TE

OPERATING SYSTEM
REFERENCE MANUAL

3T
o
35

)
/50°

20

Ol - ST33 ~00
Ao~ Lo -0
o0 - S~ -0
S e
OO0 - SeoTi-op

OO Seyz ee

NeT AVALABEECGT0T S Lo -0

<o)

Mor L o KBE <

7@ o

s

oNo ~ 3

©- (IS o0

4400 SERIES

OPERATING
SYSTEM
REFERENCE

oo OPT. 10 WAA IRTEETA G
Mo vsERS

M o e FERLEN CE

MMov Fom) DERvic 2
YoYFEzZe Yo whyte pevwe w/ S R EAMGL TAPE
N P20 ISP Pt A s NG
CHod cvtee e SR TR LY - 26

& - —~ =
SWNCLTRCL FEFBRENT

SMRCLTRLE UREAS

Please Check for
CHANGE INFORMATION
at the Rear of This Manual

st Printing MAR 1986

- Tektronix

COMMITTED TO EXCELLENCE

Copyright 1986 by Tektronix , Inc., Beaverton, Oregon. Printed in the
United States of America. All rights reserved. Contents of this
publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc..
Smalltalk-80 is a trademark of Xerox Corp.

UniFLEX is a registered trademark of Technical Systems Consultants,
Inc.

Portions of this manual are reprinted with permission of the copyright
holder. Technical Systems Consultants, Inc., of Chapel Hill, North
Carolina.

The operating system software copyright information is embedded in the
code. It can be read via the “info" utility.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein, when used
properly in the specified operating environment, for a period of three (3) months from the date of shipment, or
if the program is installed by Tektronix, for a period of three (3) months from the date of installation. I this
software product does not conform as warranted, Tektronix will provide the remedial services specified
below. Tektronix does not warrant that the functions contained in this software product will meet
Customer's requirements or that operation of this software product will be uninterrupted or error-free or
that all errors will be corrected.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the
expiration of the warranty period and make suitable arrangements for such service in accordance with the
instructions received from Tektronix. If Tektronix is unable, within a reasonable time after receipt of such
notice, to provide the remedial services specified below, Customer may terminate the license for the
software product and return this software product and any associated materials to Tektronix for credit or
refund.

This warranty shall not apply to any software product that has been modified or altered by Customer. Tektronix
shall not be obligated to furnish service under this warranty with respect to any software product a) that is
used in an operating environment other than that specified or in a manner inconsistent with the Users
Manual and documentation or b) when the software product has been integrated with other software if the
resuit of such integration increases the time or difficuity of analyzing or servicing the software product or the
problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FCRA
PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE WHEN
SPECIFIED, REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND
EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX
WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES.

LEA WARD ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attn: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES OPERATING SYSTEM REFERENCE

This manual supports the following versions of this product: 4404 Version 1.5, 4405 Version 1.1, and
4406 Version 1.1.

REV DATE DESCRIPTION

MAR 1986 Original Issue

4400 OPERATING SYSTEM REFERENCE

Table Of Contents

SECTION 1 INTRODUCTION
WHERE TO FIND INFORMATION ..ottt srcecesesneseneesesses e st e enessaanssvennas
MANUAL SYNTAX CONVENTIONS

etsesrassesatrecsserIrarasecressessessscasssansesaneee

SECTION 2 USER COMMANDS

AAAPAN ettt st st s e e e a s s e e bt e s e et a s s en s e ennanas

D L L LT T LR T T PP R R T T

backup

R L LT T T P L L LTy P P peppa

[P
+
DD pmd ot

COIMUIISEL ...ovieeeeeeereereenenenneresseseesasecreessesessssessssssssssssssssssssessssnsssecsseseesssesssssssnssnsnssessesseesssarsmnnnnss 2= 18
COIMPATE .vviiirieseneinsnesiseessressusesosassseesosesnstssasssostsssasasassesssssstesseessnassansassesssassssnnesssnenncsssmnsessenns 2720
COMSEL wrvrrererrererereseeressresesnsssssssrsnnsessersseserssssensassesssrssecssssresssssenssssssessessiesssssssnnsssnsssensssnssensessens Dm0
COPY ceererrrisirtiesseeesesssecsssssse st et s stesstsstesatsssassntsstssnsostsssssssessenssessersssasessresasressansrenssessenssecsansres 22l
CTBALE ..iiieriecireiesreessrennasnsonansaeceseeesssossssnstossenesaseesessrenssnesssesssesessesssossnsssssasssasessessssessnsessesesesseans 230
QAE ceeeveieveiecerieeeeeeenrrereeseseneeeressssnrsesssssssnssesassrsessnssssssssssesnsesessssssnenssessassasssasansnsnnnsaseeessnssesenes D32
EDUEG ettt st srae et sae s st saasa e e s stesesneseeeaeseansessnennenne | 23D

dir

L R D T T T T T T T T T I 2 43

di 2-47

echo ...

0080 eaerrettereaseeerensertectraressttssesseeisroseeutrsoesasrererictrstretrorstinteastonsesesnsassscrtrtatonistessssestassans 2 52

=T o 1| USSP UUURRTURORURURRD. o, 1
EXIL terreeeeeiieiireseeesrernsnsaesrareetseseseesessnsssesisresetesstessa sttt atrearssesaassssnsssssnnsrnsntesanestnsssesersssassnsrnnnne =30
EIIV ceeveieeerrrreeuensnsessessseseesnansasersnssssassnsessssassressnanssintessessesastersesnararssnrnssssnnnsssssseseesrerassnnrsnnsnssasesss OmI 1

FIELYPE oottt et st ts et ne e s st ssene st s s e e st sa s et ene et s s s ennanesenaes 27D

FOIMMAL .ooviiecrieeeceecnireeerernnrseresersreersessnsisnesssssssssesssssnsseasesssssesessssnsensnsenssssssnssasersansereessssossenrees 303
TTEE eeeieeeieeeerteeescssrer e ressraeeseesrssneessesasnbeses s b e seaasersbasesseens bt saessssssesesssasssresessesssrnstessessassennesnene D04
REAASEL eevvveeereeirciinreereeeesrtensessssssneeescsrsseessessrssseressrnssessassansressssrseessossrseassessossnnnssssssessrsaeenss =00
BEID ettt ettt e sa e e se s b e s sesas s es st ensensenesasenesnnes | 2 10
BESEOTY ettt are et es e s en e s s e sab et sete s s e sasesateenesenesenn st e nseasesnsrentienranssesnans D=1 2
11 {0 TR A
JODBS et et e s st e st sa st sk s st e se bt e ne bt senenee s e rnenaensestennesinsnens 27 1O
HDEEM ettt s ae st en s e e sssa e s snesnsrneseeresnans | 270

880000 eree000eassssesetsseenscotarcessntotosssttonssesstessntssnssvssasnsssscss 2 82

HBK ceereeeceeeeceiecireeeerenreessreeessearessssaessneiassasassstesssssessssssessnsasassasansssssnnnsnssssessesssseasssnssessansessass S O%

li 2-8

load ...
108IN et

logout ..o

B T T T T L L TP T

D T N AR T LT Y)

vovreneene 2-95

page

e N aE e eeaset0etteante et acieecesnt ettt eleteositeNesasasaTIleEiNeacaseeteRRotrN RcNRaTeTTONTRENTsRTIIIIIIITOIRES 2 99

PASSWOIA ecevncinininenesecrisecsseeste et osisrests et assenssaesssssasssssnessssessssnesesnssessnssessesssssssessassesees 2 100

Table of Contents-1

path eevrerteetrenneestesnaeaareneen eeteeeenrenne et eaeenanas eteeteererereesntesrearnesaeeans e se e e e seenneeesasenes . 2-102
PEITIS oeiiveeirreeenieeccenrneeeensesesaessnresseesesssnarssasssanesns reeernes revereesreerrerresssnessesnsessessrassresseensennens 2=103
2-106
2-107
TEIINFO creeiieieee et ane reveeens eerereeneeenan. rereraeevereeennees revvnees veereeens 2-108
remote 2-110
remove 2-112
rename 2-115
restore 2-117
033 o) AR reeveete et senaene ceerenennes ettt sae s seesetnenesenesesassstsnssssssssssessasens | 2= 123
] A USRS reereeierrrrreresins e rereeeveeeeenrrraanns S eeereennns rerveeeeneenenns 2138
shell ..o, etteeesteeeeteeearbesesaeeeearaenresesraeesanraen tereeeeereeesnresssaresssareesssneseessresnsssreesennss 2139
STALUS cerieiiieeeierierseorunrunnraraeeesaeearasssssnsrnssvesseseasseasessnnsnnssnsesaseesesesssnssnsansarensasessesessssssesearsnsennnnse 2-148
stop 2-152
tail e, eereeeettteesseseessseessnsesestesersnbeesareaessssetesareiess et tesnre et reearrereernrnrrernn rerreeeen. 2-154
BOUCHL 1oiivieecieeiiecese st cee e e s e ssbes s e esseesneesaesbsssssnessssnssassssessssessseessassssessssssassssnneersanornnssssncss 2= 133
UNAHAS oo reens 2-157

UMSEL oviiitieteiitciit s esn s s s st casat s st et eses e s st st ses et sessenssesacssaseseneesesennesesnenerersenseraeassaneere 2= 19
updateo.ceceveereinenenaennn. reerereenaeaens e et et sa s b e st e b s e e bt eeenes 2-159
WEAIL et er et eaes e sras s an e ene ettt et ssest st sessasessenseseasnenassesnaneesers 2= 102

SECTION 3 SYSTEM UTILITIES

SYSTEM UTILITY DESCRIPTIONS ...
adduseroooeueenn.
badblOCKS ..ooveverireeeeeecre e teereeeeesenrareeesnnaeeesenaaenenen revernnes veeennrens reeeerenreenes rereerreenas
blockcheck ...ocovvvvvvvieeceecrerecnnen. eeereeins tereerrertruenerenetesesssnstnrerenaneanaes reererennas ererereenereannas

sssessescvssescsvenan

wwx.»w
OO0 NN AN -

deluser Cetaceseceerttesectatastttesaeracrtasnonerensesares cesevsnenes teeestracucrcesrarseentssserrencrseresravsrensases aresessns

devcheckcooevennnnnee, ceereeeses cesessnsnsosaas cervesseraenes sesensens etresreenasiseeseeaseessaaesrrnerareessnnrenaaesirne 3

diskrepairccccoeeueen rerereeerrereeaeas rereereeeareanaaaeaas ceeeens reeeeestesenrteeesatrarsrassasssaasaraerennrananare 3

fANCHECK oeveiiiiiieieeeie e reeeererrrr——————aeearonas reeererranreaeanaes reerrerreeerannn reverneneees 322
makdev 3-23
mountcceeeeeeennnen. reerernns vereesenaaraiaans et eteeeeessteeresessssetessasnreseeeensteaneaarrnreneseesrnrenerans reverenees 3-26
(61011 (RS reeerenens eeeerenens eererenans teeeterteeesssstttessannrateesaeateaeecsasrareseasssrrneessenssraresarss 3=2O
11061 ¢4 (0101 o reeereesereeerereraereenneteanes rereereeeeeraeas terrrrereresrsssesessnneessseneesaenes 3=30

SECTION 4 edit

INTRODUCTION reeetestere et aeenaeseenes eetereeerene e e eta e aeeneas 4-1

SYNTAX ... - veeenene 4-1

CALLING THE EDITOR cotveiririreeieereniresesssnee e secsnssnsasassssssssssesessseseseessssssassssesssssasaseess 421
Calling the Editor with a File Name rreerrestesetesaresaresareenraan reeeeeeeaeannerraeaas 4-1
Calling the Editor with Two File Namescccooceceeee SO PTOUORRIY : =
Options creereeene reetesresteer et es st e en e e s renan e e ne st annant

OPERATING SYSTEM INTERFACE certetereteresr st seeseese st enentesatntesessssareseresssanreneses D73
Backspace CRaraCterc.cccveiieneerinrerieienecissesseieesessesessesesseseessseseenscsssesssssscessssessssesneses 43
Escape Character rrerrerneetenaaes etterieeseresstteeseeeseeeesenteesatere e reesareeraesneeras crveranaens ceeerens 4-3
Line Delete Characterc..cccoveueveeneene renvereeeereenees eeeerraenane rereeeeenneanes vereeveaneas cereeennenens ... 4-4
Horizontal Tab Character rereeetersereeaeeereeseeseeranaasseesssssesstesseressssssessessacsessnesassseeses 4ol
Control-D: Keyboard Signal for End-of-Fileccccvvevmnnnvciinnincninenee. JRUPRORORY : =
Control-C: Keyboard Interruptcc.cocoeevvvvnennnne. eeeeaeee et e eas et e eseres reeeeeeansaeaes eerereenens 4-4

seeseacectcecrcavrresrssassssrersssrresnsane seesessersncens 4 2

Table of Contents-2

eeee 4-4
4-6
4-6

Caececrreencarsessvanse

Control-: Quit Signalccoceeeveiiieviinrreerinsree e rse e esessnessaessesaeesnsessans
THE EDITOR’S USE OF DISK FILES covoiiririrenenreeceneeceenneseens
Creating a New Fileccccccovevrnevenennnns
Editing an Existing File
Command Input From a File .
Fatal Errors
Specifying a Column Number ceernenneeseeeenneeneenes 48
Using the Don’t-Care CharacCtercceevvvemreerreesiecrenieniesecesetennesiessesesssessnersesssenscsesssessees 4=8
The Command Repeat Characterccoceeveeneenen. 4-9
Using the EOL Character 4-9
USINg TabS .ooevviirerneceeceeennesecnennesones reveertensrssnreasesnasneraraesaresnassssssseasacraners 4=
Length of Text Lines veerrensrennenees 4-10
COMMANAS ..ceeeeeererrreerereesesrentesteesssnesessssessessssssssseseesessssassessesssssssessessssassescessenessesaeseeseesenses 4210
ENVIRONMENT COMMANDS
dk1
ESAVE eevreeererrennesessessesaesisnssesasessssonsane
€SEL erreereeeenneanas
header

sesesesnsessssasee

esrensscscscsecnsarecne

sssescssensreses

ssscscrcaes

eesesrssacesnernstreannsosasssssateanssns

seveans

esse

eseeserensesseeaternteatcseteanesrsssrtacetttesrassstesnarastonnnen

secesensecascesccarsens

cesaas

sseesssccrssesacsaccons

es0essetscesetscsusenraseosorrrsans

B T P T T TP TR R PR PPy

sesscessesrcennas

seasssasense

eseee sevessseseses

sese

D T R T YY)

eeee 4-11
4-14
k1 cerereernrereessneneens 4-15
k2 .. verrvreeeeesersnnenenss 4=15
numberscoceveeieveceeennne 4-16
renUMDbET ...uvvevvreenneienennnns 4-16
SEL teeieereireeereenenns treerensrereessssscerersssssnnrsesessssneaaeesssens 417
tab reeenes 4-18
verify ...oceeveenene. terteererneiesseesasstasesresettasessressastanasnrresasssaeanreserssnrresarsesesssnneeers 4718
ZONE ceevreeeerrrrrrreerorennnnns veerrererereeenens 4-19
SYSTEM COMMANDS cevreeeenns 4220
ADOTIT eeeiiiereeeeeeeeereessneesesenserenseesssssssissenansenns terrreessrresresneessnnesssssnessenseeesrneees =20
edit 4-20
log ... rrreeteenesaeeteeneeneeenesnresesreesnsennesnessneeevassanses G2
170] » SN
u
177 V| O

sescsscornencsvan

sesasacencssesenes

ssacssccesesesassassrrescssrrsurecse

Csessecessasrreestesnstesrestaccoasanrsen

s4sscsasssccesscsensnncococne

B T Y Y YT Y

sesenccscsrscns

esssssesnse

sseessreesssensceniesessorerssssaassse

K et ree e et e er s nte s r e s s e s s s e et te s st ae s saeas e at S e e ate s an et aeansae e st et eeenras e sneteearaneeaentrenen

ssssssssssncccecs

“esssesesceneses

“esesvececestsecsnransserariaaes

sesesessrcessersensanne

P T T T T P Y LT T P P PPy

D R T T LT PP PP

esseressasesssnvrsrarsnaresve

“ssssasssccecsavsnsassesonans

aBsekecasestecscsdcstostcenstastcstasoasostreane

48800t assassssseasansnatacentastastscetonccoscsanesttsasenrts

cecevecesce

tresseneee

P R T T R L L LT LI T D P

ssssesssanes

senose

es0sscsssscenscestanncreccatenerace

essescrssseccses sescessesrsascnce

mesetecssessscanc

4-22
ceerenvrinenenees. 422

essesessuesastosnetssrctcaennncossenancesrssrsesurrane 4 23

D R R R 4 29

seseccaccccccsrasnrnnsase

eesacscassronsasssnstesasnsovsncsos

R

eesecsessrcnnnces

PR T YT T T PP P T PP P PRP PP PR

sesesesecessncscsscanssassnsene

x
CURRENT LINE MOVERS
bottom ...cveveiiiiieeeeeeeeeees

B T T Ry

tessenccecssscncee

sesssrasee

essseicsseetasansconcsasssanescssstecrststenTacsreane

position
0] + R

sess0sssssescsecrnriane

esseercsrsscececetserscsnsictatasine

cisesn

essssvrese

essescecsne

EDITING COMMANDS

esessenssnecsccssesoreerrrne

ssevsessesacsstsrsssnernasars

sassssstse

Sesests0esenIsseeteseatrsretsteroncecsiatteattscccicenie

append .

changeccceneee.
cchange

svssecceense

BT Y T T P T T R TR P LR T 4 30

sesensses

ssssesncansessnoscorntan

Table of Contents-3

move
overlay
overlay
printceoeeeee.
replace

L, OO POPPON
15101 O OO SO ersvssasornsaase 4-39

flush

SECTION 5 TERMINAL EMULATION
OVERVIEW
Description .
Compliance With ANSI and ISO Standards
Compatibility with the DEC VT-100 ccooiierceeceteeee ettt srcasesse e sa s sesaa s nns
Compatibility with Tektronix Terminals e
Interface to the OPErating SYSEM ccccveciieeciceeiereeiecerte e stetr e ereseese e saeeseraesesresssssessessssssnne

SUPPORTED ANSI COMMANDS ..
<ACK> Acknowledge Character (#6)
<BEL> Bell Character
<BS> Backspace CRaraCterccocoeoinieirecerreeerirsneeeseseseeseeseesensesessssessasesssessssssessssnses
<CAN> Character (#24)
<CBT> Cursor Backward Tab
<CHT> Cursor HOHzontal Tabc.ccooiiiiieieeeceeeeeeeeere st cvesesaesrssesrsessesssbesnnorsesnons
<CPR> Cursor Position Report
<CR> Carriage Return Character
<CRM> Control Representation Modeccoccoieieveeeieceeieeeceeeeceeeeee st e cvecene e seseenens
<CUB> Cursor Backward cevreneeennee
<CUD> CUISOT DOWIL ..ooiiiereeeecieereericeteeceere st reentesasssaessresaressessesssessasssesssnessesnsesnsessessans
<CUF> Cursor Forward
<CUP> Cursor Position ... -
<CUU> CursorUp rteestersren st it eeanassnatsntesansires treeseeriasaresane e neeres s st s nanes rerereeaereneees 5-7
<DA> Device Attributes
<DC1> Character (#17)
<DC2> Character (#18)
<DC3> Character (#19)
<DC4> Character (#20)
<DCH> Delete Character
 Character (#127)
<DL> Delete Line

Table of Contents-4

<DLE> Character (#16) ..eeeeceveeeieeecreeeeenreceeneeeenseennnnens teeeesenereeaeeesteaeeessesanntneeasastnesanns 5-9

<DMI> Disable Manual INDUL ccoveeiiioieieieieee e st eirese e rrenaeeesassn e ss e sassss e sneaese e neens 5-9
<DSR> Device Status REPOITcooiiiierirtirrerrrneneeeceeseessesssesssesssessssssssessesssessassses 5-10
<ECH> Erase Character veveeeareenn veveneraeees S trerttesssesseraserererntaseseserrrrreseessesasanetens 5-10
<ED> Erase in Display

<EL> EraseinLine reeeeseetteeesseeesessesseteeseesnseetesassnraretesassnnateseanensnanaeeseeenssnrenesns 5-11
 Character (#25) cccovrerecereereeeeereeeceereserecennnees terreeceieceesnsteeeessssnrtrresesaerarasaeranaaess 5-11
<EMI> Enable Manual INPUL cc.ciiiniiiiinriienirceiecnnseessecaessnesaessecsn s s enarasasesmrasassenns 5-12
<ENQ> CRaraCter (#5) .uovivceereeerrerieesnessseceserssssssssasssesessssssssessasessssssserssssessssesssssossesssses 5-12
<EOT> CRATACIET (F4) ooeeeeeeeeeteeeeeerereercesteesnte st eea e esstean e sesstesssssssessssassnnssssnnessaesnnessneeens 5-12
<ESC> CRaracter (#27) cococccerieecierrrirseeessireesresseseressessesssesssssssssssssssssseessssssssasssssssssessasss 5-12
<ETB> Character (#23)ccccoeveene reeeereessueessasesseseteesbeea s aeareeebaesastesare e arsesnee s seenneesanes 5-12
<ETX> Character (#3) cococeeeereecccieeeeeesereeeeesneeecsssesssnseesasssesnasesssssessssseresssneessnsssssssnnens 5-13
<FF> Form Feed Charactercoccevevveererennen verreeeeseannrenerese eevererrernens veeerirsnsrerannennn U 5-13
<FS> Character (#28) ..ccccceeveecererenene

<GS> Character (#29) eocereeeececeecrctesieeneeemesressesneestesnsesassssesssassseseesssersressessnesnsessres
<HT> Horizontal Tab Character

<HTS> HOMZONLAL TAD SELoooeeceeeeeriecteereeeirerrceereecrer s e sressasssesssessnsssressasasssnssssessesnn
<HVP> Horizontal and Vertical POSIHONcovieveeveeienireereeiineeesiireseesesesssensssseesssesssneses 5-14
<ICH> INSErt CHATACIETccocveiicereriiesssensssenssseessssessesansesneessssssseeesnes reeterersresesrnnresannanes 5-14
<IL> INSErtLineccoeeooooveeiiieeeeineeeeeeeececeneenseesecnaeaeenns eeresesessrernsssnnntans eeeeres renvenrerreesennans 5-14
<IND> INAEX oot eee e e sesnaneenns eeereseeeetattesstteeerarateenteesnnarenanreens 5-15
<IRM> Insertion/Replacement MOdecccoeeviicveinrcnrecceaceesteesreeseeereeseasensnssensasasessnens 5-15
<KAM> Keyboard ACHON MOGEoooieiieeeeeceinerrrececceecrersreesreceeeseeesssessaessesrssernsnnnens 5-15
<LF> Line Feed Charactercccccvevvvercnnnnn. U ceerereeennees terrrveeesareserraeeranneeannrrenrnns 5-16
<LNM> Line-Feed/New-Line Mode

<NAK> CRATacter (B21) .oooeiceciiieceeneiecerenreneseeenecsessessessnesseneosssssassassssnsessesssssasssessessanses
<NEL> NextLineccovvvveeevrerevreeecrnnens reeseteessesnneeteeesasreaeeaer e ateeeesa nrnneeresasraraneaens 5-16
<NUL> Character (#0) .ccccceecveevveroneenns resssereesnniennans cesteresaeneesstereesanasens cersreresserresasnaesernenas 5-17
<PUI> Private USe 1 ..oeeeeeieeceteeeeeeceeeeetresneesae s s eennens rveesereesaienreennnenbesareserasean 5-17
<Report-Syntax-Mode> reeesrtee et er s s b s ne shs s sneras ettt s et 5-17
<RIS> ReEVETSE INAEX o.ooreieiieeeecccceeetcccnnereeetneeeceseneaeeseesssseseeesssssseassesnnsensesessssnnseneses 5-17
<RIS> Reset to INitial Statecoocoieeeieeiceecereerereeceeeeecnee e sneeessreassesaerseesnmssessssresnens 5-18
<RM> Reset Mode eererersereene rervereeseeeraraneesaeen cerrreenenneeen rerreereneeennns eereeeranens 5-18
<RS> Character (#30) ..cccorvereene veeereneeaaees veeeneaens reetertessiessreessaenstaessseenbe s arre st besnaessbesan 5-19
<SCS> SeleCt CRATACLET SEL .eoceeeereceiieeetieeeceee et eeernneevessesessresesssesssssassssnssssnsnsesessnseneens 5-20
<Select-Code> ..uiiirnreerreerreeereeerree s e eeneenens teeeveessreiesaarasereeesessanasrsreaennnerennas e sareaannn 5-20
<SGR> Select Graphic Rendition rerererestenesesatnasaenne eeeterene e esa et et te st e se e e enenaene 5-21
<SI> Shift In Character

<SM> SetMode

<SO> Shift Out Character terbeesseeesaeeserestaeiasesneissesnae s aess bt et aeasbesnteneassanssasesreann 5-23
<SOH> Character (#1) reveeeebtesseessteeeressseiabeeeseasntasase st seasseanstensasaesseesaransrenrreeans 5-23
<SP> Space Charactercccoveruveienne. reverans e ttteetete e ettt et sn e e e st st e et sn e e ertennes 5-24
<SRM> Send/Receive Mode

<STX> CharaCter ($2) ovveeecrceernicrtereeteerarrssseessessasessesssaseessesses cesmmessasssmsessstssssssssassssssssones
<SUB> Character (#26)

<SYN> Character (#22) eeeeeurissressaeestseseressressstesasasasaaasnentaessateraee e et s raneteesrantereeean 5-25
<TBC> Tabulation ClIEATeeeeiirereiieeeeeeeececireeeescsstesessasesssssessssasassasssssrssssssssssssesesessases 5-25
<TEKARM> Auto-Repeat Modeciiiiniiiiminniitiiinessnerss s e stse e saesnnssasnns 5-25
<TEKAWM> Auto-Wrap Modecccooivmerniiiniiiiiee ittt 5-26

Table of Contents-5

<TEKBKCM> Block Cursor Mode (Select Cursor)cccccoveeirernveseereneircecnesecerenesenennas 5-26

<TEKBNCM> Blinking Cursor Modecccovviiricniimmrniiecrcetineee s e e ceeeeessaeeenessees 5-26
<TEKCKM> Cursor Key Modecooviriioiiiiireeeceettcecetr st eaeceeseesessesavennenes 5-27
<TEKGCREP> Graphic Cursor Position REPOIT ccccureriirieceuecerrinerereeienceeneeneneenes 5-28
<TEKID> Identify Terminalcccccooriiiemnineirreeercrseeesrrreraeesnnsssneesnessssesesessssssessaesses 5-28
<TEKKPAM> Keypad Application Modeocooimivieeinicccninenniecenrenereeceneeesaennenes 5-28
<TEKKPNM> Keypad NUMeric MOdecccocoioiveeiieeicecereecn e ecee e esesesnnessasnnees 5-28
<TEKMBREP> Mouse Button and Graphic Cursor Position Reportingccccceecueenee 5-29
ANSI Terminal Emulator Mouse Button and Position Reportingccceceevivenrneeen. 5-30
<TEKOM> Origin MOGEcoccuiiiriiriiriniiiceenteserteeer et ssessessaseessssesssessesnssneesseneenaes 5-31
<TEKRC> ReESIOTE CUSOT ..coueeeiuieeieteeenicnseiessirieestesnessessessereessessassasssssasssasssnsesssssserassses 5-31
<TEKREQTPARM> Request Terminal Parametersccoceeeeieveereceereeneeeenereennesennes 5-31
<TEKRGCR> Request Graphic Cursor Position Reportccccoovevceeemeeceninnenvenieseveennns 5-32
STEKSC> SaVe CUTSOT ..oiiiieiiericccientcireetesecreenestsasseessesesessessasssssesessassessasnssssessessssans 5-32
<TEKSCNM> Screen Modeccccoioreiiircciereseneerenensenssssessesessssssssssnsssssssssnsassens 5-32
<TEKSGCRT> Select Graphic Cursor Report TYPE ...cccccceveeveverceennrerinenensseseensesneennns 5-33
<TEKSTBM> Set Top and Bottom Marginsccceceveernrnvereeeeriessnseesesseressssessesenens 5-33
<US> Character ($31) ooioeecceceeeeee et seeseesets s enessesesressssssseesessessesessensensesessssennan 5-34
<VT> Vertical Tab CharaCterc.ccociviveeninieninnsenstcneescsseesesesssessessessessassssssasseesesnes 5-34
KEYBOARD DETAILS ...t ens e st ss st es e s st sessssasessassasessssaseseans 5-34
Shift, Ctrl, and Caps LOCK KEYSociiiciiricireieeecvecrenreeer e eer e e s e es s s senes s e eseneas 5-34
Default ANSI Mode Meanings of KEYSccccoveeivininnienecrnieinnseseesnsseseenessssesesnssessesesenns 5-35
AIphanumMEniC KEYS ..ottt cei et sae s st sss s ssane e sssbasassessanesarsanan 5-35
NUMETC PAd KEYS ..ottt st cererte st seseses e s sesesanesssesessssnnenesnssnns 5-37
JOYAiSk KEYS ..ottt ettt ettt e st s et s s s e s e e s st b e s a s s en e 5-38
FUNCHON KEYS .ottt et st ae st e st et e st e snass st e st ansessennsnansassenssans 5-38
Special FUNCHON KEYS ..oovuiiiieceieieeerteeccc ettt sest st s s e s s s e ss s s e n s s et nen 5-39
SECTION 6 ACCESSING SYSTEM RESOURCES
INTRODUCTION ..occterentcteenesrertresneseste e s e sesessesesessesasesssssssssessssasessssessanesesssssssasesssens 6-1
DEVICE DRIVERS coiiiitiiineeseseetiete e esesestssssesstssesesasessatssssasensasssssssssssssessasesassassssans 6-1
SCSIPEMPhETrals ...cooeeuieeeieiirieiieeiereete et rte e e sesa e s st esebe st et asnessssssesensesesessensanessannnsnes 6-1
CONSOIE DEVICE ...ttt st ettt st eeesese st e se e s st st et as et sasassssestassssssans 6-1
COmMMUNICAUONS POIT ..cooniiiiiiiiietrcristese ettt et eae e sresassese st ssesssssessssesennessesassessennans 6-2
SOUNA GEMETALOT eeeieierecrerircecete e stetrae e st ceesee st et s sesa e e s e s sas et ssrasasessasesasaasansessasssssssasen 6-2
Controlling the Sound DevICE coceiuiuieiiriicieiecet ettt e stae e e see st se e sseeseesasnnanns 6-2
/dev/sound Operation and COMMANAS cc.eeeererereieiinenirrenenrcerenreseereereesessnsseeseessessesssens 6-2
Frequency CONtIOl ..ottt et st e st st s seanese s sesae s e e seassesneseasssansensane 6-3
Controlling AtTENUALION ...c..cccceceeiecerieineseestenresteriestesessessessessessreseassssesssesassassnassssnnssassessses 6-3
Controlling the NOiSE GENETALOTcccceceeiirrerereerereeeserenssseeessesaeessssessessessassesessessassesasaes 6-4
CoNrol REZISIETS ...cieeciiireireieererceeecreeereseee e ereestessesssessesssaesarsssssseasasssassnsssssensesssesssnssseseasann 6-5
Sound EXAMPIES ccoviiiiiiiiciericiect ettt cses s sas st b st srse e sns e s e sesassasnees 6-6
PHNET POTE ..ottt ettt e e s et e saen et esaesess e mesee e st e aesemas st entsessesssnsassarons 6-10
Oher DEVICES coveirerernienenieierennesessnesssessestsasesssessesnensesessestestssseessassssssessssesntassssestoseesenseses 6-10
DISPLAY, MOUSE, AND KEYBOARD SUPPORTccccooninmrcinnnnnsennscsnesessesnsaceneas 6-11
Cursor and Mouse TTACKING coeeiiccecriniirieieerieesrerscesesssessessssasessssensasesssnssossensasnssssnsessessens 6-11
FLOATING POINT SUPPORT ...ttt ereeesaesesn s senesesassnesssasssns 6-11

Appendix A 4404 HARDWARE DEPENDENCIES
DISPLAY SUPPORT ..ottt sse s s sb e sa e s s s st e e snanssnnas A-1

Table of Contents-6

Display Panning

.
.
.
.
.
.
.
H
.
H
.
.
.
.
.
.
.
s
.
.
.
.
.
.
.
.
H
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
M
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
v
.
H
.
.
.
.
]
[y

MEMORY USE cerreeenaesnraenes creereenenenresaes
Overall Address Spacecccecceevererreennens trereesereseeesaeeseeeireeestaeasaesnresestnesereans reereenaesrerernaes A-3
Physical Memory reressensaiebestesabe e rs s e ees ettt s s s s e te s e st e e ennee A-3
Display MEMOIY ..cc.ueeeveerieeeneeicveecieresneesseesens wreserns eeeeseeanaenes ertresete s er st e et e s e esaneeas A-3
I/O and ROM MEemOTY SPACE ooeeereeeerereerreereecreeesseressesssesssseseesseessesssesssnssssssssssesssssnsnssens A-3
Processor Board /O ...ttt stee et es e se e seee s e e s s e snneen s snnesas A-4
Peripheral Board I/O ...ttt snss e ss st e sa s se st s st sasenens A-4

Appendix 3 4405 HARDWARE DEPENDENCIES

DISPLAY SUPPORT
Display PANMING coeeciiicietieieeineecr e cee st etetes e eree e saecs s s ssne s s essessassensessnesssessenssnsestennn
MEMORY USE et beet e e te sttt eae b et sa e e e sa e et e Rt e aeeRe st e Rt e R e e s sa st e anaraesaensanseeaese B-3
Overall Address SPacecococeeevceveceeecreencvnccennns veerereeerreenresaassaren ceeeesrseesneesnaseesanensaeesnreareerars B-3
PhYSICAl MEMOTY .couiiciiieeceieeetrseese e eeteseessesnessessesaessessessasssesesssassasssssenssssnessessessesesssessessens
Display MEIMOTY vttt sttt sttt cses s st susssesassssasssessesaasessenens
I/0O and ROM Memory Space
Processor Board I/O
Peripheral Board /O rereerrises s e nssats e e b s e s re R n s e e seb e n s sr e b e et U : I
Appendix C 4406 HARDWARE DEPENDENCIES
DISPLAY SUPPORT reereresaseteenennaraesaes ceosrensrane cerereentere st s e s e et e e e st e ea e e aate st anans C-1
MEMORY USE ...t soeresssesseseenesssesens cerereeneesnaeneaes erestenteeresaeeiaereneaean R C-1
OVerall AQAress SPACE occeeveeeecieeeiecreeceteertsetees e teecteseaessassrasssesesesessnsesssessnesnssessrssssersen C-1
Physical MemoOrycovveviivniiinnccniccnccnconeens cteteertsts st et senasentas et steens C-1
Display Memory tevneraneseens veereeeseseeesrasaserren ceteseesnesssee e et seeenaeerteeta e ee e aeentna s et e trane C-2
I/0O and ROM Memory Spaceoouee-... rteeuterseestestteteeutasteenntan et st e st e arans e stannseenaearreseernan C-2
Processor Board J/O ...ttt s ettt er e se st ean C-2
Peripheral Board /O vereaeneaieenes rretenerarte st ernenens e et sa b s s C-2
Figures
A-1. 640 X 480 Window Into 1024 X 1024 Bit-Map.ccccceeereereerrnrneeerieresreeeniessensesessennane A-2
B-1. 640 X 480 Window Into 1024 X 1024 Bit-Map.cccceceeertevmnenrierereneeieseseeseeassesnene B-2
Examples
4-1..
4-2..
4-3..
4-4. .
4-5..
Tables
2-1 POSSIBLE INTERRUPTScccvvvuee errereeteereenens eeeeeeeteesatabe st st e bt es et ene e eneraenean 2-77
2-21/0 Redirection eeeereeseesessssesseessssessesstesesssestestessestessensentessesteesensmeserseesneseeesenseanresaessenn 2-126
2-3 SHELL EDITING KEYS AND FUNCTIONS
2-4 /O Redirectioncceeeceeevevenccceseccnnne teeereeeeestentianae st saresa e er et e st e s e e a nasesbesetesansemaesaeean 2-144
2-5 shell COMMAINDS ...ttt sttt s e s e s s s e ersesassn e e sunesnenne 2-145

Table of Contents-7

2-6 POSSIBLE TASK PRIORITIESocoi ettt s n e 2-148
3-

1 SyStem UIHES ...cccvvieiernecieerrienneereeeesnemratcese e sess et e sseessesssssessnssssssansesssstsessansessessornesans 3-1
3-2 Major DeviCe NUMDETS cciiiieceiieiectceseesreeesecenee e eenesaee s e snensessessnsssesnessessnsssesssnses 3-23
5-1 Parameter MEAMINGS ccccocververiieecenierereetreeeesneeeseesne e cneesnacsseesssessnessssssesasesssssosssssnsecs 5-10
5-2 Valid Reset MOde ParameterS ccccceeerrcerrareccessseessesersnessesssnssssnnsosesssaseessersossessessossrosss 5-19
5-3 Character St SEIECHOM ...cc.eivierieieeeeientretreercets sttt s senestessessatsasesessesesssessnsessesosesnnesaers 5-20
5-4 Set Mode Parametersccccoeceeeeecieneeeeceeneeecess et eseeesenestan st st srensessessstssmessnssanesssonsecse 5-23
5-5 Alternate Joydisk MEANMINES ..coveereiiiieniieitieriiitecentee ettt e et sesss sttt sssasesrnsssnssnesns 5-27
5-6 Keypad Application Mode Key Meaningsccccccocvreeerverereesensneneisecescssuesescssseecnsssienee 5-29
5-7 Mouse Button REPOTLS ccciiviiininiiiiniiincccese sttt csarsssscsesses e e sasesscssesesssessensanss 5-30
5-8 ANSI Meanings of Alphanumeric KeYSccoovvininniiinninneinieseininnesiesennescssesssesenaes 5-35
5-9 Applications Mode (TEKKPAM) Meanings of Keypad Keyscccocevevrenvvcnecenreneenen. 5-37
5-10 ANSI Joydisk Key Meaningsccocccererenrererrmecsineneensssesnesessensessessesessesssssserassesncssens 5-38
5-11 ANSI Meanings of FUNCHON KeYS ...cc.coierreniiiiiiecctiitcitrcninenicen e st s esesanes 5-38
5-12 ANSI Meanings of Special FUnction Keysccccoeeeercneneeienecrenenentereesceseesseseeesaens 5-39
6-1 Frequency Selection (BYTE 1)cooiiiniiircierineesnnneesssessesssenssessessssassessessessssssnsssesassesaase 6-3
6-2 Frequencey Selection (BYTE 2) ...oooioieceeriereeceeieseceereesssnessecessnsesassassesnsesssessessessessessannes 6-3
6-3 AttenUAtON CONITOL coiiiiieciicceterinrcrtesestaseste e seeneetes e saetasesassassessstensesssssnsassastasassesesaass 6-4
6-4 Attenuation Byte Bit ASSIZNMENLS ...c.cccoviuiierrieerereenieseer et e e e s s aseasessesessesasnens 6-4
6-5 Noise Feedback CONLIOL ccoveieeriieiririieeie e neeeereaeseetasasssssessenessassessesnesessesesssesessesans 6-4
6-6 Noise Frequency CONtIOlocccvecvennreereerenninsenesreseseseesasansesessssessssssessessessessessssssasssens 6-5
6-7 Noise-Control-Byte Bit ASSIZNMENLSccccoeurureiererrerereenrersrerersesstssssesesasassssesesssassesesees 6-5
6-8 Control RegiSter AQAIESSEScccocerceirierenrireerieiniesiersrsesessessesasssssesnssessessesassessersessesessensoss 6-5

Table of Contents-8

Section 1

INTRODUCTION

ABOUT THIS MANUAL

This manual is the primary user’s and programmer’s reference to the 4400 operating system and
hardware support. This manual contains summaries of the commands and utilities included with
your 4400 as standard software, and a summary of how to invoke and use each command. This
manual does not attempt to show you how to put commands together to perform a task; that
information is covered in the 4400 User’s Manual. The User’s Manual also contains a complete
list of the other manuals available for the 4400 series.

This manual has the following sections:
¢ User Commands
® System Ultilities
® Text Editor
® Terminal Emulation

In addition, the appendices contain information about the hardware of the 4400 series of products.

WHERE TO FIND INFORMATION

You have several important sources of information on the 4400:

® This manual, the 4400 Series Operating System Reference manual, contains the syntax and
details of commands and utilities. This manual also contains details about a text editor and
a remote terminal emulator.

® The 4400 Series Assembly Language Reference manual contains the details of the
assembler and linking loader.

® The 4400 Series C Language Reference manual contains detail about the "C" programming
language.

® The 4400 Users manual contains basic information on system installation, startup,
installing software, and the other "how to put commands together" discussions. See the
index of the User’s manual to find how to perform particular tasks.

® The on-line "help” utility contains a brief description of the syntax of user commands.

® The Introduction to Smalltalk-80(tm) manual contains details and a short tutorial on the
Smalltalk-80 programming language.

* The reference manuals for the optional languages for the 4400 product family are also
available.

OPERATING SYSTEM REFERENCE 1-1

INTRODUCTION

MANUAL SYNTAX CONVENTIONS

Throughout this manual, the 4400 User’s Manual, and in the on-line help files, the following
syntax conventions apply:

1.

Words standing alone on the command line are keywords. They are the words recognized
by the system and should be typed exactly as shown.

1o "1

Words enclosed by angle brackets ("<" and ">") enclose descriptions of variables that are
replaced with a specific argument. If an expression is enclosed only in angle brackets, it is
an essential part of the command line. For example, in the line:

addusr <user name>
you must specify the name of the user in place of the expression <user_name>.

Words or expressions surrounded by square brackets ("[" and "]") are optional. You may
omit these words or expressions if you wish.

If the word "list" appears as part of a term, that term consists of one or more elements of
the type described in the term, separated by spaces. For example:

<file_name_list>

consists of a series (one or more) of file names separated by spaces.

Invoke and use each command. This manual does not attempt to show you how to put commands
together to perform a task; that information is covered in the 4400 User’s Manual.

1-2

Section 2

USER COMMANDS

You can use the commands and utilities in this section from any user account. Some options,
however, require special privileges. These options are mentioned in the detailed description of
each command or utility.

OPERATING SYSTEM REFERENCE 2-1

USER COMMANDS

addpath

Add the specified directories to the search path of the shell. This is a shell command.

SYNTAX

addpath <dir name_list>

DESCRIPTION

This addpath command, which is part of the shell program, adds the specified directories to the
search path of the shell. This is done by altering the shell environment variable PATH.

ARGUMENTS

<dir_name_list> list of directory names to add to the search path.

EXAMPLE

addpath /etc

This example adds the directory /etc to the shell search path, by adding the directory to the
environment variable PATH.

SEE ALSO

rmpath
set
shell

unset

USER COMMANDS

alias

alias

Defines or reports the list of alternate names (aliases) for a command sequence.

SYNTAX

alias [<alias_name>] [<string>]

DESCRIPTION

The alias command, which is part of the shell program, defines or reports the list of alternate
names (aliases) for a command sequence. With no arguments alias outputs the list of aliases
defined. If one argument is given the associated alias is printed. If two arguments are given then
the first is defined to be an alias for the second. Command line arguments are extracted via the
shell conventions.

ARGUMENTS

<alias_name> name of the alias.

<string> may consist of combinations of utility commands and environment
variables surrounded by either single or double quotes (i.e. "copy $*").

EXAMPLES

alias long ‘dir +1 $* | page +30’

This example will create an alias long that will invoke the command dir +/, and pause every 30
lines until you press the space bar.

alias

This example will display the currently defined aliases.

SEE ALSO

shell
unalias

OPERATING SYSTEM REFERENCE 23

USER COMMANDS
asm

asm
The asm command is the MC68000/68010 relocating assembler.

SYNTAX

asm <file name list> [+befFlLnsStu] [(+o=<file name>]

DESCRIPTION

The asm command is used to assemble a program written in the standard 68000 instructions set.
The assembler accepts most of the standard mnemonics for instructions, and fully supports the
68000/68010/68020 instruction set. For more information, refer to 4400 Series Assembly
Language Reference.

ARGUMENTS

<file_name_list> List of the names of files and directories to process. Default is the
working directory.

OPTIONS

b Suppress binary output.

e Suppress summary information.

f Disable field formatting.

F Enable fix mode. (Comments that begin with a semicolon, ";", are

assembled.)

1 Produce a listing of the assembled source.

L Produce listing of input file during the first pass.

n Produce decimal line numbers with the listing.

o=<file_name> Specifies the name of the binary file.

] Produce a listing of the symbol table.

S Limit symbols internally to 8 characters.

u Classify all unresolved symbols as external.

2-4

USER COMMANDS
asm

EXAMPLES

asm asmfile

Assembles the source file asmfile and produces the relocatable binary file asmifile.r. The
assembler sends summary information to standard output, but produces no source listing. Any
errors detected are sent to standard output.

asm test.a +euo=test.r

Assembles the file test.a and produces the relocatable file test.r. No summary information is
produced, and all unresolved references are classified as external. If the assembler detects no
errors during the assembly, the user sees no output from this command.

asm test.a test2.a test3.a +blns

Assembles the three files, but produces no binary output. A listing with a symbol table is sent to
standard output. The listing includes decimal line numbers.

SEE ALSO

4400 Series Assembler Language Programmer’s Reference

OPERATING SYSTEM REFERENCE

rlJ
il

USER COMMANDS
backup

backup

Copy files from the file system to the floppy device or streaming tape device.

SYNTAX

backup [+AbBCdlpr] [+a=days] [+t[=file name]] [+T[=<length>]]
[<file name list>] [<dir_ name_ list>]

DESCRIPTION

The backup command is used to create and maintain archival backups of files or directories on
the system. It can operate in three distinct modes, selected by options: catalog mode, create
mode, and append mode. Catalog mode prints a list of the files on an existing backup. Create
mode copies the specified files or directories to the backup device, and destroys any data that is
already on the backup device. Append mode adds the specified files or directories to existing
files on the the backup device. Thus, it is possible to append, to an existing backup device, a file
whose path name is identical with one already backed up.

The backup command stores files and directories on the diskette (/dev/floppy) by default or on the
optional streaming tape drive (/dev/tapec). The backup command uses a unique file structure,
which is completely different from the standard operating system file structure. Therefore,
/devifloppy or /dev/tapec must not be mounted onto the file system using the mount command.
The only way to read devices written by backup is to use restore. The only other command that
you should use on a backup device is devcheck.

The backup diskette should be formatted before the back up operation begins. Although the file
structure created by the format command is destroyed by backup, the raw track formatting is
essential. During the back up process, you can request that backup formats diskettes before
writing to them. Do this by pressing f followed by Return, rather than Return when backup
prompts you to Hit C/R to continue:.

The backup tape may not be formatted, but the retensioning option "r" may be specified to avoid
reading-errors.

Backups may extend over more than one volume of the backup medium. There are no
restrictions on the sizes of files copied. If necessary, backup breaks files into segments and stores
each segment on a different volume.

As files are backed up, backup also stores the file owner ID number, permissions, and time/date
stamp of the file. This is used by restore when retrieving the files. After the files are restored,
they appear just as they were at the time of the backup. The user should be aware of several
potential problems.

First, it is possible for users with identical ID numbers to exist on different systems with different
names. Since only the owner ID number is saved with the file, not the owner’s name, when the
file is restored, the apparent owner will be the name of the user in the password file that matches
the ID number. If the user ID number does not exist in the restoring system password file, the
owner of the file will be the ID number enclosed in double angle brackets, for example, <<14>>.
Second, file permissions are respected during restore. If the restoring user does not have write
permission for a file, it will not be restored. One method to facilitate easy movement of files

USER COMMANDS
backup

among many machines is to always backup and restore the files from the public user, which
exists on all machines. In any event, the user system can backup and restore any file as well as
change ownership and permissions.

