MANUAL CHANGE INFORMATION
ARTIFICIAL INTELLIGENCE MACHINES DIVISION

PRODUCT 4404 SMALLTALK-80 INTRODUCTION USERS PART NO___ 070-5606-00
PRODUCT GRoup 07 CHANGE NO _ C15606 pAaTE DEC 1985

This is an ADDITION package.

1. Insert the attached addition, Smalltalk-80 Application Note (Subtask Support and Mangement)
into the NOTES section of your manual.

2. Replace the title and manual revision pages at the front of your manual.

3. Keep this cover sheet in the CHANGE INFORMATION section at the back of this
manual for a permanent record.

TEK USERS Part No. 070-5606-00
MANUAL Product Group 07

4404

ARTIFICIAL
INTELLIGENCE
SYSTEM

INTRODUCTION TO THE
SMALLTALK-80 SYSTEM

Please Check at the

Rear of this Manual

for NOTES and

CHANGE INFORMATION

First Printing DEC 1984
Revised DEC 1985

Tekkronix:

COMMITTED TO EXCELLENCE

Copyright © 1984, 1986 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved. Contents of
this publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Smalltalk-80 is a trademark of Xerox Corporation.

PLEASE FORWARD ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4404 Artificial Intelligence System Smalitalk-80 System
This manual supports the following versions of this product: Version T2.2.0

REV DATE DESCRIPTION
DEC 1984 Original Issue
DEC 1985 Subtask Management Notes

4404 SMALLTALK-80 SYSTEM USERS

Application Note

SUBTASK SUPPORT
AND MANAGEMENT

Support for subtasks created by the operating system is available in the Smalitalk-
80 system. Although Smalltalk has its own processes, Smalltalk can also create
and communicate with subtasks created by the operating system. Smalltalk
processes provide independent paths of control within Smalltalk. All Smalltalk
processes share access to the same set of objects. Operating system subtasks
provide access to other executable programs. These subtasks are useful for
running OS utilities and commands, as well as communicating with applications and
programs written in other languages. Subtasks can be executed without leaving
the Smalitalk environment. Protocol supporting subtasks is found in the classes
Subtask, Pipe, PipeStream and its subclasses. The objective of this support is to
make the job of creating, running and communicating with the subtasks
straightforward. Interfaces to OS signals, program parameters, environment
variables, and subtask priorities are also supported.

OVERVIEW OF SUBTASKS AND PIPES

The operating system on the 4404 supports multi-tasking. With Smalltalk’s interface
to the operating system via system calls, it is possible for Smalltalk to utilize this
facility. Multi-tasking is achieved by spawning new tasks. A newly spawned task is
called a child task or a subtask. The original task is referred to as the parent task,
The child task is a "copy” of the parent task -- it shares memory and other
resources with the parent task. Since only one task can execute at a time, cpu time
is also shared, initially in a predetermined fashion. Common practice is for the
spawned child task to perform some chore, and then report back to the parent task.
After reporting, the child task disappears. This disappearance is known as the
termination of the child task. A parent may chose to relinquish use of the CPU until
a subtask terminates. It does this by an operation called waiting. While waiting, the
parent task is blocked and cannot do anything else until the child task terminates.

The child task's chore is often accomplished by finding some other program to do
the work. The use of this other program is known as an exec operation (for
execute). In an exec operation, the original spawned task "turns itself into” the
other program, so the other program becomes the child task.

Often times, a parent task may want to communicate with a child task. Information

can be sent to and from the child task by using pipes, however, each pipe can send
information in only one direction. If communication in two directions is desired, two
pipes must be used. Pipes are similar to files with two critical differences.

® Files can be reopened many times. Pipes can only be opened once. Once a
pipe is closed it is gone.

® Files can be reset and repositioned. It is not possible to reposition a pipe.

Usually the parent task creates a pipe. Each end of the pipe is assigned a file
descriptor, one for reading and one for writing. When a subtask is created it
inherits these open file descriptors. The parent task remembers one file descriptor,
the one which is appropriate for its direction of communication. For example, if the
parent task wants to send information to the child, the parent remembers the file
descriptor for writing. Since the parent will not be using the reading end of the

Application Note 1-9

Subtask Support

pipe, it should close this unused end. The child task must also remember the
appropriate file descriptor and close the file descriptor corresponding to the unused
end of the pipe. Neglecting to close these unused pipe file descriptors might mean
the task could run out of file descriptors, since there is a limit of 32 open file
descriptors per task.

Sometimes it is not possible for the child task to know that it should use the pipe's
file descriptors for reading and writing. For instance, the child task might want to
exec a program that writes on standard output. Even if the program were aware of
the use of pipes, it may not be possible for the program to modify itself to use the
pipe’s file descriptor for writing. In this case, it is possible for the child task to
redirect its I/O by mapping its pipe descriptors to known file descriptors. (This
mapping is accomplished through the use of the dups system call. See the 4404
Reference Manual for more details.) Once a pipe's file descriptor is mapped, it
becomes obsolete and should be closed. For example, the child task may want to
write to the pipe, but the program is designed so write operations go to standard
output. The write file descriptor of the pipe must be mapped to standard output’s
file descriptor (1), and the write file descriptor should be closed. The effect of the
mapping in this example is for write operations on standard output from the child
task to be performed on the write end of the pipe instead.

CLASS DESCRIPTIONS

Instances of the class Subtask represent operating system child tasks. The process
of creating an instance of this class includes specifying an executable program and,
optionally, arguments to the program and environmental variables. A block
representing code to be executed by the child task can also be specified. Subtask
contains protocol for invoking, terminating, and waiting for a child task. The
invocation of a child task may include modification of the child's priorities and
environment variables. The metaclass contains protocol for managing these child
tasks.

The ciass Pipe represents an operating system pipe. Instance creation causes a
pipe to be created with two open file descriptors, one for each end of the pipe.
Protocol exists for mapping ends of the pipe to arbitrary file descriptors.

The class PipeStream, a subclass of ExternalStream, is an abstract class. Since
instances of ExternalStream are positionable and pipes are not positionable, one
of PipeStream’s purposes is to provide protocol for filtering out inappropriate
inherited methods. It also contains a method for closing a PipeStream or one of its
subclasses, which also closes its associated pipe file descriptor. Protocol also
exists for mode changes to binary or text. PipeStream has two subclasses,
PipeReadStream and PipeWriteStream Each of these subclasses is created by
opening on an instance of Pipe. Each has protocol appropriate for its function:
PipeReadStream has protocol for streaming over data read from a pipe.
PipeReadStream buffers its data from the pipe. However, PipeWriteStream does
not buffer its data. Both of these classes support non-homogeneous accesses, that
is, reading or writing different sized pieces of data. These classes inherit higher

1-2

Subtask Support

level protocol involving:
® Padding
® Accessing strings, numbers and words

o fileIn and fileOut

SUBTASK EXAMPLES

Here is an example which uses Subtask. Assume the existence of an executable
file /bin/simpleUtility, a program with no input, output, or arguments.

executeSimple
"Execute a pretend program.®
| task |
task « Subtask fork: ’/bin/simpleUtility’ then: [].
task start.

task waitOn.
task release.

The method fork:then: creates an instance of Subtask. This object, assigned to
the variable task, contains all the information needed to create an OS subtask to
execute the program /bin/simpleUtility. However, an actual subtask is not
created by this method. The method start issues the system calls vfork and

exec to create and run the subtask. The method waitOn instructs the currently
executing Smalltalk process to wait for the subtask to terminate. Release discards
the Subtask object.

Here is a somewhat more complicated example:

execSystemUtility: aCommand
| pipe task inputSide resultOfProgram |
pipe~ Pipe new.
task = Subtask fork: aCommand then: [
pipe mapWriteTo: 1.
pipe mapWriteTo: 2.
pipe closeWrite; closeRead].
task start.
pipe closeWrite.
inputSide < PipeReadStream openOn: pipe.
resultO0fProgram « inputSide contentsOfEntireFile.

task waitOn.
inputSide close.
task release.
tresultOfProgram

In this method, execSystemUtility:, a pipe is created to establish one-way
communication with the subtask. (Two pipes are required for two-way
communication.) The code in the block is executed by the subtask after the vfork

Application Note 1-3

Subtask Support

system call and before the exec system call. All the rest of the code in
execSystemUtility: is executed by the parent task.

Pipe connections in the child task are established in the block. In this case, the
child task’s standard output (file descriptor 1) and standard error (file descriptor 2)
are redirected to the pipe through the use of the mapWriteTo: method. When the
child task writes to standard output or standard error, this mapping causes the
write operations to be directed to the write side of the pipe. Since the write end of
the pipe has been redirected, it is a good idea to close the write end with the
message closeWrite. In addition to closing redirected ends of the pipe in the child
task, unused ends of the pipe should be closed in both the parent and child tasks. In
this case, the pipe read end is unused in the subtask, and the pipe write end is
unused in the parent task.

The net affect of all this closing and mapping is that the child task (whose code is
executed in the block) closes the read side of the pipe because it is unused and
closes the write side of the pipe because it has mapped the write side to standard
output and standard error. The parent task closes its unused end of the pipe, which
is the write side. The parent task also creates a Smalltalk object for reading from
the pipe, an instance of PipeReadStream called inputSide. InputSide inherits
protocol from PipeStream and consequently ExternalStream. Although other
methods may be used to read from the pipe, here, the method
contentsOfEntireFile is used to read all the data from the pipe, and the pipe is
closed after use.

The following method, found in execSystemUtility:withArgs: TekSystemCall
class, in addition to havinf the same functionality as the method immediately above,
also has error checking and passes arguments to the executable program,
aCommand.

1-4

Subtask Support

execSystemUtility: aCommand withArgs: anOrderedCollection
| pipe task inputSide resultOfProgram |
pipe -« Pipe new.
task - Subtask
fork: aCommand
withArgs: anOrderedCollection
then:
(pipe mapWriteTo: 1.
pipe mapWriteTo: 2.
pipe closeWrite; closeRead].
task start isNil
ifTrue:
[pipe closeWrite; closeRead.
self error: °'Cannot execute ' , aCommand].
pipe closeWrite.
Cursor execute
showWhile:
[inputSide « PipeReadStream openOn: pipe.
resultO0fProgram < inputSide
contentsOfEntireFilel].
task waitOn.
inputSide close.
task abnormalTermination ifTrue:
[self error: ’'Error from system utility: ° ,
(resultOfProgram copyUpTo: Character cr)].
task release.
tresultOfProgram

This method contains code to
® Pass arguments to the program in the form of an OrderedCollection.
® Check for failure of the child task (task start isNil).
® Test for abnormal termination of the child task

Failure of the child task necessitates the closing of any pipes created for use in the
subtask. The parent task which creates these Pipes is responsible for closing
them. Neglecting to close these pipes might mean the Smalltalk parent task could
run out of file descriptors

Examples Using execSystemUtility:withArgs:

Here are some examples that demonstrate how to use
execSystemUtility:withArgs:

To execute a program with arguments:

Application Note 1-5

Subtask Support

fileName « ‘timingData’.
flags « °'+sa’.
TekSystemCall
 execSystemUtility: '/bin/dir’
withArgs: (OrderedCollection with: fileName with: flags).

The next example executes a shell with a +¢ option. The +c¢ option tells the shell to
read the rest of the arguments as a command to itself. The effect is a directory
listing with the shell providing wildcard expansion.

pattern < ’/smalltalk/de*’.
nameList < TekSystemCall
execSystemUtility: '/bin/shell’
withArgs: (OrderedCollection
with: ’+¢’
with: °/bin/dir +s ' , pattern)

Besides taking advantage of the shell’s wildcard expansions, you can also use
aliases which are stored in the .shellhistory file. (See the 4404 Reference
Manual = the shell command for more details.)

TekSystemCall
execSystemUtility: °'/bin/shell’
withArgs: (OrderedCollection with: '+c¢’ with: °df°’)

where df is an alias for free /dev/disk.

To execute a program with no arguments substitute an empty OrderedCollection
for the second argument.

TekSystemCall
execSystemUtility: °'/bin/date’
withArgs: OrderedCollection new.

Environment Variables

The Smalltalk-80 system's interface to subtasks also supports environment
variables. (See the 4404 Reference Manual for more details.) In general, when a
program is invoked, the operating system passes arguments and environment
variables to the program. Standard environment variables include HOME = a home
directory specification and PATH = a search path specification. Environments are a
way to pass information by name. This can be viewed as setting a context for
execution. Instances of subtask are created with a default environment, the
environment with which Smalltalk was invoked. The method Subtask class
copyEnvironment answers a copy of the default environment. This copy is in
dictionary format for easy modification. The method Subtask environment:
assigns an environment to the Subtask instance which passes it to the executed
program. Here is an example of use of a modified environment which specifies that
/smalltalk is the current HOME directory.

1-6

Subtask Support

execProgram: aCommand
| task env |
task < Subtask
fork: aCommand
then: [J].
env e Subtask copyEnvironment.
env at: #HOME put: '/smalltalk’.
task environment: env.
task start isNil
ifTrue:
[self error: 'Cannot execute ' , aCommand].
task waitOn.
task abnormalTermination ifTrue: [self error: 'Error from ' , aCommand].
task release.

Signals

Operating system signals (colloquially referred to as /interrupts) can be intercepted,
ignored, or set to a default action by using protocol in TekSystemCall class.
Usually, the default action upon receipt of an interrupt is task termination. (See the
4404 Refence Manual = the int command and cpint system call for more details.)
Sometimes it is desirable for the child task to intercept, or modify, its reaction to an
interrupt. Protocol to modify these reactions can be added to the block which is an
argument to the Subtask instance creation methods. In our next example
ScreenController fork0SShell ,h the method fork:withArgs:then: is passed a
block which modifies some of these reactions. Code in this block is executed by the
child task only. The reaction to several interrupts is modified with the method
setInterrupt:to: in both the parent and child task. Here is a simplified and
stripped down copy of the method ScreenController forkOSShell

Application Note 1-7

Subtask Support

forkOSshell
*Simplified for example.®

| location task o0ldSIGHUPValue 0ldSIGINTValue 01dSIGQUITValue
sysCall oldSIGTERMValue |
0l1dSIGHUPValue < TekSystemCall setInterrupt: 1 to: 1.
01dSIGINTValue < TekSystemCall setInterrupt: 2 to: 1.
01dSIGQUITValue « TekSystemCall setInterrupt: 3 to: 1.
01dSIGTERMValue = TekSystemCall setInterrupt: 11 to: 1.
task « Subtask fork: °'/bin/shell’ withArgs:
(OrderedCollection with: °'+1°)
then: [
TekSystemCall setInterrupt: 1 to: 0.
TekSystemCall setInterrupt: 2 to: 0.
TekSystemCall setInterrupt: 3 to: O.
TekSystemCall setInterrupt: 11 to: 0.
sysCall « TekSystemCall terminalOn.
sysCall valuel.
error < task start.
error isNil
ifFalse: [task absoluteWait.
task releasel.

TekSystemCall setInterrupt: 1 to: oldSIGHUPValue.
TekSystemCall setInterrupt: 2 to: o0ldSIGINTValue.
TekSystemCall setInterrupt: 3 to: o0ldSIGQUITValue.
TekSystemCall setInterrupt: 11 to: o0ldSIGTERMValue.
sysCall « TekSystemCall terminalOff.

sysCall value.

ScheduledControllers restore.

error isNil ifTrue: [tself error: ‘Cannot fork shell’]

Interrupt action is modified in both the parent and child tasks by using the method
setInterrupt:to:, which returns the previous action for that interrupt. First, the
parent interrupt actions are saved in temporary variables while setting interrupt
action to 1, which means to ignore the interrupt. In the subtask, these same
interrupts are reset to the default action, by making the interrupt action 0. After the
subtask has completed, the interrupts in the parent task are set back to their
original values. This subtask runs by using the protocol previously described, but
the parent task waits for the child task to terminate by using the method
absoluteWait. This method actually shuts down the Smalltalk parent task so it
receives no time slice from the operating system scheduler. This strategy of waiting
makes the subtask more efficient because the parent task cannot steal any
processing power. However, Smalltalk cannot run until the child task has
terminated. AbsoluteWalt is not appropriate for any subtask that depends on the
Smalltalk user interface.

1-8

Subtask Support

Priorities and Two Way Commuanication

Subtasks can be made to run more efficiently by changing their priorities. Sending
the message priority: to an instance of Subtask modifies the invocation of a
subtask so that it runs at the designated priority. Here is the definition of the
method Subtask priority:.

priority: aPriority
*Set the priority of the subtask. Acceptable values range from 0 to
25, zero being the highest and 26 being the lowest.®

aPriority < 0 | (aPriority > 26)
1fTrue: [self error: ‘'Unacceptable priority value'].
priority - aPriority

The Smalltalk parent task initially has a priority of 10. If the child task is created
with a higher priority than the parent task, it has a potential of taking control of the
CPU. A higher priority task will not relinquish the CPU to a lower priority task
unless the higher one is blocked or terminates. The next example increases the
child task’s priority and uses two pipes for two way communication. It is known
that the child task in this case will be blocked while waiting for input, so the parent
task will have a chance torun. The class Shelllnterface creates a view that
communicates with a shell (/bin/script) interactively. (Note that this class is not
contained in the standardImage but defined in the file
/smalltalk/fileIn/Examples-Subtasking.) After an instance of this class is
created, it is initialized with the following method.

Application Note 1-9

Subtask Support

initialize

This method uses two pipes for two way communication. It also assigns the highest
possible priority to the subtask with the message enhancedPriority. When the
view is closed, each instance of ShellInterface cleans up with the release

| pipeIn pipeOut sysCall |

command < °'command’.

result « °’ asText.

pipeln < Pipe new.

pipeOut « Pipe new.

shellTask « Subtask fork: °/bin/script’

then:

[FileStream releaseStdRefs.
pipelIn mapWriteTo: 1.
pipelIn mapWriteTo: 2.
pipelIn closeWrite.
pipeln closeRead.
pipeOut mapReadTo: 0.
pipeOut closeRead.
pipeOut closeWritel].

shellTask enhancedPriority.
shellTask start isNil

ifTrue:
[pipeIn closeWrite; closeRead.

pipeOut closeWrite; closeRead.
self error: 'Cannot execute a shell'].

pipeOut closeRead.

pipeln closeWrite.

shellln < PipeReadStream openOn: pipeln.
shellOut < PipeWriteStream openOn: pipeOut

method.

Subtask Support

release
| sysCall |
*Close pipes for interactive shell"
shellOut isValid ifFalse: [tself].
shellln close.
shellOut close.
shellTask kill.
shellTask waitOn.
shellTask release.

TekSystemCall terminalOff value.
TekSystemCall cursorOn value.
Cursor cursorlLink: true.
Display enableCursorPanning.
Display enableJoydiskPanning.
Display setNormalVideo.

The shell subtask, shellTask, is terminated with the ki1l message. The parent
task waits for the shell subtask to terminate and then releases the instance of
Subtask. Other methods are invoked to reset states in case a subtask of the shell
has modified the display.

Application Note 1-11

Subtask Support

THE DETAILS OF STARTING A SUBTASK

Here is the start method taken from the class Subtask. This method contains low
level details of how a subtask is actually exec'ed.

start
*Start the receiver by executing a vfork, code to set up
the child task (mainly communication and signal processing),
and exec’'ing the program. If the exec falls terminate the
child task. The child task will inherit the priority of
the Smalltalk task."®

| forker execer task |
forker - TekSystemCall vfork.
environment 1isNil
ifTrue: [execer = TekSystemCall exec: program with: args]
ifFalse: [execer « TekSystemCall execve: program
withArgs: args withEnv: environment].

forker value.
initBlock value.
self priority notNil ifTrue: [(TekSystemCall setpr: priority) valuel.
FileStream closeExternalReferences.
execer invoke
ifFalse:
[(TexSystemCall term: 0) value.
self taskId: nil.
tnill.
self taskId: execer DOOut.
ScheduledSubtasks add: self.
self criticalSection: [self status: #running].

Subtasks are run from Smalltalk by making two essential system calls. The vfork
system call, forker, creates a child task which shares memory with the parent
task. The exec/execve system call, execer, transforms the child task so it is no
longer running Smalltalk, but is executing the specified binary file, program. Execer
is created with either the exec system call (exec:with:) or with the execve system
call (execve:withArgs:withEnv:), depending on whether an environment is passed
to the binary program. '

Before the exec/execve invocation (execer value), communications and signals
must be set up. When an instance of Subtask is created, potentially, a block is
passed as an argument containing code for setting up communications and signals
in the child task. This block was stored in the instance variable, initBlcck, which
is evaluated at this point. Priorities are also assigned at this time, and files
belonging to the parent task Smalltalk are closed with the expression FileStream
closeExternalReferences. After the child task has been spawned and control
returns to the parent, the task identification number is recorded by the parent task
(self taskId: execer DOOut), the child task is added to the list of managed
subtasks (ScheduledSubtasks add: self) and its status is recorded. If the execer

Subtask Support

call fails, the child task terminates itself with the term: method and the parent task
returns nil.

At the vfork invocation (forker value), control of the Smalitalk virtual machine
transfers to the child task. The child task continues executing with no access to
the keyboard or the mouse until the execer call is invoked. This means that the
code from forker value to execer invoke is only executed by the child task. In
addition,

(TekSystemCall term: 0) value.

is executed by the child task to terminate itself if the execer call fails. Then the
parent task resumes control and executes the statements

self taskId: nil.
tnil

to indicate failure of the execer call. The next statements, starting with self
taskId: execer DOOut, are also executed by the parent task, but only if the execer
call was successful. Whenever the child task is blocked or the child task
terminates, control reverts back to the parent task. The parent task initially
resumes control in the state left by the child task before the forker invocation.

Application Note 1-13

MANUAL CHANGE INFORMATION
ARTIFICIAL INTELLIGENCE MACHINES DIVISION

PRODUCT 4404 SMALLTALK-80 INTRODUCTION USERS PART NO 070-5606-00

PRODUCT GRoupP 07 CHANGE No _ C25606 DATE _APR 1986

This is an ADDITION package.

1. Insert the attached Smalltalk-80 LOS User Notes into the NOTES section of your manual.

2. Replace the title and manual revision pages at the front of your manual.

3. Keep this cover sheet in the CHANGE INFORMATION section at the back of this
manual for a permanent record.

TEK wanua

Part No. 070-5606-00
Product Group 07

4404

ARTIFICIAL
INTELLIGENCE
SYSTEM

INTRODUCTION TO THE
SMALLTALK-80 SYSTEM

Please Check at the

Rear of this Manual

for NOTES and

CHANGE INFORMATION

First Printing DEC 1984
Revised APR 1986

Copyright © 1984, 1986 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved. Contents of
this publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Smallitalk-80 is a trademark of Xerox Corporation.

PLEASE FORWARD ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4405 ARTIFICIAL INTELLIGENCE SYSTEM SMALLTALK-80 SYSTEM
This manual supports the following versions of this product: Version T2.2.0

REV DATE DESCRIPTION
DEC 1984 Original Issue

DEC 1985 Subtask Management Notes

APR 1986 LOS Users Notes

4404 SMALLTALK-80 SYSTEM USERS

Table of Contents

SECTION 1 Smalltalk-80 LOS User Notes

ABOUT THESE NOTES ... iereecenteceennteeeseessessestesessneestesesssssessesnsessesesnssesessesssassessessans 1-1
The Blue BoOK SPECIfiCAON cccceruieiieiniiceniiiieientnieiiee ettt sreeese e eseesesacsassesesaans 1-1
INVOKING SMALLTALK ..ottt et ettt esescstssas e st et esessesssnsesssesssssesassanns 1-2
THE LOS INTERPRETER ...ttt stcte et et sae e st st asaesesns e et e sasnsesnasaanns 1-2
Object-Oriented POINLEIS cccoeueeeeereriieerirniiiecrinteeeneceesseneeesessetesressesaessessesessssnsesasessssssnsenns 1-3
SMALl INEZETS .eeeiiiieieceetniesi ettt ctcesee et e s sb et escneabe st esseassrssesssessessestensennesans 1-3
LOS Interpreter Design CharacCteristiCscceveverieieriesereenionnceeneieesetecsnessessessesnesessessesnes 1-4
The ODBJECt TADIE coiviiiiiiiiiiiiiintineeente e ceete e seee e s stes st caae st teaae s e sscnmessssessnsessesaes 1-4
CompiledMELhodS ccceeecruerreeriireeinternetesreesrerseeeseesaeesssessasessesssssessesssessssasessasssssassseesans 1-4
Method DICHONAMES ccceieniiiieseienriniereesientieseeceeeseeessesssessessesssssassssssnsessesssessaesssssssesssassassse 1-6
Primitive MEthOAS cooiiiiiiiiiiiiiiiiniictnntteienecetcestne e srestecassnse st sss et s e e seessessnsasssssssans 1-7
Unimplemented PHIMItIVES ccccevirriniienienieeiientiniecrresseeesresresseessesseesassssesseesssesssesssasssassesns 1-7
NEW PHINILVES ..ueiieciiniirniiineiesiistieneeeieeseesessuesaesssessessasssessssessessessssssesssensssssesssssssssssesssssssns 1-7
Object Management PHMULIVES ccocoeueriecrennieeneereneneenseeesiesaessesesaessesseensessssasssasssessenens 1-8
Floating Point PAMULIVES cccociviiiiiiininnentinninentiennnseseeestnseseseessessessessessssssessessasssensessensas 1-8
String Comparison PAMILIVEccoueiviiiieiiniiiicnicenic ettt enee e ctese st st eassassenes 1-8
Instance Creation PHMULIVESc.cccceireirieieineieenineiesreestsesetessesesaesseessessessessasssessessennes 1-8
Old Primitives That Function Differently eeresste st se et atssras e tesrnt s e tseseas s sneanasansnn 1-8
IMAGE MODIFICATIONS iririiicteeceesinrtssiseenestesesssssssssessessesssssssasassessessensessessesassesse 1-9
User INterface ChanEesccccccceeenirecenreneenteisessesestssessassessssssessesassassesessessessessesssssssessens 1-10
New Window Framingccccvcircininincnenieneninierieeessnesessessessessessesssessessessassesssessssnens 1-10
Blue BUtton MENUccceiviiniriiirenineeeneeeseessiessesesessessesssssaessessesssassssssassseesssssssesssssssessans 1-10
Enhanced FONt SUPPOIT ooiiiiiiieiiiriiecnnitcceet st se st st sreesesueseesesseseesteseesassssnenses 1-10
FOMES covioieeiiienennennceseeseneeceeetestesuessesaessstassesasesessasaassassessessaesstessensensassensessanssessassssnsessassans 1-11
AVAILADIE FONLS ciieiiiieieerieetirrcreenaesreseeestessassaeesessaesssessessessassnsessesnsaassssssnessassnsessansnns 1-11
Interpreting FONt Tablescccccccvrinineniienincuecrinnineenecneerieseseeseesesessssssesssssesssessessesssessassans 1-12
Reading and WIHHNEGcccooviiieeiiirireeneecenercenanesnessessesessesnesessssssseessenssassasssssssnsssnsessasnns 1-12
TEXE SEYIES wvrrierirreneentieesieenteeetestntsseesessesntsesstessssssssenessssssssassastassasssssasssessessessaessassasses 1-16
MISCEILANEOUS ...coiuiieriieicneiiinieseeniinnssssneseesnsnnestesteseeseestassessessessessonsonsassessessesssaseasssessessassans 1-19
IEEE Floating Point NUMDETScciiiieiiiiieneentee ettt s eeesteste e e eraesse e sessaessassaenns 1-20
Lazy MULAUONccceeeeeeereeeccsernsrennseeesseesressesnssssssesssssssssesassessasssassssssssassssessrassassasassssssssasessans 1-21
Storing and Retrieving Objects on @ Filec.cccooveeiiirinneiieieecicecicerseee et seeaee 1-21
Using the Reading and Wrmng MechaniSmcoceviriieecrcreeerieeeeereceeeseeeceeeee e e e eeas 1-22
TO WIALE SIIUCIUTES: ..eccveereceiveernecririereesesseeseesesseseesssssonsosessesesssessassansessaessassessesnssnsensonns 1-22
TO Read SLIUCIUIBS: coceiuiiiciirncnneenenteriseentesresueesensesaneesseseessessessssessnessessesecssesanessenns 1-22
Implementation Details ccccociiiiriinieieeieteiere ettt et e s et s s s 1-22
Copying Circular STUCIUTES cceviivuiieerimiintiiiiencie et saesa s saas e s ss s 1-23
Using the Copying MeChamiSmcccoeeuevieienrentnineninenteneiece sttt casessaes 1-23
Implementation Detailsccccoceemienrnininininini s 1-24
LOS System Workspace ModifiCationscccoceeevircinniniiinsninncniinnicse e csennees 1-24
Miscellaneous ChANGESccccceeeveerenenniinenieniiessisiessestcssessresssssesssesssssssacsssssssessssssaes 1-25
SMALLTALK DIRECTORIEScoooviineiinireensinsnsieisnesnssnssssessssssssssessssssssssssssesssssssses 1-25
NEW DITECIOTIES veeveerereeererriereenreceseenteniesesssssssssssasssessssstenesssssessessesssssessessnessssssesssssasssenans 1-26
NEW FIIES ooveeeeeerieeieeneeieneseesessennesesae s sesseesecaestsstesesasessensssessesssssessssesssnsensenssansesssesenaee 1-26
PRINTING SMALLTALK BITMAP FILESccoovviieviniienecnecicnncnnnnes errereeeeaeerneneenes 1-26

