
TEK USERS
MANUAL

First Printing JUNE 1987

Part No. 061-3440-00
Product Group 07

TEKTRONIX
SMALLTALK

Please Check at the
Rear of this Manual
for NOTES and
CHANGE INFORMATION

COMMtnED TO EXCRlENCE

Copyright © 1987, Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and
pending.

This document may not be copied in whole or in part, or otherwise
reproduced except as specifically permitted under U.S. copyright law,
without the prior written concent of Tektronix, Inc. P.O. Box 500,
Beaverton, Oregon 97077.

Specifications subject to change.

TEKTRONIX ,TEK, and UTek are registered trademarks of Tektronix, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

PELLUCIDA is a trademark of Bigelow & Holmes.

HELVETICA and TIMES are registered trademarks of Linotype Corp.

UniFLEX is a registered trademark of Technical Systems Consultants,
Inc.

Smalltalk-80 and XEROX are trademarks of Xerox Corporation.

,.

MANUAL REVISION STATUS

PRODUCT: TEKTRONIX SMALLTALK USERS

This manual supports the following versions of this product: Image Version: TB2.2.1

REV DATE DESCRIPTION

JUNE 1987 Original Issue

TEKTRONIX SMALL TALK USERS 1

Table of Contents
SECTION 1 Introduction
INTRODUCTION ... 1-1
ABOUT THIS MANUAL ... 1-1

Prerequisites 1-1
Reading Path 1-1

For the New Smalltalk Programmer 1-1
For the Experienced Small talk Programmer 1-2

SUMMARY OF THE SECTIONS .. 1-2
THE TEKTRONIX SMALLTALK DOCUMENTATION ... 1-3

The Goldberg Book 1-3
GETTING STARTED 1-4

SECTION 2 A Smalltalk Tutorial
OVERVIEW .. 2-1
TUTORIAL ... 2-1

Entering the Smalltalk System 2-1
Learning Mouse Mechanics ... 2-2
Using the Mouse Buttons .. 2-3
Selecting Objects 2-4
Scrolling Text in a Window........... 2-4
Opening a Workspace Window ... 2-6
Evaluating Code in a Workspace ... 2-6
Manipulating Text in a Workspace ... 2-8
Accessing Small talk Code 2-8
Executing Example Code 2-10
Altering the 'Code 2-12
Communicating with the Operating System 2-12
Writing Files Out to the Operating System ... 2-15
Manipulating Windows 2-16
Saving Your Image .. 2-16
Exiting Smalltalk ... 2-17
Invoking Your Image File 2-18

SECTION 3 Smalltalk Concepts
OVERVIEW .. 3-1
THE SMALLTALK LANGUAGE ... 3-1

Key Concepts .. .
Syntax

Identifiers .. .
Li terals ... ; .. .
Messages
Blocks

Parsing Expressions .. .
An Example of Smalltalk Code .. .

PROGRAMMING TOOLS .. .
System Browser .. .
Workspaces
System Transcript
System Workspace .. .

Tektronix Smalltalk Users

3-1
3-2
3-2
3-2
3-3
3-4
3-5
3-6
3-8
3-8
3-9
3-9
3-9

III

Table of Contents

File List .. 3-9
Inspectors 3-9
Debuggers 3-10

EXTENDING TI-IE LANGUAGE .. 3-10
Adding a New Metllod ... 3-10
Adding a New Class .. 3-14

Define tlle New Class .. 3-16
Add New Instance Protocol ... 3-16
Add New Class Protocol 3-18
Test the New Class 3-19

SECTION 4 User Interface Features
INTRODUCTION ... 4-1

Objectives 4-1
GLOBAL KEY COMBINATIONS .. 4-1

Interrupts and Exits .. 4-1
CTRL-C ... 4-2
CTRL-SHIFf-C ... 4-2
CTRL-SHIFf -BREAK 4-2
Cursor Center Key ... 4-3

MENUS ... 4-3
System Menu ... 4-3
Standard System View - Blue Button Menu ... 4-5
FileList Menu 4-6

PARAGRAPH EDITOR .. 4-9
Text Selection 4-9
Extended Selection 4-10
Editing Key Combinations 4-10
Text Editing Menu 4-11

WINDOWS .. 4-13
Scrolling 4-13
Background .. 4-15
Repainting Windows 4-16
Programmer's Notes for Repainting Windows .. 4-16

SECTION 5 Programming in Smalltalk
INTRODUCTION ... 5-1
WORKSPACE VARIABLES ... 5-1
USING THE SYSTEM BROWSER ... 5-1

Creating New System Browsers .. 5-1
Anatomy of the System Browser ... 5-2
The Category Pane ... 5-2
The Class Pane ... 5-3
The Protocol Pane .. 5-5
The Metllod Pane ... 5-5
The Text Pane .. 5-6

PROGRAMMING TIPS .. 5-7
System Workspace Tools .. 5-7

Inquiry .. 5-7
Globals 5-8

lV

Table of Contents

Display ... 5-10
Measurements 5-11

Debugging .. 5-12
Debugger Menus 5-12
Useful Debugging Expressions .. 5-14

Some Cautions ... 5-14
Redefining the Equals Operation 5-14
Changing the Position of a Class in the Hierarchy .. 5-15
Renaming Instance Variables .. 5-16
Closing a Window ... 5-16

PROGRAMMING STYLE 5-17
Syntactic Guidelines 5-17

Comments .. 5-18
Capitalization and Variable Names 5-18
Fonnatting and Indentation ... 5-18
Punctuation and White Space .. 5-19
Spelling and Grammar .. ~ .. 5-20

Semantic Guidelines .. 5-20
Follow Established Conventions ... 5-20
Hide Implementation Details ... 5-21
Nested Conditionals ... 5-21
Plan for Future Subclasses ... 5-23
Organization of Classes and Methods ... 5-24
Class and Instance Methods ... 5-24
Class and Instance Variables ... 5-25

Conclusion ... 5-26
ADVANCED TOPICS .. 5-26

Multiple Inheritance of Classes ... 5-26
Lazy Mutation .. 5-27
IEEE Floating Point Numbers ... 5-28
Storing and Retrieving Objects on a File .. 5-29

Using the Reading and Writing Mechanism .. 5-29
Implementation Details ... 5-29

Copying Circular Structures .. 5-30
Implementation Details ... 5-30

SECTION 6 Image and Change Management
OVERVIEW .. 6-1
CUSTOMIZING YOUR IMAGE AND CHANGES FILE ... 6-1
CHANGE SETS AND THE CHANGES FILE ... 6-3

Change Sets 6-3
The Changes File 6-4

The Change-Management Browser ... 6-5
PROGRAMMING METHODOLOGY ... 6-6
IMAGE MAINTENANCE .. 6-7
CRASH RECOVERY ; .. 6-7
CLONING ... 6-7

Uncollectible Garbage ... 6-8

Tektronix Smalltalk Users v

Table of Contents

SECTION 7 Model-View-Controller
INTRODUCTION ... 7-1

Objectives .. 7-1
Overview 7-1

WHAT IS AN INTERACTIVE APPLICATION? .. 7-2
MODEL, VIEW, AND CONTROLLER ... 7-2

Model ... 7-3
View ... 7-3
Controller ... 7-3

THE Model-View-ControllerTRIAD ... 7-4
A Simple Mvc Triad ... : .. 7-4
View Behavior ... 7-6
Subviews .. 7-6

View Inheritance 7-8
Using Views in Small talk .. 7-8
How Views are Displayed ... 7-10

Creating A New Mvc Triad ... 7-10
Controller Behavior 7-12
The Role Of The Model ... 7-12

MVC SUMMARY ... 7-14
Model Summary 7-14
The Model's Methods in a Running MVC Triad .. 7-14
Creating a Model For a MVC Triad .. 7-14

View Summary .. 7-14
The View's Methods in a Running MVC Triad .. 7-14
Methods to Create New Views and MVC Triads .. 7-15

A MVC EXAMPLE .. 7-15
Creating A Model Class .. 7-15
Class Comments 7-16
Creating A View On The Model ... 7-17
ExampleView Instance Behavior .. 7-19
Creating the Controller for the ExampleView ... 7-20
Getting the Model to Inform the View of Changes 7-20
Adding Some Controller Activity ... 7-21

SECTION 8 Operating System Interface
INTRODUCTION ... 8-1

Overview 8-1
Review of OS Terms 8-1

THE OS GLOBAL VARIABLE ... 8-2
THE SYSTEM CALL INTERFACE .. 8-2

AbstractSystemCal1 ... 8-3
AimSystemCal1 .. 8-3
UTekSystemCal1 .. 8-3
Portable Operations ... 8-3
System Dependent Calls 8-4
System Call Parameters 8-5

Naming Conventions ... 8-6
Signals 8-7
Interrupt Identifiers ... 8-7

VI

Table ojCo1ltents

COMMUNICATION CHANNELS 8-9
Files ... 8-9

FileStream .. 8-9
FileDirectory ... ~ .. 8-10
Using FileStreams and FileDirectories .. 8-11

Pipes ... 8-12
Pipe .. 8-12
PipeStream ... 8-12

MULTI-TASKING CONCEPTS .. 8-12
Subtasks 8-13

Subtasking Examples 8-13
Subtask Creation and Program Execution ... 8-14
Environment Variables .. 8-15
Interrupting Subtasks 8-16
Signals ~ ... 8-16
Waiting for Subtasks ... 8-18
Restarting After a Snapshot 8-18

Subtask in Detail 8-18
Subtasks and Pipes 8-22

A Schematic Subtask Example with Pipe ... 8-24
A Real Subtask Example With Pipes .. 8-25

Subtask Management ... 8-26
Applications A CFileModel Example .. 8-27
An Extension OSFilter Class .. 8-29

SECTION 9 Fonts in Smalltalk
INTRODUCTION ... 9-1
INTRODUCTORY INFORMATION ... 9-1
The Font Directory .. 9-1
Font Terminology Definitions ... 9-2

HANDLING FONTS IN SMALL TALK 9-3
Fonts in the System Workspace ... 9-3

Inspecting Resident StrikeFonts .. 9-3
Inspecting Resident TextStyles ... 9-4
Installation of a new TextStyle .. 9-4
Choosing a Default Text Style ... 9-5

Creating a StrikeFont 9-6
Installing a Font in the FontManager 9-7
How to Display Unprintable Characters 9-10
Displaying Fonts 9-10

Displaying a StrikeFont 9-10
Extracting a Character Form 9-11
Changing the Font of a String 9-11
Changing the Emphasis in Some Text 9-12

FONTS BACKGROUND 9-13
Introduction 9-13
Characters and Strings 9-13
Text .. 9-14
DisplayText ... 9-15
Paragraph ... 9-16

Tektronix Smalltalk Users vii

Table of Contents

Displaying StrikeFonts 9-17
Emphasis Codes 9-17
Some StrikeFont Display Code 9-17

TextConstants 9-18
Conclusion 9-18

SECTION 10 The Interpreter
INTRODUCTION ... 10-1
PERFORMANCE CHARACTERISTICS .. 10-1

Object-Oriented Pointers ... 10-1
SmallIntegers ... 10-1

TEKTRONIX INTERPRETER DESIGN ... 10-2
The Object Table ... 10-2
CompiledMethods ... 10-3
Method Dictionaries 10-5

PRIMITIVE METHODS ... 10-6
Primitives Not Implemented .. 10-6
Tektronix-Specific Primitives ... 10-7

System and Display Calls 10-7
System and Display Call Primiti ves 10-8
System Management Primitives 10-10
Object Management Primitives ... 10-11
Instance Creation Primitives .. 10-12
String Comparison Primitive ... 10-12
Floating Point Primitives ... 10-13

Primitives with Different Functions .. 10-13

SECTION 11 The Small talk Directories
OVERVIEW .. 11-1
THE DIRECTORIES 11-1
THE STANDARDIMAGE FILE .. 11-1

The system Directory 11-1
The fileIn Directory 11-2
The demo Directory ... 11-2
The textStyles Directory .. 11-3
The conversion Directory 11-3

Appendix A Small talk Books Information
ERRORS IN THE ADDISON-WESLEY BOOKS

Appendix B Small talk Internal Character Codes

A-I

Alphanumeric Keys ... B-1
Numeric Pad Keys .. B-2
Joydisk Keys ... B-3
Function Keys ... B-3
Special Function Keys .. B-4

Appendix C Small talk Printing Facilities
PRINTING SMALLTALK BITMAP FILES ... C-1

Printer Support .. C-1

viii

Table o/Contents

Figures

Figures Page
2-1. Initial Screen of Standard Image. . .. 2-2
2-2. System Workspace Window. . .. 2-5
2-3. System Browser Window. 2-9
2-4. Pen Example Code in System Browser Window. 2-10
2-5. File List Window. . .. 2-12
4-1. Scroll Next (relative move). 4-13
4-2. Scroll Previous (relative move). . .. 4-13
4-3. Jump (absolute move). 4-14
7 -1. A Model-View-Controller Triad. 7-5
7-2. Combining Subviews for a Complex View. 7-7
7-3. MVC Triad with StandardSystemView and StandardSystemController. 7-9
7 -4. MVC Creation Sequence. 7-11
7-5. Model-View-Controller Relationship. 7-13
8-1. Subtask Creation and Program Execution. 8-14
8-2. Subtask Communication and Pipes. 8-23
9-1. Installing a Text Style. 9-4
9-2. Creating a StrikeFont. .. 9-6
9-3. Installing a StrikeFont in the FontManager. 9-8
9-4. The glyphs Form. 9-15
10-1. Structure of an Instance of Com piledMethod. 10-3
10-2. Structures of Instances of MethodDictionary. .. 10-5

Tables

Tables Page
8-1 Interrupt Identifiers ... ~ .. 8-8
8-2 Parallel FileDirectory and Filestream Protocol ... 8-10
10-1 Tektronix Smalltalk Interpreter Characteristics 10-2
B-1 Alphanumeric Keys .. B-2
B-2 Numeric Pad Keys ... B-3
B-3 Joydisk Keys .. B-3
B-4 Function Keys ... , .. B-4
B-5 Special Function Keys ... B-5

Tektronix Smalltalk Users IX

Section 1

Introduction

INTRODUCTION
Tektronix Smalltalk is an enhanced version of the Smalltalk programming language and
environment. It is based on Smalltalk-801 System Version 2. Smalltalk is a highly interactive,
graphical, object-oriented system.

ABOUT THIS MANUAL
This manual is intended to serve the needs of new and experienced Smalltalk programmers. It
includes information directed at both the new Smalltalk programmer and the experienced
Small talk programmer. In general, the farther you go into the manual, the more experienced you
should be in Smalltalk programming.

Prerequisites
The minimum requirements for a good understanding of the information in this manual are
simply one or two years experience or schooling in some high level programming language such
as Fortran, C, Pascal, or Lisp. Some exposure to operating system programming concepts,
assembly language programming, or artificial intelligence programming concepts would also be
helpful, but is not necessary.

Reading Path
To get the most benefit from this manual in the shortest time, follow the suggested reading path.
In this manual, a "new Smalltalk programmer" is someone who fits the minimum requirements
listed earlier. An" experienced Small talk programmer" is someone who has either studied the
Addison-Wesley Smalltalk books listed later in this section, or someone who has had direct
programming experience on 'a Smalltalk system.

For the New Smalltalk Programmer
As a new Smalltalk programmer, you should read sections 1, 2, and 3, in that order. Next study
the Goldberg and Robson book, which is a reference book for the Smalltalk-80 system. After

1. Smalltalk-80 is a Trademark of Xerox Corporation.

Tektronix Smalltalk Users 1-1

Introduction

this, you can go on to the Tektronix Smalltalk Reference manual and the other parts of this
manual that interest you. Sections 4, 5, and 6 are intermediate in level and should probably be
read before the remaining sections. However, be sure to go through the Model-View-Controller
(MVC) tutorial in section 7 when you feel ready, since this important subject is barely described
in the Addis6n-Wesley books.

For the Experienced Smalltalk Programmer

You should read through section 1 and the beginning of section 2, but you can skip section 3.
However, be sure to read through sections 4 and 5 since they describe many features in Tektronix
Smalltalk. You will be especially interested in section 7 about the Model-View-Controlerr
paradigm since this important subject is barely described in the Addison-Wesley books. Read
through the rest of the manual and the Tektronix Smalltalk Reference manual as your interests and
needs dictate.

SUMMARY OF THE SECTIONS
Here is a summary of what you will find in this manual:

1-2

• Section 1 tells you what is in this manual and suggests a reading path through it. It tells
you about the Addison-Wesley books on the Smalltalk-80 system and describes the
Tektronix Smalltalk documentation.

• Section 2 is a brief introduction for those not acquainted with the Smalltalk-80 system.
Section 2 presents the main features of the programming environment, language, and user
interface in tutorial form.

• Section 3 is a brief conceptual overview of Smalltalk. Small talk language syntax and
concepts are given along with an example of code. An introduction to programming tools
such as the System Browser, System Workspace, File List, and Inspectors is presented.
And, finally, a brief discussion of how programming is ordinarily done is presented.

• Section 4 describes many of the user-interface enhancements incorporated into Tektronix
Smalltalk.

• Section 5 is intended for the advanced user and discusses programming tips, suggested
programming style, and miscellaneous advanced programming topics. There is also quick
introduction to the System Browser.

• Section 6 gives you detailed information about image and change management. This
section should be read by programmers of all levels of expertise since it involves how to
protect yourself from loss of work. Definitely read through this section before you begin
work on application development.

• Section 7 is a detailed, code-oriented tutorial about the MVC programming paradigm.
After completing this tutorial, you will be able to use the MVC paradigm in application
programs of your own design.

• Section 8 describes in some detail the operating system interface of Tektronix Smalltalk.
You should be familiar with Unix system programming, involving signals, processes,
system calls, etc., to get the best understanding of this material.

Introduction

• Section 9 describes Tektronix Smalltalk's implementation of fonts. There is a low-level
introductory tutorial in addition to a task-oriented treatment for programmers with an
intermediate level of expertise.

• Section 10 explains the characteristics of the Tektronix Smalltalk interpreter. Most
programmers will not need to read through this section.

• Section 11 describes the operating system directories containing Smalltalk files. All
pro grammers should read through this section. Be sure to take a look at the fileI n directory,
where you will find code that you can incorporate into the system and experiment with.

• Appendices cover errors in the Addison-Wesley Small talk books, how Smalltalk treats key
codes, and how to print out graphics images on a printer.

THE TEKTRONIX SMALL TALK DOCUMENTATION
In addition to this manual, the following documentation comes with Tektronix Smalltalk:

• Goldberg, Adele and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983. (Called in this manual the "Goldberg and Robson book," but
known among Small talk programmers as the "blue book".) The Goldberg and Robson
book is a formal explanation and description of the Smalltalk-80 language.

• Tektronix Smalltalk Reference manual. This manual includes classes and methods that
have been added to Tektronix Smalltalk over and above those classes and methods in the
Smalltalk-80 System Version 2.

In addition to this documentation, you will also want to consult the user's manuals that have been
shipped with your Tektronix computer system.

The documentation for the Tektronix UTek operating system will also be useful to you.

The Goldberg Book
This manual makes reference to the following Addison-Wesley book about Smalltalk:

• Goldberg, Adele. Smalltalk-80: The Interactive Programming Environment. Addison-
Wesley, 1984. The Goldberg book is an extensive introduction to the Smalltalk-80 system.

When this book is mentioned in this manual, the book is referred to as the "Goldberg book".
(Some Small talk programmers refer to this book as the" orange" book.)

If you like, you can order the Goldberg book through Tektronix. Use the following part number.

062-8859-00 Goldberg, Adele. Smalltalk-80: The Interactive Programming Environment.
Addison-Wesley, 1984.

Tektronix Smalltalk Users 1-3

Introduction

GETTING STARTED
If you are familiar with the Tektronix computer system that you will run Tektronix Smalltalk on,
turn now to Section 2. It will show you how to start up and run Small talk. (This manual assumes
that you have made yourself familiar with the operation of your Tektronix computer system by
reading through its user~s manual.)

1-4

Section 2

A Smalltalk Tutorial

OVERVIEW
This section is intended for the first-time user of the Tektronix Smalltalk system. In this tutorial,
you will:

• Enter the Small talk system.

• Learn the commonly used features of the user interface.

• Run some example code.

• Learn how to save your work and exit back to the operating system.

This information is presented as a tutorial. Tum on your machine and perform the steps as you
read this section.

The Small talk system overlays the hardware and operating system. This tutorial assumes that you
are sufficiently familiar with these components to perform certain basic tasks. These are:

• Tum on your machine.

• Log into your machine.

• Access specific files and directories.

• Move through the directory structure.

If you cannot do these things, start by reading through the user manual that came with your
machine, and come back to this tutorial when you are ready.

TUTORIAL
This tutorial assumes that you are performing the steps on your machine in the order that they are
given. As you go'through the tutorial and feel more confident about how the mouse, windows,
and menus work, feel free to try operations similar to the ones described.

If, at any point during the tutorial, you accidentally perform an action which freezes the keyboard
and mouse buttons, denying you access to Small talk, turn to the subsection entitled Exiting
Smalltalk, later in this section. It explains how to get out of Smalltalk in the event of an
unrecoverable error. If you exit Smalltalk in this manner, you will lose all work you have done
since your image was last saved, unless you go through a special recovery procedure. However,
you will be back at the operating system level and able to access your machine, and start
Smalltalk, once again.

Entering the Smalltalk System

1. At the shell prompt, enter: smalltalk

Tektronix Smalltalk Users 2-1

A Smalltalk Tutorial

2. The Small talk system files are large, so it takes some time for them to load. You will see
the Smalltalk interpreter sign-on message:
Tektronix Smalltalk Interpreter
Version 2.2

3. While you are waiting for the Smalltalk system to load, make sure that you have a clear
and level space to the right or left of the display to move the mouse around. Set the mouse
down on this space with the cord leading away from you. This orients the three mouse
buttons away from you. This is the correct orientation for the mouse.

Learning Mouse Mechanics

1. You will now see the initial Small talk display on the screen. See Figure 2-1. There are
four windows visible; each has text within it and a border around it.

Snapshot at: (8 May 1987
5:40:05 am)

Collec tions-A b st rac t
Collee tio ns - Ar rayed
Collee tio ns -Sequen ee ab Ie
Coil e e t ion s - S t ream s
Collee tio ns -sup p 0 r t
Colleetions- Text
('nllp("tintH-llnnrdPrpd

2-2

File In Directory

This directory contains smalltalk code that
may be added to an image. Included are useful
class definitions, user interface enhancements
and simple applications. The code in this
directory is generally user contributed and
should be thought of as starting points rather
than complete, debugged solutions.

Each file contains comments about its function.
File names ending in '.st' indicate that the file
contains code to be filed in. File names ending in
'.ws' indicate that the file contains code which
needs to be el<ecuted from a workspace.

Before filing in code, it is a good idea to open

Figure 2-1. Initial Screen of Standard Image.

Cop~'right (c) 1983 :
All rights reser

Cop~'right (c) 1984,
All rights reser

Create File SV~

ont' of Jo'our suba'itt'
Disk +- FileDirector~'
or ig i nal En '.' i ro nrn e n 1

"/r~aAt1 the s'nalltal,~
dir~'ctory at tht' tin
Disk +- FileDirectory

"S~,t up smalltalk. S(

SourceFiles +- Array
SourceFiles at: 1 pu

(FileStream old
smalltalklnitializ ati
' .. Is tand ar d S 0 urc e s
SourceFiles at: 2 pu

(FileStream old
(SourceFiles at: 1) r

"Turn ott all QCC.'SS

SourceFiles +- Disk +

Files

3440-1

A Smalltalk Tutorial

2. Grasp the mouse and move it back and forth and up and down around the space. The black
arrow cursor moves in concert with your motions. The tip of the arrow is the part of the
cursor that points to the item you wish to manipulate.

Sometimes during your work in Small talk, the arrow cursor may change to a small square
with a diagonal mark inside it. This is the garbage collection cursor. It indicates that the
system is cleaning up and freeing available memory. While this cursor is visible, you will
get no feedback from the keyboard or mouse buttons. This is normal system operation.
Wait until the arrow cursor returns, and then continue as usual.

3. Move the cursor into one of the windows. The small title tab at the upper left corner of the
window becomes highlighted. That is, the black leOtters tum white, and the white
background turns black. You have just selected that window as the active window. Only
one window is active at any time.

Ordinarily, you can select a window to be the active window by clicking the left mouse
button anywhere within it. The first window to be active after an image is brought up,
however, is the first window into which the cursor is placed. When a window is active,
you can access and manipulate its contents.

4. If you are using a 13" display, you cannot see the full 1376 by 1024 bitmap of the
Small talk system at once. If you are using a 19" display, you can. If you are using the
larger display, go on to the next section. If you are using a smaller display, however, you
can access the full Smalltalk bitmap in the following manner. Move the mouse so that the
arrow cursor moves up against the right side of the display. Watch the whole display move
as you continue to move the mouse in the same direction. While doing this, you may reach
the end of the cleared space. Just pick up the mouse and move it back to the other end of
the space and continue the movement in the same direction. This is called panning.

5. Now move the mouse so that the arrow cursor moves down against the bottom of the
display. Watch the whole display move as you continue to move the mouse. Again pick
up the mouse and replace it on the cleared space as you need to, to continue the movement.

6. The joydisk in the upper lefthand comer of the keyboard is another way to pan the display.
Push the joydisk down in each of the four directions, and watch the display move. What
you are observing is a 640 by 480 hardware window accessing the Smalltalk system's 1376
by 1024 bitmapped display.

7. If you lose the cursor after this process, press function key <P12>. This immediately
locates the cursor in the center of the visible screen.

Using the Mouse Buttons

1. The three buttons on the mouse give you access to many of the Smalltalk system's
functions. They are used in the following manner:

• The left button is used to select text, or to choose which window is to be active.

• The middle button is used to pop up a menu to manipulate the contents of a window.

• The right button is used to pop up a menu to manipulate a window itself.

2. You may either press a mouse button, or click it. In this tutorial, pressing a mouse button
means to hold the mouse button down while you move the mouse to an appropriate
position, and then release it. Clicking a mouse button means to press and immediately
release a button.

Tektronix Smalltalk Users 2-3

A Smalltalk Tutorial

Selecting Objects

1. Move the arrow cursor to the inside of the System Transcript window. (The System
Transcript window is the window whose title tab is labelled System Transcript.) Click the
left mouse button. The window's title tab turns to black, showing you that the window is
selected and active. Left button activity anywhere in a window, including its title tab,
activates that window. If any text in the window is highlighted, it is probably because you
moved the mouse slightly while the left button was held down. Click the left mouse button
again carefully, without moving the mouse, to unhighlight the text.

In addition to some text, you will see a small dark caret cursor. The caret cursor is separate
from the arrow cursor. The arrow cursor is used to move the caret, which indicates the
point at which characters you type appear in the text.

2. Type a few characters. Take up the mouse again and move the arrow cursor between two
characters along a line of text. Click the left mouse button. The caret cursor moves to the
new point. Type a few more characters. Move the caret to the end of the paragraph, type a
few carriage returns and then a sentence or two. The text automatically wraps within the
window.

3. Move the caret cursor to the beginning of the text. Now press and hold down the left
mouse button while you move the arrow cursor to the right and down in the System
Transcript window. Release the button. Parts of the text become highlighted. Move the
arrow cursor to the beginning of a line of text, press and hold down the left mouse button
again, and sweep the cursor to the end of the line, and release the button. This highlights
the line. Do this several times to feel how highlighting works.

Now go to the very beginning of all text in the window. Click the left button twice. (If the
window was not active before you tried this, you will need to click the left button three
times.) The entire text is now highlighted. (If it looks like you have lost some text from the
bottom or the top of the window, go on to the next section, and you will learn how to
recover it.)

When text is highlighted, it is selected. Selection means that you can manipulate the text in
various ways.

4. Unselect all of the text in the System Transcript window, by clicking the left button again,
anywhere in the window. Select a word in the window. Now type another word. Your
word replaces the previously highlighted word. This is one way to replace text. Typing
always inserts new text and by replacing the current text selection. This is true even if the
current text selection is empty, as shown by the presence of the caret cursor.

Scrolling Text in a Window

1. Activate the System Workspace window. See Figure 2-2. Move the arrow cursor directly
to the thin rectangle at the left of the window. This is the scroll bar. In windows that have a
lot of text, you can use this feature to move the text up or down, making new portions
visible. There are three ways to use the scroll bar:

• You can move text up one or more lines at a time.

• You can move text down one or more lines at a time.

• You can move quickly to a specific part.

2-4

A Smalltalk Tutorial

There is a gray bar within the scroll bar; this is the scroll marker. The scroll marker's
length, compared to the whole scroll bar, shows you approximately what proportion of the
entire text is currently in the window. The scroll marker also shows you, by its position in
the scroll bar, whether you are at the top, middle, or bottom of the entire text.

For example, if you see the scroll marker relatively small at the top of the scroll bar, you
are looking at the very beginning of a lot of text. If the scroll marker fills the length of the
scroll bar, all text associated with the window is currently visible in it.

ts

ti
Ie
gi
ch

Copyright (c) 1983 Xero)(Corp.
All rights reserved.

Copyright (c) 1984} 1985} 1986} 1987 Tektronix} Inc.
All rights reserved.

Create File System
"Mal<.~ th~ smalltall<. hom~ dir~ctory an absolur~ path to on~ of your
subdir~ctori~s."

Disk .. FileDirectory directoryNamed: (OS orlginalEnvironment at: OHOME)}
'/smalltalk'.

"Mal<.~ th~ smalltall<. hom~ dir~ctory th~ curr~nt dirutory at th~ tim~
smalltall<. was inJ)ol<.~d."
Disk .. FileDirectory currentDlrectory.

"S~t up smalltall<. sourc~ and chang~s fi/~s."
SourceFiles .. Array new: 2.
SourceFiles at: 1 put:

(FileStream oldFileNamed: OS smalitalklnitializationDirectory name)
' .. I st and ar d Sour ces. V e rs io n'} Sm all talk v e r s ionN u mb er).
SourceFiles at: 2 put:

(FileStream oldFileNamed: 'W1dliililiin.
(SourceFiles at: 1) readOnly.

"Turn off all acc~ss~s to th~ fil~ syst~m."
SourceFiles .. Disk +- nil.

Files
"Add cod~ to th~ smalltall<. Mvironment."
(FileStream oldFileNamed: 'fileName.st') fileln.

"Archive changes in an external file."
(FileStream newFileNamed: 'fileName.st') fileOutChanges.

':",: :.;.:::- .. : ,' ' .. ::.,:

Figure 2-2. System Workspace 'Window.

2. Slowly move the arrow cursor from right to left across the scroll bar. Three new cursors
appear:

• An upward-pointing half-arrow.

Tektronix SmaIItalk Users 2-5

A Slnalltalk Tutorial

• A rightward-pointing arrow.

• A downward-pointing half-arrow.

Move the cursor back until you find the upward-pointing half-arrow. Press and release the
left mouse button. The text moves down one or more lines for each press and release,
depending on whether you are at the top, middle, or bottom of the scroll bar. The farther
down the cursor is in the scroll bar, the greater the number of lines you scroll at a time.
The upward-pointing half-arrow works analogously, in the downward direction.

Now place the cursor inside the scroll marker to access the rightward-pointing arrow. Press
and hold the left mouse button, and move the mouse up and down. Observe that the scroll
marker follows your motion. Release the left mouse button with the scroll marker
positioned at the bottom of its bar. You are now looking at the end of the text in the
window.

Move the rightward-pointing arrow to the top of the bar and click the left mouse button.
The scroll marker follows the cursor. You are now looking at the beginning of the text in
the window. Play with the scroll bar cursors until you feel comfortable with their
operation. You may wish to activate other windows and experiment with the operation of
their scroll bars as well.

Opening a Workspace Window

At this point, you have learned the basic operation of the scroll bars, mouse and left mouse
button. You can now explore the middle and right mouse buttons further, and learn something
about workspaces at the same time.

Workspaces are scratch pads where you can try out ideas and develop Smalltalk code.

1. Move the cursor against the gray background, access the middle mouse button pop-up
menu and select workspace. A new cursor appears; it looks like a right angle. It marks the
upper left corner of a new window.

2. Without holding any mouse buttons down, drag this new window anywhere over the
display you like, even over already existing windows. When you have the new window
where you want it, press and hold the left mouse button.

3. The right angle cursor now marks the lower right comer. Stretch the window out by
moving diagonally away from the upper left comer. When the window is the size you wish
to work with, release the left mouse button. Pressing the left mouse button anchors the
upper left comer of the window, and releasing it anchors the lower right corner, fixing its
size.

Evaluating Code in a Workspace

1. Activate the workspace window.

2. Type these Smalltalk expressions in the workspace:

2-6

3+4
a sin
1 cos
100 factorial
Pen example

3. First, select the expression 3 + 4.

A Smalltalk Tutorial

4. Press the middle mouse button down and hold it, while you scan the pop-up menu for the
item print it. Roll the mouse down until this item is highlighted. Release the mouse button.
You have caused your new line of Small talk code to be executed, and the result to be
printed on the display. Every time you execute print it, the Smalltalk interpreter executes
the selected code, prints the result on the display, and the action is recorded in your
changes file.

If your fingers slipped and you executed a different menu item instead, you can fix your
mistake right now. Access the middle mouse button menu again and highlight the item
undo. Then release the middle mouse button. This item undoes your previous action in the
activated window. Now select the line and try the previous step again.

If you access a menu, and then decide that you do not wish to execute any item on it,
continue pressing the mouse button. Slide the cursor off the menu so that no item is
highlighted. Now release the mouse button. The menu goes away when the mouse button is
released, and because none of the items were highlighted at that time, none are executed.

When you chose the middle mouse button menu command print it, the numeral 7 appeared
just to the right of the expression. When you wish to evaluate a Small talk expression and
see the answer, choose print it.

5. The answer to a print it command is already selected when it appears. This makes it easy to
clean up your workspace. Choose the command cut from the middle button pop-up menu,
and the highlighted expression 7 goes away.

6. Now select first a sin and then print it. Cut the result.

7. Follow the same sequence with 1 cos.

8. Follow the same sequence with 100 factorial. It may take a few moments for the system
to compute this. When it does, you will see the answer has been computed to full I58-digit
accuracy.

9. The last expression, Pen example, executes some example code which is a part of the
Smalltalk system. Select it, but this time choose the do it command from the middle
mouse button menu. The do it command executes the code, without printing the result on
your display.

10. A square spiral shape appears on the display. As the method executes, the arrow cursor
changes to an arrow cursor with a star. This cursor appears when Smalltalk is executing
code. If you do not immediately see the spiral, pan the display to the right and down until
you do.

Choose do it when you want to execute selected Smalltalk code. Choose print it when you
want to see the result of executing selected Smalltalk code.

11. When the display gets cluttered, as it is after drawing the square spiral, you can restore it
with a new middle mouse button pop-up menu. To access this menu, position the cursor
outside all windows, against the gray background. Move the cursor to the gray background

Tektronix Smalltalk Users 2-7

A Smalltalk Tutorial

and press and hold the middle mouse button. Go to the top of the menu and select restore
display. The entire display will be redrawn. The square spiral disappears. It was not saved,
so it is gone.

Later, you will be able to examine the code that is executed when you execute or print these
expressions.

Manipulating Text in a Workspace

1. To facilitate common text manipulation tasks, the Smalltalk system has implemented the
commands undo, copy, cut, and paste in the middle mouse button pop-up menu in a
workspace. Highlight the expression Pen example in the workspace. Select the middle
mouse button command cut. It removes the highlighted text. It also puts the text into a
temporary buffer.

2. Now choose the middle mouse button command undo. The expression reappears.

3. Highlight Pen example as before. Now select copy from the middle mouse button menu.
You have just copied the text Pen example into the buffer.

4. Now move the arrow cursor into the gray background and press and hold the middle mouse
button. Choose the workspace command and open a new workspace window. With the
arrow cursor in the workspace window, choose paste from the middle mouse button menu.
The text Pen example appears in the new workspace. You can copy and paste virtually
any size block of text you require. copy and paste allow you to shift blocks of text
between windows.

5. If you would like to get rid of the workspace window after you are done with it, press the
right mouse button and choose the command close. A notifier window pops up, asking
you for confirmation. When you close a workspace, you lose all the text in that workspace.
In this case, though, click the left mouse button on the yes pane on the left.

You must respond to a notifier window by clicking on either yes or no. If you move the
cursor away without choosing either one, the window flashes until the cursor returns. This
feature warns you when an action you are trying to perform would result in losing work.

Accessing Smalltalk Code

The System Browser gives you access to all code in the Smalltalk system. With it, you can copy
and modify the code as you require.

The System Browser has five major panes: four small ones at the top and one large one below.
From left to right, the top panes are:

• The class category pane.

• The class pane.

• The message protocol pane.

• The message selector pane.

The large pane below is called the text pane.

The class category and message protocol panes (the first and third panes) are aids to organization.
They do not have any counterparts in Smalltalk code. They are there to help people remember

2-8

A Smalltalk Tutorial

where to find a particular class or message.

The class and message selector panes access Smalltalk code.

1. Activate the System Browser. See Figure 2-3.

2. Move the arrow cursor into the class category pane. Click the left mouse button on the
class category Numeric-Numbers. (Use the scroll bars if the category is not visible to
you.) If the category is selected, it will be highlighted.

3. The class pane now has a list of Smalltalk class names in it. The bottom pane now contains
Small talk template code. This is code which can be edited and then executed.

coil e c t ion s - A b s t r ac t -- - - --------
Collec tions - Arrayed
Coil ec tions-Se quenceabl e
coil e c t ion s - S t ream s
Collect ions -Sup por t
ColiectionS-Tel<t
Coil e c t ions - Uno r de red

Figure 2-3. System Browser 'Vindow.

3440-3

4. Move the arrow cursor to the class pane. This pane has two boxes at the bottom containing
the words instance and class; select instance by clicking with the left button. Now
select the class name Integer.

5. Now the message protocol pane fills with a list of message protocols, and the bottom pane
template code changes. Select factorization and divisibility in the message protocol pane.
Again the next pane over, the message selector pane, fills with a list of expressions. (If
your System Browser is small, you will see only the leftmost portion of the words.)

6. The expressions in the last pane are actual Smalltalk code message selectors. These
expressions are the parts of the Smalltalk code that tell objects to perform operations. In

Tektronix Smalltalk Users 2-9

A Smalltalk Tutorial

the rightmost pane, select factorial. This message selector tells an object representing an
integer to perform the factorial operation upon itself.

7. In the text pane below, you now see the actual Small talk code that is executed when you
compile and run a Smalltalk expression such as 100 factorial, as you did previously in the
workspace. Use the scroll bars if necessary to examine the code.

8. After you have examined the code to your satisfaction, go back to the message selector
pane and select a different message selector. You can then examine the code used to
perform that operation.

9. At this point, if you like, you can go back to the message category pane, select a different
message category, and then, select any new message selector you see in the message
selector pane.

10. Go back to the leftmost pane and choose a different class category. Start the process all
over again, and explore the Smalltalk code for a different class. In this way, the System
Browser allows you to access and learn about all code in the system.

Executing Example Code

1. Use the System Browser to find and execute the Pen example code. Go to the class
category pane (the leftmost one) and select the category Graphics-Primitives. (You may
have to use the scroll bar to find the category in the list.)

2. Next select the class Pen. Also select the class box in the bottom of the pane.

3. Then select examples in the message categories pane.

4. Then select example in the message selectors pane. In the text pane you will see the
example method for the class Pen. See Figure 2-4.

2-10

oris-Text
coil e c t ions - Un 0 r d ere d
Graphics-Display Objects
Gr ap hic s- E di t or s
Graphics-paths
Graphics-primitives, '
G r ap hics - 5 up P 0 r t
Graphics-Views
In t erf ac e - Brow s e r
Interface-changes
In terf ac e - De bu g g e r
Interface-File Model

ell:ample

Pen' ,". '"
Point
Quadrangle
Rectangle

insn.nce creation
eHamples ", I

"Draws a ~ral in black. with a pen that is 4 pixels wide,"
"t;ffld MUF"

I bic I
bic +- Pen new.
bic mask: Form black.
bic defaultNib: 4.
bic combinationRule: Form under.
1 to: 50 do: [:i I bic go; iX 4. bic turn: 891

A Smalltalk Tutorial

eHample'

Figure 2-4. Pen Example Code in System Browser Window.

5. To run this example of Smalltalk code, look at the end of the code and find the expression
"Pen example". The expression Pen example may look familiar to you. It is the same
expression you ran in the workspace, but it has been enclosed in double quotes within the
method to tum it into a comment.

6. Select just the Smalltalk expression Pen example, without the quotes. There are two
ways to do this:

• Put the arrow cursor point between the opening quote and the first letter. Click the
left mouse button twice without moving the mouse. This is called double-clicking.

• Put the arrow cursor point between the opening quote and the first letter. Hold the
left mouse button down while you run the cursor to the right until you reach the last
letter. Then release the button. This is the technique of selection you learned
previously.

You can use the second technique to select an item or items. Double-clicking works on
any expression within delimiters, such as quotation marks or parentheses. For

Tektronix Smalltalk Users 2-11

A Smalltalk Tutorial

double-clicking to work, you must place the arrow cursor point immediately after the initial
delimiter, if there are any spaces between it and the first character on the line.

7. With just Pen example highlighted, press and hold the middle mouse button. A pop-up
menu appears. Execute the command do it. The Small talk system understands the
expression and executes it just as it did in the workspace.

8. The square spiral shape appears on the display again.

9. Restore the display.

Altering the Code

1. Examine the Pen example method code. You can pick out certain constants that affect
certain aspects of the figure. Use the left mouse button to select the 4 in the expression bic
defaultNib: 4. Now type 6. The expression changes to bic defaultNib: 6. Make sure you
have changed just the 4 to a 6 and not the period that ends the expression.

2. Press the middle mouse button. Find the command accept in the pop-up menu. (It is
below do it.) Select accept. The Smalltalk busy cursor appears for a few seconds. You
have just recompiled the example method to enter the altered code into the Smalltalk
system. You are now ready to do it and observe the result of your change.

3. Select Pen example again, and then do it. The lines of the figure are thicker than before.

Communicating with the Operating System

2-12

You can communicate with the operating system from within Small talk to look at the
contents of a directory or files, write text in a window to a file, or get the contents of a file.
To do this, use the File List window. See Figure 2-5.

A Smalltalk Tutorial

opyright (c) 1983 Xerox corp.
All rights reserved.

copyright (c) 1984, 1985, 1986, 1987 Tektronix, Inc.
All rights reserved.

Create File System
"Mal<I thl smalltall< homl dir
subdirlCtorils."

•

Disk + FileDirectory directory
ctHOME), '/smalltalk'.

"Mal<I thl smalltall< homl dir
smalltall< was inl)ol<ld."

again
undo
copy
cut

paste
doit

print it
"ile it in

get
Disk + FileDirectory currentD i -cl..l.ury.

absolutl path to one of your

os originalEnvironment at:

currlnt dirlctory at the time

"Set up smalltall< source and changes files."
sourceFiles + Array new: 2.
sourceFiles at: 1 put:

(Fil eSt ream old Fil e Nam e d: 0 Ssm all tal kl ni ti aliz at i 0 nO ire c tor y
name, '"/standardsources.version', smalltalk versionNumber).
sourceFiles at: 2 put:

(Filestream oldFileNamed: 'pic.changes').
(SourceFiles at: 1) readonly.

Figure 2-5. File List Window.

1. If you need to, restore the display.

3440-5

2. If you want a bigger File List, choose the command frame from the right mouse button
menu, and frame the window exactly as you did when you got a new workspace.

3. The File List window has three panes.

• The top pane accepts file or directory names for you to access. You can use wildcard
characters to access all names that match a specific pattern.

• The middle pane lists the contents of a directory and allows you to choose a specific
file to access.

• The bottom pane gives you information about a file, including its contents.

Tektronix Smalltalk Users 2-13

A Smalltalk Tutorial

At this point, the top pane contains the path lusrlliblsmalltalkljilelnl*. The asterisk * is the
Small talk wildcard character standing for all possible character combinations. You are
therefore getting a list of all the files in that directory.

The middle pane contains the list of the files in that directory. The first file name,
/usrlliblsmalltalkljilelnl README, is selected.

The contents of the README file is displayed in the bottom pane. Take a moment to read
it now, if you wish.

4. In the list of files, you see a file named Animation.st. Click the left button on it to select
it. In the bottom pane, you see a message about the size of the file and the time it was
created. It looks something like this:

8140 bytes
18 March 1986
6:18:03 pm

5. From the list (middle) pane, execute get contents from the middle button menu. The
bottom pane fills with the information in the file. There is a short message at the
beginning, explaining how to use the file. Read it now.

6. Now execute file in from the same pop-up menu. This reads the contents of the file into
your image, so the code is available for you to use.