ARGUMENTS
<file_name _list> List of the names of files to process. Default is the working directory.
<dir_name_list> List of the names of directories to process.

If you specify a directory name as an argument in create or append mode, the program processes
only the files within that directory. If you also specify the "d" option, the program restores all
files within the given directory and its subdirectories.

OPTIONS

a=<days> Copy only those files that are no older than the specified number of days.
A value of 0 specifies files created since midnight on the current day; a
value of 1 specifies files created since midnight of the previous day, and so
forth.

A Append to an existing backup.

b Print sizes of files in bytes.

B Do not back up files that end in ".bak".

C Print a catalog of the files on an existing backup. If you specify "C", all of
the names in the <file_name_list> are ignored.

d Back up entire directory structures.

e Erase entire streaming tape before any action.

1 List file names as they are copied.

p Prompt user with each file name to determine whether or not the backup
procedure should be performed on that particular file.

r Retension streaming tape cartridge before any action. Using this option
may avoid reading errors from the streaming tape drive. This option must
be used in conjunction with the +T option.

t[=<file_name>] Back up only files that have been created or modified since the date in the
specified file. When the backup is finished, update the date in the file. If
you do not specify a file, the default is .backup.time.

T[=length] Backup to the streaming tape instead of the floppy. The default parameter

for the tape length is 450 feet. To backup to a 300 foot tape, use +T=300.

With no options, backup is quiet. The "I" option allows you to see what the program is actually
doing.

If you specify the "t" option, but the .backup.time file specified as its argument does not yet exist,
backup copies all the files and directories listed on the command line. Thus, a user may obtain a
full backup (either without the "t" option or with a nonexistent backup time file) or a partial

OPERATING SYSTEM REFERENCE 2-7

USER COMMANDS

backup

backup, which includes only those files created or modified since the last backup.

USER COMMANDS
backup

EXAMPLES

backup +1

Backs up all files in the working directory to the device /devi/floppy. The file names are listed as
they are copied to the device.

backup +1d filel file2 dirl dir2

Copies (in order) the files filel and file2, then all files and sub-directories contained in the
directories dirl and dir2, listing the file names as they are copied.

backup +1d filel file2 dirl dir2 +a=5

Performs the same function as the previous example, except it copies only those files that are five
days old or less.

backup +1t

Creates the same backup as the first example, but only copies the files created or modified after
the time contained in the file .backup.time. If this file does not exist, all the files are copied and
the file .backup.time is created.

backup +lAt=backup_ time

Adds a set of files to an existing backup. In particular, it adds exactly the files that were created
or modified since the creation of the file backup _time. This is the most direct way to create
incremental backups of your files. The length of time between backups should reflect the amount
of activity you spend developing programs, etc.

backup +1T

Backs up all files in the working directory to the device /dev/tapec. The file names are listed as
they are copied to the device.

OPERATING SYSTEM REFERENCE 2-9

USER COMMANDS

backup

NOTES

® When using append mode, the program appends files to the last volume, requesting

additional volumes as necessary. If there are many volumes in an existing set of diskettes,
place the last volume (diskette) in the backup device. In this case a message is issued
indicating the voulme is not the first and prompts for permission to continue. Respond
with a "y" and a C/R to the prompt. The program then appends files to that volume,
requesting new volumes as necessary.

As files are backed up, backup makes an indication of the path name for each file. When
files are restored, the program uses the path name to place the file in its proper directory
location. If the path name is relative (i.e., does not begin with "/"), the path name of the
restored directory is also relative. Thus, files backed up with a relative path name may be
restored to a directory location different from the one in which they were created.

An example should make this clear. If the working directory is backed up, either by
specifying no source files or by using the directory name ".", the files are backed up with a
relative path of ".". When these files are restored, they are placed in the directory ".". This
directory might not be the same directory they originally came from. This feature allows
the manipulation of entire file systems in a general fashion. To specify a unique directory

location for a file, you should specify its entire path name, starting with "/".

MESSAGES

Backup to <file_name>
Update backup on <file name>

These messages are printed when backup begins. They notify you of the function about to be
performed.

Several of the following messages prompt you for a positive or negative response. The program

interprets any response that does not begin with an upper or lowercase

"_n

n’ as a positive response.

Copy <file_ name> (y/n)?

If you specify the "p" option, the program prints this prompt before it takes any action. A

norne

response of "n" or "N" indicates that the operation should not be performed for the given file.
Any other response is interpreted as yes.

Device model name?

You should respond to this prompt with TEK4404.

2-10

USER COMMANDS
backup

Do you wish to abort append function and create a new backup?

This message is printed at the initiation of the append operating mode if an invalid header
(indicating a bad backup format) is detected. You can now abort from append mode and switch
to create mode.

Format program name?

This prompt is issued in response to a format request for the next diskette volume. It indicates
that the program could not find a format program name in the file /etc/format.control. You
should respond with format since you are backing up on a diskette. You can not format a
streaming tape cartridge.

Insert next volume - Hit C/R to continue:

This prompt is issued when the program needs a new backup diskette or tape cartridge. You
should type a carriage return only when the next device has been placed in the drive. When
creating new backups or when appending to an old backup, with diskettes, you may enter the
character "f", followed by a carriage return. If the program is in append mode, it automatically
switches to create mode and starts a new backup. The "f" indicates that the diskette has been
inserted in the drive, but that it must be formatted before continuing. In this case the program first
checks the file /etc/format.control for a format program name, and if found formats the diskette.
If it cannot find this file, it then prompts you for the format program necessary to format the
diskette. Subsequent format operations during this backup operation use the same information;
thus, all diskettes that were not previously formatted must have the same characteristics (e.g.
double-sided, double-density).

The program prints these messages as it takes the corresponding action during a creation
operation.

This is Volume #<number 1> -- Expected Volume #<number 2>

The program expects you to insert volumes in sequential order. If a volume appears out of order,
backup prints this message. If you type anything except an "n" or an "N" as the first character of
the response to the message, backup ignores the fact that the volumes are out of order and
continues with the backup. Otherwise, it prompts you for another volume.

Volume name?

Each set of backup volumes has a name. You should enter a name that describes the contents, in
response to this prompt. The name may contain as many as 126 characters.

Volume <number> of <vol name>

When you are printing a catalog, whenever a new volume is inserted and properly validated the
program prints this message, which indicates the name of the backup volume and its sequence

OPERATING SYSTEM REFERENCE 2-11

-— Continu

USER COMMANDS

backup

number.

2-12

USER COMMANDS
backup

ERROR MESSAGES

*** Tnvalid Volume Header -- Not a "backup" disk ***

The program validates each backup volume before using it. If this validation fails, the program
prints this message to indicate that something is wrong. You then have another chance to insert
the proper volume and continue. If validation fails while the program is in append mode, you
may abort from append mode and create a totally new backup instead.

Write error! - file <file_name>

An I/O error occurred during the transfer of a file to the backup. An auxiliary message is printed
indicating the nature of the error. The program tries to recover from any error and continue.

backup: unknown options: ’+<char>’
The option specified by <char> is not a valid option to the backup command.

** Warning: directory <dir name> is too large!
** Some directories were ignored

** Warning: directory <dir_ name> is too large!
** Some files were ignored

The program uses some internal tables during the back up process. If the limits of these tables
are exceeded (highly unlikely), these messages are printed.

SEE ALSO

format
restore

OPERATING SYSTEM REFERENCE 2-13

USER COMMANDS
cc

CcC

Invoke the "C" compiler.

SYNTAX

cc <file name_list> [+acDfiIlLmMnNoOpPQrRsStUvwx] [+i=<dir name>]
[+1=<1ib_name>] [+o=<file name>]

ARGUMENTS

<file_name_list> List of the names of files and directories to process. Default is the working
directory.

OPTIONS

a Produce as output assembly language source files with an .a extension and
stop.

c Put comments in the assembly language file.

D<name>[=<defn>] Command line "#define". This option must appear by itself.
f Produce an output module suitable for firmware.
i=<dir_name> Specify a directory for "#include” files. This option must appear by itself.

I Produce as output intermediate language files with an ".i" extension and
stop.

l=<lib_name> Specify a library name to be passed to the loader. This option must appear
by itself.

Produce a source listing and write it to standard output.
Produce load and module maps from the loader.
Leave the combined output as one ".r" file.

Run the first pass only, do not produce any output.

z = g8

Produce a listing without expanding #include files.
o=<file_name> Specify the output file name.

Run the assembly language optimizer.

Use stand alone pre-processor.

Produce intermediate (.p) files and stop.

F-R -

Produce code that does calculations on char and short variables without
first converting to int.

USER COMMANDS

cc

r Produce as output relocatable modules with an ".1" extension and stop.

R Produce as output relocatable modules with an ".r" extension, and
continues to produces an executable module.

t Produce a shared-text, executable output module.

U Produce a line-feed character ($0A) for "\n" rather than the default of
carriage return ($0D).

v Show each phase of the compilation process (verbose mode).

w Warn about duplicate "#define” statements.

x=<ldr_option> Pass the options to the loader for processing.

For a full discussion of the "C" compiler, refer to the manual 4400 Series C Language
Programmer’s Reference.

NOTE

The "C" stand-alone pre-processor is the file /bin/cpasses/cprep. If
you want to use it with another program, it takes its input from
stdin and writes its output to stdout.

EXAMPLES

cc blocks.c +0 +l=graphics

Compiles the program blocks.c, requesting the assembly language optimizer and passing the
library graphics to the loader.

cc labels.c +VvLNr

Compiles the program lablels.c in verbose mode. The compiler produces a source listing,
without expanding any “#include" files, creating only a relocatable module labels.r.

cc access.c labels.r +o=access

Compiles the source program access and the relocatable module labels.r producing a single
binary output file access.

cc rand.c +i=/mark/include +DTHROWS=300 +t +o=dice

Compiles the program rand.c, specifing a directory /mark/include for #include files and
specifying a command line define of THROWS to equal 300. A shared-text binary output file
dice is produced.

SEE ALSO

headset
load

OPERATING SYSTEM REFERENCE 2-15

USER COMMANDS
chd

chd

Change the user’s working directory.

SYNTAX

chd [<dir_name>]

DESCRIPTION

The chd command, which is part of both the shell and script programs, changes the user’s
working directory to the directory specified on the command line. If no directory is specified, the
default is the user’s home directory (the directory entered on logging in). The user must have
execute permission in the directory specified.

ARGUMENTS

<dir_name> The name of the directory to use as the working directory. Default is the
user’s home directory.

EXAMPLES

chd /mark
Changes the working directory to the directory /mark.
chd book

Changes the working directory to the directory book, which resides in the current working
directory.

chd
Changes the working directory to the user’s home directory.

USER COMMANDS
chd

ERROR MESSAGES

Cannot change directories.

The operating system returned an error when the script program tried to change directories. This
message is preceded by an interpretation of the error produced by the operating system.

SEE ALSO

shell
script
perms

OPERATING SYSTEM REFERENCE ' 2-17

USER COMMANDS

commset

commset

Set or display the configuration of the communications port.

SYNTAX

commset [<options_list>]

DESCRIPTION

This utility allows you to examine or set certain I/O options on the RS-232 communications port.
With no argument, it reports the current setting of the options.

OPTIONS

The option strings are selected from the following set:

baud=nnn

=external
=nnn/mmm
=default

Set the transmit and receive baud rates. Valid values are 50, 75, 110, 134, 150, 300,
600, 1200, 1800, 4800, 9600, 19200 and 38400. The keyword external specifies that
the external clock should be used for the baud rate. The default of 9600 is used if the
keyword default is entered. If two values are entered, then the first specifies the
transmit rate and the second specifies the receive rate, otherwise both rates are set to
the same value.

flag=dur

2-18

=input
=output
=inout
=none
=default

Set the type of flagging to be used. The keyword dtr specifies that the DTR and CTS
signals should be used to flag input and output full conditions. The keywords input
and outpur specify that DC3/DC1 (CTL-S/CTL-Q) flagging should be used for input
or output, respectively. The keyword inout specifies that DC3/DC1 (CTL-S/CTL-Q)
flagging should be used for both input and output. The keyword none disables
flagging. The default is inout flagging.

USER COMMANDS

commset

parity=even

=o0dd
=high
=low
=none
=default

Set the type of parity to be used. The keyword even specifies that even parity be used.
The keyword odd specifies that odd parity be used. The keyword high specifies that
the parity bit should always be a one. The keyword low specifies that the parity bit
should always be a zero. The keyword none specifies that the parity bit is treated as
data. The default is low parity.

stop=n
=default

Set the number of stop bits to be used. Valid values are 1 and 2. The default is one
stop bit.

CTS=disable
=enable

Select whether to use the Clear-to-Send (CTS) data signal for communication
protocol. Disabling CTS means to ignore the signal condition. With CTS enabled, a
CTS signal must be received before transmission is enabled.

reset

Reset the communications port, flushing any pending data and setting all options to
their default values.

show

Display the current settings for the options. This is the same as if no option is
specified.

C IMPLEMENTATION NOTES

The commset command uses the rtyset and ttyget system calls to communicate option settings to
the communications port device driver.

SEE ALSO

conset
Assembler Language Reference manual

OPERATING SYSTEM REFERENCE 2-19

USER COMMANDS
compare

compare

Compare two text files line by line and prints the differences.

SYNTAX

compare <file name_ 1> <file name_2> [+<window_size>]

DESCRIPTION

The compare command compares two text files and indicates how they differ. The information
provided is usually sufficient to allow the user to change one file into the other. By default, the
compare command considers that it is in the same place in each of the files if three lines match.

The output from the command reports sets of lines which have been deleted from, added to, or
changed in either file. These messages are written from the point of view of how to change the
first file into the second file. For instance, the message

x*x* File <file name_ 1> lines deleted **x*

means that if the lines following the message are deleted from <file_name_1>, the two files will
be the same.

The program also reports the presence of additional lines in a file with the following message:
x*x* File <file name_1> lines inserted ***

This message means that if the lines following the message are inserted to <file_name_1>, the
two files will be the same.

If a set of lines is deleted from one file and the following line is changed as well, compare reports
all those lines as lines that have been changed rather than inserted or deleted.

The compare command can handle files of any size, but can only process 250 lines at a time. If
the files differ in any spot by 250 lines, the program reports 250 lines changed in each file and
continues comparing them.

ARGUMENTS

<file_name_1> The name of the first file to use.

<file_name_2> The name of the file to compare to <file_name_1>

OPTIONS

<window_size> Use the integer <window_size> as the number of matching lines required

before considering the files synchronized. The number specified must be
between 1 and 250, with a default of 3.

2-20

USER COMMANDS
compare

EXAMPLES

compare /michael/test /cathy/test
Compares the file test in the directory /michael to the file test in the directory /cathy.
compare test test.bak +5

Compares the two files rest and rest.bak in the working directory. The window size for the
comparison is five lines.

ERROR MESSAGES

Syntax: compare <file name 1> <file_ name_2> [+<window_size>]

The compare command expects two or three arguments. This message indicates that the
argument count is wrong.

OPERATING SYSTEM REFERENCE 2-21

USER COMMANDS
conset

conset

Set or display the configuration of the console port.

SYNTAX

conset <options_list>

DESCRIPTION

The utility conset allows you to examine and set certain I/O options on the console port. With no
argument, it reports the current setting of the options.

OPTIONS

The option strings are selected from the following set:

+raw Set or clear the raw mode.

-raw

+echo Enable or disable character echoing.

-echo

+tabs Enable or disable automatic tab expansion.

-tabs

+becho Enable or disable space/backspace to erase on backspace.

-becho

+schar Enable or disable single character mode.

-schar

+xon Enable or disable CTRL-S/CTRL-Q (DC3/DC1) flagging to suspend
-xon output.

+any Enable or disable any character to restart suspended output.

-any

+cml Enable or disable RETURN:S, to be displayed as return/line-feed.
-crml

chardel=<n> n is a hex number specifying a character to be used as the delete character.
linedel=<n> n is a hex number specifying a character to be used as line delete character.
+screensave Enable or disable screen blanking after 10 minutes of inactivity.
-screensave

2-22

USER COMMANDS

conset
+video Select normal video (black on white) or inverse video.
-video
+cursor Select make graphic cursor visible or invisible.
-cursor
+track Enable or disable graphic cursor tracking the mouse.
-track
+mousepan Enable or disable mouse panning of the viewport.
-mousepan
+diskpan Enable or disable joydisk panning of viewport.
-diskpan
show Display the current settings for the options. This is the same as if no

option is specified.

default Restore default settings.

C IMPLEMENTATION NOTES

The conset command uses the #yset and ttyget system calls to communicate the raw, echo, tabs,
becho, schar, xon, any, crnl, chardel and linedel option settings to the console port device driver
and it uses system traps to implement the screensave, video, cursor, track, mousepan, and diskpan
options.

SEE ALSO

commset

OPERATING SYSTEM REFERENCE 2-23

USER COMMANDS
copy

copy

Copy a file or directory to the specified file or directory, or copy one or more files to the specified
directory.

SYNTAX

copy <file name_ 1> <file name_ 2> [+bBcdDlLnopPt]
copy <file name list> <dir name_ 2> [+bBcdDFlLMnopPt]
copy <dir_name_ 1> <dir name_2> [+bBcdDFl1lLMnopPt]

DESCRIPTION

Three forms of the copy command exist. The first form makes a copy of a file and gives it the
specified name. The second form makes one copy of each specified file and places all copies in
the specified directory. The last component of each file name is preserved in the new directory.
The third form copies the contents of one directory to another.

In any case, if no file exists which has the same name as the name specified for the new copy, the
copy command creates one. If a file with that name already exists, it is deleted and recreated
before copying takes place. Thus, the original contents of the file is lost and replaced by the
contents of the file being copied. In addition, any links to the original file are broken.

The new file has the same permissions as the original file. The owner of the new file is always
the user who executes the command. The user must have execute permission in the directory in
which copies are to be made. He or she must also have write permission for the file being copied
to and, unless the "0" option is specified, in the directory that is to contain the new copy.

ARGUMENTS
<file_name_1> The name of the file to copy.
<file_name 2> The name of the new copy of the original file.

<file_name_list> A list of the names of the files to copy to the specified directory.
<dir_name_1> The name of the source directory.
<dir_name_2> The name of the directory in which to place all copies.

2-24

USER COMMANDS

OPTIONS

[= %

B L0 m

(=]

W o

EXAMPLES

copy

Do not copy a file unless it already exists in the destination directory.
Don’t copy files ending in .bak.

Do not copy a file if it already exists in the destination directory. Cannot
be used with n.

Copy directory structure for all named directories.

Implicity specify the high level directory names. This option works
properly only in conjunction with the +d option. When used together with
+d, +D preserves the source directory structure within the destination
directory.

Copy/convert a directory to a regular file.

List the name of each file as it is copied and the name of the new copy.
Do not unlink the destination file.

Convert RETURN/new-line to LINE-FEED/new-line

Copy a file if it is newer than the copy in the destination directory. If no
copy exists, perform the copy.

Retain original file ownership.
Prompt for permission to copy each file.

Preserve all the characteristics of the file - the modification time and the
ownership of the source file.

Do not copy source directory unless destination directory exists.

copy parts parts.bak

Copies the file named parts to a file named parts.bak. If a file named parts.bak already exists, it
is deleted and recreated before copying takes place.

copy letter /mark/letter +p

Copies the file letter in the working directory to the file /mark/letter. The copy command
prompts for permission to copy before proceeding. If the user denies permission, no copy is
made. For the command to succeed the user must have both write and execute permission in the
directory /mark as well as write permission for the file /mark/letter.

OPERATING SYSTEM REFERENCE 2-25

USER COMMANDS
copy

copy test_1 test_2 memo /mark +lo

Copies the files test_1, test_2, and memo to the directory /mark. The names of the new files are
Imarkitest_l, Imark/test_2, and /mark/memo. If a file with one of these names already exists, the
copy command overwrites its contents without warning (the user does not need write permission
in the directory /mark). The name of each file and the name of the new copy are listed as copying
takes place. The command aborts immediately if it encounters an error (e.g., one of the files
listed does not exist).

Each copy created by these commands has the same permissions as the original file. The owner
of all copied files is the user executing the command.

copy dir 1 /mark +dnolDLP

Copies the directory dir_I, and any sub-directories, to the directory /mark. For source files in
the destination directory a copy is made only if the source file is newer. the files are listed as
they are copied; preserving ownership, links, and modification times. The source directory
structure dir_I will be preserved exactly in the directory /mark.

ERROR MESSAGES

Entry does not exist: <file name>

The user asked for a copy of a nonexistent file.

<file_name_1> and <file_name 2> are the same file

A file may not be copied onto itself. Both <file_name_I> and <file_name_2> refer to the same
file. (If their names are not the same, they are links to the same file.)

May not copy a directory: <dir_name>

The user asked for a copy of a directory. Directories may not be copied.

May not copy a special file: <file name>

The user asked for a copy of a block or character file. Such files may not be copied.

Must be a directory: <file name>

The form of the copy command being used requires the last argument to be an existing directory;
<file_name> is not an existing directory.

Path cannot be followed: <file_name>

One or more of the directories which make up the name of the file do not exist.

2-26

USER COMMANDS
copy

Permissions deny access to file: <file name>

The permissions associated with <file_name> or with the path leading to <file_name> prevent
the user from accessing the file.

Read error on file: <file name>

A physical read error occurred while reading <file_name>.

Syntax: copy <file_name_1> <file_name_2> [+bBcdDlLnopPt]
copy <file name_ list> <dir name> [+bBcdDF1lLMnopPt]

The copy command expects at least two arguments. This message indicates that the argument
count is wrong.

Write error on file: <file_name>

A physical write error occurred while writing to <file_name>.

SEE ALSO

link
move
rename

OPERATING SYSTEM REFERENCE 2-27

USER COMMANDS

crdir

crdir

Create a directory.

SYNTAX

crdir <dir name_list>

DESCRIPTION

The crdir command creates a directory for each name listed as an argument to the command. The
user must have write permission in the directory in which the new directory is created. Each new
directory contains the entry ".", which represents the directory itself, and the entry "..", which

represents its parent directory.

By default, crdir creates a directory with rwxrwx permissions. However, any default permissions
set by the dperm command override these permissions. The owner may, of course, change the
permissions at any time by using the perms command.

ARGUMENTS

<dir_name_list> A list of the names of directories to create. All of the components of
the directory name (path name), except the last component, must
already exist.

EXAMPLES

crdir book

Creates the directory book in the working directory.

crdir /sarah/book

Creates the directory book in the directory /sarah. If the directory /sarah does not already exist,
the command fails.

2-28

USER COMMANDS

crdir

ERROR MESSAGES

Error creating <dir_name>: <reason>

The operating system returned an error when crdir tried to create the specified directory. This
message is followed by an interpretation of the error returned by the operating system.

Error linking <dir name> to its . file: <reason>

"o

The operating system returned an error when crdir tried to link the "." entry to the directory itself.
This message is followed by an interpretation of the error returned by the operating system.

Error linking .. to parent of <dir name>: <reason>

The operating system returned an error when crdir tried to link the newly created directory to its
parent. This message is followed by an interpretation of the error returned by the operating
system.

Error setting owner for <dir_name>: <reason>

Initially, the crdir command creates the new directory with the owner system. It then changes the
owner to the user who executed the command. In this case, the operating system returned an
error when crdir tried to change the owner of the directory. This message is followed by an
interpretation of the error returned by the operating system.

Syntax: crdir <dir_name_list>

The crdir command expects at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO

dperm
perms
remove

OPERATING SYSTEM REFERENCE 2-29

USER COMMANDS

create

create

Create an empty file for each file name on the command line.

SYNTAX

create <file name list>

DESCRIPTION

The create command creates an empty file for each name specified on the command line. If the
file does not exist, it is created with rw-rw- permissions (unless altered with the dperm
command), and the owner is the user who executes the command. If the file already exists, the
owner and permissions remain intact. However, the file is truncated to a length of 0. You need
write permission in the directory that you are creating a new file.

ARGUMENTS

<file_name> The name of the file to create. The last component of a file name may not
contain more than 55 characters. The create command ignores any
additional characters.

EXAMPLES

create test
Creates the file test in the user’s working directory.
create /julie/test

Creates the file test in the directory /julie.

2-30

USER COMMANDS
create

ERROR MESSAGES

Error creating <file name>: <reason>

The operating system returned an error when create tried to create <file_ name>. This message is
followed by an interpretation of the error returned by the operating system.
Syntax: create <file name_list>

The create command requires at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO

edit

OPERATING SYSTEM REFERENCE 2-31

USER COMMANDS
date

date

Display or set the time and date.

SYNTAX

date [[<mm>-<dd>[-<yy>]] <hr>:<min>[:<sec>]] [+s]

DESCRIPTION

The date command has two forms: with arguments and without. Any user may execute the date
command without any arguments. In response, the system returns the current date and time. The
user system may also use the date command with arguments to set the system date and time. If
the user system uses the +s option, the system reads the hardware clock and sets the date and time
accordingly.

ARGUMENTS

<mm> A number from 1 to 12 inclusive representing the month.

<dd> A number from 1 to 31 inclusive representing the day.

<yy> A two-digit number representing the last two digits of the year.

<hr> A number from 0 to 23 inclusive representing the hour. (Time must be
expressed as 24-hour-clock time.)

<min> A number from 0 to 59 representing minutes past the hour.

<sec> A gumber from 0 to 59 representing seconds past the minute. The default
is 0.

OPTIONS

s The s option tells the system to set the system date from the internal
hardware clock.

2-32

USER COMMANDS
date

EXAMPLES

date 7-13-84 15:47:28
Sets the date to July 13, 1984, and the time to 3:47:28 P.M.

date 11:53

Sets the time to 11:53 A.M. The date defaults to the date stored in memory and the value for
seconds defaults to zero.

date 7-13 17:5

Sets the date to July 13 and the time to 5:05 P.M. The value for the year defaults to the stored
value, and the value for seconds defaults to zero.

date
Displays the date and time currently stored in memory.

date +s

Sets the date and time to correspond to that in the system hardware clock.

ERROR MESSAGES

Invalid <arg> specified.

The value specified for the argument shown in the error message is not within the acceptable
range.

Only the syéfem manager may change the date!

The user who tried to change the date is not the system manager.

Syntax: date [[<mm>-<dd>[-<yy>]] <hr>:<min>[:<sec>]]

The syntax of the command line is incorrect. Most probably, the arguments specifying the time
are missing or mistyped.

OPERATING SYSTEM REFERENCE 2-33

USER COMMANDS
debug

debug

debug invokes a machine-language debugging system.

SYNTAX

debug [<image_file name>]

DESCRIPTION

The debug command is used to aid in the testing and debugging of machine-language programs.
Because all programs are ultimately translated into machine language, any program may be
debugged using debug.

The debug command is used to examine or modify the image of a machine-language program.
This image can be (1) a post-mortem memory dump of a program which has been aborted by the
operating system, (2) a program image file, or (3) a program which is currently executing under
the control of debug. If no image file is specified on the command line, the default is the file
core in the working directory. The debug command examines the file to determine whether it is a
core image or an executable image file. If it is neither, debug issues the message Invalid image
type and terminates. The third type of image may be created only by specifying the name of an
executable image on the command line, followed by executing "x" command to create the
controlled task.

The commands available with debug allow the user to examine memory locations within the
program image, to modify memory locations, to set breakpoints, to execute single instructions (to
single step through the program), to examine and change registers, and more. Some commands,
such as single step, are applicable only when debug is being used to control the execution of a
task. However, most commands are available for use with all image types.

ARGUMENTS

<image_file_name> The name of the file to debug. The default is the file core in the working
directory.

2-34

USER COMMANDS

OPTIONS

debug

The debug command normally works in an interactive environment. The basic command
structure is designed to be simple to use and to remember. In general, each command name is a
single character, which may be followed by one or more expressions.

Expressions may include the operators "+" and "-", which are evaluated from left to right unless
parentheses are used. Expressions may also include any of the following terms:

$<num>

<num>

#<num>

<symbol>

<register>

The hexadecimal value of <num>.

The hexadecimal value of <num>. If this form is used, the number must
start with a digit. If it starts with a character, debug interprets it as a
symbol.

The decimal value of <num>.

The value of the specified symbol. Symbol names must be completely
specified — that is, all char characters are significant.

The contents of the specified register. The register may be DO through D7,
AOQ through A7, SR, or PC. The letters used in specifying a register may be

either uppercase or lowercase. A "." means, the last memory address
accessed.

debug includes these commands:

+

~ am a o w o = |

a3 o2 R

Execute a shell command.

Display the value of an expression in multiple formats.
Display the help menu.

Set a breakpoint.

List the breakpoints that are currently set.

Clear one or all breakpoints.

Dump a section of memory.

Continue execution of a program.

Execute the program until reaching a branch or a breakpoint.
Disassemble instructions.

Initialize symbol table.

Terminate the currently executing task.

Remove any pending signals for the controlled task.
Modify bytes in memory.

Display the current memory map.

Display the command line for the task.

Terminate debug.

Display the contents of all registers.

OPERATING SYSTEM REFERENCE 2-35

USER COMMANDS

debug

R Set the contents of a register.

s Execute a single instruction.

S Set a temporary breakpoint at the instruction following the current
instruction and execute the current instruction.

T Trace instructions until reaching a branch or a breakpoint.

X Create a task to be executed under the control of debug.

<CR> A carriage return performs the same as the "i" command, but with no

address.

The following paragraphs describe debug commands in more detail:

+ <shell command>

This command allows the user to execute a single shell command without exiting debug.

= <expression>

This command displays the value of the expression symbolically, in hexadecimal, and in decimal.

?

This command displays a menu of commands available from debug.

b <location> [<count>]

The "b" command sets a breakpoint at the given location. When the program is executed, the
instruction at the given location is replaced by a special instruction which indicates to the
operating system that the user wants to break the flow of the program. When this instruction is
executed in the program, the operating system suspends the program and notifies debug, which
prints the location of the breakpoint and returns to command mode. If the user specifies a count,
the breakpoint is executed <count> times before execution is halted and debug notified. Once the
count is exceeded, execution is halted every time the breakpoint is encountered unless it is reset
by another "b" command or cleared.

B

The "B" command lists each breakpoint which is currently set as well as the corresponding
<count> if it is nonzero.

¢ [<address>]

If the user does not specify an address, the "c" command prompts for permission to clear all
breakpoints that are currently set. If the user does specify an address, it clears the breakpoint at
that address.

2-36

USER COMMANDS
debug

d <address_ 1> [<address_2 or_count>]

The "d" command dumps the hexadecimal contents and the ASCII equivalents of a range of
memory locations. Memory is displayed sixteen addresses to a line. Nonprintable characters are
represented in ASCII by a period.

If the user specifies only one argument, the command displays the contents of the specified
address. If the user specifies two arguments and the second one is greater than the first, the
command interprets the second argument as an address. It displays the contents of memory from
the first specified address to the second, inclusive. If the user specifies two arguments and the
second one is less than or equal to the first, the command interprets the second argument as a
count. It displays the contents of memory beginning at the first address and continuing for the
number of addresses specified by the second argument.

The dump may be aborted by typing the return key during the dump. CTRL-C does not abort the
command.

g

The "g" command continues the execution of a controlled task. Execution continues until the
program terminates, receives a signal or encounters a breakpoint. The user may use this
command only when executing a controlled task.

G

The "G" command executes the program until it encounters any branch instruction, any call
instruction, or any breakpoint.

i [<address_1> [<address_2_or_count>]]

The "i" command displays the contents of memory from the first specified address to the second,
inclusive. If the user specifies two arguments and the second one is less than or equal to the first,
the command interprets the second argument as a count. The "i" command interprets the
specified location or range of locations as machine-language instructions and advances the
location counter to the start of the last complete instruction within the specified range. If the user
specifies no second argument or if the range specified by the second argument is shorter than the
complete instruction, the command displays the instruction which begins at the starting address
but does not move the location counter. A carriage return by itself is equivalent to the command

et

i", except that the location counter is advanced to the beginning of the next instruction.

I

The "I" command initializes debug’s internal symbol table. The symbol table is used to interpret
symbolic addresses and values. The "I" command prompts for the name of the file containing the
symbol table to use. The file must be a binary image file. This command is normally for use
with a core image file, because such files do not contain any symbolic information. Once the
symbol table is initialized, however, a core image file can be interpreted symbolically.

OPERATING SYSTEM REFERENCE 2-37

USER COMMANDS
debug

The "k" command terminates execution of the current controlled task. If no controlled task
exists, the command is not allowed. This command need not be used, because the "x" command
implicitly kills any controlled task before creating another.

2-38

USER COMMANDS
debug

K

When a task running under the control of debug receives a signal, the operating system notifies
debug and suspends the task. The debug program then enters command mode, allowing the user
to execute any debug command. A user who wishes to ignore the signal may do so by entering
the "K" command. A user who wishes the signal to take effect should simply continue the
program with the "g" (or a similar) command.

m <address>

The "m" command modifies the contents of one or more memory locations in the image file. In
response to this command, debug first displays the specified address and its contents. The user
may change the contents by entering any expression, may leave the contents as is by entering a
period, or may terminate the command by entering just a carriage return. Unless the user
terminates the command, debug modifies the contents if appropriate, displays the next address
with its contents, and waits for input from the user.

If the image file is a core dump or an executable file, the file itself is modified. If the image file
is a controlled task (i.e., an "x" command has been executed), only the memory of that task is
altered. The executable file from which debug created the task is not changed. Therefore, when
patching code the user should be aware that patches are applied only to the executing image file.

M

The "M" command displays a map of the logical addresses available to the task image. If the
image is either a core dump or a controlled task, the map contains the ranges of addresses being
used by the program. These ranges may change whenever the program executes a break or a
stack system call. If the image is an executable file, the "M" command displays the ranges of the
addresses of the TEXT and DATA/BSS segments.

n

"

The "n" command displays the command line which was used to create the task. This is merely a
display of the command arguments passed to the program when it was created. In most cases the
command line consists of the shell command used to invoke the program. The command line for
a controlled task looks just like the command line entered with the "x" command that created it,
except that the "x" is replaced by the program name.

r

The "r" command displays the contents of the registers for the image file, as well as the address
of the program counter and the instruction located at that address. For a core dump it displays the
contents of the registers at the time the program was aborted by the system and the location of the
program counter at that time. The instruction displayed is the instruction that was in progress
when the program was aborted. For a controlled task, the "r" command displays the contents of
the registers as they will be when execution resumes, the address at which execution will resume,
and the instruction at that address. The registers for an executable file are undefined. For an
executable file, the "r'" command displays the contents of the registers as zeros and the address

and contents of the entry point of the program.

OPERATING SYSTEM REFERENCE 2-39

USER COMMANDS
debug

R <register name> <expression>

The "R" command, which may be used only if the image file is a controlled task, alters the
contents of a register. The register may be DO through D7, AO through A7, SR, or PC. The
letters used in specifying a register may be either upper- or lowercase. The supervisor portion
(the upper byte) of the status register may not be altered.

S

The "s" command executes a single machine-language instruction. When the instruction is
complete, debug displays the state of the task (including the new program counter) and the next

instruction to be executed. The "s” command uses system facilities provided by the operating
system. Thus, the user may safely single-step through macro operations such as system calls.

S

The "S" command sets a temporary breakpoint at the instruction following the current instruction.
This breakpoint is removed as soon as it is encountered. If another "S" command is executed
before the breakpoint is encountered, it removes the original breakpoint. This command may be
used with any instruction, but it is normally used with a call to a subroutine.

T

The "T" command executes the program until it encounters any branch instruction, any call
instruction, or any breakpoint. After the execution of every instruction, debug displays the
address of the next instruction and the instruction itself.

X [<arguments>] ([<I/O_redirection>]

The "x" command creates a controlled task from an image file. In order to execute this
command, the user must first invoke debug with the name of an executable image file as the
argument. The task is halted before execution of its first instruction, so that debug can accept
commands to control its execution.

"o

I/O redirection may be accomplished using the character "<" to redirect standard input, ">" to
redirect standard output, and "%" to redirect standard error. No provisions are made for using
either append mode (>>) or implied mapping (>%).

NOTE

The more breakpoints you set, the longer the program takes to
execute.

2-40

USER COMMANDS
debug

ERROR MESSAGES

Breakpoint table full!

The user has already set the maximum number of breakpoints.

Can’t access core/image <image file name>

The operating system returned an error when debug tried to access the specified file. Most
probably, either the file does not exist or the user does not have read permission in the file.

Can’t open <file nane>

The debug command was unable to open the file which the user specified as the file containing
the symbol table to use. Most probably, either the file does not exist or the user does not have
read permission in the file.

Can’t write <image file name>

The user tried to use the "m" command to modify the contents of a memory location in the image
file, but debug was unable to write to the file. Most probably, the user does not have write
permission in the file.

Command too complicated

n o

The user tried to use the "+ command to execute a shell command from debug, but the command
line was too long for debug to interpret.

Error during EXEC - <error_num>

The operating system returned an error when the user tried to create a controlled subtask using
the "x" command. This message is followed by the error number returned by the operating
system.

Error in expression

The expression used contains a syntax error.

Illegal address
The address specified is not in the user’s address space.

Illegal command, <char>, - ignored

The command specified by <char> is not a valid command for debug. The character is ignored,
and debug prompts the user for another command.

OPERATING SYSTEM REFERENCE 2-41

USER COMMANDS
debug

Illegal file type

The "I" command cannot determine the file type of the image file and, consequently, ignores the
file. All previously defined symbols are no longer defined.

Illegal register name

The register name specified by the user is not a valid register name. The register name must be
one of the following: DO through D7, AQ through A7, SR, or PC. The letters used may be upper-
or lowercase.

<image_file name> is not executable

The user does not have execute permission in the specified image file.

Invalid image file <file name>

The file specified to the debug command must be either an executable file or a core dump.

No command line

The file being debugged is not a core file, and was not invoked with the "x" command.
Therefore, no command line exists for the file.

Not executing a task!

The command specified can execute only if the user has previously executed the "x" command.

Sorry, can’t execute a core file

The "x" command cannot be executed on a core file.

** Syntax error

"o

The "x" command cannot parse the specified command line.

Undefined symbol

An expression contains a term which appears to be a symbol (starts with a letter or an underscore
character,"_") but is not in the symbol table. Hexadecimal values used in expressions must begin
with a digit (a leading 0 is accepted) or a dollar sign,"$".

2-42

USER COMMANDS
dir

dir

List either the contents of a directory or information about a file.

SYNTAX

dir [dir_name_list] [<file_name list>] [+abdflrsSt]

DESCRIPTION

The dir command is used to list either the names of the files in the specified directory or, if the
argument is not a directory, information about the specified file. By default, the names of the
files in a directory are listed in alphabetical order with several names per line.

FORMAT OF THE OUTPUT

The information given about a file is presented on one line, which contains several fields. These
fields are described here in the order in which they appear.

<fdn_num> The number of the file descriptor node (fdn) which describes the file in
question. This field is not present unless the user specifies the "f" option.

<file_name> The name of the file being described.

<size> The size of the file in blocks or bytes. If the file is a device, dir places the

major and minor device numbers in this field.

<file_type> A single character specifying the type of file. The character "b" represents
a block device; "c", a character device; and "d", a directory. If the field is
blank, the file is a regular file.

<perms> This field, which is composed of six columns, indicates what permissions
are associated with the file. The first three columns represent permissions
for the user who owns the file; the last three for other users. Permissions
are always presented in the order read, write, and execute. They are
represented by the letters "r", "w" and "x". A hyphen in a column means
that the corresponding permission is denied. For example, if the
permission field contains the sequence rwxr-x, the user who owns the file
may read, write, and execute the file, whereas other users may only read
and execute it.

<link_count> The link count is the number of directory entries which point to a file. The
link count for a directory is always at least 2 because the "." entry within
the directory itself points to the same fdn as the directory entry for that file
in its parent directory.

OPERATING SYSTEM REFERENCE 2-43

USER COMMANDS

dir

<owner>

<last_mod_time>

ARGUMENTS

<dir_name_list>

<file_name_list>

OPTIONS

a

2-44

The name of the user matching the user ID number found in the system
password file. If no user ID number is found, the user ID is printed
surronded by double brackets, i.e. <<12>>.

The time and date at which the file was created or last modified.

A list of directory names to process.

A list of the names of files to process. The default is the working
directory.

List all files in a directory, including those whose names begin with a
period, ".". This option has no effect if the specified file is not a directory.
List the file size in bytes rather than blocks. This option implies the "1"

option.

If the file being processed is a directory, list the names of all files it
contains. Continue this process for all descendant directories. This option
allows the user to see the entire directory structure.

List the number of the file descriptor node for each file. This option
implies the "1" option.

If the specified file is a directory, give detailed information about each file
in the directory. This option has no effect if the specified file is not a
directory because in such a case the information is automatically given.

If the specified file is a directory, reverse the order in which the files would
otherwise be listed.

If the specified file is a directory, list one file name on each line. This
option is useful for creating a file which contains the names of all the files
in a directory.

Print a summary of the information after listing all files.

This option sorts all files in a directory by the time last modified. It cannot
be used to sort specific files or groups of files (via wildcard characters).
By default, the most recently modified file is listed first.

USER COMMANDS
dir

EXAMPLES

dir +1

Lists information about each file in the working directory (except those whose names begin with
a period).

dir /jay +abdfs

Lists information about all files, including those whose names start with a period, in the directory
/jay (the "f" and the "b" option both imply the "1" option). In addition, the command displays a
list of the files in each subdirectory that is a descendant of /jay. The information includes the fdn
number of each file. The size of each file is shown in bytes. At the end of the output is a
summary showing the total number of directories processed, the total number of nondirectory
files processed, and the total number of blocks used by all the files.

dir memo +f

Displays information about the file memo in the working directory. The information includes the
fdn number of the file. ,

dir /marcy +rt

Lists the names of those files in the directory /marcy which do not begin with a period. The
names are sorted by the time of the last modification with the sense of the sort reversed so that
the most recently modified file is the last one in the list.

dir /marcy +s

Lists the names of those files in the directory /marcy that do not begin with a period. One name
appears on each line.

ERROR MESSAGES

Unknown option: <char>

The option specified by <char> is not a valid option to the dir command.

Warning: directory <dir_name> is too large!
Some directories were ignored

The dir command cannot process a file if the total number of directories in every directory
between that file and the directory specified on the command line exceeds 50. In order to make
the command succeed, the user should start at a lower point in the directory tree.

Warning: directory <dir_ name> is too large!
Some files were ignored

OPERATING SYSTEM REFERENCE 2-45

USER COMMANDS
dir

The dir command cannot list more than 500 file names from a single directory. In order to make
the command succeed, the user should split the offending directory into two or more directories.

2-46

USER COMMANDS
dirs

dirs

List the current working directory and the directory stack created by the pushd command and
maintained by the shell.

SYNTAX

dirs

DESCRIPTION

List the current working directory and the directory stack created by the. pushd command and
maintained by the shell. The directory stack is listed top first.

SEE ALSO
popd

pushd
shell

OPERATING SYSTEM REFERENCE 2-47

USER COMMANDS
dperm

dperm

Set the default permissions for the creation of files by the current shell program or by tasks
generated by the current shell program.

SYNTAX

dperm [<perms_ list>]

DESCRIPTION

Every time a user creates a file, the operating system assigns it a set of permission bits which
determines whether the file’s owner and other users may read, write, or execute the file. The
permissions assigned depend on the command used to create the file. The editor edir, for
example, creates all files with rw-rw- permissions, which allow the user who owns the file, as
well as other users, to read and write, but not execute, the file. The default permission for crdir
are rwxrwx; for create, rw-rw-; for makdev, rw-r—.

The dperm command, which is part of the shell program, is used to set the default permissions for
the creation of a file. It allows the user to instruct the system always to deny certain permissions,
independent of how the file is created. It is possible to independently turn off any of the
permission bits for the file’s owner and other users. If the user specifies no arguments, the
operating system restores the default permissions.

It is only possible to deny permissions with the dperm command. The perms command may be
used to add permissions to individual files, overriding the defaults set by dperm.

ARGUMENTS

<perms_list> A list defining the permission bits to be used as defaults.

FORMAT FOR ARGUMENTS

<perms_list> The first character of an element in a permissions list specifies if the
argument applies to the user who owns the file ("u") or to other users ("0").
The second character must be a minus sign, "-", which indicates that the
following permissions are to be de{'lisd." 'Ehc mif'm§ sign is followed by

one, two, or three of the characters "r", "w", and "x" (for read, write, and
execute, respectfully).

2-48

USER COMMANDS
dperm

EXAMPLES

dperm o-rwx

Sets the default permissions so that the operating system denies all permissions to other users
whenever it creates a file.

dperm u-w O-WX

Sets the default permissions so that the operating system denies write permission to the user who
owns the file, and both write and execute permission to other users whenever it creates a file.

dperm

Removes all default permissions.
NOTE

The dperm command is only effective while the shell program
under which it is invoked is running. The default permissions for
files created by the login shell can be permanently altered by
placing the appropriate command in the file login in the user’s
home directory. This file is automatically executed each time the
user logs in.

ERROR MESSAGES

Error in permissions specification.

The format of the permissions list is incorrect. Most likely, the user has specified a plus sign,
"+", instead of a minus sign, or has used an invalid character.

SEE ALSO

perms

OPERATING SYSTEM REFERENCE 2-49

USER COMMANDS
dump

dump

Send both a hexadecimal and an ASCII listing of a file to standard output.

SYNTAX

dump <file name> [+i]
dump [<file name_list>]

DESCRIPTION

The dump command sends a hexadecimal and an ASCII listing of a file to standard output. The
two versions of the file appear side by side. A line of output consists of the address in the file at
which that line starts, the hexadecimal contents of the byte at that address and of the following
fifteen bytes, and the sequence of characters represented by these bytes. A nonprintable character
appears as a period, ".", in the ASCII part of the listing.

The user may interrupt the dump command at any time by typing a CTRL-C. Normally, a
CTRL-C returns the user to the shell program. However, if the dump command is in interactive
mode and is actually displaying information when the user types a CTRL-C, dump stops the
output and prompts for another address.

ARGUMENTS

<file_name> The name of the file to dump. The default is standard input.
<file_name_list> The name of files to dump. You can not use this interactivley.
OPTIONS

i Enter interactive mode. The "i" option may be used only if exactly one file

name appears on the command line. If the user specifies the "i" option, the
dump command prompts for the address at which to begin. The address is
relative to the first byte in the file, whose address is 0. An address
preceded by a period is a decimal address; otherwise it is a hexadecimal
address. The user may specify a single address, a range of addresses (two
addresses separated by a hyphen, or an initial address and an offset (an
address followed by either a comma or a space, followed by a number). In
the first case, the dump command displays sixteen bytes of information,
beginning with the specified address. In the second case, it displays all the
bytes from the first to the second address inclusive. In the third case, it
begins displaying bytes at the address specified and continues for as many
bytes as the following number dictates.

2-50

USER COMMANDS
dump

EXAMPLES

dump memo /cynthia/letter

Sends both a hexadecimal and an ASCII listing of the file memo, which is the working directory,
and the file lerter, which is in the directory /cynthia, to standard output.

dump letter +i

Enters interactive mode and prompts the user for the address at which to begin the dumping the
file letter.

dump testprog >test.dump
Sends a hexadecimal and ASCII listing of the file testprog via redirected I/O to the file test.dump.

ERROR MESSAGES

Cannot interactively dump multiple files.
The "i" option may not be used if more than one file name appears on the command line.
Cannot interactively dump standard input.

(131

If the user specifies no file name on the command line, the default is standard input. The "i
option may not be used in such a case.

Error opening <file name>: <reason>

The operating system returned an error when dump tried open <file_name>. This message is
followed by an interpretation of the error returned by the operating system.

