T E SYSTEM Part No. 070-5307-00
MANUAL Product Group 65

6130 System

USER’S GUIDE

First Printing OCT 1984
Revised APR 1985

Tektronix

COMMITTED TC EXCELLENCE

This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instruction manual, may cause interference to
radio communications. It has been tested and found to comply with the limits for Class A
computing devices pursuant to Subpart J of Part 15 of FCC Rules, which are designed
to provide reasonable protection against such interference when operated in a commer-
cial environment. Operation-of this equipment in a residential area is likely to cause
interference in which case the users at their own expense will be required to take what-
ever measures may be required to correct the interference.

Copyright © 1984, Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending.

This document may not be copied in whole or in part, or otherwise reproduced except as
specifically permitted under U.S. copyright law, without the prior written consent of
Tektronix, inc., P.O. Box 500, Beaverton, Oregon 97077.

Specifications subject to change.

TEKTRONIX, TEK, and UTek are trademarks of Tektronix, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1984 Tektronix, Inc., Beaverton, Oregon.

Printed in the United States of America. All rights reserved. This
document may not be copied in whole or in part, or otherwise
reproduced except as specifically permitted under U.S. copyright
law, without the prior written consent of Tektronix, Inc., PO. Box
500, Beaverton, Oregon 97077.

TEKTRONIX, TEK, UTek, and PLOT 10 are registered trademarks

of Tektronix Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

NFS is a trademark of Sun Microsystems, Inc.

Contents

SECTION 1

SECTION 2

INTRODUCTION
What Is the 6130 Workstation?cccccccvvvvminncnnsnerensscssnns 1-2
Base Configurationccceveeveeceeeicneniensncciacsnasenssessanens 1-2
Workstation Options cccocirviieveininiesimnnecnencnceniennenes 14
Workstation Enhancements 1-4
ADOUL THiS GUITE .eveeerreremsnssecssasrescree s et sscssecsnssarsssssssnenas 1-5
Notation Conventionscccceceeereccrccecsrerersnennens 1-6
Related DOCUMENES cveceeciccerececcr st s anseeas 1-6
PERIPHERALS AND INTERFACES
Hard Disk DriVe ...cceeveeceemmeececmcrcn s s ssssasa e sesees 2-2
DiSkette DIVEccccevemmeeeeereenecriennsescesesncssessesssnesessesnne e 2-2
Diskette Careccccevevirncnrervnneinsecreesineessssesseessennes 2-3
How to Insert a Diskettsccccccicirieevcnnicsennnseruecneesasneneas 2-4
Checkout of the B1KPO4 ... enaeanes 2-6
Reading and Writing Files ...cccoecceecvicmiicrneetcncenanaeen 26
Possible Problemsccceinnnnice et veeene 2-6
Streaming Tape Considerationscoceevceerereneereraenenas 2-8
Standard UTek ULIlities ccccovcnenniinimiiiniccrnciccceceeenenes 2-8
CPIO cueeererremeceesenrantrssnessrssnssassse s ssee e sensabessssn e ssrsssestrassnasens 2-8
CPIO SCHPLS ceeceriecrecrccr ittt erae et ease e e 29
Tar ceesueeseer s e na e e eea st 2-12
Scripts to Invoke taroccececiini e 2-12
DUMP/RESIONS ...veeeeeceeee et sssssestesses s sessnnans 2-13
DUMP ettt scsstrans st ss e sre s e 2-13
RESIOI8 ..ot ae e 2-13
AsSIGN/DOASSION ..ottt e 2-14
101 G 1ot Lo =T USRI 2-15
LAN Interface - 2-16
RS-232-C Interfacesccvvcmecnneinneunenernceenenesenennene 2-16
Using Terminals with UTekcccconimmnirciiccienne 2-17
Connecting Your Workstation to a Modemc..ucee.. 2-17
General Purpose Interface Buscoceeeeiinciincicinanns 2-17
The /dev Directoryceeevivccniieincneiniene e e 2-18
Formatting a Diskettecccoeeeinrcincniicceieeneecenccennnene 2-21
Introduction to Device Special Filesccoovvvvvvericcnvccenenen. 2-24
Device Special Files for 61TCO1 and 4944c..cn... 2-26
Device Special Files for Cartridge Tapecccceuvueenenene 2-26
Making Device Special Files for Cartridge Tape 2-26
Device Special Files for Hard Disksccocoecenimeincenunnes 2-27
Making Device Specific Files for the Hard Disk 2-27
Formatting the Hard Disk ccccocvinininnniinncncencnrcneenens 2-28
Building a File System 2-30

6130 USER'S GUIDE REV, JAN 1983

SECTION 3

SECTION 4

SECTION 5

ENHANCEMENTS
FIoOr Standcceooveirrrreererresne s canes e ssnes s sreesnssnnae 3-2
{111 G2 - Vo7 - L SRRSO 34
Memory EXPanSionccceeeeeresenssnsisesnsnescecensnossinnssnenes 3-8
NEtWOTK TranSCOIVET ccocereerririnisnrisenineneessatessssssnsssessasess 3-8
Streaming Cartridge Tape Drive oiinnncnniininnnnnens 39
Character PrRrcccocceenceeccsnieninesisserasssssssanssssasasasssusaess 3-10
COlOr COPIBN ...oeecrecereerstsesiernseeseses st s anta e s s samsnsasssna s sassnne 3-10
START-UP AND SHUTDOWN
Start-up Procedures ...t s 4-1
Configuration SWIChEScoceemeieecrrrreeennccrneceen 4-2
Turning on the Console and Peripheralscccccceneeee. 45
The Start/Stop SWICh ... 4-6
Checking for Start-up EIorsceeeeeeceveennncnrisicniceennns 4-8
Diagnostics LEDS ccoceieirennenncniene s snsaccenesens 4-8
LOGQING IN oottt et e st 4-10
The tset COMMAaNd ccevcemiiirircctne et rnseeeseneee 4-10
Shutdown Procaduresccccceeeieenrmnineesseentsscennsnnenssssssssees 4-11
If the System Halts ...ccucoiereetee e 4-12
CUSTOMIZING YOUR ACCOUNT
The .profile File ..., 5-1
Other .profile Possibilitios ... 56
C-ShEll FIlBS ..ecoeeerrecreeeaermrcsseeririe e csresnesnsne s et sssesarasseasess 57
Sample .CShIC File ... 5-7
Sample .Iogin File ..ot 5-10
Other .cshrc and .login Lines ...t 5-12
AOQOUL File et 5-14
MH Mail FIloS ..vvvrceeemrreececee s s 5-14
Sample .mh_profile Filecccoovveieeiiiiccien 5-15
Sample .aliases File ... 517
The vi Text EAHOr ..c..cccceeecnrcce et ssisaens 5-18
Sample .exXIC File oo 5-18
The finger COMMANd ccocceermrmeieneeessnise e 5-20

REV, JAN 1989 6130 USER'S GUIDE

SECTION6 THE LOCAL AREA NETWORK

SECTION 7

INtFOAUCHION ...ttt et sae s s s e e aeanesnaen 6-1
What Is @ LAN? ...t ee s e s 6-2
Network File System ... sneeaens 6-4
Client and Server Modesccccvvriicniiniinecncnenennnene 6-5
Stateless versus Stateful Serversccovvcevrvnininiiiennns 6-5
HOW NFS WOIKS ..oococirirecrnrmene et cccisesesssascasssss s senenes 6-6
Finding Mounted File Systemsccccooeermevennnnerinenenes 6-10
The /etc/hosts.equiv File ...t 6-11
THE THoStS File ottt g-11
Yollow Pagescccceeercenineicinnienitincicsnnsan e snesenasen 6-12
The on COmMMANA oooieeececereereccin sttt enae 6-12
The Remote COmMMANdScccccccecmncniriininnninsrnecsensseenenesanas 6-13
The riogin ComMmMand cccccvinsccsinrirnenere e sessesseceanaens 6-13
The rsh Command ccccvervrrrennrrntne e 6-13
Your rsh EnVIronmMent ceceeceecvenmeeneenrenircsecesencesennsnees 6-15
The rop Command cceerrirennnnscec e e snss s s e s 6-15
Remote Command Protectionccccevvvniicienccninecnnennns 6-16
The /etc/hosts.equiv File occceevvceiiiiiiiicceeieee 6-17
The .thosts Flle ..o 6-17
Electronic Mailc.coeevvenecrnne ittt e 6-18
Forwarding Your Mail ..o ereeiceien e 6-19
The uptime COMMANd ...cccccvininiiinriiiienee st ses s ses 6-20
Telnet and FTP .cveeereeeiciciiieaad eereesneeneesesnrntasessaernens 6-21
PROGRAMMING
Shell Programming ccccoccineceneeestesiensessssseesssesnssesesneanes 7-1
Programming Languagescceerenenesccsecnnssnicnniens 7-1
C ... eeeesmeeeeesseeessesemstessraeneessrannesessenae 71
FORTRAN ...oeeteeererreenreesnesnemseeae st e se s sasssessesssnnssassenns 7-2
BASIC oeeeeeeteereneeme e ste e entsr s sre e s e sesst s serns st e sn b 7-2
PASCAI ..eoeevrerrcereerrnrerenessassscenese ssssnsansnens s sae s ne san s nnsnean 7-2
Programming Support TOOIS cveeeiemirteiieccceecenncenne 7-3
Linking Object Filescoccevemiirieeen sttt 7-3
Maintaining Source Code - ceeere 7-3
Debugging AidScveceerecemiiiimiseienetite e snesessnes s seae 7-4
Error MESSAg08S ..cccveevcierineriiniecieae ettt sne e sssn e 7-5
CraphiCs coceereeercnretiseiinieniinins e e ssassass s st srsss e seasacensass 7-6
6130 USER'S GUIDE REV, JAN 1989 [}

SECTIONS8 GPIB PROGRAMMING

The GPIB DIVEI ...ccvveeeecinieccmniiciniininintsssesnesnesssasssnssnsanasaenas 8-2
Port Configuration Driverccevereerneennnee .. 83
Operational COmMpOoNentscocieeereererrerneseerensenssenasaae 8-4

Interface DRVErScccvcereennrccneece s ceese s sneansees 8-4
Instrument Driversccccvmenncniinnninccnneneeeenneecsanas 8-5

Configuring the GPIB ccecvmiemieevrrcneree et e eaeee 8-6
Configuring Interface Driversc.ccccceeeeiciincsenccssnncnees 8-7
Configuring Instrument Drivers ccoveecenvinennccnivecienennns 8-8

Supported GPIB Subsetsccoeiemenereneieneresnne s
GPIB Program Examples

Example Number One
Example Number Two

Example Number Three
Example Number Four

SECTIONS BASIC GPIB SUPPORT
Subroutines: Instrument Driver
Subroutines: Interface Driver
Subroutines: Shared 1/0 Support
Programming Considerationsc.cceeeeeceneinnnsesninesenenes
Exception Handlingccceevnmnnirneieniciecrine s cseesennns
Condition Handlingccceververiminnie i
Asynchronous Data Transfers
Interface and Instrument Polling ..cooeureceeeiececieecie, 9-11
BASIC GPIB FUNCHONS ...cccverercrniiiisiiserssieceein e snessnaseas 9-12

iv REV, JAN 1989 6130 USER'S GUIDE

APPENDIX A GPIB CONCEPTS

Mechanical EIBMENSccevreeeererrecreceeeene s seeesaemsssssasnns A-1
Allowable Configurationsceecenccrcenrncncecersneeeeeseees. A3
RESHICHIONS oeeeneeicececncr it essise s csecsnnesar e rassenen A-4
Electrical Elementsccoocooerevinnirccnic e sseeane A-4
Functional EIemMentscccceeveevnenrcnseccnssieriessesssesasennens A5
Instrument Addresses ... reereeresteensresnaerasennensese A-7
Primary Address
Listen Address
Tallk Addrase . ..iceccnrenenrereeceaeesnreessesenne s sen e ees B
Secondary Addressccccvicereicicneeene et A9
GPIB BUSES ..occoeeeeerinccireecneetosseestonassnresmeessssssssrenssenssasessens A-9
Data BUS .oooeeeceeeecccrereneciecnessnesanesnnscnsesaneassssasesessssssanssnas A-10
Management BUSccocininninecinintenncne e sesas s A-10
interface Clear (IFC) ...cccocevererenrenrncinccsnnecnrsncsncnseesaeanes A-10
Handshake BUScccccecceeeesrereremncesenn i snsesncssnessesnnsannes A-11
GPIB Communication Protocolccceeiviccninncnniinsinseesanes A-12
COMIOUBIS ..ot sene e s s ssssses e s sansnasens A-12
TaAIKEIS .ooeeeeeeecinmecnecreee s crnee s eestesassenensesasessnnesan e s sesanssasess A-13
LISIBNBIS .eeeeereereermmrmeeeerenesssessasassasnessssesasssnossossssnsosasnness A-13
Universal COmMMAaNndSccccovurecieecnnrccrcranenetecsssnsresssessseessne A-14
Addressed COMMANGS ccccevciiccerereenenenercrenecencsnesannsnens A-16
Serial POlliNG ..ottt A-17
StatUus BYES ..ocivceeeeeecreence ettt s eneans A-17
Requesting Servicercsinensensesessesesnrseeens A-18
Conducting Seriai PoilS ...cccoeverieeiriecnirmcerinssnssesesessesseses A-i8
Parallel Polling. ...ccccemmiinineeenriaenein e ene st et cane e o A-19
Individual Status MesSagesc.ccceemvcrninneneeesnersacesencnees A-19
Configuring the Bus for Parallel Pollingcccveveeeeiiiceeeeees A-19
Conducting the Parallel Pollcoccevmvenvimnrnerenrereenes A-18

APPENDIX B TEKTRONIX STANDARD CODES AND FORMATS
Compatibility .cccoeveeercrcec e s
Human Interface .
Representing Numbers

Device-Dependent Message Structurecceeeievernrieenenns B-3
Overall Message Formatc.ccoevvnrvmncrnnnesssece e B-3
Message Terminatorcooeerncniesncnscnasenns B4
Program Message Unitccooeeevemmesesine et B-4
Measurement Message Unitccoveeeneccnmnrcneceerenncans B-4
Dala TYPOS cecceeeeneeercensrncessentssassesessesnsrssnsosersessasassas B-4
Message CONVENtioNScccccicuimsiescssscesenesnnsnsesesssessesesanes B-5
End 0f MESSA06 ..ccceeeeecreencceerecretssitsissinnissasssessssssssnsssncns B-5
Status BYIOS .eeceecvereenrecenicncnsese s s eneeens B-5
QUBMBS ...eocerennirinnemsneer i et enees B-6
AdGItional FOAIUNES cccoccveererriicnenssnirenciiennesseessesnesssesenanas B-7

6130 USER'S GUIDE ' REV, JAN 1989

Figures

6-3

A-1

vi

A Typical 6130 Workstation Configurationcceecvvcnunicinennniee. 1-2
Hard Disk and Diskette Drive Locationsccccvueveerenemnneesncccencnen. 241
Opening the Latch on the Diskette Driveccccecviciiinniiincncnnnee 24
Inserting @ DISKeteccccceeneeenirisscen et 25
Closing the Latch on the Diskette Dnve .. 2-5
LAN, RS-232-C, and GPIB Connectorscccceeeemreinennncscsecsscsnnens 2-16
/dev Filename CONVeNntioNScocvivmrieerietrcnnnncsnnesensesencisenns 2-18
Workstation in a Floor Stand ... 3-2
Workstation Backplane SIotscccemivemennniensnncecsinnncee 34
Configuration SWItChESceevieirininec ittt 4-2
Meaning of the Configuration SWItChes ccceveiiiniineniennnnnns 4-3
The Start/Stop SWHCH .. 4-7
DiagnoStic LEDS ...ococvcecvencermiermretessssinnssnssnss st cenesnscssssassseseasensanaess 4-9
Local Area Network COMPONENtSccccceieireireenrmnsesssneseeseeesessesnnene 6-3
Gateway NOe ...t s 6-3
Typical Heterogeneous Computing Environmentcceeeveenreenee. 6-4
The File System on Workstation A ...t insncnncnnes 6-6
The File System on Workstation B ... 6-7
The Remotely Mounted Directorycceieennceninnicsnnnsicnnens 6-8
Mounting Another Remote Directory cccvivmicciinnnneneenees 6-9
GPIB Driver Organizationcccceevesemennsnenissscssssnsmsesnsiss e sesnenes 8-2
GPIB CONNBCION ..coeeverreeruerersnsnsessamssssmstesmssevansssssssnsassnssmnsssamsnssssnsss A-1
Allowable GPIB Configurationscceevemvenencnceniinisniess s sees A-3
Example Primary Address Settingcvecevniiniccnineennnnnns A7
Data, Management, and Handshake Busesccccooeiviinnnncinnnns A-9

REV, JAN 1989 6130 USER'S GUIDE

Examples

2-1
2-2
5-1
5-2
5-3
54
5-5
5-6
5-7
6-1
6-2
6-3
6-4

Saformat Top-Level MeNU ...t 2-22
Flexible Diskette Format Command Menuc.ceceeeireniiensnennnnns 2-23
Sample .profile Filecoceerereminieteriencintnere s 5-2
SaMPIE .CSHIE File .eeeeececcnrienreciccs e issnncs et sa s sasncnsens 5-8
Sample .1ogin File ..ot 5-11
Sample .mh_profila File 5-16
Sending Mail Using an Aliasccocueeremevenininnncncnensesenecessccsnsnens 5-18
Sample .@XIC File .ot 5-19
Output of the finger Command ceeeereeenieiine st 5-20
... 6-10
... 6-11
Sending Mail to Another Machingc.eeeeeiervcncnccnncniiinen 5-1
The uptime r COMMAN ...ccccevvrireermrrerenessnsrs s cnen s esasnenes 6-20

Tables

2-1
2-2
3-1
4-1
4-2

7-1
8-1
8-2
8-3
8-4
9-1
g-2
9-3
9-4
85
9-6
B-1
B-2

Workstation Interfacescccceniiiniininieinnne ettt 2-15
Standard Files in the /dev Directory cccceeereeeveieneecrcceiceceeneene 2-20
Enhancement Part’/Option Numbers ... 3-1
Selecting the Console Device ... 44
Selecting the Boot Device ...t 4-5
Programs in the MH Mail System eeeeremreeresenesense D-18
Run-time Eror MeSSagescccccecevmeeceeecenessennesesiensannesansanssacaccnse 75
GPIB COMMANAS ...oocreeriereceneesernesersessessisssessersssssssseassassessessensassnss 8-6
Default Interface Driver Configurationcccceemveniinnnnicncciencecnen. 8-7
Default Instrument Driver Configurationccoeieiemcnceicinnnene 8-8
GPIB SUDSEIS ...oeeeeeecceerererere sttt s s s st een e nan 8-9
GPIB Subprograms: Instrument ... 9-3
GPIB Subprograms: Interfaceccemrreieienenciecseniiies 9-5
GPIB Subprograms: Shared /O ... 9-6
BASIC GPIB CONGIIONS ...cocerecmrereeesecncessesssssesarsersensssessssssssasnesnas 9-9
GPIB Subprograms: Asynchronous VOmeeencnrcceennsennens 9-10
BASIC GPIB FUNCHONS ..ooceeerreecetreecticstesisesinisenesenssmessesnaessassnses 9-12
Number Formats (ANSI X3.42) ... erererenenner e crensnstenes B-3
Status Byte Definitions eeeurereenereenaasrae st e st s nsntratsenaeen B-6

6130 USER'S GUIDE REV, JAN 1989 vil

Safety Summary

Symbols on Equipment

A ATTENTION — refer to manual.

Terms
In This Manual
CAUTION statements identify conditions or practices that can result in damage to
equipment or other property.

Marked on Equipment
CAUTION indicates a personal injury hazard not immediately accessible as one
reads the marking, or a hazard to property including the equipment itself.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.
Use only a power cord that is in good condition.

Refer cord and connector changes to qualified service personnel.

Power Source and Ground
The 6100 and 6200 Series workstations are designed with a protective ground
connection in the Tektronix-supplied power cord. A protective ground connection by way
of the grounding connector in the power cord is essential for safe operation. To avoid

electrical shock, plug the power cord into a properly wired outlet.

This product is designed to operate from a power source that does not apply more than
250 volts rms between the supply conductors or between either supply conductor and
ground.

Use Care When Accessing Back Panel

When you access the back panel (to change boards, attach connectors, check line
voltage or configuration switch settings, or whatever) FOLLOW ALL DIRECTIONS
CAREFULLY. Always shutdown and unplug the system at the point and in the manner
that the instructions describe.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the workstation’s covers or panels, unless
instructed to do so by the manual. Do not operate the workstation without the cover and
panels properly installed.

introduction

The 8130 intelligent Graphics Workstation is a compiete computer system in a
desk-top package. The 6130 workstation is designed with computing resources to
support:

® A mechanical engineer doing drafting, analysis, and soiids modeiing.
@ An electronic engineer doing simulation and layout.

® A software engineer doing program development, execution, and
maintenance.

All of these tasks require a lot of computing power, which may be at a premium ina
muitipurpose mainframe computer being shared by many users. if your task must
wait for computing resources, you must wait for results. The 6130 Workstation lets
you dedicate your computer resources to your tasks, to speed the turnaround of
results.

While you may want to dedicate your computing resources to your tasks, you may
also want to share some resources with larger groups. The workstation provides
Local Area Network support that lets you share files and peripherals, and exchange
electronic mail with other workstations and computers. The workstation also
provides Network File System (NFS) support, allowing transparent access to files
and commands on other NFS machines.

6130 USER’ S GUIDE REV AUG 1986 1-1

Introduction

Figure 1-1. A Typical 6130 Workstation Configuration

WHAT IS THE 6130 WORKSTATION?

The 6130 workstation consists of a base configuration, workstation options, and
workstation enhancements. The base configuration contains the standard
components of the workstation. Workstation options can be substituted for
components in the base configuration. Workstation enhancements can be added to
expand the capability of your workstation.

Base Configuration

The base configuration of the workstation consists of a system enclosure, computer
board, hard disk drive, diskette drive, and the UTek operating system.

1-2 REV AUG 1986 6130 USER’ S GUIDE

Introduction

System Enclosure
The workstation’s system enclosure includes:
e Hard disk drives
® A six-slot card cage for mounting circuit boards
e A power supply capable of operating with an input voltage of 115 or 230 volits

e Interface connectors

Computer Board

The computer board provides the computing resources and input/output interfaces
for the workstation. The computer board contains:

® A microprocessor

® Floating point arithmetic hardware

® 1 megabyte of random-access memory {(RAM)
e A time-of-day clock with a battery

® Input/output ports (communications)

The input/output ports of the workstation provide high-level interfaces for /0
devices. The following I/O ports are located on the computer board:

® Two RS-232-C serial ports that connect terminals, printers, and modems to
your workstation.

® One Local Area Network {LAN) port that lets you connect your workstation to
an Ethemnet LAN with other workstations and computers.

® One General Purpose Interface Bus (GPIB) port, which conforms to the IEEE
488-1980 standard, that connects programmable instruments to your
workstation.

Diskette Drive

The terms diskette and flexible disk are interchangeable. The diskette drive, which
mounts in the front of the system enclosure, is used to transfer files to and from the
workstation and to back up and archive files. The diskette provides 360 kbytes of
formatted storage.

Hard Disk Drive

The internally-mounted 5.25 inch hard disk drive stores the UTek file system. The
hard disk' drive, which is based on Winchester technology, has 40 megabytes of
formatted storage.

6130 USER’ S GUIDE REV AUG 1986 1-3

Introduction

UTek

The workstation's UTek operating system is a multiuser, multiprocessing operating
system based on UNIX.

UTek is based on University of California at Berkeley’s Version 4.2 UNIX and
contains features from AT&T's System V UNIX, Sun’s Network File System (NFS),
and utilities developed by Tektronix. For a complete list of the features of UTek, see
the UTek Command Reference manual.

Workstation Options
The workstation can be configured with the following options:

Option 14 A 40 megabyte hard disk drive that replaces the standard hard
disk drive of the workstation's base configuration.

Option 15 An 80 megabyte hard disk drive that replaces the standard hard
disk drive of the workstation's base configuration.

Options A1-A4 International power cords.

Workstation Enhancements

Enhancements you can add to your workstation include a floor stand for the
workstation, additional interfaces for /O devices, memory expansion, mass storage
peripherals, printers, copiers, and plotters. These enhancements are described in
Section 3.

1. Because the hard disk is based on Winchester technology it is often referred to as the Winchester hard
disk drive. or just the Winchester drive.

14 REV AUG 1986 6130 USER" S GUIDE

Introduction

ABOUT THIS GUIDE

This manual describes the standard and optional components of the 6130
workstation and directs you to more detailed discussions in other manuals.

You should complete the learning sessions of the 6130 Learning Guide before
reading this manual. If you are not familiar with UNIX-based operating systems, you
may wish to read Introducing the UNIX System (Chapters 1-4, 11, and 13 are
recommendad) before reading this manual.

This manual contains the following sections plus a Glossary and Index:

Section 1
Section 2

Section 3
Section 4

Section 5

Section 6

Section 7

Section 8

Section 9

Appendix A
Appendix B

Appendix C

6130 USER’ S GUIDE

(this section) Introduces the 6130 workstation.

Describes the internally-mounted peripherals and interfaces that
are standard on the workstation.

Describes enhancements you can add to your werkstation.

Describes how to start up your workstation and how to shut it
down.

Gives examples of how you can create special files to tailor the
Bourmne Shell, C-Shell, MH mail system, vi text editor, and the
finger command to meet your needs.

Describes how to use the local area network, including the Network
File System (NFS).

Describes the programming languages and tools that are available
for the workstation.

Describes the workstation's implementation of the General Purpose
Interface Bus (GPIB).

Describes how to write a BASIC language program to control
instruments over the General Purpose Interface Bus (GPIB).

Introduces General Purpose Interface Bus (GPIB) concepts.

Introduces the Tektronix Codes and Formats standard for GPIB
instruments.

Contains the ASCII-GPIB code chart.

REV AUG 1986 1-5

Introduction

Notation Conventions

The notation conventions listed below are used throughout this manual.

<RETURN>

<CTRL-X>

file

cd

grep(l)

Special keys are shown as all capital letters, surrounded by angle
brackets.

Control characters are shown using the same notation as for
special keys. Control characters are created by holding down the
key labeled CONTROL (or CTRL on some keyboards) while typing
the indicated key (in this example, x).

Filenames, directory names, pathnames, and text for which you
substitute your own information when entering a command are in
italics.

Command names and text you enter exactly as it appears are in
boidface.

A command followed by a parenthesized number, command(n), is a
reference to more information on that command in the UTek
Command Reference —Section n.

RELATED DOCUMENTS

The following books are available from Tektronix, Inc. to help you use your
workstation. Some of these documents came packaged with your workstation. To
get copies of these books, contact your Tektronix Field Office.

Workstation User Manuals

® 6130 Learning Guide
® 6130 System Administration

REV AUG 1986 6130 USER" 8 GUIDE

Introduction

UTek Manuals
® Introducing the UNIX System
McGilton and Morgan

® UTek Command Reference
Volumes 1 and 2

o UTek Tools
Volumes 1 and 2

@ Network File System Reference Manual
® 6130/4132 UTek Exceptions & Extensions

Programming Language Books
® The C Programming Language
Kemighan and Ritchie
® FORTRAN 77 Reference

® Pascal User Manual and Report
Jensen and Worth

® Tektronix BASIC Keyword Dictionary
Volumes 1 and 2

o Talibswmaia DACIM NL2 0 DL P
W L TR UIRA DLV Yricna 1\5}(! e

® Tektronix BASIC Users Guide

Installation and Service Manuals

® 6130 System Installation
® 6100 Series Service

® 6130 System Diagnostics

6130 USER’ S GUIDE REV AUG 1986

1-7

2

Peripherals and Interfaces

This section describes the hard disk drive, diskette drive, and the input/output ports
that are provided in the base configuration of the workstation. Figure 2-1 shows the

locations of the hard disk drive and diskette drive in the system enclosure.

Figure 2-1. Hard Disk and Diskette Drive Locations

6130 USER" S GUIDE REV AUG 1988 2-1

Peripherais and Interfaces

HARD DISK DRIVE

The UTek file system is stored on the Winchester hard disk. To save storage space
on the hard disk, you can archive unneeded files to another storage medium such
as diskette or tape. Archiving files to diskette with the cpio command is described
later in this section.

To back up the hard disk on another storage medium and to rebuild the UTek
operating system on the hard disk, see the 6130 System Administration manual. For
more information on the device driver that interfaces the hard disk drive to UTek,
see dwa(4) in the UTek Command Reference manual.

'DISKETTE DRIVE

The diskette drive is used to back up the file system, store files, transfer files to and
from other workstations, and to rebuild the hard disk. To back up the UTek file
system and rebuild the Winchester disk from diskettes, see the 6130 System
Administration manual.

The diskette drive mounts in the front of the system enclosure. The drive uses 5.25
inch, double-sided diskettes with a formatted storage capacity of 360 kilobytes. The
diskettes are formatted at 48 tracks per inch (tpi) and are compatible with the IBM
PC.

For more information on the device driver that connects the diskette drive to UTek,
see dfa(4) in the UTek Command Reference manual.

REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

Diskette Care
To protect your diskettes, you should take the following precautions:

& Return the diskette to its storage envelope when you remove it from the drive.
@ Do not bend or fold the diskette.
@ Store disksttes in their box.

¢ Do not store diskettes on top of a terminal or on top of the workstation cabinet.
The heai generaied by these devices can warp a disketie.

e Keep your diskettes away from all magnetic materials and devices. Strong
magnetic fields destroy data on the diskette.

o Replace the diskette’s storage envelope when it becomes worn, cracked, or
distorted.

e Apply the diskette identification labels in the correct location on the diskette.
Never apply a new identification label on top of an old identification label.

@ Do not write on the plastic diskette jacket with a pencil or ball point pen.
Always use a felt tip pen.

e Do not use erasers on your diskettes.

e Keep cigarette ashes away from your diskette. The heat and contamination
can damage a diskette.

P P T LN PN Y YT S -
- I'\VUP ’Uul UIDNTUTD away (LA TR/

6130 USER’ S GUIDE REV AUG 1988 2-3

Peripherais and Interfaces

How to Insert a Diskette
To load a diskette into the drive:

1. Release the latch on the front panel of the drive by turning it parallel to the slot
(Figure 2-2).

2. Insert the diskette face up, with its label towards the drive latch (Figure 2-3).
3. Tum the latch on the drive to allow the head to engage (Figure 2-4).

To prevent head damage, a mechanical interlock prevents you from closing the latch
when no diskette is in the drive.

Figure 2-2. Opening the Latch on the Diskette Drive

2-4 REV AUG 1988 6130 USER’ S GUIDE

Peripherals and interfaces

]

Figure 2-3. Inserting a Diskette.

Figure 2-4. Closing the Latch on the Diskette Drive.

6130 USER” S GUIDE REV, AUG 1988 2-5

Peripherals and Interfaces

CHECKOUT OF THE 61KP04

The standard diagnostics package for the 6130 contains routines to verify the
operation of the 61KP04. See 6130 Diagnostics for additional information.