Appendix A Conversion of SOS to LOS Images
How to Convert an IMAageccccuvvurieniennicsinnnieniiicinsitcesressesss s siessssssssessssesesnsessesnns A-1

Table of Contents-1

The CONVErSion PrOCEAUIES ueeiiieeiiieiereinereieseceeteseresssenesssesssssssessssessesessssssssssssossssssnssasons A-2

TEChNIQUE 1 ...oeeiireeiceenietececesteeeceiceacnnseresecnssaesseseassassassessessesssensessesaassessessensessasssassasnns A-2
TECHIIQUE 2eieiirneenieceneeneseeteseneseseesnesssesesseasssessasessasnesasssosssnssassessassasensessasaasaanase A-2
Eliminating Uncollectible Garbageccccccoveecvrceenserreerenenesioieesereseessesessasesssesassassannas A-3
Filing In and Using the LOSCoNVersioNTTACETcccceceeecereeccrnrecsencreseesressesessessesssesnsenenns A-4
TEChNIQUE 3 .ottt sttt seee e saeestessesesss s s sasssasnsenssssossennsssasaasnssnnesnanncen A-5

Appendix B Smalltalk-80 Version T2.2.0 Files

Appendix C Changes in the Smalltalk-80 Images

LARGE OBJECT SPACE DIFFERENCESoiiiicirtrnentecnenreneesesssssensssessessessessessassssnnes C-1
RemMOVEd MEhOAS cueimieiiiiitcietrccc ettt s er et sac e seeansessas e ssessssnssasaasnnes C-16
SMALL OBJECT SPACE CHANGEScoieeieieeeieeecrecrenaeeessessessesssssessasnsessesssssns C-17
Removed MEthOAS ...ttt stensese e st seane e sresaesesesaessssessesassassnes C-26
Figures
1-1. LOS Structure of an Instance of CompiledMethod.cccccveriivercenreseecvecneeeecereeeenens 1-4
1-2. Structures of Instances of MethodDICHONAIY.ccccccveveeeverrererreeieneeienressesessireesnesesseaessnenas 1-6
1-3. Tektronix Proportional Fonts (PellucidaSerif and PellucidaSans-Serif).cccccouneee. 1-13
1-4. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 1.ccccoeovvereveeeenenecrenen. 1-14
1-5. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 2.ccoccovevenecneeenrereenn. 1-15
Tables
1-1 Smalltalk Implementation CharacCteriStiCsc.oceeevuereriereererrerneieeesreeeessesesessessesesssenes 1-3

Table of Contents-2

Section 1

Smalltalk-80 LOS User Notes

These notes document the significant differences between the Small Object Space (SOS)
Smalltalk-80' system and the Large Object Space (LOS) Smalltalk-80 system Version T2.2.0
designed for the Tektronix 4405 and 4406 Artificial Intelligence Machines.

The version of the Smalltalk-80 system that runs on the 4404 Artificial Intelligence System (AIS)
is limited to the creation of about 32,000 objects, that is, its Smalltalk interpreter — the Small
Object Space (SOS) interpreter — implements object-oriented pointers (oops) as 16-bit words.
This limitation has been removed in the new interpreter — the Large Object Space (LOS)
interpreter — written for the 4405 and 4406 AIS machines.

ABOUT THESE NOTES

This document consists of the notes themselves and three appendices. The contents are:

®* The notes themselves document the differences between the SOS and LOS Smalltalk
systems. Also, significant modifications and enhancements to the LOS image are
described.

® Appendix A Conversion of SOS to LOS Images. This tells you how to transfer work you
have done in a SOS image to a LOS image. This enables you to build upon work you have
already done and also to take advantage of the LOS system performance and functional
enhancements.

® Appendix B Smalltalk-80 Version T2.2.0 Files. For your convenience, you will find a list
of all files associated with the LOS Version T2.2.0 release.

® Appendix C Changes in the Smalltalk-80 Images. For your convenience, you will find a
list of all changes to classes and methods in the new releases of the SOS and LOS images.

The Blue Book Specification

The de facto specification for SOS Smalltalk-80 is the Addison-Wesley Smalltalk-80 book by
Goldberg and Robson. (This book is sometimes colloquially referred to as the "blue book” in the
Smalltalk-80 programming community.) References are made in these notes to specific chapters,
sections, and pages in the Goldberg and Robson book:

® Goldberg, Adele and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

The Goldberg and Robson book is a formal explanation and description of the Smalltalk-80
language. This includes not only the syntax of the language but also the classes of objects that
make up the Smalltalk-80 virtual image. In Part Four, this book contains a detailed discussion of
the implementation of the SOS virtual machine. (That is, Part Four is a specification of the

1. Smalltalk-80 is a Trademark of Xerox Corporation.

LOS Notes 1-1

Smalltalk-80 LOS User Notes

interpreter and object memory of a Small Object Space Smalltalk-80 system.)

INVOKING SMALLTALK

The standard 4405 and 4406 AIM systems have resident on them two Smalltalk systems, each
consisting of an interpreter and a virtual image: the SOS (Small Object Space) Smalitalk-80
system and the LOS (Large Object Space) Smalltalk-80 system. If you type:

smalltalk

at the system prompt, this brings up the LOS interpreter. (A special case exists here: if you have
a 4405 machine with just 1 megabyte of memory, then typing smalltalk brings up the SOS
interpreter and image. However, if you have more than 1 megabyte of memory in your 4405, then
typing smalltalk brings up the LOS interpreter and image just as it does on a 4406 system.)

Typing
smalltalk mylmage

brings up the LOS interpreter, if mylmage is an LOS image or the SOS interpreter if mylmage is
an SOS image.

Also, suppose for some reason you want to bring up the SOS interpreter on the standard SOS
image, then you can type:

smalltalk +s

Finally, if you have a 4405 system with just 1 megabyte of memory and you want to bring up the
LOS image, you can type:

smalltalk +1

THE LOS INTERPRETER

The LOS (Large Object Space) interpreter differs in a number of ways from the SOS (Small
Object Space) interpreter developed for the 4404 AIM system. The principal differences are:

® The LOS interpreter has no inherent limit to the number of objects in an image.' The SOS
interpreter, on the other hand, supplies at most 32,767 objects in a single image.

® The size of objects is not limited to 128K bytes as in the SOS interpreter.

® The LOS interpreter uses 32-bit object-oriented pointers (oops) instead of 16-bit object-
oriented pointers.

® Smallinteger values are in the range — 23016230,

¢ The LOS interpreter uses MC68020 microprocessor-specific instructions, which means that
the LOS interpreter runs only on the 4405 and 4406 AIM systems.

1-2

Smalltalk-80 LOS User Notes

Object-Oriented Pointers

Oops (object-oriented pointers) are the values used by the interpreter to name objects. Of the 32
bits in an oop, only 29 are used to actually name objects. Thus, there is a theoretical maximum of
about 500 million object in the system. A practical limit for the maximum number of objects on
the 4405 and 4406 systems with the LOS interpreter depends on the average size of objects and
your system memory configuration. With an average object size of 50 bytes, together with a
practical object memory size of 6 to 10 megabytes, the system allows approximately 120,000 to
200,000 objects.

Small Integers

In the SOS system, which uses a 15-bit integer representation, operations on 16- to 32-bit positive
integers use special LargePositivelnteger primitives that are not as fast as the Smallinteger
primitive operations. Thirty two bit and larger operations are forced to use code written in
Smalltalk.

Smallintegers in the LOS system are represented with 31 bits. Operations on 16 to 31 bit
integers use Smallinteger primitive operations which run much faster than SOS
LargePositiveinteger primitive operations. The LargePositivelnteger primitives are not used
since Smallintegers encompass most of the range (16 to 31 bits) in which these primitives
worked. Operations on integers larger than 31 bits still use code written in Smalltalk.

Note that Table 1-1, Smalltalk Implementation Characteristics, shows that byte indexable and
word indexable elements in the SOS and LOS implementations are the same size, whereas oop
size and Smallinteger size are not. The size of byte indexable, word indexable, and object
indexable objects is greatly enlarged in the LOS interpreter.

Table 1-1
Smalltalk Implementation Characteristics
Characteristic SOS (16-Bit) Interpreter | LOS (32-Bit) Interpreter
Smalllnteger Size ~16384 to 16383 -2304,230_4

Maximum Number of Objects 32767 Memory Size Limited

Size of Byte Indexable Elements 8 bits 8 bits

Size of Word Indexable Elements - 16 bits 16 bits

Size of Object Indexable Elements 16 bits 32 bits
Maximum Size of Byte Indexable Objects 128 K Elements Memory Size Limited
Maximum Size of Word Indexable Objects 64 K Elements Memory Size Limited
Maximum Size of Object Indexable Objects 64 K Elements Memory Size Limited

LOS Notes 1-3

Smalltalk-80 LOS User Notes

LOS Interpreter Design Characteristics

The LOS interpreter has some important characteristics relevant to its overall design. In the LOS
system, object management has been considerably changed from the SOS specification — there is
no object table any longer. The class CompiledMethod has been substantially changed from
that specified in Goldberg and Robson. CompiledMethod now looks and behaves much more
like other classes. MethodDictionaries also have a different structure.

The Object Table

In Goldberg and Robson in the chapter Formal Specification of Object Memory, the authors
specify the structure of the object table for the SOS system. The SOS interpreter implements this
32K entry table, in which the maximum number of objects is limited to the number of entries in
the object table. The LOS interpreter does not use an object table, since, with oops of 32 bits, the
number of possible entries in such an object table would be impractical to manage. The benefits
of eliminating an object table are:

® There is no object-table limit to the number of objects in the system.

~ ® There is no extra level of indirection involved with every single operation on objects —
creation, destruction, and manipulation.

There is, however, a penalty incurred with several rarely used methods, such as, become:. See
Primitive Methods for a discussion of this.

CompiledMethods

Class CompiledMethod has changed to be more consistent with the standard Smalltalk object
structure. See Figure 1-1, LOS Structure of an Instance of CompiledMethod. Instances of
CompiledMethod now consist of three objects: the CompiledMethod structure itself, an
instance of LiteralArray, and an instance of ByteCodeArray. Note that the Source Code
Reference field in the CompiledMethod structure contains a reference to the source code on
disk. The SOS implementation folded the source code reference into the bytecodes.

This new representation permits the creation of subclasses of CompiledMethod. Protocol for
CompiledMethod now formally supports access to the source code reference. The source code
reference in instances of CompiledMethod is divided into two fields. The three high order bits
represent a zero-based reference into the global variable SourceFiles. This global contains an
array of files. The remaining 27 low order bits in this Smalllnteger represent the position of this
method’s source code in the file referenced by the three high order bits.

The new representation eliminates the need for special primitives for creating
(newMethod:header:) and accessing (literalAt: and literalAt:put:) instances - of
CompiledMethod.

14

Smalltalk-80 LOS User Notes

Last Literal; reference to
defining class if super used . .

L] . L L]

L] L]

First Literal Bytecodes

Instruction Frame

A LiteralArray A BytecodeArray
Pointer indexable, Byte indexable
no fixed fields —

f

Source Code Reference

Instruction Frame

Literal Frame
Method Header

A CompiledMethod
Non-indexable

Figure 1-1. LOS Structure of an Instance of CompiledMethod.

LOS Notes 1-5

Smalltalk-80 LOS User Notes

Method Dictionaries

The representation of instances of MethodDictionary has changed. See Figure 1-2, Structures of
Instances of MethodDictionary. In the SOS interpreter, the instances of method dictionaries
contain the keys (CompiledMethod selector names) as part of the method dictionary object
itself. This has been changed in the LOS interpreter. The keys, instead of being part of the
MethodDictionary object itself now are contained in a separate Array object that holds the
selector names. This redesign was motivated primarily by the wish to eliminate the use of
become:. Previously, become: was used to accomplish an atomic update operation. Since
become: is now a relatively slow operation, the atomic update is now accomplished by methods
that rely on the separation of keys.

LOS SYSTEM
MethodDictlonary
tally
valueArray
valueArray pointer &r——>
keyArray
keyArray pointer ef————»
SOS SYSTEM
MethodDIctlonary
tally
valueArray

valueArray pointer e——p DIDID]]IIII]

first key value

key value

key value

last key value

Figure 1-2. Structures of Instances of MethodDictionary.

Smalltalk-80 LOS User Notes

Primitive Methods

Some Smalltalk methods are implemented by making machine language calls directly. These
methods are called primitive methods. In the LOS implementaion, some of the primitive
methods specified in the Goldberg and Robson book have been eliminated, others have been
added to the system, and others have changed function.

Unimplemented Primitives

In the Goldberg and Robson book, the chapter Formal Specification of the Primitive Methods
gives a list of primitive methods along with their associated primitive indexes. A number of
these are not appplicable to the LOS system and, hence, are not implemented.

Primitives 21 through 37 are defined to perform arithmetic on 16-bit LargePositivelnteger
objects. In the LOS interpreter, primitive indexes 21 through 37 have been eliminated since the
LOS interpreter uses 31-bit wide small integer values. There is no meaningful distinction for
most practical applications between the instances of Smallinteger and the instances of
LargePositivelnteger and LargeNegativelnteger falling within the 31-bit limit. Thirty bit
integer arithmetic operations are done at the machine language level. (Arbitrary precision
arithmetical operations can still be done using Smalltalk methods for integers that cannot be
expressed in 31 bits.)

Primitive indexes 68, 69, and 79, which deal with CompiledMethod have been eliminated due to
the redesign of CompiledMethod.

Primitive index 76 (asObject) has been eliminated in the LOS interpreter because there is no
object table. In the SOS interpreter, asOop and asObject functioned as inverses. This value
would typically be used as a hash code for the object. Sending asOop to an object returns an
integer representing its oop — the object table reference to the object. Sending asObject to an
oop (represented by a Smallinteger) returns the object. Since there was a one-to-one
correspondence between objects and object table reference values, you could be certain that two
objects were the same object if they had the same asOop value in the SOS system. However,
since the LOS interpreter does not use an object table, the asOop method returns a value with a
different meaning. This value is the hash value calculated for each object at its creation. These
values are not guaranteed to be unique for every object. In practice, the vast majority of hash
values are unique, but since there is no longer a guaranteed unique asOop value for each object,
the rationale for asObject is gone. Thus, asObject has been eliminated.

Primitive index 78 (nextlnstance) has been eliminated since there is no inherent ordering of
objects in this implementation. nextinstance was typically used in conjunction with
somelnstance to obtain all existing instances of some class. In the LOS interpreter,
allinstances has been implemented as a new primitive method.

New Primitives

The new primitives added to the LOS interpreter fall into four categories:
® Object management — 3 primitives

® Floating point — 6 primitives

LOS Notes 1-7

Smalltalk-80 LOS User Notes

¢ String comparison — 1 primitive

® Instance Creation — 2 primitives

Object Management Primitives

137

138

143

Smalltalk garbageCollect: — Force a garbage collection. The argument identifies a
storage grade. The virtual image is partioned into grades containing objects of
corresponding ages. That is, newer objects are contained in lower grades and older
objects are contained in upper grades. Valid numbers for grades are 0-7 inclusive.

Smalitalk core — Answer an Array containing the number of objects in the system
and the number of words they occupy. Note that the count may include garbage
objects which are eligible for garbage collection.

Behavior allinstances — Answer an array containing of all instances of this class.
This may include instances that are elibible for garbage collection.

Floating Point Primitives

155
154
156
157
158
159

Float arcCos — Answers arccosine x, where x is the receiver.
Float arcSin — Answers arcsine x, where x is the receiver.
Float arcTan — Answers arctangent x, where x is the receiver.
Float exp — Answers e*, where x is the receiver.

Float In — Answers 1n x, where x is the receiver.

Float log — Answers log x, where x is the receiver.

String Comparison Primitive

148

string = — Answers true if the receiver and argument contain the same ASCII
characters. Answers false if not. Fails if the class of the argument is different from
the class of the receiver.

Instance Creation Primitives

140

141

DisplayBitmap basicNew: and new: — Answer a new instance of DisplayBitmap
with the number of indexable variables specified by the argument, aninteger.

ContextPart basicNew: and new: — Answer a new instance of the receiver with the
number of indexable variables specified by the argument, aninteger. Use of this
instantiation primitive enables the creation of subclasses MethodContext and
BlockContext.

Old Primitives That Function Differently

41-50

1-8

Float + through Float truncated — If the argument is a Smallinteger, it is
converted to a Float number and there is no failure.

Smalltalk-80 LOS User Notes

72

75

112

115

116

Object become: — This method is potentially "expensive" in the sense that in the
LOS system it takes a relatively long time to execute. The primary reason for this is
that the SOS interpreter relied on swapping object table references where as the LOS
interpreter must actually manipulate oops in memory (since there is no object table
in the LOS interpreter). Many special cases are optimized to minimize execution
time but in the most general case, this primitive involves examining all objects in the
virtual image. In the LOS system, you may want to find alternative ways to code
algorithms that in the SOS system used become:.

Object asOop, Object hash, Symbol hash — In the SOS system, an object”s
object table index (returned by asOop) is frequently used as a hash value. In the
LOS system, each object is assigned a hash value at creation. This is a 16-bit value.
asOop is now defined to return this value. In a SOS system, there is a one-to-one
correspondence between objects and asOop values. Since this is not true in the LOS
system, asOop is no longer an invertible function as it was in a SOS system. See
the earlier discussion of asObject.

SystemDictionary corelLeft — This returns an estimate of the amount of memory
available for new objects. (Use primitive 138 instead.)

SystemDictionary oopsLeft — This returns an estimate of the number of oops
remaining to be allocated based on the core left value divided by the average object
size. (Use primitive 138 instead.)

SystemDictionary signal:atOopsLeft:wordsLeft: — Since oops and memory are
not practical system limits, this functions as a no-op.

IMAGE MODIFICATIONS

The LOS image has a large number of modifications (see Appendix C for a complete list). Here
are some highlights.

The classes ByteCddeArray and LiteralArray have been added to support the new
definition of CompiledMethod. Classes Debugger, Compiler, and related classes have
modifications pertaining to the new CompiledMethod.

Class Float has some additional class variables to support exceptional floating point values
(see IEEE Floating Point Numbers). New protocol has been added to deal with these

values also.

Many View subclasses (ListView, StandardSystemView, StringHolderView, and
TextView, for example) have been redefined for augmented access to fonts.
PopUpMenu, StrikeFont, and TextStyle classes also changed and two new classes,
StrikeFontManager and TextStyleManager, have been added. See Enhanced Font
Support for more details.

The SystemTracer class has been redefined and modified to produce a clone image in the
LOS format.

Additional protocol has been added to TekSystemCall related to pseudo-ttys and access to
the machine name.

LOS Notes 1-9

Smalltalk-80 LOS User Notes

* Behavior, Class, and ClassDescription have modifications related to lazy mutation. See
Lazy Mutation for a description of the differences apparent to users.

User Interface Changes

New Window Framing

Windows now frame by letting you switch between moving the top-left and bottom-right corners
until you get them placed exactly how you want them.

When you want to frame a window via the normal user interface, for example, the "top-left”
cursor appears, which you may move around on the screen. When it is approximately in the right
position, you press the left mouse button, causing the "bottom-right" cursor to appear. Once you
have located the bottom-right comer, you have two options. The first is to remove your finger
from the mouse button completely; this has the effect of selecting the rectangle just framed. The
second option is for you to lift your finger from the mouse for just an instant and to immediately
press it again. This has the effect of moving the cursor back to the top-left corner of the
rectangle, allowing you to adjust your original placement of that corner. When you are finished
with the top-left corner, you again may move back to the bottom-right corner in the same manner,
etc.

The determination of whether you have "quick-clicked” or not is made by an instance of class
Delay, which is created in the method getFrame. There is a constant in this routine that
specifies the time in milliseconds to wait. This constant is currently set at 250 (or 1/4 of a
second); you can set it to another value by modifying the StandardSystemView getframe
method.

Blue Button Menu

The right button menu of StandardSystemViews has a new item — style. This allows a change
of text style for a particular window, including its subviews. Available text styles are determined
by the contents of StyleManager. See the System Workspace for an example of how to add text
styles to your image.

Enhanced Font Support

Smalltalk has new default fonts, a larger variety of fonts, and augmented access to the fonts.
Available fonts range from very small to very large, serif and sans serif, and proportional and
monospaced fonts. These fonts have an additional face — bold italic. Protocol for adding fonts
and text styles to an image has been defined.

1-10

Smalltalk-80 LOS User Notes

Fonts

Three properties (family, face, and size) are commonly associated with a font. Family is the
intrinsic property. Families are named and frequently protected by copyright. Examples include
"Helvetica" and "Times Roman". Face is the emphatic property. Examples include Basal (no
emphasis), Bold, Italic, Boldltalic, and Underlined. Size is the dimensional property. It is
typically specified by the height of capital "A" in points (72nds of one inch), although such a
measure is more meaningful on paper than on a display.

A Smalltalk-80 font is an instance of class StrikeFont, which represents a single combination of
family, face, and size values with a bitmap for each character. In some cases, a face (other than
Basal) is synthesized by bitmap manipulation of the Basal face. Examples include copying and
offsetting (Bold), shearing (Italic), and underlining.

Available Fonts

This product release includes the families: Pellucida? Sans-Serif, Pellucida Serif, Pellucida
Typewriter, Xerox Sans-Serif, and Xerox Serif. The Pellucida Sans-Serif, Pellucida Serif, and
Xerox families are proportionally spaced (individual characters within the same font have varying
widths); the Pellucida Typewriter family is monospaced (individual characters within the same
font have the same width). The Pellucida families are new to this product release; the Xerox
families are the standard Smalltalk-80 Version 2 fonts.

Fonts are stored using a standard file format within the directory /fonts. The name of a file in this
directory should be the name of the font it holds suffixed with font.

The name of a StrikeFont is a String with three components (family, size, and face) and no
embedded spaces. The family component is the family name with spaces removed; the size
component is the printString of the numeric size; and the face component is a String of length
zero, one, or two encoding the emphasis. The supported face codes are "" (Basal), "B" (Bold), "I"
(Italic), "X" (Boldltalic), "U" (Basal Underlined), "BU" (Bold Underlined), "TU" (Italic
Underlined), and "XU" (BoldItalic Underlined). Examples of names include "PellucidaSans-
Serif8", "XeroxSerif12]", and "Typewriter18BU".

The Pellucida Sans-Serif and Serif fonts are available in four non-synthetic faces (Basal, Bold,
Italic, and BoldlItalic) and seven sizes (8, 10, 12, 14, 18, 24, and 36 point); see Figure 1-3,
Tektronix Proportional Fonts (PellucidaSerif and PelluciaSans-Serif), for the character set
ordering. The Pellucida Typewriter fonts are available in two non-synthetic faces (Basal and
Bold) and four sizes (10, 12, 16, and 18 point); see Figure 1-4, Tektronix Monospaced Fonts
(Pellucia Typewriter) Part 1 and Figure 1-5, Tektronix Monospace Fonts (Pellucida Typewriter)
Part 2, for the character set ordering. The Xerox fonts are available in three non-synthetic faces
(Basal, Bold, and Italic) and two sizes (10 and 12 point), although the Sans-Serif Italic 10 point
font is synthetic.

2. Pellucida is a registered trademark of Bigelow and Holmes.

LOS Notes 1-11

Smalltalk-80 LOS User Notes

Interpreting Font Tables

A few notes on interpreting the font tables will be helpful in constructing an application. The
spaces in the table that are blank do not have a printing character for the corresponding character
code. The characters for ASCII 32 through ASCII 127 are present in both the monospaced and
proportional fonts. The proportional fonts contain additional characters in ASCII 1 through
ASCII 31. Many of these characters are compatible with those originally supplied by Xerox in
the standard Smalltalk-80 Version 2 image.

"m space” is a blank character which is the height and width of the letter m. "n space” is a blank
character which is the height and width of the letter n. "em" and "en" are dashes the width of the
character "m" and "n", respectively.

Reading and Writing

Smalltalk StrikeFont class has methods for reading and writing Tektronix font files. Note that
whenever Smalltalk reads a Tektronix font file, it switches the character position of the uparrow
character (T) and left arrow () with the caret () and underscore (_) characters. Thus, if you
ask, for instance, the character T what its asciiValue is, you get 94.