7. Look near the top left of your screen, and you see the animation executing. Move the
cursor around various parts of your screen. Move it into and out of the animation area.
Move it next to the transparent box.

8. When you are finished with the animation, click any mouse button while the cursor is in
view. The animation stops. Restore the display.

9. Select the line reading WindowNode example from the middle pane of the FileList
window, and execute do it, to execute the animation again. Because the code has been
filed into the system, it is now available to you by executing this expression from any
window or workspace.

10. Now move the cursor into the top pane of the File List window and activate the window by
clicking the left mouse button within it. Click the left mouse button twice more within the
top pane, at the beginning of the pathname, and you will select the entire line.

11. To replace the text in the top pane, type lusrl libl smalltalkl*. Or instead, simply select the
portion that reads jileln, and cut it. Then press the middle mouse button and choose
accept form the menu. The middle pane of the window fills with the names of files in the
directory you have chosen to list. Select several items and look at the information in the
bottom pane. Some of the items are directories.

12. Choose the name system; this is a directory.

13. Choose the middle mouse button menu command list contents. The bottom pane now
contains a list of the files in that directory.

2-14

A Smalltalk Tutorial

14. From the middle mouse button menu, choose the command spawn. A second File List
window opens. Frame it as you framed the new workspace. This File List window is
identical to the one you have just been working with, and can be manipulated in the same
way. When you are done with it, choose the right mouse button menu command close and
go back to the original File List window.

Writing Files Out to the Operating System

Suppose that you would like to create a new file and put some text from the Small talk system into
it.

1. In the top pane of the File List window, select the entire line and replace it by typing the
name of the new file. Type junkfile. Then select the middle mouse button menu command
accept. You should see junkfile appear in the middle pane.

2. Now selectjunkfile in the middle pane with the left mouse button. The message
- new file or directory - appears in the bottom pane. (If it does not, try another file

name until you can be sure you have a truly new file name.)

3. Select the - new file or directory - message and cut it from the window. Now
activate the System Workspace window and select all of the text in that window. You can
do this by going to the very beginning of the text and clicking the left mouse. button twice.
Select the copy command from the middle mouse button menu.

4. Go back to the bottom pane of the File List window and activate it. Select the paste
command from the middle mouse button menu. The entire text from the System
Workspace window is now in the File List window. Unselect it by clicking the left mouse
button once. Then use the scroll bar to verify that this occurred.

5. Still in the bottom pane of the File List window, press the middle mouse button and look
near the bottom of the pop-up menu. Choose the command put. It takes a short time for
the Smalltalk system to write the contents of the File List window into the file called
junkfile. While it is doing so, you will see the cursor change to the writing pencil cursor.

6. To verify this, go to the middle pane and unselect junkfile by clicking on it. Now select
junkfile again. The bottom pane of the File List window now contains information about
the size of the file.

7. To inspect the contents of the file, go to the middle pane and use the middle mouse button
to select the command get contents. This also takes a short time. While Smalltalk is
getting the contents, you will see the cursor change to the reading spectacles cursor. The
contents of junkfile reappears in the bottom pane of the File List window. Font
information is not preserved after the text has been written out and read back into the
system.

Tektronix Smalltalk Users 2-15

A SmalItalk Tutorial

Manipulating Windows

The right mouse button menu contains commands to manipulate windows, instead of the contents
of windows.

1. Choose a window on the display and activate it by clicking with the left mouse button.
Now, press and hold the right mouse button. You will see this menu:

title
style
under
move
frame

collapse
repaint
close

• title allows you to change the title of a window.

• style allows you to choose a text style for your window. This may take some time.
(See Section 7, Fonts in Smalltalk, for further discussion of text styles.)

• under allows you to bring a window into view if it is under another window.
(Windows overlapping each other are arranged in an internal stack. under pops the
window on the bottom of the stack to the top. Your cursor must be directly over the
hidden window, however')

• move allows you to change the position of a window on the display.

• frame allows you to change the size and position of a window.

• collapse allows you to delete from the screen all of a window except its title tab,
which you can then move.

• repaint allows you to redisplay the contents of the current window.

• close allows you to remove a window entirely from the display. This discards all of
the unsaved contents of the window.

Experiment with each of these commands until you feel reasonably comfortable with their
operation.

Saving Your Image

Saving your work in Smalltalk is called making a snapshot, or saving your image. It is called
making a snapshot because, when you next invoke your image, your screen appears exactly the
way it appeared when you took the snapshot, except for any unscheduled graphics, such as the
results of the Pen example, which you may have been running.

1. To save your work, move the cursor to the gray background.

2. Choose the middle mouse button command save.

3. A window pops up with the default file name, image. This is called a prompter window.

2-16

You can accept the default name by entering a carriage return. Or you can enter your own
file name.

A Smalltalk Tutorial

If you change your mind and do not wish to save your work at this point, cut the text in the
prompter window and simply enter a carriage return. The prompter disappears and you can
continue working.

4. Save the image file as image, or enter your own image file name. The system now makes
the snapshot of your current image. During the process of writing your image file, you win
see the hourglass cursor. This cursor means the system is busy. You may also see the
garbage collection cursor again. When the system has finished saving the image file, you
will see the arrow cursor again. This means the system is ready for input.

It is a good idea to take a snapshot of your image regularly throughout the day, before breaks or
after you have accomplished an important task. That way, your work is backed up if the system
fails.

Exiting Smalltalk

There are three ways to exit Smalltalk.

• You can save you work and then quit.

• You can quit without saving your work.

• You can interrupt the process in the event of a system failure.

1. To save your work and then quit, move the cursor to the gray background.

2. Choose the middle mouse button command save, then quit.

3. A window pops up with a default file name. This is called a prompter window. You can
accept the default name by entering a carriage return. Or you can enter your own file
name.

4. Save the image file as image, or enter your own image file name. The system now makes
the snapshot of your current image. During the process of writing your image file, you will
see the hourglass cursor. This cursor means the system is busy . You may also see the
garbage collector cursor again. When the system has finished saving the image file, you
will be back at the operating system level.

After you are through with this tutorial session, you may want to quit without saving your work.

1. To quit without saving your work, move the cursor to the gray background. Use the middle
mouse button menu command quit. If you are ready to quit, do so now.

2. A confirmation window pops up, giving you the opportunity to change your mind and save
your work. You have three choices. You can:

• Quit without saving your work.

• Save your work, then quit.

• Continue working and neither save nor quit.

Choose quit, without saving. You will be back at the operating system level.

If the system fails, or a serious bug in one of your programs corrupts the image, you may not be
able to access the keyboard or any of the pop-up menus. If you can get no other input, you need
the emergency exit from Smalltalk.

Tektronix SmaJItalk Users 2-17

A SmalItalk Tutorial

CAUTION

If you use the method described below to exit Smalltalk,
you will lose all the work you have done since you last
saved your image, and you will have to go through a
~peciaZ. recovery procedure. This procedure is discussed
In SectIon 6.

1. Press the keys <SHIFf>-<CTRL>-<BREAK> simultaneously. You have now accessed the
terminal emulator.

2. Press the keys <CTRL>-<C> simultaneously. You are now back at the operating system
level.

3. If you are working on a small screen, and do not see any change on it after pressing these
keys, try panning all the way to the left and top of the virtual display. (Panning still
works') The operating system prompt is visible in a small portion of the display near the
upper left.

4. Enter the operating system command clear to clear the display.

5. Enter the operating system command conset default to get rid of the Smalltalk cursor.

Invoking Your Image File

After you have completed your first Smalltalk session, two new files reside in the directory from
which you invoked Small talk.

• Your image file holds the Small talk image that incorporates all the work you have saved.
The default name is image, unless you chose to name it something else when you saved
the file from within Smalltalk.

• The file image.changes holds the changes you have made to the standard image. This
file is useful for recovering from a system or application failure. (See Section 6, Change
Management, for further information on change management and crash recovery.)

When you wish to take up where you left off with your work, invoke your snapshot image file,
image (or whatever name you used when you saved the file).

1. At the operating system level, change to the directory from which you invoked Small talk.

2. Then type image instead of smalltalk at the operating system prompt.

You have now finished this tutorial and are ready to go on to more advanced Small talk concepts.
Congratulations!

2-18

Section 3

Smalltalk Concepts

OVERVIEW
This section consists of three main subsections.

The Small talk Language Presents concepts basic to the Smalltalk programming language. It
also explains Smalltalk language syntax. Finally, it gives an
example of Small talk code, showing how these concepts and syntax
are used to program in Smalltalk.

Programming Tools Presents commonly used tools available to the programmer in
Smalltalk. The System Browser, workspaces, the System
Transcript, the System Workspace, the File List, inspectors, and
debuggers are all discussed.

Extending the Language Consists of two tutorials. The first teaches you how to add a new
method to an existing class. The second teaches you how to add a
new class to the system.

THE SMALL TALK LANGUAGE
The Smalltalk-80 system is an interactive programming environment. The system is designed so
that the keyboard is used only to type text. Other actions are done using the mouse buttons and
pop-up menus. The system is a visual one, providing immediate feedback and allowing you to
work without having to remember commands.

Key Concepts
Everything in Smalltalk is an object. An object has some private memory called instance
variables. It also has access to a set of operations called methods.

A message is a request for an object to carry out one of its operations. A message is sent to a
receiver. The receiver of the message carries out the specified operation by performing a method
associated with that message. A result is always returned. The default result is the receiver itself.

Messages are similar to procedure calls; they specify an operation to perform. Unlike procedure
calls, however, the operation is specified indirectly by a message name. The name of a message
is called a selector. The interpretation of a message selector is determined by the class of an
object, rather than by a procedure name with a single interpretation. The same message selector
may specify different methods in objects of different classes.

A class is a special kind of object. Each class contains a template for creating a specific kind of
object. An individual object described by a class is called an instance of that class. The class
specifies the messages that instances of that class respond to, and in what manner they respond.

Tektronix Smalltalk Users 3-1

Smalltalk Concepts

Classes are arranged in a hierarchy. Classes are defined as subclasses of other classes. Methods
defined for instances of a class are inherited by instances of its subclasses.

Syntax
This subsection gives the basic rules of Smalltalk syntax. See Goldberg and Robson, Chapter 18,
for more information on this subject.

Objects and messages are referred to by alphanumeric identifiers.

A method is a sequence of expressions. There are four types of expressions:

• Identifiers (variables)

• Literals (constants)

• Messages

• Blocks

Identifiers

Identifiers identify regions of private memory reserved for the storage of instance variable values.
Examples of identifiers are: foo, aDate, page23, Smalltalk. Their values depend on their
context. They must begin with a letter: lowercase for local variables and instances of a class,
uppercase for global variables and class names.

A local variable is known only to the method, block, or workspace within which it is used. A
global variable is known throughout Smalltalk. Smalltalk is a global variable.

Five pseudovariables are used frequently:

• nil

• true

• false

• self

• super

Undefined objects are initialized to nil. true and false are Boolean objects. The values of self
and super depend on their context. You cannot reassign the values of these pseudovariables.

Literals

Literals can be numbers, characters, strings, symbols, or arrays. Examples of numbers are: 3, -4,
2.5, 1 e6, 8r23, 9/5. Fractions are true rational numbers. Instances of class Fraction have two
instance variables: a numerator and a denominator.

Characters are prefixed with a $. $A means "the character 'uppercase A'." Other examples of
characters are: $a, $@, $7, $$.

Strings consist of one or more characters, delimited by single quotes. Because single quotes are
string delimiters, single quotes within strings must be doubled. Examples of strings are:
'abc 123' 'You can"t do that.'.

3-2

Smalltalk Concepts

Symbols are prefaced with a #, except when embedded within an array. Examples of symbols
are: #July, #at:put:, #Fraction.

An array is delimited by parentheses. It is also preceded with a #, except when embedded within
other arrays. Examples of arrays are: #(1 23) #(June, July, August) #('yes' 'no' 'maybe').

Smalltalk has two special literals, the leftward arrow f- and the upward arrow i. A special key
on the keyboard shows these symbols. The leftward arrow f- is the assignment operator. It
assigns values to variables. For example:

aNum f- 2 + 3.
aString f- 'Hello, world!'.
aDate f- Date today.

The upward arrow i returns the value of the expression. For example:

i $a asUppercase.

Messages

A message is implemented by a method. A method is composed of Smalltalk code. It is referred
to by a message selector. The same message selector can be used by different classes. Objects of
different classes may respond to a given message selector by executing different methods.
Methods always return a value.

There are three kinds of message selectors. They are:

• Unary

• Binary

• Keyword

Unary messages take no arguments. Examples of unary messages are given below. Explanations
of the examples are to the right.

2 sqrt Two, compute your square root and return its value.

$A class $A, what class are you an instance of?

Sensor waitButton Sensor, answer the coordinates of the point where the mouse button is
pressed.

#(a b c) size Array, how big are you?

Rectangle fromUser Rectangle, get your upper left and lower right comer coordinates from
the user.

Binary messages take one argument. Examples of binary messages are given below.
Explanations of the examples are to the right.

Tektronix Smalltalk Users

Send the object 3 the message + with the argument 4.
This is equivalent to: 3, add 4 to yourself.

Send the object 2 the message * with the argument 3,
equivalent to: 2, multiply yourself by 3.

3-3

Smalltalk Concepts

500@225

'Four score and ','7 years ago'

The @ message creates points, when sent to a number.
This line sends the object 500 the message @ with the
argument 225. The receiver is the x coordinate, and the
argument is the y coordinate. The general formula is
x@y.

The comma message is sent to a string with an argument
of another string. The value returned is the
concatenation of both strings.

Send the object a the message less than or equals with
the argument b. This message returns either true or
false.

Keyword messages are more complex. They are composed of any number of words, each
followed by a colon. A keyword message takes as many arguments as it has words. Examples of
keyword messages are given below. In each example, the keyword message is italicized so you
can see its components. Explanations of the examples follow.

anArray at:1 put:' Joe'
The keyword message at:put: puts the specified string,
, Joe', at the specified index 1 .

aDate newDay: 15 month: #July year: 87
The keyword message newDay:month:year: makes an instance of
class Date.

In Smalltalk, all message selectors begin with a lowercase letter.

Blocks

Blocks are sets of deferred expressions somewhat like methods. They are delimited by square
brackets. For example:

[index ~ index + 1.
anArray at: index put: 0]

Blocks can have block variables. A block variable exists during the execution of the block. Each
block variable is preceded with a colon. It is separated from the first expression of the block by a
vertical bar. For example:

summation ~ [:anArray I total + anArray size]

Creating a block does not cause it to be executed. Blocks are executed as a whole when the block
is evaluated. A block is evaluated when it is sent the message value or value:. For example:

ba ~ [c ~ 3 + 4]
is evaluated when the expression

ba value
is executed.

Because of this deferred evaluation, blocks may be used to select which of several sets of
expressions get executed. For example:

3-4

Smalltalk Concepts

anArray size = index
if True: [sum f- 0]
if False: [sum f- 1]

Blocks can be used when you want to repeat sets of expressions, either conditionally or
unconditionally. For example:

sum f- O.
index f- 1.
[index <= anArray size]

whileTrue:

result f- 1.

[sum f- sum + (anArray at: index).
index f- index + 1]

7 timesRepeat:
[result f- result + 2.718]

A block returns the value of the last expression evaluated. For example:

sum f- anArray size = index
ifTrue: [0]
if False: [1]

The expression above returns zero if the first statement is true, and one if it is false.

Parsing Expressions
Unary messages are parsed from left to right. Binary messages are also parsed from left to right,
unlike many other programming languages. In Smalltalk, x + y * z is equivalent to (x + y) * z.
Unary messages take precedence over binary messages. That is, 1 + 2 sqrt is equivalent to 1 +
(2 sqrt).

Keyword messages of more than one word, for example at:put:, are parsed as one message.
Binary messages take precedence over keyword messages. That is, anArray at: 20 put: average
+ bias is the same as anArray at: 20 put: (average + bias), where average and bias are
variable identifiers.

Expressions within parentheses are evaluated before expressions outside parentheses.

Spaces, tabs, and carriage returns may be used within an expression. A period separates
expressions. The last expression in a block or method should not have a period. If an expression
which returns a value is terminated with a period, a syntax error results.

Tektronix Smalltalk Users 3-5

Smalltalk Concepts

The same object may be sent a sequence of messages. In that case, you need not repeat the
object's name. The messages may instead be cascaded: that is, separated by semicolons. For
example, the expression:

aPen down; turn: 90; go: 50; turn: 90; go: 150.

sends the same instance of class Pen, called aPen, five messages in a specific order. They are:

1. Set yourself down on the drawing surface.

2. Tum 90 degrees in a clockwise direction.

3. Go 50 pixels.

4. Tum 90 degrees again.

5. Go 150 pixels.

The following list summarizes these parsing rules.

• Unary messages take precedence over binary messages.

• Binary messages take precedence over keyword messages.

• Messages of the same kind are parsed left to right.

• Expressions within parentheses are evaluated before expressions outside parentheses.

An Example of Smalltalk Code
In the tutorial in Section 2 you saw the code for the Pen example. The code draws a spiral on the
display. You may wish to examine this code more carefully now. First, here is the entire
example.

example

"Draws a spiral in black with a pen that is 4 pixels wide. "

"Pen example"

I bic I
bic ~ Pen new.
bic mask: Form black.
bic defaultNib: 4.
bic combinationRule: Form under.
1 to: 50 do: [:i I bic go: i*4. bic turn: 89]

Now each component of the method is explained individually.

example
This is the message selector for the method.

"Draws a spiral in black with a pen that is 4 pixels wide."
This is the comment. A comment line is included immediately following the message selector in

3-6

Smalltalk Concepts

many of the methods found in the Small talk system. This initial comment summarizes the
method. Comments are enclosed in double quotation marks and may be interspersed anywhere in
the code. A blank line conventionally follows the initial comment.

"Pen example"
This is another comment. However, within the quotes, it is also a valid expression in Smalltalk.
The message selector example selects this particular method. Thus, the code within the quotes
says to send the example message to the class Pen. Pen looks for a message selector named
example, finds it, and executes the code you are examining. A commented Small talk expression
at the beginning or end of a method is frequently used to show how to execute the method.

I bic I
This line declares the temporary variables, enclosed between vertical bars. Each is separated by a
space from the next one. Here bic is the instance of the class Pen performing the drawing, and is
the only temporary variable. Temporary variables conventionally begin with a lowercase letter.

bic ~ Pen new.
This line assigns bic to be a new instance of class Pen. Pen is a class of objects that behave like
plotter pens. Pens understand how to change direction, lift up or press down on the drawing
surface, and move.

new is the instance creation message sent to the class.

bic mask: Form black.
This line specifies that a black form be the mask for the pen bic.

black is a message sent to the class Form. An instance of class Form is an array of bits
representing a rectangular region on the display. The Smalltalk system supports a bitmap in
which pixels are either black or white. Form black creates a black instance of a Form.

The mask: message specifies that a black image be the mask for bic. A mask can be used to
create halftone shades (such as the gray background of the display) by combining patterns of
black and white pixels. You can think of a mask as corresponding to the shade of ink to use for
the pen. In this case, the ink is black.

bic defaultNib: 4.
This line gives bic a nib four pixels wide.

4 is an object that the message defaultNib: takes as an argument. Any instance of class Pen
understands the message defaultNib:.

bic combinationRule: Form under.
This line specifies what drawing mode the pen will use to draw on the display.

There are sixteen possible rules for combining source and destination pixels in order to draw on a
surface. Each of these rules is assigned an integer from zero to 15. Several of the more useful
ones have also been given message selectors (in this case, under) that are understood by class
Form.

combinationRule: is a message that takes, as an argument, an integer specifying a drawing
mode. The expression following combinationRule: must therefore evaluate to an integer. Form
under returns the integer 7, specifying the combination rule for the inclusive OR. If either the
source or the destination pixels were on, the destination pixel will be turned on. So the pen's
black mask is OR' ed with the existing image.

Tektronix Smalltalk Users 3-7

Smalltalk Concepts

1 to: 50 do: [:i I bic go: i*4. bic turn: 89]
This line loops through the block fifty times. The block draws with the pen, and then changes its
direction.

The block has one block variable, i. This is the index of the iteration loop.

There are two expression within this block.

bic go: i*4

bic turn: 89

bic go: i*4 moves bic in its current direction i*4 pixels. Because it is down when it moves, it
draws. And because the index constantly increases, bic draws an ever-longer line as it loops.
Each go: invocation draws one edge of the spiral.

bic turn: 89 alters the pen's direction by 89 degrees. This gives the spiral its squarish shape.

PROGRAMMING TOOLS
When you invoke the standard Smalltalk image, a number of windows appear on your screen.
Other windows can be opened as needed. Each window is a useful programming tool. This
subsection describes some of the tools available to the Smalltalk user.

System Browser
The System Browser is one of the most commonly used tools in the Smalltalk system. With it,
you can access Smalltalk source code.

The System Browser is used to access hierarchically organized information about the classes in
the system and the messages they define. It has five major panes: four small ones at the top and
one large one below. From left to right, the top panes are:

• The class category pane.

• The class pane.

• The message protocol pane.

• The message selector pane.

The large pane below is called the text pane.

The class category and message protocol panes (the first and third panes) are aids to organization.
They do not have any counterparts in Smalltalk code. They are there to help people remember
where to find a particular class or message.

The class and message selector panes access Smalltalk code.

The text pane holds the source code for the classes, instances of classes, and the methods they
execute. It also holds code templates that can be edited to add new classes and methods.
Small talk does not visibly distinguish between code which was in the standard image, and code
which you have added.

3-8

Smalltalk Concepts

From each pane, sub-browsers can be spawned as needed to access information at any level of
detail.

Workspaces
Workspaces are the scratch pads of the Smalltalk system. Workspaces allow you to try out code
as you are developing it. In workspaces, temporary variables need not be declared.

Each workspace is independent of all other windows in the system. Any objects assigned to
temporary variables in a workspace are local to that workspace. They are lost when the
workspace is closed.

System Transcript
The System Transcript is a window used to log system messages. It is comparable to the stdout
device on UNIX computer systems. It records your actions when you make a snapshot, for
example, or when you file a piece of code in from a file residing on the disk. When you perform
such an action, it is frequently useful to watch your System Transcript to verify that things are
proceeding properly. If they are not, you may get informative error messages. When developing
code, you should always keep a System Transcript window open and unoccluded by other
windows.

System Workspace
The System Workspace contains many messages of general utility to Smalltalk users. These
messages can be selected and executed as in an ordinary workspace. Unlike an ordinary
workspace, however, the System Workspace can be closed and reopened; its contents are saved.

In the System Workspace, for example, there is code to change the text style of all your windows,
code to customize your image and changes files, or templates to help you find all objects that
implement a specified message. Even if you are familiar with previous versions of Smalltalk,
spend a few minutes to familiarize yourself with the tools available from the System Workspace.
They change somewhat from one release to the next.

File List
The File List is an interface to the file system. It allows you to access your directories and files
as you would from the operating system. It also allows you to file in source code to modify your
image, or to edit files and put the modified contents back.

Inspectors
Any Smalltalk object understands the message inspect. This message opens an inspector on the
object. After framing the window, you can examine the contents of all instance variables and
inde.xable fields of the object. For example, opening an inspector on an instance of a Collection
allows you to examine the size, order, and contents of that collection.

Tektronix Smalltalk Users 3-9

Smalltalk Concepts

Oebuggers
The debugger is a Smalltalk tool helpful for debugging code. It shows you where execution of a
process was interrupted.

The debugger is divided into two panes and two inspectors. The top pane is the list of message
sends, with the most recent one at the top. When you select one, its method is shown in the
second pane. The part of the method that was executing when the process was interrupted is
highlighted. From there, you can step through the method one expression at a time.

The left inspector allows you to inspect the object receiving the message shown above, and the
value of each of its instance variables. The right inspector allows you to inspect the current value
of the arguments and any temporary variables for the method shown in the pane above.

For more information on the debugger, see Goldberg, Chapter 19.

EXTENDING THE LANGUAGE
Most work in Smalltalk involves adding new classes and methods. Using the concepts and
programming tools presented so far in this section, you are now ready to add first a new method
to an existing class, and then a new class.

The information below is presented in tutorial format. Tum on and log into your machine,
invoke your image (or the standard image, if you prefer), and execute the steps as they are
presented. This tutorial presumes that you have completed the previous tutorial in Section 2, or
that you are comfortable with the user interface from your own explorations.

Both tutorials in this section consistently distinguish between typing and entering text. To type
text is to use the keyboard to cause the characters to appear on the screen. To enter text is to
perform the additional step of pressing <RETURN>, or using the accept menu item from the
middle button menu, to enter your text into the system.

Adding a New Method
In this tutorial, you will add a new method to class String. This method will allow it to reverse
the case of any alphabetic characters in a string. You will first open a workspace to write and test
your code. After the code is debugged to your satisfaction, you will then install it in the
Smalltalk system using the System Browser.

Works paces are a good place to test new code, for several reasons.

• You can execute expressions one at a time, testing your new code incrementally.

• Temporary variables need not be explicitly declared, but they persist for the lifetime of the
workspace and can be inspected after the code has been executed.

• You do not need to decide where, in the Smalltalk hierarchy, to place your new method
until you have finished its design.

When you add code to the System Browser, you will discover a feature implemented to protect
you from losing work. When you are adding text to the text pane, until the text is accepted you

3-10

Smalltalk Concepts

are unable to move around in the System Browser. If you try, the text pane flashes at you, and a
notifier window pops up to warn you of loss of work if you change the view within the pane.
Therefore, if you need to see other system code as you work, use the middle button menu
command spawn to spawn another browser.

If you wish to see other system code as you work, some useful template expressions are available
in the System Workspace. The expression Smalltalk browseAlllmplementorsOf:
#messageSelector under the heading Inquiry is particularly useful. Select the word
messageSelector and replace it with any message selector you wish to inquire about. Leave the
sign, however. Then select the entire expression and execute do it. A new browser pops up,
with two panes. The top pane contains a list of all objects that implement the message selector in
question. If you select one of the lines in the top pane, the bottom pane fills with the method
implemented by that object when it receives that message.

If you wish to take a break during this tutorial, or clean up your display, you can use the right
button mouse menu to retitle your workspace and collapse it. Choose title and enter a new title in
the window that pops up. Then choose collapse, and move the title tab out of the way for the
moment. When you wish to resume your work, select the title tab and execute frame from the
right button menu to get your workspace back again.

1. Open a workspace.

2. Type the following code in the workspace:

oldString f-- 'JFMamJJasonD'.
newString f-- String new: oldString size.
1 to: oldString size do:

[:index I
aCharacter f-- oldString at: index.
aCharacter isLowercase

if True: [newString at: index put: aCharacter asUppercase]
if False: [newString at: index put: aCharacter asLowercase]].

This is the algorithm that performs the case reversal on the characters of the string. A
line-by-line explanation follows.

oldString f-- 'JFMamJJasonD'.
This expression creates a string to experiment with. Type in any string you like. Be sure to
enclose it within single quotation marks. It is assigned by the leftward arrow to the
temporary variable oldString.

newString f-- String new: oldString size.
This expression creates a new instance of class String. It is the same size as the original
string. It is assigned by the leftward arrow to the temporary variable newString.

1 to: oldString size do:
This is the beginning of an iteration loop. The loop index starts at 1 and continues until it
reaches the size of the old string.

The receiver of the message to:do: is an integer. Integers understand this message because
they are subclasses of Number, from which they inherit the method. If you wish to examine
the code for the message to:do: in Number, go to the System Browser, select Numeric­
Numbers in the class category pane, and Number in the class pane. In the bottom of the
class pane, you see the words class and instance. If you select class, the two rightmost
panes allow you to access messages sent to the class only. If you select instance, the two

Tektronix Smalltalk Users 3-11

Smalltalk Concepts

rightmost panes allow you to select messages sent to instances of the class. Select
instance, and select intervals in the message protocol pane. Select to:do: in the message
selector pane and look at the code that appears in the text pane. This code evaluates the
following block for the interval specified.

[:index I
The square bracket indicates the start of a block. This block needs a block variable, an
index, to go through the loop. The index is not needed after the block is executed, however,
so the variable need not be declared at the beginning of the method.

aCharacter: oldString at: index.
At this point, we need another temporary variable, aCharacter, to hold each character of
the string as we execute the loop.

aCharacter isLowercase
if True: []
if False: []

isLowercase is a message that all instances of class Character understand. The statement
evaluates to a Boolean true or false. ifTrue:ifFalse: is a message which these Boolean
objects understand. It requires blocks as arguments. The appropriate block is executed,
depending on whether the character at that index is upper- or lowercase.

ifTrue: [newString at: index put: aCharacter asUppercase]
if False: [newString at: index put: aCharacter asLowercasell.
These lines perform the case reversal. If the character is lowercase, the corresponding
element of the new string is made uppercase, and vice-versa. All instances of class
Character understand the messages asUppercase and asLowercase. All instances of
the class String understand the message at: put:. If you want to see the code for this
message, look for it in the System Browser under the category Collections-Text, and the
class String.

The second line also ends, with the second closing square bracket, the block that started
after 1 to: oldString size do:.

In the System Browser, examine the methods for the messages being sent in this example
until you feel comfortable with them.

3. Now test the new code. Select the entire set of expressions and execute do it.

4. If you received any error messages as you performed the last step, the system will draw
your attention to the part of the code where execution was interrupted. Choose the abort
command, and check to see that you have typed in the colons and periods as they appear in
the code above. Then try again.

5. Type newString, select it, and execute print it to see the value stored in newString. The
results of the print it command appear, selected, in your workspace. (New text appears
selected to make it easy for you to cut, to clean up your workspace.)

The new string reverses the case of the alphabetic characters in your old string.
Nonalphabetic characters remain unchanged. If you look in the System Browser at the
methods that implement the messages asUppercase and asLowercase, you see why.

6. Try your new code on as many strings as you wish. When you are satisfied that the code
works as it should, you are ready to add the new method to the system. This is done in the
System Browser.

3-12

Smalltalk Concepts

7. Keeping your workspace open, activate the System Browser.

8. In the Class Category pane, the leftmost pane of the System Browser, choose the category
Collections-Text.

9. In the class pane, choose the class String.

10. Select instance in the bottom of the class pane.

11. In the message protocol pane, bring up the middle button menu. It gives you the
opportunity to add a new protocol. Execute add protocol.

12. A fill-in-the-blank window pops up. Enter the new protocol name reversing case. The
text pane below now fills with a code template for you to edit.

13. In the bottom text pane, select message selector and argument names and replace it
with the name of your new message selector - in this case, type asReverseCase. For
this method, which has a unary selector, no argument names are required.

14. Select the string comment stating purpose of message. If you double-click the left
mouse button between the opening quotation mark and the first character (or between the
last character and the closing quotation mark), you can replace the entire sentence, but
leave the quotes. Type: Answer a string whose characters reverse the case of the
receiver.

15. Select the words temporary variable names between the vertical bars. Small talk code
encloses temporary variable names in this way, with one or more spaces between each
variable. In the algorithm you just tested in the workspace, there were two temporary
variables: newString and aCharacter. (They did not need to be specifically declared in
the workspace, but they must be now that the code is being added to the system.) Type the
two temporary variable names.

16. Now select the word statements and cut it. Here is where you can copy the algorithm
from your workspace, but you will have to make a few changes.

17. Go back to your workspace, and select all the text in it. Choose copy from the middle
button menu.

18. Go back to the text pane in the System Browser. Choose paste from the middle button
menu. Paste the text after the temporary variable declarations.

19. Delete the line that assigns a string to the variable oldString. The method you are now
completing is used when the message asReverseCase is sent to any string. The receiver
of the message takes the place of the variable oldString.

20. In Smalltalk, the receiver of a message can be referred to within a method by using the
pseudovariable self. Replace the remaining three incidences of oldString with self.

21. Put the upward arrow i before the last line, the line that says newString. You are
specifying that your method return the value of the va"riable newString. An expression
that returns a value must always be the last expression in the method or block, and must not
be followed with a period. The last line now reads: i newString

Tektronix Smalltalk Us~rs 3-13

Smalltalk Concepts

22. From the text pane in the System Browser, execute the middle button menu command
accept. When you do this, several things happen.

• The compiler evaluates the new code.

• Your new message selector asReverseCase appears in the message pane.

• Your method is now a part of the Small talk system. No distinction is made between
code you have added and code that was already in the system.

• Any new instance of the System Browser you create from now on will include the
new method.

If you wish to modify the method, make the desired changes and execute accept again.
You may repeat this process as many times as you require.

23. Go back to the workspace (or make a new workspace) and type a new string. Be sure to
enclose it in single quotes.

24. Now send it the message asReverseCase. For example, type:
'i LIKE sMALL TALK: asReverseCase

25. Select the expression you have just typed and execute print it. The new string appears,
selected, in your workspace. Try it with as many strings as you wish.

26. If you save your image now, the new method is permanently added to it. If you do not
want to add this new method to your image, quit now, without saving your work.

Adding a New Class
Classes in Smalltalk are situated in a hierarchy. Class Object is the root superclass. All other
classes are subclasses of class Object.

In the tutorial above, you were able to send messages like to:do: to an integer because it had
inherited the ability to respond to that message from its superclass. Such inheritance is a general
characteristic of Smalltalk. Inheritance means:

• Any variable defined for a class is accessible to all instances of its subclasses.

• Any method implemented in a class is available to all ins.tances of its subclasses.

• Any message selector responded to by instances of a class is responded to by all instances
of its subclasses.

When you make a new subclass, you add to the system:

3-14

• A new class name.

• Additional class and instance variables (optionally).

• Additional methods (optionally). Existing methods may be overridden, thereby effectively
removing them from the subclass.

Smalltalk Concepts

Each subclass progressively refines the purpose and capabilities of its superclass. Refinement
means:

• Each subclass takes maximum advantage of code in common with its superclass.

• Each subclass adds only those methods which are its specific reason for existing.

The Smalltalk language uses inheritance and refinement as powerful programming concepts.
When you add a new class, consider carefully where, in the Smalltalk hierarchy, it should be
placed. A sensitive and intelligent use of the existing hierarchy gives you powerful leverage.
Your class can inherit a surprising amount of useful code, thus minimizing the number of new
methods you must write for it.

It is a good idea, therefore, to look through the System Browser at some of the classes in the
standard image. Classes can be grouped in several conceptual categories:

• Arithmetic classes. Examples of such classes include Integer, Random, Small Integer,
Fraction, Float.

• Data Structure classes. Examples of such classes include Set, Bag, LinkedList,
Dictionary, Array, OrderedColiection.

• Programming Environment classes. Examples of such classes include Compiler,
Compiled Method.

• Graphics classes. Examples of such classes include Point, Line, Rectangle, Pen, Form.

• User Interface classes. Examples of such classes include Cursor, View, PopUpMenu,
Browser.

• Communications classes. Examples of such classes include FileStream, FileDirectory,
UTekSystemCal1.

The middle button menu in the Class pane of the System Browser includes the command spawn
hierarchy. You can select any class and execute this command to get a full list of its super- and
subclasses.

In this tutorial, you add a new class, Event. This class stores certain information about events. In
this tutorial, for the sake of simplicity, Event is a subclass of class Object. At the end of the
tutorial, when the process is more familiar to you, a suggestion is provided for another new class.
This class will reside lower in the hierarchy.

This tutorial presumes that you have completed the previous tutorial in this section. In this
tutorial, you will perform the following steps.

1. Add the new class to the system.

2. Add instance protocol to the class. Instance protocol allows you to get the values of
instance variables, to change those values, and to perform any other operations upon them
that you require.

3. Add class protocol to the system. Class protocol allows you to create new instances of the
class, and to perform other functions with the class as you may require.

4. Test the new class. In a workspace, create new instances of the class and use the instance
protocol you have written to make sure that the code functions as you intended.

Ordinarily, you will test the new code in a workspace before adding it to the system. However,
for the sake of brevity, start your work in the System Browser.

Tektronix Smalltalk Users 3-15

Smalltalk Concepts

Define the New Class

The next steps add the class Event to the system.

1. Activate the System Browser.

2. Execute the middle button menu command add category. A window pops up, allowing
you to enter your new category name. Enter the category name Sequenceable-Events.
Ordinarily, you will select the appropriate class category in the pane. If one does not exist,
create it as specified above.

3. A class definition template appears in the bottom pane. Edit it. Replace
NameOfSuperciass with Object.

4. Replace NameOfClass with Event. Leave the # sign because the class definition
message expects a symbol.

5. Select instVarName1 instVarName2 inside the single quotes (you can doubleclick at the
beginning or end of the string) and type the instance variable names starting Date title
duration. Separate them with spaces.

6. Select ClassVarName1 ClassVarName2 inside the single quotes and cut them. This
class has no class variables. Leave the two single quotes, with no space between them.

7. This class uses no pool dictionaries, and the category is already filled in for you. Accept
the text with the middle button menu.

When you are done, your text pane will look like this.

Object subclass: #Event
instanceVariableNames: 'starting Date title duration'
classVariableNames: "
poolDictionaries: "
category: 'Sequenceable-Events'

The new class is now created, and must be commented.

8. The name Event appears in the class pane. Select instance, below. The middle button
menu in the class pane includes the command comment. Execute it. The text pane fills
with a new template.

9. Replace This class has not yet been commented with Instances of this class
represent an event lasting a certain number of days. Accept the text.

Add New Instance Protocol

You are now ready to add instance protocol: the message categories for instances of your new
class.

1. Make sure that instance is still selected in the bottom of the class pane. Choose add
protocol in the middle button menu of the message protocol pane.

2. Enter accessing. You will write methods to get and return the values of instance
variables.

3-16

Smalltalk Concepts

3. You now have more choices in the middle button pop-up menu in the message protocol
pane. Choose add protocol again and enter comparing. You will write a method to
compare events.

4. Repeat the procedure and enter private. You will write methods to change the values of
instance variables. This protocol is called private because it should not be called by
objects belonging to other classes.

5. The new instance protocols appear in the message protocol pane. The names you have
entered for them are conventional Smalltalk instance protocol names. Select accessing.
A method template appears in the text pane.

6. Edit the template. Replace the words message selector and argument names with
starti ng Date.

7. Replace the generic comment with Return the starting date of the receiver. Make sure
it is enclosed within double quotes.

8. Cut the line for the temporary variables, as this method needs none.

9. Replace the word statements with the line:
i starting Date

The text pane now looks like this:

starting Date
.. Return the starting date of the receiver."

i starting Date

10. Accept the text. The new message selector appears in the message selector pane, and the
method has been added to the system. You can now use the text pane you have edited as
your new template for adding the rest of the accessing protocol.

11. Add accessing methods for duration and title which return the duration and the title of
the event, respectively. Use the text pane for startingDate and replace the message
selector and object returned.

12. Add an accessing method for completionDate. Since completion date can be computed
from the duration and the starting date, a separate instance variable is not required. Use the
statement i starting Date add Days: duration
The method add Days: is inherited from class Date.

13. When you have added all four instance methods, go back to the message protocol pane and
select private.

14. Edit the template. Replace the words message selector and argument names with
startingDate: aDate. Notice the colon at the end of the message selector, indicating it is a
keyword message.

15. Replace the generic comment with Change the starting date of the receiver. Make sure
it is enclosed within double quotes.

16. Cut the line for the temporary variables.

17. Replace the word statements with the line:
starting Date ~ aDate

Tektronix Smalltalk Users 3-17

Smalltalk Concepts

The text pane now looks like this:

starting Date: aDate
"Change the starting date of the receiver."

starting Date f- aDate

18. Accept the text. The new message selector appears in the fourth pane.

19. Repeat the same process for duration and title. duration gets numberOfDays for its
argument, and title gets aStringe

20. Now select comparing in the message protocol pane.

21. Edit the template. Replace the words message selector and argument names with
overlaps: anEvent.

22. Replace the generic comment with Returns a boolean - true if the receiver's time
span overlaps the time span of an event, false otherwise.

23. Replace temporary variable names with the variables earlier later. Make sure they are
enclosed within vertical bars.

24. Replace the word statements with the lines:

self starting Date < anEvent startingDate
if True:

[earlier f- self.
later f- anEvent]

if False:
[earlier f- anEvent.
later f- self].

i earlier completionDate >= later starting Date

Accept the text. Now the method for implementing the message overlaps: has been added to
the system.

Add New Class Protocol

So far, the protocol you've been adding is for instances of class Event. Each class requires class
protocol as well. Class protocol includes such categories as instance creation, so that each class
can create new instances of itself.

1. Select class in the bottom of the class pane, and add the protocol instance creation.
Proceed as you did with instance protocol creation.

2. Edit the template in the text pane. Replace the words

message selector and argument names

with

newDay: aDay month: monthSymbol year: aYear title: aString duration: anlnteger

3. Replace the generic comment with Create a new event with title aString and a
duration of anlnteger number of days.

3-18

4. Replace temporary variable names with the variable an Event.

5. Replace the word statements with the lines:

anEvent ~ self new.
anEvent starting Date: (Date

newDay: aDay
month: monthSymbol
year: aYear).

anEvent title: aString.
anEvent duration: numberOfDays.
i anEvent

Smalltalk Concepts

Accept the text. Now the method for creating a new instance of class Event has been added to
the system.

Test the New Class

The new class and methods have been added to the system. Now you can make sure that
everything works as you wish.

1. Open a workspace.

2. Create a few events. For example, type:
theAAAI ~ Event newDay: 13 month: #July year: 1987 title: '1987 AAAI'

duration:5.

birthday ~ Event newDay: 15 month: #July year: 1987 title: 'birthday' duration:1.

3. Select each new event and execute do it.

4. If you would like to see the new events you created, type and execute theAAAI inspect.

5. Check to see if one event overlaps another. Type:
theAAAI overlaps: birthday

6. Select this line and execute print it.

You have now added a new class to the Smalltalk system, and confirmed its functionality. If you
feel ready for a more challenging exercise, you can use this new code to create another new class.
Call it EventList. Create it as a subclass of SortedCollection. This class is under the category
Collections-Sequenceable in the System Browser. In this way, you will inherit the instance
variables first and last, and indexable fields. Each indexable field can hold an event.

1. Write one class method to create a new instance of EventList.

2. Write instance methods to:

• Add an event.

• Delete an event.

• Sort the events in the event list by starting date, completion date, title, and duration.

• Find and print all overlapping events.

• Find and print all events that overlap a specified event.

Tektronix Smalltalk Users 3-19

Smalltalk Concepts

After you have learned about the Model-View-Controller paradigm, you may wish to use this
code as the basis of a personal calendar.

You have now learned how to add your own code to the Small talk system. Congratulations!

3-20

Section 4

User Interface Features

INTRODUCTION
This section documents the user interface features that are standard in Tektronix Smalltalk.
There are ways to interrupt processes, use the menus, manipulate files, edit text, and control the
display.

Objectives
The user interface concepts are most easily learned by trying them out for yourself in Smalltalk.
The interrupts and exits provide a good way to explore Smalltalk methods in action or debug
executing code. The menus can be explored by entering the appropriate window, bringing up the
menu, and trying out the appropriate selection.

GLOBAL KEY COMBINATIONS
These key combinations have special meaning to Small talk and are available globally whenever
Smalltalk is running.

Interrupts and Exits
The following key combinations give you the ability to interrupt running Smalltalk code and
provide ways to exit immediately.

The first key combination, <CTRL-C>, creates an interrupt and allows you to invoke the
debugger.

The next key combination, <CTRL-SHIFf-C>, is useful when menus don't work and you can't
execute code in a window. <CTRL-SHIFf-C> invokes the Emergency Evaluator, allowing you
to type expressions to restore control or exit Smalltalk. Some useful expressions are listed below.

If the keyboard and mouse are unresponsive, it may be necessary to press
<CTRL-SHIFf -BREAK>, followed by a <CTRL-C>. This forces an immediate exit from
Small talk (without creating any new Small talk processes) and returns control to the UTek
environment.

Tektronix Smalltalk Users 4-1

User Interface Features

CTRL-C
This is useful for aborting an action (e.g. getting rid of a prompter) or debugging code that is
running. When you press <CTRL> and <C> at the same time, it interrupts the current process
and causes a User Interrupt notifier to be displayed. This notifier displays the execution stack as
a sequence of message sends. To terminate the process, choose the right-button command close.

To continue the process, choose the middle-button command proceed. To invoke the debugger,
choose the middle-button command debug. This brings up a debugger view with facilities for
examining the execution stack and correcting the methods and data. (For more information on
the Debugger, refer to Section 5 of this manual and Section 19 of the Goldberg book')

CTRL-SHIFT-C
Pressing <CTRL>, <SHIff>, and <C> at the same time invokes the Emergency Evaluator,
which appears as a black rectangle at the top of the screen with the words "Emergency
Evaluator (priority 5) - - type an expression terminated by ESC". All of the code you type
until you press <ESC> will be executed at Priority 5, allowing your code to override user
interface processes. Although simple editing using the <BACKSPACE> key is allowed, the
Paragraph Editor is not active.