READING AND WRITING FILES

The following sequence of commands writes a file to tape, reads it back, and
compares the file read back with the original. Log on as a normal (non-root) user.

assign tc

cp /vmunix foobar

tar cvbf 256 /dev/rtc foobar
rm foobar

tar xvbf 256 /dev/rtc

cmp /vmunix foobar

rm foobar

deassign tc

In the above procedure, a copy of the UTek kernel is made in the user’s directory.
The copy is written to tape, the copy is deleted, the file is read back from tape and
then it is compared with the original. If the file read back in is the same, cmp will
exit with no messages.

Possible Problems

2-6

If the individual components of the tape subsystem check out individually, there are

only a few things that can go wrong at the system level. Most problems are likely to
be configuration problems or cabling problems. You may get some of the following

messages.

No such file or directory
or
Permission denied

This message indicates that tar could not open the special file specified on the
command line. Either you mistyped the name, /dev/rtc. on the tar command line or
you created the special file with a different name. Make sure you use the same
name on the tar command as you used when you created the special file.

REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

Similar errors could be encountered when doing the assign command. if the
ownership or permissions of the special file are not correct, you may not be able to
write to it.

tar: /dev/rtc: No such device or address.

Nothing happened —You see this message if the tape driver is asked to open a
tape special file using a non existent SCSl interface. Make sure the slot number you
used with the MAKEDEV command agrees with the location of the 61KP04 SCSI
interface.

<UTek> KP04 slot s drive u: abort
or
tmsu: no tape

The device driver has found the SCSI interface but cannot talk to the tape controller
or tape drive. Check the cables from the SCSI port to the external hard disk, the
SCSI address of the tape controller, and make sure the external hard disk unit is
turned on. if everything checks out and you still get the error, try turning the external
hard disk unit off and back on.

tar: tape write error: No such device driver or operation.

Most errors from the tape controller result in this message. Check cables from the
controller to the tape drive, unit number of the tape drive, and the tape drive power
cable. Make sure your tape cartridge is not write-protected.

6130 USER" S GUIDE REV AUG 1988 2-7

Peripherals and Interfaces

STREAMING TAPE CONSIDERATIONS

The cartridge tape drive is a streaming tape drive. It is is designed to transfer data
continuously. When data is transferred in discrete blocks, the drive has to slow to a
stop, reverse itself, stop again, so that it can accelerate to its designed transfer rate
by the time it reaches the end of the previous data block. Clearly, the efficiency of
the data transfer improves as the size of the transfer is increased. For reasonable
efficiency, the various tape utilities let you specify logical records composed of many
physical blocks. [f you are copying single files or small directories, you should
consider the use of diskettes instead of cartridge tape. You should write a simple
shell script to invoke these utilities to archive and restore files or directories. This
ensures that the same blocking factor and options are invoked each time.

STANDARD UTEK UTILITIES

Cpio

2-8

cpio is the preferred utility for transferring files to/from removable media including
diskettes and cartridge tape. Optional software packages for UTek are distributed in
cpio format. When you use cpio, you should define the logical block size if using a
cartridge tape (not necessary with diskettes). Use the -N option to set the block
size. The input/output device for cpio is selected by using the -V command option.
cpio takes its input from standard input rather than from a command argument.
Standard usage is to invoke find and pipe its output to cpio. Scripts to invoke the
command are suggested.

REV AUG 1988 6130 USER’" S GUIDE

Peripherals and Interfaces

Cpio Scripts

One of the attributes of the UTek operating system is the ability to write simple
programs that execute in the shell. These programs are often called sheil scripts.
The general procedure is to create a file containing the commands to be executed
along with explanatory comments. These files are typically collected in the
subdirectory bin in your home direciory. You shouid add the argument SHOME/bin
to the PATH variable in your .login or profile file. Make the file executable by
entering chmod +x filename In all of the scripts given here, the name for the script
is given in the first comment line.

Copy files to flexible diskette
#! /bin/sh

#* wdisk

#* If called without arguments copies entire current
directory to flexible diskette in cpic format.

#%# Otherwise, copies selected files to flexible

diskette in cpio format.

NOTE: files are recovered by using rdisk

if test $% -eq @
then

else

fi

NOTE
The period is part of the find command line.

6130 USER" S GUIDE REV AUG 1988 2-9

Peripherals and Interfaces

Copy a directory and its contents to cartridge tape
#! /bin/sh

wtape
This shell script uses cpio to copy all files
#} in the current directory to cartridge tape.

find . -print | cpio ova -N 256 -V /dev/tc

NOTE
The period is part of the find command line.

List contents of a cpio diskette
#! /bin/sh

ldisk
Lists contents of a cpio diskette

cpio -itv -V /dev/df

List contents of a cpio tape cartridge
#! /bin/sh

ltape
Lists contents of a cpio tape cartridge

cpio ~itv -V /dev/tc

2-10 REV AUG 1988 6130 USER’ S GUIDE

Peripherals and interfaces

Copy files from a cpio diskette to current directory

#!

i
i+
##
#
34
i

if

/bin/csh -f

disk

Restores files created by wdisk

from flexible diskette. cpio format
If called without arguments extracts
all files from diskette.

Else it extracts the named files.

test $# -eq @

then

cpio -idvam -V /dev/df

else

fi

cpio -idvam -V /dev/d4df $*

Copy files from a cpio tape to current directory

#! /bin/csh -f
rtape
Restores files created by wtape
from cartridge tape. cpio format
##% If called without arguments extracts
#% all files from tape.
#% Blse it extracts the named files.
if test $% -eq @
then

cpio —idvam -V /dev/tc
else

cpio —idvam -V /dev/tec $*
fi

6130 USER’ S GUIDE REV AUG 1988

2-11

Peripherals and Interfaces

Tar

The tar utility program works with cartridge tape and diskettes. It was written for 9-
track tape media and is most useful in that environment. As with cpio, you need to
specify the correct device and block size. The cartridge tape device can be
specified by using the f key on the tar command line along with the device special
file name for the tape drive. Tar allows tape records to be biocked in multiples of
512 bytes.

Scripts to invoke tar

This script creates a tar tape of all files in the current directory:
#! /bin/sh

arch
This shell uses tar to archive all files in
the current directory

tar cvbf 256 /dev/tcé64d .

NOTE
The period is part of the tar command.

This script restores a single file from a tar tape:
#! /bin/sh

restl
This shell uses tar to restore a single file
to the current directory

if $% -ne 1

then
echo This script expects a single argument
exit 1

else
tar xvbf 256 /dev/tc64 $1

fi

2-12 REV AUG 1988 6130 USER’" S GUIDE

Peripherais and Interfaces

This script restores all files from a tar tape:
#! /bin/sh

##+ rest
This shell uses tar to restore all files
to the current directory

tar xvbf 256 /dev/tc64

Dump/Restore

dump and restore are privileged commands. You must be logged in as root or
invoke su to gain root status on your workstation to use them.

The sysadmin interface knows about streaming tape drives and manages the dump
and restore procedure for you. This is the recommended procedure for file system
back up. The routines can also be called individually.

Dump

The dump(8) program can be used to make complete or incremental backups of the
file system(s) on your disk(s). The b option specifies the number of 1 kbyte blocks
in a tape record. The f option specifies the special device file. In the example, the
name of the tape drive is /dev/tc. Thus, to do a level zero dump. enter the following
command:

#/etc/dump Bbfu 128 /dev/tc dwfda

Restore

if you want to recover a file or group of files from a backup tape, you shouid use the
restare -i option. When using the -i option you can traverse the file system
directory tree using cd and Is. Files that you want to restore must first be marked
with the add command, and then extracted with the extract command. When add
asks for the volume number, respond with a 1. As with dump you should use the b
and f keys to set the block size and device name on the restore command line.

#/etc/restore ibf 128 /dev/tc

6130 USER" S GUIDE REV AUG 1988 2-13

Peripherals and Interfaces

if your system disk is corrupted to the point where you need to do a complete file
system restore, you should use the procedure described in Section 8 of the System
Administration manual for restoring from cartridge tape. After formatting the hard
disk {optional), loading the miniroot file system, and loading the UTek kemnel from
diskette, you are instructed to create a device special file for the cariridge tape drive
with the following command:

/dev/MAKEDEV /dev/tcsd /dev/tc

Replace letters s and d by the SCSl interface slot number and the device number as
described earier.

The following command creates a file system that is equivalent to the state of the
system as dumped to the cartridge tape. Unlike many single-user operating
systems, UTek does NOT copy an image of the disk to the backup media or copy an
image of the backup media to the system disk. It copies the directory structure and
the contents of all files. restore recreates that directory structure and file contents.
The physical disk location of files in the new file system almost certainly will differ
from the original.

/etc/buildroot -d /dev/tc

Assign/Deassign

The assign and deassign commands let you reserve an I/O device for your
exclusive use. When a device is set up using assign, the device is owned by the
same user who owns the file /etc/assign.classes. The protection of the device is set to
read/write access by the owner only. Normally the owner is the user daemon. Users
logged on by any other user name cannot read or write the device. The assign
command first checks to see if the device is idle and owned by the same user who
owns /efc/assign.classes. If it is, the ownership is changed to the user doing the
assign. That user can then read or write the device. The deassign command
changes ownership of the device back to the owner of /etc/assign.classes. See the
assign and deassign, in the Utek Command Reference, for details on command
parameters.

2-14 REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

For small installations, the protection of assign and deassign may be more trouble
than it is worth. If you want to make the drives usable by anyone without going
through the assign process, you can do so by adding read/write permission for all
users:

chmod at+rw /dev/tcsd /dev/ntecsd
or
chmod a+rw /dev/dfsd

INTERFACES

Your workstation provides high-level interfaces for /O devices. Table 2-1 lists the
interfaces that are provided by the base configuration of the workstation.

All the interfaces in Table 2-1 are located on the computer board. You can access
the LAN, RS-232-C, and GPIB interfaces by connectors that protrude through the
back panel of the workstation. These connectors are accessed by lifting the cable

management cover.
Table 2-1
WORKSTATION INTERFACES
Interface Standard Number Connects
Local Area Network (LAN}) |IEEE 802.3 1 Local area network
Uuai RS-252-C R35-232-C 2 Terminai, printer, etc.
General Purpose IEEE 488 1 Programmable
Interface Bus (GPIB) instruments

6130 USER’" S GUIDE REV, AUG 1988 2-15

Peripherals and Interfaces

Figure 2-5 shows the LAN, RS-232-C, and GPIB connectors on back of the
workstation.

5307-058

Figure 2-5. LAN, RS-232-C, and GPIB Connectors

LAN Interface

The Local Area Network (LAN) interface lets you connect your workstation to a LAN
to share files and peripherals with other workstations and computer systems,
including the Network File System (NFS). The LAN interface is compatible with
Ethernet and conforms to IEEE Standard 802.3.

To connect your workstation to a LAN, see the documentation that came with your
LAN transceiver. To configure UTek for the LAN, see the 6130 System Administration
manual.

See Section 6 for information on communicating with other machines on the
network.

RS-232-C Interfaces

2-16

The two RS-232-C interfaces let you connect terminals, printers, and modems to
your workstation. These interfaces transfer data to a peripheral asynchronously, in
8-bit serial format.

After you connect a peripheral to one of the RS-232-C connectors, run sysadmin to
tell UTek how to communicate with the peripheral. The sysadmin command is
described in the 6130 System Administration manual.

REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

Using Terminals with UTek

UTek supports almost any ASCIl terminal, as long as its capabilities are described in
the terminal capabilities database file, /etc/termcap. To make sure UTek supports
your terminal, you have to check the /etc/termeap file. The /etc/termeap file is
composed of abbreviations, codes, and special characters, so if you have never
looked in this file, you should read the description of it in termcap(5) in the UTek
Command Reference manual.

One way to find which terminals are supported in the /etc/termcap file is to use the
grep command. Typing:

grep ' |’ /etc/termcap

prints one line for every terminal supported by UTek. Don't forget the quotation
marks around the | character, since it is a special character.

The complete procedure for connecting a terminal to your workstation and setting it
up is described in the 6130 System Administration manual.

Connecting Your Workstation to a Modem

You can dial in to your workstation over phone lines by connecting a modem to one
of the RS-232-C connectors. The procedure for setting up the modem should be
described in the operator's manual for the modem. After you connect the modem to
the workstation, reconfigure the RS-232-C interface by running sysadmin and
selecting Port Configuration from the main menu.

Configuring an RS-232-C interface for a modem with sysadmin is described in the
6130 System Administration manual.

General Purpose Interface Bus

The General Purpose Interface Bus {GPIB) lets you connect programmable
instruments to your workstation. The GPIB conforms to the IEEE 488-1980
mechanical, electrical, and functional standards. An instrument you want to connect
to the GPIB must also conform to these standards (look in its operator's manual).
Among the Tektronix instruments that conform to these standards are oscilloscopes,
digitizers, audio test systems, multimeters, function generators, and logic analyzers.

Section 7 describes the implementation of the GPIB on the workstation and how to
write programs that control instruments connected to the workstation's GP1B.
Appendix A describes the concepts of IEEE Standard 488 (GPIB). Appendix B
describes the Tek Standard Codes and Formats, which are used by Tekironix GPIB
instruments to communicate over a GPIB.

6130 USER" S GUIDE REV AUG 1988 2-17

Peripherals and Interfaces

THE /DEV DIRECTORY

2-18

All of the peripherals connected to your workstation are associated with one or more
files in the /dey directory. If there isn't a command on your system that lets you
communicate with a peripheral, you can communicate with the peripheral by reading
and writing its /dev file. Also, some commands, such as cpio, require you to know
the name of the /dev file associated with a peripheral.

Figure 2-6 shows an example of how files in the /dev directory are named.

/dev/rdw00a

Disk partition (a—p)

Drive or port (0 ...)

— Interface slot (0 - 6)

— Device name

—— Options

Directory path

Figure 2-6. /dev Filename Conventions

REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

The parts of a filename in the /dev directory have the following meanings:

Directory path
Opfions

Device name

Interface slot

Drive or port

Disk partition

6130 USER’ S GUIDE

All these files reside in the /dev directory.

Specifies how the device acts. In Figure 2-6, the r specifies
that reads and writes to the disk are done in raw mode.

The abbreviation used for the device. in Figure 2-8, the
device name is dw, which stands for Winchester disk.

The slot in the workstation backplane into which the interface
board is plugged. The siols are numbered from O to 8. By
convention, any devices plugged into ports provided by the
computer board have an interface siot of 0. The filename in
Figure 2-6 is associated with slot 0, which is the computer

board.

The port or drive associated with this file, This is used when
you have more than one of a certain device. For exampie, if
you have two terminals, the first is terminal 0 (called 1ty0) and
the second is terminal 1 (called #tyl). In the filename in
Figure 2-6, the drive is drive 0.

Used only for hard disk drives. Hard disk drives have one /dev
file for each segment, or partition, of the disk. The filename in
Figure 2-6 is associated with partition a of the hard disk.

REV AUG 1988 2-19

Peripherals and Interfaces

Table 2-2 lists files that are commonly found in the /dev directory, along with the
peripheral they connect.

Files in the /dev directory that let you communicate with workstation enhancement
are listed in Section 3.

Table 2-2
STANDARD FILES IN THE /DEV DIRECTORY

File Peripheral
/devidf Diskette (buffered)
/devirdf Diskette (raw)
/devitty Your terminal, any RS-232-C port
/dev/tty00 Terminal, RS-232-C port 0
/dev/tty01 Terminal, RS-232-C port 1
/devittyp0 Local Area Network
/devittyp1 Local Area Network

/devittyp2 Local Area Network

/devigpib0 GPIB interface
/dev/gpid0 GPIB configuration device
/dev/dw00a Hard disk, partition a
/dev/rdw00a Hard disk, raw
/dev/dw00b Hard disk, partition b
/dev/irdw00b Hard disk, raw
/dev/idw00l Hard disk, partition |
/devirdw00l Hard disk, raw
/dev/dwOOm Hard disk, partition m
/dev/irdw00Om Hard disk, raw
/dev/idw00n Hard disk, partition n
/devirdw00On Hard disk, raw
/devidw000 Hard disk, partition o
/devirdw000 Hard disk, raw
/dev/dw00p Hard disk, partition p
/devirdw00p Hard disk, raw

NOTE

The information contained in the remainder of this section is normally
found in the 6130 System Administration manual, but is also included here
for reference.

2-20 REV, AUG 1988 6130 USER" S GUIDE

Peripherals and Interfaces

FORMATTING A DISKETTE

Before you can write data onto a diskette, the diskette must be in the proper format.
The program that formats a diskette is saformat, the same program that is used to
format the hard disk.

Saformat is on the standalone utilities diskette of the diskette distribution set. It
doesn’t run under UTek. You must shut the workstation down to run saformat.

Therefore, you may find it more convenient to format a group of diskettes at one
time, to be used as needed.

To format a diskette:
1. Tum the workstation off.

2. Insert the standalone utilities diskette (which came with the workstation) into the
diskette drive.

3. Set configuration switch § down and switch 6 up. This selects the diskette
drive as the boot device. |

4. Set configuration switch 4 down. This lets you select the file you want to boot
from the diskette.

Turn the workstation on.
6. The workstation prompts you with the following prompt:

>>>>

7. Enter:

df (8, 9) /saformat

This loads the saformat program from the standalone utilities diskette, and
provides you with the menu shown in Example 2-1.

6130 USER" S GUIDE REV AUG 1988 2-21

Peripherals and Interfaces

Drive Options

1) Quit
2) Winchester disk
3) Flexible diskette

Select by entering a number from 1 to 3:

Example 2-1. Saformat Top-Level Menu.

8. Select item 3 from this menu. Once you have selected Flexible diskeite, these
messages appear:

Put the diskette to be formatted into the drive.

Press RETURN to continue

9. Remove the standalone utilities diskette from the diskette drive and retumn it to
its protective jacket.

CAUTION

Remember whatever data was on the diskette is lost when the diskette
is formatted.

10. Insert the diskette you want to format.

2-22 REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

11. Press <RETURN>. The menu shown in Example 2-2 displays.

Defaulting to 48TPI Format
Flexible Diskette Format Command Menu

1) Return to previous menu
2) Quit the formatting program
3) Select alternate disk drive

4) Set formatting information

5) Sweep the disk surface for defects
6) Format the disk with the given information

Select by entering a number from 1 to 6:

Example 2-2. Flexible Diskette Format Command Menu.

12. Select item 6 to use the default formatting values (if you want to check the
diskette for defects first, select item 5; then, when the sweep is complete,
select item 6). Once you have selected this menu item, numbers are printed
on your screen as cylinders are formatted.

When the formatting is done, the Flexible Diskette Format Command menu
reappears on your screen. If you want to format more diskettes, go back to
Step 10. Otherwise select the menu item to quit and press <RETURN>.

6130 USER’ S GUIDE REV AUG 1988 2-23

Peripherals and Interfaces

INTRODUCTION TO DEVICE SPECIAL
FILES

2-24

NOTE

Version 2.2 or later of UTek is required to operate the 4944 hard disk.
Version 2.1 of UTek will support the 4944 optional cartridge tape. If your
6130 does not have Version 2.2, it must be upgraded before the 4944 hard
disk drive can be operated. See the installation instructions that come with
the Version 2 2 distribution set.

Under UTek all input/output operations are performed on files. There are no special
system calls or routines allowing direct access to a program that controls disk
operations. When a program requires direct access to a device such as the
cartridge tape drive, the program uses a device special file. Device special files, or
just special files, are treated much like a regular file by a program. They are opened
by name, then read operations, write operations, and device control (ioctl) system
calls are executed to transfer data, and the file is closed when the program is done.
During read and write operations, the data is transferred directly to/from the device.
The data is transferred to the media at its current position (there is no allocation of
storage space or looking up where a file is located on the storage media). For
flexible disks and cartridge tapes, the file is the entire volume. It is up to the
program manipulating the volume to keep track of what is where.

Operations on special files can be identical to operations on regular files in simple
cases. Thus a program that opens a file, sequentially reads it, and then closes it
could work on either a regular file or a special file. There may however be some
restrictions on some special files. There may also be more ioctl operations
available on special files than on regular files. Examples of such operations are
writing tape marks, skipping records or tapes marks, setting terminal port baud
rates, etc. These operations would make no sense on a regular disk file.

REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

When a special file is opened, the UTek file system must determine which device
driver is to handle the requests for that file. Device drivers that handle more than
one drive or port of the same type must know which unit is being referenced by the
current operation. This information is encoded in two integer numbers known as the
major and minor device codes. The major device code tells the UTek kernel which
device driver will handle requests for the special fils being processed. The minor
device code is passed on to the device driver. Several pieces of information may be
encoded into the 16 bits of the minor device code. For devices handied by the SCSI
tape driver, referred to as the tca driver, the minor device code is made up of the slot
number of the SCSI interface, the SCSI address of the tape controller, the unit
number of the tape drive, the type of tape drive, and the density of the tape drive.

Special files are created with the shell script/deviMAKEDEV, which makes standard
UTek special files. Device special files can be located anywhere in the UTek
directory structure but by convention they are normally located in the directory /dev.
Speciai files can be any legai UTek file name. However, there are some
conventions that can make life easier.

Device special files under UTek are named using a convention that builds the device
name from the type of device, the backplane slot of the interface to the device, and
the unit number or port number on the interface. The form of the device name is
xxsu, where xx is a generic name for the class of device such as tc for tape, cartridge
or ds for disk. The s is the number of the expansion backplane slot where the
device interface is located. u is the device number for interfaces supporting multiple
devices. |t is computed by adding 2 times the SCSI address, to the device address
which can be 0 or 1. Thus, a tape drive that is devica 0 at SCSI address 2 would
have a device number of (2 X 2) + 0 or 4. In some cases, there may be muitiple
special files for a single physical device. This is often done on tape drives to allow
selection of different recording densities or for selecting whether to rewind the tape
or not when the file is closed. Disk drives have separate special files for different
data partitions. This allows multiple file systems to be installed on a single physical
drive. Each of the multiple special files for a single device has some bits in the
minor device code set differently. How the minor device code is encoded is unique
for each device driver.

6130 USER’ S GUIDE REV AUG 1988 2-25

Peripherals and Interfaces

Device Special Files for 61TC01 and 4944

Device Special Files for Cartridge Tape

Names of special files for cartridge tape have the general form of /dev/tcsu or
{devintcsu. The ntc devices are the no rewind version of the Ic devices. The sin the
device name is the backplane slot number containing the 61KP04 SCSI interface.
The u is a combination of the SCSI address of the tape controller and the unit
number of the tape drive. The value of u is the SCSI address of the controller times
two plus the unit number of the drive. Thus if the 61KP04 is in slot 6 of the 6130,
the Cartridge Tape Controller is set to SCSI address 2, and the tape drive is
internally strapped for unit 0, the recommended special device file name is /dev/ic64.
This is the default configuration as supplied by Tekironix.

Making Device Special Files for Cartridge Tape The preferred method of
making special device files under Utek is to use the shell script /dev/MAKEDEYV .
Given a name that follows the UTek conventions, MAKEDEV calculates the required
minor device code and makes the special files. This driver is included in the Version
2.2 kernel so you do not need to rebuild the kernel just to support cartridge tape.

If you rebuild the UTek kernel or the MAKEDEY file with the sysconf program, you
must tell sysconf to include the cartridge tape driver, tca.

After creating the device special files for the cartridge tape, you should make sure
that the devices are assignable. This allows the devices to be reserved for use by a
single user with the assign command. No one else will be able to use the cartridge
tape while it is assigned. (This is not essential if you are the only user of the 6130,
but it is good procedure and should be followed.) Using the UTek utility more, look
for the following line in the file /etc/assign.classes.

tape tc tc64 /dev/tc = /dev/tc /dev/tc64

If this line does not exist, add it with your favorite editor. This eniry assumes that
the 61KP04 is in slot 6 and that the Tape Controller is set for SCSI address 2. if you
have installed your system differently, edit the entry to reflect those differences.

After editing assign.classes, you should deassign the device.

deassign tc

This sets the ownership and protection of the special files to the values that assign
needs later.

REV AUG 1988 6130 USER’ S GUIDE

Peripherals and Interfaces

Device Special Files for Hard Disks

Names of special files for hard disks have the general form of /devidssu. The 5in
the device name is the backplane slot number containing the 61KP04 SCSI
interface. The u is a combination of the SCSI address of the disk controller and the
unit number of the disk drive. The value of u is the SCSI address of the controller
times two plus the unit number of the drive. Thus if the 61KP04 is in slot 6 of the
6130, the Hard Disk Controller is set to SCS! address 3, and the disk drive is
internally strapped for unit 0, the recommended special device file name is /dev/ds66.

This is the default configuration as supplied by Teldronix,

The UTek operating system manages the disk surface by means of logical divisions
called partitions.

Disk partition p refers to the entire disk surface. Only the format program uses this
partition.

Disk partition [refers to the user-writeable portion of the disk. Itis the same as
partition p except that it excludes those portions of the disk reserved for
maintenance and diagnostic purposes. The maintenance blocks contain information
regarding physical disk parameters and defect data.

Disk partition b refers to that portion of the disk reserved for swapping space.
Tektronix does not recommend using the hard disk for swapping. In the 6130,
adequate swapping space is available on the main system disk and there is a
performance degradation in swapping to the external disk.

Disk partition a refers to that portion of the disk available for a file svatem if a
swapping partition is reserved.

In this application explanation we use disk partition / for our file system.

As with the cartridge tape, there is a driver for buffered data (/dev/ds66]) and a driver
for unbuffered data (/devirds661). When you invoke MAKEDEYV, all of the drivers for
the special file /devids66 are built automatically. You can ignore those that are
unused.

Making Device Specific Files for the Hard Disk To make special device files
under UTek, use the shell script/dev/MAKEDEY. Given a name that follows the
UTek conventions, MAKEDEYV calculates the required minor device code and makes
the special files. If you have followed the suggested installation procedures,
Idevlds66 MAKEDEYV builds and links all of the necessary drivers.

If you rebuild the UTek kernel or the MAKEDEY file with the sysconf program, you
must tell sysconf to include the cartridge tape driver, tca.

6130 USER’ S GUIDE REV AUG 1988 2-27

Peripherals and Interfaces

FORMATTING THE HARD DISK

The routine for formatting hard disks in the 4944 is scsifmt. You must have
superuser privileges to run it.

1. Type su to obtain superuser status. Enter the root password when prompted.

2. Type /etc/scsifmt /dev/rds66p (or whatever your slot and device numbers
are) to invoke the formatting program.

NOTE

If you get the SCSI Format Command Menu, your disk is already
formatted and you can exit the formatting process and proceed to
building a file system. If you get the Select Disk Type Menu, your
disk is NOT formatted and you should continue with this procedure.

3. From the Select Disk Type Menu, select the 40Mbyte SCSI disk or 80Mbyte
SCSI disk depending upon which size disk you have.
The volume ID is an identifying character string, such as hostname_EXT.
The program then asks Read defect data from?
If you received a flexible diskette with defect information with your hard disk,
insert it into your 6130 and type /dev/rdf. Otherwise, press <RETURN> to

return to the main menu. You will have to enter the defect data from your
terminal. YOU MUST ENTER THE DEFECT INFORMATIONI!

6. From the SCSI Format Command Menu, select 8 —Change Maintenance
Tables.

2-28 REV AUG 1988 6130 USER" S GUIDE

Peripherals and Interfaces

©

10.

11.

i2.

From the Set Defect Information Menu, select 7 —Add Defect(s) To List. You
must enter the information in the sequence that you are prompted for, such as
head, cylinder (or track) and byte offset. If a defect length is not specified,
enter 1. A typical drive has perhaps half as many defects as its capacity in
Mbytes. It is allowed to have as many defects as its capacity in Mbytes.

From the Set Defect information Menu, select 4 —Show Defect List. Verify
that there are no errors in the list and that it is complete. If the list is not
accurate, correct it using Delete Defects From List and Add Defects To List.

o 2

[=JIrT T RA__ AS_ ..
—rReurm 10 man Mienu.

Pl
1

o
oeecl

From the SCSI Format Command Menu, select 3 —Map Out Defective
Sectors.

From the SCSI Format Command Menu, select 11 —Format The Disk With
The Given Information.

After the disk formats, from the SCSI Format Command Menu, select 2 —Quit
The Formatting Program.

This concludes the formatting procedure for an external hard disk.

6130 USER’ S GUIDE REV AUG 1988 2-29

Peripherals and Interfaces

BUILDING A FILE SYSTEM

You will need a name for the file system on your external disk. You may want the
name to suggest the main use of this device. Some system administrators call their
file system /u and use it for user login files. You might call it /ext to indicate it's the
external disk or /ark to indicate its main use is to archive older versions of files.

To build your filesystem:

1. Type su to invoke superuser privileges. (If you have just finished formatting
your disk you are already the superuser.)

2. Type cd/ to move to the root directory.
Type mkdir ext (or whatever you have chosen for your file system name).

4. If you wish this to be a public directory (read/write access by users, including
yourself as a user), then enter chmod a+rw ext to allow access to the file
system. Individual users can still set more stringent permissions on individual
files or directories.

5. If you want this file system to be mounted automatically at power-up and to be
checked automatically with fsck at power-up, you must enter it in /etc/fstab. This
is not mandatory, but is strongly recommended if you want the new file system
on-line whenever the workstation is on.

Using your favorite editor add a line to /etc/fstab of the form:

/dev/ds66l: /ext:rw:1:2.

(Before you do this you might enter cp /etc/fstab /etc/fstab.old in case you
make an error.)

Now enter newfs /dev/ds66l. This actually builds your new file system.

To mount your new file system, enter mount /dev/ds661 /ext or the equivalent
entries for your installation. This mounts the device special file /dev/ds66l as a
file system in the /ext directory and enters it in the /etc/miab table.

8. Exit from superuser mode.

Your new disk and its associated file system are now installed.

2-30 REV AUG 1988 6130 USER’ S GUIDE

+4+ ;

Enhancements

This section describes enhancements that are available for your workstation. You
can order the enhancements described by contacting your local Tektronix office.
Table 3-1 lists the part numbers and model numbers that you use to order these

P Y PP TPt 7Y
Sl IAnVCHIITIHIWD.

Table 3-1

ENHANCEMENT PART NUMBERS
Enhancemeni Description Part or Modei Number
Floor Stand 016-0804-00
Monochrome Display 61VPO1
Color Display 61VP02
Dual RS-232-C Interface 61KRO1
Serial Sync/Async interface 61KR02
High Speed GPIB 61KP03
General Purpose Parallel Interface 61KP02
Hard Copy Interface 61KPO1
Small Computer System Interface 61KP04
Multtibus interface 61KY01
Memory Expansion, 512-kbyte 61MPO1
Memory Expansion, 1-Mbyte 61MP02
Memory Expansion, 2-Mbyte 61MP03
Network Transceiver 60KNO1
Streaming Cartridge Tape Drive 61TCO1
Character Printer 4644
Color Copier 4695

6130 USER'S GUIDE 3-1

Enhancements

Floor Stand

The floor stand lets you place your workstation on the floor, beside or under your
work area. Figure 3—-1 shows the workstation mounted in a floor stand.