The method to write a StrikeFont takes care to switch the positions of the T, «, *, and _
characters if the type of the strike font is either 1 (Tektronix monospaced) or 2 (Tektronix
proportionally spaced). This ensures that the proportional or monospaced fonts written by
Smalltalk have consistent character ordering.

1-12

Smalltalk-80 LOS User Notes

38375685 1°0°1°o11°1°1°1 ‘1.,011‘,1‘1101111
BITS

B4 B3 B2 B1 4

olololo ~ |spacel 0 |@| P
ofolol1] " |ffi| 1 |1 | A|Q|a
ofofrfo] & |ffI|{ | 2|(B|R | b|T
010 f1f1 em| #|3|C|[S|c|s
of1fojof | fj|$|[4|(D|T|d]|t
ojrjof1) ~ 1 fl|%|5|EfU|fe|u
oj1f1fo) fflen| & |6 | F| V| f |V
oftpprl e Y| 7|G|(W|g|w
1jofojo} j|—| (| 8|H| X|h|x
tlofol 1] lepmel)| 9| N |Y|ifY
1{of1]o co| *| | Jd|Z]ij]|z
tofifal 2 (¢ |+ |5 |K|[|Kk[{
1{1]o]0 «| s |<|{ LN
1[1]0]1 A-f=(M[]1|m|}
tfafrfo] |~ .| >|N|[*|[n]|~
1| |eenke| ° | ! ol-|o]|l

Figure 1-3. Tektronix Proportional Fonts (PellucidaSerif and PellucidaSans-Serif).

LOS Notes 1-13

Smalltalk-80 LOS User Notes

508786 o 1205 00,101,701, 00| 10, | 1|11,
BITS
B4 B3 B2 B1
olofofo spacel 0 1@ | P| ‘| Pp
ojojo]1 'f11]A|Qlal|q
olof1]o 12| B|R|Db
ofof1] #|13|C|S|c|s
o/1]o]o $(4|D|T|d]|t
of1fo]1 %|S5|E|[Ujefu
oj1|1]o &&| 6| F|V]|f|vV
of11]1 "1 7|G{W|g|w
1]o]o|o (|8 H| X|h|Xx
tlofof1] leamce V|9 |Y|i]Y
1{of1]o bl |d]2|]]|z
1]o 1|1 |+ | | K| | k|
1{1]ofo s < L] V]|
1[1]0]1 -l=|M|]1|m|}
1|1{1]o .| >|N|A| nf~
wafo] m, I [2]o|-]o|m

1-14

Figure 1-4. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 1.

Smalltalk-80 LOS User Notes

LOS Notes

B8 g7 10, [10. [10. |10, 111+ |14, |19, |14
B8 gg| 90| %0, %14 C14| Tog| To | 1, M1,y
BITS
B4 B3 B2 Bt _
ololo|o/NU|DL|SP| | - | N|®
128 144|160 176 |12 loos |204 |o40
olofo{1|SH|{D1 | A| 1| ¢ | A l
129 145 l161 177|103 loos |225 o4
olof1|o|SX|D2| a | 2| || ¢ |HT B
130 146 lie2 l178 lioa 210 |26 |247~ |
ofo|t1|1|EX|D3| A 3| T|i |FF Q
131 |1z l1e3 lizo l1o5 o3 looz |ogF |
132 |14 l164 l1e0 lioe o1z |22 |osa
ol1]o|1|EQINK| £| s | B| o |LF|[]
133|149 l1es ey |17 l213 |o2e |oa5~ |
ol1l1|olAK|SY| 2 | 6 | @] = ° B
134 | 150 lies |62 liog 214|230 |o46
135|151 lez lbes l1o9 l215 |31 |27
ilofo|o|BS|ON| €| 8 |5 |n |[NL m
136 Y52 l168 liea looo ot |22 |248
ilolols|HT|EM| 6 | 9 | A | T |VT]| <
1371153 l1e9 lies lao1 |217 233|249
ilo|1|o| LF|SB| & | U Q B >
138 lisa 170|186 218|233~ |250
ilol:+ [+ |VT|EC| O] B " T
139 W55 liz1 ez 219 235~ |251
Jilolol FEl sl 6 | o J [d] >
140 156|172 188 220 o3 |os2
111101l 1 CR GS (%] Q <+ E £
141|157 173 l1se o1 los7— los3
1l1]1]0/SO|RS|U | § | = | = EH -
1421158 liza 1100 loos looz |oss |254
—T
143 l1so lizs 101 |oor {203 |o55~ |oss

Figure 1-5. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 2.

1-15

Smalltalk-80 LOS User Notes

The new class StrikeFontManager is a subclass of Dictionary and stores Associations between
String names and StrikeFonts. A single instance of StrikeFontManager is known as the global
FontManager. Particularly useful messages to this object include:

FontManager inspect.
FontManager fontNames: anArray.

The inspect method opens a Dictionarylnspector on FontManager.

The fontNames: method returns an Array of StrikeFonts corresponding to anArray of String
names. It attempts to load a font from the system font directory (/fonts) if that font is not already
resident (contained within FontManager). The name of a file in this directory should be the
name of the font it holds suffixed with ".font". The method further attempts to synthesize a font
if it is not already resident and cannot be located within the system font directory.

Text Styles

Most text processing in Smalltalk-80 is performed not with instances of class StrikeFont in
isolation but rather with instances of class TextStyle, whose properties include:

¢ fontArray (an Array of StrikeFonts)

* lineGrid (distance from top of text line to top of next text line)

* baseline (distance from top of text line to base of capital letters)
® additional lineGrids and baselines for lists and menus

® alignment code (flush left, flush right, centered, justified)

¢ indentation and tab stop parameters

These properties of a TextStyle, as its name implies, are mostly a matter of personal style and
system convention. The fonts are usually members of a single family (although the system
default, described below, violates this rule for historical reasons) in one or two sizes and several
faces. The lineGrid (termed "leading” by typographers) is usually the height of the tallest font in
the style plus a certain amount of additional white space. The baseline is shared by all of the
fonts in the style so that the bases of their capital letters are aligned. Subscripts and superscripts,
of course, would violate this rule, but they are not supported in this product release (although
rudimentary capabilities do exist within classes StrikeFont, TextStyle, and DisplayScanner).
Flush left alignment has historically been the default in Smalltalk-80, but other possibilities are
certainly available.

Obvious uses of TextStyles include class ParagraphEditor and its subclasses (in Workspaces,
System Transcripts, Projects, and the bottom panes of System Browsers, File Lists, and
ChangelListViews). Less obvious uses include lists, menus, and title tabs of
StandardSystemViews. Even less obvious uses include the String messages asParagraph
and asDisplayText. This broad variety of uses prompts some common questions:

¢ What is the system default style?
® Can additional styles coexist?
® If so, how are they created and catalogued?

1-16

Smalltalk-80 LOS User Notes

® How can the system default style be changed?
® How can the style of a view or subview be changed?
These questions are addressed in the following paragraphs.

The system default style is mentioned in chapter three of the Goldberg (“orange") book. It
contains twenty-four fonts (two families, two sizes, and six faces) ordered as follows:

¢ Sans-Serif 10 (Basal, Bold, Italic)

¢ Serif 12 (Basal, Bold, Italic)

® Serif 10 (Basal, Bold, Italic)

® Sans-Serif 12 (Basal, Bold, Italic)

all of the above repeated but Underlined

The original Smalltalk-80 system default style used the Xerox sans serif and serif font families.
This product release maintains other characteristics of that style (including the unusual mixing of
sans serif and serif families) but uses the Pellucida families in the default text style.

The new class TextStyleManager is a subclass of Dictionary and stores Associations between
String names and TextStyles. A single instance of TextStyleManager is known as the global
StyleManager. Particularly useful messages to this object include:

StyleManager inspect.

StyleManager
styleName: aString
fontNames: anArrayOfStrings
lead: aninteger.

StyleManager
styleName: aString
baseNames: anArrayOfStrings
lead: aninteger.

The inspect message opens a Dictionaryinspector on StyleManager.

The styleName:fontNames:lead: and styleName:baseNames:lead: methods return a new
style named aString. The fontNames: version accepts font names with arbitrary face codes in
anArrayOfStrings whereas the baseNames: version accepts only Basal font names and
imposes the following order on the fonts:

¢ (anArrayOfStrings at: 1) Basal

® (anArrayOfStrings at: 1) Bold

* (anArrayOfStrings at: 1) Italic

® (anArrayOfStrings at: 1) BoldlItalic

® similar sequence(s) for other element(s) of anArrayOfStrings (if any)
® all of the above repeated but Underlined

The actual font array is obtained from FontManager via the fontNames: message thereby
invoking the font loading and synthesizing mechanisms discussed above. The lead: parameter is
the amount of additional white space to add to the height of the tallest font to obtain the lineGrid
for the style. Both methods also install the new style in StyleManager for future reference.

LOS Notes 1-17

Smalltalk-80 LOS User Notes

Thus the expression that created the system default style is:

StyleManager

styleName: "Pellucida Default 10 and 12°

fontNames: #(
‘PellucidaSans-Serif10’
‘PellucidaSans-Serif10B”
"PellucidaSans-Serif10l”
"PellucidaSerif12°
‘PellucidaSerif12B°
PellucidaSerif12!
"PellucidaSerif10°
‘PellucidaSerif10B°
"PellucidaSerif10l°
‘PellucidaSans-Serif12”
"PellucidaSans-Serif12B’
"PellucidaSans-Serif12l”

‘PellucidaSerif10U"
"PellucidaSerif10BU”
"PellucidaSerif10IU’
"PellucidaSerif12U°
"PellucidaSerif12BU’
‘PellucidaSerif12iU”
"PellucidaSans-Serif10U”’
"PellucidaSans-Serifi10BU’
‘PellucidaSans-Serif10IU’
‘PellucidaSans-Serifi2U°
‘PellucidaSans-Serif12BU’
‘PellucidaSans-Serif12IU")
lead: 3.

A similar expression using the base name technique is found in the System Workspace:

StyleManager
styleName: "Pellucida Sans-Serif 12 and 14’
baseNames: #("PellucidaSans-Serif12” "PellucidaSans-Serif14")
lead: 3.

These expressions illustrate two style conventions. The first suggests font family and size in the
style name. Mixing sans serif and serif families in one style, preferably with the font ordering
convention described in the Goldberg book, is connoted by the common font family name prefix
(assuming there is one!) concatenated with the word "Default”. Thus the original Smalltalk-80
style name would be "Xerox Default 10 and 12". Note that embedded spaces are encouraged in
style names (unlike font names, which must be storable in the filing system). The second
convention is the use of three additional pixels of leading in styles mixing two near sizes of fonts.
Most text in the context of the style is expected to be in one of the smaller fonts.

Expressions similar to these can be found in files in the Smalltalk text style directory
(/smalltalkitextStyles). These files store not styles but rather expressions that create styles; this
distinction is suggested by the file suffix ".ws" (an abbreviation for ".workspace"). These files
can be filed in if wholesale style acquisition is desired, or specific expressions can be executed to
acquire specific styles. The System Workspace holds an expression that references this

1-18

Smalltalk-80 LOS User Notes

directory to discard all existing fonts and styles, read in small fonts, and create a new default style
(useful on systems with a small screen):

Compiler evaluate:
((Disk file: “/smalltalk/textStyles/pruneToPellucidaDefault08and10.ws")
contentsOfEntireFile).

The StyleManager maintains the mapping from style names to styles for future reference when
it is desired to change the system default style or the style of a view or subview. The expression:

StyleManager changeDefaultTextStyle.

pops up a menu of resident styles, waits for a style to be selected with any mouse button (or
aborts if the button is released outside the menu), and then changes the default style to the
selected style. This also rebuilds system menus and recomposes text in scheduled views and
subviews in the current project. This capability can be added as the "style" entry of the middle
button menu of class ScreenController by filing in:

IsmalltalkifileIn/addT extStyleT oSystemMenu.st

A subset of this capability (propagate the selected style to the title tab and subviews of the current
view) is available as the "style" entry of the right button menu of scheduled controllers. See User
Interface Changes.

An even smaller subset of this capability (propagate the selected style only to the subview) can be
added as the "style" entry of the middle button menu of class ParagraphEditor and several of its
subclasses by filing in:

IsmalltalkifileIn/addTextStyleT oY ellowButton.st

The methods at:, at:put:;, and removeKey: are useful for more primitive manipulation of
StyleManager; the last two automatically update the menu of resident styles. Note that
changing a style in StyleManager by itself usually has no effect on any text since styles are
typically copied before use. An experimental style can be tested by adding it to StyleManager
and then selecting it with the appropriate menu button.

The method initializeMenus rebuilds system menus. It references several lists that should be
extended for applications with private menus.

Miscellaneous

Class StrikeFont has new instance variables ascentForStdAsciiChars and
descentForStdAsciiChars. These maintain the envelope of characters space (Ascii Decimal
Equivalent 032) through tilde (ADE 126) for use by class TextStyle to compute styles for lists
and menus (see below). A simple TextStyle can be constructed by sending asTextStyle to an
instance of StrikeFont. Finally, the metaclass understands readAll: and readFrom:; the latter is
used by class StrikeFontManager to load fonts from the filing system.

Class TextStyle has new instance variables lineGridForlists, baselineForLists,
lineGridForMenus, and baselineForMenus. These support conversion of the style for lists and
menus with the methods asListStyle and asMenuStyle. The method flushFonts has been
removed.

Class PopUpMenu (and hence class ActionMenu) replaces instance variable font with
textStyle. The private method labels:font:lines: has been replaced by labels:textStyle:lines:.

LOS Notes 1-19

Smalltalk-80 LOS User Notes

The metaclass understands labels:lines:alignment: so that non-centered alignments may be
easily specified.

Within class ParagraphEditor, the control-x key formerly de-emphasized the current selection.
Now control-x switches to a BoldItalic font (if possible), control-X switches to a non-BoldItalic
font, and control-e de-emphasizes.

A new instance variable textStyle has been added to classes DisplayTextView, ListView,
StandardSystemView, StringHolderView, SwitchView, and TextView. A method
recomposeWithTextStyle: has been added to classes Paragraph and TextList. Class FileList
has been modified not to cache menus in instance variables. Within pool dictionary
TextConstants, DefaultLineGrid and DefaultBaseline have been removed; CtriX and Ctrle
have been added; and Ctrix has been changed.

IEEE Floating Point Numbers

The LOS interpreter includes primitives for many operations performed directly by the Motorola
MC68881 Floating Point Coprocessor. The MC68881 conforms to IEEE-754 floating-point
standards; however, Smalltalk conforms only to the representation specification of IEEE-754, not
necessarily the implementation specification.

The new floating point primitives are capable of generating exceptional values which print as
visible Smalltalk code. These values include: positive and negative infinity, denormalized
numbers, and not-a-number. Because of these new values, a new protocol for testing has been
added, new instance creation methods have been added, and some existing protocol has been
changed.

New methods for testing an instance of Float include testing for infinity and testing for valid
numerical representation. isPositivelnfinity and isNegativelnfinity return true for plus and
minus infinity, respectively, while isinfinity returns true in either case. iSNAN ("is Not A
Number") returns true if an instance of Float does not contain a valid floating-point number
representation. (Such a value is returned when dividing infinity by infinity, for instance.)
isNormal returns true if an instance of Float is a valid, non-infinite floating-point value.

An instance of Float may now be instantiated to these exceptional values. Class methods
negativelnfinity, positivelnfinity, and notANumber create instances of Float initialized with
the appropriate exceptional value, while notANumber: creates an instance of Float in which the
argument is stored in the mantissa and an all-ones bit pattern is stored in the exponent as the
exceptional value.

The Float method printOn: now correctly interprets exceptional values, printing an evaluatable
expression in each case. For example, executing print it in a workspace on 1.0e30 * 1.0e10
prints Float positivelnfinity or executing "print it" on 0.0 In prints Float negativelnfinity.

Although the additional primitive methods represent an increase in functionality, and exceptional
values are handled more completely, users of Float objects might want to protect themselves
against the cascading effects of exceptional values. Whereas the SOS interpreter would generally
pop up a notifier indicating a failed coercion, the LOS interpreter will continue evaluation using
the exceptional value. The exceptional value will generally propagate through the expression,
possibly making it difficult to locate the error.

Use of the new testing methods whenever there is a likelihood of generating an exceptional value
is a good general coding practice.

1-20

Smalltalk-80 LOS User Notes

Lazy Mutation

In the SOS system, a change in definition of a class that caused the class’s code to be recompiled
also caused all instances of that class to be immediately converted to the new definition. The
conversion process is called "mutation”. Mutation involves a become: operation, which is a
potentially expensive operation in the LOS implementation. Part of the optimization of virtual
image code in the LOS system involved eliminating unnecessary become: operations. Since not
all instances of a class will continue to exist (i.e., some will be garbage-collected), the LOS
implementation only mutates instances of a class that are "used". It does this by "catching”
messages to unmutated instances of this class and performing the mutation before actually
sending the message. This mutation upon message send is known as lazy mutation. Subsequent
messages to a mutated instance operate in a normal manner. Objects marked for mutation that
never receive a message are not mutated and, therefore, do not use the become: operation.

In most cases, a user will see no difference between mutating all instances immediately and
mutation upon message sends. However, a certain sequence of events might lead to undesirable
and unexpected consequences:

"redefine ExampleClass by adding a new instance variable."
all « ExampleClass allinstances.
all do: [:each | each initializeNewInstanceVariable].

In the SOS system, this sequence of events will redefine ExampleClass and mutate
automatically all existing instances of the old ExampleClass to the new definition of
ExampleClass. All the instances of the new ExampleClass are then collected and initialized.

In the LOS system, mutation of an existing instance to the new definition of ExampleClass will
not occur until a message is sent to the instance. At no time does this example send a message to
an instance of the old ExampleClass. Instead, this code collects all the instances of the new
ExampleClass (there probably aren’t any) and tries to initialize them. Here is an alternative
technique that will work around this difficulty:

all « ExampleClass alllnstances.
"redefine ExampleClass by adding a new instance variable."
all do: [:each | each initializeNewlnstanceVariable].

In this sequence of events, all instances of the old ExampleClass are collected and then the
definition of ExampleClass is changed. Now all the instances can be initialized and in the
process mutated to the new ExampleClass definition. This technique points out that the only
straightforward way to collect all instances of a class is before it is redefined.

Storing and Retrieving Objects on a File

The LOS image includes a mechanism for storing and retrieving object representations (including
objects with circularities) on a file (or other character stream). This mechanism has two
advantages over the original Smalltalk storeOn: mechanism. First, storeOn: does not work for
objects that contain circularities; second, storeOn:’s output is meant to be read in by the
compiler which limits the number of literals in an object to 64. Thus, storeOn: will not correctly
handle all object structures.

The /smalltalk/conversion directory contains an SOS version of this reading and writing
mechanism called structSOSPackage.st.. Incorporate this package into your SOS image by filing

LOS Notes 1-21

Smalltalk-80 LOS User Notes

it in and using the methods below. This package also contains a copying mechanism discussed in
the next section. This package may be used to transfer structures between LOS and SOS images.

Using the Reading and Writing Mechanism

Four visible messages are defined to provide the writing or reading of objects to or from files or
character-streams.

To Write Structures:

someObiject storeStructureOn: aStream.
Stores an object representation on a character stream aStream.
someObject storeStructureOnFile: aString.

Stores an object representation on a file named aString.
To Read Structures:

Object readStructureFrom: aStream.
Answers an object defined by stream aStream.
Object readStructureFromFile: aString.

Answers an object defined on a file named aString.

These programs should allow object representations to be written or read to or from string format.

Implementation Details

This mechanism maps objects based on ==-equality. If an object has a circular structure when
written out, it will be circular when read back in. Similarly, acyclic structures are read back in as
acyclic structures. There are a few cautions, however:

1. There are some objects, such as processes, that may cause unexpected behavior if an
attempt is made to write them out, or particularly to read back in. Contexts are treated
specially in that the sender is always written out as nil. CompiledMethods are written out
in a special format, which is compatible with both SOS and LOS images. Also be aware
that the receiver of a MethodContext in which the block context was created is also
copied as part of the definition of the MethodContext.

2. Smalltalk treats certain objects in a special way, guaranteeing their uniqueness. A new
selector, isUniqueValue, has been defined that returns a boolean value, stating whether the
object has this property. Such classes include UndefinedObject, Boolean, Symbol,
Smallinteger and Character. Objects in these classes are mapped to the corresponding

1-22

Smalltalk-80 LOS User Notes

object in the target image. Floating point numbers are written out to 9 digits of accuracy.
If more (or less) accuracy is desired, it is necessary to modify the method Float
printStructureOn:.

3. This step does not apply to objects for which isUniqueValue is true. Objects that
correspond to global Smalltalk names in the original image are mapped to objects with
corresponding global Smalltalk names in the target image. This prevents classes and
metaclasses from being duplicated. It requires, however, that you be responsible for
ensuring that the target image defines all global variables that are referenced (directly or
indirectly) by the object in the source image. If two Smalltalk globals refer to the same
object, the result is nondeterministic.

4. Most classes are stored and read in using methods inherited from class Object, which copy
instance variables and array elements using instVarAt:, etc. This means that classes must
have identical definitions in both the original and target images. It also means that classes
that depend on the hash values should be handled specially. Currently, only Set and its
subclasses are treated specially for this reason. String and Number (and their subclasses)
are treated specially for conciseness of notation (and because Smalllnteger must be treated
specially anyway). CompiledMethod is also treated specially to ensure the transfer
between SOS and LOS images.

5. Areceiver’s dependents (from the Smalltalk dependency mechanism) are not mapped.

Copying Circular Structures

The following methods implement a mechanism for copying Smalltalk objects that may contain
circularities. The Smalltalk method shallowCopy does not generally copy the complete
structure, while deepCopy generally only works for non-circular structures.

Using the Copying Mechanism

Two visible messages are defined to provide the copying of structures.
someObject structureCopy

Answers a copy of the object.
someObject structureCopyWithDict: anldentityDictionary

Answers a copy of the object, given that a partial list

of mappings from objects in the old domain to the new
are in anldentityDictionary. The method may have side
effects on anldentityDictionary, adding new mappings.

The simplest way to use these methods is to use structureCopy. However, if you want to have a
handle on the mapping dictionary (either to pre-specify some mappings, to know the mappings
after the copy has been created, or to get a copy of several objects that may have common
subobjects), you should supply your own IdentityDictionary and use structureCopyWithDict:.

LOS Notes 1-23

Smalltalk-80 LOS User Notes

Implementation Details
This mechanism maps objects based on ==\quality. There are a few cautions, however:

1. The copying of objects such as processes will probably cause strange behavior. When a
context is copied, the sender field in the new context is nil. The receiver part of a
MethodContext, however, becomes mapped to a new object just as any other object
would. CompiledMethods are not copied; rather, the original object is returned. The idea
here is that compiled methods should be constant objects.

2. Smalltalk treats certain objects in a special way, guaranteeing their uniqueness. These
objects in classes such as Boolean, Smallinteger, and Character will return themselves
rather than a copy.

3. Most classes are stored and read in using methods inherited from class Object, which copy
instance variables and array elements using instVarAt:, etc. This means that classes that
depend on the hash values should be handled specially. Currently, only Set and its
subclasses are treated specially for this reason.

4. A receiver’s dependents (from the Smalltalk dependency mechanism) are not mapped.

LOS System Workspace Modifications

The LOS System Workspace has additional text that describes some of the added functionality of
the LOS Smalltalk system. The list of globals now includes FontManager, an instance of
StrikeFontManager, which maps names to instances of StrikeFont, and, StyleManager, an
instance of TextStyleManager, which maps names to instances of TextStyle. The list also
includes OSEnvironmentVariables, a Dictionary containing the environment variables passed
to the Smalltalk interpreter.

A new section in the System Workspace is titled Fonts and Text Styles. This section includes:

StyleManager inspect
Opens an inspector on all the text styles in the image.

StyleManager

styleName: ‘Pellucida Sans-Serif 12/14°
baseNames: #("PellucidaSans-Serif12” ‘PellucidaSans-Serif14°)
lead: 3.

Installs a new text style containing two fonts. This text style is named Pellucida Sans-Serif
12/14°. If the fonts are not contained in the image, they will be loaded from the /fonts

~ directory. The vertical spacing (leading) for this text style is 3 pixels. The text style contains
basal, bold, italic, and bold italic faces for each font.

StyleManager changeDefaultTextStyle

1-24

Smalltalk-80 LOS User Notes

Chooses a new default text style from a menu.

Compiler evaluate: ((Disk file: “/smalltalk/textStyles/
pruneToPellucidaDefault08and10.ws’) contentsOfEntireFile).

Creates a new TextStyle in the Xerox style with mixed serif and sans serif fonts. Discard all
other TextStyles and StrikeFonts.

These are additions to the Display section:
DisplayScreen displayExtent: 1376@1024
Sets the Smalltalk DisplayScreen size to that of the 4406 visible display screen size.

Display setMouseBounds: (-50@-50 corner: 1500@1500)
Allows the mouse cursor to move outside the visible screen bounds.

The Measurements section has a removed comment, "takes a long time", with respect to core,
oopsLeft, and corelLeft because these are now fast measurements. The section also has two new
expressions:

Smalitalk garbageCollect
A garbage collection through all object space is initiated by evaluating this expression.

TekSystemCall execSystemUtility: “/bin/free” withArgs: (OrderedCollection with:
“/dev/disk’

Asks the operating system how much space is available on the hard disk.

Miscellaneous Changes

Here is a list of some visible changes to the image not mentioned in any other section:
® The global variable SourceFiles now can have 8 elements instead of being limited to 4.
® The global variable Environment has been renamed OSEnvironmentVariables.

® The use of the writeCloneWithout: message to a system tracer produces a clone but does
not produce new source files. New source files may be produced in a separate step.

SMALLTALK DIRECTORIES

With this release of Smalltalk, some new directories and additions and changes to existing
directory files have been made.

LOS Notes 1-25

Smalltalk-80 LOS User Notes

New Directories

The directory /smalltalk/conversion has been added. This contains files for converting one
version of a Smalltalk image file into another. These mostly relate to converting SOS (Small
Object Space) to LOS (Large Object Space) image files.

A special directory, /smalitalk/demo/forms, has been created for forms alone.

New text styles have been added to this release of Smalltalk. Thus, the directory,
Ismalltalk/textStyles, has been created and contains code to create instances of text styles in an
image. Specifically,

PellucidaDefault0O8and10.ws Contains code to install the small default style in the
Xerox manner, that is, basal, bold, and italic (a triplet)
in addition to mixed serif and sans serif faces.

PellucidaDefault10and12.ws Contains the medium sized default faces.
PellucidaSans-Serif08tight.ws Contains an example of minimal vertical spacing.
PellucidaSans-Serif.ws This file along with PellucidaSerifs.ws contain code

to create all available text styles in the quadruplet
format, that is, basal, bold, italic, and bold italic.

