TEKTRONIDCG
8002

#PROCESSOR LAB

ASSEMBLER & EMULATOR
USER’'S MANUAL
Opt. 4, 19 & 34

This manual supports TEKDOS Version 2.

Tektronix, Inc.
P.O. Box 500

Beaverton, Oregon 97077

Serial Number
070-2417-00

First Printing JAN 1978

WARRANTY

The 8001/8002 uProcessor Lab System (including options) is warranted against defective materials and
workmanship under normal use and service for a period of 90 days from date of initial shipment. CRTs
found to be defective within 12 months from the date of shipment will be exchanged at no charge (this
does not include installation).

On site warranty repairs is provided during normal working hours (for the 90-day period). Travel to the site
is confined to those areas in which Tektronix states it has service facilities available for this product.

Tektronix shall be under no obligation to furnish warranty service if:

a. Attempts to install, repair, or service the equipment are made by personnel other than Tektronix
service representatives.

b. Modifications are made to the hardware or software by personnel other than Tektronix service
representatives.

c. Damage results from connecting the 8001/8002 uProcessor Lab System to incompatible equipment.
Specifications and price change privileges reserved.
Copyright © 1978 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All
rights reserved. Contents of this publication may not be reproduced in any form without permission of

Tektronix, Inc.

U.S.A. and foreign Tektronix products covered by U.S. and foreign patents and /or patents pending.

DOCUMENTATION OVERVIEW

INTRODUCTION

The 8002 uProcessor Lab support documentation consists of two groups of manuals: user’s
manuals and service manuals. User’s manuals explain the procedures required to operate
the 8002 uProcessor Lab system and its peripheral devices. These manuals, identified by
their gray covers, are a standard part of the system package.

Service manuals provide the information necessary to perform routine maintenance and to
make minor repairs to system components. The hardware test manuals within this group
provide detailed troubleshooting information beyond the scope of routine maintenance.
Service manuals, identified by their blue covers, may be purchased as optional accessories.

USER MANUAL ORGANIZATION

The 8002 uProcessor Lab user’s manuals are incorporated into a series of user support
packages. Each package contains a three-ring binder, a manual, a reference card that

The contents of the user support packages at this writing are as follows:

8002 uProcessor Lab System User's Package

General purpose three-ring binder
8002 uProcessor Lab System User’s Manual
8002 uProcessor Lab System Reference Card

Two blank flexible discs

8002: 9900 Assembier and Emulator Users @

Documentation Overview

s

Description

This package is a standard accessory to every 8002 uProcessor Lab System. The system
user’'s manual is the fundamental documentation and explains how to use the 8002
operating system. The system reference card summarizes the contents of the system user’s
manual. The two blank flexible discs are provided so that back-up copies of software can
be safely stored. A blank disc may also be used to store user-written programs.

8002 uPROCESSOR LAB ASSEMBLER & EMULATOR
SUPPORT PACKAGES FOR MICROPROCESSOR OPTIONS

These packages support program development for each optional microprocessor. Each system
disc contains the TEKDOS operating system and the appropriate TEKTRONIX Assembler.
The manuals contain the details necessary to operate the applicable assembler and emulator
modules. In conjunction with the system user’s manual, each assembler and emulator user’s
manual provides complete information for microprocessor program development. Assembler
and emulator reference cards summarize the assembler and emulator commands and serve as
quick reference guides.

For 8080/8085 Microprocessor

Contents
General purpose three-ring binder

8002 uProcessor Lab Assembler & Emulator User’s Manual for 8080/8085
Microprocessor

8002 uProcessor Lab 8080/8085 Assembler and Emulator Reference Card
8002 system disc for 8080/8085 Microprocessor

For 6800 Microprocessor

Contents

General purpose three-ring binder

8002 uProcessor Lab Assembler & Emulator User’'s Manual for 6800
Microprocessor

8002 uProcessor Lab 6800 Assembler & Emulator Reference Card
8002 system disc for 6800 Microprocessor

i @ 8002: 9900 Assembler and Emulator Users

Documentation Overview

For Z80 Microprocessor

Contents

..... 1 § e s

General purpose three-ring

8002 pProcessor Lab Assembler & Emulator User's Manual for 280
Microprocessor

8002 uProcessor Lab Z80 Assembler & Emulator Reference Card

8002 system disc for Z80 Microprocessor

For 9900 Microprocessor
Contents

General purpose three-ring binder

8002 uProcessor Lab Assembler & Emulator User’s Manual for 9900
Microprocessor

8002 uProcessor Lab 9900 Assembier & Emulator Reference Card

8002 system disc for 9900 Microprocessor

FUTURE USER SUPPORT PACKAGES

Each microprocessor development module to be introduced in the future will be accompanied
by a support package similar to those described above.

SERVICE MANUALS

Service documentation for the 8002 uProcessor L.ab consists of a main system service
manual and supplementary service manuals for each plug-in module. The service manuals
contain information for installing, servicing, and maintaining system components. The user
will find diagrams and circuit descriptions, specifications, and parts lists. Detailed
maintenance information facilitates all necessary cleaning, lubrication, calibration, and
diagnostic troubleshooting.

8002: 9900 Assembler and Emulator Users @ iii

Documentation Overview

The following service manuals are available:

8002 uProcessor Lab System Service Manual

System Processor

System Memory

Program Memory
Assembler Processor
System Communications
Debug and Front Panel I/0
Flexible Disc Unit

8002 uProcessor Lab 8080/8085 Emulator Processor Service
Manual

8080/8085 Emulator Processor
8080/8085 Prototype Control Probe

8002 uProcessor Lab 6800 Emulator Processor Service Manual

6800 Emulator Processor

6800 Prototype Control Probe

8002 uProcessor Lab Z80 Emulator Processor Service Manual

Z80 Emulator Processor

Z80 Prototype Control Probe

iv @ 8002: 9900 Assembler and Emulator Users

Documentation Overview

8002 uProcessor Lab 9900 Emulator Processor Service Manual

9900 Emulator Processor

9900 Prototype Control Probe
8001/8002 uProcessor Lab Real-Time Prototype Analyzer
System Service Manual

Data Acquisition Interface

P6451 Data Acquisition Probe

8002 uProcessor Lab 2704/2708 PROM Programmer Service Manual

Service Instructions

8002 uProcessor Lab 1702 PROM Programmer Service Manual

Service Instructions

Paomal lonadasmBime B8 . N
rainel Instruction Manual
Operating Instructions

Service Instructions

8002 uProcessor Lab Hardware Test Manual

Contains support documentation necessary to troubleshoot the 8002 system effectively. The

manual, together with diagnostic software and a test fixture, forms the 8002 Hardware Test
Package.

8002: 9900 Assembler and Emulator Users

ABOUT THIS MANUAL

This manual explains 8002 uProcessor Lab assembly, linking, and emulation procedures
for 9900-based microcomputer development. The user should be familiar with hexadecimal
and binary number systems, and with ASCII character code. It is especially helpful if your
programming background includes assembly language experience.

The manual describes all TEKTRONIX 9900 Assembler features and procedures in detail.
These include: the basic source module format; all assembler directives; macro capability;
assembled listing and object module formats; and procedures for linking assembled object
code. Assembler operating procedures are discussed in this manual and in the TEKTRONIX
8002 nProcessor Lab System User’s Manual.

The closing sections provide a detailed description of emulation procedures specific to
9900-based microprocessor development, including 9900 service calls, debugging, and
prototype control probe specifics.

