
TEK REFERENCE
MANUAL

Part No. 070-5925-00
Product Group 07

4400 SERIES
OPERATING
SYSTEM
REFERENCE

T E K OPERATING SYSTEM
REFERENCE MANUAL

First Printing FEB 1987

070-5925-00
Product Group 07

4400 SERIES
OPERATING
SYSTEM
REFERENCE

Please Check at the
Rear of this Manual
for NOTES and
CHANGE INFORMA TION

It:!ktronix-
COMMITTED TO EXCELLENCE

Copyright 1987 by Tektronix, Inc., Beaverton, Oregon. Printed
in the United States of America. All rights reserved. Contents
of this publication may not be reproduced in any form without
permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one or
more U.S. or foreign patents or patent applications. Information
provided upon request by Tektronix, Inc., P.O. Box 500,
Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix Inc.

UNIX is a trademark of Bell Laboratories.

TOPS-10, TOPS-20, VMS, and RSTS are trademarks of Digital
Equipment Corp.

The operating system software copyright information is
embedded in the code. It can be read via the "info" utility.

Smalltalk-80 is a trademark of Xerox Corp.

UniFLEX is a registered trademark of Technical Systems Con­
sultants, Inc.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein,
when used properly in the specified operating environment, for a period of three (3) months from
the date of shipment, or if the program is installed by Tektronix, for a period of three (3) months from
the date of installation. If this software product does not conform as warranted, Tektronix will
provide the remedial services specified below. Tektronix does not warrant that the functions
contained in this software product will meet Customer's requirements or that operation of this
software product will be uninterrupted or error-free or that all errors will be corrected.

In order to obtain service under this warranty, Customer must notifiy Tektronix of the defect before
the expiration of the warranty period and make suitable arrangements for such service in
accordance with the instructions received from Tektronix. If Tektronix is unable, within a
reasonable time after receipt of such notice, to provide the remedial services specified below,
Customer may terminate the license for the software product and return this software product anc
any associated materials to Tektronix for credit or refund.

This warranty shall not apply to any software product that has been modified or altered by Customer
Tektronix shall not be obligated to furnish service under this warranty with respect to any software
product a) that is used in an operating environment other than that specified or in a manner
inconsistent with the Users Manual and documentation or b) when the software product has been
integrated with other software if the result of such integration increases the time of difficulty of
analyzing or servicing the software product or the problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE
WHEN SPECIFIED, REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS
THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF THIS
WARRANTY. TEKTRONIX WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE
NOTICE OF THE POSSIBLITY OF SUCH DAMAGES.

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES OPERATING SYSTEM REFERENCE

This manual supports the following versions of this product: 4404 Version 1.5, 4405 Version 1.1, 4406 Version 1.1, and
4404 Version 2.0, 4405 Version 2.0, 4406 Version 2.0 .

REV DATE DESCRIPTION

FEB 1987 Original Issue

4400 SERIES OPERATING SYSTEM REFERENCE

Table of Contents

SECTION 1 INTRODUCTION
ABOUT THIS MANUAL ... 1-1
WHERE TO FIND INFORMATION .. 1-1

SECTION 2 USER COMMANDS

2a
addpath 2a-l
alias .. 2a-2
asm ... 2a-3

2b
backup 2b-l

2c
commset ... 2c-5
compare 2c-7
conset 2e-9
copy .. 2e-l1
ere ... 2e-15
erdir .. 2c-16
create 2c-18

2d
date ... 2d-l
debug .. 2d-3
dir ... 2d-l0
dirs ... 2d-13
dpenn ... 2d-14
dump .. 2d-16

2e
echo .. 2e-l
edit ... 2e-2
env .. 2e-5
exit .. 2e-6

2f
fdup ... 2f-l
filetype .. 2f-2
find .. 2f-3
fonnat ... 2f-6
free .. 2f-7

2h
headset 2h-l
help .. 2h-5
history 2h-7

iii

IV

2i
info ..
int ~

2i-1
2i-3

2j
jobs ... 2j-1

2m
move

2m
move

2n

............... e e ... ~ ••••• e """" ••• """" 2m-1

2m-1

nice ... 2n-1

2p
page
password
path
perms
popd
pushd

2r
relinfo
remote
remove
rename
restore
rmpath

2p-2
2p-3
2p-5
2p-6
2p-8
2p-9

2r-1
2r-3
2r-5
2r-7
2r-9

2r-14

script ".. 2s-1
set
shell
smalltalk
status
stop
strip••...•.•...•.............••.•...•...•..••..••...........•...••..•..•.......................••.................•..

......................•.....•......•............••..•.•.•..•.•...•...•...•..•.....•••

2t

2s-11
2s-12
2s-20
2s-22
2s-25
2s-26

••• 48 ••••••••••• eeeoo.oc 00 000000.0 •••••••••••••••••••••••••••• tail
touch•...•.•.............•....••..•......•......•.....••••......•................•........................•..••...•.....•••.••....•.

2t-l
2t-2

2u
unalias
unset
update

2w

••• ! •••••••••

..............•...•.....................•...••...•.•......•.........•...•.••.....................................•...•.•..........•.•.
...

2u-l
2u-2
2u-3

wait ... 2w-l

SECTION 3 SYSTEM UTILITIES
SYSTEM UTILITY DESCRIPTIONS ••••••.••••••.••••.•••••••••.....••.•••.•••••••••.•......•••••••.••••••••••••••• 3-1

.. 3-2 adduser
alterswap
badblocks
blockcheck
deluse
devcheck
diskrepair
fdncheck
makdev

.. "... 3-4
•• 3-6
......... _•.......... __ _.. 3-7

...................................... -.................... _ .. .
.............. _ _ -... .

3-8
3-10

... 3-12
..

.................... _ _ .. .
3-20
3-21

mount .. 3-23
owner ... 3-25
nnrnount .. 3-26

SECTION 4 TEXT EDITOR
INTRODUCTION
SYNTAX
CALLING THE EDITOR

Calling the Editor with a File Name
Calling the Editor with Two File Names
Options

OPERATING SYSTEM INTERFACE
Backspace Character
Escape Character
Horizontal Tab Character

4-1
4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-3
4-4

Control-D: Keyboard Signal for End-of-File
Control-C: Keyboard Interrupt

•• 4-4

Control-: Quit Signal •••• _ _ •• i ••••••••••••••••••••••••

4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-8
4-8
4-9
4-9
4-9

THE EDITOR'S USE OF DISK FILES
Creating a New File
Editing an Existing File
Command Input From a File
Fatal Errors

EDITOR COMMANDS
Using Strings
Specifying a Column Number
Using the Don't-Care Character
The Command Repeat Character
Using the EOL Character
Using Tabs
Length of Text Lines
Commands

ENVIRONMENT COMMANDS
dkl
dk2

4-10
4-10
4-11
4-11
4-11

esave
eset
header
kl

.. 4-12
.................. _ .. . 4-13

....... _ _.. 4-13
... 4-14

v

vi

k2
lkl
lk2

...
.................... .,. .. .
..

numbers
renumber

•••••••••••••••• e .. .

..
... set

tab
verify

..
...

zone ..
SYSTEM COMMANDS ...
abort
edit
log

..

..

SECTION 5 TERMINAL EMULATION
OVERVIEW
Description

Compliance With ANSI and ISO Standards
Compatibility with the DEC VT-I00
Compatibility with Tektronix Terminals

Interface to the Operating System
SUPPORTED ANSI COMMANDS

<ACK> Acknowledge Character (#6)
<BEL> Bell Character
<BS> Backspace Character
<CAN> Character (#24)
<CBT> Cursor Backward Tab
<CHT> Cursor Horizontal Tab
<CPR> Cursor Position Report
<CR> Carriage Return Character
<CRM> Control Representation Mode
<CUB> Cursor Backward
<CUD> Cursor Down
<CUF> Cursor Forward
<CUP> Cursor Position
<CUU> Cursor Up
<DA> Device Attributes
<DCl> Character (#17)
<DC2> Character (#18)
<DC3> Character (#19)
<DC4> Character (#20)
<DCH> Delete Character
 Character (#127)
<D L> Delete Line
<DLE> Character (#16)
<DMI> Disable Manual Input
<DSR> Device Status Report
<ECH> Erase Character
<ED> Erase in Display
<EL> Erase in Line

4-14
4-15
4-15
4-16
4-16
4-17
4-18
4-18
4-19
4-20
4-20
4-20
4-21

5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-9
5-9
5-9
5-9

5-10
5-10
5-11
5-11

<EMh
<ENQ>
<EOT>
<ESC>
<ETB>

....................... _ .. . Character (#25)
Enable Manual Input ...
Character (#5)
Character (#4)
Character (#27)
Character (#23)

.................. - .. .

. __ .. .
................. - .. .

<ETX> Character (#3) --.. .
............... -.. . Form Feed Character

Character (#18)
Character (#29)

.................... _
...

<HT> Horizontal Tab Character
<HTS> Horizontal Tab Set
<HVP> Horizontal and Vertical Position
dCH> Insert Character
<IL> Insert Line
<INn> Index
<IRM> Insertion/Replacement Mode
<KAM> Keyboard Action Mode
<LF> Line Feed Character
<LNM> Line-FeedlNew-Line Mode
<NAK> Character (#21)
<NEL> Next Line
<NUL> Character (#0)
<PUl> Private Use 1
<Report-Syntax-Mode>
<Rh Reverse Index
<RIS> Reset to Initial State
<RM> Reset Mode
<RS> Character (#30)
<SCS> Select Character Set
<Select-Code>
<SGR> Select Graphic Rendition
<Sh Shift In Character
<SM> Set Mode
<SO> Shift Out Character
<SOH> Character (#1)
<SP> Space Character
<SRM> SendlReceive Mode
<STX> Character (#2)
<SUB> Character (#26)
<SYN> Character (#22)
<TBC> Tabulation Clear
<TEKARM> Auto-Repeat Mode
<TEKA WM> Auto-Wrap Mode
<TEKBKCM> Block Cursor Mode (Select Cursor)
<TEKBNCM> Blinking Cursor Mode
<TEKCKM> Cursor Key Mode
<TEKGCREP> Graphic Cursor Position Report
<TEKID> Identify Terminal
<TEKKP AM> Keypad Application Mode

5-11
5-12
5-12
5-12
5-12
5-12
5-13
5-13
5-13
5-13
5-13
5-14
5-14
5-14
5-14
5-15
5-15
5-15
5-16
5-16
5-16
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-19
5-20
5-20
5-21
5-22
5-22
5-23
5-23
5-24
5-24
5-24
5-24
5-25
5-25
5-25
5-26
5-26
5-26
5-27
5-28
5-28
5-28

vii

viii

<TEKKPNM> Keypad Numeric Mode ...
<TEKMBREP> Mouse Button and Graphic Cursor Position Reporting ..•••••..•..•..•
ANSI Terminal Emulator Mouse Button and Position Reporting

<TEKOM> Origin Mode
<TEKRC> Restore Cursor

..
...

<TEKREQTPARM> Request Terminal Parameters
<TEKRGCR> Request Graphic Cursor Position Report

... <TEKSC> Save Cursor
<TEKSCNM> Screen Mode ...
<TEKSGCRT> Select Graphic Cursor Report Type
<TEKSTBM> Set Top and Bottom Margins ..
<US> Character (#31) ..
< VT> Vertical Tab Character ..

KEYBOARD DETAILS ..
Shift, Ctrl, and Caps Lock Keys
Default ANSI Mode Meanings of Keys

Alphanumeric Keys
Numeric Pad Keys
Joydisk Keys
Function Keys

...
..

Special Function Keys

SECTION 6 ACCESSING SYSTEM RESOURCES
INTRODUCTION
DEVICE DRIVERS

SCSI Peripherals
Console Device
Communications Port
Sound Generator

Controlling the Sound Device
Idev/sound Operation and Commands

Frequency Control
Controlling Attenuation
Controlling the Noise Generator
Control Registers

Sound Examples
Printer Port
Other Devices

..
,

DISPLA Y, MOUSE, AND KEYBOARD SUPPORT
Cursor and Mouse Tracking

FLOATING POINT SUPPORT

Appendix A 4404 HARDWARE DEPENDENCIES
DISPLA Y SUPPORT

Display Panning
MEMORY USE

Overall Address Space
Physical Memory
Display Memory
I/O and ROM Memory Space

5-28
5-29
5-30
5-31
5-31
5-31
5-32
5-32
5-32
5-33
5-33
5-34
5-34
5-34
5-34
5-35
5-35
5-37
5-38
5-38
5-39

6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-2
6-3
6-3
6-4
6-5
6-6

6-10
6-10
6-11
6-11
6-11

A-I
A-I
A-3
A-3
A-3
A-3
A-3

Processor Board 110
Peripheral Board 110

........ _ _
..

Appendix B 4405 HARDWARE DEPENDENCIES
DISPLAY SUPPORT ...
Display Panning _

... MEMORY USE
Overall Address Space
Physical Memory
Display Memory

..

110 and ROM Memory Space
Processor Board 110
Peripheral Board 110

Appendix C 4406 HARDWARE DEPENDENCIES
DISPLAY SUPPORT
MEMORY USE
Overall Address Space
Physical Memory
Display Memory
110 and ROM Memory Space

Processor Board 110
Peripheral Board 110

Figures

A-4
A-4

B-1
B-1
B-3
B-3
B-3
B-3
B-3
B-4
B-4

C-l
C-l
C-l
C-l
C-2
C-2
C-2
C-2

Figures
A-I. 640 X 480 Window Into 1024 X 1024 Bit-Map.
B-1. 640 X 480 Window Into 1024 X 1024 Bit-Map.

Page
A-2

. ..•....••.... B-2

ix

x

Tables

Tables Page
2-1 User Commands and Utilities
2s-1 Script I/O Redirection

... 2-1
.. 2s-5

2s-2 SHELL EDITING KEYS AND FUNCTIONS
2s-3 Shell I/O Redirection
2s-4 shell COMMANDS
2s-5 POSSIBLE TASK PRIORITIES

2s-13
2s-17
2s-18
2s-22

3-1 System Utilities .. 3-1
3-2 Major Device Numbers
5-1 Parameter Meanings

...

5-2 Valid Reset Mode Parameters
5-3 Character Set Selection
5-4 Set Mode Parameters
5-5 Alternate Joydisk Meanings
5-6 Keypad Application Mode Key Meanings
5-7 Mouse Button Reports
5-8 ANSI Meanings of Alphanumeric Keys
5-9 Applications Mode (TEKKPAM) Meanings of Keypad Keys
5-10 ANSI Joydisk Key Meanings
5-11 ANSI Meanings of Function Keys
5-12 ANSI Meanings of Special Function Keys
6-1 Frequency Selection (BYTE 1)
6-2 Frequencey Selection (BYTE 2)
6-3 Attenuation Control
6-4 Attenuation Byte Bit Assignments
6-5 Noise Feedback Control
6-6 Noise Frequency Control

..
..

6-7 Noise-Control-Byte Bit Assignments
6-8 Control Register Addresses ..

3-21
5-10
5-19
5-20
5-23
5-27
5-29
5-30
5-35
5-37
5-38
5-38
5-39

6-3
6-3
6-4
6-4
6-4
6-5
6-5
6-5

Section 1

INTRODUCTION

ABOUT THIS MANUAL
This manual is the primary user's and programmer's reference to the 4400 operating system and
hardware support. This manual contains descriptions of the commands and utilities included with
your 4400 as standard software, and a summary of how to invoke and use each command. This
manual does not attempt to show you how to put commands together to perform a task; that
information is covered in the 440X User's manual. The User's manual also contains a complete
list of the other manuals available for the 4400 series.

This manual has the following sections:

• User Commands

• System Utilities

• Text Editor

• Terminal Emulation

• Accessing System Resources

In addition, the appendices contain information about the hardware of the 4400 series of products.

WHERE TO FIND INFORMATION
You have several important sources of information on the 4400:

• This manual, the 4400 Series Operating System Reference manual, contains the syntax and
details of commands and utilities. This manual also contains details about a text editor and
a remote tenninal emulator.

• The 4400 Series Assembly Language Reference manual contains the details of the
assembler and linking loader.

• The 4400 Series C Language Reference manual contains detail about the "e" programming
language.

• The 440X Users manual contains basic information on system installation, startup,
installing software, and the other "how to put commands together" discussions. See the
index of the User's manual to find how to perform particular tasks.

• The on-line "help" utility contains a brief description of the syntax of user commands.

• The Introduction to Smalltalk-80{tm} manual contains details and a short tutorial on the
Smalltalk-80 programming language.

• The reference manuals for the optional languages for the 4400 product family are also
available.

OPERATING SYSTEM REFERENCE 1-1

INTRODUCTION

MANUAL SYNTAX CONVENTIONS
Throughout this manual, the 440X User's manual, and in the on-line help files, the following
syntax conventions apply:

1. Words standing alone on the command line are keywords. They are the words recognized
by the system and should be typed exactly as shown.

2. Words enclosed by angle brackets ("<" and ">") enclose descriptions of variables that are
replaced with a specific argument. If an expression is enclosed only in angle brackets, it is
an essential part of the command line. For example, in the line:

addusr <user name>

you must specify the name of the user in place of the expression <user_name>.

3. Words or expressions surrounded by square brackets ("[" and "]") are optional. You may
omit these words or expressions if you wish.

4. If the word "list" appears as part of a term, that term consists of one or more elements of
the type described in the term, separated by spaces. For example:

<file_name_list>

consists of a series (one or more) of file names separated by spaces.

Invoke and use each command. This manual does not attempt to show you how to put commands
together to perform a task; that information is covered in the 440X User's manual.

1-2

Section 2

USER COMMANDS
You can use the Commands and Utilities in this section from any user account. Some options,
however, require special privileges. These options are mentioned in the detailed description of
each command or utility.

All of the Command and Utility descriptions are arranged in alphabetical order in subsections
from 2a through 2w. For example, dir is found in Section 2d. User Commands and Utilities are
summarized in Table 2-1.

Table 2-1
User Commands and Utilities

Name Function

addpath Adds the specified directories to the search path of the shell. (Shell Command).
alias Defines or reports the list of alternate names (aliases) for a command sequence. (Shell command).
asm The asm command is the MC68010/68020 relocating assembler.
backup Copies files from the file system to the floppy device or streaming tape device.
cc Invokes the "C" compiler.
chd Changes the user's working directory.
commset Sets or displays the configuration of the communications port
compare Compares two files line by line and prints the differences, if any.
con set Sets or displays the configuration of the console port.
copy Copies a file or directory to the specified file or directory, or copies one or more files to the

specified directory.
cre A fIle's cyclic redundancy checker. Output is suitable for re-execution.
crdir Creates a directory.
create Creates an empty fIle for each fIle name on the command line.
date Displays or sets the time and date.
debug Invokes a machine-language debugging system.
dir Lists the contents of a directory or information about a file.
dirs Lists the current working directory and the directory stack created by the pushd command.
dperm Sets the default permissions for the creation of files, directories, and devices.
dump Sends both a hexadecimal and an ASCII listing of a fIle to standard output.
echo Writes the arguments on the command line to standard ouput.
edit Invokes the text editor in order to create a new text file or edit an existing one.
env Displays and changes the environment variables.
exit Terminates a subshell. (Shell command).
fdup Duplicates floppies.
filetype Identifies the type of files on the command line.
find Searches for a string in a file or in a standard output
format Formats a diskette for use on the 4400 flexible disk drive.
free Reports the amount of free and used space on the specified devices.
headset Changes the information in the binary header of an executable file.
help Displays a brief description of the use and syntax of the specified command.
history Displays a list of previous commands. (Shell command).

OPERATING SYSTEM REFERENCE 2-1

USER COMMANDS

Table 2·1 (cont.)
User Commands and Utilities

Name Function

info Displays the contents of the information field associated with the specified binary file.
int Sends a program interrupt to another task.
jobs Reports the task IDs of all background tasks originated by the user from the current shell program.

(Shell command).
libgen Creates a new library or updates an existing one.
libinfo Displays information about a library.
link Establishes a new link to an exisitng file.
list Writes the contents of the specified file to standard output.
load Invokes the linking loader.
log Terminates a script session.
login Gives a user access to the operating system.
logout Terminates ari active session. (Shell command).
move Renames a file or moves a file to another directory.
nice Runs a command with a lowered priority.
page Page formats a file or files.
password Sets or changes a user's password.
path Writes the path name of the working directory to standard output.
perms Changes the permissions associated with a file.
popd Changes the working directory to the one at the top of the directory stack. (Shell command).
pushd Pushes the name of the working directory to the directory stack and changes to the specified

directory. (Shell command).
relinfo Displays information about an object file.
remote Communicates with a host computer via the RS-232 port, ldevlcomm.
remove Removes the specified file from the system.
rename Changes the name of the specified file.
restore Catalogs or restores files from the backup device to the file system.
rmpath Removes the specified directories from the search path of the shell. (Shell Command).
script Command Interpreter.
set Changes or displays the current state of the shell environment variables. (Shell Command).
shell Interactive command interpreter.
smalltalk Invokes the 4400 Smalltalk-80 interpreters.
status Displays the status of running tasks.
stop Stops the system and prepares to shut off the power or reset.
strip Removes the symbol table for an executable binary file.
tail Prints a specifiable number of characters from the end of a text file.
touch Sets the time of the last modification of a file to the current date and time.
unalias Deletes name alaises from the set of aliases. (Shell command).
unset Deletes the named variables from the set of environment variables. (Shell command).
update Processes a set of files if specified conditions are met.
wait Waits for a background task to complete before accepting any more input.

2-2

Section 2a

addpath
Adds the specified directories to the search path of the shell. This is a shell command.

SYNTAX
addpath <dir name list>

DESCRIPTION
The addpath command, which is part of the shell program, adds the specified directories to the
search path of the shell. This is done by altering the shell environment variable PATH.

ARGUMENTS
List of directory names to add to the search path.

EXAMPLE
addpath jete

This example adds the directory I etc to the shell search path, by adding the directory to the
environment variable PATH.

SEE ALSO

env
rmpath
set
shell
unset

OPERATING SYSTEM REFERENCE 2a-l

USER COMMANDS
alias

alias
Defines or reports the list of alternate names (aliases) for a command sequence. This is a shell
command.

SYNTAX
alias [<alias_name>] [<string>]

DESCRIPTION
The alias command, which is part of the shell program, defines or reports the list of alternate
names (aliases) for a command sequence. With no arguments alias outputs the list of aliases
defined. If one argument is given the associated alias is printed. If two arguments are given then
the first is defined to be an alias for the second. Command line arguments are extracted via the
shell conventions.

ARGUMENTS
<alias name>

<string>

EXAMPLES

name of the alias.

may consist of combinations of utility commands and environment
variables surrounded by either single or double quotes (i.e. "copy $*").

alias long 'dir +1 $* I page +30'

This example will create an alias long that will invoke the command dir +1, which is piped to
page which will pause every 30 lines until the space bar is pressed.

alias

This example will display the currently defined aliases.

SEE ALSO
shell
unalias

2a-2

USER COMMANDS
asm

asm
The asm command is the MC68010/68020 relocating assembler.

The assembler has additional options for MC68020 equipped 4400 machines. *

SYNTAX

asm <file name list> [+befF1LnsStu] [+a] [+o=<file_name>]

DESCRIPTION
The asm command is used to assemble a program written in the standard MC68000 instructions
set. The assembler accepts most of the standard mnemonics for instructions, and fully supports
the MC68000/68010/68020 instruction set. For more information, refer to 4400 Series Assembly
Language Reference manual.

ARGUMENTS
<file name list> - -

OPTIONS
a

b

e

f

F

I

J

I

L

n

o=<file name>

s

S

u

List of the names of files and directories to process. Default is the
working directory.

Abbreviates output listing. (MC68020 only). *
Suppress binary output.

Suppress summary information.

Disable field formatting.

Enable fix mode. (Comments that begin with a semicolon, ";", are
assembled.)

Ignore" :w" suffix, forcing address word size.

The same as +i unless it is part of "jmp" or "jsr" instructions.

The same as +i when it is part of "jmp" or "jsr" instructions.

Produce a listing of the assembled source.

Produce listing of input file during the first pass.

Produce decima1line numbers with the listing.

Specifies the name of the binary file.

Produce a listing of the symbol table.

Limit symbols internally to 8 characters.

Classify all unresolved symbols as external.

OPERATING SYSTEM REFERENCE 2a-3

USER COMMANDS
asm

For a full discussion of the assembler and linking loader, refer to the 4400 Series Assembly
Language Reference manual.

EXAMPLES
asm asmfile

Assembles the source file asmfile and produces the relocatable binary file asmfile.r. The
assembler sends summary information to standard output, but produces no source listing. Any
errors detected are sent to standard output.

asm test.a +euo=test.r

Assembles the file test.a and produces the relocatable file test.r. No summary information is
produced, and all unresolved references are classified as external. If the assembler detects no
errors during the assembly, the user sees no output from this command.

asm test.a test2.a test3.a +blns

Assembles the three files, but produces no binary output. A listing with a symbol table is sent to
standard output. The listing includes decimal line numbers.

SEE ALSO
headset
load
4400 Series Assembly Language Reference manual

2a-4

Section 2b

backup
Copies files from the file system to the floppy device or streaming tape device.

SYNTAX
backup [+AbBCdelNOprt] [+a=<days>] [+t[=<file_name>]]

[+S=<buffers] [+T[=<length>]] [+V="<vol_name>"]
[<file_name_list>] [<dir_name_list>]

DESCRIPTION
The backup command is used to create and maintain archival backups of files or directories on
the system. It can operate in three distinct modes, selected by options: catalog mode, create
mode, and append mode. Catalog mode prints a list of the files on an existing backup. Create
mode copies the specified files or directories to the backup device, and destroys any data that is
already on the backup device. Append mode adds the specified files or directories to existing
files on the the backup device. Thus, it is possible to append, to an existing backup device, a file
whose path name is identical with one already backed up.

The backup command stores files and directories on the diskette (ldevljloppy) by default or on the
optional streaming tape drive (ldevltapec). The backup command uses a unique file structure,
which is completely different from the standard operating system file structure. Therefore,
Idevljloppy or Idevltapec must not be mounted onto the file system using the mount command.
The only way to read devices written by backup is to use restore. The only other command that
you should use on a backup device is devcheck.
The backup diskette should be formatted before the backup operation begins. Although the file
structure created by the format command is destroyed by backup, the raw track formatting is
essential. During the back up process, it can be requested that backup format diskettes before
writing to them. This is done by pressing/followed by Return, rather than Return when backup
prompts for the Hit CIR to continue:.

The backup tape may not be formatted, but the retensioning option "r" may be specified to avoid
reading-errors. The backup tape may also be erased by specifying the "e" option.

Backups may extend over more than one volume of the backup medium, either floppy or tape.
There are no restrictions on the sizes of files copied. If necessary, backup breaks files into
segments and stores each segment on a different volume.
As files are backed up, backup also stores the file owner ID number, permissions, and time/date
stamp of the file. This is used by restore when retrieving the files. After the files are restored,
they appear just as they were at the time of the backup. The user should be aware of several
potential problems.

One problem is that it is possible for users with identical ID numbers to exist on different systems
with different names. Since only the owner ID number is saved with the file, not the owner's
name, when the file is restored, the apparent owner will be the name of the user in the password
file that matches the ID number. If the user ID number does not exist in the restoring system
password flle, the owner of the file will be the ID number enclosed in double angle brackets, for
example, <<14».

OPERATING SYSTEM REFERENCE 2b-l

USER COMMANDS
backup

Secondly,file permissions are respected during restore. If the restoring user does not have write
pennission for a file, it will not be restored. One method to facilitate easy movement of files
among many machines is to always backup and restore the files from the public user, which
exists on all machines. In any event, the user system can backup and restore any file as well as
change file ownership and permissions.

ARGUMENTS

<file name list> - -
<dir name list> - -

List of the names of files to process. Default is the working directory.

List of the names of directories to process.

If a directory name is specified as an argument in the create or append mode, the program
processes only the files within that directory. If the "d" option is also specified, the program
backs up all files within the given directory and its subdirectories.

OPTIONS

a=<days>

A

b

B

C

d

e

I

N

o

r

S=<buffers>

t

t[=<file name>]

T

2b-2

Copy only those files that are no older than the specified number of days.
A value of 0 specifies files created since midnight on the current day; a
value of 1 specifies files created since midnight of the previous day, and so
forth.

Append to an existing backup.

Print sizes of files in bytes, instead of blocks.

Do not back up files that end in ".bak".

Print a catalog of the files on an existing backup. If you specify·"C", all of
the names in the <file_name _list> are ignored.

Back up entire directory structures.

Erase entire streaming tape before any action. This option must be used in
conjunction with the + T option.

List file names as they are copied.

Do not prompt for initial volume.

Do not backup files which end in .r .. LI "p" Prompt user with each file
name to determine whether or not the backup procedure should be
performed on that particular file.

Retension streaming tape cartridge before any action. Using this option
helps avoid reading errors from the streaming tape drive. This option must
be used in conjunction with the + T option.

Set streaming tape buffer count to <buffers> buffers.

Maintain a backup time file on file .backup.time.

Back up only files that have been created or modified since the date in the
specified file. When the backup is finished, update the date in the file. If
you do not specify a file, the default is .backup.time.

Backup to streaming tape instead of floppy.

USER COMMANDS
backUp

T=<length> Backup to streaming tape instead of floppy. The default parameter for the
tape length is 450 feet, for example, (+T=300 for a 300 foot tape).

V=<vol name> Substitute the string "vol_name" for the volume title.

With no options, backup is quiet. The "1" option allows to be seen what the program is actually
doing.
If the "t" option is specified, but the .backup.time file specified as its argument does not yet exist,
backup copies all the files and directories listed on the command line. Thus, a user may obtain a
full backup (either without the "t" option or with a nonexistent .backup.time file) or a partial
backup, which includes only those files created or modified since the last backup.

EXAMPLES
backup +1

Backs up all files in the working directory to the device Idevlfloppy. The file names are listed as
they are copied to the device.

backup +ld filel file2 dirl dir2
Copies (in order) the files filel and fi/e2, then all files and sub-directories contained in the
directories dirl and dir2, listing the file names as they are copied.

backup +ld filel file2 dirl dir2 +a=5

Performs the same function as the previous example, except it copies only those files that are five
days old or less.

backup +It

Creates the same backup as the first example, but only copies the files created or modified after
the time contained in the file .backup.time. If this file does not exist, all the files are copied and
the file .backup.time is created.

backup +lAt=backup_time

Adds a set of files to an existing backup. In particular, it adds exactly the files that were created
or modified since the creation of the file backup_time. This is the most direct way to create
incremental backups of files. The length of time between backups should reflect the amount of
activity spent developing programs, etc.

backup +IT
Backs up all files in the working directory to the device Idevltapec. The file names are listed as
they are copied to the device.

OPERATING SYSTEM REFERENCE 2b-3

USER COMMANDS
backUp

NOTES
• When using append mode, the program appends files to the last volume, requesting

additional volumes as necessary. If there are many volumes in an existing set of diskettes,
place the last volume (diskette) in the backup device. In this case a message is issued
indicating the volume is not the first and prompts for permission to continue. Respond
with a Itylt and a CIR to the prompt. The program then appends files to that volume,
requesting new volumes as necessary.

• As files are backed up, backup makes an indication of the path name for each file. When
files are restored, the program uses the path name to place the file in its proper directory
location. If the path name is relative (Le., does not begin with It/It), the path name of the
restored directory is also relative. Thus, files backed up with a relative path name may be
restored to a directory location different from the one in which they were created.

An example should make this clear. If the working directory is backed up, either by
specifying no source files or by using the directory name It. It, the files are backed up with a
relative path of It .It. When these files are restored, they are placed in the directory It. It. This
directory might not be the same directory they originally came from. This feature allows
the manipulation of entire file systems in a general fashion. To specify a unique directory
location for a file, you should specify its entire path name, starting with It/".

MESSAGES
Backup to <file name>
Update backup on <file_name>

These messages are printed when backup begins. They notify you of the function about to be
performed.

Several of the following messages prompt you for a positive or negative response. The program
interprets any response that does not begin with an upper or lowercase "n" as a positive response.

Copy <file_name> (yin)?

If you specify the "p" option, the program prints this prompt before it takes any action. A
response of Itn" or "N" indicates that the operation should not be performed for the given file.
Any other response is interpreted as yes.

Device model name?
This prompt is part of the format request, see "Format program name?" message. It indicates that
the program could not find a format program name in the file letc/format.control. You should
respond to this prompt with TEK4400.

Do you wish to abort "append" function and create a new backup?

This message is printed at the initiation of the append operating mode if an invalid header
(indicating a bad backup format) is detected. You can now abort from append mode and switch
to create mode.

2b-4

USER COMMANDS

Format program name?
This prompt is issued in response to a format request for the next diskette volume. It indicates
that the program could not find a format program name in the file I etcljormat.control. You
should respond with format since you are backing up on a diskette. You should not see this
prompt; it indicates the file letcljormat.control is corrupted or missing, which is an indication of
larger problems with the base software. You cannot format a streaming tape cartridge.

Insert next volume - Hit C/R to continue:
This prompt is issued when the program needs a new backup diskette or tape cartridge. You
should type a carriage return only when the next media device has been placed in the drive.
When creating new backups or when appending to an old backup, with diskettes, you may enter
the character "f', followed by a carriage return. If the program is in append mode, it
automatically switches to create mode and starts a new backup. The "f' indicates that the diskette
has been inserted in the drive, but that it must be formatted before continuing.
In this case the program first checks the file letcljormat.control for a format program name, and if
found formats the diskette. If it cannot find this file, it then prompts you for the format program
necessary to format the diskette. Subsequent format operations during this backup operation use
the same information; thus, all diskettes that were not previously formatted must have the same
characteristics (e.g. double-sided, double-density).
The program prints these messages as it takes the corresponding action during a creation
operation.

This is Volume t<number_l>-Expected Volume t<number_2>-Continue?

The program expects you to insert volumes in sequential order. If a volume appears out of order,
backup prints this message. If you type anything except an "n" or an "N" as the first character of
the response to the message, backup ignores the fact that the volumes are out of order and
continues with the backup. Otherwise, it prompts you for another volume.

Volume name?

Each set of backup volumes has a name. You should enter a name that describes the contents, in
response to this prompt The name may contain as many as 126 characters.

Volume <number> of <vol name>

When you are printing a catalog, whenever a new volume is inserted and properly validated the
program prints this message, which indicates the name of the backup volume and its sequence
number.

OPERATING SYSTEM REFERENCE 2b-5

USER COMMANDS
backup

ERROR MESSAGES

*** Invalid Volume Header -- Not a "backup" disk ***
The program validates each backup volume before using it. If this validation fails, the program
prints this message to indicate that something is wrong. You then have another chance to insert
the proper volume and continue. If validation fails while the program is in append mode, you
may abort from append mode and create a totally new backup instead.

Write error! - file <file name>
An I/O error occurred during the transfer of a file to the backup. An auxiliary message is printed
indicating the nature of the error. The program tries to recover from any error and continue.

backup: unknown option '+<char>'

The option specified by <char> is not a valid option to the backup command.

** Warning: directory <dir_name> is too large!
** Some directories were ignored
** Warning: directory <dir_name> is too large!
** Some files were ignored

The program uses some internal tables during the back up process. If the limits of these tables
are exceeded (highly unlikely), these messages are printed.

SEE ALSO
format
restore

2b-6

Section 2c

cc
Invokes the "c" compiler.

SYNTAX

cc <file name list> [+acfILmMnNOpPqrRtUvwx] [+eEQ]* [+D<name>[=<defn>]]
[+i=<dir name>] [+l=<lib name>] [+o=<file name>] [+T=<machine_type>]*
[+x=<ldr = option>] - -

ARGUMENTS
<file name list> - -

OPTIONS

List of the names of files and directories to process. Default is the working
directory.

*The compiler has additional options for MC68020 equipped 4400 machines.

a

c

Produce as output assembly language source files with an ".a" extension
and stop.

Put comments in the assembly language file.

D<name>[=<defn>] Command line" #define". This option must appear by itself.

e

E

f

i=<dir name>

I

l=<lib name>

L

m

M

n

N

Force production of MC68881 floating point co-processor code, see "+E". *

Do not produce MC68881 floating point co- processor code, see "+e".*

Produce an output module suitable for finnware.

Specify a directory for "#include" files. This option must appear by itself.

Produce as output intennediate language files with an ".i" extension and
stop.

Specify a library name to be passed to the loader. This option must appear
by itself.

Produce a source listing and write it to standard output.

Produce load and module maps from the loader.

Leave the combined output as one" .r" file.

Run the first pass only, do not produce any output.

Produce a listing without expanding #include ftles.

OPERATING SYSTEM REFERENCE 2c-l

USER COMMANDS
cc

o=<file name>

o
p

P

q

Q

r

R

Specify the output file name.

Run the assembly language optimizer.

Use stand alone pre-processor.

Produce intennediate ".p" files and stop.

Produce code that does calculations on char and short variables without
first converting to into

Suppress quad word alignment on MC68020 code generation. *
Produce as output relocatable modules with an ".r" extension and stop.

Produce as output relocatable modules with an ".r" extension, and continue
to produce an executable module.

t Produce a shared-text, executable output module.

T =<machine _type> Force MC680 1 0 or MC68020 code production. *
u

v

w

Produce a line-feed character ($OA) for "\n" rather than the default of
carriage return ($OD).

Show each phase of the compilation process (verbose mode).

Warn about duplicate "#define" statements.

x=<ldr _option> Pass the options to the loader for processing.

* Options that are only available on MC68020/MC68881 machines.

The "c" compiler, by default, aligns data strucblres on quad word (words consisting of four
eight-bit bytes) boundaries. This, while allowing the MC68020 to load and execute faster, causes
"holes" in the data structures. The +Q option suppresses this alignment to allow close packing of
data structures or compatibility with data structures generated with non quad-aligned compilers,
such as MC68000 or MC680 10 compilers.

For a full discussion of the "c" compiler, refer to the 4400 Series C Language Programmers
Reference manual.

2c-2

NOTE

The "c" stand-alone pre-processor is the file Ibinlcpasses/cprep. If
it is to be used with another program, it takes its input from stdin
and writes its output to stdout.

USER COMMANDS
cc

EXAMPLES

{cc blocks.c +0 +l=graphics

Compiles the program blocks.c, requesting the assembly language optimizer and passing the
library graphics to the loader.

cc labels.c +vLNr

Compiles the program lablels.c in verbose mode. The compiler produces a source listing,
without expanding any "#include" files, creating only a relocatable module labels.r.

cc access.c labels.r +o=access

Compiles the source program access and the relocatable module labels.r producing a single
binary output file access.

cc rand.c +i=/mark/include +DTHROWS=300 +t +o=dice

Compiles the program rand.c, specifing a directory lmark/include for #include files and
specifying a command line define of THROWS to equal 300. A shared-text binary output file
dice is produced.

SEE ALSO
headset
load
4400 Series C Language Programmers Reference

OPERATING SYSTEM REFERENCE 2c-3

USER COMMANDS
chd

chd
Changes the user's working directory.

SYNTAX
chd [<dir_name>]

DESCRIPTION
The eM command, which is part of both the shell and script programs, changes the user's
working directory to the directory specified on the command line. If no directory is specified, the
default is the user's home directory (the directory entered on logging in). The user must have
execute permission in the directory specified.

ARGUMENTS
<dir name>

EXAMPLES

The name of the directory to use as the working directory. Default is the
user's home directory.

chd /mark

Changes the working directory to the directory /mark.

chd book

Changes the working directory to the directory book, which resides in the current working
directory.

chd

Changes the working directory to the user's home directory.

ERROR MESSAGES

Cannot change directories.

The operating system returned an error when the script program tried to change directories. This
message is preceded by an interpretation of the error produced by the operating system.

SEE ALSO
shell
script
perms

2c-4

USER COMMANDS
commset

commset
Sets or displays the configuration of the communications port.

SYNTAX

commset [<options_list>]

DESCRIPTION

This utility allows you to examine or set certain I/O options on the RS-232 communications port.
With no argument, or with the "show" option, it reports the current setting of the options.

OPTIONS
The option strings are selected from the following set:

baud=nnn

=extemal
=nnnlmmm
=default

Set the transmit and receive baud rates. Valid values are 50, 75, 110, 134, 150, 300,
600, 1200, 1800,4800, 9600, 19200 and 38400. The keyword external specifies that
the external clock should be used for the baud rate. The default of 9600 is used if the
keyword default is entered. If two values are entered, then the first specifies the
transmit rate and the second specifies the receive rate, otherwise both rates are set to
the same value.

flag=dtr

=input
=output
=inout
=none
=default

Set the type of flagging to be used. The keyword dtr specifies that the DTR and crs
signals should be used to flag input and output full conditions. The keywords input
and output specify that DC3/DC 1 (CTL-S/CTL-Q) flagging should be used for input
or output, respectively. The keyword inout specifies that DC3/DCl (CTL-S/CTL-Q)
flagging should be used for both input and output. The keyword none disables
flagging. The default is inout flagging.

OPERATING SYSTEM REFERENCE 2c-5

USER COMMANDS
commset

parity=even

=odd
=high
=low
=none
=default

Set the type of parity to be used. The keyword even specifies that even parity be used.
The keyword odd specifies that odd parity be used. The keyword high specifies that
the parity bit should always be a one. The keyword low specifies that the parity bit
should always be a zero. The keyword none specifies that the parity bit is treated as
data. The default is low parity.

stop=n

-default

Set the number of stop bits to be used. Valid values are 1 and 2. The default is one
stop bit.

crS=disable

reset

=enable

Select whether to use the Clear-to-Send (erS) data signal for communication
protocol. Disabling ers means to ignore the signal condition. With erSenabled, a
CTS signal must be received before transmission is enabled.

Reset the communications pon, flushing any pending data and setting all options to
their default values.

show

Display the current settings for the options. This is the same as if no option is
specified.

C IMPLEMENTATION NOTES

The commset command uses the ttyset and ttyget system calls to communicate option settings to
the communications pon device driver.

SEE ALSO
conset
remote
4400 Series Assembly Language Reference manual

2c-6

USER COMMANDS
compare

compare
Compares two files line by line and prints the differences, if any.

SYNTAX
compare <file name 1> <file name 2> [+<window_size>]

DESCRIPTION
The compare command compares two files and indicates how they differ. The information
provided is usually sufficient to allow the user to change one file into the other. By default, the
compare command considers that it is in the same place in each of the files if three lines match.
The files to be compared may be binary files, but the results of the compare may not be readable.

The output from the command reports sets of lines which have been deleted from, added to, or
changed in either file. These messages are written from the point of view of how to change the
first file into the second file. For instance, the message

***** File <file name 1> lines deleted *****

means that if the lines following the message are deleted from <file_name j>, the two files will
be the same.

The program also reports the presence of additional lines in a file with the following message:

***** File <file name 1> lines inserted *****

This message means that if the lines following the message are inserted to <file_name _1 >, the
two files will be the same.

If a set of lines is deleted from one file and the following line is changed as well, compare reports
all those lines as lines that have been changed rather than inserted or deleted.

The compare command can handle files of any size, but can only process 250 lines at a time. If
the files differ in any spot by 250 lines, the program reports 250 lines changed in each file and
continues comparing them.

ARGUMENTS
<file name b The name of the first file to use. - -

The name of the file to compare to <file_name _1 > <file name 2> - -

OPERATING SYSTEM REFERENCE 2c-7

USER COMMANDS
compare

OPTIONS
<window size>

EXAMPLES

Use the integer <window_size> as the number of matching lines required
before considering the files synchronized. The number specified must be
between 1 and 250, with a default of 3.

compare /michael/test /cathy/test

Compares the file test in the directory Imichael to the file test in the directory Icathy.

compare test test.bak +5

Compares the two files test and test.bak in the working directory. The window size for the
comparison is five lines.

ERROR MESSAGES

Syntax: compare <file_name_l> <file_name_2> [+<window_size>]

The compare command expects two or three arguments. This message indicates that the
argument count is wrong.

SEE ALSO
dump

2c-8

USER COMMANDS
conset

conset
Sets or displays the configuration of the console port.

SYNTAX
conset [<options_list>]

DESCRIPTION
The utility conset allows you to examine and set certain I/O options on the console port. With no
argument, or with the "show" option, it reports the current setting of the options.

You can choose several sizes and styles of monospaced fonts for your normal screen display on
the 4405 and 4406.

OPTIONS
The option strings are selected from the following set:

+any
-any

+becho
-becho

chardel=<n>

+cml
-cml

+cursor
-cursor

default

+diskpan
-diskpan

+echo
-echo

linedel=<n>

+mousepan
-mousepan

Enable or disable any character to restart suspended output.

Enable or disable spacelbackspace to erase on backspace.

< n> is a hex number specifying a character to be used as the delete
character.

Enable or disable RETURNs, to be displayed as return/line-feed.

Select make graphic cursor visible or invisible.

Restore default settings.

Enable or disable joydisk panning of viewport.

Enable or disable character echoing.

< n> is a hex number specifying a character to be used as line delete
character.

Enable or disable mouse panning of the viewport.

OPERATING SYSTEM REFERENCE 2c-9

USER COMMANDS
conset

+raw
-raw

+schar
-schar

+screensave
-screens ave

Set or clear the raw mode.

Enable or disable single character mode.

Enable or disable screen blanking after 10 minutes of inactivity.

selectFont=<name> Small, smallBold, medium, mediumBold, large, largeBold, extraLarge, and
extraLargeBold. *

show Display the current settings for the options. This is the same as if no
option is specified.

+tabs Enable or disable automatic tab expansion.
-tabs

+track Enable or disable graphic cursor tracking the mouse.
-track

+video Select normal video (black on white) or inverse video.
-video

+xon Enable or disable CfRL-S/CTRL-Q (DC3/DCl) flagging to suspend
-xon output.

* Options are only available on 4405 and 4406 machines.

EXPLANATION OF OPTIONS

Conset allows you to select the size and style of fonts used by the terminal emulator on 4405 and
4406 machines. It allows you to select the suitable fonts from the selections in the directory
fonts. The additional fonts in this directory are available via Smalltalk-80 or the graphics library.

C IMPLEMENTATION NOTES
The conset command uses the ttyset and ttyget system calls to communicate the raw, echo, tabs,
becho, schar, xon, any, cmI, chardel and linedel option settings to the console port device driver
and it uses system traps to implement the screensave, video, cursor, track, mousepan, and diskpan
options.

SEE ALSO
commset
remote

2c-lO

USER COMMANDS
copy

copy
Copies a file or directory to the specified file or directory, or copies one or more files to the
specified directory.

SYNTAX
copy <file name 1> <file name 2> [+bBcdDFlLMnopPt]
copy <file=name=list> <dir_name_2> [+bBcdDFlLMnopPt]
copy <dir name 1> <dir name 2> [+bBcdDFlLMnopPt]

DESCRIPTION
Three forms of the copy command exist The first form makes a copy of a file and gives it the
specified name. The second form makes one copy of each specified file and places all copies in
the specified directory. The last component of each file name is preseIVed in the new directory.
The third form copies the contents of one directory to another.

In any case, if no file exists which has the same name as the name specified for the new copy, the
copy command creates one. If a file with that name already exists, it is deleted and recreated
before copying takes place. Thus, the original contents of the file are lost and replaced by the
contents of the file being copied. In addition, any links to the original file are broken, unless the
"L" option is specified.

The new file has the same permissions as the original file. The owner of the new file is always
the user who executes the command. The user must have execute permission in the directory in
which copies are to be made. He or she must also have write permission for the file being copied
to and, unless the "0" option is specified, in the directory that is to contain the new copy.

ARGUMENTS
<file name 1> - -
<file name 2> - -
<file_name _list>

<dir name 1> - -

TIle name of the me to copy.

The name of the new copy of the original file.

A list of the names of the files to copy to the specified directory.

The name of the source directory.

The name of the directory in which to place all copies.

OPERATING SYSTEM REFERENCE 2c-ll

USER COMMANDS
copy

OPTIONS
b

B

c

d

D

F

I

L

M

n

o

p

p

t

EXAMPLES

Do not copy a file unless it already exists in the destination directory.