Here are some useful expressions. Choose the one appropriate for your situation:

<ESC>
Pressing this key immediately returns you to the calling Smalltalk process.

Delay initialize <ESC>
Use this when the timing management is broken.

ScheduledControliers searchForActiveControlier <ESC>
This looks for the window that wants to be active. This is useful for restarting
the search for an active window.

Smalltalk snapshotAs: 'imageName' thenQuit: true <ESC>
This saves the current image as the specified imageName then quits Smalltalk.

Smalltalk quit <ESC>
Control returns to the UTek operating system. The image is not saved.

CTRL-SHIFT -BREAK
This is a last resort that exits Smalltalk without saving. If you have tried <CTRL-C> and
<CTRL-SHIFf -C>, and neither works, (due to buggy user code or a system error) it is probably
time to leave Smalltalk.

Press <CTRL>, <SHIff>, and <BREAK> at the same time. This control key combination is
trapped by the UTek kernel and calls the UTek terminal emulator. You should see the terminal
emulator cursor (if it does not appear, try panning all the way to the left and top of the display to
make sure the cursor comes into view). Smalltalk is still active, so press <CTRL-C> to
terminate Smalltalk and return control to the UTek operating system.

4-2

User Interface Features

You can clear the screen with following UTek commands:

clear This clears the display.

conset default This clears the Smalltalk cursor.

<CTRL-SHIFT -BREAK> preserves the UTek file system, and should be used in preference to
rebooting your machine. Exiting Smalltalk in this way may leave recoverable code in your
changes file. Refer to Restoring Lost Image Information, in Section 6.

CAUTION

If the system doesn /t rem.ond to
<CTRL-SHIFT-BREAK> followed Ql <CTRL-C> it
may be necessary to press the <POWER> or <RESET>
button. This is a drastic measure, since resetting power
could destroy your files.

Cursor Center Key
The cursor center key <P12> moves the cursor to the center of the visible viewport. Since
systems with pannable (640 x 480) screens have virtual screens that are much larger than the
visible screen, it is possible for the cursor to "disappear" off-screen. Pressing <P12> recenters the
cursor.

If the cursor is unlinked when the key is pressed, it is re-linked. A portion of the cursor form is
normally constrained to be within the bounds of the virtual screen. But, depending upon the
shape of the cursor within its 16 by 16 pixel cursor Form, you may not always be able to see it.

MENUS
In Smalltalk, menus are the interface for finding information, and they are usually created in
response to pressing a mouse button.

The left button on the mouse is frequently referred to as the "red" button, and it selects
infonnation.

The middle ("yellow") button creates menus of messages which can be sent to the currently active
view. These messages edit the contents of the view.

The right ("blue") button creates menus of messages that modify the view itself, not the contents.

System Menu
This menu is available when the cursor is over the gray background (not in a window) and the
middle button is pressed.

Tektronix Smalltalk Users 4-3

User Interface Features

restore display
copy display
exit project

project
file list

browser
workspace

system transcript
system workspace

as shell
save
quit

When you press and hold down the middle button the following choices are shown:

restore display

copy display

exit project

This redraws the display, removing everything that is not known to the
control manager. The cursor is reset to the default slanted arrow cursor.

This copies the screen bitmap to a file. You will be prompted for the file
name.

This file can be sent to a printer, and is in the same format as an object of
the class Form.

Projects are collections of views of information; several can co-exist at
once. Each active project pre-empts the entire display screen.

To create a project, select project on this menu. If you then select enter
with the middle button, you will be inside the project. These two
commands can be repeated to nest projects within one another. When you
select exit project, you move up one level. When you are at the level of
the topmost project, exit project has the same effect as restore display.

project This creates a new project view. You will be asked to frame the project
view before it appears.

file list This creates a new FileList browser. You will be asked to frame the
FileList browser before it appears.

browser This creates a new System Browser. The System Browser allows you
access hierarchy-organized information about the Small talk system. You
will be asked to frame the System Browser before it appears.

workspace This creates a blank area named Workspace, where text can be edited.
You will be asked to frame the Workspace before it appears.

system transcript This creates a view of the System Transcript. You will be asked to frame
the view before it appears.

system workspace This creates a view of the System Workspace. This contains message
evaluations that you can edit and evaluate, dealing with file access, system
queries, crash recovery, and a number of other subjects. You will be asked
to frame the view before it appears.

as Shell This pauses Smalltalk and allows the user to communicate with a shell by
using a terminal emulator. If the calling shell is C-Shell, Smalltalk is

4-4

save

quit

User Interface Features

suspended and control is returned to the calling program. OthelWise, a new
shell is created.

After selecting OS shell, if you are not sure which shell you are using, type
ps -x. This will list the processes you are running. Your shell will listed as
csh (C-Shell) or sh (Bourne shell).

If you've been using the C-shell, typing jobs will show Smalltalk as a
stopped job under the name that originally invoked it. If it is the only
stopped job, typing fg will bring it back into the foreground, restoring
Smalltalk as it was. If there is more than one stopped job, typing fg by
itself will simply restore the most recently stopped job, which may not be
Small talk. Look at the jobs listing to find the bracketed job number [nJ and
type fg %n. This will restore Small talk.

If you are not using the C-Shell, type exit or press <CTRL-D> to restore
Smalltalk. This tenninates the new shell and returns control to Small talk.

This saves the current image of the Smalltalk system in a file. You will be
prompted for the file name. Pressing <RETURN> uses the default file
shown in the prompter.

This exits Small talk. You will be asked if you wish to save your image, or
if you want to return to Smalltalk.

Standard System View - Blue Button Menu
This menu is available within all standard windows when the right button is pressed.

title
style
under
move
frame

collapse
repaint
close

The choices on this menu manipulate the windows themselves, controlling the size, shape,
position, and fonts within the active window. When you press and hold down the right button the
following choices are shown:

title

style

This allows you to retitle the currently active window; for example, you could
retitle Workspace to FilllnTheBlank.

This displays another menu which lets you select the font used within the current
window (including subviews). It shows more text if you're willing to read 8- and
lO-point characters, or shows text with serifs if that's what you like to read. The
available text styles are detennined by the contents of StyleManager. See the
System Workspace for an example of how to add text styles to your image.

Tektronix Smalltalk Users 4-5

User Interface Features

under

move

frame

collapse

repaint

close

If the selected fonts have not been already loaded into your image, it may take a
minute or so to load them from the disk.

This releases control from the current window and brings the window underneath
into view. The new top window will become the active window.

Windows overlapping each other are arranged in an internal stack. under pops
the window on the bottom of the stack to the top. The cursor must be directly
over the hidden window.

This allows you to change the position but not the size of the current window.
When you initially move an uncollapsed window, the "top-left" cursor appears,
which you can move around the screen. When it is in the desired position,
depress the left mouse button and the window will be redrawn.

This changes the size and position of the window by letting you switch between
positioning the top-left and bottom-right corners.

When you initially frame a window, the "top-left" cursor appears, which you can
move around the screen. When it is in the desired position, press the mouse
button and hold. The "bottom-right" cursor will appear. You now have two
options:

The first is to remove your finger from the left mouse button; this selects the
rectangle just framed.

The second option is for you to lift your finger from the mouse for an instant and
immediately press it again. This moves the cursor back to the top-left comer of
the rectangle, allowing you to re-adjust that comer. Lifting your finger and
immediately pressing it again returns you to the bottom-right comer. You can
toggle comers as long as you want. As soon as you lift your finger and leave it
up the position and size of the window will be fixed.

(The duration of the "instant" is made by an instance of class Delay, which is
created in the StandardSystemView method getFrame. There is a constant in
this method that specifies the waiting time at 250 milliseconds')

This deletes from the screen all of a window except its title tab, which can then
be moved. The contents of the window can be seen again by selecting frame.

This redisplays the contents of the current window.

This removes a window entirely from the display and deletes its structure.

The contents of the window are discarded. close will discard the code in a
workspace unless you file it away.

FileList Menu
An instance of FileList is created and opened by selecting the System Menu command file list.
The FileList opens up with three subviews.

4-6

file-name-pattern (top)
File-name Subview

(middle)

Text Subview
(bottom)

User lntelface Features

Typing text in the top sub view specifies a pattern. This pattern may consist of completely or
incompletely specified names that mayor many not exist in the UTek file system.

The sequence of characters in the pattern may contain the wildcard characters <*> or <#>. <*>
matches any number of characters and <#> matches any single character. These wildcard
characters can only be used in the file name itself and not in the path name. For example,
lusr/lib/smalltalklfilelnl* and lusr/lib/smalltalkifileln/workspaceFileOut.st are acceptable, but
lusr/lib/small* Ijunkfile is not acceptable.

When you choose the middle-button command accept in the top sub view, the middle (file-name)
subview displays all the names of the files or directories that matched the pattern in the top
subview. When you select a name from the middle subview, a comment is displayed in the
bottom (text) subview.

If you selected an existing file, the size and last modification date and time are displayed. If you
selected a directory, a message states that the selected file is a directory. If a new file name was
accepted in the top subview of the FileList, the comment - new file or directory - is displayed.

If the selected name is an existing file, the following menu appears when you press the middle
mouse button:

get contents
file in
spawn

copy name
copy file
rename
remove

get contents This displays the contents of the selected file in the text subview of the FileList
browser.

file in This retrieves the entire contents of the selected file, reading and evaluating the
text according to the file format for class definitions, methods, and expressions.

A useful set of Small talk applications to "file in" are found in the UTek path
lusr/lib/smalltalklfilelnl*. You are invited to browse these and add the ones you
like to your image.

spawn This creates a new view that displays the contents of the file. This is similar to
the get contents selection, with the difference that the file contents are
displayed in a new File Model view. This simplifies cut-and-paste across
multiple windows.

Tektronix Smalltalk Users 4-7

User Interface Features

copy name This copies the text of the file name into the text editor buffer. Although it is not
visible, it is ready to be "pasted" into other text views.

copy file This copies the selected file into a destination and name of your choice. A
prompter will appear, allowing you to type in a new file name (and path, if
necessary). Finish by pressing <RETURN> or choosing the middle-button
command accept. If you type an unacceptable file name, or no file name at all,
a confirmer will appear to determine whether you want to try again.

rename This changes the name of the selected file. A prompter will appear with the file
name of the selected file. Enter the new file name, press <RETURN>, and the
menu of file names will be updated.

remove This deletes the file name from the directory. A confirmer will appear to
determine if you really want to remove the selected file. Choose yes to remove
the file.

If the selected name is a directory, the choices offered are a little different, as shown below:

list contents
spawn

copy name
rename
remove

list contents This lists the names of files within the directory in the bottom pane.

spawn This opens a new FileList browser on all the files within the selected directory.
The directory name appears in the top (pattern) subview.

copy name This copies the text of the directory name into the text editor buffer. Although it
is not visible, it is ready to be "pasted" into other text views.

rename This changes the name of the selected directory. A prompter will appear with the
directory name of the selected directory. Enter the new directory name, press
<RETURN >, and the FileList browser will be updated.

remove This removes the directory if it is empty. If it is not, a notifier appears saying
that the directory cannot be removed because it is not empty. If this happens,
select spawn and then remove the files within the directory.

If a new name is accepted in the top pane of a FileList and that name is selected in the middle
pane, the middle button menu is:

copy name
rename
new file

new directory

copy name This copies the text of the new file name into the text editor buffer. Although it
is not visible, it is ready to be "pasted" into other text views.

rename This changes the name of the selected file. A prompter will appear with the file
name of the selected file. Enter the new file name, press <RETURN>, and the
FileList Browser will be updated.

4-8

new file

User Interface Features

This creates an empty file with the specified name and replaces the current
middle button menu with the normal middle button menu for files (see above). A
new file can also be created by putting text in the bottom pane of the FileList
browser.

new directory This creates a new directory with the specified name. The middle button menu is
switched to the directory menu.

PARAGRAPH EDITOR
The Paragraph Editor uses commands from the middle-button mouse menu and commands from
the keyboard. It is the primary tool to copy, cut, paste, execute, or accept text in the Smalltalk
system. It uses the concept of a selected area of text which then has menu-selected operations
performed upon it. The first part of this subsection describes the various means of selecting areas
of text; the second part describes the various operations which can be done with this text.

Text Selection
Text is selected by using the moving the mouse and using the left button. When you move the
mouse into a view of text and click the left button, a caret C) appears at the cursor location or at
the gap just before a character. To create a zero-width selection, click once between characters.

If you want to paste text, click the left button once at the intended insert point, then depress the
middle button and select paste from the menu.

To select an area of text, move the cursor to your intended starting point. Depress the left button.
Continue to hold the left button down while you move the cursor to end of the area you intend to
select. (This activity is called dragging or draw through). When you reach the end, release the
left button. The selected text is highlighted.

This text can then be copied, cut, evaluated, or stored by pressing the middle button and choosing
a selection from the menu. It can also be cut by pressing the <RUB OUT> key.

Double-clicking (quickly clicking the left button while holding the mouse still) can select areas of
different size, depending on the location of the cursor.

To select:

a single word

a line of text

Double-click within the word. If the word is not at the edge of a delimiter,
you can also double-click slightly before or after the word.

Double-click at the beginning of the line (following the newline), or at the
end of line (preceding the newline). This only applies if the lines are
delimited by newlines.

all text in the view Double-click at the beginning or end of the text in the view.

delimited text Double-click slightly before the left delimiter or slightly after the right
delimiter. (Delimiters will not be included in the selected area.)

Acceptable pairs of delimiters are: [] () < > "" "

Tektronix Smalllalk Users 4-9

User Interface Features

To select all text that has been typed since the last mouse click, press <ESC>.

To select just slightly outside the boundary of the view, drag the cursor to the top or bottom of
the view; automatic text scrolling will begin. Still holding the left button depressed, momentarily
move the mouse in the opposite direction of the automatic scroll; this will stop the text from
scrolling. Move the cursor to the intended selection boundary and release the left button; the
selection will take effect.

Extended Selection
Extended selection is the ability to dynamically increase or decrease the amount of selected text;
one of its uses is selecting regions of text that exceed the size of the window. Another use is to
"fine-tune" a selected area that might have initially missed a few characters.

Select an initial area of text by dragging the mouse (moving the mouse with the left button
depressed) over an area of text. Release the left button. The selected area appears in reverse
video. To alter the boundaries of this area, move the cursor either within the selected area or
outside of it, click <SHIff -LeftButton>, and the selected area will either decrease or increase,
depending on the location of the new selection. If you drag with the <SHIff -LeftButton>
depressed, you can resize an existing selection.

Once you depress just the <LeftButton> by itself, though, the selected area will become
unselected and you will be starting a new selection.

Editing Key Combinations
Pressing <CTRL> and another key at the same time will perform different operations on selected
text. These include cuts, inserting delimiters, and changes to the font. Two other keys, <RUB
OUT> and <BACKSPACE>, perform a cut on the selected text.

RUB OUT This will cut the selected text, deleting it from the view and placing it in the
text editor buffer.

BACKSPACE Cuts the selected text and the character preceding the selection.

CTRL W Cuts the selected text and the word preceding the caret ("). This is useful for
erasing the previous word while typing.

CTRL D Inserts the current date.

CTRL T Inserts the text if True.

CTRL F Inserts the text if False.

CTRL B The selected text is emphasized as boldfaced.

CTRL SHIFT B The selected text is changed to non-boldfaced.

CTRLI The selected text is emphasized as italic.

CTRL SHIFT I This selected text is changed to non-italic.

4-10

User Interface Features

CTRLX The selected text is emphasized as bold italic.

CTRL SHIFT X The selected text is changed to non-bold non-italic.

CTRL E Clears the emphasis (bold, italic, or both) from the selected text.

CTRL- The selected is underlined.

CTRL SHIFT - The selected text is changed to non-underlined.

CTRL 1

CTRL2

CTRL3

CTRL4

CTRLS

CTRL6

CTRL7

CTRL8

CTRL9

CTRLO

CTRL [

CTRL(

CTRL<

CTRL"

CTRL'

This changes the font of the selected text. The system default for CTRL 0 is
Pellucida San-Serif 8-point. The following CTRL 2 through CTRL 0 key
combinations change the font of the selected text to the StrikeFonts listed
below.

To view the default StrikeFonts, open the System Workspace, look under
Globals, find and select TextConstants, and make the middle-button
selection inspect it. When the Dictionary view opens, select
DefaultTextStyles and make the middle-button selection inspect. When the
TextStyle view opens, select fontArray. The right-hand sub view of
TextStyle will display the array of StrikeFonts in the order shown here,
starting at CTRL 1, going through CTRL 9, and ending with CTRL O.

Pellucida San-Serif 8-point bold.

Pellucida San-Serif 8-point italic.

Pellucida San-Serif 8-point bold italic.

Pellucida San-Serif lO-point.

Pellucida San-Serif lO-point bold.

Pellucida San-Serif lO-point italic.

Pellucida San-Serif lO-point bold italic.

Pellucida San-Serif 8-point underline.

Pellucida San-Serif 8-point bold underline.

If the selection is currently bounded by the [] delimiter pair, they are
removed. If the selection is not bounded by this delimiter pair, they are
inserted.

() delimiter pair, as above.

< > delimiter pair, as above.

" " delimiter pair, as above.

, , delimiter pair, as above.

Text Editing Menu
Pressing the middle button when the cursor is in a view of editable text creates the Text Editing
menu. These commands operate on the selected text in the view.

Tektronix Smalltalk Users 4-11

User Interface Features

Most of these menu items are available in views of editable text. Some of these are available in
specialized views.

again

undo

copy

cut

do it

print it

inspect it

accept

cancel

again
undo
copy
cut

paste
do it

print it
inspect it
accept
cancel

This does the last copy, cut, or paste command' again.

This will undo the effect of the last command (if it can be reversed).

This copies the currently selected text in the text editor buffer.

This deletes the currently selected text and places it in the text editor buffer.

This evaluates the currently selected text as a Small talk expression. Syntax
errors are checked during initial compilation.

This evaluates the currently selected text as a Smalltalk expression. In addition,
the result of the evaluation is appended to the text immediately after the original
selected text. The evaluation result then becomes the current selection.

This opens an inspector on the evaluated result of the selected code. This has the
same effect as appending the word inspect to your code, and then choosing do
it. (This command only applies to workspace views.)

This stores the currently selected text. The meaning of this is context-sensitive.

If the text was created in a workspace, it is stored; if the cancel command is
used later, this stored text replaces the current text.

If the text was created in a browser, it is compiled. The compiled method is
stored if the compilation is successful.

This restores the text in the view to the condition of the last accept command. If
no accept command has been given, the text is restored to the condition it was in
when it first appeared in the view.

file out is an unsupported Smalltalk "goodie" which you can "file-in" to your image. It is in the
UTek path /usr/lib/smalltalklfile In/workspace FileOut.st. After it is "filed-in", it appears as a
menu selection on the text editing menu when the cursor is in a workspace.

file out opens a prompter, which asks you for a new file name for your workspace contents. After
you type in your file name, it copies the workspace contents into the new file, and appends code
that will create a new workspace when it is "filed in" again. file out is a simple way to store a
workspace in a file.

4-12

User Interface Features

WINDOWS
Windows, or views, provide areas on the screen to view information. These windows can be
moved, resized, collapsed to their title tabs, moved over each other, or deleted. If the view on the
screen is too small to display an entire document, scroll bars can be used to "scroll" the view
through the document.

Scrolling
When you move the cursor beyond the left part of List and Text views, the cursor enters the scroll
area. The scroll area provides information about the view and provides the ability to "scroll" the
view.

The gray marker approximately represents the viewable part of the contents. The size of the
marker compared to the size of the scroll bar represents the percentage of the contents that are
viewable; similarly, the position of the marker represents the location of the view.

I
3440-6

Figure 4-1. Scroll Next (relative move),

For example, enter the System Workspace and move the cursor into the scroll bar, where it
becomes an arrow. Move it slightly until it becomes an up-pointing arrow. (See Fig. 4-1). If you
move this up-pointing arrow to the very bottom of the scroll bar, then click any button, the text
will move one page forward.

Tektronix Smalltalk Users 4-13

User Interface Features

I
I

3440-7

Figure 4-2. Scroll Previous (relative move).

Next, move the arrow left until it points downward, keeping it a the bottom of the scroll bar. (See
Fig. 4-2). Click any button. The text will move one page backward (where you started). When
the arrow points up or down, it will move relative to the current location. If the arrow is at the
bottom of the scroll bar (and pointing vertically) it will make the largest possible relative move -
one page. As it gets closer to the top, the relative moves get progressively smaller, ending with
one-line moves when the arrow is at the top of the scroll bar.

Continuous scrolling is available when you are making relative moves; just hold the button down
while the arrow is pointing up or down. The closer is the cursor is to the bottom of the scroll bar,
the faster your text will scroll.

4-14

User Interface Features

3440-8

Figure 4-3. Jump (absolute move).

Next, move the cursor slightly so that a right-pointing arrow appears. The arrow now indicates
the desired location of the text in the workspace, with the arrow itself representing the center of
the text. This arrow controls absolute motion. If the right-pointing arrow is at the top of the
scroll bar and you click any button, you'll see the top of the workspace. If you move the arrow to
the middle of the scroll bar and click the left button again, you'll see the middle of the
workspace.

If you put the right-pointing arrow into the gray marker and hold the button down, you can drag
the text dynamically as you move the marker up or down.

Background
If you want to change the background behind your windows, you need to change the form which
defines the background. Open a workspace and enter the following line:

ScreenControlier background From User

Select this line and make the middle-button menu selection do it. This lets you select any area of
the screen, making it a Form, which is then tiled repeatedly until it fills the entire screen
background. Selecting do it on ScreenControlier white Background, then ScreenControlier
darkGrayBackground, then ScreenControlier GrayBackground lets you explore different
screen backgrounds.

If you to explore further, open the System Browser and look in the ScreenControlier class
(within the Interface-Support class category), which defines the backGroundFromUser
method.

Tektronix Smalltalk Users 4-15

User Interface Features

Repainting Windows
Windows do not unnecessarily repaint themselves. When a window is moved or closed, the parts
of the visible windows immediately underneath it are repainted. The repaint menu item in the
right button menu causes a window to be repainted.

By default, each time a window is de-emphasized, the visible contents of the window are saved in
a form. This form allows the window to be displayed quickly the next time it becomes active.
(The System Transcript window is an exception to this convention since it can be modified while
inactive.) Since each window has a corresponding form, the existence of many windows can use a
considerable amount of memory. An option is provided to turn off the default storage of these
forms. To exercise this option, execute the expression Smalltalk saveSpace: true.

In conjunction with the saving of forms for windows is the redisplay of parts of inacti ve windows
which have been obscured. For instance, if one window were covering a second window and the
first window is closed, then the part of the second window which was previously covered by the
first window would be redisplayed. The saved form for the first window is used to redisplay the
obscured portion. (In the case of redisplay of the System Transcript window, the obscured
portions are colored white).

The existence of many obscured windows needing to be redisplayed can be time consuming. An
option is provided to tum off the default redisplay of obscured windows. To exercise this option,
execute the expression Smalltalk frills: false.

Several combinations of these two options exist. One may wish to save the window forms in
order to display windows quickly, but not want to redisplay obscured windows. In this case, set
both saveSpace and frills to false.

Another reasonable combination is to redisplay obscured windows but not save forms. Since the
forms associated with windows are not saved, obscured parts of windows are filled in with a
white form. This combination nlay be used by people who want to limit memory usage and yet
want to know explicitly where all the windows are. In this case both saveS pace and frills would
be true.

To return the system to its default state, execute the two expressions frills: true and saveSpace:
false. You can find the alternate forms of these expressions in the System Workspace under
Globals.

Programmer's Notes for Repainting Windows
A number of methods implement this functionality. Here are some of the more important
methods - in the StandardSystemView class (Interface-Support class category):

• deEmphasize (deEmphasizing message category)

• deleteDisplayForm (saved window form message category)

• displayForm

• saveDisplayForm

• setStatusDisplayForm

4-16

User [ntelface Features

• validDisplayForm

and the ControlManager class (Interface-Framework class category):

• discardCachedDisplayForms (initialize-release message category)

• restoreWithin: (displaying message category)

and the View class (Interface-Framework class category):

• deEmphasize:andClip: (deEmphasizing message category)

• deEmphasizeView:andClip:

Some applications which implement new selection functionality tied to the top view (like the
Paragraph Editor) may need to implement their version of these methods (although such
applications are rarely implemented) - in the View class (Interface-Framework class category):

• deEmphasize:andClip: (deEmphasizing message category)

• de Emphasize View

• deEmphasizeView:andClip:

Other applications which update passively scheduled windows (not the active one) will want to
use the update: message in the View class (Interface-Framework class category).

• update: (updating message category)

The update: message throws away the saved bitmap of the windows. This is useful when the
bitmap has become obsolete and needs to be replaced, but the window has not become active.

Tektronix SmaIItalk Users 4-17

Section 5

Programming in Smalltalk

INTRODUCTION
This section covers several topics of interest to Small talk programmers. If you have programmed
in Smalltalk on another machine, it explains some of the characteristics of the Tektronix
Smalltalk programming environment. If you are just beginning to program in Smalltalk, it
discusses several tools and philosophical issues that can have an effect on your approach to the
language.

WORKSPACE VARIABLES
Workspace variables are variables that are automatically created whenever you assign a value to
a name in a workspace. For example, if you type the following code into a workspace and do it,
it creates a new object and assigns it to the variable named myObject.

myObject ~ Object new

You can now manipulate the newly created workspace variable, myObject, from the workspace
in which it is created. It will persist until you close that workspace, then disappear. Workspace
variables are local to the workspace in which you create them - they are not accessible from
outside the workspace.

Most other text panes in the Smalltalk system use temporary variables. For example, the text
pane of an inspector does not have workspace variables and you must use temporary variables.
Temporary variables persist only for the duration of the do it for which they are defined.

A workspace is the safest place to experiment in Small talk. With workspace variables, you can
use a workspace to prototype code and execute and test it reasonably safely. Once your code
works, you can move it into the system browser and modify it to integrate it into your image.

USING THE SYSTEM BROWSER
The System Browser is your primary tool for reading and developing code in the Smalltalk
system. You use it to browse (read source code), alter source code, and add new code to your
image. The browser is a sophisticated, easy to use, tool that can save many hours of effort.

Creating New System Browsers
You create a new instance of a system browser by placing the cursor on the screen background
and selecting the browser item from the middle button menu. Some Smalltalk programmers
often have several system browsers open at once, one to incorporate new code into the system
and others to browse source that they may borrow or modify and re-use.

Tektronix Smalltalk Users 5-1

Programming in Smalltalk

Anatomy of the System Browser
The System Browser is a five-paned window. The four panes across the top give you hierarchical
access to Smalltalk source. The larger pane at the bottom is a text pane where the system
displays source code and where you can write and modify source code. (Although the text pane
is similar to a workspace, it's not a substitute for a workspace - it doesn't have workspace
variables.) From left to right, the four smaller panes across the top of the System Browser are:

• The Category Pane

• The Class Pane

• The Protocol Pane

• The Message Selector (or Method) Pane

Each pane has associated with it a middle mouse button menu that lets you perform operations
appropriate to that pane. In addition, there is a two position switch marked "class" and "instance"
in the bottom of the Class pane. Let's examine each pane and what the menu for each lets you
do.

The Category Pane
The Category Pane gives you a listing of all categories in the Small talk system. Categories are a
user convenience - they are supported to help you organize classes and applications. See the
later discussion on programming style for hints on how to use categories.

If you have no items selected in the Category Pane when you press the middle mouse button, you
get an abbreviated menu. The selections act like those of the full menu. The full menu for the
Category Pane is:

file out
print out
spawn

add category
rename
remove
update

edit

The menu selections for the Category Pane are:

file out Writes a file suitable for filing into another Smalltalk image. The file name
has the extension ".st" after the name of the category and contains the classes
in that category. For example, if you have a category named MyCategory
selected, you will create a file named MyCategory.st. When you file in
MyCategory.st into another image and update the browser, you'll have added
the entire category to the new image.

print out Writes a formatted text file containing the Small talk source for the selected
item. Printing out MyCategory writes a file named MyCategory.pp.

5-2

Programming in Smalltalk

spawn Spawns a category browser on the selected category. A category browser is
similar to the system browser but has only classes in the selected category
available. It does not have a category pane.

add category Pops up a fi11-in-the-blank. When you enter your new category name and
accept or press the carriage return, the name is added to the Category pane. If
you have a category selected, the new category is added after the selected
category. If no category is selected, the new category is added at the end of
the category list.

rename Pops up a fi11-in-the-blank with the selected category highlighted. Enter the
new category name to rename the category.

remove Removes the selected category and all its classes.

update Tells the browser to redisplay its original model (Smalltalk). If you are using
more than one browser and make changes to your image in one, other browser
will not reflect the changes until you use update. If you file in code, it may
not be reflected until you use update.

edit all Puts the list of categories into the text pane for you to edit.

The Class Pane
The class pane shows a list of classes in the category selected in the Category Pane. If you have
no classes selected, the pane will flash rather than give you a middle button menu.

In the bottom of the Class pane is a switchView pane with the labels class and instance. The
active selection is highlighted. When the class selector is highlighted, the browser is examining
the messages understood by the class as a whole. When the instance selection is highlighted, the
browser is examining the methods understood by instances of the class. Although classes inherit
methods, only methods defined within a selected class are displayed in browsers.

Tektronix Smalltalk Users 5-3

Programming in Smalltalk

The menu for the Class Pane is:

file out

print out

spawn

file out
print out
spawn

spawn hierarchy
hierarchy
definition
comment
protocols

inst var refs
cI ass var refs

class refs·
rename
remove

Files out a selected class. Filing out MyClass writes the file MyClass.st.

Writes a formatted file containing the selected class. Printing out MyClass
writes the file MyClass.pp.

Spawns a class browser (a browser containing only the selected class).

spawn hierarchy Spawns a hierarchy browser containing the inheritance hierarchy of the
selected class. A hierarchy browser contains no category or class list panes.

hierarchy Displays the .inheritance .hierarchy .ofthe selected dass .in.the Text Pane.

definition Displays the definition of the selected class in the Text Pane. The definition
can be edited.

comment Displays the class comment for the selected class in the Text Pane. The
comment can be edited. Comments are usually defined on the instance side of
the class.

protocols Displays an editable list of the protocols and the methods they contain in the
Text Pane.

inst var refs Pops up a menu of the names of instance variables. Select one and you will
spawn a browser on all methods that use that instance variable.

class var refs Pops up a menu of the names of all class variables. Select one to get a browser
on all methods that use that class variable.

class refs Spawns a browser on all users of the selected class.

rename Pops up a fill-in-the-blank with the selected class highlighted. Enter the new
class name to rename the class.

remove Removes the selected class.

5-4

Programming in Smalltalk

The Protocol Pane
Protocols, like categories, are a user convenience. Small talk does not enforce a particular use of
protocols. (See the later discussion on programming style for proper use).

If you have no protocol selected, the only menu item is add protocol. Otherwise, the menu for
the Protocol Pane is:

file out

print out

spawn

add protocol

rename

remove

file out
print out
spawn

add protocol
rename
remove

Files out the protocol for that class. If you file out protocol1 in MyClass, the
file will be called MyClass-protocoll.st.

Writes a formatted file of the protocol (MyClass-protocoll.pp).

Spawns a protocol browser on the selected protocol.

Pops up a fill-in-the-blank like the add category selection in the Category
Pane. The new protocol will be added after the selected protocol, or at the end
of the protocol list if no protocol is selected.

Pops up a fill-in-the-blank with the selected protocol highlighted. Enter the
new protocol name to rename the protocol.

Removes the selected protocol and the methods it contains.

The Method Pane
The Method Pane lists the message selectors for methods under each protocol. You must have a
selection to get a menu. The Method Pane menu is:

file out

print out

spawn

file out
print out
spawn

senders
implementors

messages
move

remove

Filing out method! in MyClass writes the file MyClass-methodl.st.

Printing out method! in MyClass writes the file MyClass-methodl.pp.

Spawns a method browser on the selected method.

Tektronix Smalltalk Users 5-5

Programming in Smalltalk

senders Spawns a browser on all classes that send the selected method.

implementors Spawns a browser on all classes that implement the selected method.

messages Pops up a menu of all messages sent in the selected method. Selecting one of
these spawns a browser on all classes that implement the message you
selected.

move Pops up a fi11-in-the-blank that asks where you want to move the method. The
current protocol is highlighted. This selection does not delete the selected
method.

remove Removes the selected method from the system.

The Text Pane
In addition to displaying the code for existing methods, the text pane shows the templates that
you can edit when adding classes and methods to your image. The text pane, like a workspace,
contains text editing menu items. Using do it or print it, you can send messages from the Text
Pane of the browser, but the Text Pane does not have workspace variables; an attempt to send a
message to an undeclared variable causes a notifier to pop up. In addition to the text editing
menu items, items of particular interest are:

accept

cancel

format

spawn

explain

5-6

This selection tells Small talk to compile the code in your Text Pane and place
the result into your image.

This selection cancels any changes you have made to the text pane since the
last accept.

Formats code for methods. To use, edit the contents of the Text Pane, accept
your text, select format, then accept again.

If no method is selected in the Method Pane, spawns a new system browser. If
a method is selected, spawns a method browser on that method.

This selection tries to match selected text against tokens or constructs known
to the system. If it finds a match, it returns a selected string that you can use as
a key to more information. For example selecting explain on the word
"explain" in the Text Pane returns the highlighted string:

"explain is a message selector which is defined in these classes
(CodeControlier)." Smalltalk browseAlllmplementorsOf: #explain

Notice that the explanation is in quotes - Sma11talk's comment mechanism
followed by a Small talk expression. Since the text is already highlighted,
select do it, and you can browse all implementors of the questioned text.

If the system cannot match the token or construct, it returns the string

"Sorry, I can't explain that. Please select a single token, construct, or
special character."

Programming in Smalltalk

PROGRAMMING TIPS

System Workspace Tools
The System Workspace provides templates for many expressions you may find useful to evaluate.
The following four subsections describe some of the most useful expressions available from the
System Workspace.

• The expressions under the heading Inquiry inquire about messages, methods, and literals in
the system.

• The expressions under the heading Globals provide a list of global variables in the
Small talk system.

• The expressions under the heading Display allow you to manipulate certain aspects of the
display.

• The expressions under the heading Measurements allow you to ascertain the size or number
of certain objects.

In addition, the expressions under the heading Fonts and Text Styles provide useful templates for
dealing with the appearance of characters in your windows. Consult Section 9 of this manual for
further information on this subject.

Finally, the expressions under the heading Change Management provide useful templates for
manipulating your image and changes files. Consult Section 6 of this manual for further
information on this subject.

Inquiry
The following expressions allow you to inquire about the relationships among the objects in the
system. Many of these expressions require symbols, denoted by the # sign, as arguments.

Smalltalk browseAlllmplementorsOf: #messageSelector
Replace the word messageSelector with the' message selector you wish to inquire about.
(Leave the # sign.) When you execute the statement, a browser appears containing all objects
that implement the specified message selector. This expression is comparable to executing the
menu item implementors in the message selector pane of the System Browser.

Smalltalk browseAIICalisOn: #messageSelector
Replace the word messageSelector with the message selector you wish to inquire about.
(Leave the # sign.) When you execute the statement, a browser appears containing all methods
that send the specified message selector. This expression is comparable to executing the menu
item senders in the message selector pane of the System Browser.

Collection browseAIiCalisOn: #timesRepeat
The message selector timesRepeat is provided as an example. You may replace it with any
other message selector you wish to inquire about. When you execute the statement, a browser
appears containing all methods in the class Collection that send the specified message selector.

Smalltalk browseAIiCalisOn: #at: and: #atput:
This expression allows you to access information about two message selectors simultaneously.

Tektronix Smalltalk Users 5-7

Programming in Smalltalk

Smalltalk browseAIiCalisOn: (Smalltalk associationAt: #Transcript)
When you execute this statement, a browser appears containing all methods that reference the
global variable Transcript.

Smalltalk browseAIiCalisOn: (TextConstants associationAt: #Centered)
When you execute this statement, a browser appears containing all methods that reference the
literal Centered found in the pool dictionary TextConstants.

Smalltalk browseAIiCalisOn: (Object c1assPool associationAt: #DependentsFields)
When you execute this statement, a browser appears containing all methods that reference the
literal DependentsFields, one of Object's class variables. This expression is comparable to
executing the menu item class var refs in the class pane of the System Browser.

Smalltalk browseAIiSelect: [:meth I meth numLiterals > 40]
This expression opens a browser on all methods using more than forty literals. Any set of
expressions may be substituted within the block. The browser opens on all methods such that,
when the block is evaluated with a method as its argument, the result is true.

FileStream instanceCount
This expression answers the number of instances of the class FileStream that exists in the system
at the time of evaluation.

FormView alilnstances inspect
This expression creates an inspector on the collection of all the instances of the class Form View
that exist at the time of evaluation.

Globals
The System Workspace lists all global variables in the standard image. You can add new global
variables to the system by executing the expression:

Smalltalk at: #GlobalName put: anObject
where GlobalName is the name of the new object you have created. GlobalName becomes a
key in the Small talk dictionary. (Keys in dictionaries are symbols.)

You can remove global variables form the system by executing the expression:
Smalltalk removeKey: #GlobalName

where GlobalName is the name of the global variable you wish to remove.

A number of global variables are necessary to run the Smalltalk programming environment.
Below, each of these global variables is explained in greater detail.

Disk
This is the Smalltalk home directory. Any files you reference without fully qualified pathnames
are treated as relative to Disk. This directory should be different for each image; otherwise, you
will have one changes file for two images, which can cause problems. The specific directory
each image uses for Disk is set above in the System Workspace, under the heading Create File
System. Typing a * in the top pane of a File List matches all the files in your Disk directory.

Refer to Sections 6 and 11 of this manual for more information about the file system.

Display
This is the virtual display (by default 1376 by 1024 pixels). You can make a rectangle flash on
the display by sending Display the following message:

Display flash: (1 00@100 corner: 300@300)

5-8

Programming in Smalltalk

Other useful messages that can be sent to Display are available from the System Browser, under
the category Graphics - Display Objects, class DisplayScreen, instance protocol display
functions.

Further messages to send to Display are in the System Workspace under the heading Display and
described in a later subsection.

FontManager
This is the instance of StrikeFontManager used by the system. It contains instances of
StrikeFonts.

A trikeFont contains bitmaps of characters to display on the screen, and information for
displaying them. A trikeFontManager is a dictionary containing Strike Fonts.

The FontManager allows you to share fonts among text styles, saving memory. Some fonts
may not be loaded into your image yet. If you inspect the FontManager, you see instances of
VirtualStrikeFonts indicating unloaded fonts. As soon as you reference them from a TextStyle,
however, they are automatically loaded.

Refer to Section 7 of this manual for more information about this.

ImageName
This is the word you enter to invoke your image. It is the string you type in the fill-in-the-blank
window when you save your image. The default ImageName is image.

as
This stands for operating system. It is a global variable used to avoid references to specific
operating systems, for the purpose of enhancing code portability. Messages sent to operating
system commands are sent to as, which is set to the specific operating system used by your
computer.

Processor
This is the scheduler for Smalltalk processes, such as activating a window or determining
keyboard events. The Processor schedules higher priority processes preemptively. If you create
two or more processes of equal priority, the Processor does not switch between them
automatically. One of the processes must specifically relinquish control by sending the message:

Processor yield

ScheduledControllers
This is the window manager. It contains a list of all controllers in use by the project. It
determines the order in which windows are stacked. The right button menu items under and
restore display are implemented by ScheduledControllers.

Sensor
This is the instance of class InputSensor which keeps track of where the mouse cursor is. Some
useful expressions to send to Sensor are found below.

Sensor cursorPoint returns the coordinates of the mouse cursor.

Sensor waitButton returns the coordinates of the point where the mouse cursor was
when the left mouse button was pressed.

Sensor yellowButtonPressed returns true or false depending on the state of the middle
button.

SourceFiles
This keeps track of the source and changes files for your image. It is an array. The first element

Tektronix Smalltalk Users 5-9

Programming in Smalltalk

points to the source file. The second element points to the changes file.

Style Manager
This stores all available TextStyles. A TextStyle contains an array of fonts used by that style.
It usually consists of two sizes of fonts, each in roman, boldface, and italic. You can access the
Style Manager using the right button menu item style.

For more information about this, see Section 7 of this manual.

SystemOrganization
This determines the relationship between the class category and the class panes in the System
Browser. If you inspect SystemOrganization, you see a categoryArray, which lists the
categories in the leftmost pane of the System Browser. The elementArray lists the classes, in
class category order. Stops tells the categoryArray how many classes, incrementally, are in
each category.

Transcript
This points to the System Transcript of the current project. For a useful expression template, see
the heading Example use of a transcript, below the list of global variables in the System
Workspace.

In addition to the global variables, Smalltalk has pool dictionaries, also called variable pools.
These are dictionaries containing variables available to a set of classes. A pool dictionary allows
methods of those classes quicker and easier reference to all objects in that dictionary. Some
important pool dictionaries are described below.

• Smalltalk is a pool dictionary available to the entire system. It stores all classes, global
variables, and pool dictionaries. The compiler looks objects up in the Smalltalk
dictionary.

• Undeclared is a pool dictionary containing any undeclared object. For example, if you
file in a new method containing a name the system does not understand, the system places
it in the Undeclared dictionary.

Display
The following expressions allow you to manipulate the display.

DisplayScreen displayExtent: 1376@1 024
Make the virtual display 1376 by 1024 pixels. This is the default size. If you are using a
machine with a smaller screen, you must pan to see the full display.

DisplayScreen displayExtent: 800@800
Make the virtual display 800 by 800 pixels. Using this expression template, you can make the
display any size you wish.

NOTE

If you make the display too small to pop up a menu, you will be
unable to continue work. You will have to exit your image without
saving your work, and may lose some time.

Display setMouseBounds: Display bounding Box
This expression does not allow the mouse to move outside the bounds of the display. This is the

5-10

Programming in Smalltalk

default condition.

Display setMouseBounds: (-50@-50 corner: 1500@1500)
This expression allows the mouse to move outside the bounds of the display. This can be useful
if you wish to be able to scroll beyond the bottom of a window located at the bottom of the
display.

Sensor cursorPoint: Display viewportCenter
This expression locates the cursor in the center of the visible display. Evaluating this is the same
as pressing f12.

Display getViewportLocation
This expression returns the coordinates of the top left corner of the viewport. The viewport is the
portion of the display which is visible.

Display setlnverseVideo
This expression changes all black pixels on the display to white pixels, and vice-versa. Text
appears as white letters on a black background.

Display setNormalVideo
This expression changes the display to the system default. Text appears as black letters on a
white background.

Measurements
The following expressions allow you to inquire about the size and number of objects in the
system.

Smalltalk core
Select this expression and execute print it. It returns the number of objects in the image at the
time of evaluation, and the number of words they occupy.

Smalltalk garbageCollect
This expression forces a garbage collection. The Small talk garbage collector is a generation­
based scavenging mechanism. Normally, it searches the image when Smalltalk needs memory,
deleting objects not referenced by other objects. It looks at newer objects more frequently than
older objects.

MethodContext instanceCount
This expression is a way to determine the number of interrupted executions of a method that are
known to the system.

Time millisecondsToRun: [SystemOrganization printString]
This expression determines the length of time (in milliseconds) it takes to evaluate the
expression(s) in the block.

MessageTally spyOn: [Behavior compileAII] to: 'spy.results'.
(FileStream oldFileNamed: 'spy.results') edit

The first expression analyzes the performance of the expression(s) within the block, and writes
the results to a file named spy.results. The second expression opens a window to examine the file
in which the performance analysis has been stored.

Tektronix Smalltalk Users 5-11

Programming in Smalltalk

Debugging
To aid in debugging code, Smalltalk has a debugger available as a standard tool. You can invoke
a debugger whenever execution halts with a notifier. If you wish to force a notifier when code is
executing normally, press <CTRL-C>. In the notifier, the middle button menu contains two
items: proceed and debug. proceed continues the execution. debug brings up the debugger.

The debugger consists of six panes. The top pane presents the stack of message-sends that
occurred just before execution was interrupted. The middle pane is a method browser. The
bottom left pair of panes constitute an inspector on the receiver of the selected method. The
bottom right pair of panes constitute an inspector on the arguments and temporary variables of
the selected method.

The top pane of the debugger allows you to select each of the message-sends, in order to examine
code and variable values. You can choose any message-send on the stack and cause evaluation to
proceed from your selected point. You can also single-step through message-sends, checking the
state of the variables to determine the source of the error. You can change the values of
variables. If you evaluate expressions within the method browser pane, evaluation is carried out
in the context of the currently selected method.