The appendices contain essential summarized information and conversion tables. Appendix
C is an alphabetical summary of 9900 assembly language instructions. Appendix F lists all
error codes, messages, and their associated explanations.

Throughout this manual, zeros are slashed where needed for clarity.

The TEKTRONIX Assembler software in this manual is designed to support the Texas
Instrument TMS9900 Microprocessor. Therefore, all references to the 9900 Microprocessor
in this manual pertain to the TMS9900 Microprocessor.

®

8002: 9900 Assembler and Emulator Users

Contents

Page
SECTION 1 TEKTRONIX 9900 ASSEMBLER INTRODUCTION
Assembler INput L e e e 1-1
Assembler QUTPUT . . . o o vt i it s e e e e e e e 1-1
SECTION 2 ASSEMBLER SOURCE MODULE FORMAT

INtrOdUCHION . o o oo e e e e e e e e e e e e Z2-1
9900 Symbolic Statement Format e 21
The Label Field oot e e e e e i e e e 2-3
The Operation Field i i e 2-3
TheOperand Field i e i e e 2-4
The Comment Field ot i e e s 2-8
USiNg SYmbBols . . . o e e 29
Programmer-Defined Symbols o 29
Pre-defined Symbois L e 2-10
Rules for CreatingSymbols 2-10
NUMERIC ValUes . . o oottt e et e et e e e e e 2-10
SCalar Values . .. oo ot et e e e e e e 2-10
Address Values oottt it it et e e e e e e e e 2-11
Notation Rules for SpecifyingConstants 2-11
NUMEFIC CONStANTS &« & . v o e et e e e et et it ettt e 2-11
SN CONSIANTS . . . vt ot vt e e e e 212
NUI SEIINGS & v vt it e e e e e e e e e 212
String to Numeric Conversion ittt e 213
Expressions Permitted inthe Operand Field 2-13
Hierarchy of Expression Operatorsand Functions. 2-16
Description of Expression Operators and Functions 2-16
Binary Arithmetic Operators.ttt e s 2-17
Unary OPerators . . . oo v v ettt e 2-18
Relational Operatorsttt it it e e 2-18

NUMErIC COMPANSONS . . . v it et e e et it e 21
String CompPariSoNs v i it e 2-19
String Concatenationt it i e 2-20
FUNCLIONS & i o it e et e e e et e et e e e e e 2-21
String Variables 2-24
SET StriNGS . o v v vt e e e e e e e 2-25
String Text Substitution 2-26

8002: 9900 Assembler and Emutator Users @ vii

Contents

Page

SECTION 3 STATEMENT SYNTAX CONVENTIONS
Introduction e e e e 3-1
Tektronix Assembler Statement Syntaxottt it 31
Use of Upper and Lower Case Letters and Punctuation 3-2
Blank Fields i i i i e e e 3-2
Bracesand Bracketsttt e e e 3-2
Trailling Dots v it e e 3-2
TEKDOS Statement SYNtaxo v v it i it it e ettt et et 3-3
Command Name ittt it it e et e e e e 3-3
Delimiters . . o vt i i e e e e 3-3
Parameters e e e e 34
Braces and Bracketsttt e 34
Trailing Dots . ..ttt e e e 34

SECTION 4 ASSEMBLER DIRECTIVES

INtrodUCHiON it e e e e e e e 4-1
Listing Format Contro! Directives, 4-3
LIST and NOLIST e e e e e e 4-4
General Listing Format Control Options oo ... 4-4
Macro Listing Format Control Options 4.5
Conventions for ListingControlo, 4-6
PAGE . . e 4-8
SPACE e e e 4-11
TITLE o e e e 4-14
ST T LE .. e e e 4-15
WARNING .. e e e e 4-17
Symbol Definition Directives 4-19
BQU .. e e 4-20
STRING ... e e e e 4-21
SET L e e 4-23
Workspace Location Determination Directive 4-26
WP N T L e e e e e 4-26
Location Counter Control Directive ci ittt i, 4-27
ORG L e e e e 4-27
Data Storage Control Directives.o it ittt et e e e e 4-30
BY T L e e e e 4-31
WORD .ot e e e 4-33
ASCH . e e 4-35
BLOCK .. e e e e 4-38
Macro Definition Directives 4-39
MACRO .. 4-40
ENDM L e e e 4-42
REPEAT and ENDR e e e 4-43
INCLUDE e i e e e e e e 4-45
Conditional Assembly Directives, 4-47
IF,ELSE, and ENDIF 4-48
EX T e e e 4.51
Section Definition Directivest 4-53
Relocation Option ittt e e e 4-54

VIII @ 8002: 9900 Assembler and Emulator Users

Contents

Page
SECTION 4 ASSEMBLER DIRECTIVES (CONT)
SECTION L e e e e 4.55
COMMON .. it e e e e e e 4.57
RESERVE .. e e e e e 4-59
RESUME .. e e e e e e e e e 4-61
GLOBAL ... e e e e e e e 4-63
NAME . e e e e 4-65
Module Termination Directive i i it e e i e e 4-66
END L e e e e e 4-66
SECTIONS5 MACROS
INtrodUCHION . . oot i e e e e e e e e e e e e e e e 51
Basic Macro Expansion Process vt it it e e e 51
Macro Definition Directive oo it it e e e e 52
Macro Definition Directive Conventions 5-3
Macro Definition BIoCk ot it e e e e 53
Source Code Alteration ittt e e e e e 5-3
Additional Special Macro Definition Conventions 54
The @ Charactero vttt e e e e e e 54
The #CharaCter . . o vt it it e e e e e 55
The % Character i et it e i e s 5-5
The t or A Character In Macre Definition, 56
Macro Termination ot it e e e e e e 5-6
Macro Calling i e e e 57
INCLUDE Directive Text insertion @i iiieenennnn 57
Text SUDSHItULION & . .. e e e 58
Special Macro Calling Characters 5-9
The [1 Construct oot e e e e e e 59
The tor ACharacter InMacroCalls oo ittt e 5-10
Additional Macro Argument Conventions 5-10
EXamplest e e e e e e e e e e 5-11
Conditional Assembly e 515
NEStING . . ottt e e e e e e e e 516
Conditional Macro Termination ittt i 5-16
EXAMPLES . . e e e 5-16
IF-ENDIF BloCKS . o v v vt it i it et e et e e e e e e e e e e e 5-16
REPEAT-ENDR BIOCKS . . o v v oot ittt e et et e e e e e e e e 5-18
Macro Expansion Summary it e e 5-20
SECTION 6 ASSEMBLER OPERATING PROCEDURES
INtrOdUCHION & i it i e e e e e e e e e e e 6-1
] Yo X< 6-1
EXplanationo i e e e e e e e e 6-2
Assembly Completion 6-3