5307-06

Figure 3-1. Workstation in a Floor Stand.

Displays

The bit—rgpped dyisplay provides a graphical interface to the workstation. The
display is called a subsystem because it has its own microprocessor (which resides
on a circuit board called the display processor board), memory, and operating system
to execute instructions that create images on the screen. The display subsystem
consists of:

3-2

Enhancements

A 13-inch color or 15-inch monochromatic bit-mapped video display
A keyboard

A three-button mouse

e Controlling circuit boards

Interfaces
There are a number of interfaces available that let you connect a variety of
peripherals and instruments to your workstation. These interfaces include the Dual
RS-232-C interface, Serial Synchronous/asynchronous interface, High Speed
General Purpose Interface Bus, Hard Copy interface, Small Computer System

interface, and the Muitibus interface.

These interfaces are installed in one (for single-width boards) or two (for double-
width boards) of the six backplane slots provided by the workstation. Figure 3-2
shows the backplane slots and how that these circuit boards can be plug into these

slots.

6130 USER'S GUIDE 3-3

Enhancements

DOUBLE-WIDE
BOARD

Figure 3-2. Workstation Backplane Slots.

Dual RS-232-C Interface

The Dual RS-232-C Iinterface is a single-width board that adds two high speed,
asynchronous RS-232-C ports to your workstation. These ports transfer data at a
rate up to 19.2 kbaud.

The file in the /dev directory that lets you communicate with peripherals connected
to one of the dual RS-232-C ports are in the following format:

Idevittysp

where s is the slot the dual RS-232-C interface is in and p is the number of the port
(0 is on the left, 1 on the right as you face the back of the workstation).

3-4

Enhancements

Serial Sync/Async Interface

This single-width board provides an RS-232-C DCE port and a dual-function RS-
232-C/RS-422 DCE port. The RS-232-C interface provides synchronous and
asynchronous communications and supporis data iransfer rates up to 19.2 kbaud.
The dual-function interface can be configured to operate either as a standard RS-
232-C interface or a synchronous/asynchronous RS-422 interface. In the latter
mode, the interface supports data rates up to 153.6 kbaud. The connectors are
mounted at the rear of the board and protrude through the rear of the workstation
cabinet.

High Speed GPIB Interface

The High Speed GPIB (General Purpose interface Bus) provides an IEEE 488
interiace with a data transfer rate of up to 250 kbyiesisec (iistener mode) for biock
transfers. This rate applies to block transfers to system RAM (typical block size is 4
kbytes). This is a single-width board.

General Purpose Parallel Interface

The single-width GPPI board provides one general-purpose communications port.
The GPPI transfers 24 data bits along with control lines that connect various
peripherals and custom hardware to your workstation.

Linesd Paris Intavfana

NI WV nmitGIIaAVe

The Hard Copy interface is a single-width board that provides two ports to connect
printers, plotters, and copiers to your workstation. These ports are modeled after
the Centronics—style 8-bit parallel interface, modified to support color. The Hard

Copy ports are plug-compatible with the Tektronix 4695 color graphics copier.

6130 USER'S GUIDE 3-5

Enhancements

The file in the /dev directory that lets you communicate with peripherals connected
to one of the hard copy ports are in the following format:

/dev/[u][c]hcsp

If u is in the name, the hard copy port maps lowercase characters to uppercase. If ¢
is in the name, the hard copy port appends a carriage return character to every line
feed character it passes. s is the slot the hard copy interface is in and p is the
number of the port (0 is on the left, 1 on the right as you face the back of the
workstation).

Tektronix printers that plug into the Hard Copy port, such as the 4695, use the file
/dev/hesp.

SCSI

The SCSI (Small Computer System Interface) Mass Storage Interface, is a single~
width board that lets you add mass storage peripherals to your workstation. For
access to the board, a 50-pin connector mounted on the board protrudes through
the back of the workstation.

Multibus Interface

The Multibus Interface lets you use interface circuit boards that conform to the IEEE
796 (Multibus) standard to your workstation.

The Multibus Interface consists of a Multibus Repeater board and a Multibus
Interface board. The repeater board plugs into one of the 6 half-width backplane
slots of the workstation and sends signals through a 50 pin AMP connector, located
on the rear panel of the workstation. The interface board plugs into the Multibus
card cage.

For data transfers where the workstation is the initiator, the Multibus Interface is
transparent to the workstation. Data transfers initiated by a Multibus device are
buffered by a dual-port RAM.

3-6

Enhancements

Memory Expansion

You can expand the memory of your workstation with circuit boards of 0.5, 1.0, or
2.0 megabytes parity-checked random access memory. The memory expansion
circuit boards plug into the backplane slots provided by the workstation. Figure 3-2
shows how these double-width boards plug in to the back of the workstation.

512-kbyte Memory Expansion Board

This is a double-width board (it requires two adjacent backplane slots) that uses
64—kbit chips. The board is fully populated and provides 512 kbytes of additional
memory.

1-Mbyte Memory Expansion Board
This is a double-width board that uses 256—kbit chips and is half-populated,
providing 1 megabyte of additional memory.

2-Mbyte Memory Expansion Board
This is a double-width board that uses 256-kbit chips and is fully populated,
providing 2 megabytes of additional memory.

Network Transceiver

The IEEE 802.3 transceiver and connecting cable let you connect your workstation
to a Local Area Network (LAN) with other workstations and computers to share files,
peripherals, and to exchange electronic mail.

Streaming Cartridge Tape
Drive

The streaming cartridge tape drive provides a backup media for the UTek file
system. You can also use the cartridge tape drive to archive files and to transfer
files between workstations.

The cartridge tape drive is a 5.25 inch drive that has a formatted storage capacity of
45 Mbytes using a standard 450’ 0.22-inch tape cartridge and 60 Mbytes using a
600’ tape cartridge. The drive uses a 4 x 6-inch tape cartridge that conforms to
ANSI specifications X3.52-1977 and X3b5.82-89 for unrecorded cartridges.

6130 USER'S GUIDE 3-7

Enhancements

The cartridge tape drive, which mounts in its own cabinet external to the
workstation, requires an external Small Computer Systems Interface (SCSI) to
connect to the workstation.

You can read and write the streaming cartridge tape with the cpio command, as is
described for the diskette drive in Section 2, Peripherals and Interfaces. The /dev file
you read from and write to controls how the drive operates. The /dev files that let
you access the streaming cartridge tape follows these naming conventions:

/dev/[n]tesd

If n is in the name, the tape doesn’t rewind at the end of I/O operations. Without the n,
the tape rewinds at the end of I/O operations. S indicates the slot that the drive’s inter-
face is connected to. d indicates the number of the drive.

Character Printer

The Tektronix 4644 character printer provides printed output from your workstation
through one of the RS-232-C ports or through a hard copy interface. The 4644 is
an IBM—compatible, wide—carriage, dot matrix printer with a print speed of up to 160
characters/second. The 4644 contains 4 fonts that can be printed in one of 7 print
modes.

The printer can print in seven international character sets and can print graphics.

Color Copier

The Tektronix 4695 color copier is an ink—jet printer that provides hard copies of the
graphics on your workstation’s display. The copier uses three colors of ink plus
black ink to produce multicolor text, line drawings, and graphics on coated ink-jet
copier paper or on plastic transparencies. The 4695 copier connects to your
workstation through one of the Hard Copy ports. The 4695 is accessed through a file
in the /dev directory that follows this naming convention:

/dev/hesp

where s is the slot the hard copy interface is in and p is the number of the hard copy
port the 4695 is connected to (0 is on the left, 1 is on the right).

3-8 REV MAR 1985

Shutdown

This section describes how to start up your workstation and how to shut it down. It is
assumed your workstation has been started up before.

If your workstation hasn’t been started up before, follow the procedure described in
the First Time Start-up section in the 6130 System Administration manual. That
section describes the procedures for creating user accounts, configuring your
workstation for a local area network, and running file system checks, which must be
done the first the workstation is started.

Start-up Procedures

NOTE
This description assumes that the computer board

configuration switches on the back panel of your

workstation are set so the system comes up in normal mode

and boots UTek from the hard disk. These switches should

have been set at installation. See the Configuration Switches

topic in this section for more information.
The picceduis for staiting up ihe woikstation is summarized beiow. Each of inese
steps is further described in the following paragraphs.

1. Check the settings of the computer board configuration switches.

2. Turn on the terminal that is designated as the console. If the display is
designated as the console, you can omit this step because the display comes
on when you turn on the workstation.

3. Turn on any other peripherals you are using with the workstation, such as
terminals, printers, and tape drives.

Press the start/stop switch to put it in the Start position.
Check for errors or hardware failures in the start-up sequence.

Log in to the workstation when you see the

workstation login:

prompt. Workstation is the name assigned to your workstation by your system
administrator.

6130 USER'S GUIDE 4-1

Start-up and Shutdown

Configuration Switches

The computer board configuration switches provide the workstation with information
needed to bring the system up. The switches tell the workstation which device is the
console, which device to load the operating system from, which file to load the
operating system from, and other related information. Figure 4-1 shows the location
of the configuration switches on the back panel of the workstation.

CONFIGURATION
SWITCHES

5307-08

Figure 4-1. Configuration Switches.

Check that the eight configuration switches are set to match the configuration of
your system. The switches should have been set properly at the factory, but check
them anyway, since the wrong switch settings may cause problems.

4-2

Start-up and Shutdown

NOTE
The configuration switches are only examined when the
workstation is running its power-up sequence. Changing the
position of switches while the workstation is running has no

effect.

The configuration switches are numbered from 1 to 8; switch 1 is on the left, and
switch 8 is on the right, as you face the back of the workstation (see Figure 4-2).
The meanings of the configuration switches are discussed in the following
paragraphs.

NORMAL MODE BOCT FROM UTek RESERVED FOR DIAGNOCSTICS
| |
SYSTEM CONSOLE BOOT DEVICE
ON
1 2 3 4 5 6 7 8
T T
SERVICE MODE BOOT FROM FILE 5307-09

Figure 4-2. Meaning of the Configuration Switches.

Switch 1 Sets the workstation to either normal mode (up) or service mode
(down). Switch 1 should usually be set to normal mode (up).

The setting of switch 1 determines the meaning of the rest of the
configuration switches. If switch 1 is set to service mode (down),
the rest of the configuration switches select diagnostic tests that
locate faults in the workstation hardware (see the 6130 Diagnostics
manual).

If switch 1 is set to normal (up) mode, the rest of the configuration
switches have their normal meanings, which are described in the
following paragraphs.

6130 USER’S GUIDE 4-3

Start-up and Shutdown

Switches 2, 3

Switch 4

Switches 5, 6

4-4

Select the device you want to be the console. There may be one
display and a number of terminals connected to your workstation,
but only one of these devices can be the console.

The console is the device that displays system messages. Table
4-1 shows how to set configuration switches 2 and 3 to select the
device you want to be the console.

Table 4-1
SELECTING THE CONSOLE DEVICE
Console Device Switch 2 Switch 3
Display (Option 27/28) up up
9600 baud RS-232-C terminal (port 1) up down
1200 baud RS-232-C modem/terminal (port 0) down up
300 baud modem/terminal (port 0) down down

Determines whether the workstation boots UTek (up) in multiuser
mode, or a file that you specify (down). Switch 4 should usually be
set to boot from UTek (up) in multiuser mode.

If you set Switch 4 in the down position, you are prompted for a
filename to boot from. If you enter a filename, that file is booted. If
you press <RETURN> without entering a filename, UTek is booted
in single-user mode. Single-user mode should only be used to
perform system administration tasks on the workstation.

Select the boot device, the device from which the workstation foads
the operating system. Possible boot devices are:

o Diskette
e Internal hard disk
e Local Area Network (LAN)

Table 4-2 shows how to set switches 5 and 6 to select the boot
device.

Start-up and Shutdown

Table 4-2
SELECTING THE BOOT DEVICE
Boot Device | Switch 5 | Switch 6
Autoboot up up
Hard disk up down
Diskette drive down up
LAN port down down

If you select autoboot, the workstation searches for a device from
which to boot UTek. The workstation tries to boot from (in order):
the diskette drive, the hard disk, and the Local Area Network

(LAN).

Switches 7, 8 Reserved for use with the Diagnostics operating system. See the
6130 Diagnostics manual. These two switches should be up during

normal system operation.

Turning on the Console and Peripherals

If you don’t know which device is the console, refer back to the discussion of
configuration switches 2 and 3 under the topic Configuration Switches of this

section.

If you have the display (Option 27/28), you don’t have to turn its power on. The
display receives power from its connection to the workstation.

if you have designated a terminal connected to one of the RS-232-C ports as the

console, turn it on.

Turn on printers, tape drives, and any other peripherals you are going to use with

the workstation.

€130 USER’S GUIDE

45

Start-up and Shutdown

The Start/Stop Switch

NOTE
This discussion assumes your workstation is laying flat, as
it would on a table top. If your workstation is mounted
upright in a floor stand, the start/stop switch is in the lower
left corner of the front panel of the workstation.

The start/stop switch is located on the lower right corner of the front panel of the
workstation (see Figure 4-3).

4-6

Start-up and Shutdown

= START om

stor JL

5307-10

Figure 4-3. The Start/Stop Switch.

6130 USER’S GUIDE 4-7

Start-up and Shutdown

The switch has two positions: Start (in) and Stop (out). A green light on the switch
turns on when the switch is pressed to Start. To start the workstation, press the
start/stop switch in.

When you press the start/stop switch, the workstation begins running a series of
diagnostic tests that check the workstation hardware. As each test completes
successfully, a confirmation message is displayed on the console. If the start-up
diagnostics don’t find any errors, the UTek operating system is booted.

Checking for Start-up Errors
If you press in the start/stop switch and nothing happens, or if messages on the
console indicate errors or failures during start-up, you should check the following:

Is the workstation plugged in?

Is the console connected properly to the workstation? (Check for loose
connections)

Is the baud rate of the console set properly? If not, messages on the
screen will be unrecognizable.

Are the configuration switches set for the proper console device, boot file,
and boot device? (Refer back to the topic Configuration Switches in this
section.)

Are the diagnostic LEDs on? (Refer to the following paragraphs on
Diagnostic LEDs.)

Diagnostics LEDs

If a critical error is found during start-up, the workstation stops processing. You can
detect a critical error by checking the diagnostic LEDs, which indicate the results of
the start-up diagnostic tests. There are two of these LEDs, located behind the cable
management cover at the back of the workstation (see Figure 4-4).

4-8

Start-up and Shutdown

DISPLAY
BOARD
DIAGNOSTIC
LED

JEL.,=J@] [°\L). C

@

COMPUTER
BOARD
DIAGNOSTIC
LED 5307-11

Figure 4-4. Diagnostic LEDs.

The rectangular seven—segment LED, labeled computer board diagnostic, is attached
tc the computer board and can display a hiexadecimal digit (0-5, A—F). The sieps ine
workstation goes through immediately after you press the Start/stop switch and what
is displayed on the seven—segment LED are discussed below. This discussion

assumes the configuration switches are set so that the UTek operating system boots

from the internally~mounted hard disk (see Table 4-2).

Press Switch When you press the start/stop switch the system resets and
the seven-segment LED remains off.

ROM Diagnostics Diagnostic tests are loaded from the workstation’s read—only
memory (ROM) and executed. As each test is executed its test
number is displayed on the seven-segment LED. If a test fails,
the test’s number remains on the LED. If this type of failure
occurs, see the 6130 Diagnostics manual or contact your local
Tektronix office. If all tests complete successfully, the seven—
segment LED turns off.

Diagnostic OS Then the diagnostic operating system is loaded from the hard
disk and executed. The seven segments of the LED flash in a
race track pattern. When the diagnostic operating system is
finished running tests, the LED turns off.

6130 USER’S GUIDE 4-9

Start-up and Shutdown

UTek The UTek operating system is loaded from the hard disk and
executed. The seven segments of the LED cycle in a race
track pattern. The segments flash quickly when the system is
not running many processes and flash slowly when the system
is busy running your programs.

The second diagnostic LED is a single round light that is attached to the display
board. If the round LED is off at the completion of the diagnostic tests, the tests
terminated normally. If the round LED remains on or blinks off and on, the test
terminated abnormally, indicating a hardware failure in the display subsystem.

If either of these LEDs indicate a hardware failure, refer to the 6130 Diagnostics
manual.

Logging In

You know the system is up when you see this message on the screen:

workstation login:

where workstation is the name assigned to your workstation by your system
administrator.

Type your login name and press <RETURN>. If your account has a password
assigned to it, you are then asked for your password. Type your password and press
<RETURNS>. If you don’t know your login name or password, ask your system
administrator.

A welcome message, called the message of the day, is usually displayed. Then, if
you are a Bourne shell user, the commands in your .profile file are executed. If you
are a C-Shell user, the commands in your .cshrc and .login files are executed.

You may see a line that looks like the following line:

TERM = (termtype)

If you see this line, the system is waiting for you to enter the abbreviation of the type
of terminal you are using. If you press <RETURN>, whatever is in the parenthesis is
used as your terminal type. If you type some characters followed by <RETURN>,
whatever you type is used as your terminal type. See the discussion of the tset
command in the following paragraphs for more information.

After the commands in your .profile or .login file are executed, your prompt (usually
$ or %) is displayed, indicating you can begin entering commands.

The tset Command

A command that is commonly put in your .profile file (if you are a Bourne shell user)
or in your .login file (if you are a C-Shell user) is the tset command, which tells the

4-10

Start-up and Shutdown

system what type of terminal you are using. If your .profile or .login file contains this
command, a line in the following format may appear on your screen when you log in:

TERM = (termtype)

The prompt remains immediately after the parenthesis, waiting for you to enter
something. If you press <RETURN> whatever is in the parenthesis, if anything, is
used as your terminal type. If you enter a some characters, followed by <RETURN>,
whatever you type is used as your terminal type. If the system doesn’t recognize

what you enter, seme of the UTek programs (such as the vi text editor) won't work

properly.

The correct abbreviations for all the terminals supported by UTek are listed in the

/etc/termcap file. To read these abbreviations, enter the following command line:
grep | fete/termeap

The following lines are examples of the output of the preceding command line:
XQ {4107 |tek4107 lunicornlIl [Tektronix 4107:\
NH [aaa |aaa-30 Jambas Jambassador Jann arbor ambassador/30 lines:\

Each line in the preceding example contains a list of abbreviations that you can use
for a terminal. The first line gives all the abbreviations that can be used for the
Tektronix 4107 terminal, separated by the vertical bar (!) character. The second line
gives the abbreviations that can be used for the Ann Arbor Ambassador terminal.

The following line is a sample tset command from a .profile or .login file.

eval “tset -Q -m :?tek4107°

The tset command by itself doesn’t tell the system what type of terminal you are
using, it generates commands that, when executed by the eval command, tell the
system what type of terminal you are using.

The parts of the tset command in the previous example have these meanings:

—Q Keeps the tset command from printing messages, which
describe what it is doing.

—m :?tek4107 Tells tset what to put in parenthesis (tek4107 in this example).
In the example, if the question mark (?) is omitted, the
message TERM = (termtype) isn’t printed and rek4107 is used
as the terminal type.

For more information, see #set(1) and termcap(5) in the UTek Command Reference
manual.

6130 USER’S GUIDE 4-11

Start-up and Shutdown

Shutdown Procedures

At the end of the day you should logout, but you don’t need to shut down the

workstation. It can keep running until there is a reason to shut it down (for example,
to service the workstation).

1. Type:

who

to make sure there are no other users logged in on the workstation. If there are
other users logged in, follow the procedure in the 6130 System Administration
manual for shutting down the workstation.

2. Log out by typing <CTRL-D>.

When you see the

workstation login:

prompt, press the start/stop switch to Stop (refer back to Figure 4-3). (The
workstation runs some file system checks before shutting down. It take a few
minutes before the workstation completely shuts down.)

4. Switch off all peripherals connected to the workstation.

If the System Halts

If you must reboot or rebuild the operating system due to a partial or full system
halt, see the 6130 System Administration manual.

4-12

//////7 5

Customizing Your
Account

A number of UTek programs begin by looking for a file in your home directory with a
certain name. When the program finds the file, it reads each line in the file and
alters its operation based on the contents of the file.

Thaic anadl i~ mlma o f Lo ACO S e
1

is section provides exampies of how you can use these fiies to taiior your account
on UTek to meet your needs. The files that are discussed in this section are:

.profile A file of commands that are executed when you log in if you are a
Bourne Shell (sh) user.

.cshre A file of commands that are executed whenever you invoke the C—
Shell {csh) to execute commands.

dogin A file of commands that are executed when you log in if you are a
C-Shell (csh) user.

Jogout A file of commands that are executed when you log out if you are a

C-Shell (csh) user.
.mh_profile Sets options that control how the programs of the MH Mail System

work.
.aliases Defines aliases, or abbreviations, you can use on the To: line of
your mail messages.
.exrc Sets options that control how the vi text editor works.
.plan Contains information that is printed by the finger command.
.project Contains information that is printed by the finger command.

The .profile File

After you log in, the program that prints a prompt on your screen (usually $ or %)
and reads what you type at the keyboard is called a shell. There are two shells
standard on your workstation: the Bourne Shell (also called the Shell or sh) and the
C-Shell (also called cs#). Typically, new users on UNIX-based systems use the
Bourne Shell, but check with your system administrator to be sure.

When you log in, the Shell searches for a file named .profile in your home directory.
When the Shell finds this file, it reads and executes each line in the file as if you
had typed it at the keyboard. Then the Shell issues you its first prompt, which is
usually $, indicating it is ready to accept typed commands.

You can put any commands you want in your .profile file. Users commonly put
commands in their .profile to set up their terminal, set the prompt, check for the

6130 USER’S GUIDE 5-1

Customizing Your Account

arrival of new mail, set variables, and program the function keys of their keyboard.

Example 5-1 shows a sample .profile file.

NOTE
The line numbers in Example 5-1 are not in the .profile
file; they are included for reference only.

1 #! /bin/sh

2 EDIT="vi"

3 MORE="-u -f"

4 PATH=:${HOME}/.bin:${HOME} : $PATH
5 PS1=" "hostname > "

6 ps2="? "

7 SEDIT="prompter"

8 export EDIT MORE PATH

9 export PS1 PS2 SEDIT SHELL

10 iftest -s /usr/spool/mail/$USER

11 then inc

12fi

13 eval tset -s -m :?display -m network:? vt100

15 lnext "V intr "? stop s start "q erase
16 who

14 stty ert susp "Z dsusp Y rprnt R’ flush 'O werase
i

y

\

Example 5-1. Sample .profile File.

The #! Line (line 1)

The #! line tells UTek which shell to use to execute commands in this file. This line
is not always required, but it is good programming practice to include it in all files of

commands.

The EDIT Variable (line 2)

Environment variables are string-valued variables that change the way one or more
UTek commands function. Commands that set environment variables are commonly

put in the .profile file.

The EDIT environment variable is used by the UTek comp command. When you
are finished composing a mail message with comp, you are given the prompt:

What now?

5-2 REV APR 1985

Customizing Your Account

If you respond with:

edit

comp reads the name of a text editor from the EDIT variable and invokes that editor
or further editing of the mail message you are composing.

The MORE Variable (line 3)

The MORE environment variabie seis options of the more command. More iets you
read the contents of a file, or the output of a command, before it scrolls off your
terminal screen.

When the more command is invoked, it reads what you put in the MORE variable, if
anything, and alters its operation accordingly. Line 3 of Example 5-1 causes the
—u and —f options to be set every time more is invoked. These options have the
following effect on more:

—u Causes more to suppress underlining and standout mode on your
terminal.
—f Causes more to count logical, rather than screen lines when determining

how many lines to print on your screen.

See more(1) in the UTek Command Reference manual for more information.

The PATH Variable (line 4)

When you enter a command, the Shell must know the full pathname of the
command in order to execute it. If you don’t enter the full pathname of the
command, the Shell looks for it in the directories listed in the PATH variable.

When you log in, PATH is set to you current directory (which is represented by a
period) and /bin and /usr/bin, the directories that contain the UTek commands. You
probably want to add other directories to PATH.

Line 4 of Example 5-1 adds three directories to PATH. The colons () separate the
directory names. The first directory added to PATH is ${HOME}/.bin. The Shell
expands ${HOME} to your home directory, so .bir is in your home directory. The
braces around HOME are necessary to distinguish it from the characters next to it.
The .bin directory is commonly used to hold commands that you write.

The second directory added to PATH is ${HOME}, your home directory. Putting
$PATH after these three directories adds the default value of PATH (your current
directory, /bin, and /usr/bin).

The PS1 Variable (line 5)

The PS1 variable contains the string that the Shell uses for its prompt. The default
PS1 prompt is the dollar sign ($).

cln
W

8130 USER’S GUIDE

Customizing Your Account

Line 5 of Example 5-1 shows how to put the output of a command into a Shell
variable. A command enclosed in grave accents () is executed before the
assignment to PS1 is made. In this example the prompt is set to the name of the
host computer you are currently logged onto, followed by a greater than (>) sign. This
is useful for keeping track of the computer you are logged onto, when you switch
back and forth between several computers.

The PS2 Variable (line 6)

PS2 is the prompt the Shell uses when it reads a command line and still needs
input. The default PS2 prompt is the greater than (>) sign. Line 6 of Example 5-1
sets PS2 to a question mark followed by a space.

The SEDIT Variable (line 7)

The SEDIT variable contains the name of the text editor that is invoked when you
call comp to send electronic mail. Line 7 of Example 5-1 sets SEDIT to prompter,
an editor that allows rapid composition of mail messages.

You may wonder why comp uses both EDIT and SEDIT. Using different variables
lets you use different text editors when you are creating a new mail message and
when you are editing an existing mail message.

The export Command (lines 8-9)

The export command puts Shell variables into your environment for other UTek
commands to use. Export is built into the Shell, which means it isn’t stored in its
own file in the UTek file system.

Customizing Your Account

Test for Incoming Mail

When you receive mail, it is stored in the file /usr/spool/mail/$USER, (the system mail
file), and the Shell prints the message You have new mail. Then you can use the inc and
show commands to read your mail.

The statement on line 10 tests to see if the size of your system mail file is greater than
zero. if the size is greaier than zero, then you have new maii and the inc command
(line 11) is executed to move the mail messages into your mail folders. The fi command
(line 13) is the end of the if statement.

How to Set up your Terminal (line 13)

Line 13 of Example 5-1 is 2 combination of fwo commands, eval and tset, which tell
UTek how to communicate with your terminal. Tset generates commands to set up
your terminal and eval executes those commands.

Tset creates commands to set the TERM (terminal type) and TERMCAP {terminal
capability) environment variabies for the shell you are using. See set(l) for a
complete description of this command.

The stty Command (line 14-15)

The stty command, which is shown in line 14 and continued on line 15 of Example
5-1, sets options and the meaning of control characters on your terminal. For a
complete description, see stty(1) in the UTek Commands Reference manual.

To find out the current settings of all stty options on your terminal, type:
stty everything

To find the settings of the most commonly used stty options, type:
stty all

To find out the settings of all stty options that are different from their default values,
type:

stty

6130 USER’S GUIDE REV APR 1985 5-5

Customizing Your Account

The who Command (line 16)

When you log into UTek, you may want to know who else is on the system. The
who command prints the names of all users that are currently logged in.

Other .profile Possibilities

As was stated earlier in this section, you can put any commands you want in your
_profile file. Example 5-1 showed some commands that are commonly put in a
.profile file. The following paragraphs describe some other features you may want to
put in your .profile file.

Functions
Functions are a new feature of the Shell that let you enter a short name to execute a
long string of commands and options. You can define functions in your .profile file.

The syntax of functions is shown in UTek Command Reference — sh(l).

Other Variables

Below are some other variables you can set in your .profile file. Example 5-1 shows
how you can assign values to Shell variables.

CDPATH is the colon-separated list of directories that is searched when you
enter the cd command. This is similar to the Shell’s using the PATH
variable to find commands.

MAILCHECK is the number of seconds between checks for new mail. The default
is 600 seconds.

MAILPATH is a colon—-separated list of files to check for new mail.

Customizing Your Account

C-Shell Files

The C-Shell has some advanced features that aren’t in the Shell. You can read
about some of these features in Chapter 13, The UNIX System at Berkeley, in
Introducing the UNIX System.

If you decide to use the C-Shell, you should change your entry in the system
passwoid file so that UTeK invokes /bin/csh when you log in. To do this you need
to use the chsh (change shell) command. To make the C-Shell your login shell,
type:

chsh yourname /bin/csh
where yourname is your login name.

Every time you invoke the C-Shell it executes commands from a file named .cshrc in
your home directory. In addition, when you log in, the C-Shell executes commands
from a file named ./ogin in your home directory. When you log out, the C-Sheil
executes commands from a file named .Jogout in your home directory.

Sample .cshrc File
The .cshre file should contain C-Shell specific commands that you want to execute
every time you create a new C-Shell.

- e 0 A cleeiiio o mmamnla L
CRAIPIC I—< DIIVUWD a dSalllpic ..

NOTE
The line numbers in Example 5-2 are not in the .cshre file;
they are included for reference only.

6130 USER’S GUIDE 5-7

Customizing Your Account

1 set path=(. “/.bin /bin /usr/bin)
2 if ($?prompt) then

3
4
5
6
7
8 endif

set history=29

set mail=(60 /usr/spool/mail/$USER)
setenv EDIT vi

setenv MORE page -u -f

setenv SEDIT vi

9 alias more more -u -f \I*’
10 alias hi history
11 alias who ‘who \!* | sort | more’

Example 5-2. Sample .cshrc File.

Customizing Your Account

The path Variable (line 1)

The C-Shell uses the path variable instead of the PATH environment variable,
which is used by the Bourne shell. Line 1 of Example 5-2 shows how to use the set
command to assign a value to the path variable.

The first directory in path is the current working directory, which is represented by
the period (.). The second directory is named .bin and is a subdirectory of your
home direciory. in C-Sheii, a tiide (") represents your home directory. The last two
directories in path, /bin and /usr/bin, contain the UTek commands. Each directory
is separated by a space.

When you create a C-Shell (by logging in, executing a C-Shell file, or starting up a
subshell), path is given a default value of:

. /bin /usr/bin

The if Statement (lines 2, 8)

Line 2 of Example 5-2 is the C-Shell if statement. If the expression in the
parentheses is true, all the commands down to the endif (line 8) are executed.

The expression $?prompt is true if the prompt variable (the string that the C-Shel
uses for its prompt) has been set. This is one way of testing for an interactive C-
Shell.

The history Variable (line 3)

The C-Shell can store commands you type in a history list, so you can reenter them
later. To make the C—Shell create a history list, you must set the history variable to
tell the C-Shell how many previously-executed commands to keep track of.

Line 3 of Example 5-2 tells the C-Shell to remember the last 29 commands entered.
Remembering too many commands causes the C-Shell to run out of memory.

To reenter a command, you type an exclamation mark (!) followed by another
exclamation mark (for the last command entered), an integer, or a pattern-matching
string. This feature can save you a lot of typing and is one of the major advantages
of the C-Shell over the Shell. (For a complete discussion of the history list, see
Chapter 13 in Introducing the UNIX System.)