Do not copy files ending in .bak.

Do not copy a file if it already exists in the destination directory. Cannot
be used with n.

Copy directory structure for all named directories.

Implicitly specify the high level directory names. This option works
properly only in conjunction with the +d option. When used together with
+d, +D preserves the source directory structure within the destination
directory .

Copy/convert a directory to a regular file.

List the name of each file as it is copied and the name of the new copy.

Do not unlink the destination fIle.

Convert RETURN/new-line to LINE-FEED/new-line

Copy a file if it is newer than the copy in the destination directory. If no
copy exists, perform the copy.

Retain original file ownership.

Prompt for permission to copy each file.

Preserve all the characteristics of the file - the modification time and the
ownership of the source file.

Do not copy source directory unless destination directory exists.

copy parts parts.bak

Copies the file named parts to a file named parts.bak. If a file named parts.bak already exists, it
is deleted and recreated before copying takes place.

copy letter /mark/letter +p

Copies the file letter in the working directory to the file lmark/letter. The copy command
prompts for permission to copy before proceeding. If the user denies permission, no copy is
made. For the command to succeed the user must have both write and execute permission in the
directory Imark as well as write permission for the file lmark/letter.

2c-12

USER COMMANDS
copy

copy test_l test_2 memo /mark +10

Copies the files test_1, test_2, and memo to the directory Imark. The names of the new files are
lmark/test 1, Imark/test 2, and lmark/memo. If a file with one of these names already exists, the
copy comIDand overwrites its contents without warning (the user does not need write permission
in the directory Imark). The name of each file and the name of the new copy are listed as copying
takes place.

Each copy created by these commands has the same permissions as the original file. The owner
of all copied files is the user executing the command.

copy dir_l /mark +dnolDLP

Copies the directory dir j, and any sub-directories, to the directory lmark. For source files in the
destination directory a copy is made only if the source file is newer. The files are listed as they
are copied; preserving ownership, links, and modification times. The source directory structure
dir _1 will be preserved exactly in the directory lmark.

ERROR MESSAGES
Can't get status for "<file name>": File doesn't exist

The user asked for a copy of a nonexistent file.

Copying over myself!

A:ft1e may not be copied onto itself. Both </ile_name_1> and </ile_name_2> refer to the same
file. (If their names are not the same, they are links to the same file.)

Can't make device "<file name>": Permission denied

The user asked for a copy of a block or character file. Such files may only be copied by the user
system.

Must be a directory: <file_name>

The form of the copy command being used requires the last argument to be an existing directory;
<file_name> is not an existing directory.

Path cannot be followed: <file name>

One or more of the directories which make up the name of the file do not exist.

OPERATING SYSTEM REFERENCE 2c-13

USER COMMANDS
copy

Can't open "<file_name>": Permission denied

The permissions associated with <file_name> or with the path leading to <file_name> prevent
the user from accessing the file.

Read error on file: <file name>

A physical read error occurred while reading <file_name>.

Syntax: copy <source_name_list> <dest_file_name> [+bBcdDF1LnopPt

The copy command expects at least two arguments. This message indicates that the argument
count is wrong.

Write error on file: <file name>

A physical write error occurred while writing to <file_name>.

SEE ALSO
link
move
rename

2c-14

ere
A file's cyclic redundancy checker. Output is suitable for re-execution.

SYNTAX
ere <file name> [<ere_value>]

DESCRIPTION

The method used to check file integrity is a software byte-wise algorithm:
X{16} + X{15} + X{2} + 1

ORCRC detects a large class of errors:

All one- or two-bit errors

All odd numbers of bit errors

ARGUMENTS
File which is to have its CRC calculated.

USER COMMANDS
cre

<file name>

<cre value> Optional four-digit hexadecimal number to compare with the file's
actual cyclic redundancy check.

EXAMPLES
ere fred> fred. ere

This example calculates the CRC for a file named "fred", and places the result in a file named
"fred.crc". The result is in the form:

ere fred f5d7

The file "fred" may then be verified by executing:

shell fred. ere

which will exit silently if the CRC of the original file does not differ from the CRC of the current
file.

OPERATING SYSTEM REFERENCE 2c-15

USER COMMANDS
crdir

crdir
Creates a directory.

SYNTAX
crdir <dir name list>

DESCRIPTION
The crdir command creates a directory for each name listed as an argument to the command. The
user must have write permission in the directory in which the new directory is created. Each new
directory contains the entry ".", which represents the directory itself, and the entry " .. ", which
represents its parent directory.

By default, crdir creates a directory with rwxrwx permissions. However, any default permissions
set by the dperm command override these permissions. The owner may, of course, change the
permissions at any time by using the perms command.

ARGUMENTS
<dir name list>

EXAMPLES

A list of the names of directories to create. All of the components of
the directory name (path name), except the last component, must
already exist.

crdir book

Creates the directory book in the working directory.

crdir /sarah/book

Creates the directory book in the directory Isarah. If the directory Isarah does not already exist,
the command fails.

crdir /mark /mark/memos /mark/drafts

Creates the directory lmark first, followed by the subdirectories, memos and drafts in the
directory lmark.

2c-16

USER COMMANDS
crdir

ERROR MESSAGES
Error creating <dir name>: <reason>

The operating system returned an error when crdir tried to create the specified directory. This
message is followed by an interpretation of the error returned by the operating system.

Error linking <dir_name> to its. file: <reason>

The operating system returned an error when crdir tried to link the "." entry to the directory itself.
This message is followed by an interpretation of the error returned by the operating system.

Error linking .. to parent of <dir_name>: <reason>

The operating system returned an error when crdir tried to link the newly created directory to its
parent. This message is followed by an interpretation of the error returned by the operating
system.

Error setting owner for <dir_name>: <reason>

Initially, the crdir command creates the new directory with the owner system. It then changes the
owner to the user who executed the command. In this case, the operating system returned an
error when crdir tried to change the owner of the directory. This message is followed by an
interpretation of the error returned by the operating system.

Syntax: crdir <dir_name_list>

The crdir command expects at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO
dpenn
penns
remove

OPERATING SYSTEM REFERENCE 2c-17

USER COMMANDS
create

create
Creates an empty file for each file name on the command line.

SYNTAX
create <file name list>

DESCRIPTION

The create command creates an empty file for each name specified on the command line. If the
file does not exist, it is created with rw-rw- permissions (unless altered with the dperm
command), and the owner is the user who executes the command. If the file already exists, the
owner and permissions remain intact However, the file is truncated to a length of O. You need
write permission in the directory that you are creating a new file.

ARGUMENTS

<file name list> - -

EXAMPLES

A list of the names of the files to create. The last component of a file name
may not contain more than 55 characters. The create command ignores
any additional characters.

create test
Creates the file test in the user's working directory.

create /julie/test /mark/test
Creates the file test in the directories /julie and lmark.

ERROR MESSAGES

Error creating <file_name>: <reason>
The operating system returned an error when create tried to create <file name>. This message is
followed by an interpretation of the error returned by the operating system.

Syntax: create <file_name_list>
The create command requires at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO
edit

2c-18

Section 2d

date
Displays or sets the time and date.

SYNTAX
date [[<mm>-<dd>[-<yy>]] <hr>:<min>[:<sec>]] [+s]

DESCRIPTION
The date command has two fonns: with arguments and without. Any user may execute the date
command without any arguments. In response, the system returns the current date and time. The
user system may also use the date command with arguments to set the system date and time. If
the user system uses the +s option, the system reads the hardware clock and sets the date and time
accordingly.

ARGUMENTS
<mm>

<dd>

<yy>

<hr>

<min>

<sec>

OPTIONS
s

A number from 1 to 12 inclusive representing the month.

A number from 1 to 31 inclusive representing the day.

A two-digit number representing the last two digits of the year.

A number from 0 to 23 inclusive representing the hour. (Time must be
expressed as 24-hour-clock time.)

A number from 0 to 59 representing minutes past the hour.

A number from 0 to 59 representing seconds past the minute. The default
is O.

The s option tells the system to set the system date from the internal
hardware clock.

OPERATING SYSTEM REFERENCE 2d-l

USER COMMANDS
date

EXAMPLES

date 7-13-84 15:47:28

Sets the date to July 13, 1984, and the time to 3:47:28 P.M.

date 11:53

Sets the time to 11 :53 A.M. The date defaults to the date stored in memory and the value for
seconds defaults to zero.

date 7-13 17:5

Sets the date to July 13 and the time to 5:05 P.M. The value for the year defaults to the stored
value, and the value for seconds defaults to zero.

date

Displays the date and time currently stored in memory.

date +s

Sets the date and time to correspond to that in the system hardware clock.

ERROR MESSAGES

Invalid <arg> specified.

The value specified for the argument shown in the error message is not within the acceptable
range.

Only the system manager may change the date!

The user who tried to change the date is not the system manager.

Syntax: date [[<mm>-<dd>[-<yy>]] <hr>:<min>[:<sec>]]

T'ne syntax of the command iine is incorrect. Most probably, the arguments specifying the time
are missing or mistyped.

2d-2

USER COMMANDS
debug

debug
Invokes a machine-language debugging system.

SYNTAX

DESCRIPTION
The debug command is used to aid in the testing and debugging of machine-language programs.
Because all programs are ultimately translated into machine language, any program may be
debugged using debug.

The debug command is used to examine or modify the image of a machine-language program.
This image can be (1) a post-mortem memory dump of a program which has been aborted by the
operating system, (2) a program image file, or (3) a program which is currently executing under
the control of debug. If no image file is specified on the command line, the default is the file
core in the working directory. The debug command examines the file to determine whether it is a
core image or an executable image file. If it is neither, debug issues the message Invalid image
type and terminates. The third type of image may be created only by specifying the name of an
executable image on the command line, followed by executing "x" command to create the
controlled task.

The commands available with debug allow the user to examine memory locations within the
program image, to modify memory locations, to set breakpoints, to execute single instructions (to
single step through the program), to examine and change registers, and more. Some commands,
such as single step, are applicable only when debug is being used to control the execution of a
task. However, most commands are available for use with all image types.

ARGUMENTS
<image_file_name> The name of the file to debug. The default is the file core in the working

directory.

+

?

b

B

c

d

g

Execute a shell command.

Display the value of an expression in multiple formats.

Display the help menu.

Set a breakpoint.

List the breakpoints that are currently set.

Clear one or all breakpoints.

Dump a section of memory.

Continue execution of a program.

OPERATING SYSTEM REFERENCE 2d-3

USER COMMANDS
debug

G

I

k

K

m

M

n

q

r

R

s

S

T

x

OPTIONS

Execute the program until reaching a branch or a breakpoint.

Disassemble instructions.

Initialize symbol table.

Terminate the currently executing task.

Remove any pending signals for the controlled task.

Modify bytes in memory.

Display the current memory map.

Display the command line for the task.

Terminate debug.

Display the contents of all registers.

Set the contents of a register.

Execute a single instruction.

Set a temporary breakpoint at the instruction following the current
instruction and execute the current instruction.

Trace instructions until reaching a branch or a breakpoint.

Create a task to be executed under the control of debug.

A carriage return performs the same as the "i" command, but with no
address.

The debug command normally works in an interactive environment. The basic command
structure is designed to be simple to use and to remember. In general, each command name is a
single character, which may be followed by one or more expressions.

Expressions may include the operators II +" and" _", which are evaluated from left to right unless
parentheses are used. Expressions may also include any of the following terms:

$<num>

<num>

#<num>

<symbol>

<register>

2d-4

The hexadecimal value of <num>.

The hexadecimal value of <num>. If this form is used, the number must
start with a digit. If it starts with a character, debug interprets it as a
symbol.

The decimal value of <num>.

The value of the specified symbol. Symbol names must be completely
specified - that is, all characters are significant.

The contents of the specified register. The register may be DO through D7,
AO through A 7, SR, or PC. The letters used in specifying a register may be
either uppercase or lowercase. A "." means the last memory address
accessed.

USER COMMANDS

DETAILED ARGUMENT DESCRIPTIONS
The following paragraphs describe the debug command arguments in more detail.

+ <shell command>
This command allows the user to execute a single shell command without exiting debug.

= <expression>

debug

This command displays the value of the expression symbolically, in hexadecimal, and in decimal.

?
This command displays a menu of commands available from debug.

b <location> [<count>]
The "b" command sets a breakpoint at the given location. When the program is executed, the
instruction at the given location is replaced by a special instruction which indicates to the
operating system that the user wants to break the flow of the program. When this instruction is
executed in the program, the operating system suspends the program and notifies debug, which
prints the location of the breakpoint and returns to command mode. If the user specifies a count,
the breakpoint is executed <count> times before execution is halted and debug notified. Once the
count is exceeded, execution is halted every time the breakpoint is encountered unless it is reset
by another "b" command or cleared.

B
The "B" command lists each breakpoint which is currently set as well as the corresponding
<count> if it is nonzero.

c [<address>]
If the user does not specify an address, the "c" command prompts for permission to clear all
breakpoints that are currently set. If the user does specify an address, it clears the breakpoint at
that address.

d <address 1> [<address 2 or count>]
The "d" command dumps dIe hexadecimal cOntents -and the ASCII equivalents of a range of
memory locations. Memory is displayed sixteen addresses to a line. Nonprintable characters are
represented in ASCII by a period.

If the user specifies only one argument, the command displays the contents of the specified
address. If the user specifies two arguments and the second one is greater than the first, the
command interprets the second argument as an address. It displays the contents of memory from
the first specified address to the second, inclusive. If the user specifies two arguments and the
second one is less than or equal to the first, the command interprets the second argument as a
count. It displays the contents of memory beginning at the first address and continuing for the
number of addresses specified by the second argument.

The dump may be aborted by typing the return key during the dump. CTRL-C does not abort the
command.

g
The "g" command continues the execution of a controlled task. Execution continues until the
program terminates, receives a signal or encounters a breakpoint. The user may use this
command only when executing a controlled task.

OPERATING SYSTEM REFERENCE 2d-5

USER COMMANDS
debug

G
The "Gil command executes the program until it encounters any branch instruction, any call
instruction, or any breakpoint.

i [<address 1> [<address 2 or count>]]
The "i" command displays the contents of memory from the first specified address to the second,
inclusive. If the user specifies two arguments and the second one is less than or equal to the first,
the command interprets the second argument as a count. The "i" command interprets the
specified location or range of locations as machine-language instructions and advances the
location counter to the start of the last complete instruction within the specified range. If the user
specifies no second argument or if the range specified by the second argument is shorter than the
complete instruction, the command displays the instruction which begins at the starting address
but does not move the location counter. A carriage return by itself is equivalent to the command
"i" , except that the location counter is advanced to the beginning of the next instruction.

I
The "I" command initializes debug's internal symbol table. The symbol table is used to interpret
symbolic addresses and values. The "I" command prompts for the name of the file containing the
symbol table to use. The file must be a binary image file. This command is normally for use
with a core image file, because such files do not contain any symbolic information. Once the
symbol table is initialized, however, a core image file can be interpreted symbolically.

k
The "k" command terminates execution of the currently controlled task. If no controlled task
exists, the command is not allowed. This command need not be used, because the "x" command
implicitly kills any controlled task before creating another.

K
When a task running under the control of debug receives a signal, the operating system notifies
debug and suspends the task. The debug program then enters command mode, allowing the user
to execute any debug command. A user who wishes to ignore the signal may do so by entering
the "K" command. A user who wishes the signal to take effect should simply continue the
program with the "gil (or a similar) command.

m <address>
The "m" command modifies the contents of one or more memory locations in the image file. In
response to this command, debug first displays the specified address and its contents. The user
may change the contents by entering any expression, may leave the contents as is by entering a
period, or may terminate the command by entering just a carriage return. Unless the user
terminates the command, debug modifies the contents if appropriate, displays the next address
with its contents, and waits for input from the user. If the image file is a core dump or an
executable file, the file itself is modified. If the image file is a controlled task (Le., an "x"
command has been executed), only the memory of that task is altered. The executable file from
wrJch debug created the task is not changed. Tnerefore, when patching code the user should be
aware that patches are applied only to the executing image file.

M

The "M" command displays a map of the logical addresses available to the task image. If the
image is either a core dump or a controlled task, the map contains the ranges of addresses being
used by the program. These ranges may change whenever the program executes a break or a
stack system call. If the image is an executable file, the "M" command displays the ranges of the
addresses of the TEXT and DAT AlBSS segments.

2d-6

USER COMMANDS
debug

n
The "n" command displays the command line which was used to create the task. This is merely a
display of the command arguments passed to the program when it was created. In most cases the
command line consists of the shell command used to invoke the program. The command line for
a controlled task looks just like the command line entered with the "x" command that created it,
except that the "x" is replaced by the program name.

r
The "r" command displays the contents of the registers for the image file, as well as the address
of the program counter and the instruction located at that address. For a core dump it displays the
contents of the registers at the time the program was aborted by the system and the location of the
program counter at that time.

The instruction displayed is the instruction that was in progress when the program was aborted.
For a controlled task, the "r" command displays the contents of the registers as they will be when
execution resumes, the address at which execution will resume, and the instruction at that
address. The registers for an executable file are undefined. For an executable file, the "r"
command displays the contents of the registers as zeros and the address and contents of the entry
point of the program.

R <register name> <expression>
The "R" command, which may be used only if the image file is a controlled task, alters the
contents of a register. The register may be DO through D7, AO through A7, SR, or PC. The
letters used in specifying a register may be either upper- or lowercase. The supervisor portion
(the upper byte) of the status register may not be altered.

s
The "s" command executes a single machine-language instruction. When the instruction is
complete, debug displays the state of the task (including the new program counter) and the next
instruction to be executed. The" s" command uses system facilities provided by the operating
system. Thus, the user may safely single-step through macro operations such as system calls.

S
The "S" command sets a temporary breakpoint at the instruction following the current instruction.
This breakpoint is removed as soon as it is encountered. If another" S" command is executed
before the breakpoint is encountered, it removes the original breakpoint. This command may be
used with any instruction, but it is nonnally used with a call to a subroutine.

T
The "T" command executes the program until it encounters any branch instruction, any call
instruction, or any breakpoint After the execution of every instruction, debug displays the
address of the next instruction and the instruction itself.

x [<arguments>] [<I/O redirection>]
The "x" command creates a controlled task from an image file. In order to execute this
command, the user must first invoke debug with the name of an executable image file as the
argument. The task is halted before execution of its first instruction, so that debug can accept
commands to control its execution.

1/0 redirection may be accomplished using the character "<" to redirect standard input, ">" to
redirect standard output, and "%" to redirect standard error. No provisions are made for using
either append mode (») or implied mapping (>%).

OPERATING SYSTEM REFERENCE 2d-7

USER COMMANDS
debug

NOTE

The more breakpoints you set, the longer the program takes to
execute.

ERROR MESSAGES
Breakpoint table full!

The user has already set the maximum number of breakpoints.

Can't access core/image <image file name>
The operating system returned an error when debug tried to access the specified file. Most
probably, either the file does not exist or the user does not have read permission in the file.

Can't open <file name>
The debug command was unable to open the file which the user specified as the file containing
the symbol table to use. Most probably, either the file does not exist or the user does not have
read permission in the file.

Can't write <image file name>
The user tried to use the "m" commandoo modify the contents of a memory location in the image
file, but debug was unable to write to the file. Most probably, the user does not have write
permission in the file.

Command too complicated
The user tried to use the "+" command to execute a shell command from debug, but the command
line was too long for debug to interpret.

Error during EXEC - <error num>
The operating system returned an error when the User tried to create a controlled sub task using
the "x" command. This message is followed by the error number returned by the operating
system.

Error in expression
The expression used contains a syntax error.

Illegal address
The address specified is not in the user's address space.

Illegal command, <char>, - ignored
The command specified by <char> is not a valid command for debug. The character is ignored,
and debug prompts the user for another command.

2d-8

USER COMMANDS
debug

Illegal file type
The "I" command cannot detennine the file type of the image file and, consequently, ignores the
file. All previously defined symbols are no longer defined.

Illegal register name
The register name specified by the user is not a valid register name. The register name must be
one of the following: DO through D7, AO through A 7, SR, or PC. The letters used may be upper­
or lowercase.

<image file name> is not executable
The user does not have execute pennission in the specified image file.

Invalid image file <file name>
The file specified to the debug command must hi" either an executable file or a core dump.

No command line
The file being debugged is not a core file, and was not invoked with the
Therefore, no command line exists for the file.

Not executing a task!

It tt
X command.

The command specified can execute only if the user has previously executed the "x" command.

Sorry, can't execute a core file
The "x" command cannot be executed on a core file.

** Syntax error
The "x" command cannot parse the specified command line.

Undefined symbol
An expression contains a tenn which appears to be a symbol (starts with a letter or an underscore
character, "_") but is not in the symbol table. Hexadecimal values used in expressions must begin
with a digit (a leading 0 is accepted) or a dollar sign,"$".

OPERATING SYSTEM REFERENCE 2d-9

USER COMMANDS
dir

dir
Lists the contents of a directory or infonnation about a file.

SYNTAX
[<file_name_list>] [+abdflrsSt]

DESCRIPTION
The dir command is used to list either the names of the files in the specified directory or, if the
argument is not a directory, infonnation about the specified file(s). By default, the names of the
files in a directory are listed in alphabetical order with several names per line.

ARGUMENTS
<dir name list> - -
<file name list> - -

OPTIONS
a

b

d

f

r

2d-1O

A list of directory names to process.

A list of the names of files to process. The default is the working
directory.

List all files in a directory, including those whose names begin with a
period, ".". This option has no effect if the specified file is not a directory.

List the file size in bytes rather than blocks. This option implies the "1"
option.

If the file being processed is a directory, list the names of all files it
contains. Continue this process for all descendant directories. This option
allows the user to see the entire directory structure.

List the number of the file descriptor node for each file. This option
implies the "I" option.

If the specified file is a directory, give detailed infonnation about each file
in the directory. This option has no effect if the specified file is not a
directory because in such a case t..'1e information is automatically given.

If the specified file is a directory, reverse the order in which the files would
otherwise be listed.

s

s
t

USER COMMANDS
dir

If the specified file is a directory, list one file name on each line. This
option is useful for creating a file which contains the names of all the files
in a directory.

Print a summary of the information after listing all files.

This option sorts all files in a directory by the time last modified. It cannot
be used to sort specific files or groups of files (via wildcard characters).
By default, the most recently modified file is listed first

FORMAT OF THE OUTPUT
The information given about a file is presented on one line, which contains several fields. These
fields are described here in the order in which they appear.

<fdn num>

<file name>

<size>

<perms>

<link count>

<owner>

<last mod time> - -

The number of the file descriptor node (fdn) which describes the file in
question. This field is not present unless the user specifies the "f' option.

The name of the file being described.

The size of the file in blocks or bytes. If the file is a device, dir places the
major and minor device numbers in this field.

A single character specifying the type of file. The character "b" represents
a block device; "c", a character device; "d", a directory; and "p", a psuedo­
terminal device. If the field is blank, the file is a regular file.

This field, which is composed of six columns, indicates what permissions
are associated with the file. The first three columns represent permissions
for the user who owns the file; the last three for other users. Permissions
are always presented in the order read, write, and execute. They are

dbthl """" d""Ahh' I represente y e etters r, w an x. yp en m a co umn means
that the corresponding permission is denied. For example, if the
permission field contains the sequence rwxr-x, the user who owns the file
may read, write, and execute the file, whereas other users may only read
and execute it.

The link count is the number of directory entries which point to a file. The
link count for a directory is always at least 2 because the "." entry within
the directory itself points to the same fdn as the directory entry for that file
in its parent directory.

The name of the user matching the user 10 number found in the system
password file. If no user ID number is found, the user 10 is printed
surrounded by double brackets, i.e. <<12».

The time and date at which the file was created or last modified.

OPERATING SYSTEM REFERENCE 2d-ll

USER COMMANDS
dir

EXAMPLES
dir +1

Lists infonnation about each file in the working directory (except those whose names begin with
a period).

dir /jay +abdfS
Lists infonnation about all files, including those whose names start with a period, in the directory
/jay (the "f' and the "b" option both imply the "1" option). In addition, the command displays a
list of the files in each subdirectory that is a descendant of /jay. The information includes the fdn
number of each file. The size of each file is shown in bytes. At the end of the output is a
summary showing the total number of directories processed, the total number of nondirectory
files processed, and the total number of blocks used by all the files.

dir memo +f
Displays infonnation about the file memo in the working directory. The information includes the
fdn number of the file.

dir /marcy +rt
Lists the names of those files in the directory /marcy which do not begin with a period. The
names are sorted by the time of the last modification with the sense of the sort reversed so that
the most recently modified file is the last one in the list.

dir /marcy +8
Lists the names of those files in the directory /marcy that do not begin with a period. One name
appears on each line.

ERROR MESSAGES
Unknown option: <char>

The option specified by <char> is not a valid option to the dir command.

Ps Warning: directory <dir_name> is too large! Some directories were ignored

2d-12

The dir command cannot process a ftle if the total number of directories in every
directory between that file and the directory specified on the command line exceeds
50. In order to make the command succeed, the user should start at a lower point in
the directory tree.

Warning: directory <dir_name> is too large!
Some files were ignored

The dir command cannot list more than 500 file names from a single directory. In
order to make the command succeed, the user should split the offending directory
into two or more directories.

USER COMMANDS
dirs

dirs
Lists the current working directory and the directory stack created by the pushd command and
maintained by the shell.

SYNTAX
dirs

DESCRIPTION
List the current working directory and the directory stack created by the pushd command and
maintained by the shell. The directory stack is listed top first.

SEE ALSO
popd
pushd
shell

OPERATING SYSTEM REFERENCE 2d-13

USER COMMANDS
dpenn

dperm
Sets the default pennissions for the creation of files, directories, and devices by the current shell
program or by tasks generated by the current shell program.

SYNTAX
dperm [<perms_list>]

DESCRIPTION
Every time a user creates a file, the operating system assigns it a set of pennission bits which
determines whether the file's owner and other users may read, write, or execute the file. The
permissions assigned depend on the command used to create the file. The editor edit, for
example, creates all files with rw-rw- pennissions, which allow the user who owns the file, as
well as other users, to read and write, but not execute, the file. The default pennission for crdir
are rwxrwx; for create, rw-rw-; for makdev, rw-r-.

The dperm command, which is part of the shell program, is used to set the default permissions for
the creation of a file. It allows the user to instruct the system always to deny certain permissions,
independent of how the file is created. It is possible to independently tum off any of the
permission bits for the file's owner and other users. If the user specifies no arguments, the
operating system restores the default pennissions.

It is only possible to deny permissions with the dperm command. The perms command may be
used to add permissions to individual files, overriding the defaults set by dperm.

ARGUMENTS

A list defining the permission bits to be used as defaults.

FORMAT FOR ARGUMENTS

2d-14

The first character of an element in a permissions list specifies if the
argument applies to the user who owns the file ("u") or to other users ("0").
The second character must be a minus sign, "_", which. indicates t!mt the
following pennissions are to be denied. The minus sign is followed by

three fth cha 1111 II II d" "(ti d . d one, two, or 0 e racters r, w, an x or rea ,wnte, an
execute, respectively).

USER COMMANDS
dperm

EXAMPLES
dperm o-rwx

Sets the default permissions so that the operating system denies all permissions to other users
whenever it creates a file.

dperm u-w o-wx

Sets the default permissions so that the operating system denies write permission to the user who
owns the file, and both write and execute permission to other users whenever it creates a file.

dperm

Restores all default permissions.

NOTE

The dperm command is only effective while the shell program
under which it is invoked is running. The default permissions for
files created by the login shell can be permanently altered by
placing the appropriate command in the file .login in the user's
home directory. This file is automatically executed each time the
user logs in.

ERROR MESSAGES

Error in permissions specification.

The format of the permissions list is incorrect. Most likely, the user has specified a plus sign,
"+" , instead of a minus sign, or has used an invalid character.

SEE ALSO
perms

OPERATING SYSTEM REFERENCE 2d.-15

USER COMMANDS
dump

dump
Sends both a hexadecimal and an ASCII listing of a file to standard output.

SYNTAX
dump <file_name> [+i]
dump [<file_name_list>]

DESCRIPTION
The dump command sends a hexadecimal and an ASCII listing of a file to standard output. The
two versions of the file appear side by side. A line of output consists of the address in the file at
which that line starts, the hexadecimal contents of the byte at that address and of the following
fifteen bytes, and the sequence of characters represented by these bytes. A nonprintable character
appears as a period, ".", in the ASCII part of the listing.

The user may interrupt the dump command at any time by typing a CTRL-C. Normally, a
CTRL-C returns the user to the shell program. However, if the dump command is in interactive
mode and is actually displaying information when the user types a CTRL-C, dump stops the
output and prompts for another address.

ARGUMENTS
<file name>

<file_name _list>

OPTIONS

2d-16

The name of the file to dump. The default is standard input.

The name of files to dump. You cannot use this interactively.

Enter interactive mode. The "i" option may be used only if exactly one file
name appears on the command line. If the user specifies the "i" option, the
dump command prompts for the address at which to begin. The address is
relative to the first byte in the ftle, whose address is O. An address
preceded by a period is a decimal address; otherwise it is a hexadecimal
address. The user may specify a single address, a range of addresses (two
addresses separated by a hyphen, or an initial address and an offset (an
address followed by either a comma or a space, followed by a number). In
the first case, the dump command displays sixteen bytes of information,
beginning with the specified address. In the second case, it displays all the
bytes from the first to the second address inclusive. In the third case, it
begins displaying bytes at the address specified and continues for as many
bytes as the following number dictates.

USER COMMANDS
dump

EXAMPLES
dump memo /cynthia/letter

Sends both a hexadecimal and an ASCII listing of the file memo, which is the working directory,
and the file letter, which is in the directory Icynthia, to standard output.

dump letter +i

Enters interactive mode and prompts the user for the address at which to begin dumping the file
letter.

dump testprog >test.dump

Sends a hexadecimal and ASCII listing of the file testprog via redirected I/O to the file test.dump.

ERROR MESSAGES
Cannot interactively dump multiple files.

The "i" option may not be used if more than one file name appears on the command line.

Cannot interactively dump standard input.
If the user specifies no file name on the command line, the default is standard input. The "i"
option may not be used in such a case.

Error opening <file_name>: <reason>
The operating system returned an error when dump tried to open <file_name>. This message is
followed by an interpretation of the error returned by the operating system.

Invalid option <char>: ignored.
The option specified by <char> is not a valid option to the dump command. The command
ignores it.

SEE ALSO
compare

OPERATING SYSTEM REFERENCE 2d-17

Section 2e

echo
Writes the arguments on the command line to standard output.

SYNTAX
echo [<argument_list>] [+1] [+<hex_num>]

DESCRIPTION

The echo command writes the arguments in <argument_list> to standard output. A space
character appears after each string argument; no space appears after a hexadecimal argument;
while the last argument is followed by a carriage return. You can use echo to non-destructively
show how the shell or script programs evaluate special characters in the <argument_list>.

ARGUMENTS
A list of arguments to write to standard output.

FORMAT FOR ARGUMENTS
Each element in <argument_list> consists either of a string or a
hexadecimal number preceded by a plus sign, "+".

OPTIONS
1

<hex num>

Do not write a carriage return after echoing the argument list.

Send the equivalent hex byte to standard output.

EXAMPLES
echo This is a test!

Writes the string This is a test! to standard output, which defaults to the console.

echo This is a test! +7 +1 >/dev/console

Writes the string This is a test!, followed by the bell character (hexadecimal 7), to standard
output. Standard output is redirected to /dev/console (the 4400 display). The output is not
followed with a carriage return. (The +1 is the option plus el, not the hexadecimal argument plus
one.)

OPERATING SYSTEM REFERENCE 2e-l

USER COMMANDS
edit

edit
Invokes the text editor in order to create a new text file or edit an existing one.

SYNTAX

DESCRIPTION
The edit command may be used with zero, one, or two arguments. With one argument, edit
opens the specified file for editing, creating it if necessary, and reads as much of the file as
possible into the edit buffer. At the end of an editing session of a pre-existing file, the editor
renames the original file by appending the letters .bak to its name. If this addition would result in
a file name of more than 55 characters (the maximum allowed by the operating system), the
editor shortens the original name before adding the suffix. If a backup file already exists, the
editor prompts for permission to delete it.

If the user specifies no arguments, the editor prompts for the name of the file at the end of the
editing session, before returning control to the operating system. It does not accept the name of
an existing file.

If the user specifies two file names, the operating system makes a copy of the first file specified,
gives it the name specified by the second argument, and opens it for editing. If a file with that
name already exists, the editor prompts for permission to delete it before proceeding. In such a
case, the editor creates the new file with the same permissions as the old file.

Files created by the editor have permissions of rw-rw-.

ARGUMENTS
<file name 1 > - -

<file name 2> - -

2e-2

The name of the file to open for editing, or, if two file names are specified,
the name of the file to copy.

The name to give to the copy of the file specified by <file_name_b. It is
this copy that is opened for editing.

USER COMMANDS
edit

OPTIONS

b Do not save the original copy of the file as a backup file at the end of the
editing session.

n

y

Do not read any text into the edit buffer. This option allows the user to
make large insertions at the beginning of a file.

If only one argument appears on the command line, at end of the editing
session automatically replace any existing backup file with the original
copy of the file being edited. If two arguments appear on the command
line and the second file specified already exists, delete that file at the
beginning of the editing session.

EXAMPLES
edit test +ny

Opens the file test in the working directory but does not read any of it into the edit buffer. If the
file does not exist, the editor creates it. At the end of the session, edit automatically replaces any
existing backup file with the original copy of test.

edit test oldtest

Makes a copy of the file test, names it oldtest, and opens it for editing. If a file named oldtest
already exists, the editor asks for permission to delete it.

MESSAGES
Delete existing copy of new file?

The file specified by </ile_name_2> already exists. If the user responds with a "y", the editor
deletes the existing copy of the file and opens the new file for editing. If the user responds with
an "nil, the editor leaves the existing file intact and returns the user to the operating system.

File already exists
File name?

The edit command was executed with no arguments on the command line. At the end of the
editing session, when the editor prompted for the name of the file, the user specified an existing
file. Under these circumstances, the editor does not accept the name of an existing file.

OPERATING SYSTEM REFERENCE 2e-3

USER COMMANDS
edit

ERROR MESSAGES

Cannot create new file

The editor cannot open the file specified by <file_name_2>. Most probably, either the user
specified a path name that could not be followed or the user does not have the permissions
necessary to open the file.

Cannot open edit file

The editor cannot open the file specified by <file_name_1>. Most probably, either the user
specified a path name that could not be followed or the user does not have the permissions
necessary to open the file.

Cannot read edit file

The editor encountered an 110 error trying to read the specified file.

Edit file does not exist

The user has specified two file names on the command line, but <file_name _1> does not exist.

New file is the same as the old file

Both <file_name _1> and <file_name _ 2> refer to the same file. (If their names are not the same,
they are links to the same file.)

Too many file names specified.

The edit command requires zero, one, or two arguments. This message indicates that the
argument count is wrong.

Unknown option specified

An option on the command line is not a valid option to the edit command. The command ignores
the option and proceeds.

SEE ALSO
create
dperm
Section 4 Text Editor edit

2e-4

USER COMMANDS
env

env
Displays, removes, assigns, and changes the environment variables.

SYNTAX
env [<name>] [<name>=] [<name>=<value>]

ARGUMENTS
<name> The name of the environment variable to display.

<name=> The name of the environment variable to remove from the environment
list.

<name>=<value> The value to assign to an environment variable.

DESCRIPTION
The env command, which is part of the shell program, displays the current values of the
environment variables if no argument is given. If an argument is specified, the env command
assigns, changes, or deletes the value of the named argument.

EXAMPLE
env

Displays all environment variables.

env TERM=

Removes the environment variable TERM from the environment variable list.

env TERM=4404

Assigns TERM to the environment variable list with the value "4404".

env TERM=4406

Changes TERM in the environment variable list to the value of" 4406".

SEE ALSO

script

OPERATING SYSTEM REFERENCE 2e-5

USER COMMANDS
exit

exit
Terminates a subshell. This is a shell command.

SYNTAX
exit

DESCRIPTION
The exit command, which is part of the shell program, tenninates a subshell. exit sounds the bell,
and prints "Login shell", if the user attempts to exit the login shell.

EXAMPLES
exit

This is the only valid fonn of the exit command.

SEE ALSO
shell

2e-6

Section 2f

fdup
Duplicates floppies.

SYNTAX
fdup

DESCRIPTION
The fdup command duplicates diskettes by reading the master floppy and then writing/verifying
one or more copies of the master. This is the only reliable procedure to duplicate diskettes on the
system. This procedure should be used to make a working copy of the software shipped with
your 4400 series system.

EXAMPLES

fdup

This is the only form of this command.

OPERATING SYSTEM REFERENCE 2f-1

USER COMMANDS
filetype

filetype
Identifies the type of files on the command line.

SYNTAX

filetype <file name list>

DESCRIPTION

This utility attempts to identify the type of the files specified on the command line. Some of the
types recognized are:

Directories
Character/Block devices
Many types of binary files
Many types of ASCII text files
Many types of small talk files

The Jiletype command makes an intelligent guess as to the type of text file based on the first
character of each line. Binary files are detected based on known header information.

ARGUMENTS
<file name list> - - The list of file names to process.

EXAMPLE

filetype myfile /mark/yourfile

This example will attempt to identify the type of the files myfile and yourfile in the directory
/mark.

2f-2

USER COMMANDS
find

find
Searchs for a string in a file or in standard input.

SYNTAX
find [+bcnsu] <str 1> [[&] [I] <str_2>] [<file_name_list>]

DESCRIPTION
The find command looks in the specified file for the specified string. By default, lowercase
characters and uppercase characters are distinct.

ARGUMENTS

<str 1>

<str 2>

<file name list> - -

OPTIONS

The string to search for.

The second string to search for (only if" &", the and operator; or "I", the or
operator, is used).

A list of the names of files to search. The default is standard input.

Any options used with the find command must appear immediately after the command name.

b

c

n

s

u

Check file names ending in ". bak" .

Do not print the lines that contain the specified string to standard output,
instead, report the number of lines containing the string.

Do not print line number on match.

Print skipped filenames.

Do not distinguish between upper- and lowercase.

SPECIFYING A STRING
The user may completely specify a string or may take advantage of the matching characters
recognized by the find command. Because some of these matching characters also have special
meanings to the shell program, strings which use them must be enclosed in single or double
quotation marks.

\\ When used just before any matching character, including itself, the
backslash character negates the matching ability of the character.

OPERATING SYSTEM REFERENCE 2f-3

USER COMMANDS
find

?

<

>

&

[]

The question mark matches any character except a new-line character.

A left angle bracket specifies that the following string must be found at the
beginning of a line. It loses its matching ability if it is not the first
character of the string.

A right angle bracket specifies that the preceding string must be found at
the end of a line. It loses its matching ability if it is not the last character
of the string.

The and operator may be used between two strings (see the syntax
statement). The find command reports only those lines on which both
strings occur.

The or operator may be used between two strings (see the syntax
statement). The find command reports only those lines on which either
string occurs. If the or operator is used, both strings must be enclosed in
parentheses.

Square brackets enclose a list or a range of characters from which the find
command can choose when looking for a string. A list of characters
consists of adjacent characters. A range consists of two characters
separated by a hyphen.

The exclamation point may be used in conjunction with the square
brackets. If it is the first character inside the brackets, the find command
can choose from all characters not specified in the brackets when looking
for a string.

EXAMPLES
find +u syntax test

Writes to standard output all lines from the file test which contain the string syntax. The
command does not distinguish between upper- and lowercase.

find +u "<syntax>" test trial

Writes to standard output all lines from the files test and trial which contain the string syntax at
the beginning of the line. The command does not distinguish between upper- and lowercase.
Because matching characters are used to specify the string, the string must be enclosed in either
single or double quotation marks.

find +u "syntax&statement" test

Writes to standard output all lines from the file test which contain both the string syntax and the
string statement.

find +c "\<" test

Writes to standard output the number of lines in the file test which contain a left-hand angle
bracket. The matching ability of the angle bracket is negated because of the backslash character
which precedes it.

2f-4

USER COMMANDS
find

find +u " [a-e]nd" test

Writes to standard output all lines from the file test which contain any of the following strings:
and, bnd, end, dnd, or end.

find "one&three" aFile
This example searchs for both strings" one" and "three" in each line of the file" aFile".

find " (Begin lEnd) " *.c
This example searchs for either of the strings "Begin" or "End" in each line of each file ending
with" .c" in the current directory.

ERROR MESSAGES
Error opening <file name>: <reason>

The operating system returned an error when find tried to open the specified file. This message is
followed by an interpretation of the error returned by the operating system.

Error processing <file_name>: <reason>

The operating system returned an error when find tried to process the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Invalid option: <char>. Command aborted.

The option specified by <char> is not a valid option to the find command.

Syntax: find [+bcnsu] <str_l> [&<str_2>] [<file_name_list>]

The find command expects at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO
shell
script

OPERATING SYSTEM REFERENCE 2f-5

USER COMMANDS
fonnat

format
Fonnats a diskette for use on the 4400 flexible disk drive.

SYNTAX
format [+Fnqv] [+f=<blocks>] [+r=<cylinders>]

DESCRIPTION
The format command fonnats a diskette for use in the 4400's flexible disk drive, Idev!floppy.
The device model name is TEK4400 which fonnats the diskettes as double-sided, double-density,
40 TPI, with eight 512-bit sectors per track.

OPTIONS
f=<blocks>

F

n

q

r=<cylinders>

v

2f-6

Establish <blocks> blocks for file descriptor nodes (fdns). Fonnatted disks
use fdn blocks (each fdn block contains eight fdns) to hold infonnation
about files on the disk. By default,format uses 3% of the total disk space
for fdn blocks. You can overide this default value with the "f" option and
specify the decimal number of fdn blocks to establish on the disk. At least
one block must be allocated for fdns on every fonnatted disk.

This option does not physically fonnat the diskette. It perfonns a logical
fonnat only and erases all data on the diskette.

Do not issue the input prompts.

Before actually starting to fonnat the diskette, format nonnally sends a
prompt to ask if the user is ready to continue. The" q" (quiet) option
suppresses this prompt and inhibits all infonnative messages from format if
no errors are encountered during fonnatting.

Establish <cylinders> cylinders for swap space.

Verify the disk after fonnatting. The" v" (verify) option instructs format to
verify the media after fonnatting. If this option is specified, format
individually verifies every sector on the diskette. It first writes an arbitrary
pattern to each sector; then reads and verifies each one. It reports any
sectors which fail this test to the user.

The option is often desirable when the user is fonnatting a diskette because
diskettes do not automatically verify all written data.

USER COMMANDS
free

free
Reports the amount of free and used space on the specified devices.

SYNTAX
free <dev name list> [+d]

DESCRIPTION
The free command reports the amount of free space remaining on the specified device. It reports
both the total number of free blocks available for use in files and the total number of file
descriptor nodes (fdns) available. The number of fdns available tells the user how many more
files can be created on the device (assuming that sufficient free blocks remain for use in the files).
If the number of available fdns drops to 0, no more files can be created on the disk, no matter
how many free blocks remain.

The number of used blocks and file descriptor nodes (fdns) is also printed.

ARGUMENTS
<dev name list> - - A list of the names of the devices to report on. The devices may be

either mounted or unmounted.

OPTIONS
d Provide more detailed information with the output. This extra information

is the amount of swap space on the disk, if any.

EXAMPLES

free /dev/disk +d

Reports the number of blocks used for the swap space, the number of free blocks and fdns
available, and the number of blocks and fdns used.

free /dev/floppy

Reports both the free and used blocks and fdns on the flexible diskette.

OPERATING SYSTEM REFERENCE 2f-7

USER COMMANDS
free

ERROR MESSAGES
Cannot open <dev_name>

The specified device does not exist; the specified device exists, but no hardware is connected to
it; or the device exists and hardware is connected to it, but no disk is in the device.

<dev name> is not a block device.

The specified device must be a block device.

Unknown option: <char>

The option specified is not a valid option to the free command.

2f-8

Section 2h

headset
Changes information in the binary header of an executable file.

SYNTAX
headset <file_name_list> [+/_Bdftz] [+/_I]* [+a=<num>] [+A=<num>]

[+b=<task_size>] [+c=<source_type>]
[+S=<hex_num>] [+X=<hex_num>]*

* The headset command has additional options for MC68020 equipped 4400 machines.

DESCRIPTION
The headset command can alter certain portions of the binary header of an executable object
module. Features such as whether or not the module is shared-text, whether or not the module
can produce a core dump, and whether the initial stack size can be altered without reloading the
module.
The characters used for options are identical to those used when invoking the loader with the load
command. Those options which do not take an argument can be disabled by preceding the
character with a minus sign, "_", instead of the usual plus sign, "+".
The headset command allows you to enable or disable the floating-point processor signals*,
enable or disable demand-load operation, and block-align text and data segments on 512 byte
boundries.

ARGUMENTS
<file name list> - -

OPTIONS
a=<num>

A=<num>

b=<task size>

A list of the names of the files to process.

Specifies the minimum number of pages to allocate to this task at all times.
The minimum value for the argument is 0; the maximum is 32767. The
default is O. The operating system tries to honor the specified number, but
if it cannot, it uses as many pages as it needs.

Specifies the maximum number of pages to allocate to this task at all
times. The minimum value for the argument is 0; the maximum is 32767.
The default is O. The operating system tries to honor the specified number,
but if it cannot, it uses as many pages as it needs.

Specifies the maximum size to which the task may grow. The argument
<task_size> may be 128K, 256K, 512K, 1M, 2M,4M, or 8M.
For the MC68020 equipped 4400 series machines, which have additional
virtual memory, the task size may also include 16M and 32M.

OPERATING SYSTEM REFERENCE 2h-l

USER COMMANDS
headset

+B/-B

c=<source _type>

+d/-d

+f/-f

+1/-1

S=<hex num>

+t/-t

X=<hex num>

+z/-z

The default task size is generated by the loader. The letters "M" and "K"
can be either uppercase or lowercase.

If the task size specified by the user is not large enough to hold the code
from all the modules being loaded, headset automatically adjusts the size
to the smallest value that can contain all the code.

Set or clear a bit in the binary header of the output module which tells the
operating system not to zero either the BSS space or any memory allocated
while the task is running.

Sets a flag in the binary header of the output module which indicates the
type of source code from which the module was created. The argument
<source_type> may be ASSEMBLER or C. The names can be specified in
either uppercase or lowercase.

Set or clear the no core dump bit in the binary header.

Make file demand-load and block-aligned.

Only pages that cause a page fault are loaded into physical memory.
Unreferenced pages are not loaded.

Set or clear "floating-point signal" bit. *
The +//-/ option allows you to catch or ignore signals generated by the
floating-point processor. By default, floating-point signals are ignored. If
you want to catch these signals, enable them with the +/ option.

Specifies the initial stack size, which is written into the binary header of
the module produced by the loader. The hexadecimal number is the
number of bytes to reserve. The default is 0, in which case the system
assigns the default stack size of 4K.

Set or clear the shared-text bit in the binary header.

Set initial address mask value (only upper 7 bits are used for the mask). *
Block-align text and data segments on 512 byte boundaries.

* Options are only available on MC68020/68881 machines.

EXAMPLES
headset mathtest +t -d +S=2000

Makes the executable object module math test a shared-text module. It turns off the no core dump
bit, so that the program can produce core dumps, and sets the initial stack size to hexadecimal
2000.

headset run_l run_2 +tB +a=lO

Changes the headers in the files run 1 and run 2. Both modules become shared-text modules.
The operating system will zero neither the BSS space nor any memory allocated while the task is
running. The minimum page allocation is set to ten pages.

2h-2

USER COMMANDS
headset

NOTES
• The user may make a change in a header which results in an inconsistent header. In such a

case the headset command makes whatever adjustments are necessary in the fields which
were not changed to remove the inconsistency. The user is notified of these adjustments.