8002: 9900 Assembler and Emulator Users @ ix

Contents

5

Page
SECTION 7 ASSEMBLER LISTING FORMAT
INtrodUCHION & oo v i it e e e e e e e e e e 7-1
The Assembler Listing it it i e 7-1
Headings . o oo v vt it et e e e e e 7-2
The Listing Lineo o v ittt e it e e it et i e 7-3
Error Response oottt i i e e e s 7-5
The Symbol Table i i i i e e e 7-6
SECTION 8 ASSEMBLER OBJECT MODULE FORMAT
INtrodUCHION . . o vt s et i i e e e e e e e e e s 8-1
Program Loadingand Execution 81
LOAD .. e e e e e e e 82
70 83
SECTION 9 THE LINKER
Introduction e e 91
Linker INVoCation o ottt e e e e e e e e 92
Program SECtioNS vt it it e e e 9-3
SeCtion At bDULES . .o v v it i e e e e e e e 9-3
Linker INVoCation v ittt e e e e e e e e 9.5
Simple Invocation o e e e 9-5
Interactive Command Invocation e e 9-6
Command File Invocation, .. it e e 9-7
COMMANGS &« . v v e vt e e et e e it et e e e 9-8
Memory Location cv ittt e e e 9-11
Memory Allocationof Sections e 9-11
ENDREL ..ottt e e e e e e e e e e 9-12
Linker QUTPUL . . .t ittt et i et e e e e e e s 9-12
Listing File e e e 9-12
Error Messages vttt e e e 9-13
MaD o o e e e e e e 9-13
SYmMbol List . . o e e e e 9-14
Linkar S atictios . . o i e e e e e e e e e e e 9-15
The Load File . . .o vt i e e e i st e e e e e e 9-15
Errors and Error Messagesot i it it i e e 9-16
Error Messages and Explanations i 9-16
Command Processing Errors e 9-19
Extraneous Information Ignored i e 9-19
lHlegal Commandttt i i it e 9-19
SVNtAX EFPOr & v it it it e e e 9-19
Indirect File Depth Exceeded iy 9-19
Invalid File Name o e e i e e i e e e e e e 9-19
Invalid Range Specified i 9-19
SECTION 10 9900 SERVICE CALLS
Introduction e e 101
The 9900 SVC Compare Word Operationt enenn. 10-2

X @ 8002: 9900 Assembier and Emulator Users

Contents

Page
SECTION 11 9900 DEBUGGING
INtrodUCHiON i i e e e e e e e e e e 111
TRACE . e e e e 11-2
TheTrace Modesttt it et et e et e e e i 11-3
The Trace Line i i e i e e e e e e et e e 11-3
Debug Error Responses ittt it e e e e e 11-4
Trace Line Termination it i ittt e i i 11-5
DT AT . e e e e 11-7
ST L e 11-11
SECTION 12 PROTOTYPE CONTROL PROBE
INtrodUCtion e e e e e e 121
Description and Installation i 12-1
L@ T o T -1 €T o 12-5
APPENDIX A SOURCE MODULE CHARACTER SET A-1
APPENDIX B ASSEMBLER DIRECTIVES B-1
Assembier Directive Syntax e e B-3
APPENDIX C SUMMARY OF 9900 INSTRUCTIONS C-1
Data Transfer Instructions it it i et C-7
Arithmetic Instructions0 i i e i e e e e C-7
Comparison INStructions i ittt i e e e e C-9
Logical INStruCtions v v vt it i i e e e e e e e C-11
Shift and Rotate Instructions cc.c.cu..... C12
Control Transfer Instructions C13
Communications Register Unit (CRU) Instructions C-15
Interrupt Control Instructions i it it e e e C-18
APPENDIX D SERVICE CALL FUNCTIONCODES D-1
APPENDIX E HEXIDECIMAL CONVERSION TABLES E-1
ASCli Code Conversion Table, ittt i, E-1
Decimal-Hexadecimal-Binary Equivalents E-2
Hexadecimal Addition Table it e E-3
Hexadecimal Multiplication Table, E-4
APPENDIX F ASSEMBLER ERRORCODES F-1
APPENDIX G RESERVEDWORDS G-1
8002: 9900 Assembler and Emulator Users @ xi

24171

Fig. 1-1. The 8002 UProcessor Lab System with optional CT8100 CRT Terminal and 9900 Prototype Control Probe.

@ 8002: 9900 Assembler and Emulator Users

Section 1
TEKTRONIX 9900 ASSEMBLER INTRODUCTION

ASSEMBLER INPUT

The TEKTRONIX 9900 Assembler translates user-written programs into executable binary
format. The user’s program must be written in 9900 symbolic notation (assembly language),
and becomes the source module for assembler operation. User-written programs can be entered
into disc files with the text editor program, using procedures described in the TEKTRONIX
8002 i:Processor Lab System User’s Manual. If the source module is contained in more

than one flexible disc file, each file name must be specified by assemble command (ASM)
parameters.

Ali valid input devices can originate assembler input. The assembler reads the source module
twice, once for each pass. When it encounters an END directive or reads the end of the last
file during the first pass, the assembler begins the second pass and starts assembly.

ASSEMBLER OUTPUT

Assembler output comprises an object module, program listings, and appropriate information
messages. The object module contains executable binary instructions and data constants
translated from the source moduie. The entire object file must be iinked and then ioaded
into program memory in order to execute the translated user program on the 9900 Emulator
Processor.

Program listings produced by the assembler are composed of line numbers, the generated
object code, and the source code as entered in the source module. Wherever an error is
detected, an error code is printed on the display device and to the listing to specify the nature
of the problem. '

Following the source code listing, a symbol table alphabetically lists all symbols entered in

the program. The table also gives the hexadecimal value of each symbol and indicates undefined
symbols. Below the symbol table, a message indicates the number of source lines, the number
of assembled lines, the number of bytes available, and the number of errors and undefined
symbols.

8002: 9900 Assembler and Emulator Users @

1-1

Tektronix 9900 Assembler Introduction

To transfer the listing and object file to a disc, enter output file names as ASM command
parameters. To transfer assembler listing and object files to an output device (such as a line
printer) instead of a file, specify the name of the device as the ASM command parameter.

The TEKTRONIX Assembler makes two passes through the source module. The first pass
determines the number of storage bytes required for each statement, and assigns a starting
address value for the first byte of each statement line. The location counter, set to zero before
the first pass begins, advances after each statement is read. This action effectively generates
the starting address for each statement. The symbol table is also constructed during the first
pass. During the second pass, the source module and the symbol table are used to generate

the object module and the listings.

After assembly completion, each line containing an error is output to the display device, with
an error code specifying the nature of the error. Below all error displays, a message indicates
the number of source lines, the number of assembled lines, the number of bytes available, and
the number of any errors or undefined symbols. |f an irrecoverable error prevents assembly
completion, the program aborts and an error code indicates the cause.

1-2 @

8002: 9900 Assembler and Emulator Users

8002: 9900 Assembler and Emulator Users

Section 2

ASSEMBLER SOURCE MODULE FORMAT

INTRODUCTION

Symbolic 9900 instructions, assembler directives, macro calls, and explanatory comments
form the source module. Each 9900 sourcemodule statement must be entered according
to the TEKTRONI X 9900 Assembler format. When translated by the assembler, the source
module becomes the object module to be executed.

Three types of source module statements may be used:
1. 9900 symbolic instructions,
2. assembler directives, and

3. macro calis,

9900 SYMBOLIC STATEMENT FORMAT

Each source module line may contain up to 128 characters, and is terminated by a carriage
return. Allowable source module characters are detailed in Appendix A. Blank lines can be
used to improve readability of the source module listing. The blank lines do not affect the
translated program.

Each 9900 instruction, assembler directive, or macro call consists of four fields: the label
field, the operation field, the operand field, and the comment field. During program
assembly, each 9900 source module instruction is translated by the assembler into one,
two, or three words of code in the object module. The length depends upon the instruction
type, and the number and type of operands required.

o)

2-1

Assembler Source Module Format

The label field, when used, must begin in the first-character position of a line. The operation
and operand fields must begin anywhere after the first-character position and end in any line
character position within the 128-character range. The comment field may begin in any

line character position and must end within the 128-character range. Field sequence may
not be changed, however; and the correct order can only be as follows:

LABEL OPERATION OPERAND COMMENT

Throughout this manual, this field sequencing format is shown above each source line to
illustrate proper assembler source line formatting.