Each message-send displays the class of the receiver, and the selector of the message sent to the
receiver. If the class in which the message was implemented is a superclass of the receiver, the
class in which the interpreter found the method for this message selector is displayed in
parentheses.

A selection in the top pane causes the corresponding method to be displayed in the middle pane.
The methods can be edited and recompiled, using the accept menu item, just as in a browser.

Information appears in the method browser pane and the bottom inspectors only if an item is
selected in the top pane.

Debugger Menus
Pressing the middle button form the top pane of the debugger brings up either of two menus. If
no item in the top pane is selected, the following menu is available.

full stack When a debugger is first created, at most only the top nine message-sends appear.
Executing this command displays the complete stack of message-sends in the
interrupted activity.

proceed Executing this command closes the debugger and continues evaluation just after the
interrupted point. The continuation assumes that the message at the point of
interruption had completed and determined a value. The value for proceed is nil or
the value of the last expression evaluated in the middle pane.

5-12

Programming in Smalltalk

If an item is selected in the top pane, the following menu is available.

full stack

proceed

full stack
proceed
restart
return

senders
implementors

messages
step
send

When a debugger is first created, at most only the top nine message-sends
appear. Executing this command displays the complete stack of message-sends
in the interrupted activity. This is the same as in the previous menu.

The debugger closes and evaluation continues just after the interrupted point.
The continuation assumes that the message at the point of interruption had
completed and determined a value. The value for proceed is nil or the value of
the last expression evaluated in the middle pane. This is the same as in the
previous menu.

restart The debugger closes and evaluation continues from the beginnning of the
currently selected method.

return Executing this command brings up a fill-in-the-blank window. This window
allows the user to enter a value. The window closes and execution proceeds as
if the selected method had returned the value that was provided by the user.

senders This opens a message-set browser on all methods that send the currently
selected message.

implementors This opens a message-set browser on all methods that implement the currently
selected message.

messages This creates a menu of all messages sent in the method associated with the
currently selected message. Choosing one opens a message-set browser to
access all methods that implement it.

step This evaluates the next message to be sent in the currently selected method. If
no method is currently selected, it assumes. the selection is the last message­
send. After evaluating the next message-send, execution halts.

send This command refines the above command step. If the next message to be sent
were evaluated, it would consist of a sequence of messages. The command
send is a request to enter the next message at the top of the activation stack,
and be ready to evaluate the next message-send in its method.

Tektronix Smalltalk Users 5-13

Programming in Smalltalk

Useful Debugging Expressions
When you are modifying methods or developing new ones, it is sometimes useful to insert pauses
into your code to aid in debugging. The following expressions can be inserted into your code for
this purpose.

• self halt
Any object understands the message halt. This message stops the process when it is
encountered, and a notifier pops up.

• self halt: 'Label string for notifier'
If you wish to insert several pauses in the same method, you can specify a unique label for
each notifier. In this way, you can determine which halt was encountered.

• Transcript cr; show: 'counter = " counter printString
Sometimes you may wish to print debugging information to the System Transcript. The
line above shows an example. It first sends a carriage return, so that the information
appears on a new line. Then it prints the string counter = , and then it prints the value of
the counter at the moment the expression is encountered.

• (Delay forSeconds: 3) wait
Sometimes you may not wish to print any information in the System Transcript. For
example, if you are debugging code that displays text in a window, sending text to the
System Transcript causes an infinite loop, as the code is used to display the text in the
System Transcript window. In that case, you can use the expression above to delay for a
specified number of seconds to indicate the point of execution. In this example, three was
the number specified.

• Cursor wait showWhile: [Sensor waitButton]
The line above can be used under the same circumstances as the previous line. It specifies
that execution of the code will pause until the mouse button is pressed.

• Sensor leftShiftDown if True: [some sequence of expressions]
The line above allows you to execute code (including printing debugging information)
conditionally. The code executes when the left shift key is pressed.

• self debug
This line is the equivalent of Sensor rightShiftDown if True: [self halt], which specifies
that execution stop if the right shift key is pressed. This is useful, because the left shift key
is sometimes polled in other code. The variant debug: 'Label string for notifier' can be
used to label notifiers.

Some Cautions
This subsection contains a few words of caution about processes that others have found to be
troublesome. When possible, we have tried to provide solutions to these problems as well.

Redefining the Equals Operation
The equals operation, represented by by =, is a fundamental operation. If you redefine it, you
must be careful. Any two objects that are equal must return the same value for hash. Therefore,
you may need to redefine hash as well.

5-14

Programming in Smalltalk

To illustrate this, let's go back to the new class Event you made in Section 3. Suppose that you
wanted to add comparing protocol to determine when two events were equal. You decide that
two events are equal if they share a starting Date and a duration, and that their title is irrelevant.
So you go to the System Browser and add the following instance protocol to the class.

= anEvent
II Two events are equal if their starting dates and durations are the
same. Title doesn't matter. II

startingDate = anEvent starting Date and: [duration = anEvent duration]

You now wish to test this code. So you open a workspace and create the following two events.

party ~ Event newDay: 12 month: #July year: 1987 title: 'party' duration: 1.

jaunt ~ Event newDay: 12 month: #July year: 1987 title: 'jaunt' duration: 1.

In the same workspace, you create a dictionary to store your events.

aDict ~ Dictionary new.
aDict at: party put: 1.
aDict at: jaunt put: 3

When you inspect the dictionary, you see that it contains the two events as two separate objects.
Dictionaries use hash to compare objects, and you have not redefined hash. Because the title
strings of the two events are different, hash sees them .as different. They are therefore
incorrectly stored as two distinct objects in the dictionary, even though you have defined them as
equal.

To enable the system to consistently implement your definition of equality for an event, you must
go back to the System Browser and redefine hash, as below.

hash
IIAn event's hash depends on its starting date and duration.
Title doesn't matter. II

starting Date hash bitAnd: duration hash

Now if you repeat the experiment with the dictionary in your workspace, you will discover that
the dictionary contains only one object, the latter of the two to be added. Because hash now
implements the same concept of equality as = for events, the dictionary correctly perceives the
two events to be identical.

Changing the Position of a Class in the Hierarchy
Changing the position of a class in the hierarchy must be done with caution.

If the class cannot be recompiled in its new position, you will get a notifier. When the operation
is aborted, the hierarchy may not be left intact. Usually, links pointing from the class you tried to
move to its superclass remain. But links pointing from the (former) superclass to the class you
tried to move must be reestablished by hand, in the following manner.

Tektronix Smalltalk Users 5-15

Programming in Smalltalk

1. Inspect the former superclass of the class you tried to move.

2. In the left pane of the inspector, select subclasses.

3. The right pane of the inspector fills with a list of the subclasses. Check to see if the class
you were moving is there.

4. If it is not, in the right pane of the inspector, type:
subclasses add: TheClass
where TheClass stands for the name of the class you tried to move.

S. Select the text you typed and execute the menu item do it.

6. Close the inspector.

7. Reopen the inspector to ensure that your operation reestablished the links.

Renaming Instance Variables

Renaming instance variables is a process consisting of several steps and thus prone to error, if
you are not systematic. Rename instance variables by following these steps.

1. Add the new variable name without removing the old one from the class definition.

2. Recompile the class definition with the new variable by using the accept menu item.

3. Change all old instance variable references to the new one in every method.

4. Remove the old instance variable from the class definition.

S. Recompile the class definition again without the old name by using the accept menu item.

Another process may also be used if the class is not part of the standard user interface.

1. File out the class.

2. Remove the class from the image.

3. Activate a File List.

4. Get the contents of the file.

S. Edit the file containing the class definition in the File List.

6. Put the new contents back in the file, overwriting the old contents.

7. Substitute the new instance variable name for the old one globally.

8. File the changed class back into the image.

If the new variable name conflicts with a temporary variable name, problems will arise. You will
need to reassign the instance variable a new name and repeat the process.

Closing a Window
In the course of developing an application, you may inadvertently create a window that does not
fully know how to display itself or use menus. It may therefore be impossible to close the
window using the right button menu. If this situation develops, here is an alternative method of
closing a window.

5-16

Programming in Smalltalk

1. Inspect all scheduled controllers by executing the following command.
ScheduledControliers scheduledControliers inspect

2. The inspector brings up an ordered collection of StandardSystemControllers. In the left
pane of the inspector, the item inspect is available from the middle mouse button. Inspect
each StandardSystemController.

3. In the left pane of the StandardSystemController inspector, inspect its model to determine
which StandardSystemController is controlling the troublesome window.

4. If the troublesome window is a workspace, you will not see the contents of any text that
you have not accepted yet.

S. When you have inspected all the models and located the faulty controller, close the model
inspectors.

6. Return to the inspector on the faulty StandardSystemController, and type the following
commands in the right pane.

ScheduledControliers unschedule: self.
self close.

7. Select the two commands and execute do it. The window will close.

PROGRAMMING STYLE
Good code is clear, concise, and efficient. Good Small talk code is also brief, making much use
of existing code, and adding only what it must. As with any other programming language, good
Small talk style increases the programmer's productivity, reduces the number of errors, and
improves system maintenance. Unlike most other programming languages, however, the source
code in the Smalltalk system is available to all users of the system. Small talk code is accessed
through a browser, a tool different from those used in traditional programming environments.
Conventions for constructing identifiers, indentation, and placement of blank lines need to be
adapted, therefore, to the Small talk programming environment.

Many new Smalltalk programmers have few established guidelines to follow. Because their code
will influence subsequent programmers, it is important to establish the elements of good
Smalltalk style. It should be easy to write good code if the programmer has these guidelines to
follow.

The high reusability of Smalltalk code is another reason to adopt good stylistic practices.
Programming by refining already existing code is one of the main paradigms in Small talk
programming.

The following two subsections present some syntactic and semantic guidelines for achieving
good Smalltalk style.

Syntactic Guidelines
The following guidelines deal primarily with syntactic issues, but the distinction is not always
clear. Syntactic errors in formatting and punctuation may change the apparent meaning of an
expression.

Tektronix Smalltalk Users 5-17

Programming in Smalltalk

Comments
Class comments contain one or more paragraphs describing the general purpose of the class and
how it is used. These paragraphs do not usually contain carriage returns so that the lines can be
automatically formatted to fit the current size of the window.

To aid you in commenting your code, a class comment template has been provided in the
standard image. When you make a new class, use the middle button menu item comment in the
class pane. The comment template appears in the text pane.

Class and instance variables should be documented in the class comment. Each should be listed
with its typical class and purpose. For example,

marker <Rectangle> used to highlight the selection
tempNames <Array of: String> cached names of temporary variables

The initial comment in a method should describe the general purpose of the method. Be sure the
comment fits the method. It is easy to copy a method, change it slightly, and forget to change the
comment. A comment that does not agree with the code is worse than no comment at all, for it
leaves the reader wondering which one represents the intended behavior.

If a method is typically called from a do it, provide a calling expression such as "Pen example"
in a comment. If the method is short, this comment may appear at the beginning or the end of the
method. If the method is long, include the comment at the beginning so the user will not have to
scroll down to avoid missing it entirely.

If an invocation comment is placed near another comment, put each in a separate set of quotation
marks or on a line by itself. This allows the invocation to be selected by doubleclicking inside a
delimiter or at the beginning of the line.

example
"Continually print two lines of text wherever you point with
the cursor. Terminate by pressing any mouse button."
"DisplayText example. "

Capitalization and Variable Names
Capitalize shared variables: class variables, globals (including class names), and pool variables.
Do not capitalize private variables: instance, temporary, and class instance variables.

When an identifier or message selector is composed of more than one word, the Small talk
convention is to concatenate and capitalize all words but the first: basicSize findKeyOrNil:.
Do not begin selectors or keywords with capital letters, except for proper names. The keyword
selector copy:From:ln: is therefore stylistically incorrect; copy:from:in: is preferred.

Do not abbreviate extensively. Small talk code uses full words, even when they are long, because
it is open to everyone. The code must therefore remain readable.

Formatting and Indentation
Although formatting is one of the last things that many Smalltalk programmers worry about, it is
one of the first things that impede the progress of anyone who examines the code later. The

5-18

Programming in Smalltalk

visual structure of the method should reflect the flow of control. Indentation should be used to
illustrate this flow so that the bounds of the controlled block are clearly visible. Alternate cases
should be indented at the same level.

To aid in formatting, the middle button menu in the text pane of the System Browser includes the
item format. After you have accepted your text, use the format item to format your code in
accordance with Small talk convention. The formatter also removes any unnecessary parentheses
you may have included in your code.

Punctuation and White Space
With traditional programming languages, programs may be hundreds of lines long. Programmers
are encouraged to use lots of white space to group similar parts and improve readability.

The direct equivalent, a Smalltalk program, does not exist. Smalltalk methods are generally
shorter than their procedural counterparts: over 70% of the methods in the standard image are
less than ten lines in length, including comments and blank lines.

Methods are accessed through the bottom pane of a browser. Programmers frame their browsers
to achieve the best compromise between screen layout and ability to view methods of average
size. Often they have to resort to scrolling. Most combinations of font, browser layout, and
screen size result in a maximum of 35 to 40 lines of code visible, but the average is between 15
and 25. Extra blank lines and other unnecessary white space means that other code is hidden.
Brackets or other delimiters on lines by themselves waste vertical space and are unnecessary if
proper indentation is used. Doubleclicking just inside a delimiter can be used to match it.

If blank lines are used to separate sections of code in a longer method, do not use more than one.
If they happen to fall at the bottom of a window, a reader may assume that the method ends at the
break. A need to use blank lines to separate sections may also indicate that the method is doing
more than one thing and should be split.

Unless grouping two short expressions in a block, do not use more than one complete statement
per line. Many Small talk programmers might object to even this exception. It is easier to locate
items, especially variable assignments, when they are aligned along the left margin. So

compositionRectangle ~ compositionRect copy.
text ~ aText.
textStyle ~ aTextStyle.
firstlndent ~ textStyle firstlndent.
rule ~ DefaultRule.
mask ~ DefaultMask.

is preferable to

composition Rectangle ~ compositionRect copy.
text ~ aText. textStyle ~ aTextStyle. .
firstlndent ~ textStyle firstlndent.
rule ~ DefaultRule. mask ~ DefaultMask.

A single space on either side of assignment operators and binary selectors can also increase
readability.

Tektronix Smalltalk Users 5-19

Programming in Smalltalk

total~342 compared to
max<=1.23 compared to

total ~ 345
max <= 1.23

In addition to better readability, a space between a keyword selector and its argument allows
either to be selected efficiently with doubleclicking.

Spelling and Grammar
Proper spelling is as important in Smalltalk as it is in any system used by more than one person.
Unfortunately, Smalltalk cannot as yet access an English language dictionary. Yet misspelling
part of a message selector can create errors for someone who later tries to access the selector with
the correct spelling.

Because users are most likely to see error notification messages, be particularly careful to check
for spelling errors in these strings. If contractions are used, be sure to use two apostrophes in the
string, so a single apostrophe will appear in the message. For example, the expression

self error: 'Can"t access timer:

will appear as

Can't access timer.

Semantic Guidelines
This section lists guidelhles for following established traditions, planning for future subclasses,
structuring methods, organizing the class hierarchy, and establishing alternatives to nested
conditionals.

Follow Established Conventions

To write good Smalltalk code, first read a lot of it. Follow guidelines already established in the
code you read in the image.

Use the standard protocol names in the standard order so that they can be organized and located
efficiently by others. When creating new subclasses of Controller, for example, use standard
protocol names found in Controller. Organize them in the standard order: the initialization
protocols such as initialize-release and class initialization are at the beginning of the list, and
private is at the end.

For example, controlActivity, isControlWanted, and isControlActive are included in the
Controller protocol control defaults. Suppose a programmer creates a protocol named control
with a redefinition of controlActivity. Later, isControlWanted is copied from Controller into
the subclass for a minor revision. In the standard image, the move menu item presents the user
with a template of the class and protocol to copy to, initially Controller>control defaults. If the
standard protocol name is used, only the name of the class would need to be changed. Inventing
a new name means that the protocol will also need to be changed, or methods will be separated
that are commonly classified together.

5-20

Programming in Smalltalk

Experience also leads to the use of the most concise and common constructions. Although each
of the following pairs of constructs produce the same results, the second set in each pair is
preferable.

(Interval from: 1 to: 10) do:

1 to: 10 do:

Not only is the to:do: message shorter and more direct, it is one of the more commonly used
messages in the system. The from:to: message is not called in the standard image and would be
unfamiliar to most Small talk programmers.

aForm ~ Form extent: 200@200.
aForm black.
aForm displayOn: Display at: 85@400.

Display black: (85@400 extent: 200@200).

Telling the Display to paint a region black with one line of code is preferable because it is
shorter, simpler, and does not require a temporary variable.

Hide Implementation Details
Delegate the responsibility for carrying out implementation details. If implementation details
change, the affected parts will be localized. For example, you may wish to check to see if two
dates are equal. Instead of asking one date to compare itself with the other, the date asks its day
to compare itself with the other date"s day, and its year to compare itself with the other date"s
year.

= aDate
'~nswer whether aDate is the same day as the receiver. "

self species = aDate species
if True: [iday = aDate day & (year = aDate year)]
if False: [ifalse]

Nested Conditionals
The use of nested conditionals to implement case statements in Smalltalk means that abstract data
structures need to be reexamined. In particular, the use of isKindOf: to decide which message to
send to an object suggests a problem. In object-oriented languages, these conditionals can often
be replaced by an effective use of polymorphism, so that the same message is handled differently
by different classes. Polymorphism is the ability of different classes of objects to respond to the
same message in different ways. This enables code to treat objects uniformly, even when they
arise from different classes. The same message invokes different methods from objects of the
different classes.

For example, the classes Date, Small Integer, and String all implement the message selector =
to compare instances, but the message selector is implemented by very different methods in each
case.

Tektronix Smalltalk Users 5-21

Programming in Smalltalk

Here is an example of a case statement used to map between two sets of data.

string = 'Bold'
if True: [char ~ 'B']
if False: [string = 'Demi Bold'

if True: [char ~ '0']
if False: [

(some series of expressions)]]

A Dictionary can be used to replace the nested conditionals.

"StrikeFont class initialize
Dictionary associates face names with single character that symbolizes face"

FaceNames isNii
if True:

[FaceNames ~ Dictionary new: 8.
FaceNames at: 'Bold' put: 'B'.
FaceNames at: 'Demi Bold' put: '0'.
FaceNames at: 'Italic' put: '1'.
FaceNames at: 'Block' put: 'K'.
FaceNames at: 'Oblique' put: '0'.
FaceNames at: 'Regular' put: ".
FaceNames at: 'Symbol' put: 'S'.
FaceNames at: 'Bold Italic' put: 'Xl

If you wish to see how this dictionary is used, browse the method StrikeFont initializeFrom:.

Other times, nested conditional expressions can be replaced by returns. Here is part of a method
(lnputState keyAt:put:) that checks to see which key has been pressed.

KeyCodelndex < 8r200
if True:

[self normalKeyAt: index put: value]
if False:

[index = CtrlKey
if True : [ctrlState ~ value bitShift: 1]
if False: [index = LshiftKey

if True: [lshiftState ~ value]
if False : [index = RshiftKey

if True: [rshiftState ~ value]
if False: [index = LockKey

if True: [(some series of statements)]]]]
metaState ~ (ctrlState bitOr: (lshiftState bitOr: rshiftState))]

The nested conditionals can be replaced by calling separate methods for the two major sections.
Each of these methods returns to the caller whenever the appropriate key has been processed, as
illustrated by the method speciaIKeyAt:put: below. Nested conditionals are avoided.

5-22

Programming in Smalltalk

keyCodelndex < 8r200
if True:

[self normalKeyAt: index put: value]
if False:

[self specialKeyAt: index put: value.
metaState ~ (ctrlState bitOr: (lshiftState bitOr: rshiftState))]

specialKeyAt: index put: value
index == CtrlKey if True: [ictrlState ~ value bitShift: 1].
index == LshiftKey if True: [ilshiftState ~ value].
index == RshiftKey if True: [irshiftState ~ value].
index == LockKey if True: [(some series of expressions)]

Plan for Future Subclasses
If a method answers with a new instance expected to be like the receiver, do not use the name of
the receiver's class explicitly when creating the new instance. Use the pseudovariable self
instead. For example, class Rectangle contains a method similar to the following method:

merge: aRectangle
'~nswer a Rectangle that contains both the receiver and aRectangle. "

i Rectangle
origin: (origin min: aRectangle origin)
corner: (corner max: aRectangle corner)

Later you construct a subclass of Rectangle named Square, create an instance of the new
subclass, and send the following messages:

large ~ aSquare merge: anotherSquare.
large shrink

shrink is a message that only Squares can understand. The programmer assumes that the
Square inherits the merge: method and will return another instance of a Square. However, the
class name is explicitly mentioned in the merge: method, which therefore returns a Rectangle
instead. That means large won't understand shrink.

This pitfall can be avoided by using self and sending it the message class to create the new
instance as shown below.

merge: aRectangle
''Answer a Rectangle that contains both the receiver and aRectangle. "

i self class

Tektronix Smalltalk Users

origin: (origin min: aRectangle origin)
corner: (corner max: aRectangle corner)

5-23

Programming in Smalltalk

Organization of Classes and Methods
To modify the behavior of classes, use subclasses whenever possible, but use them wisely. A
subclass should serve as a refinement of its superclass. It may define a more specific type of
object, refining the semantics of a particular abstraction. For example, the classes Integer and
Float both share the basic behavior of their superclass Number, but provide a more precise
definition of particular kinds of Numbers. Subclassing provides another type of refinement as
well: a subclass may use the same basic implementation as its superclass, but provide new
abstractions. Both Set and its subclass Dictionary are implemented using hash tables, but their
abstractions are unrelated.

A subclass should share some internal functional similarity with its superclass. It will inherit
methods, instance variables, and class variables. As a refinement of its superclass, it may respond
to additional messages or even restrict the use of certain messages with shouldNotlmplement.
It may also respond to the same message as its superclass but implement the method differently.

The class hierarchy is used to reflect similarity between important aspects of the internal
implementation details of classes. Another type of grouping is provided by class categories.
Classes are organized for the programmer's convenience in the Browser according to class
categories. This organization reflects some external functional grouping.

For example, Character is a subclass of Mag nitude because it inherits those protocols from
Magnitude that allow its instances to be compared along a linear dimension: $a<=$b. Its class
category is Collections-Text because it is used with other classes in that category dealing with
text: String, Symbol, and Text. Similarly, Random is a subclass of Stream so it can inherit
protocol for streaming over a collection. Its placement in the category Numeric-Numbers
reflects its intended use rather than implementation details.

New Smalltalk programmers often confuse the implementation and usage aspects of organizing
classes. They create a subclass so that it shares some external similarity with an existing class,
and then are forced to transfer all the work to an instance or class variable. For example, they
might make Random a subclass of Float, possibly creating an instance variable that would be an
instance of Stream. Most methods would then deal with this instance variable. Little or nothing
would be inherited from the superclass.

As well as checking to see that a new class inherits methods or variables from its superclass,
think carefully about the purpose and placement of the methods within the class. A method
should have a single purpose. If it performs more than one function, it should be divided into
separate methods. If the method doesn't access self, instance variables, class variables or serve
in an instance creation capacity, examine its placement carefully. Perhaps it belongs in a
different class.

Classes are free, or nearly so. Think ahead and divide the functionality between abstract classes
and refinements. Units of finer granularity allow more flexibility and greater reusability of code.
Partition code so that it can be refined rather than duplicated.

Class and Instance Methods
There is a distinction between class and instance methods. Class methods serve the following
functions.

• Instance creation.
Methods that are used as examples of how to use a class CDisplayText example), methods

5-24

Programming in Smalltalk

to create an instance from data in a file (Form readFrom:) , and methods used in testing
(Small Integer tests) are examples of instance creation messages.

• Class variable access.
Class methods can initialize and query the value of class .variables.

• Inquiries.
General inquiries about information the class encapsulates are provided by many class
methods. Date indexOfMonth: is an example.

• Instance management.
A class may need to manage its instances, such as limiting the number or maintain a certain
ordering. DisplayScreen currentDisplay: is an example.

• Private methods.
Methods intended to be used only by the class itself may be listed as private methods.

• Documentation.
Smallinteger guideToDivision is an example of a class method provided solely as
documentation.

Instance methods do the rest of the work. They interact with the private state of a particular
instance of a class. They also present a public interface to the Smalltalk programming
environment.

Class and Instance Variables
Use class variables to tag constants instead of repeating them in numerous methods. Otherwise,
it is easy to change a number in one method and miss it in another.

Add new class and instance variables to system classes at the end of the respective variable lists
in the class definition. Not only will the standard order be preserved, but it may prevent later
problems. The interpreter accesses the instance variables of certain classes by position rather
than by name. If the order is changed by inserting a new variable at the beginning of the list, the
system may fail. For a list of classes used by the interpreter which must not be modified, see
Goldberg and Robson, Chapter 27.

Accessing instance or class variables directly may be dangerous. Send a message with the
appropriate accessing protocol. It is slightly less efficient but safer and more flexible. A class
will often check the integrity of its data before returning the result. It may also choose to protect
its data by returning a copy of an instance variable. For example, referring directly to a window's
viewport is discouraged because its value is not always current. Sending a message to ask for the
viewport will guarantee that the data returned is valid.

Use class variables for shared components between all instances of a class and its subclasses.
Class variables are not refinable; they are inherited and shared between the class and all of its
subclasses. A subclass cannot change the value of a class variable without affecting the contents
of a superclass's class variable. For values that a subclass might change, use class instance
variables.

Although seldom used, class instance variables (instance variables of a metaclass) provide a
similar mechanism for refining variables of a class. The values of class instance variables are not
inherited or shared by any of its subclasses; each metaclass has its own unique copy of each class
instance variable. If a subclass inherits the name of a class instance variable but does not
initialize it, its value is nil, just as with regular instance variables.

Tektronix Smalltalk Users 5-25

Programming in Smalltalk

Pool variables are used to share objects between different classes. To replace a pool variable,
define a class with a class variable, then provide this class as one of the superclasses of any class
that needs access to the variable.

Instance variables encapsulate infonnation that is unique to each instance and not shared. They
are refinable in the sense that each instance has its own copy. A subclass will inherit the instance
variable names of its superclass, but their initial value is nil; each instance must initialize its own
instance variables.

Conclusion
The rewards for writing stylistically good code include fewer errors, less time required to read
and understand the code, and less frustration. The elements of good style are sometimes elusive
and controversial, yet some guidelines can be identified. Some can be summarized simply.

• Learn the syntax rules.

• Avoid unnecessary white space.

• Don't sacrifice readability.

• Follow established conventions for identifiers, capitalization, and indentation.

Others are harder to quantify.

• Each method should have a single purpose.

• Indentation should reflect the flow of control.

• Subclass wisely.

• A void nested conditionals.

Some of these guidelines are unique to Smalltalk; many are common to other object-oriented
languages. If we agree on a common set of guidelines for writing good Smalltalk code, following
them makes our task more enjoyable and benefits the Small talk community. It will be easier to
browse, write, and debug Small talk code.

ADVANCED TOPICS

Multiple Inheritance of Classes
The Smalltalk-80 system supports multiple inheritance of classes which allows objects to inherit
methods from two or more super classes. Ordinary subclassing only allows inheritance from a
single class.

For an example of how to use multiple inheritance, go to the System Browser and choose
Collections-Streams and Stream. Then choose hierarchy from the middle mouse button. In
the bottom pane, you see this hierarchy:

5-26

Programming in Smalltalk

Stream 0
PositionableStream ('collection' 'position' 'readLimif)

ReadStream 0
WriteStream ('write Limit')

ReadWriteStream 0

Instead of using this single inheritance scheme, ReadWriteStream could be a subclass of both
ReadStream and WriteStream. Make the class NewReadWriteStream be a subclass of both
by entering the following code in place of the nonnal class template for ReadWriteStream:

Class named: #NewReadWriteStream
superclasses: 'ReadStream WriteStream'
instance Variable Names: "
classVariableNames: "
category: 'Collections-Streams'

When you accept this code, the system generates conflicting inherited methods messages in
the System Transcript because, in the case of identical messages, it does not know which methods
from ReadStream or WriteStream it should inherit. You can use the Browser to eliminate the
sources of these errors by specifically indicating which of the conflicting methods to use or by
removing the sources of conflict.

For more infonnation, refer to the paper by Alan H. Borning and Daniel H. H. Ingalls,
"Multiple Inheritance in Smalltalk-80" , pp. 234-237, Proceedings of the National Conference on
Artificial Intelligence, Pittsburgh, PA, 1982.

Lazy Mutation
When you change a class definition and recompile it, existing instances of classes also must
change to the new definition before they are used. This process is called mutation. Mutation
involves a become: operation, a potentially expensive operation. Since not all instances of a
class will continue to exist (Le., some will be garbage-collected), the Tektronix Small talk system
mutates only instances of a class that are referenced. It does this by catching messages to
unmutated instances of this class and perfonning the mutation before actually sending the
message. This mutation upon message send is known as lazy mutation. The mutation occurs
only once, subsequent messages to a mutated instance operate in a normal manner. Objects
marked for mutation that never receive a message are not mutated and, therefore, do not use the
become: operation.

In most cases, a user will see no difference between mutating all instances immediately and
mutation upon message sends. However, a certain sequence of events might lead to undesirable
and unexpected consequences:

"redefine ExampleClass by adding a new instance variable,"
all f- ExampleClass aillnstances.
all do: [:each I each initializeNewlnstanceVariable].

The mutation of an existing instance to the new definition of ExampleClass will not occur until
a message is sent to the instance. At no time does this example send a message to an instance of
the original ExampleClass. Instead, this code collects all the instances of the new
ExampleClass (there probably aren't any) and tries to initialize them. Here is an alternative

Tektronix Small talk Users 5-27

Programming in Smalltalk

technique that will work around this difficulty:

all ~ ExampleClass allinstances.
"redefine ExampleClass by adding a new instance variable."
all do: [:each I each initializeNewlnstanceVariable].

In this sequence of events, all instances of the old ExampleClass are collected and then the
definition of ExampleClass is changed. Now all the instances can be initialized and in the
process mutated to the new ExampleClass definition. This technique points out that the only
straightforward way to collect all instances of a class is before it is redefined.

IEEE Floating Point Numbers
The Tektronix Smalltalk interpreter includes primitives for many operations performed directly
by the Motorola MC68881 Floating Point Coprocessor. The MC68881 conforms to IEEE-754
floating-point standards; however, Smalltalk conforms only to the representation specification of
IEEE-754, not necessarily the implementation specification.

The floating point primitives are capable of generating exceptional values which print as visible
Smalltalk code. These values include: positive and negative infinity, denormalized numbers, and
not-a-number. Because of these new values, a new protocol for testing has been added, new
instance creation methods have been added, and some existing protocol has been changed.

New methods for testing an instance of Float include testing for infinity and testing for valid
numerical representation. The methods isPositivelnfinity and isNegativelnfinity return true for
plus and minus infinity, respectively, while the method islnfinity returns true in either case. The
method isNAN ("is Not A Number") returns true if an instance of Float does not contain a valid
floating-point number representation. (Such a value is returned when dividing infinity by
infinity, for instance') isNormal returns true if an instance of Float is a valid, non-infinite
floating-point value.

An instance of Float may now be instantiated to these exceptional values. Class methods
negativelnfinity, positive Infinity, and notANumber create instances of Float initialized with
the appropriate exceptional value, while notANumber: creates an instance of Float in which the
argument is stored in the mantissa and an all-ones bit pattern is stored in the exponent as the
exceptional value.

The Float method printOn correctly interprets exceptional values by printing an evaluatable
expression in each case. For example, executing print it in a workspace on i.0e30 * i.0ei0
prints Float positive Infinity or executing "print it" on 0.0 In prints Float negativelnfinity.

Although the additional primitive methods represent an increase in functionality, and exceptional
values are handled more completely, users of Float objects might want to protect themselves
against the cascading effects of exceptional values. The Small talk interpreter continues
evaluation using the exceptional value. The exceptional value will generally propagate through
the expression, possibly making it difficult to locate the error.

Use of the new testing methods whenever there is a likelihood of generating an exceptional value
is a good general coding practice.

5-28

Programming in Smalltalk

Storing and Retrieving Objects on a File
The Small talk image includes a mechanism for storing and retrieving object representations
(including objects with circularities) on a file (or other character stream). This mechanism has
two advantages over the original Smalltalk storeOn: mechanism. First, storeOn: does not work
for objects that contain circularities; second, storeOn:' s output is meant to be read in by the
compiler which limits the number of literals in an object to 64. Thus, storeOn: will not correctly
handle all object structures.

USing the Reading and Writing Mechanism

Four visible messages are defined to provide the writing or reading of objects to or from files or
character-streams. The two methods for writing structures are:

someObject storeStructureOn: aStream.

Stores an object representation on a character stream aStream.

someObject storeStructureOnFile: aString.

Stores an object representation on a file named aString.

The methods for reading structures are:

Object readStructureFrom: aStream.

Answers an object defined by stream aStream.

Object readStructureFromFile: aString.

Answers an object defined on a file named aString.

Implementation Details
This implementation maps objects based on == equality. If an object has a circular structure
when written out, it will be circular when read back in. Similarly, acyclic structures are read back
in as acyclic structures. There are a few cautions, however:

1. There are some objects, such as processes, that may cause unexpected behavior if an
attempt is made to write them out, or particularly to read back in. Contexts are treated
specially in that the sender is always written out as nil. CompiledMethods are written out
in a special format. Also be aware that the receiver of a MethodContext in which the
block context was created is also copied as part of the definition of the MethodContext.

2. Small talk treats certain objects in a special way, guaranteeing their uniqueness. A new
selector, isUniqueValue, has been defined that returns a boolean value, stating whether the
object has this property. Such classes include UndefinedObject, Boolean, Symbol,
Smallinteger and Character. Objects in these classes are mapped to the corresponding

Tektronix Smalltalk Users 5-29

Programming in Smalltalk

object in the target image. Floating point numbers are written out to 9 digits of accuracy.
If more (or less) accuracy is desired, it is necessary to modify the method Float
printStructureOn :.

3. This caution does not apply to objects for which isUniqueValue is true. Objects that
correspond to global Smalltalk names in the original image are mapped to objects with
corresponding global Small talk names in the target image. This prevents classes and
metaclasses from being duplicated. It requires, however, that you be responsible for
ensuring that the target image defines all global variables that are referenced (directly or
indirectly) by the object in the source image. If two Smalltalk globals refer to the same
object, the result is nondeterministic.

4. Most classes are stored and read in using methods inherited from class Object, which copy
instance variables and array elements using instVarAt:, etc. This means that classes must
have identical definitions in both the original and target images. It also means that classes
that depend on the hash values should be handled specially. Currently, only Set and its
subclasses are treated specially for this reason. String and Number (and their subclasses)
are treated specially for conciseness of notation (and because Smallinteger must be treated
specially anyway). Compiled Method is also treated specially.

5. A receiver's dependents (from the Smalltalk dependency mechanism) are not mapped.

Copying Circular Structures
The following methods implement a mechanism for copying Smalltalk objects that may contain
circularities. The Smalltalk method shallowCopy does not generally copy the complete
structure, while deepCopy only works for non-circular structures.

Two visible messages are defined to provide the copying of structures:

someObject structureCopy

Answers a copy of the object.

someObject struetureCopyWith Diet: an IdentityDietionary

Answers a copy of the object, given that a partial list of mappings from
objects in the old domain to the new are in an IdentityDictionary.
The method may have side effects on an IdentityDictionary, adding new
mappings.

The simplest method to use is struetureCopy. However, if you want to have a handle on the
mapping dictionary (either to pre-specify some mappings, to know the mappings after the copy
has been created, or to get a copy of several objects that may have common subobjects), you
should supply your own IdentityDietionary and use structureCopyWithDict:.

Implementation Details
This implementation maps objects based on == equality. There are a few cautions, however:

5-30

Programming in Smalltalk

1. The copying of objects such as processes will probably cause strange behavior. When a
context is copied, the sender field in the new context is nil. The receiver part of a
MethodContext, however, becomes mapped to a new object just as any other object
would. Compiled Methods are not copied; rather, the original object is returned. The idea
here is that compiled methods should be constant objects.

2. Small talk treats certain objects in a special way, guaranteeing their uniqueness. These
objects in classes such as Boolean, Smallinteger, and Character will return themselves
rather than a copy.

3. Most classes are stored and read in using methods inherited from class Object, which copy
instance variables and array elements using instVarAt:; etc. This means that classes that
depend on the hash values should be handled specially. Currently, only Set and its
subclasses are treated specially for this reason.

4. A receiver's dependents (from the Small talk dependency mechanism) are not mapped.

Tektronix Smalltalk Users 5-31

Section 6

Image and Change Management

OVERVIEW
This section presents infonnation that helps you manage your image and the changes to that
image. It also discusses how to recover your work if your image becomes corrupted and fails to
work properly. Be sure you have a basic understanding of what the interpreter, image, changes,
and standardSources files are and how they are related before you proceed with this section.

CUSTOMIZING YOUR IMAGE AND CHANGES FILE
Each time you do meaningful work in Smalltalk, you change your image. To preserve this
infonnation, each image requires its own changes file. You should go through this procedure
shortly after you bring up Smalltalk for the first time. Thus, the procedure is written for the naive
Small talk user. However, you can certainly run Small talk for a while before you decide you want
to customize your image or changes files.

1. Activate the System Workspace window. Scroll down a short way until you reach the
heading Create File System. Below this heading you see the following lines (or similar
lines). Scroll until as many of these lines as possible are visible in the window at once.

"Make the Smalltalk home directory an absolute path"
Disk ~ FileDirectory directoryNamed: (OS originalEnvironment at: #HOME).

"Make the Smalltalk home directory float to the directory in which Smalltalk was invoked"
Disk ~ FileDirectory currentDirectory.

"Set pointer to Smalltalk source and changes files"
Source Files ~ Array new: 2.
SourceFiles at: 1 put:

(FileStream oldFileNamed: OS smalitalklnitializationDirectory name,
, .. /standardSources.Version', Smalltalk versionNumber).

SourceFiles at: 2 put: .
(Disk file: 'image.changes', Smalltalk versionNumber).

(SourceFiles at: 1) readOnly.

The italicized lines are comments to the Smalltalk code. Disk is a variable global to the
entire Smalltalk system. It tells Smalltalk what directory to use as its home directory. Any
operations which access the external directory structure from Smalltalk use the variable
Disk. Fully qualified pathnames are accepted; relative pathnames are accepted as being
relative to the directory Disk is set to. When your image comes up, Disk is set to the
directory from which Small talk was invoked.

It also creates a file called image. changes in the the directory from which you invoked
Smalltalk. This is your default changes file. When you save your work and exit Small talk,
the files image and image. changes will exist in the directory from which you invoked

Tektronix Smalltalk Users 6-1

Image and Change Management

Small talk. From that point ont you can move to that directory (at the operating system
level) and invoke your customized image by entering image instead of smalltalk at the
command line t as you did to start this session. Entering smalltalk always gives you a fresh
image. Entering image gives you your customized image. The file image. changes holds
all changes made to your image.

2. If you wish to create a different changes file, select the file name image. changes and type a
file name of your choice for your changes file. Don't select the quotation marks, however;
leave them as they are.

3. If you have changed the file name, select the entire line reading:

SourceFiles at: 2 put:
(Disk file: 'image.changes', Smalltalk versionNumber).

Press the middle mouse button down and hold it, while you scan the pop-up menu for the
item do it. Roll the mouse down until this item is highlighted. Release the mouse button.
You have caused your new line of Smalltalk code to be executed. Every time you execute
do itt the Smalltalk interpreter executes the selected codet and the action is recorded in
your changes file.

4. If your fingers slipped and you executed a different menu item insteadt you can fix your
mistake right now. Access the middle mouse button menu again and highlight the item
undo. Then release the middle mouse button. This item undoes your previous editing
action. Now select the line and try the previous step again.

5. If you access a menu, and then decide that you do not wish to execute any item on it,
continue pressing the mouse button. Slide the cursor off the menu so that no item is
highlighted. Now release the mouse button. The menu goes away when the mouse button
is released, and because none of the items were highlighted at that time, none are executed.

6. If you wish to confine all your work in Smalltalk to a specific directory, you may wish to
specify that directory to be the global variable Disk. If so, then go back up to the line that
reads:

Disk ~ FileDirectory directoryNamed: (OS originalEnvironment at: #HOME).

and select the parenthesest and everything within them. Type a single quotation markt and
the full pathname of the directory you wish to use. Close the pathname with another single
quotation mark.

7. Now select the entire line. Press the middle mouse button down and hold it, while you
scan the pop-up menu for the item do it. Roll the mouse down until this item is
highlighted. Release the mouse button. You have caused your new line of Smalltalk code
to be executed.

8. If you have made changes to the System Workspace, you probably want to save them so
that any new System Workspace you access in your image contains an up-to-date version
of the contents. Access the middle mouse button menu againt and highlight the command
accept. You may now close the System Workspace t saving its changes.

6-2

Image and Change Management

CHANGE SETS AND THE CHANGES FILE
When you develop applications in Smalltalk or modify the basic system to suit your own
requirements, you modify or add classes and methods that already exist in the system. The
standard system has built-in helps that allow you to keep track of modified or additional classes
and methods. The standard system also keeps track of your actions as you program.

Small talk preserves changes that you make to the image in two basic ways:

• It creates and continually adds to change sets.

• It continually adds to a changes file.

Change Sets
Change sets are created and managed by the class ChangeSet. Smalltalk maintains one instance
of ChangeSet for each project. System Dictionary has a class variable, SystemChanges,
which is a change set for the current project.

As you make changes to classes and methods, descriptions of these changes are added to the
current change set. The contents of a change set continues to grow unless you make specific
modifications to it.

The following actions are recorded in change sets:

• Modifying a class definition already in the system.

• Modifying a class comment.

• Adding a new class.

• Renaming a class already in the system.

• Removing a class.

• Modifying a class's category.

• Changing a method already in the system.

• Adding a new method.

• Removing a method.

• Modifying a method selector's category.

Note that your actions (do its, print its, inspect its, etc.) are not recorded in a change set.

If you would like to see what your change set (in a particular project) contains, evaluate this
expression in a workspace with a print it:

Smalltalk changes asSortedCollection

This collection may be rather large if you -have -made -considerable -modifications-or additions to
your system.

Filing out classes or methods does not affect the contents of the change set. However, by direct
action you can affect the contents. For example, you can evaluate an expression to cause
wholesale removal of all entries in a change set with:

Tektronix Smalltalk Users 6-3

Image and Change Management

Smalltalk noChanges

or, you can remove all entries that refer to a specific class by evaluating:

ClassName removeFromChanges

where ClassName stands for a particular class name.

If you would like to view the contents of the current change set representing modified methods,
then evaluate the following expression:

Smalltalk browseChangedMessages

If there are no changed methods, then the text Nobody is printed in the System Transcript.
Otherwise, a change-set browser opens. This change-set browser allows you to file out methods.
You can also inquire about senders, implementors, and messages in a method too.

The Changes File
The changes file is the mechanism that Smalltalk uses to preserve changes to the programming
environment. You should not use an operating system text editor, such as Emacs or Vi, to edit
changes files since your image contains absolute references to code in its associated changes file.

The changes file is a super set of the change set(s) because all change set data in addition to your
actions such as do it and print it are written to the changes file. However, not all actions are
recorded.

If you do a do it on:

Pen example

the evaluation of this expression is recorded in the changes file as

Pen example!

However, the evaluation of some expressions and do its tenninate by losing control. And, thus,
are not recorded in the changes file. Here is an example. Evaluate the following expression
using the middle button item do it:

4 factorial inspect

The new inspector takes over control before the do it can be recorded.

Changed or new methods are recorded in the changes file using the file out fonnat. This fonnat
uses the special character exclamation (0. For example, the Pen example method would look
like this:

6-4

Image and Change Management

!Pen class methods For: 'examples'!

example
"Draws a spiral in black with a pen that is 4 pixels wide."
"Pen example"

I bic I
bic ~ Pen new.
bic mask: Form black.
bic defaultNib: 4.
bic combinationRule: Form under.
1 to: 50 do: [:i I bic go: i*4. bic turn: 89]! !

The facility to condense a changes file is provided because much of the time modifications to a
method go through several iterations before a final version is decided upon. Each time the
method is recompiled, it is appended to the changes file, even though only one version is
referenced. In the System Workspace under the heading Changes, execution of the expression:

Smalltalk condenseChanges

renames the original changes file to a backup name and creates a new changes file with duplicates
and dolts removed. Be sure to save your image after condensing changes, so that the references
to the new changes file are saved.

A very important action is recorded in your changes file - the snapshot action. Whenever you
make a snapshot, the following text appears in the changes file:

--SNAPSHOT --to <your image> <some time>

Thus, when you browse the changes file, you can easily determine when the latest snapshot was
done.