• For example, if the user alters the initial stack size, the task size might have to be changed.
If this change is necessary, headset notifies the user and adjusts the task size to the
appropriate value. Adjustments may also be made when either the minimum or maximum
page allocation is altered.

• If the task size specified by the user is not large enough to hold the code from all the
modules being loaded, headset automatically adjusts the size to the smallest value that can
contain all the code.

• If the user changes either the minimum or the maximum value for page allocation so that
the minimum is greater than the maximum, headset automatically adjusts them according
to the following rules.

• The value for the maximum is always greater than or equal to the value for the minimum.

• The value for the maximum can be 0, but if it is greater than 0, it must be at least 4.

MESSAGES
File <file_name>: changed max page allocation to <num>.

The user specified a minimum page allocation that was above the current maximum page
allocation. The utility set the maximum equal to the minimum.

File <file_name>: changed min page allocation to <num>.

The user specified a maximum page allocation that was below the current minimum page
allocation. The utility set the minimum equal to the maximum.

File <file name>: task size set to <task size>.

The headset command had to adjust the task size either because the user specified an initial stack
size that made the module larger, or because the task size specified on the command was too
small for the calculated size of the module.

ERROR MESSAGES
Error opening <file_name>: <reason>

The operating system returned an error when headset tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error processing <file_name>: <reason>

The operating system returned an error when headset tried to process the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file_name>: <reason>

The operating system returned an error when headset tried to read the specified file. This
message is followed by an interpretation of the error returned by the operating system.

OPERATING SYSTEM REFERENCE 2h-3

USER COMMANDS
headset

Error seeking in <file_name>: <reason>
The operating system returned an error when headset tried to seek in the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error writing to <file_name>: <reason>
The operating system returned an error when headset tried to write to the specified file. This
message is followed by an interpretation of the error returned by the operating system.

File <file_name> is not a binary file.
The specified file does not contain a binary header.

File <file_name> is not a regular file.
The specified file is either a device or a directory.

File <file name> is not executable.
The specified file is not an executable binary file.

Illegal configuration specified.
The configuration type must be between 0 and 255 inclusive.

Illegal hex number: <hex_num>.
The number specified is not a valid hexadecimal number.

Illegal maximum page allocation specified.
The maximum page allocation must be between 0 and 32767 inclusive.

Illegal minimum page allocation specified.
The minimum page allocation must be between 0 and 32767 inclusive.

Illegal task size specified.
The argument specified is not a valid argument to the "b" option.

Invalid option: <char>.
The option specified by <char> is not a valid option to the headset command.

Minimum page allocation greater than maximum.
Both the "a" and "A" options appeared on the command line, but the minimum page allocation
specified was greater than the maximum.

Unknown source type specified.
The argument specified is not a valid argument to the "c" option.

SEE ALSO

cc
load
relinfo

2h-4

USER COMMANDS
help

help
Displays a brief description of the use and syntax of the specified command.

SYNTAX

DESCRIPTION
The help command displays a brief description of the use and syntax of the specified command.
To obtain this information, it looks for a file in the /genlhelp directory with the same name as the
specified command. Descriptions of most 4400 commands are available. If you enter help help
or help with no arguments, the help command displays a list of all the commands it can help with
and prompts for the name of a specific command. Typing a carriage return terminates the
command.

ARGUMENTS
<command name list> - - A list of the names of commands about which the user wants

information.

EXAMPLES
help copy remove

Displays brief descriptions of the use and syntax of the copy and remove commands.

help

Displays a list of all the commands that the help command can help with, followed by a prompt
for the name of a specific command.

OPERATING SYSTEM REFERENCE 2h-5

USER COMMANDS
help

NOTES
• The system user may add files to Igenlhelp. When the help command is executed, it simply

looks for the specified file in I genl help, reads the contents, and writes it to standard output.

• If the file specified is a directory in the /genlhelp directory, the help command lists the
contents of the directory and asks what command the user would like help with. If the
command specified is not in that directory, help prompts for permission to search
Igenthelp.

ERROR MESSAGES
Cannot help with <command name>.

No description of the specified command is available to the help command.

Error opening <file_name>: <reason>

The operating system returned an error when help tried to open the file <file _name>, which
describes the specified command. This message is followed by an interpretation of the error
returned by the operating system.

Error reading <file_name>: <reason>

The operating system returned an error when help tried to read the file <file_name>, which
describes the specified command. This message is follQwed by an interpretation of the error
returned by the operating system.

Too many files in directory.

The help command cannot function if the directory / gent help contains more than 500 entries.

2h-6

USER COMMANDS
history

history
Displays a list of previous commands. This is a shell command.

SYNTAX
history

not

DESCRIPTION
The history command, which is part of the shell program, displays list of previous commands.
Scrolling and editing functions are selected by control keys (or function key sequences) and may
be used to recall and modify commands. The command history will be saved from one login to
the next in the file .shellhistory in the user's home directory. The saved history is limited to 30
commands.

OPTIONS
+s

EXAMPLES

Instructs the shell to save its history upon exit. This option is necessary
because some shell options may disable the history command.

history

This is the only valid form of the history command. This command lists the previous 30
commands, not including the history command itself.

SEE ALSO
shell

OPERATING SYSTEM REFERENCE 2h-7

Section 2i

info
Displays the contents of the infonnation field associated with the specified binary file.

SYNTAX
info <file name list> - -

DESCRIPTION
A binary file may have an information field that stores textual infonnation associated with the
file. This infonnation can include things like the version number and release date of the file, as
well as other useful infonnation pertaining to the file. The info command displays the contents of
the infonnation field.

ARGUMENTS
<file name list> - - A list of the names of the files to display the infonnation field.

EXAMPLES
info /system.boot

Displays the version number, release date, and copyright infonnation for the file Isystem.boot, the
operating system itself.

info /bin/edit /bin/info

Displays version numbers, release dates, and copyright infonnation for the text editor (lbinledit)
and the info command (Ibinlinfo).

ERROR MESSAGES
Error opening <file name>: <reason>

The operating system returned an error when info tried to open the file <file name>. This
message is followed by an interpretation of the error returned by the operating system.

Error processing <file_name>: <reason>

The operating system returned an error when info tried to process the file <file name>. This
message is followed by an interpretation of the error returned by the operating system.

OPERATING SYSTEM REFERENCE 2i-l

USER COMMANDS
info

Error reading <file_name>: <reason>

The operating system returned an error when info tried to read the file <file_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error seeking in <file_name>: <reason>

The operating system returned an error when info tried to seek the appropriate location in
<file_name>. This message is followed by an interpretation of the error returned by the operating
system.

Error writing to standard output: <reason>

The operating system returned an error when info tried to write the output of the info command to
standard output. This message is followed by an interpretation of the error returned by the
operating system.

<file_name> has no information field.

The optional information field is not present in the specified file.

<file_name> is not a binary file.

The specified file lacks the header which identifies it as a binary file. The argument to the info
command must be a binary file.

<file_name> is not a regular file.

The specified file is a directory or a special file (a block or character device). The argument to
the info command must be a regular file.

Syntax: info <file_name_list>

The info command requires at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO

2i·2

libinfo
relinfo
4400 Series Assembly Language Reference manual
4400 Series C Language Programmers Reference manual

USER COMMANDS
int

int
Sends a program interrupt to another task.

SYNTAX
int <task ID> [+<int_num>] [+s]

DESCRIPTION
The int command sends the specified interrupt to the task identified by the task ID on the
command line. If the user does not specify an interrupt number, the termination interrupt
(SIGTERM) is sent. Task ID's are reported by the shell program whenever the user executes a
task in the background. An ID can also be determined by the jobs or status command. A task ID
of 0 specifies all tasks associated with the users terminal and owned by the user.

ARGUMENTS

+<int num>

s

NOTES

The task ID of the task to interrupt A task ID of 0 specifies all tasks
associated with the user's terminal and owned by the user.

The number of the interrupt the user wishes to send. The plus sign, "+", is
necessary to distinguish the number of the interrupt from the task ID.
Table 2~ 1 shows a list of the possible interrupts. The default interrupt
number is #11, SIGTERM. A full list of available interrupts may be found
in the C "include" file "Iliblincludelsyslsignal.h".

Send a soft interrupt A soft interrupt waits for terminal input to be
completed before sending the interrupt

A = Default state is abort (otherwise, ignore)
C = Interrupt can be caught
D = Produces a core dump
I = Interrupt can be ignored
R = Resets to default state when triggered

OPERATING SYSTEM REFERENCE 2i-3

USER COMMANDS
int

2i-4

Name Number
~TnHl:1P 1
SIGINT 2
SIGQUIT 3
SIGEMT 4
SIGKILL 5
SIGPIPE 6
SIGSWAP 7
SIGTRACE 8
SIGTIME 9
SIGALRM 10
SIGTERM 11
SIGTRAPV 12
SIGCHK 13
SIGEMT2 14
SIGTRAPI 15
SIGTRAP2 16
SIGTRAP3 17
SIGTRAP4 18
SIGTRAP5 19
SIGTRAP6 20
SIGPAR 21
SIGILL 22
SIGDIV 23
SIGPRIV 24
SIGADDR 25
SIGDEAD 26*
SIGWRIT 27
SIGEXEC 28
SIGBND 29
SIGUSRI 30
SIGUSR2 31
SIGUSR3 32
SIGABORT 33
SIGSPLR 34
SIGINPUT 35
SIGDUMP 36

37-41

Table 2i-l
POSSIBLE INTERRUPTS

Description
Hangup
Keyboard
Quit
EMT $Axxx emulation
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAPV instruction
CHK instruction
EMT $Fxxx emulation
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
DIVIDEbyO
Privileged instruction
Address error
Dead child
Write to READ-ONLY memory
Execute from ST ACKIDATA space
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3
Program abort
Spooler interrupt
Input is ready
Memory dump
User-defined interrupts

A C D I
+ + - +
+ + - +
+ + + +
+ + + +
+ - - -
+ + - +
+ - - -
+ + - +
+ + + -
+ + - +
+ + - +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ - + -
+ - + -
+ + + +
+ - + -
+ - + -
- + - +
+ - + -
+ - + -
+ + + -
+ + - +
+ + - +
+ + - +
+ - + -
+ + - +
+ + - +
+ + + +

* The operating system does not reset the signalling mechanism after once set, i.e.
with an cpint(SIGDEAD,addr) call. The parent task must reset with an
cpint(SIGDEAD,addr) call.

R
+
+
+
+
+
+
+
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

USER COMMANDS

Name
;)lliUNI !nFRRD

SIGINEXACT
SIGFPDIVIDE
SIGUNDERFLOW
SIGOPERAND
SIGOVERFLOW
SIGSNAN
SIGRFAULT
SIGWFAULT

SIGMILLI
SIGEVT

Table 2i-l (cont.)
POSSIBLE INTERRUPTS

Number Description
42% FPU branch/set on unorC1ere<1
43% FPU inexact result
44% FPU divide by zero
45% FPU underflow
46% FPU operand error
47% FPU overflow
48% FPU signaling NAN
49 Page monitoring READ fault
50 Page monitoring WRITE fault

51-61 User-defined interrupts
62 Millisecond alarm
63 Mouselk:eyboard event interrupt

A C D I
+ + - +
+ + - +
+ + - +
+ + - +
+ + - +
+ + - +
+ + - +
+ + - +
+ + - +

+ + - +
+ + - +

% These interrupts are produced only by the MC68881 Floating Point Co-processor.

EXAMPLES
int 263

Sends a tennination interrupt (SIGTERM) to task number 263.

int +5 149

R
+
+
+
+
+
+
+
+
+

+
+

Sends a SIGKILL interrupt to task 149. No program can trap or ignore a SIGKILL interrupt.

int 149 +5

This example is identical to the previous example. The order of the arguments is irrelevant.

ERROR MESSAGES
Error sending interrupt: <reason>

int

The operating system returned an error when int tried to send the interrupt. This message is
followed by an interpretation of the error returned by the operating system, such as could not find
the specified task.

OPERATING SYSTEM REFERENCE 2i-5

USER COMMANDS
int

Illegal interrupt specified: <int_num>

The number specified must be an integer between 1 and the number of signals, inclusive.

Illegal task ID specified: <task_ID>

The task ID specified contains sQme characters that are not digits. A legal task ID contains only
digits.

Syntax: int <task_ID> £+<int_num>J

The int command expects exactly one taskID and no more than one interrupt number. This
message indicates that the argument count is wrong.

SEE ALSO

2i-6

jobs
status

Section 2j

Jobs
Report the task IDs and starting times of all background tasks originated by the user from the
current shell program. This is a shell command.

SYNTAX
jobs

DESCRIPTION
The jobs command, which is part of the shell program, reports the task IDs and starting times of
all background tasks originated by the user from the current shell program. (If script is running
as the current shell, the task IDs are preceded by the letter "T" for task. This letter is not part of
the task ID.)

EXAMPLES
jobs

This example is the only valid form of the jobs command. It reports the task ID and starting time
of all active background tasks originated by the user from the current shell program.

MESSAGES
No tasks active.

The user has no active tasks in the background.

SEE ALSO
int
status

OPERATING SYSTEM REFERENCE 2j-l

Section 21

libgen
Creates a new library or updates an existing one.

SYNTAX
libgeno=<old lib> n=<new lib> [u=<update>] [<del_list>] [+al]

DESCRIPTION
The libgen command creates a new library of relocatable or executable modules or updates an
existing library. Each module in a library must have a name. The name is assigned to a module
by either the name pseudo-op in the relocating assembler or the "N" option of the linking loader.
The libgen command does not accept a module without a name.

As it runs, libgen produces a report describing the action that it takes for each module in the
library. The report includes the name of the module and the file from which it was read (the old
library or one of the update files).

ARGUMENTS
o=<old lib>

n=<new lib>

u=<update>

<del list>

OPTIONS
a

I

The name of an existing library file that was previously created by the
libgen command. libgen is being called to update an existing library rather
than to create a new one. Either the o=<old_lib> or n=<new _lib>
argument, or both, must appear on the command line.

The name of a new library. If a file with this name already exists, libgen
deletes it without warning before writing the new library. If the user does
not specify a name for the new library, it defaults to the name of the old
library. In such a case libgen puts the new library in a scratch file, deletes
the old library, and renames the scratch file with the name of the old
library. Either the o=<old_lib> or n=<new _lib> argument, or both, must
appear on the command line.

The name of a file containing modules to add to the library. Modules of
the same name are replaced by modules from the update file.

A list of the names of modules to delete from the old library.

Produce an abbreviated report that contains information only about
modules that were replaced, added, or deleted.

Suppress the production of a report.

OPERATING SYSTEM REFERENCE 21-1

USER COMMANDS
libgen

EXAMPLES
libgen n=binlib u=one u=two u-three

Creates a new library named binlib that contains all the modules from the files one, two, and
three.

libgen o=binlib u-new +a

Updates the library binlib by adding or replacing modules from the file new. The command
produces an abbreviated report.

libgen o=binlib u=newmods n=newlib transpose add +1

Updates the library binlib by adding or replacing modules from the file newmods and by deleting
the modules named transpose and add. The updated library i$ written to the file newlib. No
report is produced.

ERROR MESSAGES
An old or new library name must be specified.

Either the o=<old_lib> or n=<new _lib> argument, or both, must appear on the command line.

No index found in <lib name>

The libgen command creates every library with an index. This message indicates either that the
file specified is not a library or that it is a library, but has been badly damaged, and can no longer
be used.

Record not found in <module name>

One of the files in the list of modules to delete from the old library was not found in that library.
The command ignores that file name and continues.

Record with no name found in <module_name>

Every relocatable or executable module that goes into a library must have a name. The user
should remake the specified module and give it a name.

Unknown argument: <str>

The argument specified by < str> is not a valid argument to the libgen command.

Unrecognizable record in <module_name>

All modules in a library must be either executable or relocatable.

SEE ALSO

21-2

info
libinfo
4400 Series Assembly Language Reference manual

USER COMMANDS
libgen

libinfo
Displays infonnation about a library.

SYNTAX
libinfo <library_name_list> [+em] [M=<mode_name>]

DESCRIPTION
The libinfo command lists the entry points and module names contained in a library produced by
the libgen command. The user can optionally display only the entry points or only the module
names. Infonnation about a particular module within a library can also be displayed.

ARGUMENTS
<library_name _list> A list of the names of the libraries to report on.

OPTIONS
e

m

Display only entry points in the specified library.

Display only module names in the specified library.

M=<mod name> Display infonnation about module <mod_name>. This option is
incompatible with both the "e" and "m" options. If the user specifies
incompatible options,libinfo uses the "M" option and ignores any others.

EXAMPLES

libinfo testlib

Lists all entry points and module names in the library testlib.

libinfo runlib +m

Lists all the module names contained in the library runlib.

libinfo /lib/cmathlib +M=Arctan

Displays the entry points and module names in the module Arctan in the library Iliblcmathlib.

OPERATING SYSTEM REFERENCE 21-3

USER COMMANDS
libinfo

ERROR MESSAGES
Error opening <file name> : <reason>

The operating system returned an error when libinfo tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file_name> : <reason>

The operating system returned an error when libinfo tried to read the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error seeking to <location> in <file_name> : <reason>

The operating system returned an error when libinfo tried to seek to the specified location (in
he~adecima1) in the specified file. This message is followed by an interpretation of the error
returned by the operating system.

<file name> is not a library!

The file specified does not have the correct format for a library created with the libgen command.

*** 'M' taken, others ignored ***
The "m" and "e" options are incompatible with the "M" option. If the user specifies incompatible
options, libinfo uses the "M" option and ignores any others.

Unknown option <char> ignored.

An unknown option was found and ignored.

SEE ALSO

21-4

libgen
relinfo

USER COMMANDS
link

link
Establishs a new link to an existing file.

SYNTAX
link <file name 1> <file name 2>

DESCRIPTION
The link command establishes a new link to an existing file. If the command is successful, both
<file name 1> and <file name 2> refer to the same file. - - --
The user must have write permission in the parent directory in which the new link is created, and
must have execute permission in the directory containing the original copy of the file. A link
cannot cross devices.

ARGUMENTS
<file name 1 > - -
<file name 2> - -

EXAMPLES

The name of the existing file to which to establish a link.

The name of the link to the existing file.

link /susan/.editconfigure .editconfigure

Creates a file named .editconfigure in the user's working directory and links it to the existing file
.editconfigure in the directory Isusan.

ERROR MESSAGES
Cannot link across devices

The specified file names reside on different volumes and, therefore, cannot be linked.

Entry already exists: <file_name_2>

The file specified by <file_name _2> must be a nonexistent file.

Entry does not exist: <file_name_1>

If the file to which the link is to be made does not exist, it is impossible to link the files.

Entry is a directory: <file_name_1>

The existing file specified is, in fact, a directory. Only the system manager can link: to a
directory.

OPERATING SYSTEM REFERENCE 21-5

USER COMMANDS
link

Invalid options: +<char>

The link command supports no options.

Path cannot be followed: <file name>

One or more of the directories that make up the name of the file do not exist.

Permissions deny access: <file_name>

The user does not have permission to access the specified file. If the file is the existing file,
<file_name_b, the user does not have execute permission in the parent directory. If the file is
<file_name_2>, the user does not have write permission in the parent directory.

Syntax: link <filename> <linkname>

The link command expects exactly two arguments. This message indicates that the argument
count is wrong.

SEE ALSO

21-6

copy
move

USER COMMANDS
list

list
Writes the contents of the specified file to standard output.

SYNTAX
list [<file_name_list>] [+1] [+<num>]

DESCRIPTION
The list command writes the contents of the specified file to standard output. If the user specifies
more than one file, the files are listed one after the other with no space between them.

The default file name is standard input. A plus sign, II +", may also be used as an argument to
indicate standard input.

ARGUMENTS
<file name list> - - A list of the names of the files to write to standard output. The default is

standard input.

OPTIONS
I Include line numbers in the listing.

<num> The number of the line at which to begin listing the file.

EXAMPLES
list test

Writes the file test to standard output.

list test +1 +20 »test.out

Also writes the file test to standard output. Standard output is redirected so that the listing is
appended to the contents of the file test. out. The listing is accompanied by line numbers and
starts at line 20 of the file.

list part_l part_2 + part_3 >whole_thing

Writes the files part_l andpart_2, followed by the text entered from standard input (end standard
input with a CRTL-D), followed by part_3, to the file whole_thing.

OPERATING SYSTEM REFERENCE 21-7

USER COMMANDS
list

ERROR MESSAGES
Error listing <file name>: <reason>

The operating system returned an error when list tried to write <file name> to standard output.
This message is followed by an interpretation of the error returned by the operating system.

Error opening <file_name>: <reason>

The operating system returned an error when list tried to open the file <file_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file_name>: <reason>

The operating system returned an error when list tried to read the file <file name>. This message
is followed by an interpretation of the error returned by the operating system.

Invalid option: <char>. Command aborted!

The option specified by <char> is not a valid option to the list command.

Invalid starting line number. Command aborted!

The string used to specify the starting line of the listing either is not a string of digits or is too
large.

SEE ALSO

21-8

page
tail

USER COMMANDS
load

load
Invokes the linking loader.

* The linking loader has additional options for MC68020 equipped 4400 machines.

SYNTAX
load <file name list> [+BdefiLmnrRstu] [+IqwWyY] * [+a=<num>]

[+A=<num>] [+b=<task_size>] [+c=<source_type>]
[+D[=<hex_num>]] [+F[=<file_name>]]
[+l=<library_name>] [+M=<file_name>]
[+N=<module_name>] [+o=<file_name>] [+P=<hex_num>]
[+S=<hex_num>] [+T=<hex_num>]
[+U=<trap_num>] [+x=<file_name>] [+X=<add_mask>]*

DESCRIPTION
The load command takes as input one or more relocatable binary modules and produces as output
either a relocatable module or an executable module. The relocatable modules used as input
should have been produced by the relocating assembler or the linking loader. Options are
available for producing load and module maps as well as a global symbol table. Starting
addresses for text and data segments can be adjusted for the particular hardware being used. The
page size can also be adjusted. The loader can search libraries produced by the libgen utility in
order to resolve external references.
The user can place all desired options in a file specified with the load command's "p" option
rather than specifying them individually on the command line. The operating system comes with
one such file, the file Iliblldr_environ, which describes the hardware environment. This options
file, Iliblldr _environ, is linked to the default options file name, /lib/ std _ env. The loader always
reads this file before processing any other options. It then processes options in the order in which
they appear on the command line. If an option is specified more than once (e.g., once in a file
and once on the command line), the last specification overrides all others.

ARGUMENTS
<file name list> - -
OPTIONS
a=<num>

A=<num>

A list of files to load.

Specifies the minimum number of pages to allocate to this task at all times.
The default is O. The minimum value is 0, the maximum is 32767. The
operating system tries to honor the specified number but, if it cannot, it
uses as many pages as it needs.

Specifies the maximum number of pages to allocate to this task at all
times. The default is O. The minimum value is 0, the maximum is 32767.
The operating system tries to honor the specified number but, if it cannot,
it uses as many pages as it needs.

OPERATING SYSTEM REFERENCE 21-9

USER COMMANDS
load

b=<task_size> Specifies the size of the task, where <task_size> is 128K, 256K, 512K, 1M,
2M, 4M, or 8M. The default is 128K. If the argument specified by the user
is not larg~ enough, the load command adjusts it to the smallest possible
size. The letters "M" and "K" can be either uppercase or lowercase.

For the MC68020 equipped 4400 series machines, which have additional
virtual memory, the task size may also include 16M and 32M.

B BSS sp~ce will not be cleared.

c=<source _type> Sets a flag in the binary header of the output module which indicates the
type of source code from which the module was created. The argument
<source_type> may be ASSEMBLER or C. The names can be specified in
either uppercase or lowercase.

d Sets the no core dump bit in the binary header.

D[=<hex _ num>] Specifies the starting address of the data segment. If the user does not
specify the option or specifies the option without an argument, the data
segment immediately follows the text segment. If the user specifies the
starting address of data segment, the starting address of the text segment,
"T" option, must also be specified. Defaults are stored in file Iliblstd_env.

e Prints each occurrence of any unresolved external. By default, the loader
prints only the first occurrence.

f In this format, text pages are loaded into the user's address space when first
referenced (through page faulting) rather than at exec time.

F[=<file _name>] Specifies the name of an options file to process. The default file name is
ldr _opts. The "F" option may be used repeatedly but may not be nested.

i Writes all global symbols to the symbol table of the binary file.

I Enables MC68881floating-point signal processing. *
l=<library _name> Specifies the name of a library to search. The loader first searches the

working directory, then the lib directory in the working directory, and
finally the directory !lib. Libraries are searched in the order specified on
the command line. Up to five libraries may be specified in this manner.
By default, unless the user specifies five libraries on the command line, the
library /lib/Syslib68k is the last one searched.

L Does not search any libraries for unresolved externals.

m Produces load and module maps and writes them to standard output (see
the "M" option),

M=<file_name> Specifies the name of the file in which to put the output of the "m" option
(load and module maps) and the "s" option (a global symbol table). This
information is purely textual. The user may edit or list the file like any
other text file. If the "m" or "s" option is used without the "M" option, the
loader sends the information to standard output. If the "m" or "s" options
are not used, the "M" option is ignored.

n Produces an executable module with separate instruction and data space.

N=<module_name> Specifies the name to give to the file containing the module.

21-10

o=<file name>

P=<hex num>

q

r

R

s

S=<hex num>

t

T=<hex num>

u

w

W

x=<file _name>

X=<add mask>

y

y

USER COMMANDS
load

Specifies the name to give to the binary output file.

Specifies the page size. The hexadecimal number should always be a
power of 2; otherwise, the results are unpredictable. The load command
uses the page size to detennine the starting address of the data segment
when it immediately follows the text segment (the data segment starts at
the next page boundary). The default is 0 (Le., the loader rounds the
starting address to the next even location after the end of the text segment).

Suppresses quad word alignment of each segment*.

Normally, the loader aligns the beginning of each segment on a quad word
(a word consisting of four eight-bit bytes) boundary .

Produces a relocatable module as output. Does not search any libraries.

Produces a relocatable module as output, but searches the libraries.

Writes the global symbol table to standard output (see the "M" option).

Specifies an initial stack size where the hexadecimal number is the number
of bytes to reserve. The default is 0 (the system detennines the size of the
stack).

Produces a shared-text executable module.

Specifies the starting address of the text segment. Default is O. Cannot be
used if creating relocatable modules.

Does not print any unresolved messages when producing a relocatable
module.

Sets the trap number for system calls. The default is hardware-dependent.
The user can specify the argument as either TRAP n where "n" is a number
between 0 and 15 inclusive, or as a string of four hexadecimal digits which
represent a bit pattern to use as an instruction instead of the system call.

Allows MC68020 modules to be linked. *

Does not allow MC68020 modules to be linked. *
Incrementa110ad file name.

Set initial address mask value (in hex) default 0IFFFFFF. Only 7 upper
bits are used for the mask; bits 25-31.

Allows MC68881 modules to be linked. *
Does not allow MC68881 modules to be linked. *

Z Aligns text and data segments on 512 byte boundaries.
* Options are only available on MC68020/68881 machines.

EXPLANATION OF OPTIONS

Nonnally, the loader aligns the beginning of each segment on a quad word (a word consisting of
four eight-bit bytes) boundary. The +q option allows you to suppress this alignment.

OPERATING SYSTEM REFERENCE 21-11

USER COMMANDS
load

The loader nonnally does not enable floating-point processor signals. If you are using, or need to
catch, these signals, "enable" them with the +1 option. You can enable or disable signals on a
compiled and loaded program via the headset utility.
The +Z option lets you force text and data segments to begin on 512 byte boundaries.

EXAMPLES
load *.r +F=/lib/ldr_environ +t +l=clibs +o=tester

Loads all files whose names end with .r in the working directory. The loader reads the file
Iliblldr _environ and processes the options therein. It uses the library clibs to resolve externals.
The executable output module, which is a shared-text module, is named tester.

load tl.r t2.r +T=20000 +iN=mod +P=2000 +c=C +o=test
Loads the the files specified and produces a binary file named test. The internal module-name is
mod. The text segment begins at 20000 hexadecimal, and the data segment follows it at the next
page boundary (page size 2000 hexadecimal). The source code is C. All global symbols are
inserted into the symbol table of the binary file.

load sqrt +msM=loadmap +l=cmathlib +i
Loads the file sqrt and produces an executable module named sqrt.o. The loader searches the
library cmathlib for unresolved externals. It produces load and module maps, as well as a symbol
table, and writes them to the file loadmap. All global symbols are added to the symbol table of
the binary file.

load temp?r +reo=combined.r
Loads the files in the working directory whose names match the pattern temp?r and produces a
relocatable module named combined.r. The loader prints each occurrence of all unresolved
externals rather than only the first occurrence of each. Because the "r" option is specified, the
loader does not search any libraries.

load tl.r t2.r +a=lO +A=lOO +b=2M +l=testlib +do=test
Loads the files tl.r and t2.r and produces the binary file named test. The minimum page
allocation is set to 10; the maximum, to 100. The task size of the module is set to 2 Megabytes.
The executable module does not produce a core dump.

NOTES

• If the file /lib/ std _ env contains infonnation about the starting address of the text segment,
the data segment, or both, and if the user wishes to override this standard configuration,
starting addresses for both text and data segments should be· specified.

• If the user specifies page allocation values that don't make sense, the loader automatically
adjust them according to the following rules:

21-12

The value for the maximum is always greater than or equal to the value for the minimum.
The value for the maximum can be 0, but if it is greater than 0, it must be at least 4.

USER COMMANDS
load

ERROR MESSAGES
The loader produces both fatal and non-fatal error messages. Fatal error messages are of the
form:

Fatal Error: <description_of_error>
Loader aborted!

Non-fatal errors are produced in different forms for different messages.

Non-Fatal Error Messages
Warning: "/lib/std_env" not found.

The "Iliblstd_env" me is supplied with every 4400 series. It is an options file which contains
hardware-specific information so that the user does not need to enter it for each load. If you have
not deleted or renamed the file purposely, you should contact your Tektronix service
representative.

"<symbol_name>" unresolved in module "<module_name>"

The specified symbol was referenced in the specified module, but the symbol could not be
located in any of the user supplied modules or in the libraries (if libraries are being searched).
This may be expected if a relocatable file is being produced. If an executable file is being
produced it is an error.

Symbol name clash: "<symbol_name>" in module "<module_name>".

The specified symbol has been globally declared in more than one module. The module specified
is the one containing the second declaration of the symbol. The name of the global symbol will
have to be changed in one of the modules, and the module will have to be reassembled.

Integer overflow in module "<module_name>".
Segment = <segment>.
Offset in module = <offset>.

When relocating a field in the module specified, the loader detected overflow out of the field size
being adjusted. This may not always be an error. The address of the field relative to the
specified segment is also reported. Subtracting from an external in a module can result in this
message being produced when in fact the result of the subtraction is exactly as it should be. The
user should look carefully at the code being loaded to determine if the error message should be
ignored or not.

Two-Byte address overflow in module "<module name>".
Segment = <segment>.
Offset in module = <offset>.

This error message is similar to the preceding one, but with one slight difference. A two-byte
address (absolute word addressing mode from the assembler) must be a positive, 16-bit
expression to be a valid address, whereas the previous overflow message requires only that the
result be an unsigned 16-bit expression. This message definitely indicates an error. An address
was forced to absolute short in the assembler when it cannot be.

OPERATING SYSTEM REFERENCE 21-13

USER COMMANDS
load

Fatal Error Messages

Illegal minimum page allocation!
The minimum page allocation must be a positive integer. The number specified on the· command
line is illegal.

Illegal maximum page allocation!
The maximum page allocation must be a positive integer. The number specified on the command
line is illegal.

Too many libraries!
A maximum of twelve libraries may be specified on the command line to the loader.

Nested 'F' options!
Option file cannot be nested. Multiple option files can be specified on the command line though.

Invalid option '<char>'
The character specified is not a known loader option. See the "options" discussion for more
details.

Relocatable, but data/text start specified.
Conflicting options!

When producing a relocatable file as output, no starting text or data addresses can be given.

Opening "<file_name>": <reason>

The loader received an error from the operating system while trying to read the specified file. An
explanation of the error is given.

Reading "<file_name>": <reason>
The loader received an error from the operating system while trying to read the specified file. An
explanation of the error is given.

Writing to "<file_name>": <reason>

The loader received an error from the operating system while trying to write to the specified file.
An explanation of the error is given.

Seeking to <location> in "<file_name>": <reason>
The loader received an error from the operating system when it tried to seek to the specified
location in the specified file. An explanation of the error is given.

Unknown source type!

The module type specified on the command line is not a legal type. The loader only recognizes
"FORTRAN", "C", "PASCAL", "COBOL", AND "ASSEt .. fBLER". See t..;e options discussion
for more details.

21-14

USER COMMANDS
load

Illegal task size!
The task size specified on the command line is illegal. Allowable task sizes are: 12SK, 256K,
512K, 1M, 2M, 4M, or SM. See the options discussion for more details.

No files given!
The loader found no files on the command line.

Illegal input file "<file_name>"!
The specified file is not a legal relocatable file produced by the assembler or the loader.

Library "<library_name> not found!
The library specified could not be located in the current directory, a directory called "lib" in the
current directory, or in the "/lib" directory.

Bad library format for "<library_name>"!
The library specified did not have the correct format for a library created by the "libgen" utility.

Illegal hex number: <number>
The number supplied as an argument to an option contains non-hexidecimal characters.

Incompatible options: <options list>
One or more incompatible options have been specified to the loader.

Multiple transfer addresses!
Only one module can contain a binary transfer address. The loader found two user-specified
modules with transfer addresses.

Illegal relocation!
This message is an internal consistency check and should not be issued. If this message is ever
reported, contact your Tektronix service representative.

BSS instruction segment!

This message is an internal consistency check and should not be issued. If this message is ever
reported, contact your Tektronix service represetative.

BSS transfer address!
This message is an internal consistency check and should not be issued. If this message is ever
reported, contact your Tektronix service representative.

SEE ALSO
cc
headset
relinfo
4400 Series Assembly Language Reference manual
4400 Series C Language Programmers Reference manual

OPERATING SYSTEM REFERENCE 21-15

USER COMMANDS
log

log
Tenninates subscript. This is a script command.

SYNTAX
log

DESCRIPTION

The log command, which is part of the script program, terminates a subscript.

SEE ALSO
script

21-16

USER COMMANDS
login

login
Gives a user access to the operating system.

SYNTAX
login [<user_name>]

DESCRIPTION
The login command gives a user access to the operating system. If the user does not have a
password, the system automatically honors the command. If the user does have a password, the
system requests it. If it is entered correctly, the user is given access to the operating system.
Otherwise, the system returns an error message, followed by a login prompt.

ARGUMENTS
<user name> The name of the user to log into the operating system. If no <user_name>

is supplied, the system prompts for it. not

Login will fork a login shell that overlays the user's current shell. If the
user forks a subshell, logs in as another user, and then logs out, the user
cannot expect to be in the forked login subshell.

EXAMPLES
login leslie

This example tells the operating system to give the user whose user name is leslie access to the
operating system.

This example logs the user into account Swp, which then executes
the ~op command. This will shutdown the system.

ERROR MESSAGES
Login incorrect.

The combination of the user name specified and the password entered is invalid. This message is
followed by a login prompt.

No login name specified.
When using the script program, the user did not specify a user name on the command line.

SEE ALSO
logout
script
shell
stop

OPERATING SYSTEM REFERENCE 21-17

USER COMMANDS
logout

logout
Terminates an active session and echoes a login prompt This is a shell command.

SYNTAX
logout

DESCRIPTION

The logout command, which is part of the shell program, terminates an interactive session.

EXAMPLE
logout

This is the only valid fonn of the logout command for interactive sessions, however, remember to
use the stop command to shut down the .4.400 machines

SEE ALSO
login
script
shell
stop

21-18

Section 2m

move
Renames a file or moves a file to another directory.

SYNTAX
move <file_name_l> <file name 2> [+klps]
move <file name list> <dir name> [+klps]

DESCRIPTION
The move command moves or renames one or more files. The first form of the command
renames <file name 1> to <file name 2>. The second form moves each file named in
<file_name_list> to the directory named Tn <dir_name>. In either case, if there is already a file
with the same name as the file created by the move command, it is overwritten without warning.

Directories and special files (block devices and character devices) may not be moved. The user
must have write and execute permissions in the parent directory of each file being moved and in
the directory to which the files are moved. Each original file is removed.

A file may not be moved from one device to another unless the user has read permission on the
file. A file may not be moved to itself.

Normally the move command links the new file to the original file and deletes the original one.
Thus, a link between files on different devices is not permitted; if you attempt to move a file to a
different device, the original file is copied to the new file, then the original file is deleted.

If an error is encountered while processing list, the rest of list is ignored and move aborts.

ARGUMENTS
<file name 1 > - -
<file name 2> - -
<file_name _list>

<dir name>

The name of the source file to move or rename.

The name of the destination file to which to move <file name 1>. - -
A list of the names of the files to move to the specified directory.

The name of the destination directory to which to move all the specified
files.

OPERATING SYSTEM REFERENCE 2m-l

USER COMMANDS
move

OPTIONS
k

p

s

Do not delete the source file.

List the name of each file as it is moved.

Prompt for permission to replace existing files.

Stop as soon as an error is encountered.

EXAMPLES
move test oldtest +1

Renames the file test in the working directory; the new name is oldtest. The move command
issues a message describing the move.

move test /elaine

Moves the file test from the working directory to the directory / elaine. The last component of the
file name is preserved, so the name of the new file is /elaine/test.

move test /elaine/oldtest +kp

Moves the file test from the working directory to the directory /elaine and renames it oldtest. If
the file /elaine/oldtest already exists, the user is prompted for permission to delete the file. If
permission is denied, the move does not take place. Even if the move takes place, the original
files remain intact.

move * /elaine +s

Moves all the files in the working directory to the directory /elaine. Each file name is preserved.
The command aborts if it encounters an error.

MESSAGES
<file_name_1> copied to <file_name_2>

This message is produced only if both the "1" and "k" options are specified and the two files are
on different devices. It means that <file_name _1> has been copied to <file_name _2>, but that
the original file remains intact.

<file name 1> linked to <file name 2> - -
Tttis message is produced only if both the "I" and hk" options are specified. It means that the two
files have been linked and the original file remains intact.

<file name 1> moved to <file name 2>

This is the normal message issued by the move command. It means that <file name 1 > has been
either linked or copied to <file_name _ 2>, and that <file_name _1> has been deleted. -

2m-2

USER COMMANDS

ERROR MESSAGES
Cannot move a block special file: <file_name>

The file <file _name> is a block special file (block device) and may not be moved.

Cannot move a character special file: <file_name>

The file <file name> is a character special file (character device) and may not be moved.

Cannot move across devices: <file name>

The file <file_name> is read-protected and, therefore, cannot be moved across devices.

Directory is not accessible: <dir name>

move

The user does not have the necessary permissions (write and execute) to move a file to
<dir name>.

<file name 1> and <file name 2> are the same file.

The user tried to move a file to itself, which if allowed would destroy the file. If <file name 1 >
and <file_name _2> are different, they are links to the same file.

Permissions deny access: <file_name>

The user does not have write permission in the parent of the specified directory.

SEE ALSO
copy
link
rename

OPERATING SYSTEM REFERENCE 2m-3

Section 2n

nice
Runs a command with a lowered priority.

SYNTAX
nice <command name>

D~SCRIPTION

Lowers the priority of the specified command; nice executes command with low scheduling
priority.

ARGUMENTS
<command name> Name of command to execute with lowered priority

SEE ALSO
shell

OPERATING SYSTEM REFERENCE 2n-l

Section 2p

page
Page formats a file or files.

SYNTAX
page [fl<num>] [+p<num>] [<file_name_list>]

DESCRIPTION
Page format a file or files. The format includes the file name in the upper-left comer, the date
and time centered, and the page number in the upper-right comer. May also be used to display
lines on a terminal, <n> lines at a time. If no file is specified or if a ' +' is specified, then standard
input will be listed.

ARGUMENTS
<file name list> - -

OPTIONS
f

I

<num>

p<num>

EXAMPLES

The list of file name(s) to display.

use line feeds instead of form feeds

issue line numbers

<num> is a decimal number representing crt screen length

<num> is a decimal number representing printer page length, length must
be 10 or greater.

page myfi1e +1 +22

Formats the contents of the file myfile including line numbers for a screen with a length of 22
lines.

SEE ALSO
list
tail

OPERATING SYSTEM REFERENCE 2p-l

USER COMMANDS
password

password
Sets or changes a user's password.

SYNTAX
password [<user_name>]

DESCRIPTION
The password command sets or changes a user's password. Only the system manager may
change another user's password. When a user other than the system manager invokes the
command, the operating system prompts for the existing password (if there is one). If the
password is entered correctly, the system prompts for the new password. Generally, a password
should contain between five and eight random characters. After the new password is entered, the
system prompts for it again to verify it. If the second entry agrees with the first, the password is
entered in the password file. In order to maintain the secrecy of the password, the operating
system does not echo the characters typed in response to the prompts for either the existing or the
new password.

To remove a password, enter a carriage return for the new password.

ARGUMENTS
<user name>

EXAMPLES

The name of user whose password is being changed. The default is the
user invoking the command. Only the system manager may change
another user's password.

password

Changes the password of the user who invoked the command.

password greg

Uses the command form that can be used only by the system manager. It changes the password
associated with the user name greg.

2p-2

USER COMMANDS
password

ERROR MESSAGES
Cannot find <user_name> in the password file.

The file fete/log/password does not contain an entry for the user <user_name>.

Cannot find your name in the password file.

The file fete/log/password does not contain an entry for the user issuing the command. This
situation is extremely unlikely to occur.

Error linking /tmp/pswd to /etc/log/password:<reason>

The operating system returned an error when password tried to link the new version of the
password ftle to the old password file. This message is followed by an interpretation of the error
returned by the operating system.

Error opening <file_name>: <reason>

The operating system returned an error when password tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error unlinking <file_name>: <reason>

The operating system returned an error when password tried to unlink the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error writing <file_name>: <reason>

The operating system returned an error when password tried to write to the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Only the system manager may change another's password.

Use of the form of the password command that takes an argument is limited to the system
manager.

Password not correct. Permission denied!

The user did not enter the existing password correctly.

Retry different password unchanged.

The first and second entries of the new password were not identical. The password command
aborts, leaving the original password in place.

Syntax: password [<user_name>]

The password command expects no more than one argument. This message indicates that the
argument count is wrong.

System busy - try again later.

The file Itmp/pswd, which must be created by the password command already exists. Either
someone else is using the command or it was interrupted before it had a chance to delete the
temporary file. If no one is using the command, you should login as system and delete the file
Itmplpswd.

OPERATING SYSTEM REFERENCE 2p-3

USER COMMANDS
path

path
Writes the path name of the working directory to standard output.

SYNTAX
path

DESCRIPTION
The path command writes the path name of the working directory, followed by a carriage return,
to standard output. The path name is the unique path from the root directory through the
directory hierarchy to the current directory.

EXAMPLES
path

This is the only valid form of the path command. It writes the name of the working directory to
standard output.

ERROR MESSAGES

Directory structure is corrupt

The directory path from the root directory, "/", to the working directory is corrupt. Therefore, the
path command cannot determine the path name of the working directory.

SEE ALSO
chd

2p-4

USER COMMANDS
perms

perms
Changes the permissions associated with a file.

SYNTAX
perms <perms_list> <file name list>

DESCRIPTION
Every time a user creates a file, the operating system assigns it a set of permission bits which
determines whether or not the file's owner and other users may read, write, or execute the file.
The permissions assigned depend upon the command used to create the file. The editor, for
example, creates all files with rw-rw- permissions, which allow the user who owns the file, as
well as other users, to read and write, but not execute, the file. The default permission for crdir
are rwxrwx; for create, rw-rw-; for makdev, rw-r-.

Read permission allows a regular file to be read. A user cannot execute commands such as list
and copy without read permission on the file in question. Write permission allows a file to be
modified. Execute permission allows the name of the file to be used as a command.
Permissions for directories are similar to those for normal files. Read permission allows the user
to read file names that are actually in the directory. Write permission allows the user to create and
delete files in the directory. Execute permission allows the directory to be searched for a name
used as part of a file specification or file name. The user must have execute permission to
successfully use a directory as the argument to the eM command or write to a file contained in
that directory. Also, the user must have write permission to the file.
To write to a file contained in a directory, the user must have execute premission to the directory
as well as write permission to the file.
In addition to these permissions, each file has associated with it a user ID bit. If this bit is set for
a given file, any user executing the file has the same privileges as the file's owner for the duration
of the task.
The perms command changes the permission bits associated with a file. Only the owner of a file
or the system manager may change the permissions associated with it.

ARGUMENTS

<file name list>

The list of permission bits to alter. Permission bits not mentioned are not
changed.

A list of the names of the files for which to alter the permissions.

OPERATING SYSTEM REFERENCE 2p-5

USER COMMANDS
perms

FORMAT FOR ARGUMENTS
The first character of an element in the permissions list specifies whether
the argument applies to the user who owns the file ("u") or to others ("0").
The second character specifies whether to add (" +") or remove (" -") the
permissions in question. The second character is followed by one, two, or
thre ftb h " " "" d"" (& d . d) Th e 0 e c aracters r, w, an x lor rea ,wnte, an execute. e
user ID bit is set or cleared with one of the following arguments: s+ or s-.

EXAMPLES
perms o-wx inventory

Removes write and execute permissions for other users from the file inventory in the working
directory.

perms o+x u+x script

Gives execute permissions on the file script to both the user who owns it and to other users.

perms o-rw o+x s+ inventory script
Removes read and write permissions for others from the files inventory and script. It also sets
execute permissions for others, as well as the user ID bit. Thus, although other users may neither
read from nor write to the files, they may execute them. While they are executing them, they have
the same permissions on all files as the owner of these files does.

ERROR MESSAGES
Error changing permissions for <file_name>: <reason>

The operating system returned an error when perms tried to change the permissions on the
specified file. This message is followed by an interpretation of the error returned by the
operating system.

Error processing <file_name>: <reason>
The operating system returned an error when perms tried to determine the original permissions on
the file. This message is followed by an interpretation of the error returned by the operating
system.

Syntax: perms <perms_list> <file_name_list>
The perms command expects at least two arguments. This message indicates that the argument
count is wrong.

Unrecognizable character, '<char>', found in permissions list.
Command aborted!

A character following a plus or minus sign in an element in the permissions list was not an "r",
"w", or "x". The command aborts without altering any permissions.

2p-6

SEE ALSO
chd
dir
dperm
script

OPERATING SYSTEM REFERENCE

USER COMMANDS
perms

2p-7

USER COMMANDS
popd

popd
Changes the working directory to the one whose name is on the top of the directory stack. This is
a shell command.

SYNTAX
popd

DESCRIPTION
The popd command is a part of the shell program and changes the working directory to the one
whose name is on the top of the directory stack. The directory stack is created by the pushdfP
command.

EXAMPLES
popd

This is the only valid form of the popd command.

SEE ALSO
dirs
pushd
shell

2p-8

USER COMMANDS
pushd

pushd
Pushes the name of the working directory onto the directory stack and change to the specified
directory. This is a shell command.

SYNTAX
pushd [<dir_name>]

DESCRIPTION
The pushd command, which is part of the shell program, pushes the name of the working
directory onto the directory stack and changes to the specified directory. With no argument,
exchanges the top of the directory stack and the current working directory. The dirs command
may be used to view the directory stack.

ARGUMENTS
<dir name> The name of the directory to change to after pushing the current directory

onto the stack.

EXAMPLES
pushd Lang

Pushes the current working directory onto the directory stack and changes to the directory Lang.

pushd -/mark

Pushes the current working dirctory into the directory stack and changes to the directory mark in
the home directory, as indicated by the II_II.

SEE ALSO
dirs
popd
shell

OPERATING SYSTEM REFERENCE 2p-9

Section 2r

relinfo
Displays information about an object file.