Readability is improved when each field in the source module begins at a constant position
within the line. This columnar format can be easily implemented by using the tab setting
function to define field starting positions. Fig. 2-1 is an example of a properly formatted
source module.

LABEL OPERATION OPERAND COMMENT
STRING S1(80) ;DEFINE STRING VARIABLE S1WITH 8@
:CHARACTER MAXIMUM
L1 EQU 3 ;DEFINE CONSTANT SYMBOL L1 TO EQUAL 3
L2 SET 4 ;DEFINE VARIABLE SYMBOL L2 TO EQUAL 4
ORG 1100H ;SSTARTS OBJECT CODE OF NEXT INSTRUCTION
AT 1100H
MoV R1,R2 ;LOAD REG. 2WITH CONTENTS OF REG. 1
END ’ ;END OF PROGRAM

Fig. 2-1. Properly Formatted 9900 Program.

A general description of the characteristics of each source module field follows. The entire
9900 instruction set is listed in Appendix C. The TEKTRONIX Assembler directives are
described in Section 4 and listed in Appendix B. Macro calls are described in Section 5.

N
N
D

8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

THE LABEL FIELD

Labels may be used in all 9900 instructions, macro calls, and assembier directives. Every
{abel must be unique within each source module. Duplicate iabeis prevent proper program
execution and cause an error code to appear on the display device and in the listing. The
label field, when used, must start in the first-character position of the line. A blank or tab
terminates the label field; therefore, imbedded blanks or tabs are not permitted within the
field.

-

Labels represent addresses associated with locations in a source module. The EQU and SET
directives are the only statements requiring label usage. In all other directives, label usage is
optional. EQU and SET directives always equate the required label to the constant or
expression value in the operand field. The SET directive allows the assigned symbol value
be modified; the EQU directive does not. For all other directives, the label meaning is
dependent upon the particular directive. Generally, the label translates to the memory
address of data or a data constant value. A label in a 9900 instruction translates to the
address of the first byte of the instruction.

ORG, WPNT, and BLOCK directives must contain constants or operand symbois that have
already been defined. Operands in all other directives may reference label symbols that are
defined in later statements.

THE OPERATION FIELD

The operation field contains the mnemonic operation code for a 9900 symbolic instruction,
an assembler directive, or a macro call. The mnemonic specifies the operation or function to
be performed at program execution time, or by the assembler during program translation

and assembly. An instruction specifies the object code to be generated and the action to be
performed on any operands that follow. An assembler directive specifies certain actions to be
performed during assembly and might not generate any object code. The macro call specifies
the macro definition block to be expanded.

The operation field begins after the label field is terminated. If the label is omitted, the
operation field may begin anywhere after the first-character position in the line. The
operation field is terminated by one or more spaces, by a tab or carriage return, or by a
semicolon indicating the start of a comment field.

8002: 9900 Assembler and Emulator Users @ 2-3

Assembler Source Module Format

If the operation field does not contain a 9900 instruction, an assembler directive, or a macro
call, the assembler rejects the entire statement and prints an error code. Six bytes of zero
value are generated by the assembler to fill the area where a valid instruction would otherwise
have been stored,

THE OPERAND FIELD

The operand field specifies values or locations required for the given assembler directive,
instruction, or macro call. The operand field, if present, begins after the operation field is
terminated. Spaces may be used in the operand field. Two or more operands are separated by
commas. The field is terminated by a carriage return, or by a semicolon indicating the start of
a comment field.

The operation code (appearing in the operation field) determines the type and number of
items required for the operand field. If more than one item is required, the sequence of item
appearance is determined by the operation code.

Onerands required for macro calls and assembler directives are discussed in Sections 4 and
5, and summarized in Appendix B.

Eleven types of information are permitted in the instruction operand field. Each instruction

determines the operand types and their proper sequence. Refer to Appendix C for a summary
of 9900 instruction requirements.

The following list defines the eleven operand item types and their required syntax for 9900
instructions:

24

8002: 9900 Assembler and Emulator Users

®

Assembler Source Module Format

OPERAND TYPE ' OPERAND SYNTAX
1} A workspace register which contains the operand. RO

R15

expression
2) A workspace register containing the memory address - *R0O

of the operand. (Register indirect addressing)

*R15
*{expression)

3) A workspace register containing the memory address *RO+
of the operand. After the address is obtained from the
register, the register contents are incremented. (Register
indirect autoincrement addressing.) *R15+
*(expression)+

4) A 16-bit memory address within the range 0 to 65,535, expression
containing the operand data. @expression

5) A 16-bit indexed memory address, specified by a 16-bit expression (RQ)
absolute memory address plus the contents of the @expression (RO}

specified workspace register. This computed address
contains the operand. .
expression (R15)
@expression {R15)
expression{expression)
@expression (expression)

6) A 16-bit memory address within the range 0 to 65,535, expression
which is the destination of control transfer, and is
stored in the object module as an 8-bit PC-relative
address within the range —128 to 127 words.

8002: 9900 Assembter and Emulator Users @ 2-5

Assembler Source Module Format

]

OPERAND TYPE OPERAND SYNTAX

7) An 8-bit CRU displacement address within the range expression
—128 to 127, which is added to the base address in
R12 bits 1 to 12 to form the effective CRU address.

8) A 16-bit data or address constant within the range expression
0 to 65,635. An immediate value.

9) A 4-bit Extended Operation (XOP) vector number expression
within the range 0 to 15.

10) A 4-bit value indicating the number of bits to transfer expression
to or from the CRU.

11) A 4-bit value indicating the number of bit position to expression
shift or rotate the source operand. The operand is
optional. If it is absent a value of @ is assumed.

Several 9900 instructions may operate on data in one or two of the sixteen 16-bit
workspace registers. The operand field for these instructions may contain the register
symboi or register vaiue for each register invoived. Register symbois may not be terms of
an expression. Pre-defined register values are as follows:

REGISTER SYMBOL REGISTER VALUE
RO 0
R1 1
R2 2
R3 3
R4 4
R5 5
R6 6
R7 7
R8 8
RS)
R10 10
R11 1"
R12 12
R13 13
R14 14
R15 15

2-6 @ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

The $ is used within operands to symbolize the first byte of the statement in which it appears.
The effect of $ usage is equivalent to using a label in that statement. When using the $ to
reference addresses, consult Appendix C for the number of bytes in each instruction. The

two instruction sequences that follow are equivalent.

LABEL OPERATION OPERAND COMMENT
1) TIMER DEC RO ;DECREMENT RO REGISTER,
;LABEL INSTRUCTION TIMER
JNE TIMER ;JJUMP BACK IF R@ NON-ZERO
2) DEC RO ;DECREMENT R@ REGISTER
JNE $-2 JUMP BACK iF R@ NON-ZERO

The $ represents the address of the first byte in the JNE instruction. Since the DEC
instruction takes one word (two bytes), $—2 represents the first byte in the DEC
instruction.

Caution should be exercised when using the $ symbo!, since program logic errors couid

result. In the preceding example, an error might occur if an instruction were inserted between
the DEC and JNE instructions without changing the $—2 expression. Inserting an

instruction in the first example requires no other changes.