The Change-Management Browser
A powerful way to manipulate the changes file is to use the change-management browser (also
called change list view). This is described in some detail in the Addison-Wesley Goldberg book
on pages 468 through 477.

The following expressions are in the System Workspace.

To create a blank view, evaluate this expression and use menu item to read a file and operate on
its contents:

ChangeListView open

To create a view containing code in the file out format for a specific file, evalutate this
expression:

ChangeListView openOn: (ChangeList new recoverFile: (FileStream
oldFileNamed: 'filename.sf»

Tektronix Smalltalk Users 6-5

Image and Change Management

PROGRAMMING METHODOLOGY
Smalltalk programmers should store applications independently of their image. This is
particularly important when the development team consists of more than one person. Version
control is simplified when code is independent of an image.

Here are several ways to store your code independently of your image. You can save the contents
of a change set on a file by evaluating the following expressions:

(FileStream newFileNamed: 'filename.sf) fileOutChanges

This expression creates a file and writes out the entire contents of the current change set in file
out format. This may include new or modified classes and methods.

(FileStream newFileNamed: 'filename.sf) fileOutChangesFor: ClassName

This expression creates a file and writes out the contents of the current change set referring to the
specified class. (ClassName stands for a particular class name.)

The change set may include modifications not relevant to an application. You can remove
changes associated with a class. The following expression removes changes associated with
Stream. For example, all new Stream instance methods are removed. The record of all
instance changes is removed from the current change set, but not from the programming
environment. (This is an example. For your application choose an appropriate class.)

Stream removeFromChanges

The following expression removes changes associated with Stream class, a metaclass. For
example, one of the kinds of changes removed is changed class methods. The record of all
changed class methods is removed from the current change set, but not from the programming
environment.

Stream class removeFromChanges

To remove all Stream references, you must use both of these expressions separately (in either
order). The contents of the changes file are not modified by the evaluation of these expressions.
However, the result of filing out your changes will not include any Stream modifications unless
subsequent Stream modifications are made.

The file out changes methods produce files that can be incorporated back into an image. Use the
middle button item, file in, in a file list, or execute the following expression:

(FileStream fileNamed: 'filename.sf) fileln

Or, you can also use the a ChangeListView to incorporate parts of the file.

Since a ChangeSet is an internal list of modifications, one per project, it is a useful aid to
organizing application code. For instance, you might create two projects for two distinct
applications in your Smalltalk-80 image. Since each project represents another screenful of
information as well as another ChangeSet, this is a convenient way to organize your work. As
long as changes relevant to each application are made in their respective projects, filing out
changes records modifications for that project. Chapter 4 of the Goldberg book contains more
information on projects.

6-6

Image and Change Management

IMAGE MAINTENANCE
Ordinarily, the Small talk image is stable and adding code does not decrease this stability.
However, since Small talk allows you complete freedom to personalize and change the Sm'alltalk
programming environment to suit your needs, there exists the pqssibility that you may make
modifications that render your system inoperable. If you modify system level code, a good
practice to follow is to alternate between two image files as you make changes to your system.
That is, snapshot alternately between the two files. This way you are always able to go back to a
previous image.

After you have created your own image and saved some of your work in your own image file,
you may have created an image that does not load properly. If this happens, use the UTek
operating systeln command is -i to check the size of your image file. It should be at least the
same size as the standard image file. The standard image file, standard/mage, is approximately
1.3 MB in size.

CRASH RECOVERY
The changes file is output in file out format which means that you can use the file in procedure to
reestablish work lost from the current image due to a crash or other malfunction. In general, you
should back up to the latest good image, bring it up, and evaluate this expression:

Smalltaik recover: 5000

This expression reads the last 5000 characters of the changes file. Find the last "-­
SNAPSHOT -- text and then file in expressions that you know to be good up -to -thecrash,or
malfunction. If you have done a lot of work since your last snapshot, it may be necessary to
recover more than 5000 characters. You may modify this expression to recover as much as you
need.

Another way to recover is with the following expression. This creates a view containing just the
actions and changes since the last snapshot:

ChangeListView recover

Use the middle button items do it or do all to incorporate changes into your image.
ChangeListView has a number of filters that allow you to selectively view your changes. See
the Goldberg book, pages 468 through 477.

CLONING
The section entitled "Creating a New System Image" beginning on page 478 of the Goldberg
book discusses how and why to clone an image.

You can make a copy of your running image, eliminating references to inaccessible objects. This
is accomplished by tracing through the running image and writing a copy of each encountered
object to a file. This file contains the cloned image. Some intermediate files, suffixed with
.scratch, are also created while cloning, but are automatically deleted after the cloning is
completed.

Tektronix Smalltalk Users 6-7

Image and Change Management

To make a cloned image, evaluate the expression:

SystemTracer writeClone

Circular garbage is reclaimed as a part of the normal garbage collection process, so there is no
need to clone an image to release these objects in Tektronix Smalltalk. You may still want to
make a cloned image' to release old Symbol table entries. Since a cloned image is completely
re-organized, it is possible to obtain better locality of reference. This may have an effect on
frequency of paging.

Besides tracing through an image to eliminate inaccessible objects, application developers may
also want to incorporate the changes file into the source file. The expression to write a new
source file is:

Smalltalk newSourceFile: 'newSourceFileName' without: Array new

This also creates an empty changes file, and there are no references in the image to the changes
file. Incorporating the changes file causes you to lose versatility and increases the difficulty of
change management, but is good for application delivery. The contents of the change sets are not
modified by incorporating the contents of the changes file into the source file.

Uncollectible Garbage
In order to write a cloned image, your image must be clean. This means that your image must be
free of uncollectible garbage, such as undeclared objects, hanging Dolt methods, obsolete classes,
obsolete associations, etc. These mainly involve pointers that reference obsolete objects. You
may have created uncollectible garbage by control-C"ing while filing in, by removing a class
from the system while still having a class variable assigned to it, and so forth.

Although a procedure is presented here to describe how to clean up your image, you should be
aware that cleaning up your image is more an art than a science. The following procedure will
help you track down uncollectible garbage; however, it is not guaranteed to find all uncollectible
garbage. Futhermore, once these expressions reveal the existence of some garbage, you must
manually trackdown and eliminate the garbage yourself.

Many of the following Small talk expressions are found in the system workspace. You can
execute these expression in either the system workspace or in an ordinary workspace. Be sure the
system transcript is open since some of the expressions write text to the system transcript and you
may want to save this text. In the following procedure, to do something means to select it and
perform a Dolt menu operation, while to print something means to select it and perform a Printlt
menu operation.

1. Do Smalltalk forgetDolts. This eliminates hanging "Dolts", which, for example, you may
have created by doing a control-C while executing code.

2. Do Checker allUnscheduledDependentViews do: [:aView I aView release]. You
may have some unscheduled windows that are still referenced via the dependency
mechanism. This releases unscheduled windows.

3. Print (Object classPool at: #DependentFields) keys. This prints a set of object
dependents, some of which may be garbage. There should typically be an object for each
open view, including those in other projects. Typical ones are TextCollector (system
transcript), an InfiniteForm (the background), various workspaces, various browsers, etc.
If you have garbage dependents, execute the next code in the system workspace with the

6-8

Image and Change Management

argument to isKindOf: the appropriate class to release only the garbage desired. This
expression may have to be executed more than once.

4. Do Undeclared inspect. The resultant inspector should normally be empty. If not, check
for references and remove or declare as appropriate.

5. Print Checker obsoleteClasses. This should result in an empty OrderedCollection. If
not, use Smalltalk collectPointersTo: to eliminate the references to each obsolete class.
Make sure you save the result. You may also want to use Checker obsoleteAssociations
in the same manner to help eliminate obsolete classes.

6. Do Checker rehashBadSets. This verifies that keys for sets are valid. The system
transcript prints a message saying how many sets had to be rehashed.

7. Print the following code:

Smalltalk classNames select:
[:xl (Smalltalk at: x) superclass
class - -(Smalltalk at: x) class superclass]

8. Print the following code:

"Check for missing classes in subclass lists."
Smalltalk allBehaviorsDo: [:class I sClass f- class superclass.

sClass notNiI if True: [(sClass subclasses includes: class)
if False: [Transcript show: class printString,
, is missing from superclass " sClass printString]]].

9. Print the following code:

"Check for duplicate or erroneous classes in subclass lists."
Smalltalk allBehaviorsDo: [:c1ass I subs f- class subclasses.

subs do: [:each I
(each superclass - class)

ifTrue: [Transcript show: each printString,
, is incorrectly duplicated in subclass list of "
class printString; cr. class removeSubclass: each]]].

10. Print the following code:

"Check for classes in subclass lists which are not contained
in the system dictionary. "
Smalltalk allBehaviorsDo: [:class I class subclasses do: [:each I

((Smalltalk at: each name if Absent: [nil]) = nil and: [each isMeta not])
ifTrue: [class removeSubclass: each.

Transcript show: 'Removing subclass " each printString.
, from " class printString; cr]]]

Classes that have incomplete or incorrect references within the class hierarchy either are
not written in the clone image or cause the tracer process to break. Before using the

Tektronix SmaIItalk Users 6-9

Image and Change Management

6-10

SystemTracer, fix the class hierarchy in the image based on information from steps 8, 9,
and 10.

Section 7

MODEL-VIEW-CONTROLLER
INTRODUCTION

Objectives
After reading this section and working the example you should have a good understanding of the
Model-View-Controller paradigm. You will learn the ways in which these objects interact, and
how to make a simple application using a Model-View-Controller triad.

Overview
As a new Smalltalk programmer, you'll eventually face the moment of truth. You've got a good
idea of the wayan object-oriented language works, the object/message-passing paradigm has
begun to make sense, and you've realized that the syntax of Small talk is really not that different
from other languages. You've even got an idea for the first program to write. You know how
you want your data structured, you know what algorithms you need. Now come the questions:
"Just how do I present this to the user?" and "How do I get the user's input?" What begins as a
simple problem becomes an exercise in writing menus and creating an output format. The joy of
creation can become lost in the demands of making a simple application robust and user-friendly.

Tektronix Smalltalk contains a large set of tools: classes to make the task of programming a user
interface easier. You're not required to use these tools - Smalltalk is, after all, a general­
purpose programming language - but it's more consistent (and much easier) to use them.

To see how applications work in the Small talk environment, spend some time browsing through
existing applications. Look at the standard Smalltalk environment itself, the demonstrations in
the executable file lusrlliblsmalltalkldemoldemo!mage, and the applications in the
lusrlliblsmalltalkljile!n directory and you'll find that these applications share a common "feel."
A typical Small talk application runs in a window that becomes active when the cursor enters it.
You select things or give graphic input using the mouse (and sometimes the left mouse button).
You select tasks from context-sensitive menus that pop up when you press the middle mouse
button. You manipulate the window in which the application runs by making selections from a
menu that pops up when you press the right mouse button. You select items from menus holding
the mouse button held down, selections are highlighted when you move the cursor over them, and
the system executes the highlighted selection when you release the mouse button.

If you make your application follow the Smalltalk conventions, someone using it for the first time
won't have to learn an entirely new way of interacting. Tektronix Smalltalk contains the pre­
written code to let you establish windows, sense the position of the cursor and the condition of
the mouse buttons, create pop-up menus, and use the placement of the cursor to take and pass
control like existing applications.

One key to writing Smalltalk applications is organizing the task. Smalltalk typically divides an
application into three main parts:

• The model. An object that contains the data and algorithms that you manipulate to solve a
problem.

Tektronix Smalltalk Users 7-1

MODEL-VIEW-CONTROLLER

• The view. An object that displays information in a window to the user.

• The controller. An object that lets the user interact with your model.

Almost all interactive features and applications in Smalltalk, such as browsers, workspaces, and
file lists, are divided into these functions. This separation is so often used that it is known as the
Model-View-Controller paradigm (often abbreviated MVC). The relationship between the
objects in the MVC paradigm is extremely tight; the mechanics of the MVC is not readily
apparent to a new Smalltalk programmer. This discussion and the following example clarify the
interactions between models, views, and controllers.

WHAT IS AN INTERACTIVE APPLICATION?
Any computer application has three main functions. These are:

Input An application provides some means for the user to interact with it.

Process The application manipulates and stores data.

Output The application gives the user some feedback about the process.

Two differences between an interactive and a batch application are the user's perception of the
application and the scope, or quantization, of control. In a batch application, you enter your
commands, then wait an for an output. In an interactive application, you get immediate (or nearly
so) feedback, then enter more commands and get more feedback, and so forth.

The scope and quantization of control also differ between batch and interactive applications.
Batch commands are generally few and far-reaching. Interactive commands, on the other hand,
generally do less. You must repeat commands more often. In short, a successful interactive
application gives you the feeling of continuously controlling the computer while the batch
application feels more like the instructions on old Chinese fireworks: "Light the touchpaper and
retire."

MODEL, VIEW, AND CONTROLLER
Smalltalk divides applications into models, views, and controllers. The controller accepts input.
The model performs the processing. The view displays the output.

Model
A Smalltalk model is the processing part of an application. It stores and processes data. Object,
the fundamental class in Smallltalk, contains all the necessary behavior to be a model. All
objects in Smalltalk inherit from the class Object, therefore, any Smalltalk object can be a
model. .

Models need not contain information about displaying themselves or interacting with a user.

7-2

MODEL· VIEW·CONTROLLER

View
A view is Smalltalk's most common output mechanism. It displays the model (or some aspect of
it) to the user. A view can be any representation of the model such as:

• amap

• a schematic diagram

• a paragraph of text

• a list of relationships

• a bar chart

• a graph
or any other way of representing information on the screen. In addition, a view maintains its own
coordinate system so you need not scale graphics to fit the view's window - it handles graphics
conversions for you. Views can contain other views (called subViews) to show more than one
aspect of a model.

Smalltalk views are almost always subclasses of the class View.

Small talk views are tightly coupled with controllers; each view is coupled with a single
controller. A controller usually takes control only if the cursor is inside the view.

A model's only obligation to its view or views is to make it known if it changes. A view is
dependent on and must query its model to display it, but a model normally knows nothing of its
view or views. Indeed, one model often has' multiple views showing different aspects of the
model.

Controller
A controller is a Smalltalk input mechanism. A controller interprets mouse and keyboard activity
when it has control of the system. A controller is normally active, or takes control, while the
cursor is within its view.

Each window visible on the Small talk screen has an associated controller. When you move the
mouse into a window, the controller for that view (or subview) becomes active and interprets
your input in the context of the view. For example, pressing the middle mouse button in a
System browser window gives you a different menu than pressing the middle mouse button in a
workspace window.

The Small talk system cycles continuously through a loop checking whether controllers want
control. A system controller manager asks each controller on a list of scheduled controllers, in
turn, if it wants control. Controllers take control if the cursor is within its view, perform their
control activity, then relinquish control.

Smalltalk controllers are usually subclasses of the class Controller.

Tektronix Smalltalk Users 7-3

MODEL· VIEW· CONTR OLLER

THE Model-View-Controller TRIAD

A Simple Mvc Triad
One model, one view, and one controller working together form the simplest possible Smalltalk
application, a Model-View-Controller triad. Figure 7-1 shows a simplified illustration of how the
Model-View-Controller triad works.

1. The Controller accepts your input, and causes the Model to change.

2. The Model informs the View that it has changed.

3. The View then displays information about the Model in a window on the screen.

Later in this section, you will find a working example of a MVC triad that you can type into your
system and run. If you find yourself becoming confused as you read through this discussion,
remember that you can look ahead and read the working code. You must look at models, views,
and controllers from the perspective that they form a system and interact with one another.

7-4

Input

mouse/keyboard

Instance
of a

Controller

Instance
of a

Model

MODEL· VIEW· CONTROLLER

Output
(to display)

Instance
of a

View

3440-9

Figure 7::1. A Model-View-Controller Triad.

In this triad, the model is nearly independent of the other two (we'll discuss the specific linkage
later), but the view and controller are tightly coupled to each other and depend on the model. In
most applications, you'll develop the model first, then link it to a view and controller. Assuming
that the model has been developed, let's look at how views and controllers communicate and
behave, then see what a model has to do to become part of the triad.

Tektronix Smalltalk Users 7-5

MODEL-VIEW-CONTROLLER

View Behavior
A view's behavior depends on:

• The behavior it inherits from the class View.

• The behavior the Small talk programmer gi ves it.

• Its relationship to its sub views and whether it is a subview of another view.

Subviews
Views can contain other views. Any view that is contained within another is called a subview of
the view that contains it. Although you can nest subviews within each other, this nesting is rarely
more than one deep; all sub views are usually sub views of a common view.

For most applications you will make your views subviews of a specialized view (usually called
the top View). The topView is an instance of a StandardSystemView (another subclass of View).
Thus, the overall view of a model is normally a top View that has one or more views assubviews
of the topView. Figure 7-2 shows how several views may be used to make a complex view of a
model.

7-6

Schematic View

Sample View

o o
D o DO

o
D

MODEL-VIEW-CONTROLLER

CJ
CJ
CJ

o

Pictoral View

o

Parts
List

DD
3440-10

Figure '-2. Combining Subviews for a Complex View.

Tektronix Smalltalk Users 7-7

MODEL· VIEW-CONTROLLER

View Inheritance
You create new classes of views to display some aspect of your model. You normally subclass
these new classes from the class View so instances of these new classes inherit the behavior and
instance variables of class View; they can display their interior, their borders, and their subviews.
In addition, each inherits instance variables that specifies its model, controller, and the list of its
subviews. You must write the methods that display the particular aspect of the model you want
to show.

Using Views in Smalltalk
In order to conform to the Small talk environment, you normally make all your views (even if you
only have one) subviews of an instance of StandardSystemView. StandardSystemViews give you
the familiar title tabs and have their own controllers, instances of StandardSystemController.

The controller for a StandardSystem View determines what the system does when you press the
right mouse button. Therefore, making the top View a StandardSystem View gives you, for little
overhead, a window that conforms to the Small talk conventions for windows and the right mouse
button.

A StandardSystemView's model may be either your model or nil. If you browse through
examples in the system, you'll find some examples where the model for the SSV is the
underlying model and some examples for which the model is nil. The only existing situation in
which this is important is when you are working with text views. If you want the conformation
window to protect your text (pop-up a window to ask if you really want to close), you must make
the SSV's model the model of the text view.

Figure 7-3 shows how a MVC triad relates to a StandardSystemView and
StandardSystemContro11er.

7-8

User In ut

Mouse/Keyboard

Instance of a
StandardSystemController

to aModel
(optional)

MODEL-VIEW-CONTROLLER

I nstance of a
StandardSystemView

to aModel
(optional)

Output

3440-11

Figure 7-3. MVC Triad with StandardSystemView and StandardSystemController.

Tektronix Smalltalk Users 7-9

MODEL-VIEW-CONTROLLER

How Views are Displayed
In the class View, the method 'display' detennines how each View will display itself. Part of the
code reads as follows:

self display80rder
self displayView
self displaySubViews

When an instance of View or one of its subclasses gets the message display, it first displays its
own border, then tells itself to execute the method displayView. (The method displayView is
the method you must write for each of your Views to display its model's infonnation.) Finally,
the method displaySubViews sends the message display to each of the View's subviews. Thus,
when we send topView the message display, the display message is propagated down the
display hierarchy.

Creating A New Mvc Triad
When you create a new MVC triad, you usually start with an existing instance of a model. To
create a MVC triad you must create an instance of your view, set its instance variables and create
its display hierarchy, then create an instance of a controller and set its instance variables. You
can, of course, do this manually, one step at a time. However, you'll usually want a method to do
the dirty work for you.

The Small talk convention is to have a class method for your view (often called open or
openOn:(aModel)) create a new view, set the new view as a subview of StandardSystemView,
and open the StandardSystemControlier associated with the StandardSystemView. The
system then queries the newly created instance of your view (via the method you write called
defaultControlierClass) and sets the newly created controller's instance variables.

Assuming that you've created the classes for your model (class MyModeI), your view (class
MyView) and your controller (class MyController), you might create an instance of your model
by executing in a workspace:

aMyModel <- MyModel new

Now, since you've already written the openOn: (aModel) class method and
defaultControlierClass instance method, all you need do to create the triad is execute the
following method in a workspace:

MyView openOn: aMyModel

Class MyView then creates an instance of MyView with the topView a StandardSystemView and
its model set to the instance of MyModel named aMyModel. In addition, the new instance of
MyView is registered as a dependent of aMyModel. The system then queries the new instance of
MyView (via defaultControlierClass) then creates a new instance of MyController. The system
sets the view's instance variable, controller, to the new instance of MyController, the controllers
instance variable, view, to the instance of MyView, and the controller's instance variable, model,
to aMyModel. Figure 7-4 shows the sequence of events that create the view and controller and
link them to the model to create a MVC triad.

7-10

MODEL· VIEW·CONTROLLER

Workspace

MyView openOn: aMyModel ~...."..-- added by View

class

do it r-________ ~~~~ ________ ~.~----M-y-V-ie-w----~

aMyView
(instance of class MyView)

class
MyControlier

defaultControlierClass

aMyControlier
(instance fo class Mycontroller

aMyModel

Figure 7·4. MVC Creation Sequence.

Tektronix Smalltalk Users

3440-12

7-11

MODEL-VIEW-CONTROLLER

Controller Behavior
Controllers, like views, store their information about the rest of the triad as instance variables.
Typically, an instance of a view creates its controller when created, leaving you only to decide
what the new controller is to do. You must write the method named controlActivity to tell your
controller how to respond to user input.

The basic sequence of messages that a controller receives is:

control Initialize
control Loop

isControlActive
controlActivity

controlTerminate

If you make your controllers subclasses of the class Controller, all methods except for
controlActivity are already defined for you.

Should you require a completely passive view - one that you cannot affect- you can use the
predefined controller NoControlier. This controller does nothing interactive; it simply exists. If
you don't write a defaultControlierClass message for your view, you'll get an instance of
NoController by default,

The Role Of The Model
The model responds to messages the Controller or other objects sends to it and does whatever it is
designed to do. A model's only other task is to inform its dependents (views of it) whenever it
changes.

Each object (remember, the model is a subclass of the class Object) maintains a list of
dependents. Whenever the object receives the message changed:(aParameter) or changed, it
sends the message update:(aParameter) or update to each of its dependents. Since Views are
dependents of their models, they must also respond to either the update:(aParameter) or
update message from their models (usually self display). Thus, when the model changes either
as a result of its own processing or as a result of a message, it sends the message that it has
changed to itself; that message, in turn, causes the model to send each of its dependents the
message causing themselves to update themselves. The view, a dependent, then redisplays itself
to show changes in the model.

If you want some views to respond only when one particular aspect of the model has changed, use
the update:(aParameter) message, while a general change can be handled with the update
message. Remember, Small talk takes care of the details for you. You must remember to send the
changed:(aParameter) or changed message when the model changes and include the
update:(aParameter) or update message in the view in order to use this mechanism. Figure
7-5 shows in more detail the relationship between the members of a working MVC triad.

7-12

MODEL· VIEW· CONTR OLLER

Input

controlActivity

methods inherited
from

Object

update: aParameter
or

update

Figure 7-5. Model-View-Controller Relationship.

Tektronix Smalltalk Users

Output

3440-13

7-13

MODEL-VIEW-CONTROLLER

MVCSUMMARY
You must follow certain conventions to take advantage Smalltalk's support for the MVC
paradigm. Some methods you write are used for creating new instances of the MVC triad and
others are used in a running system.

Model Summary

The Model's Methods in a Running MVC Triad
A model's only responsibility is to broadcast the notification that it has changed when it changes.
To do so, every method that changes the model must include the line self changed. If you write
new methods that change the model, be sure that the line self changed is executed each time the
model changes. If you use inherited methods, you should override them with the sequence:

super (inherited method).

self changed

If you have views looking at different aspects of the model, the model can send a parameter
indicating that a particular aspect has changed with the message changed: (aParameter), where
aParameter indicates the aspect of the model that has changed.

Creating a Model For a MVC Triad

You will normally create the model for a MVC triad independently of the view and controller. A
model normally knows nothing of its view and controller.

View Summary
A view presents information about the model to the user. Views also create the MVC triad.

The View's Methods in a Running MVC Triad
For a view to operate in a MVC triad, you must write the instance methods that display the view
and the methods to respond when the model changes. To display the view, you must write a
method with the name displayView that tells your instance of a view just how to display itself.
To respond to model changes, you must write the instance method named either update or
update:. If the model sends the message changed, the view must respond to the message
update, while if the model sends changed: (aParameter), the view must respond to the message
update: and take action if the parameter is one that it should respond to. In most cases the view
will simply execute self display when the model changes.

7-14

MODEL-VIEW-CONTROLLER

Methods to Create New Views and MVC Triads
You must write the class methods that create new instances of your view. This is often called
openOn: and takes your model as a parameter (however, the name is not important). In addition,
the instance creation message usually makes your view a sub view of a StandardSystem View, sets
the minimum and maximum sizes of your view, the border width, and inside color. In addition,
you must write the instance method defaultControlierClass that determines what controller will
be assigned to your new instance of your view (if you don't write this message, an instance of
NoController will be assigned). When you invoke the instance creation message, the methods
inherited from class View create the controller and link the model, view, and controller into a
MVC triad.

A MVC EXAMPLE
Although the Model-View-Controller paradigm is conceptually simple, its implementation
sometimes seems obscure. This example shows a simple model (nearly all its behavior is
inherited) tied to a simple view and a simple controller. This example develops a MVC triad
using existing code, then shows how to add behavior to this triad to make a very simple
interactive application.

This example illustrates the relationship between a model, a view, and a controller - not the
details of any algorithm within a model. Therefore, this example's model is a subclass of
Ordered Collection and adds only those methods necessary to make it work with a view and
controller. The model is an OrderedCollection of Points. (OrderedCollections don't care what
they are collections of, you choose that by the way you use them.) The model is subclassed from
OrderedCollection to inherit OrderedCollection's methods; the example overrides these methods
or adds new methods only where necessary.

You can use any class in Smalltalk-80 as a model because the fundamental behaviors needed for
a model are found in the root class, Object. Every Smalltalk-80 object is a subclass of Object and
has all the necessary behavior to be a model. OrderedColIections are common starting points for
many applications and their behavior is interesting. Points are easy to relate to graphic shapes
and positions. Therefore an OrderedCollection of Points is a useful model for this example.

Enter this example into your system as you follow along. Be sure you understand what's
happening at each step, and feel free to experiment.

Creating A Model Class
To create your graphic model class (ExampleModeI) add a Category, MVC-Example, in the
Category pane of the system browser. (To do so, move the mouse to the top left, or category,
pane of the browser and select add category from the left button menu. Type the category name
in the notifier, then accept it.) When the template appears in the text pane of the browser, edit
the template to read as follows, then accept' it via the middle button menu.

Tektronix Smalltalk Users 7-15

MODEL· VIEW· CONTROLLER

OrderedColiection variableSubclass: #ExampleModel
instance Variable Names: "
classVariableNames: "
pool Dictionaries: "
category: 'MVC-Example'

Once accepted, you see the new class appear in the browser. The new class has all the behavior
necessary to act as a model; in fact any subclass of Object (and hence any Smalltalk object)
inherits these necessary behaviors from the class Object. You can make use of these inherited
behaviors to make a new instance of ExampleModel, add and delete things to and from it, and
inspect it with an inspector. (To see the inheritance hierarchy, move to the class pane of the
browser and select the middle button menu item hierarchy on the class ExampleModel.)

Take a few moments to get familiar with your new class. Open a workspace, and execute the
following code:

aModel ~ ExampleModel new.
aModel inspect

You can modify the model via methods inherited from OrderedCollection. You can add objects
with add: and delete objects with removeFirst and remove Last. Leave the inspector open (or
open another) and execute the following lines in the workspace. Check the object via the
inspector after every line. (Remember that you must reselect self, or the field you are examining,
each time you change the object before the inspector will show the change.) Try executing lines
more than once. How does the OrderedCollection handle multiple occurrences of a member of
the collection? How does an OrderedCollection deal with different numbers of objects? What
happens if you try to remove something that isn't there? What happens to the inspector if you
add more than 10 elements? Open another inspector (if you haven't erased the old code, you can
select and do it again).

aModel add: 1 0@1 O.
aModel add: 20@20.
aModel add: 10@15.
aModel add: 100@410.
aModel add: 50@1 06.
aModel remove First.
aModel remove Last.

You should now be comfortable with the behavior of your model, an OrderedColiection. Don't
close the workspace, you can use it later.

Class Comments
Each class you add to your Smalltalk image should include a meaningful class comment. To add
a comment to a class, select the class ExampleModel in the class pane of the browser, make sure
the instance switch is set on (it should be highlighted, if it isn't move the cursor to it and click the

7-16

MODEL· VIEW·CONTROLLER

left mouse button), and select the middle button menu item comment. You should see the
comment "This class has no comment" in the text pane. Edit the comment as follows and accept
it.

This an example model that has no unique behavior of its own. All added
behavior is to work with a ExampleController and a ExampleView.

Creating A View On The Model
Now that you have a working model, create a view on this model. You should make it a subclass
of View. In the Browser, deselect ExampleModel (click on it). When the template appears, edit
the template to appear as follows, then accept it.

View subclass: #ExampleView
instance Variable Names: "
c1assVariableNames: "
pool Dictionaries: "
category: 'MVC-Example'

Don't forget to add the class comment!

This is a simple view on a ExampleModel. It assumes that the model is an
OrderedCollection of Points. It does no error checking and will break if you
stuff anything else in the model.

The view is the most complex part of a MVC triad. You send the class (Example View in this
case) a message that causes it to create an instance of its class, ties it to a model, gets the
controller type from the model, creates a controller, ties the new instance of the controller to the
view, and ties the controller to the model. In addition, it creates a StandardSystemView and sets
the newly created view as a sub view of the StandardSystem View. Furthermore, it takes care of
housekeeping such as border width, interior color, and the text in the title tab.

Instance creation is a class task - a class creates a new instance of itself. In the class pane of the
Browser, select and click on the class switch. Move to the protocol pane of the browser and
select the middle button menu selection (yes, it's the only one) add protocol. When the "fill in
the blank" window appears, type instance creation and either accept or press the carriage
return key. A new template then appears in the text pane.

You're now ready to create the method the class ExampleView will use to create new instances
of ExampleView. Call this method openOn: as you'll want to use it in the form:

anExampleView openOn: anExampleModel

Edit the template to appear as follows, then accept it.

Tektronix Smalltalk Users 7-17

MODEL-VIEW-CONTROLLER

openOn: an Example Model
"Creates a new ExampleView on anExampleModel."

I an ExampleView topView I
an ExampleView ~ self new.
anExampleView model: anExampleModel.
anExampleView insideColor: Form white.
topView ~ StandardSystemView new.
topView label: 'Graphic MVC Example'.
top View borderWidth: 1.
top View addSubView: anExampleView
topView controller open

Let's look at this code and see what it does:

openOn: anExampleModel
"Creates a new ExampleView on anExampleModel."

These lines name the method (openOn:) and establish that it will respond to a keyword message.
It expects the invoker to pass it the name of a ExampleModel that openOn: will use internally.
In the method, you use an Example Model to designate this passed ExampleModel name. The
comment in quotes merely tell the purpose of this method.

anExampleView ~ self new.

This line creates a new instance of anExample View. The remainder of the method initializes this
newly created ExampleView.

anExample View model: anExampleModel.
anExample View insideColor: Form white.

Here you tell your new ExampleView, anExampleView, that its model is identified by the
argument after the openOn: message. The second line sets its inside color to white.

Typically, you like all the windows in your environment to behave in the same way. You like to
have a title tab and be able to manipulate them with the right mouse button menu. The easiest
(and potentially easiest to modify and expand) way to get these functions into your View is to
make your View a sub View of a StandardSystern View.

The next lines of code create a new instance of a StandardSystem View and make the View you
just designed a subview of the StandardSystem View.

7-18

MODEL· VIEW· CONTR OLLER

topView (- StandardSystemView new.
top View label: 'Graphic MVC Example'.
top View borderWidth: 1.
topView addSubView: anExampleView.
top View controller open

The first line creates a new StandardSystemView and assigns it to the name "topView." The
second line puts the label "Graphic MVC Example" onto the title tab of the View. The third line
sets the width of the topView's border to one pixel, while the fourth makes your ExampleView a
sub view of the new StandardSystem View.

The final line activates the topView's Controller, already created by the StandardSystemView so
that you can interact with your demonstration window. (The actual sequence is more
complicated, but Smalltalk takes care of the messy details for you.) If you do nothing else, your
window will now display and respond to the right mouse button menu.

ExampleView Instance Behavior
After you have created an instance of a ExampleView, you want that instance to display its
model. In the class pane of the system Browser, toggle the instance switch (put the cursor on
the box marked "instance" and click the left button), and, in the protocol pane, add the protocols
displaying and controller access.

Select the protocol displaying, edit the template as follows, then accept it.

displayView
"Display the model as black dots at each point."

model do: [:point I (Form dotOfSize: 5)
displayAt: (self displayTransform: point)]

The code is simple - it loops through the members of the model (do: is inherited from
OrderedCollection) and displays a dot at the location of each point. One point to note, is that you
use the View method display Transform to change the coordinates of each point from screen
coordinates to window coordinates for the View. Remember that a view sends itself the message
displayView in response to the message display.

Select the protocol controller access, edit the template as follows, then accept it.

defaultControllerClass

"Answer the class of the default controller for the receiver."

i ExampleController

------------..:....----------------

Since you haven't yet created the class ExampleController, the compiler complains. Select
undeclared and the method will compile. This method completes tying the Example View to its

Tektronix Smalltalk Users 7-19

MODEL· VIEW ... CONTROLLER

model and Controller - the model is declared when you create the ExampleViewt the Controller
is declared by the instance method defaultControlierClass.

Creating the Controller for the ExampleView
To create a Controller for the ExampleViewt deselect the class in the class window of the
Browser, edit the template as follows, then accept it.

Controller subclass: #ExampleControlier
instanceVariableNames: "
classVariableNames: "
pool Dictionaries: "
category: 'MVC-Example'

The class comment is:

I am a Controller for a demonstration Model-View-Controller triad. I do
nothing.

There is one required instance message selector for a Controllert controlActivity. Add the
protocol control defaults, edit the template as follows, then accept it.

controlActivity
"This controller does nothing"

While not yet complete, you have enough of the MVC triad linkage to test and see that it works.
In your workspace, enter the following and do it.

aView (- ExampleView openOn: aModel.

Now frame a window just as you do any Smalltalk-80 window - its contents will be the graphic
display of your model. Return to your workspace and add or delete points from the model.
Nothing changes. Why? Of course the view doesn't changet because the model doesn't inform
the View that anything is different. (You can verify that the changes are real with the right button
menu selection 'repaint.')

Getting the Model to Inform the View of Changes
If you will recall, earlier in this discussion it was pointed out that a model has the responsibility
of informing its dependents of any changes. You've made changes via the inherited methods
add: and removeFirst and removeLast. To get the model to inform its dependents that it has
changed you will override these methods. The overriding methods pass the original message to
super, then inform the models dependents of the change with the message self changed.

7-20

MODEL-VIEW-CONTROLLER

Select the class ExampleModel and in the protocol pane add the instance protocols adding and
removing. enter and accept the following two methods in the protocol for removing.

remove First
"Execute the inherited method, then inform dependents of a change."
super removeFirst.
self changed

removeLast
"Execute the inherited method, then inform dependents of a change."
super removeLast.
self changed

Then, under the protocol adding, enter and accept the following:

add: aPoint
"Execute the inherited method, then inform dependents of a change."
super add: aPoint.
self changed

Now test the code. Add a point or two in the workspace. Does the update happen as soon as you
do it in the workspace? Why not? When the model informs its dependents of a change it sends
the update: message to each of its dependents. Your View (a dependent of your model) needs
to respond to this message. Add the protocol updating to the instance methods for
ExampleView, edit the template as follows and accept it.

update: aModel
''The model has changed. Redisplay the view."
self display

Move onto your example window and activate it (you may have to click the left button). What
happens then? Add and subtract a few points until you feel that you understand what's
happening.

Adding Some Controller Activity
Although you now have a complete Model-View-Controller triad that works together, it feels
incomplete - as though something were missing. And, of course, it is - the Controller does
nothing. It's annoying to have to use a workspace to manipulate the model.

Let's complete this example by having your Controller interact with the View and model. In this
simple example, you won't develop the "philosophically correct" Smalltalk-80 interface (one in
which the left button would be used for selection/graphic input and the middle button to pop up a

Tektronix Smalltalk Users 7-21

MODEL· VIEW·CONTROLLER

menu of choices). Instead, you'll just use the left button to add a point (within the View) to your
model and the middle button to remove the oldest point from the model. To do so, you need to
modify the ExampleController method controlActivity. Select it, edit it to read as follows, then
accept it.

controlActivity
"This Controller does some simple editing"
Sensor redButtonPressed if True:

[model add: (view inverseDisplayTransform: Sensor cursorPoint)].
Sensor yeliowButtonPressed ifTrue:

[model removeFirst]

The logic of this method is simple. If the left button is pressed (Sensor redButtonPressed
if True:) it executes the first block and directs the model to add the point returned by the
expression view inverseDisplayTransform: Sensor cursorPoint. In this expression, view is
the View associated with the MVC triad. The View takes the point returned by Sensor
cursorPoint and transforms it from screen coordinates to view coordinates. If the middle button
is pressed, (Sensor yeliowButtonPressed ifTrue:) it executes the second block and calls on the
model to execute the method removeFirst.

This example, while it does work, is still buggy. If you hold the left mouse button down, each
time the controller gets control, it adds a point then relinquishes it untill the next time it gets
polled. Similarly, if you hold the middle mouse button down, you'll delete points until your
model is empty, then get a complaint. While not exactly the behavior you might want,
experiment with this application. Try to change just how it works. Some avenues to explore are:

7-22

• Change the way the points are presented. How would they look if you drew a spline curve
through them? Connected them with a line?

• How can you make the controller add or remove only a single element no matter how long
you hold down the button? (If you need a hint, try typing yellowButtonPressed in the text
pane of the workspace, highlight it, and choose 'explain' from the middle button menu.)

• Create the "philosophically correct" interface. Create a method that lets you select points
with the left button. Pop up a menu with the middle button that lets you add points with
the left button, remove selected points, or remove the first point or remove the last point.
You'll want to look at class ActionMenu to see how to proceed.

Section 8

Operating System Interface

INTRODUCTION
Tektronix Smalltalk provides access to the full capabilities of the underlying operating system.
Access includes file system functionality as well as other capabilities of the operating system
such as multi-tasking. Applications may use these capabilities to reach outside communication
channels, to reach specialized computing power, or simply to execute normal functions of the
operating system from within the programming environment. This operating system interface
provides a uniform method of accessing many features of the operating system from the
programming environment.

Uniform access to operating system capabilities is furnished by the execution of operating system
calls. It is extended by abstractions that encompass important operating system facilities.

This discussion assumes that you are familiar with Smalltalk and multi-tasking in the Unix
system. Smalltalk has its own threads of control called processes, but at the same time Small talk
itself is a task (process) in the UTek operating system. For this discussion, an operating system
process is referred to as a task.

This discussion also assumes you are familiar with files, pipes, and signals in a Unix
environment; however, as a quick review, you can look at the Review of os Terms provided later.

Overview
This section gives you a basic understanding of how files, pipes, and tasks are treated in
Small talk. General concepts and orientation are given along with examples. After you have read
through this section, go on to the class and method comments and browse the method code in the
system.

Review of as Terms
Here is a quick definition of the terms used in the discussion of the operating system interface
classes. A textbook about the Unix operating system will help you review these concepts in
detail. A good text is: James Peterson and Abraham Silberschatz. Operating System Concepts.
(Addison-Wesley, 1985).

kernel

system call

Tektronix Smalltalk Users

The UTek operating system. It is the software layer between the
hardware and the programming interface. The kernel services fall into
four categories: tasks, 110, memory management, and timers.

A request for a kernel service. A system call is the programming
interface to the kernel. Tektronix Smalltalk supports a number of UTek
system calls.

8-1

Operating System Interface

task

fork

exec

signal

pipe

descriptors

A task is a thread of control in the operating system. Each user can own
multiple threads of control, thus, the term multi-tasking. A task may be
created, interrupted, waited on, or terminated.

fork system call. Afork call copies the parent task to create a new task­
the child task.

The UTek exec system call is used after a fork call to tum a child task
into a new "program". The exec call does this by overlaying the text and
data segments of the parent task. But, the child task still has access to
the parent's files because the task environment is not changed. So, a
fork and then an exec call creates a new task and runs a program.

The UTek kernel sends a signal to a task in response to events like a a
child task termination or program errors. A task deals with system
signals by accepting the system default, by ignoring signals, or
intercepting the signal with a signal handler.

A UTek pipe is a uni-directional stream of bytes connecting two tasks.
A pipe has two descriptors: one for the read end and one for the write
end. Applications must have two pipes for two way communication
between tasks.

A descriptor is an identifier for a stream of data. Pipes and files have
descriptors. Each task has a fixed-size descriptor table, which is part of
a task's environment. Descriptors are used in read or write calls on
pipes and files. There is a limit on the number of descriptors available
per task.

THE OS GLOBAL VARIABLE
as is a global variable that refers to the system call class for your operating system. Currently,
Tektronix Smalltalk supports two operating systems: the Uniflex operating system and the UTek
operating system.

as refers to either UTekSystemCall or UniflexSystemCall depending on the operating system
you are running. Smalltalk runs on top of either UTek or Uniflex. So, to provide portability of
system call functionality between systems, you should use the global variable as instead of a
specific system call class.

THE SYSTEM CALL INTERFACE
Tektronix Smalltalk has added system call functionality to Smalltalk with these classes:
AbstractSystemCall, AimSystemCall, UniflexSystemCall, and UTekSystemCal1. These
classes add abstract operating system functionality by defining operations and capabilities in
super classes. Specific functionality is defined in system call classes for specific operating
systems.

8-2

Operating System Interface

AbstractSystemCal1
AbstractSystemCall is meant to be a model of the basic system call functionality regardless of
the underlying operating system. However, the operating system is assumed to have multiple
directories, files that can be randomly read, written, and truncated, that have some form of status
information, and some means of running different programs one at a time. Multi-tasking is not
assumed.

Protocol defined for the class AbstractSystemCall determines system call functionality in three
categories: directory, file, and subtask operations. The methods may be implemented in
AimSystemCall and UTekSystemCal1. If possible, applications should base their code on
methods defined in AbstractSystemCal1. These methods are considered most portable.

AimSystemCal1
AimSystemCall is another abstract class intended to implement system call functionality across
the 4400 family machines. Through this class you can access 4400 family display operations,
operating system environment variables, and command line arguments from the invocation of
Smalltalk.

An instance of AimSystemCali contains all of the information normally used to perform a
system call from an assembly language interface. This includes:

• The values of machine registers passed to or returned from the system call and any
parameter lists.

• The operation ID of the system call to be performed.

• Any error information.

Thus, AimSystemCall includes instance variables named OOln, DOOut, AOln, AOOut, and so
forth. These represent 68000 family registers. The instance variable errno returns error
information.

UTekSystemCal1
UTekSystemCall is a concrete class that implements access to many of the system calls
available in the UTek operating system.

Portable Operations
Portable operations are generic or high-level operations that all operating systems at the specified
level support in some manner. For example, portable operations specified at
AbstractSystemCall are supported by all operating systems; portable operations specified at
AIMSystemCall are supported by the UTek and Uniflex operating systems; and portable
operations specified at the UTek level are supported by all versions of the UTek operating
system. Subclasses may override an implementation of a portable operation.

Tektronix Smalltalk Users 8-3

Operating System Interface

Always use a portable operation if possible to insure portability across operating systems. (Use
of the OS global variable also helps insure portablility.)

For an example of why you should use portable operations whenever possible, take a look at the
following method for a common file operation: opening a file for writing. The method
openForWrite: is a portable file operation that sends a system dependent message to accomplish
its task. Each operating system may have a different way to open a file. The portable operation
provides a way to hide these differences. Note that the system dependent method,
open:flags:mode:, involves operating system details that you must research and correctly use to
accomplish the conceptually simple task of opening a file for writing. However, the correct
values for many UTek operating system constants have been determined and are used in portable
operations. The constants O_WRONLY and O_CREAT, along with many other operating
system constants, are found in the global dictionary OSConstants.

openForWrite: fileName
"Open the file named fileName. Answer a writeOnly fileDescriptor for the file."

i(self
open: fileName
flags: ((self constant: 'O_WRONL V')

bitOr: (self constant: 'O_CREAT'))
mode: Br666) value

System Dependent Calls
System dependent calls are specific to a particular operating system. They specify the system
call and set up the parameters required, but stop short of actually executing the system call. An
instantiated instance of UTekSystemCall is produced by system dependent methods. This is a
form of instance creation. The messages value, valueWithError:, or invoke are sent to the
instantiated instance to execute the specified system call.