SYNTAX
relinfo <file name list> [+ehrs]

DESCRIPTION
The relinfo command examines an object file or all the modules in a library and displays
information about the binary header, the symbol table, and both the relocation and external
records. Normally, relinfo displays all the information. The available options restrict the display
to the specified information.

ARGUMENTS
<file name list> - -

OPTIONS
e

h

r

s

EXAMPLES

A list of the names of files to report on.

Display information about the external records.

Display information about the binary header.

Display information about the relocation records.

Display information about the global symbol table.

relinfo tester
Displays information about the binary header, the symbol table, and both the relocation and
external records in the object file tester in the working directory.

relinfo /lib/cmathlib +h

Displays information about the binary headers from all the modules in the library Iliblmathlib.

relinfo reporter +se

Displays information about both the relocation and external records in the file reporter in the
working directory.

OPERATING SYSTEM REFERENCE 2r-l

USER COMMANDS
relinfo

ERROR MESSAGES
Error opening <file name> : <reason>

The operating system returned an error when relinfo tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file_name> : <reason>

The operating system returned an error when relinfo tried to read the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error seeking to <location> in <file_name> : <reason>

The operating system returned an error when relinfo tried to seek the specified location (in
hexadecimal) in the specified file. This message is followed by an interpretation of the error
returned by the operating system.

<file name> is not a binary file!

The specified file does not have a valid binary header.

Unknown option <char> ignored.

An unknown option was found and ignored.

SEE ALSO
asm
headset
info
libgen
libinfo
load

2r-2

USER COMMANDS
remote

remote
Communicates with a host computer via the RS-232 port, Idevlcomm.

SYNTAX
remote [+l=<file_name>] [+n]

DESCRIPTION
The utility remote allows the Tektronix 4400 series to be used as a terminal to a remote host
computer connected to the Idevlcomm port.

Remote allows you to capture both sides of a session with a host into a disk file for later editing
and review. In addition, this utility also allows file transfers to and from the host under control of
a host program.

OPTIONS
1=<file name>

+n

Output from the host will be directed to the specified file in addition to
being sent to the terminal emulator and appearing on the screen. This
function can be toggled on and off using function key F3.

This option specifies that line feed characters be ignored when directing to
a file specified by the "+1" option. The "+1" option must be specified for
this option to have any meaning.

FUNCTION KEY ACTIONS
FI

F2

F3

Terminates remote.

Create and enter a subshel1. Any executing file transfers will continue
uninterrupted.

Toggles output to file specified by the +1 option (on and off).

FILE TRANSFERS

Remote supports a file transfer protocol which works in conjunction with a program running on
the remote host. The "c" source code for a sample of such a program, which will run under the
UNIX TM operating system, may be found in Isampleslxfer.c. This source program must be
loaded to the remote host and compiled before file transfers are attempted.

OPERATING SYSTEM REFERENCE 2r-3

USER COMMANDS
remote

CONFIGURING THE COMMUNICATIONS PORT
The commset command is used to set the various parameters of the communications port. For
example, the baud rate of the port may be set with a command like:

commset baud=9600

See the documentation on the commset command for further information on configuring the
communications port.

EXAMPLES

remote +l=temp +n

Communicates with a remote host through the device Idevlcomm. When you toggle the capture
buffer with the function key F3, all activities are recorded in the file temp. Pressing the function
key F3 again turns off the capture buffer. The" +n" option causes the capture buffer to ignore and
not record any linefeeds.

SEE ALSO

2r-4

commset
conset

USER COMMANDS
remove

remove
Removes the specified file from the system.

SYNTAX
remove <file name list> [+dklpqw]

DESCRIPTION
The remove command removes the specified file(s), which may be any type, from the file system.
The user must own the file(s), must have write permission in the parent directory of the file(s)
being removed and, by default, must also have write permission for the file(s), unless the "w"
option is specified. Restrictions on deleting a directory are discussed with the options.

ARGUMENTS
<file name list> - -
OPTIONS
d

k

I

P

q

w

EXAMPLES

A list of the names of files to remove from the file system.

If the specified file is a directory and it is empty, delete it. By default, the
remove command does not delete directories.

If the specified file is a directory, delete it and all the files it contains.

List the name of each file as it is removed.

Prompt for permission to remove each file. The file is removed if the user
responds to the prompt with a "y" or "y".

Quiet mode. Do not report any errors.

Prompt for permission to remove files for which the user does not have
write permission. By default, the remove command does not delete such
files. The file is removed if the user responds to the prompt with a "y" or
ny".

remove first file dir file second file +w - -
Removes the files first Jile and second Jile, prompting for permission to do so if the user does
not have write permissions for the file. The file dir Jile is not removed because it is a directory.

remove first_file dir_file second_file +dp

Prompts for permission to remove first Jile and second Jile (assuming the user has the proper
permissions). Also prompts for permission to remove dir Jile if the directory is empty.

OPERATING SYSTEM REFERENCE 2r-5

USER COMMANDS
remove

remove first_file dir_file +kl
Removes first .file and dir .file from the file system. In addition, descends the directory structure
of dir Jile, deleting every file as well as the directory itself. Lists the name of each file as it is
deleted.

CAUTION

The remove command, especially when executed with the
"k" option, is an extremely powerful but potentially
destructive command.

ERROR MESSAGES
Cannot delete the root directory: /
The user tried to delete the root directory.

Directory <dir_name> is not empty.
The remove command cannot delete a nonempty directory unless the user specifies the 'k' option.

Error deleting <file_name>: <reason>

The operating system returned an error when remove tried to delete <file_name>. This message
is followed by an interpretation of the error returned by the operating system.

Error deleting "." in <dir_name>: <reason>
The operating system returned an error when remove tried to delete the "." entry in <dir_name>.
This message is followed by an interpretation of the error returned by the operating system.

Error getting status for <file_name>: <reason>
The operating system returned an error when remove tried to read the fdn for <file name>. This
message is followed by an interpretation of the error returned by the operating system.

Error removing <file_name>: <reason>
The operating system returned an error when remove tried to remove <file name>. This message
is followed by an interpretation of the error returned by the operating system.

Invalid option: <char>
The option specified by <char> is not a valid option to the remove command.

Syntax: remove <file_name_list> [+dklpw]
The remove command expects at least one argument. This message indicates that the argument is
wrong.

You do not own <file name>.
The user may not delete a file that is owned by someone else.

SEE ALSO
deluser

2r-6

USER COMMANDS
rename

rename
Changes the name of the specified file.

SYNTAX
rename <file name 1> <file name 2>

DESCRIPTION
The rename command changes the name of the specified file. If a file named <file_name _2>
already exists, it is deleted without warning.

ARGUMENTS
<file name I> - - The name of an existing file.

<file name 2> The new name for <file name 1>. - - - -

EXAMPLES
rename test oldtest

Changes the name of the file test in the working directory to oldtest. If a file named oldtest
already exists, it is deleted without warning.

rename test /elaine/oldtest
Changes the name of the file test in the working directory to lelaineloldtest, if the user has write
permissions in the directory elaine.

ERROR MESSAGES
Error renaming <file_name_1>: <reason>

The operating system returned an error when rename tried to change the name of <file_name _1 >.
This message is followed by an interpretation of the error returned by the operating system.

Error renaming to <file_name_2>: <reason>
The operating system returned an error when rename tried to assign the new file name. This
message is followed by an interpretation of the error returned by the operating system.

Error unlinking <file_name_1>: <reason>
The operating system returned an error when rename tried to unlink: <file_name _1> from the new
file. This message is followed by an interpretation of the error returned by the operating system.

OPERATING SYSTEM REFERENCE 2r-7

USER COMMANDS
rename

File <file name 1> does not exist! - -
The first name on the command line must be the name of an existing file.

Syntax: rename <file_name_1> <file_name_2>
The rename command expects exactly two arguments. This message indicates that the argument
count is wrong.

SEE ALSO
move

2r-8

USER COMMANDS
restore

restore
Retrieves and examines backup copies of files and directories.

SYNTAX
restore [+bBCdlLnNOprT] [+S=<buffers>] [+T[=<length>]]

[<file_name_list>] [<dir_name_list>]

DESCRIPTION
The restore command is used to copy backup files from the backup device onto the file system.
Although the program is named restore, it can operate in two distinct modes, selected by options:
catalog mode and restore mode. Catalog mode lists the contents of the backup device in much
the same format as that used by the dir command. Restore mode retrieves files or directories
from the backup device.
The restore command retrieves backup files and directories from /dev/floppy or Idev/tape. You
should not attempt to mount a backup device; the only way to read devices written by backup is
to use the restore command. The only other command that you should use on a backup device is
devcheck.

ARGUMENTS
<file name list> - -
<dir name list> - -
OPTIONS
b

B

C

d

L

n

N

o
P
r

S=<buffers>

List of files to restore.

List of directories to restore.

Print files sizes in bytes, instead of blocks.

Do not restore files that end in .bak.

Print a catalog of the backup volume. If you specify "e" all of the names
in the <file _name_list> are ignored.

Restore entire directory structure.

List file names as they are restored.

Do not unlink files before restoring.

Only restore files for which the backup copy is newer than any existing
copy.

Do not prompt for the initial volume.

Do not restore files which end in .r.

Prompt before any action.

Retension streaming tape cartridge before any action.

Set streaming tape buffer count to <buffers> buffers.

OPERATING SYSTEM REFERENCE 2r-9

USER COMMANDS
restore

T Restore from streaming tape instead of floppy.

T[=<length>] Restore from streaming tape instead of floppy. The default parameter for
the tape length is 450 feet, for example (+T=300 for a 300 foot tape).

NOTE

The" +d" option to restore entire directories creates subdirectories
only if the original backup command specified "1" or "." as the
directory to back up. Absolute sub-directories will not be created,
although the files contained within them will be restored if the
subdirectory already exists. That is, the command

backup +dl

saves all subdirectories under the current working directory, and
the command

restore +dl

restores these subdirectories and their contents. However, the
command

backup +dl Idirllsubdir2

while it saves the subdirectory Idirllsubdir2 and its contents
(including subsequent subdirectories) in absolute format, the
command

restore +dl

will fail if any of the directories or subdirectories do not exist. The
error messages are specific enough to allow you to manually create
the directory structure necessary for restore to work. For an
example of how this is used to control directory structures, see the
script file fete/restoreOS on the SYSINSTALL diskette.

EXAMPLES
restore +1

Restores all of the files, excluding subdirectories and their contents, from the backup diskettes
you are prompted to insert in the flexible disk drive.

restore +In fi1el dir2

RestoreS the file filel from the backup if the backup copy is newer than any existing copy. It then
restores the files contained in dir2 on the backup, creating the directory dir2 if necessary. Only
files newer than existing copies are restored, and these are listed as they are restored. This
example does not restore any subdirectories in dir2 or any files or directories contained in
subdirectories in dir2.

restore +C >cata1og

Catalogs the files on the backup set and stores it in a file called catalog. The ">" redirects stdout
to the file catalog, but the prompts are written to stderr so the user can respond appropriately.

2r-1O

USER COMMANDS
restore

NOTES
• In restore mode, file names or directory names on the command line are used to select the

files or directories to be restored. The program searches the entire backup for each
argument specified. If multiple files satisfy the restoration criteria, the program restores
them all, replacing the older version as the new one is restored. Thus, to ensure proper
restoration, you must provide all backup volumes (in order) for each argument.

• When files are restored, they are generally restored to the same directory location as
specified when they were backed up. As files are backed up, backup makes an indication
of the path name for each file. When files are restored, restore uses the path name to place
the file in its proper directory location. If the path name is relative (i.e., does not begin
with "1"), the path name of the restored directory is also relative. Thus, files backed up
with a relative path name may be restored to a directory location different from the one in
which they were created.

An example should make this clear. If the working directory is backed up, either by
specifying no source files or by using the directory name ".", the files are backed up with a
relative path of ".". When these files are restored, they are placed in the directory ".",
which might not be the same directory they originally came from. This feature allows the
manipulation of entire file systems in a general fashion. To specify a unique directory
location for a file, you should specify its entire unique path name, starting with .,!".

• It is possible to restore backed up data onto the device currently being used as the root
device or system disk. A problem may arise if the shell program or the device ttyOO is
restored over the current shell or ttyOO. This operation leaves unreferenced files in the file
system. Unreferenced files may be recovered with the diskrepair command. It is a good
idea to run diskrepair on the root device after restoring backed-up data to it.

FILE OWNERSHIP

As files are backed up, backup also stores the file owner ID number, permissions, and timeldate
stamp of the file. This is used by restore when retrieving the files. After the files are restored,
they appear just as they were at the time of the backup. The user should be aware of several
potential problems.

One problem is that it is possible for users with identical ID numbers to exist on different systems
with different names. Since only the owner ID number is saved with the file, not the owner's
name, when the file is restored, the owner will be the name of the user in the password file that
matches the ID number. If the user ID number does not exist in the restoring system password
file, the owner of the file will be the ID number enclosed in double angle brackets, for example,
<<14». Secondly, file permissions are respected during restore. If the restoring user does not
have write permission for a file, it will not be restored. One method to facilitate easy movement
of files among many machines is to always backup and restore the files from the public user,
which exists on all machines. In any event, the user system can backup and restore any file as
well as change ownership and permissions.

OPERATING SYSTEM REFERENCE 2r-ll

USER COMMANDS
restore

MESSAGES
Catalog of backup on <file_name>
Restore backup from <file name>

These messages are printed when restore begins-:- They notify you of the function about to be
performed.
Several of the following messages prompt you for a positive or negative response. The program
interprets any response that does not begin with an upper or lowercase "n" as a positive response.

Restore <file_name> (yin)?
If you specify the "p" option, the program prints one of these prompts before it takes any action.
A response of "n" or "N" indicates that the operation should not be performed for the given file.
Any other response is interpreted as yes.

Insert next volume - Hit CIR to continue:
This prompt is issued when the program needs a new backup volume. You should type a carriage
return only when the next volume has been placed in the device.

link <file name 1> to <file name 2>
copy <file_name>
Copying from <dir_name>

The program prints these messages as it takes the corresponding action during a creation
operation.

This is Volume f<number 1> -- Expected Volume f<number 2>
Continue?

The program expects you to insert volumes in sequential order. If a volume appears out of order,
restore prints this message. If you type anything except an "n" or an "N" as the first character of
the response to the message, restore ignores the fact that the volumes are out of order and
continues with the backup. Otherwise, it prompts you for another volume. It is important to
insert volumes sequentially because restore cannot correctly restore files that are broken across
volumes if the volumes are inserted out of order.

Volume <number> of <vol name>
Whenever a new volume is inserted and properly validated, the program prints this message,
which indicates the name of the backup volume and its sequence number.

ERROR MESSAGES
<dev name> is not a block device

The destination device for the backup must be a block device. This message indicates that the
specified device (that is always the first argument) is not a block device.

<file_name> not located - try again?
When using the program in restore mode, you may specify which files or directories to restore. If
the program cannot find a specified file or directory after searching the entire backup, it prints
this message. If the response is not "n" or "N", the program searches the entire archive again.
This option is allowed because volumes need not be inserted in order of their creation when the
program is in restore mode.

2r-12

USER COMMANDS
restore

If one volume is left out or if the final volume is inserted before the entire archive has been
processed, some files might not be processed. Note that if you specify more than one file name
or directory name, the program processes the entire archive for each file before proceeding to the
next one.

Formatting not allowed during Catalog/Restore
You may not format a disk with the restore command.

Read error! - file <file name>

An error occurred during the transfer of a file either to or from the backup. An auxiliary message
is printed indicating the nature of the error. The program tries to continue for all errors except
device full during restore mode.

unknown option <char>
The option specified by <char> is not a valid option to the backup command.

** Warning: directory <dir_name> is too large!
** Some directories were ignored
** Warning: directory <dir_name> is too large!
** Some files were ignored

The program uses some internal tables during the backup process (not during restore or catalog).
If the limits of these tables are exceeded (highly unlikely), these messages are printed.

SEE ALSO
backup
owner
perms
script
shell

OPERATING SYSTEM REFERENCE 2r-13

USER COMMANDS
rmpath

rmpath
Changes the search path of the shell environment variable "PATH".

SYNTAX

rmpath <dir name list>

DESCRIPTION

Remove the specified directories from the search path of the shell. This is done by altering the
shell environment variable "PATH".

ARGUMENTS
<dir name list> - - List of directory names to remove from the search path.

EXAMPLE
rmpath lete

This example removes the directory "/etc" from the shell path, by removing the directory from
the environment variable "PATH".

SEE ALSO
addpath
set
shell
unset

2r-14

Section 2s

script
Command interpreter.

SYNTAX
script [+abcnvx] [<argument_list>] [<script_filename>]

DESCRIPTION
The program named script is a command interpreter used primarily to execute commands from a
file. It can be run as an interactive interface, but does not support aliases, interactive environment
variables, or history, available under shell.

If you run script as an interactive shell, it collects and interprets your commands and executes
some built-in commands (chd, dperm, jobs, log, login, time, and wait) itself. It passes others to
the operating system kernel which, in tum, performs the operations requested.

A script command line consists of a command name, which may be followed by arguments,
options, or both. All elements of the command line must be separated by either spaces or
commas. The command may be one of the commands supplied with the operating system, the
name of a binary file produced by either the assembler or a compiler, or the name of a text file
(with execute permission turned on) which contains a series of commands to execute.

If the script command is executed without any options or arguments, the operating system simply
spawns another shell for you. This script program functions as a normal shell, but because it is
the child of the shell or script program from which the command was executed, it does not know
what your home directory is. The log command terminates the child shell and returns control to
the parent script.

The script command can also be executed with options only. This form of the command also
spawns a script program that interacts with you.

Finally, the script command can be executed with arguments, or with both options and
arguments. This form may be used, for example, to execute a script script for which you do not
have execute permissions. The following command executes the file script Jilename:

script <script_filename>

script first checks to see that the file specified as an argument is actually a file that contains
commands. If it is not, script executes it only if you specify the "c" option (see Options).

OPERATING SYSTEM REFERENCE 28-1

USER COMMANDS
script

ARGUMENTS

OPTIONS

A list of arguments to pass to the script command. Each element in
the argument list consists of a command name followed by the
appropriate arguments and options. The elements in the list must be

d b al·d d (" II "&" "&&" "1Itt) If separate y a v 1 cornman separator ;, , , or .
any separator characters are used, the entire argument list must be
enclosed in single or double quotation marks.

The name of a file containing commands to execute.

Options specified to the script program must appear immediately after the name script on the
command line, so that they are not confused with options that pertain to the arguments passed to
the script.

a

b

c

n

v

x

Start execution with the sabort attribute off.

Ignore CTRL-C and CTRL-\.

Process the argument list as a command.

Run all background jobs with lower priority, i.e., "nice".

Start execution with the verbose attribute on.

On the next command, do not fork unless necessary. This option is used
only when calling a script program from another program.

NOTE

It is impossible to specify a null string as an argument to a
command because the script program removes null strings from the
command line.

ENVIRONMENT VARIABLES

Although script's and shell's environment variables have initialization and reset syntax, script's
environment variables are not as roboust as shell's environment variables. Where shell's
environment variables can be accessed through an interactive command line, a shell script, or a C
program using the getenv function call. Script's environment variables can only be accessed
tlu"Ough C prognulls using the getenv function call. They are not avaiiable to a users command
line, or a user's script script.

28-2

USER COMMANDS
script

SEARCH PATH
The environment variable PATH defines the search path for the directory containing the
command. Each alternative directory name is separated by a colon. If the command name
contains a /, the search path is not used. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission, but is not a binary file, it is assumed to be a
file containing script commands. A subshell (Le., a separate process) is spawned and the program
script is used to read and execute it. A command contained within parentheses is also executed in
a subshell.

BACKGROUND TASKS
If you follow a command with an ampersand, It &It, the script program spawns a child-task which
executes the command. However, in this case the script does not wait for the task to complete.
Thus, you may start another command while the first one is executing. A single script program
can support a maximum of five of these background tasks. Each time you send a task to the
background, the script program reports the task ID assigned to that task, preceding it with a It Tit ,
which is not part of the task ID. The user may need the task ID to execute the wait or int
command. The task ID may also be obtained by executing the jobs command, which returns the
task ID and starting time of all background tasks originated from the script program. The
ampersand may be used following a single command or separating one command from another
on a single line.

MULTIPLE COMMANDS ON A LINE
You may specify more than one command on a command line by separating them with any of
several special symbols.

The script program sequentially executes commands that are separated by a semicolon, 1t;1t. If a
task terminates abnormally, the script program stops executing the command line.

Two additional command separators, the conjunction operator (It &&It) and the disjunction
operator (ltlllt), are available. With these separators, execution of the command following the
operator is dependent upon the outcome of the command preceding it. A command is true if it
terminates with a termination status of zero, indicating successful completion, and false if it
terminates with a nonzero termination status, indicating failure. When two commands are
separated by the conjunction operator, the script program executes the second one only if it
completes the first one successfully (it is true). When two commands are separated by the
disjunction operator, the script program executes the second one only if the first one fails (it is
false).

Normally, the command line is evaluated from left to right; however, parentheses may be used to
group commands. Multiple commands within parentheses are treated as a single command.
Commands separated by a pipe (see REDIRECTED 110) are also treated as one command. The
processing of the command separators may be summarized as follows:

&& If the command preceding the conjunction operator succeeds, the script
program tries to execute the next command. If the command preceding the
conjunction operator fails, the script program looks for a disjunction
operator. If it finds one, it tries to execute the command which follows it.

OPERATING SYSTEM REFERENCE 2s-3

USER COMMANDS
script

II

&

If it does not find one, processing of the command line ceases.

If the command preceding the disjunction operator succeeds, the script
program looks for a semicolon, ";". If it finds one, it tries to execute the
command which follows it. If it does not find one, processing of the
command line ceases. If the command preceding the disjunction operator
fails, the script program tries to execute the next command.

If the command preceding a semicolon succeeds, the script program tries to
execute the next command. If the command preceding a semicolon fails,
processing of the command line ceases.

Whether the command preceding a single ampersand succeeds or fails, the
script program processes the next command on the command line.

Consider the following example:

<task 1> && <task_2> I I <task_3> && <task_4>

The script program first tries to execute <task _1>. If the task is unsuccessful, the script skips
<task_2> and proceeds to <task_3>; if <task_3> succeeds, it tries to execute <task_ 4>. If,
however, <task_I> succeeds, the script program tries to execute <task _2>. If <task _ 2> also
succeeds, the script program skips the rest of the command line. If, after the successful execution
of <task_b, <task_2> fails, the script tries to execute <task_3>. If and only if <task_3>
succeeds, it goes on to <task_ 4>.

The use of parentheses can change the interpretation of the same set of commands separated by
the same operators:

<task_l> && (<task_2> I I <task_3>) && <task_4>

In this case, the script once again begins by trying to execute <task_1>. If it fails, the script
program skips the remaining tasks. If, on the other hand, <task _1> is successful, the script
program spawns a subshell (because of the presence of the parentheses). This subshell tries to
execute <task_ 2> and, if and only if it fails, it tries to execute <task _3>. If <task _ 2> succeeds, it
returns a termination status of true to its parent script. If <task _2> fails but <task_3> succeeds, it
also returns a termination status of true. If, however, both <task 2> and <task 3> fail, the
termination status returned is false. only if the termination status retUrned by the subshell is true,
the parent script will try to execute <task _ 4>.

TERMINATION STATUS
Normally, the script program does not report the termination status of a command it executes
unless the task terminates abnormally (because of a program interrupt). A list of the possible
program interrupts appears in the documentation of the int command. The script program does,
however, always report the termination status of a background task, even if it terminates
normally.

REDIRECTED I/O

The script program associates three files with every command it executes: standard input,
standard output, and standard error. Standard input is the file from which a command takes its
input. Standard output is the file to which a command sends its output.

2s-4

USER COMMANDS
script

Standard error is the file to which many error messages are directed. By default, the system uses
the keyboard as standard input and the console as both standard output and standard error.
However, script can be directed to use another file for any of these standard files. This process is
known as I/O redirection.

The table 2s-1, Script 110 Redirection, is a quick summary of the commands for redirection.
Following the table are explanations of each of the optional symbols.

Symbol
<

>

A or %

»

I

>%

%>

Table 2s-1
Script 110 Redirection

Meaning
Take standard input from file following
symbol.
Send standard output to file following
symbol.
Send standard error to file following
symbol.
Append standard output to file
following symbol.
Connect programs so output of one
becomes input of next, pipe.
Redirect standard error to standard
output
Redirect standard error to standard
output

The symbol "<" tells the script program to take its standard input from the file whose name
follows the symbol. Similarly, the symbols ">" and "A" are used to send standard output and
standard error respectively to a file. The file to which standard input is redirected must already
exist. However, if the file to which standard output or standard error is redirected does not exist,
the system creates it. In fact, if the file does already exist, the system deletes the contents of the
file before executing the command. To avoid this effect, you may use the "»" symbol to direct
the script program to append data to the file specified as standard error or standard output. For
example, you might add the results of the compare command to one of the pre-existing files.

It is also possible to redirect standard output or standard error (or both) to another task. The form
of redirection is accomplished by using a pipe. A pipe is a function that connects programs so
that the output from one program becomes the input for another. Standard output is piped from
one task to another by using the symbol "I". For instance, the following example lists all the files
in the working directory and formats the listing with the page command:

dir . I page

Similarly, you can redirect standard error with either of the symbols "I" or" A" •

Although you can place many pipes on the command line, a single task can support only one
pipe. Thus, you cannot pipe standard error and standard output to separate tasks. It is possible,
however, to duplicate standard error onto standard output and to redirect them both to the same
task. You have a choice of symbols for duplicating standard error onto standard output: ">%" or
"%>". Neither of these symbols takes an argument. After duplicating standard error onto
standard output, you redirect standard output to a file or a task in the usual way.

OPERATING SYSTEM REFERENCE 2s-5

USER COMMANDS
script

Whenever standard error and standard output are routed to the same destination, their contents
may be intenningled. For instance, you can get a listing of all the files in the working directory,
redirect both standard error and standard output to the page command:

dir . %> I page

Finally, the following constructions redirect I/O from or to the null device, Idevlnull: "<-" for
standard input, ">-" for standard output, and - for standard error. if either standard output or
standard error is redirected to the null device, its contents are lost. If the null device is used as
standard input, an end-of-file character is read.

COMMAND LINE INPUT CHARACTER PROCESSING
Command lines may be continued across more than one physical line by tenninating each line,
except the last, with a backslash character, "\," immediately followed by a carriage return. As an
interactive environment, command interpreter script uses the prompt" +>" to indicate that the line
being entered is a continuation of the previous line. When the script program processes the line,
it replaces the backslash and the carriage return with a space. Typing a line-delete character
(CTRL-U) only affects the physical line being typed. A keyboard interrupt (CTRL-C), deletes
the entire command line.

PATIERN MATCHING CHARACTERS
The operating system recognizes several characters, known as pattern matching characters, which
allow you to specify multiple files without typing each name individually. The special characters
are the asterisk, "*", the question mark, "?" and square brackets, "[]". The script program
matches these special characters to characters in the filenames in the specified directory. If the
matching character appears in the last component of the file name, the script tries to match it to
the names of all files in the specified directory (by default, the working directory). If the
matching character appears in any other position in the file name, the script tries to match it to the
names of directories only.

An asterisk in a command line matches any character or characters, including the null string but
not including a leading period. Thus, the command

list *.bak
lists all files in the working directory whose names end in .bale and do not begin with a period.
The question mark matches any single character except the null character or a leading period.
For example, the command

list chapter_?
lists all files whose names begin with the string chapter_and end with a single character.

You can use more than one matching character at a time. For instance, the command

list *.?

lists all files in the working directory whose names end with a period followed by a single
character (except those whose names begin with a period).

2s-6

USER COMMANDS
script

Square brackets allow you to specify a set of characters to use in the matching process. The set
of characters is defined by listing individual characters or by specifying two characters separated
by a hyphen. In the former case, the script program looks for all file names which use anyone of
the enclosed characters in the appropriate place. In the latter, the two characters specify a class of
characters containing the two characters themselves and any characters which lexically fall
between them in the ASCII character set. For example, if your working directory contains nine
files named chapter1, chapter2, chapter3, and so forth, the following command lists the first
three chapters, the fifth chapter, and the last three chapters:

list chapter[1~3,5,7-9]
If the script program cannot find a match for any of the arguments contammg matching
characters, it aborts the command. If it finds a match for at least one argument containing
matching characters, it ignores any other arguments containing matching characters for which it
cannot find a match.

If a filename actually contains one of the matching characters or either a space or a comma, you
must enclose the name in single or double quotation marks. In such a case the script program
passes the arguments to the command without performing any character matching.

script SCRIPTS
A script script is a file that contains a list of commands for the script program. Such a file might
consist of a list of commands that are frequently executed in sequence, or of a single, lengthy
command that is often used. If you set execute permissions on such a file, the name of the file
can be used as a command.
You may add to the versatility of a script script by using arguments within the script. The
arguments are specified within the script as $1, $2, $3, and so forth. The argument $0 specifies
the name of the calling program. These arguments may appear anywhere in a command
argument.
If an argument being passed to a command actually contains an ampersand, the argument must be
enclosed in single quotation marks so that the script program does not try to perform any
substitution. Note that single quotation marks prevent both substitution of arguments and the
expansion of matching characters, whereas double quotation marks prevent the expansion of
matching characters but allow the substitution of arguments.
The script program supports several commands that are used exclusively with script scripts.
These commands-verbose, exit, proceed, and sabort-are discussed in the following
paragraphs.

verbose

When the script program executes a script file, it does not normally echo the commands being
executed. The verbose command causes the script program to echo commands from a script file
as they are executed. Each line that is echoed is preceded by two hyphens and a space character.
The verbose command may be called without arguments or with one argument, which must be
one of the strings on or off. If called without an argument, the default is on. The command may
be executed by the login script or may be part of a script script. The verbose attribute is always
passed from a parent script program to a child task, but never from a child to a parent.

OPERATING SYSTEM REFERENCE 2s-7

USER COMMANDS
script

exit AND proceed

script permits a limited amount of control over the processing of script :files. The script
command interpreter sequentially processes commands in a script file until one of the commands
fails or it reaches the end of the :file. If a command fails, script begins to search the remainder of
the script file for a line that contains one of the commands exit or proceed. If it encounters one of
these commands, script resumes processing the script after that command. The only difference
between exit and proceed commands is that during successful execution of a script :file script
stops processing the file if it encounters an exit command, whereas it ignores a proceed
command. The search for both these commands takes place before both the substitution of any
arguments and the expansion of any matching characters. Thus, the script program does not see
an exit or proceed command that is created as the result of either of these processes.
Here's an example of the proceed command:

/etc/mount /dev/floppy /usr2
/usr2/runjob
echo "Successful execution."
proceed
/etc/unmount /dev/floppy

In this example, script mounts a disk and tries to execute the command lusr21runjob on that disk.
If the command succeeds, script echoes the message, Successful execution. and proceeds to
unmount the disk. If the command fails, script skips all commands between the one that failed
and the proceed command. It resumes execution with the unmount command. Thus, if
lusr21runjob fails, your disk is unmounted, but no message is sent to standard output.
By adding an exit command you can modify this example to notify you of either successful or
unsuccessful execution:

/etc/mount /dev/floppy /usr2
/usr2/runjob
/etc/unmount /dev/floppy
echo "Successful execution."
exit
/etc/unmount /dev/floppy
echo "Unsuccessful execution."

Here, if /usr2/runjob succeeds, the script program continues execution with the unmount
command and echoes the string Successful execution. to standard output. The exit command then
causes the script program to stop processing the script because it encounters the exit command
during normal execution. If /usr2/runjob fails, the script program skips all commands until it
encounters the exit command. It then resumes execution with the unmount command and echoes
the string Unsuccessful execution. to standard output.

sabort
The sabort command can be used to tum off the search for either an exit or proceed command,
thus forcing execution of every command in the script, regardless of the failure of a command.

sabort may be called without arguments or with one argument, which must be one of the strings
on or off. When sabort is on, script looks for an exit or proceed command whenever a command
in the script fails. When sabort is off, script processes every command in the script.

2s-8

USER COMMANDS
script

If you execute the sabort command without an argument, it both rescinds the effect of any
previous sabort on and fails. Thus, if script is executing a script, script immediately begins
looking for an exit or proceed command.

The sabort command may be executed by a login shell (if you use script as your shell) or may be
part of a script script. The attribute is always passed from a parent program to a child shell, but
never from a child to a parent.

The system also supports startup files for individual users. Whenever a user logs in using script
as an interactive shell, the script program looks for a file named .startup in your home directory
(as defined in the password file). If the file exists and you have read permissions in it, script
executes the file before issuing the system prompt.

The script program can also be used as a command in its own right. This form is used primarily
to execute a script scriptfile for which execute permissions are not set, to call the script program
from another program, or in the password file.

ERROR MESSAGES
Built-in commands may not use pipes.

Input to or output from the script built-in commands (chd, dperm, jobs, log, login, and wait) may
not be routed through a pipe.

Cannot execute <cmd name>.
The operating system was unable to execute the specified command. Either the command does
not exist or you do not have execute permission.

Cannot initialize tables.
This error, which should not occur, is usually indicative of a hardware failure. If it does occur,
contact your Tektronix field office.

Cannot open I/O redirection file.
The operating system returned an error when the script program tried to open the file specified for
I/O redirection. Most probably, the path specified cannot be followed (one of the directories does
not exist) or you do not have the permissions necessary for opening the file. This message is
preceded by an interpretation of the error produced by the operating system.

Cannot open pipe.

The operating system returned an error when the script program tried to open the specified pipe.
This message is preceded by an interpretation of the error produced by the operating system.

Error opening a file.

The operating system returned an error when the script program tried to open the specified file.
This message is preceded by an interpretation of the error produced by the operating system.

Error reading a file.

The operating system returned an error when the script program tried to read the specified file.
This message is preceded by an interpretation of the error produced by the operating system.

Error writing a file.

The operating system returned an error when the script program tried to write to the specified file.
This message is preceded by an interpretation of the error produced by the operating system.

OPERATING SYSTEM REFERENCE 28-9

USER COMMANDS
script

I/O redirection conflict.
System trled to redirect standard input, standard output, or standard error to more than one place.

I/O redirection error.
The operating system returned an error when the script program tried to perform the specified I/O
redirection. This message is preceded by an interpretation of the error produced by the operating
system.

Memory overflow.
There is not enough memory available to perform the specified command. Most probably, the
expansion of the matching characters used on the command line, for which many matches were
possible, caused the error.

~issing] or invalid character range.
Either the right square bracket is missing from the specification of a range of matching
characters, or the range specified is invalid.

No matching file names found.
Matching characters appear on the command line, but no file names match the specified pattern.

Parenthesis usage error.
The parentheses used on the command line are unbalanced.

Too many tasks.
The script program tried to fork, but too many tasks were running at the time. The limit to the
number of tasks allowed either to the individual user or to the operating system as a whole was
reached.

Unknown error.

This error should not occur. If it does, contact your Tektronix field office.

Unrecognized argument to built-in command.

The argument specified is not a valid argument to the built-in command in question.

Unterminated string.
The quotation marks used on the command line are unbalanced.

SEE ALSO
chd
dperm
env
jobs
log
login
shell
time
wait

2s-10

USER COMMANDS
set

set
Changes or displays the current state shell and values of the environment variables. This is a
shell command.

SYNTAX
set [<file_name>]

ARGUMENTS
<file name> 1be name of source file from which to read commands.

DESCRIPTION
The set command, which is part of the shell program, displays the current state of the shell and
the values of the environment variables if no arguments are given. If a file argument is specified
then the commands in it are executed as if they were typed from the keyboard.

No message is printed if the file does not exist.

SEE ALSO
shell
unset

OPERATING SYSTEM REFERENCE 2s-11

USER COMMANDS
shell

shell
An interactive command interpreter.

SYNTAX
shell [+lx] [+h=<file_name>] [<file_name>] [+c <string>]

[+i<file_name>]

DESCRIPTION
Shell is an interactive command interpreter that gives many conveniences when working with the
4400 operating system. When using shell as the command interpreter, line editing can be
performed.

If shell is called with no arguments, it spawns a subshell which can then be interacted with until
either the exit or logout command is issued. This shell executes commands in the file .shellbi!'gin
in the home directory, but does not store the name of the home directory. After exiting the
subshell, control returns to the parent shell.

OPTIONS
I

h=<file name>

<file name>

c <string>

e

x

2s-12

The I option tells shell to run as a login shell. This option causes shell to
execute commands from the files .login and .shellbegin (in the home
directory) when it begins execution, and from the file .logout when it
terminates. The exit command terminates a subshell, so use logout to end a
session with the login shell.

This option causes shell to initialize its state from that saved in
<fIle_name>. When shell terminates it saves its history, environment
variables, and aliases into this file. Without this option, shell reads and
writes its state into the file .shellhistory in the home directory. To prevent
state recovery and saving, use none as the <file_name> (+h=none).

If shell is followed by a filename without the c or i options, it assumes that
the file is a command script shell passes control and the argument to the
program, script.

The c option causes shell to assume the next string of characters is a shell
command, to execute that command and then terminate.

Turns off command line editing.

The i option causes shell to process the commands contained in
<file_name> and then terminate, rather than passing the commands to
script.

On the next command, do not fork unless necessary. This option is used
only when calling a script program from another program.

USER COMMANDS
shell

EDITING AND HISTORY
Shell remembers a limited number of commands. Use the shell command history to retrieve a list
of commands that shell accepted. Then use control (or function) keys to recall and modify
commands.

Enter commands one character at a time, editing the command line (either with backspace and
re-typing or with the command editor) and press the return key to execute the command.

Table 2s-2, Shell Editing Keys And Functions, shows the keys or key sequences associated with
the shell editing functions and a brief description of those functions. Note that the keys listed do
not need to be uppercase.

When editing, the characters inserted appear at the cursor position and the characters following
the cursor shift to the right.

The editing function most commonly used with history is up. If the cursor is not positioned at the
start of a line, successive calls to up recall only commands that begin with the same non-blank
character string as that preceding the cursor. For example, if the cursor is placed after the string
ehd (where the ehd command was used earlier) pressing 'P returns to the previous command
where ehd was used. The history command can only recall a limited number of past commands.

Table 28-2
SHELL EDITING KEYS AND FUNCTIONS

Key Function Description
AA begin line Moves the cursor to the beginning of the line.
AB left character Moves the cursor left one character.
AD erase character Erases the character at the cursor.
AE end line Move the cursor to the end of the line.
AF right character Moves the cursor right one character.
AHorDEL backspace Erases the character preceding the cursor.
AK erase to end Erase characters from the cursor to the end of the line.
AL redisplay Redisplay the current line.
AN down Recalls the next command with the same prefix.
Ap up Recalls the previous command with the same prefix.
AQ quote Enters the key value of the following key.
1 transpose Transpose the previous two characters.
AU erase line Erase (or restore) the entire line.
AWorESC-H erase back word Erases the word before the cursor.
ESC-B word left Moves the cursor to the left to the start of the nearest word.
ESC-D erase word Erases to the end of the word at or following the cursor.
ESC-F word right Moves the cursor to the right to the start of the next word.
ESC-HorAW erase word Erases to the end of the word at or following the cursor.
RETorLF return Executes the command.

OPERATING SYSTEM REFERENCE 2s-13

USER COMMANDS
shell

ENVIRONMENT VARIABLES
A list of name-value pairs called environment variables is kept by shell. When shell encounters a
string that it recognizes as an environment variable, it emits the value it has stored for that
variable. Define or modify an environment variable by writing a quoted string of the form:
name=value to shell. For example to define the variable COMMAND as bin, type The string
COMMAND=lbin. Then, to change your working directory to /bin, type cM $COMMAND.

Delete environment variables with unset, used as unset COMMAND. The set command displays
the currently listed environment variables.

SEARCH PATH

The environment variable PATH defines the search path for the directory containing the
command. Each alternative directory name is separated by a colon. If the command name
contains a I, the search path is not used. Otherwise, each directory in the path is searched for an
executable me. If the file has execute permission, but is not a binary file, it is assumed to be a
file containing shell commands. A subshell (i.e., a separate process) is spawned and the program
script is used to read and execute it. A command contained within parentheses is also executed in
a subshell.

ALIASES

Shell maintains a list of aliases, or command redefinitions. When entering a command line, shell
checks the first word of the command to see if it is an alias. If so, shell executes the text of the
alias and can use argument designators to extract the arguments to the aliased command.
Create or modify an alias with the alias command. Delete an alias With the unalias command.
See all the currently defined aliases by entering the alias command without any arguments.
For example, if a UNIX TM programmer were to want the command II to perform the action of the
operating system command dir +1, that person could create that alias by typing:

alias 11 'dir +1 $*'
Now typing IIlbin will have the same effect as typing dir +llbin.

VARIABLE ARGUMENTS
Variables may contain argument designators to extract arguments from commands (such as used
when defining aliases). The argument designators are:

$0 The first word of the command (the command itself)
$n The nth argument of the command
$" The first argument of the command (equivalent to $1)
$$ The last argument of the command
$x-y The range of arguments from x to y (such as $3-5)
$-y Abbreviation of $O-y
$* Abbreviation of $" -$ ($1 $2 ... $$)
$n* Abbreviation of $n-$
$n- Abbreviation of$n-($-I) (omits last argument)
$- Abbreviation of $0-($-1) (omits last argument)

2s-14

USER COMMANDS
shell

When evaluating aliases, these argument designators extract the arguments from the command
line to pass to the aliased commands.

FUNCTION KEYS
The function keys and joydisk are represented by special environment variables. By defining
these variables, they will cause the joydisk and function keys to perfonn actions. Then when
pressing a function key or the joydisk. shell echoes the string defined for that variable.

Insert special characters into function key and joydisk variable definitions by using the quote
character, CfRL-Q. The special character following a CfRL-Q is stored literally.

The 24 function key variables are $f1 - $fl2 and $Fl - $Fl2. The joydisk variables are $joyup,
$joydown, $joyleft, $joyright $JOYUP, $JOYDOWN, $JOYLEFf, and $JOYRIGHT. The Break
key is bound to the variable $BREAK, and the arrow key (upper right of keyboard) is bound to
arrow and ARROW for the shifted arrow key.

COMMAND SYNTAX
A command is either a simple-command or a list
A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a
space). The first word specifies the name of the command to be executed. Except as later
specified, the remaining words are passed as arguments to the invoked command. (The command
name is passed as argument 0.)
A pipeline is a sequence of one or more commands separated by",". The standard output of each
command, but the last, is connected by a pipe to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to tenninate.
A list is a sequence of one or more pipelines separated by the characters ";" or "&", and
optionally tenninated by them. The characters ";" and "&" have equal precedence. A semicolon
causes sequentiaJ execution; an ampersand causes the preceding pipeline to be executed without
waiting for it to finish. Newlines may appear in a list, instead of semicolons, to delimit
commands.

COMMAND SUBSTITUTION
The standard output from a command enclosed in a pair of back quotes (' ') may be used as part
or all of a command word; trailing newlines are removed.

WILD CARD CHARACTERS
Following substitution, each command word is scanned for the characters ".", "?" and II [". If one
of these characters appears, the command word is regarded as a pattern. The command word is
replaced with alphabeticaJly sorted file names that match the pattern. If no file name is found
that matches the pattern, the command word is left unchanged. The character" . II at the start of a
file name or immediately following a "1" , and the character "I" , must be matched explicitly.

OPERATING SYSTEM REFERENCE 28-15

USER COMMANDS
shell

The special characters match in this manner:

* Matches any string, including the null string.

?

[... J

Matches any single character.

Matches anyone of the characters enclosed. A pair of characters separated
by "." matches any character lexically between .the pair.

E~pands by replacing the tilde with the home directory of the named user.
This is valid only if the tilde is the first character. For example, if user
sandra has a home directory {defined in the password file} of
Ipublic/sandra, the filename -sandra/file expands to Ipublic/sandra/file.

An asterisk in a command line matches any character or characters, including the null string but
not including a leading period. Thus, the command

dir *.bak

shows all files in the working directory whose names end in .bak and do not begin with a period.

The question mark matches any single character except the null character or a leading period.
For example, the command

dir chapter_?

shows all files whose names begin with the string chapter_and end with a single character.

More than one matching character can be used at a time. For instance, the command

dir *.?

shows all files of the working directory whose names end with a period followed by a single
character {except those names that begin with a period}.

Square brackets allow specification of a set of characters to use in the matching process. The set
of characters can be defined by listing individual characters separated by commas. Or two
characters can be specified and separated by a hyphen. In the former case, the shell program
looks for all file names which use anyone of the enclosed characters in the matching locations.
In the latter, the two characters specify a class of characters containing the two characters
themselves, and any characters which lexically fall between them in the ASCII character set For
example, if the working directory contains nine files named chapterl, chapter2, chapter3, and so
forth, the following command lists the first three chapters, the fifth chapter, and the last three
chapters:

list chapter[1-3,5,7-9]

If the shell program cannot find a match for any of the arguments containing matching characters;'
it aborts the command. If it finds a match for at least one argument containing matching
characters, it ignores any other arguments containing matching characters for which it cannot find
a match.

If a filename actually contains one of the matching characters, or either a space or a comma, the
name must be enclosed in single or double quotation marks. In such a case the shell program
passes the arguments to the command without performing any character matching.

2s-16

USER COMMANDS
shell

QUOTING
The following characters have a special meaning to the shell and cause termination of a command
word unless quoted.

";" "&" "(" ")" newline space tab

A character may be quoted by preceding it with a \. \newline is ignored. All characters enclosed
between a pair of single quote marks ' " except a single quote, are quoted. Parameter and
command subsitution occur inside" " double quotes and \ quotes the characters \, " ", and $.

EXECUTION
Each time a command is executed, the above substitutions are carried out.
Commands can be run in the background by inserting an "&" as either the first or last nonblank
character on a command line. shell prints the name and process ID for each background task
when it begins, and again when it terminates.
Commands can be grouped for a subshell with parentheses. Put the subshell in the background
by following the closing parentheses with "&", and redirect liD for the subshell.

Execution of a command can be timed by using "%" as the first or last nonblank character on a
command line. shell prints the real, user, and system times for the command's execution when
the command ends.
To quickly access the program, script, use "!" as the first non-blank character on a line. To pass
the remaining characters to script uninterpreted, use the +c option.

REDIRECTING INPUT AND OUTPUT AND ERROR
To redirect standard output, use ">" and "»". ">" directs standard output of a preceding
command into the filename following it, writing over an old file. "»" appends the standard
output of a preceding command into the filename following it.

To redirect standard input into a command, follow the command with "<" in front of the
command that will generate the input for the first command.

To redirect standard error, use "A" and "M" as would characteristically be used for standard output
redirection. Combine redirection of standard input, output, and error to a file by using a
combination of symbols. For example, redirect both standard error and output to the file temp
with A>temp. Both standard output and error can be connected to a pipe with "AI".

Symbol
<
>

A or %
AA

I

OPERATING SYSTEM REFERENCE

Table 28-3
Shell 110 Redirection

Meaning
Ine standard mput from tile tollowmg symbol.
Send standard output to fIle following symbol.
Send standard error to file following symbol.
Append standard output to file following symbol.
Connect programs so output of one becomes input of next.

28-17

USER COMMANDS
shell

SUMMARY OF shell COMMANDS
Table 2s-4 lists the commands (followed by a brief description) that are part of shell. 110 cannot
be redirected for these commands.