The symbols for the 9900 registers, register pairs, and memory address registers have been
pre-defined by the assembler. However, their numeric values and additionally any data
constant, |/O device address, or memory address in the operand field may be represented
by expressions. An expression may consist of the following:

1) a single number,

2) a string constant,

3) a symbol, or

4) multiple numbers, string constants, and/or symbols combined with arithmetic and/or
logical operations.

The assembler evaluates an expression in the operand field of a statement. If the expression
violates permissible limits for the operand field, an error code is displayed. Additional
information concerning expressions appears later in this section.

8002: 9900 Assembler and Emulator Users @ 2-7

Assembler Source Module Format

2-8

Any symbol appearing in the operand field other than the pre-defined symbols R@ through
R15 and the location counter contents symbol, $, must be defined in the label field of a
directive or any 9900 instruction in the source module, or in the operand field of a
GLOBAL, STRING, SECTION, COMMON, or RESE RVE directive.

A statement may contain both the operand symbol and its label definition, as in the case of
an instruction that jumps to itself. For example:

LABEL OPERATION OPERAND COMMENT
HERE JEQ HERE ;HANG HERE IF PREVIOUS RESULT
;IS NON-ZERO

Typically, however, the symbol is defined in another statement. If the symbol is not defined
in any statement, an error code is displayed. Additionally, symbols appearing in the operand
field of SET, EQU, ORG, and BLOCK directives must have been defined in the label field

of a previous statement. Operand symbols in all other statements may be defined in the label
fields of later statements.

If an illegal item appears in the operand field, the assembler flags the item with an error
code on the display device and in the listing. All operand items are processed by the
assembler in a 16-bit register. The assembler ignores any overflow conditions that occur
while evaluating expressions. If the operand value is outside the range —32768 to 32767,
an unflagged error in the object module may occur. If the operand requires a value within
a smaller range and the value represented in the operand field is outside this range, a
truncation error code is displayed and the appropriate number of least significant bits for
the value is placed in the object module. Any undefined value in the operand field is
treated as zero and an error code is displayed.

THE COMMENT FIELD

Programs containing comments are more readable, and hence easier to debug and modify.
The optional comment field begins with a semicolon, is terminated by a carriage return,
and follows all other statement fields. |f no other fields are used, the comment field may
begin anywhere in the statement.

String and macro substitution may be performed in the comment field. (Refer to the Section 2
subsection entitled String Text Substitution and to Section & for discussion on string and macre
substitution.) Since the single quote character signals substitution, the character must be
preceded by a caret {A) or up-arrow (1) character when used for purposes other than
substitution.

@ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

USING SYMBOLS

Symbol usage makes a program easier to read and modify, and reduces the risk of error
during program modification. Symbols are defined when they appear in the label field of
9900 instructions, macro calls, and assembler directives, or in the operand field of
GLOBAL, SECTION, COMMON, RESERVE, MACRO, or STRING directives. After
having been defined, symbols can be used in the operation and operand fieids of 9800
instructions, macro calls, and assembler directives.

A symbol label in a 9900 instruction represents the address of the first byte of that
instruction. Such a label allows the user to transfer control (jump or branch) to an
instruction without knowing its absolute address. To transfer control, place the
instruction symbol in the operand field of the jump or branch instruction.

The meaning of a label symbol used as an operand for an assembler directive is dependent
upon the directive. Generally, the symbol represents the memory address of data or a data
constant value. Through the use of symbols, the directive operand field can refer to a data
constant or a memory data area without regard to the absoiute memory address. This is
especially helpful when modifying a data constant frequently referred to by other statements.
The programmer need only change the defining statement, rather than all statements
referencing the constant.

Some symbols are created by the programmer, and others are pre-defined by the assembler.

Programmer-Defined Symbols

Programmer-defined symbols are assigned values during the assembler’s first pass. Operand
fields referring to the symbols are translated during the assembler’s second pass. The ORG
and BLOCK directives each alter the contents of the assembler location counter during both
assembler passes. Because the alteration value is specified in the operand field of the ORG
and BLOCK directives, any symbo! appearing in the operand field of these directives must also
be defined in the label field of a previous statement in the source module. The EQU directive
operand field may contain a forward reference to a symbol, if the symbol does not appear in
the operand field of an ORG, BLOCK, or another EQU directive. Forward referencing
operand symbols are, however, allowed in all other statements. Symbols are permitted

in the operand fields of EQU, SET, STRING, SECTION, COMMON, RESERVE,

RESUME, GLOBAL, and MACRO directives.

Redefinition of symbols is generally not allowed. A previously defined SET symbol,
however, may be redefined in another SET directive.

8002: 8900 Assemblier and Emuiator Users @ 29

Assembler Source Module Format

Pre-defined Symbols

Certain words are reserved as pre-defined symbol names for use in the operation and operand
fields of source programs. Among these words are the following register symbols, assembler
directives, instruction mnemonics, assembler listing options and operators. Refer to
Appendix G for a complete list of reserved words for the 9900 Assembler.

FIELD TYPE OF VALUE PRE-DEFINED SYMBOLS
Operation 9900 Instruction mnemonics Refer to Appendix C
Operation Assembler directive mnemonics Refer to Appendix B
Operand Workspace registers R® through R15

Rules for Creating Symbols

The first character in a symbol must be alphabetic. The remainder of the symbol may be
composed of the following characters: the letters A through Z; the numbers @ through 9;
and the special characters, . (period), _ (underscore), and $ (dollar sign). Lower-case letters
are interpreted in their upper-case form. A symbol may contain up to eight characters. Only
the first eight characters of the symbol are used, and excess characters are ignored. All
pre-defined symbols are reserved words and cannot be redefined.

NUMERIC VALUES

The assembler defines two types of numeric values, scalars and addresses. Scalar values
represent arbitrary numeric values. Address values represent actual memory locations

warithi; A mrAsrana
ywitiinr a Pl uglcun.

Scalar Values

Scalar values are signed integers ranging from —32,768 to +32,767. Scalar values serve as
counting values in a program, rather than as actual references to memory locations. Scalar
values are completely defined upon assembly.

2-10 @ 8002: 9900 Assembler and Emulator Users

Assembter Source Module Format

Address Values

Address values represent actual memory locations within a user program. Address values
are unsigned numbers ranging from @ to 65,5635. The assembler produces relocatable object
code, that is, object code whose locations are defined during linking {see Section 9). Upon
assembly, address values are relative to an assembler-defined base (or starting point).
Therefore, actual memory locations associated with address values are unknown until after
the linking process occurs.

More than one address base may exist within a given assembly. The user may define
additional address bases by issuing a SECTION, COMMON, or RESERVE directive. Refer
to Section 4 describing these directives and their relocation options. Since an address value
lacks complete definition upon assembly, address value usage is more restrictive than scalar
value usage. A unigue location counter exists for each assembler-defined base in a user
program. The $ symbol (current location counter contents) represents an address value.

NOTATION RULES FOR SPECIFYING CONSTANTS

Constants may be either numeric or string constants,

Numeric Constants

Numbers are integers and are assumed to be decimal unless otherwise specified. This means
a number without a suffix is evaluated according to the decimal number base. A suffix
letter code must be used to specify a radix other than decimal. The following suffixes are
available:

1) H for hexadecimal. For example: 35H
All numbers must begin with a numeric digit; therefore, a zero must precede all
hexadecimal numbers beginning with the hexadecimal digits A through F. Examples of
this follow:

PBSH and OFFH
2) O (capital o, not zero) or Q for octal. For example: 760 and 76Q

3) B for binary. For example: 101101108

Leading zeros are appended to or truncated from constants to produce 8- or 16-bit values
as required by the particular operand. Blanks are not permitted within a numeric constant.
Refer to Appendix E for hexadecimal, decimal, and binary number conversion tables.