Take a look at UTekSystemCali unlink: for an example of a system dependent operation.

unlink: pathName
"Unlink removes the reference to path Name from its directory.
The file will not go away if there are other links to it or it is open

in any process."

i(self new)
operation: #unlink
with: pathName, StringTerminator; systemOperation

unlink: creates an instance of UTekSystemCall and sends operation:with: to it.
operation:with: specifies the system call unlink and sets up the arguments for a system call (here
the argument is the result of concatenating path Name with StringTerminator).
StringTerminator is a string containing the string termination characters for the underlying
operating system - for UTek, a null character. systemOperation informs UTekSystemCall
which primitive to execute: a display, a system, an environment, or a signal operation. This
example uses systemOperation, which means make a system call.

A sender of unlink: is remove: in AimSystemCall class. System dependent methods are
frequently used by portable operations like remove:. Note that the value message is used in

8-4

Operating System Interface

AimSystemCall remove: to actually execute the system call.

Here is an example of a system dependent call that is not needed in Smalltalk and is not used as
part of a portable operation call. Look at the following method found under system-files:

flock: filelD operation: operationlD

II Flock controls advisory locks that cooperating processes may associate
with files. Locks can be applied either exclusively or shared, and may be
set non-blocking. OperationlD is a set of bit flags used to determine the
type of lock that will be applied to the open file descriptor fileID."

i(self new)
operation: #flock
with: filelD
with: operationlD; systemOperation

You might use this method if you were working on a database application in which files need to
be protected and shared at the same time.

If you cannot figure out how to use this method, or any other system dependent method, from
examination of the code and reading the method comment, then look up the corresponding
system call in the UTek Command Reference manual. The information in the UTek Command
Reference Volume 2 manual should give you the information you need to use the Smalltalk
method since there is a close correspondence between system call specification and system
dependent methods.

System Call Parameters
UTek and other operating systems make use of single integers, collections of integers, and
sometimes pointers to pass information. Since these data are of various kinds, they are named
aggregates for this discussion. The term "binary aggregates" refers to data with no pointers. The
term "pointer aggregates" refers to data with pointers.

To support these aggregates, the image contains an abstract class, ExternalData. This class has
two subclasses, ExternalBinaryData and ExternalPointerData. Looking at the hierarchy of
ExternalData, you will see that most of the C structure classes are subclasses of
ExternalBinaryData. These include Stat, Rusage, and Wait. Under ExternalPointerData,
you will find PointerArray, StructureArray, and FixedSizeExternalPointerData, the last of
which CPointer is an example.

Tektronix Smalltalk Users 8-5

Operating System Interface

ExternalData
ExternalBinaryData

Stat
Tchars
Timeval
Timezone
Utsname
Wait

ExternalPointerData
FixedSize Extern al Poi nterData

lovec
Msghdr

PointerArray
Structure Array

Naming Conventions
A class is defined for each aggregate required by UTek system calls. The name of the class is
created by capitalizing the first letter of the corresponding aggregate name. Underscores are
translated into Smalltalk style capitalization conventions. Thus, the correspondence of C
structures and their Smalltalk counterparts is readily apparent. Protocol is provided to create
instances of the classes representing aggregates and to access field elements by name. Selectors
for accessing structure fields correspond to the C field name with underscores translated. Here is
an example:

The C structure declaration:

struct sockaddr in {
short sin Jamlly;
u short sin ~ort;
struct in addr sm addr;
char - sin zeroI8];

}; -

The Smalltalk definition of the class Sockaddrln:

ExternalBinaryData variableByteSubclass: #Sockaddrln
instanceVariableNames:"
classVariableNames: ' AddrDatalndex FamilyDatalndex PortDatalndex

Zeroslndex ZerosLength'
pooIDictionaries:"
category: 'OS-Parameters'!

Sockaddrln comment:

The correspondence between Smalltalk structure names and C structure names should help you
use the UTek Command Reference manuals as documentation for system dependent methods.

8-6

Operating System Interface

Here is an example of a system call that needs a structure passed to it. Look for the wait system
call either online in manual page format or in the UTek reference documentation under system
calls. Under the SYNOPSIS heading, you find that the wait system call requires a union wait
pointed to by status. The class Wait in category OS-Parameters forms a Smalltalk equivalent
to this union. See the comment in the browser under Wait for more information.

Also, look at the method wait in UTekSystemCall class to see how the class Wait is used.

Refer to the Tektronix Smalltalk Reference manual for information on specific ExternalData
classes.

Signals
Signals, or interrupts, may be sent to tasks in many operating systems. Both the UTek and
Uniflex operating system support sending signals. The portable operation:

as send Interrupt: interruptlD to: tasklD

may be used to send a signal to the task specified by tasklD. The first argument interruptlD is a
specially constructed numeric identifier. Signals may also be sent back to Smalltalk. A restricted
signal handler may be constructed in Smalltalk with the message:

as setlnterrupt: interruptlD to: aSemaphore

The semaphore is signaled upon interrupt receipt. Thus, a Smalltalk process may connect to the
signal and suspend itself until the signal is received via the sequence:

as setlnterrupt: interruptlD to: aSemaphore.
aSemaphore wait

If the Smalltalk process wishes to receive the signal more than once, it may need to reconnect the
signal and semaphore. You can also ignore and set signals to default actions with the methods:

as ignore Interrupt: interruptlD

as defaultlnterrupt: interruptlD

Interrupt Identifiers
An interrupt, in UTek, is composed of a signal and a parameter. The UTek Small talk interpreter,
to support the semaphore/interrupt connection, maps a signal and its parameter into a numeric
interrupt identifier. These interrupt ID's are used by the interpreter primitive #133 to construct a
signal handler which supports the semaphore/interrupt connection. The methods
setlnterrupt:to:, ignore Interrupt:, and defaultlnterrupt: require these special interrupt
identifiers.

The following table lists interrupt identifiers. The interrupt ID's are the numbers on the lefthand
side of the following table. The UTek signal number and its parameter are in the second column.

Tektronix Smalltalk Users 8-7

Operating System Interface

Interrupt ID
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

8-8

Table 8-1
Interruptldentij1ers

UTekName UTek#+parm
N/A

SIGHUP 1
SIGINT 2

SIGQUIT 3
<reserved>
<reserved>
<reserved>
<reserved>
<reserved
SIGKILL 9
SIGBUS 10

SIGSEGV 11
SIGSYS 12
SIGPIPE 13

SIGALRM 14
SIGTERM 15
SIGURG 16
SIGSTOP 17
SIGSTP 18

SIGCONT 19
SIGCHLD 20
SIGTTIN 21
SIGTTOU 22

SIGIO 23
SIGXCPU 24
SIGXFSZ 25

SIGVTALRM 26
SIGPROF 27
SIGUSRI ·28
SIGUSR2 29

SIGWINCH 30
SIGPWR 31

ILL TRAP 4+0
PRIVTRAP 4+1

ALINE TRAP 4+2
FLINETRAP 4+3

FORMAT TRAP 4+4
BKPTTRAP 5+0
TRCTRAP 5+1
CHKTRAP 6+18

TRAPVTRAP 6+1C
TRAPO 6+80
TRAPI 6+84

Interrupt ID
43
44
45
46
47
48
49
50
51

'54
55
56
57
58
59
60
61
62
63

Table 8-1 (cont.)
Interrupt Identifiers

UTek Name
TRAP2
TRAP3
TRAP4
TRAP5
TRAP6
TRAP7

TRAP13
TRAP14
TRAP15

INTDIVTRAP
FLTOVFL TRAP
FLTDIVTRAP

FLTUNDFL TRAP
INEXACT TRAP
BRCONDTRAP

NAN TRAP
OPERAND TRAP

<reserved>
<reserved>

COMMUNICATION CHANNELS

Operating System Interface

UTek#+parm
6+88
6+8C
6+90
6+94
6+98
6+9C
6+B4
6+B8
6+BC
8+1
8+2
8+3
8+4
8+5
8+6
8+7
8+8

Small talk passes streams of bytes back and forth to the operating system mainly through two
communication channels: files and pipes. The Smalltalk classes that represent these operating
system structures behave in essentially the same way as their UTek counterparts. There are some
differences, though, in how Smalltalk files work. The Tektronix Smalltalk abstraction of UTek
(or Uniflex) pipes emulates their behavior exactly.

Files
Files can be opened or closed, read from or written to, have file position altered, etc. They are
different from pipes in that data sent to files is not lost when files are properly opened and closed.
Pipes, existing only in memory, can lose information if they are not properly set up, opened and
closed, or flushed.

FileStream
An instance of FileStream represents a file. Ordinarily, the file is not opened until some I/O is
performed with the corresponding instance of FileStream. This is the case with the instance
creation message fileNamed:. In the following sequence of events, the next message causes the
file to be opened.

Tektronix Smalltalk Users 8-9

Operating System Interface

aFileStrearh ~ FileStream fileNamed: 'readTest'.
aFileStream next

The instance creation messages newFileNamed: and oldFileNamed: cause immediate opening
of the file to ensure a new or old file, respectively. The fileNamed: method always executes
quietly. The newFileNamed: message assumes the corresponding file does not exist and
notifies the user' if the file does exist. Proceeding renames the existing file. The oldFileNamed:
message assumes that the corresponding file does exist and notifies the user if it does not.
Proceeding creates the file. These instance creation messages allow applications some control
over the existing state of the file system. For example, in some cases it would be wrong to
overwrite an existing file. In this case, the application should use the newFileNamed: message
to ensure no existing files are overwritten without notification.

File descriptors arre a limited resource in most operating systems. To accommodate this
limitation, instances of FileStream can have their corresponding files closed and reopened
without loss of data or state. Without users' knowledge, when the Smalltalk task runs out of file
descriptors, it automatically closes the necessary number of files. These files are automatically
reopened the next time they are referenced.

File Directory
Instances of FileDirectory are a special kind of FileStream, ·representing ·directoriesin the -file
system. Instances can query the file system to find out what files its directories contain. Instance
protocol includes enumberating, copying, and appending methods. Pattern matching protocol is
also available. For example:

files ~ someDirectory filesMatching: ' A*'

The returned value contains a collection of all files in the directory beginning with the character
"A". The character "*" (asterisk) matches multiple character. The character" #" (pound sign)
matches any single character.

The global variable Disk represents the Smalltalk home directory. All "fileouts" go to Disk.
Relative paths are defined with respect to Disk.

FileDirectory has instance methods with the same functionality as FileStream class methods.
These methods create new instances of FileSteam. See the table below.

Table 8-2
Parallel FileDirectory and Filestream Protocol

Fi Ie Oi rectory FileStream
oldFile: oldFileNamed:
newFile: newFileNamed:

file: fileNamed:

8-10

Operating System Interface

Using FileStreams and FileDirectories
To open a previously existing file for reading or writing, send the message oldFile: with the file
name as an argument to an instance of a FileDirectory such as:

f f- Disk oldFile: 'timingData'

Executing this expression insures that the variable f is an instance of a FileStream on an existing
file. A notifier appears if the file does not exist.

To open a new file, send the message newFile: to an instance of a FileDirectory as in:

f f- Disk newFile: 'testCases'.

This guarantees that f is a FileStream on a new file named testCases. If a file in the Disk
directory previously exists with that name, a confirmer tells you that the file already exists. If
you proceed, the existing testCases file is renamed as testCases- and a new testCases file is
created.

The file: message delays the opening of a file until a data transfer takes place.

f f- Disk file: 'testResults'

If such an instance of a FileStream is sent the nextPut: message, and a file with that name
already exists, the file is automatically backed up with a - (tilde) extension and the data is written
to the new file. If the file testResults does not exist and a read operation is attempted, an error is
produced. If the file testResults does not exist and a write operation is attempted, the file is
created, opened for reading and writing.

One can query the existence of such a file before doing input or output. For example:

f f- Disk file: 'testResults'.
f exists

answers true if the yet-to-be opened file already exists.

Sending the message readWrite to a FileStream created with the file: message insures that no
backup is made. This allows updates in place.

For special devices like the sound device, /dev/sound, which can only be opened for writing, use
the oldWriteOnlyFile: message.

f f- Disk oldWriteOnlyFile: '/dev/sound'.
f binary.
f nextPut: soundDevByteArrayBuffer.
f close.

The oldWriteOnlyFile: message says that this file is intended to be a previously existing file.
(Thus, do not employ the back-up mechanism, which is to be opened strictly in a writeOnly
mode.)

The Small talk interface to the file system is sophisticated enough to manage the opening and
closing of files fairly transparently. An attempt to read a closed file causes the file to be opened.
If an attempt is made to open a file that is referenced by another open FileStream, an attempt is
made to close the already open file. Its position is retained so that later data transfers can resume
unaffected by the closure.

It is still a good idea to close files explicitly. Closing forces all buffers to be flushed to the
physical file, thus protecting from unexpected data loss in the event of a crash.

Tektronix Smalltalk Users 8-11

Operating System Interface

Pipes
A pipe is a UTek operating system facility for communicating between two processes (or tasks).
Pipes are one-way devices. A byte stream passes through it in one direction only. One process
writes to one end of a pipe, and the other process reads from the other end of the pipe. Pipes have
one write file descriptor designating the write end, and one read file descriptor designating the
read end of the pipe. (That is, there are two descriptors total for each pipe.) Pipes exist entirely
in memory, so some care must be taken to be sure all data has passed through the pipe before it is
closed, since closing a pipe results in loss of any data in the pipe.

Pipe
Instances of class Pipe are created by executing the expression Pipe new. In Smalltalk, Pipes
are used to communicate between Smalltalk itself which exists as a UTek process and some other
process in the operating system. Pipes can be opened and closed only once. So, you need to
create a new pipe each time you expect to open a pipe. See the discussion of subtasks and pipes
later.

PipeStream
The act of creating a Pipe is not sufficient to communicate with an operating system task. The
Smalltalk side of the pipe needs a kind of PipeStream created and connected to it.
PipeReadStreams or PipeWriteStreams act as the source or destination of data being sent
through the Pipe or received from the Pipe. PipeStreams inherit protocol from Stream,
PositionableStream, WriteStream, etc. PipeStream itself is an abstract class, so, you will
actually create instances of PipeReadStream or PipeWriteStream in code.

PipeReadStream buffers its data, whereas PipeWriteStream does not. Pipe streams know
about file descriptors so they can connect to Pipes. Smalltalk makes a distinction between text
and binary data, so PipeStreams know about data mode also. All instances of PipeStreams
can access the class variable OpenPipeStreams.

A check in the browser reveals that AimSystemCall, OSFilter, and the SystemDictionary all
use PipeReadStream. PipeWriteStream is used in the class OSFilter. Since Pipes and pipe
streams are used almost entirely in conjunction with Subtasks in the system, see later under
Multi-tasking Concepts for illustrations of how Pipes and PipeStreams are used.

MULTI-TASKING CONCEPTS
Smalltalk runs on top of an operating system, such as UTek, as a task. Since the UTek operating
system supports multi-tasking, Smalltalk takes advantage of this by supporting the creation,
execution, communication, and termination of operating system tasks, too. Tektronix Small talk
does this through a combination of resources in the classes Subtask, Pipe, and PipeStream and
its subclasses.

By using these classes, you can run operating system utilities as well as communicate with
applications and programs written in other languages. Tasks c~m be executed without leaving the

8-12

Operating System Interface

Smalltalk environment. Interfaces to operating system signals, program parameters, environment
variables, and sub task priorities are also supported.

The class OSFilter makes use of the Smalltalk multi-tasking capability. OSFilter is examined
later in this section.

Subtasks
The class Subtask gives Smalltalk the ability to spawn and manage multiple operating system
tasks. Subtasks may be created, transformed into useful programs, and terminated. Multiple
tasks may be created and managed from within Small talk, so you can check on task IDs, task
priorities, and other task status.

Subtasking Examples
Here are some simple, straightforword examples that demonstrate how to use
executeUtility:withArguments:. These are followed by discussion of how sub tasks get created,
how they are transformed into user programs, how they may be suspended, and how they are
managed. Each argument is an element in the OrderedCo"ection. This example returns a list of
the files in the lusrl lib directory.

flags (- '-sa'.
as execute Utility: ' Ibin/ls'

withArguments: (OrderedCo"ection with: flags with: ' lusr/lib').

Shells have capabilities that many utilities do not individually implement. The next example
executes a shell with a 'c' option. The 'c' option tells the shell to read the rest of the arguments
as a command to itself. The effect is a directory listing with the shell providing wildcard
expansion and search path capability.

pattern (- , lusr/lib/sma"talklfile*'.
nameList (- as

execute Utility: ' /bin/csh'
withArguments: (OrderedCo"ection

with: ' -c'
with: 'Is -s ' , pattern)

Besides taking advantage of the shell's wildcard expansions, you can use aliases (also
implemented by the shell):

as executeUtility: '/bin/csh'
withArguments: (OrderedCo"ection with: ' -c' with: '11')

where II is an alias for Is -a.

To execute a program with no arguments, substitute an empty OrderedCo"ection for the
argument.

Tektronix Smalltalk Users 8-13

Operating System Interface

as executeUtility: '/bin/uptime'
withArguments: OrderedColiection new.

Subtask Creation and Program Execution
An instance of Subtask represents a spawned operating system task that loads and executes a
binary file, which may be a UTek command, a user-written application, or other program. There
are five parts to the process of creating a subtask and running the program it turns into:

1. Set up and creation of a Subtask instance - a child task of the (original) parent Smalltalk
task.

2. Set up of any operating system or Small talk structures (having to do, usually, with inter­
task communication and signal handling) needed by the Subtask's (child subtask's)
binary file (program).

3. Transfonnation of the child subtask into the binary file (program) and execution of that
program.

4. Optional suspension of the Smalltalk task while the child task's program executes.

5. Return to the Smalltalk task after successful or unsuccessful execution of the child task.

See Figure 8-1, Sub task Creation and Program Execution as you go through the text.

8-14

Original Task
<in Smalltalk)

InltBlock

[Setting up of:
Communications;

Signals;
Priority;

Environment
variables;

etc.)

exec system
call I---~

Child Task
<as exec·d

program)

Figure 8-1. Subtask Creation and Program Execution.

Here is a simple, conceptual example of this process.

task ~ Subtask fork: ' lbin/simpleUtility' then: [].
task start.
task wait.

Operating System Interface

The first line creates a new instance of Subtask and adds the operating system command
simpleUtility to the Subtask's OrderedColiection instance variable arguments. simpleUtility
might be something like ps or ls with no arguments.

The second line actually creates the operating system task by spawning it as a child of the
Smalltalk parent task. Any communication or signal processing is taken care of in the initBlock,
which here is empty, and the child task is transformed into simp Ie Utility , which begins execution.

The third line requests that the Smalltalk process suspend execution until the completion of the
child sub task simpleUtility.

Small talk monitors and manages subtasks through a subtask management system, which is not
apparent in this simple example. See later in this section for more information about Subtask
management.

This sequence of messages to Subtask should be followed for most applications of Subtask.
There are, however, two basic types of suspension of the Small talk parent task.

• You can suspend only a single Small talk process with the wait method.

• You can suspend the entire Smalltalk task with the waitWithSmalitalkSuspended
method.

wait is the usual choice, but if your sub task is non-interactive and requires a lot of computer
resources, you may want to use waitWithSmalitalkSuspended.

Environment Variables
The Smalltalk-80 system's interface to subtasks also supports environment variables. (See the
440514406 Option 15 UTek Exceptions and Extensions manual for more details') In general,
when a program is invoked, the operating system passes arguments and environment variables to
the program. Standard environment variables include HOME - a home directory specification
and PATH - a search path specification. Environments are a way to pass information by name.
This can be viewed as setting a context for execution. Instances of subtask are created with a
default environment, the environment with which Smalltalk was invoked. The method Subtask
class currentEnvironment answers the default environment. The environment variables are kept
in dictionary format for easy modification. The method Subtask environment: assigns an
environment to the Subtask instance. The environment is passed to the executed program. Here
is an example of use of a modified environment.

Tektronix Smalltalk Users 8-15

Operating System Interface

execProgram: aCommand
I task env I
task f- Subtask

fork: aCommand
then: O.

env f- Subtask copyEnvironment.
env at: #HOME put: ' /smalltalk'.
task environment: env.
task start isNil

if True:
[self error: 'Cannot execute' , aCommand].

task waitOn.
task abnormalTermination ifTrue: [self error: 'Error from' , aCommand].
task release.

Interrupting Subtasks

Interrupt messages send a signal to the spawned task. Some of these messages cause tennination
of the task. Dthers merely try to communicate a termination signal to the task. The spawned task
may ignore this request. Here are two important interrupt messages:

• terminateUnconditionally - This tenninates the spawned task, and it may not be ignored.
However, only tasks owned by the user may be tenninated unless the user is the super user.
(See UTek system administration documentation for what a super user is.)

• interrupt - This sends the specified interrupt to the spawned task. The default action of
many signals is task tennination, so be sure the spawned task is expecting the signal.

Signals

Interrupts can be intercepted, ignored, or set to a default action by using protocol in system call
classes. Usually, the default action upon receipt of an interrupt is task tennination. Sometimes it
is desirable for a task to intercept, or modify, its reaction to an interrupt. Spawned subtasks can
modify their reaction to an interrupt.

Protocol to specify the action upon receipt of a signal can be added to the block which is an
argument to the Subtask instance creation methods. Here the method fork:withArgs:then: is
passed a block which modifies some of these reactions. Code in this block is executed by the
child task only. The ScreenControlier forkOSSheli method modifies the action of several
interrupts with the method setlnterruptto:. forkOSSheli modifies the action upon interrupt in
both the parent and child task. Here is a simplified and stripped down copy of that method.

8-16

Operating System Interface

forkShell

"Set up the display and signal environment for terminal emulation,
and turn it over to a forked shell Subtask. Block on the Subtask until it
terminates, then restore the display and signal environment for
Smalltalk."

I aDisplayReport sigDict task command I
aDisplayReport ~ Display getDisplayReport.
sigDict ~ Dictionary

with: SIGHUP -> nil
with: SIGINT -> nil
with: SIGQUIT -> nil
with: SIGTERM -> nil.

command ~ self originalEnvironment at: #SHELL.
command class -= String ifTrue: [command ~ '/bin/sh'].
FileStream releaseExternalReferences.
sigDict associationsDo: [:sig I sig value: (self ignorelnterrupt: sig key)].
task ~ Subtask

fork: command
withArguments: (OrderedColiection with: '-is')
then:

[sigDict keysDo: [:sig I self defaultlnterrupt: sig].
self setDisplayUTek].

task start isNii
if True:

[sigDict associationsDo: [:sig I self setlnterrupt: sig key to: sig value].
self restoreSmalitalkWith: aDisplayReport.
i self error: 'Cannot execute', command printString].

task waitWithSmalltalkSuspended.
task release.
sigDict associationsDo: [:sig I self setlnterrupt: sig key to: sig value].
self restoreSmalitalkWith: aDisplayReport

Interrupt action is modified in both the parent and child tasks by using the methods:

• setlnterrupt:to:

• defaultlnterrupt:

• ignore Interrupt:

which return the previous action for that interrupt. First, the parent interrupt actions are saved in
a temporary variable, sig Dict, while setting interrupt actions to ignore. In the subtask, these same
interrupts are reset to the default action. After the subtask has completed, the interrupts in the
parent process are set back to their original values. In this method, the parent task waits for the
child task to terminate by using the method waitWithSmalitalkSuspended. This method
actually shuts down the Smalltalk parent process so it receives no time slice from the operating
system scheduler. This strategy of waiting makes the subtask more efficient because the parent
process cannot steal any processing power. However, Smalltalk cannot run until the child task
has terminated. The message waitWithSmalitalkSuspended is not appropriate for any sub task
that depends on the Smalltalk user interface.

Tektronix Smalltalk Users 8-17

Operating System Interface

Waiting for Subtasks
There are two types of waiting, and neither one is mandatory.

• One kind suspends only one process - the Smalltalk process controlling the subtask. The
process is suspended until the spawned task terminates. Suspension is initiated by the
message wait to an instance of Subtask and implemented with a Smalltalk semaphore.

• The other kind suspends the entire Smalltalk task including all Small talk processes. This is
used when a spawned task needs all the system resources and when there is no interaction
between Small talk and the spawned task. This kind of waiting is initiated by the message
waitWithSmalltalkSuspended.

Restarting After a Snapshot

If you have created a Subtask and a start has spawned the child subtask, the status of the child
subtask may be #running, #WaitedOn, #terminationSignaled, etc. Note that this is not the
status of the executing binary file (program) that the child task is transformed into but is the
status of the Smalltalk subtask object. (See Subtask in Detail later.) Regardless of what state the
child subtask is in, however, the status goes to #nonExistent if you do a snapshot. Thus, when
you reload the image after a snapshot all child sub tasks will have status non Existent. This
means that applications can use this information to restart Subtasks after a snapshot.

The following methods found in the instance protocol category, testing, for Subtask may be
used to determine what state child tasks are in. These methods "answer true if:

• abnormalTermination - Some sort of error in execution has occurred and the subtask has
terminated abnormally.

• isActive - The subtask is operating normally.

• isNonExistent - There has been a snapshot since the subtask was created.

• isTerminated - The sub task has terminated whether abnormally or not.

• notTerminated - The subtask has not yet terminated.

Subtask in Detail
This subsection explains the messages that are sent when you create, transform, and execute a
new process from within Smalltalk.

By doing a hierarchy menu command in the System Browser, you can see that Subtask inherits
only from Object. You will also note from the System Browser that Subtask has a fair number
of instance and class variables. The more important instance variables are defined here. You can
see all of the variable definitions by using the System Browser or by looking them up in the
Tektronix Smalltalk Reference manual under Subtask.

status A Symbol indicating the state of a task. The more important values are:

#running A task has control of the CPU and is accomplishing its job.

#WaitedOn A task is waited for by the controlling Small talk process.

8-18

Operating System Interface

#nonexistent A task goes to this state when you do a snapshot.

program A String containing the path of the program to be executed. For example, Ibinlls.

arguments An OrderedColiection of Strings, each of whose values is an argument to the
program. For example, if the progam is Is, arguments might include -F or -a.

environment A Dictionary of operating system environment variables, keyed by environment
variable. Dictionary values are the values of the environment variables.

initBlock A Block to be executed between the fork call and the exec call. Usually this block
concerns signals and communication. See later under Subtask creation for more
information about this.

The following discussion takes a real example from the system that accomplishes something very
simple. It creates a UTek shell, from which you can return to Smalltalk when you are through.
Look in the System Browser under UTekSystemCall class. Here you find a selector, forkShe",
in the protocol category portable subtask operations.

If you want to see how the method works, open a workspace, type in OS forkShe", and do a do
it. You see that from Small talk you have started up a UTek shell. Execute some UTek
commands to see that you have indeed forked a shell process, and then return to Small talk with
an exit command or <Control-d>.

Take a look now at the forkShell method.

There are four major parts to this method:

1. Signal setup code from the beginning to sigDict associationsDo:

2. A Subtask setup part, task ~ Subtask ...

3. A Subtask execution part from task start isNil ... to task release

4. Signal and display restore part at the end.

This discussion focusses on parts 2 and 3.

Tektronix Smalltalk Users 8-19

Operating System Interface

forkSheli

"Set up the display and signal environment for terminal emulation,
and turn it over to a forked shell Subtask. Block on the Subtask
until it terminates, then restore the display and signal environment
for SmaIItalk."

I aDisplayReport sigDict task command I
aDisplayReport ~ Display getDisplayReport.
sigDict ~ Dictionary

with: SIGHUP -> nil
with: SIGINT -> nil
with: SIGQUIT -> nil
with: SIGTERM -> nil.

command ~ self originalEnvironment at: #SHELL.
command class -= String ifTrue: [command ~ '/bin/sh'].
FileStream releaseExternalReferences.
sigDict associationsDo: [:sig I sig value: (self ignorelnterrupt: sig key)].
task ~ Subtask

fork: command
withArguments: (OrderedColiection with: '-is')
then:

[sigDict keysDo: [:sig I self defaultlnterrupt: sig].
self setDisplayUTek].

task start isNil
if True:

[sigDict associationsDo: [:sig I self setlnterrupt: sig key to: sig value].
self restoreSmalitalkWith: aDisplayReport.
self error: 'Cannot execute', command printString].

task waitWithSmalltalkSuspended.
task release.
sigDict associationsDo: [:sig I self setlnterrupt: sig key to: sig value].
self restoreSmalitalkWith: aDisplayReport

Part 2 Subtask Setup. Here is part two of the method given above.

task ~ Subtask
fork: command
withArguments: (OrderedCollection with: '-is')
then:

[sigDict keysDo: [:sig I self defaultlnterrupt: sig].
self setDisplayUTek].

The method fork:withArguments:then: is an instance creation method to Subtask. Here the
default binary file this subtask will execute is /bin/sh, which is the value of the argument
command. The UTek arguments to /bin/sh are readily apparent as -is from the expression
OrderedColiection with: '-is'. The argument to fork:withArguments:then: is the initBlock.
The initBlock is the place where you put code to be executed before the specified binary program
begins executing. The initBlock usually contains communication setup and signal processing or
handling code. If you expect to receive data back from a UTek command, for example, you
would set up Pipes and pipe descriptors here. In this example, the initBlock handles possible

8-20

Operating System Interface

interrupt signals and sets up the display system to act as an appropriate command line interface
for UTek.
Part 3 Subtask Execution. Here is part three of the method given above.

task start isNil
if True:

[sigDict associationsDo: [:sig I self setlnterrupt: sig key to: sig value].
self restoreSmalitalkWith: aDisplayReport.
self error: 'Cannot execute', command printString].

task waitWithSmalitalkSuspended.
task release.

Sending the message start to task causes a shell to be spawned and control turned over to it. The
result of task start is checked for nil. A return value of nil means a Subtask cannot be spawned
or a program executed. If not, the block after the if True : is executed. In this block, the setup
code in part 1 is essentially undone and you are shown the error message "Cannot execute"
concatenated with the program name.

The method start actually performs the Subtask program set up and request. Look at the code
for start now.

start

"Start the receiver by spawning a child, executing code to set up the
child task (mainly communication and signal processing), and executing the
program. If the execute fails terminate the child task. The child task
will inherit the priority of the smalltalk task."

I execer ch ild Block id I
execer ~ as execute: program withArguments: arguments withEnvironment: environment.

child Block ~ [initBlock value.
priority notNii ifTrue: [aS setTaskPriority: priority].
FileStream c1oseExternaIReferences].

id ~ as startSubtask: execer with Block: childBlock.
self tasklD: id.
id isNii if True: [inil].
self class addSubtask: self

as is a global variable standing for the system call class appropriate for the operating system
underlying Small talk. The arguments to execute:... in the first line of code, program,
arguments, and environment, are instance variables of Subtask. In this example, program is
the String '/binJcsh'; arguments is the OrderedColiection ('lbinJcsh' '-is'); and environment is
the Dictionary (TERM->'peg-norm' HOME->'/usr/keithr' PATH->':/bin:/usr/bin' USER­
>'keithr' SHELL->'/bin/csh').

Another instance variable of Subtask, initBlock, makes up part of the temporary variable
chiidBlock. At the time the chiidBlock is evaluated, initBlock is evaluated. Here initBlock is
composed of:

[sigDict keysDo: [:sig I UTekSystemCali defaultlnterrupt: sig].
UTekSystemCali setDisplayUTek]

Tektronix Smalltalk Users 8-21

Operating System Interface

This is found in the forkShell method earlier. Some other jobs preparatory to executing the
Subtask are done in the childBlock having to do with priorities and FileStreams.

In the next line of code execer and childBlock are used as arguments to another method
implemented in UTekSystemCal1. Here is the code for this method:

startSubtask: execCall with Block: childBlock

"Fork a copy of Smalltalk. In the child copy, execute childBlock and
invoke execCall, which must be an instantiated 'exec' system call. If
execCall returns, there is an error: terminate the child task. Meanwhile,
the parent task returns the child task 10."

I syscall pid I
syscall ~ as fork. "copy of current Smalltalk process"
pid ~ syscall value.
syscall 01 Out = 1 if True: "This must be the child."

[childBlock value.
execCall invoke if False: "perform the actual system call; invoke found in AimSystemCall"

[(aS exit: self abnormalTerminationCode) value]].
ipid

With this method, you are at the point where a subtask is finally created. fork sets up the fork
system call request to create a copy of the Smalltalk operating system task itself. value in the
next line sends the message invoke, which actually performs the system call.

If the value in the Dl register indicates that the task is the newly created task, the expressions in
the child Block are evaluated with the message value. Recall that child Block handles some
signal and display related set up.

execCall is an exec system call request for an operating system shell to be run (lbin/sh). The
Small talk child task is transformed into an operating system shell in this example. There is no
return from a successful exec call. If the running task is the parent task, the value returned in D 1
is the ID of the child task. The child task's ID is returned so that the Subtask management can
record it. Appropriate error handling code completes this method.

Subtasks and Pipes
Pipes are created and used during the creation and execution of Subtasks to send output or
receive input. Pipe streams - either PipeReadStreams or PipeWriteStreams - are used to
read from or write to the appropriate ends of Pipes. File descriptor assignments determine which
end is the "write" end and which end is the "read" end of a Pipe.

Follow this general sequence of operations to use Pipes with Subtasks.

1. Create the Pipe (or Pipes) you need.

2. Create the Subtask with the program you want and any arguments the program needs. In
the initBlock, be sure to assign file descriptors to the Pipe.

3. Start up the subtask and close the Pipe if there are any errors in start up.

4. If you expect to collect input from the Pipe, cr~ate the pipe stream (or pipe streams) you
need and open them on your Pipe(s).

8-22

Operating System Interface

5. Close the PipeStream(s) explicitly.

See Figure B-2, Subtask Communication and Pipes, for a general picture of the relationship
between the parent Smalltalk task and the executing child task.

child to parent
pipe

Original Task
(In Smalltalk)

\

data
flow

fork system
call

InltBlock

[Setting up of:
Communications;

Signals;
Priority;

Environment
variables;

etc.]

exec system
call

Child Task (as exec'd program)

3440-15

Figure 8-2. Subtask Communication and Pipes.

Tektronix Smalltalk Users 8-23

Operating System Interface

A Schematic Subtask Example with Pipe
The following example method is not found in the Smalltalk system, but it does show you in a
general way how Pipes are handled in conjunction with Subtasks.

execute Utility: aCommand

I pipe task inputSide resultOfProgram I
pipe (- OS newPipe.
task (- Subtask

fork: aCommand
then:

[pipe mapWriteTo: 1.
pipe mapWriteTo: 2.
pipe closeWrite; closeRead].

task start.
pipe closeWrite.
inputSide (- PipeReadStream openOn: pipe.
resultOfProgram (- inputSide contentsOfEntireFile.
task wait.
inputS ide close.
task release.
r resultOfProgram

In this method, execute Utility:, a Pipe is created to establish one-way communication with the
Subtask. (Two Pipes are required for two-way communication.) The code in the block is
executed by the Subtask after the fork system call and before the exec system call. (See the
heading Subtask in Detail earlier for information about fork and exec calls.) All the rest of the
code in executeUtility: is executed by the parent task.

Pipe connections in the child task are established in the block. In this case, the child task's
standard output (file descriptor 1) and standard error (file descriptor 2) are redirected to the Pipe
through the use of the mapWriteTo: method. When the child task writes to standard output or
standard error, this mapping causes the write operations to be directed to the write side of the
Pipe. Since the original write descriptor of the Pipe will not be used because of redirection, it is
a good idea to close the write end with the message closeWrite. In addition to closing redirected
ends of the Pipe in the child task, unused ends of the Pipe should be closed in both the parent
and child tasks. In this case, the Pipe read end is unused in the child task, and the Pipe write end
is unused in the parent task.

The net effect of all this closing and mapping is that the child task (whose code is executed in the
block) closes the read side of the Pipe because it is unused and closes the write side of the Pipe
because it has mapped the write side to standard output and standard error. The parent task closes
its unused end of the Pipe, which is the write side. The parent task also creates a Smalltalk
object for reading from the Pipe, an instance of PipeReadStream called inputSide. inputSide
inherits protocol from PipeStream and, consequently, ExternalStream. Although other
methods may be used to read from the Pipe, here, the method contentsOfEntireFile is used to
read all the data from the Pipe, and the Pipe is closed after use.

8-24

Operating System Interface

A Real Subtask Example With Pipes
The two lines of code in the following example allow you to receive file information from a
UTek Is command. And, a further examination of executeUtility:withArguments: reveals a
typical use of the Subtask methods, similar to the schematic example earlier.

Open a workspace and type in the following two expressions. Make certain that a space is
appended to the last string "/binlls -s ". The concatenation message" ," - a comma - produces
this string, Ibinlls -s lusrlliblsmalltalklfilelnl*.st, as the last element in the OrderedCollection .

filelnformation f- OS executeUtility: ' /bin/ls'
withArguments: (OrderedColiection with: '-s' with: '/usr/lib/smalltalklfileln')

Execute the entire expression and then do a filelnformation inspect. You should see a list of all
the files in the fileln directory. Thus, you executed the Is command, and Smalltalk received its
output as a String. To see how this is done, look ~t the code in the system for
execute Uti lity:withArgu ments:.

executeUtility: aCommand withArguments: anOrderedCollection

II Execute a binary program and return the entire results generated by the
program as a string. No mechanism for input to the program is provided.
Create an error if the program cannot be executed or if the program
terminates abnormally. "

/ pipe task inputSide resultOfProgram /
pipe f- OS newPipe.
task f- Subtask

fork: aCommand
withArguments: anOrderedCollection
then:

[pipe mapWriteTo: 1.
pipe map Write To: 2.
pipe close Write.
pipe closeReadJ.

task start is Nil
ifTrue:

[pipe closeWrite.
pipe closeRead.
self error: 'Cannot execute " aCommandJ.

pipe closeWrite.
Cursor execute

showWhile:
[inputSide f- PipeReadStream openOn: pipe.
resultOfProgram f- inputS ide contentsOfEntireFileJ.

task wait.
inputSide close.
task abnormalTermination ifTrue: [self error: 'Error from system

utility: ' , (resultOfProgram copyUpTo: Character cr}l.
task release.
r resultOfProgram

Tektronix Smalltalk Users 8-25

Operating System Interface

The first line of executeUtility:withArguments: creates a pipe. If you know that you want the
operating system program to return data to the Small talk system, then you need to create a pipe
and set up its descriptors. You also need to close the pipe ends properly just as you would files
when you are through with them.

The next line creates a child task which is the Is command with its desired options and file.
aCommand here is the String '/binlls' and anOrderedColiection contains the Strings: ' -s'
and '/usr/lib/smalltalklfileln'. Note especially that the block argument to the
fork:withArguments:then: message sets up the pipe descriptors. 1 is standard output and 2 is
standard error. Unused pipe descriptors are closed at this time. The block is used to set up the
child task for appropriate communication with the Small talk task. This may involve simple
signal handling, manipulation of pipes, or manipulation of environment variables.

The block needs to be handled with some care. The Smalltalk system does not read the keyboard
or mouse during execution of the initBlock so be sure to avoid methods that do this. Errors
produced at this point cannot be debugged.

The task start. .. expression creates and transforms the child subtask into a shell process that
then runs the Is command.
This returns the file information output to the pipe. The pipe is then closed and a

PipeReadStream is created to eventually transform the information in the pipe into a String,
resultOfProgram, which is returned by executeUtility:withArguments:. Note that you need a
PipeReadStream to collect data in the pipe.

Subtask Management
A subtask management system is built into the class Subtask. By means of this system, a
spawned subtask can suspend the current Smalltalk process or the Smalltalk parent task itself.
Some Subtask class instance variables are used in implementing this system.

• brokenPipesProcess is a Process that runs continuously and forks error notifiers if it
recei ves signals.

• scheduledSubtasks is a Dictionary containing all the current subtasks keyed by tasklD.
Sub tasks are added to this list when they are started.

• unscheduledSubtasks is a Dictionary containing unscheduled subtask termination
information keyed by taskID. This information, in the form of information from an
executed wait system call, is collected and saved by the subtask management system. This
information is collected when a task dies, and it is not recorded in the scheduled task list.

• scheduledSubtasksAccessProtect is a Semaphore for mutual exclusion used to
protect accessing of the ScheduledSubtasks dictionary.

• waitProcess is a Process that runs continuously. Each time a 'dead child' signal is
received, a wait system call is made, and the subtask management information is updated.

The subtask management system maintains a list of all currently active subtasks in
ScheduledSubtasks.

Here is what happens when the Subtask wait message is used. When the system receives a
signal that a child task has terminated (a "dead" child signal), the system performs a wait system
call. The wait system calls returns the tasklD of the dead child task. Usually, a wait system call
is not made until a dead child signal is received so the Small talk parent task is not held up

8-26

Operating System Interface

unnecessarily. The wait system call enables the system to update the ScheduledSubtasks
dictionary. If a Smalltalk process is suspended via a Subtask wait message, the appropriate
subtask's semaphore is signaled and the suspended Small talk process resumes.

Instead of having the parent Smalltalk task share the CPU with the spawned child task,
competing for CPU cycles, you may want to block the parent task entirely. From
waitWithSmalitalkSuspended, a wait system call is issued directly, which bypasses the dead
child monitoring process. wait system calls, each of which suspends an entire parent task, are
executed until the desired child task tenninates. ScheduledSubtasks is updated after each wait
system call, which means that both types of suspending - entire task blocked and single process
suspended - can occur at the same time.

Applications - A CFileModel Example
Here is a simple example of a useful operating system interface application. This application
allows you to compile C programs from within Small talk. Ways to expand this example are
given after it is described.

You will note that this involves just a few methods and defines a class in category Interface-File
Model. The class CFileModel is a subclass of FileModel and adds the class variable name
CTextMenu to the class variables of FileModel.

Here is the class definition:

FileModel subclass: #CFileModel
instanceVariableNames: "
classVariableNames: 'CTextMenu '
poolDictionaries: "
category: 'Interface-File Model'

Tektronix Smalltalk Users 8-27

Operating System Interface

Here are the instance methods:

textMenu
"Answer the menu for this pluggable MVC. "
"CFileModel flush Men us"

fileName == nil ifTrue: [inil].
CTextMenu == nil if True: [CTextMenu ~ ActionMenu

labels: 'again\undo\copy\cut\paste\do it\print it\compile\put\get'
withCRs

lines: #(2 5 8 10)
selectors: #(again undo copySelection cut paste dolt

printlt compile:from: accept getNew:from:)].
iCTextMenu -

compile: fuliText from: controller
"Compile the contents of the model, and notify the user of the result."

I tempFile errors I
temp File ~ FileStream fileNamed: 'Itmp/stC',

(Time millisecondClockValue printString), , .c'.
tempFile nextPutAII: (controller paragraph asString).
temp File close.
errors ~ OS execute Utility: '/bin/cc' withArguments:

(OrderedCollection with: tempFile fuIlName).
tempFile remove.
errors size> 0

if True: [self notify: errors]
if False: [self notify: 'No Errors']

Here are the class methods:

flushMenus
"CFileModel flush Men us"

super flushMenus.
CTextMenu ~ nil

open: aFileName
"Use inherited methods to open a compilable view on a file. "
"CFileModelopen: 'sampleProgram.c-u

self open: (self fileStream: (Disk file: aFileName))
named: aFileName

You can open a view on an existing file or on a new file. Execute this expression to open a view
on a new file:

CFileModel open: 'hello.c'

8-28

Operating System Interface

This opens a text window on an empty file. Type in the following C program (or choose your
own C program):

#include <stdio.h>

main()
(
printf("hello, world\n");
]

Bring up the middle button menu and select compile. This runs the C compiler on the contents
of the window. Once you have the contents as desired, the file can be written using the put menu
item. After compilation, you should receive a confirmation notifier that the compile was
successful, or one specifying your syntax errors. You can spawn a shell with OS shell if you like
to verify that your program runs outside the Small talk system.

As noted earlier, this application implements a very simple C compilation environment, but you
can certainly expand this application beyond its limited capabilities. Here are some suggestions
for expansion:

• Make a separate view for syntax errors.

• Allow library specification and other compiler arguments.

• Spawn views of include files.

Refer to the Model-View-Controller section of this manual for information about views. Browse
in the fileln directory for other applications that create and manage views.

An Extension - OSFilter Class
The class OSFilter is a straightforward, simple extension of the Smalltalk OS interface.
OSFilter is modeled on the Unix concept of a filter program. A filter accepts standard input and
transforms the input, character by character, to make the output. The UTek commands tr and
sed are examples of filters.

OSFilter uses the class Subtask to create the process that runs a standard UTek filter command
or a filter program you have written. See the description of OS Filter in the Tektronix Smalltalk
Reference manual for two examples of how to use OSFilter.