Command [al1!uments]
addpath Ldir name JiStJ
alias [name][string]

chd [arg]
dirs

dperm [u-rwx][o-rwx]
env
exit
history
jobs
login [arg]

logout
popd

pushd [dir]

rmpath [dir name list]
set [file]

unalias [name] [+a]

unset [name] [+a]

wait

2s-18

Table 2s-4
shell COMMANDS

Description
Add the named dtt'eCtones to U1e searcn pam or U1e snell.
With no arguments, prints the names of all defined aliases. With
one argument, prints the associated alias. With two arguments,
the second argument is defined to be an alias for the first.
Change CUIJ'ent directory (default to user's home directory)
Lists the CUIJ'Cnt working directory
and the directory stack.
Sets default permissions for file creation.
Displays and changes the enironment variables.
Terminate a subshell.
Displays saved command history.
Lists currently executing background jobs for present user.
Terminate this interactive session
and start the login process.
Terminate this interactive session.
Changes the working directory to the
one whose name is on the top of the
directory stack.
Pushes the name of the working directory on the directory stack
and changes to the specified directory. With no argument, this
command exchanges the top of the directory stack and the CUIJ'eDt
working directory.
Remove the named directories from the search path of the shell.
Without an argument, set displays the CUIJ'eDt state of the
shell and the values of the defined environment variables. If
you specify a file, it executes the commands in it as if you had
typed them. Use this option to set environment variables and the
user file creation mask. set terminates an input line and
cannot be used as an alias.
Deletes the named alias from the set of aliases. Use the
option +a to remove all aliases.
Removes named environment variables declared by set. Use the
option +a to remove all environment variables.
Waits for all background processes to terminate and reports their
termination status. If the wait command is interrupted, then a
list of currently active processes is displayed.

USER COMMANDS
shell

DIAGNOSTICS
Shell gives error messages similar to other messages detailed in this manual whenever directories
and files cannot be opened, whenever it detects a syntax error, and whenever it reaches its
memory limits.

LIMITS
Shell has the following limits:

• 256 environment variables

• 30 saved commands (history)

• 16 entries on the directory stack

• 128 characters per command line

• Command expansion cannot exceed 512 arguments and 5120 characters

SEE ALSO
addpath
alias
chd
dirs
dpenn
env
exit
history
jobs
login
logout
nice
popd
pushd
nnpath
script
set
unalias
unset
wait

OPERATING SYSTEM REFERENCE 2s-19

USER COMMANDS
smalltalk

smalltalk
Invokes the 4400 Smalltalk-80 interpreters.

SYNTAX
smalltalk [+option] [<image_file_name>]
<image_file_name> [+option]

DESCRIPTION
When this command is invoked, the first fonn will load either Small Object Space (SOS) or
Large Object Space (LOS) images depending on what 4400 Series machine you have. The
default, smalltalklstandardImage, for the 4405 (with memory greater than 1 megabyte) and 4406
is LOS. The default, smalltalklstandardImage, for the 4405 (with 1 megabyte of memory) and
the 4404 is SOS. An image file written by Small talk may also be executed by simply typing its
name, as shown in the second fonn of the syntax discussion.

ARGUMENTS
<image_file _name> Specifies the name of the virtual image to be loaded. When Smalltalk is

invoked with an image file name, the type of image overrides any specified
options.

OPTIONS
+1

+m=<size>

+s

28-20

Invokes the LOS Smalltalk interpreter. The default image is the LOS
standard image on the 4405 and 4406, but is ignored by the 4405 (with 1
megabyte of memory) or the 4404.

Sets the upper limit of virtual memory usage to <size> kilobytes. This
option applies only to the SOS interpreter and is ignored if the LOS
interpreter is invoked.

Invokes the Smalltalk SOS interpreter. The default image is the SOS
standard image.

USER COMMANDS
smalltalk

EXAMPLES
small talk

This example invokes the Smallta1k interpreter that loads the default standard image (LOS or
SOS).

smalltalk +8

This example invokes the SOS Smalltalk interpreter that loads the SOS standard image.
small talk mylmage

This example will create or invoke the file, my/mage.

An Overview of Smalltalk

The Smallta1k system is an object-oriented language and environment containing extensive
libraries and software. It is a small, readable language featuring fast interactive responses to a
visually oriented display screen, controlled by a mouse and pop-up menus that organizes
information in windows.
Make sure that you know the 4400 Series machines before you attempt to work with the
Smallta1k-80 system. You can become familiar with these components by reading through the
4400 AIS Series User's Manuals. For detailed instructions on using the Tektronix Smalltalk-80
system and programming language see:

• 4400 Series Artificial Intelligence System: An Introduction to the Smalltalk-80 system.
(Tek part no. 070-5606-00). Tektronix, 1984.

• Goldberg, Adele. Smaltalk-80: The Interactive Programming Environment. Addison­
Wesley, 1984. (Tek part no. 062-8859-00). (Known among Smalltalk programmers as the
"orange book").

• Goldberg, Adele and David Robson. Smallta1k-80: The Language and its implementation.
Addison-Wesley, 1983. (Tek part no. 062-8860-00) (Known among Smalltalk
programmers as the "blue book").

The 4400 Series manual will give you a brief introductory-level look at the Smal1talk-80 system.
For a comprehensive tutorial and extensive reference to the Small talk system, use the Addison­
Wesley books.

OPERATING SYSTEM REFERENCE 2s-21·

USER COMMANDS
status

status
Display the status of running tasks.

SYNTAX
status [+alsx] [+w[=<num>]]

DESCRIPTION
The status command reports, to standard output, the status of tasks running on the system. By
default, this report does not include shell or login programs and is restricted to tasks belonging to
the user who executes the command. The command is not always completely accurate due to the
dynamic nature of the operating system. By default, the status command reports on the following
parameters:

Task-id The number assigned to the task by the operating system.

Mode

Dev

Prio

ls-ll

Indicates whether the task is in memory (" cIt) or has been swapped to the
disk ("s").

The number of the terminal from which the task originated. An xx in the
field indicates that no terminal is associated with the task.

If the entry in this field is a number, it indicates the priority of the task. A
higher number indicates a higher priority. Non-numeric priorities are
described in Table 2s-5, Possible Task Priorities.

Table 2s-5
POSSIBLE TASK PRIORITIES

Priority Meanlnl!
but W81ting for a system buffer.
disk Waiting for some disk activity.
me Waiting for some file activity.
halt Halted by another task.
in Waiting for input from the terminal.
out W Biting for output io the terminal io end.
pipe Waiting for pipe data (usually input).
upcl Updating an fdo.
sIp Sleeping (not executing).
swap Being swapped to or from the disk.
sys< Highest possible priority.
wait Waiting for another task to end.

Time

Command

USER COMMANDS
status

If the command is System, this parameter is the amount of unused CPU
time since the system was booted. Otherwise, it is the total CPU time that
a particular task has used.

The command which originated the task. By default, the status command
shows the first thirty-five characters of the command line; the rest are
truncated. The command System is the operating system. The command
I etC/init executes the login program. If the status command cannot
determine what was on the command line, this field contains the entry
"???".

OPTIONS
a

I

s

w[=<num>]

List all tasks on the system, not just those belonging to the user.

Produce a more detailed description of the status of each task.

Produce a statistical summary of the use of the operating system.

Wait <num> seconds after reporting the status; then produce another
report. The command repeats 100 times. The default is thirty seconds.

x List every task (a normal listing does not include shell programs, the
System command, or the command Jetc/init).

If the user specifies the "1" option, the following additional items are included in the report:

Status The status of the task. Possible values include run (task is running), sleep
(task is waiting for something to happen), and term (the task has
terminated).

User

Parent

Size

The user name of the person who owns the task. If two or more user names
share the same user ID, status uses the name that appears first in the
password file.

The task ID of the parent task. If the parent task in no longer active, the ID
shown in this field is 1.

The amount of memory that the task is using.

If the user specifies the "s" option, statistics are included in the report. They represent activities
on the system since the time it was booted.

Total block I/O transfers

The number of times the system has tried to access a disk block in the cache.

Total disk I/O operations

The number of times the system has had to access the disk. This statistic does not include swap
operations.

OPERATING SYSTEM REFERENCE 2s-23

USER COMMANDS
status

Total blocks freed

The number of blocks that have been released from a file to the free list. If the same block has
been released more than once, each release is counted.

total system calls

The number of times the system has executed a system call.

total PAGE IN operations

The number of times the system has read a page from the swap device.

total PAGE OUT operations

The number of times the system has written a page to the swap device.

total pages stolen

The number of times that the system had to take memory from one user to give to another.

total PAGE faults

The number of times user processes have accessed process memory not resident in physical
memory.

EXAMPLES
status +s

Displays the default information about the status of all tasks except shell programs that belong to
the user. A summary of the use of the operating system is included in the output.

status +alxw=15

Displays detailed information about the status of all tasks on the system. It waits fifteen seconds,
then issues another report. The command repeats 100 times unless the user interrupts it by typing
a CfRL-C.

28-24

USER COMMANDS
stop

stop
Stop the system and prepare to shut off the power or reset.

SYNTAX
stop

DESCRIPTION
The command stop terminates any background processes, closes open files, flushes buffers to the
disk, and does the general housekeeping necessary to perfonn an orderly system shut-down.

You should always run stop before turning off the power to the Tek 4400 series system, or
pressing the Reset Button.

EXAMPLES
stop

This is the only fonn of this command.

MESSAGES
When stop is finished, it prints the message:

. .. System shutdown complete

At this point, the system has been completely shut down and it is safe to tum off the power or to
reset the system.

SEE ALSO
login

OPERATING SYSTEM REFERENCE 2s-25

USER COMMANDS
strip

strip
Remove the symbol table from an executable binary file.

SYNTAX
strip <file name list>

DESCRIPTION
The strip command removes the symbol table from an executable binary file. This reduces the
size of the file. .

ARGUMENTS
<file name list> A list of files to process. - -

EXAMPLES
strip testprog

This example removes the symbol table from the executable binary file testprog.

ERROR MESSAGES

Error creating <file name>: <reason>

The operating system returned an error when strip tried to create the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error opening <file_name>: <reason>

The operating system returned an error when strip tried to open the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error unlinking <file_name>: <reason>

The operating system returned an error when strip tried to unlink the specified file. This message
is followed by an interpretation of the error returned by the operating system.

File <file name> cannot be located.

The specified file does not exist.

File <file name> is a device or a directory.

The specified file is not a regular file.

28-26

Section 2t

tail
Print a specifiable number (default is 250) of characters from the end of a text file.

SYNTAX
tail <file name> <n>

DESCRIPTION

This utility prints the last n characters in a text file. If n characters from the end of the file
happens to fall in the middle of a line, the line will be preceded by ... to show that only a part of
the line has been printed. Whole lines are printed as they appear in the file.

Special characters such as carriage returns and tabs are counted as part of the "n" characters.

ARGUMENTS
<file name> The file from which characters are to be printed.

<n> The number of characters from the end to start printing. The default is 250
characters. If "n" exceeds the number of characters in the file, the whole
file is printed.

EXAMPLES
tail .shellbegin

Prints the last 250 characters of .shellbegin, or the entire file if it contains less than 250
characters.

tail testfile 30

Prints the last 30 characters from the file testfile.

SEE ALSO
list
page

OPERATING SYSTEM REFERENCE 2t-l

USER COMMANDS
touch

touch
Set the time of the last modification of a file to the current date and time.

SYNTAX
touch <file name list>

DESCRIPTION
The touch command sets the time of last modification for the specified file to the current date and
time. The user must have write permission for a file in order to touch it. This command is often
used in conjunction with the update command. It is also useful for correcting the last
modification time of a file which was created or modified when the system time was incorrect.

ARGUMENTS
<file name list> - - A list of the names of the files to modify.

EXAMPLES
touch letter memo

Changes the modification time of the letter and memo files to the current date and time. "

ERROR MESSAGES
Error seeking to beginning of file <file_name>: <reason>

The operating system returned an error when touch tried to seek the beginning of <file _name>.
This message is followed by an interpretation of the error returned by the operating system.

Error touching <file_name>: <reason>
The operating system returned an error when touch tried to change the last modification time of
<file_name>. This message is followed by an interpretation of the error returned by the operating
system.

File <file name> does not exist!
The touch command could not find <file_name> in the file system.

SEE ALSO

2t-2

create
date
update

Section 2u

unalias
The named aliases are deleted from the set of aliases. This is a shell command.

SYNTAX
unalias [<alias_name>] [+a]

DESCRIPTION
The unalias command is from the shell program and deletes named aliases from the set of aliases.

ARGUMENTS
<alias name> The name of the alias to delete.

OPTIONS
+a Remove all of the defined aliases.

EXAMPLE
unalias long

This example deletes the alias long.

SEE ALSO
alias
shell

OPERATING SYSTEM REFERENCE 2u-l

USER COMMANDS
unset

unset
Delete the named variables from the set of environment variables. This is a shell command.

SYNTAX
unset [<env_name>] [+a]

DESCRIPTION
The named variables are deleted from the set of environment variables.

ARGUMENTS
<env name>

OPTIONS
+a

EXAMPLE

The name of the environment variable to delete.

Remove all environment variables. This will almost certainly make the
current shell unusable.

unset TERM

This example deletes the environment variable TERM.

SEE ALSO
set
shell

2u-2

USER COMMANDS
update

update
Conditionally process a set of files, performing the specified operations on each file if the
conditions specified in the makefile are met.

SYNTAX
update [<makefile_name>] [+q]

OPTIONS

q Do not send informative messages to standard output.

DESCRIPTION
The update command reads the specified makefile, which must conform to a special format, and
conditionally performs the command or commands in that file. By default, the update sends
informative messages to standard output telling the user what it is doing. The command is most
often used to recompile programs whose sources have been updated.

ARGUMENTS

<makefile name> The name of the file to read instructions from. This file must be in a
special format (see FORMAT OF THE MAKEFILE). The default is
the file, makefile, in the working directory. If a makeftle is specified,
any following arguments are passed in as $1, $2, etc.

FORMAT OF THEMAKEFILE
The makefile is composed of modules, each of which is terminated with a percent sign, "%", in
column l. A module itself is composed of up to two parts. The first part specifies the process
that update is to perform. The format for this first part is as follows:

<item_one>::<item_two>;<command_sequence>
Where <item_one> and <item_two> are the names of files; "::" is the is newer than operator; and
the semicolon, ";", separates the file names from the command sequence.
The command sequence is composed of one or more operating system commands. The update
command replaces any sequence of more than one space character with a single space. Multiple
commands are separated by additional semicolons. If the commands do not fit on one line, the
user must begin and end the sequence with an exclamation point, It!", which serves to delimit the
entire command sequence. If the first portion of the module uses more than one line, the second
exclamation point marks the boundary between the first and second portions of the module. The
command sequence is executed if <item_I> is newer than <item_two>. Or <item_two> may be
the keyword always, in which case the "::" operator is ignored and the <command_sequence> is
always performed.

OPERATING SYSTEM REFERENCE 2u-3

USER COMMANDS
update

The user may substitute an ampersand, "&", for any character or sequence of characters in
<item_one>, <item_two>, or the command sequence. In such a case the update command
substitutes for all ampersands the strings specified in the second portion of the module. If the
second portion of the file is absent, no command sequence is performed. This portion consists of
one or more lines, each of which contains a single string to substitute for the ampersands. The
update command replaces each occurrence of an ampersand with the string on the first line of the
second portion of the module and performs the command sequence if <item_one> is newer than
<item _ 2>. It then replaces all ampersands with the string from the second line, continuing in this
fashion until it reaches the end of the second portion of the module (marked by a percent sign in
column 1).

If the file represented by <item_two> does not exist, update considers that <item_one> is newer
than <item_two>. If the file represented by <item_one> does not exist, or if neither the file
represented by <item one> nor <item two> exists, <item one> is not considered to be newer
than <item two>. - - -

For instance, consider the following makefile:

&:&;b;asm & +sl
file 1
file 2

file n
%

An update command which references this file makes the following translation:

Iffi1e_l is newer thanfilej.b, execute the command asmfile_l +s1.

Iffile_2 is newerthanfile_2.b, execute the command asmfile_2 +sl.

It continues in this fashion until file _ n is processed. The percent sign in column 1 marks
the end of the module, and because it is the only module in the file, the update command
terminates.

More than one set of commands can be processed with a single makefile if the user includes more
than one module in the file.

NOTES

• The ehd command has no effect in a makefile.

• The update command always tries to substitute the strings specified in the second portion
of a module for all ampersands which appear in the first portion. Thus, the command
sequence itself cannot contain an ampersand. Consequently, tasks specified in a makefile
cannot be executed in the background (although the update command itself may be sent to
the background).

2u-4

USER COMMANDS
uPdate

ERROR MESSAGES
*** Can't access Makefile <file name> aborted!

The operating system returned an error when update tried to open <file_name> for reading. Most
probably, the file specification is incorrect, the file does not exist, or the user does not have read
permission for the file.

*** Error: Command too long.
<command_sequence>

After substitution for the ampersands has taken place, the command sequence is too long (the
limit is 512 characters).

*** Error: Pattern too long.
<command_sequence>

The pattern for the command sequence (before substitution for ampersands takes place) is too
long (the limit is 512 characters).

syntax error Makefile aborted

The update command was unable to interpret the makefile.
Syntax: update [<makefile_name>] [+q]

The update command requires exactly one argument. This message indicates that the argument
count is wrong.

Unknown option: <char>

The option specified by <char> is not a valid option to the update command.

SEE ALSO

touch

OPERATING SYSTEM REFERENCE 2u-5

Section 2w

wait
Wait for a background task to complete before accepting any more input.

SYNTAX
wait [<task_ID>]
wait any

DESCRIPTION
The wait command, which is part of the shell program, tells the shell program not to accept any
more commands until the specified background task is complete. The tennination status of the
task is reported when the task is complete. If the user does not specify a task ID, the shell
program waits for all active background tasks that are children of the shell program that issued
the wait command to finish before accepting any new commands. The user may interrupt the
wait command with a control-C.

ARGUMENTS
<task ID>

any

EXAMPLES

The ID of the task to wait for. The shell program reports the ID when it
sends a task to the background. The ID may also be obtained by executing
either the jobs or the status command.

If the user specifies the argument any, the shell program waits for anyone
background task that is a child to finish before accepting a new command.

wait 495

Tells the shell program to accept no further commands until task 495 is complete.

wait

Tells the shell program to accept no further commands from the user until all background tasks
belonging to that shell program are complete.

wait any

Tells the shell program to accept no further commands from the user until one background task
belonging to that shell is complete.

OPERATING SYSTEM REFERENCE 2w-l

USER COMMANDS
wait

ERROR MESSAGES
No tasks running in the background.

The shell program has no tasks running in the background.

Specified task not running in the background.

The task specified either is not a child of the current shell program or does not exist.

SEE ALSO
jobs
script
shell
status

2w-2

Section 3

SYSTEM UTILITIES
The system utilities are generally reserved for the user logged in as system. They tend to be
either powerful utilities, with great potential for misuse, or utilities that should be reserved for a
limited number of users where many accounts are set up.

User system generally has the directory letc defined in the search path, and needs only enter the
name of the utility to invoke it. The full path name is given here, however, to emphasize the
special purpose of these utilities.

SYSTEM UTILITY DESCRIPTIONS
Descriptions of the system utilities are contained in the following pages of this section. System
Utilities are summarized in Table 3-1.

Name
adduser
alterswap
badblocks
blockcheck

deluser
devcheck
diskrepair

fdncheck

makdev
mount
owner
unmount

Table 3·1
System Utilities

Function
Add a new user to the system.
Alter the size of the swap space on a block device.
Remove bad disk blocks from the free list on the specified device.
Check the integrity of the allocation of all blocks used in files and of
the free list of the specified device.
Remove a user from the system.
Check a device for 110 errors.
Check and, optionally, repair inconsistencies in the logical structure of the
disk.
Check the integrity of the structure of the file descriptor nodes (fdns) on
the specified disk.
Create a special type of file, representing a device.
Insert a block device at a node of the directory tree structure.
Change the owner of a file.
Unmount a previously mounted device from the file system.

OPERATING SYSTEM REFERENCE 3-1

SYSTEM UIIUTIES
adduser

adduser
Add a new user to the system.

SYNTAX
/etc/adduser <user name>

DESCRIPTION
The adduser command is used to add a new user to the system. The specified user name must be
unique to the system. It must be between one and eight letters long. All letters must be lower­
case. Only the system user may invoke this command.

The adduser command perfonns the following tasks:

1. Adds the new name to the end of the password file, letc/log/password.

2. Assigns a user ID to the user.

3. Creates a home directory owned by the new user with rwxr-x pennissions. The name of
this directory is I<user _name>.

4. Copies the default .shellbegin file into the user's home directory and creates empty .login
and .shellhistory files.

The system user or the new user should use the password command to ensure protection of the
new user's files.

ARGUMENTS
<user name>

EXAMPLES

A unique name assigned to the new user for use in response to the login
prompt.

/etc/adduser chris

Tnis exampie adds the user name chris to the bottom of the file letc/log/password, assigns a user
10, and creates the directory /chris, which is owned by chris. The permissions in this directory
for the owner is read, write and execute, while for others it is read and execute (rwxr-x).

3-2

SYSTEM UTIUTIES
adduser

ERROR MESSAGES
Error adding <user_name> to password file: <reason>

The operating system returned an error when adduser tried to add <user_name> to the password
file. This message is followed by an interpretation of the error returned by the operating system.

Error assigning owner to /<user_name>: <reason>

The operating system returned an error when adduser tried to make the specified user the owner
of the file 1< user_name>. This message is followed by an interpretation of the error returned by
the operating system.

Error creating /<user_name>: <reason>

The operating system returned an error when adduser tried to create the file 1< user _name>. This
message is followed by an interpretation of the error returned by the operating system.

Error creating . file: <reason>

The operating system returned an error when adduser tried to create the file.. This message is
followed by an interpretation of the error returned by the operating system.

Error creating .. file: <reason>

The operating system returned an error when adduser tried to create the file '" This message is
followed by an interpretation of the error returned by the operating system.

Name must be 1 to 8 lowercase letters.

The specified user name must be from one to eight letters long. All letters must be lowercase.

Syntax: /etc/adduser <user_name>

The adduser command expects exactly one argument. This message indicates that the argument
count is wrong.

The name <user_name> is already in use.

The specified user name must be unique to the system.

You must be system manager to run 'adduser'.

Only the system user may execute the adduser command.

SEE ALSO
deluser
password
perms

OPERATING SYSTEM REFERENCE 3-3

SYSTEM UTIUTIES
aIterswap

alterswap
Alters the size of the swap space on a block device.

SYNTAX
alterswap <dev name> [+pqr]

DESCRIPTION
The alterswap command can alter the size of the swap space on a block device. The user may
specify the new size as an increase, decrease, or absolute value. The size may be specified as
either blocks or K-bytes. If the value specified is a pure number, it is assumed to be a block
count. If the value is a number with the letter 1(' appended, the size is taken to be a K-byte
count. The program will prompt for all necessary information as it runs. See help on diskrepair.

ARGUMENTS
<dev name> The name of the device to alter; must be a block device.

OPTIONS

q
v

diskrepair will prompt for action on each reported error.
diskrepair in quiet mode, inhibits certain messages and warnings.
diskrepair in verbose mode, all errors are always reported.

EXAMPLES
alterswap /dev/floppy +p

This example would request alterswap to alter the swap size on device Idevlfloppy. When
completed, diskrepair would be run in prompt mode. The program prompts the user for all
necessary information.

NOTES

3-4

• If alterswap is run on the root device, all tasks will be suspended while the program is
running. If the swap size is actually changed, the system will shut down upon completion
of diskrepair and will need rebooting.

• If alterswap is run on a mounted device, the device will be unmounted prior to alteration.
The device will remain unmounted after t..'le com.-na...d tenninates.

• There are situations in which alterswap cannot alter the size of the swap space. These
situations result from the fullness of the existing file system. If this situation happens, the
only solution is to reformat the disk and rebuild the file system.

SYSTEM UTILITIES
alterswap

MESSAGES
Freezing all system tasks ...

The program is altering the swap space of the root device and must suspend all tasks before
proceeding.

Running diskrepair ...

The program" diskrepair" is now being run to rebuild the disk.

Sizing disk ...

The program is reading the device to determine its structure. This may be time consuming,
depending on the size of the device.

ERROR MESSAGES
Error opening "<device name>": <reason>

The operating system returned an error when alterswap tried to open the specified device. This
message is followed by an interpretation of the error returned by the operating system.

Error seeking on "<device_name>": <reason>

The operating system returned an error when alterswap tried to seek on the specified device.
This message is followed by an interpretation of the error returned by the operating system.

Only the system manager may alter swap space.

The alterswap command may only be used by the system manager.

SEE ALSO
diskrepair

OPERATING SYSTEM REFERENCE 3-5

SYSTEM UTILITIES
badblocks

badblocks
Removes bad disk blocks from the free list on the specified device.

SYNTAX

letc/badblocks <dey name> <block number> [+dpqsv] [+m=<address>]

DESCRIPTION
Removes bad disk blocks from the free list on the specified device. The bad block infonnation is
recorded in the file I.badblocks. Once the bad block infonnation is recorded, the diskrepair
utility is run to check the file system integrity. Bad blocks are identified by the devcheck utility,
whichs reports the bad blocks by decimal and HEX block number. Be warned - badblocks
expects the bad block number to be in decimal radix! Hard-disks utilize the controller option to
mask out bad blocks so the I.badblocks file is initially empty. Should blocks become defective
they are masked out by software via the badblocks utility. Total system refonnat and rebuild will
utilize the controller option to mask out bad blocks. See help on devcheck and diskrepair.

ARGUMENTS
<dev name>

<bad block list> - -

<block number>

OPTIONS

The name of the device to check; must be a block device.

The list of bad block numbers in decimal radix! If a floppy diskette
contains one or more bad blocks it should be discarded.

The number of the bad block in decimal radix.

This utility has the same options as diskrepair.

d Do not run diskrepair.

m=<address>

p

q

s

v

SEE ALSO

3-6

devcheck
diskrepair

The address to use for mapping.

Prompt user for pennission to correct diskrepair errors.

Run diskrepair in quiet mode.

Ignore SIR (System Information Record) information in derennining disk
size; this allows one to repair a disk with a corrupted SIR.

Run diskrepair in verbose mode.

SYSTEM UTILITIES
blockcheck

blockcheck
Check the integrity of all block allocations used in files and of the free list on the specified
device.

SYNTAX
/etc/blockcheck <dev name>

DESCRIPTION

The blockcheck command checks the integrity of the block allocation used in the files and free
list on the specified device. It locates problems such as duplicate blocks, missing blocks, and
invalid block addresses.

This command is primarily intended for use by the diskrepair utility, which calls it. It may also
be used on its own as a diagnostic utility; however, blockcheck can only inspect the disk; it
cannot repair it. If blockheck's output suggests that the disk is damaged, use diskrepair on the
disk.

You should only use blockcheck if no other tasks are active on the system; otherwise, the results
are unpredictable.

ARGUMENTS
<dev name> The name of the device to check. It must be a block device.

EXAMPLES

/etc/blockcheck /dev/floppy

This example checks the integrity of all the block allocations on the floppy disk.

SEE ALSO
devcheck
diskrepair
fdncheck

OPERATING SYSTEM REFERENCE 3-7

SYSTEM UTILITIES
deluser

deluse
Remove a user from the system.

SYNTAX
/etc/deluser <user name> [+x]

DESCRIPTION

The deluser command removes the specified user from the system. It removes the corresponding
entry from the file JetC/logJpassword and by default removes all files and subdirectories in the
user's home directory that are owned by that user. It also deletes the home directory itself if it is
empty after all the deletions are complete. Only the system user may execute this command.

ARGUMENTS
<user name> The name of the user to delete from the system.

OPTIONS
x Delete the user, but do not delete the user's files from the system.

EXAMPLES

/etc/deluser chris

This example deletes the line containing the entry for the user name chris from the file
JetC/log/password. It also deletes all files and subdirectories in the directory /chris, as well as that
directory itself.

3-8

CAUTION

This command should be used with great care as it will
recursively descend the user's directory tree, deleting all
files within.

SYSTEM UTILITIES
deluser

ERROR MESSAGES
Cannot delete a user with an 1D of 0 or 1.

The deluser command cannot delete user ID 0 (system) or 1.

Cannot execute remove.
<user_name> not removed from system.

The remove command, which is called by deluser is not in fbin or fetc. The command aborts
without editing the password file.

Name must be 1 to 8 lowercase letters.

The specified user name must be from one to eight letters long. All letters must be lowercase.

Syntax: /etc/deluser <user_name>

The deluser command expects exactly one argument. This message indicates that the argument
count is wrong.

<user_name> is not in the password file.

The file fetcllogfpassword does not contain an entry for the specified user name.

You must be system manager to run 'deluser'.

Only the system user may execute the deluser command.

SEE ALSO
adduser
remove

OPERATING SYSTEM REFERENCE 3-9

SYSTEM UTIUTIES
devcheck

devcheck
Check a device for 1/0 errors.

SYNTAX

/etc/devcheck <dev name list> [+bdfsvV] [+r=<range>] [+D=<opts>]

DESCRIPTION
The devcheck command checks the specified device for I/O errors. As it checks the device, it
prints infonnative messages, which tell the user what part of the device is being checked. It
always checks the boot sector and the System Infonnation Record (SIR). By default, it also
checks the fdn (file descriptor node) space, the paging/swap space, and the volume space.

For each bad block it finds, it displays the decimal and hexidecimal block number. When it is
finished, devcheck prints a message reporting the total number of bad blocks on the device. Bad
block numbers are input to the badblocks program which removes them from the volume space.

If a floppy disk contains one or more bad blocks, it should be discarded. If a hard disk contains
one or more bad blocks, it should be refonnatted with the addresses of all bad blocks placed in
the file .badblocks. It is wise to run this command immediately after fonnatting a disk.
This utility prints the current block being tested when the user types ""c" (the "control" and "c"
keys simultaneously). To abort this command, type ""," (the "control" and ''\'' backslash keys
simultaneously).

ARGUMENTS

OPTIONS
b

d

f

r=<range>

s

v

D=<opts>

V

3-10

A list of the devices to check. They must be block devices.

Put bad blocks in .badblocks file and run diskrepair unless the "d" option is
also specified.

Do not run diskrepair, must be specified with "b".

Check only the fdn space.

Check only the blocks in the specified range.

Check only the swap space.

Check olily the volume space.

Run diskrepair with options" <opts>" , must be specified with "b".

Verify the device by reading and writing.

SYSTEM UTILITIES
devcheck

EXAMPLES
/etc/devcheck /dev/floppy

Checks the entire disk in the floppy drive for I/O errors.

/etc/devcheck /dev/floppy +v

Checks the boot sector, the SIR, and the volume space of the disk in the floppy drive for I/O
errors.

MESSAGES
Bad blocks file too large - continuing without list.

The devcheck command cannot read a .badblocks file that has more than 138 bad blocks in it.
Currently, this theoretical limitation on the number of bad blocks is unlikely to present a practical
limitation. The number of bad blocks on a disk should not even approach 138.

Can't open character device <dev_name>.
The devcheck command cannot open the character device which corresponds to the block device
specified on the command line. Most probably, either the device does not exist or the user does
not have the permissions necessary to open it. In such a case the command continues, but it may
report the blocks in the file .badblocks as bad.

Can't read .badblocks file - continuing without list.
The devcheck command encountered an I/O error when it tried to read the file .badblocks.

File .badblocks not found - continuing with check.
The device specified does not contain a file named .badblocks, or due to damage in the logical
structure of the disk, devcheck cannot locate the file.

ERROR MESSAGES
Can't open <dev_name>.

The devcheck command cannot open the device specified on the command line. Most probably,
either the device does not exist or the user does not have the permissions necessary to open it.

File <file name> is not a block device.

The devcheck command can only check a block device.

Invalid option: '<char>'.

The option specified by <char> is not a valid option to the devcheck command.

SEE ALSO
badblocks
blockcheck
diskrepair
fdncheck

OPERATING SYSTEM REFERENCE 3-11

SYSTEM UTILITIES
diskrepair

diskrepair
Check and, optionally, repair inconsistencies in the logical structure of a disk.

SYNTAX
/etc/diskrepair <dev name list> [+abfmnpqruvz]

DESCRIPTION
The diskrepair utility checks the structure of the disk or disks specified in <dev _name _list>. The
structure of the disk refers to the layout of and the connections among files, directories, free
space, swap space, and other information that makes up the file system. Any inconsistencies in
the structure are reported and, optionally, repaired. Diskrepair does not check or repair media
errors (I/O errors).

ARGUMENTS
<dev name list> - -

OPTIONS
a

b

f

m

n

p

q

r

u

v

z

NOTES

A list of the devices to check. They must be block devices.

Automatically puts bad blocks in .badblocks file and continues.

Performs only blockcheck operation.

Performs only fdncheck operation.

Do not rebuild free list because of missing blocks.

Do not fix any errors, disk is opened to read only.

Prompt the user for action on each reported error.

Quite mode, inhibits certain message and warnings.

Unconditionally rebuild the free list

Report disk block usage at end.

Verbose mode, all errors are always reported.

Do not report file size errors.

• Diskrepair cannot solve all the problems your disk may have. For example, it cannot fix
physical media problems. As for problems with the logical structure of the disk, diskrepair
can only repair an error if the damaged information is redundant - that is, if there is some
way of determining what the information should be.

• Diskrepair cannot, for instance, fix a badly damaged SIR; nor can it repair a disk if the root
directory is severely damaged. It is therefore imperative that up-to-date backups of all
important files be maintained.

3-12

SYSTEM UTILITIES
diskrepair

DEFINITIONS
• Afile descriptor node (or fdn) is an area on the disk which contains all the infonnation the

system needs about a file. There should always be at least one fdn per file on the disk.

• A 4400 series directory entry is simply a file name and a pointer to the proper fdn. There
may be multiple directory entries pointing to the same fdn (multiple names for the same
file).

• Each pointer to a fdn is called a link to that file. If there is a file with no links, it is
considered to be unreferenced. Out-of-range refers to a pointer to a disk block or to an fdn
which is beyond the valid number of blocks or fdns for the disk being tested.

RELATED UTILITIES
While it is operating, diskrepair calls two other utilities- blockcheck andfdncheck, which are
both located in the directory fetc.

• Blockcheck is concerned with the allocation of blocks on the disk. It locates problems such
as duplicate blocks, missing blocks, and invalid block addresses.

• F dncheck is concerned with the directories on the disk. It locates problems such as
unreferenced files, file names with invalid associated files, and so forth.

MAJOR MODES OF OPERATION
There are two major modes of operation: simple and verbose.

• The simple mode is selected by default; the verbose mode is selected by the "v" option.

• In the verbose mode diskrepair reports all detected errors. In the simple mode it reports
only those errors which require the deletion of files or of directory entries.

• If executed in simple mode, diskrepair issues a message upon completion which infonns
the user whether or not the disk is in need of repair. By default, all detected errors are
automatically repaired (if possible).

Description of Related Options
Two options ("n" and "p") exist to alter the handling of errors.

• The "n" option instructs diskrepair not to repair any errors. The "p" option instructs
diskrepair to prompt the user for permission to repair the errors it reports.

• In verbose mode the "p" option causes diskrepair to prompt the user regarding all errors.
In the simple mode, the user is prompted only for those errors which require the deletion of
files or of directory entries; all other errors are automatically repaired without prompting.

NOTE

Most repairs result in a loss of data. The user can generally
infer which data have been lost from the messages displayed.

OPERATING SYSTEM REFERENCE 3-13

SYSTEM UTIUTIES
diskrepair

• When using the command in simple mode (without the 'v' option), the user need not
understand what types of checks are made by diskrepair. The only decisions required are
whether or not to delete the reported files. In verbose mode, much more information is
given to the user.

While this discussion is not intended to give full details of this utility, the following list shows
most of the inconsistencies in disk structure for which diskrepair checks.

• Blocks duplicated in files or free list

• Out-of-range blocks or fdns

• Missing blocks

• Bad free list

• Unreferenced files

• Inactive fdns

• Unknown fdn type

• Incorrect link counts

• Incorrect free block or free fdn count

• Invalid sizes in System Information Record

UN REFERENCED FILES
These are handled in one of two ways:

• An attempt is made to give the file a name by putting it into the directory lost+found in the
root directory of the disk being tested. The name given to the file is of the formfile<fdn> ,
where <fdn> represents the fdn number of the file.
In order for this procedure to work, the directory lost+found must already exist on the disk
being checked, and it must have room for the entry. The program crdisk creates this
directory, but if for any reason it has been deleted, the user should recreate it before
running diskrepair. The user must must also create empty slots for entries by creating a
number of files and then deleting them.

• If it is not possible to put the unreferenced file into the lost+found directory (because there
is either no directory lost+found or no room in it), diskrepair deletes the file (or prompts
for permission to delete it if "p" was specified).

FDN ERROR DATA
If an error is associated wita'i an fdn, pertinent data from that fdn is printed. This includes the fdn
number of the file, its size in bytes, its owner, the time of its last modification, and one of the
following types:

3-14

b = block device
c = character device
d = directory
f = file

i = inactive
p = pseudo tty
u=unknown

SYSTEM UTIUTIES
diskrepair

The diskrepair utility should generally be run only on an otherwise inactive system. It should
never be run on an active disk. If the "n" option is not specified (the disk may be written to),
diskrepair attempts to unmount the disk being tested. If the disk being tested is the system disk,
and if a repair is made which requires writing to the System Information Record (block number
1), diskrepair stops the system upon completion and issues an appropriate message instructing the
user to reboot the operating system. This procedure is necessary to prevent conflicts between the
written data and similar data kept in memory.

DESCRIPTION OF RELATED OPTIONS

b

f

m

n

p

Instructs diskrepair to run only the blockcheck portion of the utility.
This procedure is often considerably faster, but still provides a fairly
complete assessment of the validity of the disk structure.

Instructs diskrepair to run only the fdncheck portion of the utility. This
option is useful if a problem is suspected in the directory structure, but
the result is by no means a thorough check of the structure of the disk.

The operating system maintains a list of blocks available for use called
the free list. A missing block is any block in the volume space which is
not a part of any file and is not in the free list. The existence of such
blocks is a harmless error in the structure of the disk.

Diskrepair generally places missing blocks in the free list. The "m"
option, however, instructs diskrepair not to rebuild the free list solely on
account of missing blocks. This option reduces the time required for
diskrepair to run if missing blocks are the only problem in the free list.

Tells diskrepair to report all errors but to make no attempt to fix them.
Therefore, diskrepair opens the device for reading only. This option is
useful for checking the structure of a disk without risking the loss of data
during repairs.

If the user specifies the "p" option, diskrepair reports each error,
followed by a prompt requesting permission for the proposed repair. All
prompts require an answer of either "y" (yes) or "n" (no).

NOTE

Many repairs result in the loss of data.
(You can generally infer what has been
lost from the messages diskrepair
displays.) Judicious use of the "n" and "p"
options not only allows you to assess the
damage to the disk and decide which
information you are willing to sacrifice
during the repair process; it also gives you
the opportunity to try to salvage the data
before repairing the disk.

OPERATING SYSTEM REFERENCE 3-15

SYSTEM UTILITIES
diskrepair

q

r

u

v

Inhibits certain warnings and messages from diskrepair. Several
conditions exist which, while not technically errors in disk structure,
may cause problems. These conditions usually result in a warning
message; the "q" option inhibits them.

By default, if diskrepair finds that the free list is in error, it rebuilds it.
The "r" option instructs diskrepair to rebuild the free list whether or not
it contains errors. This option is useful if the free list is known to be bad
or if the user wants to reduce fragmentation within the list.

Generates a report on the block usage of the specified device. This
report is printed at the end of the diskrepair operation, and contains
statistics on the following: (1) the number of each type of file in the file
system and the total number of files in the system; (2) the number of
unused blocks and the number of used blocks, including a breakdown of
how the used blocks are allocated; (3) the number of free fdns and the
number of fdns in use.

Diskrepair operates in one of two modes: simple or verbose. Simple
mode is selected by default; verbose mode is selected by the "v" option.
In simple mode, diskrepair reports only those errors which require the
deletion of either files or directory entries. In verbose mode, all errors
are reported. In addition, informative messages are printed describing
what phase diskrepair is performing.

In verbose mode the "p" option causes diskrepair to prompt for
permission regarding all errors. In simple mode the user is prompted
only for those errors which require the deletion of either files or
directory entries; all other errors are automatically repaired without
prompting.

EXAMPLES

/etc/diskrepair /dev/disk

Checks the logical structure of the system disk. By default, diskrepair tries to fix every error it
encounters. These repairs may result in the loss of data from the disk.

/etc/diskrepair /dev/disk +n
Checks the logical structure of the system disk, and reports those errors which require the
deletion of either files or directory entries, but performs no repairs.

/etc/diskrepair /dev/floppy +pv
Checks the logical structure of t-he disk in dle floppy drive, repoI*,s all errors it finds and prompts
for permission before making any repairs.

/etc/diskrepair /dev/floppy +ru
Checks the logical structure of the disk in the floppy drive. Diskrepair rebuilds the free list no
matter what and prints a summary of block usage when finished.

/etc/diskrepair /dev/diskl +mq

Checks the logical structure of the auxiliary disk, /dev/diskl. It does not rebuild the free list
solely on account of missing blocks; neither does it print the warnings and messages which result
from problems not technically errors in the structure of the disk, but which may cause problems.

3-16

SYSTEM UTILITIES
diskrepair

ERROR MESSAGES
Blockcheck terminated abnormally.

Blockcheck received a program interrupt from the operating system. The user cannot determine
the source of such an error; however, it is not indicative of a problem with either diskrepair or the
device. Diskrepair should be rerun, for the problem may not recur.

Can't call /etc/blockcheck.

Diskrepair cannot read or execute the file letclblockcheck.

Can't call /etc/fdncheck.
Diskrepair cannot read or execute the file letclfdncheck.

Can't read System Information Record.
The SIR is so badly damaged physically that diskrepair cannot read it. The user may be able to
salvage some information from the disk, but must eventually reformat it.

Can't stat root.
Diskrepair cannot read the fdn which describes the root directory. The user may be able to
salvage some information from the disk, but must eventually reformat it.

Can't stat std. output.
Diskrepair cannot read the fdn of whatever file is opened as standard output. The user should
rerun diskrepair with !dev/console as standard output.

Conflicting options.
The options specified on the command line conflict with each other.

Device is busy.
Any alterations that diskrepair makes must be made when the disk is not in use. Therefore,
diskrepair determines whether or not the specified disk is mounted, and, unless the user specifies
the "n" option, it tries to unmount a mounted disk before proceeding. This error message means
that either some user's working directory is on the specified disk or some task is accessing a file
on that disk.

Disk needs repair!
The structure of the disk is not logically sound. The user should rerun diskrepair to correct the
problems.

Error reading block <block num>.
Error reading fdn <fdn number> in block <block num>.
Error writing block <block num>.
Error writing fdn <fdn num> in block <block num>.

Diskrepair encountered a physical error on the disk. If either the "p" or "n" option is in effect,
diskrepair prompts for permission to continue. If the user chooses to continue when the "n"
option is not in effect, the results are entirely unpredictable. They depend on precisely which
block is damaged. Continuing with diskrepair may cause further damage to the disk, but in some
cases, it may be the desired course of action.

OPERATING SYSTEM REFERENCE 3-17

SYSTEM UTIUTIES
diskrepair

NOTE

Thefirst time diskrepair reports an 110 error, answer no to the offer
to continue and immediately rerun diskrepair. It is possible, though
unlikely, that the 110 error is a soft one and will not recur.

Error updating SIR. Disk is bad!

Diskrepair encountered an I/O error when it tried to make the necessary changes in the System
Information Record. The user should try again to execute diskrepair. If the error persists, the
user cannot salvage any of the data on the disk.

/etc/blockcheck is invalid.
The version of the blockcheck command is not the correct one.

/etc/fdncheck is invalid.

The version of the fdncheck command is not the correct one.

Fdncheck terminated abnormally.
Fdncheck received a program interrupt from the operating system. The user cannot determine the
source of such an error; however, it is not indicative of a problem with either diskrepair or the
device. Diskrepair should be rerun, for the problem may not recur.

Intentional system stop. Reboot system.
If the System Information Record of the root device must be updated, diskrepair kills all tasks
running on the system and locks up the system so that no new tasks can begin. It then modifies
the SIR. This procedure is necessary to prevent conflicts between the written data and similar
data kept in memory. After updating the SIR, diskrepair stops the system and prints this error
message. The user must reboot the system before proceeding.

No device specified.

The user did not specify a device on the command line.

No such device.

The user specified a nonexistent device on the command line.

Not a block device.
Diskrepair can only operate on block devices.

Output directed to device under test.

When testing the structure of a disk, it is impractical to try to redirect the output (the results of the
test) to a file on the disk being tested. The user should reexecute diskrepair without redirecting
the output or redirecting it to a different, mounted device.

Permission denied.

A user who executes diskrepair without the "n" option must have both read and write permission
on the specified device. A user who executes diskrepair with the "n" option needs only read
permission.

3-18

SYSTEM UTILITIES
diskrepair

Problems encountered. Diskrepair should be rerun.

Diskrepair may encounter more problems than it can fix during one run. For example, it can only
handle a certain number of duplicate or out-of-range blocks. If diskrepair cannot fix all the errors
it encounters, or if it encounters an I/O error but continues operation, it prints this error message
when it finishes.

Invalid option: <char>

The option specified by <char> is not a valid option to the diskrepair command.

Unmount error: <error num>

Diskrepair encountered some problem other than a busy device when it tried to unmount the
device. The accompanying error number is the number of the 4404 error that caused the failure.
The user should consult the operating system manual for an explanation of the error.

SEE ALSO
blockcheck
fdncheck

OPERATING SYSTEM REFERENCE 3-19

SYSTEM UTILITIES
fdncheck

fdncheck
Check the integrity of the structure of the file descriptor nodes (fdns) on the specified disk.

SYNTAX
/etc/fdncheck <dev name>

DESCRIPTION
The fdncheck command checks the integrity of the structure of the file descriptor nodes (fdns) on
the specified disk. An fdn contains all the infonnation that the operating system needs to know
about a file.

This information includes, but is not limited to, the type of file, the owner of the file, the size of
the file, and the addresses of all the blocks that are a part of the file. The fdncheck command
locates problems such as unreferenced files, directory entries with invalid associated files, and so
forth.

This command is primarily intended for use by the diskrepair utility, which calls it. It may also
be used on its own. However, fdncheck can only check the structure of the disk; it cannot repair
it. If the output from the command suggests that the structure of the fdns is damaged, the user
should execute diskrepair on the disk.

The fdncheck command should be executed only when no other tasks are active on the system.
Otherwise, the results are unpredictable.

ARGUMENTS
<dev name> The name of the device to check. It must be a block device.

EXAMPLES

/etc/fdncheck /dev/floppy

Checks the structure of the fdns on the disk in the floppy drive.

SEE ALSO

blockcheck
diskrepair

3-20

SYSTEM UTIUTIES
makdev

makdev
Create a special type of file, representing a device.

SYNTAX
/etc/makdev <file name> <dey_type> <maj_dev_num> <min dey num>

DESCRIPTION
The makdev command creates a special type of file which represents a device. This type of file
allows the user to access the device drivers for the corresponding physical device. Only the
system user may invoke this command.
The major device numbers are listed in Table 3-2.

ARGUMENTS
<file name>

Table 3-2
Major Device Numbers

Number Device
0 Block:
0 ConsolelttyOO
1 Memory
1 PttyOO-ptty(nn)
2 Null
3 Floppy char
4 Disk char
5 Sound
6 Printer
7 Communication port
8 Tape char

The name of the file to create. For a block device, the last component of
the file name must consist of a string of letters. For a character device, the
last component of the file name must consist of the same string of letters,
followed by the letter" c" .

A letter designating whether the device is a block device, (b); a character
device, (c); or a ptty device, (p).

A number which tells the operating system which set of device drivers to
use for the specified device.

A number which tells the operating system which physical device to
associate with <file name>.

OPERATING SYSTEM REFERENCE 3-21

SYSTEM UTILITIES
makdev

NOTES
• Every disk device requires both a block device and a corresponding character device in

order to function properly.

EXAMPLES
/etc/makdev /dev/floppy bOO

Creates a special file named /devljloppy, which represents a block device. Currently, all block
devices have the same major device number, O. The first four (beginning with 0) minor device
numbers for this major device number designate floppy disk drives 0 through 3. Thus, this
command tells the operating system to use the device driver for block devices and to associate the
file with the floppy drive.