The mail Variable (line 4)

C-Shell uses the mail variable to store the name of the file that receives your mail.
Line 4 tells the C-Shell to check the directory /usr/spool/mail/3USER (which is your
system mailbox) every 60 seconds for new mail.

6130 USER'S GUIDE 5-8

Customizing Your Account

Setting Environment Variables (lines 5-7)

When you use the C-Shell, the command you use to assign a value to an
environment variable is setenv. Lines 5-7 set the EDIT, MORE, and SEDIT
environment variables. These variables have the same function under the C-Shell
as under the Bourne Shell.

Creating Aliases (lines 9-11)
The alias command lets you create a short character string to represent a long
character string. This feature of the C-Shell can save you a lot of typing.

Line 9 of Example 5-2 causes:

more -u -f
to be entered when you use the more command.

The exclamation mark followed by the asterisk (1*) is replaced by any other
command line arguments you enter to more. (The exclamation mark must be
preceded by a backslash (\) to override its special meaning to the C-Shell.)

Line 10 lets you enter the history command by typing hi. Line 11 passes the output
of who through sort and more.

Sample .login File
The .Jogin file should contain commands that you want to execute when you first log
into UTek. Example 5-3 shows a sample .login file.

NOTE

The line numbers in Example 5-3 are not in the .login file;
they are included for reference only.

5-10

Customizing Your Account

set noglob
eval tset -s -Q -m :?display -m dialup:?vt100 -m network:?display’
stty crt susp "2 dsusp 'Y rprnt "R’ flush "0 werase W\
lnext "V intr "2 stop "8 start Tq°
switch ($TERM)
case aaa:
set history=35
${HOME}/.bin/setup.aaa
breaksw
case vt100:
set history=30
${HOME}/.bin/setup.asa
breaksw
default:
set history=23

Lol B N I N

[T =g
~LRESB

[y

[
=)

endsw
set prompt=""hostname '\!’

[y
~

Example 5-3. Sample .login File.

The noglob Variable (line 1)

Line 1 of Example 5-3 sets the Boolean C-Shell variable noglob. If noglob is set,
the C-Shell dossi’t iry to expand characiers with special meanings (like *) into
filenames when you enter them as arguments to a command. This is useful in C-
Shell files that are not dealing with filename expansion, such as this .login file.

Setting Up your Terminal (lines 2-4)

Using the eval and tset commands to set up your terminal is discussed under the
Bourne Shell heading of this section. These commands are the same for the C-Shell
as for the Bourne Shell.

Lines 3 and 4 call stty to set options on your terminal. The first argument, crt, tells
UTek to set options for a CRT. The rest of the arguments define the functions of
certain control characters. See stty(1), tty(4) and Introducing the UNIX System for a
complete discussion of stty.

The switch Statement (lines 5-16)

The C-Shell switch statement is analogous to the Bourne Shell case statement.
Line 5 of Example 5-3 shows the switch statement. The string in parentheses, in
this case the value of the $TERM environment variable, is successively matched
against the strings in the case statements (lines 6 and 10). If a match is found, the

6130 USER’S GUIDE 5-11

Customizing Your Account

commands between the case statement and the breaksw statement (lines 9 and 13)
are executed. If no match is found, the commands between the default label and its
breaksw command are executed.

In this example, the length of the history list is altered, depending on the type of
terminal used (lines 7, 11, 15). This ensures the entire history list fits on your
terminal screen.

Line 8 of Example 5-3 calls a program that sets up an Ann Arbor Ambassador
(abbreviated aaa) terminal, if you are on that type of terminal. Line 12 sets up a
Digital Equiptment Corporation VT100 (abbreviated vt100), if you are on that type of
terminal. Note these calls are to hypothetical programs in your .bin directory; you
would need to create these programs.

The prompt Variable (line 17)

The prompt variable contains the string that the C-Shell uses for its prompt. This is
analogous to the PS1 variable under the Bourne Shell. The default value of prompt
is a percent sign (%).

Line 17 sets the prompt to the output of the hostname command, followed by the
index of this command in the history list, which is substituted for the exclamation
mark (!). See history(1) for a complete discussion of this index. The exclamation
mark must be preceded by a backslash (\) to override its special meaning to the C-
Shell.

Other .cshrc and .login Lines

The UTek C-Shell contains all the features of the Berkeley 4.2 BSD C-Shell, as well
as the extensions described in the following paragraphs. Some of these features are
enabled by setting variables, which can be done in your .login or .cshrc files.

File Name Completion
When you type a command, you can use abbreviations for filenames. First, set the
complete variable by typing:

set complete

Then, when you are entering a filename as an argument to a command, type as
many characters as you need to make the filename unique. Then press the <ESC>
key. Below is an example of filename completion.

5-12

Customizing Your Account

% 1s

DSC.OLD bin cmd 1ib memos

DSC.NEW chaosnet ecmtest mail netnews

bench class dev mbox news

% 1s ch<ESC>

% 1s chaosnet (The cursor remains at the end of this line)

Press <RETURN> to enter the command.

File and Directory List
When you are entering a command, you may want to know what filenames match
what you have typed so far. First, set the list variable by typing:

set list

Then, when you are entering a filename or directory name as an argumenttc a
command, press <CTRL-D> to list all matching files and directories. Below is an
example of the file and directory list.

% ls

DSC.OLD bin emd 1ib memos

DSC.NEW chaosnet cmtest mail netnews

bench class dev mbox news

% 1ls c<CTRL-D>

chaosnet class cmd cmtest

% 1lsc (The cursor remains at the end of this line)

You can then type any more characters you need to make the name unique (if
filename completion is set) and press <RETURN>.

Command Name Recognition

You can use the completion and list features when entering command names, as
well as filenames and directory names. Below are examples of command
completion:

9 pass<ESC>

% passwd (The cursor remains at the end of this line)
and command listing:

9 pas<CTRL-D>

passwd paste
% pas (The cursor remains at the end of this line)

6130 USER'S GUIDE 5-13

Customizing Your Account

Automatic Logout
With this feature, the C-Shell logs you out if your terminal is idle for a specified
period of time. You can set the autologout variable; for example:

set autologout=60

waits 60 minutes before logging you out. You can turn this feature off by typing:

unset autologout

When you log in, this feature is always unset.

Saving Your History List

The C-Shell can store your history list between login sessions. The list is stored in a
file named .history when you log out and is restored the next time you log in. To set
this feature, specify the number of commands you want the C-Shell to restore. For
example:

set savehist=30

causes the C-Shell to store the last 30 commands you entered.

A .logout File

The .logout file should contain commands that you want executed when you log out
of UTek. The .logout file typically is very short. Some common things to do from the
.logout file are to remove temporary files and clear your terminal screen. For more
information, see clear(1).

MH Mail Files

UTek uses an electronic mail system called MH, which replaces the electronic mail
system used on most other UNIX systems. MH, which was developed by Rand
Corporation, is a group of programs that manipulate mail messages and mail
folders. A mail message is a file that is sent to another user and a mail folder is a
directory of mail messages. Table 5-1 lists the programs in MH.

Customizing Your Account

Table 5-1
PROGRAMS IN THE MH MAIL SYSTEM

Command | Function

ali List all mail aliases.

comp Compose a mail message.

refile Move mail messages to another mail folder.

folder Print information about, or set, the current mail folder.
folders List ali miall folders.

forw Forward mail messages to another user.

inc Incorporate new mail messages into a mail folder.

mail Send and receive mail messages.

mhl Print a formatted listing of mail messages

next Print the next mail message on the terminal.

pick Select mail messages by content and do something with them.
prev Print the previous mail message on the terminal.

prompter A text editor for quick composition of maii messages.

rmaii Send maii from a remote site

rmf Remove a mail folder and all mail messages in it.

rmm Remove mail messages from a folder.

scan Print a one line description of each mail message in a folder.
send Send a mail message.

show Print mail messages on the terminal.

For a complete description of each of the programs in MH, see:

e UTek Commands Reference
Section 1

o UTek Tools
Part 2A — FElectronic Mail

Sample .mh_profile File

The file in your home directory named .mA_profile contains information to tailor the
MH programs to your needs. Each line of the .mh_profile file consists of a keyword
followed by a colon () and a character string. When an MH program is executed, it
looks in the .mh_profile file for a keyword that is the same as the program’ss name
and special keywords that apply to it. If the program finds a .mh_profile entry that
applies to it, it responds according to the character string following the colon.

Example 5-4 shows a sample .mh_profile file. Note that there can’t be any blank
lines in the .mh_profile file and you can write keywords in any combination of
uppercase and lowercase.

6130 USER’S GUIDE 5-15

Customizing Your Account

NOTE
The line numbers in Example 5-4 are not in the .mh_profile
file; they are included for reference only.

1 Path: Mail

2 Current-Folder: inbox

3 Msg-Protect: 640

4 Folder-Protect: 710

5 dist: -annotate

6 forw: -annotate

7 repl: -annotate -nocc

8 send: -noformat -noambiguous -verbose

Example 5-4. Sample .mh_profile File.

The Path Entry (Line 1)

The Path entry contains the name of a directory in which your MH mail folders and
other mail files live. If the directory does not begin with a slash (/), it is assumed to
be in your HOME directory.

The Path entry is a special keyword entry that is used by all MH mail programs.

The Current-Folder Entry (Line 2)

The Current-Folder entry contains the name of the directory that is the current mail
folder. This entry is maintained automatically by many of the MH programs.

The Msg-Protect Entry (Line 3)

The Msg-Protect entry contains the setting of the UTek file protection bits for mail
messages that are incorporated into your mail folder with inc. See chmod(1) for a
description of the UTek file protection bits.

The default value of Msg-Protect is 600 (read and write permission for the owner
only).

The Folder-Protect Entry (Line 4)
The Folder-Protect entry contains the setting of the UTek file protection bits for the
current mail folder.

The default value of Folder—Protect is 700 (read, write, and directory access
permission for the owner only).

5-16

Customizing Your Account

The Command Entries (Lines 5-8)

Lines 5-8 of Example 5-4 are .mh_profile entries that are only used by the
command that is specified in the keyword. The —string entries, which follow the
colon, set options of the command each time the command is invoked. The same
thing could be done by entering these options on the command line. To find out
what each of these options does, see Section 1 of the UTek Commands Reference for
each command listed.

Additional lines in this format could be added for the rest of the MH programs listed
in Table 5-1.

Other MH Entries

There are cther MH keywords that can be set in the .m#A_profile file. Some of these
can be used in place of environment variables. For example, prompter and
prompter-next can be used instead of EDIT and SEDIT. See mh_profile(5) for a
complete list of keywords.

Sample .aliases File

A mail alias is a name that stands for a user’s or group of users’ login name when
you are sending a mail message. The .aliases file is a list of mail aliases that you
create.

When you send a maii message, send searches a fiie in your home directory named
.aliases to see if you are using an alias on the To: line of your message. If send
determines that you are using an alias, it replaces the name on the 7o: line of your
message with the value from the .aliases file.

A line in your .aliases file has the format:

name: string

Name is the name that you want to use on the To: line of your mail message and
string is the value you want substituted for that name.

Example 5-5 shows how you would create and use an alias, group, that contains the
users janed and johnd.

6130 USER’S GUIDE 5-17

Customizing Your Account

$cd

$ cat .allases

group: janed, johnd

$ comp

To: group

Ce:

Subject: A test of .allases

Just testing the MH mail aljas feature.
<CTRL-d>

WVhat now? send -verbose
Janed: queued to local mailer.
johnd: queued to local mailer.

Example 5-5. Sending Mail Using an Alias.

The lines below the What now? prompt show that the alias worked; a message sent
to group was mailed to janed and johnd.

The vi Text Editor

The vi editor is a screen—oriented text editor for entering and revising documents,
programs, and other text files. For a complete description of vi, see UTek Tools.

Sample .exrc File

When you begin editing a file, vi reads and executes commands from a file named
.exrc (vi is based on the line editor ex, hence the filename .exrc). The .exrc file
should contain commands that set up vi the way you want it when editing a file.
Example 5-6 is a sample .exrc file.

NOTE

The line numbers in Example 5-6 are not in the .exrc file;
they are included for reference only.

5-18

Customizing Your Account

1 set autoindent wrapmargin=5 number
2 set noautowrite nomesg nomodeline
3 map q :¥q

4 ab tek Tektronix, Inec.

Example 5-6. Sample .exrc File.

et T e e P & ___ _ _ £ __= .__
Turning on reatures of vi (iine 1)
Line 1 of Example 5-6 sets the automatic indentation, margin wraparound, and line
numbering features of vi. You could also set these options while in the editor by

typing:
:set autoindeni wrapmargin=5 number.

You can turn these features off by typing:

:set noautoindent wrapmergin=0 nonumber

Turning off Features of vi (line 2)

Line 2 of Example 5-6 turns off the automatic file write, message receiving while in
the editor, and modeline features of vi. These features can be turned off while in
the editor by typing:

:set nosutowrite nomesg nomodeline

Mapping Characters (line 3)
Mapping lets you rename commands. Line 3 of Example 5-6 renames the :wq
command (write to the file and quit) to q.

Abbreviations (line 4)

The abbreviation feature of vi lets a short character string stand for a longer
character string while in the insert mode. Line 4 of Example 5-6 lets you enter the
whole string Tektronix, Inc. by typing fek followed by a space. You can turn off this
abbreviation by typing:

:unab tek

while in the vi editor.

6130 USER’S GUIDE 5-19

Customizing Your Account

The finger Command

Finger is a command that prints out information about users on your UTek system.
Typing:

finger loginname
prints information about a specific user.

When another user types:

finger yourname

they see information about you. If you have files in your home directory named
.project or .plan, finger adds their contents to its output.

Example 5-7 shows an example of the output of the finger command for a user
whose login name is joes. The first line of joes’s .project file appears after the
Project: heading. The entire contents of his .plan file appears after the Plan:
heading.

$ finger joes

Login name: joes In real life: Joe Smith
Mail Station: 30-201 Home machine: engrl
Office Phone: 555-1234 Home phone:

Directory: /usr/joes
Last login Fri Apr 13 11:01 on ttyl
Project: Engineering Applications
Plan:

To build a better mousetrap

Example 5-7. Output of the finger Command.

5-20

The Local Area Network

INTRODUCTION

This section describes how to communicate with other hosts on your local area
network (LAN).

You can communicate with other hosts on your local area network (LAN) with:

The Network File System (NFS)
The remote commands riogin, rsh, and rcp
Electronic mail

The telnet and ftp programs

First, let’s look at what a LAN is in detail.

6130 USER’ S GUIDE REV AUG 1988 6-1

The Local Area Netwqu

WHAT IS A LAN?

6-2

A local area network links together workstations and computers so that users can
access more than one workstation or computer on the LAN. Each workstation and
computer connected to the LAN is called a node or host of that network.

Usually, each node is connected to a coaxial cable by devices called transceivers,
which assure that each node on the network transmits and receives data properly.
(There are other ways to connect to a LAN, but this arrangement is typical.) Each
workstation has one LAN port installed, designated lan). The LAN interface can be
accessed through a port on the back panel of the workstation. Figure 6-1 shows the
hardware components of a typical local area network.

Each node on the LAN has two unique addresses: an Internet address and an
Ethernet address. The network software uses a host's Internet address when
generating messages to send to another host. The Internet software layer passes
the address and messages to the Ethernet layer, which sets up communication with
the addressed system and passes the messages. The network hardware uses the
Ethernet address to communicate with the network. Ethernet addresses are
assigned at the factory by Tekironix. Each host on the LAN also has a unique
hostname for that LAN, which you can use instead of the Internet address to generate
messages to send over the network. As part of installing the workstation, you {or
the system administrator) must select an Internet address and a hostname for your
workstation. Be sure to register the hostname you pick with the LAN administrator,
a system administrator or other user responsible for monitoring the LAN, who can
tell you if the name you chose is unique on the LAN.

A node that is connected to two or more different LANs is called a gateway node. A
gateway node lets users on one network access hosts on another network (see
Figure 6-2). Through a gateway node, you can communicate with hosts on other
networks using the remote commands and electronic mail.

REV AUG 1988 6130 USER" S GUIDE

The Local Area Network

WORKSTATION

.

re

/ LAN TRANSCEIVER
LAN INTERFACE /

IEEE 802.3
TERMINATOR CABLE

TERMINATOR
5329-04

Figure 6-1. Local Area Network Components.

GATEWAY NODE

Figure 6-2. Gateway Nade.

6130 USER’ S GUIDE REV AUG 1988

6-3

The Local Area Network

NETWORK FILE SYSTEM

6-4

The Network File System (NFS) provides you with access to files on other
workstations. NFS uses an open architecture that allows you to access files on non-
UTek systems if they are connected to your LAN, either directly or through a
gateway node, and running NFS.

NFS allows transparent remote access to file systems on other hosts. it permits you
to work with directories or entire file systems on remote hosts as though they existed
on your own workstation. NFS can give you access to large databases, extensive
documentation, and application programs, without using up disk space on your
workstation or CPU time.

With NFS, you do not have to use the remote commands (rsh, rlogin and rcp) to
run commands or access files on remote hosts. NFS can eliminate file redundancy,
since you do not need a local copy of a remote file or directory.

NFS is designed as a network interface, rather than an extension of UTek or any
other UNIX operating system, that lets the NFS user share data with different hosts
and operating systems. The resulting heterogeneous computing environment can take
advantage of different process capabilities. An example of such an environment is
shown in Figure 6-3. The UTek workstation using NFS can share data with a
personal computer or mainframe without data conversion problems.

VAX

Hyparchannel
NN

wis wis wis w/s

ETHERNET I

MICRO
VAX

VAX

6628-1

Figure 6-3. Typical Heterogeneous Computing Environment.

REV AUG 1988 6130 USER’ S GUIDE

The Local Area Network

Client and Server Modes

Before you can access remoie files, directories, or commands, two things must be
done:

1. The remote system must make the files, directories, or commands available
{export).

2. The local system must obtain the files, directories, or commands (mount).

A user who mounts a file system or directory from a remote workstation is using NFS
in client mode. As a client, you can choose a point in your file system to have the
desired remote file system or directory mounted. A mount is a point in the file
system to which the remote host's file system (or directories within the file system)
are "attached.” There is no physical connection between the file systems, however;
the mount paint is the point in the directory structure where access to the remote file
system becomes transparsnt. The remots fils system appsears fo you {(the user} as
a branch in your workstation's directory tree.

The host providing the file system or directory to the client is in NFS server mode. It
allows the client to use its resources. A host can be a dedicated server, such as one
that contains a special database. A host can be both client and server at once,
providing access to directories to users on remote hosts (server mode) while
simultaneously accessing file systems on other remote hosts for workstation users
(client mode).

Stateless \)ersus Stateful Servers

Server mode is relatively simple because it is stateless. Stateless means the NFS
server does not remember any previous client requests or other client information.
Instead, the client process must keep track of such things as which NFS files are
open and where the client is in an individual file. That allows any operation to be
requested more than once, with each request containing all the information
necessary to service it. Besides simplicity, a stateless server improves performance
and allows easy crash recovery because the server doesn’t know if the client
crashes (and the client can also recover from a server crash).

In contrast, a stateful server does keep track of the client, with consequent decrease
in performance, increase in complexity, and difficulty in recovering from system
crashes.

6130 USER’" S GUIDE REV AUG 1988 6-5

The Local Area Network

How NFS Works

This section shows graphically what NFS does.

If you are working at workstation A, and you want to use the onlfine manual pages
from workstation B, the directories containing the manual pages must be mounted
on your workstation file system.

NOTE

Files can only be mounted by the superuser (root) (or system
administrator). It is possible to mount entire file systems or only portions
of the file system tree. The syntax and procedures for mounting files are
covered in the NFS Reference Manual.

Suppose your simplified file system on workstation A looks like Figure 6-4:

root

usr
etc bin

joet ellend

6628-2

Figure 6-4. The File System on Workstation A.

6-6 REV AUG 1988 6130 USER" S GUIDE

The Local Area Network

You want fo get the manual pages from workstation B. Its file system looks like
Figure 6-5:

root

AN

usr
etc bin

franko
man

mani man2

6628-3

Figure 6-5. The File System on Workstation B.

The "mount point” for the directories on workstation A can be anywhere on its file
system. For example, if the remote files are mounted at the usr directory, then you
can access the manual pages directory, /usr/man, at that point.

When the remote file system is mounted, your file system on workstation A is
connected to workstation B as shown in Figure 8-5. The manual pages are now
effectively part of workstation A’s file space, and you (as user) can access them as
though they belonged to you.

6130 USER’" S GUIDE REV AUG 1988 6-7

The Local Area Network

lt is possible for a workstation to have more than one remotely mounted file system.
For example, you can access a directory called Work_Files on workstation C, if that
directory is mounted at a different mount point within workstation A’s file system, as

shown in Figures 6-6 and 6-7.

root

etc bin

ellend

etc

man

root

mani man2

Workstation A

Workstation B 6628-4

Figure 6-6. The Remotely Mounted Directory.

6-8

REV AUG 1988

6130 USER" S GUIDE

The Local Area Network

root

[,

root

mani man2

Workstation B

2
Workstation A ‘%&‘

root

caroim

file1

warkfiles

tile2

Workstation C

2628-5

Figure §-7. Mounting Another Remote Directory.

6130 USER" S GUIDE REV AUG 1988

6-9

The Local Area Network

Finding Mounted File Systems

The /etclfstab file contains a list of the file systems currently mounted. You can use
the more or cat command to find out if the file system you want is currently
mounted. For example, if you wanted to know if the man pages were mounted, you

could type:
more /etc/fstab

A typical /etcifstab is shown in Example 6-1.

Example 6-1. .
/dev/ds00a / 2.4
stationb:/usr/User Man /usr
stationc:/usr/Work File /usrt

1 1
bg, rw, soft 0 0
fg, rw, soft 0 0

The example /etc/fstab lists the root file system /dev/ds00a, running UTek 3.0 and up,
with read and write permissions. The two remotely-mounted file systems (in this
case, they are really directories) are shown with their home machines and mount
points on the home machines, the mount point on the local machine (/usr), plus
other information. The system administrator can edit the /etc/fstab file; if you need
more information on this file, refer to the NFS Reference Manual.

6-10 REV AUG 1988

6130 USER’ S GUIDE

The Local Area. Network

The /etc/hosts.equiv File

The /etc/hosts.equiv file contains a list of trusted hosts; that is, hosts (or specific users
on a host) that can access files on your workstation. When a command is received
from a remote host, NFS checks the /etc/hosts.equiv file. A line consisting of a simple
host name entry means that anyone logging in from that host wheo has an /etc/passwd
is trusted. (An entry in the /etc/passwd file is not equivalent to having an account on
the local host — you can have a "null” password entry simply for execution of remote
commands.) if a particular user on a remote host is given access to files, then a
second field consisting of the user’s login name is added. It is separated from the
first field by a single space. Note that although anyone can read this file, only root
can edit it.

For NFS, two other types of entries are possible. A line consisting of +@group
means that all hosts in that network group are to be trusted. A line consisting of
-@group means that aii hosts in the given network group are NOT to be trusted.
Therefore, a negative entry in the /etc/hosts.equiv can prevent a remote file mount. A
sample /etc/hosts.equiv is shown in Example 6-2.

Example 6-2. .

tekstationl
tekstation2 mikey
+@engineeringl
-@engineering2

The /etcihosts.equiv file is also used by the remote commands and is discussed under
that topic later in this section.

The .rhosts File

The .rhosts file is local to user accounts, that is, you create this file in your home
directory to control access to your own account by users on a remote host. The
same format used for /etc/hosts.equiv is used for .rhosts. However, a minus entry in
letel hosts.equiv is overridden by the .rhosts file, if that file has a positive entry.

The .rhosts file is also used by the remote commands and is discussed under that
topic later in this section.

6130 USER’ S GUIDE REV AUG 1988 6-11

The Local Area Network

Yellow Pages

The Yellow Pages (YP) are an optional network data service. The YP service
provides automatic network security for each host by double-checking access
privileges whenever a remote host tries to mount local files or directories or a
remote user wants local service. Itis not necessary to use the YP service to prevent
unauthorized access to local files or services, but the YP service makes the task
easier and the policy consistent.

The YP service maintains information files, such as password, group, net address,
network host, and mail alias files. These files are normally found in the directory /etc
on every machine in the network. With the YP, only a subset of the network hosts—
the master server and slave server(s)—have these files in data form. More
importantly, if one of these files is changed, the changes are sent to the master
server and automatically distributed to the slave server(s). Without the YP, the
system administrator must maintain these files on each workstation in the NFS
network. On a small network, it is not difficult to manually maintain the files in /etc,
but it is still ime-consuming. However, on a large network, the task can be
monumental.

The on Command

You can execute commands on a remote system—even if that system is not binary
compatible with your workstation—with the on command. The on command allows
you to execute commands on any system, provided that system has exported the
directory that contains the command.

The syntax of the on command is:

on [-i] [-n] [-d] host command (argument}

where -i is interactive mode, -n is no input mode (for background jobs), -d is debug
mode, host is the remote machine on which you are running the command, command
is the command you are running, and argument is any argument(s) to the command.
See on(1c) for more information.

6-12 REV AUG 1988 6130 USER’ S GUIDE

The Local Area Network

THE REMOTE COMMANDS

If you don’t have Network File System (NFS) access to other workstations on the
network, you still may be able to access those workstations with the remote
commands.

You can log in to another machine on the network with the rlogin (remote login)
command, you can execute UTek commands on ancther machine on the network
with the rsh (remote shell) command, and you can copy files to and from another

machina an the nehwork with the ren (ramate conv) command
macnhine on the network with the rcp (remote copy) commanc,

The rlogin Command

You can log in to another workstation connected to the same LAN as your
workstation or to a machine on another network (if your network contains a gateway
to that network) with the riogin command.

The format of rlogin is:
rlogin machine {1 loginname]

where machine is the name of the computer or workstation you are logging in to.
The ~l argument lets you log in to another workstation under another login name.

You could log in to a remote machine named engr! by typing:

rlogin engrl

You can log out of the other machine and return to your workstation by logging out
as you normally would (by pressing <CTRL-D> or typing logout).

You can send a limited number of signals back to your own workstation while logged
into another machine by beginning a command line with a tilde (~). You can tell your
workstation log you out of the remote machine by typing:

If you are a C-Shell, user you can pause your session on the remote machine by
typing:
“<CTRL-Z>

and resume your session with the fg command. You can change the command
character from the tilde () if you want to. See rlogin(IN) for more information.

The rsh Command

The rsh {remote shell) command executes a single UTek command on another
machine on your LAN or on a machine on another network (if your network contains
a gateway to that network).

6130 USER" S GUIDE REV AUG 1988 6-13

The Local Area Network

6-14

The format of rsh is:
rsh machine [-! loginname] command

where command is the name of a UTek command to be executed on the remote
machine. The —I option lets you specify a login name other than your own.

The following example uses the rsh command and the cat command to read the
contents of a file named /usr/joe/datafile that is on the machine named engri.

rsh engrl cat /usr/joe/datafile

A user named joe could use rsh to list the contents of his bin directory on engr/ by
typing:

rsh engrl 1ls /usr/joe/bin

When you use rsh to execute a command that contains characters that have a

special meaning to your shell (such as |, >, and *), you should remember the
following rules:

e Special characters are normally interpreted by your local machine.

® You can have the special characters interpreted by the remote machine by
enclosing the character in quotation marks.

For example, the following command uses the who command to create a file named
localftle on your workstation.

rsh engrl who > localfile

But if you enclose the > character in double quotation marks, the same rsh
command creates a file on engrl.

rsh engrl who ">" remotefile

REV AUG 1988 6130 USER’" S GUIDE

The Local Area Network

Your rsh Environment

When you use rsh to execute a command on a remote machine, environment
variables on the remote machine control how the command is executed. These
variables are set differently for Bourne Shell users than for C-Shell users.

I you are a Bourne Shell user, your HOME, SHELL and USER snvironment
variables are taken from the /etc/passwd file. Your PATH environment variable is
given a default value. If you are a C-Shell user, these environment variables are set
in the same way, but the commands in your .cshrc file are executed, which lets you
change the value of the environment variables.

If you don't enter the full pathname of the command you are executing with rsh, the
remote machine begins looking for the command in the directories listed in the
PATH variable. If you specify a filename as an argument to rsh and the filename
doesn't begin with a siash {/), the remote machine begins iooking for the file in the
direciory specified in the HOME variabie.

To find the values of your environment variables on the remote machine, use the
following rsh command:

rsh machine printenv
where machine is the name of the remote machine.

See rsh(IN) in the UTek Command Reference manual for more on the rsh command.

The rcp Command

The rep (remote copy) command copies files between workstations on your LAN or
between a workstation on your LAN and a machine on another network (if your
network contains a gateway to that network). The format of rcp is:

rcp fromfile tofile

Either fromfile or tofile is a file on your workstation, while the other file is on the
remote machine. You specify a file on a remote machine with the syntax:

machine:filename

If filename doesn’t begin with a slash, the remote machine looks for the file in your
home directory on the remote machine.

6130 USER" S GUIDE REV AUG 1988 6-15

The Local Area Network

For example, a user named joe could copy a file named data from his home directory
on engrl to a file named data on his workstation with either of the following two
commands:

rep engrl:/usr/joe/data data

rcp engrl:data data

The —r option of rep lets you copy a directory and everything below it to a remote
machine. The —r option also lets you copy more than one file to a remote machine.

See rcp(IN) in the UTek Command Reference manual for more information on the rep
command and its options.

Remote Command Protection

6-16

To access another machine on the network with the rlogin, rsh, and rep
commands, you must have:

o Remote command access to the other machine, which is permitted by entries
in the files named /etc/hosts.equiv and .rhosts on that machine.

® An account on the other machine or access to another user’'s account on that
machine.

When you enter one of the remote commands (rlogin, rsh, or rcp) to access
another machine on the network, the remote machine takes the following steps to
decide whether or not to let you access it:

1. The remote machine checks to see if your workstation is listed in the
letcthosts.equiv file. Iif your machine is listed in this file then you and all other
users on your workstation can access the remote machine.

2. If your machine is not listed in the /etc/hosts.equiv file, the remote machine
looks for a file named .rhosts in your home directory (or in the home directory
of the person you are trying to log in as) on the remote machine. If you are
listed in this file, then you can access the remote machine.

3. The remote machine checks to see if you (or the person you are trying to log
in as) are listed in the password file (/etc/passwd). If you are listed in the
password file and satisfy either 1 or 2, then you are allowed to access the
remote machine.

Even if you gain access to a remote machine, there is no guarantee you can access
files on that machine. The remote commands check the protection bits
{permissions) of a file before letting you access that file.

REV AUG 1988 6130 USER’ S GUIDE

The Local Area Network

The /etc/hosts.equiv File

The /etc/hosts.equiv file contains the names of all the machines on the network whose
users can access your workstation with the rlogin, rsh, and rcp commands.
Similarly, the /etc/hosts.equiv files on other machines control who can access those
machines. For more on the /etc/hosts.equiv file, see the 6130 System Administration
manual and hosts.equiv(5) in the UTek Command Reference manual.

The .rhosts File

If you want to gain access to a remote machine or if you want to rlogin to a remote
machine without having to enter a password, you should create a file named .rhosts
in your home directory on the remote machine (or in the home directory of the
person you are going to log in as, if you are using the — option of riogin).