Tektronix Smalltalk Users 8-29

Section 9

Fonts in Smalltalk

INTRODUCTION
This section consists of three parts: Introductory Information, Handling Fonts in Smalltalk, and
Fonts Background.

• The first part, Introductory Information, describes font terminology as it is used in
Tektronix Smalltalk.

• The second part, Handling Fonts in Small talk, describes how to perform common tasks
with fonts. It assumes that you know how Smalltalk manages fonts, how strings are
associated with fonts, what mechanisms underlie the display of strings, etc. If this section
does not give you enough understanding to use fonts in your programming efforts, go
through the third part, the tutorial Fonts Background.

• The third part, Fonts Background, is an informal tutorial which guides you through those
parts of the system that use font information. You will examine each of the major classes
involved with fonts and text. You will see also how font information is associated with
on-screen text. Go through this section first if you have not yet explored the font-related
classes.

For a reference-oriented approach to fonts, see the classes StrikeFont, VirtualStrikeFont,
StrikeFontManager, TextStyle, and TextStyleManager in the Tektronix Smalltalk Reference
manual. Also, look in this reference manual for font charts describing Pellucida1 family fonts.

INTRODUCTORY INFORMATION

The Font Directory
The standard Smalltalk image as it is shipped from the factory has a basic repertoire of fonts
stored in it, or virtually stored in it. (VirtualStrikeFont allows fonts to be "referenced" in the
system but not stored in it. VirtualStrikeFonts are read in only when they are to be displayed.)
The sources for these fonts are the font files in the font directory, lusrlliblfonts. When you want
to install new fonts in the Small talk image, you read the font files in this directory.

1. Pellucida is a registered trademark of Bigelow and Holmes.

Tektronix Smalltalk Users 9-1

Fonts in Smalltalk

Font Terminology Definitions
Typography has had a long history before the invention of computers. Because of this, there has
not always been strict agreement of terms among the practitioners in the field. When computer
technology was applied to typography, a refinement of some common terms and invention of
others was necessary for the computer simulation of typographical information. What is
presented here is the way that Tektronix Small talk approaches typographical information. Thus,
some key terms are defined here so that there will be a common basis of understanding for what
follows in this section. In particular, note that typeface is the more common term for family,
which is used here. You will find, however, that most other terms are similar in definition to
those used in common typographical practice.

font A collection of typographical properties that apply to the graphical
entities that represent (printable) characters in Smalltalk. The primary
properties of a font are family, face, and size.

family Family refers to the basic look of a set of characters that makes it
distinguishable from another set. Family is the intrinsic property of a
font. Families are named and frequently protected by copyright.
Examples include "Helvetica", "Times Roman", and "Pellucida".

face

size

StrikeFont

VirtualStrikeFont

TextStyle

StrikeFontManager

9-2

Face is the emphatic property of a font. Examples include Basal (no
emphasis, or regular), Bold, Italic, Boldltalic, and Underlined.

Size is the dimensional property. It is typically specified by the height
of capital "A" in points (72nds of one inch), although such a measure is
more meaningful on paper than on a display.

StrikeFont is the Smalltalk class that represents the abstract idea of a
font defined earlier. An instance of StrikeFont represents a single
combination of family, face, and size, with a bitmap for each ASCII
character. (An instance of a StrikeFont is analogous to a complete set
of characters in one typeface sitting in a printer's type box.) The
Tektronix Smalltalk system is supplied with a number of font files that
can each create an instance of StrikeFont, when read into the Smalltalk
image.

VirtualStrikeFont is similar to Strike Font in all respects except that a
VirtualStrikeFont is loaded into the system only when it is "referenced".
At this time, it is turned into a StrikeFont. An instance of
VirtualStrikeFont represents a single combination of family, face, and
size, with a bitmap for each ASCII character.

TextStyle is a collection of instances of StrikeFonts. Usually, an
instance of TextStyle is composed of related instances of Strike Fonts.
For example, a TextStyle called "PellucidaSans-SeriflO and 12"
installed in the standard image has fonts composed of the font files
(basal, bold, italic, and underlined) 1 0 point size and 12 point size -
some 16 instances of Strike Font in ali.

StrikeFontManager is a dictionary of instances of StrikeFonts (or
VirtuaIStrikeFonts). The central repository of instances of Strike Fonts
loaded from font files into the image is the single instance of
StrikeFontManager called the FontManager. The standard image as

TextStyleManager

Fonts in Smalltalk

shipped by Tektronix already has a basic set of fonts loaded into the
FontManager. You can load other fonts from the font directory or
delete fonts in the FontManager.

TextStyleManager is a dictionary of instances of TextStyle. The
central repository of instances of TextStyle installed in the image from
collections of font files is the single instance of TextStyleManager
called the Style Manager. You can install new instances of TextStyles
in the StyleManager by creating a name for a new TextStyle instance
and specifying those font names that will make up the new TextStyle
instance.

More information about these terms is found in the discussion of common font handling tasks in
the Handling Fonts in Smalltalk part of this section.

HANDLING FONTS IN SMALL TALK
This discussion of fonts is task-oriented. You are given here suggestions about how to
accomplish tasks commonly done with fonts. Look for a task that is similar to what you want to
do to get some idea of how to accomplish it. Then explore the code and classes involved to find a
solution to your programming task.

If nothing here seems to help, try the Smalltalk Reference manual or the Fonts Background
tutorial later in this section. The general progress of examples is from conceptually simple to
more difficult as you go on. Also, the System Workspace font information is explored first; then
other font manipulation tasks are treated.

Fonts in the System Workspace

Inspecting Resident StrikeFonts
Go to the System Workspace and scroll down to about half way till you see the heading Fonts
and Text Styles. Highlight FontManager inspect and then doit. Since the FontManager is a
dictionary this brings up a dictionary inspector. Reframe the inspector if you need to so that you
can see the entire list of key names in the lefthand pane of the" inspector. These names are taken
directly from the font file names in the font directory. The numbers indicate point size and the I,
B, and U indicate italic, bold, and underlined. (No tag letter indicates basal- plain - font.)

Click on any key name, say PellucidaSerif1 au, and note that its associated value is StrikeFont
name PellucidaSerif1 au emphasis 4. This is an instance of the StrikeFont named
PellucidaSerif1 au. This and all the other names you see have already been loaded into the
StrikeFontManager for you at the factory. See later for adding more Strike Fonts to the
FontManager.

Tektronix Smalltalk Users 9-3

Fonts in Smalltalk

Inspecting Resident TextStyles
Look under Fonts and Text Styles and find StyleManager inspect and then doit. This opens a
dictionary inspector just like the FontManager did since they are both dictionaries. In the
standard system, you will find a number of text styles already installed that show up in the left
pane:

Pellucida Default 08 and 10
Pellucida Default 10 and 12
Pellucida San-Serif 10 and 12
Pellucida San-Serif 12 and 14
Pellucida San-Serif 18 and 24
Pellucida Serif 10 and 12
Pellucida Serif 12 and 14
Pellucida Serif 18 and 24
Pellucida TypeWriter 10
Pellucida TypeWriter 12

These names are arbitrary in the sense that you the programmer supply these names when you
create new text styles. (You might guess from the inclusion of spaces that these names are not
taken directly from font file names like StrikeFont names are.)

Do a middle button inspect of Pellucida Default 10 and 12 to open an inspector on the text
style itself. Click on the instance variable fontArray to see the array of Strike Fonts included in
this particular text style. You can "mix and match" any fonts you like in your own text style but
usually StrikeFonts of the same family are chosen.

Installation of a new TextStyle

Look under Fonts and Text Styles and find the following code:

Style Manager
styleName: 'Pellucida Sans-Serif 8 and 10'
baseNames: #('PellucidaSans-Serif8' 'PellucidaSans-Serif10')
lead: 3.

This is the code you use to install new text styles in the Style Manager. In the System
Workspace, select this code and doit. Now go back to the StyleManager inspect and doit. You
have just installed a new TextStyle called Pellucida Sans-Serif 8 and 10.

Look at the code for a minute. The styleName: 'Pellucida Sans-Serif 8 and 10' part of the
method specifies the user-supplied (and completely arbitrarily named) text style name. The
baseNames: #('PellucidaSans-Serif8' 'PellucidaSans-Serif1 0') part of the method is a little
more interesting. If you look in the font directory, you will observe that there are a lot of font
names among which are PellucidaSans-Serif8font, PellucidaSans-Serif8I font, PellucidaSans­
Serif8Bfont, and PellucidaSans-Serif8Xfont, the I, B, and X meaning italic, bold, and extra bold.
The installation of text styles has been simplified somewhat by introducing the idea of a
basename for a font file name. Methods using basenames for font files allow you to leave off the
I, B, or X from the font name. The lead: a part of the method specifies the distance in pixels
between lines of characters. See Figure 9-1, Installing a Text Style.

9-4

/

I lusr/liblfonts on Disk

Font Files:
PellucidaSans-Serif8.font
PellucidaSans-Serif81.font
PellucidaSans-Serif10.font
PellucidaSans-Serif10B.font
XeroxSans-Serif8.font
XeroxSans-Serif10.font
Etc.

1

StyleManager styleName: 'Xerox Sans-Serif 08 and 10'
baseNames: #(,XeroxSans-Serif8' 'XeroxSans-Serif10')

!
Smalltalk image

I StyleManager (a Dictionary) 1
'Pellucida Default 08 and 10' »a TextStyle

Etc.

'Xerox Sans-Serif 08 and10' » the (newly
created) TextStyle

Figure 9-1. Installing a Text Style.

Choosing a Default Text Style
Look under Fonts and Text Styles and find the following code:

StyleManager changeDefaultTextStyle

Fonts in Smalltalk

3440-16

Executing this code allows you to easily choose a new default text style for the system. You will
see that you have a choice of a number of text styles. Choose a new one from the menu. You
should see the windows redraw themselves with the new text style installed. You now have a

Tektronix Smalltalk Users 9-5

Fonts in Smalltalk

new default text style. This new text style is the default style because it has been installed in the
pool dictionary TextConstants as a variable called DefaultTextStyle. Various kinds of classes
know about DefaultTextStyle. Some of these classes are: Text, StrikeFontManager,
ParagraphEditor, DisplayText, Paragraph, Strike Font, and TextStyle. So, you can see that
just about everything having to do with text uses DefaultTextStyle.

If you like, you can open an inspector on the pool dictionary TextConstants to see the variable
DefaultTextStyle and many other related variables.

Creating a StrikeFont
If you simply want to create a StrikeFont out of a font file, you can use the following expression:

aNewSF f- StrikeFont readFrom: (FontManager fontFileStream:
'PeilucidaSans-Serif10')

fontFileStream: returns a FileStream on the specified font file. See Figure 9-2, Creating a
StrikeFont.

9-6

r lusr/liblfonts on Disk

Font Files:
PellucidaSans-Serif8.font
PellucidaSans-Serif81.font
PellucidaSans-Serif1 O. font
XeroxSans-Serif1 O. font
Etc.

aNewSF <- StrikeFont readFrom:
(FontManager fontFileStream:

'PellucidaSans-Serif10')

I Smalltalk image 1

Figure 9-2. Creating a Strike Font.

Installing a Font in the FontManager

FOllts in Smalltalk

I

3440-17

Usually, the installation of fonts in the FontManager is accomplished during the installation of a
text style in the StyleManager, but there may be times when you want to install an individual
font directly into the FontManager itself. Perhaps, you don't want this font to be associated
with a text style since you intend to work with just the individual font by itself. You can send the
install: message to StrikeFontManager to install a StrikeFont in the FontManager. Try these

Tektronix Smalltalk Users 9-7

F DiltS in Smalltalk

expressions to see how this is done.

FontManager install: 'XeroxSans-Serif8'.
FontManager inspect

Note that the file name string is taken from the font directory, lusrlliblfonts. Open a file list on
lusrlliblfonts to see the font file names. See Figure 9-3, Installing a StrikeFont in the
FontManager.

9-8

r

Tektronix Smalltalk Users

I lusrJliblfonts on Disk

Font Files:
PellucidaSans-SerifB.font
PellucidaSans-SerifBI.font
PellucidaSans-Serif10.font
PellucidaSans-Serif10B.font
XeroxSans-SerifB.font
XeroxSans-Serif10.font
Etc.

I

FontManager install: 'XeroxSans-SerifB'

SmaJltalk image

I FontManager (a Dictionary) I

'PellucidaSans-SerifB' » Strike Font name
PellucidaSans-SerifB

emphasis 0
'PellucidaSans-SerifBI' » StrikeFont name

PellucidaSans-SerifBI
emphasis 0

Etc.

'XeroxSans-SerifB' » Strike Font name
Xerox San s-SerifB

emphasis 0

Figure 9-3. Installing a StrikeFont in the FontManager.

Fonts in Smalltalk

3440-18

9-9

Fonts in Smalltalk

How to Display Unprintable Characters
Some Tektronix fonts have printable characters below ADE (ASCII decimal equivalent) 32 and
above ADE 127 that cannot be accessed through the keyboard. For example, Tektronix Pellucid a
Serif and Pellucida Sans-Serif font have only 127 characters, but Pellucida TypeWriter have 255
characters. The access to these is a little roundabout, but you can print them on the screen with
the following code:

aString ~ String new: 255.
1 to: aString size do: [:characterlndex I aString at: characterlndex put:

(Character value: characterlndex)].
aString asDisplayText display

Note that a Character is placed in a String and then converted to DisplayText so that it can be
displayed.

Displaying Fonts

Displaying a StrikeFont
Remember that a "font" in Smalltalk is an instance of StrikeFont. So, how would you go about
taking a look at some of the fonts that you know are resident on disk in font files in the font
directory or resident in the FontManager?

Open an inspector on the FontManager and take a look at the font names in the left pane and
pick out one, for example, PellucidaSerif8. Now, using this font name, execute the following
expression:

anSF ~ FontManager at: 'PellucidaSerif8'.

This extracts a StrikeFont from the FontManager and assigns it to anSF. If you don't see the
StrikeFont you want in the FontManager, then you need to use the fontNames: method to
install it. (Note that the install: method is used earlier to accomplish a similar task.) First, open a
file list inspector on the font directory to see what font file names are available to you. Pick one
out, say, PellucidaSerif18font, a relatively large size font. Omit the font file extension from the
font file name and execute the following expression:

FontManager fontNames: #('PellucidaSerif18')

Take another look at the FontManager with an inspector. PeilucidaSerif18 should be there.
This time extract the newly loaded StrikeFont with:

anSF ~ FontManager at: 'PellucidaSerif18'.

You are ready finally to view some characters from this StrikeFont on the screen. Execute the
following expression:

anSF displayLine: '12345678' at: Sensor waitClickButton.

You should see the string" 12345678" appear at the cursor location when you press the left mouse
button. Try putting in different strings, if you like, to see what the various characters look like.
Try loading different fonts from the font directory, if you like.

9-10

Fonts in Smalltalk

Here is a "quick and dirty" way to view all of the characters in a Strike Font (if the StrikeFont
size is not too large). Execute the following expressions:

FontManager fontNames: #('Micr05B').
anSF f- FontManager at: 'Micr05B'.
anSF glyphs displayAt: Sensor waitButton.

The glyphs method in the last line of the code extracts that part of a StrikeFont that is the actual
form holding the bitmap information for each character in a StrikeFont. This form is then
displayed on the screen.

Note that you can remove a StrikeFont, just like any key in any dictionary, with the expression:
FontManager removeKey: 'fontName'.

Extracting a Character Form
For some applications, you may want to extract just one character from a StrikeFont so you can
treat it as a form, and perhaps use the bit editor on it. The message characterForm when sent to
a StrikeFont extracts a character form from the glyphs form that contains all the characters in a
StrikeFont.

The following code shows you one way to manipulate character forms. The first expression
chooses one of the Strike Fonts in the default text style in the StyleManager. (See earlier under
this heading for more about the StyleManager.) Note that the pool dictionary TextConstants
holds the default text style associated with the symbol DefaultTextStyle. The default text style
contains an array of StrikeFonts, the first StrikeFont of which becomes the default Strike Font
used by the system.

In the first expression of the following code, you are asked to specify which StrikeFont you
would like to see by typing in a number from 1 to 9. These numbers correspond to the
StrikeFonts in the fontArray in the default text style. When you type <Ctrl-l>, <Ctrl-2>, etc., at
the keyboard while you have text selected in a text window, you see the text cycle through .the
StrikeFonts in fontArray in the default text style. This is simply another way of getting at the
same thing.

The second expression asks you to supply a character whose form you would like to extract. The
third expression displays this form on the screen at a place chosen by you.

anSF f- (TextConstants at: #DefaultTextStyle) fontAt:
(FilllnTheBlank request: 'Type in a number from 1 to 9:'
initialAnswer: '1') asNumber.

aCharacterForm f- anSF characterForm: ((FilllnTheBlank request:
'Type in one character:' initialAnswer: 'a') at: 1).

aCharacterForm displayAt: Sensor waitClickButton.

Perhaps you would like to bit edit this character form. Try the following expression.

BitEditor openOnForm: aCharacterForm.

Changing the Font of a String
This example is written to show you how fonts can be applied to a string. It will allow you to
explore the fonts in the FontManager so that you can get a quick idea of how the various fonts

Tektronix Smalltalk Users 9-11

Fonts in Smalltalk

look.

The first expression uses a FillinTheBlank to collect a string from you. The second expression
returns a sorted collection of the font names currently available to you from the FontManager.
(See earlier for how to add new StrikeFonts to the FontManager.) The next three expressions
put the font names in a Stream so that in the next expression a PopUpMenu can display the font
names as labels in a menu. The following expression returns your choice of font, and the last
expression puts it up on the screen at the cursor position.

aStringOfText ~ FilllnTheBlank request: 'Type in a string of text;'
initiaIAnswer:' abcdefghijklmnopqrstuvwxyz'.

"Go get font names from FontManager - it's a dictionary."

strikeFontNames ~ FontManager keys asSortedCollection.

"Create a writable Stream as a String to put font names in."

aStream ~ WriteStream on: (String new: 1024).

"Gather the font names and put them in aStream."

strikeFontNames do: [:aString I aStream nextPutAII: aString; cr].
aStream skip: -1.

"Make a PopUpMenu and install the font names as labels so you
can select them."

strikeFontMenu ~ PopUpMenu labels: aStream contents lines: nil alignment: o.

"Start up the PopUpMenu and return the font name you have picked."

(i ~ strikeFontMenu startUp) > 0
if True: [aStrikeFont ~ FontManager at: (strikeFontNames at: i)]
if False: [inil].

"Now display the string in the chosen font."

aStrikeFont displayLine: aStringOfText at: Sensor waitClickButton.

Changing the Emphasis in Some Text
Instances of Text have two instance variables: string, which is a String holding ASCII
character information and runs, which is a RunArray containing integers (one for each
character) that represent emphasis. (See the tutorial exploration of Text and other font-related
classes later in this section for more information.)

First, put a string of text on the display with:

9-12

Fonts in Smalltalk

t (- 'ABCDEFGHIJKL' asText.
t asDisplayText displayAt: Sensor waitButton

Now, change the emphasis codes of the instance of Text with the following expressions. Note
that with the method emphasizeFrom:to:with: you can change the emphasis of individual runs
of characters in the string. Here it is used to change the entire string of characters. When you run
this code, it starts at 1 and increments emphasiscode until you do a <Ctrl-c>. After a while you
will not see a change in emphasis. This means that you have run out of StrikeFonts in the
default text style to display. These emphasis codes correspond to the <Ctrl-l>, <Ctrl-2>, <Ctrl-
3>, etc., that you can do in a workspace on selected text. Try it and see. However, you cannot go
beyond <Ctrl-9> in the workspace.

t (- 'ABCDEFGHIJKL' asText.
emphasiscode (- 1 .
[true] whileTrue:

[t emphasizeFrom: 1 to: (t string size) with: emphasiscode.
t asDisplayText displayAt: Sensor waitClickButton.
emphasiscode (- emphasiscode + 1]

FONTS BACKGROUND
As you go through this informal tutorial, be sure to use your Smalltalk system to open the
inspectors, browse in the System Browser, execute the code, etc.

Introduction
Since text arranged on a page in a particular typeface involves the complexities of the typesetter"s
art and science, you might expect Smalltalk"s emulation of this to involve a number of layers,
which working in concert give you text in a typeface arranged in paragraphs in a window. And,
sure enough, if you start looking around in the System Browser for font, text, and paragraph kinds
of things, you will discover that the following classes all play their part: Character, String,
Text, DisplayText, Paragraph, StrikeFont, TextStyle, StrikeFontManager, and
TextStyleManager. (There are others, but this tutorial will concentrate on these.)

Probably the best way to understand how Small talk displays font information as a part of text
within Smalltalk windows is to start with Characters and Strings. You will then see how font
information is added to ASCII character and string information, and then, how this is put together
as paragraph information, which is then displayed within windows. So, let's start with the classes
Character and String.

Characters and Strings
The way Smalltalk handles character and string information is similar to but not the same as the
way other languages do, such as C and Pascal. If you look at Character initialize in the System
Browser, you will find that this method creates a table in which ASCII character values are
associated with the alphanumeric symbols you are familiar with. (Smalltalk does, however,
extend the range of characters beyond the ASCII table to 256.)

Tektronix Smalltalk Users 9-13

Fonts in Smalltalk

Strings are indexed collections of Characters, as the comment in the System Browser says.
Note, especially, that an instance of String is simply an indexed collection of Characters - no
less and no more. Looking further in the System Browser, you will see that you can compare
strings in various ways, access the Characters in a String in various ways, and copy Strings.
The methods in these message categories manipulate Strings in familiar ways.

An important point to understand in the beginning is that strings do not know how to display
themselves. That is, Strings must appeal to some other class to display themselves. As you
probably know, you can send the message display to any object you suspect might be able to
display itself, and many times, the object displays itself in the upper right hand comer of the
screen. However, Strings cannot do this. But, stop a moment and look at the two message
categories displaying and converting.

Look at String display At:. The method's code looks like this:

self asDisplayText displayAt: aPoint

Note from this expression that a String must first be associated with a displayable object
(DisplayText) before it can be displayed. Now look at the message category converting. Here
you will find a number of asXXXX message selectors. The" conceptual" hierarchy leading to the
display of text in windows is this: asText, asDisplayText, and asParagraph. Each of these
methods associates more information with a String as you go from asText to asParagraph.
Let's look at as Text first:

iText fromString: self

This method apparently associates a String with a Text object"so let's look at Text now.

Text
Smalltalk requires that Strings somehow display themselves. A step on the way to this is the
Text object. In the System Browser, you can see that the class Text has two instance variables:
string and runs. string turns out to be a String, and runs turns out to be a RunArray of
Integers that represent the emphasis of each Character in the Text object. Emphases are bold,
italic, underlining, a change to a new typeface, etc. These are what you invoke when you do
<Ctrl-l>, <Ctrl-2>, <Ctrl-3>, etc., in a workspace or some other text window. (If you haven't
tried this before, select some text in a workspace and try <Ctrl-2>, <Ctrl-3>, etc., and then return
to <Ctrl-l> - plain text - when you are done.) So, with runs you are starting to get at the
displayable characteristics of text, but you are not quite there yet. The emphasis codes in runs
allow you to invoke those displayable characteristics, though.

Note that Text has a message category converting, but not displaying (as String did). Within
converting, you will find the familiar asXXXX message selectors. Thus, you find
asDisplayText and asParagraph. In standard Smalltalk, Texts need to be converted to
DisplayTexts to display themselves. Consequently, Strings and Texts both need display
information associated with them, usually via DisplayText or Paragraph, before they can be
associated with font information and displayed. Of course, when you are interacting with
Smalltalk code and text in a workspace or the System Browser, Strings and Texts are converted
to DisplayTexts or Paragraphs so that they can be displayed. Let's look at DisplayText next
where finally you find displayable information.

9-14

Fonts in Smalltalk

DisplayText
DisplayText is one more step up in the text-information hierarchy. Execute the following code
to create an inpector on a DisplayText object.

'0123456789' asDisplayText inspect

Note that there are four instance variables: text, textStyle, offset, form. Taking a look at text
shows you that text is a Text object. Since this is now familiar; take a look at textStyle. In fact,
do an inspect from the middle button menu to open up an inspector on textStyle. You can see
from the instance variable names in the TextStyle inspector that you have (at long last) found
where String and Text display information is. As you select each instance variable (fontArray,
lineGrid, baseline, etc'), observe that most of the variables hold integer values. However, come
back to fontArray. It is evidently an Array, but an Array of what? The elements of this array are
"StrikeFont name PellucidaSans-Serif8 emphasis 0", "Strike Font name PellucidaSans­
Serif8B emphasis 0", and so forth. This is not immediately obvious until you do an inspect on
the fontArray instance variable.

If you have done some browsing in the Graphics-Support category of the System Browser, you
may have noticed that StrikeFont is a class name. Also, "PellucidaSans-Serif8", you might
guess as some sort of typeface name, and, if you have some previous acquaintance with
typesetting you might also figure out that the "8" means 8 point size type. "emphasis" means
the specific ways a particular typeface can look such as bold, italic, bold italic, and underlined.

One more inspector will bring out all the major classes involved in how a string gets displayed
and where it gets that display information. If you now inspect one of the elements in fontArray,
you will be looking at the Smalltalk object that contains bitmap display data for ASCII
characters. Note that, like TextStyles, StrikeFonts are moderately complex, but for now
concentrate on four instance variables: xTable, glyphs, name, and emphasis. Let's dispense
with the last two variables first. name is a String holding the name of the typeface and
emphasis holds an index into fontArray, which is an instance variable of TextStyle. fontArray
holds StrikeFonts.

However, take a moment to look at glyphs. It turns out to be a form that holds the bitmap
information for each ASCII character in a particular typeface, emphasis, and size. You can think
of this form as a long form, one character high, holding the characters in ASCII order from left to
right. Since you need to extract the part of glyphs that corresponds to each individual ASCII
character, you need to know how to locate the place of each character in the form. xTable is the
instance variable that holds this data. The elements of the xTable integer array are the left x­
coordinate of the "box" surrounding each character in the form. To correctly index into xTable
to find the left x-coordinate of a character's form, use the character's asciiValue + 1 like this:

xTable [aCharacter asciiValue + 1]

See Figure 9-4, The glyphs/arm.

Tektronix Smalltalk Users 9-15

Fonts in Smalltalk

glyphs
(a Form of font characters)

• • • a b c d e f • • •

Paragraph

etc.

xTable
(an Array of Integers, each integer of which
represents the lower corner of a character form)

Figure 9-4. The glyphs Form.

3440-19

Introduce yourself to the class Paragraph now by executing the following expression in a
workspace:

'0123456789' asParagraph inspect

This opens an inspector on the string '0123456789' converted to a Paragraph. The primary
difference between DisplayText and Paragraph as you can see from a comparison of the
instance variables in their respective inspectors is the addition of more instance variables in the
Paragraph. From the names of these additional instance variables, you can see that they deal
with two additional aspects of text information. They add information about how to deal with
text information as a complete form (clippingRectangle, composition Rectangle,
destinationForm, rule, mask) and information about how to deal with text information as a
paragraph (marginTabsLevel, firstlndent, restlndent, rightlndent, lines, lastLine,
outputMedium). If these additional instance variables interest you at this time, take a look in the
System Browser under Graphics-Display Objects, Paragraph, comment. It is sufficient here
just to note that DisplayText is a simpler Paragraph, which is shown in the hierarchy in the
System Browser.

9-16

Fonts in Smalltalk

Displaying StrikeFonts
Before you proceed to the task-oriented, Handling Fonts in Smalltalk, take some time now to
look at and execute the following Smalltalk expressions.

Emphasis Codes
Here is some Smalltalk code that lets you step through the emphasis codes for the standard font.
After you type this into a workspace and do it, you should <Ctrl-c> out of the loop. Note that
these codes are the same codes that <Ctrl-l >, <Ctrl-2>, <Ctrl-3>, etc., change when you do this
in a workspace or other text window.

From the discussion earlier you know that the Text object, t, has to be converted to a displayable
object by the asDisplayText message in order to see it. Move the mouse around some while you
click a mouse button to cycle through the emphasis codes. Note that after about 25 clicks or so
the emphasis does not change any more. This number may be different when you change
TextStyles.

emphasiscode ~ 1.
[true] whileTrue: [t ~ Text string:

'this is a string' emphasis: emphasiscode.
t asDisplayText displayAt: Sensor waitClickButton.
emphasiscode ~ emphasiscode + 1]

Some StrikeFont Display Code
The following code allows you to change and display StrikeFonts. Before you execute the
example code, open a file list on the string returned by printing as fontDirectory name. This
gives you the names of different font files to type in response to the fill-in-the-blank request. Just
type in the complete file name excluding the file suffix (font).

The following code:

• Gets a font file name from you.

• Creates a StrikeFont from an externally stored font file. (And, as a part of this, the
character bitmaps are created and stored in the glyphs instance variable.)

• Associates a TextStyle with the Strike Font.

• Creates a Paragraph instance and specifies a TextStyle for it.

Finally, the Paragraph instance is converted to a displayable fonn, which is then displayed at
the cursor coordinates when you click a mouse button. (The Cursor execute showWhile: code
puts up the asterisk/arrow "busy" cursor')

Tektronix Smalltalk Users 9-17

Fonts in Smalltalk

aFontName ~ FilllnTheBlank request: 'What font file?
(Look in a File List at the font directory)?' initialAnswer:
'PellucidaSerif10'.

aFileName isEmpty if True: [iself].
aStrikeFont ~ StrikeFont readFrom: (FontManager fontFileStream: aFontName).

aTextStyle ~ aStrikeFont asTextStyle.
aParagraph ~ Paragraph withText: 'abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890' asText style: aTextStyle.

form ~ aParagraph asForm.
Cursor execute showWhile: [form displayAt: Sensor waitClickButton.]

TextConstants
You have probably wondered as you read through this discussion where the default font
information is stored in the image. To find and explore this, look now in the System Workspace.
Find the heading, Globals; it is about half way down in the workspace. Note that along with
other global variables, there are two with familiar looking names: FontManager - a
StrikeFontManager and StyleManager - a TextStyleManager. See the discussion of these
later in this section. For now, look further down the list to the heading Variable Pools
(Dictionaries). Under this heading is something called TextConstants. Open an inspector on
this. Explore this pool dictionary a little while, if you like, and then take a look at the key entry
DefaultTextStyle.

Do a middle button inspect on DefaultTextStyle. The inspector shows you that
DefaultTextStyle is a TextStyle instance. And, if you examine the instance variable fontArray,
you will see the StrikeFonts available to you as defaults. Doing a references operation shows
you where DefaultTextStyle is used. As you might expect, DefaultTextStyle is used to
initialize the Paragraph and TextStyle classes. The expression Paragraph withText: shows
you how default TextStyles are obtained from the system for Paragraphs. After this, take a
look at Text, class initialization in the System Browser. This should give you a good idea how
the class Text is initialized.

Conclusion
After you have gone through this guided tour of String, Text, DisplayText, and so forth, you
should find the font information in Handling Fonts in Smalltalk easy to apply to your Smalltalk
applications.

9-18

Section 10

The Interpreter

INTRODUCTION
This section documents the important features of the Tektronix Small talk interpreter. The most
significant feature is the removal of the object space limit of the Smalltalk interpreter specified in
the Addison-Wesley book by Adele Goldberg and David Robson.

This and other differences between that specification and the Tektronix Small talk interpreter are
described here. The section is divided into a description of overall performance, followed by
comparisons of Compiled Method, MethodDictionary, and primitive methods (Smalltalk
machine-language calls).

PERFORMANCE CHARACTERISTICS
The Tektronix Smalltalk interpreter has a number of useful characteristics for developing large
Smalltalk applications. These are:

• The number of objects in the image are limited only by system memory.

• The size of objects are limited only by system memory.

• The Tektronix interpreter uses 32-bit object-oriented pointers (oops).

• Small Integer values are in the range - 230 to 230 -1.

Object-Oriented Pointers
Oops (object-oriented pointers) are the values used by the interpreter to name objects. Of the 32
bits in an oop, only 29 are used to actually name objects. Thus, there is a theoretical maximum of
about 500 million objects in the system. A practical limit for the maximum number of objects on
the systems with the Tektronix interpreter depends on the average size of objects and your system
memory configuration. With an average object size of 50 bytes, together with a practical object
memory size of 6 to 10 megabytes, the system allows approximately 120,000 to 200,000 objects.

Smallintegers
Small Integers in the Tektronix system are represented with 31 bits. Operations on integers
representable by Small Integers use Small Integer primitive operations. Operations on integers
larger than 31 bits use code written in Small talk.

Tektronix Smalltalk Users 10-1

The Interpreter

Table 10-1
Tektronix Smalltalk Interpreter Characteristics

Characteristic Tektronix Smalltalk

SmallInteger Size - 230 to 230 -1
Maximum Number of Objects Memory Size Limited

Size of Byte Indexable Elements 8 bits
Size of Word Indexable Elements 16 bits
Size of Object Indexable Elements 32 bits

Maximum Size of Byte Indexable Objects Memory Size Limited
Maximum Size of Word Indexable Objects Memory Size Limited
Maximum Size of Object Indexable Objects Memory Size Limited

TEKTRONIX INTERPRETER DESIGN
The Tektronix interpreter has some important characteristics relevant to its overall design. In the
Tektronix system, object management has been considerably changed from the specification used
by Goldberg and and Robson - the Tektronix system does not use an object table.

In addition, the class CompiledMethod is substantially different. Compiled Method looks and
behaves much more like other classes. MethodDictionaries also have a different structure.

The Object Table
In Goldberg and Robson chapter Formal Specification of Object Memory, the authors specify the
structure of the object table. This 32K entry table restricts the maximum number of objects to the
number of entries in the object table.

The Tektronix interpreter does not use an object table, since, with oops of 32 bits, the number of
possible entries in such an object table would be impractical to manage. The benefits of
eliminating an object table are:

• There is no object-table limit to the number of objects in the system.

• There is no extra level of indirection involved with every single operation on objects -
creation, destruction, and manipulation.

There is, however, a penalty incurred with several rarely used methods, such as, become:. See
Primitive Methods for a discussion of this.

10-2

The Interpreter

CompiledMethods
Class Compiled Method is consistent with the standard Smalltalk object structure. (The original
Compiled Method specified by Goldberg and Robson was rion-standard, and required special
treatment.) See Figure 10-1, Structure of an Instance of CompiledMethod. Instances of
Compiled Method consist of three objects: the CompiledMethod structure itself, an instance of
LiteralArray, and an instance of 8yteCodeArray. Note that the Source Code Reference field in
the CompiledMethod structure contains a reference to the source code on disk.

This representation permits the creation of subclasses of CompiledMethod. Protocol for
Compiled Method formally support access to the source code reference. The source code
reference in instances of CompiledMethod is divided into two fields. The three high order bits
represent a zero-based reference into the global variable SourceFiles. This global contains an
array of files. The remaining 27 low order bits in this Small Integer represent the position of this
method's source code in the file referenced by the three high order bits.

This representation eliminates any need for special pnmlt1 ves for creating
(newMethod:header:) and accessing components of (literalAt and IiteraIAtput:) instances of
Compiled Method.

Tektronix Smalltalk Users 10-3

The Interpreter

10-4

Last Literal; reference to

defining class if super used

. . . .
First Literal

Instruction Frame

A LlteralArray

Pointer indexable,
no fixed fields

.~

-
A

l....+

Source Code Reference

Instruction Frame

Literal Frame

Method Header

A ComplledMethod
Non-indexable

I I .
Bytecodes

I I

I I
BytecodeArray

Byte indexable

~~

Figure 10-1. Structure of an Instance of CompiledMethod.

3440-20

The Interpreter

Method Dictionaries
The representation of instances of MethodDictionary is different from the Goldberg and Robson
specification. See Figure 10-2, Structures of Instances of MethodDictionary.

Goldberg and Robson specify that instances of method dictionaries contain the keys
(CompiledMethod selector names) as part of the method dictionary object itself. The Tektronix
interpreter specifies that the keys, instead of being part of the MethodDictionary object itself, are
contained in a separate Array object that holds the selector names.

Separation of the keys eliminates the use of become: . In the Goldberg and Robson
specification, become: is used to accomplish an atomic update operation. Since become: is a
relatively slow operation, the Tektronix interpreter accomplishes the atomic update by methods
that rely on the separation of keys.

Tektronix System

MethodDictionary

tally

vakJeArray

valueArray pointer .. - r 1""1111111"11
keyArray

keyArray pointer - ... - """"1"1""

Goldberg and Robson Specification

MethodDictionary

tally

valueArray
valueArray pointer .. - r 1111111111111111
first key value

key value

key value

· · ·
last key value

3440-21

Figure 10-2. Structures of Instances of MethodDictionary.

Tektronix Smalltalk Users 10-5

The Interpreter

PRIMITIVE METHODS
Some Smalltalk methods are implemented by making machine language calls directly. These
methods are called primitive methods. In the Goldberg and Robson book, the chapter Formal
Specification of the Primitive Methods gives a list of primitive methods along with their
associated primitive indexes. In the Tektronix system, some of the primitive methods specified
in this book are eliminated, others are added, while other methods function in a different way.

Primitives Not Implemented
A number of the primitives specified in the Goldberg and Robson book are not applicable to the
Tektronix system and are not implemented.

21 - 37 The primitives in this range are defined to perform arithmetic on larger than 16-bit
LargePositivelnteger objects. In the Tektronix interpreter, these primitives are
not implemented since the Tektronix interpreter uses 31-bit wide small integer
values. There is no meaningful distinction for most practical applications between
the instances of Small Integer and the instances of LargePositivelnteger and
LargeNegativelnteger falling within the 31-bit limit. Thirty-one bit integer
arithmetic operations are done at the machine language level. (Arbitrary precision
arithmetical operations can still be done using Smalltalk methods for integers that
cannot be expressed in 31 bits.)

68, 69, & 79 These primitives are not implemented, since they deal with the Compiled Method
of the Goldberg and Robson specification. The Tektronix system uses a different
CompiledMethod.

76 The asObject primitive is not implemented in the Tektronix interpreter because
there is no object table.

In the Goldberg and Robson specification, asOop and asObject function as
inverses. Sending asOop to an object returns an integer representing its oop - the
object table reference to the object. This value is typically be used as a hash code
for the object. Sending asObject to an oop (represented by a Small Integer)
returns the object. Since there is a one-to-one correspondence between objects and
object table reference values, you can be certain that two objects are the same
object if they have the same asOop value (for a system based on the Goldberg
and Robson specification).

The Tektronix interpreter does not use an object table, so the asOop method
returns a value with a different meaning. This value is the hash value calculated
for each object at its creation. These values are not guaranteed to be unique for
every object. In practice, the vast majority of hash values are unique. Since there
is no guaranteed unique asOop value for each object, there is no reason to use
asObject. As a result of this, asObject is not implemented in the Tektronix
system.

78 The nextlnstance primitive is not implemented since there is no inherent
ordering of objects in the Tektronix system. The Goldberg and Robson
specification uses nextlnstance in conjunction with some Instance to obtain all
existing instances of some class. In the Tektronix interpreter, aillnstances is

10-6

implemented as a new primitive method.

Tektronix-Specific Primitives
The primitives specific to the Tektronix interpreter fall into seven categories:

• System and Display Calls - 4 primitives
(Indexes 132, 133, 135, and 139)

• System Management - 4 primitives
(Indexes 129, 130, 131, and 147)

• Object Management - 3 primitives
(Indexes 137, 138, and 143)

• Instance Creation - 3 primitives
(Indexes 140, 141, and 142)

• String Comparison - 1 primitive
(Index 148)

• Floating Point - 6 primitives
(Indexes 154, 155, 156, 157, 158, and 159)

System and Display Calls
These system call primitives support the as interface:

• #132 - System call primitive

• #133 - Signal/semaphore primitive

• #135 - Display call primitive

• #139 - Access program parameters primitive

The Interpreter

These primitives are not interruptable and have no garbage collection during execution of the
primitive. The Smalltalk interpreter does not protect itself from invalid or incorrect system calls
made with these primitives.

These primitives expect a receiver of the class UTekSystemCall. This object contains instance
variables for registers dO, dl, d2, aO, and al (used as input registers to the system or display call,
or as primitive parameters) and will return arguments for registers dO, dl, aO, and al. The
parameter is a field in the receiver.

System and Display Call Argument Translation. The display and operating systems
have different representations of data than Small talk. While Smalltalk uses a unique object
representation for data, the display system and operating system use a more general, processor­
specific representation. The system call primitives must translate between these two
representations.

Tektronix Smalltalk Users 10-7

The Interpreter

The object types which may be passed as data to these include:

• smallintegers

• four byte large integers

• byte indexable objects

• nil

• instances of ExternalPointerData or its subclasses.

ExternalPointerData objects are identified by having two or more instance variables. The first
is an instance of a byte indexable object which is used as a buffer area by the primitive. The
second is a pointer indexable object which describes the data to be inserted into the buffer. The
pointer indexable object consists of pairs of data and offsets: the data is any of the allowable data
types above, while the offset is an integer one-based offset into the first instance variable, the
byte indexable buffer object. The primitives scan the pointer object, translating the data and
inserting the results into the buffer object.

The results of the translations for the buffer objects is a machine integer; for byte indexable
objects, a pointer into the object's data area; for nil, a machine integer zero; for instances of
ExternalPointerData, a pointer to the data area of its buffer object (which has the translated data
from its pointer object).

System Call Primitive Failure. The system call primitives will fail if a data object passed is
not one of the above types. These primitives will also fail if an offset in an
ExternalPointerData pointer object falls outside the size of its associated buffer object, or if any
byte indexable object is of zero length, or if the system call DDln is not a valid system call
number.

System and Display Call Primitives

Index

132

10-8

Class and
Method Name
OTekSystemCali
systemlnvokeQuietly

Functional Description

This primitive is used to make all system calls (except for the
special case of the signal/semaphor connection, which uses
primitive 133). It will fail if the parameters are not
Smallintegers, 4-byte large integers, byte indexable objects,
nil or instances of ExternalData or its subclasses. The return
code parameter must be nil and the opcode must be a valid
Smallinteger.

Argument: None.

Returns: false if the system call reported error. Otherwise,
returns true.

Index Class and
Method Name

133 UTekSystemCall

135

139

signallnvoke

AimSystemCall
displaylnv~ke

UTekSystemCali
environmentlnvoke

Tektronix Smalltalk Users

The Interpreter

Functional Description

This primitive is a system call which connects the recei pt of a
signal to a Smalltalk semaphore. It will fail if the parameters
are not Small Integers, 4-byte large integers, byte indexable
objects, nil or instances of Semaphore, ExternalData or its
subclasses. The return co·de parameter must be nil and the
opcode must be a valid Small Integer. The parameters are:

0- Connect Smalltalk semaphore or address.
1 - Ignore signal.
2 - Default action on signal receipt.

The action-indicating parameter is passed in DO. When a
semaphore is added to an interrupt, each time the interrupt is
received the semaphore has a count added to its excess
signals.

Argument: None.
This primitive specifies a display-related system call to the
operating system. It will fail if the parameters are not
Small Integers, 4-byte large integers, byte indexable objects,
nil or instances of ExternalData or its subclasses. The return
code parameter must be nil and the opcode must be a valid
Small Integer.

Argument: None.

Returns: false if the system call reported error. Otherwise,
returns true.
This primitive returns the address of the specified program
parameter. This parameter is specified with the values given
below. The parameters are:

1 - Command line arguments.
2 - Environment variables.
3 - Hardware/software configuration block.
4 - Interpreter version string.
5 - Copyright string.
6 - Operating System indicator.
7 - Time offset.

Argument: None.

Returns: false if the system call reported error. Otherwise,
returns true. The return value of this primitive is in DO, and
is a Smallinteger unless the requested value is not available,
in which case the return value is nil. The return value of the
operating system indicator for UTek is 2.

10-9

The Interpreter

System Management Primitives

Index Class and
Method Name

129 System Dictionary
namedSnapshot:

130

131

147

10-10

ContextPart
pri m I ncrementStackP

ContextPart
primDecrementStackP

System Dictionary
loadlnterpreterKnownObjects

Functional Description

This primitive causes a snapshot of the currently
executing virtual image to be written to a file. It
will fail if it can't write snapshot.

Argument: instance of String.

Returns: nil for successful write, self if the snapshot
is reloaded, and false if it can't complete writing
the snapshot file.
This primitive adds one to the stack pointer field of
the receiving context and stores nil into the new top
of stack element. This primitive and primitive #131
are the only acceptable ways to explicitly modify a
context's stack pointer.

Argument: None.
This primitive subtracts one from the stack pointer
field of the receiving context. This primitive and
primitive # 130 are the only acceptable ways to
explicitly modify a context's stack pointer.