Invalid option <char>: ignored.

The option specified by <char> is not a valid option to the dump command. The command
ignores it.

OPERATING SYSTEM REFERENCE 2-51

USER COMMANDS
echo

echo

Write the arguments on the command line to standard output.

SYNTAX

echo [<argument_ list>] [+1] [+<hex_ num>]

DESCRIPTION

The echo command writes the arguments in <argument list> to standard output. A space
character appears after each string argument; no space appears after a hexadecimal argument;
while the last argument is followed by a carriage return. You can use echo to non-destructively
show how the shell or script programs evaluate special characters in the <argument_list>.

ARGUMENTS

<argument_list> A list of arguments to write to standard output.

FORMAT FOR ARGUMENTS

<argument_list> Each element in <argument list> consists either of a string or a
hexadecimal number preceded by a plus sign, "+".

OPTIONS

1 Do not write a carriage return after echoing the argument list.

<hex_num> Send the equivalent hex byte to standard output.

EXAMPLES

echo This is a test!
Writes the string This is a test! to standard output, which defaults to the console.
echo This is a test! +7 +1 >/dev/console

Writes the string This is a test!, followed by the bell character (hexadecimal 7), to standard
output. Standard output is redirected to /dev/console (the 4400 display). The output is not
followed with a carriage return. (The +/ is the option plus el, not the hexadecimal argument plus
one.)

2-52

USER COMMANDS
edit

edit

Invoke the text editor in order to create a new text file or edit an existing one.

SYNTAX

edit [<file_name_ 1> [<file name_ 2>]] [+bny]

DESCRIPTION

The edit command may be used with zero, one, or two arguments. With one argument, edit
opens the specified file for editing, creating it if necessary, and reads as much of the file as
possible into the edit buffer. At the end of an editing session of a pre-existing file, the editor
renames the original file by appending the letters .bak to its name. If this addition would result in
a file name of more than 55 characters (the maximum allowed by the operating system), the
editor shortens the original name before adding the suffix. If a backup file already exists, the
editor prompts for permission to delete it.

If the user specifies no arguments, the editor prompts for the name of the file at the end of the
editing session, before returning control to the operating system. It does not accept the name of
an existing file.

If the user specifies two file names, the operating system makes a copy of the first file specified,
gives it the name specified by the second argument, and opens it for editing. If a file with that
name already exists, the editor prompts for permission to delete it before proceeding. In such a
case, the editor creates the new file with the same permissions as the old file.

Files created by the editor have permissions of rw-rw-.

ARGUMENTS

<file_name_1> The name of the file to open for editing, or, if two file names are specified,
the name of the file to copy.

<file_name 2> The name to give to the copy of the file specified by <file_name _1>. Itis
this copy that is opened for editing.

OPERATING SYSTEM REFERENCE 2-53

USER COMMANDS

edit

OPTIONS

b Do not save the original copy of the file as a backup file at the end of the
editing session.

n Do not read any text into the edit buffer. This option allows the user to
make large insertions at the beginning of a file.

y If only one argument appears on the command line, at end of the editing
session automatically replace any existing backup file with the original
copy of the file being edited. If two arguments appear on the command
line and the second file specified already exists, delete that file at the
beginning of the editing session.

EXAMPLES

edit test +ny

Opens the file test in the working directory but does not read any of it into the edit buffer. If the
file does not exist, the editor creates it. At the end of the session, edit automatically replaces any
existing backup file with the original copy of zest.

edit test oldtest

Makes a copy of the file test, names it oldtest, and opens it for editing. If a file named oldrest
already exists, the editor asks for permission to delete it.

MESSAGES

Delete existing copy of new file?

The file specified by <file_name_2> already exists. If the user responds with a "y", the editor
deletes the existing copy of the file and opens the new file for editing. If the user responds with

"nou

an n , the editor leaves the existing file intact and returns the user to the operating system.

File already exists
File name?

The edit command was executed with no arguments on the command line. At the end of the
editing session, when the editor prompted for the name of the file, the user specified an existing
file. Under these circumstances, the editor does not accept the name of an existing file.

2-54

USER COMMANDS
edit

ERROR MESSAGES

Cannot create new file

The editor cannot open the file specified by <file_name 2>. Most probably, either the user
specified a path name that could not be followed or the user does not have the permissions
necessary to open the file.

Cannot open edit file

The editor cannot open the file specified by <file_name_I>. Most probably, either the user
specified a path name that could not be followed or the user does not have the permissions
necessary to open the file.

Cannot read edit file

The editor encountered an I/O error trying to read the specified file.

Edit file does not exist

The user has specified two file names on the command line, but <file_name_1> does not exist.

New file is the same as the old file

Both <file_name_I> and <file_name_2> refer to the same file. (If their names are not the same,
they are links to the same file.)

Too many file names specified.

The edit command requires zero, one, or two arguments. This message indicates that the
argument count is wrong.

Unknown option specified

An option on the command line is not a valid option to the edit command. The command ignores
the option and proceeds.

SEE ALSO

dperm
Section 4 EDIT The Text Editor

OPERATING SYSTEM REFERENCE 2-55

USER COMMANDS
exit

exit

This shell command terminates a subshell.

SYNTAX

exit

DESCRIPTION

The exit command, which is part of the shell program, terminates a subshell. exit sounds the bell
if the user attempts to exit the login shell.

EXAMPLES
exit

This is the only valid form of the exit command.

SEE ALSO
shell

2-56

USER COMMANDS
env

env

Change or display the environment variables.

SYNTAX

env
env <name=><value>

ARGUMENTS

<names=> The name of the environment variable

<value> The value assigned to an environment variable

DESCRIPTION

The env command, which is part of the script program, displays the current values of the
environment variables if no argument is given. If an argument is specified, the env command
assigns, changes, or deletes the value of the named argument.

EXAMPLE

env
Displays the environment variables.
env TERM=
Removes the environment variable TERM from the environment variable list.
env TERM=4404
Assigns to the environment variable list TERM=4404.

SEE ALSO

script

OPERATING SYSTEM REFERENCE 2-57

USER COMMANDS
fdup

fdup

Duplicate floppies.

SYNTAX
fdup

DESCRIPTION

The fdup command duplicates diskettes by reading the master floppy and then writing/verifying
one or more copies of the master. This is the only reliable procedure to duplicate diskettes on the
system. This procedure should be used to make a working copy of the software shipped with
your 4400 series system.

EXAMPLES

fdup

This is the only form of this command.

2-58

USER COMMANDS
filetype

filetype

SYNTAX

filetype <file name_list>

DESCRIPTION

This utility attempts to identify the type of the files specified on the command line. Some of the
types recognized are:

Directories

Character/Block devices
Many types of binary files
Many types of ascii text files
Many types of smalltalk files

The filetype command makes an intelligent guess as to the type of text file based’on the first
character of each line. Binary files are detected based on known header information.

ARGUMENTS

<file_name_list> The list of file names to process.

EXAMPLE

filetype myfile /mark/yourfile

This example will attempt to identify the type of the files myfile and yourfile in the directory
/mark.

OPERATING SYSTEM REFERENCE 2-59

USER COMMANDS
find

find

Search for a string in a file or in standard input.

SYNTAX

find [+bcnsu] <str_1>[&<str_2>] ([<file_name_list>]

DESCRIPTION

The find command looks in the specified file for the specified string. By default, lowercase
characters and uppercase characters are distinct.

ARGUMENTS
<str_1> The string to search for.
<str_2> The second string to search for (only if "&", the and operator, is used).

<file_name_list> A list of the names of files to search. The default is standard input.

SPECIFYING A STRING

The user may completely specify a string or may take advantage of the matching characters
recognized by the find command. Because some of these matching characters also have special
meanings to the shell program, strings which use them must be enclosed in single or double
quotation marks.

\ When used just before any matching character, including itself, the
backslash character negates the matching ability of the character.

? The question mark matches any character except a new-line character.

< A left angle bracket specifies that the following string must be found at the

beginning of a line. It loses its matching ability if it is not the first
character of the string.

> A right angle bracket specifies that the preceding string must be found at
the end of a line. It loses its matching ability if it is not the last character
of the string.

& The and operator may be used between two strings (see the syntax
statement). The find command reports only those lines on which both
strings occur.

[] Square brackets enclose a list or a range of characters from which the find
command can choose when looking for a string. A list of characters
consists of adjacent characters. A range consists of two characters
separated by a hyphen.

2-60

USER COMMANDS
find

! The exclamation point may be used in conjunction with the square
brackets. If it is the first character inside the brackets, the find command
can choose from all characters not specified in the brackets when looking
for a string.

OPTIONS

Any options used with the find command must appear immediately after the command name.

b Check file names ending in ".bak".

c Do not print the lines that contain the specified string to standard output,
instead, report the number of lines containing the string.

n Do not print line number on match.

s Print skipped filenames.

u Do not distinguish between upper- and lowercase.

EXAMPLES

find +u syntax test

Writes to standard output all lines from the file zest which contain the string syntax. The
command does not distinguish between upper- and lowercase.

find +u "<syntax>" test trial

Writes to standard output all lines from the files test and trial which contain the string syatax at
the beginning of the line. The command does not distinguish between upper- and lowercase.
Because matching characters are used to specify the string, the string must be enclosed in either
single or double quotation marks.

find +u "syntax&statement" test

Writes to standard output all lines from the file test which contain both the string synrax and the
string statement.

find +c "\<" test

Writes to standard output the number of lines in the file test which contain a left-hand angle
bracket. The matching ability of the angle bracket is negated because of the backslash character
which precedes it.

find +u "[a-e]lnd" test

Writes to standard output all lines from the file test which contain any of the following strings:
and, bnd, cnd, dnd, or end.

OPERATING SYSTEM REFERENCE 2-61

USER COMMANDS
find

ERROR MESSAGES

Error opening <file name>: <reason>

The operating system returned an error when find tried to open the specified file. This message is
followed by an interpretation of the error returned by the operating system.

Error processing <file name>: <reason>

The operating system returned an error when find tried to process the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Invalid option: <char>. Command aborted.
The option specified by <char> is not a valid option to the find command.
Syntax: find [+bcnsu] <str_1>[&<str_2>] ([<file name_list>]

The find command expects at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO

shell
script

2-62

USER COMMANDS

format

format

Format a diskette for use on the 4400 flexible disk drive.

SYNTAX

format [+Fnqv] [+f=<blocks>]

DESCRIPTION

The format command formats a diskette for use in the 4400°s disk drive, /dev/floppy. The device
model name is TEK4400 which formats the diskettes as double-sided, double-density, 40 TPI,
with eight 512-bit sectors per track.

OPTIONS

f=<blocks>

Establish <blocks> blocks for file descriptor nodes (fdns). Formatted disks
use fdn blocks (each fdn block contains eight fdns) to hold information
about files on the disk. By default, format uses 3% of the total disk space
for fdn blocks. You can overide this default value with the "f" option and
specify the decimal number of fdn blocks to establish on the disk. At least
one block must be allocated for fdns on every formatted disk.

This option does not physically format the diskette. It performs a logical
format only and erases all data on the diskette.

Do not issue the input prompts.

Before actually starting to format the diskette, formatr normally sends a
prompt to ask if the user is ready to continue. The "q" (quiet) option
suppresses this prompt and inhibits all informative messages from format if
no errors are encountered during formatting.

Verify the disk after formatting. The "v" (verify) option instructs format to
verify the media after formatting. If this option is specified, format
individually verifies every sector on the diskette. It first writes an arbitrary
pattern to each sector; then reads and verifies each one. It reports any
sectors which fail this test to the user.

The option is often desirable when the user is formatting a diskette because
diskettes do not automatically verify all written data.

OPERATING SYSTEM REFERENCE 2-63

USER COMMANDS
free

free

Report the amount of free and used space on the specified devices.

SYNTAX

free <dev_name list> [+d]

DESCRIPTION

The free command reports the amount of free space remaining on the specified device. It reports
both the total number of free blocks available for use in files and the total number of file
descriptor nodes (fdns) available. The number of fdns available tells the user how many more
files can be created on the device (assuming that sufficient free blocks remain for use in the files).
If the number of available fdns drops to 0, no more files can be created on the disk, no matter
how many free blocks remain.

The number of used blocks and file descriptor nodes (fdns) is also printed.

ARGUMENTS
<dev_name_list> A list of the names of the devices to report on. The devices may be
either mounted or unmounted.
OPTIONS
d Provide more detailed information with the output. This extra information
is the amount of swap space on the disk.
EXAMPLES

free /dev/disk

Reports both the number of fdns available and the number of free blocks on the standard
winchester hard disk.

free /dev/floppy

Reports both the number of fdns available and the number of free blocks on the mounted flexible
disk.

2-64

USER COMMANDS
free

ERROR MESSAGES

Cannot open <dev_name>

The specified device does not exist; the specified device exists, but no hardware is connected to
it; or the device exists and hardware is connected to it, but no disk is in the device.

<dev_name> is not a block device.
The specified device must be a block device.
Unknown option: <char>

The option specified is not a valid option to the free command.

l‘;.)
N
N

OPERATING SYSTEM REFERENCE

USER COMMANDS

headset

headset

Change information in the binary header of an executable file.

SYNTAX

headset <file name_ list> [+aAbBcCdSt]

DESCRIPTION

The headset command can alter certain portions of the binary header of an executable object
module. Features such as whether or not the module is shared-text, whether or not the module
can produce a core dump, and the initial stack size can be altered without reloading the module.

The characters used for options are identical to those used when invoking the loader with the load
command. Those options which do not take an argument can be disabled by preceding the

character with a minus sign, "-", instead of the usual plus sign, "+".

ARGUMENTS

<file_name _list>

OPTIONS

a=<num>

A=<num>

b=<task_size>

+B/-B

2-66

1

A list of the names of the files to process.

Specifies the minimum number of pages to allocate to this task at all times.
The minimum value for the argument is 0; the maximum, 32767. The
default is 0. The operating system tries to honor the specified number, but
if it cannot, it uses as many pages as it needs.

Specifies the maximum number of pages to allocate to this task at all
times. The minimum value for the argument is 0; the maximum, 32767.
The default is 0. The operating system tries to honor the specified number,
but if it cannot, it uses as many pages as it needs.

Specifies the maximum size to which the task may grow. The argument
<task_size> may be 128K, 256K, 512K, IM, 2M, 4M, or 8M. The default
task size is generated by the loader. The letters "M" and "K" can be either
uppercase or lowercase.

If the task size specified by the user is not large enough to hold the code
from all the modules being loaded, headser automatically adjusts the size
to the smallest value that can contain all the code.

Set or clear a bit in the binary header of the output module which tells the
operating system not to zero either the BSS space or any memory allocated
while the task is running.

USER COMMANDS

c=<source_type>

C=<config_num>

+d/-d

S=<hex_num>

+t/-t

EXAMPLES

headset

Sets a flag in the binary header of the output module which indicates the
type of source code from which the module was created. The argument
<source_type> may be ASSEMBLER or C. The names can be specified in
either upper- or lowercase.

By default, the loader uses the configuration number of the current
hardware. The user may, however, use the "C" option to specify a
configuration number which overrides the default. This option is useful
when loading a module for a machine other than the one on which it is
running.

Set or clear the no core dump bit in the binary header.

Specifies the initial stack size, which is written into the binary header of
the module produced by the loader. The hexadecimal number is the
number of bytes to reserve. The default is 0, in which case the system
assigns the default stack size of 4K.

Set or clear the shared-text bit in the binary header.

headset mathtest +t -d +S=2000

Makes the executable object module mathtest a shared-text module. It turns off the no core dump
bit, so that the program can produce cors dumps, and sets the initial stack size to hexadecimal

2000.

headset run_1 run_2 +tB +a=10

Changes the headers in the files run_I and run_2. Both modules become shared-text modules.
The operating system will zero neither the BSS space nor any memory allocated while the task is
running. The minimum page allocation is set to ten pages.

NOTES

® The user may make a change in a header which results in an inconsistent header. In such a

case the headset command makes whatever adjustments are necessary in the fields which
were not changed to remove the inconsistency. The user is notified of these adjustments.

For example, if the user alters the initial stack size, the task size might have to be changed.
If this change is necessary, headset notifies the user and adjusts the task size to the
appropriate value. Adjustments may also be made when either the minimum or maximum
page allocation is altered.

If the task size specified by the user is not large enough to hold the code from all the
modules being loaded, headser automatically adjusts the size to the smallest value that can
contain all the code.

If the user changes either the minirmum or the maximum value for page allocation so that
the minimum is greater than the maximum, headset automatically adjusts them according
to the following rules.

OPERATING SYSTEM REFERENCE 2-67

USER COMMANDS
headset

® The value for the maximum is always greater than or equal to the value for the minimum.

® The value for the maximum can be 0, but if it is greater than O, it must be at least 4.

MESSAGES

File <file_name>: changed max page allocation to <num>.

The user specified a minimum page allocation that was above the current maximum page
allocation. The utility set the maximum equal to the minimum.

File <file_name>: changed min page allocation to <num>.

The user specified a maximum page allocation that was below the current minimum page
allocation. The utility set the minimum equal to the maximum.

File <file_name>: task size set to <task_size>.

The headset command had to adjust the task size either because the user specified an initial stack
size that made the module larger, or because the task size specified on the command was too
small for the calculated size of the module.

ERROR MESSAGES

Error opening <file_ name>: <reason>

The operating system returned an error when headser tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error processing <file name>: <reason>

The operating system returned an error when headset tried to process the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file name>: <reason>

The operating system returned an error when headset tried to read the specified file. This
message is followed by an interpretation of the error retumed by the operating system.

Error seeking in <file_name>: <reason>

The operating system returned an error when headser tried to seek in the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error writing to <file_name>: <reason>

The operating system returned an error when headser tried to write to the specified file. This
message is followed by an interpretation of the error returned by the operating system.

File <file name> is not a binary file.
The specified file does not contain a binary header.
File <file name> is not a regular file.

The specified file is either a device or a directory.

2-68

USER COMMANDS
headset

File <file_name> is not executable.
The specified file is not an executable binary file.
Illegal configuration specified.
The configuration type must be between 0 and 255 inclusive.
Illegal hex number: <hex num>.
The number specified is not a valid hexadecimal number.
Illegal maximum page allocation specified.
The maximum page allocation must be between 0 and 32767 inclusive.
Illegal minimum page allocation specified.
The minimum page allocation must be between 0 and 32767 inclusive.
Illegal task size specified.
The argument specified is not a valid argument to the "b" option.
Invalid option: <char>.
The option specified by <char> is not a valid option to the headset command.
Minimum page allocation greater than maximum.

Both the "a" and "A" options appeared on the command line, but the minimum page allocation
specified was greater than the maximum.

Unknown source type specified.

The argument specified is not a valid argument to the "c" option.

SEE ALSO
Load

OPERATING SYSTEM REFERENCE 2-69

USER COMMANDS
help

help

Display a brief description of the use and syntax of the specified command.

SYNTAX

help [<command name list>]

DESCRIPTION

The help command displays a brief description of the use and syntax of the specified command.
To obtain this information, it looks for a file in the /gen/help directory with the same name as the
specified command. Descriptions of most 4400 commands are available. If you enter help help
or help with no arguments, the help command displays a list of all the commands it can help with
and prompts for the name of a specific command. Typing a carriage return terminates the
command.

ARGUMENTS

<command_name_list> A list of the names of commands about which the user wants
information.

EXAMPLES

help copy remove
Displays brief descriptions of the use and syntax of the copy and remove commands.
help

Displays a list of all the commands that the help command can help with, followed by a prompt
for the name of a specific command.

NOTES

® The system user may add files to /gen/help. When the help command is executed, it simply
looks for the specified file in /gen/help, reads the contents, and writes it to standard output.

® If the file specified is a directory in the /gen/help directory, the help command lists the
contents of the directory and asks what command the user would like help with. If the
command specified is not in that directory, help prompts for permission to search
/genlhelp.

2-70

USER COMMANDS
help

ERROR MESSAGES

Cannot help with <command_name>.
No description of the specified command is available to the help command.
Error opening <file name>: <reason>

The operating system returned an error when help tried to open the file <file_name>, which
describes the specified command. This message is followed by an interpretation of the error
returned by the operating system.

Error reading <file name>: <reason>

The operating system returned an error when help tried to read the file <file_name>, which
describes the specified command. This message is followed by an interpretation of the error
returned by the operating system.

Too many files in directory.

The help command cannot function if the directory /gen/help contains more than 500 entries.

OPERATING SYSTEM REFERENCE 2-71

USER COMMANDS
history

history

A shell command that displays list of previous commands.

SYNTAX

history

DESCRIPTION

The history command, which is part of the shell program, displays list of previous commands.
Scrolling and editing functions are selected by control keys (or function key sequences) and may
be used to recall and modify commands. The command history will be saved from one login to
the next in the file is limited to 30 commands.

EXAMPLES

history

This is the only valid form of the history command. This command lists the previous 30
commands, not including the history command itself.

SEE ALSO
shell

P.J
~J
[]

USER COMMANDS
info

info

Display the contents of the information field associated with the specified binary file.

SYNTAX

info <file_name_list>

DESCRIPTION

A binary file may have an information field that stores textual information associated with the
file. This information can include things like the version number and release date of the file, as
well as other useful information pertaining to the file. The info command displays the contents of
the information field.

ARGUMENTS

<file_name_list> A list of the names of the files for |which to display the information field.

EXAMPLES

info /system.boot

Displays the version number, release date, and copyright information for the file /system.boot, the
operating system itself,

info /bin/edit /bin/info

Displays version numbers, release dates, and copyright information for the text editor (/bin/edir)
and the info command (/bin/info).

rJ
~1

' s

OPERATING SYSTEM REFERENCE

USER COMMANDS
info

ERROR MESSAGES

Error opening <file name>: <reason>

The operating system returned an error when info tried to open the file <file_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error processing <file name>: <reason>

The operating system returned an error when info tried to process the file <file_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file name>: <reason>

The operating system returned an error when info tried to read the file <file_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error seeking in <file_ name>: <reason>

The operating system returned an error when info tried to seek to the appropriate location in
<file_name>. This message is followed by an interpretation of the error returned by the operating
system.

Error writing to standard output: <reason>

The operating system returned an error when info tried to write the output of the info command to
standard output. This message is followed by an interpretation of the error returned by the
operating system.

<file_name> has no information field.
The optional information field is not present in the specified file.
<file_name> is not a binary file.

The specified file lacks the header which identifies it as a binary file. The argument to the info
command must be a binary file.

<file name> is not a regular file.

The specified file is a directory or a special file (a block or character device). The argument to
the info command must be a regular file.

Syntax: info <file_ name_ list>

The info command requires at least one argument. This message indicates that the argument
count is wrong.

SEE ALSO
4400 Series Assembly Language Reference

2-74

USER COMMANDS
int

int

Send a program interrupt to another task.

SYNTAX

int <task_ID> [+<int_num>] [+s]

DESCRIPTION

The int command sends the specified interrupt to the task identified by the task ID on the
command line. If the user does not specify an interrupt number, the- termination interrupt
(SIGTERM) is sent. Task ID’s are reported by the shell program whenever the user executes a
task in the background. An ID can also be determined by the jobs or status command.

ARGUMENTS

<task_ID> The task ID of the task to interrupt. A task ID of O specifies all tasks
associated with the user’s terminal and owned by the user.

+<int_num> The number of the interrupt the user wishes to send. The plus sign, "+", is
necessary to distinguish the number of the interrupt from the task ID.
Table 2-1 shows a list of the possible interrupts. The default interrupt
number is #11, SIGTERM.

s Send a soft interrupt.

NOTES

A = Default state is abort (otherwise, ignore)
C = Interrupt can be caught

D = Produces a core dump

I = Interrupt can be ignored

R = Resets to default state when triggered

OPERATING SYSTEM REFERENCE 2-75

USER COMMANDS

mnt

Table 2-1
POSSIBLE INTERRUPTS

Name Number Description A C D I R

" SIGHUP 1 Hangup + + - + +
SIGINT 2 Keyboard + o+ -+ o+
SIGQUIT 3 Quit + + o+ o+ o+
SIGEMT 4 EMT SAxxx emulation + + o+ + 4+
SIGKILL 5 Task kill + - - -4
SIGPIPE 6 Broken pipe + + -+ o+
SIGSWAP 7 Swap error + - - -4
SIGTRACE 8 Trace + o+ -+ -
SIGTIME 9 Time limit + + o+ -+
SIGALRM 10 Alarm + o+ -+ o+
SIGTERM 11 Task terminate + o+ -+ o+
SIGTRAPV 12 TRAPYV instruction + o+ + o+ o+
SIGCHK 13 CHK instruction + + o+ 4+ 4+
SIGEMT2 14 EMT $Fxxx emulation + + o+ o+ 4+
SIGTRAP1 15 TRAP #1 instruction + + o+ o+ 4+
SIGTRAP2 16 TRAP #2 instruction + + o+ o+ 4+
SIGTRAP3 17 TRAP #3 instruction + + + + o+
SIGTRAP4 18 TRAP #4 instruction + + + o+ o+
SIGTRAPS 19 TRAP #5 instruction + + o+ o+ o+
SIGTRAP6 20 TRAP #6-14 instruction + + o+ o+ o+
SIGPAR 21 Parity error + -+ -+
SIGILL 22 Illegal instruction + -+ -4
SIGDIV 23 DIVIDE by 0 + 4+ o+ o+ o+
SIGPRIV 24 Privileged instruction + -+ -+
SIGADDR 25 Address error + -+ -+
SIGDEAD* 26 Dead child -+ - 4+ 4
SIGWRIT 27 Write to READ-ONLY memory + -+ -+
SIGEXEC 28 Execute from STACK/DATAspace | + - + - +
SIGBND 29 Segmentation violation + o+ o+ -+
SIGUSR1 30 User-defined interrupt #1 + + -+ o+
SIGUSR2 31 User-defined interrupt #2 + + -+ o+
SIGUSR3 32 User-defined interrupt #3 + + -+ o+
SIGABORT 33 Program abort + -+ -+
SIGSPLR 34 Spooler interrupt + + -+ o+
SIGINPUT 35 Input is ready + + -+ o+
SIGDUMP 36 Memory dump + + + o+ 4+

37-41 User-defined interrupts
SIGUNORDERED% 42 FPU branch/set on unordered + + -+ o+

* The operating system does not reset the signalling mechanism after once set (i.e.
with an cpint(SIGDEAD,addr) call). The parent task must reset with an
cpin(SIGDEAD,addr) call.

% These interrupts are produced only by the
MC68881 Floating Point Co-processor.

2-76

USER COMMANDS

nt

Table 2-1 (cont.)

POSSIBLE INTERRUPTS

Name Number Description A C D 1 R

% 43 FPU inexact result + + - + +
SIGFPDIVIDE% 44 FPU divide by zero + o+ - 4+ o+
SIGUNDERFLOW% 45 FPU underflow + o+ -+ o+
SIGOPERAND% 46 FPU operand error + + -+ o+
SIGOVERFLOW% 47 FPU overflow + + -+ o+
SIGSNAN% 48 FPU signaling NAN + o+ =+ 4

49-61 User-defined interrupts

SIGMILLI 62 Millisecond alarm + o+ -+ o+
SIGEVT 63 Mouse/keyboard eventinterrupt | + + - + +

* The operating system does not reset the signalling mechanism after once set (i.e.
with an cpint(SIGDEAD,addr) call). The parent task must reset with an
cpint(SIGDEAD,addr) cail.

% These interrupts are recognized only on the 4406
AIM system.

EXAMPLES

int 263

Sends a termination interrupt (SIGTERM) to task number 263.
int +5 149

Sends a SIGKILL interrupt to task 149. No program can trap or ignore a SIGKILL interrupt.
int 149 +5

This example is identical to the previous example. The order of the arguments is irrelevant.

ERROR MESSAGES

Error sending interrupt: <reason>

The operating system returned an error when int tried to send the interrupt. This message is
followed by an interpretation of the error returned by the operating system, such as could not find
the specified task.

Illegal interrupt specified: <int_ num>

The number specified must be an integer between 1 and the number of signals, inclusive.

OPERATING SYSTEM REFERENCE 2-77

USER COMMANDS

nt

Illegal task ID specified: <task_ID>
The task ID specified contains some characters that are not digits. A legal task ID contains only
digits.

Syntax: int <task_ID> [+<int_num>]

The int command expects exactly one task ID and no more than one interrupt number. This
message indicates that the argument count is wrong.

SEE ALSO

jobs
status

2-78

USER COMMANDS
jobs

jobs

Report the task IDs and starting times of all background tasks originated by the user from the
current shell program. This is a shell command.

SYNTAX
jobs

DESCRIPTION

The jobs command, which is part of the shell program, reports the task IDs and starting times of
all background tasks originated by the user from the current shell program. (If script is running
as the current shell, the task IDs are preceded by the letter "T" for task. This letter is not part of
the task ID.)

EXAMPLES
jobs

This example is the only valid form of the jobs command. It reports the task ID and starting time
of all active background tasks originated by the user from the current shell program.

MESSAGES

No tasks active.
The user has no active tasks in the background.

SEE ALSO

nt
status

OPERATING SYSTEM REFERENCE 2-79

USER COMMANDS
libgen

libgen

Create a new library or update an existing one.

SYNTAX

libgen o=<old_lib> n=<new_lib> [u=<update>] [<del list>] [+al]

DESCRIPTION

The libgen command creates a new library of relocatable or executable modules or updates an
existing library. Each module in a library must have a name. The name is assigned to a module
by either the name pseudo-op in the relocating assembler or the "N" option of the linking loader.
The libgen command does not accept a module without a name.

As it runs, libgen produces a report describing the action that it takes for each module in the
library. The report includes the name of the module and the file from which it was read (the old
library or one of the update files).

ARGUMENTS

o=<old_lib> The name of an existing library file that was previously created by the
libgen command. libgen is being called to update an existing library rather
than to create a new one. Either the o=<old_lib> or n=<new lib>
argument, or both, must appear on the command line.

n=<new_lib> The name of a new library. If a file with this name already exists, libgen
deletes it without warning before writing the new library. If the user does
not specify a name for the new library, it defaults to the name of the old
library. In such a case libgen puts the new library in a scratch file, deletes
the old library, and renames the scratch file with the name of the old
library. Either the o=<old_lib> or n=<new_lib> argument, or both, must
appear on the command line.

u=<update> The name of a file containing modules to add to the library. Modules of
the same name are replaced by modules from the update file.

<del_list> A list of the names of modules to delete from the old library.

OPTIONS

a Produce an abbreviated report that contains information only about

modules that were replaced, added, or deleted.

1 Suppress the production of a report.

2-80

USER COMMANDS
libgen

EXAMPLES
libgen n=binlib u=one u=two u=three

Creates a new library named binlib that contains all the modules from the files one, two, and
three.

libgen o=binlib u=new +a

Updates the library binlib by adding or replacing modules from the file new. The command
produces an abbreviated report.

libgen o=binlib u=newmods n=newlib transpose add +1

Updates the library binlib by adding or replacing modules from the file newmods and by deleting
the modules named #ranspose and add. The updated library is written to the file newlib.

ERROR MESSAGES

An old or new library name must be specified.
Either the o=<old_lib> or n=<new_lib> argument, or both, must appear on the command line.
No index found in <lib_ name>

The libgen command creates every library with an index. This message indicates either that the
file specified is not a library or that it is a library, but has been badly damaged, and can no longer
be used.

Record not found in <module_name>

One of the files in the list of modules to delete from the old library was not found in that library.
The command ignores that file name and continues.

Record with no name found in <module_name>

Every relocatable or executable module that goes into a library must have a name. The user
should remake the specified module and give it a name.

Unknown argument: <str>
The argument specified by <str> is not a valid argument to the libgen command.
Unrecognizable record in <module_name>

All modules in a library must be either executable or relocatable.

SEE ALSO

libinfo
4400 Series Assembly Language Reference

OPERATING SYSTEM REFERENCE 2-81

USER COMMANDS
libinfo

libinfo

Display information about a library.

SYNTAX

libinfo <library name_list> [+em] [M=<mode name>]

DESCRIPTION

The libinfo command lists the entry points and module names contained in a library produced by
the libgen command. The user can optionally display only the entry points or only the module
names. Information about a particular module within a library can also be displayed.

ARGUMENTS

<library_name_list> A list of the names of the libraries to report on.

OPTIONS
e Display only entry points in the specified library.
m Display only module names in the specified library.

M=<mod_name> Display information about module <mod_name>. This option is

incompatible with both the "e” and "m" options. If the user specifies
incompatible options, libinfo uses the "M" option and ignores any others.

EXAMPLES

libinfo testlib
Lists all entry points and module names in the library testlib.
libinfo runlib +m
Lists all the module names contained in the library runlib.
libinfo /lib/cmathlib +M=Arctan
Displays the entry points and module names in the module Arctan in the library /lib/cmathlib.

2-82

USER COMMANDS
libinfo

ERROR MESSAGES

Error opening <file name> : <reason>

The operating system returned an error when libinfo tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file name> : <reason>

The operating system returned an error when libinfo tried to read the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error seeking to <location> in <file_name> : <reason>

The operating system retummed an error when libinfo tried to seek to the specified location (in
hexadecimal) in the specified file. This message is followed by an interpretation of the error
returned by the operating system.

<file_name> is not a library!
The file specified does not have the correct format for a library created with the libgen command.
** /M’ taken, others ignored ***

The "m" and "e" options are incompatible with the "M" option. If the user specifies incompatible
options, libinfo uses the "M" option and ignores any others.

Unknown option <char> ignored.

An unknown option was found and ignored.

SEE ALSO

libgen
relinfo

OPERATING SYSTEM REFERENCE 2-83

USER COMMANDS
link

link

Establish a new link to an existing file.

SYNTAX

link <file_name_1> <file_ name_2>

DESCRIPTION

The link command establishes a new link to an existing file. If the command is successful, both
<file_name_1> and <file_name_2> refer to the same file.

The user must have write permission in the parent directory in which the new link is created, and
must have execute permission in the directory containing the original copy of the file. A link
cannot cross devices.

ARGUMENTS

<file_name_1> The name of the existing file to which to establish a link.
<file_name_2> The name of the link to the existing file.
EXAMPLES

link /susan/.editconfigure .editconfigure

Creates a file named .editconfigure in the user’s working directory and links it to the existing file
.editconfigure in the directory /susan.

2-84

USER COMMANDS
link

ERROR MESSAGES

Cannot link across devices

The specified file names reside on different volumes and, therefore, cannot be linked.

Entry already exists: <file name 2>

The file specified by <file_name_2> must be a nonexistent file.

Entry does not exist: <file name 1>

If the file to which the link is to be made does not exist, it is impossible to link the files.

Entry is a directory: <file_name_ 1>

The existing file specified is, in fact, a directory. Only the system manager can link to a
directory.

Invalid options: +<char>

The link command supports no options.

Path cannot be followed: <file name>

One or more of the directories that make up the name of the file do not exist.

Permissions deny access: <file_name>

The user does not have permission to access the specified file. If the file is the existing file,
<file_name_1>, the user does not have execute permission in the parent directory. If the file is
<file_name 2>, the user does not have write permission in the parent directory.

Syntax: link <filename> <linkname>

The link command expects exactly two arguments. This message indicates that the argument
count is wrong.

SEE ALSO

copy
move

I‘IJ
o0
th

OPERATING SYSTEM REFERENCE

USER COMMANDS
list

list

Write the contents of the specified file to standard output.

SYNTAX

list [<file_name_list>] [+1] [+<num>]

DESCRIPTION

The list command writes the contents of the specified file to standard output. If the user specifies
more than one file, the files are listed one after the other with no space between them.

LIS]

The default file name is standard input. A plus sign, "+, may also be used as an argument to
indicate standard input.

ARGUMENTS
<file_name_list> A list of the names of the files to write to standard output. The default is
standard input.
OPTIONS
1 Include line numbers in the listing.
<num> The number of the line at which to begin listing the file.
EXAMPLES
list test

Writes the file test to standard output.
list test +120 >>test.out

Also writes the file test to standard output. Standard output is redirected so that the listing is
appended to the contents of the file restz.out. The listing is accompanied by line numbers and
starts at line 20 of the file.

list part_1 part 2 + part_ 3 >whole_thing

Writes the files part_I and part_2, followed by the text entered from standard input (end standard
input with a CRTL-D), followed by part_3, to the file whole_thing.

2-86

USER COMMANDS
list

ERROR MESSAGES

Error listing <file name>: <reason>

The operatmg system returned an error when list tried to write <file_name> to standard output.
This message is followed by an interpretation of the error returned by the operating system.

Error opening <file_ name>: <reason>

The operating system returned an error when list tried to open the file <file_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file name>: <reason>

The operating system returned an error when /ist tried to read the file <file_name>. This message
is followed by an interpretation of the error returned by the operating system.

Invalid option: <char>. Command aborted! .
The option specified by <char> is not a valid option to the lisz command.
Invalid starting line number. Command aborted!

The string used to specify the starting line of the listing either is not a string of digits or is too
large.

SEE ALSO

page
tail

OPERATING SYSTEM REFERENCE 2-87

USER COMMANDS
load

load

The load command invokes the linking loader.

SYNTAX

load <file_name 1list> [+a=<num>] [+A=<num>] [+b=<task_size>]
[+B] [+c=<module_type>] [+C=<configuration>] [+d]
[+D [=<hex_num>]] [+ef] [+F[=<file name>]] ([+i]
{+1=<library name>] ([+Lm] [+M=<file name>] [+n]
[+N=<module_ name>] [+o=<file_name>] [+P=<hex_num>]
[(+rs] [+S=<hex_num>] ([+t] [+T=<hex_num>] [+u]
[+U=<trap_num>] [+x=<file name>]

DESCRIPTION

The load command takes as input one or more relocatable binary modules and produces as output
either a relocatable module or an executable module. The relocatable modules used as input
should have been produced by the relocating assembler or the linking loader. Options are
available for producing load and module maps as well as a global symbol table. Starting
addresses for text and data segments can be adjusted for the particular hardware being used. The
page size can also be adjusted. The loader can search libraries produced by the libgen utility in
order to resolve external references.

’ 1"

The user can place all desired options in a file specified with the load command’s "F" option
rather than specifying them individually on the command line. The operating system comes with
one such file, the file /lib/ldr_environ, which describes the hardware environment. The loader
always reads this file before processing any other options. It then processes options in the order
in which they appear on the command line. If an option is specified more than once (e.g., once in
a file and once on the command line), the last specification overrides all others.

ARGUMENTS

<file_name_list> A list of files to load.

2-88

USER COMMANDS

OPTIONS

a=<num>

=<num>

b=<task_size>

B

c=<module_type>

C=<configuration>

d

D[=<hex_num>]

F[=<file_name>]

i

l=<library_name>

load

Specifies the minimum number of pages to allocate to this task at all times.
The default is 0. The operating system tries to honor the specified number,
but if it cannot, it uses as many pages as it needs.

Specifies the maximum number of pages to allocate to this task at all
times. The default is 0. The operating system tries to honor the specified
number, but if it cannot, it uses as many pages as it needs.

Specifies the size of the task, where <task_size> is /128K, 256K, 512K, IM,
2M, 4M, or 8M. The default is 128K. If the argument specified by the user
is not large enough, the load command adjusts it to the smallest possible
size. The letters "M" and "K" can be either upper- or lowercase.

BSS space will not be cleared.

Specifies the source code of the modules, where <module_type> is
ASSEMBLER, or C. The names can be specified in either upper- or
lowercase.

By default, the loader uses the configuration number of the current
hardware. The user may, however, use the "C" option to specify a
configuration number which overrides the default. This option is useful
when loading a module for a machine other than the one on which it is
running.

Sets the no core dump bit in the binary header.

Specifies the starting address of the data segment. If the user does not
specify the option or specifies the option without an argument, the data
segment immediately follows the text segment.

Prints each occurrence of any unresolved external. By default, the loader
prints only the first occurrence.

In this format, text pages are loaded into the user’s address space when first
referenced (through page faulting) rather than at exec time.

Specifies the name of a file of options to process. The default file name is
ldr_opts. The "F" option may be used repeatedly but may not be nested.

Writes all global symbols to the symbol table of the binary file.

Specifies the name of a library to search. The loader first searches the
working directory, then the lib directory in the working directory, and
finally the directory /lib. Libraries are searched in the order specified on
the command line. Up to five libraries may be specified in this manner.
By default, unless the user specifies five libraries on the command line, the
library /1ib/Syslib68k is the last one searched.

Does not search any libraries for unresolved externals.

OPERATING SYSTEM REFERENCE 2-89

USER COMMANDS

load

M=<file_name>

n
N=<module_name>
o=<file_name>

P=<hex_num>

T
S

=<hex_num>

t
T=<hex_num>

u

U=<trap_num>

x=<file_name>

2-90

Produces load and module maps and writes them to standard output (see
the "M" option).

Specifies the name of the file in which to put the output of the "'m" option
(load and module maps) and the "s" option (a global symbol table). This
information is purely textual. The user may edit or list the file like any
other text file. If the "m" or "s" option is used without the "M" option, the
loader sends the information to standard output.

Produces an executable module with separate instruction and data space.
Specifies the name to give to the file containing the module.
Specifies the name to give to the binary output file.

Specifies the page size. The hexadecimal number should always be a
power of 2; otherwise, the results are unpredictable. The load command
uses the page size to determine the starting address of the data segment
when it immediately follows the text segment (the data segment starts at
the next page boundary). The default is O (i.e., the loader rounds the
starting address to the next even location after the end of the text segment).

Produces a relocatable module as output. Do not search any libraries.
Writes the global symbol table to standard output (see the "M" option).

Specifies an initial stack size where the hexadecimal number is the number
of bytes to reserve. The default is O (the system determines the size of the
stack).

Produces a shared-text executable module.
Specifies the starting address of the text segment. Default is 0.

Does not print any unresolved messages when producing a relocatable
module.

Sets the trap number for system calls. The default is hardware-dependent.
The user can specify the argument as either TRAP n where "n" is a number
between 0 and 15 inclusive, or as a string of four hexadecimal digits which
represent a bit pattern to use as an instruction instead of the system call.

Incremental load file name.

USER COMMANDS
load

EXAMPLES

load *.r +F=/1ib/ldr_environ +t +l=clib +o=tester

Loads all files whose names end with .r in the working directory. The loader reads the file
/liblldr_environ and processes the options therein. It uses the library clib to resolve externals.
The executable output module, which is a shared-text module, is named tester.

load tl.r t2.r +T=20000 +iN=mod +P=2000 +c=C +o=test

Loads the the files specified and produces a binary file named test. The internal module-name is
mod. The text segment begins at 20000 hexadecimal, and the data segment follows it at the next
page boundary (page size 2000 hexadecimal). The source code is C. All global symbols are
inserted in the symbol table of the binary file.

load sgrt +msM=loadmap +l=cmathlib +i

Loads the file sqrt and produces an executable module named sqrt.o. The loader searches the
library cmathlib for unresolved externals. It produces load and module maps, as well as a symbol
table, and writes them to the file loadmap. All global symbols are added to the symbol table of
the binary file.

load temp?.r +reo=combined.r

Loads the files in the working directory whose names match the pattern zemp?.r and produces a
relocatable module named combined.r. The loader prints each occurrence of all unresolved
externals rather than only the first occurrence of each. Because the "r" option is specified, the
loader does not search any libraries.

load tl.r t2.r +a=10 +A=100 +b=2M +1l=testlib +do=test

Loads the files ¢t/.r and #2.r and produces the binary file named test. The minimum page
allocation is set to 10; the maximum, to 100. The task size of the module is set to 2 Megabytes.
The executable module does not produce a core dump.

OPERATING SYSTEM REFERENCE 2-91

USER COMMANDS
load

NOTES

® If the file /lib/std_env contains information about the starting address of the text segment,
the data segment, or both, and if the user wishes to override this standard configuration,
starting addresses for both text and data segments should be specified.

¢ If the user specifies page allocation values that don’t make sense, the loader automatically
adjust them according to the following rules:

The value for the maximum is always greater than or equal to the value for the minimum.
The value for the maximum can be 0, but if it is greater than 0, it must be at least 4.

SEE ALSO

CcC
headset
4400 Series Assembly Language Programmer s Reference

2-92

USER COMMANDS

login

login

Give a user access to the operating system.

SYNTAX

login <user_name>
login [user_name]

DESCRIPTION

The login command gives a user access to the operating system. If the user does not have a
password, the system automatically honors the command. If the user does have a password, the
system requests it. If it is entered correctly, the user is given access to the operating system.
Otherwise, the system returns an error message, followed by a login prompt.

ARGUMENTS

<user_name> The name of the user to put in contact with the operating system. If no
<user_name> is supplied, the system prompts for it.

EXAMPLES

login leslie

This example tells the operating system to give the user whose user name is Jeslie access to the
operating system.

OPERATING SYSTEM REFERENCE 2-93

USER COMMANDS
login

ERROR MESSAGES

Login incorrect.

The combination of the user name specified and the password entered is invalid. This message is
followed by a login prompt.

No login name specified.

When using the script program, the user did not specify a user name on the command line.

SEE ALSO

log
logout
script
shell

2-94

USER COMMANDS

logout

This shell command terminates an active session.

SYNTAX

logout

DESCRIPTION

The logout command, which is part of the shell program, terminates an interactive session.

EXAMPLE

logout
This is the only valid form of the logout command.

SEE ALSO

login
shell

OPERATING SYSTEM REFERENCE

logout

USER COMMANDS

move

move

Rename a file or move a file to another directory.

SYNTAX

move <file name 1> <file name_2> [+klps]
move <file name list> <dir name> [+klps]

DESCRIPTION

The move command moves or renames one or more files. The first form of the command
renames <file_name_l> to <file_name_2>. The second form moves each file named in
<file_name _list> to <dir_name>. In either case, if there is already a file with the same name as
the file created by the move command, it is overwritten without warning.

Directories and special files (block devices and character devices) may not be moved. The user
must have write and execute permissions in the parent directory of each file being moved and in
the directory to which the files are moved. Each original file is removed.

A file may not be moved from one device to another unless the user has read permission on the
file. A file may not be moved to itself.

Normally the move command links the new file to the original file and deletes the original one.
Thus, a link between files on different devices is not permitted; if you attempt to move a file to a
different device, the original file is copied to the new file, then the original file is deleted.

ARGUMENTS

<file_name_ 1> The name of the source file to move or rename.

<file_name 2> The name of the destination file to which to move <file_name_1>.

<dir_name> ’ffi':\e name of the destination directory to which to move all the specified
es.

2-96

USER COMMANDS
move

OPTIONS

k Do not delete the source file.

1 List the name of each file as it is moved.

p Prompt for permission to replace existing files.
s Stop as soon as an error is encountered.
EXAMPLES

move test oldtest +1

Renames the file rest in the working directory; the new name is oldtest The move command
issues a message describing the move.

move test /elaine

Moves the file test from the working directory to the directory /elaine. The last component of the
file name is preserved, so the name of the new file is /elaine/test.

move test /elaine/oldtest +kp

Moves the file test from the working directory to the directory /elaine and renames it oldtest. If
the file /elaine/oldtest already exists, the user is prompted for permission to delete the file. If
permission is denied, the move does not take place. Even if the move takes place, the original
files remain intact.

move * /elaine +s

Moves all the files in the working directory to the directory /elaine. Each file name is preserved.
The command aborts if it encounters an error.

MESSAGES

<file name_1l1> copied to <file_name_ 2>

This message is produced only if both the "1" and "k" options are specified and the two files are
on different devices. It means that <file_name_1> has been copied to <file_name 2>, but that
the original file remains intact.

<file _name_1> linked to <file name_ 2>

This message is produced only if both the "1" and "k" options are specified. It means that the two
files have been linked and the original file remains intact.

<file name_1> moved to <file_name_2>

This is the normal message issued by the move command. It means that <file_name_1> has been
either linked or copied to <file_name_2>, and that <file_name_1> has been deleted.

