call
is made and the return value causes an error notifier if the call failed. You will see
that instance portable subtask operations do not make a system call — they supply
information available after a wait system call has executed.

The printing method printOn: prints the system call and its arguments using a
format similar to the C specification for the system call.

Examples
The following example illustrates accessing the shell environment.

OS originalEnvironment at: #HOME.

If you execute the preceding code in a workspace with "printlt”, the string
representing your home directory will be printed. The following code wili change
your current directory to the directory above your current one.

OS changeDirectory: “..".

OS curmrentDirectoryName.
If you execute the preceding code in a workspace with "printlt”, the string
representing the directory will be printed. The string will have the trailing "/"

separator.

You can return to your home directory this way:

OS changeDirectory: (OS originalEnvironment at: #HOME).

The following code can be executed in a workspace. It illustrates various system
calls for file operations found in the class message category portable file operations.

Tektronix Smalltalk Reference Manual 263

UTekSystemCall Os-interface

fd « OS open: “foo”.

OS write: fd from: “Hi, folks!” size: 10.
OS seck: fd to: 0.

answer ¢ String new: 10.

OS read: fd into: answer.

OS closeFile: fd.

Transcript cr; show: answer.

This is what occurs in the example above. A file named ‘foo” is created on the disk
and its file descriptor is assigned to fd. The string "Hi, folks!", which contains 10
bytes, is written to foo”. The tile pointer is positioned at the beginning of file "foo” by
the seek: method with 0 s the file position argument. Note that foo” is always
referred to by its file descriptor, not its name, when making system calls. Next, an
instance of String is created and assigned to answer. The method read:into: fills
the string with data from foo’. Try changing the size of answer to 8 and to 12 to see
the different results in your System Transcript. The file is closed using the
closeFila: method inherited from AimSystemcCall. Closing frees the file descriptor,
but foo” will still exist on the disk. To remove the file from the disk, you have to
make another system call, like this:

OS remove: “foo”.

Related Classes

AbstractSystemCail
AimSystemcCall
Subtask

264

Utsname OS-Parameters

ExternalBinaryData variableByteSubclass: #Utsname

instanceVariableNames:

classVariableNames: ‘MachineDatalndex NamelLength
NodenameDatalndex ReleaseDatalndex
SysnameDatalndex VersionDatalndex °

poolDictionaries: ”

category: ‘OS-Parameters’

Summary
Utsname provides accessing protocol for the following C structure.

struct utsname {
char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];

}

The structure is documented under uname(2) in the manual UTek Command Reference,
Volume 2.

Class Variables
MachineDataindex

NodenameDatalndex
ReleaseDatalndex
SysnameDataindex

VersionDatalndex
Each C structure class variable holds the offset of a single field in the
structure. The name of a class variable is constructed from a field name

with the string ‘Datalndex” appended. For example, the class variable
MachineDatalndex holds the offset of the "machine” field.

Tektronix Smalltalk Reference Manual 265

Utsname OS-Parameters

Namelength <Integer>
Holds the constant, 9, of the char fields of the utsname structure.

Instance Methods

accessing

machine
Return the value of the structure field named machine.

nodename
Return the value of the structure field named nodename.

release
Return the value of the structure field named relears.

sysname
Return the value of the structure field named sysname.

version
Return the value of the structure field named version.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization

initialize
Assign offset values to the class variables and define the size of the
structure.

instance creation

uname
Return an initialized instance.

Rationale
The structure is used in support of the following UTek system call:

uname(2)

Related Classes
UTekSystemCall implements the system call listed above.

266

VirtualStrikeFont Graphics-Support

Object subclass: #VirtualStrikeFont

instanceVariableNames: ‘name ascent descent ’

classVariableNames: o

poolDictionaries: "

category: ‘Graphics-Support’
Summary

A VirtualStrikeFont represents a StrikeFont that has not been constructed in the
image. A VirtualStrikeFont contains the name of the font that either StrikeFont
knows how to read or can be synthesized. VirtualStrikeFonts are converted to
their corresponding StrikeFont whenever they are referenced in a TextStyle, via
the accessing method fontAt:,

Instance Variables

ascent <Integer>
The largest distance from the baseline to the top of any character in this

font.

descent <Integer>
The largest distance from the baseline to the bottom of any character in

this font.

name <String>
The font name.

Instance Methods
accessing

ascent
Return the instance variable ascent.

ascent: aninteger
Set the ascent to aninteger.

Tektronix Smalltalk Reference Manual 267

-\{irt,‘uaIStrikeFont Graphics-Support

descent
Return the instance variable descent.

descent: aninteger
Set the descent to aninteger.

name
Answer the VirtualStrikeFont’s name.

namae: aVirtualStrikeFontName
Set the VirtualStrikeFont’s name to aVirtualStrikeFontName, a String.
testing

IsVirtual
Since the receiver is a VirtualStrikeFont, return true.

Class Methods

instance creation

name: aString
Return an instance with the name, aString.

Rationale

An instance of VirtualStrikeFont has been registered with the FontManager, but
has not been loaded in the image. This class enables you to create a TextStyle
with an array of fonts, but save Smalitalk memory by not actually having the fonts in
your image until they are accessed for use. When a "virtual” font is converted to a
"real” StrikeFont your image uses more memory.