/etc/makdev /dev/floppyc c 3 0
Creates a special file named /devljloppyc, which represents the character device associated with
the block device /dev/floppy. The major device number for a character device associated with a
floppy disk drive is 3. The first four (beginning with 0) minor device numbers for this major
device number designate floppy disk drives 0 through 3. Thus, this command tells the operating
system to use the device driver for a character device associated with a floppy disk drive and to
associate the file with the floppy drive.

ERROR MESSAGES

<char> is not a valid type of device.
The argument <dev _type> must be either "b", for a block device, or "c" , for a character device.

Error creating <file_name>: <reason>
The operating system returned an error when makdev tried to create the special file <file_name>.
This message is followed by an interpretation of the error returned by the operating system.

Invalid major device number: <num>
The number specified as the major device number is invalid.

Invalid minor device number: <num>

The number specified as the minor device number is invalid.

Syntax: /etc/makdev <file name> <dev type>
<maj_dev_num> <min_dev_num> -

The makdev command expects exactly four arguments. The command line does not conform to
the syntax.

You must be system manager to run "/etc/makdev".
Only the system user may execute the makdev command.

3-22

SYSTEM UTILITIES
mount

mount
Insert a block device at a node of the directory tree structure.

SYNTAX
jete/mount [<dev_name> <dir name> [r]]

DESCRIPTION
The mount command temporarily inserts a block device at a node of the directory tree structure.
As long as the device is mounted, any references to <dir _name> actually access the root directory
of the device mounted there. Any files in the directory at which the device is mounted are
inaccessible while the device is mounted.

The mount command with no arguments prints the staus of any currently mounted devices.

ARGUMENTS
<dev name>

<dir name>

OPTIONS

The name of the device to mount. It must be a block device.

The name of the directory on which to mount the specified device.

r Mount the device for reading only. This option must not be preceded by a
plus sign. It is useful when trying to salvage data from a damaged disk
because it prevents inadvertent writing to the disk, which could make
matters worse.

EXAMPLES

jete/mount /dev/floppy /floppy

Mounts the disk in the floppy drive on the directory /floppy. References to Ifloppy now access the
root directory of that disk.

jete/mount /dev/diskl /diskl r

Mounts an accessory hard disk drive, diskl, as Idiskl. Because the "r" option appears on the
command line, no user may write to the disk.

NOTE

When a user's working directory is the root directory of a mounted
device, the command chd .. does not change the working directory.

OPERATING SYSTEM REFERENCE 3-23

SYSTEM UTIUTIES
mount

ERROR MESSAGES
<dev name> is not a block device.

The device specified either does not exist or is not a block device. Only block devices may be
mounted.

Error mounting <dev_name> on <dir_name>: <reason>
The operating system returned an error when mount tried to insert the specified device in the
directory tree. This message is followed by an interpretation of the error returned by the
operating system.

Only read option allowed for mode.
The only acceptable option is the "r" option, which must not be preceded by a plus sign.

Syntax: /etc/mount <dev_name> <dir_name> [r]
The mount command expects exactly two arguments and, optionally, the single option "r". This
command indicates that the command line does not conform to the syntax.

SEE ALSO
unmount

3-24

SYSTEM UTILITIES
owner

owner
Change the owner of a file.

SYNTAX
owner <user name> <file name list>

DESCRIPTION
The owner command changes the owner of the specified file. Only the system manager may
execute this command.

ARGUMENTS
The user name or user ID of the new owner of the file. <user name>

<file name list> - - A list of the names of the files for which to change the owner. The file
characteristics are preserved, including permissions and the date/time
information.

EXAMPLES
owner system /john/*

Changes the owner of all the files in the directory /john to system.

owner 110 /john/*
Changes the owner of all the files in the directory /john to the user whose ID is 110.

ERROR MESSAGES
Error changing owner for <file_name>: <reason>

The operating system returned an error when owner tried change the owner of the specified file.
This message is followed by an interpretation of the error returned by the operating system.

<name> is not a valid user name.

The specified name is not in the password file and, therefore, is not a valid user name.

<num> is not a valid user identification number.
The specified number is not in the password file and, therefore, is not a valid user ID.

Syntax: owner <new_owner> <file_name_list>

The owner command expects at least two arguments. This message indicates that the argument
count is wrong.

You must be system manager to run owner.

Only the system manager may execute the owner command.

OPERATING SYSTEM REFERENCE 3-25

SYSTEM UTILITIES
unmount

unmount
Unmount a previously mounted device from the file system.

SYNTAX
/etc/unmount <dev name>

DESCRIPTION
The unmount command unmounts the specified device from the file system. Once the device is
unmounted, the files in the directory on which it was mounted become accessible.

ARGUMENTS
<dev name> The name of the device to unmount.

EXAMPLES
/etc/unmount /dev/floppy

Unmounts the floppy drive from the system, making the directory that it was mounted to
accesible.

ERROR MESSAGES

Error unmounting <dev name>: <reason>

The operating system returned an error when unmount tried to unmount the specified device.
This message is followed by an interpretation of the error returned by the operating system.

Syntax: /etc/unmount <dev_name>

The unmount command expects exactly one argument. This message indicates that the argument
count is wrong.

SEE ALSO

mount

3-26

Section 4

TEXT EDITOR
INTRODUCTION
This section describes edit, the standard 4400 text editor, including how to call the editor, the
interface between the editor and the 4400 operating system, a description of each of the editor
commands (with examples), and an annotated list of the messages that the editor may issue.

edit is both content-oriented and line-oriented. Lines in the file being edited may be referenced
either by specifying a line number or by specifying some part of the content of the line. edit is
not a screen-oriented editor.

SYNTAX

CALLING THE EDITOR
Example:

edit

When the editor is called with no arguments, it issues a message that a new file is being created,
and then prompts for the information that is to be put into the file. When the editing session is
terminated (by the stop command, for example), the editor will prompt for the name of the file to
which to write the information. The user responds to this prompt by typing in the file name,
including a path name if necessary.

If an end-of-file signal is typed in response to the prompt for a file name, all information is
discarded and the editing session is terminated. (See the discussion Operating System Inteiface
later in this section for more information on the end-of-file signal.)

Calling the Editor with a File Name
Example:

edit test

If only one file name is given as an argument, the editor assumes that this is the file or the name
of the file that is being edited.

If the file does not exist, a new file having the specified name is created. A message stating that
fact is issued, and the editor then prompts for the information to be stored in the file. When the
editing session is terminated, the information is written to the file.

OPERATING SYSTEM REFERENCE 4-1

TEXT EDITOR

If the file already exists, the infonnation in it is read into an edit buffer and a prompt for an editor
command is issued. When the editing session is tenninated, the file will contain the revised
infonnation. The infonnation as it was before the editor was called is preserved in a backup file
(unless the b option was specified, as described later). The name of the backup file is nonnally
the name of the original file with the characters .bak appended to it If the original name is too
long to accommodate the additional four characters, the name is truncated and the .bak appended
to the foreshortened name.

Calling the Editor with Two File Names
Example:

edit test newtest

When the editor is called with two file names, the first file name is assumed to be the name of the
file containing the infonnation to be edited, and the second name is that of the file that is to
receive the revised infonnation. Both file names may contain path names if necessary to
adequately describe their locations. If a path name is specified for the first file name, it is not
propagated to the second file name.

In the example, the file test is assumed to contain the infonnation which is to be edited, and the
file newtest is going to contain the edited infonnation. If the first file does not exist, the editor
writes a message indicating that the edit file does not exist, and then terminates the edit session.
If the second file already exists, a prompt is issued asking for permission to delete the existing
file. (This prompt may be avoided with the y option, described below') If an end-of-file signal is
typed in response to this prompt, it is assumed that the file is not to be deleted, and the editing
session is immediately tenninated with no changes having been made.

Options
Options are specified to the editor by citing an argument whose first character is a plus sign (+).
The plus sign is immediately followed by one or more lowercase letters indicating the option or
options selected. The options may be before, after, or intennixed with file name arguments.

4-2

b Do not create a backup file, by appending .bak to the source file.

n Do not initially read the file being edited. This option is meaningful only if an
existing file is being edited. Nonnally, the editor reads the file into memory so that
the information may be ffia!lipulated with editor directives. By specifying n as an
option, the infonnation is not initially read into memory. The user may then use
editor directives to enter new infonnation, either from the tenninal or by reading
other files, which will appear in front of the infonnation in the file being edited. The
new command must be used to start the reading of the edit file.

This option is most useful if a large amount of infonnation is to be entered in front of
the data being read from the file being edited. To insert only a small amount of
infonnation at the front of a file, the insert command may be used.

TEXl' EDITOR

y Delete any existing copy of the new file or the backup file. y causes the editor to
delete any existing copy of the backup file (if only one file name is specified) or the
new file (if two file names are specified), without asking permission from the user.

If the editor cannot recognize an argument as a valid option, it issues an error message and
continues to look for valid arguments.

Examples of calls including options:

edit test +b
edit test newtest +y
edit +nb test

OPERATING SYSTEM INTERFACE
The text editor follows the operating system conventions with regard to special characters and file
names. For a discussion of file names, see Section 1 of this manual. The special characters and
their effects on the editor are treated below.

Normally, the editor allows any character to be in a file, including control characters. There are
some characters, however, which have special meaning to the operating system and thus cannot
be typed from the keyboard. The special characters with which the editor is concerned are:

• backspace character

• escape character

• line delete character

• horizontal tab character (control-i)

• control-d: keyboard signal for end-of-file

• control-c: keyboard interrupt

• control-\: quit signal

Backspace Character
The backspace character (Back Space on the keyboard) is used, when entering commands and
data, to erase the last character typed.

Escape Character
The ASCn escape character (Esc on the 4400 keyboard) is used to temporarily stop and resume
the printing of information at the terminal. A more detailed description of the function of the
escape character is described in the documentation of the 4400 Operating System. Here, it
suffices to say that it is not possible to enter the escape character into a file using the editor.

OPERATING SYSTEM REFERENCE 4-3

TEXT EDITOR

Line Delete Character
The line delete character is used when entering commands and data to delete the line currently
being typed.

Horizontal Tab Character
This character (Tab from the 4400 keyboard) refers to the ASCII Horizontal Tab character (HT),
a hexadecimal 09. This is not the same as the tab character that can be defined within the editor.
The editor itself is not concerned with the HT character, but the operating system may perform
special handling when this character is typed or displayed. The editor treats the HT character as a
single character, regardless of how the 4400 displays it.

Control-D: Keyboard Signal for End-of-File
The editor treats a control-d as an end-of-file. The action taken by the editor depends on what the
editor was expecting as input. A control-d typed in the middle of a command has the same effect
as a line delete character. If the control-d is typed as the first character in response to a request
for a command (that is, in response to the # prompt), it is treated as a stop command. A control-d
typed while inserting lines has the same effect as typing the line delete character followed by the
line number character and a carriage return. That is, it cancels the current input line and the
editor requests an editor command.

The effect of typing control-d in response to specific prompts depends upon the prompt that was
issued. Each such case is treated in the Editor Commands discussions.

Control-C: Keyboard Interrupt
The editor traps the control-c keyboard interrupt and uses it as a signal to stop executing an
append, cchange, change, find, or print command. It has no effect on other commands. If the
editor is executing multiple commands typed on a single line, typing a control-c will cause the
editor to stop processing those commands and request a command from the keyboard.

Control-\: Quit Signal
The quit signal causes the editor to terminate immediately, without making any attempt to save
the edited information. If an existing file was being edited when the quit signal was typed, the
original file is left intact without any of the changes that had been made during the edit session.

4-4

TEXIEDITOR

THE EDITOR'S USE OF DISK FILES
The standard 4400 text editor is a disk-oriented editor: the infonnation being edited is read from
and written to disk files. Other than the user's tenninal, the only way to provide infonnation to
the editor is through disk files. When the editor is called to edit an existing file, the infonnation
in that file is read into a large buffer in memory called the edit buffer. It is in this buffer that all
of the changes to the infonnation take place. When the user is satisfied with the changes made,
the updated infonnation is written to a disk file in response to specific commands. If a file is
larger than will fit in the edit buffer, the file must be processed in segments.

With few exceptions, the editing commands operate only on data that is in the edit buffer.
Commands are provided which permit the user to flush the edit buffer of updated infonnation and
read in the next segment of data for editing. How the editor manipulates a disk file depends upon
whether it is creating a new file or editing an existing file. In some cases, a temporary file is
created to hold the updated infonnation. If used, this temporary file is named edit followed by a
period, 5 digits, and a single letter; for example, edit.00324a. Unless the editor is tenninated by a
quit signal or a fatal system error, the temporary file is destroyed at the end of the edit session.

Creating a New File
When the editor is called with a single file name and that file does not already exist, the editor
will create the file at the start of the edit session and write directly into it as the edit session
progresses.

When the editor is called with no file names specified, a temporary file in the user's current
directory is created and the infonnation is written to it as the edit session progresses.

At the end of the edit session, this temporary file is given the name specified in response to the
File name? prompt.

Editing an Existing File
When the editor is called with a single file name, and that file already exists, a temporary file is
created and the infonnation is written to it as the edit session progresses. The temporary file is
created in the same directory in which the file being edited resides. At the end of the edit session,
the original file is renamed to the backup file name, and the temporary file is given the name of
the original file. If no backup file is requested (by specifying a b option), the original file is
destroyed and the temporary file is given the name of the original file.

When the editor is called with two file names specified, the second file is created and the updated
infonnation is written directly into it The original file is not changed.

OPERATING SYSTEM REFERENCE 4-5

TEXT EDITOR

Command Input From a File
It is possible to use I/O redirection to have the editor read its commands from a file instead of
from the keyboard. The editor will process the commands as though they were entered from the
terminal's keyboard. If the end of the command file is reached before a stop or abort command is
read, the action is the same as though a control-d were typed from the keyboard. (See the
discussion of control-d earlier in this section.)

Fatal Errors
The text editor attempts to make an intelligent decision when confronted with an error response
to an operating system call. However, if an error is received which is unexpected and indicates
that the editor cannot continue to function, it will issue a message and terminate immediately.
The various messages, both fatal and nonfatal, are listed under the heading Editor Messages later
in this section.

EDITOR COMMANDS

Using Strings
Several editor commands use character strings as arguments. These arguments either match
strings in the text, or replace strings in the text. A string argument begins after a delimiter
character and continues as a sequence of any characters until the delimiter is again encountered.
The delimiters are not considered part of the string to be used in the matching or replacing
operations.

Although the delimiters in the following descriptions are frequently represented as slashes, t,
nearly any non-blank, non-alphanumeric character may be used as the delimiter such as: * / () $,
. [] : ' etc. Note that the following characters may not be used to enclose strings unless they are
preceded by either a plus (+) or minus (-) sign: "(denotes first line of file), ! (denotes last line of
file), - (denotes target is above current line), and the character denoted by lino (normally a pound
sign), which is used to indicate line numbers. The equals sign = may not be used as a string
delimiter.

The delimiter character is redefined in each new request by its appearance before a string. If two
strings exist in one command (as in the change command), the same delimiter character must be
used for each string.

4-6

TEJCrEDITOR

All editor commands use the <line> infonnation preceding the command to position the pointer
prior to any command action. The <line> parameter may of course be null, meaning leave the
pointer at its current position. All of the following are valid <line> designators:

Any number

+n

-n

!<string>!

-!<string>!

null

The specific line number

The nth subsequent line

The nth previous line

The next line in the file containing the indicated string of characters

A previous line containing the indicated string

The first line of the file

The last line of the file

The current line

Line numbers less than 1.00 must be specified with a leading zero. For example, even though the
editor may display a line number as .10, it should be specified as 0.10 when used in commands.
The maximum line number is 65535.99. Inserting after this maximum line number will cause the
line numbers to wrap around back to zero.

Many editor commands require <target> infonnation. This tells the editor to operate on the
current line and all other lines in the file up to the line referenced by the <target>. In cases where
a <target> is required, leaving it null will make the <target> default one, and only the current line
will be affected. All of the following are valid <target> designators:

an integer n

#n

!<string>!

-!<string>!

+or- n

(null)

n lines should be affected by the edit operation

The line number of the last line to be affected. The # is actually the lino
character and may be changed by the user with the set command.

The next line in the file containing the specified character string.

The previous line containing the indicated string

All lines up to the top of the file

All lines to the bottom or last line of the file

Indicates that n lines should be affected and in which direction from the
current line

Defaults to 1 and only the current line is affected

As we have seen, <target> is used to specify a range of lines to which the command will apply.
The command will be applied to each line, starting with the line specified by <line> and
continuing until the target is reached.

OPERATING SYSTEM REFERENCE 4-7

TEXT EDITOR

If a string <target> is specified, the command will apply to successive lines of text until a line
containing the string is reached. Processing proceeds downward in the edit buffer unless the
target is preceded by a - (minus sign), indicating that processing is to proceed upward (toward the
first line) in the edit buffer. Targets may also be preceded by a plus sign (indicating downward
movement). If a line number target is specified, processing begins at <line> and proceeds toward
the target line number. Some examples of <target>s are:

2
+10
-3
/string/
+/string target!
-!backward displacement to a string!
+*any delimiter will work for string*
++even plus signs can work+
#23.00

Specifying a Column Number
Any /<string>/ descriptor may be postfixed with a column number immediately after the second
delimiter to indicate that the preceding string must begin in the column specified. If the column
specified is not in the range of the zone in effect, the request will be ignored. (See the zone
command.) Some examples are:

/ident!ll
/program/77
*label*2
$comment$30

Using the Don't-Care Character
A Don 't~Care Character may be set to allow indiscriminate matches of parts of a string. When
this character is placed in a string, any character in the file will automatically match. The Don't­
Care Character will have its special meaning only in a string being used to search the file. In
other words, the Don't-Care Character will not act as such in a replacement string such as the
second string of a change command. The Don't-Care Character may be effectively disabled by
setting it to a null. Assuming we have previously set the Don't-Care Character to a ?, here are
some exampies:

4-8

/A???/

@031??178@

1???/9

Matches any 4-letter string beginning with A

Matches all days in the 3rd month of 1978

Matches any 3-letter string starting in column 9

TErI'EDITOR

The Command Repeat Character
The command repeat character, control-r, repeats the last command in the input buffer. Some
examples of commands which may be useful to repeat are:

print 15 To print a screen 15 lines at a time

next Allows you to single step through the file with one key

"'co!! To quickly fill the workspace

find/some string! If the first string found is not the one desired

USing the EOl Character
The editor supports an eol or End Of Line character to allow multiple commands in a single line.
There are some commands that cannot be followed by another command on the same line. This
fact is documented in the descriptions of those commands. The eol character may be changed by
using the editor's set command. An example of eol use (with eol set to $) is:

"'d2plOt

This sequence will delete the first 2 lines of the flle, then print the next 10 lines, and finally return
the pointer to the top of the file.

Using Tabs
You may specify a tab character and up to 20 tab stops. The tab character may then be inserted
into a line, where it will be replaced by the appropriate number of fill characters when the end of
the line is received. The fill character defaults to a space, but may be changed to another
character with the editor's set command. If tab stops or the tab character have not been
previously set, but some character has been used throughout the file as a tab, it can still be
expanded by setting it to be the tab character, setting up your tab stops and then using the expand
command on the file.

Note that if the tab character has been set, subsequent uses of the insert or replace commands will
cause automatic tab expansion. However if a tab character is added to the file by the use of a
change, append, or overlay command, that character will remain intact in the file until the expand
command is invoked on the line containing that tab character.

OPERATING SYSTEM REFERENCE 4-9

TEXT EDITOR

After tabs are expanded, the tab character no longer exists in the data. All occurrences will have
been replaced by the appropriate number of fill characters. Setting the tab character to be the
same as the fill character effectively disables the tab feature. Note the the tab character described
above is distinct from the ASCII Horizontal Tab character (HT or control-i). The effect of the
HT character is described in the Operating System Interface discussion earlier in this section. It
is possible to set the editor tab character to the HT character. If this is done, the operating system
may take special action when the HT character is typed, but the character will be replaced by fill
characters when it is put into the edit buffer.

Length of Text Lines
Lines entered from the keyboard are limited to 255 characters. The lines in the text file may be
of any length. Lines longer than 255 characters may be created with the merge and append
commands ..

Commands
There are five groups of editor commands: environment commands, system commands, current
line movers, edit commands, and disk commands. A complete description of all commands in
each group is given below. In the following descriptions, quantities enclosed in square brackets
([...]) are optional and may be omitted. A backslash (\) is used to separate options. Many
commands have abbreviations. Both the full name of the command and its abbreviation are
given. A command and its abbreviation may be used interchangeably. All commands below are
in lower case; however, in use, a command may be in either upper case or lower case.

4-10

TEXT EDITOR

ENVIRONMENT COMMANDS

dk1

Syntax

dkI <command string>

Description

The Environment Command dkl is used to define one of two command constants, which can be
executed at any time by the kl command. The <command string> is a single command or several
commands separated by the eol character (see set command). All of the command line, including
the carriage return is assumed to be the argument to the dkl command. The dkl command is
most useful for remembering and re-executing a frequently used sequence of commands.

Example

dkl f -1.nlI1$iI.sp

dk2

Syntax

Define a command sequence off -I.nlll followed by il.sp. This
assumes that eol is $. This sequence may be executed by typing
kl.

dk2 <command string>

Description

The Environment Command dk2 is used to define one of two command constants, which can be
executed at any time by the k2 command. The <command string> is a single command or several
commands separated by the eol character (see set command). All of the command line, including
the carriage return, is assumed to be the argument to the dk2 command. The dk2 command is
most useful for remembering and re-executing a frequently used sequence of commands.

Example

dk2 c /sample// 1 2

OPERATING SYSTEM REFERENCE

Define the command constant: c Isamplel/l 2. This command
may be executed by typing k2.

4-11

TEXT EDITOR

esave

Syntax

esave [<path_name>]

Description

The esave command saves the current editor environment on an editor configuration disk file
named .editconfigure in the user's directory. The editor environment consists of the header
column count; the numbers and verify flags; current tab stops; the tab, dec, fill, eol, and lino
characters; the commands saved as command constants kl and k2; and the search zones in effect.
When the editor is called, the environment is automatically set from the configuration file in the
user's directory, if one exists. The editor environment may also be reset from the configuration
file at any time during the edit session by the eset command, described below.

The environment infonnation may be saved in a directory other than the user's current directory
by specifying a path name as an argument to the esave command. This path must include only
directory names and must be tenninated by the pathname separator I.

Example

4-12

esave

esave Iddel

Save the current editor environment on the file

Save the current editor environment infile Iddel.editconfigure.

TEJCl' EDITOR

eset

Syntax

eset [<path_name>]

Description

The eset command is used to reset the editor environment from an editor configuration file
created by the esave command (see above). The configuration file is named .editconfigure and is
normally expected to be found in the user's current directory. A path name may be specified as
an argument to the eset command to force the searching of a different directory. This path must
include only directory names and must be terminated by the pathname separator I.

Example

eset

esetlddel

header

Syntax

Reset the editor environment from the file

Reset the editor environmentfromfile Iddel.editconfigure.

header [<count>]
h [<count>]

Description

A header line of columns <count> will be displayed. The heading consists of a line showing the
column numbers by tens, followed by a line of the form 123456789012 ... to indicate the
column number. Columns for which tab stops are set will contain a hyphen instead of the normal
digit. If a column count is given, it becomes the default so that if just h is subsequently typed,
that number of columns will be printed.

Example

header 72

h30

Display column number headings for 72 columns

Display column numbers for 30 columns

OPERATING SYSTEM REFERENCE 4-13

TEXT EDITOR

k1

Syntax

kl

Description

Execute the command constant that was defined by dkl. If no command constant was defined,
the cun;ent line is printed. This command may not be followed by another command on the same
line.

Example

kl

k2

Syntax

k2

Description

Execute the command constant.

Execute the command constant that was defined by dk2. If no command constant was defined,
the current line is printed. This command may not be followed by another command on the same
line.

Example

k2

4-14

Execute the coinmand constant.

TEXT EDITOR

Ik1

Syntax

lkl

Description

Display the command constant that was defined by dkl. If no command constant was defined, a
blank line is printed.

Example

lkl

Ik2

Syntax

lk2

Description

Display the command constant.

Display the command constant that was defined by dk2. If no command constant was defined, a
blank line is printed.

Example

Ik2 Display the command constant.

OPERATING SYSTEM REFERENCE 4-15

TEXT EDITOR

numbers

Syntax

numbers [off/on]
nu [off/on]

Description

The lin~ number flag is turned off or on. If the flag is off, then line numbers will never be
printed. If neither off nor on is specified, then the flag will be toggled from its current state.

Example

numbers off

nuon

nu

renumber

Syntax

renumber
ren

Description

Tum line number printing off

Tum it back on

Toggle from on to off or from off to on

The renumber command will renumber all of the lines in the current edit buffer. Lines in the
renumbered buffer will start with the line number of the first line in the buffer and will have an
increment of one. The current line does not change, although its number will probably have been
changed.

Example

renumber

ren

4-16

Renumber the lines in the current edit buffer

Renumber the lines in the current edit buffer

TExrEDITOR

set

Syntax
set <name> '<char>'

Description
The Environment Command set is used to define certain special characters or symbols. The
<name>s which may be "set" are:

tab

fill

dec

eol

lino

The tab character

The tab fill character

The "don't care" character for string searches

The end of line character which may be used to separate several
commands on a single line

The line number flag character which is used to indicate that a target is a
specific line number

The default values are: dec, tab, and eol are null, fill is the space character, and lino is #

The default values may be initialized from a configuration file in the user's directory. See the
esave command.

Example

settab='/,

settab="

set fill=' ,

seteol='$'

set lino='@'

Set the tab character to a slash

Disable tabbing by setting the tab character to a null

Set tab fill character to a blank

Set the EOL character to $

Set the line number flag to @

OPERATING SYSTEM REFERENCE 4-17

TEXT EDITOR

tab

Syntax

tab [<columns>]

Description

Used to set the tab stops. All previous tab stops are cleared. If no columns are specified, then the
only action is to clear all tab settings. Any tab characters occurring beyond the last tab stop are
left in the text The maximum number of tab stops allowed is 20. Tab stops MUST be entered in
ascending order.

Example

tab 11,18,30

tab

verify

Syntax

Set tab stops at columns II, 18, and 30

Clear all tab stops

verify [on/off]
v [on/off]

Description

The verify flag is turned on or off. The verify flag is used by the commands change andfind (and
several others) to display their results. If neither on nor off is specified, then the flag will be
toggled from its current state.

Example

verify off

von

4-18

Tum verification off

Tum it back on

zone

Syntax

zone [cl,c2]
z [cl,c2]

Description

TEXT EDITOR

The command zone is used to restrict all sub-string searches (find, change, <target>s, etc.) to
columns cJ through c2 inclusively. Any substrings beginning outside those columns will not be
detected. If cJ and c2 are not specified, then the zones will be reset to their default values
(columns 1 and 255). A string which starts within the specified search zone and extends out of it
will still match a target.

Example

zone 11,29

zone

Restrict searches to columns 11 through 29

Search columns 1 through 255

OPERATING SYSTEM REFERENCE 4-19

TEXT EDITOR

SYSTEM COMMANDS

abort

Syntax

abort

Description

This command tenninates the edit session without saving any of the changes made during that
session. The original file, if one exists, is left intact. When typed, this command will prompt
"Are you sure?". If a y is then typed, the edit session will be tenninated. Typing an n or End-of­
file signal will cause the editor to look for another command. Typing any other character will
cause the prompt to be issued again.

Example

abort

edit

Syntax

Abort the editing session.

edit <editor arguments>
e <editor arguments>

Description

The edit command causes the current editing session to be tenninated (as though a stop or log
command had been entered), and another editing session started. Tne <editor arguments> are any
valid file names and editor options as described earlier in this section under the heading Calling
the Editor. This command may not be followed by another command on the same command line.
All changes to the editing environment made by Environment Commands remain in effect.

Example

edit test +b

4-20

Terminate the current editing session and start editing file test with
editor option b.

TEXIEDITOR

log

Syntax

log

Description

This command ends the editing session. The updated infonnation is written to the new file, and,
if necessary, any unprocessed data from any existing file is copied to the new file. A backup file
is created if circumstances warrant it (see the Operating System Interface discussion earlier in
this section for more information on the editor's handling of disk files at the end of an editing
session.)

Example

log

stop

Syntax

stop
s

Description

Same as log.

Example

stop

s

OPERATING SYSTEM REFERENCE 4-21

TEXT EDITOR

u

Syntax

U <operating_system_command>

Description

The u command pennits the execution of an operating system command. The specified
command is passed to the shell program for execution. The editor waits for the operating system
command to finish before prompting for another editor command. This command may not be
followed by another editor command on the same line. See the "x" system command.

Example

u list test List the file test

u copy test testl Copy the file test to test}

wait

Syntax

wait

Description

The wait command is used to pause for the completion of a background task generated by the x
command (described below). This command cannot be used to pause for completion of a
background task that was not generated by the editor. The editor will not request a command
until the background task is completed or a keyboard interrupt (Control-C) is typed. When the
background task terminates, a message is displayed specifying the task number and whether it
completed nonnally or abnonnally. In the event of abnonnal tennination, the response code or
interrupt code that caused the tennination is given.

Example

wait Wait for the background task to complete

4-22

TEXT EDITOR

x

Syntax
x <operating_system_command>

Description

The x command is used to start a background task running. The <operating_system _command>
which was specified as the argument is passed to the shell program for execution. The task
generated must run to completion before the editor will allow the generation of another such
background task. The wait command must be used to receive the termination status of a task
before the x command may be used again. This command may not be followed by another
command on the same line. See the "u" system command.

Example

x copy test test 1

OPERATING SYSTEM REFERENCE

Copy test to test1 as a background task. A wait command must
be used to determine the termination status of the task before
another background task can be generated.

4-23

TEXTBDITOR

CURRENT LINE MOVERS

bottom

Syntax

bottomb

Description

Moves to the last line in the file and makes it the current line.

Example

bottom

b

find

Syntax

Make the last line of the file the current line

Make the last line of the file the current line

find <target> [<occurrence>]
f <target> [<occurrence>]

Description

Moves the current line pointer to the line specified by <target> and makes it the current line. If
the verify flag is on (see verify), the line will be printed. If <occurrence> is specified (an
unsigned integer or an asterisk), the command will be repeated <occurrence> times. If
<occurrence> is an integer, it must not start in the first column following the second delimiter of
a string <target>, as it would then appear to be a column specifier for that string. If no column is
to be specified, insert a space after the second delimiter and before the <occurrence>, as in the
second example given below. An asterisk means all occurrences of the <target> will be found
until the bottom or top of the edit buffer is reached. If the target is not found, the current line
pointer will not be moved.

4-24

Example
find Istring!

f/three lines! 3

f/all 'til bottoml*

f-/program/7 *

next

Syntax

TEXI EDITOR

Find the next line containing the string string

Find the next three lines containing the three lines

Find all following occurrences of the indicated string

Find all previous lines which have the word program starting in
column seven

next [<target> [<occurrence>]]
n [<target> [<occurrence>]]

Description

The line specified by the <target> is made the current line. If the verify flag is on (see verify), the
line will be printed. If <occurrence> is specified, it must be an unsigned integer. It indicates
which occurrence of a line containing the target is to be made the current line. If the <target> is
not reached, the current line pointer will be positioned at the bottom of the edit buffer (or top of
the edit buffer for a negative <target». If no target is specified, the next line will be made the
current line.

Example

next 5

n

n-l0

n/string target/

n/3rd occurrence/3

OPERATING SYSTEM REFERENCE

Make the fifth following line the current line

Make the next line the current line

Make the 10th previous line current

Make the next line containing string target to be the current line

Make the third line containing the indicated string the current
line

4-25

TEXT EDITOR

position

Syntax

position <target>
pas <target>

Description

Searches forward through the file for an occurrence of <target> and makes the line in which it
occurs the current line. If the <target> is not found in the current edit buffer, the edit buffer is
flushed and the next edit buffer is read from the file being edited. This process continues until
the <target> is located or the end of the file is detected. If the <target> cannot be located, the
current position is the first line in the last edit buffer.

The <target> may not be a backwards target (preceded by a minus sign) and may not be an
integer indicating relative displacement. Only a string or a line number (preceded by the lino
character) are valid targets. Search zones are honored during the search for the target. A column
number is allowed after the target, but an occurrence specification is not permitted.

Example

position /string/5

pos #1000

top

Syntax

top
t

Description

Position to the line containing the string string in column 5.

Position to line number 1000

The first line of the file becomes the current line.

Example

top

4-26

Make the first line of the file the current line

EDITING COMMANDS

append

Syntax

append /<string>/ [<target>]
a /<string>/ [<target>]

Description

TEXI' EDITOR

Appends the specified <string> after the last character of the current line (and to successive lines
until the <target> is reached).

If the <string> is postfixed with a column number, then the <string> is added beginning at the
specified column (rather than at the end of the line). Any characters previously in the line
following the specified column are overwritten.

Example

append 1.1 Append a period to the end of the current line

a *HELLO* Append the word HELLO to the end of the current line and to
the end of the next line.

a!sequencen3 *END*7 Append the word sequence starting in column 73 of the current
line and successive lines until a line containing the characters
END beginning in column seven is found.

OPERATING SYSTEM REFERENCE 4-27

TEXT EDITOR

break

Syntax

break

Description

The break command allows the splitting of a line into two lines. The current line is printed, then
a line of input is accepted from the terminal (the break line). When the line is printed, all ASCII
lIT (Hard Tab characters) will be displayed as spaces so that the terminal cursor will not be
artificially advanced. The break line will be positioned directly beneath the line printed out.

In response to the Break--- prompt, type any characters to move the cursor until it is beneath the
character that is to be the first character of the second line. Then type a carriage return.

After the line is split, the second half of the broken line becomes the current line. If you type an
end-of-file signal in response to the Break--- prompt, the current line will not be changed. The
current line will also not be changed if the carriage return typed in the break line is beyond the
end of the current line.

Example

break
25.00 This is the current line.

Break--xxxxxxxxxxxx

The line will be broken at the
start of the word current.

Example 4-1. •

4-28

TEXI' EDITOR

change

Syntax
change /<stringl>/<string2>/ [<target> [<occurrence>]]
c /<stringl>/<string2>/ [<target> [<occurrence>]]

Description

Replaces <string!> with <string2>. If <string2> is omitted, <string!> is deleted. If no <target>
is specified, only the current line is affected. The slashes represent any non-blank delimiter
character.

<occurrence> specifies which occurrence of <string!> is to be replaced in each line. It is either
an unsigned integer, or an asterisk (*), signifying that all occurrences of the substring <string!>
are to be replaced by <string2>. By default, only the first occurrence will be changed. Note that
if <occurrence> is specified, and if changes are to occur to the current line only, then the target
should be 1.

Example
change Ithis/that!

clA/B/I*

c /firstllast!IO

c /new/old! /a target!

c,a .. -IO*

c*Hello*

OPERATING SYSTEM REFERENCE

Replace the first occurrence of this in the current line with that

Change all occurrences of A in the current line to B

Change the first occurrence of first last in the current line and
also in the nine following lines

Change the first occurrence of new to old in each line down
through the line containing the string a target

Remove all as in the current line and in the nine preceding lines

Delete the character string Hello from the current line

4-29

TEXT EDITOR

cchange

Syntax

cchange /<stringl>/<string2>/ [<target> [<occurrence>]]
cc /<stringl>/<string2>/ [<target> [<occurrence>]]

Description

The command cchange stands for Controlled Change. This command is like the normal change
command except that you can interactively specify whether each line containing <string!> should
actually be changed, or left as is. This allows you to step through the edit buffer and selectively
change certain strings. When a line containing <string!> is found, it is displayed at the terminal
and you receive a prompt, Change? Type a y to change the line. If you type an s or end-of-file
signal, the command will terminate. Other characters will cause a search for the next line
containing <string!>.

Example

cchange/ALPHAlOMEGAI!* Perform a Controlled Change on all occurrences of ALPHA
throughout the rest of the file

cc;a;z;-20 3 Perform a Controlled Change on the third occurrence of a in the
current and previous 19 lines

copy

Syntax

copy [<destination-target> [<range-target>]]
co [<destination-target> [<range-target>]]

Description

Copies the current line through <range-target> and places the copied text after the <destination­
target>. The default <destination-target> is 1, thereby placing a copy of the current line after the
next line. The default <range-target> is 1, thereby copying only one line. After the command is
executed, the current line pointer will be set to the new position of the last line copied. Some
lines may be renumbered after a copy with no renumbering message issued.

4-30

Example

co #18

copy #3 4

TEXI EDITOR

Put a copy of the current line after line 18

Copy four lines beginning with the current line and place them
after line 3

co Icheckl +/rangel After the next line which has the <string> check, place a copy
of each line starting with the current line through the line
containing range

delete

Syntax

delete [<target>]
d [<target>]

Description

Deletes the current line, and successive lines, until the <target> is reached. After the command is
executed, the current line will be the line following the last line deleted.

Example

delete 5

d

d <String>

Delete five lines (the current line and the next four lines)

Delete the current line

Delete lines from the current line through the next line that contains the
string <String>

OPERATING SYSTEM REFERENCE 4-31

TEXT EDITOR

expand

Syntax

expand [<target>]
exp [<target>]

Description

The current tab character is expanded within allUnes, beginning with the current line, continuing
down to and including the line specified by <target>. Since tabs are nonnally expanded as lines
are inserted into the file, this command is primarily of use when one has forgotten to define a tab
character or has inserted a tab character with an append, overlay, or change command.

Example
expand 100

exp

4-32

Expand 100 lines starting with the current line

Expand the current line

TEXT EDITOR

insert

Syntax

insert
i

Description

The editor will enter the input mode, prompt with line numbers (unless line numbers have been
disabled with the numbers command), and insen the lines below the current line. The editor will
remain in insert until a new line is begun with the lino character or the end-of-file signal in
column one. The editor treats any characters following the lino character as an editor command.
(If you type line delete character, the editor does not re-issue the prompt.

If possible, the editor will number the inserted lines with an increment small enough to insen at
least 10 lines between the current line and the next line. The editor will renumber lines following
the inserted text if the inserted text line numbers overlap numbers already in the file. (The
current line pointer is left at the last line inserted.)

You may insen lines at the top of the edit buffer by specifying a line number of zero.

This command may not be followed by another command on the same line.

Example

insen

Oi

Accept line input after the current line

Insen at the top of the edit buffer.

OPERATING SYSTEM REFERENCE 4-33

TEXT EDITOR

insert

Syntax

insert <text>
i <text>

Description

Inserts <text> as a separate line below the current line of the fIle. Uses a space as a separator
following the command name. The line inserted becomes the current line. The editor may
renumber text lines following the inserted text if the inserted line number overlaps line numbers
already in the file.

This command may not be followed by another command on the same line.

Example

i This below the current line of the file
insert everything after the first blank

Example 4-2 ••

4-34

TEXT EDITOR

merge

Syntax

merge

Description

Merges the current line and the line immediately following it into a single line. The merged line
becomes the current line.

Example

merge Merge the current line and the next line into a single line.

move

Syntax

move [<destination-target> [<range-target>]]
mo [<destination-target> [<range-target>]]

Description

Moves the current line through <range-target> so it follows the line specified by <destination­
target>. The defaults for <destination-target> and <range-target> are both 1, so move without
arguments interchanges the current line and the next line. After the command is executed, the
current line pointer will be set to the new position of the last line moved. Some lines may be
renumbered with no renumbering message issued.

Example

move 3

mo #1 Itarget string!

mo -/Program! 5

mo #10-5

OPERATING SYSTEM REFERENCE

Move the current line down three lines

Move the current line and all lines down thru the line
containing target string after line 1

Move five lines (including the current line) up within
the file so that they follow a line containing the
character string Program

Move the current line and the four previous lines below
line number 10

4-35

TEXTEDrrOR

overlay

Syntax

overlay [<delimiter>]
o [<delimiter>]

Description

This command prints the current line, then accepts a line of input (the overlay line). When the
line is printed, all ASCII lIT (Hard Tab) characters will be displayed as spaces so that the
tenninal cursor will not be inadvertently advanced. The overlay line will be positioned directly
beneath the line printed out Each character of the overlay that is different from the <delimiter>
character (which defaults to a blank) will replace the corresponding character in the current line.
The overlaid line will be printed if verify is on. If the end-of-file signal is typed in response to
the prompt for the overlay line, the current line will not be changed.

Example

overlay
25.00=THIP IS THE CORRENT LUNE.

Overlay SUI
25.00=THIS IS THE CURRENT LINE.

Example 4-3 ••

4-36

TElCl' EDITOR

overlay

Syntax

overlay<d><text>
o<d><text>

Description

This command is similar to the previous form of the overlay command with these differences: (1)
The current line is not printed. (2) The remainder of the command line (after the delimiter
character) is taken as the overlay text

Example

print

Syntax

overlay--- AT-------------------- NUMBER.
25.00=THAT IS THE CURRENT LINE NUMBER.

print [<target>]
p [<target>]

Example 4-4 ••

Description

Prints all lines from the current line through the line specified by <target>. By default, only the
current line will be printed.

OPERATING SYSTEM REFERENCE 4-37

TEXT EDITOR

Example

p

print 5

p -10

print *string*

p -/string/

replace

Syntax

Print the current line

Print 5 lines starting with the current line

Print the current line and the nine previous lines

Print all lines down thru the next line containing string

Print all lines up through the next previous line containing string

replace [<target>]
r [<target»

Description

This command deletes from the current line through <target>, then places the editor in input
mode, putting the new lines into the area vacated. It is not necessary to enter the same number of
lines as were deleted. The line numbers of the lines inserted will probably not be the same as
those deleted. The current line pointer will be positioned at the last line inserted. By default,
only the current line will be deleted. This command may not be followed by another command
on the same line.

Example

r

replace 10

r rr ARGET STRINGI

Replace the current line

Replace 10 lines starting with the current line

Replace all lines from the current line through the line
containing TARGET STRING

TErI'EDrrOR

text

Syntax

=<text>

Description
Replaces the current line with the text that follows the equal sign. The current line pointer is not
moved.

Example

=THIS IS REPLACEMENT TEXT.

Example 4-5 ••

null

Syntax

(null)

Description

The null command (Le., just a carriage return) prints the current line.

OPERATING SYSTEM REFERENCE 4-39

TEXT EDITOR

DISK COMMANDS

flush

Syntax

flush

Description

The infonnation above the current line in the edit buffer is written to the file containing the
updated data and then deleted from the edit buffer. Use this command to make room in the edit
buffer for large insertions.

Example

flush

200flush

new

Syntax

new

Description

Flush infonnation above the current line to updated file.

Flush infonnation above line 200 to the updated file.

The infonnation above the current line in the edit buffer is written to the file containing the
updated data and then deleted from the edit buffer. The available space in the edit buffer is then
filled with data read from the file being edited. This command is used primarily to proceed to t.h.e
next segment of the file when modifications to the current edit buffer have been completed. If a
new file is being created, the new command is the same as the flush command.

4-40

Example

new

new

read

Syntax

TEXT EDITOR

Write the information above the current line to the updated file and read
more data from the file being edited.

Write the current edit buffer (except for the first line) to the updated file
and read the next segment from the file being edited into the edit buffer.

read [<file_name>]

Description

Places the contents of the specified file after the current line. The last line of the information read
becomes the current line. If you omit the file name, the editor prompts you for it. If you type an
end-of-file signal in response to the prompt, no data is read. The file name may contain path
information if any is necessary to locate the file.

The entire contents of the file must fit into the remaining unused space in the edit buffer. If the
file being read will not fit into the edit buffer, the message Not enough room is issued and no data
is read.

Example

read /dde/data

100read moredata

OPERATING SYSTEM REFERENCE

Read the information in the file /dde/data and place it after the
current line.

Read the information in the file moredata and place it after line
100.

4-41

TEXT EDITOR

write

Syntax
write [<target>]

Description
The editor prompts you for a file name, then writes the information to a file from the current line
through <target>. If an end-of-file signal is typed in response to the prompt, no information is
written. If the file being written to already exists, it is destroyed and a new :file created. If no
<target> is specified, only the current line is written.

Example
write Iwindowl

100write #200

4-42

Write the information from the current line through the line
containing the string window.

Write lines 100 through 200, inclusive, to a scratch file.

TEXT EDITOR

EDITOR MESSAGES
A task is already running

The x command was used when there was a task still running which was generated by a previous
x command. The wait command must be used to wait for the previous task to complete before
initiating another background task.

Attempting to merge onto last line of text

The merge command joins the specified line with the following line, and if the specified line is
the last line of the file, there is no line following the specified line to join with it.

Bottom of file reached

An infonnative message issued when the last line of the file is deleted.

Cannot create configuration file

A configuration file could not be created in the directory specified in the esave command (current
directory if no directory was mentioned). Usually this means that the directory specified could
not be found or write permissions are not available on that directory. Make sure the directory
was specified with a trailing" I" character.

Cannot create new file

The editor was called with two file names as arguments, but the second file could not be created.
This message is preceded by a message indicating which error was detected. This is a fatal error
and will cause an immediate exit from the editor. This message occurs only at the beginning of
an editing session.

Cannot create new backup file

The editor detected an error attempting to create a backup file. This message is preceded by a
message indicating which error was detected. The new backup file is not created but the editing
session continues.

Cannot create task

An error was detected when trying to generate a task with the u or x command. This message is
preceded by a message indicating which error was detected. The command is aborted and the
editor requests a new command.

OPERATING SYSTEM REFERENCE 4-43

TEXT EDITOR

Cannot create temporary file

The editor detected an error when trying to create the temporary file that holds the updated
information. This message is preceded by a message indicating which error was detected. This
message occurs only at the beginning of an editing session.

Cannot delete old backup file

At the end of an editing session, the editor attempts to create a backup file containing the
information as it was prior to the editing session. However, a file already exists with the backup
file name, and that file could not be deleted. This message is preceded by a message indicating
which error was detected. The new backup file is not created but the editing session continues.

Cannot open configuration file

The configuration file in the directory specified in an eset command could not be opened. This
usually means that there was no configuration file in the specified directory, or that the specified
directory could not be found, or that read permission is not available for the configuration file.
Remember that the directory name must be specified with a trailing'/' character.

Cannot open edit file

The file that is being edited exists, but could not be opened. This message is preceded by a
message indicating which error was detected. This is a fatal error and will cause an immediate
exit from the editor. This message occurs only at the beginning of an editing session.

Cannot open new file

The editor was called with two file names as arguments, but could not open a second file to
determine if it already exists. This message is preceded by a message indicating which error was
detected. This is a fatal error and will cause an immediate exit from the editor. This message
occurs only at the beginning of an editing session.

Cannot read configuration file

The operating system reported a media error while the editor was trying to read from the editor
configuration file.

Cannot read edit file

The operating system reported a media error while the editor was reading from the file whose
data is being edited.

4-44

TEXT EDITOR

Cannot rename files

The editor detected an error trying to rename the files at the end of an editing session. This
message is preceded by a message indicating which error was detected. This is a fatal error and
will cause an immediate exit from the editor. The user should then search for the temporary file
used by the editor. This file will contain the updated information and should be copied to another
file for safe keeping.

Cannot write configuration file

The operating system reported a media error while the editor was writing configuration data to
the configuration file in the specified directory (current directory if the specification was
omitted).

Delete existing backup file?

At the end of an editing session, the editor attempts to create a backup file containing the
information as it was prior to the editing session. However, in this case, a file with the same
name as the backup file already exists. This message is a request for permission to delete the
existing file, replacing it with the new backup file. The prompt must be answered with a y, for
yes, or an n, for no. If y or the end-of-file signal is typed, the file is deleted and the new backup
file is created. If n is typed, the file will not be deleted and no new backup file created. If none
of these responses are typed, the prompt is re-issued.

Delete existing copy of new file?

The editor was called with two file names as arguments. The second file already exists and must
be deleted before the editing session can continue. This message is a request for permission to
delete the file. The prompt must be answered with a y, for yes, or an n, for no. If y is typed, the
file is deleted and the editing session continues. If n or the end-of-file signal is typed, the file will
not be deleted and the editing session is terminated. If none of these responses are typed, the
prompt is re-issued.