PellucidaTypewriters.ws Contains code to create monospaced fonts.

example.wsf Contains code to create a single, large text style in the
quadruplet format.

pruneToPellucidaDefault0O8and10.ws Contains code to remove all text styles and create the
small default triplet style.

New Files

The following files in the directory, /smalltalk/fileln, have been added:

® Graphics-Fractals.st
Mastermind-Support.st
addTextStyleToSystemMenu.st
addTextStyleToYellowButton.st
extendedBrowser.st
joydiskAccessAndExample.st
timedMethods.st
workspaceFileOut.st

® &6 06 & & o o

PRINTING SMALLTALK BITMAP FILES

Look in the /samples/printer directory for a C program, bprint.c, that prints Smalltalk forms or
bitmaps on a Tektronix 4644 printer. You can either use this program as it stands if you have the
4644 printer or you can modify the program to be compatible with a different printer.

This program, bprint.c, prints Smalltalk bitmaps as generated by the screenCopy menu item or
from a fileOut of a specific form. If you modify the program, the default graphic density and

1-26

Smalltalk-80 LOS User Notes

screen width pixels per printer line should be determined by the characteristics of your printer. In
bprint.c, the default graphic density is double. Option "+s" enables single-density mode which
gives you a larger image but with possible truncation.

LOS Notes 1-27

Appendix A
Conversion of SOS to LOS Images

This appendix shows you how to transfer work that you have done in a Small Object Space (SOS)
image (on the 4404 system) to the Large Object Space (LOS) system on a 4405 or 4406 system.

Once you have an image, mylmage, which you have created on a 4404 machine, transferred to a
4406 machine, you simply type the familiar:

smalltalk mylmage

To make it convenient for you, Smalltalk has been modified to recognize whether your image is a
SOS or a LOS image. (Of course, if you just type smalltalk by itself on the command line on a
4406 machine, you will invoke the default LOS interpreter.)

How to Convert an Image

There are three ways to convert a SOS to a LOS image:

1. Technique 1: Use fileln and fileOut to file code out of the SOS image and into the LOS
image.

2. Technique 2: Use LOSConversionTracer to convert a SOS image into a LOS image.
3. Technique 3: Use the Changes file you have maintained to file in changes to a LOS image.

Technique 1 is preferred over the other two techniques because it is most likely to result in a
cleanly functioning LOS image, and it is conceptually the simplest. However, if you have made a
lot of modifications to your image, Technique 1 may be time-consuming, since classes and
methods that you have added or modified have to be filed out of the SOS image and filed in to
the LOS image.

Technique 2 is preferred over Technique 3 mainly because it is simpler. However, to use
Technique 2 successfully, your image should satisfy both of the following conditions:

® Your SOS image must be "clean”. This means that your image must be free of
uncollectible garbage, such as undeclared objects, hanging Dolts, obsolete classes, obsolete
associations, etc. These mainly involve pointers that point to no longer existing objects.
You may have created uncollectible garbage by doing operations like control-C’ing while
doing a fileln operation, removing a class from the system while still having a class
variable assigned to it, and so forth. See later under Technique 2 Eliminating Uncollectible
Garbage.

® Your image must be small enough to accommodate and execute the
LOSConversionTracer.

Technique 3 is the least preferred because it is tedious, time-consuming, and error prone. You
should only choose this technique if the other two do not work.

LOS Notes A-1

Conversion of SOS to LOS Images

The Conversion Procedures

Choose one of the following three techniqes, read through the whole discussion of the procedure,
then perform the procedure.

Technique 1

1.
2.

Bring up the SOS image that you want to convert.

Transfer code by filing out all changes that you want to transfer to an LOS image. You can
use the following template from the System Workspace:

(FileStream newFileNamed ‘fileName.st") fileOutChanges

Make sure that you execute this expression in each project including the top project.
NOTE

If you have filed out a class from the browser, it is removed
from the ChangeSet and, thus, it must be filed out
separately.

If you have objects you want to transfer to an LOS image, fileln
/smalltalkiconversion/structSOSPackage.st and write out the structures. See Storing and
Retrieving Objects on a File in these Notes.

Bring up the standard, default LOS image.

Create a personal Changes file. For how to do this, see Installing Your Own Image in the
Introduction to Smalltalk manual.

Use a ChangelListView, eliminate unnecessary items, and incorporate the remaining code
into your image by using the middle button "doit" item. Alternatively, fileln all the files
created by the fileOut procedure in the SOS image. (If you would like to check on the filed
in code, you can do an Undeclared inspect after the filing in operation. If you find any
references, look at the relevant code in the LOS image and fix the code.)

Read in the structures you may have written out in step 3. See Storing and Retrieving
Objects on a File in these Notes.

Snapshot the new LOS image to create a personal image.

Technique 2

There are two parts to this procedure:

1.
2.

Eliminate uncollectible garbage from your SOS image.

File in the conversion methods, which include LOSConversionTracer, execute the tracer,
and file in the rest of the conversion methods.

Conversion of SOS to LOS Images

Eliminating Uncollectible Garbage

Although a procedure is presented here to describe how to clean up your image, you should be
aware that cleaning up your image is more an art than a science. The following procedure will
help you track down uncollectible garbage; however, it is not guaranteed to find all uncollectible
garbage. Futhermore, once these expressions reveal the existence of some garbage, you must
manually trackdown and eliminate the garbage yourself.

Many of the following Smalltalk expressions are found in the system workspace. You can
execute these expression in either the system workspace or in an ordinary workspace. Be sure the
system transcript is open since some of the expressions write text to the system transcript and you
may want to save this text. In the following procedure, to do something means to select it and
perform a Dolt menu operation, while to print something means to select it and perform a Printlt
menu operation.

1. Do Smalltalk forgetDolts. This eliminates hanging "Dolts", which, for example, you may
have created by doing a control-C while executing code.

2. Do Checker allUnscheduledDependentViews do: [:aView | aView release]. You
may have some unscheduled windows that are still referenced via the dependency
mechanism. This releases unscheduled windows.

3. Print (Object classPool at: #DependentFields) keys. This prints a set of object
dependents, some of which may be garbage. There should typically be an object for each
open view, including those in other projects. Typical ones are TextCollector (system
transcript), an InfiniteForm (the background), various workspaces, various browsers, etc.
If you have garbage dependents, execute the next code in the system workspace with the
argument to iSKindOf: the appropriate class to release only the garbage desired. This
expression may have to be executed more than once.

4. Do Undeclared inspect. The resultant inspector should normally be empty. If not, check
for references and remove or declare as appropriate.

5. Print Checker obsoleteClasses. This should result in an empty OrderedCollection. If
not, use Smalltalk collectPointersTo: to eliminate the references to each obsolete class.
Make sure you save the result. You may also want to use Checker obsoleteAssociations
in the same manner to help eliminate obsolete classes.

6. Do Checker rehashBadSets. This verifies that keys for sets are valid. The system
transcript prints a message saying how many sets had to be rehashed.

7. Print the following code:

Smalltalk classNames select:
[:x] (Smalltalk at: x) superclass
class ~ “(Smalltalk at: x) class superclass]

8. Print the following code:

LOS Notes A-3

Conversion of SOS to LOS Images

"Check for missing classes in subclass lists.”
Smalltalk allBehaviorsDo: [:class | sClass « class superclass.
sClass notNil ifTrue: [(sClass subclasses includes: class)
ifFalse: [Transcript show: class printString,
" is missing from superclass °, sClass printString]]].

9. Print the following code:

"Check for duplicate or erroneous classes in subclass lists.”
Smalitalk allBehaviorsDo: [:class | subs « class subclasses.
subs do: [:each |
(each superclass ~ class)
ifTrue: [Transcript show: each printString,
" is incorrectly duplicated in subclass list of *,
class printString; cr. class removeSubclass: each]]].

10. Print the following code:

"Check for classes in subclass lists which are not contained
in the system dictionary."”
Smalltalk allBehaviorsDo: [:class | class subclasses do: [:each |
((Smalltalk at: each name ifAbsent: [nil]) = nil and: [each isMeta not])
ifTrue: [class removeSubclass: each.
Transcript show: "Removing subclass °, each printString.
" from °, class printString; crl]]

Classes that have incomplete or incorrect references within the class hierarchy either are
not written in the clone image or cause the tracer process to break. Before using the
LOSConversionTracer, fix the class hierarchy in the image based on information from
steps 8, 9, and 10.

Filing In and Using the LOSConversionTracer

Before you go through the following procedure, be sure that you have a clean image; that is,
make sure that you have gone through the procedure described under the headmg Eliminating
Uncollectible Garbage earlier.

1. Bring up your SOS image using the +m=3000 option.
smalltalk +m=3000 <yourSOSImage>

2. If you have a T2.1.2 version SOS image, file in the file deltaT2.1.2ToT2.1.2a.st from the
/smalltalkiconversion directory. This brings your image up to the level expected by the rest
of this conversion technique.

3. Now file in the file:
/smalltalk/conversion/preCloneT2.1.2aToT2.2.0.st -
(Note that this file must only be used with a SOS image!)

A4

Conversion of SOS to LOS Images

Make a snapshot and continue.

5. Make the new image by opening a workspace and performing a Dolt menu operation on:
LOSConversionTracer writeCloneWithout: (Set with: SystemTracer
with: TekSystemTracer with: LOSConversionTracer).
The conversion method asks you to name the new image.

6. When the cloning is complete, exit the SOS interpreter by quitting without saving the
image.
Bring up the new image by typing the name you gave it in step 4.
Important Note: The following file must be filed in just once and only once in a newly
created image converted with the preCloneT2.1.2aToT2.2.0.st file! Now file in the file:
Ismalltalki conversion/postCloneT2.1.2aToT2.2.0.st

9. Make a snapshot. The image produced should be functionally equivalent to the original
SOS image, but now is compatible with the LOS interpreter. You may now treat this
image as if it were an ordinary LOS image.

Technique 3

1. Bring up the standard, default LOS image.

2. Create a personal Changes file. For how to do this, see Installing Your Own Image in the
Introduction to Smalltalk manual.

3. Read the old SOS Changes file into a ChangeListView using the middle button "fileIn"
menu item.

4. Select items and perform a "Dolt" from the middle button menu to incorporate appropriate
method definitions, class definitions, etc., into your image.

5. Make a snapshot.

Note that the sequence of additions ("Dolts") may affect the result. It is recommended that you

incorporate the class definitions first, check for and remove duplicates of items, and then
incorporate method definitions.

LOS Notes A-5

Appendix B
Smalltalk-80 Version T2.2.0 Files

The following is a list of all the files associated with Smalltalk-80 Version T2.2.0 system.

Directory /smalltalk
standardImage
Directory /smalitalk/conversion:

deltaT2.1.2ToT2.1.2a.st
postCloneT2.1.2aToT2.2.0.st
preCloneT2.1.2aT0T2.2.0.st
structSOSPackage.st

Directory /smalltalk/demo:

Othello.script
Othello.st
Pentominos.script
Pentominos.st
README
Robots.script
Robots.st
WaterJugs.st
demoChanges
demolmage
makingADemolmage.ws
steps18-25.robot
steps27-33.robot

Directory /smalltalk/demolforms:

aim.form
falll.form
fall2.form
fall3.form
headl.form
head2.form
head3.form
head4.form
head5.form
laundry1.form
laundry?2.form
laundry3.form
laundry4.form
laundry5.form
manl.form
man2.form
man3.form
man4.form
man5.form
man6.form

LOS Notes

B-1

Smalltalk-80 Version T2.2.0 Files

man7.form
man8.form
man9.form
pegasus.form
pendulum1.form
pendulum10.form
pendulum11.form
pendulum12.form
pendulum13.form
pendulum2.form
pendulum3.form
pendulum4.form
pendulumS5.form
pendulumé6.form
pendulum7.form
pendulum8.form
pendulum9.form
sketch.form
tekLogo.form
usa.form
waterfall.form

Directory /smalltalk/fileln:

Animation.st
BookIndexBrowser.st

Clock.st
Examples-Subtasking.st
FinancialHistory.st
Formclass-readMacPaintFile:.st
Graphics-Fractals.st
IconPopUpMenu.st
KineticGraphics.st
Mastermind-Support.st
PointingHand.st
PopUpMenuHelp.st
ProjectBrowser.st
ProtocolBrowser.st

README

Signals-Support.st
Sound-Support.st
WireList-ASimpleMVCExample.st
addTextStyleToSystemMenu.st
addTextStyleToYellowButton.st
backgroundForm.st
bluelnspect.st

corePlot.ws
extendedBrowser.st
findClass.st
hardCopyFunctionKey.st
inspectlt.st

Smalltalk-80 Version T2.2.0 Files

joydiskAccessAndExample.st
sampleBook.index
slideMaker.st
symbolRecovery.st
timedMethods.st
toothpaste.ws
workspaceFileOut.st
zoomTo.st

Directory /smalltalk/system:

smalltalk16
standardChanges.VersionT2.2.0
standardImage 16
standardSources. VersionT2.2.0

Directory /smalltalk/system/initialization:

SOSSystemWorkspace.ws
SystemWorkspace.ws
black.form

block.form
borderform.form
curve.form
darkgray.form
erase.form

gray.form

in.form
installPellucidaDefault10and12TextStyle.st
lightgray.form
line.form

magnify.form

out.form

over.form
repeatcopy.form
reverse.form
select.form
singlecopy.form
specialborderform.form
togglegrids.form
under.form

white.form

xgrid.form

ygrid.form

Directory /smalltalk/textStyles:

PellucidaDefault08and10.ws
PellucidaDefault10and12.ws
PellucidaSans-SerifO8tight.ws
PellucidaSans-Serifs.ws
PellucidaSerifs.ws
PellucidaTypewriters.ws

LOS Notes B-3

Smalltalk-80 Version T2.2.0 Files

XeroxDefault10and12.ws
example.ws
pruneToPellucidaDefault08and10.ws

B-4

Appendix C
Changes in the Smalltalk-80 Images

The Tektronix 4406 Smalltalk system supports two complete Smalltalk images, the Large Object
Space image (version T2.2.0) and the Small Object Space image (version T2.1.3). The following
lists detail the differences between these images and the Smalltalk image previously released on
the Tektronix 4404 (version T2.1.2a).

In the left column, you will find the classes or methods that are changed between that image and
the 4404 version T2.1.2a. The right column shows how this image was changed. An asterisk (*)
in the right column shows that this change affects both the Large Object Space and the Small
Object Space image. If no asterisk is present, the change concerns only the image being
discussed.

LARGE OBJECT SPACE DIFFERENCES

The following list details the difference between the Tektronix Large Object Space image,
version T2.2.0, and the Small Object Space image, version T2.1.2a.

define Behavior modified
Behavior class initializeObsoleteDictionaries new
Behavior class obsoleteClassDictionary new
Behavior class obsoleteMetaclassDictionary new
Behavior allInstances modified
Behavior allInstancesDo: modified
Behavior compileUnchecked: modified
Behavior obsoleteForMutationTo: new
Behavior recompile:from: modified
Behavior removeSelectorSimply: modified*
Behavior subclassesForMutation new
Behavior whichSelectorsReferTo:special:byte: modified
Benchmark testCompiler modified
BitEditor class initialize modified*
BlockContext adjustPCsForStructReading new
BlockContext adjustPCsForStructWriting new
Boolean isUnique Value new
Boolean structureCopy WithDict: new
Browser removeClass modified*
Browser renameClass modified*
define BytecodeArray new
BytecodeArray become: new
BytecodeArray initialPC new

LOS Notes C-1

Changes in the Smalltalk-80 Images

ChangeScanner scanClassExpression:do:
Character class readDefinitionFrom:map:
Character isUniqueValue

Character storeDefinitionOn:auxTable:
Character structureCopy WithDict:

Checker class class VariablesNotReferenced
Checker class findCorruptedSourceCode
Checker class printClassVariablesNotReferencedOn:

Class nonVariableSubclass:instance VariableNames:c...
Class obsolete

Class obsoleteForMutationTo:

Class replaceName With:

Class validateFrom:in:instance VariableNames:methods:

ClassDescription compile:classified:notifying:
ClassDescription definition

ClassDescription kindOfSubclass

ClassDescription moveChangesToSources:
ClassDescription obsoleteForMutationTo:
ClassDescription updateInstancesFrom:
ClassDescription validateFrom:in:instance VariableN...

Collection class initialize
Collection growSize
Collection maxSize
define CompiledMethod

CompiledMethod class initialize

CompiledMethod class newBytes:flags:nTemps:nArgs:nS...

CompiledMethod class nullSourceDescriptor
CompiledMethod class quickReturnPC
CompiledMethod class toReturnField:
CompiledMethod class toReturnSelf
CompiledMethod class sourceDescriptorForFile:P...

CompiledMethod action
CompiledMethod at:
CompiledMethod at:put:
CompiledMethod cacheTempNames
CompiledMethod endPC

CompiledMethod fieldsTouched
CompiledMethod fileIndex
CompiledMethod flags

modified*
new*

new

new

new

new*
modified
new*

new*
modified
new
new*
modified

modified
modified*
modified*
new*

new
modified
modified

modified
modified*
modified*

new

new
new
new
new
new
new
new

new
new
new
new
new

new
new
new

Changes in the Smalltalk-80 Images

CompiledMethod frameSize
CompiledMethod getSource

CompiledMethod header
CompiledMethod header:instructions:
CompiledMethod initialPC
CompiledMethod instructions
CompiledMethod isQuick

CompiledMethod isReturnField
CompiledMethod isReturnSelf
CompiledMethod last
CompiledMethod literal At:
CompiledMethod literal At:put:

CompiledMethod literals
CompiledMethod literals:
CompiledMethod messages
CompiledMethod needsLargeFrame
CompiledMethod needsStack:encoder:

CompiledMethod nullSourceDescriptor
CompiledMethod numArgs
CompiledMethod numLiterals
CompiledMethod numStack
CompiledMethod numTemps

CompiledMethod numTempsField
CompiledMethod objectAt:
CompiledMethod objectAt:put:
CompiledMethod openByteCodeStream
CompiledMethod primitive

CompiledMethod putSource:class:category:inFile:

CompiledMethod putSource:inFile:
CompiledMethod readsField:
CompiledMethod readsRef:
CompiledMethod refersToLiteral:

CompiledMethod returnField
CompiledMethod scanFor:
CompiledMethod scanLongLoad:
CompiledMethod scanLongStore:
CompiledMethod setPrimitive:

CompiledMethod setSourcePosition:inFile:
CompiledMethod setTempNamesIfCached:

LOS Notes

new
new

new
new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new

C3

Changes in the Smalltalk-80 Images

CompiledMethod size
CompiledMethod sourceCode
CompiledMethod sourceDescriptor

CompiledMethod sourceDescriptor:
CompiledMethod sourceOffset
CompiledMethod symbolic
CompiledMethod trailerSize
CompiledMethod useLargeFrame

CompiledMethod who
CompiledMethod writesField:
CompiledMethod writesRef:

Compiler evaluate:in:to:notifying:ifFail:

ContextPart class basicNew:
ContextPart class new:

ContextPart class readDefinitionFrom:Map:

ContextPart at:put:

ContextPart copy

ContextPart doPrimitive:receiver:args:
ContextPart instVarAt:put:

ContextPart stackp:

ContextPart storeDefinitionOn:auxTable:
ContextPart structureCopyWithDict:
ContextPart tryPrimitiveFor:receiver:args:

ControlManager discardCachedDisplayForms

ControlManager restore

Cursor class currentCursor:
Cursor centerCursorInViewport

Debugger class context:

Debugger bindingOf:forStore:
Debugger pcRange

Debugger spawnEdits:from:
Debugger step

Dictionary storeDefinitionOn:auxTable:
DisplayBitmap class basicNew:
DisplayBitmap class maxSize
DisplayBitmap class new:

c-4

new
new
new

new
new
new
new
new

new
new:
new

modified*

new*
new*
new*

modified*
new¥*
modified
modified
modified
new

new
modified

new*
modified*

new*
modified*

modified

modified*
modified
modified
modified

new
new*

new
new*

Changes in the Smalltalk-80 Images

DisplayScreen class currentDisplay: modified*
DisplayScreen class displayExtent: modified*
DisplayScreen resetFrom:extent: modified*
DisplayScreen resetFrom:extent:offset: modified*
DisplayScreen setDisplayStateFrom: new*
DisplayScreen setMouseBounds: modified*
DisplayScreen setMouseBoundsUpper:low... modified*
DisplayScreen viewport new*
DisplayScreen viewportCenter new*
DisplayText class text: modified*
DisplayText textStyle new*
define DisplayTextView modified*
DisplayTextView initialize modified*
DisplayTextView textStyle new*
DisplayTextView textStyle: new*
Encoder noteSourceRange:forNode: modified*
Encoder sourceMap new*
Encoder sourceMap: modified*
Encoder tempNames modified*
False class readDefinitionFrom:map: new
FileDirectory fullName modified*
FileList createDirectory modified*
FileList createFile modified*
FileList directoryMenu modified*
FileList fileListMenu modified*
FileList fileName: new*
FileList newFileMenu modified*
FileList resetFileMenu modified*
FileStream class initialize modified*
FileStream appendFileStream: new*
FileStream binary modified*
FileStream contentsOfEntireFile modified*
FileStream nextPutAll: modified*
FileStream nextPutAll:startingAt: new*
FileStream nextPutAll:startingAt:to: new*
FileStream padTo: modified*
FileStream size modified*
FileStream text modified*
FilllnTheBlank class examplel modified*
FilllnTheBlank class example2 modified*

LOS Notes C-5

Changes in the Smalltalk-80 Images

define Float

Float class initialize

Float class negativelnfinity
Float class notANumber
Float class notANumber:
Float class positivelnfinity

Float arcCos
Float arcSin
Float arcTan
Float exp
Float floorLog:

Float isInfinity

Float iSNAN

Float isNegativelnfinity
Float isNormal

Float isPositivelInfinity

Float In

Float log

Float printOn:

Float printStructureOn:
Float truncated

Form class readFormFile:
FormHolderView cancel

InputSensor currentCursor:
Inspector acceptText:from:
Inspector fieldList

define ListView
ListView initialize
ListView list:
ListView selectionBox

ListView textStyle
ListView textStyle:

define Literal Array

Literal Array class new:instructions:
Literal Array become:

MessageNode emitForEffect:on:

C-6

modified*
modified*
new*
new*
new*
new*

modified*
modified*
modified*
modified*
modified*

new*
new*
new*
new*
new*

modified*
modified*
modified*

new
modified*

modified*
modified*

modified*
modified
modified*

modified*
modified*
modified*
modified*
new*
new*

new

new
new

modified*

Changes in the Smalltalk-80 Images

MessageNode emitForValue:on: modified*
Metaclass obsoleteForMutationTo: new
Metaclass resetSuperclassToMetaclassForMutation new
Metaclass resetSuperclassToNilAfterMutation new
Metaclass storeDefinitionOn:auxTable: new
MethodContext adjustPCsForStructReading new
MethodContext adjustPCsForStructWriting new
MethodContext at:put: modified*
MethodContext basicAt:put: modified*
MethodContext setSender:receiver:method:arguments: modified*
MethodDefinitionChange accept:notifying: modified*
MethodDefinitionChange sourceFileAndPosition: modified*
define MethodDictionary new

MethodDictionary class new new
MethodDictionary class new: new
MethodDictionary basicAt: ‘ new
MethodDictionary basicAt:put: new
MethodDictionary basicSize new
MethodDictionary become: new
MethodDictionary copy new
MethodDictionary grow new
MethodDictionary growSize new
MethodDictionary keyArray new
MethodDictionary rehash new
MethodDictionary removeDangerouslyKey:ifAbsent: new
MethodDictionary removeKey:ifAbsent: new
MethodDictionary setTally: new
MethodDictionary shallowCopy new
MethodDictionary valueArray new
MethodNode generate: modified*
MethodNode generateNoQuick modified*
MethodNode sourceMap modified*
NotifierView class openContext:label:contents: modified*
NotifierView class openlnterrupt:onProcess: modified*
NotifierView textStyle: new*
Number class readFrom: modified*
Number printStructureOn: new

LOS Notes . C-7

Changes in the Smalltalk-80 Images

Number storeStructureOn:auxTable:

Object class readDefinitionFrom:map:

Object class readFixedDefinitionFrom:map:value:

Object class readStructureFrom:
Object class readStructureFrom:map:
Object class readStructureFromFile:
Object isUniqueValue

Object shallowCopy

Object storeDefinitionOn:auxTable:
Object storeStructureOn:

Object storeStructureOn:auxTable:
Object storeStructureOnFile:
Object structureCopy

Object structureCopyWithDict:

Paragraph recomposeWithTextStyle:
ParagraphEditor class initialize
ParagraphEditor changeEmphasis: .
ParagraphEditor emphasisDefault:keyedTo:
ParagraphEditor readKeyboard

Pen mandala:diameter:
PipeReadStream contentsOfEntireFile
Point negated

define PopUpMenu

PopUpMenu class labels:lines:
PopUpMenu class labels:lines:alignment:
PopUpMenu labels:textStyle:lines:
PopUpMenu markerTop:

PopUpMenu rescan

PopUpMenu reset

PositionableStream through:
PositionableStream upTo:

define ProcessorScheduler

ProcessorScheduler class initialize
ProcessorScheduler absolutelyTheHighestPriority
ProcessorScheduler executeWithoutPreemption:
ProcessorScheduler highestPriority:
ProcessorScheduler resetPriorities

Project enter

C-8

new

new
new
new
new
new
new
modified*

new
new
new
new
new
new

new*
modified*
modified*
modified*
modified*

modified*
modified*
new*

modified*
modified*
modified*

new*
modified*
modified*
modified*

modified*
modified*

modified*

modified*
new*
new*
modified*
modified*

modified*

Changes in the Smalltalk-80 Images

ProjectController class initialize

Rectangle class fromUser:
Rectangle negated
ReturnNode emitForReturn:on:
ReturnNode emitForValue:on:
ReturnNode pc

Scanner scanFieldNames:
ScreenController forkOSshell
ScrollController canScroll
ScrollController canScrollDown
ScrollController canScrollUp
ScrollController controllnitialize
ScrollController moveMarker
ScrollController moveMarker:
ScrollController scrollDown
ScroliController scrollUp
SequenceableCollection hash

Set class maxSize

Set class new

Set class readDefinitionFrom:map:
Set storeDefinitionOn:auxTable:
Set structureCopy WithDict:

SmallInteger structureCopy WithDict:

SortedCollection class readDefinitionFrom:map:
SortedCollection structureCopy WithDict:

StandardSystemController class initialize

StandardSystemController textStyle
StandardSystemController textStyle:

StandardSystemView
StandardSystemView getFrame
StandardSystemView initialize
StandardSystem View label:
StandardSystemView label:style:
StandardSystemView resetLabel:

StandardSystemView resetLabel:style:

StandardSystemView textStyle
StandardSystemView textStyle:

Stream do:
Stream nextPutAll:startingAt:to:

) LOS Notes

new*

modified*

new*
modified*
modified*
modified*

modified*
modified*
modified*

new*

new*
modified*
modified*
modified*
modified*
modified*
modified*

new*
modified*
new

new

new

new
new
new

modified
new*
new*

redefined old class*
modified*
modified*
modified*

new*

modified*

new*

new*

new*

modified*
new*

Changes in the Smalltalk-80 Images

define StrikeFont

StrikeFont class initialize
StrikeFont class read All:
StrikeFont class readFrom:
StrikeFont ascentForStd AsciiChars
StrikeFont asTextStyle

StrikeFont bottomLead:

StrikeFont compute AscentDescentForStd AsciiChars

StrikeFont descentForStdAsciiChars
StrikeFont familySizeFace
StrikeFont glyphsSwitchCharacters

StrikeFont initializeFrom:
StrikeFont isFixedPitch
StrikeFont leadInfo
StrikeFont tightLeadInfo
StrikeFont topLead
StrikeFont type

StrikeFont type:

StrikeFont underLinelnfo:
StrikeFont writeOn:

StrikeFont writeOnFile:

StrikeFont xTableSwitchCharacters

define StrikeFontManager
StrikeFontManager class initialize
StrikeFontManager at:ifAbsent:

StrikeFontManager at:put:
StrikeFontManager checkName:

StrikeFontManager copy:name:emphasis:

StrikeFontManager errorFontMissing:
StrikeFontManager errorNameFormat:
StrikeFontManager fontNames:
StrikeFontManager install:
StrikeFontManager install:ifAbsent:
StrikeFontManager virtuallyAt:

String class readDefinitionFrom:map:
String storeDefinitionOn:auxTable:

define StringHolderView

StringHolderView displayView:
StringHolderView editString:

C-10

modified*
new*
new*
new*
new*
new*

new*
new*
new*
modified*
new*

new*
new*
new*
new*
new*
new*

new*
new*
new*
new*
new*

new*
new*

new*
new*
new*
new*
new*
new*
new*
new*
new*
new*

new
new

modified*
modified*
modified*

Changes in the Smalltalk-80 Images

StringHolderView initialize
StringHolderView textStyle
StringHolderView textStyle:

define StructOutputTable

StructOutputTable class new
StructOutputTable idOfElement:ifNew:
StructOutputTable if:isGlobal:
StructOutputTable new:globalDict:

Subtask class copyEnvironment
Subtask class currentEnvironment
Subtask class initializeEnvironment

define SwitchView
SwitchView displayView
SwitchView initialize
SwitchView textStyle
SwitchView textStyle:

Symbol class readDefinitionFrom:map:
Symbol isUniqueValue

Symbol storeDefinitionOn:auxTable:
Symbol structureCopy WithDict:

SystemDictionary class readDefinitionFrom:map:
SystemDictionary appendChangesToSourceFileWithout:

SystemDictionary copyright
SystemDictionary core
SystemDictionary garbageCollect
SystemDictionary garbageCollect:
SystemDictionary getimageName
SystemDictionary install
SystemDictionary isUniqueValue
SystemDictionary lowSpaceNotificationLoop
SystemDictionary resetSpaceLimits
SystemDictionary shutdown
SystemDictionary snapshotAs:thenQuit:

SystemDictionary storeDefinitionOn:auxTable:

SystemDictionary structureCopy WithDict:
SystemDictionary version

define SystemTracer

SystemTracer class initialize
SystemTracer class write:

LOS Notes

modified*
new*
new*

new

new
new
new
new

modified*
modified*
modified*

modified*
new*
modified*
new*
new*

new
new
new
new

new
new*
modified*
modified
new

new
modified*
modified*
new
modified
modified
modified*
modified*
new

new
modified*

new

new
new

C-11

Changes in the Smalltalk-80 Images

SystemTracer class writeClone
SystemTracer class writeCloneWithout:
SystemTracer allCallsOn:clampedBy:
SystemTracer clamp:

SystemTracer createHashEntryFor:using:
SystemTracer doitWithout:
SystemTracer gradeOf:

SystemTracer hasClamped:
SystemTracer hashEntryFor:

SystemTracer init:
SystemTracer initClampedClasses:
SystemTracer initDict

SystemTracer new:class:length:flags:grade:trace:write:

SystemTracer newHashForObject:
SystemTracer newSmalllntegerHash:
SystemTracer oopOf:

SystemTracer openPrivateFiles:

SystemTracer permutation:for:
SystemTracer permute:by:
SystemTracer preserve:
SystemTracer printDanglingRefs
SystemTracer restartCloneContext

SystemTracer resumptionContext
SystemTracer sizeInBytesOf:
SystemTracer sizeInOopsOf:
SystemTracer trace:
SystemTracer winnow:

SystemTracer writeBitField:on:
SystemTracer writeBytes:
SystemTracer writeChars:
SystemTracer writeClamped:
SystemTracer writeContext:

SystemTracer writeldentityDictionary:
SystemTracer writeldentity Values:from:
SystemTracer writeImage:
SystemTracer writeIndexablePointers:
SystemTracer writeLargePartOf:using:

SystemTracer writeMethodDictionary:
SystemTracer writeOopOf:on:

C-12

new
new
new
new

new
new
new
new
new

new
new
new
new

new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new
new
new
new

new
new

Changes in the Smalltalk-80 Images

SystemTracer writePointerField:on: : new
SystemTracer writePointers: new
SystemTracer writeProcess: new
SystemTracer writeSet: new
SystemTracer writeSpeciall new
SystemTracer writeSpecial2 new
SystemTracer writeWords: : new
TekSystemCall class controlPty:command:mode: new*
TekSystemCall class createPty new*
TekSystemCall class execSystemUtility:withArgs: modified*
TekSystemCall class getMachineType new*
TekSystemCall class getRealMachineType new*
TekSystemCall class fentl:function: new*
TekSystemCall class maxNameSize modified*
TekSystemCall class rump:operation: new*
TekSystemCall class setMachineType new*
TekSystemCall class vfork modified*
Text class initTextConstants modified*
Text class initTextConstants2 modified*
Text class initTextConstants3 new*
TextCollector defaultContents modified*
TextList class initialize modified*
TextList class onList: modified*
TextList class onList:style: new*
TextList recomposeWithTextStyle: new*
define TextStyle modified*
TextStyle class default new*
TextStyle class default: new*
TextStyle alignment new*
TextStyle alignment: new*
TextStyle asListStyle new*
TextStyle asMenuStyle new*
TextStyle basalFontFor: new*
TextStyle baseline new*
TextStyle baseline: new*
TextStyle baselineForLists new*
TextStyle baselineForLists: new*

LOS Notes C-13

Changes in the Smalltalk-80 Images

TextStyle baselineForMenus
TextStyle baselineForMenus:
TextStyle boldFontFor:
TextStyle boldItalicFontFor:

TextStyle clearIndents
TextStyle defaultFont
TextStyle descent
TextStyle firstindent
TextStyle firstIndent:

TextStyle flushFonts
TextStyle fontArray
TextStyle fontArray:
TextStyle fontAt:
TextStyle fontAt:put:

TextStyle fontFor:emphasis:
TextStyle fontFor:face:
TextStyle fontNamed:
TextStyle isFontBold:

TextStyle isFontBoldItalic:
TextStyle isFontltalic:
TextStyle isFontSubscripted:
TextStyle isFontSuperscripted:
TextStyle isFontUnderlined:

TextStyle italicFontFor:
TextStyle leftMarginTabAt:
TextStyle lineGrid
TextStyle lineGrid:
TextStyle lineGridForLists

TextStyle lineGridForLists:

TextStyle lineGridForMenus

TextStyle lineGridForMenus:

TextStyle listStyleForFont:upperLead:lowerLead:

TextStyle menuStyleForFont:upperLead:lowerLead:

TextStyle nestingDepth

TextStyle newFontArray:

TextStyle nextTabXFrom:leftMargin:rightMargin:
TextStyle outputMedium

TextStyle outputMedium:

TextStyle restIndent

C-14

new¥*
new*
new*
new*

modified*
new*
modified*
new*
new*

new*
new*
new*

modified*
new*

new*
modified*
modified*
modified*

modified*
modified*
modified*
modified*
modified*

new*
modified*
new*
new*
new*

new*
new*
new*
new*
new*

modified*
modified*
modified*

new*
modified*

new#*

Changes in the Smalltalk-80 Images

TextStyle restIndent:
TextStyle rightIndent
TextStyle rightIndent:
TextStyle rightMarginTabAt:

TextStyle subscriptedFontFor:
TextStyle superscriptedFontFor:
TextStyle tabWidth

TextStyle underlinedFontFor:
TextStyle unSubscriptedFontFor:

TextStyle unSuperscriptedFontFor:
TextStyle unUnderlinedFontFor:
TextStyle upperLead:lowerLead:

define TextStyleManager

TextStyleManager class flushMenus
TextStyleManager class initialize
TextStyleManager class new:

TextStyleManager at:put:

TextStyleManager changeDefaultTextStyle
TextStyleManager changeDefaultTextStyle:
TextStyleManager fontNamesFromBaseNames:
TextStyleManager fromUser

TextStyleManager fromUser:
TextStyleManager initializeMenus
TextStyleManager removeAssociation:ifAbsent:
TextStyleManager removeKey:ifAbsent:
TextStyleManager styleName:baseNames:

TextStyleManager styleName:baseNames:lead:

TextStyleManager styleName:baseNames:upperLead:lowerLead:

TextStyleManager styleName:fontNames:
TextStyleManager styleName:fontNames:lead:

TextStyleManager styleName:fontNames:upperLead:lowerLead:

define TextView

TextView initialize
TextView textStyle
TextView textStyle:

True class readDefinitionFrom:map:

LOS Notes

new*
new*
new*
modified*

modified*
modified*
modified*
modified*
modified*

modified*
modified*
new*

new*

new*
new*
new¥*

new*
new*
new*
new*
new*

new*
new*
new*
new*
new*

new*
new*
new*
new*
new*

modified*
modified*
new*
new*

new

C-15

Changes in the Smalltalk-80 Images

UndefinedObject class readDefinitionFrom:map: new
UndefinedObject isUnique Value new
UndefinedObject structureCopyWithDict: , new
View computelnsetDisplayBox modified*
View textStyle: new*
WordArray class maxSize modified

Removed Methods

Behavior kindOfSubclass remove*
DisplayScreen writeBitmapOn: remove*
Object nextInstance remove
PipeStream binary remove*
PipeStream contentsOfEntireFile remove*
PipeStream text remove*
PopUpMenu labels:font:lines: : remove*
StandardSystem View displayBorder remove*
StrikeFont ascent: remove*
TextStyle flushFonts remove*

C-16

Changes in the Smalltalk-80 Images

SMALL OBJECT SPACE CHANGES

The following list gives the changes between the Tektronix Smalltalk-80 image, Version T2.1.2a
and the present image, Version T2.1.3.

Behavior removeSelectorSimply: modified*
BitEditor class initialize modified*
Browser removeClass modified*
Browser renameClass modified*
ChangeScanner scanClassExpression:do: modified*
Character class readDefinitionFrom:map: new*
Checker class classVariablesNotReferenced new*
Checker class printClassVariablesNotReferencedOn: new*
Class nonVariableSubclass:instance VariableNames:c...: new*
Class replaceNameWith: new*
ClassDescription definition modified*
ClassDescription kindOfSubclass modified*
ClassDescription moveChangesToSources: new*
Collection growSize modified*
Collection maxSize modified*
CompiledMethod class newBytes:flags:nTemps:nArgs:nSt... new
CompiledMethod class newBytes:flags:nTemps:nStack:nLits: new
CompiledMethod class nullSourceDescriptor new
CompiledMethod class quickReturnPC new
CompiledMethod nullSourceDescriptor new
CompiledMethod openByteCodeStream new
CompiledMethod setPrimitive: new
CompiledMethod sourceDescriptor new
CompiledMethod sourceDescriptor: new
CompiledMethod sourceOffset new
CompiledMethod trailerSize © new
Compiler evaluate:in:to:notifying:ifFail: modified*
ContextPart at:put: modified*
ContextPart class basicNew: new*
ContextPart class new: new*
ContextPart copy new*
ControlManager discardCachedDisplayForms new*
ControlManager restore modified*

LOS Notes C-17

Changes in the Smalltalk-80 Images

Cursor class currentCursor:
Cursor centerCursorInViewport

Debugger bindingOf:forStore:
DisplayBitmap class basicNew:
DisplayBitmap class new:

DisplayScreen class currentDisplay:
DisplayScreen class displayExtent:
DisplayScreen resetFrom:extent:

DisplayScreen resetFrom:extent:offset:

DisplayScreen setDisplayStateFrom:
DisplayScreen setMouseBounds:

DisplayScreen setMouseBoundsUpper:low...

DisplayScreen viewport
DisplayScreen viewportCenter

DisplayText class text:
DisplayText textStyle

define DisplayTextView

DisplayTextView initialize
DisplayTextView textStyle
DisplayTextView textStyle:

Encoder noteSourceRange:forNode:
Encoder sourceMap

Encoder sourceMap:

Encoder tempNames

FileDirectory fullName

FileList createDirectory
FileList createFile
FileList directoryMenu
FileList fileListMenu
FileList fileName:
FileList newFileMenu
FileList resetFileMenu

FileStream class initialize
FileStream appendFileStream:
FileStream binary

FileStream contentsOfEntireFile
FileStream nextPutAll:

FileStream nextPutAll:startingAt:

C-18

new*
modified*

modified*
new¥*
new*

modified*
modified*
modified*
modified*
new*
modified*
modified*
new*
new*

modified*
new¥*

modified*

modified*
new*
new*

modified*

new*
modified*
modified*

modified*

modified*
modified*
modified*
modified*

new*
modified*
modified*

modified*

new*
modified*
modified*
modified*

new*

Changes in the Smalltalk-80 Images

FileStream nextPutAll:startingAt:to:

FileStream padTo:
FileStream size
FileStream text

FillinTheBlank class examplel
FilllnTheBlank class example2

define Float

Float class initialize

Float class negativelnfinity
Float class notANumber
Float class notANumber:
Float class positiveInfinity

Float arcCos
Float arcSin
Float arcTan

Float exp

Float floorLog:

Float isInfinity

Float isSNAN

Float isNegativelnfinity
Float isNormal

Float isPositiveInfinity

Float In

Float log

Float printOn:

Float printStructureOn:
Float truncated

Form class readFormFile:
FormHolderView cancel

InputSensor currentCursor:
Inspector fieldList

MessageNode emitForEffect:omn:
MessageNode emitForValue:on:

define ListView
ListView initialize
ListView list:
ListView selectionBox

LOS Notes

new*
modified*
modified*
modified*

modified*
modified*

modified*

modified*
new*
new¥*
new*
new*

modified*
modified*
modified*

modified*
modified*
new*
new*
new*
new*
new*

modified*
modified*
modified*

new*
modified*

modified*
modified*

modified*
modified*

modified*
modified*

modified*
modified*
modified*
modified*

C-19

Changes in the Smalltalk-80 Images

ListView textStyle
ListView textStyle:

MethodContext adjustPCsForStructReading
MethodContext adjustPCsForStructWriting
MethodContext at:put:

MethodContext basicAt:put:

MethodContext setSender:receiver:method:arguments:

MethodDefinitionChange accept:notifying:
MethodDefinitionChange sourceFileAndPosition:

MethodNode generate:
MethodNode generateNoQuick
MethodNode sourceMap

NotifierView class openContext:label:contents:
NotifierView class openInterrupt:onProcess:
NotifierView textStyle:

Number class readFrom:

Object shallowCopy

Paragraph recomposeWithTextStyle:
ParagraphEditor class initialize
ParagraphEditor changeEmphasis:
ParagraphEditor emphasisDefault:keyedTo:
ParagraphEditor readKeyboard

Pen mandala:diameter:
PipeReadStream contentsOfEntireFile
Point negated

define PopUpMenu
PopUpMenu class labels:lines:
PopUpMenu class labels:lines:alignment:

PopUpMenu labels:textStyle:lines:
PopUpMenu markerTop:
PopUpMenu rescan

PopUpMenu reset

PositionableStream through:
PositionableStream upTo:

define ProcessorScheduler

C-20

new*
new*

new*
new*
modified*
modified*
modified*

modified*
modified*

modified*
modified*
modified*

modified*
modified*

new*
modified*

modified*

new*
modified*
modified*
modified*
modified*

modified*
modified*
new*

modified*
modified*
modified*

new*
modified
modified
modified

modified
modified

modified*

Changes in the Smalltalk-80 Images

ProcessorScheduler class initialize
ProcessorScheduler absolutelyTheHighestPriority
ProcessorScheduler execute WithoutPreemption:
ProcessorScheduler highestPriority:
ProcessorScheduler resetPriorities

Project enter
ProjectController class initialize

Rectangle class fromUser:
Rectangle negated
ReturnNode emitForReturn:on:
ReturnNode emitForValue:on:
ReturnNode pc

Scanner scanFieldNames:

ScreenController forkOSshell
ScrollController canScroll
ScrollController canScrollDown
ScrollController canScrollUp
ScrollController controllnitialize
ScroliController moveMarker
ScrollController moveMarker:
ScrollController scrollDown
ScrollController scrollUp
SequenceableCollection hash

Set class maxSize
Set class new

StandardSystemController class initialize
StandardSystemController textStyle
StandardSystemController textStyle:

define StandardSystemView
StandardSystemView getFrame
StandardSystemView initialize
StandardSystem View label:
StandardSystem View label:style:
StandardSystem View resetLabel:
StandardSystem View resetLabel:style:
StandardSystemView textStyle
StandardSystemView textStyle:

Stream do:
Stream nextPutAll:startingAt:to:

LOS Notes

modified*
new*
new*
modified*
modified*

modified*
new*

modified*

new*
modified*
modified*
modified*

modified*

modified*
modified*

new*

new*
modified*
modified*
modified*
modified*
modified*
modified*

new*
modified*

modified*
new*
new*

modified*
modified*
modified*
modified*
new*
modified*
new*
new*
new*

modified*
new*

C-21

Changes in the Smalltalk-80 Images

define StrikeFont modified*
StrikeFont class initialize new*
StrikeFont class readAll: new*
StrikeFont class readFrom: new*
StrikeFont ascentForStd AsciiChars new*
StrikeFont asTextStyle new*
StrikeFont bottomLead: new*
StrikeFont compute AscentDescentForStdAsciiChars new*
StrikeFont descentForStdAsciiChars new*
StrikeFont familySizeFace modified*
StrikeFont glyphsSwitchCharacters new*
StrikeFont initializeFrom: new*
StrikeFont isFixedPitch new*
StrikeFont leadInfo new*
StrikeFont tightLeadInfo new*
StrikeFont topLead new*
StrikeFont type new*
StrikeFont type: new*
StrikeFont underLinelnfo: new*
StrikeFont writeOn: new*
StrikeFont writeOnFile: new*
StrikeFont xTableSwitchCharacters new*
define StrikeFontManager new*
StrikeFontManager class initialize new*
StrikeFontManager at:ifAbsent: new*
StrikeFontManager at:put: new*
StrikeFontManager checkName: new*
StrikeFontManager copy:name:emphasis: : new*
StrikeFontManager errorFontMissing: new*
StrikeFontManager errorNameFormat: new*
StrikeFontManager fontNames: ' new*
StrikeFontManager install: new*
StrikeFontManager install:ifAbsent: new*
StrikeFontManager virtuallyAt: new*
define StringHolderView modified*
StringHolderView display View: modified*
StringHolderView editString: modified*
StringHolderView initialize modified*
StringHolderView textStyle new*

C-22

Changes in the Smalltalk-80 Images

StringHolderView textStyle:

Subtask class copyEnvironment
Subtask class currentEnvironment
Subtask class initializeEnvironment

define SwitchView
SwitchView displayView
SwitchView initialize
SwitchView textStyle
SwitchView textStyle:

SystemDictionary appendChangesToSourceFileWithout:

SystemDictionary copyright
SystemDictionary getimageName
SystemDictionary install
SystemDictionary shutdown
SystemDictionary snapshotAs:thenQuit:
SystemDictionary version

TekSystemCall class controlPty:command:mode:
TekSystemCall class createPty

TekSystemCall class execSystemUtility:withArgs:
TekSystemCall class getMachineType
TekSystemCall class getRealMachineType
TekSystemCall class fcntl:function:
TekSystemCall class maxNameSize
TekSystemCall class rump:operation:
TekSystemCall class setMachineType
TekSystemCall class vfork

Text class initTextConstants

Text class initTextConstants2

Text class initTextConstants3
TextCollector defaultContents
TextList class initialize

TextList class onList:

TextList class onList:style:
TextList recomposeWithTextStyle:
define TextStyle

TextStyle class default
TextStyle class default:

LOS Notes

new*

modified*
modified*
modified*

modified*
new*
modified*
new*
new*

new*
modified*
modified*
modified*
modified*
modified*
modified*

new*
new*
modified*
new*
new*
new*
modified*
new*
new*
modified*

modified*
modified*
new*

modified*

modified*
modified*
new*

new*
modified*

new*
new*

C-23

Changes in the Smalltalk-80 Images

TextStyle alignment
TextStyle alignment:
TextStyle asListStyle
TextStyle asMenuStyle

TextStyle basalFontFor:
TextStyle baseline
TextStyle baseline:
TextStyle baselineForLists
TextStyle baselineForLists:

TextStyle baselineForMenus
TextStyle baselineForMenus:
TextStyle boldFontFor:
TextStyle boldItalicFontFor:
TextStyle clearIndents

TextStyle defaultFont
TextStyle descent
TextStyle firstindent
TextStyle firstindent:
TextStyle flushFonts

TextStyle fontArray
TextStyle fontArray:
TextStyle fontAt:

TextStyle fontAt:put:
TextStyle fontFor:emphasis:

TextStyle fontFor:face:
TextStyle fontNamed:
TextStyle isFontBold:
TextStyle isFontBoldItalic:
TextStyle isFontltalic:

TextStyle isFontSubscripted:
TextStyle isFontSuperscripted:
TextStyle isFontUnderlined:
TextStyle italicFontFor:
TextStyle leftMarginTabAt:

TextStyle lineGrid
TextStyle lineGrid:
TextStyle lineGridForLists
TextStyle lineGridForLists:
TextStyle lineGridForMenus

new*
new*
new*
new¥*

new*
new*
new*
new*
new*

new*
new*
new*
new*
modified*

new*
modified*
new*
new*
new*

new*
new*
modified*
new¥*
new*

modified*
modified*
modified*
modified*
modified*

modified*
modified*
modified*

new*
modified*

new¥*
new*
new*
new*
new*

Changes in the Smalltalk-80 Images

TextStyle lineGridForMenus:

TextStyle listStyleForFont:upperLead:lowerLead:
TextStyle menuStyleForFont:upperLead:lowerLead:
TextStyle nestingDepth

TextStyle newFontArray:

TextStyle nextTabXFrom:leftMargin:rightMargin:
TextStyle outputMedium

TextStyle outputMedium:

TextStyle restIndent

TextStyle restIndent:

TextStyle rightIndent

TextStyle rightIndent:
TextStyle rightMarginTabAt:
TextStyle subscriptedFontFor:
TextStyle superscriptedFontFor:

TextStyle tabWidth

TextStyle underlinedFontFor:
TextStyle unSubscriptedFontFor:
TextStyle unSuperscriptedFontFor:

TextStyle unUnderlinedFontFor:
TextStyle upperLead:lowerLead:

define TextStyleManager

TextStyleManager class flushMenus
TextStyleManager class initialize
TextStyleManager class new:

TextStyleManager at:put:

TextStyleManager changeDefaultTextStyle
TextStyleManager changeDefaultTextStyle:
TextStyleManager fontNamesFromBaseNames:
TextStyleManager fromUser

TextStyleManager fromUser:
TextStyleManager initializeMenus
TextStyleManager remove Association:ifAbsent:
TextStyleManager removeKey:ifAbsent:
TextStyleManager styleName:baseNames:

TextStyleManager styleName:baseNames:lead:

TextStyleManager styleName:baseNames:upperLead:lowerLead:

TextStyleManager styleName:fontNames:

LOS Notes

new*
new*
new*
modified*
modified*

modified*
new*
modified*
new*
new*

new*
new*
modified*
modified*
modified*

modified*
modified*
modified*
modified*

modified*
new*

new*

new*
new*
new*

new*
new*
new*
new*
new*

new*
new*
new*
new*
new*

new*

new*
new*

C-25

Changes in the Smalltalk-80 Images

TextStyleManager styleName:fontNames:lead:

TextStyleManager styleName:fontNames:upperLead:lowerLead:

define TextView
TextView initialize
TextView textStyle
TextView textStyle:

View computelnsetDisplayBox
View textStyle:

Removed Methods

Behavior kindOfSubclass
DisplayScreen writeBitmapOn:
PipeStream binary

PipeStream contentsOfEntireFile
PipeStream text
StandardSystemView displayBorder
PopUpMenu labels:font:lines:
StrikeFont ascent:

TextStyle flushFonts

C-26

new*
new*

modified*
modified*
new*
new*

modified*
new*

remove*
remove*
remove*
remove*
remove*
remove*
remove*
remove*
remove*

MANUAL CHANGE INFORMATION
ARTIFICIAL INTELLIGENCE MACHINES DIVISION

PRODUCT 4404 SMALLTALK-80 INTRODUCTION USERS PART NO 070-5606-00
PRODUCT GROUP 07 CHANGE NO _ C35606 DATE MAY 1986

This is an UPDATE package.

1. Insert the attached UPDATE to the Smalltalk-80 LOS User Notes into the NOTES section of
your manual.

2. Replace the title and manual revision pages at the front of your manual.

3. Keep this cover sheet in the CHANGE INFORMATION section at the back of this
manual for a permanent record.

TEK wanva

Part No. 070-5606-00
Product Group 07

4404

ARTIFICIAL
INTELLIGENCE
SYSTEM

INTRODUCTION TO THE
SMALLTALK-80 SYSTEM

Please Check at the

‘Rear of this Manual

for NOTES and
CHANGE INFORMATION

First Printing DEC 1984
Revised MAY 1986

Tektronix

COMMITTED TO EXCELLENCE

Copyright © 1984, 1986 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved. Contents of
this publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Smalltalk-80 is a trademark of Xerox Corporation.

PLEASE FORWARD ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4405 ARTIFICIAL INTELLIGENCE SYSTEM SMALLTALK-80 SYSTEM
This manual supports the following versions of this product: Version T2.2.0

REV DATE DESCRIPTION
DEC 1984 Original Issue

DEC 1985 Subtask Management Notes

APR 1986 LOS Users Notes

MAY 1986 Update to LOS Users Notes

4404 SMALLTALK-80 SYSTEM USERS

UPDATE

About This Update

This Update expands the information about how to bring up Smalltalk on the 4405 AIS machine.
If you have a 4405 with just 1 megabyte of memory, first refer to page 2 of the Smalltalk-80 LOS
User Notes, then read this Update. If you have a 4405 with more than 1 megabyte of memory,
the information in this Update does not affect you.