Discussion ‘
When an instance of this class is created, its name is assigned. Instances are
created by the TextStyleManager text style instance creation methods, and that is the
recommended way to create VirtualStrikeFonts. The instance creation methed,
name:, is called by a method in StrikeFontManager.
Accessing methods return or set the values of instance variables.

The testing method isVirtual returns true.

268

VirtualStrikeFont Graphics-Support

Related Classes

StrikeFont
StrikeFontManager
TextStyle
TextStyleManager

Tektronix Smalltalk Reference Manual 269

270

Wait OS-Parameters

ExternalBinaryData variableByteSubclass: #Wait
instanceVariableNames: ”
classVariableNames: ‘CoredumpBitPosition CoredumpDatalndex
RetcodeDatalndex StatusDatalndex
StopsigDatalndex StopvalDatalndex
TermsigDatalndex TermsigMask *
poolDictionaries: ”

category: ‘OS-Parameters’
Summary _
Wait provides accessing protocol for the following C union.
union wait {
int w_status; /* used in syscall */
/%
* Terminated process status.
*/
struct {
unsigned short :16; /* pad to make full 32 bits */
unsigned short w_Retcode:8; /* exit code if w_termsig==0 */
unsigned short w_Coredump:1; /* core dump indicator */
unsigned short w_Termsig:7; /+ termination signal */
Jw_T;
/*

* Stopped process status. Returned
* only for traced children unless requested
* with the WUNTRACED option bit.
*/
struct {
unsigned short :16; /* pad to make full 32 bits */
unsigned short w_Stopsig:8; /+ signal that stopped us */
unsigned short w_Stopval:8; /# == W_STOPPED if stopped */
w_S;

}

The wait system call is documented under wait(2) in the manual UTek Command
Reference, Volume 2.

Tektronix Smalltalk Reference Manual 271

s Qiomiee -2
Walf__os-aarameters -

Class Variables
CoredumpDataindex

RetcodeDatalndex

StatusDatalndex

StopsigDataindex

StopvalDatalndex

_TermsigDatalndex
Each external data binary subclass class variable holds the offset of a
single field in the structure or union. The name of a class variable is
constructed from a field name, stripped of its prefix, with the string

‘Datalndex’ appended. For example, the class variable
CoredumpDatalndex holds the offset of the "w_Coredump” field.

CoredumpBitPosition <Integer>
Holds the constant. 8, for the bit position of the core dump indicator bit in
the w_Coredump field.

TermsigMask <Integer>
Holds the constant, 127, used to mask the termination signal bits in the
w_Coredump field.

Instance Methods
accessing

coredump
Return the value of the union field named coredump.

retcode
Return the value of the union field named retcode.

status
Return the value of the union field named status.

stopslg
Return the value of the union field named stopsig.

Wait Og-?a{amgllsgaj

2o S

stopval
Return the value of the union field named stopval.

T
it

termsig
Return the value of the union field named termsig.

printing

printOn: aStream
Print the receiver on aStream.

Class Methods

class initialization
Initialize
Assign offset values to the class variables and define the size of the union.

Rationale
The wait union is used in support of the following UTek system calls:

wait(2)
wait3(2)

Related Classes
UTekSystemCall implements the system calls listed above.

Tektronix Smalltalk Reference Manual %@

S

.
o b

I

248208

IR

274
[A¥N

WorkspaceController Interface-Text

StringHolderController subclass: #WorkspaceController
instanceVariableNames: ”

classVariableNames: “WorkspacsYeliowButtonMenu

WorkspaceYellowButtonMessages *

poolDictionaries: o)

category: “Interface-Text’

Summary

WorkspaceController provides additional control for workspaces. Results of
expressions in workspaces ¢2n be inspected.

Class Variables

WorkspaceYellowButtonMenu <PopUpMenus
Yellow button menu in workspaces.

WorkspaceYellowButtonMessages <Array>
An array of symbols, each one being a selector that implements the
corresponding item in WorkspaceYellowButtonMenu.

Instance Methods
menu messages

accept
Accept the workspace contents.

Inspectit
Treat the current text selection as an expression; evaluate it. Open an
Inspector on the result.

Class Methods

class initialization
Initialize
Initialize the yellow button pop-up menu and corresponding messages.

AN
Tektronix Smalitalk Reference Manual 275

WorkspaceController :Interface-Text

Rationale
This class allows the addition.of middle-button menu items for workspaces.

‘Discussion
Using WorkspaceController, it is possible for you to add middle-button menu
choices for workspaces. This implementation adds the "inspect it” menu choics.
.Expressions in ordinary workspaces and.in the System Workspace can be selected
and an Inspector will be opened on their results. Another menu. choice you might
add to workspaces.is "file out™ — it is available as a fileln. Read about filelns in the
Tektronix Smalltalk Users manual.

Menu.messages protocol includes the methods for middle-button menu choices.
Accept has been reimplemented to save the contents of a workspace as text — this
allows fonts, used in the workspace to be saved with the text.

.Class initialization protocol initializes the two class variables — the pop-up menu and
corresponding messages.

Related Classes
‘Workspace
WorkspaceView

276