Argument: None.
This primitive modifies the table of objects known
to the interpreter and returns the difference in size.

Argument: instance of Array.

Returns: Smallinteger < 0 if array is smaller than
interpreter array.
Small Integer = 0 if array is right size.
Small Integer > 0 if array is larger than interpreter
array.

The Interpreter

Object Management Primitives

Index Class and
Method Name

137 SystemDictionary

138

143

garbageCollect:

System Dictionary
core

Behavior
all Instances

Tektronix Smalltalk Users

Functional Description

This primitive forces a garbage collection. The argument
identifies a storage grade. The virtual image is partioned into
grades containing objects of corresponding ages. That is,
newer objects are contained in lower grades and older objects
are contained in upper grades. Valid numbers for grades are
0-7 inclusive. It will fail if the argument is out of range.

Argument: integer 0 -7.

Returns: self
Answer an Array containing the number of objects in the
system and the number of words they occupy. Note that the
count may include garbage objects which are eligible for
garbage collection.

Argument: None.

Returns: an array with the first element = # of object, and the
second element = # of words used (words are 32-bit
quantities).
Answer an array containing of all instances of this class. This
may include instances that are eli bible for garbage collection.

Argument: None.

Returns: an array of all objects having the class of the
receiver.

10-11

The Interpreter

Instance Creation Primitives

Index Class and
Method Name

140 DisplayBitmap
basicNew:
new:

141 ContextPart

142

basicNew:
new:

Object
shallowCopy

Functional Description

Answer a new instance of DisplayBitmap with the number of
indexable variables specified by the argument, anlnteger. It
will fail if the argument is not Smalllnteger.

Argument: Small Integer

Returns: instance of display bitmap.
Answer a new instance of the receiver with the number of
indexable variables specified by the argument, anlnteger.
Use of this instantiation primitive enables the creation of
subclasses MethodContext and BlockContext. It will fail if
the argument is not Smallinteger.

Argument: Small'nteger

Returns: instance of a Context.
This primitive makes a shallow copy of the receiver. It can
be applied to any object.

Returns: a new instance which is a shallow copy of the
receiver.

String Comparison Primitive

Index Class and
Method Name

148 String
=

10-12

Functional Description

Answers true if the receiver and argument contain the same
ASCII characters. Answers false if not. It will fail if the
class of the argument is different from the class of the
receiver.

Returns: true if the strings are equal, false if otherwise.

The Interpreter

Floating Point Primitives

Index Class and
Method Name

154 Float
arcSin

155 Float
arcCos

156 Float
arcTan

157 Float
exp

158 Float
Ln

159 Float
log

Functional Description

Answers arcsine x, where x is the receiver.

Returns: trig arc sin function (float).
Answers arccosine x, where x is the receiver.

Returns: trig arc cosine function (float).
Answers arctangent x, where x is the receiver.

Returns: trig arc tangent.

Answers eX, where x is the receiver.

Returns: eX function (float).
Answers In x, where X is the receiver.

Returns: log base e (float).
Answers log x, where X is the receiver.

Returns: log base 10 (float).

Primitives with Different Functions
41 - 50 Float + through Float truncated - If the argument is a Small Integer, it is

converted to a Float number and there is no failure.

72 Object become: - This method is potentially" expensive" in the sense that in the
Tektronix system it takes a relatively long time to execute. The primary reason for
this is that the interpreters based on the Goldberg and Robson specification rely on
swapping object table references - in comparison, the Tektronix interpreter must
actually manipulate oops in memory (since there is no object table). Many special
cases are optimized to minimize execution time but in the most general case, this
primitive involves examining all objects in the virtual image.

In the Tektronix system, you may want to find alternative ways to code algorithms
that use become: .

75 Object asOop, Object hash, Symbol hash - In the systems based on the
Goldberg and Robson specification, an object's object table index (returned by
asOop) is frequently used as a hash value. In the Tektronix system, each object is
assigned a hash value at creation. This is a 16-bit value. asOop is defined to return
this value. In the Tektronix system, asOop is not an invertible function, since there
is no one-to-one correspondence between objects and asOop values. See the earlier
discussion of asObject.

112 SystemDictionary coreLeft - This returns an estimate of the amount of memory
available for new objects. (Use primitive 138 instead.)

115 System Dictionary oopsLeft - This returns an estimate of the number of oops
remaining to be allocated based on the core left value divided by the average object
size. (Use primitive 138 instead.)

Tektronix Smalltalk Users 10-13

The Interpreter

116 SystemDictionary signal:atOopsLeft:wordsLeft: - Since oops and memory are
not practical system limits, this functions as a no-op.

10-14

Section 11

The Smalltalk Directories

OVERVIEW
This chapter describes the contents of the directories that you receive with the standard Small talk
system.

Smalltalk is an interpreted language. The interpreter is an executable file called small talk
residing in the Ibin directory. All other files in the standard Smalltalk system are shipped in the
directory I usrl libl small talk.

THE DIRECTORIES
The lusrlliblsmalltalk directory contains one file and five directories. They are:

• The standard/mage file.

• The system,jile/n, demo, textStyles, and conversion directories.

The sections below each describe the contents of one of these items.

THE STANDARDIMAGE FILE
The standard/mage file is the default Tektronix Smalltalk image. It is based on the Xerox
Version 2 Smalltalk image and contains many Tektronix enhancements.

The system Directory
The lusrlliblsmalltalklsystem directory contains the following items:

• standardSources.VersionTB2.2.1. This file contains the standard source code for each of
the methods in the standard image.

• initialization. This directory contains files used to initialize classes and perform other
system support tasks. Users need not access these files.

The fileln Directory
The lusrlliblsmalltalklfile/n directory contains Smalltalk code that may be added to an image.
Included are useful class definitions, user interface enhancements and simple applications. The
code in this directory is generally user-contributed and should be thought of as a starting point
rather than a complete, debugged solution.

Tektronix Small talk Users 11-1

The Smalltalk Directories

Each file contains comments about its function. File names ending in .st indicate that the file
contains code to be filed in. File names ending in .ws create a workspace when filed in,
containing code to be executed from a workspace.

Before filing in code, it is a good idea to open a ChangeListView and check to see if there are any
conflicts with your system code before reading the file in. (See Section 6, Change
Management, for a discussion of using ChangeListView.) After filing in new classes, update
your browser by choosing the middle button update menu item.

The Ismalltalklfile/n directory contains a variety of files. A README file is provided to fully
document this directory. However, a few of the more useful and interesting files are described
below.

• The files findClass.st and extendedBrowser.st both provide useful enhancements to the
System Browser.

• The files addTextStyleToSystemMenu.st and addTextStyleToYellowButtonMenu.st both
provide examples of adding text styles to otherwise standard system menus.

• The files FinancialHistory.st and WireList-ASimpleMVCExample.st both provide examples
showing how the Model-View-Controller paradigm is used to create an application.

• The file Example-Subtasking.st provides an example of accessing the multitasking
functions of the operating system from within Small talk.

NOTE

Code in the fileIn directory is not supported. It is provided only as
an aid.

The demo Directory
The directory lusrlliblsmalltalkldemo contains the following files and directory:

• demo/mage. This is an image containing interesting visual applications.

• demoChanges. This is the changes file for demo/mage.

• makingADemo/mage.st. This file contains templates that are useful for reading in the
forms, creating windows, and accessing other files used in demo/mage.

• forms. This is a directory containing bitmaps. See the contents of makingADemoImage.st
for workspace contents to create demos involving forms. These demos include static
display of forms and primitive animation involving forms.

• A README file is also provided for more information.

Other files may also be found in the demo directory. Many files whose names end with the suffix
.st provide the source code for games which can be played in Small talk.

11-2

The Smalltalk Directories

NOTE

Code in the demo directory is not supported. It is provided for
demonstration purposes only. Users are welcome to create their
own versions of the demo image.

The textStyles Directory
The directory lusrlliblsmalltalkltextStyles contains a variety of files. Each file contains a
collection of related expressions used to create new text styles within Smalltalk. These
expressions must be selected and evaluated (using the doit menu item in a fileList or workspace)
to create a new text style. Experiment by filing in these files to see the effect different text styles
have on your Smalltalk image. (See Section 7, Fonts in Smalltalk, for a more complete
discussion of text styles.)

The conversion Directory
The lusrlliblsmalltalklconversion directory contains Smalltalk source code used to update older
versions of UTek Smalltalk images to the currently shipped version.

NOTE

For Smalltalk Version TB2.2.l, this directory is empty.

Tektronix Smalltalk Users 11-3

Appendix A
Smalltalk Books Information

ERRORS IN THE ADDISON-WESLEY BOOKS
The following is a list of errors in the Goldberg book (imprint 1984):

• On page 83, in Figure 5.5, the syntax diagram for "symbol" needs a path out analogous to
"keyword".

• On page 88, in the first paragraph, ((sum count)) should be ((sum/count)).

• On page 126, the icons for saving and retrieving a FormEditor form source should be
reversed.

The following is a list of the errors in the Goldberg and Robson book, which was reprinted with
corrections, May 1983.

• On pages 127 and 129, it should refer to printStringRadix: instead of radix:.

On page 146, in Figure 10.1 the cartouche (rounded box) that holds the question
"accessible by a key?" should read something like "fixed-size?"

• On page 161, LinkedList should be Link. This replacement should be made in the title to
the instance protocol table at the bottom of the page.

• On page 202, the WriteStream instance protocol should list crtab and crtab: instead of
crTab and crTab:.

• On page 289, it says to add the method to the instance creation protocol of class Class,
but it should be added to the instance protocol named subclass creation.

• On pages 333 and 338, it refers to the class Bitmap. This class has been renamed
WordArray.

• On page 399, it shows the wait cursor as three dots instead of the current hourglass shape.
The message to Cursor for the crosshair is crossHair instead of crosshair.

Tektronix Smalltalk Users A-I

Appendix B
Smalltalk Internal Character Codes

The Keyboard and Mouse Functions section of the 4405106 Option 15 UTek Exceptions and
Extensions manual contains a table of Event Manager Key Codes. These raw key codes are
mapped by the InputSensor class to an internal representation. This means that "shifted s has
an internal value that is different from an "unshifted s"', which is also different from a "control
s'" and a "control shifted s"'. The internal values are the ones used by the ParagraphEditor.

Alphanumeric Keys
Table B-1 shows the Smalltalk Internal Character Code meanings for the main part of the
keyboard - the "alphanumeric keys.'"

In this table, control characters are represented by the standard two- or three-letter abbreviations,
given in ANSI X3.4 and ISO 646. Special symbols are represented by the four-character codes
assigned to those symbols in ISO 6937. These meanings of these four-character codes are given
in nearby notes.

Tektronix Smalltalk Users B-1

-Smalltalk-lnternal Charactt!r-£-odP1es~-----------------------

Row 1 Keys
(Mode)
Unshifted
Shifted
Ctrl
Ctrl-Shifted
Row 2 Keys
(Mode)
Unshifted
Shifted
Ctrl
Ctrl-Shifted
Row 3 Keys
(Mode)
Unshifted
Shifted
Ctrl
Ctrl-Shifted
Row 4 Keys
(Mode)
Unshifted
Shifted
Ctrl
Ctrl-Shifted
Row 5 Keys
(Mode)
Unshifted
Shifted
Ctrl
Ctrl-Shifted
Notes:

{ ! @

[1 2
91 49 50
123 33 64
132 136 144
249 223 208

-
ESC I Q
27 124 113
27 126 81
27 133 17
27 134 203

TAB A S
9 97 115
9 65 83
9 1 19
9 212 211

Z X C
122 120 99
90 88 67
26 24 3

231 215 228

SPC
32
32
32
32

Table B-1
Alphanumeric Keys

Smalltalk Internal Character Codes
Standard North American Keyboard
$ % " & * (
3 4 5 6 7 8 9

51 52 53 54 55 56 57
35 36 37 94 38 42 40
143 128 130 129 131 180 149
207 192 191 30 195 244 213

w E R T Y U I
119 101 114 116 121 117 105
87 69 82 84 89 85 73
23 5 18 20 25 21 150
209 194 239 240 242 197 214

D F G H J K L

100 102 103 104 106 107 108
68 70 71 72 74 75 76
4 6 7 8 10 11 12

196 226 241 243 229 200 217
< > ?

V B N M , /

118 98 110 109 44 46 47
86 66 78 77 60 62 63
22 2 14 13 1 18 27
198 230 245 246 218 233 203

SP09: "low line" or underline
SPlO: hyphen or minus sign

Numeric Pad Keys

) SP09
0 SPlO

48 45
41 95
135 137
0 31

0 P
111 112
79 80
15 16

216 202
"
, ,

59 39
58 34
3 138
3 219

The numeric pad is located to the right of the main set of alphanumeric keys.

B-2

+ }

=] RUB
61 93 127
43 125 127
6 29 127
14 29 127
,

\ BSP LF
92 8 10
96 8 10
28 8 10
28 8 10

RTN
13
13
13
13

Smalltalk Internal Character Codes

Key Pad Narne 0 1
Mode

Unshifted 48 49
Shifted 181 182
Ctrl 255 255
Ctrl-Shifted 255 255

Joydisk Keys

Table B-2
Numeric Pad Keys

Smalltalk Internal Character Codes
Standard North American Keyboard

2 3 4 5 6 7 8

50 51 52 53 54 55 56
183 184 185 186 187 188 189
255 255 255 255 255 255 255
255 255 255 255 255 255 255

9

57 46
190 175
255 255
255 255

The joydisk is located to the upper left of the main set of alphanumeric keys.

Table B-3
Joydisk Keys

Smalltalk Internal Character Codes
Standard North American Keyboard

J oydisk Key N arne Up Down Right
Mode

Un shifted 255 255 255
Shifted 255 255 255
Ctrl 255 255 255
Ctrl-Shifted 255 255 255

Function Keys

Left

255
255
255
255

, - ENT

44 45 27
177 176 178
255 255 255
255 255 255

The function keys FI-F12 are grouped in three groups of four keys and are located in a row above
both the alphanumeric keys and the numeric key pad.

Tektronix Smalltalk Users B-3

Smalltalk Internal Character Codes

Table B-4
Function Keys

Smalltalk Internal Character Codes
Standard North American Keyboard

Function Key N arne F1 F2 F3
Mode

Unshifted 151 152 153
Shifted 163 164 165
Ctrl 145 146 147
Ctrl-Shifted 255 255 255

Function Key N arne F5 F6 F7
Mode

Unshifted 155 156 157
Shifted 167 168 169
Ctrl 255 255 255
Ctrl-Shifted 255 255 255

Function Key N arne F9 FlO Fll
Mode

Unshifted 159 160 161
Shifted 171 172 173
Ctrl 255 255 255
Ctrl-Shifted 255 255 255

Special Function Keys

F4

154
166
255
255

F8

158
170
255
255

F12

162
174
255
255

There are only two special function keys on the Pegasus keyboard. One is the "up-arrow/left­
arrow key in the upper left comer of the main key area, while the other is the BREAK key in the
lower right corner of the main key area.

B-4

Tektronix Smalltalk Users

Smalltalk Internal Character Codes

Table B-S
Special Function Keys

Default ANSI Meanings of Special Function Keys
Standard North American Keyboard

Function Key N arne T BREAK
Mode (-

Unshifted 94 179
Shifted 95 179
Ctrl 30 179
Ctrl-Shifted 148 179

B-5

Appendix C
Smalltalk Printing Facilities

PRINTING SMALL TALK BITMAP FILES
Look in the /usr/samples/printer directory for a C program, bprint.c, that prints Smalltalk forms
or bitmaps on a Tektronix 4644 printer. You can either use this program as it stands if you have
the 4644 printer or you can modify the program to be compatible with a different printer.

This program, bprint.c, prints Small talk bitmaps as generated by the screen Copy menu item or
from a fileOut of a specific form. If you modify the program, the default graphic density and
screen width pixels per printer line should be determined by the characteristics of your printer. In
bprint.c, the default graphic density is double. Option" +s" enables single-density mode which
gives you a larger image but with possible truncation.

Printer Support
The copy display command in the System Menu prompts for a file name and then copies the
screen bitmap to that file. This file is written in the same format as that of a Form. The file can
then be sent to the printer from the operating system. To print a bitmap from a file called
screen .bm on a Tektronix 4644 printer, type:

/usr/ samples/ printer/ bprint sc reen.bm

The bprint command defaults to double density, which means that the printout looks half as wide
as it should in relation to its height. If you use the +s option on the bprint command, the aspect
ratio looks much more like the real screen, but the last few pixels on the right side of the screen
are missing .

. The print out menu option in the System Browser writes the code out to a file with a .pp
extension. This code cannot be directly filed into a Smalltalk-80 image, but is intended to
provide a more human readable format than that provided by the file out menu selection. It can
be regarded as a pretty printed version, although no automatic formatting is performed on
methods.

The .pp files contain control characters for bold, italic, and normal fonts taken from from ANSI
Standard X3.64.

From the operating system, you can look at a file named Collection.pp by typing:

list Collection.pp
(There are no italic fonts for the terminal, so italic entries are printed in the normal font.)

To print the file on a Tektronix 4644 printer, type:

/samples/printer/print +s Collection.pp

An example of this output might look like:

Tektronix. Smalltalk Users C-l

Smalltalk Printing Facilities

Object subclass: #Collection
instanceVariableNames: "
classVariableNames: "
pool Dictionaries: "
category: 'Collections-Abstract'

Collection comment: '1 am the abstract class of all collection classes.'

Collection methods For: 'accessing'

size
"Answer how many elements the receiver contains."

I tally I
tally (- O.
self do: [:each I tally (- tally + 1].
itally

Collection methodsFor: 'testing'

includes: anObject
"Answer whether anObject is one of the receiver's elements."

self do: [:each I anObject = each if True: [itrue]].
ifalse

isEmpty
"Answer whether the receiver contains any elements."

iself size = 0

occurrencesOf: anObject

C-2

"Answer how many of the receiver's elements are equal to anObject."

I tally I
tally (- O.
self do: [:each I anObject = each if True: [tally (- tally + 1]].
itally

Index
@ 3-3
abbreviating words 5-18
abort command 3-12
absolute motion 4-15
accept command 2-12,3-10,3-14,4-12,5-6
accept menu item 6-2
accessing a class variable 5-25
accessing a variable 5-25
accessing code 2-9,3-8
accessing demo files 11-2
accessing directories 2-12
accessing directory structure 6-1
accessing directory structure
full pathnames 6-1

accessing directory structure
relative pathnames 6-1

accessing files 2-12
accessing protocol 3-16
accessing the operating system 2-12, 3-9
accessing the operating system within Smalltalk 11-2
activating a window 2-3, 2-4
activity, keyboard 7-3
activity, mouse 7-3
add category command 3-16,5-2
add protocol command 3-13, 5-5
adding a global variable 5-8
adding a method 3-10

to the System Browser 3-12
adding a new class 3-15
adding a new variable 5-25
adding class protocol 3-18
adding code 3-8, 3-10
adding instance protocol 3-16
adding text styles to menus 11-2
addition 3-3
additional source code 11-2
ADE characters 9-10
advanced exercise 3-19
again command 4-12
algorithm 3-13
alllnstances 10-6
alphanumeric symbols 9-13
altering text in the browser 2-12
animation 2-14
animation with forms 11-3
apostrophe 5-20
Array 10-5
array 3-3
of bits 3-7

arrow cursor 2-3,4-13

Tektronix Smalltalk Users

asDisplayText 9-14, 9-17
asLowercase 3-12
asObject 10-6
asOop 10-6
asParagraph 9-14,9-16
assigning a value 3-3
assignment operator 3-3
asterisk 2-14
asterisk/arrow busy cursor 9-17
asText 9-14
as Uppercase 3-12
background 4-15
backgroundFromUser 4-15
backing up your work 2-17
BACKSPACE 4-10
basal 9-2
baseline 9-15
basename 9-4
become: 10-5
Behavior allInstances 10-11
binary message 3-3, 3-5
definition of 3-3

bit editor 9-11
bitmap 3-7,9-2
bitmap information 9-11
bitmapped display 2-3
blank line in code 5-19
block 3-2, 3-8, 3-12
definition of 3-4

block returns 3-5
block variable , 3-4, 3-8, 3-12
bold 9-2,9-3,9-14,9-15
bold italic 9-15
Boolean 3-2,3-12
border width 7-15
browseAllImpiementorsOf 3-11
browser
change-management 6-5

browser command 4-4
buffer 2-8
busy cursor 2-17
ByteCodeArray 10-3
C compiler 8-2
cancel command 4-12
capitalizing words 5-18
caret cursor 2-4
cascaded expressions 3-6
case statement 5-21
central repository 9-2
change sets 6-3

IX-1

Index--

change sets
changes 6-3
contents 6-3
recorded actions 6-3
removal of contents 6-3
viewing contents 6-4

changed 7-12
changed:(aParameter) 7-12
changeDefaultTextStyle 9-5
ChangeUstView 6-5, 6-6, 6-7
change-management browser 6-5
changes 6-1
changes file 2-7,2-18,3-9,6-1,6-2,6-4,6-7,6-8

absolute references 6-4
contents 6-6
file out format 6-4
losing control 6-4
recording of actions 6-4

ChangeSet 6-3, 6-6
change-set browser 6-4
changing code 2-12
changing emphasis 9-12
changing the text style 2-16
changing the title tab 2-16
changing values of variables 3-17
character 3-2
Character 9-13
character bitmaps 9-17
character form 9-11
Characters 9-13
Checker 6-8
choosing expressions 3-4
circular garbage 6-8
class 3-3,5-10
class category 3-15,5-10
class category pane 2-8, 3-8
class comment 3-16, 5-18
class comment template 5-18
class definition 3-16
class

definition of 3-1
class definition template 3-16
class hierarchy 3-2,3-8,3-10,3-14,5-24
class instance variable 5-18,5-25
class method 5-24
class pane 2-8,3-8

class toggle 2-9
instance toggle 2-9
toggling class 2-9
toggling instance 2-9

class protocol 5-20
class refs 5-4
class var refs 5-4
class variable 5-18,5-25

IX-2

class variable reference 5-8
classes, categories 2-9
classes, inheritance of
classes, names 2-9
cleaning up an image 6-8
clear command 2-18
clearing cursor after crash 2-18
clearing display after crash 2-18
clicking a mouse button 2-3
cloned image 6-7, 6-8
cloning 6-7
close command 2-8,2-14,2-16,4-6
closing a prompter window 2-17
closing a window 2-14,2-16
closing a workspace 2-8, 3-9
collapse command 2-16,3-11,4-6
collapsing a window 2-16,3-11
colon 3-4, 3-4
combination rule 3-7
comma 3-4
comment 3-13,3-16

invoking a method 5-18
commenting code 2-11
comments 6-1
comparing numbers 3-4
comparing protocol 3-17
comparing values of variables 3-17
compile (menu item) 8-2
CompiledMethod 10-2, 10-3
compiler 3-14,5-25
compiling code 2-12
concatenating a string 3-4
concatenating words 5-18
condenseChanges 6-5
conditional statement 5-21
conditionally repeating expressions 3-5
conset default command 2-18
constant 3-2, 5-25
ContextPart basicNew: 10-12
ContextPart new: 10-12
context-sensitive menus 7-1
continuing work with your image 2-18
control activity 7-4
control

controllers taking 7-3
quantization 7-2
scope 7-2

controlActivity 7-12
controller 5-17, 7-3

function 7-2
input mechanism 7-3
manager 7-4

ControlManager 4-16
conventions, Smalltalk 7-1

---lndex

converting between Smalltalk versions 11-3
coordinate systems 7-3
copy command 2-8,4-12
copy display command 4-4
copy file command 4-8
copy name command 4-7, 4-8
copying text 2-15
crash recovery 6-7
Create File System 6-1
creating a point 3-3
creating an instance 3-7,3-18, 5-24
creating events 3-19
creating files 2-15
creating windows 11-2
C-shell 4-4
CTRL-(4-11
CTRL-< 4-11
CTRL-[4-11
<Ctr!> plus number 9-14
CTRL-O 4-11
CTRL-l 4-11
<Ctrl-l> 9-14
CTRL-3 4-11
CTRL-4 4-11
CTRL-5 4-11
CTRL-6 4-11
CTRL-7 4-11
CTRL-8 4-11
CTRL-9 4-11
CTRL-' 4-11
CTRL-B 4-10
CTRL-C 2-18
CTRL-C 4-2
CTRL-D 4-10
CTRL-D 4-5
CTRL-E 4-11
CTRL;-; 4-11
CTRL-F 4-10
CTRL-I 4-10
CTRL-SHIFT-B 4-10
CTRL-SHIFT-BREAK 4-2
CTRL-SHIFT -C 4-2
CTRL-SHIFT;-; 4-11
CTRL-SHIFT-I 4-10
CTRL-SHIFT-X 4-11
CTRL-T 4-10
CTRL-W 4-10
CfRL-X 4-10
current project 6-3
cursor 4-13

arrow 2-3
asterisk/arrow busy 9-17
caret 2-4
centering

Tektronix Smalltalk Users

garbage collection 2-3
hourglass 2-17, 2-17
inside view
pencil 2-15
right angle 2-6
scrolling 2-5
spectacles 2-15
square 2-3

cutcommand 2-8,3-12,4-12
darkGrayBackground 4-15
debug 4-2
debug message 5-14
debugger 5-12
delay with 5-14
inspectors in 5-12
invoking 5-12
left shift key with 5-14
menus in 5-12
method browser in 5-12
pause with 5-14
System Transcript with 5-14

debugging code 3-10
declaring variables 3-9
default font information 9-18
default return 3-1
default text style 9-5, 9-11
defaultControllerClass 7-10, 7-15
DefaultTextStyle 9-5,9-11,9-18
defining a new class 3-16
definition 5-4
Delay 4-6
delay 5-14
delay initialize 4-2
delegating responsibility in code 5-21
demo files 11-2
demoChanges 11-2
demoImage 7-1, 11-2
demonstrations, Smalltalk 7-1
demos involving forms 11-3
dependent 7-10, 7-12
dictionary 5-22
use of to replace case statement 5-22

dictionary inspector 9-3
dimensional property (size) 9-2
directory search 4-6
directory structure 5-8
Disk 5-8,6-1
display 5-7,5-8,5-10, 7-10
changing the size of 5-10
inverse video 5-11
normal video 5-11
setting mouse bounds on 5-10

display hierarchy 7-10
displayable form 9-17

IX-3

Index--

displayable object 9-14,9-17
DisplayBitmap basicNew: 10-12
DisplayBitmap new: 10-12
displaying forms 11-3
displaying hidden windows 2-16
displaying views 7-10
displaylnvoke 10-8
displaySubViews 7-10
DisplayText 9-13,9-16
displayView 7-10
do it command 2-7, 4-12, 5-6
do it menu item 6-2
do its 6-3
documentation method 5-25
double quotation mark 3-7
double-click 4-9
double-clicking 2-11,3-13,5-18,5-20
drawing mode 3-7
edit 5-2
editing text 2-4
Emergency Evaluator 4-2
emphasis 9-15
emphasis codes 9-13, 9-17
emphatic property (face) 9-2
entering Small talk 2-1
entering text 3-10
environment 7-1
environmentInvoke 10-8
equals message 5-14
error message 3-9,3-12
ESC 4-10
establishing a link 5-15
evaluating blocks 3-4
evaluating expressions 2-6
Event 3-15
examining code 2-9
example 3-7
example code 2-1
executing a method 3-7
executing animation 2-14
executing blocks 3-4
executing code 2-12
executing expressions 2-6
exit 4-4
exit project command 4-4
exiting Smalltalk 2-1,2-17

without saving work 2-17
exiting to operating system 2-18
explain 5-6
expression

definition of 3-2
expression sequence 3-6
extended selection 4-10
Extracting a Character Form 9-11

IX-4

F12 4-3
false 3-2
family 9-1
family (definition) 9-2
faulty view 5-16
faulty window 5-16
fg 4-4
file in command 2-14,4-7
File List 2-12,2-13
panes in 2-13

file list command 4-4
file list inspector 9-10
file out 4-12,5-2,5-4,5-5
file search 4-6
file suffix (.font) 9-17
file In 6-6, 11-2
fileln directory 7-1,8-2
FileList browser 4-6
fileOutChanges 6-6
filing in 6-6
filing in code 2-14
FillInTheBlank: 9-12
fill-in-the-blank window 3-13
filter program 8-2
flashing window 2-8
Float + 10-13
Float arcCos 10-13
Float arcSin 10-13
Float arcTan 10-13
Float exp 10-13
Float Ln 10-13
Float log 10-13
following Smalltalk conventions 7-1
font 4-5, 5-9, 5-10
font (definition) 9-2
font directory 9-1,9-2,9-10
font file name 9-10
font files 9-2,9-17
font handling tasks 9-3
font names 9-2
fontArray 9-4,9-11,9-15,9-18
FontManager 5-9,9-2,9-3,9-11,9-18,
Fonts and Text Styles 9-3
Fonts Background 9-1,9-3,9-13
forgetDolts 6-8
fork 4-4
Form 3-7
form 9-15
instance variable 9-15

format 5-6
format menu item 5-19
forms 11-3
Forms 4-16
fraction 3-2

---lndex

frame command 2-13,2-16,4-6
framing a window 2-6,2-16
frills 4-16
fromUser 3-3
full stack menu item 5-12,5-13
function key F12 2-3
games 11-3
garbage 6-8

uncollectible 6-8
garbage collection 2-3
garbage collection cursor 2-3
garbage collector 5-11
get contents command 2-14,4-7
getFrame 4-6
getting contents of a file 2-14,2-15
getting user input 7-1
global variable 5-7,5-8,5-18

adding 5-8
definition of 3-2
removing 5-8

Globals 9-18
glyphs 9-15
glyphs method 9-11
graphics, scaling 7-3
Graphics-Support (category) 9-15
grayBackground 4-15
halftone 3-7
halt message 5-14
Handling Fonts in Smalltalk 9-1,9-3,9-18
hardware window 2-3
hash message 5-14
Helvetica 9-2
hierarchy 5-4
highlighting text 2-4
hourglass cursor 2-17
identifier 3-2
definition of 3-2

image 3-8,5-9, 11-1
cloned 6-7

image corruption 6-7
image file 2-17,2-18, 3-9
image file problems 6-7
image, making a snapshot of 2-16
image.changes file 2-18,6-1
ImageName 5-9
immediate feedback 3-1
implementors menu item 5-13
indenting 5-19
information, representing 7-3
inheritance 5-24

definition of 3-14
inheritance of classes 5-26
initialize, delay 4-2
initializing classes 11-1

Tektronix Smalltalk Users

inquiring about a specific method 5-8
inquiring about class information 5-25
inquiring about objects in the system 5-7
inquiry
about a class variable reference 5-8
about a global variable 5-8
about a message selector 5-7
about a pool dictionary 5-8
about a sender 5-7
about an implementor 5-7
about interrupted executions 5-11
about number of instances 5-8
about objects in system 5-11
about time to run 5-11

inserting text '2-4
inspect it command 3-19,4-12
inspect its 6-3
inspecting objects 3-9,3-19
inspector 3-10,5-8,5-12,5-17
on all instances 5-8

inst var refs 5-4
installing a font 9-7
installing fonts 9-1
instance creation 3-7,3-18,5-24
instance
definition of 3-1

instance protocol 5-20
instance variable 3-2,3-16,3-17,5-16,5-18,5-26
Integer 3-11
interactive applications 7-2
interactive programming 3-1
interpreter 2-2, 2-7, 6-2, 11-1
interrupt 4-2
interrupted executions 5-11
intrinsic property (family) 9-2
Introductory Information 9-1
inverse video 5-11
invocation comment 5-18
invoking a method 5-18
invoking the debugger 5-12
isKindOf: message 5-21
italic 9-2,9-3,9-14,9-15
jobs 4-4
joydisk 2-3
key combinations, editing 4-10
key combinations, system 4-1
keyboard activity 7-3
keys 10-5
keyword 5-20
keyword message 3-3, 3-5
keyword message
definition of 3-4

LargeNegativeInteger 10-6
LargePositiveInteger 10-6

IX-5

Index--·------------------

leading 9-4
left shift key 5-14
leftward arrow 3-3
lineGrid 9-15
link 5-15
list contents command 4-8
listing files 2-13
literal 3-2
definition of 3-2

LiteralArray 10-3
literalAt: 10-3
literalAt:put: 10-3
loadlnterpreterKnownObjects: 10-10
local variable
definition of 3-2

locating the cursor 2-3
loop 3-8, 3-11
Is command 6-7
making a snapshot 2-16
makingADemolmage.st 11-2
manager, controller 7-4
managing a changes file 6-7
managing an image 6-7
managing an instance 5-25
manipulating a window 2-3
manipulating the contents of a window 2-3
mask 3-7
measuring objects 5-7
memory management 2-3
memory use of windows 4-16
menu, blue button 4-5
menu, file list 4-7, 4-8
menu, system 4-3
menu, window control 4-5
menus, context-sensitive 7-1
message 3-2, 3-3
definition of 3-1

message protocol pane 2-8, 3,..8
message selector 3-1,3-4,3-11,5-7
definition of 3-3

message selector pane 2-8, 3-8
message selectors 2-10
messages 5-5
messages menu item 5-13
method browser 5-12
method comment 3-13
method
definition of 3-3

method template 3-17
MethodDictionaries 10-5
middle button menu 4-5
middle mouse button pop-up menu 2-7,6-2
fixing mistakes with 2-7,6-2
saving changes with 6-2

IX-6

model 5-17
any object can be 7-3
aspects 7-14
changes 7-14
function 7-2, 7-3
obligation to view 7-3
updating view 7-3

Model-View-Controller paradigm 7-2
Model-View-Controller triad 7-1
Model-View-ControUer 3-20, 11-2
mouse activity 7-3
mouse buttons 2-3
left 2-3
middle 2-3
right 2-3,2-16

mouse cursor 5-9
mouse orientation 2-2
move command 2-16,4-6,5-5
moving a window 2-16
multiplication 3-3
multitasking 11-2
MVC 7-2
MVC interactions 7-2
name (instance variable) 9-15
namedSnapshot 10-10
nesting subviews 7-6
new directory command 4-9
new file command 4-8
newMethod:header: 10-3
nextInstance 10-6
nib 3-7
nil 3-2, 5-25
nil, as model 7-8
nineteen-inch display 2-3
NoControlier 7-12, 7-15
normal video 5-11
notifier window 2-8, 3-10
Number 3-11
number 3-2
Object 3-14
Object asOop 10-13
Object become: 10-13
object

definition of 3-1
Object hash 10-13
Object shallowCopy 10-12
object table 10-2
objects dependents 6-8
objects

inaccessible 6-7
objects, maximum number of 10-1
obsolete associations 6-8
obsolete classes 6-8
offset 9-15

---Index

oops, size of 10-1
open 7-10
opening a new File List 2-14
opening a workspace window 2-6
openOn: aModel 7-10, 7-15
operating system 2-1, 3-9,5-9
operating the mouse 2-3
organizing code 2-9, 3-8
as (global variable) 5-9, 8-2
as interface 8-2
as Shell 4-4
OSFilter 8-2
overall view 7-6
page 4-13
paging 6-8
panes in a window 2-8
panning 2-3
Paragraph 9-13,9-15,9-18
ParagraphEditor 9-5
parentheses 3-5
parsing rules 3-6
paste command 2-8
pasting text 2-15
pause 5-14
Pellucida 9-1,9-2
Pcllucida Default 10 and 12 9-4
Pellucid a Sans-Scrif 9-10
Pcllucida Sans-Scrif 8 and 10 9-4
Pcllucida Serif 9-10
Pellucida TypeWriter 9-10
PellucidaSans-Serif8 9-15
PellucidaSerifl0U 9-3
PellucidaSerifS 9-10
Pcn 3-7
Pen example 3-6, 6-4
Pen example code 2-10
Pen example display 2-7
pencil cursor 2-15
period 3-5
point creation 3-3
point size 9-2, 9-15
pool dictionary 5-8,5-10
pool variable 5-18, 5-26
pop-up menu 2-7, 6-2

fixing mistakes with 2-7,6-2
saving changes with 6-2

PopUpMcnu 9-12
power switch 4-2
precedence rules 3-6
presenting information to the user 7-1
pressing a key 7-3
pressing a mouse button 2-3, 7-3
primDecrementStackP 10-10
primIncrementStackP 10-10

Tektronix Smalltalk Users

primitive methods 10-6
primitives not implemented 10-6
print it command 2-7,3-12,4-12,5-6
print it menu item 2-7
print its 6-3 .
print out command 5-2, 5-4, 5-5
printable characters 9-10
printer's type box 9-2
priority 5 4-2
private method 5-25
private protocol 3-17
procedure call 3-1
proceed menu item 5-12,5-13
process priority 5-9
Processor 5-9
programming a user interface 7-1
programming methodology 6-6
project command 4-4
projects 6-6
prompter window 2-16,2-17
protocol 5-20
pseudovariable 3-2
punctuating 5-19
putcommand 2-15,8-2
quit 4-5
quit without saving command 2-17
quitting Smalltalk 2-17
quotation mark 3-2, 3-7
reading a file 2-14
reading cursor 2-15
reading in forms 11-2
README file 2-14, 11-2, 11-3
receiver 3-13

definition of 3-1
recover 6-7
recover: 6-7
recovering your work 6-7
Rectangle 3-3
redefining equals 5-14
redefining hash 5-14
referenced font 9-2
refinement 5-24
definition of 3-15

rehashing 6-9
relative motion 4-14
remove command 4-8,5-2,5-4,5-5
removeFromChanges 6-6
removing a global variable 5-8
rename command 4-8, 5-2, 5-4, 5-5
repaint command 2-16,4-6
repainting a window 2-16
repeating expressions 3-5
replacing text 2-4
reprcsenting information 7-3

IX-7

lndex--

restart menu item 5-13
restore display command 4-4, 5-9
restoring the display 2-7
RETURN 3-10
return menu item 5-13
returning a value 3-3,3-16
returns 3-3,3-13
reversing case 3-11,3-13
right angle cursor 2-6
RUB OUT 4-10
RunArray 9-12,9-14
runs 9-14
runs of characters 9-13
save command 2-16, 4-5
save, then quit command 2-17
saveSpace 4-16
saving changes to the System Workspace 6-2
saving Smalltalk work 2-16
saving your image 2-16
saving your work 2-1
scaling graphics 7-3
scheduled controller 5-17
scheduled controllers 7-4
ScheduledControllers 5-9, 5-17
Screen Controller 4-15
scroll bar 2-4, 4-13
scroll marker 2-4
scrolling 4-13
scrolling cursors 2-5
searchForActiveControliers 4-2
sed 8-2
selecting text 2-3, 2-4, 4-9

within delimiters 2-11
selection, text 4-9
self 3-2, 3-13, 5-23
semicolon 3-6
send menu item 5-13
sender 5-7
senders 5-5
senders menu item 5-13
Sensor 3-3, 5-9
setting mouse bounds 5-10
SHIFT-CTRL-BREAK 2-18
SHIFT-Ieftbutton 4-10
signallnvoke 10-8
single quotation mark 3-2
single quotes in a string 5-20
size 3-3,9-2,9-15
SmallInteger 10-3
SmallIntegers 10-1
Smalltalk

IX-8

applications 7-1
conventions 7-1
environment 7-1

Smal1talk changes 6-1
Smalltalk dictionary 5-10
Smal1talk environment 3-1
Smal1talk, exit from 4-2
Smalltalk interpreter 11-1
Smal1talk Reference manual 9-3
snapshot 6-5,6-7
snapshot, making a Small talk 2-16
snapshotAs 4-2
source code 11-1
SourceCodeReference 10-3
SourceFiles 5-9, 10-3
spaces in expressions 3-5
spawn command 2-14,3-10,4-7,4-8,5-2,5-4,5-5,5-6
spawn hierarchy command 3-15, 5-4
spawning a browser 3-10
spectacles cursor 2-15
spying on a process 5-11
square bracket 3-4
square cursor 2-3
square root 3-3
Standard Image file 11-1
standardSources. VersionTB2.2.1 11-1
StandardSystemController 7-8, 7-10
StandardSystemView 4-16, 7-6, 7-8, 7-10, 7-15
StandardSystemView, model 7-8
stdout 3-9
step menu item 5-13
stopping animation 2-14
storing code 6-6
StrikeFont 9-1,9-2,9-13,9-17
StrikeFontManager 9-1,9-2,9-3,9-13,9-18
String = 10-12
String 3-10
reversing case 3-11

string 3-2, 9-14
single quote in 5-20

string concatenation 3-4
Strings 9-13

converting 9-14
displaying 9-14

style command 2-16, 4-5
StyleManager 5-10,9-18
sub-browser 3-9
subclass 3-14, 5-24
subclass link 5-15
Subclasses 5-27
subclasses of Controller 7-4
sub task 11-2
subviews 7-3, 7-8
nesting 7-6

super 3-2
Super classes 5-26
superclass 5-24

---lndex

superclass link 5-15
symbol 3-3, 5-7
Symbol hash 10-13
symbol table 6-8
syntax 3-11,3-6
System Browser 2-8,3-10,3-12,5-10,5-19
class category pane 2-8, 3-8
class pane 2-8,3-8
message protocol pane 2-8, 3-8
message selector pane 2-8, 3-8
panes in 2-8
text pane 2-8, 3-8

System Browser, enhancements to 11-2
system menu 4-3
system support 11-1
System Transcript 2-4, 5-10

for debugging 5-14
system transcript command 4-4
System Workspace 3-11,5-7,6-2,9-3

Changes heading 6-5
system workspace command 4-4
SystemChanges 6-3
SystemDictionary 6-3
SystemDictionary core 10-11
SystemDictionary coreLeft 10-13
SystemDictionary garbageCollect: 10-11
SystemDictionary oops Left 10-13
S ystemD ictionary signal: atOopsLeft:wordsLeft: 10-13
systemInvokeQuietly 10-8
SystemOrganization 5-10
SystemTracer 6-8, 6-9
tabs in expressions 3-5
tag letter 9-3
Tektronix standard image 11-1
Tektronix-specific primitives 10-7
template code 2-9,3-9,3-11
template for creating object 3-1
temporary variable 3-7,3-9,3-10,3-13,3-18,5-18
terminal emulator 2-18
testing a method 3-14
testing code 3-10,3-19
Text 9-12,9-13,9-14
text buffer 2-8
text editing menu 4-11
text editor 2-4
text information 9-16
text pane 2-8,3-8
text style 2-16,3-9,5-9,5-10,9-4
text style name 9-4
text styles 11-3
TextConstants 9-5, 9-11, 9-18
TextStyle 9-1,9-2,9-13,9-18
TextStyleManager 9-1,9-13,9-18
thirteen-inch display 2-3

Tektronix Smalltalk Users

time to run 5-11
Times Roman 9-2
title command 2-16,3-11,4-5
title tab 2-3,2-16
titling a window 3-11
to:do: 3-11
topView 7-6
tr 8-2
Transcript 5-10
true 3-2
tutorial 9-1
tutorial, second 2-1,3-10
tutorial, third 3-15
typeface 9-1,9-13,9-15
typeface name 9-15
typing text 3-10
Typography 9-1
unary message 3-3, 3-5
definition of 3-3

uncollectible garbage 6-8
Undeclared 6-9
Undeclared dictionary 5-10
undeclared objects 6-8
undercommand 2-16,4-6,5-9
underlined 9-2,9-3,9-15
underlining 9-14
undo command 2-8,4-12
undo menu item 2-7,6-2
unsupported code 11-3
update 5-2, 7-12
update
:(aParameter)" "
7-12"

updating Smalltalk 11-3
upward arroW 3-3
user interface 2-1
user interface, programming 7-1
value 3-4
variable 3-2, 3-4, 3-7, 5-18
block 3-4
global 3-2
instance 3-2
local 3-2

variable pool 5-10
Variable Pools (Dictionaries) 9-18
version control 6-6
vertical bar 3-4, 3-7
View 4-16
View
subclassing from 7-8

view
associated with window 7-3
coupled to controller 7-3
doesn't know how to display itself 5-16

IX-9

lndex--

function 7-2, 7-3
models obligation to 7-3
multiple 7-3
possible examples 7-3
subclass of View 7-3

viewport 5-11
views 8-2
VirtualStrikeFont 9-1,9-2
waitButton 3-3
whiteBackground 4-15
wildcard character 2-14,4-6
window 3-8, 7-1

associated with controller 7-3
cannot close 5-16

window commands 2-16
window manager 5-9
window pop-up menu 2-16
windows, manipulating 4-5
windows, memory use 4-16
windows, methods for repainting 4-16
windows, obscured 4-16
windows, repainting 4-16
workspace 2-6,3-10,3-19
workspace command 4-4
wrapping text 2-4
writeClone 6-8
writing cursor 2-15
writing files 2-15
Xerox Version 2 image 11-1
xTable 9-15
yield message 5-9

IX-IO