OPERATING SYSTEM REFERENCE 2-97

USER COMMANDS

move

ERROR MESSAGES

Cannot move a block special file: <file name>

The file <file_name> is a block special file (block device) and may not be moved.
Cannot move a character special file: <file_ name>

The file <file_name> is a character special file (character device) and may not be moved.
Cannot move across devices: <file name>

The file <file_name> is read-protected and, therefore, cannot be moved across devices.
Directory is not accessible: <dir name>

The user does not have the necessary permissions (write and execute) to move a file to
<dir_name>.

<file_name_1> and <file_name_2> are the same file.

The user tried to move a file to itself, which if allowed would destroy the file. If <file_name_1>
and <file_name_2> are different, they are links to the same file.

Permissions deny access: <file_name>

The user does not have write permission in the parent of the specified directory.

SEE ALSO

copy
link

2-98

USER COMMANDS
page

page

Page format a file or files.

SYNTAX

page [+1f<n>] [+p<n>] [<file name list>]

DESCRIPTION

Page format a file or files. The format includes the file name in the upper-left corner, the date
and time centered, and the page number in the upper-right corner. May also be used to display
lines on a terminal, <n> lines at a time. If no file is specified orif a "+” is specified, then standard
input will be listed.

ARGUMENTS

<file_name_list> The list of file name(s) to display.

OPTIONS

1 issue line numbers

f use line feeds instead of form feeds

n <n> is a decimal number representing crt screen length

p<n> <n> is a decimal number representing printer page length, length must be
10 or greater.

EXAMPLES

page myfile +1 +22

Formats the contents of the file myfile including line numbers for a screen with a length of 22
lines.

OPERATING SYSTEM REFERENCE 2-99

USER COMMANDS
password

password

Set or change a user’s password.

SYNTAX

password [<user_name>]

DESCRIPTION

The password command sets or changes a user’s password. Only the system manager may
change another user’s password. When a user other than the system manager invokes the
command, the operating system prompts for the existing password (if there is one). If the
password is entered correctly, the system prompts for the new password. Generally, a password
should contain between five and eight random characters. After the new password is entered, the
system prompts for it again to verify it. If the second entry agrees with the first, the password is
entered in the password file. In order to maintain the secrecy of the password, the operating
system does not echo the characters typed in response to the prompts for either the existing or the
new password.

To remove a password, enter a carriage return for the new password.

ARGUMENTS

<user_name> The name of user whose password is being changed. The default is the
user invoking the command.

EXAMPLES

password
Changes the password of the user who invoked the command.
password greg

Uses the command form that can be used only by the system manager. It changes the password
associated with the user name greg.

2-100

USER COMMANDS
password

ERROR MESSAGES

Cannot find <user name> in the password file.
The file /etc/log/password does not contain an entry for the user <user_name>.
Cannot find your name in the password file.

The file /etc/log/password does not contain an entry for the user issuing the command. This
situation is extremely unlikely to occur.

Error linking /tmp/pswd to /etc/log/password:<reason>

The operating system returned an error when password tried to link the new version of the
password file to the old password file. This message is followed by an interpretation of the error
returned by the operating system.

Error opening <file name>: <reason>

The operating system returned an error when password tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error unlinking <file name>: <reason>

The operating system returned an error when password tried to unlink the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error writing <file_ name>: <reason>

The operating system returned an error when password tried to write to the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Only the system manager may change another’s password.

Use of the form of the password command that takes an argument is limited to the system
manager.

Password not correct. Permission denied!
The user did not enter the existing password correctly.
Retry different password unchanged.

The first and second entries of the new password were not identical. The password command
aborts, leaving the original password in place.

Syntax: password [<user_ name>]

The password command expects no more than one argument. This message indicates that the
argument count is wrong.

System busy - try again later.

The file /tmp/pswd, which must be created by the password command already exists. Either
someone else is using the command or it was interrupted before it had a chance to delete the
temporary file. If no one is using the command, you should login as system and delete the file
/tmpl/pswd.

OPERATING SYSTEM REFERENCE 2-101

USER COMMANDS
path

path

Write the path name of the working directory to standard output.

SYNTAX

path

DESCRIPTION

The path command writes the path name of the working directory, followed by a carriage return,
to standard output. The path name is the unique path from the root directory through the
directory tree to the file in question.

EXAMPLES

path

This is the only valid form of the path command. It writes the name of the working directory to
standard output.

ERROR MESSAGES

Directory structure is corrupt

The directory path from the root directory, "/", to the working directory is corrupt. Therefore, the
path command cannot determine the path name of the working directory.

SEE ALSO
chd

2-102

USER COMMANDS
perms

perms

Change the permissions associated with a file.

SYNTAX

perms <perms_list> <file name_list>

DESCRIPTION

Every time a user creates a file, the operating system assigns it a set of permission bits which
determines whether or not the file’s owner and other users may read, write, or execute the file.
The permissions assigned depend on the command used to create the file. The editor, for
example, creates all files with rw-rw- permissions, which allow the user who owns the file, as
well as other users, to read and write, but not execute, the file. The default permission for crdir
are rwxrwx; for create, rw-rw-; for makdev, rw-r—.

Read permission allows a regular file to be read. A user cannot execute commands such as list
and copy without read permission on the file in question. Write permission allows a file to be
modified. Execute permission allows the name of the file to be used as a command.

Permissions for directories are similar to those for normal files. Read permission allows the user
to read file names that are actually in the directory. Write permission allows the user to create and
delete files in the directory. Execute permission allows the directory to be searched for a name
used as part of a file specification or file name. The user must have execute permission to
successfully use a directory as the argument to the chd command.

In addition to these permissions, each file has associated with it a user ID bit. If this bit is set for
a given file, any user executing the file has the same privileges as the file’s owner for the duration
of the task.

The perms command changes the permission bits associated with a file. Only the owner of a file
or the system manager may change the permissions associated with it.

ARGUMENTS

<perms_list> The list of permission bits to alter. Permission bits not mentioned are not
changed.

<file_name_list> A list of the names of the files for which to alter the permissions.

OPERATING SYSTEM REFERENCE 2-103

USER COMMANDS

perms

FORMAT FOR ARGUMENTS

<perms_list> The first character of an element in the permissions list specifies whether
the argument applies to the user who owns the file ("u") or to others ("0").
The second character specifies whether to add ("+") or remove ("-") the
permissions in question. The second character is followed by one, two, or
three of the characters "r’, "w", and "x" (for read, write, and execute). The
user ID bit is set or cleared with one of the following arguments: s+ or s-.

EXAMPLES

perms o-wx inventory

Removes write and execute permissions for other users from the file inventory in the working
directory.

perms o+x u+x script
Gives execute permissions on the file script to both the user who owns it and to other users.
perms o-rw O+Xx S+ inventory script

Removes read and write permissions for others from the files inventory and script. It also sets
execute permissions for others, as well as the user ID bit. Thus, although other users may neither
read from nor write to the files, they may execute them. While they are executing them, they have
the same permissions on all files as the owner of these files does.

2-104

USER COMMANDS
perms

ERROR MESSAGES

Error changing permissions for <file_name>: <reason>

The operating system returned an error when perms tried change the permissions on the specified
file. This message is followed by an interpretation of the error returned by the operating system.

Error processing <file_name>: <reason>

The operating system returned an error when perms tried to determine the original permissions on
the file. This message is followed by an interpretation of the error returned by the operating
system.

Syntax: perms <perms_list> <file name_list>

The perms command expects at least two arguments. This message indicates that the argument
count is wrong.

Unrecognizable character, ’<char>’, found in permissions list.
Command aborted!

11

A character following a plus or minus sign in an element in the permissions list was not an "r",

"w", or "x". The command aborts without altering any permissions.

SEE ALSO

chd
dir
dperm

OPERATING SYSTEM REFERENCE 2-105

USER COMMANDS
popd

popd

Changes the working directory to the one whose name is on the top of the directory stack. This is
a shell command.

SYNTAX
popd

DESCRIPTION

The popd command is a part of the shell program and changes the working directory to the one
whose name is on the top of the directory stack. The directory stack is created by the pushd
command.

EXAMPLES

popd
This is the only valid form of the popd command.

SEE ALSO

dirs
pushd
shell

2-106

USER COMMANDS
pushd

pushd

Push the name of the working directory on the directory stack and change to the specified
directory. This is a shell command.

SYNTAX

pushd [<dir name>]

DESCRIPTION

The pushd command, which is part of the shell program, pushes the name of the working
directory on the directory stack and changes to the specified directory. With no argument,
exchanges the top of the directory stack and the current working directory. The dirs command
may be used to view the directory stack.

ARGUMENTS

<dir_name> The name of directory to change to after pushing the current directory onto
the stack. ,

EXAMPLES

pushd ~/Lang
Pushes the current working directory on the directory stack and changes to the directory Lang.

SEE ALSO

dirs

popd
shell

OPERATING SYSTEM REFERENCE 2-107

USER COMMANDS
relinfo

relinfo

Display information about an object file.

SYNTAX

relinfo <file name list> [+ehrs]

DESCRIPTION

The relinfo command examines an object file or all the modules in a library and displays
information about the binary header, the symbol table, and both the relocation and external
records. Normally, relinfo displays all the information. The available options restrict the display
to the specified information.

ARGUMENTS

<file_name_list> A list of the names of files to report on.
OPTIONS

e Display information about external records.

h Display information about the binary header.

r Display information about relocation records.

S Display information about the global symbol table.
EXAMPLES

relinfo tester

Displays information about the binary header, the symbol table, and both the relocaton and
external records in the object file tester in the working directory.

relinfo /lib/cmathlib +h
Displays the information about the binary headers from all the modules in the library /lib/mathlib.
relinfo reporter +se

Displays the information about both the relocation and external records in the file reporter in the
working directory.

2-108

USER COMMANDS
relinfo

ERROR MESSAGES

Error opening <file name> : <reason>

The operating system returned an error when relinfo tried to open the specified file. This
message is followed by an interpretation of the error returned by the operating system.

Error reading <file_name> : <reason>

The operating system returned an error when relinfo tried to read the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error seeking to <location> in <file name> : <reason>

The operating system returned an error when relinfo tried to seek to the specified location (in
hexadecimal) in the specified file. This message is followed by an interpretation of the error
returned by the operating system.

<file name> is not a binary file!
The specified file does not have a valid binary header.
Unknown option <char> ignored.

An unknown option was found and ignored.

SEE ALSO

libgen
libinfo
load
asm

OPERATING SYSTEM REFERENCE 2-109

USER COMMANDS
remote

remote

Communicate with a host computer via the RS-232 port, /dev/comm.

SYNTAX

remote [+1l=<filename>] [+n]

DESCRIPTION

The utility remote allows the Tektronix 4400 series to be used as a terminal to a remote host
computer connected to the /dev/comm port.

Remote allows you to capture both sides of a session with a host into a disk file for later editing
and review. In addition, this utility also allows file transfers to and from the host under control of
a host program.

OPTIONS

l=filename Output from the host will be directed to the specified file in addition to
being sent to the terminal emulator and appearing on the screen. This
function can be toggled on and off using function key F3.

+n This options specifies that linefeed characters be ignored when directing to
the file specified by the "+1" option. The "+1" option must be specified for
this option to have any meaning.

FUNCTION KEY ACTIONS

F1 Terminates remote.

F2 Create and enter a subshell. Any executing file transfers will continue
uninterrupted.

F3 Toggles output to file specified by the +1 option on and off.

2-110

USER COMMANDS
remote

FILE TRANSFERS

Remote supports a file transfer protocol which works in conjunction with a program running on
the remote host. The "C" source code for a sample of such a program, which will run under the
Unix<tm> operating system, may be found in /samples/xfer.c

CONFIGURING THE COMMUNICATIONS PORT

The commset command is used to set the various parameters of the communications port. For
example, the baud rate of the part may be set with a command like:

commset baud=9600

See the documentation on the commset command for further information on configuring the
communications port.

EXAMPLES

remote +l=temp +n

Communicates with a remote host through the device /devicomm/. When you toggle the capture
buffer with the function key F3, all activities are recorded in the file temp. Pressing the key F3
again turns off the capture buffer. The "+n" option causes the capture buffer to ignore and not
record all linefeeds.

SEE ALSO

commset

OPERATING SYSTEM REFERENCE 2-111

USER COMMANDS

remove

remove

Remove the specified file from the system.

SYNTAX

remove

DESCRIPTION

<file name_list> ([+dklpqw]

The remove command removes the specified file(s), which may be any type of file(s), from the
file system. The user must own the file(s), must have write permission in the parent directory of
the file(s) being removed and, by default, must also have write permission for the file(s) itself,
unless the "w" option is specified. Restrictions on deleting a directory are discussed with the

options.

ARGUMENTS

<file_name_list>

OPTIONS
d

2-112

A list of the names of files to remove from the file system. The list may
include regular files, special files, and directories.

If the specified file is a directory and it is empty, delete it. By default, the
remove command does not delete directories.

If the specified file is a directory, delete it and all the files it contains.
List the name of each file as it is removed.

Prompt for permission to remove each file. The file is removed if the user
responds to the prompt with a "y" or "Y".

Quiet mode. Do not report any errors.

Prompt for permission to remove files for which the user does not have
write permission. By default, the remove command does not delete such

"oon

files. The file is removed if the user responds to the prompt with a "y" or
"Y“.

USER COMMANDS
remove

EXAMPLES

remove first file dir_ file second_file +w

Removes the files first_file and second_file, prompting for permission to do so if the user does
not have write permissions in the file. The file dir_file is not removed because it is a directory.

remove first file dir file second file +dp

Prompts for permission to remove first_file and second_file (assuming the user has the proper
permissions). Also prompts for permission to remove dir_file if the directory is empty.

remove first file dir file +kl

Removes first_file and dir_file from the file system. In addition, descends the directory structure
of dir_file, deleting the directory itself as well as every file. Lists the name of each file as it is
deleted.

CAUTION

The remove command, especially when executed with the
"k" option, is an extremely powerful and potentially
destructive command.

ERROR MESSAGES

Cannot delete the root directory: /

The user tried to delete the root directory.

Directory <dir_name> is not empty.

The remove command cannot delete a nonempty directory unless the user specifies the ’k” option.

Error deleting <file name>: <reason>

The operating system returned an error when remove tried to delete <file_name>. This message
is followed by an interpretation of the error returned by the operating system.

OPERATING SYSTEM REFERENCE 2-113

USER COMMANDS
remove

Error deleting . in <dir_name>: <reason>

"o

The operating system returned an error when remove tried to delete the . entry in <dir_name>.
This message is followed by an interpretation of the error returned by the operating system.

Error getting status for <file name>: <reason>

The operating system returned an error when remove tried to read the fdn for <file_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error removing <file name>: <reason>

The operating system returned an error when remove tried to remove <file_name>. This message
is followed by an interpretation of the error returned by the operating system.

Invalid option: <char>

The option specified by <char> is not a valid option to the remove command.

Syntax: remove <file name_list> [+dklpw]

The remove command expects at least one argument. This message indicates that the argument is
wrong.

You do not own <file_ name>.

The user may not delete a file that is owned by someone else.

SEE ALSO

deluser

2-114

USER COMMANDS
rename

rename
Change the name of the specified file.

SYNTAX

rename <file name 1> <file name_ 2>

DESCRIPTION

The rename command changes the name of the specified file. If a file named <file_name 2>
already exists, it is deleted without warning.

ARGUMENTS

<file_name_1> The name of an existing file.
<file_name 2> The new name for <file_name_1>.
EXAMPLES

rename test oldtest

Changes the name of the file test in the working directory to oldrest. If a file named oldrest
already exists, it is deleted without warning.

rename test /elaine/oldtest

Changes the name of the file test in the working directory to /elaine/oldtest if the user has write
permissions in the directory elaine.

OPERATING SYSTEM REFERENCE 2-115

USER COMMANDS
rename

ERROR MESSAGES

Error renaming <file name_ 1>: <reason>

The operating system returned an error when rename tried change the name of <file_name_1>.
This message is followed by an interpretation of the error returned by the operating system.

Error renaming to <file name_2>: <reason>

The operating system returned an error when rename tried to assign the new file name. This
message is followed by an interpretation of the error returned by the operating system.

Error unlinking <file_name_l1>: <reason>

The operating system returned an error when rename tried to unlink <file_name_1> from the new
file. This message is followed by an interpretation of the error returned by the operating system.

File <file_name_1> does not exist!

The first name on the command line must be the name of an existing file.

Syntax: rename <file name_1> <file name_2>

The rename command expects exactly two arguments. This message indicates that the argument
count is wrong.

SEE ALSO

move

2-116

USER COMMANDS
restore

restore

Catalog or restore files from the backup device onto the file system.

SYNTAX

restore [+bBCdLlnpr] [+T[=length]] [<file name list>]
[<dir_name_list>]

DESCRIPTION

The restore command is used to copy backup files from the backup device onto the file system.
Although the program is named restore, it can operate in two distinct modes, selected by options:
catalog mode and restore mode. Catalog mode lists the contents of the backup device in much
the same format as that used by the dir command. Restore mode retrieves files or directories
from the backup device.

The restore command retrieves backup files and directories from /dev/floppy or /devitape. You
should not attempt to mount a backup device; the only way to read devices written by backup is
to use the restore command. The only other command that you should use on a backup device is
devcheck.

As files are backed up, backup also stores the file owner ID number, permissions, and time/date
stamp of the file. This is used by restore when retrieving the files. After the files are restored,
they appear just as they were at the time of the backup. The user should be aware of several
potential problems.

First, it is possible for users with identical ID numbers to exist on different systems with different
names. Since only the owner ID number is saved with the file, not the owner’s name, when the
file is restored, the apparent owner will be the name of the user in the password file that matches
the ID number. If the user ID number does not exist in the restoring system password file, the
owner of the file will be the ID number enclosed in double angle brackets, for example, <<14>>.
Second, file permissions are respected during restore. If the restoring user does not have write
permission for a file, it will not be restored. One method to facilitate easy movement of files
among many machines is to always backup and restore the files from the public user, which
exists on all machines. In any event, the user system can backup and restore any file as well as
change ownership and permissions.

ARGUMENTS

<file_name_list> List of the names of files to process. Defaults to the working
directory.

<dir_name_list> List of the names of directories to process.

If you specify a directory name as an argument in restore mode, the program processes only the
files within that directory. If you also specify the "d" option, the program restores all files within
the given directory and its subdirectories.

OPERATING SYSTEM REFERENCE 2-117

USER COMMANDS

restore

OPTIONS

b Print sizes of files in bytes.

B Do not restore files that end in .bak.

C Print a catalog of the files on an existing backup. If you specify the "C"
option, restore ignores all the names in <file_name_list>.

d Restore entire directory structures.

2-118

USER COMMANDS

T[=length]

restore

List file names as they are restored.
Do not unlink files before restoring.

Only restore a file if the copy on the back up device is newer than the copy
at the destination. If the destination file does not exist, the program
restores the file (unless prohibited by another option, such as the "B"

option). The "n" option may be used only in restore mode.

Prompt you with each file name to determine whether or not the restore
procedure should be performed on that particular file.

Retension streaming tape cartridge before any action. Using this option
may avoid read errors from the streaming tape drive. This option must be
used in conjunction with the +T option.

Restore from streaming tape instead of floppy. The tape length parameter L

default is 450 foot tape, eg. (+T=300 for 300 foot tape).
NOTE

The "+d" option to restore entire directories creates subdirectories
only if the original backup command specified "I" or "." as the
directory to back up. Absolute sub-directories will not be created,
although the files contained within them will be restored if the
subdirectory already exists. That is, the command

backup . +dl
saves all subdirectories under the current working directory, and
the command

restore +dl
restores these subdirectories and their contents. However, the
command

backup +d! /dirl/subdir2
while it saves the subdirectory /dirl/subdir2 and its contents
(including subsequent subdirectories) in absolute format, the
command

restore +dl
will fail if any of the directories or subdirectories do not exist. The
error messages are specific enough to allow you to manually create
the directory structure necessary for restore to work. For an
example of how this is used to control directory structure, see the
script file restoreFiles on the SYSINSTALL diskette.

restore normally works in a quiet mode. The "1" option allows you to see what the program is

actually doing.

OPERATING SYSTEM REFERENCE 2-119

USER COMMANDS
restore

EXAMPLES

restore +1

Restores all of the files, excluding subdirectories and their contents, from the backup diskettes
you are prompted to insert in the flexible disk drive.

restore +1n filel dir2

Restores the file filel from the backup if the backup copy is newer than any existing copy. It then
restores the files contained in dir2 on the backup, creating the directory dir2 if necessary. Only
files newer than existing copies are restored, and these are listed as they are restored. This
example does not restore any subdirectories in dir2 or any files or directories contained in
subdirectories in dir2.

restore +C >catalog

Catalogs the files on the backup set and stores it in a file called caralog.

NOTES

¢ In restore mode, file names or directory names on the command line are used to select the
files or directories to be restored. The program searches the entire backup for each
argument specified. If multiple files satisfy the restoration criteria, the program restores
them all, destroying the older version as the new one is restored. Thus, to ensure proper
restoration, you must provide all backup volumes (in order) for each argument.

® When files are restored, they are generally restored to the same directory location as you
specified when they were backed up. As files are backed up, backup makes an indication
of the path name for each file. When files are restored, restore uses the path name to place
the file in its proper directory location. If the path name is relative (i.e., does not begin
with "/"), the path name of the restored directory is also relative. Thus, files backed up
with a relative path name may be restored to a directory location different from the one in
which they were created.
An example should make this clear. If the working directory is backed up, either by
specifying no source files or by using the directory name ".", the files are backed up with a
relative path of ".". When these files are restored, they are placed in the directory ".",
which might not be the same directory they originally came from. This feature allows the
manipulation of entire file systems in a general fashion. To specify a unique directory
location for a file, you should specify its entire path name, starting with "/".

® It is possible to restore backed up data onto the device currently being used as the root
device or system disk. Two possible problems arise, however. First of all, if the operating
system is restored from a backup, the result is not bootable. In such a case, the file must be
copied from the original master diskette and installed in order to allow booting. The
second problem occurs if the shell program or the device #y00 is restored over the current
shell or tty00. This operation leaves unreferenced files in the file system. Unreferenced
files must be corrected with the diskrepair command. It is a good idea to run diskrepair on
the root device after restoring backed-up data to it.

2-120

USER COMMANDS
restore

MESSAGES

Catalog of backup on <file_ name>
Restore backup from <file name>

These messages are printed when restore begins. They notify you of the function about to be
performed.

Several of the following messages prompt you for a positive or negative response. The program
interprets any response that does not begin with an upper or lowercase "n" as a positive response.

Restore <file name> (y/n)?

If you specify the "p" option, the program prints one of these prompts before it takes any action.
A response of "n" or "N" indicates that the operation should not be performed for the given file,
Any other response is interpreted as yes.

Insert next volume - Hit C/R to continue:

This prompt is issued when the program needs a new backup volume. You should type a carriage
return only when the next volume has been placed in the device.

link <file_name_1> to <file_ name_2>
copy <file_ name>
Copying from <dir name>

The program prints these messages as it takes the corresponding action during a creation
operation.

This is Volume #<number 1> -- Expected Volume #<number 2>
Continue?

The program expects you to insert volumes in sequential order. If a volume appears out of order,
restore prints this message. If you type anything except an "n" or an "N" as the first character of
the response to the message, restore ignores the fact that the volumes are out of order and
continues with the backup. Otherwise, it prompts you for another volume. It is important to
insert volumes sequentially because resfore cannot correctly restore files that are broken across
volumes if the volumes are inserted out of order.

Volume <number> of <vol name>

Whenever a new volume is inserted and properly validated, the program prints this message,
which indicates the name of the backup volume and its sequence number.

OPERATING SYSTEM REFERENCE 2-121

USER COMMANDS
restore

ERROR MESSAGES

<dev_name> is not a block device

The destination device for the backup must be a block device. This message indicates that the
specified device (that is always the first argument) is not a block device.

<file_name> not located - try again?

When using the program in restore mode, you may specify which files or directories to restore. If
the program cannot find a specified file or directory after searching the entire backup, it prints
this message. If the response is not "n" or "N", the program searches the entire archive again.
This option is allowed because volumes need not be inserted in order of their creation when the
program is in restore mode. If one volume is left out or if the final volume is inserted before the
entire archive has been processed, some files might not be processed. Note that if you specify
more than one file name or directory name, the program processes the entire archive for each file
before proceeding to the next one.

Formatting not allowed during Catalog/Restore
You may not format a disk with the restore command.
Read error! - file <file name>

An 1/O error occurred during the transfer of a file either to or from the backup. An auxiliary
message is printed indicating the nature of the error. The program tries to continue for all errors
except device full during restore mode.

Unknown option: <char>
The option specified by <char> is not a valid option to the backup command.

** Warning: directory <dir_ name> is too large!
** Some directories were ignored

** Warning: directory <dir_ name> is too large!
** Some files were ignored

The program uses some internal tables during the back up process (not during restore or catalog).
If the limits of these tables are exceeded (highly unlikely), these messages are printed.

SEE ALSO
backup

2-122

USER COMMANDS
script

script

The script execution shell.

DESCRIPTION

The program named script is a command interpreter used primarily to execute commands from a
file. It can be run as an interactive interface, but does not support aliases, and history, that are
available under shell.

If you run script as an interactive shell, it collects and interprets your commands and executes
some built-in commands (chd, dperm, jobs, log, login, time, and wait) itself. It passes others to
the operating system kernel which, in turn, performs the operations requested.

A script command line consists of a command name, which may be followed by arguments,
options, or both. All elements of the command line must be separated by either spaces or
commas. The command may be one of the commands supplied with the operating system, the
name of a binary file produced by either the assembler or a compiler, or the name of a text file
(with execute permission turned on) which contains a series of commands to execute. In all cases
the script program spawns a child-task which executes the specified command or commands.

ENVIRONMENT VARIABLES

A list of name-value pairs called environment variables is available to script. When script
encounters a string that it recognizes as an environment variable, it emits the value stored for that
variable. You can define or modify an environment variable by the command:

env name=value
You can delete an environment variable by omitting the value in the command:

env name=

SEARCH PATH

The environment variable PATH defines the search path for the directory containing the
command. Each alternative directory name is separated by a colon. If the command name
contains a /, the search path is not used. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission, but is not a binary file, it is assumed to be a
file containing script commands. A subshell (i.e., a separate process) is spawned and the program
script is used to read and execute it. A command contained within parentheses is also executed in
a subshell.

OPERATING SYSTEM REFERENCE 2-123

USER COMMANDS
script

BACKGROUND TASKS

If you follow a command with an ampersand, "&", the script program spawns a child-task which
executes the command. However, in this case the script does not wait for the task to complete.
Thus, you may start another command while the first one is executing. A single script program
can support a maximum of five of these background tasks. Each time you send a task to the
background, the script program reports the task ID assigned to that task, preceding it with a "T",
which is not part of the task ID. The user may need the task ID to execute the wait or int
command. The task ID may also be obtained by executing the jobs command, which returns the
task ID and starting time of all background tasks originated by you from the script program. The
ampersand may be used following a single command or separating one command from another
on a single line.

MULTIPLE COMMANDS ON A LINE

You may specify more than one command on a command line by separating them with any of
several special symbols.

The script program sequentially executes commands that are separated by a semicolon, ";". If a
task terminates abnormally, the script program stops executing the command line.

Two additional command separators, the conjunction operator ("&&") and the disjunction
operator ("||"), are available. With these separators, execution of the command following the
operator is dependent on the outcome of the command preceding it. A command is true if it
terminates with a termination status of zero, indicating successful completion, and false if it
terminates with a nonzero termination status, indicating failure. When two commands are
separated by the conjunction operator, the script program executes the second one only if it
completes the first one successfully (it is true). When two commands are separated by the

disjunction operator, the script program executes the second one only if the first one fails (it is
false).

Normally, the command line is evaluated from left to right; however, parentheses may be used to
group commands. Commands in parentheses are treated as a single command. Commands
separated by a pipe (see REDIRECTED I/O) are also treated as one command.

2-124

USER COMMANDS
script

The processing of the command separators may be summarized as follows:

&& If the command preceding the conjunction operator succeeds, the script
program tries to execute the next command. If the command preceding the
conjunction operator fails, the script program looks for a disjunction
operator. If it finds one, it tries to execute the command which follows it.
If it does not find one, processing of the command line ceases.

i If the command preceding the disjunction operator succeeds, the script
program looks for a semicolon, ";". If it finds one, it tries to execute the
command which follows it. If it does not find one, processing of the
command line ceases. If the command preceding the disjunction operator
fails, the script program tries to execute the next command.

; If the command preceding a semicolon succeeds, the script program tries to
execute the next command. If the command preceding a semicolon fails,
processing of the command line ceases.

& Whether the command preceding a single ampersand succeeds or fails, the
script program processes the next command on the command line.

Consider the following example:
<task_1> && <task_2> || <task_3> && <task_4>

The script program first tries to execute <task_1>. If the task is unsuccessful, the script skips
<task_2> and proceeds to <task_3>; if <task 3> succeeds, it tries to execute <task 4>. If,
however, <task 1> succeeds, the script program tries to execute <task_2>. If <task : 2> also
succeeds, the script program skips the rest of the command line. If, after the successful execution
of <task_1>, <task_2> fails, the script tries to execute <task _3>. If and only if <task 3>
succeeds, it goes on to <task_4>.

The use of parentheses can change the interpretation of the same set of commands separated by
the same operators:

<task_1> && (<task_2> || <task_3>) && <task_4>

In this case, the script once again begins by trying to execute <task_1>. If it fails, the script
program skips the remaining tasks. If, on the other hand, <task_1> is successful, the script
program spawns a subshell (because of the presence of the parentheses). This subshell tries to
execute <task_2> and, if and only if it fails, it tries to execute <task_3>. If <task_2> succeeds, it
returns a termination status of true to its parent script. If <task_2> fails but <task 3> succeeds, it
also returns a termination status of true. If, however, both - <task_2> and <task 3> fail, the
termination status returned is false. If the termination status returned by the subshell is zrue, the
parent script tries to execute <task_4>.

OPERATING SYSTEM REFERENCE 2-125

USER COMMANDS
script

TERMINATION STATUS

Normally, the script program does not report the termination status of a command it executes
unless the task terminates abnormally (because of a program interrupt). A list of the possible
program interrupts appears in the documentation of the int command. The script program does,
however, always report the termination status of a background task, even if it terminates
normally.

REDIRECTED /O

The script program associates three files with every command it executes: standard input,
standard output, and standard error. Standard input is the file from which a command takes its
input. Standard output is the file to which a command sends its output. Standard error is the file
to which many error messages are directed. By default, the system uses your keyboard as
standard input and your console as both standard output and standard error. However, you can
direct the script to use another file for any of these standard files. This process is known as /O
redirection.

The table 2-2, I/O Redirection, is a quick summary of the commands for redirection. Following
the table are explanations of each of the optional symbols.

Table 2-2
1/0 Redirection
Symbol Meaning
< Take standard input from file following
symbol.
> Send standard output to file following
symbol.
“or% Send standard error to file following
symbol.
>> Append standard output to file
following symbol.

| Connect programs so output of one
becomes input of next.

>% Redirect standard error to standard
output.

%> Redirect standard error to standard
output.

2-126

USER COMMANDS
script

mno1t

The symbol "<" tells the script program to take its standard input from the file whose name
follows the symbol. Similarly, the symbols ">" and """ are used to send standard output and
standard error respectively to a file. The file to which standard input is redirected must already
exist. However, if the file to which standard output or standard error is redirected does not exist,
the system creates it. In fact, if the file does already exist, the system deletes the contents of the
file before executing the command. To avoid this effect, you may use the ">>" symbol to direct
the script program to append data to the file specified as standard error or standard output. For
example, you might add the results of the compare command to one of the pre-existing files.

It is also possible to redirect standard output or standard error (or both) to another task. This form
of redirection is accomplished by using a pipe. A pipe is a function that connects programs so
that the output from one program becomes the input for another. Standard output is piped from
one task to another by using one of the symbols "|" or "*". For instance, the following example
lists all the files in the working directory, formats the listing with the page command, and prints
the listing on the printer /dev/printer.

dir . | page | /dev/printer

1 Alt

Similarly, you can redirect standard error with either of the symbols "|" or

Although you can place many pipes on the command line, a single task can support only one
pipe. Thus, you cannot pipe standard error and standard output to separate tasks. It is possible,
however, to duplicate standard error onto standard output and to redirect them both to the same
task. You have a choice of symbols for duplicating standard error onto standard output: ">%" or
"%>". Neither of these symbols takes an argument. After duplicating standard error onto
standard output, you redirect standard output to a file or a task in the usual way. Whenever
standard error and standard output are routed to the same destination, their contents may be
intermingled. For instance, you can get a listing of all the files in the working directory, redirect
both standard error and standard output to the page command, and print the results on the printer
/dev/printer with the following command:

1s . %> | page | /dev/printer

Finally, the following constructions redirect /O from or to the null device, /dev/null: "<-" for
standard input, ">-" for standard output, and - for standard error. If either standard output or
standard error is redirected to the null device, its contents are lost. If the null device is used as
standard input, an end-of-file character is read.

CONTINUATION OF THE COMMAND LINE

Command lines may be continued across more than one physical line by terminating each line,
except the last, with a backslash character, "\," immediately followed by a carriage return. As an
interactive shell, script uses the prompt "+>" to indicate that the line being entered is a
continuation of the previous line. When the script program processes the line, it replaces the
backslash and the carriage return with a space. Typing a line-delete character (CTRL-U) only
affects the physical line being typed. A keyboard interrupt (CTRL-C), deletes the entire
command line.

OPERATING SYSTEM REFERENCE 2-127

USER COMMANDS
script

PATTERN MATCHING CHARACTERS

The operating system recognizes several characters, known as pattern matching characters, which
allow you to specify multiple files without typing each name individually. The special characters
are the asterisk, "*", the question mark, "?" and square brackets, "[]". The script program
matches these special characters to characters in the filenames in the specified directory. If the
matching character appears in the last component of the file name, the script tries to match it to
the names of all files in the specified directory (by default, the working directory). If the
matching character appears in any other position in the file name, the script tries to match it to the
names of directories only.

An asterisk in a comimand line matches any character or characters, including the null string but
not including a leading period. Thus, the command

list *.bak
lists all files in the working directory whose names end in .bak and do not begin with a period.

The question mark matches any single character except the null character or a leading period.
For example, the command

list chapter_?
lists all files whose names begin with the string chapter and end with a single character.
You can use more than one matching character at a time. For instance, the command
list *.?

lists all files in the working directory whose names end with a period followed by a single
character (except those whose names begin with a period).

Square brackets allow you to specify a set of characters to use in the matching process. The set
of characters is defined by listing individual characters or by specifying two characters separated
by a hyphen. In the former case, the script program looks for all file names which use any one of
the enclosed characters in the appropriate place. In the latter, the two characters specify a class of
characters containing the two characters themselves and any characters which lexically fall
between them in the ASCII character set. For example, if your working directory contains nine
files named chapterl, chapter2, chapter3, and so forth, the following command lists the first
three chapters, the fifth chapter, and the last three chapters:

list chapter[1-357-9]

If the script program cannot find a match for any of the arguments containing matching
characters, it aborts the command. If it finds a match for at least one argument containing
matching characters, it ignores any other arguments containing matching characters for which it
cannot find a match.

If a filename actually contains one of the matching characters or either a space or a comma, you
must enclose the name in single or double quotation marks. In such a case the script program
passes the arguments to the command without performing any character matching.

2-128

USER COMMANDS
script

script SCRIPTS

A scripe script is a file that contains a list of commands for the script program. Such a file might
consist of a list of commands that are frequently executed in sequence, or of a single, lengthy
command that is often used. If you set execute permissions on such a file, the name of the file
can be used as a command.

You may add to the versatility of a script script by using arguments within the script. The
arguments are specified within the script as $1, $2, $3, and so forth. The argument $0 specifies
the name of the calling program. These arguments may appear anywhere in a command
argument.

If an argument being passed to a command actually contains an ampersand, the argument must be
enclosed in single quotation marks so that the script program does not try to perform any
substitution. Note that single quotation marks prevent both substitution of arguments and the
expansion of matching characters, whereas double quotation marks prevent the expansion of
matching characters but allow the substitution of arguments.

The script program supports several commands that are used exclusively with script scripts.
These commands—verbose, exit, proceed, and sabort—are discussed in the following
paragraphs. '

verbose

When the script program executes a script file, it does not normally echo the commands being
executed. The verbose command causes the script program to echo commands from a script file
as they are executed. Each line that is echoed is preceded by two hyphens and a space character.

The verbose command may be called without arguments or with one argument, which must be
one of the strings on or off. If called without an argument, the default is on. The command may
be executed by the login script or may be part of a script script. The verbose attribute is always
passed from a parent script program to a child shell, but never from a child to a parent.

OPERATING SYSTEM REFERENCE 2-129

USER COMMANDS
script

exit AND proceed

script permits a limited amount of control over the processing of script files. shell sequentially
processes commands in a script file until one of the commands fails or it reaches the end of the
file. If a command fails, script begins to search the remainder of the script file for a line that
contains one of the commands exit or proceed. If it encounters one of these commands, script
resumes processing the script after that command. The only difference between exit and proceed
commands is that during successful execution of a script file script stops processing the file if it
encounters an exit command, whereas it ignores a proceed command. The search for both these
commands takes place before both the substitution of any arguments and the expansion of any
matching characters. Thus, the script program does not see an exit or proceed command that is
created as the result of either of these processes.

Here’s an example of the proceed command:

/etc/mount /dev/floppy /usr2
/usxr2/runjob

echo "Successful execution.”
proceed

/etc/unmount /dev/floppy

In this example, script mounts a disk and tries to execute the command /usr2/runjob on that disk.
If the command succeeds, script echoes the message, Successful execution. and proceeds to
unmount the disk. If the command fails, script skips all commands between the one that failed
and the proceed command. It resumes execution with the unmount command. Thus, if
lusr2/runjob fails, your disk is unmounted, but no message is sent to standard output.

By adding an exit command you can modify this example to notify you of either successful or
unsuccessful execution:

/etc/mount /dev/floppy /usr2
/usr2/runjob

/etc/unmount /dev/floppy

echo "Successful execution."
exit

/etc/unmount /dev/floppy

echo "Unsuccessful execution."

Here, if /usr2/runjob succeeds, the script program continues execution with the wunmount
command and echoes the string Successful execution. to standard output. The exit command then
causes the script program to stop processing the script because it encounters the exit command
during normal execution. If /usr2/runjob fails, the script program skips all commands until it
encounters the exit command. It then resumes execution with the unmount command and echoes
the string Unsuccessful execution. to standard output.

2-130

USER COMMANDS
script

sabort

The sabort command can be used to turn off the search for either an exit or proceed command,
thus forcing execution of every command in the script, regardless of the failure of a command.

sabort may be called without arguments or with one argument, which must be one of the strings
on or off. When sabort is on, script looks for an exit or proceed command whenever a command
in the script fails. When sabort is off, script processes every command in the script. If you
execute the sabort command without an argument, it both rescinds the effect of any previous
sabort on and fails. Thus, if script is executing a script, script immediately begins looking for an
exit or proceed command.

The sabort command may be executed by a login shell (if you use script as your shell) or may be
part of a scripe script. The attribute is always passed from a parent program to a child shell, but
never from a child to a parent.

The system also supports startup files for individual users. Whenever a user logs in using script
as an interactive shell, the script program looks for a file named .startup in your home directory
(as defined in the password file). If the file exists and you have read permissions in it, script
executes the file before issuing the system prompt.

The script program can also be used as a command in its own right. This form is used primarily
to execute a script scriptfile for which execute permissions are not set, to call the script program
from another program, or in the password file.

SYNTAX

script [+abcnvx] [<argument list>] ([<script_ filename>]

DESCRIPTION OF THE SCRIPT COMMAND

If the script command is executed without any options or arguments, the operating system simply
spawns another shell for you. This script program functions as a normal shell, but because it is
the child of the shell or script program from which the command was executed, it does not know
what your home directory is. The log command terminates the child shell and returns control to
the parent script.

The script command can also be executed with options only. This form of the command also
spawns a script program that interacts with you.

OPERATING SYSTEM REFERENCE 2-131

USER COMMANDS
script

Finally, the script command can be executed with arguments or with both options and arguments.
This form may be used, for example, to execute a script script for which you do not have execute
permissions. Either of the following commands executes the file script_filename:

script script_filename
script <script_filename>

script first checks to see that the file specified as an argument is actually a file that contains
commands. If it is not, script executes it only if you specify the "c" option (see Options).

2-132

USER COMMANDS

script

ARGUMENTS

<argument_list> A list of arguments to pass to the script command. Each element in
the argument list consists of a command name followed by the
appropriate arguments and options. The elements in the list must be
separated by a valid command separator (";", "&", "&&", or "||"). If
any separator characters are used, the entire argument list must be
enclosed in single or double quotation marks.

<script_filename> The name of a file containing commands to execute.

OPTIONS

Options specified to the script program must appear immediately after the name script on the
command line, so that they are not confused with options that pertain to the arguments passed to
the script.

a Start execution with the sabort attribute off.
Ignore CTRL-C and CTRL-\.

Process the argument list as a command.
Run all background jobs with lower priority.
Start execution with the verbose attribute on.

% < B O O

On the next command, do not fork unless necessary. This option is used
only when calling a script program from another program.

NOTE
It is impossible to specify a null string as an argument to a

command because the script program removes null strings from the
command line.

OPERATING SYSTEM REFERENCE 2-133

USER COMMANDS
script

ERROR MESSAGES

Built-in commands may not use pipes.

Input to or output from the script built-in commands (chd, dperm, jobs, log, login, and wait) may
not be routed through a pipe.

Cannot execute <cmd name>.

The operating system was unable to execute the specified command. Either the command does
not exist or you do not have execute permission.

Cannot initialize tables.

This error, which should not occur, is usually indicative of a hardware failure. If it does occur,
contact your Tektronix field office.

Cannot open I/0 redirection file.

The operating system returned an error when the script program tried to open the file specified for
I/O redirection. Most probably, the path specified cannot be followed (one of the directories does
not exist) or you do not have the permissions necessary for opening the file. This message is
preceded by an interpretation of the error produced by the operating system.

Cannot open pipe.

The operating system returned an error when the script program tried to open the specified pipe.
This message is preceded by an interpretation of the error produced by the operating system.

Error opening a file.

The operating system returned an error when the script program tried to open the specified file.
This message is preceded by an interpretation of the error produced by the operating system.

Error reading a file.

The operating system returned an error when the script program tried to read the specified file.
This message is preceded by an interpretation of the error produced by the operating system.

Error writing a file.

The operating system returned an error when the script program tried to write to the specified file.
This message is preceded by an interpretation of the error produced by the operating system.

2-134

USER COMMANDS
script

I/0 redirection conflict.

You tried to redirect standard input, standard output, or standard error to more than one place.

I/0 redirection error.

The operating system returned an error when the script program tried to perform the specified I/O

redirection. This message is preceded by an interpretation of the error produced by the operating
system.

Memory overflow.

There is not enough memory available to perform the specified command. Most probably, the
expansion of the matching characters used on the command line, for which many matches were
possible, caused the error.

Missing] or invalid character range.

Either the right square bracket is missing from the specification of a range of matching
characters, or the range specified is invalid.

No matching file names found.

Matching characters appear on the command line, but no file names match the specified pattern.

Parenthesis usage error.

The parentheses used on the command line are unbalanced.

Too many tasks.

The script program tried to fork, but too many tasks were running at the time. The limit to the
number of tasks allowed either to the individual user or to the operating system as a whole was
reached.

Unknown error.

This error should not occur. If it does, contact your Tektronix field office.

Unrecognized argument to built-in command.

The argument specified is not a valid argument to the built-in command in question.

Unterminated string.

OPERATING SYSTEM REFERENCE 2-135

USER COMMANDS

script

The quotation marks used on the command line are unbalanced.

2-136

USER COMMANDS
script

SEE ALSO

chd
dperm
env
jobs
log
login
shell
time
wait

OPERATING SYSTEM REFERENCE 2-137

USER COMMANDS
set

set

Change or display the current state shell and values of the environment variables. This is a shell
command.

SYNTAX

set [<file name>]

ARGUMENTS

<file_name> The name of source file from which to read commands.

DESCRIPTION

The set command, which is part of the shell program, displays the current state of the shell and
the values of the environment variables if no arguments are given. If a file argument is specified
then the commands in it are executed as if they were typed from the keyboard.

SEE ALSO

unset
shell

2-138

USER COMMANDS
shell

shell

DESCRIPTION

Shell is an interactive command language that gives you many conveniences when working with
the 4400 operating system. When using shell as the command interpreter, you can perform
command line editing.

EDITING AND HISTORY

Shell remembers a limited number of commands. You can use the shell command history to
retrieve a list of commands that shell accepted. You can then use control (or function) keys to
recall and modify commands.

You enter commands one character at a time, editing the command line (either with backspace
and re-typing or with the command editor) and press the return key to execute the command.

Table 2-3, Shell Editing Keys And Functions, shows the keys or key sequences associated with
the shell editing functions and a brief description of those functions.

When editing, the characters you insert appear at the cursor position and the characters following
the cursor shift to the right.

The editing function most commonly used with history is up. If you do not have the cursor
positioned at the start of a line, successive calls to up recall only commands that begin with the
same non-blank character string as that preceding the cursor. For example, if you have the cursor
after the string chd (where you had used the chd command earlier) pressing “P takes you back to
the previous command where you used chd. The history command can only recall a limited
number of past commands.

OPERATING SYSTEM REFERENCE 2-139

USER COMMANDS

shell
Table 2-3
SHELL EDITING KEYS AND FUNCTIONS
| Key Function Description
B up Recalls the previous command with the same prefix.
“N down Recalls the next command with the same prefix.
“F right character Moves the cursor right one character.
‘B left character Moves the cursor left one character.
"D erase character Erases the character at the cursor.
“H or DEL backspace Erases the character preceding the cursor.
ESC-F word right Moves the cursor to the right to
the start of the next word.
ESC-B word left Moves the cursor to the left to the start of the nearest word.
ESC-D erase word Erases to the end of the word at or following the cursor.
ESC-Hor "W | erase back word | Erases the word before the cursor.
“A begin line Moves the cursor to the beginning of the line.
"E end line Move the cursor to the end of the line.
K erase to end Erase characters from the cursor to the end of the line.
“U erase line Erase (or restore) the entire line.
T transpose Transpose the previous two characters.
"L redisplay Redisplay the current line.
Q quote Enters the key value of the following key.
RETor LF return Executes the command.
ENVIRONMENT VARIABLES

A list of name-value pairs called environment variables is kept by shell. When shell encounters a
string that it recognizes as an environment variable, it emits the value it has stored for that
variable. You may define or modify an environment variable by writing a quoted string of the
form: name=value to shell. For example to define the variable COMMAND as /bin, type the
string COMMAND=/bin. Then, to change your working directory to /bin, type chd
$SCOMMAND.

You can delete environment variables with unset, used as unset COMMAND. The set command
displays the currently listed environment variables.

SEARCH PATH

The environment variable PATH defines the search path for the directory containing the
command. Each alternative directory name is separated by a colon. If the command name
contains a /, the search path is not used. Otherwise, each directory in the path is searched for an
executable file. If the file has execute permission, but is not a binary file, it is assumed to be a
file containing shell commands. A subshell (i.e., a separate process) is spawned and the program
script is used to read and execute it. A command contained within parentheses is also executed in
a subshell.

2-140

USER COMMANDS
shell

ALIASES

Shell maintains a list of aliases, or command redefinitions. When you enter a command line,
shell checks the first word of the command to see if it is an alias. If so, shell executes the text of
the alias and can use argument designators to extract the arguments to the aliased command.

You can create or modify an alias with the alias command. You can delete an alias with the
unalias command. You can see the currently defined aliases by entering the alias command
without any arguments.