Edit file does not exist

The editor was called with two filenames, but the first file, which contains the data to be edited,
could not be found. The editor will terminate immediately.

Empty text buffer

The text buffer is empty (contains no text) and the requested command could not be completed.

OPERATING SYSTEM REFERENCE 4-45

TEXT EDITOR

Error attempting to open file

The file specified in a write command could not be opened for writing. This usually means that
the specified file could not be created because the path to the file was inaccessible, or the
permissions on the directory in which the file was to reside exclude creating a file there, or the
file exists but does not have write permission.

Error copying edit file

At the end of an editing session, any unread data on the file that is to be edited is copied to the
new file being written. An error was detected during this copy process. This message is
preceded by a message indicating which error was detected. This is a fatal error and will cause an
immediate exit from the editor.

Error creating scratch file

The file specified in a write command could not be created. This message is preceded by a
message indicating which error was detected. The write command is aborted and the editor
requests a new command.

Error opening scratch file

The file specified in a read command could not be opened. This message is preceded by a
message indicating which error was detected. The read command is aborted and the editor
requests a new command.

Error reading data file

The editor detected an error when trying to read from the file being edited or from a scratch file
with the read command. This message is preceded by a message indicating which error was
detected. The current command is aborted and the editor requests a new command; no data read
from the file is kept. If the file being read was the file being edited, you should use the abort
command to abandon the editing session since the file being read is no longer positioned
correctly.

Error waiting for task to complete

An error was detected when waiting for a task generated by the u or x command to complete.
This message is preceded by a message indicating which error was detected. The command is
aborted and the editor requests a new command.

4-46

TEfl EDITOR

Error writing new file

The editor detected an error when trying to write the contents of the edit buffer to the file that
holds the updated information. This message is preceded by a message indicating which error
was detected. This is a fatal error and will cause an immediate exit from the editor. All changes
to information still in the edit buffer are lost.

File is a directory

An attempt was made to edit a directory, not a text file. This is a fatal error and causes an
immediate exit from the editor. This message occurs only at the beginning of an editing session.

File name?

This is the prompt used when the editor requests a file name. Commands that may request a file
name are read and write. The editor will also request a file name in response to the stop and log
commands if no file names were specified when the editor was called.

Input error

An error status was returned by the operating system in response to a request for input from the
standard input device. This is normally the terminal keyboard and should not generate any such
error. If the standard input has been redirected to a disk file, an error may be generated when
reading the disk for input characters. In either case, this is a fatal error and causes an immediate
exit from the editor. All changes to information in the edit buffer are lost.

Line too long

The maximum size for a line being input to the editor is 255 characters. Lines in the file being
edited may be any length, but those entered from the standard input device are limited to 255
characters.

Name too long

The file name entered in response to a File name: prompt is too long. The maximum size of a
file name, including the path specification, is 55 characters.

New file being created

This is an infonnative message indicating that there is no existing file of infonnation to be edited
and that a new file is being created.

OPERATING SYSTEM REFERENCE 4-47

TEXT EDITOR

New file is the same as the old file

The editor was called with two file names as arguments, but both names point to the same file.
Either the file names are the same, or the two files have been linked with the link system call.

No child task exists

The wait command was used when no background task had been generated by the editor.

No lines deleted

An informative message indicating that the delete command was used but the <target> could not
be located, and no was answered to the prompt asking if the delete was to proceed.

No such line

A line number or <target> could not be found.

Not enough room

The file being read with the read command could not fit in the available space in the edit buffer.
None of the information read from the file is kept. The flush command can be used in an effort to
make room for the file. If that fails, the file being read should be split into smaller files that may
be read individually.

Not found

A <target> could not be found.

Output error

An error status was returned by the operating system in response to a request to send output to the
standard output device. This is normally the terminal display and should not generate any such
error. If the standard output has been redirected to a disk file, an error may be generated when
writing the data to the disk file. In either case, this is a fatal error and causes an immediate exit
from the editor. All changes to information in the edit buffer are lost.

Positioning backwards is not allowed

The position command was called with a <target> that had a leading minus sign, indicating a
backward search.

4-48

TEXT EDITOR

Relative positioning is not allowed

The position command was called with a <target> that had an unsigned integer, indicating a
relative movement forward in the file.

Some lines renumbered

An insert, replace, or break command caused some lines in the file to be renumbered. Note that
the copy and move commands will cause renumbering without this message being issued.

Source overlaps destination

With the copy or move commands the <target> line was within the range of data being copied or
moved.

Syntax error

A syntax error was detected in a command. Check the Editor Commands part of this section for
correct editor command syntax.

Target not reached

The delete command was used but the <target> could not be located. If the delete should proceed
to the end of the edit buffer, this prompt should be answered with ay. Answering with an n or the
end-of-file signal will cause the delete to be aborted.

Task ttt: Abnormal Termination

The background task ttt generated by the x command was interrupted before it could complete.
The interrupt code returned by the task is indicated by i. This message is returned only in
response to the wait command.

Task ttt: Abnormal Termination

The background task ttt generated by the x command has completed abnormally. The termination
response returned by the task is indicated by xxx. This message is returned only in response to
the wait command.

Task ttt initiated

Task number ttt has been started by the use of the x command.

OPERATING SYSTEM REFERENCE 4-49

TEXT EDITOR

Task ttt: Normal termination

The background task ttt generated by the x command has completed normally. This message is
returned only in response to the wait command.

Too many file names specified

More than two file names were specified as arguments to the editor. This is an informative
message only; the extra file names and any options specified after them are ignored.

Unable to open file

The file specified in a read command could not be found or could not be opened for reading
because of its permissions.

Unexpected error, edit session aborted

An error response that the editor is incapable of handling was received from a system call. The
editing session is terminated immediately.

Unknown option specified

An unrecognizable option was specified when the editor was called. This is an informative
message only; the unrecognizable option is ignored.

Write ends with an error

The operating system reported a media error while the editor was writing data to the file specified
in a write command.

zones OK?

A <target> could not be found and the search zones were not set to their default values. This is
an informative message asking you to check the zones because they may have been the reason
why the <target> could not be found. This message does not require a response.

?

The editor is not able to interpret the given command. Either the command could not be
recognized or the format of the command was undecipherable.

4-50

Section 5

TERMINAL EMULATION
OVERVIEW
When working on the 4400 series typing is done on a keyboard and messages are displayed on a
screen, just as with any terminal. When using remote, the terminal emulator program, you can
think of the entire 4400 series as a terminal that is connected through an RS-232C line to a
remote host computer. When you are using the 4400 series as a stand-alone computer, you can
think of the keyboard and display as a local terminal connected to the 4400 processor.

The 4400 appears to both the host and to it's internal software as an ANSI X3.64 compatible
terminal with a few extensions that make it more compatible with other common ANSI X3.64
terminals.

The terminal emulator itself is a local terminal emulator which talks to the 4400 operating
system's console driver. In conjunction with a local communication utility called remote, the
local terminal emulator, console driver, and the driver for the communications port combine to
create a remote terminal emulator connected to the RS-232C hardware and device driver. This
makes the entire unit appear to an external host as a terminal.

This section contains a brief description of the appearance of the ANSI terminal emulator, a
discussion of the interface between the emulator and the operating system, information on its
default modes, and a description of how non-ASCII keys are handled. This section concludes
with a list and short description of all the implemented ANSI commands.

Description
The terminal emulator supports a display of 32 lines of 80 characters per line; using 8 by 15 pixel
characters.

Compliance With ANSI and ISO Standards
The ANSI terminal emulator complies with the following ANSI (American National Standards
Institute) and ISO (International Standards Organization) standards:

ANSI X3.4-1977,
American National Standard Code for Information Interchange. (This defines the ASCII
character set.)

ANSI X3.41-1974,
American National Standard Code Extension Techniques for Use With the 7-Bit Coded Character
Set of American National Standard Code for Information Interchange. (This defines ways to
extend the ASCII character set, including the exact way the SO and SI characters work to invoke
GO and G 1 character sets.)

OPERATING SYSTEM REFERENCE 5-1

TERMINAL EMULATION

ISO 2022,
Code Extension Techniques for use with the ISO 7 -bit Coded Character Set. (This is the
international standard which corresponds to ANSI X3.41.)

ANSI X3.64-1979,
Additional Controls for Use With American Standard Code for Infonnation Interchange. (This
defines a variety of standard commands used for displaying text, for editing the display of text,
and for other functions.)

Compatibility with the DEC VT-100
The ANSI terminal emulator is NOT intended to emulate the VT-IOO. Some VT-IOO DEC­
private features which are of use to host editors have been included, but other DEC-private
features have been omitted. Therefore, not all programs which run correctly with a VT-IOO will
run correctly with a 4400 series product.

Compatibility with Tektronix Terminals
The ANSI tenninal emulator is also NOT intended to emulate any of the Tektronix 4100 Series
tenninals. Many of the 4100 Series ANSI mode commands have been included, but some have
been intentionally omitted.

Interface to the Operating System
The interface to the 4400 series operating system is with the ttygetlttyset system calls. These
system calls are used to examine or modify the programmable modes of the emulator. This
includes such things as autowrap on/off, screen nonnaIJreverse, keypad application/numeric,
cursor key application/numeric, LF/CR-LF, and tab locations.

The programmable modes of the emulator, mentioned above, all have default states which are
specified in the discussion on ANSI commands. These defaults can be overridden by sending
ANSI escape sequences to the tenninal, or by using a ttyset system call (as in the termset utility).

The standard output of the non-ASCII keys on the keyboard (the function keys, the break-key, the
keypad keys, and the joydisk) is an ANSI escape sequence (see the discussion on non-ASCII
keys).

5-2

TERMINAL EMULATION

SUPPORTED ANSI COMMANDS
The following ANSI commands are supported on the 4400 tenninal emulator:

NOTE

The ANSI <CSI> (control sequence identifier) is the two character
sequence <Esc t >. In this discussion, it is represented as ESC t.

<ACK> Acknowledge Character (#6)
Syntax Form:

Description:

(char #6)

This control function (CfRL-F) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<BEL> Bell Character
Syntax Form:

Description:

(char #7)

Sounds the terminal's bell. (CfRL-G)

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

<BS> Backspace Character
Syntax Form:

Description:

(char #8)

The control function BS, (CfRL-H) moves the active position backward
by one character position. If the cursor is already at column 1, then BS
has no effect

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

<CAN> Character (#24)
Syntax Form:

Description:

(Char #24)

If this control character (CTRL-X) is received during an ANSI command
sequence this control function will print a snoopy <CAN> character and
resets the command parser to an initialized state.

OPERATING SYSTEM REFERENCE 5-3

TERMINAL EMULATION

<CBT> Cursor Backward Tab
Syntax Fonn:

Descriptive Fonn:

Description:

ESC [<Pn>Z

ESC [<desired number of preceding tab stops> Z

Moves the cursor backwards to a preceding tab stop on the current line.

A parameter value of one moves the cursor to the preceding tab stop. A
parameter value greater than one (n) moves the cursor to the nth
preceding tab stop on the current line. If there are less than n preceding
tab stops, the cursor moves to column 1 of the current line.

If the Parameter number is zero, or omitted, it defaults to 1.

<CHT> Cursor Horizontal Tab
Syntax Fonn:

Descriptive Fonn:

Description:

ESC [<Pn> I

ESC [<desired number of succeeding tab stops> I

Moves the cursor forward to a succeeding tab stop on the current line.

A parameter value of one moves the cursor to the next tab stop. A value
greater than one (n) moves the cursor to the nth successive tab stop on
the current line. If there are less than n following tab stops, the cursor
moves to the rightmost column of the current line.

If the Parameter number is zero, or omitted, it defaults to 1.

<CPR> Cursor Position Report
Syntax Fonn:

Descriptive Fonn:

Description:

5-4

ESC [<Pn> ; <Pn> R

ESC [<row> ; <column> R

The <CPR> message is sent from the tenninal to the host in response to
a <DSR: 6> device status report command.

If the origin mode is relative, the coordinates reported are row, column
coordinates in the scrolling region. Row 1, column 1 means the upper
left comer of the region.

If the origin mode is absolute, the coordinates reported are row, column
coordinates of the screen. Row 1, column 1 means the upper left comer
of the screen.

If the <CPR> is echoed back to the tenninal, the terminal treats the echo
as a no-op.

TERMINAL EMULATION

<CR> Carriage Return Character
Syntax Form:

Description:

(char #13)

Moves the cursor to the first column in the current line. If carriage
return/line feed (CRlLF) mode is set, then a line feed action is also
performed.

If this control character (CTRL-M) is received during an ANSI
command sequence this control action occurs and the ANSI command
sequence processing continues.

<CRM> Control Representation Mode
Syntax Form:

Descriptive Form:

Description:

Reset:

Set:

Defaults:

ESC [3 horl

ESC [3 set or reset

<CRM> is a parameter of the <SR> and <RM> commands.

This command is commonly referred to as a "snoopy" mode.

Normal operation. <RM: CRM> resets this mode.

NOTE

The implementation of this command in
the 4400 requires that <RM: CRM> not
be embedded with other <RM>
commands.

Snoopy mode. CRM is set <SM: CRM>, commands are not interpreted,
but rather the characters that make up the command are displayed.

Reset

<CUB> Cursor Backward
Syntax Form:

Descriptive Form:

Description:

ESC [<Pn> D

ESC [<number of columns> D

Moves the cursor backward by the specified number of columns. The
cursor stops at column 1.

If the Parameter number is 0 or is omitted, it defaults to 1.

OPERATING SYSTEM REFERENCE 5-5

TERMINAL EMULATION

<CUD> Cursor Down
Syntax Form:

Descriptive Form:

Description:

ESC [<Pn> B

ESC [<number of rows> B

Moves the cursor downward by the specified number of rows.

Margins Set Inside Screen Boundaries (i.e., Top Margin > 1 or Bottom
Margin <32)

If origin mode is absolute, the cursor moves with respect to the screen.
If the cursor is on the last row of the screen or
on the Bottom Margin, Cursor Down has no
effect.

If origin mode is relative, the cursor moves with respect to the area
bounded by Top and Bottom Margins. If the
cursor is on the Bottom Margin, Cursor Down
has no effect.

Margins Set To Screen Boundaries (i.e., Top Margin = 1 and Bottom
Margin =32)

The cursor moves with respect to the screen. If the cursor is on the last
row of the screen, Cursor Down has no effect.

If the <Pn> Parameter number is zero or is omitted, it defaults to one.

<CUF> Cursor Forward
Syntax Form:

Descriptive Form:

Description:

ESC [<Pn> C

ESC [<number of columns> C

Moves the cursor the specified number of columns to the right. The
cursor stops at the rightmost column.

If the <Pn> Parameter number is omitted, or is zero, it defaults to one.

<CUP> Cursor Position
Syntax Form:

Descriptive Form:

Description:

5-6

ESC [<Pn> <; <Pn> > H

ESC [<row number> <; <column number> > H

Moves the cursor to a specified row and column. The cursor may stop at
Top Margin, Bottom Margin and the top and bottom of the screen,
depending on origin mode.

If a row or column coordinate is zero, or is omitted, it defaults to one.
(See also <HVP>.)

TERMINAL EMULATION

<CUU> Cursor Up
Syntax Fonn:

Descriptive Fonn:

Description:

ESC [<Pn> A

ESC [<number of rows> A

This command is completely analogous to <CUD>, except that the
cursor moves upward instead of downward.

<DA> Device Attributes
Syntax Fonn:

Description:

ESC [<Pn>c

A device sends this command with a Parameter number of 0 to the
terminal asking it to identify the type of VT -100 tenninal it is. The
4400 sends the command ESC [? 1 ; 0 c back to the device which says it
is a VT -100 with no options.

NOTE

The 4400 does support the following
features of the VT-JOO Advanced Video
Options (see <SGR»:

• Bold

• Underline

• Reverse video

If the device echoes this command back to the terminal, it is treated as a
no-op.

If the Parameter number is omitted, it defaults to O.

<DC1> Character (#17)
Syntax Fonn:

Description:

(ChartI7)

If this control character (CTRL-Q) is received during an ANSI command
sequence this control action is a no-op and the ANSI command sequence
processing continues. However, if flagging is set in the communications
system to DClIDC3, a flagging action will occur within the
communications system.

OPERATING SYSTEM REFERENCE 5-7

TERMINAL EMULATION

<DC2> Character (#18)
Syntax Fonn:

Description:

(Char #18)

This control function (CfRL-R) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DC3> Character (#19)
Syntax Fonn:

Description:

(Char #19)

This control function (CfRL-S) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues. However, if flagging is set in the communications
system to DClIDC3, a flagging action will occur within the
communications system.

<DC4> Character (#20)
Syntax Fonn:

Description:

(Char #20)

This control function (CfRL-T) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DCH> Delete Character
Syntax Fonn: ESC [<Pn> P

Descriptive Fonn:

Description:

5-8

ESC [<number of characters> P

Deletes the character at the cursor and possibly following characters
depending on the Parameter value. Any characters to the right of the
deleted characters are moved left by the same number of cha.acter
positions; thus the gap is filled.

Only characters on the current line are affected by this command.

If the Parameter number is zero, or is omitted, it defaults to one.

TERMINAL EMULATION

 Character (#127)
Syntax Fonn:

Description:

(Char #127)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DL> Delete Line
Syntax Fonn:

Descriptive Fonn:

Description:

ESC [<Pn> M

ESC [<number of lines> M

Deletes the current line and possibly succeeding lines, depending upon
the Parameter.

All following lines are shifted in a block toward the line containing the
cursor. The lines following the shifted portion are erased. The cursor
does not change position.

If split-screen scrolling is in effect, this command only affects lines in
the region that the cursor is currently in. (E.g., if the cursor is in the top
fixed region, only the lines in the top fixed region are affected.)

If the Parameter number is zero, or is omitted, it defaults to one.

<OLE> Character (#16)
Syntax Fonn:

Description:

(Char #16)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DMI> Disable Manual Input
Syntax Fonn:

Description:

Esc' (Char #27 and Char #96)

Locks the keyboard. This command is equivalent to ANSI <SM: KAM>.
(See also <EM!>.)

OPERATING SYSTEM REFERENCE 5-9

TERMINAL EMULATION

<DSR> Device Status Report
Syntax Form:

Description:

ESC CPs n

This is a command from the host or a report from the terminal. Table
5-1 shows the meaning of various Parameters.

Parameter
0
3
5

6

Table 5-1
Parameter Meanings

Parameter Meaning
Keport ITom 4400. Keaay, no manunctlOns detected.
Report from 4400. Malfunction - retry.
Command from host. Please report status (using a DSR control
sequence).
Command from host. Please report cursor position (using a cursor
position report). See <CPR> command.

When the 4400 receives a DSR with a parameter value of 5, it always
sends back a DSR with a parameter value of 0 or 3. When the 4400
receives a DSR with a parameter of 6, it always sends back a CPR
report. When the 4400 receives a DSR with a parameter value of 0 or 3
(which could be the echo of a report it has sent to the host), it executes
the <DSR: 0> or <DSR: 3> command as a no-op.

<ECH> Erase Character
Syntax Form:

Descriptive Form:

Description:

5-10

ESC [<Pn> X

ESC [<number of characters> X

Erases the character at the cursor, and possibly succeeding characters,
according to the Parameter. The cursor location remains unchanged.

The effect of the <ECH> command is not confined to the current line.
For example, if the cursor is in column 41, and an <ECH: 45>
command is issued, the character at the active position is erased along
with the next 39 characters on the current line and the first 5 characters
of the next line.

TERMINAL EMULATION

<ED> Erase in Display
Syntax Fonn:

Descriptive Fonn:

Description:

ESC [<Ps> J

ESC [< 0 or 1 or 2 > J

o = from cursor to end of screen, inclusive
1 = from start of screen to cursor, inclusive
2 = entire screen.

Regardless of whether margins are set, the command erases with respect
to the screen. Therefore, text in the scrolling region and fixed regions
can be erased with the same command.

The cursor does not change position.

If the Parameter number is omitted, it defaults to O.

<EL> Erase in Line
Syntax Fonn:

Descriptive Fonn:

Description:

ESC [<Ps> K

ESC [<0 or 1 or 2> K

o = from cursor to end of line, inclusive
1 = from start of line to cursor, inclusive
2 = entire line

Erases part or all of the current line, according to the parameter.

The cursor does not change position.

If the Parameter number is omitted, it defaults to O.

 Character (#25)
Syntax Fonn:

Description:

(Char #25)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

OPERATING SYSTEM REFERENCE 5-11

TERMINAL EMULATION

<EMI> Enable Manual Input
Syntax Fonn: Escb

Description: Unlocks the keyboard. This command is equivalent to ANSI <RM:
KAM>. (See also <DM!>.)

<ENQ> Character (#5)
Syntax Fonn:

Description:

(Char#S)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<EOT> Character (#4)
Syntax Fonn:

Description:

(Char #4)

This control function is a no-op.

If this control character is received during an ANSI command sequence,
this control action is a no-op and the ANSI command sequence
processing continues.

<ESC> Character (#27)
Syntax Fonn:

Description:

(Char #27)

This control function is the introduction character of an escape sequence
or control sequence for the ANSI command parser.

If this control character is received during an ANSI command sequence,
the ANSI command sequence parser processing is reinitialized.

<ETB> Character (#23)
Syntax Fonn:

Description:

5-12

(Char #23)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

TERMINAL EMULATION

<ETX> Character (#3)
Syntax Form:

Description:

(Char #3)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<FF> Form Feed Character
Syntax Form: (char #12)

Description: Erase the screen.

<FS> Character (#28)
Syntax Form:

Description:

(Char #28)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<GS> Character (#29)
Syntax Form:

Description:

(Char #29)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<HT> Horizontal Tab Character
Syntax Form:

Description:

(char #9)

Advances the cursor fOIWard on the current line to the next horizontal
tab stop. If there are no horizontal tab stops to the right of the active
position, the cursor moves to the rightmost column.

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

OPERATING SYSTEM REFERENCE 5-13

TERMINAL EMUlATION

<HTS> Horizontal Tab Set
Syntax Form:

Description:

Defaults:

ESCH

Sets a tab stop at the current cursor location.

Tab stops at columns 9, 17,25, 33, 41, 49, 57, 65, and 73. Read from
setup file on installation.

<HVP> Horizontal and Vertical Position
Syntax Form: ESC [<Pn> <; <Po> > f

Descriptive Form: ESC [<row> <; <column> > f

Description: This command is identical to the <CUP>, Cursor Position command.

<ICH> Insert Character
Syntax Form:

Descri pti ve Form:

Description:

ESC [<Pn>@

ESC [<number of characters> @

Inserts the specified number, (n), of erased character cells at the cursor
position. The character currently at the cursor position and all other
characters to the right of the cursor are shifted "n" columns to the right.
Characters shifted off the end of the line are lost. The cursor position
remains unchanged.

If the Parameter number is zero, or is omitted, it defaults to one.

<IL> Insert Line
Syntax Form:

Descriptive Form:

Description:

5-14

ESC [<Pn> L

ESC [<number of lines> L

Inserts the specified number, (n), of blank lines in place of the active
line.

The active line and all succeeding lines are shifted downwards. The last
"n" lines of the scroll are lost The cursor position does net change.

If split-screen scrolling is in effect, this command only affects lines in
the region that the cursor is currently in. (E.g., if the cursor is in the
scrollable Cnon-fixed) region, only the lines in the scroll able region are
affected.)

If the Parameter number is zero or is omitted, it defaults to one.

<IND> Index
Syntax Form:

Description:

TERMINAL EMULATION

ESCD

Moves the active position down one line without affecting the character
position on that line.

If the cursor is at the bottom margin, but is not at the bottom of the
scroll, a scroll up function is performed. If the cursor is at the bottom
margin and is also at the bottom of the scroll, a blank line is added to the
bottom of the scroll and a scroll up is performed.

The cursor can index into the scrolling region from the top fixed region,
but cannot index into bottom fixed region. An index on the last line of
the bottom fixed region has no effect. (See <LF>.)

<IRM> Insertion/Replacement Mode
Syntax Form:

Descriptive Form:

Description:

Reset:

Set:

Defaults:

ESC [4horl

ESC [4 set or reset

<lRM> is a parameter for the <RM> and <SM> commands.

Normal operation. When a character is entered, it replaces any character
already at the active position.

Insert mode. As each character is entered, the text at the cursor position
and to its right is moved one character cell to the right and the cursor
advances to the next character cell. Any text which is shifted off the end
of the line is lost.

Reset

<KAM> Keyboard Action Mode
Syntax Form: ESC [2 h or 1

Descriptive Form:

Description:

Reset:

Set:

Defaults:

ESC [2 set or reset

A parameter for the <RM> and <SM> commands.

Resetting KAM enables the keyboard and is equivalent to issuing
<EM!>.

Setting KAM disables the keyboard and is equivalent to issuing <DM!>.

Reset

OPERATING SYSTEM REFERENCE 5-15

TERMINAL EMULATION

<LF> Line Feed Character
Syntax Form:

Description:

(char #10)

If <LNM> mode is reset, then <LF> has exactly the same effect as the
<lND> command; it advances the cursor to the same position on the
following line of text. See the <lND> command description for details.

If <LNM> mode is set, then <LF> has the same effect as <CR> <lND>;
it advances the active position to the first character position on the
following line.

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

<LNM> Line-Feed/New-Line Mode
Syntax Form: ESC [20 h or I

Descriptive Form:

Description:

Reset:

Set:

Defaults:

ESC [20 set or reset

A parameter for the <RM> and <SM> commands.

(LF) is equivalent to <IND>; goes down one line without changing
character position within the line.

(LF) is equivalent to <NEL> (which is equivalent to (CR)<lND».
Advances the cursor to the first character position of the next line of
text.

Reset

<NAK> Character (#21)
Syntax Form:

Description:

(Char #21)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<NEL> Next Line
Syntax Form:

Description:

5-16

ESCE

Moves the cursor to the stan of the next line. Has the same effect as
(CR)<lND> (or as (LF) when LNM is set).

TERMINAL EMULATION

<NUL> Character (#0)
Syntax Form:

Description:

(Char #0)

This control function is a no-op. If this control character is received
during an ANSI command sequence this control action is a no-op and
the ANSI command sequence processing continues.

<PU1> Private Use 1
Syntax Form:

Description:

ESCQ

This two-character sequence is used to introduce a private ANSI control
sequence. It introduces all sequences which specify or request, from
4400 reports, the state of the mouse buttons and the graphic cursor
position.

<Report-Syntax-Mode>
Syntax Form:

Description:

ESC # !O

This command sends a <terminal-settings-report> (Tektronix 4100
series terminal style) to the host on the status of the syntax mode. The
form will always be the following:

% ! <SP> <SP> 1 <CR>

. NOTE

The <SP> is an ASCII space character.
The <CR> ASCII Carriage Return
Character is the default 4100 series EOM
character.

<RI> Reverse Index
Syntax Form:

Description:

ESCM

Completely analogous to the IND (Index) command except that it moves
the cursor one line upward.

OPERATING SYSTEM REFERENCE 5-17

TERMINAL EMULATION

<RIS> Reset to Initial State
Syntax Form:

Description:

ESCc

Resets specified terminal attributes to their initial default states.

This command affects terminal attributes in the following ways:

• Erases screen and moves cursor to home position.

• Resets Insert/Replace mode to Replace.

• Clears edit margins.

• Turns off the character graphic rendition.

• Selects the default GO and G 1 character sets.

• Shifts in the GO character set.

• Resets Auto-Repeat (TEKARM) mode := true.

• Resets Auto-Wrap (TEKA WM) mode := true.

• Resets Screen mode (TEMSCNM) to normal.

• Sets Origin mode to relative.

<RM> Reset Mode
Syntax Form:

Description:

5-18

ESC [<Ps> 1

Causes one or more modes to be reset, as specified by each selective
parameter in the <Ps> Parameters list. Each mode to be reset is specified
by a separate parameter in the list. A mode is reset until set again by a
<SM>, Set Mode, control sequence.

If the first character in the Parameters list is ?, then all subsequent
parameters, that consist of numeric digits only, are interpreted as if they
began with a ? character before those numeric digits. If the first
parameter consists ONLY of ?, then its only use is to provide an implicit
? at the start of each subsequent numeric-digits-only parameter in the
Parameters list.

TERMINAL EMULATION

For example:

The control sequence: ESC [? 5 ; 8 I
is interpreted as if it were: ESC [? 5 ; ? 8 I

The control sequence: ESC [? ; 5 ; 8 I
is interpreted as if it were: ESC [? 5 ; ? 8 I

Table 5-2, Valid Reset Mode Parameters, summarizes the meaning of
the valid parameters.

Table 5-2
Valid Reset Mode Parameters

Parameter Mode
2 _ ~_M~eyt)oard~ction~ode.
3 CRM Control-Representation-Mode.
4 IRM Insertion-Replacement-Mode.

12 SRM Send/Receive Mode.
20 LNM Line-Feed/New-Line Mode.
71 TEKCKM TEK private Cursor Key Mode.
75 TEKSCNM TEK private Screen Mode (normal).
76 TEKOM TEK private Origin Mode (viewport).
71 TEKA WM TEK private Auto-Wrap Mode.
78 TEKARM TEK private Auto-Repeat Mode.

Any parameters other than those specified here are recognized then
ignored.

<RS> Character (#30)
Syntax Form:

Descri ption:

(Char #30)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

OPERATING SYSTEM REFERENCE 5-19

TERMINAL EMULATION

<SCS> Select Character Set
Syntax:

Description:

Defaults:

<Select-Code>
Syntax Form:

Description:

5-20

<SCS> = <designate-GO-set> or <designate-G 1-set>. <its designate­
GO-set> = (ESC) (0 <set-selector>. <designate~G1-set> = (ESC) ())
<set-selector>. <set-selector> = (A)0r(B)0r(O)or(1)0r(2)0r(3).

Designates a particular character set as the GO set or the G 1 set.

Table 5-3, Character Set ,Selection, summarizes the escape sequences
necessary to designate particular character sets.

Table 5-3
Character Set Selection

Escape Sequence Escape Sequence Character Set
to Designate a to Designate a Being Designated
GO Set GISet As GO Or Gl
ESC(A ESC)A (no-op)
ESC(B ESC)B U.S. (ASCII)
ESC(O ESC)O Rulings
ESC (1 ESC) 1 (no-op)
ESC(2 ESC)2 (no-op)
ESC(3 ESC)3 Supplementary

On installation, the terminal emulator automatically designates the U.S.
(ASCII) character set as its GO and G 1 character set.

ESC % ! <code-selector>

This control function is a no-op.

TERMINAL EMULATION

<SGR> Select Graphic Rendition.
Syntax Form:

Parameters:

Description:

Defaults:

ESC [<Ps-list> m

The Ps-list consists of zero or more Ps selective parameters, separated
by semicolons. Each parameter in the list specifies a graphic rendition
for subsequent characters.

o Default rendition. On the 4400, default rendition is: No
underscore, normal boldness, standard (not reversed)
image. That is, the effect of any preceding <SGR: 1>,
<SGR: 4> or <SGR: 7> command is canceled.

1 Bold or increased intensity: The 4400 represents this by
simulating a bold font (it paints each character twice,
shifted one pixel horizontally).

4 Underscore.

7 Negative (reverse) image: white characters on black
background.

21 Not bold. Cancels the effect of <SGR: 1>.

24 Not underlined. Cancels the effect of <SGR: 4>.

27 Positive image. Cancels the effect of <SGR: 7>.

Invokes the graphic rendition specified by the parameters in the Ps-list
parameter string. All following characters in the data stream are
displayed according to the parameter(s) until the next occurrence of an
<SGR> command in the data stream.

On Tektronix terminals, each occurrence of the <SGR> control function
causes only those graphic rendition aspects to be changed that are
specified by that <SGR>. All other graphic rendition aspects remain
unchanged. (In other words, the GRAPHIC RENDITION
COMBINATION MODE of ISO 6429 is always set to CUMULATIVE
in Tektronix terminals.)

An omitted parameter in the <Ps-list> defaults to zero. The state is that
of <SGR: 0>.

OPERATING SYSTEM REFERENCE 5-21

TERMINAL EMULATION

<SI> Shift In Character
Syntax Form:

Description:

(char #15)

Invokes the current GO character set.

If this control character is received during an ANSI command sequence,
the GO character is invoked and the ANSI command sequence
processing continues.

Defaults: The GO set is invoked.

<SM> Set Mode
Syntax Form:

Description:

5-22

ESC [<Ps> h

Causes one or more modes to be set, as specified by each selective
parameter in the <Ps> Parameters list. Each mode to be set is specified
by a separate parameter. A mode is set until reset by a <RM> (Reset
Mode) control sequence.

If the first character in the parameter list is ?, then all subsequent
parameters, that consist of numeric digits only, are interpreted as if they
began with a ? character before those numeric digits. If the first
parameter consists ONLY of ?, then its only use is to provide an implicit
? at the start of each subsequent numeric-digits-only parameter in the
Parameters list.

For example:

The control sequence: ESC [? 5; 8 h
is interpreted as if it were: ESC [? 5 ; ? 8 h

The control sequence: ESC [? ; 5 ; 8 h
is interpreted as if it were: ESC [? 5 ; ? 8

Table 5-4, Set Mode Parameters, summarizes the meanings of the valid
parameters to the set mode command.

TERMINAL EMULATION

Table 5-4
Set Mode Parameters

Par Mode
_2 KAM K.eyboard-Action~ode.
3 CRM Control-Representation-Mode.
4 IRM Insertion-Replacement-Mode.
12 SRM SendlReceive Mode.
20 LNM Line-FeedlNew-Line Mode.
? 1 TEKCKM TEK private Cursor Key Mode.
?5 TEKSCNM TEK private Screen Mode (Normal).
?6 TEKOM TEK private Origin Mode (viewport).
?7 TEKA WM TEK private Auto-Wrap Mode.
?8 TEKARM TEK private Auto-Repeat Mode.

If no parameter is supplied, a parameter of zero is assumed. Any
parameters other than those specified here (including zero) are
recognized then ignored.

<so> Shift Out Character
Syntax Form:

Description:

Defaults:

SO = (char #14)

Invokes the G 1 character set. If this control character is received during
an ANSI command sequence, the G 1 character set is invoked and the
ANSI command sequence processing continues.

The GO set is invoked (default is SO state).

<SOH> Character (#1)
Syntax Form:

Description:

(Char#t)

This control function (CTRL-A) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

OPERATING SYSTEM REFERENCE 5-23

TERMINAL EMULATION

<SP> Space Character
Syntax Form: (char #32)

Description: SP functions as an ordinary graphic character. Spaces replace any
characters already in the locations where the spaces are typed.

<SRM> Send/Receive Mode
Syntax Form: ESC [1 2 h or I

Descriptive Form:

Descri ption:

Defaults:

ESC [1 2 set or reset

<SRM>, Send/Receive Mode, is not a command in its own right.
Rather, it is a parameter for the <SM>, Set Mode, and <RM>, Reset
Mode, commands.

Resetting SRM mode turns the terminal's local echo on. (In the
standards documents, this is called monitor send/receive mode.)

Setting SRM mode turns the terminal's local echo off. (In the standards
documents, this is simultaneous send/receive mode.)

Reset

<STX> Character (#2)
Syntax Form:

Description:

(Char #2)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<SUB> Character (#26)
Syntax Form:

Description:

5-24

(Char #26)

If this control character is received during an ANSI command sequence
this control function will print a (SUB) character and reset the command
parser to an initialized state.

TERMINAL EMULATION

<SYN> Character (#22)
Syntax Form:

Description:

(Char #22)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<TBC> Tabulation Clear
Syntax Form:

Descriptive Form:

Description:

Valid Parameters:

ESC [<Ps> g

ESC [<0 or 2 or 3> g

Clears one or more tab stops, according to the specified parameters.

o Clear the horizontal tab stop at the active position.

2 Clear all tab stops in the active line. (In the 4400, tab
stop mode is always reset, so <TBC: 2> has the same
effect as <TBC: 3>.)

3 Clear all horizontal tab stops.

If no parameter is supplied, a parameter of zero is assumed. If the
parameter supplied is not 0, 2 or 3, then command is ignored.

<TEKARM> Auto-Repeat Mode
Syntax Form:

Descriptive Form:

Description:

Defaults:

ESC [? 8 h orl

ESC [? 8 set or reset

A TEK private parameter for the <SM> and <RM> commands. If set,
all keyboard keys repeat when held depressed. If reset, none of the keys
repeat when held depressed.

Reset

OPERATING SYSTEM REFERENCE 5-25

TERMINAL EMULATION

<TEKAWM> Auto-Wrap Mode
Syntax Form:

Descriptive Form:

Description:

Defaults:

ESC (?7 hor!

ESC [? 7 set or reset

A TEK-private parameter for the <SM> and <RM> commands. When
set, the wrap-around feature is enabled. When reset, it is disabled.

This mode determines what happens to the cursor after a character is
displayed in the rightmost column. Since a character is always
displayed at the current cursor location, this mode determines whether
text is overprinted in the rightmost column or whether it wraps around to
the next lines.

If Auto-Wrap mode is set, an index function is performed and the cursor
moves to column 1 of the next line. If Auto-Wrap mode is reset, the
cursor remains in the rightmost column.

Reset

<TEKBKCM> Block Cursor Mode (Select Cursor)
Syntax Form:

Descriptive Form:

Description:

Defaults:

ESC [> 31 h or!

ESC [> 31 set or reset

A TEK private parameter for the <SM> and <RM> commands. If set,
the alpha cursor is represented by a "full character set" block cursor.
The character at the cursor position appears as a background color
character on a reversed character cell. If reset, the cursor is represented
by a bold underline.

Reset (Underscore)

<TEKBNCM> Blinking Cursor Mode
Syntax Form:

Descriptive Form:

Description:

Defaults:

5-26

ESC [> 32 h or I

ESC [> 32 set or reset

A TEK private parameter for the <SM> and <RM> commands. If set,
the alpha cursor is displayed blinking. The character at the cursor
position alternates, at the blink rate, between its normal rendition and its
cursor position rendition. If reset, the cursor does not blink.

Set (Blinking)

TERMINAL EMULATION

<TEKCKM> Cursor Key Mode
Syntax Form: ESC [? 1 h or I

Descriptive Form: ESC [? I set or reset

Description: A TEK private parameter for the <SM> and <RM> commands. Provides
compatibility with programs designed for the DEC VT-IOO terminal.
This mode is only effective when TEKKP AM is set.

Defaults:

The joydisk keys (positions) assume the alternate meanings shown in
Table 5-5.

Reset

Table 5-5
Alternate Joydisk Meanings

JoydlskKey TEKCKM Reset TEKCKMSet
up h~LA ~UA

Down ESC [B ESCOB
Right ESC[C ESCOC
Left ESC[D ESCOD

OPERATING SYSTEM REFERENCE 5-27

TERMINAL EMULATION

<TEKGCREP> Graphic Cursor Position Report
Syntax Form:

Descriptive Form:

Description:

ESC P S <Pnl ; Pn2> ESC \ e

DCS S [optional position report] ST

This is a report string sent to the host in response to a <TEKRGCR>
graphic cursor position request. The form which the optional position
report takes depends upon the report types specified by a
<TEKSGCRT> report type selection, or if report types have not been
specified, by the default types defined there.

If cell coordinate reports have been specified, then Pnl and Pn2 contain
row and column values, respectively. If pixel coordinate reports have
been specified, then Pnl and Pn2 contain x and y screen coordinate
values, respectively.

If graphics cursor position reports have been disabled by specifying that
none be returned, then no parameters are returned for Pnl and Pn2.

<TEKID> Identify Terminal
Syntax Form: ESC Z

This command, when sent from the host, requests the terminal to
identify itself with a Device Attributes sequence. It has the same effect
as a <Device Attributes> command with no parameter or a parameter of
O.

<TEKKPAM> Keypad Application Mode
Syntax Form: ESC =

Description: See <TEKKPNM>, Keypad Numeric Mode

<TEKKPNM> Keypad Numeric Mode
Syntax Form: ESC>

Description: The <TEKKPAM> and <TEKKPNM> commands set and reset the
terminal's Keypad Application Mode, respectively. These commands are
provided for compatibility with applications programs designed for the
DEC VT-IOO terminal.

5-28

Reset State (Keypad Numeric Mode)
In the reset state (Keypad Numeric Mode), the keypad keys assume the
values shown in the reset state part of the following table. For the
keypad keys listed, these are the values labeled on the keys, except the
ENTER key which sends a <CR> character.

TERMINAL EMULATION

Set State (Keypad Application Mode)
In the set state (Keypad Application Mode), the keypad keys assume the
alternate meanings shown in the set state part of Table 5-6. (Function
keys F9 through F12 are unchanged.)

Table 5-6
Keypad Application Mode Key Meanings

Meaning in Reset State Meaning in Set State
Key Keypad Numeric Mode Keypad Application Mode
U y ~p
1 1 ESCOq
2 2 ESCOr
3 3 ESC Os
4 4 ESCOt
5 5 ESCOu
6 6 ESCOv
7 7 ESCOw
8 8 ESC Ox
9 9 ESCOy
- - ESC Om
, , ESCOI

ESC On
ENTER CR ESCOM

Defaults: Reset (Keypad Numeric Mode)

<TEKMBREP> Mouse Button and Graphic Cursor Position
Reporting
Syntax Form:

Description:

OCS (EscP)
Meta-State-Code
Mouse-Button-Number
Stroke-Info (up-down)
Optional-Position-Report
ST (Esc \)

There are three buttons on the mouse and there are different codes
output for each button on its down-stroke and up-stroke.

Table 5-7 summarizes the Mouse Button Reports.

OPERATING SYSTEM REFERENCE 5-29

TERMINAL EMULATION

Button
DOWN
UP
Shifted-DOWN
Shifted-UP
Control-DOWN
Control-UP
Cntrl-Shifted-DOWN
Cntrl-Shifted-UP

Table 5-7
Mouse Button Reports

Left Middle
UC:SA 1 UX:Sl uc..;:s A L. U x :s 1
DCSAIUxST DCS A2 U xST
DCSBIDxST DCSB2DxST
DCSB 1 UxST DCSB2UxST
DCSCIDxST OCS C2DxST
DCSC 1 UxST OCSC2UxST
DCSDIDxST DCS D2D xST
DCSDI UxST OCS D2 U xST

Ri2ht
uc..;SA3 UxST
DCSA3 UxST
DCSB3DxST
DCSB3UxST
DCSC3DxST
DCSC3UxST
DCSD3DxST
DCSD3 UxST

The x infonnation is the optional report of the current graphic cursor
position, i.e., Pnl ; Pn2 of the Graphic Cursor Report. See
<TEKGCREP>.

ANSI Terminal Emulator Mouse Button and Position Reporting

Each of the three buttons on the mouse reports a different code on its downstroke and its
upstroke. The mouse reports are ANSI standard OCS (Device Control String - Esc-P) reports.
The reports take the form:

OCS (Esc-P)

Meta-State-Code

Mouse-Button-Number

Stroke-Info (up-down)

Optional-Position-Report

ST (ESC-\)

5-30

Lead-in to all mouse button reports

A = unshifted, B = shifted, C = control, and D = control­
shift

1 = left, 2 = middle, 3 = right

D = down, U = up

Pnl, Pn2 of the current position of the graphic cursor.

Tenninator for mouse button and position reports.

For example, the report (32;80 is the position report of Row
32, Column 80 in Char. Cell coordinates)) of the unshifted,
middle button, in the down state would be:

Des A 2 D 32;80 ST

TERMINAL EMULATION

<TEKOM> Origin Mode
Syntax Fonn: ESC [1 6 I or h

Parameters: I - Reset (Absolute Mode)
h - Set (Relative Mode)

Description: Margins Set To Screen Boundaries (that is, Top Margin = 1, and Bottom
Margin = 32)

Specifies Row 1, Column 1 of the screen as the origin. Moves the
cursor to the origin.

Margins Set Inside Screen Boundaries (Le., Top Margin >1 or Bottom
Margin < 32)

If origin mode absolute is requested, specifies Row 1, Column 1 of the
screen as the origin. If origin mode relative is requested, specifies the
row corresponding to the Top Margin, Column I as the origin. In both
cases, it moves the cursor to the origin.

Defaults: Reset

<TEKRC> Restore Cursor
Syntax Fonn: ESC 8

Description: Restores the previously saved cursor position, graphic rendition,
character set and origin mode.

If no preceding <Save Cursor> command has been executed, then the
power-up graphic rendition, character set, and origin mode are restored
and the cursor is "homed".

<TEKREQTPARM> Request Terminal Parameters
Syntax Fonn:

Description:

ESC [<Pn>x

Request from the host for the terminal to send a <Report Tenninal
Parameters> sequence. This command is treated as a no-op on the 4400.

OPERATING SYSTEM REFERENCE 5-31

TERMINAL EMULATION

<TEKRGCR> Request Graphic Cursor Position Report
Syntax Form: ESC Q K

Description: This command requests the terminal to send a report to the host as to the
position of the graphics cursor. This report is a <TEKGCREP> report.
The form of the report is as follows:

Pnl contains:

Pn2 contains:

DeS (ESC P) S Pnl ; Pn2 ST (ESC-\)

The Row value if cell coordinates have been selected, or the X value if
pixel coordinates are selected. No parameter will be returned if so
specified in the Select Graphic Cursor Report Type command.

The Column value if cell coordinates have been selected or the Y value
if pixel coordinates are selected. No parameter will be returned if so
specified in the Select Graphic Cursor Report Type command.

<TEKSC> Save Cursor
Syntax Form: ESC 7

Description: Saves the cursor position, graphic rendition, character set and origin
mode.

<TEKSCNM> Screen Mode
Syntax Form: ESC [? 5 1 or h

Parameters: 1- Reset (Normal Mode - black on white)
h - Set (Reverse Mode - white on black)

Description: This is a parameter for the <Reset Mode> and <Set Mode> commands.

Defaults:

5-32

The reset state causes the screen to be white with black characters. The
set state causes the screen to be black with white characters.

There is no effect if the terminal is already in the requested mode.

Reset

TERMINAL EMUlATION

<TEKSGCRT> Select Graphic Cursor Report Type
Syntax Form: ESC Q <Pnt> <;<Pn2» J

Descriptive Form: ESC Q <Report When> <;<Report Type» J

Parameter Parameter Meaning
Pnl =0
Pnl = 1
Pnl =2
Pnl =3

Pn2=0
Pn2= 1

Pn2=2

Defaults:

None. Do not report mouse button action.
Down. Report to host when mouse button is depressed.
Up. Report to host when mouse button is released.
Both. Report to host when a mouse button is either
depressed or released.
None. Do not report graphic cursor position.
Char. Report graphics cursor position
in character cell coordinate terms (Row,
Column).
Pixel. Report graphics cursor position
in pixel (screen coordinate terms (X,Y).

Pnl = 0: No mouse button report.
Pn2 = l: Report graphic cursor position in
character cell coordinates (Row, column).

<TEKSTBM> Set Top and Bottom Margins
Syntax Form:

Descriptive Form:

Description:

Defaults:

ESC [<Pn> <; <Pn» r

ESC [<top margin> <; <bottom margin» r

A TEK private command to set top and bottom margins for a split
viewport scrolling region.

The parameter value for the top margin specifies which row of the
screen becomes the top line of the scrolling region. Similarly, the value
for the bottom margin specifies the row of the buffer for the bottom line
of the scrolling region.

The rows preceding the top margin and the rows following the bottom
margin become fixed regions. No scrolling actions occur in the fixed
regions.

If the first parameter is zero, or is omitted, it defaults to one. If the
second parameter is zero, or is omitted, it defaults to 32.

Margins set to 1 and 32

OPERATING SYSTEM REFERENCE 5-33

TERMINAL EMULATION

<us> Character (#31)
Syntax Fonn:

Description:

(Char #31)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<VT> Vertical Tab Character
Syntax Fonn:

Description:

(char #11)

VT has the same effect as (LF), linefeed.

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

KEYBOARD DETAILS

Shift, Ctrl, and Caps Lock Keys
The two SHIFT keys have identical functions. They and the CfRL key are used to access
alternate meanings for other keys.