8002: 9900 Assembler and Emulator Users @ 2-11

Assembler Source Module Format

S0

String Constants

In addition to symbols and numeric constants, operations may also contain string constants.
String constants can be generated by using ASCI! strings. ASCI| (American Standard Code
for Information Interchange) is a standard code for representing characters transmitted
between the computer and peripheral devices such as teletypes, printers, and terminals.
String constants and variables may be combined into string expressions using special
operators. A string expression may be used anywhere a normal expression is allowed. String
constants are written by enclosing ASCI| characters within double quotes (). A string
constant may contain any character within the source code character set except a carriage
return.

A double quote character may be included within a string by preceding it with a caret
character (A). The caret character removes the special meaning from any character and
allows the special character to be treated as a regular part of the text. A caret may also be
included within a string by entering two carets. Examples of string constants and caret

usage follow:

""ABCDEF" results in the string ABCDEF
123 A**34" results in the string 12334
AN results in the string A

Null String

A string containing zero characters is a null string. A null string is entered as two double
quotes without intervening text (').

2-12 @ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

String To Numeric Conversion

If a string expression is used where a numeric value is required, the string is automatically
converted to a numeric value. The numeric value of a string is defined as follows:

The numeric vaiue of the nuii string (') is zero.
The numeric value of a one-character string is a 16-bit value whose high order nine bits
are zeros and whose low order seven bits contain the ASCI| code for the character.

The numeric value of a two-character string is a 16-bit value as well. In this case, the
ASCII code for the leftmost character is in the high-order byte. The ASCII code for
the second character from the ieft is in the iow-order byte.

The numeric value of a string longer than two characters is the numeric value of the
leftmost two characters in the string. An error code is displayed when this occurs.

Exampies of string to numeric conversion foiiow. The numeric values for ASCi| characters
are found in Appendix E.

STRING NUMERIC VALUE

" 0

YA 41H

2" 3132H

123" 3132H (truncation error occurs)

EXPRESSIONS PERMITTED IN THE OPERAND FIELD

The operand field may contain an expression consisting of one or more terms acted on by
expression operators. A term is either a symbol, a numeric constant, a string constant, or
an expression enclosed within parentheses. The value of a term may be an address, a scalar
value, or undefined. An address is an ordered pair, the first member being the base, the
second member, the offset. The offset is known at assembly time, the base is not. A scalar
value is represented by any integer. Spaces are permitted within an expression; the
assembler reduces the expression to a singie value. When an invalid term is used, the
display device and the listing show an error code, and the value of the expression is
undefined.

8002: 9900 Assembler and Emulator Users

2-13

®

Assembler Source Module Format

The following outline lists the expression operators and functions. A chart describing the
hierarchy of all expression operators and functions follows this summary. Each expression
operator and function is described in greater detail, completing this discussion.

Unary Arithmetic Operators Relational Operators

OPERATOR MEANING OPERATOR MEANING

+ identity = equal

- sign inversion <> not equal

Binary Arithmetic Operators > greater ﬂ:" '
> = greater than or equa

OPERATOR MEANING <= less than or equal

* multiplication < less than

/ division Binary Logical Operators

+ addition

- subtraction OPERATOR MEANING

MOD remainder & and

SHL shift left ! inclusive or

SHR shift right " exclusive or

Unary Logical Operator String Concatenation Operators

OPERATOR MEANING OPERATOR MEANING

\ not (bit inversion) string concatenation

Functions

HI (exp)

Returns the most significant bvte of a numeric expression. The expression may be either
an address or a scalar value. |f an address is specified as the HI function argument,
subsequent operations must not be performed on the HI function result. The HI function
result is numeric.

LO (exp)

Returns the least significant byte of a numeric expression. The expression may be either
an address or a scalar value. |f an address is specified as the LO function argument,
subsequent operations must not be performed on the LO function result. The LO
function result is numeric,

2-14 @ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format
[]

DEF (sym)

Returns —1 (true) if the symbol has been previously defined in this pass. Otherwise,
returns @ (false). The DEF function result is numeric.

SEG (string expression,exp1,exp2)
Extracts exp2 characters from the specified string, starting with the character, exp1.
If the end of the string is encountered before exp2 characters are extracted, only those
characters up to the string end are extracted. Both exp1 and exp2 must be scalar values.
The SEG function result is a string.

NCHR (string expression)
Returns the current number of characters in the specified string. For a string variable,
the length returned may be less than the length defined by the STRING directive.
The NCHR function result is numeric.

ENDOF (section name)

Upon linking, the ENDOF function returns the address of the last byte of the
specified section. The symbol specified in this function must be a global symbol.
If the symbol is not a section name, the address of the symbol is returned. Further
operations may be performed on the result of ENDOF, provided the operations
are allowed for address values. The ENDOF function result is numeric.

BASE (exp1,exp2)

Returns —1 (true) if the two expressions, exp1 and exp2, share the same base.
Otherwise, returns @ (false). The BASE function result is numeric.

STRING (exp)

Returns the value of the expression as a six-character string. The five rightmost
characters represent the decimal value of the expression; the leftmost charactzr indicates
whether the number is positive or negative. |f the leftmost character is a minus, “—“,
the number is negative. |f that character is a zero, “@", the number is positive. The
expression must be a scalar value.

SCALAR (exp)

Converts the address value of the expression to a scalar value.

8002: 9900 Assembler and Emuiator Users @ 2-15

Assembler Source Module Format

Hierarchy of Expression Operators and Functions

In multiple-operator expressions, operators and functions are evaluated in the order of their
precedence. Table 2-1 illustrates this hierarchy. The functions at the top of the table have the
highest precedence. The operators at the bottom of the table have the lowest precedence.

All expression operators and functions located on the same line have equal precedence, and
are evaluated from left to right. Parentheses may be used to override the order of precedence,
and parentheses are evaluated from inward to outward. The most deeply parenthesized
subexpressions are evaluated first.

I f the expression entered is too complex for the assembler to translate, an expression error
code is displayed. This does not occur when parentheses nesting depth is three or less.

LO HI SEG NCHR DEF ENDOF BASE STRING SCALAR
+ — (unary plus and minus) \

* / SHL SHR MOD

+ — (addition and subtraction)

= <> < <= > >=

&

! "

Table 2-1. Hierarchy of Expression Operators and Functions.

Description of Expression Operators and Functions

in addition to the arithmetic {(+, —, *, /) and iogicai {\, &, !, !!) operators, severai other
operators and functions are allowed within numeric expressions. These operators and
functions provide additional arithmetic functions and a means for comparing numeric
quantities.

2-16 @ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

Binary Arithmetic Operators

Binary arithmetic operators act on numeric values, which may be scalar or address values.
Scalar values may appear within arithmetic operations in any combination. Only the
following binary arithmetic operations are permitted when acting upon addresses:

SCALAR VALUE + ADDRESS = ADDRESS
ADDRESS + SCALAR VALUE = ADDRESS
ADDRESS — SCALAR VALUE = ADDRESS
ADDRESS — ADDRESS = SCALAR VALUE (Both addresses must be

based to the same section.)