For example, if a Unix<tm> programmer were to want the command !/ to perform the action of
the operating system command dir +/, that person could create that alias by typing:

alias 11 'dir +1 $*f

Now typing /I /bin will have the same effect as typing dir +/ /bin.

VARIABLE ARGUMENTS

Variables may contain argument designators to extract arguments from commands (such as used
when defining aliases). The argument designators are:

$0 The first word of the command (the command itself)
$n The nth argument of the command

$ The first argument of the command (equivalent to $1)
$$ The last argument of the command

$x-y The range of arguments from x to y (such as $3-5)
$-y Abbreviation of $0-y

$* Abbreviation of $"-$ (51 $2 ...$3%)

$n* Abbreviation of $n-$

$n- Abbreviation of $n-($-1) (omits last argument)

$- Abbreviation of $0-($-1) (omits last argument)

When evaluating aliases, these argument designators extract the arguments from the command
line to pass to the aliased commands.

FUNCTION KEYS

The function keys and joydisk are represented by special environment variables. By defining
these variables, you can cause the joydisk and function keys to perform actions. When you press
a function key or the joydisk, skell echoes the string defined for that variable.

You can insert special characters into function key and joydisk variable definitions by using the
quote character, CTRL-Q. The special-character following a CTRL-Q is stored literally.

The 24 function key variables are $f1 - $f12 and $F1 - $F12. The joydisk variables are $joyup,
$joydown, $joyleft, $joyright $JOYUP, SIOYDOWN, $JOYLEFT, and $JOYRIGHT. The Break
key is bound to the variable $BREAK, and the arrow key (upper right of keyboard) is bound to
arrow and ARROW for the shifted arrow key.

OPERATING SYSTEM REFERENCE 2-141

USER COMMANDS
shell

COMMAND SYNTAX

A command is either a simple-command or a list.

A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a
space). The first word specifies the name of the command to be executed. Except as later
specified, the remaining words are passed as arguments to the invoked command. (The command
name is passed as argument 0.)

A pipeline is a sequence of one or more commands separated by "|". The standard output of each
command but the last is connected by a pipe to the standard input of the next command. Each
command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by the characters “;" or "&", and
optionally terminated by them. The characters ";" and "&" have equal precedence. A semicolon
causes sequential execution; an ampersand causes the preceding pipeline to be executed without
waiting for it to finish. Newlines may appear in a list, instead of semicolons, to delimit

commands.

COMMAND SUBSTITUTION

The standard output from a command enclosed in a pair of back quotes (* *) may be used as part
or all of a command word; trailing newlines are removed.

Wild

Following substitution, each command word is scanned for the characters "*", "?" and "[". If one
of these characters appears, the command word is regarded as a pattern. The command word is
replaced with alphabetically sorted file names that match the pattern. If no file name is found
that matches the pattern, the command word is left unchanged. The character "." at the start of a

file name or immediately following a "/", and the character "/", must be matched explicitly.

The special characters match in this manner:

* Matches any string, including the null string.
? Matches any single character.
{...] Matches any one of the characters enclosed. A pair of characters separated

by “-" matches any character lexically between the pair.

Expands by replacing the tilde with the home directory of the named user.
This is valid only if the tilde is the first charaqcter. For example, if user
sandra has a home directory (defined in the password file) of
/public/sandra, the filename “sandralfile expands to /public/sandralfile.

An asterisk in a command line matches any character or characters, including the null string but
not including a leading period. Thus, the command

list *.bak

lists all files in the working directory whose names end in .bak and do not begin with a period.

2-142

USER COMMANDS
shell

The question mark matches any single character except the null character or a leading period.
For example, the command

list chapter_?
lists all files whose names begin with the string chapter _and end with a single character.
You can use more than one matching character at a time. For instance, the command
list *.?

lists all files in the working directory whose names end with a period followed by a single
character (except those whose names begin with a period).

Square brackets allow you to specify a set of characters to use in the matching process. The set
of characters is defined by listing individual characters or by specifying two characters separated
by a hyphen. In the former case, the script program looks for all file names which use any one of
the enclosed characters in the appropriate place. In the latter, the two characters specify a class of
characters containing the two characters themselves and any characters which lexically fall
between them in the ASCII character set. For example, if your working directory contains nine
files named chapterl, chapter2, chapter3, and so forth, the following command lists the first
three chapters, the fifth chapter, and the last three chapters:

list chapter[1-357-9]

If the shell program cannot find a match for any of the arguments containing matching characters,
it aborts the command. If it finds a match for at least one argument containing matching
characters, it ignores any other arguments containing matching characters for which it cannot find
a match.

If a filename actually contains one of the matching characters or either a space or a comma, you
must enclose the name in single or double quotation marks. In such a case the shell program
passes the arguments to the command without performing any character matching.

QUOTING

The following characters have a special meaning to the shell and cause termination of a command
word unless quoted.

";" “&" "(" ")" newline Space tab

A character may be quoted by preceding it with a\. \newline is ignored. All characters enclosed
between a pair of single quote marks °, except a single quote, are quoted. Inside double quotes ”
” parameter and command substitution occurs and \ quotes the characters \, , “, and $.

EXECUTION

Each time a command is executed, the above substitutions are carried out.

You can run commands in the background by inserting a "&" as either the first or last nonblank
character on a command line. shell prints the name and process ID for each background task
when it begins, and again when it terminates.

OPERATING SYSTEM REFERENCE 2-143

USER COMMANDS
shell

You can group commands for a subshell with parentheses, put the subshell in the background by
following the closing parentheses with "&", and redirect /O for the subshell.

You can time execution of a command by using "%" as the first or last nonblank character on a
command line. shell prints the real, user, and system times for the command’s execution when
the command ends.

To quickly access the program, script, use "!" as the first non-blank character on a line. To pass
the remaining characters to script uninterpreted, use the +c option.

REDIRECTING INPUT AND OUTPUT AND ERROR

t"on

To redirect standard output, use ">" and ">>". ">" directs standard output of a preceding
command into the filename following it, writing over an old file. ">>" appends the standard
output of a preceding command into the filename following it.

To redirect standard input into a command, follow the command with "<" in front of the
command that will generate the input for the first command.

" att ttaatl

To redirect standard error, use "™, and as you would standard output redirection. You can
combine redirection of standard input, output, and error to a file by using a combination of
symbols. For example you can redirect both standard error and output to the file temp with
“>temp. You can also connect both standard output and error to a pipe with "*|".

Table 2-4
1/0 Redirection
Symbol Meaning
< Take standard input from file following symbol.
> Send standard output to file following symbol.

“or% | Send standard error to file following symbol.
- Append standard output to file following symbol.
| Connect programs so output of one becomes input of next.

SUMMARY OF shell COMMANDS

Table 2-5 lists the commands (followed by a brief description) that are part of shell. You cannot
redirect IO for these commands.

2-144

USER COMMANDS

Table 2-5
shell COMMANDS

Command [arguments]

Description

addpath {dir name list]

Add the named directories to the search path of the shell.

alias [name][string] With no arguments, prints the names of all defined aliases. With
one argument, prints the associated alias. With two arguments,
the second argument is defined to be an alias for the first.

chd [arg] Change current directory (default to user’s home directory)

dirs Lists the current working directory

and the directory stack.

dperm [u-rwx]{o-rwx]

Sets default permissions for file creation.

exit Terminate a subshell.

history Displays saved command history.

jobs Lists currently executing background jobs for present user.

ogin [arg] Terminate this interactive session

and start the login process.

logout Terminate this interactive session.

popd Changes the working directory to the

one whose name is on the top of the
directory stack.

pushd [dir] Pushes the name of the working directory on the directory stack

and changes to the specified directory. With no argument, this
command exchanges the top of the directory stack and the current
working directory.

rmpath [dir name list]

Remove the named directories from the search path of the shell.

set [file

Without an argument, set displays the current state of the

shell and the values of the defined environment variables. If
you specify a file, it executes the commands in it as if you had
typed them. Use this option to set environment variables and the
user file creation mask. sef terminates an input line and

cannot be used as an alias.

unalias [name] [+a]

Deletes the named alias from the set of aliases. Use the
option +a to remove all aliases.

unset [name] [+a]

Removes named environment variables declared by set. Use the
option +a to remove all environment variables.

wait

Waits for all background processes to terminate and reports their
termination status. If the wait command is interrupted, then a
list of currently active processes is displayed.

OPERATING SYSTEM REFERENCE

shell

2-145

USER COMMANDS

shell

SYNTAX

shell

DESCRIPTION
If you call shell with

[+1x] [+h=<file name>] [<file name>] [+c <string>]
[+i<file_name>]

OF THE shell”

no arguments, it spawns a subshell with which you then interact until you

issue either the exit or logout commands. This shell executes commands in the file of your home
directory. When you exit the subshell, control returns to the parent shell.

OPTIONS
1

h=<file_name>

<file_name>

C <string>

i <file_name>

DIAGNOSTICS

Shell gives error mess

The [option tells shell to run as a login shell. This option causes shell to
execute commands from the files .login and .shellbegin (in your home
directory) when it begins execution, and from the file .logout when it
terminates. The exir command terminates a subshell, use logout to end a
session with the login shell.

This option causes shell to initialize its state from that saved in
<filename>. When shell terminates it saves its history, environment
variables, and aliases into this file. Without this option, shell reads and
writes its state into the file .shellhistory in your home directory. To
prevent state recovery and saving, use none as the <filename> (+h=none).

If shell is followed by a filename without the ¢ or i options, it assumes that
the file is a command script. shell passes control and the argument to the
program, script.

The ¢ option causes shell to assume the next string of characters is a shell
command, to execute that command and then terminate.

The i option causes shell to process the commands contained in
<filename> and then terminate, rather than passing the commands to
script.

On the next command, do not fork unless necessary. This option is used
only when calling a script program from another program.

ages similar to other messages detailed in this manual whenever directories

and files cannot be opened, whenever it detects a syntax error, and when it reaches its memory

limits.

2-146

USER COMMANDS
shell

LIMITS
Shell has the following limits:

® 256 environment variables

[]

30 saved commands (history)
® 16 entries on the directory stack

128 characters per command line

¢ Command expansion cannot exceed 512 arguments and 5120 characters

SEE ALSO

addpath
alias
chd
dirs
dperm
exit
history
jobs
login
logout
popd
pushd
rmpath
script
set
unalias
unset
wait

OPERATING SYSTEM REFERENCE ; 2-147

USER COMMANDS
status

status

Display the status of running tasks.

SYNTAX

status [+alsx] [+w[=<num>]]

DESCRIPTION

The status command reports, to standard output, the status of tasks running on the system. By
default, this report does not include shell or login programs and is restricted to tasks belonging to
the user who executes the command. The command is not always completely accurate due to the
dynamic nature of the operating system. By default, the status command reports on the following
parameters:

Task-id The number assigned to the task by the operating system.

Mode Indicates whether the task is in memory ("c") or has been swapped to the
disk ("s").

tty The number of the terminal from which the task originated. An xx in the

field indicates that no terminal is associated with the task.

Prio If the entry in this field is a number, it indicates the priority of the task. A
higher number indicates a higher priority. Non-numeric priorities are
described in Table 2-6, Possible Task Priorities.

Table 2-6
POSSIBLE TASK PRIORITIES
Priority Meanin
W—-W
disk Waiting for some disk activity.
file Waiting for some file activity.
halt Halted by another task.
in Waiting for input from the terminal.
out Waiting for output to the terminal to end.
pipe Waiting for pipe data (usually input).
upd Updating an fdn.
slp Sleeping (not executing).
swap Being swapped to or from the disk.
sys< Highest possible priority.
wait Waiting for another task to end.

2-148

USER COMMANDS

Time

Command

OPTIONS
a
1
S

w[=<num>]

status

If the command is System, this parameter is the amount of unused CPU
time since the system was booted. Otherwise, it is the total CPU time that
a particular task has used.

The command which originated the task. By default, the starus command
shows the first thirty-five characters of the command line; the rest are
truncated. The command System is the operating system. The command
letclinit executes the login program. If the starus command cannot

determine what was on the command line, this field contains the entry
“4’;’(,"

List all tasks on the system, not just those belonging to the user.
Produce a more detailed description of the status of each task.
Produce a statistical summary of the use of the operating system.

Wait <num> seconds after reporting the status; then produce another
report. The command repeats 100 times. The default is thirty seconds.

List every task (a normal listing does not include shell programs, the
System command, or the command /etc/init).

If the user specifies the "1" option, the following additional items are included in the report:

Status

User

Parent

Size
Res

The status of the task. Possible values include run (task is running), sleep
(task is waiting for something to happen), and term (the task has
terminated).

The user name of the person who owns the task. If two or more user names
share the same user ID, status uses the name that appears first in the
password file.

The task ID of the parent task. If the parent task in no longer active, the ID
shown in this field is 1.

The amount of memory that the task is using.

A rough measure of the amount of time a task has been in memory or
swapped out to the disk. Each unit represents four seconds. The largest
number that is ever displayed is 255. This number is set to 0 whenever a
task is swapped into or out of memory.

OPERATING SYSTEM REFERENCE 2-149

USER COMMANDS
status

If the user specifies the "s" option, the following statistics are included in the report. They
represent activity on the system since the time the system was booted.

Total block I/O transfer attempts.
The number of times the system has tried to access a disk block in the cache.
Total disk I/0O operations.

The number of times the system has had to access the disk. This statistic does not include swap
operations.

2-150

USER COMMANDS
status

Total blocks freed.

The number of blocks that have been released from a file to the free list. If the same block has
been released more than once, each release is counted.

total system calls

The number of times the system has executed a system call.
total PAGE IN operations

The number of times the system has read a page from the swap device.
total PAGE OUT operations

The number of times the system has written a page to the swap device.
total pages stolen

The number of times that the system had to take memory from one user to give to another.

EXAMPLES

status +s

Displays the default information about the status of all tasks except shell programs that belong to
the user. A summary of the use of the operating system is included in the output.

status +alxw=15

Displays detailed information about the status of all tasks on the system. It waits fifteen seconds,

then issues another report. The command repeats 100 times unless the user interrupts it by typing
a CTRL-C.

OPERATING SYSTEM REFERENCE 2-151

USER COMMANDS
stop

stop

Stop the system and prepare to shut off the power or reset.

SYNTAX

stop

DESCRIPTION

The command stop terminates any background processes, closes open files, flushes buffers to the
disk, and does the general housekeeping necessary to perform an orderly system shut-down.

You should always run szop before turning off the power to the Tek 4400 series system, or
pressing the Reset Button.

EXAMPLES

stop
This is the only form of this command.

MESSAGES

When stop is finished, it prints the message:

At this point, the system has been completely shut down and it is safe to turn off the power or to
reset the system.

2-152

USER COMMANDS
strip

strip

Remove the symbol table from an executable binary file.

SYNTAX

strip <file name_list>

DESCRIPTION

The strip command removes the symbol table from an executable binary file. This reduces the
size of the file.

ARGUMENTS

<file_name_list> A list of files to process.

EXAMPLES

strip testprog

This example removes the symbol table from the executable binary file testprog.

ERROR MESSAGES

Error creating <file_name>: <reason>

The operating system returned an error when strip tried to create the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error opening <file name>: <reason>

The operating system returned an error when strip tried to open the specified file. This message
is followed by an interpretation of the error returned by the operating system.

Error unlinking <file name>: <reason>

The operating system returned an error when strip tried to unlink the specified file. This message
is followed by an interpretation of the error returned by the operating system.

File <file_name> cannot be located.
The specified file does not exist.
File <file name> is a device or a directory.

The specified file is not a regular file.

OPERATING SYSTEM REFERENCE 2-153

USER COMMANDS
tail

tail

Print a specifiable number (default is 250) of characters from the end of a text file.

SYNTAX

tail <file_name> <n>

DESCRIPTION

This utility prints the last n characters in a text file. If n characters from the end of the file
happens to fall in the middle of a line, the line will be preceded by ... to show that only a part of
the line has been printed. Whole lines are printed as they appear in the file.

" on

Special characters such as carriage returns and tabs are counted as part of the "n" characters.

ARGUMENTS
<file_name> The file from which characters are to be printed.
<n> The number of characters from the end to start printing. The default is 250

characters. If "n" exceeds the number of characters in the file, the whole
file is printed.

EXAMPLES
tail .shellbegin

Prints the last 250 characters of characters.
tail testfile 30
Prints the last 30 characters from the file testfile.

SEE ALSO

list

2-154

USER COMMANDS
touch

touch

Set the time of the last modification of a file to the current date and time.

SYNTAX

touch <file name_ list>

DESCRIPTION

The touch command sets the time of last modification for the specified file to the current date and
time. The user must have read and write permission in a file in order to touch it. This command
is often used in conjunction with the update command. It is also useful for correcting the last
modification time of a file which was created or modified when the system time was incorrect.

ARGUMENTS

<file_name_list> A list of the names of the files to modify.

EXAMPLES

touch letter memo

Changes the modification time of the letter and memo files to the current date and time.

OPERATING SYSTEM REFERENCE 2-155

USER COMMANDS
touch

ERROR MESSAGES

Error seeking to beginning of file <file_name>: <reason>

The operating system returned an error when touch tried to seek to the beginning of <file_name>.
This message is followed by an interpretation of the error returned by the operating system.

Error touching <file name>: <reason>

The operating system returned an error when rouch tried to change the last modification time of
<file_name>. This message is followed by an interpretation of the error returned by the operating
system.

File <file_name> does not exist!

The touch command could not find <file_name> in the file system.

SEE ALSO

create
date

update

2-156

USER COMMANDS

unalias

unalias

The named aliases are deleted from the set of aliases. This is a shell command.

SYNTAX

unalias [<alias_name>] [+a]

DESCRIPTION

The unalias command is from the shell program and deletes named aliases from the set of aliases.

ARGUMENTS

<alias_name> The name of the alias to delete.
OPTIONS

a Remove all of the defined aliases.
EXAMPLE

unalias cp
This example deletes the alias cp.

SEE ALSO

alias
shell

OPERATING SYSTEM REFERENCE 2-157

USER COMMANDS
unset

unset

Delete the named variables from the set of environment variables. This is a shell command.

SYNTAX

unset [<env_name>] [+a]

DESCRIPTION

The named variables are deleted from the set of environment variables.

ARGUMENTS

<env_name> The name of the environment variable to delete.

OPTIONS

a Remove all environment variables. This will almost certainly make the

current shell unusable.

EXAMPLE

unset TERM

This example deletes the environment variable TERM.

SEE ALSO

set
shell

2-158

USER COMMANDS
update

update

Process a set of files, performing the specified operation on each file if it is newer than the file it
is compared to.

SYNTAX

update [<makefile name>] [+q]

OPTIONS

q Do not send informative messages to standard output.

DESCRIPTION

The update command reads the specified makefile, which must conform to a special format, and
conditionally performs the command or commands in that file. By default, the update sends
informative messages to standard output telling the user what it is doing. The command is most
often used to recompile programs whose sources have been updated.

ARGUMENTS

<makefile_name> The name of the file to read instructions from. This file must be in
a special format (see FORMAT OF THE "MAKEFILE"). The
default is the file, makefile, in the working directory. If a makefile
is specified, any following arguments are passed in as $1, $2, etc.

FORMAT OF THE MAKEFILE

The makefile is composed of modules, each of which is terminated with a percent sign, "%", in
column 1. A module itself is composed of up to two parts. The first part specifies the process
that update is to perform. The format for this first part is as follows:

<item-one>::<item_two>;<command_ sequence>

Where <item_one> and <item_two> are the names of files; "::" is the is newer than operator; and
the semicolon, ";", separates the file names from the command sequence.

The command sequence is composed of one or more operating system commands. The update
command replaces any sequence of more than one space character with a single space. Multiple
commands are separated by additional semicolons. If the commands do not fit on one line, the
user must begin and end the sequence with an exclamation point, "!", which serves to delimit the
entire command sequence. If the first portion of the module uses more than one line, the second
exclamation point marks the boundary between the first and second portions of the module. The
command sequence is executed if <item_1> is newer than <item_2>.

OPERATING SYSTEM REFERENCE 2-159

USER COMMANDS
update

The user may substitute an ampersand, "&", for any character or sequence of characters in
<item_one>, <item_two>, or the command sequence. In such a case the update command
substitutes for all ampersands the strings specified in the second portion of the module. If the
second portion of the file is absent, no command sequence is performed. This portion consists of
one or more lines, each of which contains a single string to substitute for the ampersands. The
update command replaces each occurrence of an ampersand with the string on the first line of the
second portion of the module and performs the command sequence if <item_one> is newer than
<item_2>. It then replaces all ampersands with the string from the second line, continuing in this
fashion until it reaches the end of the second portion of the module (marked by a percent sign in
column 1).

If the file represented by <item_two> does not exist, update considers that <item_one> is newer
than <item_two>. If the file represented by <item one> does not exist, or if neither the file
represented by <item_one> nor <item_two> exists, <item_one> is not considered to be newer
than <item_two>.

For instance, consider the following makefile:

&:&.brasm & +sly
file_1
file_ 2

fil é_n
%
An update command which references this file makes the following translation:
If file_1 is newer than file_I.b, execute the command asm file_1 +sly.
If file_2 is newer than file_2.b, execute the command asm file 2 +sly.

It continues in this fashion until file_n is processed. The percent sign in column 1 marks
the end of the module, and because it is the only module in the file, the update command
terminates.

More than one set of commands can be processed with a single makefile if the user includes more
than one module in the file.

NOTES

® The chd command has no effect in a makefile.

® The update command always tries to substitute the strings strings specified in the second
portion of a module for all ampersands which appear in the first portion. Thus, the
command sequence itself cannot contain an ampersand. Consequently, tasks specified in a
makefile cannot be executed in the background (although the update command itself may
be sent to the background).

2-160

USER COMMANDS
update

ERROR MESSAGES

*** Can’t access Makefile <file name> aborted!

The operating system returned an error when update tried to open <file_name> for reading. Most
probably, the file specification is incorrect, the file does not exist, or the user does not have read
permission for the file.

*** Error: Command too long.
<command_sequence>

After substitution for the ampersands has taken place, the command sequence is too long (the
limit is 512 characters).

**%* Error: Pattern too long.
<command_sequence>

The pattern for the command sequence (before substitution for ampersands takes place) is too
long (the limit is 512 characters).

syntax error Makefile aborted
The update command was unable to interpret the makefile.
Syntax: update [<makefile name>] [+q]

The update command requires exactly one argument. This message indicates that the argument
count is wrong.

Unknown option: <char>

The option specified by <char> is not a valid option to the update command.

SEE ALSO

touch

OPERATING SYSTEM REFERENCE 2-161

USER COMMANDS
wait

wait

Wait for a background task to complete before accepting any more input.

SYNTAX

wait [<task ID>]
wait any

DESCRIPTION

The wait command, which is part of the shell program, tells the shell program not to accept any
more commands until the specified background task is complete. The termination status of the
task is reported when the task is complete. If the user does not specify a task ID, the shell
program waits for all active background tasks that are children of the shell program that issued
the wait command to finish before accepting any new commands. The user may interrupt the
wait command with a control-C.

ARGUMENTS

<task_ID> The ID of the task to wait for. The shell program reports the ID when it
sends a task to the background. The ID may also be obtained by executing
either the jobs or the status command.

any If the user specifies the argument any, the shell program waits for any one
background task that is one of its children to finish before accepting a new
command.
EXAMPLES
wait 495

Tells the shell program to accept no further commands until task 495 is complete.
wait

Tells the shell program to accept no further commands from the user until all background tasks
belonging to that shell program are complete.

wait any

Tells the shell program to accept no further commands from the user until one background task
belonging to that shell is complete.

2-162

USER COMMANDS
wait

ERROR MESSAGES

No tasks running in the background.
The shell program has no tasks running in the background.

Specified task not running in the background.
The task specified either is not a child of the current shell program or does not exist.

SEE ALSO

jobs
script
shell
status

OPERATING SYSTEM REFERENCE 2-163

Section 3

SYSTEM UTILITIES

The system utilities are generally reserved for the user logged in as systzem. They tend to be
either powerful utilities, with great potential for misuse, or utilities that should be reserved to a
limited number of users where many accounts are set up.

User system generally has the directory /etc defined in the search path, and needs only enter the
name of the utility to invoke it. The full path name is given here, however, to emphasize the
special purpose of these utilities.

SYSTEM UTILITY DESCRIPTIONS

Descriptions of the system utilitys are contained in the following pages of this section. System
Utilities are sumarized in Table 3-1.

Table 3-1
System Utilities
Name Function

adduser add a new user to the system

badblocks remove bad disk blocks from the free list on the specified device

blockcheck | check the integrity of the allocation of all blocks used in files and of
the free list of the specified device

deluser remove a user from the system

devcheck check a device for /O errors

diskrepair check and, optionally, repair inconsistancies in the logical structure of
the disk

fdncheck check the integrity of the structure of the file descriptor nodes (fdns)
on the specified disk

makdev create a special type of file, representing a device

mount insert a block device at a node of the directory tree structure

owner change the owner of a file

unmount unmount a previously mounted device from the file system

OPERATING SYSTEM REFERENCE

3-1

SYSTEM UTILITIES
adduser

adduser

Add a new user to the system.

SYNTAX

/etc/adduser <user name>

DESCRIPTION

The adduser command is used to add a new user to the system. The specified user name must be
unique to the system. It must be between one and eight letters long. All letters must be lower-
case. Only the system user may invoke this command.

The adduser command performs the following tasks:
1. Adds the new name to the end of the password file, /etc/log/password.
2. Assigns a user ID to the user.

3. Creates a home directory owned by the new user with rwxr-x permissions. The name of
this directory is /<user_name>.

4. Copies the file default .shellbegin file into the user’s home directory and creates empty
dogin and .shellhistory files.

The system user or the new user should use the password command to ensure protection of the
new user’s files.

ARGUMENTS

<user_name> A unique name assigned to the new user for use in response to the login
prompt.

EXAMPLES

/etc/adduser chris

This example adds the user name chris to the bottom of the file /etc/log/password, assigns a user
ID, and creates the directory /chris, which is owned by chris. The permissions in this directory
for the owner is read, write and execute, while for others it is read and execute (rwxr-x).

SYSTEM UTILITIES
adduser

ERROR MESSAGES

Error adding <user_ name> to password file: <reason>

The operating system returned an error when adduser tried to add <user_name> to the password
file. This message is followed by an interpretation of the error returned by the operating system.

Error assigning owner to /<user_name>: <reason>

The operating system returned an error when adduser tried to make the specified user the owner
of the file /<user_name>. This message is followed by an interpretation of the error returned by
the operating system.

Error creating /<user_name>: <reason>

The operating system returned an error when adduser tried to create the file /<user_name>. This
message is followed by an interpretation of the error returned by the operating system.

Error creating . file: <reason>

The operating system returned an error when adduser tried to create the file .. This message is
followed by an interpretation of the error returned by the operating system.

Error creating .. file: <reason>

The operating system returned an error when adduser tried to create the file ... This message is
followed by an interpretation of the error returned by the operating system.

Name must be 1 to 8 lowercase letters.

The specified user name must be between one and eight letters long. All letters must be
lowercase.

Syntax: /etc/adduser <user_name>

The adduser command expects exactly one argument. This message indicates that the argument
count is wrong. '

The name <user_ name> is already in use.
The specified user name must be unique to the system.
You must be system manager to run adduser.

Only the system user may execute the adduser command.

SEE ALSO

deluser
password
perms

OPERATING SYSTEM REFERENCE 3-3

SYSTEM UTILITIES
badblocks

badblocks

Removes bad disk blocks from the free list on the specified device.

SYNTAX

/etc/badblocks <dev_name> <block_number> [options]

DESCRIPTION

Removes bad disk blocks from the free list on the specified device. The bad block information is
recorded in the file /.badblocks. Once the bad-block information is recorded, the diskrepair
utility is run to check the file system integrity. Bad blocks are identified by the devcheck utlity,
whichs reports the bad-blocks by HEX block number, badblocks expects the bad-block number to
be in decimal radix, be warned! Hard-disks utilize the controller option to mask out bad-blocks
so the /.badblocks file is initially empty. Should blocks become defective they are masked out by
software via the badblocks utility. Total system reformat and rebuild will utilize the controller
option to mask out bad-blocks.

ARGUMENTS

<dev_name> The name of the device to check, must be a block device.

<block_number> The number of the bad block in decimal radix! If a diskette contains one
or more bad blocks it should be discarded.

OPTIONS

This utility has the same options as diskrepair.

SEE ALSO
diskrepair

34

SYSTEM UTILITIES
blockcheck

blockcheck

Check the integrity of the allocation of all blocks used in files and of the free list on the specified
device.

SYNTAX

/etc/blockcheck <dev_name>

DESCRIPTION

blockcheck checks the integrity of the block allocation used in the files and free list on the
specified device. It locates problems such as duplicate blocks, missing blocks, and invalid block
addresses.

This command is primarily intended for use by the diskrepair utility, which calls it. It may also
be used on its own as a diagnostic utility; however, blockcheck can only check the disk; it cannot
repair it. If blockheck’s output suggests that the disk is damaged, use diskrepair on the disk.

You should only use blockcheck if no other tasks are active on the system; otherwise, the results
are unpredictable.

ARGUMENTS

<dev_name> The name of the device to check. It must be a block device.

EXAMPLES

/etc/blockcheck /dev/floppy
This example checks the integrity of the the allocation of blocks on the floppy disk.

SEE ALSO

devcheck
diskrepair
fdncheck

OPERATING SYSTEM REFERENCE 3-5

SYSTEM UTILITIES
deluser

deluser

Remove a user from the system.

SYNTAX

/etc/deluser <user name> [+x]

DESCRIPTION

The deluser command removes the specified user from the system. It removes the corresponding
entry from the file /etc/log/password and by default destroys files and subdirectories in the user’s
home directory that are owned by that user. It also deletes the home directory itself if it is empty
after all the deletions are complete. Only the system user may execute this command.

ARGUMENTS

<user_name> The name of the user to delete from the system.

OPTIONS

X Delete the user, but do not delete the user’s files from the system.
EXAMPLES

/etc/deluser chris

This example deletes the line containing the entry for the user name chris from the file
letcllog/password. It also deletes all files and subdirectories in the directory /chris, as well as that
directory itself.

CAUTION
This command should be used with great care as it may

recursively descend the user’s directory tree, deleting all
files within.

3-6

SYSTEM UTILITIES
deluser

ERROR MESSAGES

Cannot delete a user with an ID of 0 or 1.
The deluser command cannot delete user ID 0 (system) or 1.

Cannot execute remove.
<user_name> not removed from system.

The remove command, which is called by deluser is not in /bin or /etc. The command aborts
without editing the password file.

Name must be 1 to 8 lowercase letters.

The specified user name must be between one and eight letters long. All letters must be
lowercase.

Syntax: /etc/deluser <user_name>

The deluser command expects exactly one argument. This message indicates that the argument
count is wrong.

<user_name> is not in the password file.
The file /etc/log/password does not contain an entry for the specified user name.
You must be system manager to run deluser.

Only the system user may execute the deluser command.

SEE ALSO

adduser
remove

OPERATING SYSTEM REFERENCE 3-7

SYSTEM UTILITIES
devcheck

devcheck

Check a device for I/O errors.

SYNTAX

/etc/devcheck <dev_name> [+£sV]

DESCRIPTION

The devcheck command checks the specified device for /O errors. As it checks the device, it
prints informative messages, which tell the user what part of the device is being checked. It
always checks the boot sector and the system information record (SIR). By default, it also checks
the fdn space, the swap space, and the volume space.

Every time it finds a bad block, it prints a message giving the address of the block in
hexadecimal. When it is finished, devcheck prints a message reporting the total number of bad
blocks on the disk.

If a floppy disk contains one or more bad blocks, it should probably be discarded. If a hard disk
contains one or more bad blocks, it should be reformatted with the addresses of all bad blocks
placed in the file .badblocks. It is wise to run this command immediately after formatting a disk.

ARGUMENTS

<dev_name> The name of the device to check. It must be a block device.
OPTIONS

f Check only the fdn space.

] Check only the swap space.

v Check only the volume space.

EXAMPLES

/etc/devcheck /dev/floppy
Checks the entire disk in the floppy drive for /O errors.

/etc/devcheck /dev/floppy +Vv
Checks the boot sector, the SIR, and the volume space of the disk in the floppy drive for I/O
€rTors.

3-8

SYSTEM UTILITIES
devcheck

MESSAGES

Bad blocks file too large - continuing without 1list.

Devcheck cannot read a .badblocks file that has more than 138 bad blocks in it. Currently, this
theoretical limitation on the number of bad blocks is unlikely to present a practical limitation.
The number of bad blocks on a disk should not even approach 138.

Can’t open character device <dev_name>.

The devcheck command cannot open the character device which corresponds to the block device
specified on the command line. Most probably, either the device does not exist or the user does
not have the permissions necessary to open it. In such a case the command continues, but it may
report the blocks in the file

Can’t read .badblocks file - continuing without list.
The devcheck command encountered an I/O error when it tried to read the file .badblocks.
File .badblocks not found - continuing with check.

The device specified does not contain a file named .badblocks, or due to damage in the logical
structure of the disk, devcheck cannot locate the file.

ERROR MESSAGES

Can’t open <dev_name>,

The devcheck command cannot open the device specified on the command line. Most probably,
either the device does not exist or the user does not have the permissions necessary to open it.

File <file_name> is not a block device.
The devcheck command can only check a block device.
Unknown option <char> - option ignored.

The option specified by <char> is not a valid option to the devcheck command.

SEE ALSO

blockcheck
diskrepair
fdncheck

OPERATING SYSTEM REFERENCE 3-9

SYSTEM UTILITIES
diskrepair

diskrepair

Check and, optionally, repair inconsistencies in the logical structure of a disk.

SYNTAX

/etc/diskrepair <dev_name list> [+bfmnpgruv]

DESCRIPTION

The diskrepair utility checks the structure of the disk or disks specified in <dev_name_list>. The
structure of the disk refers to the layout of and the connections among files, directories, free
space, swap space, and other information that makes up the file system. Any inconsistencies in
the structure are reported and, optionally, repaired. Diskrepair does not check or repair media
errors (/O errors).

DEFINITIONS

® A file descriptor node (or fdn) is an area on the disk which contains all the information the
system needs about a file. There should always be at least one fdn per file on the disk.

® A 4400 series directory entry is simply a file name and a pointer to the proper fdn. There
may be multiple directory entries pointing to the same fdn (multiple names for the same
file).

¢ Each pointer to an fdn is called a link to that file. If there is a file with no links, it is
considered to be unreferenced. Out-of-range refers to a pointer to a disk block or to an fdn
which is beyond the valid number of blocks or fdns for the disk being tested.

RELATED UTILITIES

While it is operating, diskrepair calls two other utilidtes— blockcheck and fdncheck, which are
both located in the directory /etc.

® Blockcheck is concermned with the allocation of blocks on the disk. It locates problems such
as duplicate blocks, missing blocks, and invalid block addresses.

® Fdncheck is concerned with the directories on the disk. It locates problems such as
unreferenced files, file names with invalid associated files, and so forth.

3-10

SYSTEM UTILITIES
diskrepair

MAJOR MODES OF OPERATION

There are two major modes of operation: simple and verbose.
* The simple mode is selected by default; the verbose mode is selected by the "v" option.

® In the verbose mode diskrepair reports all detected errors. In the simple mode it reports
only those errors which require the deletion of files or of directory entries.

® If executed in simple mode, diskrepair issues a message upon completion which informs
the user whether or not the disk is in need of repair. By default, all detected errors are
automatically repaired (if possible).

OPTIONS

Two options ("n" and "p") exist to alter the handling of errors.

W

® The "n" option instructs diskrepair not to repair any errors. The "p" option instructs
diskrepair to prompt the user for permission to repair the errors it reports.

"_.n

* In verbose mode the "p" option causes diskrepair to prompt the user regarding all errors.
In the simple mode, the user is prompted only for those errors which require the deletion of
files or of directory entries; all other errors are automatically repaired without prompting.

NOTE

Most repairs result in a loss of data. The user can generally
infer which data have been lost from the messages displayed.

¢ When using the command in simple mode (without the v’ option), the user need not
understand what types of checks are made by diskrepair. The only decisions required are
whether or not to delete the reported files. In verbose mode, much more information is
given to the user.

While this discussion is not intended to give full details of this utility, the following list shows
most of the inconsistencies in disk structure for which diskrepair checks. First, however, a few
definitions are in order.

OPERATING SYSTEM REFERENCE 3-11

SYSTEM UTILITIES

diskrepair

INCONSISTENCIES

Here is a partial list of inconsistencies that diskrepair checks for:

Blocks duplicated in files or free list
Out-of-range blocks or fdns

Missing blocks

Bad free list

Unreferenced files

Inactive fdns

Unknown fdn type

Incorrect link counts

Incorrect free block or free fdn count

Invalid sizes in System Information Record

UNREFERENCED FILES

These are handled in one of two ways:

1.

3-12

An attempt is made to give the file a name by putting it into the directory lost+found in the
root directory of the disk being tested. The name given to the file is of the form file<fdn>,
where <fdn> represents the fdn number of the file.

In order for this procedure to work, the directory lost+found must already exist on the disk
being checked, and it must have room for the entry. The program crdisk creates this
directory, but if for any reason it has been deleted, the user should recreate it before
running diskrepair. The user must must also create empty slots for entries by creating a
number of files and then deleting them.

If it is not possible to put the unreferenced file into the lost+found directory (because there
is either no directory lost+found or no room in it), diskrepair deletes the file (or prompts
for permission to delete it if "p" was specified).

SYSTEM UTILITIES
diskrepair

FDN ERROR DATA

If an error is associated with an fdn, a display of pertinent data from that fdn is printed. The
display includes the fdn number of the file, its size in bytes, its owner, the time of its last
modification, and one of the following types:

b = block device

¢ = character device
d = directory
f=file

i = inactive

u = unknown

OPERATING SYSTEM REFERENCE 3-13

SYSTEM UTILITIES
diskrepair

The diskrepair utility should generally be run only on an otherwise inactive system. It should
never be run on an active disk. If the "n" option is not specified (the disk may be written to),
diskrepair attempts to unmount the disk being tested. If the disk being tested is the system disk,
and if a repair is made which requires writing to the System Information Record (block number
1), diskrepair stops the system upon completion and issues an appropriate message instructing the
user to reboot the operating system. This procedure is necessary to prevent conflicts between the
written data and similar data kept in memory.

OPTIONS

b Instructs diskrepair to run only the blockcheck portion of the utility.
This procedure is often considerably faster, but still provides a fairly
complete assessment of the validity of the disk structure.

f Instructs diskrepair to run only the fdncheck portion of the utility. This
option is useful if a problem is suspected in the directory structure, but
the result is by no means a thorough check of the structure of the disk.

m The operating system maintains a list of blocks available for use called
the free list. A missing block is any block in the volume space which is
not a part of any file and is not in the free list. The existence of such
blocks is a harmless error in the structure of the disk.

Diskrepair generally places missing blocks in the free list. The "m"
option, however, instructs diskrepair not to rebuild the free list solely on
account of missing blocks. This option reduces the time required for
diskrepair to run if missing blocks are the only problem in the free list.

n Tells diskrepair to report all errors but to make no attempt to fix them.
Therefore, diskrepair opens the device for reading only. This option is
useful for checking the structure of a disk without risking the loss of data
during repairs.

SYSTEM UTILITIES

diskrepair

p If the user specifies the "p" option, diskrepair reports each error,
followed by a prompt requesting permission for the proposed repair. All

prompts require an answer of either 'y

OPERATING SYSTEM REFERENCE

AL L

NOTE

Many repairs result in the loss of data.
(You can generally infer what has been
lost from the messages diskrepair
displays.) Judicious use of the "n” and "p"”
options not only allows you to assess the
damage to the disk and decide which
information you are willing to sacrifice
during the repair process, it also gives you
the opportunity to try to salvage the data
before repairing the disk.

(yes) or "n" (no).

SYSTEM UTILITIES

diskrepair

3-16

Inhibits certain warnings and messages from diskrepair. Several
conditions exist which, while not technically errors in disk structure,
may cause problems. These conditions usually result in a warning
message; the "q" option inhibits them.

By default, if diskrepair finds that the free list is in error, it rebuilds it.
The "r" option instructs diskrepair to rebuild the free list whether or not
it contains errors. This option is useful if the free list is known to be bad
or if the user wants to reduce fragmentation within the list.

Generates a report on the block usage of the specified device. This
report is printed at the end of the diskrepair operation, and contains
statistics on the following: (1) the number of each type of file in the file
system and the total number of files in the system; (2) the number of
unused blocks and the number of used blocks, including a breakdown of
how the used blocks are allocated; (3) the number of free fdns and the
number of fdns in use.

Diskrepair operates in one of two modes: simple or verbose. Simple
mode is selected by default; verbose mode is selected by the "v" option.
In simple mode, diskrepair reports only those errors which require the
deletion of either files or directory entries. In verbose mode, all errors
are reported. In addition, informative messages are printed describing
what phase diskrepair is performing.

"n_

In verbose mode the "p° option causes diskrepair to prompt for
permission regarding all errors. In simple mode the user is prompted
only for those errors which require the deletion of either files or
directory entries; all other errors are automatically repaired without
prompting.

SYSTEM UTILITIES
diskrepair

EXAMPLES

/etc/diskrepair /dev/disk

Checks the logical structure of the system disk. By default, diskrepair tries to fix every error it
encounters. These repairs may result in the loss of data from the disk.

/etc/diskrepair /dev/disk +n

Checks the logical structure of the system disk, and reports those errors which require the
deletion of either files or directory entries, but performs no repairs.

/etc/diskrepair /dev/floppy +pv

Checks the logical structure of the disk in the floppy drive, reports all errors it finds and prompts
for permission before making any repairs.

/etc/diskrepair /dev/floppy +ru

Checks the logical structure of the disk in the floppy drive. Diskrepair rebuilds the free list no
matter what and prints a summary of block usage when finished.

/etc/diskrepair /dev/diskl +mg

Checks the logical structure of the auxiliary disk, /dev/diskl. It does not rebuild the free list
solely on account of missing blocks; neither does it print the warnings and messages which result
from problems not technically errors in the structure of the disk, but which may cause problems.

NOTES

Diskrepair cannot solve all the problems your disk may have. For example, it cannot fix physical
media problems. As for problems with the logical structure of the disk, diskrepair can only repair
an error if the damaged information is redundant — that is, if there is some way of determining
what the information should be.

Diskrepair cannot, for instance, fix a badly damaged SIR; nor can it repair a disk if the root
directory is severely damaged. It is therefore imperative that up-to-date backups of all important
files be maintained.

OPERATING SYSTEM REFERENCE 3-17

SYSTEM UTILITIES
diskrepair

ERROR MESSAGES

Blockcheck terminated abnormally.

Blockcheck received a program interrupt from the operating system. The user cannot determine
the source of such an error; however, it is not indicative of a problem with either diskrepair or the
device. Diskrepair should be rerun, for the problem may not recur.

Can’t call /etc/blockcheck.

Diskrepair cannot read or execute the file /etc/blockcheck.

Can’t call /etc/fdncheck.
Diskrepair cannot read or execute the file /etc/fdncheck.

Can’t read System Information Record.

The SIR is so badly damaged physically that diskrepair cannot read it. The user may be able to
salvage some information from the disk, but must eventually reformat it.

Can’t stat root.

Diskrepair cannot read the fdn which describes the root directory. The user may be able to
salvage some information from the disk, but must eventually reformat it.

Can’t stat std. output.

Diskrepair cannot read the fdn of whatever file is opened as standard output. The user should
rerun diskrepair with /dev/console as standard output.

Conflicting options.

The options specified on the command line conflict with each other.

Device is busy.

Any alterations that diskrepair makes must be made when the disk is not in use. Therefore,
diskrepair determines whether or not the specified disk is mounted, and, unless the user specifies
the "n" option, it tries to unmount a mounted disk before proceeding. This error message means
that either some user’s working directory is on the specified disk or some task is accessing a file
on that disk.

Disk needs repair!

The structure of the disk is not logically sound. The user should rerun diskrepair to correct the
problems.

3-18

SYSTEM UTILITIES
diskrepair

Error reading block <block num>.
Error reading fdn <fdn number> in block <block num>.
Error writing block <block_num>.

Error writing fdn <fdn_num> in block <block_num>.

Diskrepair encountered a physical error on the disk. If either the "p" or "n" option is in effect,

diskrepair prompts for permission to continue. If the user chooses to continue when the "n
option is not in effect, the results are entirely unpredictable. They depend on precisely which
block is damaged. Continuing with diskrepair may cause further damage to the disk, but in some
cases, it may be the desired course of action.

NOTE

The first time diskrepair reports an I/O error, answer no to the offer
to continue and immediately rerun diskrepair. It is possible, though
unlikely, that the 110 error is a soft one and will not recur.

Error updating SIR. Disk is bad!

Diskrepair encountered an I/O error when it tried to make the necessary changes in the SIR. The
user should try again to execute diskrepair. If the error persists, the user cannot salvage any of
the data on the disk.

/etc/blockcheck is invalid.

The version of the blockcheck command is not the correct one.

/etc/fdncheck is invalid.

The version of the fdncheck command is not the correct one.

OPERATING SYSTEM REFERENCE 3-19

SYSTEM UTILITIES
diskrepair

Fdncheck terminated abnormally.

Fdncheck received a program interrupt from the operating system. The user cannot determine the
source of such an error; however, it is not indicative of a problem with either diskrepair or the
device. Diskrepair should be rerun, for the problem may not recur.

Intentional system stop. Reboot system.

If the SIR of the root device must be updated, diskrepair kills all tasks running on the system and
locks up the system so that no new tasks can begin. It then modifies the SIR. This procedure is
necessary to prevent conflicts between the written data and similar data kept in memory. After
updating the SIR, diskrepair stops the system and prints this error message. The user must reboot
the system before proceeding.

No device specified.

The user did not specify a device on the command line.

No such device.

The user specified a nonexistent device on the command line.

Not a block device.

Diskrepair can only operate on block devices.

Output directed to device under test.

When testing the structure of a disk, it is impractical to try to redirect the output (the results of the
test) to a file on the disk being tested. The user should reexecute diskrepair without redirecting
the output or redirecting it to a different, mounted device.

Permission denied.

"_n

A user who executes diskrepair without the "'n" option must have both read and write permission
on the specified device. A user who executes diskrepair with the "n" option needs only read
permission.

Problems encountered. Diskrepair should be rerun.

Diskrepair may encounter more problems than it can fix during one run. For example, it can only
handle a certain number of duplicate or out-of-range blocks. If diskrepair cannot fix all the errors
it encounters, or if it encounters an /O error but continues operation, it prints this error message
when it finishes.

Unknown option: <char>

3-20

SYSTEM UTILITIES
diskrepair

The option specified by <char> is not a valid option to the diskrepair command.

Unmount error: <error_ num>

Diskrepair encountered some problem other than a busy device when it tried to unmount the
device. The accompanying error number is the number of the 4404 error that caused the failure.
The user should consult the operating system manual for an explanation of the error.

SEE ALSO

blockcheck
fdncheck

OPERATING SYSTEM REFERENCE 3-21

SYSTEM UTILITIES
fdncheck

fdncheck

Check the integrity of the structure of the file descriptor nodes (fdns) on the specified disk.

SYNTAX

/etc/fdncheck <dev_name>

DESCRIPTION

The fdncheck command checks the integrity of the structure of the file descriptor nodes (fdns) on
the specified disk. An fdn contains all the information that the operating system needs to know
about a file.

This information includes, but is not limited to, the type of file, the owner of the file, the size of
the file, and the addresses of all the blocks that are a part of the file. The fdncheck command
locates problems such as unreferenced files, directory entries with invalid associated files, and so
forth.