Pressing CAPS LOCK turns on the LED in the key and puts the keyboard in caps lock mode.
Pressing the key again turns the LED off and removes the tenninal from caps lock mode. While
in caps lock mode, each of the alphabetic keys has its uppercase meaning, regardless of whether a
SHIff key is being held down. Caps lock mode affects only the alphabetic keys.

5-34

TERMINAL EMULATION

Default ANSI Mode Meanings of Keys

Alphanumeric Keys
Table 5-8 shows the ANSI mode meanings for the main part of the keyboard - the
alphanumeric keys.

In this table, control characters are represented by the standard two-or three-letter abbreviations,
given in ANSI X3.4 and ISO 646. Special symbols are represented by the four-character codes
assigned to those symbols in ISO 6937.

Table 5-8
ANSI Meanings of Alphanumeric Keys

Key Name Shifted Unshlrted Control CTRL-Shlfted

t L { L ESC ~

! 1 ! 1 1 !
@ 2 @ 2 2 @

3 # 3 3 #
$ 4 $ 4 4 $
% 5 % 5 5 %

A 6 A 6 6 A

Keyboard Row 1 & 7 & 7 7 &

* 8 * 8 8 *
(9 (9 9 (
) 0) 0 0)
- - - US
+ = + = = +
}] }]] }

RUB DEL DEL DEL DEL

OPERATING SYSTEM REFERENCE 5-35

TERMINAL EMULATION

Table 5-8 (coot.)
ANSI Meanings of Alphanumeric Keys

Key Name Shifted Unshlfted Control CTRL·Shlfted
ESC ESC ESC ESC hoSe

- I - I I -
Q Q q DCI DCI
W W w ETB ETB
E E e ENQ ENQ
R R r DC2 DC2
T T t DC4 DC4

Keyboard Row 2 Y Y Y EM EM
U U u NAK NAK
I I i HT HT
0 0 0 SI SI
P P P DLE DLE . \ . \ FS FS

BS BS BS BS BS
LF LF LF LF LF

Table 5-8 (coot.)
ANSI Meanings of Alphanumeric Keys

Key Name Shifted Unshlfted Control CTRL·Shifted
TAB HT HT HT HT

A A a SOH SOH
S S s DC3 DC3
D D d EOT EOT
F F f ACK ACK
G G g BEL BEL

Keyboard Row 3 H H h BS BS
J J j LF LF
K K k VT VT
L L 1 FF FF

: ; : ; ; :
"

,
"

, ,
"

RTN CR CR CR CR

5·36

TERMINAL EMULATION

Table 5-8 (cont.)
ANSI Meanings of Alphanumeric Keys

Key Name Shifted Unshlfted Control CTRL-Shlfted
Z Z z ~ ~
X X x CAN CAN
C C c ETX ETX
V V v SYN SYN

Keyboard Row 4
B B b STX STX
N N n SO SO
M M m CR CR

< . < • • <
> > >
? I ? I I ?

Row 5 Keys - Spacebar is space in all states.

Numeric Pad Keys
The numeric pad is located to the right of the main set of alphanumeric keys. The codes sent by
these keys are determined by the state of the Keypad Numericl Applications mode setting
(TEKKPNMffEKKPAM). In Numeric mode, the meaning of the keys is that marked on the
key tops; in Applications mode, the numeric pad keys are defined to be control sequences. Table
5-9 shows the Applications mode (TEKKP AM) ANSI meanings of these keys.

Table 5-9
Applications Mode (TEKKPAM) Meanings of Keypad Keys

Key
Key Pad State

Shifted Unshlfted Control Ctrl-Shlfted
0 ESCOp ~up ~cup ~c-,-,-p

1 ESCOq ESCOq ESCOq ESCOq
2 ESCOr ESC Or ESCOr ESCOr
3 ESCOs ESCOs ESCOs ESCOs
4 ESCOt ESCOt ESCOt ESCOt
5 ESCOu ESCOu ESCOu ESCOu
6 ESCOv ESCOv ESCOv ESCOv
7 ESCOw ESCOw ESCOw ESCOw
8 ESCOx ESCOx ESCOx ESCOx
9 ESCOy ESCOy ESCOy ESCOy
- ESCOm ESC Om ESCOm ESCOm . ESCOI ESC 01 ESCOI ESCOI

ESCOn ESC On ESCOn ESCOn
ENT ESCOM ESC OM ESCOM ESCOM

OPERATING SYSTEM REFERENCE 5-37

TERMINAL EMULATION

Joydisk Keys
The joydisk is located to the upper-left of the main set of alphanumeric keys. The function of the
joydisk in ANSI mode is to act in the place of cursor keys. The codes sent by the joydisk are
affected by the Cursor Key mode in union with the Keypad Applications mode. The default
codes are sent unless both TEKKPAM and TEKCKM are set. Table 5-10 shows the ANSI mode
meanings of its "keys".

Table 5-10
ANSI Joydisk Key Meanings

Position
Default Mode TEKPAM and TEKCKM Mode

Shifted Unshifted CTRL CTRL-Shifted Shifted Unshifted CTRL CTRL-Shifted
Up ESC[A ESC [A ESC[A ESC [A ESCO! ESCOA ESC 0 1 ESCOI
Down ESC[B ESC [B ESC [B ESC[B ESCO" ESCOB ESC02 ESC02
Right ESC [C ESC [C ESC [C ESC[C ESCO# ESCOC ESC03 ESC03
Left ESC[D ESC [D ESC[D ESC[D ESCO$ ESCOD ESC04 ESC04

Function Keys
The function keys FI-FI2 are grouped in three groups of four keys and are located in a row above
both the alphanumeric keys and the numeric key pad. Table 5-11 shows the ANSI mode
meanings of these keys.

Table 5-11
ANSI Meanings of Function Keys

Function Key
State

Shifted Unshifted Ctrl Ctrl·Shifted
t'l hoSCU% ~oS~U_~ h~CUj hoSCUj
F2 ESCO& ESCOF ESC06 ESC06
F3 ESCO' ESCOG ESC07 ESC07
F4 ESCO(ESCOH ESC08 ESC08
F5 ESCO) ESCOI ESC 09 ESC09
F6 ESCO* ESCOJ ESCO: ESCO:
F7 ESCO+ ESCOK ESCO; ESC 0 ;
F8 ESCO,L ESCOL ESCO< ESCO<
F9 ESCOP ESCOP ESCOP ESCOP
FlO ESCOQ ESCOQ ESCOQ ESCOQ
Fll ESCOR ESCOR ESCOR ESCOR
F12 ESCOS ESCOS ESCOS ESCOS

5-38

TERMINAL EMULATION

Special Function Keys
There are only two special function keys on the 4400 keyboard. One is the up-arrowlleft-arrow
key in the upper-left comer of the main key area, while the other is the BREAK key in the lower­
right comer of the main key area. While most terminal emulators do not send a character
sequence when the BREAK key is pressed, this emulator does - under the assumption that the
communication program will recognize the sequence and perfonn the appropriate break signal.
Table 5-12 shows the default ANSI mode meaning of these keys.

Table 5-12
ANSI Meanings of Special Function Keys

OPERATING SYSTEM REFERENCE 5-39

Section 6

ACCESSING SYSTEM RESOURCES
INTRODUCTION
The 4400 series hardware can be accessed directly, but in general, this tends to be cumbersome
and error-prone. The operating system has embedded within it device drivers, or software
routines, that offer a uniform interface to the operating system. Most programs should interface
with the 4400 series hardware through these device drivers.

This section discusses the device drivers and system calls to the 4400 series hardware.

DEVICE DRIVERS
Device drivers are divided into two types: block-oriented and character-oriented. Block-oriented
devices include the disks and other peripherals on the SCSI bus. Character-oriented devices
include the console, the communications port, the sound generator, the printer port, the optional
network interface, and special devices for "raw" access to the block-oriented devices. Each of
these devices is identified by a file in the /dev directory.

The system calls ttyget and ttyset can be used with the console, communications port, sound, and
printer devices. Descriptions of the parameters to these calls are found in Section 4, System
Calls, of the 4400 Series Assembly Language Reference.

SCSI Peripherals
A SCSI bus gives access to the block-oriented devices. These devices include such things as
winchester disks, floppy disks, and (optional) streaming tape drives.

The /dev SCSI peripheral devices are:

• disk. The winchester disk with the system files.

• diskl .. diskn. Optional winchester disks.

• floppy. Floppy disk drive.

The standard 4400 series contains a single floppy disk (ldev!floppy) and a winchester disk mass
storage device (ldev/disk). Option 20 contains an additional 40 Megabyte winchester disk and a
streaming tape drive.

Device /dev/disk is the standard system device and is the default device from which to boot the
system. You must use the interactive boot procedure to boot from another device.

Console Device
The device /dev/console supports the 4400 display and keyboard. It is connected to a terminal
emulator that acts like an industry-standard terminal (described in Section 5 of this manual).

To read and write the terminal settings and other parameters of this device, use the ttyget and
ttyset system calls, or the conset utility.

OPERATING SYSTEM REFERENCE 6-1

ACCESSING SYSTEM RESOURCES

Communications Port
The device /dev/comm supports the RS-232C host communications port. Adjustments can be
made to the baud rate, number of stop bits, parity, and XONIXOFF or DTR flow control. It can
also cause new input or completion of output to generate a signal, as well as read the number of
characters pending in the input and output queues.

The ttyget and ttyset system calls, and the commset utility, allow reading and writing the
communications port parameters.

Sound Generator
The device /dev/sound is the 4400 sound generator. By sending a formatted byte stream to this
device (a TI 76496 sound generator chip), it can cause the 4400 to produce sounds.

This device is a write-only device. An attempt to read it will return an error. It is also an
exclusive-use device and may be opened by only one task at a time.

The ttyget and ttyset system calls can change operation settings and examine device status.

Controlling the Sound Device
Idev/sound expects a stream of bytes in the following form:

\n,e,e,e ... e,t

or

\O,tempo

with the following values:

n

e

t

tempo

A single byte specifying the number of commands to follow.

A single byte binary command to the sound chip. (See the following discussion on
sound chip operation and commands.>

A byte value specifying the length of time to hold this set of commands. T is in units
of tempo set by the second format.

A 16-bit (word) value of time with a unit value of 16.667 ms.

/dev/sound Operation and Commands
The sound chip contains three frequency generators, each coupled to a programmable attenuator.
It also contains a white-noise generator (a shift register with an exclusive-OR feedback network)
that contains a frequency control and programmable attenuator.

6-2

ACCESSING SYSTEM RESOURCES

Frequency Control
Changing the value in a frequency generator requires two command bytes. Byte 1 contains the
address information (which frequency generator to alter) and the low order 4 bits of the value to
store. Byte 2 contains the high order 6 bits to set the frequency. Thus, the two bytes contain a 3-
bit address and a 10-bit binary number to set the frequency to be generated.

The frequency is equal to the clocking rate of the chip (which is 3.15 MHz) divided by thirty-two
times the binary number that is stored in the frequency generator.

Table 6-1 shows the bit assignments in Byte 1 and Table 6-2 shows the bit assignments in byte 2.

Controlling Attenuation

Table 6-1
Frequency Selection (BYTE 1)

Bit Type Description

~ 1_ '!'hisbit 15 always 1
I R2 Register address bit 2
2 RI Register address bit I
3 RO Register address bit 0
4 F3 Frequency data bit 3
5 F2 Frequency data bit 2
6 FI Frequency data bit I
7 FO Frequency data bit 0

Table 6-2
Frequencey Selection (BYTE 2)

Bit Type Description
U U This~t 1S alwayso
I x Unused
2 F9 Frequency data bit 9
3 F8 Frequency data bit 8
4 F7 Frequency data bit 7
5 F6 Frequency data bit 6
6 F5 Frequency data bit 5
7 F4 Frequency data bit 4

Control of the attenuation on any frequency generator can be done with a single command byte.
This byte contains a 3-bit field to select the attenuator and a 4-bit field to specify the amount of
attenuation. Four bits give you 16 possible attenuations. Table 6-3 shows the attenuation
settings and Table 6-4 shows the bit assignments for the attenuation control byte.

OPERATING SYSTEM REFERENCE 6-3

ACCESSING SYSTEM RESOURCES

A3
0
0
0
0
1
1

A2
0
0
0
1
0
1

Table 6-3
Attenuation Control

Al AO Attenuation Wel2bt (dB)
0 0 ON(FUU vOlum~
0 1 2
1 0 4
0 0 8
0 0 16
1 1 Off

Table 6-4
Attenuation Byte Bit Assignments

Bit Type Description
0 I Always 1
1 R2 Register address bit 2
2 Rl Register address bit 1
3 RO Register address bit 0
4 A3 Attenuation control bit 3
5 A2 Attenuation control bit 2
6 Al Attenuation control bit I
7 AO Attenuation control bit 0

Controlling the Noise Generator

The noise generator consists of a noise source and an attenuator. Control can be maintained over
the type of feedback in the exclusive-OR network, the shift rate, and the attenuator itself.

Table 6-5 shows how to control the feedback, Table 6-6 shows the shift-rate (frequency) control,
and Table 6-7 shows the bit assignments for the noise generator command byte.

6-4

Table 6·5
Noise Feedback Control

I F! I COiCfiuratlon I I ~ I peri IC noise I
. . White noise .

Control Registers

ACCESSING SYSTEM RESOURCES

Table 6-6
Noise Frequency Control

NFl NFO Shift Rate
U U 4Y:lllS

0 1 24609
1 0 12304
1 1 Tone generator 3 output

Table 6-7
Noise-Control-Byte Bit Assignments

Bit Type Description
U 1 Always 1
1 R2 Register address bit 2
2 R1 Register address bit 1
3 RO Register address bit 0
4 x Unused
5 FB Feedback control bit
6 NFl Shift rate control bit 1
7 NF2 Shift rate control bit 0

The sound chip has eight internal registers that determine whether the byte(s) sent controls the
frequency or attenuation of the three tone generators or the control or attenuation of the noise
generator. The destinations for all addressed bytes are given in Table 6-8.

Table 6-8
Control Register Addresses

R2 Rl RO Address register
0 0 0 lone 1 frequency
0 0 1 Tone 1 attenuation
0 1 0 Tone 2 frequency
0 1 1 Tone 2 attenuation
1 0 0 Tone 3 frequency
1 0 1 Tone 3 attenuation
1 1 0 Noise control
1 1 1 Noise attenuation

OPERATING SYSTEM REFERENCE 6-5

ACCESSING SYSTEM RESOURCES

Sound Examples
The following examples show how to control the sound device by sending bytes to it. The "e"
program in example 1 outputs an array of bytes to the standard output device. Redirect the
compiled program output with the command:

sound-example > /dev/sound

The data in the array controls the sound device output. To determine what the program data
means to the sound output device, each byte is described in the text following the example. By
using Tables 6-1 through 6-8, sound effects or music can be created on the 4400 series products.

6-6

*
*
*

Sound generation routine sample.
*
*
*

#include <stdio.h>

int buf[] = {0,0,59, /* Set the tempo */
2,175,13,0,/* Set the frequency */
1,176,1, /* Set the volume */
1,188,2, /* Reduce volume 2 beats * /
1,191,1, /* Turn voice off */
1,228,0, /* Turn on white noise */
1,249,2, /* Reduce volume 2 beats */

/* Replace 249 with 244 */
/* for greater volume */

1,255,1}; /* Turn voice off */
main ()

int i;
for (i = O;i<25 ;i++) /* Set up a FOR loop to */

putchar(buf[i]);/* Output the data in */
/* the array */

Example 6-1. Sound Example.

ACCESSING SYSTEM RESOURCES

Set the tempo to 1 beat per second (1000 millisec/beat):

Byte 1 o "Tempo word follows."

Byte 2 o "High order byte = (1000 div 16.667) div 256."

Byte 3 59 "Low order byte = (1000 div 16.667) mod 256."

Set the frequency for voice 2 to be 440 Hz:

Byte 4 2 "2 command bytes follow."

Byte 5 =175 1 010 III 1

"Always 1"

"Voice 2
frequency"

"Low order 4 bits calculated as
(3, 15 ° , ° 0 ° di v (32 * 4 4 0)) di v 1 6 . "

Byte 6 = 13 o ° o 0 110 1

"Always 0"

"Unused"

"High order 6 bits:
(3,150,000 div(32 * 440)) div 16."

Byte 7 o "Hold this set of commands ° beats."

OPERATING SYSTEM REFERENCE 6-7

ACCESSING SYSTEM RESOURCES

Play voice 2 at full volume for 1 beat:

Byte 8 1 "1 command follows."

Byte 9 =176 1 011 00 0 0

"Always 1"

"Voice 2
attenuation"

"Leave it all the way on."

Byte 10 1 "Play for 1 beat."

Turn the volume of voice 2 down by 12 dB and play for 2 beats:

Byte 11 1 "1 command byte follows."

Byte 12 =188 1 011 110 0

"Always 1"

"Voice 2
attenuation"

"Attenuate by 12 dB."

Byte 13 = 2 "Hold for 2 beats."

Turn voice 2 off so it won't play forever:

Byte 14 1 "1 command byte follows."

Byte 15 =191 1 0 1 1 1 1 1 1

"Turn voice 2 off."

Byte 16 1 "Hold for 1 beat."

6-8

ACCESSING SYSTEM RESOURCES

Play white noise (hissing sound):

Byte 17 1 "1 command byte follows"

Byte 18 =228 "1 110 o 1 o 0"

"Always 1" "Shift rate = 0 (least
coarse hissing sound)."

Byte 19 o

"Noise
control"

"Unused"

"Hold 0 beats."

"White noise"

Turn down the volume 18 dB and hold for 2 beats:

Byte 20 1 "1 command follows"

Byte 21 =249 1 111 1 0 0 1

"Always 1"

"Noise
attenuation"

"Attenuate by 18 dB."

Byte 22 = 2 "Hold 2 beats."

Turn noise off:

Byte 23 1 "1 command follows"

Byte 21 =255 1 111 111 1

"Always 1"

"Noise
attenuation"

"Attenuate by 30 dB."

Byte 25 1 "Hold 1 beat."

OPERATING SYSTEM REFERENCE 6-9

ACCESSING SYSTEM RESOURCES

Printer Port
The device /dev/printer provides an interface to the 4400 series parallel-interface printer port.
This port provides a Centronics-compatible parallel port that can drive most inexpensive dot­
matrix (and some letter-quality) printers.

/dev/printer accepts character streams and recognizes the ANSI X3.64 Select Graphic Rendition
escape sequences for bold or italic characters.

These devices are write-only; any attempt to read them will return an error. They are exclusive­
use devices and may be opened by only one task at a time.

The system calls ttyget and ttyset can be used to examine device status and change operation
settings.

Other Devices
The / dev directory contains other entries for devices supported by the operating system:
diskc Raw system disk
disklc .. disknc Raw optional winchester disk
floppyc Raw floppy disk drive
tapec Raw streaming tape drive
null Null device
pmem Physical memory
smem System memory
swap Swap space on winchester disk

These devices are all character-oriented. The raw versions of the peripheral devices provide
access to them as simple character streams without file systems. The null device may be used as
a data sink. The memory devices can be used to inspect and modify the system' s memory.

These devices, with the exception of /dev/null, are reserved for use by system programs.

6-10

CAUTION

Be very careful when you use these devices because
errors in programming them may crash the operating
system and destroy the disk file structure.

ACCESSING SYSTEM RESOURCES

DISPLAY, MOUSE, AND KEYBOARD SUPPORT
The display of the 4400 series products is dependent upon the hardware design. Refer to the
appendices for a description of the display of each product. The operating system controls access
to the display and is consistant throughout the product family. The operating system also
supports the creation and movement of a display curser. Infonnation about mouse and keyboard
event processing can be found in the 4400 Series Assembly LAnguage Reference.

The 4400 series display uses Smalltalk-80 conventions. The upper-left comer of the display has
coordinates (0,0), while the lower-right comer has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk switch contacts. The design of the event mechanism is patterned closely after a
similar mechanism described on pages 648-650 of the book Smalltalk-80: The LAnguage and Its
Implementation.

Cursor and Mouse Tracking
The cursor is a 16 X 16 bit-map that is displayed by logically ~Ring it into the display bit-map.
The contents of the area under the cursor are saved and they are restored when the cursor is
moved. The operating system allows the cursor's position to track the motion of the mouse.
When this feature is enabled, the operating system will automatically move the cursor whenever
the mouse is moved.

The mouse position is not allowed to exceed certain bounds when the cursor is linked to the
mouse. The default bounds are the virtual display coordinates. The user may change these
bounds and allow the cursor to be moved off the vit:tual display.

FLOATING POINT SUPPORT
The operating system provides access to the floating point hardware. Floating point values are in
IEEE format Both 32-bit single precision and 64-bit double precision fonnats are supported.
For more infonnation about floating point support, refer to 4400 Series Assembler LAnguage
Programmers Reference.

OPERATING SYSTEM REFERENCE 6-11

Appendix A
4404 HARDWARE DEPENDENCIES

This appendix is specifically for the 4404 Artificial Intellegence Machine, containing infonnation
about the display and memory organization. Section 6 describes how to access the hardware with
the software in the 4400 series family.

DISPLAY SUPPORT
The 4404 display is a 1024 X 1024 virtual display viewed through a 640 X 480 physical display
viewport. The relationship between the virtual display and the display viewport is shown in
Figure A-I. The operating system includes support that allows positioning and smooth panning
of the viewport over the virtual display. The operating system also supports the creation and
movement of a display cursor.

The 4404 display uses Smalltalk-80 conventions. The upper-left comer of the display has
coordinates (0,0), while the lower-right comer has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk switch contacts. The design of the event mechanism is patterned closely after a
similar mechanism described on pages 648-650 of the book Smalltalk-80: The Language and Its
Implementation.

Display Panning
The operating system allows the 640 X 480 hardware display viewport to be positioned anywhere
on the virtual display as long as the upper left comer has an X-coordinate less than 383 and a Y­
coordinate less than 543.

The operating system supports the panning of the viewport over the virtual display under control
of the mouse and joy disk. When joydisk panning is enabled, pushing the top of the joydisk
causes the Y -coordinate to decrease by 5 pixels during each vertical sync interrupt, while pushing
the bottom causes it to increase a like amount. Pushing the left side of the joydisk causes the X­
coordinate to decrease 5 pixels per interrupt; while pushing the right side of the joydisk causes it
to increase. Joydisk panning ceases in a particular direction when the coordinate for that
direction reaches zero or its maximum value.

The cursor remains at a fixed position on the virtual display while the viewport is panned by the
joydisk. When cursor panning is enabled, moving the cursor will also cause the viewport to pan
so that the cursor is always located within the physical viewport. This allows the mouse to pan
the viewport position because the cursor position is usually linked to mouse movement.

OPERATING SYSTEM REFERENCE A-I

4404 HARDWARE DEPENDENCIES

(0,0) (639,0) 1023,0)

~-----------------r------------+-
This i8 the default
screen position.

(po

(0,4 79) 1-+--+-",~?ffl?ffl7ffl~";

\

(0,1023)

\
\

\
\
\
\
\

\

,

\
\

\
\

\
\
\
\

\
\

\
\

'\
'\

'\
'\

(1023,1023) ,
\

\
\

\
\

\

'\
'\

1024x1024
VIRTUAL DISPLAY

BIT-MAP

'\
'\

'\

AREA SEEN BY DISPLAY
(PANNED FROM

DEFAULT POSITION)

'\

" '\
'\

'\
'\

'\ ,
\ F

'I. "

A-2

\
\
\ , ,

\
\ ,

,
\

~
\.

1 tion)

640x480
PHYSICAL DISPLAY

!
'-' LJ I~. -640PIXELS~~1

Figure A-I. 640 X 480 Window Into 1024 X 1024 Bit-Map.

-•
• -
~

-,-

480

PIXELS

1-"-

5603·2

4404 HARDWARE DEPENDENCIES

MEMORY USE

Overall Address Space
The 68010 processor on the 4404 is capable of addressing 16 Mb of memory. Of this, the 4404
recognizes the lower 8 Mb. (All addresses given in this discussion will be hexadecimal unless
stated otherwise.) The 4404 operating system uses a virtual memory scheme whereby 8 Mb of
virtual memory is mapped into the 4404's physical memory in 4 Kb increments. To a
programmer working through the operating system, it appears that the entire 8 Mb address space
(ranging from 000000 through IFFFFF) is available.

Physical Memory
The standard 4404 contains 1 Mb of physical RAM in addresses 000000 through OFFFFF.
Option 1 adds an additional 1Mb of physical memory in addresses 100000 through 2FFFFF.

Addresses 200000 through 5FFFFF are reserved for future expansion.

Display Memory
The 4404 display memory begins at address 600000 and occupies through address 6FFFFF. The
virtual display begins in the upper-left comer at address 600000 and proceeds in 1024 (decimal)
lines of 64 (decimal) 16-bit (decimal) words. Each word has the most significant bit first, thus
each word controls 16 pixels on the display.

1/0 and ROM Memory Space
The memory segment from 700000 through 7FFFFF is dedicated to ROM, 110, and various
utilities. It consists of eight 128 Kb pages arranged as:

700000 -- 71FFFF Spare 0
720000 -- 73FFFF Spare 1
740000 -- 75FFFF Boot ROM
760000 -- 77FFFF Debug ROM space (for factory use)
780000 -- 79FFFF Processor Board 110 (treated later)
7 AOOOO -- 7BFFFF Peripheral Board 110 (treated later)
7COOOO -- 7FFFFF EPROM application space

OPERATING SYSTEM REFERENCE A-3

#04 HARDWARE DEPENDENCIES

Processor Board 1/0

780000 --781FFF
782000 -- 783FFF
784000--78SFFF
786000 -- 787FFF
788000 -- 789FFF
78AOOO -- 78BFFF
78COOO -- 78DFFF
78EOOO --78FFFF

Map Control Registers
Video Address Registers
Video Control Registers
Spare
Sound
Floating-Point Hardware
Debug ACIA
Spare

Peripheral Board 1/0

7 AOOOO -- 7 AFFFF
7BI000 --7BIFFF
7B2000 -- 7B3FFF
7B4000--7BSFFF
7B6000 -- 7B7FFF
7B8000 --7B9FFF
7BAOOO -- 7BBFFF
7BCOOO -- 7BDFFF
7BEOOO -- 7BFFFF

A-4

Reserved for future expansion
Diagnostic registers
Printer
Serial lIO
Mouse
Timer
Calendar
SCSI bus address registers
SCSI

Appendix B
4405 HARDWARE DEPENDENCIES

This appendix is specifically for the 4405 Artificial Intellegence Machine, containing information
about the display and memory organization. Section 6 describes how to access the hardware with
the software in the 4400 series family.

DISPLAY SUPPORT
The 4405 display is a 1024 X 1024 virtual display viewed through a 640 X 480 physical display
viewport. The relationship between the virtual display and the display viewport is shown in
Figure B-1. The operating system includes support that allows positioning and smooth panning
of the viewport over the virtual display. The operating system also supports the creation and
movement of a display cursor.

The 4405 display uses Smalltalk-80 conventions. The upper-left corner of the display has
coordinates (0,0), while the lower-right comer has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk switch contacts. The design of the event mechanism is patterned closely after a
similar mechanism described on pages 648-650 of the book Smalltalk-80: The Language and Its
Implementation.

Display Panning
The operating system allows the 640 X 480 hardware display viewport to be positioned anywhere
on the virtual display as long as the upper-left comer has an X-coordinate less than 383 and a Y­
coordinate less than 543.

The operating system supports the panning of the viewport over the virtual display under control
of the mouse and joydisk. When joydisk panning is enabled, pushing the top of the joydisk
causes the Y -coordinate to decrease by 5 pixels during each vertical sync interrupt, while pushing
the bottom causes it to increase a like amount. Pushing the left side of the joydisk causes the X­
coordinate to decrease 5 pixels per interrupt; while pushing the right side of the joydisk causes it
to increase. Joydisk panning ceases in a particular direction when the coordinate for that
direction reaches zero or its maximum value.

The cursor remains at a fixed position on the virtual display while the viewport is panned by the
joydisk. When cursor panning is enabled, moving the cursor will also cause the viewport to pan
so that the cursor is always located within the physical viewport. This allows the mouse to pan
the viewport position because the cursor position is usually linked to mouse movement.

OPERATING SYSTEM REFERENCE B-1

4405 HARDWARE DEPENDENCIES

(o,o)+ _______ ~(6_39r_,0.;".) _____ -+-1023,0)

(0,1023)

This iB the default
Bcreen position.

\
\
\

\
\
\
\
\

\

\

\
\

\
\
\
\

\
\
\

\

\
\
\
\
\

\
\
\

r

1\
\

~

\
\

\
\

"-
'\

'\
'\

(1023,1023) ,
\

ltlon)

1 .

\
\

\
\

\

I

'\
"-

"

1 024x1 024
VIRTUAL DISPLAY

BIT-MAP

AREA SEEN BY DISPLAY
(PANNED FROM

DEFAUL T POSITION)

'\
'\

"-
"-

"-
'\

'\
"-

'\
'\

'-

"r-

1

r-•
•
'-

640x480
PHYSICAL DISPLAY

II'4--C' -640 PIXELS ~~I

Figure B-1. 640 X 480 Window Into 1024 X 1024 Bit-Map.

B-2

-

480

PIXELS

I--L

./

5603-2

4405 HARDWARE DEPENDENCIES

MEMORY USE

Overall Address Space
The 68020 processor on the 4405 is capable of addressing a 32 Mb logical address range of
memory. Of this, the 4405 recognizes the lower 16 Mb. (All addresses given in this discussion
will be hexadecimal unless stated otherwise.) The 4405 operating system uses a virtual memory
scheme whereby 32 Mb of virtual memory is mapped into the 4405's physical memory in 4 Kb
increments. To a programmer working through the operating system, it appears that the entire 32
Mb address space (ranging from 000000 through FFFFFF) is available.

Physical Memory
The standard 4405 contains 2 Mb of physical RAM in addresses 000000 through IFFFFF.
Option 2/4 adds an additional 2/4 Mb of physical memory in addresses 200000 through 6FFFFF.

Addresses 700000 through DFFFFF are reserved for future expansion.

Display Memory
The 4405 display memory begins at address EOOOOO and occupies through address EFFFFF. The
virtual display begins in the upper-left comer at address EOOOOO and proceeds in 1024 (decimal)
lines of 64 (decimal) 16-bit (decimal) words. Each word has the most significant bit first, thus
each word controls 16 pixels on the display.

1/0 and ROM Memory Space
The memory segment from FOOOOO through FFFFFF is dedicated to ROM, I/O, and various
utilities. It consists of eight 128 Kb pages arranged as:

FOOOOO -- FIFFFF Spare 0
F20000 -- F3FFFF Spare 1
F40000 -- F5FFFF Boot ROM
F60000 -- F7FFFF Debug ROM space (for factory use)
F80000 -- F9FFFF Processor Board I/O (treated later)
FAOOOO -- FBFFFF Peripheral Board I/O (treated later)
FCOOOO -- FFFFFF EPROM application space

OPERATING SYSTEM REFERENCE B-3

4405 HARDWARE DEPENDENCIES

Processor Board 1/0

FSOOOO -- FSIFFF Map Control Registers
FS2000 -- FS3FFF Video Address Registers
FS4000 -- FS5FFF Video Control Registers
FS6000--FS7FFF Sp~e
FSSOOO -- FS9FFF Sound
FSAOOO -- FSBFFF Floating-Point Hardware
FSCOOO -- FSDFFF Debug ACIA
FSEOOO--FSFFFF Spare

Peripheral Board 1/0

FAOOOO -- FAFFFF
FBIOOO -- FBIFFF
FB2000--FB3FFF
FB4000 -- FB5FFF
FB6000--FB7FFF
FBSOOO -- FB9FFF
FBAOOO -- FBBFFF
FBCOOO -- FBDFFF
FBEOOO -- FBFFFF

B-4

Reserved for future expansion
Diagnostic registers
Printer
Serial I/O
Mouse
Timer
Calend~
SCSI bus address registers
SCSI

Appendix C
4406 HARDWARE DEPENDENCIES

This appendix is specifically for the 4406 Artificial Intellegence Machine, containing infollllation
about the display and memory organization. Section 6 describes how to access the hardware with
the software in the 4400 series family.

DISPLAY SUPPORT
The 4406 display is a 1280 X 1024 raster display. The operating system supports the creation
and movement of a display cursor.

The 4406 display uses Smalltalk-80 conventions. The upper-left comer of the display has
coordinates (0,0), while the lower-right comer has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk switch contacts. The design of the event mechanism is patterned closely after a
similar mechanism described on pages 648-650 of the book Smalltalk-80: The Language and Its
Implementation.

MEMORY USE

Overall Address Space
The 68020 processor on the 4406 is capable of addressing a 32 Mb logical address range of
memory. Of this, the 4406 recognizes the lower 16 Mb. (All addresses given in this discussion
will be hexadecimal unless stated otherwise.> The 4406 operating system uses a virtual memory
scheme whereby 32 Mb of virtual memory is mapped into the 4406's physical memory in 4 Kb
increments. To a programmer working through the operating system, it appears that the entire 32
Mb address space (ranging from 000000 through FFFFFF) is available.

PhYSical Memory
The standard 4406 contains 2 Mb of physical RAM in addresses 000000 through IFFFFF.
Option 2/4 adds an additional 214 Mb of physical memory in addresses 200000 through 6FFFFF.

Addresses 700000 through DFFFFF are reserved for future expansion.

OPERATING SYSTEM REFERENCE C-l

4406 HARDWARE DEPENDENCIES

Display Memory
The 4406 display memory begins at address EOOOOO and occupies through address EFFFPF. The
virtual display begins in the upper-left comer at address EOOOOO and proceeds in 1024 (decimal)
lines of 64 (decimal) 16-bit (decimal) words. Each word has the most significant bit first, thus
each word controls 16 pixels on the display.

I/O and ROM Memory Space
The memory segment from FOOOOO through FFFPFF is dedicated to ROM, 110, and various
utilities. It consists of eight 128 Kb pages arranged as:

FOOOOO -- FIFFFF Spare 0
F20000 -- F3FFFF Spare 1
F40000 -- F5FFFF Boot ROM
F60000 -- F7FFFF Debug ROM space (for factory use)
F80000 -- F9FFFF Processor Board 110 (treated later)
FAOOOO -- FBFFFF Peripheral Board 110 (treated later)
FCOOOO -- FFFFFF EPROM application space

Processor Board I/O

F80000 -- F81FFF
F82000 -- F83FFF
F84000 -- F85FFF
F86000 -- F87FFF
F88000 -- F89FFF
F8AOOO -- F8BFFF
F8COOO -- F8DFFF
F8EOOO--F8FFFF

Map Control Registers
Video Address Registers
Video Control Registers
Spare
Sound
Floating-Point Hardware
Debug ACIA
Spare

Peripheral Board I/O

FAOOOO -- FAFFFF
FBI000 -- FBIFFF
FB2000 -- FB3FFF
FB4000 -- FB5FFF
FB6000 -- FB7FFF
FB8000 -- FB9FFF
FBAOOO -- FBBFFF
FBCOOO -- FBDFFF
FBEOOO -- FBFFFF

C-2

Reserved for future expansion
Diagnostic registers
Printer
Serial 110
Mouse
Timer
Calendar
SCSI bus address registers
SCSI

Abort 4-20
<ACK>

Acknowledge Character (#6) 5-3
Address space A-3, B-3, C-l
ANSI Command

Acknowledge Character (#6) 5-3
ANSI Command

Auto-Repeat Mode 5-25
ANSI Command

Auto-Wrap Mode 5-26
ANSI Command
backspace character 4-3,5-3

ANSI Command
Bell Character 5-3

ANSI Command
Blinking Cursor Mode 5-26

ANSI Command
Block Cursor Mode 5-26

ANSI Command
Carriage Return Character 5-5

ANSI Command
Character (#0) 5-17

ANSI Command
Character (#1) 5-23

ANSI Command
Character (#127) 5-9

ANSI Command
Character (#16) 5-9

ANSI Command
Character (#17) 5-7

ANSI Command
Character (#IS) 5-S

ANSI Command
Character (#19) 5-S

ANSI Command
Character (#2) 5-24

ANSI Command
Character (#20) 5-S

ANSI Command
Character (#21) 5-16

ANSI Command
Character (#22) 5-25

ANSI Command
Character (#23) 5-12

ANSI Command
Character (#24) 5-3

4400 OPERATING SYSTEM REFERENCE

Index

ANSI Command
Character (#25) 5-11

ANSI Command
Character (#26) 5-24

ANSI Command
Character (#27) 5-12

ANSI Command
Character (#28) 5-13

ANSI Command
Character (#29) 5-13

ANSI Command
Character (#3) 5-13

ANSI Command
Character (#30) 5-19

ANSI Command
Character (#31) 5-34

ANSI Command
Character (#4) 5-12

ANSI Command
Character (#5) 5-12

ANSI Command
Control Representation Mode 5-5

ANSI Command
Cursor Backward 5-5

ANSI Command
Cursor Backward Tab 5-4

ANSI Command
Cursor Down 5-6

ANSI Command
Cursor Forward 5-6

ANSI Command
Cursor Horizontal Tab 5-4

ANSI Command
Cursor Key Mode 5-27

ANSI Command
Cursor Position 5-6

ANSI Command
Cursor Position Report 5-4

ANSI Command
CursorUp 5-7

ANSI Command
Delete Character 5-8

ANSI Command
Delete Line 5-9

ANSI Command
Device Attributes 5-7

IX-l

Index

ANSI Command
Device Status Report 5-10

ANSI Command
Disable Manual Input 5-9,5-12

ANSI Command
Enable Manual Input 5-9,5-12

ANSI Command
Erase Character 5-10

ANSI Command
Erase in Display 5-11

ANSI Command
Erase in Line 5-11

ANSI COMMAND
escape character 4-3

ANSI Command
Form Feed Character 5-13

ANSI Command
Graphic Cursor Position Report 5-28

ANSI Command
Horizontal and Vertical Position 5-14

ANSI Command
horizontal tab character 4-4

ANSI Command
Horizontal Tab Character 5-13

ANSI Command
Horizontal Tab Set 5-14

ANSI Command
Identify Terminal 5-28

ANSI Command
Index 5-15

ANSI Command
Insert Character 5-14

ANSI Command
Insert Line 5-14

ANSI Command
Insertion/Replacement Mode 5-15

ANSI Command
Keyboard Action Mode 5-15

ANSI Command
Keypad Application Mode 5-28

ANSI Command
Keypad Numeric Mode 5-28

ANSI Command
Line Feed Character 5-16

ANSI Command
Line-Feed/New-Line Mode 5-16

ANSI Command

IX-2

Mouse Button and Graphic Cursor
Position Reporting 5-29

ANSI Command
NextLine 5-16

ANSI Command
Origin Mode 5-31

ANSI Command
Private Use 1 5-17

ANSI Command
Request Graphic Cursor Position Report 5-32

ANSI Command
Request Terminal Parameters 5-31

ANSI Command
Reset Mode 5-18

ANSI Command
Reset to Initial State 5-18

ANSI Command
Restore Cursor 5-31

ANSI Command
Reverse Index 5-17

ANSI Command
Save Cursor 5-32

ANSI Command
Screen Mode 5-32

ANSI Command
Select Character Set 5-20

ANSI Command
Select Graphic Cursor Report Type 5-33

ANSI Command
Select Graphic Rendition 5-21

ANSI Command
<Select-Code> 5-20

ANSI Command
Send/Receive Mode 5-24

ANSI Command
Set Mode 5-22

ANSI Command
Set Top and Bottom Margins 5-33

ANSI Command
Shift In Character 5-22

ANSI Command
Shift Out Character 5-23

ANSI Command
Space Character 5-24

ANSI Command
Tabulation Clear 5-25

ANSI Command
Vertical Tab Character 5-34

ANSI Commands 5-3
ANSI X3.64 escapes 6-10

Argument 4-6
Attenuation 6-3
Backup file 4-3,4-5
Beats 6-9
<BEL>
Bell Character 5-3

Boot procedure 6-1
<BS>
Backspace Character 5-3

<CAN>
Character (#24) 5-3

<CBT>
Cursor Backward Tab 5-4

Centronics-compatible port 6-10
Change 4-8
<CRT>
Cursor Horizontal Tab 5-4

Command constant 4-11
Commset 6-2
Configuration file 4-13
Conset 6-1
Contro1- 4-4
Contro1-C 4-4
Control-D 4-4
Control-R 4-9
Coordinates, display 6-11, A-I, B-1, C-l
<CPR>
Cursor Position Report 5-4

<CR>
Carriage Return Character 5-5

Crash 6-10
<CRM>
Control Representation Mode 5-5

<CUB>
Cursor Backward 5-5

<CUD>
Cursor Down 5-6

<CUF>
Cursor Forward 5-6

<CUP>
Cursor Position 5-6

Cursor 6-11, A-I, B-1, C-l
Cursor
operation 6-11

<CUU>
Cursor Up 5-7

<DA>
Device Attributes 5-7

4400 OPERATING SYSTEM REFERENCE

dBs 6-8
<DC1>
Character (#17) 5-7

<DC2>
Character (#18) 5-8

<DC3>
Character (#19) 5-8

<DC4>
Character (#20) 5-8

<DCH>
Delete Character 5-8

Decibels 6-8

Character (#127) 5-9

Delimiter 4-6
/dev 6-1
/dev 6-10
/dev/cornrn 6-2
/dev/console 6-1
/dev/disk 6-1
Device driver, block-oriented 6-1
Device driver, character-oriented 6-1
Device drivers 6-1
Device port 6-10
/dev/null 6-10
/dev/printer 6-10
/dev/sound 6-2
Directory 4-12
Disk-oriented editor 4-5
Display cursor A-I, B-1, C-l
Display memory A-3, B-3, C-2
Dk1 4-11
Dk2 4-11
<DL>
Delete Line 5-9

<DLE>
Character (#16) 5-9

<DM!>
Disable Manual Input 5-9

Dot-matrix printer 6-10
<DSR>
Device Status Report 5-10

<ECH>
Erase Character 5-10

<ED>
Erase in Display 5-11

Edit 4-1,4-20
Edit buffer 4-2,4-5,4-8,4-10,4-16

Index

IX-3

Index

Edit, line-oriented 4-1
Edit, screen-oriented 4-1
Editor 4-1
<EL>
Erase in Line 5-11

Character (#25) 5-11

<EM!>
Enable Manual Input 5-12

End of line 4-9
End-of-file 4-1,4-2,4-20
<ENQ>
Character (#5) 5-12

Environment 4-12
<EOT>
Character (#4) 5-12

Esave 4-12
<ESC>
Character (#27) 5-12

Eset 4-13
<ETB>
Character (#23) 5-12

<ETX>
Character (#3) 5-13

Event manager 6-11, A-I, B-1, C-l
Expand 4-9
<FF>
Form Feed Character 5-13

Fill character 4-9
Find 4-9
Floating point

IEEE number format 6-11
Floating point

precision 6-11
Floating point

support 6-11
Floppy disk drive 6-1
Frequency generator 6-3
<FS>
Character (#28) 5-13

<GS>
Character (#29) 5-13

Hardware 6-1
Header 4-13
<HT>
Horizontal Tab Character 5-13

<HTS>
Horizontal Tab Set 5-14

IX-4

<HVP>
Horizontal and Vertical Position 5-14

<lCH>
Insert Character 5-14

<lL>
InsertLine 5-14

<IND>
Index 5-15

Insert 4-2
Interactive events 6-11, A-I, B-1, C-l
Interface 6-1
110 memory space A-3, B-3, C-2
110 redirection 4-6
<IRM>
Insertion/Replacement Mode 5-15

Joydisk A-I, B-1
Kl 4-14
K2 4-14
<KAM>
Keyboard Action Mode 5-15

Keyboard description
Alphanumeric keys 5-35

Keyboard description
Caps lock key 5-34

Keyboard description
Control key 5-34

Keyboard description
Function keys 5-38

Keyboard description
Joydisk keys 5-38

Keyboard description
Numeric keypad 5-37

Keyboard description
Shift key 5-34

Keyboard description
Special keys 5-39

<LF>
Line Feed Character 5-16

Line delete character 4-4
Line number flag 4-16
Line 4-7
lkl 4-15
Ik2 4-15
<LNM>
Line-Feed/New-Line Mode 5-16

Log 4-21
Maximum line number 4-7
Memory devices 6-10

Memory use A-3, B-3, C-l
Mouse A-I, B-1
<NAK>
Character (#21) 5-16

<NEL>
NextLine 5-16

Next 4-9
Noise generator 6-4
<NUL>
Character (#0) 5-17

Null device 6-10
Numbers 4-16
Panning A-I, B-1
Parallel port 6-10
Path name 4-1,4-2
Peripheral devices 6-1, 6-10
Phyical memory A-3, B-3, C-l
Print 4-9
Printer device 6-10
Prompt 4-1
<PUb
Private Use 1 5-17

Quit 4-4
RAM memory A-3, B-3, C-l
Renumber 4-16
<Report-Syntax-Mode> 5-17
<RI>
Reverse Index 5-17

<RIS>
Reset to Initial State 5-18

<RM>
Reset Mode 5-18

ROM memory space A-3, B-3, C-2
<RS>
Character (#30) 5-19

<SCS>
Select Character Set 5-20

SCSI bus 6-1
<Select-Code> 5-20
Set 4-17
<SGR>

Select Graphic Rendition 5-21
<SI>
Shift In Character 5-22

<SM>
Set Mode 5-22

<SO>
Shift Out Character 5-23

4400 OPERATING SYS1EM REFERENCE

<SOH>
Character (#1) 5-23

Sound device examples 6-2,6-6
Sound generation 6-2
<SP>
Space Character 5-24

<SRM>
Send/Receive Mode 5-24

Stop 4-1
Streaming tape drive 6-1
String 4-6, 4-6
<STX>
Character (#2) 5-24

<SUB>
Character (#26) 5-24

Sub-string search 4-19
<SYN>
Character (#22) 5-25

System calls 4-6, 6-1, 6-1
Tab 4-18,4-9
Tab stops 4-13,4-18
Target 4-7
<TBC>
Tabulation Clear 5-25

<TEKARM>
Auto-Repeat Mode 5-25

<TEKAWM>
Auto-Wrap Mode 5-26

<TEKBKCM>
Block Cursor Mode 5-26

<TEKBNCM>
Blinking Cursor Mode 5-26

<TEKCKM>
Cursor Key Mode 5-27

<TEKGCREP>
Graphic Cursor Position Report 5-28

<TEKID>
Identify Terminal 5-28

<TEKKPAM>
Keypad Application Mode 5-28

<TEKKPNM>
Keypad Numeric Mode 5-28

<TEKMBREP>

Index

Mouse Button and Graphic Cursor Position Reporting 5-29
<TEKOM>
Origin Mode 5-31

<TEKRC>
Restore Cursor 5-31

IX-5

Index

<TEKREQTPARM>
Request Tenninal Parameters 5-31

<TEKRGCR>
Request Graphic Cursor Position Report 5-32

<TEKSC>
Save Cursor 5-32

<TEKSCNM>
Screen Mode 5-32

<TEKSGCRT>
Select Graphic Cursor Report Type 5-33

<TEKSTBM>
Set Top and Bottom Margins 5-33

Tempo 6-7
Temporary file 4-5
Terminal

Compatibility
DEC VT -100 5-2

Terminal
Compatibility
Tektronix 4100 series terminals 5-2

Terminal emulation 5-1
Terminal emulation

Standards 5-1
Terminal emulator 6-1
Text editor 4-1,4-3
Ttyget 6-1,6-10
Ttyset 6-1,6-10
<US>
Character(#31) 5-34

Verify 4-18
Viewport A-I
Viewport B-1
Virtual display A-I, B-1
Virtual memory scheme A-3, B-3, C-l
Voice 6-7
Volume 6-8
<VT>

Vertical Tab Character 5-34
White noise 6-9
White noise generator 6-2
Winchester disk 6= 1
Wrap around 4-7
Zone 4-19

IX-6