Each lins in your .rhosis fils has the format:
hostname loginname

where hostname is the name of your local machine and loginname is your login name
or the login name of someone else you want to be able to log in to your account.

For example, if a user named joe wants to rlogin to engrl from workst! without
entering a password, he should put the following line in the .rhosts file in his home
directory on engrl:

workstl joe

In addition, if joe wanted a user named mary to be able to rlogin to his account on
engrl from worksti, he could put the following line in his .rhosts file:

workstl mary

For more on the .rhosts file, see the 6130 System Administration manual.

6130 USER’ S GUIDE REV AUG 1988 6-17

The Local Area Network

ELECTRONIC MAIL

By using the programs of the MH mail system, you can exchange electronic mail
with users on other machines on your network. If your network contains a gateway
node, you can also exchange mail with users on machines on other networks.

If you have never sent mail using the MH mail programs, you should read The MH
Mail System in UTek Tools (Volume 1) before reading this section.

To send mail to another user on your network, create a To: line in your mail
message that has the following format:

To: user@hostname

where user is the name of the user and hostname is the name of the machine that
person is on.

Example 6-3 shows how a user can send electronic mail to a user named joe on the
machine named engr!.

In Example 6-3, the command line invokes the comp program with the prompter
text editor to create a mail message. The user enters the mail message and presses
<CTRL-D> at the end of the message. The comp program responds with What
now?. The user types send —v, which sends the mail message and prints
messages about what it is doing.

$ comp —editor prompter
To: joe@engrl

Cc:

Subject: Meeting today

Let’s meet in the conference room today at 1:9¢

to discuss the widget proposal.
<CTRL-D>

What now? send -v
joe@engrl... Connecting to engrl.ether
joe@engrl... Sent

Example 6-3. Sending Mail to Another Machine.

6-18 REV AUG 1988 6130 USER" S GUIDE

The Local Area Network

The last two fines of Example 6-3 show the response of the send program. The
Connecting to engri.ether message is printed when the user's machine is
establishing a connection to engrl. The Sent message is printed when the mail
message is sent to engrl.

To send mail to a user on a network that is connected to your network through a
gateway node, you must use the syntax of the mail system that is on the gateway
node on the To: line of your mail message.

Your mail system can be configured to know the paths through your gateway to
machines on othsi networks, 56 you can use the same username@machine syntax to
send mail to those machines. See the 6130 System Administration manual for more
information.

if your gateway has a UNIX or UNIX-like operating system, you can send mail to a
machine on ancther network by specifying all the machines the mail message must
pass through, separated by exclamation marks (1). For example, if you want to send
mail to a user named joe on a machine named engr! and the gateway between your
network and Joe’s network is a UNIX host named host/, you would use the following
To: line in your mail message:

To: hostl!engrl!joe

For more on addressing mail to other networks, see mailaddr(7) in the UTek
Command Reference manual.

Forwarding Your Mail

If you have accounts on more than one machine on the network, you can receive all
your maii on your home machine, even if that mail is sent to another machine. To
have all your mail forwarded to your home machine, create a file named forward in
your home directory on every machine you have accounts on except your home
machine.

The forward file should contain one line that has the following format:
yourname@yourmachine

where yourname is your login name and yourmachine is the name of your home
machine.

6130 USER’ S GUIDE REV AUG 1988 6-19

The Local Area Network

THE UPTIME COMMAND

The uptime command with the —r option prints the status of the other machines on
your network. Example 6-4 shows an example output of uptime -r.

6-20

The values of the first line of output are used to explain the meaning of the columns.

billthecat
up 1+03:47

0 users
load 0.01, 0.00, 0.00

The name of the machine.

How long the machine has been up or down. The
number 1+03:47 shows that this machine has been up
for 1 day plus 3 hours and 47 minutes.

The number of users logged in to the machine.

The load average of the machine. The load average is an
average of the number of processes that are ready to
be run over a period of time. The first number is
averaged over the last minute, the second number over
the last 5 minutes, and the third number is averaged
over the last 15 minutes.

See uptime(IN) in the UTek Command Reference manual for more information.

There is an oider version of the uptime —r command that is provided for
compatibility with other systems based on Version 4.2 BSD UNIX. This command,
called ruptime, puts an extra load on the local area network and should therefore be
avoided. See ruptime(IN) in the UTek Command Reference manual for more

information.

$ uptime -r
billthecat up 1+@3

c3po down 19:
greeto up 18:
gumby down g
nomad down 2+@¢@:
olympus up 19:
shark up 19:
tinker up 19:

:47, @ users, load ¢.41, ¢.98, @.90

42

48, @ users, load @¢.21, @.p4, 0.92
19

51

34, 1 user, locad @.96, ¢.99, ¢.90
26, 38 users, load 6.26, 7.78, 9.65
34, 2 users, load @¢.17, $.24, $.17

Example 6-4. The uptime —r Command.

REV AUG 1988 6130 USER" S GUIDE

The Local Area Network

TELNET AND FTP

The teinet and ftp programs let you communicate with machines on your network
using different network protocols. These commands are primarily used to
communicate with machines on your network that aren’t 6130 workstations. Telnet
is an interactive program that lets you establish a connection with another machine
using the TELNET protocol. Ftp is an interactive program that lets you transfer files

between your workstation and another machine using the ARPANET File Transfer
Protocol,

For more on these commands, see telnet(IN) and fip(IN) in the UTek Command
Reference manual.

6130 USER’ S GUIDE REV AUG 1988 6-21

/¥ X/ 7

Programming

This section provides an overview of the programming facilities available for the
workstation. Some of the software discussed in this section is optional and therefore
may not be on your workstation.

Shell Programming

You can use the standard shells of the workstation, /bin/sh and /bin/csh, as
programming languages as well as interactive command interpreters. Both of these
shells contain variables, parameter passing, string substitution, and control-flow
constructs (such as if statements and while loops) that let you write shell programs
{also called skell procedures or shell scripis).

Shell programs are generally faster to write and debug than programs written in
other programming languages. Writing a shell program is easy because each line in
the program is a call to a working UTek program, written just as you would type it at
the keyboard. Debugging is easy because you don’t have to recompile, relink, and
reload your program every time you make a change.

See sh(1) and csh(1) sections of the UTek Command Reference, the Common Tools
section of UTek Tools, and in the Programming the UNIX Shell section of Introducing
the UNIX System. In Section 5, Customizing your Account, Example 5-1 is a Bourne
Shell program and Examples 5-2 and 5-3 are C-Shell programs.

Programming Languages

The C, FORTRAN, BASIC, and Pascal programming languages are available on
UTek. These languages are documented in various books, which are introduced in
this section. Tektronix enhancements to these languages and system-specific
information about the languages are documented in the Programming Languages
section of UTek Tools. How to invoke these compilers, interpreters, and tools is
documented in the UTek Command Reference.

C

The C programming language is the most commonly-used language of the UTek
system. Most of the UTek kernel, shells, tools, and utilities are written in C. The
syntax and usage of C is documented in The C Programming Language. Extensions
to C and information about the Tektronix implementation of the language are
described in UTek Tools. How to invoke the C compiler is documented in cc(1) in the
UTek Command Reference.

6130 USER’S GUIDE 7-1

Programming

The C compiler used on UTek, cc, is based on Berkeley’s 4.2 BSD version of the
compiler but has been extended to be compatible with AT&T’s System V version of
the compiler.

A large number of libraries and include files defining commonly-used data structures
and functions are provided in the /usr/lib and /usr/include directories.

FORTRAN

The FORTRAN language provided by UTek is Fortran 77, the official American
National Standard FORTRAN language. Fortran 77, which is based on Fortran 66, is
described in Fortran 77 Reference. Where f77 deviates from, or expands upon, the
Fortran 77 standard is documented in the section entitled The FORTRAN Compiler
in UTek Tools. How to invoke the FORTRAN compiler is documented in f77(1) in the
UTek Command Reference.

In addition to Fortran 77, UTek provides EFL (an Extended FORTRAN Language)
and Ratfor (Rational FORTRAN). Ratfor and EFL are documented in ratfor(l) and
efl(1) in the UTek Command Reference and in the Ratfor and EFL sections of UTek
Tools.

BASIC

Tektronix ANSI BASIC is an extended version of the American National Standards
Institute’s proposed BASIC programming language. All of the standard features and
most of the optional features of ANSI BASIC are implemented. Tektronix extensions
to the ANSI standard make the language more versatile and better suited to
engineering applications. To get started using Tektronix ANSI BASIC see the
Tektronix ANSI BASIC Learning Guide. For a complete description of the language
see the Tektronix ANSI BASIC Keyword Dictionary.

UTek provides a BASIC compiler and an interactive BASIC compiler. The BASIC
compiler, called bbc, reads a BASIC program and produces executable code. For
more information, see bbc(1) in the UTek Command Reference. The interactive
BASIC compiler, called basic, lets you enter, debug, and run a BASIC program; see
basic(1) in the UTek Command Reference.

Pascal

The Pascal language available on UTek is based on Version 2.0 of the Berkeley
Pascal language. You can find a description of the Tektronix implementation of
Pascal in the Pascal section of UTek Tools. The Pascal language is described in the
Pascal User Manual and Report. How to invoke the Pascal compiler, pc, is
documented in pcfl) of the UTek Command Reference.

Programming

Programming Support Tools

The programs described in the following paragraphs are provided by UTek to help
you write, debug, and execute application programs on the workstation.

........ N e e e w

The UTek link editor Id combines several object files (files that end in .0) into one,
resolves external references, and searches libraries. Ld can combine obiject files
produced from programs written in different languages. If no errors are found, Id
creates an executable file named a.out. For more on Id, see /d(1) in the UTek
Command Reference.

Linking Obiject Files

Maintaining Source Code

Some problems often encountered in a large programming project are: keeping your
software up to date, maintaining multiple versions of programs, and coordinating the
efforts of more than one programmer. UTek provides programs to help you solve
these problems.

make

Make is a program that simplifies the task of keeping software up to date. Make
keeps track of which files need to be reprocessed or recompiled after a change is
made in some part of the code. When make finds the files that need to be updated,
it follows built-in rules or rules you provide for producing an up-to-date program.
For more on make, see the section entitled Make in UTek Tools.

RCS

The Revision Control System (RCS) is a group of programs that maintain multiple
versions of a source program in a single file. RCS lets you store and retrieve
different versions of a program, merge different revisions of a program together, and
control who may access and modify source files. RCS also saves you disk space by
storing only the changes made for each revision of a program. For more on RCS,
see the section entitled RCS in UTek Tools. To use RCS and make together, see the
section entitled Using RCS and Make Together in UTek Tools.

cb

The C beautifier program cb reads a C program from the standard input, reformats it
with proper spacing and indentation, and prints the beautified version to the
standard output. For example, to see the effects of cb on the file program.c, type:

6130 USER’S GUIDE 7-3

Programming

¢b < program.c

To format the C program and save the output in a file named beautiful.c, type:

e¢b < program.c > beautiful.c

For more on cb, see cb(1) in the UTek Command Reference.

Debugging Aids
The programs described below help you locate compiler and run-time errors in your
programs.

sdb

You can use the symbolic debugger sdb to track down run-time errors in your
FORTRAN or C programs. The sdb program examines core files, which are images
of memory of an aborted program, and monitors and controls a running program.

The sdb program lets you interact with the program you are debugging at the source
language level. When debugging a core file produced by an aborted program, sdb
tells you which line in the program caused the error and lets you access all variables
in the program by name. For more on sdb, see the Sdb section of UTek Tools.

adb

The adb program is a general purpose debugger that finds run-time errors in
programs at the assembly language level. For more on adb, see adb(l) in the UTek
Command Reference and the Adb section of UTek Tools.

lint

The lint program examines C language source programs for code that is likely to
contain bugs or is non-portable, or wasteful. Lint also checks the type usage of your
program more strictly than the C compiler. For more on lint, see the lint(1) in the
UTek Command Reference manual.

error

The error program analyzes and describes error messages produced by a number
of compilers and programming tools. Error replaces the painful, traditional method
of scribbling error messages down on paper as they scroll off your screen, by
inserting the messages in your source file, above the line that caused the error.

For more on error, see error(l) in the UTek Command Reference.

Programming

Error Messages
Table 7-1 lists error messages that you may get when running a program, along
with the most common causes of the errors.

Table 7-1
RUN-TIME ERROR MESSAGES

Message

Common Causes

Bad magic number

Input filename does not end in the proper
suffix. See the following text on file
naming.

Bus Error

Types of arguments and parameters don’t match.
I/O problems — reading past EOF, reading a closed
file, bad file pointers, etc.

Arrays improperly dimensioned.

Referencing a nonexistent bus device.

NULL or uninitialized pointer, subscript out of range.

Memory Fault

Subscripting arrays past the memory allocation for
your program.

NULL or uninitialized pointer, subscript out of range.
Attempts to reference data outside valid address space.
Parity errors in address space.

Recursion errors.

Trace/BPT Trap

Trace bit set in the Processor Status Word.
Trying to tell the program to go to an address that
doesn’t exist.

Executing data or destroyed instructions.

Floating Exception

Invalid floating point operation:
overflow,

underflow,

divide by zero,

log of a negative number,

float to integer conversion overflow.

Segmentation Fault

Subscript out of range.
Using a string that is not NULL terminated.

Illegal Instruction

Attempt to execute a privileged instruction, such

as halt.

Execution of nonsense instruction (For example, jumping to a
register).

6130 USER’S GUIDE

Programming

File Naming

UTek has rules for naming files containing source, object, and executable programs.
You can name your files anything you want as long as the names end in the suffixes
listed below:

BASIC source file

FORTRAN source file

FORTRAN source file with C code embedded
EFL source file

Ratfor source file

Pascal source file

C source file

Sl N R N

Object files produced by a compiler end in the .o suffix. Executable programs
produced by a compiler or the loader are placed in a file named a.out unless you
rename it; see the documentation of the compiler you are using in the UTek
Command Reference manual.

-
Graphics
You can write programs that generate computer graphics by using the Graphical
Kernel System (GKS) primitives, which are available to programs written in the C,
FORTRAN, and BASIC programming languages. For more on GKS see GKS C, GKS
FORTRAN, and the BASIC Keyword Reference.

7-6

GPIB Programming

Each GPIB interface uses 2 TMS9914A GPIR controller integrated circuit. The
high-speed GPIB interface boards include additional hardware that raises the data
rate on the bus.

The GPIB implementation for Tektronix workstations complies with the IEEE Std.

488-1978 and its supplement IEEE Std. If you are unfamiliar with the GPIB
structure and protocol, read Appendix A, GPIB Concepts, before continuing in this
appendix.

This section describes the implementation of the IEEE GPIB Standard for the 6130
Intelligent Graphics Workstation. The following topics are described in this section:

e The structure of the GPIB driver and ways 1o access it.

® GPIB configuration: how to define characteristics of each GPIB interface on
the workstation.

& GPIB subsets supported by the GPIB A and B drivers.
o GPIB example programs written in the C language.
Section 9, BASIC GPIB Support, describes:
& Tektronix ANSI BASIC support for GPIB
e GPIB programming hints
Appendix A, GPIB Concepts, discusses GPIB structure and protocol.

Appendix B, Tektronix Standards, Codes, and Formats, describes the language
used by Tektronix IEEE 488 instruments to communicate over a GPIB.

Appendix C, ASCI/GPIB Chart

6130 USER’S GUIDE REV JAN 1989 8-1

GPIB Programming

THE GPIB DRIVER

8-2

An application program written for a Tektronix Intelligent Graphics Workstation
communicates with instruments attached to a GPIB port through a system program
called the GPIB driver.

NOTE
ANSI BASIC only works with the gpiba driver.

The GPIB driver handles all low-level GPIB tasks, but does not perform any
interpretation of device-dependent data received from GPIB instruments. Transfer
protocols must be handled by the programming language (for example, C) and the
application program.

Application programs read and write either unformatted data, or data formatted
according to the Tektronix Standard Codes and Formats. For more on this standard,
see Appendix B.

The GPIB driver consists of:

e One port configuration component for each GPIB interface on your workstation.
This component initializes the GPIB interface and provides diagnostic
messages to application programs.

e An operational component that lets your application programs communicate
with the GPIB interface and instruments connected to the GPIB.

Figure 8-1 shows the organization of the GPIB driver.

GPIB DRIVER
Port Operational
Configuration Interface Instrument
Drivers Drivers

Figure 8-1. GPIB Driver Organization

REV JAN 1989 6130 USER’S GUIDE

GPIB Programming

Port Configuration Driver

The port configuration component, called the port configuration driver, is used to set
up the GPIB interface before you run your application program. The port
configuration driver also provides diagnostics when your program is running. Your
application program never needs to access the port configuration driver.

The port configuration driver of the GPIB drivers has names that are in the following
format:

where n is the slot number of the GPIB interface. The slof number is the number of
the slot in the workstation’s backplane that contains the GPIB interface board.

There are now two gpib drivers. The old driver is now gpiba and the new driver is
gpibb. The new driver fixes many of the known problems, plus some
enhancements which the gpiba driver does not have. See Table 8-4 for a
comparision of the two drivers. For additional information about the new gpibb
driver, refer to the 6130/4132 Exceptions and Extension manual.

For more on the port configuration driver, see gpid in the 6130/4132 Extensions &
Exceptions manual.

6130 USER'S GUIDE REV JAN 1983 &3

GPIB Programming

Operational Components

8-4

The operational component of the GPIB driver is divided into two parts:
o Interface drivers
e Instrument drivers

Your application program can use either of these two drivers to communicate with
GPIB instruments. If your program accesses the GPIB through an interface driver,
your program must address each instrument as a talker or listener, using GPIB
protocols. Then, your program can send device-dependent commands and data to
the instrument over the bus. With this method you must know GPIB protocols, but
you can make diverse instruments interact in complex ways.

If your application program uses the instrument drivers to communicate with
instruments on the GPIB, you don't have to worry about GPIB protocols. Your
program communicates with instruments directly. This method simplifies the
communication by letting you control a GPIB instrument as if it were any other VO
device on your workstation.

There is one interface driver for each GPIB interface on your workstation. There
can be up to 15 instrument drivers (one for each instrument on the bus) for each
GPIB interface on your workstation.

Interface Drivers

Your application program can control instruments connected to the GPIB by sending
GPIB protocol commands directly to the GPIB interface driver. By communicating
with the interface driver, your program can set up complex interactions between
instruments on the bus. By using the interface driver, you have complete control
over the bus and over every aspect of bus traffic.

By using the interface driver, your application program controls an instrument by
following GPIB protocol. This means your program must send primary (and possibly
secondary) addresses, send GPIB messages and, perhaps, device-dependent
commands and data to communicate with an instrument. The instrument may
respond by sending data or status information to the controller.

One interface driver exists for each GPIB interface on your workstation, for a
maximum of seven. The interface drivers are named:

/devi/gpibn

where n is the slot number of the GPIB interface. The name of the built-in GPIB’s
interface driver is /dev/gpib0.

REV JAN 1989 6130 USER"S GUIDE

GPIB Programming

]

<
1

3

~
vV

An application program that uses an interface driver must open a GPIB interface
(/devigpibn) for reading and writing. Then, the program can communicate with the
interface and can address and control instruments attached to the bus by following
GPIB protocols.

See gpib in the UTek Command Reference, for further details on the GPIB interface
driver.

Instrument Drivers

By setting up a GPIB instrument driver to control an instrument connected to the
bus, your application program can communicate with the instrument without having
to know GPIB protocols. In fact, your program doesn’t even have to know that the
instrument is on a GPIB.

Some examples of GPIB instrument driver names are:

/dev/idmm A digital multimeter

/dev/pulse A pulse generator

/dev/scope An oscilloscope
Notice that the name of each instrument driver begins with /dev. When the
instrument drivers are created, they will be put in that directory.

An application program that communicates with instrument drivers controls the
instruments as if each were the only instrument connected to the bus. The program
doesn’t need to know whether the instruments are connected to the same GPIB
pott, or to different ports.

This type of application program begins by opening the instrument driver (for
example, /dev/dmm) and then issues read and write commands to the instrument
driver to control the instrument. The program never has to be concerned with GPIB
protocols.

For more information on GPIB instrument drivers, see gins in the UTek Command
Reference manual.

USER’S GUIDE REV JAN 1989 85

GPIB Programming

CONFIGURING THE GPIB

8-6

The UTek operating system provides commands to help you configure the GPIB.
With these commands, you can control the configuration of all the GPIB interface
options on your workstation.

The gpconf command lets you change the configuration of a GPIB interface by
adding, changing, or removing instruments from the current configuration. Gpconf
can also be used to display the current configuration of your GPIB driver, and/or the
instrument connected to them.

The gpinit command lets you initialize a GPIB interface or an instrument. The
gpstat command lets you check the status of instruments on the GPIB. The gprm
command removes instruments from the current GPIB configuration.

Some of these functions are also available through the programming language you
use to send data over the GPIB (C, for example). Usually, however, you will find it
more convenient and efficient to use the UTek commands instead of the

programming language commands. Refer to the Programming Considerations topic
in Section 9 for details.

Table 8-1 summarizes the GPIB commands.

Table 8-1
GPIB COMMANDS
Command Description
gpeonf Configure GPIB instrument/interface driver
gpinit Initialize GPIB instrument/interface driver
gprm Remove a GPIB instrument driver
gpstat Examine GPIB instrument/interface driver status

You can find more information about these commands in the UTek Command
Reference manual, Section 1.

REV JAN 1889 6130 USER’S GUIDE

GPIB Programming

Configuring Interface Drivers

A GPIB interface driver is defined and created for each GPIB interface when the
system is booted. Because the initial definition of the GPIB interface driver assumes
there are no instruments connected to the bus, you must execute the gpconf
command to configure the interface driver before attempting to use the driver.

Interface driver configuration settings assume default values when not explicitly
assigned. Table 8-2 shows these default values and gives their meanings.

Table 8-2
DEFAULT INTERFACE DRIVER CONFIGURATION
Switch Meaning
addr 0 Primary address is 0

htime § Timeout delay of 5 seconds
ptime 0.1 Maximum poll ime of 100 milliseconds
eom EOl End-of-message byte is End or |dentify (EOI)

dma Enables Direct Memory Access, if present
sc The interface is a system controller

tes Interface takes control synchronously
-std1 Disable short T1 delay

—vstd1 Disable very short T1 delay

The configuration of a GPIB interface driver affects communication with any
instruments attached to the bus.

6130 USER'S GUIDE REV JAN 1989 8-7

GPIB Programming

Configuring Instrument Drivers

You can also use gpeonf to configure GPIB instrument drivers, which control
instruments attached to a GPIB. You decide the name of each instrument driver.
For example, a digital multimeter might be named /dev/dmm. You also decide the
communications characteristics of each instrument driver.

Arguments to gpeconf determine the name and characteristics of the instrument
driver. If you do not specify an argument, default settings for GPIB instrument
drivers are used. Table 8-3 shows the default gpconf settings for GPIB instrument
drivers and their meanings.

Table 8-3
DEFAULT INSTRUMENT DRIVER CONFIGURATION

Switch* Meaning

htime § Timeout delay of 5 seconds

ptime 0.1 Maximum poll time of 100 milliseconds

eom EOl End-of-message byte is End or Identify (EOI)
dma Enables Direct Memory Access, if present
poll Enables automatic polling

* There is no default address for instruments; the address must always be
specified. Also there is no default slot; The slot number must always be specified.

REV JAN 1989 6130 USER'S GUIDE

GPIB Programming

SUPPORTED GPIB SUBSETS

The initial implementation of the GPIB is restricted to the GPIB subsets shown in
Table 8-4. Subsequent releases of the GPIB will expand GPIB capabilities.

Table 8-4
GPIB SUBSETS
bl Subset Subset Description
it gpiba driver | gpibb driver
Source Handshake SH1 SH1 Complete capability
Acceptor Handshake | AH1 AH1 Complete capability
Basic talker,
Talker T8 T6 No talk-only mede,
Linaddress if MLA received
Extended Talker TEO TEO No capability
Listener L4 L4 Basic listener,
Extended Listener LEO LEO No capability
Service Request SRO SR1 No capability
Remote/Local RLO RLO No capability
Parallel Poll PPO PP2 No capability
Device Clear DCo DC1 No capability
Device Trigger DTO DT No capability
C1 C1 System controller
C2 c2 Send IFC and take charge
C3 C3 Send REN
Controller c4 C4 Respond to SRQ
Send interface messages,
C25 C5 Parallel poll,
Take control synchronously
Electrical E2 E2 Three-state drivers

The currently supported subset only implements part of the GPIB system controller
functions. In particular, the A driver is incapable of passing or receiving control. The
B driver can pass and receive control.

6130 USER'S GUIDE

REV JAN 1988

8-8

GPIB Programming

GPIB Program Examples

These examples are presented to serve as a guide for you to use in writing shell
scripts and programs to control GPIB instruments. The programs here are written in
C for use with the workstation’s compiler. Other compilers on your workstation will
obviously function with other programming languages.

8-10 REV JAN 1989 6130 USER’S GUIDE

GPIB Programming

Example Number One

This first GPIB programming example illustrates using a shell script to configure and
use GPIB devices (instruments).

/bin/sh

#

Copy a 4051 tape to a set of files
#

Usage: tpep [directory-name]

#

If a directory name is specified, it will be created, and

the file(s) placed there. Otherwise, the file(s) will be

put in the current directory.

#

The following is a list of the GPCONF of the device drivers necessary

to make this script work. It includes the necessary message terminators

to prevent sanity gpib timeouts on the workstation by missing a delimiter.

There are cases where the 4924 will NOT send an EOl e.g. HEADER, ERROR.

slotb
Actually re-configure the drivers in case there is an error or difference
from what is really wanted.

Tape drive in this program is set to primary address #4.

Since the file must be found before a header operation, allow a long
handshake timeout to allow the finding of the file prior to this function.
Header requires secondary address of 9. (HEADER)

gpconf headr slot b addr 4.9 htime 45 ptime 0.1 eom CR -poll

Binary data is stored on tape in special format. Let tape decode it
for you. Binary is indicated by secondary address of 14 (READ)
gpeonf binary slot b addr 4.14 htime 5 ptime 0.1 eom EOQI -poll

Allow the tape drive to send tape data without interpretation. Just talk
the drive. This function is indicated by secondary address of 26. (TALK)
gpconf readit slot b addr 4.26 htime 5 ptime 0.1 eom EOI -poll

Find the file number indicated (ship file number over the bus as device
dependent data). Find is indicated by secondary address of 27. (FIND)
gpconf find slot b addr 4.27 htime 5 ptime 0.1 eom EOI -poll

Clear the error channel. No other GPIB commands will be executed until
the error channel is cleared. Since the tape may have to rewind, keep
along handshake timeout value to wait for the tape to stop.

gpconf error slot b addr 4.30 htime 45 ptime 0.1 eom CR -poll

6130 USER’S GUIDE REV JAN 1989 8-11

GPIB Programming

The line below shows the configuration for the port that this program is
to be used on. Change all the slot #s to the actual slot # you are using.

gpib5 slot b addr 0 htime 5 ptime 0.1 eom EOl sc tcs

First determine whether or not a directory name has been passed as an
argument in the call of this seript.

case $# in

0) # No argument passed, continue on
continue

1) # Argument was passed, mkdir then continue on
mkdir $1
cd $1

) ’ # Too many arguments passed, warn then exit
echo Too many arguments passed. Usage: $0 [dir]
echo Program exiting
exit 1

esac

We are working with 4051 style tapes which have headers and file numbers.
We also have to find out whether the particular file is ASCH, BINARY or

LAST. Files other than ASCll or BINARY are skipped. LAST indicates the

of the tape, therefore the end of the script.

Set the file number to O to start. It will be incremented each time a file
is processed.
FILENUM=0

Start the loop. The first time through the filename is ™.
while test "$FILETYPE" I= "LAST"
do
FILENUM='expr $FILENUM + 1' # increment filse number
echo $FILENUM > /devffind # find the file
FILETYPE="gprd -80 headr | awk '{print $2}" # read/decode the header
echo $FILENUM > /dev/find # find the file again
case $FILETYPE in # decide the type it is
LAST)
gprd -10 error > /dev/null # 4924 has error on last
ASCIl)
echo $FILENUM > /devAind # find the file again
The gpread is similar to the gprd example C program
It is used to transfer the data from the 4924 to

8-12 REV JAN 1989 6130 USER’S GUIDE

GPIB Programming

done

6130 USER’S GUIDE

BINARY)

esac

the system. The tr translates the <CR>'s to <LF>’s
and then the data is put into a file (e.g. file.2).
gpread readit | tr’ 15’ 12' > file. $FILENUM

Atthe end of each file, the 4924 has an error to

report (that it is at end of file).

This clears out the error. This also only reads

ten characters max from the device (in case no EOI
has been sent.

ERROR='gprd -10 error*

P Yo nTaY - S
cdase pcnnvun mn

12%) F error (expected)
continue

*) # ABORT, wrong error
echo error: $ERROR
exit 1

esac

29

echo $FILENUM > /devfiind # find the file again
See above comments on gpread.

gpread binary > file. $FILENUM

See above comments on clearing errors.
ERROR='gprd -10 error*

case $ERROR in

12%) # EOF error (expected)
continue

*) # ABORT, wrong error
echo error: $ERROR
exit 1

esac ’

; If not ASCII or BINARY, skip it. (usually a NEW)
echo 2>&1 ‘basename $0°: file $FILENUM X
is $FILETYPE - skipping

”

Loop back to make run on next file on tape.

REV JAN 1989 8-13

GPIB Programming

Example Number Two

This second GPIB programming example shows a GPIB program written in C for a
serial poll on the bus.

/* This is a program file to return the value from a serial poll performed
* by the GIOCSPOLL command in GPIB(4) in the

* 6130/4132 Exceptions and Extensions manual

* This command will send a SPE and a

* SPD.

#include <stdio.h>
#include <strings.h>
#include <sysftime.h>
#include <sys/ioctl.h>
#include <box/gpibb.h>
#include <box/gpb_ioctl.h>
#include <signal.h>
#include <sysffile.h>

#define DEV_NAM 20
char *myname;

main(ac,av)
int ac;

char *avl];

{

shortint errno, i;

int gpfd, (*signal())();

char device[DEV_NAM], tmpstrng[DEV_NAM];
unsigned char stb;
char *dev, *tmps;

dev = &device[0];
tmps = &tmpstrng[0];
myname = av|0};

switch(ac) {
case 1:
fprintf(stderr,"At lease one argument
required with %s command\n”,myname});
fprintf(stderr,"Usage: %s driver \n",myname);

8-14 REV JAN 1989 6130 USER’S GUIDE

GPIB Programming

exit(1);
break;
defauit: 7 one or more arguments passed, process normaily */
break;
}
I* The above checks to see that at least one argument is passed */
I* now to find the device to be accessed */
while (ac—> 1) {
(void) strcpy(dev,*++av);

/* now attempt to open the device to be accessed */
if ((gpfd = open(dev,O_RDONLY,0)) == -1) {

7* Couldn't open it that way, try adding /dev

* in front of the name & try again Wi
(void) strcpy (tmps,"/dev’™);
(void) strcat (tmps,device);

/" now attempt to open the device to be accessed */

if ((gpfd = open({tmps,O_RDONLY,0)) == -1) {
* Faiied 1o open device, exit program) */
fprintf(stderr,"%s: cannot access
gpib device driver '%s"\n",myname,tmps);
exit(4);
}

}

if (ioctl(gpfd,GIOCSPOLL,&stb) == -1) {
fprintf(stderr,"%s: gpib(4) GIOCSPOLL
routine failed\n",myname);
fprintf(stderr,"Error returned from ioctl

is %d\n",errnc);
exit(5);
}
I* Print out received status byte */

printf("%s: received %d, 0x%X, '%¢’ *,X
/open inmyname, stb, stb, stb);

for (i=0; i <=7 ; i++)
printf("%c",(stb << i) & 128 71’ :°0");
if (i == 3) printf(" ");

printf(" STB\n");

6130 USER'S GUIDE REV JAN 1989 8-15

GPIB Programming

exit(0);

8-16 REV JAN 1989 6130 USER’S GUIDE

GPIB Programming

Example Number Three

This third GPIB programming example shows how a program was written in C to
read from the bus.