This command is primarily intended for use by the diskrepair utility, which calls it. It may also
be used on its own. However, fdncheck can only check the structure of the disk; it cannot repair
it. If the output from the command suggests that the structure of the fdns is damaged, the user
should execute diskrepair on the disk.

The fdncheck command should be executed only when no other tasks are active on the system.
Otherwise, the results are unpredictable.

ARGUMENTS

<dev_name> The name of the device to check. It must be a block device.

EXAMPLES

/etc/fdncheck /dev/floppy
Checks the structure of the fdns on the disk in the floppy drive.

3-22

SYSTEM UTILITIES
makdev

makdev

Create a special type of file, representing a device.

SYNTAX

/etc/makdev <file name> <dev_type> <maj_dev_num> <min_dev num>

DESCRIPTION

The makdev command creates a special type of file which represents a device. This type of file
allows the user to access the device drivers for the corresponding physical device. Only the
system user may invoke this command.

The major device numbers are listed in Table 3-2.

Table 3-2
Major Device Numbers
Number Device
0 Block or Console
1 Memory
2 Null
3 Floppy char
4 Disk char
5 Sound
6 Printer
7 Communication port
8 Tape char

OPERATING SYSTEM REFERENCE 3-23

SYSTEM UTILITIES

makdev

ARGUMENTS

<file_name> The name of the file to create. For a block device, the last component of
the file name must consist of a string of letters followed by a string of
digits. For a character device, the last component of the file name must
consist of the same string of letters, followed by the letter "c", followed by
the same string of digits.

<dev_type> A letter designating whether the device is a block device, (b), or a character
device, ().

<maj_dev_num> A number which tells the operating system which set of device drivers to
use for the specified device.

<min_dev_num> A number which tells the operating system which physical device to
associate with <file_name>.

EXAMPLES

/etc/makdev /dev/floppy b 0 0

Creates a special file named /dev/floppy, which represents a block device. Currently, all block
devices have the same major device number, 0. The first four (beginning with 0) minor device
numbers for this major device number designate floppy disk drives O through 3. Thus, this
command tells the operating system to use the device driver for block devices and to associate the
file with the floppy drive.

/etc/makdev /dev/floppyc ¢ 3 0

Creates a special file named /dev/floppyc, which represents the character device associated with
the block device /dev/floppy. The major device number for a character device associated with a
floppy disk drive is 3. The first four (beginning with 0) minor device numbers for this major
device number designate floppy disk drives O through 3. Thus, this command tells the operating
system to use the device driver for a character device associated with a floppy disk drive and to
associate the file with the floppy drive.

NOTES

* Every disk device requires both a block device and a corresponding character device in
order to function properly.

3-24

SYSTEM UTILITIES
makdev

ERROR MESSAGES

<char> is not a valid type of device.

The argument <dev_type> must be either "b", for a block device, or "c", for a character device.

Error creating <file_ name>: <reason>

The operating system returned an error when makdev tried to create the special file <file_name>.
This message is followed by an interpretation of the error returned by the operating system.

Invalid major device number: <num>

The number specified as the major device number is invalid.

Invalid minor device number: <num>

The number specified as the minor device number is invalid.

Syntax: /etc/makdev <file name> <dev_type> <maj_dev_num> <min dev

The makdev command expects exactly four arguments. The command line does not conform to
the syntax.

You must be system manager to run makdev.

Only the system user may execute the makdev command.

OPERATING SYSTEM REFERENCE 3-25

SYSTEM UTILITIES
mount

mount

Insert a block device at a node of the directory tree structure.

SYNTAX

/etc/mount [<dev_name> <dir name> [r]]

DESCRIPTION

The mount command temporarily inserts a block device at a node of the directory tree structure.
As long as the device is mounted, any references to <dir_name> actually access the root directory
of the device mounted there. Any files in the directory at which the device is mounted are
inaccessible while the device is mounted.

The mount command with no arguments prints the staus of any currently mounted devices.

ARGUMENTS

<dev_name> The name of the device to mount. It must be a block device.

<dir_name> The name of the directory on which to mount the specified device.
OPTIONS

r Mount the device for reading only. This option must not be preceded by a

plus sign. It is useful when trying to salvage data from a damaged disk
because it prevents inadvertent writing to the disk, which could make
matters worse.

3-26

SYSTEM UTILITIES
mount

EXAMPLES

/etc/mount /dev/floppy /usr2

Mounts the disk in the floppy drive on the directory /usr2. References to /usr2 now access the
root directory of that disk.

/etc/mount /dev/diskl /diskl r
Mounts an accessory hard disk drive, disk1, as /diskl. Because the "r" option appears on the
command line, no user may write to the disk.
NOTE

When a user’s working directory is the root directory of a mounted
device, the command chd .. does not change the working directory.

ERROR MESSAGES

<dev_name> is not a block device.

The device specified either does not exist or is not a block device. Only block devices may be
mounted.

Error mounting <dev_name> on <dir name>: <reason>

The operating system returned an error when mount tried to insert the specified device in the
directory tree. This message is followed by an interpretation of the error returned by the
operating system.

Only read option allowed for mode.
The only acceptable option is the "r" option, which must not be preceded by a plus sign.
Syntax: /etc/mount <dev_name> <dir name> [r]

The mount command expects exactly two arguments and, optionally, the single option "r". This
command indicates that the command line does not conform to the syntax.

SEE ALSO

unmount

OPERATING SYSTEM REFERENCE 3-27

SYSTEM UTILITIES
owner

owner

Change the owner of a file.

SYNTAX

owner <user_name> <file name_ list>

DESCRIPTION

The owner command changes the owner of the specified file. Only the system manager may
execute this command.

ARGUMENTS

<user_name> The user name or user ID of the new owner of the file.

<file_name_list> A list of the names of the files for which to change the owner. The file
characteristics are preserved, including permissions and the date/time
information.

EXAMPLES

owner system /john/*
Changes the owner of all the files in the directory /john to system.
owner 110 /john/*
Changes the owner of all the files in the directory /john to the user whose ID is 110.

3-28

SYSTEM UTILITIES

owner

ERROR MESSAGES

Erxror changing owner for <file name>: <reason>

The operating system returned an error when owner tried change the owner of the specified file.
This message is followed by an interpretation of the error returned by the operating system.

<name> is not a valid user name.
The specified name is not in the password file and, therefore, is not a valid user name.
<num> is not a valid user identification number.

The specified number is not in the password file and, therefore, is not a valid user ID.
Syntax: owner <new_owner> <file name_list>

The owner command expects at least two arguments. This message indicates that the argument
count is wrong.

You must be system manager to run owner.

Only the system manager may execute the owner command.

OPERATING SYSTEM REFERENCE 3-29

SYSTEM UTILITIES
unmount

unmount

Unmount a previously mounted device from the file system.

SYNTAX

/etc/unmount <dev_name>

DESCRIPTION

The unmount command unmounts the specified device from the file system. Once the device is
unmounted, the files in the directory on which it was mounted become accessible. Only the
system manager may execute this command.

ARGUMENTS

<dev_name> The name of the device to unmount.

EXAMPLES

/etc/unmount /dev/floppy

Unmounts the floppy drive from the system, making the directory that it was mounted to
accesible.

ERROR MESSAGES

Error unmounting <dev_name>: <reason>

The operating system returned an error when unmount tried to unmount the specified device.
This message is followed by an interpretation of the error returned by the operating system.

Syntax: /etc/unmount <dev_name>

The unmount command expects exactly one argument. This message indicates that the argument
count is wrong.

SEE ALSO

mount

3-30

Section 4

edit

INTRODUCTION

This section describes edit, the standard 4400 text editor, including how to call the editor, the
interface between the editor and the 4400 operating system, a description of each of the editor
commands (with examples), and an annotated list of the messages that the editor may issue.

edit is both content-oriented and line-oriented. Lines in the file being edited may be referenced

either by specifying a line number or by specifying some part of the content of the line. edir is
not a screen-oriented editor.

SYNTAX

edit [<file name_1> [<file name_2>]] [+bny]

CALLING THE EDITOR

Example:
edit

When the editor is called with no arguments, it issues a message that a new file is being created,
and then prompts for the information that is to be put into the file. When the editing session is
terminated (by the stop command, for example), the editor will prompt for the name of the file to
which to write the information. The user responds to this prompt by typing in the file name,
including a path name if necessary.

If an end-of-file signal is typed in response to the prompt for a file name, all information is
discarded and the editing session is terminated. (See the discussion Operating System Interface
later in this section for more information on the end-of-file signal.)

Calling the Editor with a File Name

Example:
edit test

If only one file name is given as an argument, the editor assumes that this is the file or the name
of the file that is being edited.

If the file does not exist, a new file having the specified name is created. A message stating that
fact is issued, and the editor then prompts for the information to be stored in the file. When the
editing session is terminated, the information is written to the file.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-1

edit

If the file already exists, the information in it is read into an edit buffer and a prompt for an editor
command is issued. When the editing session is terminated, the file will contain the revised
information. The information as it was before the editor was called is preserved in a backup file
(unless the b option was specified, as described later on). The name of the backup file is
normally the name of the original file with the characters .bak appended to the end of it. If the
original name is too long to accommodate the additional four characters, the name is truncated
and the .bak appended to the shortened name.

Calling the Editor with Two File Names

Example:
edit test newtest

When the editor is called with two file names, the first file name is assumed to be the name of the
file containing the information to be edited, and the second name is that of the file that is to
receive the revised information. Both file names may contain path names if necessary to
adequately describe their locations. If a path name is specified for the first file name, it is not
propagated to the second file name.

In the example, the file test is assumed to contain the information which is to be edited, and the
file newtest is going to contain the edited information. If the first file does not exist, the editor
writes a message indicating that the edit file does not exist, and then terminates the edit session.
If the second file already exists, a prompt is issued asking for permission to delete the existing
file. (This prompt may be avoided with the y option, described below.) If an end-of-file signal is
typed in response to this prompt, it is assumed that the file is not to be deleted, and the editing
session is immediately terminated with no changes having been made.

Options

Options are specified to the editor by specifying an argument whose first character is a plus sign
(+). The plus sign is immediately followed by one or more lowercase letters indicating the option
or options selected. The options may be before, after, or intermixed with file name arguments.

b Do not create a backup file, by appending .bak to the source file.

n Do not initially read the file being edited. This option is meaningful only if an
existing file is being edited. Normally, the editor reads the file into memory so that
the information may be manipulated with editor directives. By specifying n as an
option, the information is not initially read into memory. The user may then use
editor directives to enter new information, either from the terminal or by reading
other files, which will appear in front of the information in the file being edited. The
new command must be used to start the reading of the edit file.

This option is most useful if a large amount of information is to be entered in front of
the data being read from the file being edited. To insert only a small amount of
information at the front of a file, the insert command may be used.

4-2 OPERATING SYSTEM REFERENCE

edit

y Delete any existing copy of the new file or the backup file. y causes the editor to
delete any existing copy of the backup file (if only one file name is specified) or the
new file (if two file names are specified), without asking permission from the user.

If the editor cannot recognize an argument as a valid option, it issues an error message and
continues to look for valid arguments.

Examples of calls including options:

edit test +b
edit test newtest +y
edit +nb test

OPERATING SYSTEM INTERFACE

The text editor follows the operating system conventions with regard to special characters and file
names. For a discussion of file names, see Section 1 of this manual. The special characters and
their effect on the editor are treated below.

Normally, the editor allows any character to be in a file, including control characters. There are
some characters, however, which have special meaning to the operating system and thus cannot
be typed in from the keyboard. The special characters with which the editor is concerned are:

® backspace character

® escape character

line delete character

horizontal tab character (control-i)

control-d: keyboard signal for end-of-file

control-c: keyboard interrupt

[J

control-\: quit signal

Backspace Character

The backspace character (Back Space on the keyboard) is used when entering commands and data
to erase the last character typed.

Escape Character

The ASCII escape character (Esc on the 4400 keyboard) is used to temporarily stop and resuming
the printing of information at the terminal. A more detailed description of the function of the
escape character is described in the documentation of the 4400 Operating System. Here, it
suffices to say that it is not possible to enter the escape character into a file using the editor.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-3

edit

Line Delete Character

The line delete character is used when entering commands and data to delete the line currently
being typed.

Horizontal Tab Character

This character (Tab from the 4400 keyboard) refers to the ASCII horizontal tab character (HT), a
hexadecimal 09. This is not the same as the tab character that can be defined within the editor.
The editor itself is not concerned with the HT character, but the operating system may perform
special handling when this character is typed or displayed. The editor treats the HT character as a
single character, regardless of how the 4400 displays it.

Control-D: Keyboard Signal for End-of-File

The editor treats a control-d as an end-of-file. The action taken by the editor depends on what the
editor was expecting as input. A control-d typed in the middle of a command has the same effect
as a line delete character. If the control-d is typed as the first character in response to a request
for a command (that is, in response to the # prompt), it is treated as a stop command. A control-d
typed while inserting lines has the same effect as typing the line delete character followed by the
line number character and a carriage return. That is, it cancels the current input line and the
editor requests an editor command.

The effect of typing control-d in response to specific prompts depends on the prompt that was
issued. Each such case is treated in the Editor Command discussions.

Control-C: Keyboard Interrupt

The editor traps the control-c¢ keyboard interrupt and uses it as a signal to stop executing an
append, cchange, change, find, or print command. It has no effect on other commands. If the
editor is executing multiple commands typed on a single line, typing a control-c will cause the
editor to stop processing those commands and request a command from the keyboard.

Control-\: Quit Signal

The quit signal causes the editor to terminate immediately, without making any attempt to save
the edited information. If an existing file was being edited when the quit signal was typed, the
original file is left intact without any of the changes that had been made during the edit session.

4-4 OPERATING SYSTEM REFERENCE

edit

THE EDITOR’S USE OF DISK FILES

The standard 4400 text editor is a disk-oriented editor: the information being edited is read from
and written to disk files. Other than the user’s terminal, the only way to provide information to
the editor is through disk files. When the editor is called to edit an existing file, the information
in that file is read into a large buffer in memory called the edit buffer. It is in this buffer that all
of the changes to the information take place. When the user is satisfied with the changes made,
the updated information is written to a disk file in response to specific commands. If a file is
larger than will fit in the edit buffer, the file must be processed in segments.

With few exceptions, the editing commands operate only on data that is in the edit buffer.
Commands are provided which permit the user to flush the edit buffer of updated information and
read in the next segment of data for editing. How the editor manipulates disk files depends on
whether it is creating a new file or editing an existing file. In some cases, a temporary file is
created to hold the updated information. If used, this temporary file is named edit followed by a
period, 5 digits, and a single letter; for example, edit.00324a. Unless the editor is terminated by a
quit signal or a fatal system error, the temporary file is destroyed at the end of the edit session.

Creating a New File

When the editor is called with a single file name and that file does not already exist, the editor
will create the file at the start of the edit session and write directly into it as the edit session
progresses.

When the editor is called with no file names specified, a temporary file in the user’s current
directory is created and the information is written to it as the edit session progresses.

At the end of the edit session, this temporary file is given the name specified in response to the
File name? prompt.

Editing an Existing File

When the editor is called with a single file name, and that file already exists, a temporary file is
created and the information is written to it as the edit session progresses. The temporary file is
created in the same directory in which the file being edited resides. At the end of the edit session,
the original file is renamed to the backup file name, and the temporary file is given the name of
the original file. If no backup file is requested (by specifying a b option), the original file is
destroyed and the temporary file is given the name of the original file.

When the editor is called with two file names specified, the second file is created and the updated
information is written directly into it. The original file is not changed.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-5

edit

Command Input From a File

It is possible to use I/O redirection to have the editor read its commands from a file instead of
from the keyboard. The editor will process the commands as though they were entered from the
terminal ‘s keyboard. If the end of the command file is reached before a stop or abort command is
read, the action is the same as though a control-d were typed from the keyboard. (See the
discussion of control-d earlier in this section.)

Fatal Errors

The text editor attempts to make an intelligent decision when confronted with an error response
to an operating system call. However, if an error is received which is unexpected and indicates
that the editor cannot continue to function, it will issue a message and terminate immediately.
The various messages, both fatal and nonfatal, are listed under the heading Editor Messages later
in this section.

EDITOR COMMANDS

Using Strings

Several editor commands use character strings as arguments. These arguments are either
matched against strings in the text, or replace a string in the text. A string argument begins after
a delimiter character and continues as a sequence of any characters until the delimiter is again
encountered. The delimiters are not considered part of the string to be used in the matching or
replacement operations.

Although the delimiters in the following descriptions are frequently represented as slashes, /,
nearly any non-blank, non-alphanumeric character may be used as the delimiter suchas: */()$,
. [1: " etc. Note that the following characters may not be used to enclose strings unless they are
preceded by either a plus (+) or minus (-) sign: " (denotes first line of file), / (denotes last line of
file), - (denotes target is above current line), and the character denoted by lino (normally a pound
sign), which is used to indicate line numbers. The equals sign = may not be used as a string
delimiter.

The delimiter character is redefined in each new request by its appearance before a string. If two
strings exist in one command (as in the change command), the same delimiter character must be
used for each string.

4-6 OPERATING SYSTEM REFERENCE

edit

All editor commands use the <line> information preceding the command to position the pointer
prior to any command action. The <line> parameter may of course be null, meaning leave the
pointer at its current position. All of the following are valid <line> designators:

Any number The specific line number

+n The nth subsequent line

-n The nth previous line

/<string>/ The next line in the file containing the indicated string of characters
-/<string>/ A previous line containing the indicated string

) The first line of the file

! The last line of the file

null The current line

Line numbers less than 1.00 must be specified with a leading zero. For example, even though the
editor may display a line number as .10, it should be specified as 0.0 when used in commands.
The maximum line number is 65535.99. Inserting after this maximum line number will cause the
line numbers to wrap around back to zero.

Many editor commands require <target> information. This tells the editor to operate on the
current line and all other lines in the file up to the line referenced by the <target>. In cases where
a <target> is required, leaving it null will make the <target> default to one, and only the current
line will be affected. All of the following are valid <target> designators:

an integer n n lines should be affected by the edit operation

#n The line number of the last line to be affected. The # is actually the lino
character and may be changed by the user with the set command.

/<string>/ The next line in the file containing the specified character string.

-/<string>/ The previous line containing the indicated string

~

All lines up to the top of the file
! All lines to the bottom or last line of the file

+0r- n Indicates that n lines should be affected and in which direction from the
current line
(null) Defaults to 1 and only the current line is affected

As we have seen, <target> is used to specify a range of lines to which the command will apply.
The command will be applied to each line, starting with the line specified by <line> and
continuing until the target is reached.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-7

edit

If a string <target> is specified, the command will apply to successive lines of text until a line
containing the string is reached. Processing proceeds downward in the edit buffer unless the
target is preceded by a - (minus sign), indicating that processing is to proceed upward (toward the
first line) in the edit buffer. Targets may also be preceded by a plus sign (indicating downward
movement). If a line number target is specified, processing begins at <line> and proceeds toward
the target line number. Some examples of <target>s are:

2

+10

-3

/ISTRING/

+/STRING TARGET/

-/'BACKWARD DISPLACEMENT TO A STRING/
+*ANY DELIMITER WILL WORK FOR STRING*
++EVEN PLUS SIGNS CAN WORK+

#23.00

Specifying a Column Number

Any /<string>/ descriptor may be postfixed with a column number immediately after the second
delimiter to indicate that the preceding string must begin in the column specified. If the column
specified is not in the range of the zone in effect, the request will be ignored. (See the zone
command.) Some examples are:

/IDENT/11
/PROGRAM/77
*LABEL*2
$COMMENT$30

Using the Dont-Care Character

A Don’t-Care Character may be set to allow indiscriminate matches of parts of a string. When
this character is placed in a string, any character in the file will automatically match. The Don’t-
Care Character will have its special meaning only in a string being used to search the file. In
other words, the Don’t-Care Character will not act as such in a replacement string such as the
second string of a change command. The Don‘t-Care Character may be effectively disabled by
setting it to a null. Assuming we have previously set the Don"t-Care Character to a 7, here are
some examples:

1A% Matches any 4-letter string beginning with A
@03/7778@ Matches all days in the 3rd month of 1978
1779 Matches any 3-letter string starting in column 9

4"8 OPERATING SYSTEM REFERENCE

edit

The Command Repeat Character

The command repeat character, control-r, repeats the last command in the input buffer. Some
examples of commands which may be useful to repeat are:

PRINT 15 To print a screen of lines at a time
NEXT Allows you to single step through the file with one key
“co!! To quickly fill the workspace

FIND/SOME STRING! If the first string found is not the one desired

Using the EOL Character

The editor supports an eol or End Of Line character to allow multiple commands in a single line.
There are some commands that cannot be followed by another command on the same line. This
fact is documented in the descriptions of those commands. The eol character may be changed by
using the editor’s set command. An example of eol use (with eol set to $) is:

"D2$P10$T

This sequence will delete the first 2 lines of the file, then print the next 10 lines, and finally return
the pointer to the top of the file.

Using Tabs

You may specify a tab character and up to 20 tab stops. The tab character may then be inserted
into a line, where it will be replaced by the appropriate number of fill characters when the end of
the line is received. The fill character defaults to a space, but may be changed to another
character with the editor’s ser command. If tab stops or the tab character have not been
previously set, but some character has been used throughout the file as a tab, it can still be
expanded by setting it to be the tab character, setting up your tab stops and then using the expand
command on the file.

Note that if the tab character has been set, subsequent uses of the insert or replace commands will
cause automatic tab expansion. However if a tab character is added to the file by the use of a
change, append, or overlay command, that character will remain intact in the file until the expand
command is invoked on the line containing that tab character.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-9

edit

After tabs are expanded, the tab character no longer exists in the data. All occurrences will have
been replaced by the appropriate number of fill characters. Setting the tab character to be the
same as the fill character effectively disables the tab feature. Note the the tab character described
above is distinct from the ASCII horizontal tab character (HT or control-i). The effect of the HT
character is described in the Operating System Interface discussion earlier in this section. It is
possible to set the editor tab character to the HT character. If this is done, the operating system
may take special action when the HT character is typed, but the character will be replaced by fill
characters when it is put into the edit buffer.

Length of Text Lines

Lines entered from the keyboard are limited to 255 characters. The lines in the text file may be
of any length. Lines longer than 255 characters may be created with the merge and append
commands.

Commands

There are five groups of editor commands: environment commands, system commands, current
line movers, edit commands, and disk commands. A complete description of all commands in
each group is given below. In the following descriptions, quantities enclosed in square brackets
([...D are optional and may be omitted. A backslash (\) is used to separate options. Many
commands have abbreviations. Both the full name of the command and its abbreviation are
given. A command and its abbreviation may be used interchangeably. All commands below are
in lower case; however, in use, a command may be in either upper case or lower case.

4-10 OPERATING SYSTEM REFERENCE

edit

ENVIRONMENT COMMANDS

dk1

Syntax

dkl <command string>

Description

dkl is used to define one of two command constants, which can be executed at any time by the k!
command. The <command string> is a single command or several commands separated by the
eol character (see set command). All of the command line, including the carriage return is
assumed to be the argument to the dk/ command. The dk/ command is most useful for
remembering and re-executing a frequently used sequence of commands.

Example
dk1 f -/.nl/1$i/.sp Define a command sequence of f -/.nl/1 followed by i/.sp. This
assumes that eol is $. This sequence may be executed by typing
kl.

dk2

Syntax

dk2 <command string>

Description

dk2 is used to define one of two command constants, which can be executed at any time by the 42
command. The <command string> is a single command or several commands separated by the
eol character (see set command). All of the command line, including the carriage return is
assumed to be the argument to the dk2 command. The dk2 command is most useful for
remembering and re-executing a frequently used sequence of commands.

Example

dk2 c /sample// 1 2 Define the command constant: ¢ /sample// I 2. This command
may be executed by typing k2.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-11

edit

esave

Syntax

esave [<path name>]

Description

The esave command saves the current editor environment on an editor configuration disk file
named .editconfigure in the user’s directory. The editor environment consists of the header
column count; the numbers and verify flags; current tab stops; the tab, dcc, fill, eol, and lino
characters; the commands saved as command constants k/ and k2; and the search zones in effect.
When the editor is called, the environment is automatically set from the configuration file in the
user’s directory, if one exists. The editor environment may also be reset from the configuration
file at any time during the edit session by the eset command, described below.

The environment information may be saved in a directory other than the user’s current directory
by specifying a path name as an argument to the esave command. This path must include only
directory names and must be terminated by the pathname separator /.

Example
esave Save the current editor environment on the file
esave /dde/ Save the current editor environment in file /ddel.editconfigure.

4-12 OPERATING SYSTEM REFERENCE

edit

eset
Syntax

eset [<path_name>]
Description

The eset command is used to reset the editor environment from an editor configuration file
created by the esave command (see above). The configuration file is named .editconfigure and is
normally expected to be found in the user’s current directory. A path name may be specified as
an argument to the eset command to force the searching of a different directory. This path must
include only directory names and must be terminated by the pathname separator /.

Example

eset Reset the editor environment from the file

eset /ddel Reset the editor environment from file /ddel.editconfigure.
header
Syntax

header [<count>]
h [<count>]

Description

A header line of <count> columns will be displayed. The heading consists of a line showing the
column numbers by tens, followed by a line of the form 123456789012 ... to indicate the
column number. Columns for which tab stops are set will contain a hyphen instead of the normal
digit. If a column count is given, it becomes the default so that if just 4 is subsequently typed,
that number of columns will be printed.

Example
header 72 Display column number headings for 72 columns
h30 Display column numbers for 30 columns

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-13

edit

k1

Syntax
k1

Description

Execute the command constant that was defined by dk/. If no command constant was defined,
the current line is printed. This command may not be followed by another command on the same
line.

Example

k1 Execute the command constant.

k2

Syntax
k2

Description

Execute the command constant that was defined by dk2. If no command constant was defined,
the current line is printed. This command may not be followed by another command on the same
line.

Example

k2 Execute the command constant.

4-14 OPERATING SYSTEM REFERENCE

edit

Ik1
Syntax

1kl
Description

Display the command constant that was defined by dk/. If no command constant was defined, a
blank line is printed. '

Example

Ik1 Display the command constant.

k2

Syntax
1k2

Description

Display the command constant that was defined by dk2. If no command constant was defined, a
blank line is printed.

Example

1k2 | Display the command constant.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-15

edit

numbers

Syntax

numbers [off/on]
nu [off/on]

Description

The line number flag is turned off or on. If the flag is off, then line numbers will never be
printed. If neither off nor on is specified, then the flag will be toggled from its current state.

Example
numbers off Turn line number printing off
nu on Turn it back on

nu Toggle from on to off or from off to on

renumber

Syntax

renumber
ren

Description

The renumber command will renumber all of the lines in the current edit buffer. Lines in the
renumbered buffer will start with the line number of the first line in the buffer and will have an
increment of one. The current line does not change, although its number will probably have been
changed.

Example
renumber Renumber the lines in the current edit buffer
ren Renumber the lines in the current edit buffer

4-16 OPERATING SYSTEM REFERENCE

edit

set
Syntax
set <name> = ’<char>’
Description
set is used to define certain special characters or symbols. The <name>s which may be set are:
tab the tab character
fill the tab fill character
dcc the "don’t care” character for string searches
eol the end of line character which may be used to separate several

commands on a single line

lino the line number flag character which is used to indicate that a target is a
specific line number

The default values are: dcc, tab, and eol are null, fill is the space character, lino is #

The default values may be initialized from a configuration file in the user’s directory. See the
esave command.

Example
set tab="/" Set the tab character to a slash
set tab="" Disable tabbing by setting the tab character to a null
set fill="~ Set tab fill character to a blank
set eol="$" Set the EOL character to $

set lino="@" Set the line number flag to @

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-17

edit

tab
Syntax

tab [<columns>]
Description

Used to set the tab stops. All previous tab stops are cleared. If no columns are specified, then the
only action is to clear all tab settings. Any tab characters occurring beyond the last tab stop are
left in the text. The maximum number of tab stops allowed is 20. Tab stops MUST be entered in
ascending order.

Example
tab 11,18,30 Set tab stops at columns 11, 18, and 30
tab Clear all tab stops
verify
Syntax
verify [on/off]
v [on/off]
Description

The verify flag is turned on or off. The verify flag is used by the commands change and find (and
several others) to display their results. If neither on nor off is specified, then the flag will be
toggled from its current state.

Example
verify off Turn verification off
von Turn it back on

4-18 OPERATING SYSTEM REPERENCE

edit

Zzone
Syntax
zone {cl,c2]
z [cl,c2]
Description

zone is used to restrict all sub-string searches (find, change, <target>s, etc.) to columns c/
through ¢2 inclusive. Any substrings beginning outside those columns will not be detected. If ¢/
and c2 are not specified, then the zones will be reset to their default values (columns 1 and 255).
A string which starts within the specified search zone and extends out of it will still match a

target.

Example
zone 11,29 Restrict searches to columns 11 through 29
zone Search columns 1 through 255

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-19

edit

SYSTEM COMMANDS

abort
Syntax

abort
Description

This command terminates the edit session without saving any of the changes made during that
session. The original file, if one exists, is left intact. When typed, this command will prompt
"Are you sure?". If ay is then typed, the edit session will be terminated. Typing an # or end-of-
file signal will cause the editor to look for another command. Typing any other character will
cause the prompt to be issued again.

Example
abort Abort the editing session.

edit <editor arguments>
e <editor arguments>

Description

The edit command causes the current editing session to be terminated (as though a stop or log
command had been entered), and another editing session started. The <editor arguments> are any
valid file names and editor options as described earlier in this section under the heading Calling
the Editor. This command may not be followed by another command on the same command line.
All changes to the editing environment made by Environment Commands remain in effect.

Example

edit test +b Terminate the current editing session and start editing file test with
editor option b.

4-20 OPERATING SYSTEM REFERENCE.

edit

log

Syntax
log

Description

This command ends the editing session. The updated information is written to the new file, and,
if necessary, any unprocessed data from any existing file is copied to the new file. A backup file
is created if circumstances warrant it. (see the Operating System Interface discussion earlier in
this sect)ion for more information on the editor’s handling of disk files at the end of an editing
session.

Example
log

stop

Syntax

stop
s

Description

Same as log.

Example
stop
S

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-21

edit

u
Syntax

u <operating system command>
Description

The u command permits the execution of an operating system command. The specified
command is passed to the shell program for execution. The editor waits for the operating system
command to finish before prompting for another editor command. This command may not be
followed by another editor command on the same line. See the "x" system command.

Example
u list test List the file rest
u copy test testl Copy the file test to test]

wait

Syntax

wait

Description

The wait command is used to wait for the completion of a background task generated by the x
command (described below). This command cannot be used to wait for completion of a
background task that was not generated by the editor. The editor will not request a command
until the background task is completed or a keyboard interrupt (control-c) is typed. When the
background task terminates, a message is displayed specifying the task number and whether it
completed normally or abnormally. In the event of abnormal termination, the response code or
interrupt code that caused the termination is given.

Example

wait Wait for the background task to complete

4.22 OPERATING SYSTEM REFERENCE

edit

X
Syntax

x <operating_ system command>
Description

The x command is used to start a background task running. The <operating_system_command>
which was specified as the argument is passed to the skell program for execution. The task
generated must run to completion before the editor will allow the generating of another such
background task. The wait command must be used to receive the termination status of a task
before the x command may be used again. This command may not be followed by another

"on

command on the same line. See the "u” system command.

Example

X copy test testl Copy test to testl as a background task. A wait command must
be used to determine the termination status of the task before
another background task can be generated.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-23

edit

CURRENT LINE MOVERS

bottom

Syntax
bottom b

Description

Moves to the last line in the file and makes it the current line.

Example
bottom Make the last line of the file the current line
b Make the last line of the file the current line

find

Syntax

find <target> [<occurrence>]
f <target> [<occurrence>]

Description

Moves the current line pointer to the line specified by <target> and makes it the current line. If
the verify flag is on (see verify), the line will be printed. If <occurrence> is specified (an
unsigned integer or an asterisk), the command will be repeated <occurrence> times. If
<occurrence> is an integer, it must not start in the first column following the second delimiter of
a string <target>, as it would then appear to be a column specifier for that string. If no column is
to be specified, insert a space after the second delimiter and before the <occurrence>, as in the
second example given below. An asterisk means all occurrences of the <target> will be found
until the bottom or top of the edit buffer is reached. If the target is not found, the current line

pointer will not be moved.

4.24 OPERATING SYSTEM REFERENCE

edit

Example
find /string/
f/three lines/ 3
f/all “til bottom/*
f-/program/7 *

next

Syntax

Find the next line containing the string string
Find the next three lines containing the three lines
Find all following occurrences of the indicated string

Find all previous lines which have the word program starting in
column seven

next [<target> [<occurrence>]]
n [<target> [<occurrence>]]

Description

The line specified by the target is made the current line. If the verify flag is on (see verify), the
line will be printed. If <occurrence> is specified, it must be an unsigned integer. It indicates
which occurrence of a line containing the target is to be made the current line. If the target is not
reached, the current line pointer will be positioned at the bottom of the edit buffer (or top of the
edit buffer for a negative <target>). If no target is specified, the next line will be made the

current line.

Example
next 5
n
n-10
n/string target/
n/3rd occurrence/3

THE TEXT EDITOR

Make the fifth following line the current line

Make the next line the current line

Make the 10th previous line current

Make the next line containing string target to be the current line

Make the third line containing the indicated string the current
line

OPERATING SYSTEM REFERENCE 4-25

edit

position

Syntax

position <target>
pos <target>

Description

Searches forward through the file for an occurrence of <target> and makes the line in which it
occurs the current line. If the target is not found in the current edit buffer, the edit buffer is
flushed and the next edit buffer is read from the file being edited. This process continues until
the target is located or the end of the file is detected. If the target cannot be located, the current
position is the first line in the last edit buffer.

The <target> may not be a backwards target (preceded by a minus sign) and may not be an
integer indicating relative displacement. Only a string or a line number (preceded by the lino
character) are valid targets. Search zones are honored during the search for the target. A column
number is allowed after the target, but an occurrence specification is not permitted.

Example
position /string/S Position to the line containing the string s¢tring in column 5.
pos #1000 Position to line number 1000
top
Syntax
top
t
Description

The first line of the file becomes the current line.

Example
top Make the first line of the file the current line

4-26 OPERATING SYSTEM REFERENCE

edit

EDITING COMMANDS

append

Syntax
append /<string>/ [<target>]
a /<string>/ [<target>]
Description

Appends the specified <string> after the last character of the current line (and to successive lines
until the target is reached).

If the string is postfixed with a column number, then the string is added beginning at the specified
column (rather than at the end of the line). Any characters previously in the line following the
specified column are overwritten.

Example
append /./ Append a period to the end of the current line
a *HELLO* Append the word HELLO to the end of the current line and to

the end of the next line.

a/sequence/73 *END*7 Append the word sequence starting in column 73 of the current
line and successive lines until a line containing the characters
END beginning in column seven is found.

THE TEXT EDITOR : OPERATING SYSTEM REFERENCE 4.27

edit

break
Syntax

break
Description

The break command allows the splitting of a line into two lines. The current line is printed, then
a line of input is accepted from the terminal (the break line). When the line is printed, all ASCII
HT characters will be displayed as spaces so that the terminal cursor will not be artificially
advanced. The break line will be positioned directly beneath the line printed out.

In response to the Break--- prompt, type any characters to move the cursor until it is beneath the
character that is to be the first character of the second line. Then type a carriage return.

After the line is split, the second half of the broken line becomes the current line. If you type an
end-of-file signal in response to the Break--- prompt, the current line will not be changed. The
current line will also not be changed if the carriage return typed in the break line is beyond the
end of the current line.

Example

break
25.00 This is the current 1line.
Break ——XXXXXXXXXXXX

The line will be broken at the
start of the word current.

Example 4-1..

4-28 OPERATING SYSTEM REFERENCE

edit

change

Syntax

change /<stringl>/<string2>/ [<target> [<occurrence>]]
¢ /<stringl>/<string2>/ [<target> [<occurrence>]]

Description

Replaces <stringl> with <string2>. If <string2> is omitted, <stringl> is deleted. If no <target>
is specified, only the current line is affected. The slashes represent any non-blank delimiter
character.

<occurrence> specifies which occurrence of <stringl> is to be replaced in each line. It is either
an unsigned integer or an asterisk (*) signifying that all occurrences of the substring <string1>
are to be replaced with <string2>. By default, only the first occurrence will be changed. Note
that if <occurrence> is specified, and if changes are to occur to the current line only, then the
target should be 1.

Example

change /this/that/ Replace the first occurrence of this in the current line with that

c/A/B/ 1* Change all occurrences of A in the current line to B

¢ /first/last/10 Change the first occurrence of first last in the current line and
also in the nine following lines

¢ /new/old/ /a target/ Change the first occurrence of new to old in each line down
through the line containing the string a target

c,a,, -10* Remove all as in the current line and in the nine preceding lines

c*Hello* Delete the character string Hello from the current line

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-29

edit

cchange

Syntax

cchange /<stringl>/<string2>/ [<target> [<occurrence>]]
cc /<stringl>/<string2>/ [<target> [<occurrence>]]

Description

cchange stands for Controlled Change. This command is exactly like the normal change
command except that you can interactively specify whether each line containing <string1> should
actually be changed or left as is. This allows you to step through the edit buffer and selectively
change certain strings. When a line containing <string1> is found, it is displayed at the terminal
and you receive a prompt, Change? Type a y to change the line. If you type an s or end-of-file
signal, the command will terminate. Other characters will cause a search for the next line
containing <stringl>.

Example
cchange/ALPHA/OMEGA/!* Perform a Controlled Change on all occurrences of ALPHA
through the rest of the file
cc;a;z;-20 3 Perform a Controlled Change on the third occurrence of a in the

current and previous 19 lines

copy

Syntax
copy [<destination-target> [<range-target>]]
co [<destination-target> [<range-target>]]
Description

Copies the current line through <range-target> and places the copied text after the <destination-
target>. The default <destination-target> is 1, thereby placing a copy of the current line after the
next line. The default <range-target> is 1, thereby copying only one line. After the command is
executed, the current line pointer will be set to the new position of the last line copied. Some
lines may be renumbered after a copy with no renumbering message issued.

4-30 OPERATING SYSTEM REFERENCE

edit

Example
co #18 Put a copy of the current line after line 18
copy #3 4 Copy four lines beginning with the current line and place them
after line 3
co /check/ +/range/ After the next line which has the string check, place a copy of
each line starting with the current line through the line
containing range
delete
Syntax

delete [<target>]
d [<target>]

Description

Deletes the current line (and successive lines until the target is reached). After the command is
executed, the current line will be the line following the last line deleted.

Example
delete 5 Delete five lines (the current line and the next four lines)
d Delete the current line
d /STRING/ Delete lines from the current line through the next line that contains the

string STRING

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-31

edit

expand

Syntax

expand [<target>]
exp [<target>]

Description

The current tab character is expanded within all lines, beginning with the current line, continuing
down to and including the line specified by <target>. Since tabs are normally expanded as lines
are inserted into the file, this command is primarily of use when one has forgotten to define a tab
character or has inserted a tab character with an append, overlay, or change command.

Example
expand 100 Expand 100 lines starting with the current line
exp Expand the current line

4-32 OPERATING SYSTEM REPERENCE

edit

insert
Syntax
insert
i
Description

The editor will enter the input mode, prompting with line numbers (unless line numbers have
been disabled, with the numbers command) and insert the lines below the current line. The editor
remains in insert until you begin a line with the lino character or the end-of-file signal in column
one. The editor treats any characters following the lino character as an editor command. (If you
type the line delete character, the editor does not re-issue the prompt.

If possible, the editor will number the inserted lines with an increment small enough to insert at
least 10 lines between the current line and the next line. The editor will renumber lines following
the inserted text if the inserted text line numbers overlap numbers already in the file. (The
current line pointer is left at the last line inserted.)

You may insert lines at the top of the edit buffer by specifying a line number of zero.

This command may not be followed by another command on the same line.

Example
insert Accept line input after the current line
0i Insert at the top of the edit buffer.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-33

edit

insert

Syntax

insert <text>
i <text>

Description

Inserts <text> as a separate line below the current line of the file. Use a space as a separator
following the command name. The line inserted becomes the current line. The editor may
renumber text lines following the inserted text if the inserted line number overlaps line numbers
already in the file.

This command may not be followed by another command on the same line.

Example

I This below the current line of the file
insert everything after the first blank

Example 4-2. .

4-34 OPERATING SYSTEM REFERENCE

edit

merge

Syntax

merge

Description

Merges the current line and the line immediately following it into a single line. The merged line
becomes the current line.

Example

merge Merge the current line and the next line into a single line.

move

Syntax

move [<destination-target> [<range-target>]]
mo [<destination-target> [<range-target>]]

Description

Moves the current line through <range-target> so that they follow the line specified by
<destination-target>. The defaults for <destination-target> and <range-target> are both 1, so
move without arguments interchanges the current line and the next line. After the command is
executed, the current line pointer will be set to the new position of the last line moved. Some
lines may be renumbered with no renumbering message issued.

Example
move 3 Move the current line down three lines

mo #1 /TARGET STRING/ Move the current line and all lines down thru the line
containing TARGET STRING after line 1

mo -/Program/ 5 Move five lines (including the current line) up within the file so
that they follow a line containing the character string Program

mo #10 -5 Move the current line and the four previous lines below line
' number 10

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4.35

edit

overlay

Syntax

overlay[<delimiter>]
o[<delimiter>]

Description

This command prints the current line, then accepts a line of input (the overlay line). When the
line is printed, all ASCII HT characters will be displayed as spaces so that the terminal cursor
will not be artificially advanced. The overlay line will be positioned directly beneath the line
printed out. Each character of the overlay that is different from the <delimiter> character (which
defaults to a blank) will replace the corresponding character in the current line. The overlaid line
will be printed if verify is on. If the end-of-file signal is typed in response to the prompt for the
overlay line, the current line will not be changed.

Example

overlay
25.00=THIP IS THE CORRENT LUNE.
Overlay S U

25.00=THIS IS THE CURRENT LINE.

Example 4-3..

4-36 OPERATING SYSTEM REFERENCE

edit

overlay

Syntax

overlay<d><text>
o<d><text>

Description

This command is similar to the previous form of the overlay command with these differences: (1)
The current line is not printed. (2) The remainder of the command line (after the delimiter
character) is taken as the overlay text.

Example
overlay--- AT---=—-=-——m—mo—e———— NUMBER.
25.00=THAT IS THE CURRENT LINE NUMBER.
Example 4-4. .
print
Syntax

print [<target>]
p [<target>]

Description

Prints all lines from the current line through the line specified by <target>. By default, only the
current line will be printed.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-37

edit

Example

P Print the current line

print 5 Print 5 lines starting with the current line

p-10 Print the current line and the nine previous lines

print *string* Print all lines down thru the next line containing string

p -/string/ Print all lines up through the next previous line containing string
replace
Syntax

replace [<target>]
r [<target>]

Description

This command deletes from the current line through <target>, then places the editor in input
mode, putting the new lines into the area vacated. It is not necessary to enter the same number of
lines as were deleted. The line numbers of the lines inserted will probably not be the same as
those deleted. The current line pointer will be positioned at the last line inserted. By default,
only the current line will be deleted. This command may not be followed by another command
on the same line.

Example
r Replace the current line
replace 10 Replace 10 lines starting with the current line
r /TARGET STRING/ Replace all lines from the current line through the line

containing TARGET STRING

4.38 OPERATING SYSTEM REFERENCE

edit

text
Syntax

=<text>
Description

Replaces the current line with the text that follows the equal sign. The current line pointer is not
moved.

Example
=THIS IS REPLACEMENT TEXT.
Example 4-5. .
null
Syntax
(null)
Description

The null command (i.e., just a carriage return) prints the current line.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-39

edit

DISK COMMANDS

flush
Syntax

flush
Description

The information above the current line in the edit buffer is written to the file containing the
updated data and then deleted from the edit buffer. Use this command to make room in the edit
buffer for large insertions.

Example

flush Flush information above the current line to updated file.
200flush Flush information above line 200 to the updated file.

new

Syntax

new

Description

The information above the current line in the edit buffer is written to the file containing the
updated data and then deleted from the edit buffer. The available space in the edit buffer is then
filled with data read from the file being edited. This command is used primarily to proceed to the
next segment of the file when modifications to the current edit buffer have been completed. If a
new file is being created, the new command is the same as the flush command.

4-40 OPERATING SYSTEM REFERENCE

edit

Example
new Write the information above the current line to the updated file and read
more data from the file being edited.
new Write the current edit buffer (except for the first line) to the updated file
and read the next segment from the file being edited into the edit buffer.
read
Syntax

read [<file name>]

Description

Places the contents of the specified file after the current line. The last line of the information read
becomes the current line. If you omit the file name, the editor prompts you for it. If you type an
end-of-file signal in response to the prompt, no data is read. The file name may contain path
information if any is necessary to locate the file.

The entire contents of the file must fit into the remaining unused space in the edit buffer. If the
file being read will not fit into the edit buffer, the message Not enough room is issued and no data
is read.

Example
read /dde/data Reads the information in the file /dde/data and place it after the
current line.
100read moredata Read the information in the file moredata and place it after line
100.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-41

edit

write
Syntax

write [<target>]
Description

The editor prompts you for a file name, then writes the information from the current line through
<target> to a file. If an end-of-file signal is typed in response to the prompt, no information is
written. If the file being written already exists, it is destroyed and a new file created. If no
<target> is specified, only the current line is written.

Example
write /window/ Write the information from the current line through the line
containing the string window.
100write #200 Write lines 100 through 200, inclusive, to a scratch file.

4-42 OPERATING SYSTEM REFERENCE

edit

EDITOR MESSAGES

A task is already running

The x command was used when there was already a task generated by a previous x command still
running. The wair command must be used to wait for the previous task to complete before
initiating another background task.

Attempting to merge onto last line of text

The merge command joins the specified line with the following line, and if the specified line is
the last line of the file, there is no line following the specified line to join with it.

Bottom of file reached

An informative message issued when the last line of the file is deleted.

Cannot create configuration file

A configuration file could not be created in the directory specified in the esave command (current
directory if no directory was mentioned). Usually this means that the directory specified could
not be found or you don’t have write permissions on that directory. Make sure the directory was
specified with a trailing "/" character.

Cannot create new file

The editor was called with two file names as arguments, but the second file could not be created.
This message is preceded by a message indicating which error was detected. This is a fatal error
and will cause an immediate exit from the editor. This message occurs only at the beginning of
an editing session.

Cannot create new backup file

The editor detected an error attempting to create a backup file. This message is preceded by a
message indicating which error was detected. The new backup file is not created and the editing
session continues.

Cannot create task

An error was detected when trying to generate a task with the 4 or x command. This message is
preceded by a message indicating which error was detected. The command is aborted and the
editor requests a new command.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-43

edit

Cannot create temporary file

The editor detected an error when trying to create the temporary file that holds the updated
information. This message is preceded by a message indicating which error was detected. This
message occurs only at the beginning of an editing session.

Cannot delete old backup file

At the end of an editing session, the editor attempts to create a backup file containing the
information as it was prior to the editing session. However, a file already exists with the backup
file name, and that file could not be deleted. This message is preceded by a message indicating
which error was detected. The new backup file is not created and the editing session continues.

Cannot open configuration file

The configuration file in the directory specified in an eser command could not be opened. This
usually means that there was no configuration file in the specified directory, or that the specified
directory could not be found, or that you do not have read permission for the configuration file.
Remember that the directory name must be specified with a trailing 7/~ character.

Cannot open edit file

The file that is being edited exists, but could not be opened. This message is preceded by a
message indicating which error was detected. This is a fatal error and will cause an immediate
exit from the editor. This message occurs only at the beginning of an editing session.

Cannot open new file

The editor was called with two file names as arguments, but could not open the second file to
determine if it already exists. This message is preceded by a message indicating which error was
detected. This is a fatal error and will cause an immediate exit from the editor. This message
occurs only at the beginning of an editing session.