Any other combination of address terms yields an undefined result.

MOD is a binary operator that computes the remainder when the first operand is divided
by the second operand. For example, an instruction entered as A MOD B yields the
remainder resulting from A/B. The program segment that follows demonstrates MOD
operator usage.

LABEL OPERATION OPERAND COMMENT

AX EQU 5MOD 2 ;AX ISSET TO 1, SINCE 5/2 YIELDS A
;REMAINDER OF 1

BX EQU 14 MOD AX ;BX ISSET TO @, SINCE 14/1 YIELDS A
;REMAINDER OF @

CX EQU (BX +29)MOD 25 ;CX ISSET TO 4, SINCE 8+29 YIELDS 29
;AND 29/25 YIELDS A REMAINDER OF 4

DX EQU (—5) MOD 2 ;DX ISSET TO —1, SINCE —5/2 YIELDS A

;REMAINDER OF —1

SHL and SHR are binary operators that shift their first operands the number of bit positions
specified by their second operands.

SHL performs a left logical shift (equivalent to multiplying by two). Zeros are shifted into
the right end of the 16-bit value. Bits shifted out of the leftmost bit position are lost.

8002: 9900 Assembler and Emulator Users @ 2-17

Assembler Source Module Format

SHR performs a right logical shift. Zeros are shifted into the leftmost bit positions. Bits
shifted from the rightmost bit position are lost. Shifts of 16 or more bits generate a result
of zero and produce a truncation error code. The program segment that follows
demonstrates SHL and SHR operator usage.

LABEL OPERATION OPERAND COMMENT

DX EQU 1SHL 1 ;VALUE ASSIGNED TO DX IS 2, SINCE A
;SHIFT LEFT ONCE CAUSES 1 TO BE
;MULTIPLIED BY 2

EX EQU DX SHR 1 ;VALUE ASSIGNED TO EX IS 1 SINCE DX
;(2) SHIFTED RIGHT IN A BINARY FASHION
;YIELDS 1

FX EQU @6E@H SHL 3 ;VALUE ASSIGNED TO FX IS 3700H,
;SINCE 2 CUBED IS 8, AND 8 TIMES
;J06EQH IS 3700H

GX EQU OFFFFH SHR 16 :VALUE ASSIGNED TO GX IS @, SINCE
AFFFFH SHIFTED RIGHT IN A BINARY
;FASHION YIELDS 0

Unary Operators

All unary operators may act upon scalar values. The plus sign {+) is the only unary operator
permitted to act upon addresses.

Relational Operators

The relational operators include =, < >, >, <, < =, and > =, Relational operators allow
signed numeric, unsigned numeric, and string comparisons.

Numeric Comparisons

If either of the operands of a relational operator is numeric, the relational operators perform
signed or unsigned numeric comparisons. A signed numeric comparison is performed on two
scalar values, a string and a scalar value, or a scalar and a string value. An unsigned numeric
comparison is performed whenever one of the operands is an address. Comparison of two
addresses based in different sections resuits in an error. These comparisons are summarized
as follows:

2-18 @ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

STRING

SCALAR

ADDRESS

STRING

SCALAR

ADDRESS

String Comparison

Signed Numeric
Comparison

Unsigned Numeric
Comparison

Signed Numeric
Comparison
Signed Numeric
Comparison

Unsigned Numeric
Comparison

Unsigned Numeric
Comparison

Unsigned Numeric
Comparison

Unsigned Numeric
Comparison

If a comparison is performed between an address and a string or scalar value, the base of the
address is first added to the string or scalar value. |f two addresses are compared, they must
have the same base, or an error results.

For signed comparisons, numbers range from —32768 to 32767. For unsigned comparisons,
numbers range from © to @FFFFH (65,535).

An operator in a numeric comparison determines whether the specified relationship exists
between its two operands. The resulting value is @ if the relationship is false and —1
(OFFFFH) if the relationship is true. Examples of relational operator usage follow.

LABEL OPERATION OPERAND COMMENT

T EQU -5>7 ;VALUE ASSIGNED TO T IS @, SINCE -5
;IS NOT GREATER THAN 7

P EQU 7>=-5 VALUE ASSIGNED TO P IS —1, SINCE 7
;IS GREATER THAN -6

U EQU T<>P ;VALUE ASSIGNED TOU IS —1,SINCE T

/ISNOT EQUAL TO P

String Comparisons

The relational operators (=, < >, >, <, <-=,> =) may be used to compare the values of
two string expressions. When strings are compared using these relational operators, the
comparison is made numerically, according to the ASCI| collating sequence. Refer to
Appendix E for the correct character ordering sequence of ASCI! characters.

8002: 9900 Assembler and Emulator Users @

2-19

Assembler Source Module Format

String comparison is performed only when both operands of a relational operator are
strings. |f only one of the operands of a relational operator is a string, the string is
converted to a scalar value and a numeric comparison is performed.

String comparison always proceeds from left to right. If two strings are equal through the
last character of the shorter string, the shorter string is considered to be less than the longer
string.

Examples of string comparisons follow.

“AB" ="AB" results in —1 (true)

“AB" <> "AB" results in 0 (false)

YA > B results in @, since A is less than B

“ABC"” > “"AAAA" results in —1, since B is greater than A

“ABC” >"ABC “ results in @, since 'ABC’’ has three characters
and “ABC “ has four, including the
final space

e results in —1, since a null string is less than a

blank character
1< results in —1, since the numeric value of the

ASCII character 1" is 31H and is
greater than 1

String Concatenation

The concatenation operation combines two strings into a single string. The operator used

to specify string concatenation is the colon (:). The colon may be used to concatenate any
two string expressions, An error occurs when an attempt is made to concatenate two numeric
values or a string and a numeric value. Examples of string concatenation follow:

“A"BY results in “AB"”

e results in """ since two null strings produce a
null string

YA B results in **AB*", since a null string and a character
produce the character

IIAII:II [xs resu'ts in llA (X

“ABCrtr2” results in “ABC12”

2-20 @ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

Functions

HI and LO are unary functions that respectively extract the high- and low-order eight bits of
their operands. References to Hi or LO are written as single argument functions. The value
to be acted on appears in parentheses, following the keyword HI or LO. If this value is an
address, further operations on the result of Hi or LO are disailowed. Examples of Hi and LO
function usage foliow:

LABEL OPERATION OPERAND COMMENT

IXB EQU HI (8COBFH) 'VALUE ASSIGNED TO 1XB IS C@H
JX EQU LO (BCARFH) 'VALUE ASSIGNED TO JX IS 0FH
KX EQU LO (HI(@COOFH) + 1) ;VALUE ASSIGNED TO KX ISC1H
z EQU 5+ LO(Q) ;/INVALID WHEN Q 1S AN ADDRESS

DEF is a unary function that determines whether a symbol has already been defined. DEF is
referenced as a single-argument function. The argument must be a symbol and may not be
an expression. |f the argument symbol has already been defined, the value of DEF is —1
(OFFFFH). If the argument has not been defined, the value of DEF is @. A pre-defined
symbol used as an argument causes an error. Examples of DEF function usage follow.