/* This is a program to test reading small buffers from the GPIB so
that no data is lost between reads. The routine should exit
when the EOM is received. The buffer size is specified in
the call to this routine: foo [size] file. I size is not
specified it will default to 256. */

#include <stdio.h>
#include <sysf/file.h>
#include <ctype.h>

#define BUFSIZE 7500 * Maximum size allowed for data xfers */
#define NAMLEN 255

#define LOCK 1

#define UNLOCK 0

#define STRLEN 80

#define SIZE 500 7" Detault size if no size value given */
#define TRUE 1

#define FALSE 0

#define STDOUT 1

/* This program intended for use with a GPIB Instrument Driver,
* not with the Interface driver. If used with the Interface driver

* insure that all the devices and the interface have already been
* properly configured as talkers and listeners.

*/

static int print_flg, count_flg;

main(argc,argv)

int argc;
char *argvl];
{
int fd, siz=SIZE, charin, doit();
char name[NAMLEN], *¢, myname[NAMLEN];

print_flg = FALSE;
count_flg = FALSE;

/* Load the program name into a variable for error messages*/
(void) strcpy (myname,*argv);

7* This program is set up with a few options that turn out to be

6130 USER’'S GUIDE REV JAN 1989 8-17

GPIB Programming

8-18

useful in working with various devices and shell scripts. Any
number passed will be used as the MAXIMUM buffer size of data
to be received. This allows the user to read x bytes of data

and then to read more data from the same device at a later time
without losing any data (e.g. reading a binary block count prior
to receiving the actual data).

The options allowed are as follows:

(d) Decode all non printing ASCII characters into
aform such as '<13>’ for a <CR>. Prints the
decimal equivalent value.

(c) Print out a count of the actual number of bytes
received over the bus. This data is sent over
the STDERR channel so it does NOT mix with the
actual data received. This can be used to verify
large block reception.

- * - - . - L] ® - - * L] L] L] L . »

L]
~

/* Scan each argument for - option */
while ((—argc) > 0 && ("++argv)[0] == ')
I Now scan the argument char by char
for (c = argv[0]+1; "c l= ' '; c++)

~

switch (*c)

case 'd': print_fig = TRUE; I* Decimal decode*/
break;

case 'c’: count_flg = TRUE; I counter flag*/
break;

/* Numeric size decoding. Allows the number 1o
* be included anywhere in an argument preceeded
* with a (-) and be accepted as a size value
*/
case '0'"; case '1": case '2'; case '3": case '4".
case '5": case '6": case '7": case '8": case '9":
siz = atoi{c++);
while(*c >= 0x30 && *c <= 0x39) C++;
tc_;
break;
defautt: 7 unknown, exit with error */
fprintf(stderr,"Usage: %s [-c] [-d] [-N]
device where N is a number.\n",myname);
exit(1);
break;
}
I No arguments passed. Must at least pass the device driver
* name to get the program to work.

REV JAN 1989 6130 USER'S GUIDE

GPIB Programming

6130 USER’S GUIDE

*/
if (argc i= 1)
{

fprintf(stderr,"Usage: %s [-¢] [-d] [-N] device where N is a
number.\n",myname);

exit(1);

!

else

{

7* Here is where the Device Driver is opened for data
* transfers. This particular construction allows the
* user to specify either the short name 'dmm’, or
* the full path /dev/dmm’. [it cannot open the
* specified driver it prepends a */dev/ to the
* passed driver name and trys again. lf it fails
* then the program will exit.
* ##### NOTE You should not have a file of the same
* name as a device driver in the working directory
* or this program will fail when it attempts to
* open the file rather than the device driver
*/
if {{fd = open(*argv,O_RDONLY,0)) == -1)
{

/* ltfailed, add the */dev’ to the driver

* name passed

*f

(void) strcpy(name,™/dev/™);

(void) strcpy(name+5,*argv);

if (fd = open(name,O_RDONLY,0)) == -1)
{

fprintf(stderr,"%s: cannot open input
file %s\n",argv[0],argv[1]);
exit(1);
}
}
}

/* This is where the actual transfer occurs. The function doit
* returns the number of bytes received.

*/

charin = doit(fd,siz);

7" Close the file descriptor before exiting the program */
(void) close(fd);

/* Now check the count flag. !f set print out the count value*/

REV JAN 1989 819

GPIB Programming

if (count_fig == TRUE)
{

if (charin > 0)
printf(" Number of bytes received was %d.\n",charin);
else
printf("No characters received\n®);
}
exit(0);

}

I This is the section of the program where the data transfer actually
* takes place. The two parameters passed to this routine are the file
* descriptor of the Device Driver to be used, and the size parameter
* which tells the system how many bytes to transfer (maximum).

/’
int * this function is of type int Wi
doit(fd,siz)
int {d, siz;
{
char buf[BUFSIZE], s[STRLEN];
int charin, tmp;

I Here we attempt to read size bytes into buffer ‘buf’ from 'fd™/
charin = read(fd,buf,siz);
if (charin == -1) I* Error in read, printout error */

(void) strcpy(s,"gprd read”);
perror(s);
}

/" How do we ship the data to STDOUT. Is it straight or decoded
* decimal equivalents for nonprinting ASCII values

*/
if (print_flg == TRUE) /* was print parameter passed? */
for (tmp=0; tmp < charin; tmp++)
if (bufltmp] > 31 && bufltmp] < 129) * range test*/
printf("%c",buf(tmp]);
else
printf("<%d>",bufltmp));
}
}
else I No decoding due, ship it to STDOUT with write function®/
tmp = write(STDOUT, but,charin); /* send to std out */

with no change*/

8-20 REV JAN 1889 6130 USER’S GUIDE

GPIB Programming

/" Check to see that write completed successfully.*/
if (tmp == -1) perror("gprd write"); /* Check to see that write completed*/

/* return the number of bytes received in the read statement above*/
return(charin);

6130 USER’S GUIDE REV JAN 1888 8-21

GPIB Programming

Example Number Four

This GPIB programming example shows you how to incorporate service requests
within a program.
/*ti**iﬂi*ii******tit**ti*iti*i**iititi**itttttttti'hit*ttt*iitii**tt*iii*

*

The purpose of this program is to show how to incorporate service
request handling into a program on an interrupt basis. The program
only supports one instrument driver.

NOTE: This is NOT A COMPLETE PROGRAM. Much of the /O and argument
decoding has been removed. This program segment does show how to use
both the accessing of the Device Driver Configuration Table structure

and how to enable SRQ to interrupt your program. The various parts

and pieces need to be added io the appropriate places in your own

program and modified to fit your needs.

» - * » * L * * * * *

TN URRN RN AR NI RIr (A 11 /

#include <stdio.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <box/gpibb.h>
#include <box/gpb_ioctl.h>
#include <signal.h>
#include <sysffile.h>

#define TRUE 1
#define FALSE 0

#define BUFSIZE 128

#define BUFIN 65000

#define ASCII 0

#define PCN 1

#define LOCK 1

#define UNLOCK 0

struct gpibconf confptr;

int mask, omask, gpfd;

char autopoll = FALSE, print_mode_flag = FALSE;
main{argv,argc)

char *argv(];

int argc;

8-22 REV JAN 1989 6130 USER’S GUIDE

GPIB Programming _

/* In here is a bunch of declaration and initialization stuff

Wi

int process_grp, tmp, one, running;
int inthndl(), endprg();

mask = 1 << (SIGURG -1);

one=1;

running = TRUE;

/" get the current process group number for future use in
* the program for interrupt handling of SRQ’s
*f

process_grp = getpgrp(0);

7* Open the GPIB Device Driver as gpfd (gpib File Descriptor)
* an argument to the program call

*f

gpfd = gpopen(*++argv);

7" Now to get the current configuration of the device.
* Read the configuration data into the defined structure
*/

if {(tmp = ioctl(gpfd, GIOCGCONF,&confptr)) == -1)

{

/* If unable to read the device data must be a problem.
* Alert the user and exit the program. (Saftey feature)
*/

fprintf(stderr,"Unable to read configuration data from %s\n",*argv);
closeit(2);

Test for autopoll set. If it is NOT set, be sure to set it off

NOTE: ###it# It is recommended that AUTOPOLL be set to off
when no programs are running to prevent the possiblility of a

device generating a SRQ and having the workstaion perform a serial

poll with no program running. When this happens the signal is
lost and no interrupt driven program will be able to respond to
any future SRQ’s. When this happens, the device driver must be
explicity polled to clear out the pending SRQ. This should be
visible with the 'gpstat’ command.

*/

? {(confptr.gc_flags & GF_POLLME) |= GF_POLLME)

}
/i
* when the program exits.
*

REV JAN 1989 8-23

GPIB Programming

8-24

I Enable autopoll *f
confptr.gc_flags |= GF_POLLME; I set polime bit*/
" /* Set the autopoll flag to proper state ~ */

autopoll = FALSE;
/* Write the data structure back out to the device driver*/
(void) ioctl(gpfd, GIOCSCONF,&confptr);

} else I* Set the autopoll flag to proper state*/
autopoll = TRUE;

I enable the process interrupt to interrupt the program

* with the set-process-group ioctl *
if (ioctl(gpid, TIOCSPGRP &process_grp) == -1)

{

fprintf(stderr,"%s unable to set TIOCSPGRP\n");

closeit(3);

}

r Now set device to ASYNC for notification when
the device status changes. SRQ interrupts will
not work unless this is done. */

if (ioctl(gptd, FIDASYNC,&one) == -1)
{

fprintf(stderr,"%s unable to set FIOASYNC for interface\n");
closeit(4);

}

I* Now set up the interrupt handler and the exiting program
routines */

(void) signal(SIGURG,inthndl) /* Urgent signal (SRQ) */

(void) signal{SIGINT,endprg);” Program interrupt CTRL c*/

/* Main loop of program that will be interrupted by the above
enabled interrupts */
while (running)

/* Get command from stdin
* This is where you do the bulk of your program.

* When interrupts occur for SRQ, then the program
* will branch to the 'inthndl() function following

*/

REV JAN 1989 6130 USER'S GUIDE

GPIB Programming

This is the main interrupt handler for SRQ’s. If all the above steps

have been performed properly, then when SRQ becomes asserted this
routine will poll the specified device 'gpfd’. if more than one device
needs to be polled, then pass a structure/array of gpdf's and loop
through the structure/array untit either all have been poiied, or singie
device has been found that was asserting SRQ (indicated by bit & being
set, the RQS bit of the Status ByTe).

ot % % » o ¥

*/
inthndl()
{

extern int gpfd;
int i;
unsigned char status;

printf("SRQ seen\n"); /* Message to alert user SRQ happened*/
7* Poii the Device Driver (instrument) and report the STB*/

if (ioctl(gpfd,GIOCSPOLL,&status) == -1)

{

fprinti(stderr,"Unable to perform serial pol\n”);
exit(5);
}
/* Report the status byte in usual forms */
printf("Status byte = %d decimal, %x hex, ",status, status);

I* Following reports status byte in binary form */
for (i=0;i<=7;i++)
{
printf("%c", (status << i) & 128 ?°'1’:’0’);
| if (i == 3) printf(");
printf(" binary\n");
(void) fflush(stdout);
}

I* This is an interrupt routine called upon exit from the program to
* insure that all opened files and flags have been returned to their
* proper conditions before the program actually ends

*/

endprg()

{
7* Tell the user that the program was aborted */
fprintf(stderr,"Program aborting\n");
printf("Sigint seen\n");

6130 USER'S GUIDE REV JAN 1989 8-25

GPIB Programming

/* The following routine call resets the Device Driver parameters to
* those found upon entry into the program

*/

closeit(1);

}

7 Routine to get the Device Driver configuration and reset the autopoll
* feature only if it was changed by this program. I more than the

* autopoll is modified then insure that all relevant parameters are

* returned to their proper settings in this routine

*/
closeit(token)
int token;
{
I* clear the autopoll if autopoll == FALSE */
if (autopoll == FALSE)
{
/* First get the current settings */
(void) ioctl(gpfd, GIOCGCONF,&confptr);
I Then reset the paiamaters of interest */
confptr.gc_flags &= "GF_POLLME; /* diable polime bit*/
I* Then write the changed values back out to the device
* driver.
¢/
(void) ioctl(gpfd, GIOCSCONF,&confptr);
}
I* Close out the GPIB file descriptor *
(void) close(gpfd);
exit(token);
}

I Generic type of open routine for a Device Driver. Allows passing
* just the name of the driver and not necessarily the whole path name.

NOTE: #### This routine requries that there not be a file/directory
of the same name as the device driver attempting to be opened. In
case of doubt, the whole path name should be safe in all cases.

*/
gpopen(name)
char name[];
{
int gpfd;
char s[BUFSIZE];

8-26 REV JAN 1989 6130 USER’S GUIDE

GPIB Programming

7 Now attempt to open device to get the file descriptor */
it ((gpfd = open(name, O_RDWR, 0)) == -1)
{

/* can’t open, add /dev to name and try again */
(void) strcpy (s,"/dev/™);
(void) strcat (s,name);
if ((gpfd = open(s,0_RDWR,0)) == -1)
{

/* Can't open this one either, must not be configured */
fprintf(stderr,"Unable to open device %s\n", s);
exit(3);
}
}
return(gpfd);
}

7* A routine to print out the non-printing ASCII characters as a decimal
* value surrounded with "<" and ">" (e.g. <13><10>).

*/

print(buff, len)

char buff[l;
int len;

{
int i;

switch (print_mode_flag) /* alobal-external variable */

{
case 0: /*Print to STDOUT as received, no decoding*/
/* The following is used to disable SRQ interrupts*/
omask = sigblock(mask);
(void) write(1,"Received <",10);
(void) write(1,buff,len);/ write out
* complete buffer */
(void) write(1,">\n",2);
I* The following is used to enable SRQ interrupts®/
mask = sigsetmask(omask);
break;
case 1: F*Perform the decoding for non-printing ASCII*/

I* The following is used to disable SRQ interrupts*/
omask = sigblock(mask);

for (i=0;i<len;i++)

if (bufflil > 31 && buff[i} < 128)

6130 USER’S GUIDE REV JAN 1988 8-27

GPIB Programming

printf("%c"bufflil);
else printf("<%d>"buff[i] & 255);
}
printf(™n"),

/* The following is used to enable SRQ interrupts*/

mask = sigsetmask(omask);

break;

default: /* Not a valid selection */
fprintf(stderr,"Not a valid selection for the print flag option\n”);
break;

8-28 REV JAN 1989 6130 USER'S GUIDE

BASIC GPIB Support

The facilities of the UTek operating system, in conjunction with your application
program, control the GPIB and the instruments connected to it. The Tektronix ANSI
BASIC programming language includes a special GPIB extension, which makes
optimal use of the operating system’s GPIB facilities.

BASIC supports three approaches to GPIB programming:
o High-level Approach

The high-level approach makes it easy for you to write a GPIB application
program. You don’t need to know the actual GPIB commands and protocol,
as set forth in the IEEE standards. This type of application program
communicates with devices on the bus through individual GPIB instrument
drivers.

Even if you are familiar with GPIB commands and protocol, you will find that
the instrument approach is the right one for the job. Whenever your GPIB
application requires only one device, or a limited number of physical devices
with minimal interaction among them, programming by the high-ievel approach
almost surely is advantageous. The application takes less time to code and
debug if the program perceives the GPIB as a set of logically independent

Antidian
SHILILIG 3.

On the other hand, the high-level approéch limits the number of active GPIB
instruments to fifteen. Also, this method does not accommodate multiple
instrument addressing or universal GPIB commands, such as IFC (Interface
Clear).

® Low-level Approach

The low-level approach requires an intimate knowledge of GPIB commands
and protocol. The program accesses devices on the bus through an interface
driver. Although more difficult to program, this method offers the possibility of
complex interactions among instruments on the interface. When you need this
level of sophisticated control over the bus, it is available for you.

The number of instruments interacting over the bus is limited only by the GPIB
itself. Multiple instrument addressing is possible with the low-level approach.

6130 USER’S GUIDE REV, JAN 1983 9-1

BASIC GPIB Support

e Shared IO Approach

The shared /O approach to GPIB programming lets programs using high-level
and low-level approaches share their VO statements, resulting in a flexible
interface. This concept lets Tektronix ANSI BASIC programs combine user
formatting (similar to PRINT USING with IMAGE), Tektronix standard GPIB
formatting, and raw binary data to create a single GPIB message block.
Output is buffered for you until you decide to transmit.

Shared I/O also lets the program receive a GPIB transmission and accept the
data according to Tektronix standard GPIB format, raw binary data, or as an
undetermined number of GPIB message units to be interpreted by the
program.

The GPIB extension to Tektronix ANSI BASIC consists of subroutines, conditions,
and functions. The next subsections summarize the GPIB subroutines. Each
describes the subroutines associated with one of the three approaches to GPIB
programming in BASIC.

Some features provided in Tektronix ANSI BASIC are treated separately. These
include predefined conditions and condition handling, GPIB program functions, and
asynchronous I/O. The special features are discussed under Programming
Considerations, later in this appendix.

SUBROUTINES: INSTRUMENT DRIVER

9-2

The form of your G_OPEN call determines the type of driver referenced. To
designate an instrument driver, the name supplied must start with /dev. But no
matter which approach to GPIB programming you choose, BASIC communicates to
1/0 devices on the bus through a logical unit number, or LU. The LU becomes
associated with a particular GPIB driver by means of G_OPEN.

Once open, any LU can be assigned to your program using G_ASSIGN. Some
GPIB subroutines communicate with the assigned LU only. Others can
communicate with any opened driver, assigned or not.

Table 9-1 summarizes the subroutines supporting the high-level GPIB approach
through individual instrument drivers.

REV, JAN 1989 6130 USER’S GUIDE

BASIC GPIB Support

Table 8-1
GPIB SUBPROGRAMS: INSTRUMENT

Name Summary
G _ASSIGN Assign driver to current program
G_CLOSE Close a logical unit for /O
G_CMD* Send commands to an LU
G _FETCHBUFF$ | Fetch current copy of LU's buffer
G GIL Send Go To Local (GTL)
G INPUT Cet formatted data from an LU
G_INPUTB Get unformatted data from an LU
G_INPUTS Get string array data from an LU
G_IOERROR Test for asynchronous 1/O error
G_OPEN Open the driver as a logical unit
G _POLL Perform serial poll based on LU
G_PREREAD Read message block asynchronously
G_PRINT Put a formatted message to an LU
G_PRINTB Put unformatted message to an LU
G_PRINTF Output user formatted message to LU
G _RELEASE Release assigned driver
G _RESET Change driver configuration
G SDC Send Selective Device Clear (SDC)

* G_CMD is capable of transmitting both commands and data.
However, with an instrument driver this
routine should be used to send addressed commands only.

Notice that instrument drivers can send or receive formatted or unformatted data.
Several routines in this group provide the ability to send "low-level” (interface driver)
type commands even though dealing with "high-level” (instrument driver) GPIB
communications. These subprograms are:

G_CMD Send addressed commands only: not data
G_GTL Send the Go To Local GPIB command (GTL)
G_SDC Send the Selective Device Clear command (SDC)

The G_POLL routine only applies to instrument drivers. Invoking this subprogram
petforms a serial poll on the specified instruments to determine which one is
requesting service (asserting SRQ).

G_POLL returns a status byte to your program for interpretation and possible action.
This action deasserts SRQ (service request) on the specified logical unit. Polling is
discussed toward the end of this section.

6130 USER'S GUIDE REV, JAN 1089 -3

BASIC GPIB Support

SUBROUTINES: INTERFACE DRIVER

Many of the BASIC subroutines that support high-level GPIB communications can
also be used for low-level communication with a GPIB interface driver. The actual
operation of these routines differ depending on the type of driver (instrument or
interface) referenced.

Table 9-2 summarizes the Tektronix ANSI BASIC subprograms associated with the
low-level approach to GPIB programming.

Notice that many of the interface driver routines send low-level GPIB commands
over the assigned logical unit, giving you direct control of bus traffic.

The subprogram G_SETDRI lets you set up the configuration of a GPIB interface
driver for a workstation according to your specifications. It works in conjunction with
the system gpconf command, described in the first part of this section. Together
they serve to define communication characteristics for each GPIB port.

The parameters you set with G_SETDRI and gpcontf affect the way in which you
communicate with the interface itself and, therefore, to any I/O devices connected to
the GPIB interface. The subroutine G_RESET lets you modify the interface driver's
configuration without having to close ff first.

Some of the interface parameter settings can be overridden by using G_OPEN to
define an individual instrument driver as a separate logical unit.

REV, JAN 1989 6130 USER’S GUIDE

BASIC GPIB Support

~
(=]

4
i

3

n
V]

USER'S GUIDE

Table 9-2

GPIB SUBPROGRAMS: INTERFACE
Name Summary
G_APOLL Perform serial poll based on address
G_ASSIGN Assign driver to current program
G_CLOSE Close a logical unit for I/O
G CMD Send commands or data
G DCL Clear all instruments

G_FETCHBUFF$
G_GET

G GIL
G_IFC
G_INPUT
G_INPUTB
G_INPUTS
G_IOERROR
G_LISTEN
G_LLO
G_OPEN
G_PPD
G_PPE
G_PPOLL
G_PPU
G_PREREAD
G_PRINT
G_PRINTB
G_PRINTF
G_RELEASE
G_RENOFF
G_RENON
G_RESET
G_SDC
G_SETDRI
G TALK

G _UNL
G_UNT
G_WEND

Fetch current copy of LU's buffer
Send Group Execute Trigger (GET)
Send Go To Local (GTL)

Send Interface Clear (IFC)

Get formatted data from an LU

Get unformatted data from an LU
Get string array data from an LU
Test for asynchronous VO error
Listen-address bus instruments
Send Local Lock Out (LLO)

Open the driver as a logical unit
Parallel Poll Disable (PPD)

Parallel Poll Enable (PPE)

Perform parallel poll

Parallel Poll Unconfigure (PPU)
Read message block asynchronously
Put a formatted message to an LU
Put unformatted message to an LU
Output formatted message to an LU
Release assigned driver

Release Remote Enable (REN) line
Assert Remote Enable (REN) line
Change interface driver configuration
Send Selective Device Clear (SDC)
Set interface driver configuration
Talk-address bus instruments

Send Unlisten (UNL) message
Send Untalk (UNT) message

Start asynchronous communications

REV, JAN 1989

BASIC GPIB Support

SUBROUTINES: SHARED I/O SUPPORT

9-6

Many of the low-level subprograms could also be used for communicating with
instruments as well. The routines that can communicate with either instruments or
interfaces make up the BASIC shared 1/0 support facilities. The routines in this
group are those presented in both Table 9-1 and Table 9-2.

Table 9-3 summarizes the shared VO support subprograms and the functions they
perform. Remember that these routines may behave differently, depending on
whether they are applied to interfaces or to instruments.

Table 9-3
GPIB SUBPROGRAMS: SHARED 1O
Name Summary
G_ASSIGN Assign driver to current program
G CLOSE Close a logical unit for /O
G_CMD* Send commands or data
G_FETCHBUFFS$ | Fetch current copy of LU's buffer
G GIL Send Go To Local (GTL)
G_INPUT Get formatted data from an LU
G_INPUTB Get unformatted data from an LU
G_INPUTS Get string array data from an LU
G_IOERROR Test for asynchronous 1/O error
G_OPEN Open the driver as a logical unit
G_PREREAD Read message block asynchronously
G_PRINT Put a formatted message to an LU
G_PRINTB Put unformatted message to an LU
G_PRINTF Put user formatted message to an LU
G RELEASE Release assigned driver
G_RESET Change driver configuration
G SDC Send Selective Device Clear (SDC)

* When applied to an instrument, addressed commands only may be sent.

Notice that the shared /O routines include those that can open and close a GPIB
driver (G_OPEN and G_CLOSE) and those that assign and release the program'’s
current GPIB driver (G_ASSIGN and G_RELEASE).

REV, JAN 1989 6130 USER'S GUIDE

BASIC GPIB Support

Both formatted and unformatted data transfers are also supported in both the low-
and high-level approaches to GPIB programming in BASIC. With the shared 11O
approach, your application program creates a message, or message block, from
individual message units. The message units themselves may be constructed by using
any mixture of the GPIB print routines shown in the table.

G_PRINTB and G_INPUTB handle unformatted binary data, aliowing you direct
control of data transfers. G_PRINT and G_INPUT treat data according to the
Tektronix Standard Codes and Formats described in Appendix B. G_PRINTF works
something like the PRINT USING statement in conjunction with an IMAGE,
providing user formatting features for GPIB. G_INPUTS reads data consisting of a
variable number of message units into a string array for program analysis.

Another shared routine of interest, G_FETCHBUFFS$, returns the current contents of
the data buffer data for the specified logical unit. The buffer contains unformatted
binary data, just as it was when sent or received. This routine is commonly used by
programmers when debugging a GPIB control program.

PROGRAMMING CONSIDERATIONS

When programming the GPIB in Tektronix ANSI BASIC, you can make use of the
powerful data storage and manipulation facilities offered. These include extended
array processing, string arrays, double-precision and floating point arithmetic,
extended /O, and built-in graphics capabilities.

One feature to keep in mind is BASIC’s exception handling facility. With it, vou can
trap errors that may arise during program execution, analyze the error and take
appropriate action. Exception handling is further described later in this section.

For details on any of the BASIC subprograms, conditions, or functions in the GPIB
extension, refer to the Tektronix ANSI BASIC Keyword Dictionary. Introductory
information on the BASIC language and the Tektronix implementation of it can be
found in Tektronix ANSI BASIC Users Guide.

Exception Handling

A program exception is an error that occurs during execution causing your program
1o be interrupted. Some examples of program exceptions are arithmetic overflow or
underflow, and addressing errors. In order to handle program exceptions, BASIC
includes the WHEN EXCEPTION IN

USE ... END WHEN statements. With these, you can route errors to exception
handlers.

Exception handlers can be either global or local. A local exception handler is coded
within your program whereas a global exception handler is an independent program
executed whenever an error occurs. A global exception handler is defined between
HANDLER and END HANDLER statements.

6130 USER’S GUIDE REV, JAN 1989 9-7

BASIC GPIB Support

Within the handler you can use the following statements:
RETRY Re-execute the program line that caused the exception.

CONTINUE Return to the program at the line following the line in which
the exception occurred.

EXIT HANDLER Pass the exception to the next higher WHEN block, if one
exists. Otherwise, the exception is handied by the normal
system exception handler.

STOP Causes the entire program to cease execution. This is
equivalent to an abort job request.

These exception handling facilities can greatly aid in program debugging. You can

- also use them when running programs that need to take care of errors that would

otherwise cause the program to abort. The program can then perform necessary
clean-up operations itself, including saving status and data if necessary, in case
other attempts to recover should fail.

Condition Handling

9-8

A condition, also called a software interrupt, is a software event that may arise at any
time during the execution of a program. Programs can respond to conditions
whenever they cccur, no matter what they are doing at the time. Conditions, in
BASIC, are usually defined by CONDITION statements.

Several conditions that can occur in GPIB programs have been defined in Tektronix
ANSI BASIC. These conditions pass control to condition handlers. These handlers,
like the exception handlers previously discussed, can be either local or global.

A local handler is code within your program designed to handle the interrupt
condition, while a global condition handler is a callable subprogram. When both a
global and a local handier are associated with the same condition the local handler
takes precedence.

REV, JAN 1889 6130 USER’S GUIDE

BASIC GPIB Support

Table 9-4 lists Tektronix ANSI BASIC predefined interrupt conditions and their
meanings.

Table 9-4
BASIC GPIB CONDITIONS

Name Meaning Driver Affected

GPIB DCL* DCL or SDC line asserted Interface only
GPIB DONE Async transmission done Interface or Instrument

GPIB:IFC* IFC line asserted Interface only
GPIB_MLA* MLA line asserted Interface only
GPIB_ MTA* MTA line asserted Interface only
GPIB_SRQ SRQ line asserted Interface only
GPIB TCT TCT line asserted Interface only

* Function not implemented in initial release.

GPIB predefined conditions, like any conditions, are manipulated by two sets of
BASIC statements:

e SETand ASK
o ON and OFF

The first pair lets you assign or inquire the PRIORITY, PENDING, or ENABLED
status for the specified logical unit. The second pair associates or disassociates a
condition handler with one of the GPIB predefined vector conditions. For details,
refer to Tektronix ANSI BASIC Keyword Dictionary for details on these commands and
how to use them.

Notice that the GPIB_DONE condition is the only one which is valid for both
instruments and interfaces. This condition is associated with the asynchronous /O
feature, described next.

6130 USER’S GUIDE REV, JAN 1989 9-9

BASIC GPIB Support

Asynchronous Data Transfers

9-10

Transmission or reception of large quantities of data over the GPIB can be time-
consuming. The speed of execution of a GPIB program, when transfers are
synchronous, depends upon the the speed of the siowest I/O device connected to the
GPIB port. Therefore, a data transfer method has been devised for Tektronix ANSI
BASIC called asynchronous 1/0.

Asynchronous VO lets a program initiate a data transfer with a device on the bus
and then continue processing. For example, your program could perform an input
operation and then initiate another input operation while processing data from the
first read. The only requirement is that the input operations specify different logical
units. The devices themselves may be connected to the same GPIB port.

The ability to perform asynchronous data transfers is a characteristic of a GPIB
interface, and it affects all devices on the interface. Each GPIB interface is enabled
for asynchronous I/0 by setting its sync parameter with G_SETDRI.

Note that individual instrument drivers can also be declared asynchronous as well.
But since all the instruments addressed as separate logical units may use the same
bus, setting sync is preferable for program consistency. Collisions with
transmissions from what may logically appear to be unrelated instruments is usually
resolved by the system, but two asynchronous transmissions on the same bus could
interfere with the timing of a sequence of commands if not correctly programmed.

Table 9-5 summarizes the BASIC subroutines that can be used as part of the
asynchronous /O package.