Cannot read configuration file

The operating system reported a media error while the editor was trying to read from the editor
configuration file.

Cannot read edit file

The operating system reported a media error while the editor was reading from the file whose
data is being edited.

4-44 OPERATING SYSTEM REPERENCE

edit

Cannot rename files

The editor detected an error trying to rename the files at the end of an editing session. This
message is preceded by a message indicating which error was detected. This is a fatal error and
will cause an immediate exit from the editor. The user should then search for the temporary file
used by the editor. This file will contain the updated information and should be copied to another
file for safe keeping.

Cannot write configuration file

The operating system reported a media error while the editor was writing configuration data to
the configuration file in the specified directory (current directory if the specification was
omitted).

Delete existing backup file?

At the end of an editing session, the editor attempts to create a backup file containing the
information as it was prior to the editing session. However, a file with the same name as the
backup file would have already exists. This message is a request for permission to delete the
existing file, replacing it with the new backup file. The prompt must be answered with a y, for
yes, or an n, for no. If y or the end-of-file signal is typed, the file is deleted and the new bhackup
file is created. If n is typed, the file will not be deleted and no new backup file created. If none
of these are typed, the prompt is re-issued.

Delete existing copy of new file?

The editor was called with two file names as arguments. The second file already exists and must
be deleted before the editing session can continue. This message is a request for permission to
delete the file. The prompt must be answered with a y, for yes, or an n, for no. If y is typed, the
file is deleted and the editing session continues. If # or the end-of-file signal is typed, the file will
not be deleted and the editing session is terminated. If none of these are typed, the prompt is re-
issued.

Edit file does not exist

The editor was called with two filenames, but the first file, which contains the data to be edited,
could not be found. The editor will terminate immediately.

Empty text buffer

The text buffer is empty (contains no text) and the requested command could not be completed.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-45

edit

Error attempting to open file

The file specified in a write command could not be opened for writing. This usually means that
the specified file could not be created because the path to the file was inaccessible, or the
permissions on the directory in which the file was to reside exclude the you from creating a file
there, or the file exists but the you do not have write permission for the file.

Error copying edit file

At the end of an editing session, any unread data on the file that is being edited is copied to the
new file being written. An error was detected during this copy process. This message is
preceded by a message indicating which error was detected. This is a fatal error and will cause an
immediate exit from the editor.

Error creating scratch file

The file specified in a write command could not be created. This message is preceded by a
message indicating which error was detected. The write command is aborted and the editor
requests a new command.

Error opening scratch file

The file specified in a read command could not be opened. This message is preceded by a
message indicating which error was detected. The read command is aborted and the editor
requests a new command.

Error reading data file

The editor detected an error when trying to read from the file being edited or from a scratch file
with the read command. This message is preceded by a message indicating which error was
detected. The current command is aborted and the editor requests a new command; no data read
from the file is kept. If the file being read was the file being edited, you should use the abort
command to abandon the editing session since the file being read is no longer positioned
correctly.

Error waiting for task to complete

An error was detected when waiting for a task generated by the u or x command to complete.
This message is preceded by a message indicating which error was detected. The command is
aborted and the editor requests a new command.

4-46 OPERATING SYSTEM REFERENCE

edit

Error writing new file

The editor detected an error when trying to write the contents of the edit buffer to the file that
holds the updated information. This message is preceded by a message indicating which error
was detected. This is a fatal error and will cause an immediate exit from the editor. All changes
to information still in the edit buffer are lost.

File is a directory

An attempt was made to edit a directory, not a text file. This is a fatal error and causes an
immediate exit from the editor. This message occurs only at the beginning of an editing session.

File name?

This is the prompt used when the editor requests a file name. Commands that may request a file
name are read and write. The editor will also request a file name in response to the stop and log
commands if no file names were specified when the editor was called.

Input error

An error status was returned by the operating system in response to a request for input from the
standard input device. This is normally the terminal keyboard and should not generate any such
error. If the standard input has been redirected to a disk file, an error may be generated when
reading the disk for input characters. In either case, this is a fatal error and causes an immediate
exit from the editor. All changes to information still in the edit buffer are lost.

Line too long

The maximum size for a line being input to the editor is 255 characters. Lines in the file being
edited may be of any length, but those entered from the standard input device are limited to 255
characters.

Name too long

The file name entered in response to a File name: prompt is too long. The maximum size of a
file name, including the path specification, is 55 characters.

New file being created

This is an informative message indicating that there is no existing file of information to be edited
and that a new file is being created.

THE TEXT EDITOR OPERATING SYSTEM REFERENCE 4-47

edit

New file is the same as the old file

The editor was called with two file names as arguments, but both names point to the same file.
Either the file names are the same, or the two files have been linked with the link system call.

No child task exists

The wait command was used when no background task had been generated by the editor.

No lines deleted

An informative message indicating that the delete command was used but the target could not be
located, and you answered no to the prompt asking if the delete was to proceed.

No such 1line

A line number or target could not be found.

Not enough room

The file being read with the read command could not fit in the available space in the edit buffer.
None of the information read from the file is kept. You can use the flush command to try to make
room for the file. If that fails, the file being read should be split into smaller files that may be
read individually.

Not found

A target could not be found.

Output error

An error status was returned by the operating system in response to a request to send output to the
standard output device. This is normally the terminal display and should not generate any such
error. If the standard output has been redirected to a disk file, an error may be generated when
writing the data to the disk file. In either case, this is a fatal error and causes an immediate exit
from the editor. All changes to information still in the edit buffer are lost.

Positioning backwards is not allowed

The position command was called with a target that has a leading minus sign, indicating a
backward search.

4.48 OPERATING SYSTEM REFERENCE

edit

Relative positioning is not allowed

The position command was called with a target that is an unsigned integer, indicating a relative
displacement forward in the file.

Some lines renumbered

An insert, replace, or break command caused some lines in the file to be renumbered. Note that
the move and copy commands will cause renumbering without this message being issued.

Source overlaps destination

With the copy or move commands the target line was within the range of data being copied or
moved.

Syntax error

A syntax error was detected in a command. Check the Editor Commands part of this section for
correct editor command syntax.

Target not reached

Are you sure? The delete command was used but the target could not be located. If you want the
delete to proceed to the end of the edit buffer, answer this prompt with a y. Answering with an n
or the end-of-file signal will cause the delete to be aborted.

Task ttt: Abnormal Termination

Interrupt code: i The background task #¢ generated by the x command was interrupted before it
could complete. The interrupt code returned by the task is indicated by i. This message is
returned only in response to the wait command.

Task ttt: Abnormal Termination

Termination response: xxx The background task ¢t generated by the x command has completed
abnormally. The termination response returned by the task is indicated by xxx. This message is
returned only in response to the wait command.

Task ttt initiated
Task number #2r has been started by the use of the x command.

THE TEXT EDITOR " OPERATING SYSTEM REFERENCE 4-49

edit

Task ttt: Normal termination

The background task 7z generated by the x command has completed normally. This message is
* returned only in response to the wait command.

Too many file names specified

More than two file names were specified as arguments to the editor. This is an informative
message only; the extra file names and any options specified after them are ignored.

Unable to open file

The file specified in a read command could not be found or could not be opened for reading
because of its permissions.

Unexpected error, edit session aborted

An error response that the editor is incapable of handling was received from a system call . The
editing session is terminated immediately.

Unknown option specified

An unrecognizable option was specified when the editor was called. This is an informative
message only; the unrecognizable option is ignored.

Write ends with an error

The operating system reported a media error while the editor was writing data to the file specified
in a write command.

zones OK?

A target could not be found and the search zones were not set to their default values. This is an
informative message asking you to check the zones because they may have been the reason that
the target could not be found. This message does not require a response from you.

?

The editor is not able to interpret the given command. Either the command could not be
recognized or the format of the command was undecipherable.

4-50 OPERATING SYSTEM REFERENCE

Section 5

TERMINAL EMULATION

OVERVIEW

When working on the 4400 series you type on a keyboard and see messages displayed on a
screen, just as with any terminal. When using remote, the terminal emulator program, you can
think of the entire 4400 series as a terminal that is connected through an RS-232C line to a
remote host computer. When you are using the 4400 series as a stand-alone computer, you can
think of the keyboard and display as a local terminal connected to the 4400 processor.

The 4400 appears to both the host and to it’s internal software as an ANSI X3.64 compatible
terminal with a few extensions that make it more compatible with other common ANSI X3.64
terminals.

The terminal emulator itself is a local terminal emulator which talks to the 4400 operating
system’s console driver. In conjunction with a local communication utility called remote, the
local terminal emulator, console driver, and the driver for the communications port combine to
create a remote terminal emulator connected to the RS-232 hardware and device driver. This
makes the entire unit appear to an external host as a terminal.

This section contains a brief description of the appearance of the ANSI terminal emulator, a
discussion of the interface between the emulator and the operating system, information on its
default modes, and a description of how non-ASCII keys are handled. The section is concluded
by a list and short description of all the implemented ANSI commands.

Description

The terminal emulator supports a display of 32 lines of 80 characters per line, using 8 by 15 pixel
characters.

Compliance With ANSI and ISO Standards

The ANSI terminal emulator complies with the following ANSI (American National Standards
Institute) and ISO (International Standards Organization) standards:

ANSI X3.4-1977,
American National Standard Code for Information Interchange. (This defines the ASCII
character set.)

ANSI X3.41-1974,

American National Standard Code Extension Techniques for Use With the 7-Bit Coded Character
Set of American National Standard Code for Information Interchange. (This defines ways to
extend the ASCII character set, including the exact way the SO and SI characters work to invoke
GO and G1 character sets.)

OPERATING SYSTEM REFERENCE 5-1

TERMINAL EMULATION

ISO 2022,
Code Extension Techniques for use with the ISO 7-bit Coded Character Set. (This is the
international standard which corresponds to ANSI X3.41.)

ANSI X3.64-1979,

Additional Controls for Use With American Standard Code for Information Interchange. (This
defines a variety of standard commands used for displaying text, editing the display of text, and
for other functions.)

Compatibility with the DEC VT-100

The ANSI terminal emulator is NOT intended to emulate the VT-100. Some VT-100 DEC-
private features which are of use to host editors have been included, but other DEC-private
features have been omitted. Therefore, not all programs which run correctly with a VT-100 will
run correctly with a 4400 series product.

Compatibility with Tektronix Terminals

The ANSI terminal emulator is also NOT intended to emulate any of the Tektronix 4100 Series
terminals. Many of the 4100 Series ANSI mode commands have been included, but some have
been intentionally omitted.

Interface to the Operating System

The interface to the 4400 series operating system is with the rtyget/ttyset system calls. These
system calls are used to examine or modify the programmable modes of the emulator. This
includes such things as autowrap on/off, screen normal/reverse, keypad application/numeric,
cursor key application/numeric, LF/CR-LF, and tab locations.

The programmable modes of the emulator, mentioned above, all have default states which are
specified in the discussion on ANSI commands. These defaults can be overridden by sending
ANSI escape sequences to the terminal, or by using a ttyset system call (as in the rermser utility).

The standard output of the non-ASCII keys on the keyboard (the function keys, the break-key, the
keypad keys, and the joydisk) is an ANSI escape sequence (see the discussion on non-ASCII
keys).

TERMINAL EMULATION

SUPPORTED ANSI COMMANDS

The following ANSI commands are supported on the 4400 terminal emulator:
NOTE

The ANSI <CSI> (control sequence identifier) is the two character
sequence <Esc [>. In this discussion, it is represented as ESC [.

<ACK> Acknowledge Character (#6)

Syntax Form: (char #6)
Description: This control function (CTRL-F) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<BEL> Bell Character

Syntax Form: (char #7)
Description: Sounds the terminal s bell. (CTRL-G)

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

<BS> Backspace Character

Syntax Form: (char #8)

Description: The control function BS, (CTRL-H) moves the active position backward
by one character position. If the cursor is already at column 1, then BS
has no effect.

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

<CAN> Character (#24)

Syntax Form: (Char #24)

Description: If this control character (CTRL-X) is received during an ANSI command
sequence this control function will print a snoopy <CAN> character and
resets the command parser to an initialized state.

OPERATING SYSTEM REFERENCE 5-3

TERMINAL EMULATION

<CBT> Cursor Backward Tab

Syntax Form:
Descriptive Form:

Description:

ESC[<Pn>Z
ESC [<desired number of preceding tab stops> Z
Moves the cursor backwards to a preceding tab stop on the current line.

A parameter value of one moves the cursor to the preceding tab stop. A
parameter value greater than one (n) moves the cursor to the nth
preceding tab stop on the current line. If there are less than n preceding
tab stops, the cursor moves to column 1 of the current line.

If the parameter is zero or omitted, it defaults to 1.

<CHT> Cursor Horizontal Tab

Syntax Form:
Descriptive Form:
Description:

ESC [<Pn>1
ESC [<desired number of succeeding tab stops> I
Moves the cursor forward to a succeeding tab stop on the current line.

A parameter value of one moves the cursor to the next tab stop. A value
greater than one (n) moves the cursor to the nth next tab stop on the
current line. If there are less than n following tab stops, the cursor
moves to the rightmost column of the current line.

If the parameter is zero or omitted, it defaults to 1.

<CPR> Cursor Position Report

Syntax Form:
Descriptive Form:
Description:

54

ESC [<Pn> ; <Pn> R
ESC [<row> ; <column> R

The <CPR> message is sent from the terminal to the host in response to
a <DSR: 6> device status report command.

If the origin mode is relative, the coordinates reported are row, column
coordinates in the scrolling region. Row 1, column 1 means the upper
left comer of the region.

If the origin mode is absolute, the coordinates reported are row, column
coordinates of the screen. Row I, column 1 means the upper left comer
of the screen.

If the <CPR> is echoed back to the terminal, the terminal treats the echo
as a no-op.

TERMINAL EMULATION

<CR> Carriage Return Character

Syntax Form: (char #13)

Description: Moves the cursor to the first column in the current line. If carriage
return/line feed (CR/LF) mode is set, then a line feed action is also
performed.

If this control character (CTRL-M) is received during an ANSI
command sequence this control action occurs and the ANSI command
sequence processing continues.

<CRM> Control Representation Mode

Syntax Form: ESC[3horl
Descriptive Form: ESC [3 set or reset
Description: <CRM> is a parameter of the <RM> and <SR> commands.

This command is commonly referred to as a "snoopy" mode.

Reset: Normal operation. <RM: CRM> resets this mode.
NOTE

The implementation of this command in
the 4400 requires that <RM: CRM> not
be embedded with other <RM>
commands.

Set: Snoopy mode. CRM is set <SM: CRM>, commands are not interpreted,
but rather the characters that make up the command are displayed.

Defaults: Reset

<CUB> Cursor Backward

Syntax Form: ESC[<Pn>D
Descriptive Form: ESC [<number of columns> D
Description: Moves the cursor backward by the specified number of columns. The

cursor stops at column 1.

If the numeric parameter is 0 or is omitted, it defaults to 1.

OPERATING SYSTEM REFERENCE 5-5

TERMINAL EMULATION

<CUD> Cursor Down

Syntax Form: ESC [<Pn>B
Descriptive Form: ESC [<number of rows> B
Description: Moves the cursor downward by the specified number of rows.

Margins Set Inside Screen Boundaries (i.e., Top Margin >1 or Bottom
Margin <32)

If origin mode is absolute, the cursor moves with respect to the screen.
If the cursor is on the last row of the screen or
on the Bottom Margin, Cursor Down has no
effect.

If origin mode is relative, the cursor moves with respect to the area
bounded by Top and Bottom Margins. If the
cursor is on the Bottom Margin, Cursor Down
has no effect.

Margins Set To Screen Boundaries (i.e., Top Margin =1 and Bottom
Margin =32)

The cursor moves with respect to the screen. If the cursor is on the last
row of the screen, Cursor Down has no effect.

If the <Pn> numeric parameter is zero or is omitted, it defaults to one.

<CUF> Cursor Forward

Syntax Form: ESC [<Pn>C
Descriptive Form: ESC [<number of columns> C
Description: Moves the cursor the specified number of columns to the right. The

cursor stops at the rightmost column.

If the <Pn> numeric parameter is omitted, or is zero, it defaults to one.

<CUP> Cursor Position

Syntax Form: ESC [<Pn> <; <Pn> > H
Descriptive Form: ESC [<row number> <; <column number> > H
Description: Moves the cursor to a specified row and column. The cursor may stop at

Top Margin, Bottom Margin and the top and bottom of the screen,
depending on origin mode.

If a row or column coordinate is zero or is omitted, it defaults to one.

5-6

TERMINAL EMULATION

<CUU> Cursor Up

Syntax Form:
Descriptive Form:

Description:

ESC[<Pn> A
ESC [<number of rows> A

This command is completely analogous to <CUD>, except that the
cursor moves upward instead of downward.

<DA> Device Attributes

Syntax Form:

Description:

ESC[<Pn>c¢c

A device sends this command with a parameter of 0 to the terminal
asking it to identify the type of VT100 terminal it is. The 4400 sends
the command ESC [? 1 ; 0 ¢ back to the device which says it is a VT100
with no options.

NOTE

The 4400 does support the following
features of the VT-100 Advanced Video
Options (see <SGR>):

¢ Bold

® Underline

® Reverse video
If the device echoes this command back to the terminal, it is treated as a
no-op.
If the parameter is omitted, it defaults to 0.

<DC1> Character (#17)

Syntax Form:
Description:

(Char #17)

If this control character (CTRL-Q) is received during an ANSI command
sequence this control action is a no-op and the ANSI command sequence
processing continues. However if flagging is set in the communications
system to DC1/DC3 flagging; a flagging action will occur within the
communications system.

OPERATING SYSTEM REFERENCE 5-7

TERMINAL EMULATION

<DC2> Character (#18)

Syntax Form:
Description:

(Char #18)
This control function (CTRL-R) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DC3> Character (#19)

Syntax Form:
Description:

(Char #19)
This control function (CTRL-S) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues. However if flagging is set in the communications
system to DC1/DC3 flagging; a flagging action will occur within the
communications system.

<DC4> Character (#20)

Syntax Form:
Description:

(Char #20)
This control function (CTRL-T) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DCH> Delete Character

Syntax Form:
Descriptive Form:
Description:

5-8

ESC[<Pn>P
ESC [<number of characters> P

Deletes the character at the cursor and possibly following characters
depending on the parameter value. Any characters to the right of the
deleted characters are moved left by the same number of character
positions; thus the gap is filled.

Only characters on the current line are affected by this command.
If the parameter is zero, or is omitted, it defaults to one.

TERMINAL EMULATION

 Character (#127)

Syntax Form:
Description:

(Char #127)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DL> Delete Line

Syntax Form:
Descriptive Form:
Description:

ESC[<Pn>M
ESC [<number of lines> M

Deletes the current line and possibly succeeding lines, depending on the
parameter.

All following lines are shifted in a block toward the line containing the
cursor. The lines following the shifted portion are erased. The cursor
does not change position.

If split-screen scrolling is in effect, this command only affects lines in
the region that the cursor is currently in. (E.g., if the cursor is in the top
fixed region, only the lines in the top fixed region are affected.)

If the parameter is zero, or is omitted, it defaults to one.

<DLE> Character (#16)

Syntax Form:
Description:

(Char #16)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<DMI> Disable Manual Input

Syntax Form:

Description:

Esc ¢ (Char #27 and Char #96)

Locks the keyboard. This command is equivalent to ANSI <SM: KAM>.
(See also <EMI>.)

OPERATING SYSTEM REFERENCE 59

TERMINAL EMULATION

<DSR> Device Status Report

Syntax Form:
Description:

ESC[Psn

This is a command from the host or a report from the terminal. Table
5-1 shows the meaning of various parameters.

Table 5-1
Parameter Meanings
Parameter Parameter Meaning
0 Report from 4400. Ready, no malfunctions detected.
3 Report from 4400. Malfunction - retry.
5 Command from host. Please report status (using a DSR control
sequence).
6 Command from host. Please report cursor position (using a cursor
position report). See <CPR> command.

When the 4400 receives a DSR with a parameter value of 5, it always
sends back a DSR with a parameter value of O or 3. When the 4400
receives a DSR with a parameter of 6, it always sends back a CPR
report. When the 4400 receives a DSR with a parameter value of 0 or 3
(which could be the echo of a report it has sent to the host), it executes
the <DSR: 0> or <DSR: 3> command as a no-op.

<ECH> Erase Character

Syntax Form:
Descriptive Form:
Description:

5-10

ESC[<Pn> X
ESC [<number of characters> X

Erases the character at the cursor, and possibly succeeding characters,
according to the parameter. The cursor location remains unchanged.

The effect of the <ECH> command is not confined to the current line.
For example, if the cursor is in column 41, and an <ECH: 45>
command is issued, the character at the active position is erased along
with the next 39 characters on the current line and the first 5 characters
of the next line.

TERMINAL EMULATION

<ED> Erase in Display

Syntax Form:

Descriptive Form:

Description:

ESC[<Ps>1J
ESC[<Qorlor2>]J

0 = from cursor to end of screen, inclusive
1 = from start of screen to cursor, inclusive
2 = entire screen.

Regardless of whether margins are set, the command erases with respect
to the screen. Therefore, text in the scrolling region and fixed regions
can be erased with the same command.

The cursor does not change position.

If the parameter is omitted, it defaults to 0.

<EL> EraseinLine

Syntax Form:

Descriptive Form:

Description:

ESC[<Ps>K
ESC[<0orlor2>K

0 = from cursor to end of line, inclusive
1 = from start of line to cursor, inclusive
2 = entire line

Erases part or all of the current line, according to the parameter. The
cursor does not change position.

If parameter is omitted, it defaults to 0.

 Character (#25)

Syntax Form:
Description:

(Char #25)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

OPERATING SYSTEM REFERENCE 5-11

TERMINAL EMULATION

<EMI> Enable Manual Input

Syntax Form:
Description:

Escb

Unlocks the keyboard. This command is equivalent to ANSI <RM:
KAM>

<ENQ> Character (#5)

Syntax Form:

Description:

(Char #5)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<EOT> Character (#4)

Syntax Form:
Description:

(Char #4)
This control function is a no-op.

If this control character is received during an ANSI command sequence,
this control action is a no-op and the ANSI command sequence
processing continues.

<ESC> Character (#27)

Syntax Form:
Description:

(Char #27)

This control function is the introduction character of an escape sequence
or control sequence for the ANSI command parser.

If this control character is received during an ANSI command sequence,
the ANSI command sequence parser processing is reinitialized.

<ETB> Character (#23)

Syntax Form:
Description:

(Char #23)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

TERMINAL EMULATION

<ETX> Character (#3)

Syntax Form:
Description:

(Char #3)

This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<FF> Form Feed Character

Syntax Form:
Description:

(char #12)
Erase the screen.

<FS> Character (#28)

Syntax Form:
Description:

(Char #28)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<GS> Character (#29)

Syntax Form:
Description:

(Char #29)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<HT> Horizontal Tab Character

Syntax Form:
Description:

(char #9)

Advances the cursor forward on the current line to the next horizontal
tab stop. If there are no horizontal tab stops to the right of the active
position, the cursor moves to the rightmost column.

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

OPERATING SYSTEM REFERENCE 5-13

TERMINAL EMULATION

<HTS> Horizontal Tab Set

Syntax Form:
Description:
Defaults:

ESCH
Sets a tab stop at the current cursor location.

Tab stops at columns 9, 17, 25, 33, 41, 49, 57, 65, and 73. Read from
setup file on installation.

<HVP> Horizontal and Vertical Position

Syntax Form:
Descriptive Form:
Description:

ESC [<Pn><; <Pn>>f
ESC [<row> <; <column> > f

This command is identical to the <CUP>, Cursor Position command.

<ICH> Insert Character

Syntax Form:
Descriptive Form:

Description:

ESC[<Pn> @
ESC [<number of characters> @

Inserts the specified number, (n), of erased character cells at the cursor
position. The character currently at the cursor position and all other
characters to the right of the cursor are shifted "n" columns to the right.
Characters shifted off the end of the line are lost. The cursor position

remains unchanged.

If the parameter is zero, or is omitted, it defaults to one.

<IL> InsertLine

Syntax Form:
Descriptive Form:

Description:

5-14

ESC[<Pn>L
ESC [<number of lines> L

Inserts the specified number, (n), of blank lines in place of the active
line.
The active line and all succeeding lines are shifted downwards. The last

"on

n" lines of the scroll are lost. The cursor position does not change.

If split-screen scrolling is in effect, this command only affects lines in
the region that the cursor is currently in. (E.g., if the cursor is in the
scrollable (non-fixed) region, only the lines in the scrollable region are
affected.)

If the parameter is zero or is omitted, it defaults to one.

TERMINAL EMULATION

<IND> Index

Syntax Form:
Description:

ESCD

Moves the active position down one line without affecting the character
position on the line.

If the cursor is at the bottom margin, but is not at the bottom of the
scroll, a scroll up function is performed. If the cursor is at the bottom
margin and is also at the bottom of the scroll, a blank line is added to the
bottom of the scroll and a scroll up is performed.

The cursor can index into the scrolling region from the top fixed region,
but cannot index into bottom fixed region. An index on the last line of
the bottom fixed region has no effect.

<IRM> Insertion/Replacement Mode

Syntax Form:
Descriptive Form:
Description:
Reset:

Set:

Defaults:

ESC[4horl
ESC [4 set or reset
<IRM> is a parameter for the <RM> and <SM> commands.

Normal operation. When a character is entered, it replaces any character
already at the active position.

Insert mode. As each character is entered, the text at the cursor position
and to its right is moved one character cell to the right and the cursor
advances to the next character cell. Any text which is shifted off the end
of the line is lost.

Reset

<KAM> Keyboard Action Mode

Syntax Form:
Descriptive Form:
Description:
Reset:

Set:
Defaults:

ESC(2horl
ESC [2 set or reset
A parameter for the <RM> and <SM> commands.

Resetting KAM enables the keyboard and is equivalent to issuing
<EMI>.

Setting KAM disables the keyboard and is equivalent to issuing <DMI>.
Reset

OPERATING SYSTEM REFERENCE 5-15

TERMINAL EMULATION

<LF> Line Feed Character

Syntax Form:
Description:

(char #10)

If <LNM> mode is reset, then <LF> has exactly the same effect as the
<IND> command; it advances the cursor to the same position on the
following line of text. See the <IND> command description for details.

If <LNM> mode is set, then <LLF> has the same effect as <CR> <IND>;
it advances the active position to the first character position on the
following line.

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

<LNM> Line-Feed/New-Line Mode

Syntax Form:
Descriptive Form:
Description:
Reset:

Set:

Defaults:

ESC[20horl
ESC [20 set or reset
A parameter for the <RM> and <SM> commands.

(LF) is equivalent to <IND>; goes down one line without changing
character position within the line.

(LF) is equivalent to <NEL> (which is equivalent to (CR)<IND>).
Advances the cursor to the first character position of the next line of
text.

Reset

<NAK> Character (#21)

Syntax Form:
Description:

(Char #21)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<NEL> Next Line

Syntax Form:

Description:

5-16

ESCE

Moves the cursor to the start of the next line. Has the same effect as
(CR)<IND> (or as (LF) when LNM is set).

TERMINAL EMULATION

<NUL> Character (#0)

Syntax Form: (Char #0)

Description: This control function is a no-op. If this control character is received
during an ANSI command sequence this control action is a no-op and
the ANSI command sequence processing continues.

<PU1> Private Use 1

Syntax Form: ESCQ

Description: This two-character sequence is used to introduce a private ANSI control
sequence. It introduces all sequences which specify or request from
4400 reports on the state of the mouse buttons and the graphic cursor

position.

<Report-Syntax-Mode>

Syntax Form: ESC#!0

Description: This command sends a 4100 series terminal terminal-settings-report> to
the host on the status of the syntax mode. The form will always be the
following:

% ! <SP> <8P> 1 <CR>
NOTE
The <SP> is an ASCII space character.

The <CR> ASCIl Carriage Return
Character is the default 4100 series EOM

character.
<RI> Reverse Index
Syntax Form: ESCM
Description: Completely analogous to the IND (Index) command except that it moves

the cursor one line upward.

OPERATING SYSTEM REFERENCE 5-17

TERMINAL EMULATION

<RIS> Reset to Initial State
Syntax Form: ESCc

Description: Resets specified terminal attributes to their initial default states.

This command affects terminal attributes in the following way:

<RM> Reset Mode

Erases screen and moves cursor to home position.
Resets Insert/Replace mode to Replace.

Clears edit margins.

Tumns off the character graphic rendition.

Selects the default GO and G1 character sets.
Shifts in the GO character set.

Resets Auto-Repeat (TEKARM) mode := true.
Resets Auto-Wrap (TEKAWM) mode := true.
Resets Screen mode (TEMSCNM) to normal.
Sets Origin mode to relative.

Syntax Form: ESC [<Ps> 1

Description: Causes one or more modes to be reset, as specified by each selective
parameter in the <Ps> parameter list. Each mode to be reset is specified
by a separate parameter in the list. A mode is reset until set again by a

<SM>, Set Mode, control sequence.

If the first character in the parameter list is 7, then all subsequent
parameters, that consist of numeric digits only, are interpreted as if they
began with a ? character before those numeric digits. If the first
parameter consists ONLY of ?, then its only use is to provide an implicit
? at the start of each subsequent numeric-digits-only parameter in the

parameter list.

TERMINAL EMULATION

For example:

The control sequence: ESC[?5; 81
is interpreted as if it were: ESC [?5;? 81

The control sequence: ESC[?;5;81
is interpreted as if it were: ESC[?5;? 81

Table 5-2, Valid Reset Mode Parameters, summarizes the meaning of
the valid parameters.

Table 5-2
Valid Reset Mode Parameters
Parameter Mode
- 2 KAM Keyboard-Action-Mode.
3 CRM Control-Representation-Mode.
4 IRM Insertion-Replacement mode.
12 SRM Send/Receive mode.
20 LNM Line-Feed/New-Line mode.
71 TEKCKM TEK private Cursor Key mode.
75 TEKSCNM TEK private Screen mode (normal)
76 TEKOM TEK private Origin Mode (viewport)
77 TEKAWM TEK private Auto-Wrap mode.
78 TEKARM TEK private Auto-Repeat mode.

Any parameters other than those specified here are recognized and
ignored.

<RS> Character (#30)

Syntax Form:

Description:

(Char #30)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

OPERATING SYSTEM REFERENCE 5-19

TERMINAL EMULATION

<SCS> Select Character Set

Syntax:

Description:

Defaults:

<Select-Code>

Syntax Form:
Description:

5-20

<SCS> = <designate-GO-set> or <designate-G1l-set>. <its designate-
GO-set> = (ESC) (() <set-selector>. <designate-Gl-set> = (ESC))
<set-selector>. <set-selector> = (A)or(B)or(0)or(1)or(2)or(3).

Designates a particular character set as the GO set or the G1 set.

Table 5-3, Character Set Selection, summarizes the escape sequences
necessary to designate particular character sets.

Table 5-3
Character Set Selection
Escape Sequence | Escape Sequence | Character Set
to Designate a to Designate a Being Designated
GO Set G1 Set As GO OrG1
ESC(A ESCYA (no-op)
ESC(B ESC)B Us. (ASCID
ESC(0 ESC)0 Rulings
ESC(1 ESC) 1 (no-op)
ESC(2 ESC)2 (no-op)
ESC (3 ESC)3 Supplementary

On installation, the terminal emulator automatically designates the U.S.
(ASCII) character set as its GO and G1 character set.

ESC % ! <code-selector>
This control function is a no-op.

TERMINAL EMULATION

<SGR> Select Graphic Rendition

Syntax Form:
Parameters:

Description:

Defaults:

ESC [<Ps-list>m

The Ps-list consists of zero or more Ps selective parameters, separated
by semicolons. Each parameter in the list specifies a graphic rendition
for subsequent characters.

0 Default rendition. On the 4400, default rendition is: No
underscore, normal boldness, standard (not reversed)
image. That is, the effect of any preceding <SGR: 1>,
<SGR: 4> or <SGR: 7> command is canceled.

1 Bold or increased intensity: The 4400 represents this by
simulating a bold font (it paints each character twice,
shifted one pixel horizontally).

Underscore.

Negative (reverse) image: white characters on black
background.

21 Not bold. Cancels the effect of <SGR: 1>.
24 Not underlined. Cancels the effect of <SGR: 4>.
27 Positive image. Cancels the effect of <SGR: 7>.

Invokes the graphic rendition specified by the parameters in the Ps-list
parameter string. All following characters in the data stream are
displayed according to the parameter(s) until the next occurrence of an
<SGR> command in the data stream.

On Tektronix terminals, each occurrence of the <SGR> control function
causes only those graphic rendition aspects to be changed that are
specified by that <SGR>. All other graphic rendition aspects remain
unchanged. (In other words, the GRAPHIC RENDITION
COMBINATION MODE of ISO 6429 is always set to CUMULATIVE
in Tektronix terminals.)

An omitted parameter in the <Ps-list> defaults to zero. The state is that
of <SGR: 0>.

OPERATING SYSTEM REFERENCE 5-21

TERMINAL EMULATION

<Sl> Shift In Character

Syntax Form:

Description:

Defaults:

(char #15)
Invokes the current GO character set.

If this control character is received during an ANSI command sequence,
the GO character is invoked and the ANSI command sequence
processing continues.

The GO set is invoked.

<SM> Set Mode

Syntax Form:
Description:

5-22

ESC[<Ps>h

Causes one or more modes to be set, as specified by each selective
parameter in the <Ps> parameter list. Each mode to be set is specified by
a separate parameter. A mode is set until reset by a <RM> (Reset Mode)
control sequence.

If the first character in the parameter list is ?, then all subsequent
parameters, that consist of numeric digits only, are interpreted as if they
began with a ? character before those numeric digits. If the first
parameter consists ONLY of ?, then its only use is to provide an implicit
? at the start of each subsequent numeric-digits-only parameter in the
parameter list.

For example:

The control sequence: ESC[?5;8h

is interpreted as if it were: ESC[?5;?8h
The control sequence: ESC[?;5;8h

is interpreted as if it were: ESC[?5;?8

Table 5-4, Set Mode Parameters, summarizes the meanings of the valid
parameters to the set mode command.

TERMINAL EMULATION

Table 5-4
Set Mode Parameters

Par Mode

2 KAM Keyboard-Action-Mode

3 CRM Control-Representation-Mode.

4 IRM Insertion-Replacement Mode.

12 | SRM Send/Receive Mode.

20 | LNM Line-Feed/New-Line Mode.

71 | TEKCKM TEK private Cursor Key Mode.

?5 | TEKSCNM TEK private Screen Mode (Normal)
76 | TEKOM TEK private Origin Mode (viewport)
77 | TEKAWM TEK private auto-wrap mode.

78 | TEKARM TEK private auto-repeat mode.

If no parameter is supplied, a parameter of zero is assumed. Any
parameters other than those specified here (including zero) are
recognized and ignored.

<SO> Shift Out Character

Syntax Form:

Description:

Defaults:

SO = (char #14)

Invokes the G1 character set. If this control character is received during
an ANSI command sequence, the G1 character set is invoked and the
ANSI command sequence processing continues.

The GO set is invoked (default is SO state).

<SOH> Character (#1)

Syntax Form:
Description:

(Char #1)
This control function (CTRL-A) is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

OPERATING SYSTEM REFERENCE 5-23

TERMINAL EMULATION

<SP> Space Character

Syntax Form:

Description:

(char #32)

SP functions as an ordinary graphic character. Spaces replace any
characters already in the locations where the spaces are typed.

<SRM> Send/Receive Mode

Syntax Form:
Descriptive Form:

Description:

Defaults:

ESC[12horl
ESC [1 2setorreset

<SRM>, Send/Receive Mode, is not a command in its own right.
Rather, it is a parameter for the <SM>, Set Mode, and <RM>, Reset
Mode, commands.

Resetting SRM mode turns the terminal’s local echo on. (In the
standards documents, this is called monitor send/receive mode.)

Setting SRM mode turns the local echo off. (In the standards
documents, this is simultaneous send/receive mode.)

Reset

<STX> Character (#2)

Syntax Form:
Description:

(Char #2)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<SUB> Character (#26)

Syntax Form:
Description:

5-24

(Char #26)

If this control character is received during an ANSI command sequence
this control function will print a SUB) character and reset the command
parser to an initialized state.

TERMINAL EMULATION

<SYN> Character (#22)

Syntax Form:

Description:

(Char #22)
This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<TBC> Tabulation Clear

Syntax Form:
Descriptive Form:
Description:
Valid Parameters:

ESC[<Ps>g
ESC[<0Oor2or3>g

Clears one or more tab stops, according to the specified parameters.

0 Clear the horizontal tab stop at the active position.

2 Clear all tab stops in the active line. (In the 4400 tab stop
mode is always reset, so <TBC: 2> has the same effect as
<TBC: 35.)

3 Clear all horizontal tab stops.

If no parameter is supplied, a parameter of zero is assumed. If the
supplied parameter is not 0, 2 or 3, then command is ignored..

<TEKARM> Auto-Repeat Mode

Syntax Form:
Descriptive Form:
Description:

Defaults:

ESC[?8horl
ESC [7 8 set or reset

A TEK private parameter for the <SM> and <RM> commands. If set,
all keyboard keys repeat when held depressed. If reset, none of the keys
repeat when held depressed.

Reset

OPERATING SYSTEM REFERENCE 5-25

TERMINAL EMULATION

<TEKAWM> Auto-Wrap Mode

Syntax Form:
Descriptive Form:
Description:

Defaults:

<TEKBKCM>

Syntax Form:
Descriptive Form:
Description:

Defaults:

ESC[?7horl
ESC [? 7 set or reset

A TEK-private parameter for the <SM> and <RM> commands. When
set, the wrap-around feature is enabled. When reset, it is disabled.

This mode determines what happens to the cursor after a character is
displayed in the rightmost column. Since a character is always
displayed at the current cursor location, this mode determines whether
text is overprinted in the rightmost column or whether it wraps around to
the next lines.

If Auto-Wrap mode is set, an index function is performed and the cursor
moves to column 1 of the next line. If Auto-Wrap mode is reset, the
cursor remains in the rightmost column.

Reset

Block Cursor Mode (Select Cursor)

ESC[>31horl
ESC [> 31 set or reset

A TEK private parameter for the <SM> and <RM> commands. If set,
the alpha cursor is represented by a "full character set” block cursor.
The character at the cursor position appears as a background color
character on a reversed character cell. If reset, the cursor is represented
by a bold underline.

Reset (Underscore)

<TEKBNCM> Blinking Cursor Mode

Syntax Form:
Descriptive Form:
Description:

Defaults:

5-26

ESC[>32horl
ESC [> 32 set or reset

A TEK private parameter for the <SM> and <RM> commands. If set,
the alpha cursor is displayed blinking. The character at the cursor
position alternates, at the blink rate, between its normal rendition and its
cursor position rendition. If reset, the cursor does not blink.

Set (Blinking)

TERMINAL EMULATION

<TEKCKM> Cursor Key Mode

Syntax Form:

Descriptive Form:

Description:

Defaults:

OPERATING SYSTEM REFERENCE

ESC[?1horl
ESC [? 1 set or reset

A TEK private parameter for the <SM> and <RM> commands. Provides
compatibility with programs designed for the DEC VT-100 terminal.
This mode is only effective when TEKKPAM is set.

The joydisk keys assume the alternate meanings shown in Table 5-5.

Table 5-5
Alternate Joydisk Meanings

Joydisk Key | TEKCKM Reset | TEKCKM Set
Up "ESCTA ESCOA
Down ESC[B ESCOB
Right ESC[C ESCOC
Left ESC[D ESCOD

Reset

TERMINAL EMULATION

<TEKGCREP> Graphic Cursor Position Report

Syntax Form:
Descriptive Form:
Description:

ESCPS <Pnl ;Pn2>ESC\e
DCS S [optional position report] ST

This is a report string sent to the host in response to a <TEKRGCR>
graphic cursor position request. The form which the optional position
report takes depends on the report types specified by a <TEKSGCRT>
report type selection, or if report types have not been specified, by the
default types defined there.

If cell coordinate reports have been specified, then Pnl and Pn2 contain
row and column values, respectively. If pixel coordinate reports have
been specified, then Pnl and Pn2 contain x and y screen coordinate
values, respectively.

If graphics cursor position reports have been disabled by specifying that
none be returned, then no parameters are returned for Pnl and Pn2.

<TEKID> Identify Terminal

Syntax Form:

<TEKKPAM>

Syntax Form:
Description:

ESCZ

This command, when sent from the host requests the terminal to identify
itself with a Device Attributes sequence. It has the same effect as a
<Device Attributes> command with no parameter or parameter of 0.

Keypad Application Mode

ESC =
See <TEKKPNM>, Keypad Numeric Mode

<TEKKPNM> Keypad Numeric Mode

Syntax Form:
Description:

5-28

ESC >

The <TEKKPAM> and <TEKKPNM> commands set and reset the
terminal s Keypad Application Mode, respectively. These commands are
provided for compatibility with applications programs designed for the
DEC VT100 terminal.

Reset State (Keypad Numeric Mode)

In the reset state (Keypad Numeric Mode), the keypad keys and function
keys F9 to F12 assume the values shown in the reset state part of the
following table. For the keypad keys, these are the values labeled on the
keys, except that the ENTER key sends a <CR> character.

TERMINAL EMULATION

Set State (Keypad Application Mode)

In the ser state (Keypad Application Mode), the keypad keys and
function keys F9 to F12 assume the alternate meanings shown in the set
state part of Table 5-6.

Table 5-6
Keypad Application Mode Key Meanings

Meaning in Reset State | Meaning in Set State

Key Keypad Numeric Mode Keypad Application Mode
0 0 ESCOp

1 1 ESCOq

2 2 ESCOr

3 3 ESCOs

4 4 ESCOt

5 5 ESCOu

6 6 ESCOv

7 7 ESCOw

8 8 ESCOx

9 9 ESCOy

- - ESCOm

, , ESCO1

. . ESCOn
"ENTER | CR ESCOM

F9 ESCOP ESCOP

F10 ESCOQ ESCOQ

F11 ESCOR ESCOR

Fi2 ESCOS ESCOS

Defaults: Reset (Keypad Numeric Mode)

<TEKMBREP> Mouse Button and Graphic Cursor Position
Reporting

Syntax Form:
DCS (Esc P)
Meta-State-Code
Mouse-Button-Number
Stroke-Info (up-down)
Optional-Position-Report
ST (Esc\)

Description: There are three buttons on the mouse and there are different codes
output for each button on it’s down-stroke and up-stroke.

Table 5-7 summarizes the Mouse Button Reports.

OPERATING SYSTEM REFERENCE 5-29

TERMINAL EMULATION

Table 5-7
Mouse Button Reports
Button Left Middle Right
"DOWN DCSATDxST | DCSAZDxST | DCSA3DxST |
UP DCSA1UXxST | DCSA2UxST | DCSA3UxST
Shifted-DOWN DCSB1DxST | DCSB2DxST | DCSB3D«xST
Shifted-UP DCSB1UxST | DCSB2UxST | DCSB3UxXST
Control-DOWN DCSC1DxST | DCSC2DxST | DCSC3DxST
Control-UP DCSC1UxST | DCSC2UxST | DCSC3U«xST
Cntrl-Shifted-DOWN | DCSD1DxST | DCSD2DxST { DCSD3Dx ST
Catrl-Shifted-UP DCSD1UxST | DCSD2UxST | DCSD3UxST

The x information is the optional report of the current graphic cursor
position, i.e. Pnl ; Pn2 of the Graphic Cursor Report. See
<TEKGCREP>.

ANSI Terminal Emulator Mouse Button and Position Reporting

Each of the three buttons on the mouse reports a different code on its downstroke and its
upstroke. The mouse reports are ANSI standard DCS (Device Control String — Esc-P) reports.
The reports take the form:

DCS (Esc-P)

Meta-State-Code

Mouse-Button-Number
Stroke-Info (up-down)
Optional-Position-Report

ST (ESC-\)

5-30

Lead-in to all mouse button reports

A = unshifted, B = shifted, C = control, and D = control-
shift

1 = left, 2 = middle, 3 = right

D =down, U = up

Pn1, Pn2 of the current position of the graphic cursor.
Terminator for mouse button and position reports.

For example, the report (32;80 is the position report of Row
32, Column 80 in Char.Cell coordinates)) of the unshifted,
middle button, in the down state would be:

DCS A 2 D 32;80 ST

TERMINAL EMULATION

<TEKOM> Origin Mode

Syntax Form:

Parameters:

Description:

Defaults:

ESC[?61lorh

1 - Reset (Absolute Mode)
h - Set (Relative Mode)

Margins Set To Screen Boundaries (that is, Top Margin = 1, and Bottom
Margin = 32)

Specifies Row 1, Column 1 of the screen as the origin. Moves the
cursor to the origin.

Margins Set Inside Screen Boundaries (i.e., Top Margin >1 or Bottom
Margin < 32)

If origin mode absolute is requested, specifies Row 1, Column 1 of the
screen as the origin. If origin mode relative is requested, specifies the
row corresponding to the Top Margin, Column 1 as the origin. In both
cases, it moves the cursor to the origin.

Reset

<TEKRC> Restore Cursor

Syntax Form:

Description:

ESC 8

Restores the previously saved cursor position, graphic rendition,
character set and origin mode.

If no preceding <Save Cursor> command has been executed, then the
power-up graphic rendition, character set, and origin mode are restored
and the cursor is homed.

<TEKREQTPARM> Request Terminal Parameters

Syntax Form:
Description:

ESC [<Pn> x

Request from the host for the terminal to send a <Report Terminal
Parameters> sequence. This command is treated as a no-op in the 4400.

OPERATING SYSTEM REFERENCE 5-31

TERMINAL EMULATION

<TEKRGCR> Request Graphic Cursor Position Report

Syntax Form:
Description:

Pnl contains:

Pn2 contains:

<TEKSC>

Syntax Form:
Description:

ESC QK

This command requests the terminal to send areport to the host as
to the position of the graphics cursor. This report is a
<TEKGCREP> report. The form of the report is as follows:

DCS (ESC P) S Pnl ; Pn2 ST (ESC-\)

The Row value if cell coordinates have been selected or the X value if
pixel coordinates are selected. no parameter will be returned if so
specified in the Select Graphic Cursor Report Type command.

The Column value if cell coordinates have been selected or the Y value
if pixel coordinates are selected. no parameter will be returned if so
specified in the Select Graphic Cursor Report Type command.

Save Cursor

ESC7

Saves the cursor position, graphic rendition, character set and origin
mode.

<TEKSCNM> Screen Mode

Syntax Form:

Parameters:

Description:

Defaults:

5-32

ESC[?S5lorh

I - Reset (Normal Mode — white on black)
h - Set (Reverse Mode — black on white)

This is a parameter for the <Set Mode> and <Reset Mode> commands.

The reset state causes the screen to be black with white characters. The
set state causes the screen to be white with black characters.

There is no effect if the terminal is already in the requested mode.
Reset

TERMINAL EMULATION

<TEKSGCRT> Select Graphic Cursor Report Type

Syntax Form: ESC Q <Pnl> <;<Pn2>>J
Descriptive Form: ESC Q <Report When> <;<Report Type>>J
Parameter Parameter Meaning
Pnl1=0 None. Do not report mouse button action.
Pnl=1 Down. Report to host when mouse button is depressed.
Pnl1=2 Up. Report to host when mouse button is released.
Pnl=3 Both. Report to host when a mouse button is either
depressed or released.
Pn2=0 None. Do not report graphic cursor position.
Pn2=1 Char. Report graphics cursor position
in character cell coordinate terms (Row,
Column).
Pn2=2 Pixel. Report graphics cursor position

in pixel (screen) coordinate terms (X,Y).
Defaults:

Pnl = 0: No mouse button report.