Summary

On a I megabyte 4405 machine, you should run only the Small Object Space (SOS) interpreter
and images.

Explanation

The 4405 and 4406 AIS machines are loaded with identical software at the factory. This is true
whether you have ordered a standard machine with the minimum amount of memory or whether
you have ordered a 4405 with one of the expanded memory options.

On the 4405, as on the 4406, you have the option of running the Small Object Space (SOS)
interpreter or the Large Object Space (LOS) interpreter. In a 4405 with just 1 megabyte of
memory, you should run only the SOS interpreter. You may run either the SOS or LOS
interpreter on machines with more than 1 megabyte of memory.

Invoking Smalltalk on a 1 Megabyte 4405

If you have a 1 megabyte 4405, the default is the SOS Smalltalk interpreter, invoked by any of
the following:

smalltalk
smalltalk <an_SOS_image_filename>

<an_SOS_image_filename>

Note that by using the filetype command you can determine whether your image file is an SOS or
LOS image file.

The Demo Image

The demonstration image shipped with the 4405 and 4406 AIS machines is the same, and it is an
LOS image. Thus, you should not run this image on a I megabyte 4405.

U-1

MANUAL CHANGE INFORMATION
ARTIFICIAL INTELLIGENCE MACHINES DIVISION

PRODUCT 4404 SMALLTALK-80 INTRODUCTION USERS PART NO 070-5606-00

PRODUCT GRoup 07 CHANGE NO _ C4-5606 pATe JUL 1986

This is an Update package.

1. Insert the attached Update into the NOTES section of your manual.

2. Replace the title and manual revision pages at the front of your manual.

3. Keep this cover sheet in the CHANGE INFORMATION section at the back of this
manual for a permanent record.

TEK wanua

Part No. 070-5606-00
Product Group 07

4404

ARTIFICIAL
INTELLIGENCE
SYSTEM

INTRODUCTION TO THE
SMALLTALK-80 SYSTEM

Please Check at the

Rear of this Manual

for NOTES and

CHANGE INFORMATION

First Printing DEC 1984
Revised JUL 1986

Tektronix

COMMITTED TO EXCELLENC

Copyright © 1984, 1986 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved. Contents of
this publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Smalltalk-80 is a trademark of Xerox Corporation.

PLEASE FORW ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4405 ARTIFICIAL INTELLIGENCE SYSTEM SMALLTALK-80 SYSTEM
This manual supports the following versions of this product: Version T2.2.0

REV DATE DESCRIPTION
DEC 1984 Original Issue

DEC 1985 Subtask Management Notes

APR 1986 LOS Users Notes

MAY 1986 Update to LOS Users Notes

JUL 1986 Update

4404 SMALLTALK-80 SYSTEM USERS

UPDATE

4405 SMALLTALK PROBLEM

Problem: At times, after using the middle button menu selection ‘OS shell” the shell prompt
(++) is not visible.

Cause: Smalltalk does not reset the machine’s viewport to the upper left (0,0) position. The
prompt exists, but not on the visible screen. Smalltalk also leaves joydisk panning
enabled. Figure 1 shows the viewport (what you see on the 4405°s screen)
positioned away from the shell prompt.

PROMPT
(0,0) 4,////f-——;639,0) (1375,0)
1376x1024

[¢———————— VIRTUAL DISPLAY
BIT-MAP

(0,479)

AREA SEEN BY DISPLAY
(PANNED FROM
DEFAULT POSITION)

(0,1023) (1375, 1023)

Figure 1. Prompt Outside Viewport.

Solution 1: Use the joydisk to pan to the upper left comner of the virtual display screen. If you
then want to use the joydisk for history retrieval, disable joydisk panning with:

conset -diskpan

-1

Solution 2 To prevent the problem in an image and subsequent snapshots of an image, modify
the instance method “forkOSshell” in class “ScreenController” under category
“Interface-Support”. Select this method in the browser and insert the following two
lines of code just before the line that begins with TekSystemCall.

Display setViewportLocation: 0@0.
Display disableJoydiskPanning.

Use the middle button menu selection and “accept.” This image and subsequent
snapshots will properly reset the viewport to (0,0). Figure 2 shows the system
browser with the two new lines of code about to be accepted.

System Browser

Interface-Support | e e EE e
Interface-Lists initialize-release copyDisplay
Interface-Text MouseMenuController control defaults exitProject
Interface-Menus
Interface-PromptAndConfiry ScroliController cursor openBrowser
Interface-Browser StandardSystemController |private openfileList
Interface-inspector StandardSystemvView | -=———=————— openProject
Interface-Debugger ——————————— openSystemWorkspace

Interface~File Model openTranscript

Interface-Transcript openWorkspace
Interface~Projects quit
Interface-Changes ‘ restoreDisplay
- save~
g;:::m-g\gﬁggs instance _i _________
forkosshell -
*Fork an operating system shell with history. ‘;?:"2
Type ’exit’ to the shell to return to Smalltalk.* copy |
cut
| task aDisplayReport oldSIGHUPValue oldSIGINTValue oldSIGTERMY paste for oldSIGQUITValue |
do it
FileStream release ExternalReferences.

Display fill: {(Display boundingBox) mask: Form white. accept
aDisplayReport + Display getDisplayReport. cancel|
Display setViewportiocation: 0@0, spawn
Display disablejoydiskPanning. explain
TekSystemcall write: 1 from: (String with: Character esc), '[1;1H’ home the underscore cursor®

ormat

oldSIGHUPValue + TekSystemcall setinterrupt: 1 to: 1.
oldSIGINTValue «TekSystemcCall setinterrupt: 2 to: 1.
oldSIGQUITValue « TekSystemcCall setinterrupt: 3 to: 1.
oldSIGTERMValue « TekSystemcCall setinterrupt: 11 to: 1.
TekSystemcCall clearAlarm value.

task « Subtask fork: '/bin/shell’ withArgs: (OrderedCollection with: ’+i’) then: [
TekSystemcCall setinterrupt: 1 to: 0.
TekSystemcCall setinterrupt: 2 to: 0.

Figure 2. Code in System Browser.

MANUAL CHANGE INFORMATION
ARTIFICIAL INTELLIGENCE MACHINES DIVISION

PRODUCT 4404 SMALLTALK-80 INTRO. USERS PART NO 070-5606-00

PRODUCT GRouUp 97 CHANGE NO €6-5606 DATE JAN 1987

This is a CHANGE and ADDITION package.

1. Insert the attached 4404 SOS Release Notes into the Notes section of your manual.

2. Replace the title and manual revision pages at the front of your manual.

3. Keep this cover sheet in the CHANGE INFORMATION section at the back of this
manual for a permanent record.

TEK USERS Part No. 070-5606-00
MANUAL Product Group 07

4404

ARTIFICIAL
INTELLIGENCE

SYSTEM

INTRODUCTION TO THE
SMALLTALK-80 SYSTEM

Please Check at the
Rear of this Manual

for NOTES and

CHANGE INFORMATION

First Printing DEC 1984
Revised JAN 1987

Tektronix-

COMMITTED TO EXCELLENCE

Copyright © 1984, 1986 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved. Contents of
this publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Smalltalk-80 is a trademark of Xerox Corporation.

PLEASE FORWARD ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES AIM SMALLTALK-80 SYSTEM
This manual supports the following versions of this product: LOS Version T2.2.0¢c and SOS Version T2.1.3b

REV DATE DESCRIPTION
DEC 1984 Original Issue

DEC 1985 Subtask Management Notes

APR 1986 LOS Users Notes

MAY 1986 Update to LOS Users Notes

JUL 1986 Update

JAN 1987 4404 SOS Release Notes

JAN 1987 4405/06 Release Notes

4404 SMALLTALK-80 SYSTEM USERS

Table of Contents

SECTION 1 4404 SOS Release Notes

ABOUT THESE NOTES ...t ooertireeneneisseesaesnsessesssessesssssssssssssasssssssssssssss soasasssssssssssssssssses 1-1
SOS AND LOS INTERPRETERSocotiiririeirinienensnescesesnsensssesessasesssasesssssosssssssssessssessssnns 1-1
The SOS INEIPIELET ccceeererrreecneerseresseerssresssesssesssssesessssessassasesssssssasssassssssasssssesasssssssssssass 1-1
INVOKING SMALLTALLK ...oooooteetertensesreessnssnessessssesssssesssssssssasssessesssssnsssassssasssssessassssssssssass 1-2
PRIMITIVE METHODSoeictirtieeeentinescennsesnsessssssesssssssssnsessssssssssassssassessessssnsssssssns 1-2
String Comparison PrMItIVEccccceieieereeinienniennieesseessrecssesssessesssssssssasessasssssasessssssssassssssses 1-2
IMAGE MODIFICATIONS ... octertereereeenreeraesneesseesesssessesssessassnssssessssssssnnsssssssasssssssnsssasssass 1-2
USER INTERFACE CHANGEScoiitenierinneeneienressessesssssseossssssssssssasssnsssssassssssessssssssssees 1-3
New WiIindow FTAMUNG cccccceevieereerrnneeeseeseesserseessasseesassssssasssessesssesssnssasssasassesssassansssesassass 1-3
BlUue BUION MEMNU uccciieerieecnenercnensnesnecssnsssesseessesssesnssnsessesassnsosasssasssssssnssss sessasasssssssssosssns 1-3
ENHANCED FONT SUPPORTcccooiiieriniecnieseneseessesseessessessnesssssasesnsssasssssssssssssssnssssssssssses 1-3
FOMIS oueiciiecicrciineireinseeneneseeserestessessseesnssssesasessssssesnesssssasssessesssesseennsssssassanstasssasssssaasasassssssassss 1-4
AVAILIADIE FONLS ...ccviiierireeneereieteectieceesteesseesessseesssssessssssssssessessesssesstasseessassssesssssnessssnsesssesans 1-4
Interpreting FONt TADIESccccccceveiinsennnincnnenansensesneeseesssesssssssassasssssssossonsosssssssssssssssssasssssaes 1-5
Reading and WIHHINE cccoiiviiinrnenrennesesueeesesenesneesesesneesssesesnssasessssasassssssssasessnsssesssnsasass 1-5
Text Styles . eeeeeseosessatesete s tea et te e sas s R st s st ss e sb e e R SRRt se bt abeshas bt sa b su b 1-9
MISCEIIANEOUS ...cceeeueieereereareseeerseesssraessessesesseessssessassestessessessesassensesnsessassensassssssesssessassssssnns 1-12
STORING AND RETRIEVING OBJECTS ON FILEScoovrieeeeeeeneceeerneerecseeressressessessenns 1-13
Using the Reading and Writing MeChaniSmcccceueveeuieeeieseeneserreeseessessassessessesnsssesnssesnse 1-13
TO WIILE SIIUCIUIES: ...ccceveereerineecaeranesersensessnsessessesssssessessessssssnsessasssssssnnessassssssssasasasssesasse 1-14
TO REAd SIUCIUIES: coceeeereeeeriesanrnncnesssesesnueseesesseessesesnsesessessessessassssssssasssssssassssasassessasesse 1-14
Implementation DELailscccceevereeiecreneiseiisereeseeresnesesaeressessessssneseesaessenssssessassssnnsnenns 1-14
COPYING CIRCULAR STRUCTURESccvieeinrrieeeneerersassesssssssssssssssssssssesssssssssssssssens 1-15
Using the Copying MEChANISIMcccceeeriiereenenereeenenssssensssssssessssesessessssssessenssassensasessssssenss 1-15
Implementation DELailsccccceeeieiveerereireeeeresteseesesseseessessesasssesesssessesasssssnssssessasssnsensenns 1-15
SOS SYSTEM WORKSPACE MODIFICATIONSccccvntereerenrensneressesesnssssassessessssesenes 1-16
MISCELLANEOUS CHANGEScoiiiieteierenteereeenresesssessssssssessessssssesssssssssesssessssessssssens 1-17
CONVERSION OF IMAGESoeierereeneerereneenssessesesesssessesesesssessssssssssssssessssesssesssssens 1-17
INITOQUCHON ...ceiiierieecieeceeeeseteseraesaeseetesassesssessessssssessesessssasssssnsesnsnssssessenssensesasnsessesenes 1-17
Should YOu CONVEIL? cceveeeereetereeeneeteesessereesessesessssesassessesssessssssessessessessessssassessesesens 1-17
SaVING DISK SPACE eecviiereceerireeeneneieeseeereesesesessesessesessessssessesesssssessssessessessessessssssensensenee 1-18
The FleIN PIOCESS ccceeveiereenereeceerieesteressessessesessessesesesessssessessssessessessassssessessessssessenssnsenses 1-18
Smalltalk Delta Files COMENLScccccerevereerrrenerereeneenssssssesssssssssesessssssesesassesssesssesessassens 1-20
SOS Delta FIle ClASSES ...cceeeerreereerereereseresaesessesssesessenssessesssssessssesessesssesssssrssssesessssassesssssses 1-20
SOS Delta File ClASSES ccccreeereeeresseneesseressesesessssesssessasssssessssesesssssesssssssssesesessessesesesses 1-21
SYSEM WOTKSPACE cuceeereuerierereeneesesseseseesessssesesessssesesesssssesesssesesssssasessssessessasasessnsensasses 1-21
SMALLTALK DIRECTORIEScoeivierreeereennenensseseseessssesesessesssssssssesesessasessssessssessssans 1-22
NEW DITECIOMIES ocvevierrrerceneereereraecsereneressessessesessessesessssessesesssssssessesssssssessessassessessesarssssessen 1-22
NEW FIIES ...ueiceeiriericeiieeircisetesestectssesae s essesssessessessesessesesssssssesssssssessessessansssasensensensansnne 1-22
PRINTING SMALLTALK BITMAP FILEScoooioeriieneeneeeesresessesessesssesessessessessesesnes 1-23

Appendix A Smalltalk-80 Version T2.1.3b Files
Appendix B SOS Image Version Changes

Changes Up T Version T2.1.3 cooeveereerereeiencrersieseressesesessssessssssssessessssssessosonsasossases B-1
Changes Between Versions T2.1.3 and T2.1.3D cceevemveeieeeeereenreenecnnneessesnseseseseessnes B-9

Table of Contents-1

Figures

1-1. Tektronix Proportional Fonts (PellucidaSerif and PellucidaSans-Serif).cccocceceneiunne

1-2. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 1.
1-3. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 2.

Table of Contents-2

--

..

4404 SOS Release Notes

These notes document the Tektronix SOS Smalltalk-80! system Version T2.1.3b for the 4404
Tektronix Artificial Intelligence Machine.

ABOUT THESE NOTES

This document consists of the notes themselves and two appendices. The contents are:

® The notes themselves document the differences, additions, changes, etc., since the last
release of the Tektronix SOS Smalltalk-80 system.

® Appendix A Smalltalk-80 Version T2.1.3b Files. For your convenience, you will find a
list of all files associated with the SOS Version T2.1.3b release.

® Appendix B SOS Image Version Changes. For your convenience, you will find a list of all
changes to classes and methods in this latest (T2.1.3b) release of the SOS image.

SOS AND LOS INTERPRETERS

Tektronix has created two distinct interpreters for the Smalltalk-80 system. The original
interpreter was developed along the lines of the interpreter specified in the Addison-Wesley
Smalltalk book by Adele Goldberg and David Robson. This interpreter, called the SOS
interpreter, allows you to develop small- to medium-sized applications. The development of more
powerful hardware — the 4405 and 4406 AIM systems — led to the creation of a new interpreter.
This new interpreter is called the LOS (Large Object Space) interpreter. The LOS interpreter
allows you to have an effectively unlimited number of objects, which means that very large size
applications are now possible to develop using the LOS interpreter.

The SOS Interpreter

The Tektronix SOS (Small Object Space) interpreter is essentially the interpreter specified in the
Addison-Wesley "blue book”. (Goldberg, Adele and David Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley, 1983.) See that book for more information
about the interpreter.

The SOS interpreter runs on the 4404, 4405, and 4406 AIS machines. However, it is strongly
recommended that you use the LOS interpreter on the 4405 and 4406 machines since the LOS
interpreter has more features and places fewer contraints on your applications than the SOS
interpreter. You should even consider converting your work developed in an SOS image on a
4404 to an LOS image on a 4405 or 4406 if you have purchased one of these faster machines.

1. Smalltalk-80 is a Trademark of Xerox Corporation.

4404 SOS Notes 1-1

4404 SOS Release Notes

Note that the LOS interpreter takes advantage of hardware features on the 4405 and 4406 and,
thus, is not available for the 4404 machine.

INVOKING SMALLTALK

The standard 4404 AIM system has resident on it one Smalltalk system, consisting of an
interpreter and a virtual image: the SOS (Small Object Space) Smalltalk-80 system. To bring up
the system, type:

smalltalk

at the system prompt. This brings up the SOS interpreter, which then loads the SOS virtual
image file.

PRIMITIVE METHODS

Some Smalltalk methods are implemented by making machine language calls directly. These
methods are called primitive methods.

String Comparison Primitive

One primitive has been added to the SOS interpreter:

148 string = — Answers true if the receiver and argument contain the same ASCII
characters. Answers false if not. Fails if the class of the argument is different from
the class of the receiver.

IMAGE MODIFICATIONS

The SOS image has a number of modifications. Here are some highlights.

® Many View subclasses (ListView, StandardSystemView, StringHolderView, and
TextView, for example) have been redefined for augmented access to fonts.
PopUpMenu, StrikeFont, and TextStyle classes also changed and two new classes,
StrikeFontManager and TextStyleManager, have been added. See Enhanced Font
Support for more details.

¢ Additional protocol has been added to TekSystemCall related to pseudo-ttys and access to
the machine name.

4404 SOS Release Notes

USER INTERFACE CHANGES

There are two changes here. New window framing gives you a bit more control of window
placement than before, and a new blue button menu item, style, allows you to easily switch
between text styles in a window.

New Window Framing

Windows now frame by letting you switch between moving the top-left and bottom-right corners
until you get them placed exactly how you want them.

When you want to frame a window via the normal user interface, for example, the "top-left"
cursor appears, which you may move around on the screen. When it is approximately in the right
position, you press the left mouse button, causing the "bottom-right” cursor to appear. Once you
have located the bottom-right comer, you have two options. The first is to remove your finger
from the mouse button completely; this has the effect of selecting the rectangle just framed. The
second option is for you to lift your finger from the mouse for just an instant and to immediately
press it again. This has the effect of moving the cursor back to the top-left comer of the
rectangle, allowing you to adjust your original placement of that corner. When you are finished
with the top-left corner, you again may move back to the bottom-right corner in the same manner,
etc.

The determination of whether you have "quick-clicked”" or not is made by an instance of class
Delay, which is created in the method getFrame. There is a constant in this routine that
specifies the time in milliseconds to wait. This constant is currently set at 250 (or 1/4 of a
second); you can set it to another value by modifying the StandardSystemView getframe
method.

Blue Button Menu

The right button menu of StandardSystemViews has a new item — style. This allows a change
of text style for a particular window, including its subviews. Available text styles are determined
by the contents of StyleManager. See the System Workspace for an example of how to add text
styles to your image.

ENHANCED FONT SUPPORT

Smalltalk has new default fonts, a larger variety of fonts, and augmented access to the fonts.
Available fonts range from very small to very large, serif and sans serif, and proportional and
monospaced fonts. These fonts have an additional face — bold italic. Protocol for adding fonts
and text styles to an image has been defined.

4404 SOS Notes 1-3

4404 SOS Release Notes

Fonts

Three properties (family, face, and size) are commonly associated with a font. Family is the
intrinsic property. Families are named and frequently protected by copyright. Examples include
"Helvetica" and "Times Roman". Face is the emphatic property. Examples include Basal (no
emphasis), Bold, Italic, Boldltalic, and Underlined. Size is the dimensional property. It is
typically specified by the height of capital "A" in points (72nds of one inch), although such a
measure is more meaningful on paper than on a display.

A Smalltalk-80 font is an instance of class StrikeFont, which represents a single combination of
family, face, and size values with a bitmap for each character. In some cases, a face (other than
Basal) is synthesized by bitmap manipulation of the Basal face. Examples include copying and
offsetting (Bold), shearing (talic), and underlining.

Available Fonts

This product release includes the families: Pellucida® Sans-Serif, Pellucida Serif, Pellucida
Typewriter, Xerox Sans-Serif, and Xerox Serif. The Pellucida Sans-Serif, Pellucida Serif, and
Xerox families are proportionally spaced (individual characters within the same font have varying
widths); the Pellucida Typewriter family is monospaced (individual characters within the same
font have the same width). The Pellucida families are new to this product release; the Xerox
families are the standard Smalltalk-80 Version 2 fonts.

Fonts are stored using a standard file format within the directory /fonts. The name of a file in this
directory should be the name of the font it holds suffixed with .font.

The name of a StrikeFont is a String with three components (family, size, and face) and no
embedded spaces. The family component is the family name with spaces removed; the size
component is the printString of the numeric size; and the face component is a String of length
zero, one, or two encoding the emphasis. The supported face codes are "" (Basal), "B" (Bold), "I"
(Italic), "X" (BoldItalic), "U" (Basal Underlined), "BU" (Bold Underlined), "IU" (Italic
Underlined), and "XU" (BoldItalic Underlined). Examples of names include "PellucidaSans-
Serif8", "XeroxSerif12I", and "Typewriter18BU". '

The Pellucida Sans-Serif and Serif fonts are available in four non-synthetic faces (Basal, Bold,
Italic, and BoldItalic) and seven sizes (8, 10, 12, 14, 18, 24, and 36 point); see Figure 1-3,
Tektronix Proportional Fonts (PellucidaSerif and PelluciaSans-Serif), for the character set
ordering. The Pellucida Typewriter fonts are available in two non-synthetic faces (Basal and
Bold) and four sizes (10, 12, 16, and 18 point); see Figure 1-4, Tektronix Monospaced Fonts
(Pellucia Typewriter) Part 1 and Figure 1-5, Tektronix Monospace Fonts (Pellucida Typewriter)
Part 2, for the character set ordering. The Xerox fonts are available in three non-synthetic faces
(Basal, Bold, and Italic) and two sizes (10 and 12 point), although the Sans-Serif Italic 10 point
font is synthetic.

2. Pellucida is a registered trademark of Bigelow and Holmes.

14

4404 SOS Release Notes

Interpreting Font Tables

A few notes on interpreting the font tables will be helpful in constructing an application. The
spaces in the table that are blank do not have a printing character for the corresponding character
code. The characters for ASCII 32 through ASCII 127 are present in both the monospaced and
proportional fonts. The proportional fonts contain additional characters in ASCII 1 through
ASCII 31. Many of these characters are compatible with those originally supplied by Xerox in
the standard Smalltalk-80 Version 2 image.

"m space” is a blank character which is the height and width of the letter m. "n space” is a blank
character which is the height and width of the letter n. "em" and "en" are dashes the width of the
character "m" and "n", respectively.

Reading and Writing

Smalltalk StrikeFont class has methods for reading and writing Tektronix font files. Note that
whenever Smalltalk reads a Tektronix font file, it switches the character position of the uparrow
character (T) and left arrow («) with the caret (*) and underscore (_) characters. Thus, if you
ask, for instance, the character T what its asciiValue is, you get 94.

The method to write a StrikeFont takes care to switch the positions of the T, «, *, and
characters if the type of the strike font is either 1 (Tektronix monospaced) or 2 (Tektronix
proportionally spaced). This ensures that the proportional or monospaced fonts written by
Smalltalk have consistent character ordering.

4404 SOS Notes 1-5

4404 SOS Release Notes

1-6

53373685 ‘00010011010‘01 ’1%‘101‘1,0‘1,1
BITS
B4 B3 B2 81
olofo]o ~ |space| 0 @ | P | ¢
ofolofe] " |ffil1|1]|A|lQ]|a
ojof1jo] & |ffl| (| 2({B|R| b | T
olof111] G lem| #[3|[C|S|c|s
o[1]o]o fi|$|4|D|T|d]|t
oftjof1}] * [fl{%|5|E|U|e|u
oj1f1fo] fflen| & |6 | F| V]| f |V
oftfhirfal = | Y[| 7|G|IW|g|w
tjofojol [|—| (| 8|H| X|h]|x
1]o]of1 el VIOV Y]]y
1lo]1]o oo | * J|Z|j| z
tofral 2 (¢4 |5 |K|L[|Kk]|{
1{1]o]o «|s|<| L] N[
1]1]o]1 -|l=({M|]|[m]}
1{i|ifo] | ~ >IN|*|n|~
Mt /72|00l

Figure 1-1. Tektronix Proportional Fonts (PellucidaSerif and PellucidaSans-Serif).

4404 SOS Release Notes

528786 o |1205 "%, |01 |04, 104 10, [11, 11,
BITS
B4 B3 B2 B1
olofo]o wacel 0 @ | P|* | p
ojofol1 '11|A|(Q|a|q
ofoli]o "l2|B|R|b|Tr
ojoj1| #|13|C|S|c|s
o|l1|o]o $(4|{D|T|d]|t
oj1]o]1 %|5|E|U|e|u
of1{1]o &&| 6| F|V|f|vV
ol1]1]1 "1 7|G|{W[g|lw
1{o]o|o ({8|H]| X|h|Xx
1]ofo]1 el VIO N Y] ily
1fof1]o $ |+ J|1Z|ijl|z
A CRERR [+ |5 |K[I[]|Kk|{
1{1]o]o s < | L]V}
1|1]o]1 -|l=(M|[]|m|}
1|1{1]o >|N|A| nf~
1[0 [M, /I{?2|0|-|0o | K

Figure 1-2. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 1.

4404 SOS Notes) 1-7

4404 SOS Release Notes

BBB7 10 1 1 1 14 1 1 11
B6gs| 00| %04 %1, 1, T00| Toq| T1g| 14
BITS
B4 B3 B2 81 __|
olololo| NU|DL|SP| o | - | N | @ E
128 laa 160 li7e lioz loos |224 |240
olofof+|SH|{DI | A|l |¢| | R|H
120 las l161 lizz l1os loos l225 |o47
olol1]o] SX|D2| & | 2 I | ¢ | HT
130 liae_lieo lizs lioa loro’. loos 247
olof+|+|EX|D3| Al s | T| i |FF|Q
131_laz_liea lim lios lorg loor |ogm |
olilo|of ET|DAl & | « | O « |CR|[H
132 148 l1e4a 180 lios o1z looe |oaa
ol1]lo] 1] EQ|NK| £ 5 | B| o |LF H]
1331140 165 lar l1o7 lo13 |20 |o~ |
oli]1|o|AK|SY| | ¢ |@| t|°|H
124 | 150 ligg lis2 lies l214 230|246
oli|1|:|BL|EB| a7 |A|p | ¢
a5 st lez hies lieo lois 231 |oa7
ilolofo|BS|ON| C |8 | 5 |un |NL [[I
136 lisp lies lsa looo 216|232 248
dolol|HT|EM| é | @ | 2 | X |VT| <
137 lisa_ lieo lies loo1 1217 1233 |oao
110l1lo0 LF SB) u Q El 2
138__bisa lizo |18 218 loza l2so
iloli 1| VT|ECc| O] B r El n
130 _biss iz sz 219|235~ los1
J T IFe[Fs] 6 [@ J LE "
190 V156 172 l1ss 220 252
1111011 CR GS Q CI + B £
141|157 173 ligo 221 7
1|{t|1]0 SO Rs| U § - = B -
1421158 li7a l100 loos looo |238 254
143 l1so 1175 191 loo7 |23 235 |2s5

Figure 1-3. Tektronix Monospaced Fonts (Pellucida Typewriter) Part 2.