Table 9-5
GPIB SUBPROGRAMS: ASYNCHRONOUS I/O

Name Summary

G_INPUT Get formatted data from an LU
G_INPUTB Get unformatted data from an LU
G_INPUTS Get string array data from an LU
G_IOERROR | Test for asynchronous /O error
G_PREREAD | Read message block asynchronously
G _PRINT Put formatted message to an LU
G_PRINTB Put unformatted message to an LU
G_PRINTF Put user formatted message to an LU
G WEND Start asynchronous communications

Asynchronous input is done by calling G_PREREAD, which returns immediately to
the executing program while simultaneously receiving input from the specified
legical unit. Invoke one of the routines G_PRINT, G_PRINTF, or G_PRINTB with
the send-message parameter set to 1 (for send). After formatting the message block
into the specified logical unit’s buffer, these functions return to the executing
program while transmitting the message biock.

REV, JAN 1989 6130 USER’S GUIDE

BASIC GPIB Support

To transfer data asynchronously between two instruments on a GPIB interface
independent of workstation control, first talk address the desired instrument. Then,
listen address the appropriate instruments and invoke the G_WEND subprogram.
G_WEND returns to the executing program while the devices communicate among
themselves, without workstation intervention. When the I/O mode is synchronous,
G_WEND does not return to the caller until the data transfer completes.

Of course, there must be a way to notify the program when a transfer involving
asynchronous /O has completed, so that the program can then process the data as
necessary. This is accomplished by the GPIB_DONE condition, briefly discussed
before. GPiB_DONE is raised for ihe appropriate iogicai unit when an asynchronous
data transfer is complete.

The G_IOERROR subroutine causes any exceptions that occurred during the
asynchronous I/O on the specified logical unit to be felt by the calling program. If
G_IOERROR raises no exceptions, then the transfer completed normally. Exception
handling is discussed earlier in this section.

Interface and Instrument Polling

Most GPIB-compatible 1/O devices are constructed with the ability to send an
interrupt over the bus. This interrupt, called SRQ, signals that the device requires
servicing of some kind. Since a number of devices may be connected to a GPIB,
the program needs some way of to distinguish which device or devices are asserting
SRQ. This method is called polling. A GPIB controller can poll devices in parallel or

in gerinl fachion.

The GPIB driver includes an advanced polling mechanism based on the GPIB
service request (SRQ) function. This feature can be enabled by setting the poll
parameter in the gpeonf command. When enabled, and SRQ is asserted, a serial
poll is performed by the system to determine which instrument requires attention. As
soon as the requesting instrument’s status byte is read, SRQ is deasserted.

If a GPIB program uses the individual instrument (high-level) approach, the program
is notified when its own instrument has requested service. A program accessing the
interface (low-level) is notified when SRQ is asserted by any device on the GPIB
port not associated with a specific instrument driver. In general, system polling
should be enabled when communicating to the GPIB through instrument drivers and
disabled when communicating through an interface driver.

Tektronix ANSI BASIC provides serial polling facilities also. The routines G_POLL
and G_APOLL can be applied to instruments and interfaces respectively. Using
these routines makes the polling process easy: when you call one, it automatically
executes a polling loop, checks each device for SRQ asserted, and returns that
device’s status byte to the program, thereby clearing SRQ.

Parallel polling is possible only through the low-level interface approach. The
routines G_PPE, G_PPD, G_PPU, and G_PPOLL are used for parallel polling frem
a BASIC program. See the Tektronix ANSI BASIC Keyword Dictionary for details.

6130 USER’S GUIDE REV, JAN 1389 S-11

BASIC GPIB Support

BASIC GPIB Functions

Finally, Tektronix ANSI BASIC provides several functions associated with GPIB
processing and useful within GPIB programs. Each function returns a numerical
value to the calling program. Table 9-6 summarizes the predefined GPIB functions

and return values.

Table 9-6
BASIC GPIB FUNCTIONS
Name Meaning Value
G LAG Listen address group 32
G MA My address o*
G _SAG Secondary address group 96
G TAG Talk address group 64

* Returns the primary address of the workstation on the assigned GPIB interface.
This value is set with G_SETDRI, default 0.

Expression formation is made easier by using these functions. For example:

Talk Address, instrument n:
My Talk Address is:

REV, JAN 1989

G_TAG +n
G_TAG + G_MA

6130 USER’S GUIDE

GPIB Concepts

The IEEE 488 standard defines three aspects of an instrument’s interface:
Mechanical The connector and the cable.

Electrical The electrical levels for logical signals and how the signals are sent

and racaived
ang !

SLoIVel.

Functional The tasks that an instrument's interface can perform, such as
sending data, receiving data, triggering the instrument, etc.

Using this interface standard, instruments can be designed to have a basic level of
compatibility with other instruments that meet the standard.

MECHANICAL ELEMENTS

IEEE 488 specifies a standard connector and cable for linking instruments to ensure
that GPIB instruments are pin-compatible. The GPIB connector has 24 pins, with 16
assigned to specific signals and 8 to shields and grounds.

Figure A-1 shows the GPIB connector and pin assignments.

6130 USER’S GUIDE REV, JAN 1989 A-1

GPIB Concepts

SHIELD SRQ NDAC DAV DIO4 DIO2

IFC | NRFD{ EOI | DIO3 | DIO1

GND | GND | GND | REN | DIO7 | DIOS

LOGIC GND GND GND DIO8 DIO6
GND 10 8 6

5307-12

Figure A-1. GPIB Connector.

REV, JAN 1989

6130 USER'S GUIDE

GPIB Concepts

Allowable Configurations

instruments can be connected to the GPIB in linear or star configurations, or in a
combination of both (Figure A-2).

AV

VANV

o
J

(Controlier)

Instrument

b

LINEAR CONFIGURATION

instrument

c

1 Toe

Instrumant
a

{Controller)

STAR CONFIGURATION

GPIB

instrument

d

530713

Figure A-2. Aliowable GPIB Configurations.

6130 USER'S GUIDE

REV, JAN 1989

A-3

GPIB Concepts

Restrictions

Instruments connected to a single bus cannot be separated by more than two
meters for each instrument on the bus. In addition, the total cable length of the bus
cannot exceed 20 meters.

To maintain proper electrical characteristics on the bus, a device load must be
connected for every two meters of cable length, and at least two-thirds of the
instruments connected to the bus must be powered on. (For more information, see
IEEE Standard 488-1978.)

Although instruments are usually spaced no more than two meters apart, they can
be separated further if the required number of device loads is grouped at any point
on the bus. More than 15 instruments can be interfaced to a single bus if they don’t
connect directly to the bus, but are interfaced through a primary device. Such a
scheme can be used with programmable plug-ins attached to a central device,
where the central device is addressed with a primary address code and the plug-ins
are addressed with a secondary address code (see the topic Instrument Addresses in
this section).

ELECTRICAL ELEMENTS

A-4

The IEEE 488-1978 standard defines the voltages and current values required at
connector nodes. All specifications are based on the use of TTL technology. The
logical states are defined as follows:

Logical Electrical Signal Levels

State
0 Corresponds to voltages > 2.0 volts
and < 5.2 volts (high state)
1 Corresponds to voltages 2 O volts

and < 0.8 volts (low state)

Messages can be sent as either active or passive true signals. Passive true and
false signals occur in the high state and must be carried on a signal line using open
collector devices.

REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

FUNCTIONAL ELEMENTS

Interface functions provide the facilities through which instruments send, process,
and receive messages. IEEE 488 defines ten different interface functions, described
in the following paragraphs. The abbreviations for these functions, which are in
parenthesis, are taken from the IEEE 488 standard and are commonly used when
describing the functions.

Acceptor Handshake (AH)

The AH function provides an instrument with the capability to guarantee proper
reception of data. The AH function delays initiation or termination of a data transfer
until the instrument is ready to receive the next data byte.

Soiuirce Handshake (SH)

The SH function works together with the AH function on a listening device to
guarantee proper transfer of messages. The SH function controls the initiation and
termination of the transfer of data bytes.

Listener (L) and Listener Extended (LE)

The L and LE functions provide an instrument with the capability to receive device-
dependent data over the interface. This capability exists only when the instrument is
addressed to listen. The L function uses a 1-byte address; the LE function uses a 2-
byte address. In all other aspects, the capabilities of both functions are the same.

Talker (T) and Talker Extended (TE)

The T and TE functions provide an instrument with the capability to send device-
dependent data over the interface. This capability exists only when the instrument is
addressed to talk. The T function uses a 1-byte address; the TE function uses a 2-
byte address. In all other respects, the capabilities of both functions are the same.

Device Clear (DC)

The DC function provides an instrument with the capability to be cleared
or initialized, either individually or as part of a group of instruments.

6130 USER’S GUIDE REV, JAN 1989 A-5

GPIB Concepts

A-6

Device Trigger (DT)

The DT function provides an instrument with capability to have its basic operation
started, either individually or as part of a group of instruments.

Remote/Local (RL)

The RL function provides an instrument with the capability to select between two
sources of input. The function indicates to the instrument that either input
information from its front panel switches (local) or corresponding information from
the GPIB interface is to be used.

Service Request (SR)

The SR function provides an instrument with the capability to request service from
the controller in charge of the interface.

Parallel Poll (PP)

The PP function provides an instrument with the capability to send a status message
to the controller without being addressed to talk.

Controller (C)

The C function provides an instrument with the capability to send device addresses,
universal commands, and addressed commands to other instruments over the interfacs.
It may also provide the capability to determine which instruments require service.

REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

INSTRUMENT ADDRESSES

Every instrument on the bus has cne or mere addresses. The types of addresses an
instrument can have are: a primary address, a listen address, a talk address, and a

secondary address.

Primary Address

Every instrument connected to the bus has a uniaue primary address. You can set
the primary addresses of most of these instruments. On some instruments, this
address is set by a series of binary switches located at the rear of the instrument.
Figure A-3 shows an example of how to set the primary address of an instrument
that uses binary switches.

Each of the address switches on the instrument represents a binary digit with a
value of 1 if the switch ig in the on position, or 0 if the swiich is in the off position.
Reading from right to left, the place value of each succeeding switch increases by a
factor of 2; thus, the rightmost switch has a place value of 1, the second switch from
the right has a place value of 2, the third a place value of 4, and so on.

16 8 4 2 1

16 + 0+ 0+ 2 + 1 = 19

This device’s listen address is 51 (19 + 32)
This device’s talk address is 83 (19 + 64) 5307-14

Figure A-3. Example Primary Address Setting.

6130 USER’S GUIDE REV, JAN 1089 A-7

GPIB Concepts

To determine the value of the address represented by a given switch setting, simply
add up the place values of all the switches in the on position. In Figure A-3, switches
with place values of 186, 2, and 1 are in the on position. Since 16 + 2+ 1 =19, an
instrument with switches set in these positions would have a primary address of 19.

No two instruments on the GPIB can have the same primary address. Valid primary
addresses range from 0 to 30.

Some instruments have their primary addresses preset by the manufacturer and can
be changed only by qualified service personnel. If you are in doubt, check the user's
manual of the instrument.

Listen Address

Every instrument that can receive device-dependent messages over the bus has a
unique listen address. When an instrument senses its listen address on the bus with
the ATN signal line asserted, the instrument prepares to receive data sent over the
bus. When ATN is unasserted, the instrument receives data.

An instrument’s listen address is determined by adding 32 to its primary address. Thus
an instrument with primary address 19 has a listen address of 19 + 32 = 51.

Any number of instruments on the bus may be addressed to listen at the same time.

Talk Address

Every instrument that can send data over the bus has a unique falk address. When
an instrument senses its talk address on the bus with ATN asserted, the instrument
prepares to send data over the bus. When ATN is then unasserted, the instrument
sends data.

Only one instrument on the bus may be addressed to talk at a time. When an
instrument addressed to talk senses another instrument’s talk address on the data
lines with ATN asserted, the first instrument automatically untalks itself.

An instrument’s talk address is determined by adding 64 to its primary address.
Thus, an instrument with primary address 19 has a talk address of 19 + 64 = 83.

A-8 REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

Secondary Address

Some instruments support a special addressing scheme cailed secondary addressing,
which uses addresses in the range from 96 to 126. Not all IEEE 488 compatible
instruments support secondary addressing.

There are several variations of secondary addressing implementations. When in
doubt, check the user's manual for the instrument.

GPIB BUSES

The 16 GPIB signal lines can be divided into three buses: the data bus, the
management bus, and the handshake bus (Figure A-4).

e DIO1
 ——— DIO2
| DIO3

e DI04
DIOS
[A DICS
hNe——— DI07
DiO8

DATA BUS

NRFD
DAV
NDAC
HANDSHAKE BUS

——— ATN
———— SRQ
IFC
N REN
e EOI

MANAGEMENT BUS

5307-15

Figure A-4. Data, Management, and Handshake Buses.

The data bus is composed of eight signal fines that carry data to be transferred on
the GPIB. The management bus is composed of five signal lines that control data
transters. The handshake bus is composed of three signal lines that synchronize data
transfers between instruments.

6130 USER’S GUIDE REV, JAN 1989 A-9

GPIB Concepts

Data Bus

The data bus contains eight bidirectional signal lines, named D101 through DI08.
One byte of information is transferred over the bus at a time. DIO1 carries the least
significant bit of the byte and DIO8 carries the most significant bit.

Each byte of information transferred on the data bus represents either a command,
a device address, or a device-dependent message. Data bytes can be formatted in
ASCII code or in device-dependent binary code.

Management Bus

A-10

The management bus is a group of five signal lines (ATN, EOI, IFC, REN, and SRQ)
used in managing data transfers on the data bus. The definitions for these lines are
listed in the following paragraphs.

Attention (ATN)

The ATN management line is activated by the controller to send universal commands
and addressed commands, and to designate instruments as talkers and listeners for an
upcoming data transfer.

When ATN is asserted, messages sent on the data bus are interpreted as
commands or addresses. When ATN is unasserted, messages sent on the data bus
are interpreted as device-dependent messages. Only instruments that have been
addressed by the controller to talk or listen can take part in a device-dependent data
transfer.

End or Identify (EOI)

The EOI signal line can be used by any talker to indicate the end of a data transfer
sequence. Talkers that use EOI activate the EOl line as the last byte of information
is being transferred.

Interface Clear (IFC)

The IFC line is activated by the system controller to:
e Unaddress all talk-addressed and listen-addressed instruments on the bus.
e Take controller-in-charge status.

e Take all instruments out of serial poll mode (same as sending SPD, which is
described under the topic Addressed Commands later in this section).

Only the system controller can activate this signal line.

REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

Remote Enable (REN)

The REN signal line is activated by the system controller to give all instruments on
the bus the capability of being placed under remote (program) control. Only the
system controller can activate this line.

When the REN signal line is activated, instruments that receive their listen
addresses on the data bus accept and execute commands from the controller-in-
charge. When REN is deactivated, all instruments on the bus revert to front-panel
control.

Service Request (SRQ)

The SRQ line can be activated by any instrument on the bus to request service from
the controller. The controller responds (if programmed to do so) by serial polling all
instruments on the bus in order to find the instrument requesting service. The SRQ
line is deactivated when the instrument requesting service is polled.

Handshake Bus

Three lines (NRFD, DAV, and NDAC) comprise the handshake bus. These three
lines control the sequence of operations each time a byte is transferred on the data
bus. This sequence is nof under user control, but information about the three
transfer lines is presented here for completeness.

Not Ready For Data (NRFD)

An active NFRD line indicates that one or more of the listeners is not ready to
receive the next data byte. When the NRFD line goes inactive (indicating all
listeners are ready to receive data), the talker places the next data byte on the data
bus and activates the DAV signal line.

Data Valid (DAV)

The DAV line is activated by the talker shortly after the talker placas a valid data
byte on the data bus. This tells each listener to capture the data byte currently on
the bus.

Not Data Accepted (NDAC)

The NDAC line is held active by each listener until the listener captures the data
byte on the data bus. When all listeners have captured the data byte, NDAC goes
inactive. This tells the talker to take the byte off the data bus.

6130 USER’S GUIDE REV, JAN 1989 A-11

GPIB Concepts

GPIB COMMUNICATION PROTOCOL

Each instrument on the bus at any given time may be a controller, a talker, or a
listener. Some instruments have two or even three of these capabilities. For
example, some instruments are talk-only, others are listen-only, others can talk and
listen, others can talk, listen, and control.

Controllers are instruments that assign talk and listen status to other instruments on
the bus. Since only one instrument can talk at a time, and since it is seldom
desirable for every instrument to listen, a controller is needed to designate which
instrument is to talk and which are to listen during any data transfer.

Talkers are instruments that can put data onto the eight data lines. Once on the data
lines, data can be read by any active listeners. Only one instrument can tak at one
time, to eliminate possible confusion.

Listeners are instruments that can read data from the data lines. Any number of
instruments can be listening to the talker at one time. The rate at which the talker
can put information onto the data lines is restricted to the rate at which the slowest
active listener on the bus can accept the data.

Controllers, talkers, and listeners each have special properties and requirements
that you must remember when writing programs to control instrument networks. The
following subsections describe these properties and requirements.

Controllers

A-12

There are two kinds of controllers on the GPIB: the system controller and the
controller-in-charge

A GPIB network can have at most one instrument acting as the system controller
and one instrument acting as the controller-in-charge. The system controller and
the controller-in-charge may be (and often are) the same instrument.

A GPIB configuration may include any number of instruments capable of acting as
the system controller or controller-in-charge, subject only to the limitations on the
total number of instruments allowed on the bus.

Once a GPIB network has been set up, system control cannot be passed from
instrument to instrument; controller-in-charge status can. Once an instrument is the
system controller, no other instrument on the bus can assume that role without your
reconfiguring the GPIB network.

REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

Only the system controller can affect the status of the Interface Clear (IFC) and
Remote Enable (REN) management lines. Asserting the IFC line makes the system
centroller the controller-in-charge, and untalks, unlistens, and disables serial polling
for all instruments.

Asserting REN enables the remote operation of instruments by the controller.

NOTE
Asserting REN does not automatically put all instruments on the bus into

NHow in rharao ta nut thom inta thie
remote state, but simply allows the controller in charge to put them into this

State.

Any instrument acting as controller-in-charge may pass control to any other
instrument on the bus capable of assuming control.

Talkers

A talker is an instrument that has sensed its talk address on the data lines with ATN
asserted. When a talker is addressed to talk, it sends data on the data lines when
ATN is then unasserted.

Only one instrument on the bus may be addressed to talk at a time. When an
instrument addressed io talk recognizes any other taik address on the data iines
with ATN asserted, the instrument automatically untalks itself. (When an instrument
is untalked, it does not place data on the data lines when ATN is asserted.)

An instrument may also untalk itself when it recognizes its listen address on the data
lines with ATN asserted. In this case, the instrument becomes a listener when ATN
is unasserted.

Listeners

A listener is an instrument that has sensed its listen address being sent on the data
lines with ATN asserted. After an instrument is addressed to listen, it accepts
information coming on the data lines when ATN is unasserted.

Any number of instruments on the bus may be addressed to listen at the same time.
When an instrument previously addressed to listen senses its talk address being
sent on the data lines with ATN asserted, the instrument may unlisten itself and
become a talker when ATN is unasserted.

6130 USER'S GUIDE REV, JAN 1989 A-13

GPIB Concepts

UNIVERSAL COMMANDS

Universal commands are commands that are obeyed by all instruments on the bus
with the appropriate subsets of the IEEE 488 interface functions implemented. The
controller sends universal commands by placing certain values on the data lines
with ATN asserted.

The universal commands include: Device Clear (DCL), Local Lockout (LLO), Parallel
Poll Unconfigure (PPU), Serial Poll Disable (SPD), and Serial Poll Enable (SPE).

Also included in this description are Unlisten (UNL), and Untalk (UNT). Although not
commands in the strict sense, the values of UNL and UNT act like universal
commands when sent on the data lines with ATN asserted.

Device Clear (DCL)

The DCL command clears (initializes) all instruments on the bus that have a DC1 or
DC2 subset of the DC interface function.

To send the DCL command, the controller places the value 20 on the data lines with
ATN asserted.

Local Lockout (LLO)

The LLO command lacks out the front panels of all instruments on the bus that have
an RL1 subset of the RL interface function. (Devices with RLO or RL2 subsets of the
RL interface function ignore LLO.) After receiving the LLO command and its listen
address, an instrument ignores any subsequent inputs from front panel control
switches with corresponding remote controls, and only obeys commands coming
over the GPIB interface.

To send the LLO command, the controller places the value 17 on the data lines with
ATN asserted.

Parallel Poll Unconfigure (PPU)
The PPU command unconfigures all instruments on the bus for parallel polling.

To send the PPU command, the controller places the value 21 on the data lines with
ATN asserted.

A-14 REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

Serial Poll Disable (SPD)

The SPD command returns all instruments on the bus from the serial poll enabled
state.

To send the SPD command, the controller places the value 25 on the data lines with
ATN asserted.

Serial Poll Enable (SPE)
The SPE command puis aii instruments on the bus with an SR1 subsei of the SR
interface function into the serial poll enabled state. In this state, each instrument

sends the controller its status byte, instead of the its normal output, after the
instrument receives its talk address on the data lines with ATN asserted.

To send the SPE command, the controller places the value 24 on the data lines with
ATN asserted.

Unlisten (UNL)

The UNL command takes all listen-addressed instruments on the bus out of the
listen-addressed state.

To send the UNL command, the controller places the value 63 on the data lines with
ATN asserted.

Untaik (UNT)
The UNT command takes any talk-addressed instrument on the bus out of the talk-
addressed state.

To send the UNT command, the controller places the value 95 on the data lines with
ATN asserted.

6130 USER'S GUIDE REV, JAN 1989 A-15

GPIB Concepts

ADDRESSED COMMANDS

Addressed commands are commands that are sent to specific instruments on the
bus. The controller sends addressed commands by placing certain values on the
data lines with ATN asserted. Addressed commands include Group Execute Trigger
(GET), Go to Local (GTL), Parallel Poll Configure (PPC), Selected Device Clear
(SDC), and Take Control {TCT). Also discussed are Parallel Poll Enable (PPE),
Parallel Poll Disable (PPD), which function as secondary commands in conjunction
with PPC.

All of the addressed commands, except TCT, require that the instrument receiving
the command be listen-addressed. The TCT command requires that the instrument
be talk-addressed.

Group Execute Trigger (GET)

The GET command causes all listen-addressed instruments incorporating a DT1
subset of the DT interface function to begin an operation (for example, for
measurement instruments to make their measurements, output devices to output
their signals, and so on)

To send the GET command, the controller places the value 8 on the data lines with
ATN asserted.

Go To Local (GTL)

The GTL command causes all listen-addressed instruments to obey incoming
commands from their front panel control switches. These instruments may store, but
not respond to, commands coming through the GPIB interface until the instrument is
once again listen-addressed.

To send the GTL command, the controller places the value 1 on the data lines with
ATN asserted.

Parallel Poll Configure (PPC)

The PPC command enables a listen-addressed instrument incorporating a PP1 or
PP2 subset of the PP interface function to respond to a parallel poll.

To send the PPC command, the controller places the value 5 on the data lines with
ATN asserted.

A-16 REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

Paraliel Poll Enable (PPE)

The PPE command designates the sense and the DIO line on which instruments
incorporating a PP1 subset of the PP interface function will respond to a paraliel
poll. If the instrument’s individual status bit matches the assigned sense when the
parallel poll is executed, the instrument asserts its assigned data line.

instruments incorporating a PP2 subset of the PP interface function have their
senses and DIO lines hardwired; such instruments can’t be configured by the
controller to respond to a parallel poll. They may be enabled or disabled for parallel
poll by the controller.

Parallel Poll Disable (PPD)

The PPD command unconfigures a previously configured instrument from
responding to a parallei poll.

Selected Device Clear (SDC)
The SDC command clears or initializes all listen-addressed instruments.

To send the SDC command, the controller sends a value of 4 on the data lines with

ATN asserted.

Take Control (TCT)

Thm TAT mmcmmmmd mmmmms mmmdom bl 2 ol eomin mdmdiem b o 2l o Ao
1S W1 GUHIHTIQL v PG=°=§ CULIvHeI-iIrviiaiye LALUD IV A tai"auuiecooTu
instrument.

To send the TCT command, the controller places the value 9 on the data lines with
ATN asserted.

SERIAL POLLING

Serial polling is a means of reading serially the individual status messages of all
instruments configured and enabled to respond to a serial poll.

Status Bytes

Each instrument on the GPIB incorporating the SR1 subset of the SR interface
function has an eight-bit status byte. The status byte's contents describe (by means
of a device-dependent code) the instrument’s status.

6130 USER’'S GUIDE REV, JAN 1989 A-17

GPIB Concepts

Requesting Service

The coding of an instrument'’s status byte is almost entirely up to the instrument’s
designer, with one restriction: bit 7 (the second-most significant bit) is reserved to
indicate whether or not an instrument is requesting service from the controller-in-
charge.

Bit 7 of the status byte is known as the RQS or requesting service bit. A value of 1
indicates that an instrument is requesting service from the controller-in-charge. A
value of 0 indicates that the instrument is not requesting service.

Instruments must do two things to request service:
1. Set the RQS bit of the status byte to 1.
2. Assert SRQ.

Conducting Serial Polls

The controller can be programmed to generate an interrupt and to serially poll each
instrument on the bus, to determine which instrument is requesting service when the
controller recognizes an instrument on the bus asserting SRQ.

NOTE

The controller can be programmed to conduct a serial poll anytime ; it does
not have to receive a request for service from an instrument on the bus.

The controller conducts the poll by sending the SPE (serial poll enable) command,
followed by a sequence of talk addresses. As each talk address is received, the
instrument that is talk-addressed sends its status byte to the controller. The
controller can then check the status byte to see if the RQS bit is set. Receiving the
status byte from the instrument requesting service clears the RQS bit of that
instrument (sets the bit back to 0).

When the instrument asserting SRQ is discovered, the controller usually terminates
the serial poll (by sending the SPD command), and transfers control to a user-
defined SRQ handler routine for the instrument requesting service. Reading the
instrument's status byte clears the instrument's RQS bit. However, the factors that
caused the instrument to request service in the first place must be handled, or the
instrument may simply request service again and again.

A-18 REV, JAN 1989 6130 USER’S GUIDE

GPIB Concepts

PARALLEL POLLING

Parallel polling is a means of simultaneously reading the individual status messages
of all instruments configured to respond to a parallel poll.

Individual Status Messages

All instruments with a PP function have an individual status message. This message

can be set to frue or false either remotely (by the controlier) or locally (by the

THHVITEy Wy LT vviiue peje—1

instrument itself), depending on the instrument’s design.

Configuring the Bus for Parallel Polling

A series of PPC and PPE commands designates which instruments respond to
paraliel polls, which data line each instrument is to respond on, and on which sense
of its individual status message the instrument is to assert its assigned data line.

Instruments incorporating the PP2 subset the PP interface function are configured
locally. Their sense and data lines are set by the manufacturer, and cannot be
changed by the controller.

Conducting the Parallel Poll

Tha controller conduets a parallal noll by asserting ATN and EQI simultanecuslhy,

AU =2y

When instruments configured for parallel polling sense ATN and EQI asserted
simultaneously, they check their individual status messages. If the message sense
matches the sense assigned to the instrument, the instrument asserts its assigned
line.

The result of the parallel poll is a bit-encoded integer from which the controller can
calculate which instruments asserted their data lines during the paraliel poll.

6130 USER’'S GUIDE REV, JAN 1988 A-19

B —
Tekironix Standard Codes
and Formats

This appendix describes the Tektronix Standard Codes and Formats, a language
used by Tektronix IEEE 488 instruments to communicate over a GPIB.

On a workstation, application programs are responsible for being compatible with
the Tekironix Codes and Formats standard. The workstation doesn’t directly
conform to Tektronix Codes and Formats.

COMPATIBILITY

Using the GPIB is like using the telephone system. In both cases, a physical
connection can be established and data can be transmitted, so that one person or
one device can talk to another.

On the telephone system, unless both people speak and understand the same
language, very little communication can take place. In addition to having a common
language, they must have a common vocabulary.

Similar problems can arise between instruments that exchange data. The IEEE 488
standard definee a felephone system dascribing how the physical communications

system is to be used, but it does not define the language sent over the bus. This can
cause incompatibilities, even among devices that meet the standard.

For example, suppose a digital multimeter (DMM) has made a measurement of
+3.75 volts and now has to transmit this information over the GPIB to a computer.
Eight data lines are available to send information in byte-serial fashion.

The first question is: What codes should be used to encode the five characters? The 488
standard recommends ASCII code, but the DMM designer is free to choose any
available code. If binary-coded decimal (BCD) is selected but the computer only
understands ASCII, the DMM and the computer will be incompatible, even though
both devices meet the IEEE 488 standard.

Suppose the DMM does send ASCll code. The question now is: What format is the
data to be in? Does the DMM send the character sequence + 3.75, the most-
significant-byte first, least-significant-byte first, or some other way? Again, the IEEE
488 standard says nothing, and the designer is free to create incompatibility.

Designers should use a common format. The Tektronix Codes and Formats
standard specifies that instruments are to send ASCII data with the most significant .
byte first.

6130 USER’'S GUIDE REV, JAN 1989 B-1

Tektronix Standard Codes and Formats

HUMAN INTERFACE

If you are designing measurement systems, you must be intimately involved with the
instrument-to-instrument communication process. Instruments should be designed
to communicate with one another in ways that you can easily understand when
designing a measurement system.

For example, suppose a GPIB-programmable power supply needs to be set to 20.0
volts. The power supply can be designed in one of two ways: easy on the designer
or easy on the user.

The first way is to design the instrument with minimal intelligence, so that it accepts
an obscure code, which it in turn interprets and executes. Some power supplies
must receive the character sequence 08E3 in order to put out 20 volts. The 0 stands
for the 0-to-36 volt range, and the 8E3 is the hexadecimal code of the machine-
language instruction to carry out the command.

The second way is to design the instrument with a microprocessor and intelligence
to accept easily-understood numbers. A power supply designed this way outputs 20
volts when it receives a character sequence that is recognizable to people, as well
as to the power supply. An example might be VPOS 20.

This second design method is a great deal more convenient for writing and
debugging programs that communicate with the instrument.

In the future, most instruments will be intelligent and designed to interact with
people. The Tektronix Codes and Formats standard promotes this type of
instrument friendliness.

REPRESENTING NUMBERS

Because most GPIB instruments use ASCIl characters to send and receive data,
Tektronix has chosen ASCIl ceding as standard.

In addition, most instruments that send or receive numbers use the ANSI X3.42
‘standard format. This format states there are three types of numbers — integers,
floating point, and exponents (called NR1, NR2, and NR3 numbers formats) — and
they should be sent with the most significant character first. Table B-1 shows
examples of these formats.

Unless there are numeric needs that are not met by this format, Tektronix
instruments use the ANSI X3.42 Standard.

B-2 REV, JAN 1989 6130 USER'S GUIDE

Tektronix Standard Codes and Formats

Table B-1
NUMBER FORMATS (ANSI X3.42)

Format | Example Notes

NR1 375 Value of 0 must not
+8960 contain a minus sign.
-328
+00000

NR2 +12.589 Floating point should
1.37592 be preceded by at least
-00037.5 one significant digit.
0.000
NR3 -1.51E+03 | Value of O must
+51.2E-07 | contain NR2 zero
+00.0E+00 | followed by a zero
exponent.