Pn2 = 1: Report graphic cursor position in

character cell coordinates

<TEKSTBM> Set Top and Bottom Margins

Syntax Form: ESC [<Pn> <; <Pn>>r
Descriptive Form: ESC [<top margin> <; <bottom margin>>r
Description: A TEK private command to set top and bottom margins for a split

viewport scrolling region.

The parameter value for the top margin specifies which row of the
screen becomes the top line of the scrolling region. Similarly, the value
for the bottom margin specifies the row of the buffer for the bottom line
of the scrolling region.

The rows preceding the top margin and the rows following the bottom
margin become fixed regions. No scrolling actions occur in the fixed
regions.

If the first parameter is zero or is omitted, it defaults to one. If the
second parameter is zero or is omitted, it defaults to 32.

Defaults: Margins set to 1 and 32

OPERATING SYSTEM REFERENCE 5-33

TERMINAL EMULATION

<US> Character (#31)
Syntax Form: (Char #31)

Description: This control function is a no-op.

If this control character is received during an ANSI command sequence
this control action is a no-op and the ANSI command sequence
processing continues.

<VT> Vertical Tab Character

Syntax Form: (char #11)
Description: VT has the same effect as (LF), linefeed.

If this control character is received during an ANSI command sequence
this control action occurs and the ANSI command sequence processing
continues.

KEYBOARD DETAILS

Shift, Ctrl, and Caps Lock Keys

The two SHIFT keys have identical functions. They and the CTRL key are used to access
alternate meanings for other keys.

Pressing CAPS LOCK turns on the led in the key and puts the keyboard in caps lock mode.
Pressing the key again turns the led off and removes the terminal from caps lock mode. While in
caps lock mode, each of the alphabetic keys has its uppercase meaning, regardless of whether a
SHIFT key is being held down. Caps lock mode affects only the alphabetic keys.

5-34

TERMINAL EMULATION

Default ANSI Mode Meanings of Keys

Alphanumeric Keys

Table 5-8 shows the ANSI mode meanings for the main part of the keyboard — the
alphanumeric keys.

In this table, control characters are represented by the standard two-or three-letter abbreviations,
given in ANSI X3.4 and ISO 646. Special symbols are represented by the four-character codes
assigned to those symbols in ISO 6937.

Table 5-8
ANSI Meanings of Alphanumeric Keys

Key Name | Shifted | Unshifted | Control | CTRL-Shifted
1 { ESC ESC
! 1 ! | 1 !

@ 2 @ 2 2 @
3 # 3 3
$ 4 $ 4 4 3

% 5 % 5 5 %
= 3 = 3 3 -

Keyboard Row1 | & 7 & 7 7 &

* 8 * 8 8 *

(9 (9 9 (

) 0) 0 0)
- - - Us
+ = + = = +
}] 1 1 }

RUB DEL DEL DEL DEL

OPERATING SYSTEM REFERENCE 5-35

TERMINAL EMULATION

5-36

Table 5-8 (cont.)
ANSI Meanings of Alphanumeric Keys
Key Name | Shifted | Unshifted | Control | CTRL-Shifted |
ESC ESC ESC ESC | ESC |
~ I ~ | | ~
Q Q q DC1 DC1
w w w ETB ETB
E E e ENQ ENQ
R R r DC2 DC2
T T t DC4 DC4
Keyboard Row 2 Y Y y EM EM
U U u NAK NAK
1 1 i HT HT
O O 0 SI SI
P P p DLE DLE
¢ \ ¢ \ FS ES
BS BS BS BS BS
LF LF LF LF LF
Table 5-8 (cont.)
ANSI Meanings of Alphanumeric Keys
Key Name | Shifted | Unshifted | Control | CTRL-Shifted
TAB HT HT HT HT
A A a SOH SOH
S S s DC3 DC3
D D d EOT EOT
F F f ACK ACK
G G g BEL BEL
Keyboard Row 3 H H h BS BS
]] i IF LF
K K k VT VT
L L 1 FF FF
RTN CR CR CR CR

TERMINAL EMULATION

Table 5-8 (cont.)
ANSI Meanings of Alphanumeric Keys
Key Name | Shifted | Unshifted | Control | CTRL-Shifted |
Z Z z SUB SUB |
X X X CAN CAN
C C c ETX ETX
\ \ v SYN SYN
B B b STX STX
Keyboard Row 4 N N -) 0)
M M m CR CR
< , < , R <
> . > . . >
? / ? / / ?

Row 5 Keys — Spacebar is space in all states.

Numeric Pad Keys

The numeric pad is located to the right of the main set of alphanumeric keys. The codes sent by
these keys are determined by the state of the Keypad Numeric/Applications mode setting
(TEKKPNM/TEKKPAM). In Numeric mode, the meaning of the keys is that marked on the
keytops; in Applications mode, the numeric pad keys are defined to be a control sequence. Table
5-9 shows the Applications mode (TEKKPAM) ANSI meanings of these keys.

Table 5-9
Applications Mode (TEKKPAM) Meanings of Keypad Keys

Key Key Pad State
- Shifted Unshifted Control Ctrl-Shifted
Y ESCOp | ESCOp | ESCOp | ESCOp

1 ESCOq | ESCOgq ESCOq | ESCOq

2 ESCOr ESCOr ESCOr ESCOr

3 ESCOs ESCOs ESCOs ESCOs

4 ESCOt ESCOt ESCOt ESCOt

5 ESCOu ESCOu ESCOu ESCOu

[ESCOv ESCOv ESCOv ESCOv

7 ESCOw | ESCOw ESCOw | ESCOw

8 ESCOx | ESCOx ESCOx | ESCOx

9 ESCOy | ESCOy ESCOy | ESCOy

- ESCOm | ESCOm | ESCOm | ESCOm

, ESCO1 ESCO1l ESCO1 ESCO1

. ESCOn | ESCOn ESCOn | ESCOn
ENT | ESCOM | ESCOM | ESCOM | ESCOM

OPERATING SYSTEM REFERENCE 5-37

TERMINAL EMULATION

Joydisk Keys

The joydisk is located to the upper left of the main set of alphanumeric keys. The function of the
joydisk in ANSI mode is to act in the place of cursor keys. The codes sent by the joydisk are
affected by the Cursor Key mode in union with the Keypad Applications mode. The default
codes are sent unless both TEKKPAM and TEKCKM are set. Table 5-10 shows the ANSI mode
meanings of its keys.

Table 5-10
ANSI Joydisk Key Meanings
Position Default Mode TEKPAM and TEKCKM Mode
Shifted | Unshifted | CTRL | CTRL-Shifted | Shifted | Unshifted | CTRL | CTRL-Shifted
Up ESC[A | ESC[A ESC[A | ESC[A ESCO! | ESCOA ESCO1 | ESCO1
Down ESC[B | ESC[B ESC[B | ESC[B ESCO" | ESCOB ESCO2 | ESCO2
Right ESC[C | ESCI[C ESC[C | ESC[C ESCO# | ESCOC ESCO3 | ESCO3
| Left ESC[D | ESC[D ESC[D | ESC[D ESCO$ | ESCOD ESCO4 | ESCO4

Function Keys

The function keys F1-F12 are grouped in three groups of four keys and are located in a row above
both the alphanumeric keys and the numeric key pad. Table 5-11 shows the ANSI mode
meanings of these keys.

5-38

ANSI Meanings of FUnction Keys

Table 5-11

State

Function Key | —cr T Unshifted | Ctl | Ciri-Shifted
T [ESCO% |

2 ESCO& | ESCOF | ESCO6 | ESCOG6
B3 ESCO’ | ESCOG | ESCO7 | ESCO7
Fa ESCO(| ESCOH | ESCO8 | ESCOS
55 ESCO) | ESCOT | ESCO9 | ESCO9
F6 ESCO* | ESCOJ | ESCO: | ESCO:
] ESCO+ | ESCOK | ESCO; | ESCO.
3 ESCOL | ESCOL | ESCO< | ESCO<
9 ESCOP | ESCOP | ESCOP | ESCOP
F10 ESCOQ | ESCOQ | ESCOQ | ESCOQ
1l ESCOR | ESCOR | ESCOR | ESCOR
Fiz ESCOS | ESCOS | ESCOS [ESCOS

TERMINAL EMULATION

Special Function Keys

There are only two special function keys on the 4400 keyboard. One is the up-arrow/left-arrow
key in the upper left corner of the main key area, while the other is the BREAK key in the lower
right comer of the main key area. While most terminal emulators do not send a character
sequence when the BREAK key is pressed, this emulator does — under the assumption that the
communication program will recognize the sequence and perform the appropriate break signal.
Table 5-12 shows the default ANSI mode meaning of these keys.

Table 5-12
ANSI Meanings of Special Function Keys

KeyNames | Shifted | Unshifted Citrl Ctri-Shifted
| OU [ESCOT | ESCOU |
Break ESCO@ | ESCO@ | ESCO@ | ESCO@

OPERATING SYSTEM REFERENCE 5-39

Section 6

ACCESSING SYSTEM RESOURCES

INTRODUCTION

You can access the 4400 series hardware directly, but in general, this tends to be cumbersome
and error-prone. The operating system has embedded within it device drivers, or software
routines that offer a uniform interface to the operating system. Most programs should interface
with the 4400 series hardware through these device drivers.

This section discusses the device drivers and system calls to the 4400 series hardware.

DEVICE DRIVERS

Device drivers are divided into two types: block-oriented and character-oriented. Block-oriented
devices include the disks and other peripherals on the SCSI bus. Character-oriented devices
include the console, the communications port, the sound generator, the printer port, the optional
network interface, and special devices for "raw” access to the block-oriented devices. Each of
these devices is identified by a file in the /dev directory.

The system calls ttyger and rtyset can be used with the console, communications port, sound, and
printer devices. Descriptions of the parameters to these calls are found in Section 4, System
Calls, of the 4400 Series Assembly Language Reference.

SCSI Peripherals

A SCSI bus gives access to the block-oriented devices. These devices include such things as
winchester disks, floppy disks, and (optional) streaming tape drives.

The /dev SCSI peripheral devices are:
® disk. The winchester disk with the system files.
® diskl..diskn. Optional winchester disks.
* floppy. Floppy disk drive.

The standard 4400 series contains a single floppy disk (/dev/floppy) and a winchester disk mass
storage device (/dev/disk). Option 20 contains an additional 40 Megabyte winchester disk and a
streaming tape drive.

Device /dev/disk is the standard system device and is the default device from which to boot the
system. You must use the interactive boot procedure to boot from another device.

Console Device

The device /dev/console supports the 4400 display and keyboard. It is connected to a terminal
emulator that acts like an industry-standard terminal (described in Section S of this manual).

To read and write terminal settings and other parameters of this device, use the rtyger and rtyset
system calls, or the conset utility.

OPERATING SYSTEM REFERENCE 6-1

ACCESSING SYSTEM RESOURCES

Communications Port

The device /devicomm supports the RS-232C host communications port. You can control the
baud rate, number of stop bits, parity, and XON/XOFF or DTR flow control. You can also cause
new input or completion of output to generate a signal, as well as read the number of characters
pending in the input and output queues.

The ttyget and rtyser system calls, and the commser utility allow you to read and write the
communications port parameters.

Sound Generator

The device /dev/sound is the 4400 sound generator. By sending a formatted byte stream to this
device (a TI 76496 sound generator chip), you can cause the 4400 to produce sounds.

This device is a write-only device. An attempt to read it will return an error. It is also an
exclusive-use device and may be opened by only one task at a time.

The ttyset and ttyget system calls can change operation settings and examine device status.

Controlling the Sound Device

/devi/sound expects a stream of bytes in the following form:

\n,c,c,c...c,t
or

\0, tempo
with the following values:
n A single byte specifying the number of commands to follow.

c A single byte binary command to the sound chip. (See the following discussion on
sound chip operation and commands.)

t A byte value specifying the length of time to hold this set of commands. T is in units
of tempo set by the second format.

tempo A 16-bit (word) value of time with a unit value of 16.667 ms.

/dev/sound Operation and Commands

The sound chip contains three frequency generators, each coupled to a programmable attenuator.
It also contains a white-noise generator (a shift register with an exclusive-OR feedback network)
that contains a frequency control and programmable attenuator.

6-2

ACCESSING SYSTEM RESOURCES

Frequency Control

Changing the value in a frequency generator requires two command bytes. Byte 1 contains the
address information (which frequency generator to alter) and the low order 4 bits of the value to
store. Byte 2 contains the high order 6 bits to set the frequency. Thus, the two bytes contain a 3-
bit address and a 10-bit binary number to set the frequency to be generated.

The frequency is equal to the clocking rate of the chip (which is 3.15 MHz) divided by thirty-two
times the binary number that is stored in the frequency generator.

Table 6-1 shows the bit assignments in Byte 1 and Table 6-2 shows the bit assignments in byte 2.

Table 6-1
Frequency Selection (BYTE 1)

-

Type Description
1 This bit is always 1
R2 | Register address bit 2
R1 Register address bit 1
RO | Register address bit 0
F3 Frequency data bit 3
F2 Frequency data bit2
Fl1 Frequency data bit 1
FO Frequency data bit 0

QO\M#WN'—‘OE

Table 6-2
Frequencey Selection (BYTE 2)

Bit | Type Description
0 0 [Thisbitis alwaysO |

1 X Unused

2 F9 Frequency data bit 9
3 F8 Frequency data bit 8
4 F7 Frequency data bit 7
5 F6 Frequency data bit 6
6 F5 Frequency data bit 5
7 F4 Frequency data bit 4

Controlling Attenuation

You can control the attenuation on any frequency generator with a single command byte. This
byte contains a 3-bit field to select the attenuator and a 4-bit field to specify the amount of
attenuation. Four bits give you 16 possible attenuations. Table 6-3 shows the attenuation
settings and Table 6-4 shows the bit assignments for the attenuation control byte.

OPERATING SYSTEM REFERENCE 6-3

ACCESSING SYSTEM RESOURCES

Table 6-3

Artenuation Control

A3 [A2 | Al | A0 | Attenuation Weight (dB) |
0 0 | 0 0 | ull Volume
0 0 0 1 2
0 0 1 0 4
0 1 0 0 8
1 0 0 0 16
1 1 1 1 Off
Table 6-4
Attenuation Byte Bit Assignments
[Bit | Type Description
0 1 Always 1
1 R2 Register address bit 2
2 | RI_| Register address bit |
3 RO Re_g’swt address bit 0
4 A3 Attenuation control bit 3
5 A2 Attenuation control bit 2
6 Al Attenuation control bit 1
7 A0 Attenuation control bit 0

Controlling the Noise Generator

The noise generator consists of a noise so

urce and an attenuator. You can control the type of

feedback in the exclusive-OR network, the shift rate, and the attenuator itself.

Table 6-5 shows how you control the feedb

ack, Table 6-6 shows the shift-rate control, and Table

6-7 shows the bit assignments for the noise generator command byte.

Table 6-5

Noise Feedback Control

roveeanman

FB

?

Con%ntlon
C noise

1

White noise

6-4

ACCESSING SYSTEM RESOURCES

Table 6-6
Noise Frequency Control
[NF1 | NFO Shift Rate
=0 | 0 | 4918
0 1 24609
1 0 12304
1 1 Tone generator 3 output
Table 6-7
Noise-Control-Byte Bit Assignments
t Type i')escriptlon
1 Always 1

R2 Register address bit 2
R1 Register address bit 1
RO Register address bit 0
X Unused
FB Feedback control bit
NF1 | Shift rate control bit 1
NF2 | Shift rate control bit 0

\IG\MADJN—-O..J

Control Registers

The sound chip has eight internal registers that determine whether the byte(s) sent control the
frequency or attenuation of the three tone generators or the control or attenuation of the noise
generator. The destinations for all addressed bytes are given in Table 6-8.

Table 6-8
Control Register Addresses

I__B% R1 | RO | Address register
0 0 | Tone] Irequency
0 0 1 Tone 1 attenuation
0 1 0 | Tone 2 frequency
0 1 1 Tone 2 attenuation
1 0 0 | Tone 3 frequency
1 0 1 Tone 3 attenuation
1 1 0 Noise control
1 1 1 Noise attenuation

OPERATING SYSTEM REFERENCE 6-5

ACCESSING SYSTEM RESOURCES

Sound Examples

The following examples show how you can control the sound device by sending bytes to it. The
"C" program in example 1 outputs an array of bytes to the standard output device. Redirect the
compiled program output with the command:

sound-example > /dev/sound

The data in the array controls the sound device output. To determine what the program data
means to the sound output device, each byte is described in the text following the example.
Using Tables 6-1 through 6-8, you can create your own sound effects or music from the 4400
series products.

ARKkIKAkAkhkAkAkAAAAXkArAhkhkAkhhhkhkhkAdhkkhAhkhkhkhkhkhkkhkhkhkhkhkhkhkhkrAhkhkhAkxkkkhkxhhkhhkxikx

* *
* Sound generation routine sample. *
* *

hhkhkhkhkhkhkhhkhkhkhkhhkhhkhkhkrhkhkhkhkhkkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhhkhbrkrkhkihkhkhkkkkx

#include <stdio.h>

int buf{] = {0,0,59,/* Set the tempo */
2,175,13,0,/* Set the frequency */
1,176,1, /* Set the volume */
1,188,2, /* Reduce volume 2 beats */
1,191,1, /* Turn voice off */
1,228,0, /* Turn on white noise * /

1,249, 2, /* Reduce volume 2 beats */
/* Replace 249 with 244 */

/* for greater volume */
1,255,1}; /* Turn voice off */
main ()
{
int i
for (i = 0;i<25 ;i++)/* Set up a FOR loop to */
putchar (buf[i]);/* Output the data in */
/* the array */

Example 6-1. Sound Example.

6-6

ACCESSING SYSTEM RESOURCES

Set the tempo to be 1 beat per second (1000 millisec/beat):

Byte 1 = 0 "Tempo word follows."
Byte 2 = 0 "High order byte = (1000 div 16.667) div 256."
Byte 3 = 59 "Low order byte = (1000 div 16.667) mod 256."

Set the frequency for voice 2 to be 440 Hz:

Byte 4 = 2 "2 command bytes follow."

Byte 5 =175 1 010 1111

"Always 1" _| 1 [
| |
"Voice 2 __| !
frequency" |
|
"Low order 4 bits calculated as
(3,150,000 div (32 * 440)) div 1le6."
Byte 6 = 13 0 0 001101
"Always 0" _| | |
I |
"Unused" _ | |
|
"High order 6 bits:
(3,150,000 div(32 * 440)) div 16."
Byte 7 = 0 "Hold this set of commands 0 beats.™

OPERATING SYSTEM REFERENCE 6-7

ACCESSING SYSTEM RESOURCES

Play voice 2 at full volume for 1 beat:

Byte 8 = 1 "1l command follows."

Byte 9 =176 1 011 0000

"Always 1" _| I |
"Voice 2 __: :
attenuation" |

"Leave it ;ll the way on."
Byte 10 = 1 "Play for 1 beat."

Turn the volume of voice 2 down by 12 dB and play for 2 beats:
Byte 11 = 1 "l command byte follows."

Byte 12 =188 1 011 1100
"Always 1" _|] |
| |
"Voice 2 __ | l
attenuation” |

|
"Attenuate by 12 dB."

Byte 13 = 2 "Hold for 2 beats."

Turn voice 2 off so it won't play forever:
Byte 14 = 1 "1l command byte follows."
Byte 15 =191 1011 1111

|
"Turn voice 2 off."

Byte 16 = 1 "Hold for 1 beat."

6-8

ACCESSING SYSTEM RESOURCES

Play white noise (hissing sound):

Byte 17 = 1 "1l command byte follows"
Byte 18 =228 "1 110 0 1 0 o
"Always 1" _| I I | |_ "Shift rate = 0 (least
| | | coarse hissing sound) ."
"Noise __ | I I
control" I |__ "White noise"

|
"Unused"

Byte 19 = 0 "Hold O beats.”

Turn down the volume 18 dB and hold for 2 beats:
Byte 20 = 1 "1l command follows"

Byte 21 =249 1 111 1001

"Always 1" _| |]
| |

"Noise _ | |
attenuation" |

|
"Attenuate by 18 dB."

Byte 22 = 2 "Hold 2 beats."

Turn noise off:

Byte 23 = 1 "1l command follows"
Byte 21 =255 1 111 1111
"Always 1" _| I |
"Noise __: :
attenuation" I

|
"Attenuate by 30 dB."

Byte 25 = 1 "Hold 1 beat."

OPERATING SYSTEM REFERENCE 6-9

ACCESSING SYSTEM RESOURCES

Printer Port

The device /deviprinter provides interface to the 4400 series parallel interface printer port. This
port provides a Centronics-compatible parallel port that can drive most inexpensive dot-matrix
(and some letter quality) printers.

/deviprinter accepts character streams and recognizes the ANSI X3.64 Select Graphic Rendition
escape sequences for bold or italic characters.

These devices are write-only; any attempt to read them will return an error. They are exclusive-
use devices and may be opened by only one task at a time.

The system calls zzyger and ttyset can be used to examine device status and change operation
settings.

Other Devices

The /dev directory contains other entries for devices supported by the operating system:
diske Raw system disk
disklc..disknc = Raw optional winchester disk

floppyc Raw floppy disk drive

tapec Raw streaming tape drive

null Null device

pmem Physical memory

smem System memory

swap Swap space on winchester disk

These devices are all character-oriented. The raw versions of the peripheral devices provide
access to them as simple character streams without file systems. The null device may be used as
a data sink. The memory devices can be used to inspect and modify the system’s memory.

These devices, with the exception of /dev/null, are reserved for use by system programs.
CAUTION
Be very careful when you use these devices because

errors in programming them may crash the operating
system and destroy the disk file structure.

6-10

ACCESSING SYSTEM RESOURCES

DISPLAY, MOUSE, AND KEYBOARD SUPPORT

The display of the 4400 series products is dependent upon the hardware design. Refer to the
appendices for a description of the display of each product. The operating system controls access
to the display and is consistant throughout the product family. The operating system also
supports the creation and movement of a display curser. Information about mouse and keyboard
event processing can be found in the 4400 Series Assembly Language Reference.

The 4400 series display uses Smalltalk-80 conventions. The upper-left corner of the display has
coordinates (0,0), while the lower-right comer has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk contacts. The design of the event mechanism is patterned closely after a similar
mechanism described on pages 648-650 of the book Smalitalk-80: The Language and Its
Implementation.

Cursor and Mouse Tracking

The cursor is a 16 X 16 bit-map that is displayed by logically ORing it into the display bit-map.
The contents of the area under the cursor are saved and they are restored when the cursor is
moved. The operating system allows the cursor’s position to track the motion of the mouse.
When this feature is enabled, the operating system will automatically move the cursor whenever
the mouse is moved.

The mouse position is not allowed to exceed certain bounds when the cursor is linked to the
mouse. The default bounds are the virtual display coordinates. The user may change these
bounds and allow the cursor to be moved off the virtual display.

FLOATING POINT SUPPORT

The operating system provides access to the floating point hardware. Floating point values are in
IEEE format. Both 32-bit single precision and 64-bit double precision formats are supported.
For more information about floating point support, refer to 4400 Series Assembler Language
Programmers Reference.

OPERATING SYSTEM REFERENCE 6-11

Appendix A
4404 HARDWARE DEPENDENCIES

This appendix is specifically for the 4404 Artificial Intellegence Machine, containing information
about the display and memory organization. Section 6 describes how to access the hardware with
the software in the 4400 series family.

DISPLAY SUPPORT

The 4404 display is a 1024 X 1024 virtual display viewed through a 640 X 480 physical display
viewport. The relation between the virtual display and the display viewport is shown in Figure
A-1. The operating system includes support that allows positioning and smooth panning of the
viewport over the virtual display. The operating system also supports the creation and movement
of a display cursor.

The 4404 display uses Smalltalk-80 conventions. The upper-left corner of the display has
coordinates (0,0), while the lower-right comer has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk contacts. The design of the event mechanism is patterned closely after a similar
mechanism described on pages 648-650 of the book Smalitalk-80: The Language and Its
Implementation.

Display Panning

The operating system allows the 640 X 480 hardware display viewport to be positioned anywhere
on the virtual display as long as the upper left corner has an X-coordinate less than 383 and a Y-
coordinate less than 543.

The operating system supports the panning of the viewport over the virtual display under control
of the mouse and joydisk. When joydisk panning is enabled, pushing the top of the joydisk
causes the Y-coordinate to decrease by S pixels during each vertical sync interrupt, while pushing
the bottom causes it to increase a like amount. Pushing the left side of the joydisk causes the X-
coordinate to decrease S pixels per interrupt; while pushing the right side of the joydisk causes it
to increase. Joydisk panning ceases in a particular direction when the coordinate for that
direction reaches zero or its maximum value.

The cursor remains at a fixed position on the virtual display while the viewport is panned by the
joydisk. When cursor panning is enabled, moving the cursor will also cause the viewport to pan
so that the cursor is always located within the physical viewport. This allows the mouse to pan
the viewport position because the cursor position is usually linked to mouse movement.

OPERATING SYSTEM REFERENCE A-1

4404 HARDWARE DEPENDENCIES

Thie is the default
screen position.

L%

(position
/l

Figure A-1. 640 X 480 Window Into 1024 X 1024 Bit-Map.

4404 HARDWARE DEPENDENCIES

MEMORY USE

Overall Address Space

The 68010 processor on the 4404 is capable of addressing 16 Mb of memory. Of this, the 4404
recognizes the lower 8 Mb. (All addresses given in this discussion will be hexadecimal unless
stated otherwise.) The 4404 operating system uses a virtual memory scheme whereby 8 Mb of
virtual memory is mapped into the 4404°s physical memory in 4 Kb increments. To a
programmer working through the operating system, it appears that the entire 8 Mb address space
(ranging from 000000 through 1FFFFF) is available.

Physical Memory

The standard 4404 contains 1 Mb of physical RAM in addresses 000000 through OFFFFF.
Option 1 adds an additional 1Mb of physical memory in addresses 100000 through 2FFFFF.

Addresses 200000 through SFFFFF are reserved for future expansion.

Display Memory

The 4404 display memory begins at address 600000 and occupies through address 6FFFFF. The
virtual display begins in the upper left corner at address 600000 and proceeds in 1024 (decimal)
lines of 64 (decimal) 16-bit (decimal) words. Each word has the most significant bit first, thus
each word controls 16 pixels on the display.

/0 and ROM Memory Space

The memory segment from 700000 through 7FFFFF is dedicated to ROM, /O, and various
utilities. It consists of eight 128 Kb pages arranged as:

700000 -- 71IFFFF Spare 0

720000 -- 73FFFF Spare 1

740000 -- 7SFFFF ~ Boot ROM

760000 -- 77FFFF Debug ROM space (for factory use)
780000 -- 79FFFF Processor Board I/O (treated later)
7A0000 -- 7BFFFF Peripheral Board I/O (treated later)
7C0000 -- 7FFFFF EPROM application space

OPERATING SYSTEM REFERENCE A-3

4404 HARDWARE DEPENDENCIES

Processor Board I/O

780000 -- 781FFF Map Control Registers
782000 -- 783FFF Video Address Registers
784000 -- 785FFF Video Control Registers
786000 -- 787FFF Spare

788000 -- 789FFF Sound

78A000 -- 78BFFF Floating Point Hardware
78C000 -- 78DFFF = Debug ACIA

78E000 -- 78FFFF Spare

Peripheral Board 1/0

7A0000 -- 7TAFFFF Reserved for future expansion
7B1000 -- 7B1FFF Diagnostic registers

7B2000 -- 7B3FFF Printer

7B4000 -- 7BSFFF Serial /O

7B6000 -- 7TB7FFF Mouse

7B8000 -- 7BOFFF Timer

7BA000 -- TBBFFF Calendar

7BCO00 -- 7BDFFF SCSI bus address registers
7BEOQ0 -- 7BFFFF SCSI

A4

Appendix B
4405 HARDWARE DEPENDENCIES

This appendix is specifically for the 4405 Artificial Intellegence Machine, containing
information about the display and memory organization. Section 6 describes how to access the
hardware with the software in the 4400 series family.

DISPLAY SUPPORT

The 4405 display is a 1024 X 1024 virtual display viewed through a 640 X 480 physical display
viewport. The relation between the virtual display and the display viewport is shown in Figure
B-1. The operating system includes support that allows positioning and smooth panning of the
viewport over the virtual display. The operating system also supports the creation and movement
of a display cursor.

The 4405 display uses Smalltalk-80 conventions. The upper-left corner of the display has
coordinates (0,0), while the lower-right corner has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk contacts. The design of the event mechanism is patterned closely after a similar
mechanism described on pages 648-650 of the book Smalltalk-80: The Language and Its
Implementation.

Display Panning

The operating system allows the 640 X 480 hardware display viewport to be positioned anywhere
on the virtual display as long as the upper left corner has an X-coordinate less than 383 and a Y-
coordinate less than 543.

The operating system supports the panning of the viewport over the virtual display under control
of the mouse and joydisk. When joydisk panning is enabled, pushing the top of the joydisk
causes the Y-coordinate to decrease by 5 pixels during each vertical sync interrupt, while pushing
the bottom causes it to increase a like amount. Pushing the left side of the joydisk causes the X-
coordinate to decrease 5 pixels per interrupt; while pushing the right side of the joydisk causes it
to increase. Joydisk panning ceases in a particular direction when the coordinate for that
direction reaches zero or its maximum value. :

The cursor remains at a fixed position on the virtual display while the viewport is panned by the
joydisk. When cursor panning is enabled, moving the cursor will also cause the viewport to pan
so that the cursor is always located within the physical viewport. This allows the mouse to pan
the viewport position because the cursor position is usually linked to mouse movement.

OPERATING SYSTEM REFERENCE ; B-1

4405 HARDWARE DEPENDENCIES

o0y (e

This is the default 4
screen position.

W/’//
(position AN
—— V% N
7 (639,479) 7 N
/;//
/ /

Figure B-1. 640 X 480 Window Into 1024 X 1024 Bit-Map.

B-2

4405 HARDWARE DEPENDENCIES

MEMORY USE

Overall Address Space

The 68020 processor on the 4405 is capable of addressing a 32 Mb logical address range of
memory. Of this, the 4405 recognizes the lower 16 Mb. (All addresses given in this discussion
will be hexadecimal unless stated otherwise.) The 4405 operating system uses a virtual memory
scheme whereby 32 Mb of virtual memory is mapped into the 4405°s physical memory in 4 Kb
increments. To a programmer working through the operating system, it appears that the entire 32
Mb address space (ranging from 000000 through FFFFFF) is available.

Physical Memory |

The standard 4405 contains 2 Mb of physical RAM in addresses 000000 through 1FFFFF.
Option 2/4 adds an additional 2/4 Mb of physical memory in addresses 200000 through 6FFFFF.

Addresses 700000 through DFFFFF are reserved for future expansion.

Display Memory

The 4405 display memory begins at address EO0O0O00 and occupies through address EFFFFF. The
virtual display begins in the upper left corner at address EO0000 and proceeds in 1024 (decimal)
lines of 64 (decimal) 16-bit (decimal) words. Each word has the most significant bit first, thus
each word controls 16 pixels on the display.

/0 and ROM Memory Space

The memory segment from FO0000 through FFFFFF is dedicated to ROM, I/O, and various
utilities. It consists of eight 128 Kb pages arranged as:

FO0000 -- F1IFFFF Spare 0

F20000 -- F3FFFF Spare 1

F40000 -- FSFFFF Boot ROM

F60000 -- FTFFFF = Debug ROM space (for factory use)
F80000 -- FOFFFF Processor Board I/O (treated later)
FAO0000 -- FBFFFF Peripheral Board IO (treated later)
FC0000 -- FFFFFF = EPROM application space

OPERATING SYSTEM REFERENCE B-3

4405 HARDWARE DEPENDENCIES

Processor Board I/O

F80000 -- F81FFF =~ Map Control Registers
F82000 -- F83FFF Video Address Registers
F84000 -- F85FFF = Video Control Registers
F86000 -- F87FFF Spare

F88000 -- F89FFF = Sound

F8AO0O00 -- F8BFFF Floating Point Hardware
F8CO000 -- FSDFFF = Debug ACIA

F8EQOO -- FSFFFF Spare

Peripheral Board 1/0

FAO000 -- FAFFFF Reserved for future expansion
FB1000 -- FB1IFFF Diagnostic registers

FB2000 -- FB3FFF Printer

FB4000 -- FBSFFF Serial /O

FB6000 -- FBTFFF = Mouse

FB800O -- FBOFFF Timer

FBAOOO -- FBBFFF Calendar

FBCO00O -- FBDFFF SCSI bus address registers
FBEQOO -- FBFFFF SCSI

B4

Appendix C
4406 HARDWARE DEPENDENCIES

This appendix is specifically for the 4406 Artificial Intellegence Machine, containing
information about the display and memory organization. Section 6 describes how to access the
hardware with the software in the 4400 series family.

DISPLAY SUPPORT

The 4406 display is a 1280 X 1024 raster display. The operating system supports the creation
and movement of a display cursor.

The 4406 display uses Smalltalk-80 conventions. The upper-left corner of the display has
coordinates (0,0), while the lower-right comner has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase to the right.

Full program access to interactive event processing is supported through system calls to an event
manager. Events include mouse movements, and up/down transitions of the mouse, keyboard,
and joydisk contacts. The design of the event mechanism is patterned closely after a similar
mechanism described on pages 648-650 of the book Smalltalk-80: The Language and Its
Implementation.

MEMORY USE

Overall Address Space

The 68020 processor on the 4406 is capable of addressing a 32 Mb logical address range of
memory. Of this, the 4406 recognizes the lower 16 Mb. (All addresses given in this discussion
will be hexadecimal unless stated otherwise.) The 4406 operating system uses a virtual memory
scheme whereby 32 Mb of virtual memory is mapped into the 4406°s physical memory in 4 Kb
increments. To a programmer working through the operating system, it appears that the entire 32
Mb address space (ranging from 000000 through FFFFFF) is available.

Physical Memory

The standard 4406 contains 2 Mb of physical RAM in addresses 000000 through 1FFFFF.
Option 2/4 adds an additional 2/4 Mb of physical memory in addresses 200000 through 6 FFFFF.

Addresses 700000 through DFFFFF are reserved for future expansion.

OPERATING SYSTEM REFERENCE C-1

4406 HARDWARE DEPENDENCIES

Display Memory

The 4406 display memory begins at address ECO000 and occupies through address EFFFFF. The
virtual display begins in the upper left corner at address EO0000 and proceeds in 1024 (decimal)
lines of 64 (decimal) 16-bit (decimal) words. Each word has the most significant bit first, thus
each word controls 16 pixels on the display.

/0 and ROM Memory Space

The memory segment from F00000 through FFFFFF is dedicated to ROM, I/O, and various
utilities. It consists of eight 128 Kb pages arranged as:

FO0000 -- FIFFFF Spare 0
F20000 -- F3FFFF Spare 1
F40000 -- FSFFFF Boot ROM

F60000 -- F7FFFF
F80000 -- FOFFFF
FA0000 -- FBFFFF

Debug ROM space (for factory use)
Processor Board /O (treated later)
Peripheral Board /O (treated later)

FCO0000 -- FFFFFF

EPROM application space

Processor Board 1/0

F80000 -- F81FFF

Map Control Registers

F82000 -- F83FFF Video Address Registers
F84000 -- F8S5FFF Video Control Registers
F86000 -- F87FFF Spare

F88000 -- F89FFF Sound

F8AOQ00 -- F8BFFF Floating Point Hardware
F8C000 -- FSDFFF = Debug ACIA

F8EQ0O -- F8FFFF Spare

Peripheral Board 1/0

FA0000 -- FAFFFF
FB1000 -- FB1FFF

Reserved for future expansion
Diagnostic registers

FB2000 -- FB3FFF Printer

FB4000 -- FBSFFF Serial /O

FB6000 -- FB7FFF Mouse

FB800O -- FB9FFF Timer

FBAQQOO -- FBBFFF Calendar

FBCOQO0 -- FBDFFF SCSI bus address registers
FBEOOO -- FBFFFF SCSI

Appendix U
4400 Series O/S Reference Update

Please add the following subjects to your copy of the 4400 Series Operating System Reference
Manual. The information was not available when the manual was printed.

CcC

The “C” compiler, cc, takes the additional option +Q.

Additional Options

+Q —Suppress quad word alignment on 68020 code generation*
*68020 only

Explanation Of Options

The "‘C” compiler, by default, aligns data structures on quad word (words consisting of four
eight-bit bytes) boundaries. This, while allowing the 68020 to load and execute faster, causes
"holes" in the data structures. The +Q option lets you suppress this alignment to allow close
packing of data structures or compatilbility with data structures generated with non quad-aligned
compilers, such as 68000 or 68010 compilers.

4400 Series O/S Reference Update U-1

4400 Series O/S Reference Update

conset

You can choose several sizes and styles of monospaced fonts for your normal screen display on
the 4405 and 4406.

Additional Options

selectFont=<name> -- small, smallBold, medium, mediumBold,
large, largeBold, extralarge, extraLargeBold*

*68020 only.

Explanation Of Options

Conset allows you to select the size and style of fonts used by the terminal emulator. It allows
you to select the suitable monospaced fonts from the selections in the directory /[fomts. The
additional fonts in this directory are available via Smalltalk-80 or the graphics library.

U-2 Update

4400 Series OIS Reference Update

headset

The headset command allows you to enable or disable the floating point processor signals,
enable or disable demand-load operation, and block-align??? (questions here). ..

Additional Options

+f/-f -- make file demand-load and block-aligned
+I/-1 -- set or clear "floating-point signal" bit
+Z/-Z -- block-align text and data segments on 512 byte boundaries

Explanation Of Options

The +fI-f option makes the file block-aligned (see the +Z option) and causes it to be demand-
load — that is, only pages that cause a page fault are loaded into physical memory.
Unreferenced pages are not loaded.

The +1/-I option allows you to catch or ignore signals generated by the floating point processor.
By default, floating point signals are ignored. If you want to catch these signals, enable them
with the +I option.

The +Z/-Z option lets you force text and data segments to begin on 512 byte boundaries.

4400 Series O/S Reference Update U-3

4400 Series O/S Reference Update

load

Additional Options

+q -- suppress quad word alignment of each segment*

+I -- enable floating point signal processing

+z -- align text and data segments on 512 byte boundaries
*68020 only

Explanation Of Options

Normally, the loader aligns the beginning of each segment on a quad word (a word consisting of
four eight-bit bytes) boundary. The +¢ option allows you to suppress this alignment.

The loader normally does not enable floating point processor signals. If you are using, or need to
catch, these signals, enable them with the +I option. You can enable or disable signals on a
compiled and loaded program via the headset utility.

The +Z option lets you force text and data segments to begin on 512 byte boundaries.

U4 Update

Abort 4-20

<ACK>
acknowledge character (#6) 5-3

Address space A-3,B-3,C-1

ANSI Commands 5-3

ANSI Command
acknowledge character (#6) 5-3
auto-repeat mode 5-25
auto-wrap mode 5-26
backspace character 5-3
bell character 5-3
carriage return character 5-5
character (#0) 5-17
character (#1) 5-23
character (#127) 5-9
character (#16) 5-9
character (#17) 5-7
character (#18) 5-8
character (#19) 5-8
character (#2) 5-24
character (#20) 5-8
character (#21) 5-16
character (#22) 5-25
character (#23) 5-12
character (#24) 5-3
character (#25) 5-11
character (#26) 5-24
character (#27) 5-12
character (#28) 5-13
Character (#29) 5-13
character (#3) 5-13
character (#30) 5-19
character (#31) 5-33
character (#4) 5-12
character (#5) 5-12
control representation mode 5-5
cursor backward 5-5
cursor backward Tab 5-4
cursor down 5-6
cursor forward 5-6
cursor horizontal tab 5-4
cursor key mode 5-26
cursor position 5-6
cursor position report 5-4
cursorup 5-7
delete character 5-8

4400 Series Operating System Reference

Index

delete line 5-9

device attributes 5-7

device status report 5-10

disable manual input 5-12
disable manual input 5-9

enable manual input 5-12

enable manual input 5-9

erase character 5-10

erase in display 5-11

erase in line 5-11

form feed character 5-13

graphic cursor position report 5-27
horizontal and vertical position 5-14
horizontal tab character 5-13
horizontal tab set 5-14

identify terminal 5-27

index 5-15

insert character 5-14

insert line 5-14
insertion/replacement mode 5-15
keyboard action mode 5-15
keypad application mode 5-27
keypad numeric mode 5-27

line feed character 5-16
line-feed/new-line mode 5-16

mouse button and graphic cursor position reportin;

next line 5-16
origin mode 5-30
private use 1 5-17

request graphic cursor position report 5-31

request terminal parameters 5-30
reset mode 5-18

reset to initial state 5-18

restore cursor 5-30

reverse index 5-17

save cursor 5-31

screen mode 5-31

select character set 5-20

select graphic cursor report type 5-32
select graphic rendition 5-21
<select-code> 5-20

send/receive mode 5-24

set mode 5-22

set top and bottom margins 5-32
shift in character 5-22

shift out character 5-23

Index-1"

space character 5-24

tabulation clear 5-25

vertical tab character 5-33
ANSI X3.64 escapes 6-11
Append 4-27

Attenuation 6-3

Beats 6-10

<BEL>

bell character 5-3

Boot procedure 6-1
Bottom 4-24
Break 4-28
<BS>

backspace character 5-3
<CAN>

character (#24) 5-3
<CBT>

cursor backward tab 5-4
Cchange 4-30
Centronics-compatible port 6-11
Change 4-29
<CHT>

cursor horizontal tab 5-4
Commset 6-2
Conset 6-1
Coordinates, display 6-12, A-1, B-1,C-1
Copy 4-30
<CPR>

cursor position report 5-4
<CR>

carriage return character 5-5
Crash 6-11
<CRM>

control representation mode 5-5
<CUB>

cursor backward 5-5
<CUD>

cursor down 5-6

<CUF>

cursor forward 5-6
<CUP>

cursor position 5-6
Cursor 6-12, A-1, C-1

operation 6-12

<CUU>

cursorup 5-7

<DA>

device attributes 5-7

Index-2

Dbs 6-8
<DCl1>

character (#17) 5-7
<DC2>

character (#18) 5-8
<DC3>

character (#19) 5-8
<DC4>

character (#20) 5-8
<DCH>

delete character 5-8
Decibels 6-8

Character (#127) 5-9
Delete 4-31
/dev 6-1, 6-11
/dev/comm 6-2
/dev/console 6-1
/dev/disk 6-1
Device driver, block-oriented 6-1
Device driver, character-oriented 6-1
Device drivers 6-1
Device port 6-11
/dev/null 6-11
/dev/printer 6-11
/dev/sound 6-2
Display cursor A-1,B-1, C-
Display memory A-3, B-3,C-2
Dkl 4-11
Dk2 4-11
<DL>

delete line 5-9
<DLE>

character (#16) 5-9
<DMI>

disable manual input 5-9
Dot-matrix printer 6-11
<DSR>

device status report 5-10
<ECH>

erase character 5-10
<ED>

erase in display 5-11
Edit 4-20
<EL>

erase in line 5-11

character (#25) 5-11

<EMI>

enable manual input 5-12
<ENQ>

character (#5) 5-12
<EOT>

character (#4) 5-12
Esave 4-12
<ESC>

character (#27) 5-12
Eset 4-13
<ETB>

character (#23) 5-12
<ETX>

character (#3) 5-13
Event manager 6-12, A-1, B-1, C-1
Expand 4-32
<FF>

form feed character 5-13
Find 4-24
Floating point

IEEE number format 6-12

precision 6-12

support 6-12
Floppy disk drive 6-1
Flush 4-40
Frequency generator 6-3
<FS>

character (#28) 5-13
<GS>

character (#29) 5-13
Hardware 6-1
Header 4-13
<HT)

horizontal tab character 5-13
<HTS>

horizontal tab set 5-14
<HVP>

horizontal and vertical position 5-14

<ICH>

insert character 5-14
<IL>

insert line 5-14
<IND>

index 5-15
Insert 4-33, 4-34

Interactive events 6-12, A-1, B-1, C-1

Interface 6-1
I/O memory space A-3, B-3,C-2

4400 Series Operating System Reference

<IRM>
insertion/replacement mode 5-15
Joydisk A-1,B-1
K1 4-14
K2 4-14
<KAM>
keyboard action mode 5-15
Keyboard description
alphanumeric keys 5-34
caps lock key 5-33
control key 5-33
function keys 5-37
joydisk keys 5-37
numeric keypad 5-36
shift key 5-33
special keys 5-38
<LF>
line feed character 5-16
Lkl 4-15
<LNM>
line-feed/new-line mode 5-16
Log 4-21
Memory devices 6-11
Memory use A-3,B-3,C-1
Merge 4-35
Mouse A-1, B-1
Move 4-35
<NAK>
character (#21) 5-16
<NEL>
next line 5-16
New 4-40
Next 4-25
Noise generator 6-4
<NUL>
character (#0) 5-17
Null 4-39
Null device 6-11
Numbers 4-16
Overlay 4-36, 4-37
Panning A-1, B-1
Parallel port 6-11
Peripheral devices 6-1, 6-11
Phyical memory A-3, B-3,C-1
Position 4-26
Print 4-37
Printer device 6-11
<PU1>
private use 1 5-17

Index-3

RAM memory A-3,B-3,C-1
Read 4-41
Renumber 4-16
Replace 4-38
<Report-Syntax-Mode> 5-17
<RI>

reverse index 5-17
<RIS>

reset to initial state 5-18
<RM>

reset mode 5-18
ROM memory space A-3, B-3, C-2
<RS>

character (#30) 5-19
<SCS>

select character set 5-20
SCSIbus 6-1
<Select-Code> 5-20
Set 4-17
<SGR>

select graphic rendition 5-21
<SI>

shift in character 5-22
<SM>

set mode 5-22
<SO>

shift out character 5-23
<SOH>

character (#1) 5-23
Sound device examples 6-2, 6-6
Sound generation 6-2

<SP>

space character 5-24
<SRM>

send/receive mode 5-24
Stop 4-21
Streaming tape drive 6-1
<STX>

character (#2) 5-24
<SUB>

character (#26) 5-24
<SYN>

character (#22) 5-25
System calls 6-1
Tab 4-18

<TBC>

tabulation clear 5-25
<TEKARM>
auto-repeat mode 5-25

Index-4

<TEKAWM>

auto-wrap mode 5-26
<TEKCKM>

cursor key mode 5-26
<TEKGCREP>

graphic cursor position report 5-27
<TEKID>

identify terminal 5-27
<TEKKPAM>

keypad application mode 5-27
<TEKKPNM>

keypad numeric mode 5-27
<TEKMBREP>

mouse button and graphic cursor position reporting 5-28
<TEKOM>

origin mode 5-30
<TEKRC>

restore cursor 5-30
<TEKREQTPARM>

request terminal parameters 5-30
<TEKRGCR>

request graphic cursor position report 5-31
<TEKSC>

save cursor 5-31
<TEKSCNM>

screen mode 5-31
<TEKSGCRT>

select graphic cursor report type 5-32
<TEKSTBM>

set top and bottom margins 5-32
Tempo 6-7
Terminal

compatibility

DEC VT-100 5-2
tektronix 4100 series terminals 5-2

Terminal emulation 5-1

standards 5-1
Terminal emulator 6-1
Text 4-39
Top 4-26
Ttyget 6-1, 6-11
Ttyset 6-1, 6-11
U 4-22
<US>

character (#31) 5-33
Verify 4-18
Viewport A-1, B-1
Virtual display A-1, B-1

Virtual memory scheme A-3,B-3, C-1
Voice 6-7
Volume 6-8
<VT>
vertical tab character 5-33
Wait 4-22
‘White noise 6-10
‘White noise generator 6-2
Winchester disk 6-1
Write 4-42
X 4-23
Zone 4-19

4400 Series Operating System Reference Index-$