1-8

4404 SOS Release Notes

The new class StrikeFontManager is a subclass of Dictionary and stores Associations between
String names and StrikeFonts. A single instance of StrikeFontManager is known as the global
FontManager. Particularly useful messages to this object include:

FontManager inspect.
FontManager fontNames: anArray.

The inspect method opens a Dictionarylnspector on FontManager.

The fontNames: method returns an Array of StrikeFonts corresponding to anArray of String
names. It attempts to load a font from the system font directory (/fonts) if that font is not already
resident (contained within FontManager). The name of a file in this directory should be the
name of the font it holds suffixed with ".font". The method further attempts to synthesize a font
if it is not already resident and cannot be located within the system font directory.

Text Styles

Most text processing in Smalltalk-80 is performed not with instances of class StrikeFont in
isolation but rather with instances of class TextStyle, whose properties include:

¢ fontArray (an Array of StrikeFonts)

* lineGrid (distance from top of text line to top of next text line)

® baseline (distance from top of text line to base of capital letters)
® additional lineGrids and baselines for lists and menus

¢ alignment code (flush left, flush right, centered, justified)

¢ indentation and tab stop parameters

These properties of a TextStyle, as its name implies, are mostly a matter of personal style and
system convention. The fonts are usually members of a single family (although the system
default, described below, violates this rule for historical reasons) in one or two sizes and several
faces. The lineGrid (termed "leading” by typographers) is usually the height of the tallest font in
the style plus a certain amount of additional white space. The baseline is shared by all of the
fonts in the style so that the bases of their capital letters are aligned. Subscripts and superscripts,
of course, would violate this rule, but they are not supported in this product release (although
rudimentary capabilities do exist within classes StrikeFont, TextStyle, and DisplayScanner).
Flush left alignment has historically been the default in Smalltalk-80, but other possibilities are
certainly available. '

Obvious uses of TextStyles include class ParagraphEditor and its subclasses (in Workspaces,
System Transcripts, Projects, and the bottom panes of System Browsers, File Lists, and
ChangelistViews). Less obvious uses include lists, menus, and title tabs of
StandardSystemViews. Even less obvious uses include the String messages asParagraph
and asDisplayText. This broad variety of uses prompts some common questions:

¢ What is the system default style?
¢ Can additional styles coexist?

¢ If so, how are they created and catalogued?

4404 SOS Notes 1-9

4404 SOS Release Notes

¢ How can the system default style be changed?
® How can the style of a view or subview be changed?
These questions are addressed in the following paragraphs.

The system default style is mentioned in chapter three of the Goldberg ("orange") book. It
~ contains twenty-four fonts (two families, two sizes, and six faces) ordered as follows:

® Sans-Serif 10 (Basal, Bold, Italic)

Serif 12 (Basal, Bold, Italic)

Serif 10 (Basal, Bold, Italic)

Sans-Serif 12 (Basal, Bold, Italic)

all of the above repeated but Underlined

The original Smalltalk-80 system default style used the Xerox sans serif and serif font families.
This product release maintains other characteristics of that style (including the unusual mixing of
sans serif and serif families) but uses the Pellucida families in the default text style.

The new class TextStyleManager is a subclass of Dictionary and stores Associations between
String names and TextStyles. A single instance of TextStyleManager is known as the global
StyleManager. Particularly useful messages to this object include:

StyleManager inspect.

StyleManager
styleName: aString
fontNames: anArrayOfStrings
lead: aninteger.

StyleManager
styleName: aString
baseNames: anArrayOfStrings
lead: aninteger.

The inspect message opens a Dictionarylnspector on StyleManager.

The styleName:fontNames:lead: and styleName:baseNames:lead: methods return a new
style named aString. The fontNames: version accepts font names with arbitrary face codes in
anArrayOfStrings whereas the baseNames: version accepts only Basal font names and
imposes the following order on the fonts:

® (anArrayOfStrings at: 1) Basal

® (anArrayOfStrings at: 1) Bold

® (anArrayOfStrings at: 1) Italic

® (anArrayOfStrings at: 1) BoldItalic

® similar sequence(s) for other element(s) of anArrayOfStrings (if any)
¢ all of the above repeated but Underlined

The actual font array is obtained from FontManager via the fontNames: message thereby
invoking the font loading and synthesizing mechanisms discussed above. The lead: parameter is
the amount of additional white space to add to the height of the tallest font to obtain the lineGrid
for the style. Both methods also install the new style in StyleManager for future reference.

1-10

4404 SOS Release Notes

Thus the expression that created the system default style is:

StyleManager

styleName: "Pellucida Default 10 and 12°

fontNames: #(
‘PellucidaSans-Serif10”
‘PellucidaSans-Serif10B’
"PellucidaSans-Serif10l”
‘PellucidaSerif12”
‘PellucidaSerif12B”
"PellucidaSerif12l’
‘PellucidaSerif10°
"PellucidaSerif10B’
"PellucidaSerif101°
‘PellucidaSans-Serif12°
‘PellucidaSans-Serif12B°
"PellucidaSans-Serif121”

"PellucidaSerif10U”
"PellucidaSerif10BU”
"PellucidaSerif10iU’
‘PellucidaSerif12U°
"PellucidaSerif12BU’
"PellucidaSerif12IU°
‘PellucidaSans-Serif10U’
‘PellucidaSans-Serif10BU”
‘PellucidaSans-Serif10IU”
"PellucidaSans-Serif12U°
‘PellucidaSans-Serif12BU’
‘PellucidaSans-Serif121U")
lead: 3.

A similar expression using the base name technique is found in the System Workspace:

StyleManager
styleName: "Pellucida Sans-Serif 12 and 14°
baseNames: #("PellucidaSans-Serif12” "PellucidaSans-Serif14°)
lead: 3.

These expressions illustrate two style conventions. The first suggests font family and size in the
style name. Mixing sans serif and serif families in one style, preferably with the font ordering
convention described in the Goldberg book, is connoted by the common font family name prefix
(assuming there is one!) concatenated with the word "Default”. Thus the original Smalltalk-80
style name would be "Xerox Default 10 and 12". Note that embedded spaces are encouraged in
style names (unlike font names, which must be storable in the filing system). The second
convention is the use of three additional pixels of leading in styles mixing two near sizes of fonts.
Most text in the context of the style is expected to be in one of the smaller fonts.

Expressions similar to these can be found in files in the Smalltalk text style directory
(/smalltalk/textStyles). These files store not styles but rather expressions that create styles; this
distinction is suggested by the file suffix ".ws" (an abbreviation for ".workspace”). These files
can be filed in if wholesale style acquisition is desired, or specific expressions can be executed to
acquire specific styles. The System Workspace holds an expression that references this

4404 SOS Notes 1-11

4404 SOS Release Notes

directory to discard all existing fonts and styles, read in small fonts, and create a new default style
(useful on systems with a small screen):

Compiler evaluate:
((Disk file: "/smalltalk/textStyles/pruneToPellucidaDefault08and10.ws")
contentsOfEntireFile).

The StyleManager maintains the mapping from style names to styles for future reference when
it is desired to change the system default style or the style of a view or subview. The expression:

StyleManager changeDefaultTextStyle.

pops up a menu of resident styles, waits for a style to be selected with any mouse button (or
aborts if the button is released outside the menu), and then changes the default style to the
selected style. This also rebuilds system menus and recomposes text in scheduled views and
subviews in the current project. This capability can be added as the "style" entry of the middle
button menu of class ScreenController by filing in:

Ismalltalk/fileIn/addT extStyleT oSystemMenu.st

A subset of this capability (propagate the selected style to the title tab and subviews of the current
view) is available as the "style” entry of the right button menu of scheduled controllers. See User
Interface Changes.

An even smaller subset of this capability (propagate the selected style only to the subview) can be
added as the "style" entry of the middle button menu of class ParagraphEditor and several of its
subclasses by filing in:

IsmalltalkifileIn/addTextStyleT oY ellowButton.st

The methods at:, at:put:, and removeKey: are useful for more primitive manipulation of
StyleManager; the last two automatically update the menu of resident styles. Note that
changing a style in StyleManager by itself usually has no effect on any text since styles are
typically copied before use. An experimental style can be tested by adding it to StyleManager
and then selecting it with the appropriate menu button.

The method initializeMenus rebuilds system menus. It references several lists that should be
extended for applications with private menus.

Miscellaneous

Class StrikeFont has new instance variables ascentForStdAsciiChars and
descentForStdAsciiChars. These maintain the envelope of characters space (Ascii Decimal
Equivalent 032) through tilde (ADE 126) for use by class TextStyle to compute styles for lists
and menus (see below). A simple TextStyle can be constructed by sending asTextStyle to an
instance of StrikeFont. Finally, the metaclass understands readAll: and readFrom:; the latter is
used by class StrikeFontManager to load fonts from the filing system.

Class TextStyle has new instance variables lineGridForlLists, baselineForLists,
lineGridForMenus, and baselineForMenus. These support conversion of the style for lists and
menus with the methods asListStyle and asMenuStyle. The method flushFonts has been
removed.

4404 SOS Release Notes

Class PopUpMenu (and hence class ActionMenu) replaces instance variable font with
textStyle. The private method labels:font:lines: has been replaced by labels:textStyle:lines:.
The metaclass understands labels:lines:alignment: so that non-centered alignments may be
easily specified.

Within class ParagraphEditor, the control-x key formerly de-emphasized the current selection.
Now control-x switches to a BoldItalic font (if possible), control-X switches to a non-BoldItalic
font, and control-e de-emphasizes.

A new instance variable textStyle has been added to classes DisplayTextView, ListView,
StandardSystemView, StringHolderView, SwitchView, and TextView. A method
recomposeWithTextStyle: has been added to classes Paragraph and TextList. Class FileList
has been modified not to cache menus in instance variables. Within pool dictionary.
TextConstants, DefaultLineGrid and DefaultBaseline have been removed; CtriX and Ctrle
have been added; and Ctrix has been changed.

STORING AND RETRIEVING OBJECTS ON FILES

You can include in your SOS image a mechanism for storing and retrieving object representations
(including objects with circularities) on a file (or other character stream). This mechanism has
two advantages over the original Smalltalk storeOn: mechanism. First, storeOn: does not work
for objects that contain circularities; second, storeOn:’s output is meant to be read in by the
compiler which limits the number of literals in an object to 64. Thus, storeOn: will not correctly
handle all object structures.

The /smalltalkiconversion directory contains a file, with this reading and writing mechanism,
called structSOSPackage.st.. Incorporate this package into your SOS image by filing it in and
using the methods below. This package also contains a copying mechanism discussed in the next
section. This package may be used to transfer structures between LOS (Large Object Space) and
SOS images.

Using the Reading and Writing Mechanism

Four visible messages are defined to provide the writing or reading of objects to or from files or
character-streams.

4404 SOS Notes 1-13

4404 SOS Release Notes

To Write Structures:

someObject storeStructureOn: aStream.

Stores an object representation on a character stream aStream.

someObiject storeStructureOnFile: aString.

Stores an object representation on a file named aString.

To Read Structures:

Object readStructureFrom: aStream.

Answers an object defined by stream aStream.

Object readStructureFromFile: aString.

Answers an object defined on a file named aString.

These programs should allow object representations to be written or read to or from string format.

Implementation Details

This mechanism maps objects based on == (equality). If an object has a circular structure when
written out, it will be circular when read back in. Similarly, acyclic structures are read back in as
acyclic structures. There are a few cautions, however:

1.

1-14

There are some objects, such as processes, that may cause unexpected behavior if an
attempt is made to write them out, or particularly to read back in. Contexts are treated
specially in that the sender is always written out as nil. CompiledMethods are written out
in a special format, which is compatible with both SOS and LOS images. Also be aware
that the receiver of a MethodContext in which the block context was created is also
copied as part of the definition of the MethodContext.

Smalltalk treats certain objects in a special way, guaranteeing their uniqueness. A new
selector, isUniqueValue, has been defined that returns a boolean value, stating whether the
object has this property. Such classes include UndefinedObject, Boolean, Symbol,
Smallinteger and Character. Objects in these classes are mapped to the corresponding
object in the target image. Floating point numbers are written out to 9 digits of accuracy.
If more (or less) accuracy is desired, it is necessary to modify the method Float
printStructureOn:.

This step does not apply to objects for which isUniqueValue is true. Objects that
correspond to global Smalltalk names in the original image are mapped to objects with
corresponding global Smalltalk names in the target image. This prevents classes and
metaclasses from being duplicated. It requires, however, that you be responsible for
ensuring that the target image defines all global variables that are referenced (directly or

4404 SOS Release Notes

indirectly) by the object in the source image. If two Smalltalk globals refer to the same
object, the result is nondeterministic.

4. Most classes are stored and read in using methods inherited from class Object, which copy
instance variables and array elements using instVarAt:, etc. This means that classes must
have identical definitions in both the original and target images. It also means that classes
that depend on the hash values should be handled specially. Currently, only Set and its
subclasses are treated specially for this reason. String and Number (and their subclasses)
are treated specially for conciseness of notation (and because Smalllnteger must be treated
specially anyway). CompiledMethod is also treated specially to ensure the transfer
between SOS and LOS images.

5. A receiver’s dependents (from the Smalltalk dependency mechanism) are not mapped.

COPYING CIRCULAR STRUCTURES

The following methods implement a mechanism for copying Smalltalk objects that may contain
circularities. The Smalltalk method shallowCopy does not generally copy the complete
structure, while deepCopy generally only works for non-circular structures.

Using the Copying Mechanism

Two visible messages are defined to provide the copying of structures.
someObject structureCopy

Answers a copy of the object.
someObject structureCopyWithDict: anildentityDictionary

Answers a copy of the object, given that a partial list

of mappings from objects in the old domain to the new
are in anldentityDictionary. The method may have side
effects on anldentityDictionary, adding new mappings.

The simplest way to use these methods is to use structureCopy. However, if you want to have a
handle on the mapping dictionary (either to pre-specify some mappings, to know the mappings
after the copy has been created, or to get a copy of several objects that may have common
subobjects), you should supply your own IdentityDictionary and use structureCopyWithDict:.

Implementation Details

This mechanism maps objects based on == (equality). There are a few cautions, however:

1. The copying of objects such as processes will probably cause strange behavior. When a
context is copied, the sender field in the new context is nil. The receiver part of a
MethodContext, however, becomes mapped to a new object just as any other object

4404 SOS Notes 1-15

4404 SOS Release Notes

would. CompiledMethods are not copied; rather, the original object is returned. The idea
here is that compiled methods should be constant objects.

2. Smalltalk treats certain objects in a special way, guaranteeing their uniqueness. These
objects in classes such as Boolean, Smallinteger, and Character will return themselves
rather than a copy.

3. Most classes are stored and read in using methods inherited from class Object, which copy
instance variables and array elements using instVarAt:, etc. This means that classes that
depend on the hash values should be handled specially. Currently, only Set and its
subclasses are treated specially for this reason.

4. A receiver’s dependents (from the Smalltalk dependency mechanism) are not mapped.

SOS SYSTEM WORKSPACE MODIFICATIONS

The SOS System Workspace has additional text that describes some of the added functionality of
this SOS Smalltalk system. The list of globals now includes FontManager, an instance of
StrikeFontManager, which maps names to instances of StrikeFont, and, StyleManager, an
instance of TextStyleManager, which maps names to instances of TextStyle. The list also
includes OSEnvironmentVariables, a Dictionary containing the environment variables passed
to the Smalltalk interpreter.

A new section in the System Workspace is titled Fonts and Text Styles. This section includes:

StyleManager inspect
Opens an inspector on all the text styles in the image.

StyleManager

styleName: "Pellucida Sans-Serif 12 and 14°
baseNames: #('PellucidaSans-Serif12" ‘PellucidaSans-Serif14°)
lead: 3.

Installs a new text style containing two fonts. This text style is named ‘Pellucida Sans-Serif
12 and 14°. If the fonts are not contained in the image, they will be loaded from the /fonts
directory. The vertical spacing (leading) for this text style is 3 pixels. The text style contains
basal, bold, italic, and bold italic faces for each font.

StyleManager changeDefaultTextStyle

Pops up a menu of available TextStyles. Selecting one progagates it to: default TextStyle,
system menus, and all scheduled views and their subviews.

Compiler evaluate: ((Disk file: “/smalltalk/textStyles/
pruneToPellucidaDefault08and10.ws’) contentsOfEntireFile).

1-16

4404 SOS Release Notes

Creates a new TextStyle in the Xerox style with mixed serif and sans serif fonts. Discard all
other TextStyles and StrikeFonts.

These are additions to the Display section:
Display setMouseBounds: (-50@-50 corner: 1500@1500)
Allows the mouse cursor to move outside the visible screen bounds.

TekSystemCall execSystemUtility: “/bin/free” withArgs: (OrderedCollection with:
“/dev/disk’)

Asks the operating system how much space is available on the hard disk.

MISCELLANEOUS CHANGES

Here is a list of some visible changes to the image not mentioned in any other section:
® The global variable Environment has been renamed OSEnvironmentVariables.

® The use of the writeCloneWithout: message to a system tracer produces a clone but does
not produce new source files. New source files may be produced in a separate step.

CONVERSION OF IMAGES

Introduction

The conversion software consists of three files, called the Smalltalk Delta files. These are:
® /smalltalk/conversion/deltaT2.1.2ToT2.1.2a.st
® /smalltalk/conversion/deltaT2.1.2aToT2.1.3.st
® /smalltalk/conversion/deltaT2.1.3ToT2.1.3b.st

As you can deduce from the file name, the process of incorporating the file
deltaT2.1.2ToT2.1 2a.st into a Version T2.1.2 image converts it into a Version T2.1.2a image.
The other two files work analogously, of course. To ensure success in converting your image,
read this document carefully before incorporating any Smalltalk Delta files into your images.

Should You Convert?

Not everyone needs to follow the conversion procedures in these notes. These notes and the
Smalltalk Delta files are provided for Version T2.1.2, T2.1.2a, or T2.1.3 Smalltalk users. (Note
that your version number is at the top of your system workspace).

4404 SOS Notes 1-17

4404 SOS Release Notes

NOTE

If you have not created any Version T2.1.2 or T2.1.2a Smalltalk
1mages that you want to save, it is not necessary to convert your
images. Instead, just use the new standard image that is part of the
standard software.

Your standard image should be Version T2.1.3b, the most recent version of the SOS Smalltalk
image.

Saving Disk Space

If you want to free up some disk space, you should consider deleting sources and changes files
associated with earlier versions of Smalltalk. For example, if you are not going to keep any
T2.1.2 Smalltalk images, you, as system administrator, may also want to recover disk space by
deleting the files:

® /smalltalk/system/standardSources.VersionT2.1.2
¢ /smalltalk/system/standardChanges.VersionT2.1.2
® /smalltalk/system/standardSources.VersionT2.1.2a
® /smalltalk/system/standardChanges.VersionT2.1 2a
However, if you decide to retain your old work there are two recommended ways to proceed.

¢ If your work in, for example, Version T2.1.2 is contained in a few new classes of your own
creation, or your work is not very large, you may want to fileOut changes from your old
image. Filing out changes is a part of standard programming methodology in Smalltalk.
Once your changes have been separated from the image, they can easily be incorporated
into another image. Add this filed out code to your own copy of the current standard image
(Version T2.1.3b).

¢ Incorporate this update into your old Version T2.1.2 or T2.1.2a image. To do this, proceed
to the next heading.

The Fileln Process

The Smalltalk Delta files, located in the /smalltalkiconversion, directory are:
® /smalltalkiconversion/deltaT2.1.2ToT2.1.2a.st
¢ /smalltalki/conversion/deltaT2.1.2aToT2.1.3.st
® /smalltalkiconversion/deltaT2.1.3ToT2.1.3b.st

The order of expressions in the files is determined by dependencies and the Smalltalk class
hierarchy.

Smalltalk has several tools to assist you in filing in these update files. A FileList lets you
examine the text in a file, make changes, and/or add the code to your image. A ChangeListView
partitions code from a file into individual units for fileln. In this way, parts of a file may be
added to your image. A ChangeListView also has a utility for comparing its contents with the

1-18

4404 SOS Release Notes

current project’s ChangeSet. For a more complete discussion, see the section on the Change-
Management Browser in Goldberg’s Smalltalk-80: The Interactive Programming Environment,
Addison-Wesley, 1984, starting on page 468.

Suppose, after looking at the Class List section, you suspect that a conflict may exist between
your additions to an SOS image and the code in the Smalltalk Delta file deltaT2.1.3ToT2.1.3b.st

a. Open a ChangelistView and use the middle button to fileln deitaT2.1.3ToT2.1.3b.st.
This operation places the code in the ChangeListView but does not incorporate it into the
image.

b. Use the middle button to check with system. This operation compares the current
ChangeSet to the contents of the ChangeListView. Conflicts are written on an external
file.

c. Examine these conflicts using a FileList.

Suppose a conflict exists between your definition of Path scaleBy: and the definition of Path
scaleBy: contained in deltaT2.1.3ToT2.1.3b.st. You may at this time use a browser to examine
users of scaleBy: and decide to discard one of the two methods. Suppose you decide to discard
the scaleBy: method in the deltaT2.1.3ToT2.1.3b.st file.

a. In the ChangelistView, select the Path scaleBy: method and use the middle button to
remove it.

b. Use the middle button menu to do it to each remaining piece, or do all to incorporate all
the remaining pieces of code into your image.

If you decide to keep the definition of scaleBy: in the deltaT2.1.3ToT2.1.3b.st file and discard
your current definition of scaleBy:, simply incorportate all of deltaT2.1.3ToT2.1.3b.st by using
the do all menu item. This overwrites your version of scaleBy:.

Suppose after finding a conflict you wish to retain the functionality of both versions of the
method. If possible, the two methods could be combined into a new method with the same
selector. In this case, use the browser to modify your version of the method to have a combined
functionality, and use the ChangeListView facilities to prevent the incorporation of the version
from the delta file. »

Alternatively, it is sometimes difficult to combine conflicting methods. In this case we suggest
the following:

a. Use the browser to examine senders of the conflicting method.

b. Create a new method with a different message selector that has the functionality of your
version of the conflicting method.

¢. Modify appropriate senders to use the new method.

d. Incorporate the code from the delta file into your image, which will overwrite your original
version of the conflicting method. Your new method with a different selector will not be
affected by incorporating the delta file version of the original method. Your original
version of the conflicting method will be overwritten.

4404 SOS Notes 1-19

4404 SOS Release Notes

Smalltalk Delta Files Contents

This is a description of the differences between Smalltalk versions. There are only bug fixes in
this release. Changes to many classes have been made to fix errors in code and comments.

SOS Delta File Classes
Here are the classes that have been modified in going from Tektronix Smalltalk Version T2.1.2 to

Version T2.1.3.

1-20

Behavior
BitEditor class
Browser
ChangeScanner
Character class
Checker class
Class
ClassDescription
Collection
CompiledMethod
Compiler
ContextPart
ControlManager
Cursor class
Debugger
DisplayBitmap class
DisplayScreen
DisplayText class
DisplayTextView
Encoder
FileDirectory
FileList
FileStream
FillinTheBlank class
Float

Form class
FormHolderView
InputSensor
Inspector
ListView
MessageNode
MethodContext

MethodDefinitionChange

MethodNode
NotifierView class
NotifierView
Number

PipeStream

Point

PopUpMenu class
PopUpMenu
PositionableStream
ProcessorScheduler class
ProcessorScheduler
Project

ProjectController class
Rectangle class
Rectangle

ReturnNode

Scanner
ScreenController
ScroliController
SequenceableCollection
Set class
StandardSystemController class
StandardSystemController
StandardSystemView
Stream

StrikeFont

StrikeFont class
StrikeFontManager
StrikeFontManager class
StrikeFont
StringHolderView -
Subtask class
SwitchView
SystemDictionary
TekSystemCall class
Text class

TextCollector

TextList class

TextList

TextStyle

TextStyle class

4404 SOS Release Notes

Object TextStyleManager
Paragraph TextStyleManager class
ParagraphEditor TextStyle
ParagraphEditor class TextView

Pen View

PipeReadStream

SOS Delta File Classes
Here is a list of all the classes modified by going from Tektronix Smalltalk Version T2.1.3 to

Version T2.1.3b.

Arc

Behavior

Circle
ContextPart
Cursor

Curve

Debugger

Delay class
Delay
DisplayScreen
Explainer
ExternalStream
FileDirectory
FileStream
FileStream class
FilllnTheBlankController
Form class
FormEditor class
ldentityDictionary
InputState
Integer

Line

LinearFit
ListController
ListView
NotifierView class
Object
OnlyWhenSelectedCodeController
ParagraphEditor

System Workspace

Your System Workspace should be updated. If you fileln all of the code provided in the Delta
files, please change the Version in the System Workspace in SOS images to T2.1.3b.

4404 SOS Notes

Path class

Path

Pen

Pipe
PipeReadStream
PipeStream class
Pipe

ProcessHandle
ScreenController
ScrollController class
ScrolliController
Spline
StandardSystemView
StrikeFont
StringHolderView
Subtask

Subtask class
SwitchView
SystemDictionary
SystemOrganizer
SystemTracer
TekSystemCall
TekSystemCall class
TextStyle
TextStyleManager class
TextStyleManager
TextView

Time class
WordArray

1-21

4404 SOS Release Notes

SMALLTALK DIRECTORIES

With this release of Smalltalk, some new directories and additions and changes to existing
directory files have been made.

New Directories

The directory /smalltalkiconversion has been added. This contains files for converting one
version of a Smalltalk image file into another.

A special directory, /smalltalk/demolforms, has been created for forms alone.

New text styles have been added to this release of Smalltalk. Thus, the directory,
Ismalltalk/textStyles, has been created and contains code to create instances of text styles in an

image.

Specifically,

PellucidaDefault08and10.ws

PellucidaDefault10and12.ws
PellucidaSans-Serif08tight.ws
PellucidaSans-Serif.ws

PellucidaTypewriters.ws
example.ws

pruneToPellucidaDefault08and10.ws

New Files
The following files in the directory, /smalltalkifileln, have been added:

1-22

Graphics-Fractals.st
addTextStyleToSystemMenu.st
addTextStyleToYellowButton.st
extendedBrowser.st
JjoydiskAccessAndExample.st
workspaceFileOut.st

Contains code to install the small default style in the
Xerox manner, that is, basal, bold, and italic (a triplet)
in addition to mixed serif and sans serif faces.