DEVICE-DEPENDENT MESSAGE
STRUCTURE

A message represents a given amount of information whose beginning and end are
defined. It is communicated between a talking device and one or more listening
devices.

The Tektronix Codes and Formats standard defines the structure of device-
dependent messages as follows:

e A message begins when ATN is unasserted, after the talking device is
addressed to talk and the listening device(s) are addressed to listen.

e A message is composed of one or more message units, separated by a
message unit delimiter.

® A message ends when the talking device asserts EOL.

There are two message unit types: program message units and measurement message
units.

Overall Message Format

Program and measurement message units may be concatenated with message unit
delimiters between them, and are terminated with a message terminator.

6130 USER’S GUIDE REV, JAN 1989 B-3

Tektronix Standard Codes and Formats

Such structure enables multiple message units to be strung together and output or
input with a single controller program statement. Having both the message unit
delimiter and the message terminator allows the possibility of two levels of
processing.

A NULL MESSAGE is used for the talked-with-nothing-to-say message.

Message Terminator
The message terminator is the highest order separator defined by this standard.

Program Message Unit

A program message unit is a single instruction. I is used to program some action
{which may change a setting, elicit an output, etc.).

A program message unit contains a header, header delimiter, data and data
delimiter.

Measurement Message Unit

A measurement message unit differs from the program message unit in that it allows
a header bypass; disallows a data field bypass; restricts the header to alpha-only
characters and restricts the data types to exclude character and link data.

The measurement message unit represents a single measurement result. This
format is preferred for sending the output of an instrument’'s measurement process
(typically to a controller).

Measurement message units contain: an alpha header, header delimiter, non-
character data, and a data delimiter.

Data Types

e Character Data

e Link Data

® ANSI Numeric Data Types

® ASCIl-Encoded Special Numeric Data
® Floating Point Data

e String Data

e Binary Block Data

e End Block Data

REV, JAN 1989 6130 USER'S GUIDE

Tektronix Standard Codes and Formats

MESSAGE CONVENTIONS

While standardizing the language used on the bus fosters greater compatibility
between devices, it does not solve all compatibility problems. Well-defined
operational conventions are also needed.

End of Message

Both talking and listening devices should agree on when a message ends. Obvious
difficulties can arise when talker and listener don’t agree; if the listener thinks the
message has ended too soon, it garbles part of the message, while if it doesn’t think
the message is ended when it actually has, the listener hangs the bus waiting for a
message that will never come.

The Tektronix Codes and Formats standard solves this problem by specifying that:
e Talking devices should assert EOl when they send the last byte of a message.

® Listening devices should understand that EOl becoming asserted signifies that
the last byte of a message has been sent.

[- ~ A Y
STATUS BYTES
The IEEE 488 standard defines a means for an instrument to send a status byte to

the computer but, except for bit 7, the standard doesn't define the meaning of the

bits. (The IEEE 488 standard defmes bit 7 to tell whether or not a device is
requesting service.)

However, there is a need for instruments to report status information or errors to the
controller, so the Tektronix Codes and Formats standard establishes a status byte
convention. One need is for instruments to report if they are executing a command,
or ready to receive another command. Bit 5 is used for this purpose.

Another common need is for instruments to report if they are encountering abnormal
conditions. Examples of abnormal conditions are internal error conditions within the
device, erroneous program data sent to the device, incomplete or erroneous
measurement data, or device-dependent limit or alarm conditions. There are more
complex conditions besides busy/ready or normal/abnormal. These are listed in
Table B-2.

Certain instruments may have conditions that are peculiar to them. To report these
status states, bit 8 indicates that the status byte is an uncommon type.

Providing a standard coding for the status byte enhances the convenience to the
person programming the system. If all the instruments have common status byte
codings, then a commeoen status byte handling routine can be written for all
instruments, instead of a separate one for each instrument.

6130 USER’S GUIDE REV, JAN 1989 B-5

Tektronix Standard Codes and Formats

QUERIES

Table B-2
STATUS BYTE DEFINITIONS
Conditions Binary Decimal
X=0 | X=1

Abnormal
Command error 011X 0001 | 97 | 113
Execution error 011X 0010 | 98 | 114
Internal error 011X 0011 | 99 | 115
Power fail 011X 0100 | 100 | 116
Execution waming 011X 0101 | 101 | 117
Internal warning 011X 0110 | 102 | 118
Normal
No status to report | 000X 0000 0 16
out of the ordinary
Power on 010X 0001 | 65 81
Operation complete | 010X 0010 | 66 82
User request 010X 0011 67 83
Request control 010X 0100 | 68 84
Passed con(rc;l 010X 0101 | €9 85

Even with all the possibilities allowed by the status bytes, it is often necessary to
send more detailed information from an instrument to a computer. This can be done

with queries.

Queries take the form of a header followed by a question mark. Here are some
example queries and their uses:

EVENT? This query performs two functions:

Return more detail about the event reported in the last serial poll status

byte.

B-6

REV, JAN 1989

6130 USER’'S GUIDE

Tektronix Standard Codes and Formats

Provide a mechanism by which a controller may get information about
events when the devices RQS assertion capability has been disabied.

SET? Requests an instrument to send the controller its present settings and
other current state information. Sending this information back to the
instrument at a later time returns the instrument to the state it was in
when queried. This query makes it possible to develop a program usin
an instrument’s front panel as input to the computer. Using this feature, a
programmer never needs to know the instrument’s GPIB commands.

m h inA ~h infarmatinn ae He
Makes an instrument identify itself by sending such information as its

instrument type, model number, version of firmware, etc. This feature is
useful for identifying a particular device and for self-configuring systems.

(]
]

Defining a standard way to elicit responses from an instrument enhances the
convenience to the system designer.

ADDITIONAL FEATURES

Besides standardizing the language that instruments use to communicate, the
Tektronix Codes and Formats standard specifies certain instrument characteristics
that guarantee maximum friendliness and dependable operation. Some examples

are:

e An instrument always says something when made a talker. If it has nothing to
say, it sends a byte of all ones with the EOI signal. This lets the listening
device know that no meaningiui data is forthcoming, and prevents tying up the
GPIB while one device waits for another to talk.

® A listening device always handshakes. It doesn't stop handshaking just
because it doesn’t understand or can't execute a message. After receiving
EO, if the device is confused, it sends out a service request and, when serial
polled, notifies the controller that the command can't be executed as sent.

Under no circumstances does a device execute a message it doesn’t understand.

® Instruments always send numbers in correct NR1, NR2, or NR3 formats, but
receive numbers forgivingly. For example, instruments should accept such
incorrect values as -0 or NR3 numbers without decimal points.

& [f an instrument receives a number whose precision is greater than the
instrument can handle internally, the number is rounded off (not truncated) to
enhance accuracy.

¢ Instruments receive both characters and arguments in uppercase and
lowercase and equate them (for example, a = A, b = B, and so on). This is
important because some computer terminals can’t send both uppercase and
lowercase characters.

® An instrument sending data about its front panel uses headers and character
arguments that correspond to the front panel's labels.

6130 USER’'S GUIDE REV, JAN 1989 B-7

alias
A different, usually shorter, name for a UTek command. Aliases exist in the
C-Shell only. See alias(1) and unalias(1) for more information.

.aliases
A file stored in your home directory that defines mail aliases that you can use
on the To: and Ce: lines of a mail message when you send electronic mail.

argument

Anything you enter to the right of the command name. Arguments change the
action of a command. See also option.

autoboot
When the workstation is in autoboot mode, it automatically finds which device
contains the operating system and then boots the operating system. Autoboot
is selected with the configuration switches on the back panel of the
workstation.

background
A command that doesn't tie up your terminal is said to be running in the
background. You can enter a background command by ending the command
line with an ampersand (&). The C-Shell provides job control, so you can
move background jobs to the foreground (the Bourne shell doesn’t provide job
control).

base configuration
All the components that come standard with the workstation. Workstations
consist of a base configuration, options, and enhancements.

BASIC
A high-level programming language designed to be easy to use. BASIC is an
acronym for Beginners All-purpose Symbolic Instruction Code. The BASIC
language on the workstation is based on the proposed ANSI standard BASIC
language.

6130 USER" S GUIDE REV, AUG 1988 GLOSSARY-1

Glossary —

boot
The operation of loading an operating system and, possibly, other system
software (from tape, hard disk, or diskette).

boot device
The storage device that the operating system is loaded from. The workstation
usually boots its operating system from the hard disk.

Bourne shell
The standard shell of UTek. This shell was developed at AT&T Bell
Laboratories.

C

The most commonly-used programming language on the workstation. Most of
the operating system and utilities on the workstation are written in C.

command
A function performed for you by the shell {called a built-in command) or by a
program that resides in a file in a directory in the file system.

configuration switches
The switches located behind the cable management cover at the back of the
workstation that select which devices are the console and boot device. The
switches also select diagnostic hardware tests.

console
The device that receives system error and diagnostic messages. You can
select the device you want to be the console with the configuration switches
on the back panel of the workstation.

control character
Special characters with special meanings to the system. You create control
characters by holding down the <CTRL> key on your keyboard and
simultaneously pressing another key, much like you would use the <SHIFT>
key to produce uppercase characters.

cpio
Cpio is a command that archives files onto a storage media, such as diskette,
streaming cartridge tape, or 9-track tape.

C-Shell
The shell that allows aliases, history lists, and job control. This shell was
developed at the University of California at Berkeley.

.cshrc

A file that contains commands executed every time you invoke a C-Shell (for
example, when you log in with the C-Shell as your login shell and when you

GLOSSARY-2 REV, AUG 1988 6130 USER’ S GUIDE

execute a C-Shell program). The .cshrc file, which is stored in your home
directory, is usually used to set the path variable and to create aliases.

current working directory
The directory you are currently working in. To find the name of your current
working directory, use the pwd (print working directory) command.

DCE
Data circuit-terminating equipment. A device that performs line interfacing
functions between data terminai equipment (DTE} and data transmission lines.
DCE is synonymous with modem.

/dev
The directory on the workstation containing files that control access to
input/output and storage devices.

diagnostics .
A group of programs that test components of the workstation for fauits.

directory
A node in the hierarchical UTek file system that contains files.

disk
A disk is a storage place for files. Disks rotate like phonograph records and
store files as magnetic patterns on the disk surface. Storing a file on a disk is
called writing the file on the disk. See also diskette and hard disk.

diskette
A small flexible disk, often called a floppy disk, on which you store files or
data.

display processor board
A printed circuit board that provides computing resources for the display
subsystem. The display processor board mounts inside the workstation, above
the computer board.

6130 USER’" S GUIDE REV, AUG 1988 GLOSSARY-3

display subsystem
A high-resolution, bit-mapped, color or monochrome video display with a
keyboard, mouse, cabling, and controlling circuit boards.

DTE
Data terminal equipment. A device that can send and/or receive messages.
DTE usually refers to computers and terminals.

enhancement
A product you can add to your workstation to expand its capability.

environment
A group of variables whose values supply programs with information. The
Bourne shell and the C-Shell each have different commands that let you
assign values to environment variables and let you examine the values of
environment variables. See printenv(1), export(1), seten(1), and environ(5) for
more information. ‘

/etc/hosts.equiv
A file that contains the names of other workstations you can access over a
local area network (LAN).

/etc/termcap
A file that contains codes and abbreviations that tell the operating system how
to communicate with various types of terminals. Termcap is short for terminal
capabilities database.

Ethernet
A local area network developed by Digital Equipment Corp., Xerox, and Intel.
Ethernet uses a coaxial cable to transfer data between up to several hundred
machines at a rate of 10 megabits per second.

export
if you use the Bourne shell, you use the export command to put variables in
your environment.

.exrc

A file, stored in your home directory, that contains commands that set up the
vi editor.

GLOSSARY-4 REV, AUG 1988 6130 USER’ S GUIDE

filename
Every file in the file system has a name. A filename can be up to 255
characters long and can contain special characters as well as alphabetic and
numeric characters. Beware of using metacharacters in your filenames.
Filenames beginning with a period (.) are treated special by UTek.

filename completion
A feature of the C-Shell that lets you enter filenames as arguments to
commands by typing just enough characters to make the filename unique and
then pressing the <ESC> key.

filename listing
A feature of the C-Shell that lets you find out what filenames match what you
have typed so far when entering a command.

finger
A command that prints information about users on your system.

foreground
A command that ties up your terminal while it is running is said to be running
in the foreground. There is no prompt displayed, and you cannot enter other
commands. Contrast with background.

FORTRAN
A nrogramming lanquaga designed for scientific and mathematical
applications. FORTRAN is short for FORmula TRANslation. The FORTRAN
language used on the workstation is Fortran 77. See f77(1) in the UTek
Command Reference manual.

gateway node
A computer that is physically connected to more than one local network. Such
a computer acts as a gateway for communications between local networks.

grep
A command that finds patterns in files. See grep(1) in the UTek Command
Reference manual.

hard disk
On the 6000 Series system, a small disk encased in its own drive on which the
UTek operating system and your files and data are stored. Also called a
Winchester disk. See also disk and diskette.

hard disk drive

A direct-access mass storage device that uses magnetic disks {often called
Winchester disks) to store data. See disk.

6130 USER’ S GUIDE REV, AUG 1988 GLOSSARY-5

history
A feature of the C-Shell that lets you reenter commands you entered earlier by
typing a short string of characters. See csh(1) for more information.

history list
The list of commands you have entered, which you can reenter with the
history feature of the C-Shell. See csh(1) for more information.

home directory
The directory UTek puts you in when you first log in. All users have a home
directory, which is specified in the password file.

job control
A feature of a shell that lets you control commands (called jobs) that you enter.
Job control lets you move jobs between the background and the foreground and
lets you temporarily stop running jobs.

kbaud
See kilobaud.

kbyte
See kilobyte.

kernel
The portion of the operating system that always resides in random access
memory (RAM).

kilobaud
A data transmission line that operates at 1 kbaud transfers 1024 bits per
second.

kilobyte
A kilobyte is 1024 bytes.

LAN
See local area network.

GLOSSARY-6 REV, AUG 1988 6130 USER’ S GUIDE

LED
Short for Light-Emitting Diode. LEDs are used as indicator lights on the back
panel of the workstation.

local area network
A physical linking together of workstations and gateway nodes that allows any
machine so linked to talk to any other machine that is also connected. Also
referred to as a LAN. See also local network.

local network
Different from a local area network in that it refers to the machines that a
workstation can communicate with without going through a gateway node.
There can be many local networks connected to a single gateway node, but
they are all part of the same LAN.

Jogin
A file that contains commands executed every time you log in (assuming you
are using the C-Shell as your login sheil} before you are given control of the
terminal. The .login file, which is stored in your home directory, is usually used
to set up your terminal and to set C-Shell and environment variables.

login
Also logon. The procedure of making a connection to UTek is called logging in
or logging on.

login shell
Your login shell is the shell that UTek starts on your terminal when you log in.
If the Bourne shell is your login shell, it executes commands from a file in your
home directory, named profile, before giving you control of the terminal. The
C-Shell executes commands from files in your home directory named login
and .cshrc when it is invoked, and executes commands from a file named
Jogout when you log out.

Jogout
A file that contains commands executed every time you log out (assuming you
are using the C-Shell as your login shell). The .logout file is stored in your
home directory.

6130 USER" S GUIDE REV, AUG 1988 GLOSSARY-7

mail alias
A name you use as an abbreviation on the To: and Cc: lines of a mail
message. Mail aliases are frequently used to abbreviate a group of users and
to abbreviate long paths to users on other machines you access over a
network. You define mail aliases in the .aliases file in your home directory.

.manre
A file that resides in your home directory and controls how the online manual
command man operates.

Mbyte ,
See megabyte.

media storage device
A device that stores data. Common media storage devices are hard disks,
diskettes and magnetic tape.

megabyte
A megabyte is one million bytes, or characters, of storage.

metacharacter
Metacharacters can be substituted for actual characters or groups of
characters. For example, a question mark (?) replaces any single character,
and an asterisk (*) replaces a number of characters.

.mh_profile
A file that resides in your home directory and controls how the commands in
the MH Maii System operate.

modem
A device that passes data between two computers, or between a terminal and
a computer, over telephone lines.

mouse
A pointing or graphical input device that rolls or slides on a desktop. The
cursor on the screen reflects the mouse’s motions. Press the buttons on the
mouse to make selections. display screen to select objects and menu items.

multibus

A bus protocol developed by Intel that is widely used by mass storage
peripherals, such as 9-track tape drives and hard disk drives.

GLOSSARY-8 REV, AUG 1988 6130 USER’ S GUIDE

multiprocessing
The capability of a computer system to execute more than one program at a
ime.

multipurpose
Describes a large computer that is used for a wide range of applications.

multiuser system
A computer system designed to be used by more than one user at a time.
Conirasi this with singie-user system or personai computer.

network
Any group of workstations or computers connected to share data and
information. Usually used to refer to a local area network.

Network File System
Sun’s software running on the workstation that lets you access files and
commands on other workstations as if they were on your workstation.

network transceiver
A device through which a workstation, computer, or terminal transmits data to
and receives data from a local area network. Every node (workstation,
computer, terminal) on a local area network must be connecied to a network
transceiver.

node
(1) A workstation, computer, or terminal that is connected to a local area
network. (2) A directory in the hierarchical UTek file system.

normal mode
The normal operating mode of the workstation. The opposite of normal mode
is service mode. The operating mode of the workstation is selected by the
configuration switches on the back panel of the workstation.

operating system
The group of programs running on the workstation that control the
workstation's computing resources.

option
(1) An optional argument to a command that alters its action. An option
consist of one or more characters preceded by a minus (-) or a plus (+) sign.
See argument. (2) A component you can substitute for a component of (or
add to) the base configuration of your workstation.

Pascal

A highly structured programming language derived from ALGOL. The Pascal
compiler used on the workstation is named pc.

6130 USER’ S GUIDE REV, AUG 1988 GLOSSARY-9

password
A secret code associated with each username. Usually the only person who
should know your password is you. To add or change a password, see the
passwd(1) command.

password file
The password file, /etc/passwd, contains information about the accounts of
every user on your system. Each entry in the password file consists of seven
colon-separated fields. The fields are, in order: login name (no uppercase),
password (encrypted so no one can read it), user identification number {must
be unique for each user), group identification number (must be unique for
each group), real name and phone numbers (separated by semicolons), home
directory, and login shell (blank indicates the Bourne shell, /bin/sh).

path
A list of directories where the shell finds commands you enter. Both the
Bourne shell and the C-Shell have different ways to add directory names to
your path.

peripheral
Also peripheral device. Any device on your system that is used for input/output
with the CPU. Peripheral devices include tape drives, disk drives, diskette
drives, terminals, and printers.

peripheral server
A system that collects data from one or more computers to send to a
peripheral device at a later time. A peripheral server can collect data from your
system at a high rate of speed and store it until the peripheral it serves is free
to accept the data. This frees your system from having to wait for a slow data
transfer (to the peripheral) to occur before you can continue with other work.

personal computer
A small desk-top computer designed to be used by one person.

.plan
A file in your home directory that is displayed by the finger command when
someone types finger yourname.

.profile
A file that contains commands executed every time you log in {(assuming you
are using the Bourne shell as your login shell) before you are given control of
the terminal. The profile file, which is stored in your home directory, is usually
used to set up your terminal and to set environment variables.

.project

A file in your home directory that is displayed by the finger command when
someone types finger yourname.

GLOSSARY-10 REV, AUG 1988 6130 USER’ S GUIDE

prompt
A message that the shell prints on your terminal to indicate that it is ready to
receive your input. The default prompt (the one you get if you don't change it)
for the Bourne shell is the dollar sign ($), while the C-Shell default prompt is
the percent sign (%).

rcp
The rcp (remote copy) command copies files between your workstation and
other workstations (and computers) connected to your local area network.

rhosts
A file you create in your home directory that lets you or other users you
specify log into your your account on your workstation without entering a
password. See rlogin.

rlogin
The rlogin {remote login) command logs you into another workstation
connected to your local area network.

rsh
The rsh (remote shell) command executes commands on another workstation
connected to your local area network.

service mode
Bringing the warkstation up in service made lets vou run diagnostie tests
selected by the configuration switches to check the hardware of your
workstation.

6130 USER’ S GUIDE REV, AUG 1988 GLOSSARY-11

shell
A program that reads input from your terminal or a file, interprets that input,
and invokes the appropriate commands. Shells have control structures,
variables, commands, and comments that allow them to be used as a
programming language.

shell variable
A string-valued variable that changes the way a shell operates. Bourne shell
variables are called shell variables, and variables used by the C-Shell are
called C-Shell variables.

single-user system
A system designed to be used by one person at a time. Contrast this with
multiuser system.

single-wide board

stty
The stty command sets many terminal port parameters. For example, you
can use stty to set the baud rate, parity, character echoing, and other
parameters.

subsystem
A component of the workstation that only operates when used with the
workstation, yet has its own computing resources (microprocessor and
memory). Subsystems use their own computing resources to help reduce the
load on the workstation’s CPU.

sysadmin
The program that helps you perform system administration tasks, such as
adding a user to your system and adding peripherals to your workstation.

system enclosure
The cabinet that houses the workstation. The system enclosure includes
mounting locations for mass storage devices, a card cage for mounting circuit
boards, a power supply, and connecting cables.

termcap file
The terminal capabilities database. This file, which is stored in /efc/termcap,
contains codes and abbreviations that tell the operating system how to
communicate with various types of terminals.

GLOSSARY-12 REV, AUG 1988 6130 USER’ S GUIDE

The tset command tells UTek what type of terminal you are using and how to
communicate with that type of terminal.

tty
An abbreviation for teletype that is used on UNIX-like systems to mean any
type of terminal.

UNIX
A mulliuser, multiprocessing operating system developed by AT&T Bell

aboratories.

upwardly compatible
Describes computer programs that run on one range of computers and can be
run (with little or no modification) on more advanced computers produced by
the same manufacturer. For example, programs that run on the 6130
workstations aiso run on the 6200 Series workstations, usualiy with no
modification.

username
A username (also called a userid or user account or a login name) is a unique
identifier assigned to each user of the system.

UTek
The operating system of the workstation. UTek is based on UNIX.

vi

A screen-oriented text editor on your workstation. Vi, which is short for visual,
is based on a line editor named ex.

6130 USER’ S GUIDE REV, AUG 1988 GLOSSARY-13

6130 USER’" S GUIDE

.aliases 5-1,5-17
.cshrc 5-1,5-7

.exrc 5-1,5-18

login 5-1,5-10

Jogout 5-1,5-12
.mh_profile 5-15-15
.plan 5-1

.profile 5-1

.project 5-1

.rhosts 6-11, 6-16, 6-17
/etc/istab 6-10
fetc/hosts.equiv 6-11, 6-16, 6-17
fetcitermcap file 2-16
a.out file 7-6

adb 7-4
address
listen A-8
primary A-7
secondary A-9
talkk A-8
addressed commands A-16
addresses A-7
aliases 5-10
asynchronous /O 8-7, 9-10

basic 7-2
BASIC compiler (basic) 7-2
BASIC compiler (bbc) 7-2
bbc 7-2
Bourne shell 5-1
functions 5-6
shell file 5-2

C71
C-Shell 5-1,5-7

command name recognition 5-13

filename completion 5-12
C-Shell variable

autologout 5-14

complete 5-12

history 5-9

list 513

REV, JAN 1989

mail 5-9
noglob 5-11
path 5-8
prompt 5-9, 5-12
savehist 5-14
cb 7-3
cc 7-1
chsh 5-7
client 6-5
color copier 3-10
commands
addressed A-16
universal A-14
command name recognition 5-13
communication protocol A-12
comp 5-2, 5-4
computer board 1-3
condition 9-7
condition handler 9-8
configuration switches 4-1, 4-2, 4-11
configuring an RS-232-C interface 2-17
controllers A-12
control character
definition 1-6
notation 1-6
conventions
messages B-5
copy a directory and its contents to
cartridge tape 2-10
copy files from a cpio diskette to
current directory 2-11
copy files from a cpio tape to
current directory 2-11
copy files to flexible diskette 2-9
csh 5-1
C compiler (cc) 7-1
C program beautifier (cb) 7-3

debugger (adb) 7-4

debugging aids 7-4
device-dependent messages B-3
diagnostics 4-8

INDEX-1

INDEX —

INDEX-2

diagnostic LEDs 4-8
directory name listing 5-13
diskette interface 1-3
diskette, formatting 2-21
diskette drive 2-2
reading 2-5
writing 2-5

electronic mail 6-1
electronic mail 5-14, 6-18
forwarding 6-19
enhancements
Hard Copy interface 3-7
SCSl 3-7, 3-1
color copier 3-10
dual RS-232-C interface 3-6
floor stand 3-2
high speed GPIB 3-6
interfaces 3-4
memory expansion 3-8
network transceiver 3-8
part numbers 3-1
printer 3-10
serial synch/async interface
3-6
streaming cartridge tape
drive 3-9
environment variable
CDPATH 5-6
EDIT 5-2,5-10
HOME 5-3
MAIL 5-5
MAILCHECK 5-6
MAILPATH 5-6
MORE 5-3, 5-10
PATH 5-3
PS1 5-4
PS2 5-4
SEDIT 5-8,5-10
TERM 5.5
TERMCAP 5-5
setting with setenv (C-Shell) 5-10
error 7-4
power-up 4-8
eval 5-5, 5-11
exception 9-7
exception handler 9-7

REV, JAN 1989

exception handling 9-7
export 6-5, B5-4

77 7-2
filenames

suffixes 7-5
filename completion 5-12
filename listing 5-13
finger 5-20
floor stand 3-2
formatting a diskette 2-21
FORTRAN 7-2
FORTRAN compiler (f77) 7-2
fip 6-1, 6-21
function 9-7
functions

Bourne shell 5-6

gateway node 6-2
General Purpose Interface Bus 1-3, 2-17
CGKS
C binding 7-6
FORTRAN binding 7-6
gpconf 8-6
GPIB1-3
addressed commands A-16
buses A-9
communication protocol A-12
compatibility B-1
configurations A-3
connector A-1
controller A-12
driver 8-2
high-speed 3-6, 8-1
human interface B-2
instrument driver 8-5
listener A-13
operation 8-1
programming 8-1
representing numbers B-2
talker A-13
universal commands A-14
gpinit 8-6
Graphical Kernel System (GKS) 7-6
graphics 7-6

halt 4-12
hard-disk drive 1-3, 2-1

6130 USER’ S GUIDE

6130 USER’ S GUIDE

Hard Copy interface 3-7
history 5-9
history list

saving 5-14
host 6-2
hostname 6-2
human interface B-2

10O device
assign 2-14
deassign 2-14
interfaces 2-15

IEEE 488 A-1
electrical A-4
functional A-5
mechanical A-1

{EEE 802.3 3-8

inc 5-5

instrument driver 8-2, 8-5

interfaces 1-3, 2-15
enhancements 3-4

interface driver 8-2

Internet address 6-2

interrupt 8-7, 9-8

Id 7-3

link editor (Id) 7-3

lint 7-4

list contents of a cpio diskette 2-10

list contents of a cpio tape cartridge 2-10

listener A-13
listen address A-8
local area network 2-16, 6-2
local area network interface 1-3
logical unit number (LU) 9-2
login 4-10
logout

automatic 5-14
LU g-2

mail 5-14

forwarding 6-19
mail alias 5-17
mail folder 5-14
mail message 5-14
make 7-3
MAKEDEV 2-14
memory 1-3

REV, JAN 1989

expansion 3-8
message 9-7
messages
conventions B-5
device-dependent B-3
message block 9-7
message unit 9-7
MH mail
.aliases 5-17
.mh_profile 5-14, 5-15
programs in 5-14
more 5-3
mount 6-5
mount point 6-7

network transceiver 3-8
node 6-2
notation
control character 1-6
special character 1-6
notation conventions 1-6
NR1 B-3
NR2 B-3
NR3 B-3
numbers B-2
NR1 B-3
NHZ B-3
NR3 B-3

on 6-12
open architecture 6-4

parallel polling A-19
Pascal 7-2
Pascal compiler (pc) 7-2
password 4-10
path name parsing 6-7
pc 7-2
poll 8-7, 8-11
polling

parallel A-19

serial A-17,9-11, A-18
port configuration

GPIB 8-1
power-up

problems 4-8
primary address A-7
printer 3-10

INDEX-3

INDEX-4

programming languages
BASIC 7-2
C 71
Pascal 7-1,7-2
programming support tools 7-3
prompt 5-12
prompter 5-4

queries B-6

rcp 6-1,6-15
remote commands 6-1
remote execution 6-12
remote commands 6-13
protection 6-16
requesting service A-18
restoring files 2-12, 2-13
Revision Control System (RCS) 7-3
rlogin 6-1,6-13
RS-232-C interface 1-3, 2-16
dual 3-6
rsh 6-1,6-13
environment 6-15

script that creates a tar tape of all files
in the current directory 2-12
script that restores a single file from a
tar tape 2-12
script that restores all files from a tar
tape 2-13
SCSI3-7
sdb 7-4
secondary address A-9
serial polling A-17, 9-11, A-18
server 6-5
service request (SRQ) 9-11
setenv 5-10
sh 5-1
shell
Bourne 5-1
C-Shell 5-1
programming 7-1
show 5-5
Small Computer System Interface 3-7
special character
tilde (") 5-9
SRQ 9-11
start-up problems 4-8

REV, JAN 1989

start-up procedures 4-1
start/stop switch 4-7
stateful 6-5
stateless 6-5
status bytes B-5
status byte A-17
streaming cartridge tape drive 3-9
stty 5-5, 5-11
superuser 6-6
switches

start/stop 4-7

. configuration 4-1, 4-8

symbolicdebugger (sdb) 7-4
synch/asynch interface 3-6
system administrator 6-6
system enclosure 1-3
system halt 4-12

talker A-13
talk address A-8
telnet 6-1, 6-21
termcap file 2-16
terminals
setting up 5-5, 5-11
using with UTek 2-16
text editor
vi 5-18
time-of-day clock 1-3
TMS9914A 8-1
transceiver 6-2
tset 5-5, 5-11

universal commands A-14
UNIX 1-4, 5-1
uptime 6-20
UTek 5-1

definition 1-4
UTek command

cpio 2-8

tar 2-6, 2-7, 2-12

vi
.exrc file 5-18

who 5-6
Yellow Pages 6-12

6130 USER’ S GUIDE

Manual Change Information

Affected Manual Part #

Manual Name

6130 System Users Guide

070-5307-00 cpange Reference# ___C5/189

THIS IS A REPLACEMENT PACKAGE

1. Remove the appropriate pages from your manual and insert the attached pages.
2. Keep this cover sheet in the Change information section at the very back of your manual for
a permanent record.

Replace:

‘Table of Contents, Sections 8 and 93~ .

Appendices A and B, and Index, for
UTek 3.0 upgrade and new GPIB driver.

/u’urz XLy T W
\ '

-~

o~

~ A . {
r /V@ oL AW
{ o

-t
A
N

J

1%

Tektronix:

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Glossary-11
	Glossary-12
	Glossary-13
	Index-01
	Index-02
	Index-03
	Index-04
	_01