Contains the medium sized default faces.
Contains an example of minimal vertical spacing.

This file along with PellucidaSerifs.ws contain code
to create all available text styles in the quadruplet
format, that is, basal, bold, italic, and bold italic.

Contains code to create monospaced fonts.

Contains code to create a single, large text style in the
quadruplet format.

Contains code to remove all text styles and create the
small default triplet style.

4404 SOS Release Notes

PRINTING SMALLTALK BITMAP FILES

Look in the /samples/printer directory for a C program, bprint.c, that prints Smalltalk forms or
bitmaps on a Tektronix 4644 printer. You can either use this program as it stands if you have the
4644 printer or you can modify the program to be compatible with a different printer.

This program, bprint.c, prints Smalltalk bitmaps as generated by the screenCopy menu item or
from a writeOn: of a specific form. If you modify the program, the default graphic density and
screen width pixels per printer line should be determined by the characteristics of your printer. In
bprint.c, the default graphic density is double. Option "+s" enables single-density mode which
gives you a larger image but with possible truncation.

4404 SOS Notes 1-23

Appendix A
Smalltalk-80 Version T2.1.3b Files

The following is a list of all the files associated with the Tektronix Smalltalk-80 system Version
T2.1.3b.

Directory /smalltalk:
standardImage
Directory /smalitalk/conversion:

deltaT2.1.2ToT2.1.2a.st
deltaT2.1.2aToT2.1.3.st
deltaT2.1.3ToT2.1.3b.st
structSOSPackage.st

Directory /smalitalk/demo:

Mastermind-Support.st
Othello.script
Othello.st
Pentominos.script
Pentominos.st
README
WaterJugs.st
demoChanges
demolmage

forms
makingADemolmage.st

Directory /smalltalk/demolforms:

aim.form
falll.form
fall2.form
fall3.form
fractall.form
fractal2.form
headl.form
head2.form
head3.form
head4.form
headS.form
laundry1.form
laundry2.form
laundry3.form

4404 SOS Notes ' A-1

Smalltalk-80 Version T2.13b Files

laundry4.form
laundryS.form
manl.form
man2.form
man3.form
man4.form
man5.form
man6.form
man7.form
man8.form
man9.form
nebula.form
pegasus.form
pendulum1.form
pendulum10.form
pendulum11.form
pendulum12 . form
pendulum13.form
pendulum?2.form
pendulum3.form
pendulum4.form
pendulumS5.form
pendulumé6.form
pendulum?7.form
pendulum8.form
pendulum9.form
sketch.form
tekLogo.form
usa.form
waterfall.form
wingedHorse.form

Directory /smalltalk/fileln:

Animation.st
BookIndexBrowser.st
Clock.st
Examples-Subtasking.st
FinancialHistory.st
Formclass-readMacPaintFile:.st
Graphics-Fractals.st
IconPopUpMenu.st
KineticGraphics.st
PointingHand. st
PopUpMenuHelp.st
ProjectBrowser.st
ProtocolBrowser.st
README
Signals-Support.st

- Sound-Support.st

A2

Smalltalk-80 Version T2.1.3b Files

WireList-ASimpleMVCExample.st
addTextStyleToSystemMenu.st
addTextStyleToYellowButtonMenu.st backgroundForm.st
bluelnspect.st

corePlot.ws

extendedBrowser.st

findClass.st
hardCopyFunctionKey.st
inspectlt.st
joydiskAccessAndExample.st
sampleBook.index

slideMaker.st

symbolRecovery.st

toothpaste.ws

workspaceFileOut.st

zoomTo.st

Directory /smalltalk/system:
initialization
standardChanges.VersionT2.1.3b
standardSources. VersionT2.1.3b

Directory /smalltalk/systemlinitialization:

SystemWorkspace.ws
black.form
block.form
borderform.form
curve.form
darkgray.form
erase.form

gray.form

in.form -
installPellucidaDefault10and 12 TextStyle.st
lightgray.form
line.form
magnify.form
out.form

over.form
repeatcopy.form
reverse.form
select.form
singlecopy.form
specialborderform.form
togglegrids.form
under.form
white.form
xgrid.form

4404 SOS Notes A-3

Smalltalk-80 Version T2.1.3b Files

ygrid.form

Directory /smalltalk/textStyles:

PellucidaDefault08and10.ws
PellucidaDefault10and12.ws
PellucidaSans-SerifO8tight.ws
PellucidaSans-Serifs.ws
PellucidaSerifs.ws
PellucidaTypewriters.ws
XeroxDefault10and12.ws
additionalFonts.ws

example.ws
pruneToPellucidaDefaultO8and 10.ws

A4

Appendix B
SOS Image Version Changes

The Tektronix 4404 Smalltalk system supports the Small Object Space image (Version T2.1.3b).
The following two lists show the differences between Versions T2.1.2a and T2.1.3, and Versions
T2.1.3 and T2.1.3b.

In the left column, you will find the classes or methods that are new or changed. In the right
column, you will find an indication of the nature of the change.

Each piece of Smalltalk code in the two lists is categorized as follows:
¢ NEW - Indicates new code.
¢ MODIFIED - Indicates a change, possibly a functional change.
¢ DEFINITION - Indicates a class definition or redefinition.
¢ EXECUTE - Indicates literai execution of the code.
¢ REMOVE - Indicates removal of a method.

Changes Up To Version T2.1.3

The following list shows the changes between the Tektronix Smalltalk-80 images Version
T2.1.2a and Version T2.1.3.

Behavior kindOfSubclass ‘ REMOVE
Behavior removeSelectorSimply: MODIFIED
BitEditor class initialize MODIFIED
Browser removeClass MODIFIED
Browser renameClass MODIFIED
ChangeScanner scanClassExpression:do: MODIFIED
Character class readDefinitionFrom:map: NEW
Checker class classVariablesNotReferenced NEW
Checker class printClassVariablesNotReferencedOn: NEW
Class nonVariableSubclass:instanceVariableNames:c...: NEW
Class replaceNameWith: NEW
ClassDescription definition MODIFIED
ClassDescription kindOfSubclass MODIFIED
ClassDescription moveChangesToSources: NEW
Collection growSize MODIFIED
Collection maxSize MODIFIED
CompiledMethod class newBytes:flags:nTemps:nArgs:nSt... NEW
CompiledMethod class newBytes:flags:nTemps:nStack:nLits: NEW
CompiledMethod class nuilSourceDescriptor NEW
CompiledMethod class quickReturnPC NEW
CompiledMethod nullSourceDescriptor NEW
CompiledMethod openByteCodeStream NEW
CompiledMethod setPrimitive: NEW

4404 SOS Notes B-1

SOS Image Version Changes

CompiledMethod sourceDescriptor:
CompiledMethod sourceDescriptor
CompiledMethod sourceOffset
CompiledMethod trailerSize
Compiler evaluate:in:to:notifying:ifFail:
ContextPart at:put:

ContextPart class basicNew:
ContextPart class new:

ContextPart copy

ControlManager discardCachedDisplayForms
ControlManager restore

Cursor centerCursorinViewport
Cursor class currentCursor:
Debugger bindingOf:forStore:
DisplayBitmap class basicNew:
DisplayBitmap class new:
DisplayScreen class currentDisplay:
DisplayScreen class displayExtent:
DisplayScreen resetFrom:extent:
DisplayScreen resetFrom:extent:offset:
DisplayScreen setDisplayStateFrom:
DisplayScreen setMouseBoundsUpper:low...
DisplayScreen setMouseBounds:
DisplayScreen viewportCenter
DisplayScreen viewport ‘
DisplayScreen writeBitmapOn:
DisplayText class text:

DisplayText textStyle
DisplayTextView initialize

Display TextView textStyle:
DisplayTextView textStyle
DisplayTextView

Encoder noteSourceRange:forNode:
Encoder sourceMap:

Encoder sourceMap

Encoder tempNames

FileDirectory fullName

FileList createDirectory

FileList createFile

FileList directoryMenu

FileList fileListMenu

FileList fileName:

FileList newFileMenu

FileList resetFileMenu

FileStream appendFileStream:
FileStream binary

FileStream class initialize

NEW
NEW
NEW
NEW
MODIFIED
MODIFIED

NEW
MODIFIED
MODIFIED

NEW
MODIFIED

NEW

NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED

NEW
MODIFIED
MODIFIED

NEW

NEW

REMOVE
MODIFIED

NEW
MODIFIED

NEW

NEW

DEFINITION
MODIFIED
MODIFIED

NEW
MODIFIED
MODIFIED
MODIFIED'
MODIFIED
MODIFIED
MODIFIED

NEW
MODIFIED
MODIFIED

NEW
MODIFIED
MODIFIED

SOS Image Version Changes

FileStream contentsOfEntireFile
FileStream nextPutAll:
FileStream nextPutAll:startingAt:

FileStream nextPutAll:startingAt:to:

FileStream padTo:
FileStream size

FileStream text
FillinTheBlank class example1
FillinTheBlank class example2
Float arcCos

Float arcSin

Float arcTan

Float class initialize

Float class negativelnfinity
Float class notANumber:
Float class notANumber

Float class positiveinfinity
Float exp

Float floorLog:

Float isInfinity

Float isNAN

Float isNegativelnfinity

Float isNormal

Float isPositivelnfinity

Float In

Float log

Float printOn:

Float printStructureOn:

Float truncated

Float

Form class readFormFile:
FormHolderView cancel
InputSensor currentCursor:
Inspector fieldList

ListView initialize

ListView list:

ListView selectionBox
ListView textStyle:

ListView textStyle

ListView

MessageNode emitForEffect:on:
MessageNode emitForValue:on:

MethodContext adjustPCsForStructReading
MethodContext adjustPCsForStructWriting

MethodContext at:put:
MethodContext basicAt:put:

MethodContext setSender:receiver:method:arguments:

4404 SOS Notes

MODIFIED
MODIFIED
NEW

NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW

NEW

NEW

NEW
MODIFIED
MODIFIED
NEW

NEW

NEW

NEW

NEW
MODIFIED
MODIFIED
MODIFIED
NEW
MODIFIED
DEFINITION
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW

NEW
DEFINITION
MODIFIED
MODIFIED
NEW

NEW
MODIFIED
MODIFIED
MODIFIED

B-3

SOS Image Version Changes

MethodDefinitionChange accept:notifying:
MethodDefinitionChange sourceFileAndPosition:
MethodNode generateNoQuick
MethodNode generate:

MethodNode sourceMap

NotifierView class openContext:label:contents:
NotifierView class openinterrupt:onProcess:
NotifierView textStyle:

Number class readFrom:

Object shallowCopy

Paragraph recomposeWithTextStyle:
ParagraphEditor changeEmphasis:
ParagraphEditor class initialize
ParagraphEditor emphasisDefault:keyedTo:
ParagraphEditor readKeyboard

Pen mandala:diameter:

PipeReadStream contentsOfEntireFile
PipeStream binary

PipeStream contentsOfEntireFile
PipeStream text

Point negated

PopUpMenu class labels:lines:alignment:
PopUpMenu class labels:lines:
PopUpMenu labels:font:lines:

PopUpMenu labels:textStyle:lines:
PopUpMenu markerTop:

PopUpMenu rescan

PopUpMenu reset

PopUpMenu

PositionableStream through:
PositionableStream upTo:
ProcessorScheduler absolutely TheHighestPriority
ProcessorScheduler class initialize
ProcessorScheduler executeWithoutPreemption:
ProcessorScheduler highestPriority:
ProcessorScheduler resetPriorities
ProcessorScheduler

Project enter

ProjectController class initialize

Rectangle class fromUser:

Rectangle negated

ReturnNode emitForReturn:on:
ReturnNode emitForValue:on:

ReturnNode pc

Scanner scanFieldNames:
ScreenController forkOSshell
ScrollController canScrollDown

B4

MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW
MODIFIED
MODIFIED
NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
REMOVE
REMOVE
REMOVE
NEW
MODIFIED
MODIFIED
REMOVE
NEW
MODIFIED
MODIFIED
MODIFIED
DEFINITION
MODIFIED
MODIFIED
NEW
MODIFIED
NEW
MODIFIED
MODIFIED
DEFINITION
MODIFIED
NEW
MODIFIED
NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW

SOS Image Version Changes

ScroliController canScrollUp NEW
ScroliController canScroll MODIFIED
ScrollController controlinitialize MODIFIED
ScrollController moveMarker: MODIFIED
ScrollController moveMarker MODIFIED
ScroliController scroliDown MODIFIED
ScrollController scroliUp , MODIFIED
SequenceableCollection hash MODIFIED
Set class maxSize NEW
Set class new MODIFIED
StandardSystemController class initialize MODIFIED
StandardSystemController textStyle: NEW
StandardSystemController textStyle NEW
StandardSystemView displayBorder REMOVE
StandardSystemView getFrame MODIFIED
StandardSystemView initialize MODIFIED
StandardSystemView label: MODIFIED
StandardSystemView label:style: NEW
StandardSystemView resetLabel: MODIFIED
StandardSystemView resetLabel:style: NEW
StandardSystemView textStyle: NEW
StandardSystemView textStyle NEW
StandardSystemView DEFINITION
Stream do: MODIFIED
Stream nextPutAll:startingAt:to: NEW
StrikeFont asTextStyle NEW
StrikeFont ascentForStdAsciiChars NEW
StrikeFont ascent: REMOVE
StrikeFont bottomLead: NEW
StrikeFont class initialize NEW
StrikeFont class readAll: NEW
StrikeFont class readFrom: NEW
StrikeFont computeAscentDescentForStdAsciiChars NEW
StrikeFont descentForStdAsciiChars NEW
StrikeFont familySizeFace MODIFIED
StrikeFont glyphsSwitchCharacters NEW
StrikeFont initializeFrom: NEW
StrikeFont isFixedPitch NEW
StrikeFont leadinfo NEW
StrikeFont tightLeadInfo NEW
StrikeFont topLead NEW
StrikeFont type: NEW
StrikeFont type NEW
StrikeFont underLinelnfo: NEW
StrikeFont writeOnFile: NEW
StrikeFont writeOn: NEW
StrikeFont xTableSwitchCharacters NEW

4404 SOS Notes B-5

SOS Image Version Changes

StrikeFontManager at:ifAbsent:
StrikeFontManager at:put:
StrikeFontManager checkName:
StrikeFontManager class initialize
StrikeFontManager copy:name:emphasis:
StrikeFontManager errorFontMissing:
StrikeFontManager errorNameFormat:
StrikeFontManager fontNames:
StrikeFontManager install:
StrikeFontManager install:ifAbsent:
StrikeFontManager virtuailyAt:
StrikeFontManager

StrikeFont

StringHolderView displayView:
StringHolderView editString:
StringHolderView initialize
StringHolderView textStyle:
StringHolderView textStyle
StringHolderView

Subtask class copyEnvironment
Subtask class currentEnvironment
Subtask class initializeEnvironment
SwitchView displayView

SwitchView initialize

SwitchView textStyle:

SwitchView textStyle

SwitchView

SystemDictionary appendChangesToSourceFileWithout:

SystemDictionary copyright
SystemDictionary getimageName
SystemDictionary install
SystemDictionary shutdown
SystemDictionary snapshotAs:thenQuit:
SystemDictionary version

TekSystemCall class controlPty:command:mode:

TekSystemCall class createPty

TekSystemCall class execSystemUtility:withArgs:

TekSystemCall class fentl:function:
TekSystemCall class getMachineType
TekSystemCall class getRealMachineType
TekSystemCall class maxNameSize
TekSystemCall class rump:operation:
TekSystemCall class setMachineType
TekSystemCall class vfork

Text class initTextConstants2

Text class initTextConstants3

Text class initTextConstants

NEW
DEFINITION-
DEFINITION

MODIFIED
MODIFIED
MODIFIED

NEW

NEW
DEFINITION

MODIFIED
MODIFIED
MODIFIED

NEW

MODIFIED
NEW
NEW
DEFINITION
NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED

NEW

NEW
MODIFIED

NEW’

NEW

NEW

MODIFIED
NEW
NEW
MODIFIED
MODIFIED

NEW
MODIFIED

SOS Image Version Changes

TextCollector defaultContents . MODIFIED
TextList class initialize MODIFIED
TextList class onList: MODIFIED
TextList class onList:style: NEW
TextList recomposeWithTextStyle: NEW
TextStyle alignment: NEW
TextStyle alignment NEW
TextStyle asListStyle NEW
TextStyle asMenuStyle NEW
TextStyle basalFontFor: NEW
TextStyle baselineForLists: NEW
TextStyle baselineForLists NEW
TextStyle baselineForMenus: NEW
TextStyle baselineForMenus NEW
TextStyle baseline: NEW
TextStyle baseline NEW
TextStyle boldFontFor: NEW
TextStyle boldltalicFontFor: NEW
TextStyle class default: NEW
TextStyle class default NEW
TextStyle clearindents ' MODIFIED
TextStyle defaultFont NEW
TextStyle descent MODIFIED
TextStyle firstindent: NEW
TextStyle firstindent NEW
TextStyle flushFonts NEW
TextStyle flushFonts REMOVE
TextStyle fontArray: NEW
TextStyle fontArray NEW
TextStyle fontAt: MODIFIED
TextStyle fontAt:put: NEW
TextStyle fontFor:emphasis: NEW
TextStyle fontFor:face: MODIFIED
TextStyle fontNamed: MODIFIED
TextStyle isFontBoldltalic: MODIFIED
TextStyle isFontBold: MODIFIED
TextStyle isFontltalic: MODIFIED
TextStyle isFontSubscripted: MODIFIED
TextStyle isFontSuperscripted: MODIFIED
TextStyle isFontUnderlined: MODIFIED
TextStyle italicFontFor: NEW
TextStyle leftMarginTabAt: MODIFIED
TextStyle lineGridForLists: NEW
TextStyle lineGridForLists NEW
TextStyle lineGridForMenus: NEW
TextStyle lineGridForMenus NEW
TextStyle lineGrid: : NEW

4404 SOS Notes B-7

SOS Image Version Changes

TextStyle lineGrid

TextStyle listStyleForFont:upperlLead:lowerLead:
TextStyle menuStyleForFont.upperLead:lowerlLead:
TextStyle nestingDepth

TextStyle newFontArray:

TextStyle nextTabXFrom:leftMargin:rightMargin:
TextStyle outputMedium:

TextStyle outputMedium

TextStyle restindent:

TextStyle restindent

TextStyle rightindent:

TextStyle rightindent

TextStyle rightMarginTabAt:

TextStyle subscriptedFontFor:

TextStyle superscriptedFontFor:

TextStyle tabWidth

TextStyle unSubscriptedFontFor:

TextStyle unSuperscriptedFontFor:

TextStyle unUnderlinedFontFor:

TextStyle underlinedFontFor:

TextStyle upperLead:lowerlLead:
TextStyleManager at:put:

TextStyleManager changeDefaultTextStyle:
TextStyleManager changeDefaultTextStyle
TextStyleManager class flushMenus
TextStyleManager class initialize
TextStyleManager class new:
TextStyleManager fontNamesFromBaseNames:
TextStyleManager fromUser:

TextStyleManager fromUser

TextStyleManager initializeMenus
TextStyleManager removeAssociation:ifAbsent:
TextStyleManager removeKey:ifAbsent:
TextStyleManager styleName:baseNames:
TextStyleManager styleName:baseNames:lead:
TextStyleManager styleName:baseNames:upperlead:lowerLead:
TextStyleManager styleName:fontNames:
TextStyleManager styleName:fontNames:lead:
TextStyleManager styleName:fontNames:upperlLead:lowerlead:
TextStyleManager

TextStyle

TextView initialize

TextView textStyle:

TextView textStyle

TextView

View computelnsetDisplayBox

View textStyle:

B-8

MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW
NEW
NEW
NEW
NEW

MODIFIED

MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW
NEW
NEW
NEW

NEW

NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW
NEW

NEW

NEW

DEFINITION
DEFINITION

MODIFIED
NEW
NEW

DEFINITION

MODIFIED
NEW

-

SOS Image Version Changes

Changes Between Versions T2.1.3 and T2.1.3b

Here is a list of all classes and methods which are either new or changed from the release of
Version T2.1.3 Smalltalk through Version T2.1.3b. The order of methods listed here corresponds
to the the contents of the Smalltalk Delta files. The order of the Delta file contents is determined
by position in the hierarchy and interdependencies within the code.

Arc displayOn:transformation:clippingBox:rule:mask: MODIFIED
Behavior whichSelectorsReferTo:special:byte: CHANGE
Circle displayOn:transformation:clippingBox:rule:mask: MODIFIED
ContextPart completeCallee: MODIFIED
Cursor centerCursorinViewport MODIFIED
Curve displayOn:transformation:clippingBox:rule:mask: MODIFIED
Debugger step MODIFIED
Delay class postSnapshot MODIFIED
Delay class preSnapshot MODIFIED
Delay postSnapshot MODIFIED
Delay preSnapshot MODIFIED
DisplayScreen disableScreenSaver MODIFIED
DisplayScreen getDisplayReport MODIFIED
DisplayScreen setDisplayStateFrom: MODIFIED
DisplayScreen setMouseBounds: MODIFIED
DisplayScreen setMouseBoundsUpper:lowerCorner: MODIFIED
DisplayScreen setViewportLocation: MODIFIED
DisplayScreen viewport MODIFIED
Explainer explainCtxt: MODIFIED
ExternalStream bulkRead:into: NEW
ExternalStream nextBytes:into: NEW
ExternalStream nextNumber: MODIFIED
ExternalStream nextNumber:put: MODIFIED
ExternalStream nextSignedinteger MODIFIED
ExternalStream nextWords:into: NEW
FileDirectory completePathname - MODIFIED
FileStream initialize EXECUTE
FileStream appendFileStream: MODIFIED
FileStream asFileDirectory : NEW
FileStream backupName MODIFIED.
FileStream bulkRead:into: NEW
FileStream class initialize MODIFIED
FileStream freeFileDescriptorFor: MODIFIED
FileStream next:into: MODIFIED
FileStream setName:directory: MODIFIED
FileStream DEFINITION
FillinTheBlankController moveMarker: NEW
Form class readFormFile: MODIFIED
FormEditor class createFullScreenForm MODIFIED
IdentityDictionary keys MODIFIED

4404 SOS Notes B-9

SOS Image Version Changes

InputState priminputWord
Integer {illBySignExtendFrom:
Line displayOn:transformation:clippingBox:rule:mask:

LinearFit displayOn:transformation:clippingBox:rule:mask:

ListController viewDelta

ListView deEmphasizeView:andClip:

ListView deEmphasizeView

ListView emphasizeView

NotifierView class openContext:label:contents:
NotifierView class openlinterrupt:onProcess:
Object exitToDebugger
OnlyWhenSelectedCodeController isControlWanted
ParagraphEditor updateMarker

Path class example

Path displayOn:transformation:clippingBox:rule:mask:
Path scaleBy:

Path translateBy:

Pen mandala:diameter:

Pipe fileDescriptor:

Pipe fileDescriptor

PipeReadStream binary

PipeReadStream text

PipeStream class openOnFdn:

Pipe

ProcessHandle resumeProcess
ScreenController forkOSshell

ScroliController class initialize

ScroliController comment

ScroliController controllnitialize
ScrollController initialize

ScrollController scrollDelayLength
ScroliController scroliDown

ScrollController scrollUp

ScroliController

Spline displayOn:transformation:clippingBox:rule:mask:
StandardSystemView validDisplayForm
StrikeFont initializeFrom:

StringHolderView displayView:

Subtask abnormalTermination

Subtask absoluteWait

Subtask class fork:then:

Subtask class fork:withArgs:

Subtask class fork:withArgs:standardin:standardOut:standardError:
Subtask class fork:withArgs:standardin:standardOutAndError:

Subtask class fork:withArgs:then:
Subtask class fork:withArgs:withEnv:then:
Subtask class initializeBrokenPipeCatch

B-10

MODIFIED
NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
REMOVE
MODIFIED
MODIFIED
NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW

NEW
MODIFIED
MODIFIED
MODIFIED
DEFINITION
MODIFIED
MODIFIED
NEW
EXECUTE
MODIFIED
EXECUTE
NEW
MODIFIED
MODIFIED
DEFINITION
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW
MODIFIED
MODIFIED
MODIFIED

SOS Image Version Changes

Subtask class initializeWaitManagement
Subtask class initialize

Subtask class install

Subtask class kill:

Subtask class markAndSignalAll
Subtask class terminate:
Subtask class terminateAll
Subtask class waitUpdate
Subtask enhancedPriority
Subtask environment:

Subtask environment

Subtask initBlock:

Subtask initBlock

Subtask install

Subtask interrupt:

Subtask isTerminated

Subtask priority:

Subtask priority

Subtask program

Subtask release

Subtask signalWaitSemaphore
Subtask status:

Subtask status

Subtask taskid:

Subtask tasklid

Subtask waitOn

Subtask

SwitchView deEmphasizeView:andClip:

SystemDictionary appendChangesToSourceFileWithout:

SystemDictionary coreLeftLimit:

SystemDictionary lowSpaceNotificationLoop

SystemDictionary postSnapshot
SystemDictionary quit
SystemDictionary saveSpace:

SystemDictionary snapshotAs:onReloadDo:

SystemDictionary snapshotAs:thenQuit:
SystemDictionary snapshotPrimitive:
SystemDictionary snapshot
SystemDictionary versionName
SystemDictionary versionNumber
SystemDictionary version
SystemOrganizer fileOutCategory:
SystemTracer initClampedClasses:
TekSystemCall initialize
TekSystemCall class createDirectory:
TekSystemCall class defaultinterrupt
TekSystemCall class fentl:function:

4404 SOS Notes

MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
EXECUTE
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED!
MODIFIED
DEFINITION
MODIFIED
MODIFIED
MODIFIED
MODIFIED
NEW
MODIFIED
MODIFIED
NEW
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
MODIFIED
EXECUTE
MODIFIED
NEW
MODIFIED

SOS Image Version Changes

- TekSystemCall class freeFileDescriptors
TekSystemCall class ignorelnterrupt
TekSystemCall class initialize
TekSystemCall class pack:intoRegisterWith:
TekSystemCall class read:into:
TekSystemCall class validFileDescriptor:
TextStyle alignment:

TextStyleManager class addMenuDependents:

TextStyleManager class initialize
TextStyleManager class menuDependents
TextStyleManager fromUser
TextStyleManager initializeMenus
TextStyleManager initialize
TextStyleManager

TextView updateRequest

Time class timeWords

WordArray signedintegerAt:

WordArray signedintegerAt:put:

B-12

NEW

NEW
MODIFIED
NEW
MODIFIED
NEwW
MODIFIED
NEW
MODIFIED
NEW
MODIFIED
MODIFIED
EXECUTE
DEFINITION
MODIFIED
MODIFIED
NEW

NEW