LABEL OPERATION OPERAND COMMENT

MK EQU DEF(K) ;VALUE ASSIGNED TOMK IS -1 IF K IS
;/ALREADY DEFINED

Q EQU DEF(N) ;VALUE ASSIGNED TOQIS@ IF N IS
;UNDEFINED

RX EQU DEF(RX) ;VALUE ASSIGNED IS @. THE SYMBOL ON

;THE LEFT OF THE EQU DIRECTIVE IS
;UNDEFINED UNTIL THE EXPRESSION
;ON THE RIGHT IS EVALUATED

S WORD DEF(S) ;AWORD OF OBJECT CODE CONTAINING
J@FFFFH(—1) IS GENERATED. THE LABEL
;ON THE WORD STATEMENT IS DEFINED
;BEFORE THE STATEMENT IS EVALUATED

8002: 9900 Assembler and Emulator Users @ 2-21

Assembler Source Module Format

L -~~~ "~ "]

The SEG function (segmentation) is used to extract a portion of a string. The SEG

function uses three arguments. The first argument is the string (or string expression) from
which a substring is to be extracted. The second argument is a numeric expression specifying
the position of the leftmost character of the string where the substring is to be extracted.
Characters within the string are numbered from left to right starting with one. The third
argument is a numeric expression specifying the number of characters to be extracted. The
specified characters are extracted unless the end of the string is encountered first. In this
case, only those characters up to the end of the string are extracted. The following examples
illustrate properties of the SEG function:

SEG(“ABCD",2,2) results in “BC"

SEG(*ABCD",1,4) results in “ABCD"

SEG(“ABCD",3,3) results in “CD*

SEG("“ABCD"*,5,2) results in “**(the null string, resulting in zero
characters)

SEG(“ABCD",3,0) results in s

The NCHR function may be used to determine the number of characters in a string
expression. NCHR is referenced as a single-argument function, that argument being the string
expression whose length is to be determined. The result of NCHR is numeric and not a

string value. Examples of NCHR function results follow.

NCHR (") resuits in)

NCHR("“ABC") results in 3

NCHR(SEG('XYZ",2,1) results in 1

SEG(“ABC”,NCHR(“ABC") ,1) results in “C", since C is the last character
of “ABC"”

The ENDOF function returns the address of the last byte of a section. The argument for
ENDOF must be a global symbol whose ending address is to be determined. If the global
symbol is not the name of a section, the result is the address of the symbol. An example
of ENDOF usage follows:

2'22 @ 8002: 9900 Assemblier and Emulator Users

Assembier Source Moduie Format

—

LABEL OPERATION OPERANDS COMMENT
RESERVE STACK,100H ;NAMES A SECTION, STACK, AND
;ALLOCATES AT LEAST 256 BYTES
LI R1,ENDOF(STACK) ;LOAD REGISTER R1WITH THE END

;OF THE STACK

The BASE function determines whether two expressions share the same base. If the
expressions share the same base, the value of BASE is true (DFFFFH). Otherwise, the value
of BASE is false (). Examples of BASE function results follow. Q,R, and ZZ represent
addresses where Q and R share a common base, while ZZ does not.

BASE (Q,R) results in @FFFFH (true)

BASE (Q,Q+15) results in OFFFFH (true)

BASE (Z2Z,Q) results in 0 (false)

BASE (Q,0-R) results in @ (false) because Q—R is scalar

BASE (5,15) results in @FFFFH (true) because 5 and 15 are
both scalar

BASE (5,Q—R) results in QOFFFFH (true)

BASE (5,2Z2—-Q) results in Error since subtraction is not valid

between addresses with different bases

The STRING function returns the decimal value of an expression as a six-character string.
The expression must be a scalar value. When the value does not fill six digits, leading zeros
appear in the resulting string. If the expression value is negative, a minus sign is placed in the
resulting string. Examples of STRING function results follow:

STRING(5) results in " PO0PP5"
STRING(5+15) results in "“000020"
STRING(@QFFH) results in "0PP255"
STRING(—@FFH) results in "—00255"

8002: 9900 Assembler and Emulator Users @ 2-23

Assembler Source Module Format

The SCALAR function converts the address value of the expression to a scalar value. The
resulting scalar value is equal to the displacement of the address value from the address
value's base. Upon linking, the resulting scalar value might not be the same as the final
value of the expression. The SCALAR function does not affect scalar-valued expressions.

An example of scalar conversion follows:

LABEL OPERATION OPERAND COMMENT
SECTION X ;DEFINES A NEW SECTION NAMED
; X
Al ORG 7 ;ADVANCES LOCATION COUNTER
;TO ADDRESS 7. ASSIGNS ADDRESS
;7TO A1
WORD SCALAR({$)MOD?2 ;CONVERTS ADDRESS 7 TO SCALAR

;VALUE. PERFORMS 7/2 AND
;RETAINS REMAINDER 1
;ALLOCATES ONE WORD TO

sVALUE 1
SECTION ASDF :DEFINES NEW SECTION NAMED
;ASDF
A2 ORG 6 ;/ADVANCES LOCATION

;COUNTER TO ADDRESS 6 WITHIN

;SECTION ASDF. ASSIGNS 6 TO A2
WORD SCALAR(A1)+SCALAR(A2) ;ALLOCATES ONE WORD

;CONTAINING SCALAR VALUE 13

Note that if the SCALAR function were not entered in the above WORD directives, an
error would result. Scalar values are unaffected by changes in address base. Thus, in the
above program, the scalar result of the operation WORD SCALAR(A1)+SCALAR(A2)
remains unchanged no matter what base values are assigned to sections X and ASDF upon
linking.

STRING VARIABLES

String variables enhance the value of string expressions by providing a means for storing
string expression values. A string variable is a symbol with an associated string value, and is

created by use of the STRING directive,

224

@ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

The desired string variable names are defined in the operand field of the STRING
statement. The maximum character length of the value to be stored in the string variable
may be specified by entering a numeric expression in the operand field. When this optional
character length expression is not specified, an eight-character length is assumed. In the
following example, a string variable is defined as STRVAR, with a maximum character
iength of 18,

LABEL OPERATION OPERAND
STRING STRVAR(16)

For further discussion pertaining to STRING statements, refer to Section 4 describing
assembler directives.

SET Strings

The SET directive assigns a string expression value to a string variable defined with the
STRING directive. The string variable is entered in the label field of the SET directive; the
string expression is entered in the operand field. The string expression value is evaluated and
assigned to the string variable. |f the resulting string expression’s length is longer than the
maximum string variable length, the string expression is truncated before assignment, and an
error code is displayed. Examples of SET string usage follow.

LABEL OPERATION OPERAND COMMENT

STRING A1,A2(2),A3(45),A4(0) ;DEFINES STRING VARIABLE A1
WITH A DEFAULTING VALUE
;LIMIT OF 8 CHARACTERS
.DEFINES STRING VARIABLES
/A2, A3, AND A4 WITH
;RESPECTIVE VALUE LIMITS OF
;2, 45, AND @ CHARACTERS

A1l SET “AB" JVALUE OF A1 IS “AB"”
A2 SET Al JVALUE OF A21IS "AB"
A4 SET A1:A2 ;VALUE OF A4 IS “*

;TRUNCATION ERROR SINCE A4
;ALLOWS A VALUE LIMITOF @
;CHARACTERS

{This program continued on next page)

8002: 9900 Assembler and Emulator Users @ 2-25

Assembler Source Module Format

P

LABEL OPERATION OPERAND COMMENT
A3 SET “A MEDIUM LONG STRING” ;VALUE OF A3 1S “A
:MEDIUM LONG STRING"
A1l SET A3 ;VALUE OF A1 1S “A MEDIUM",

;STRING TRUNCATED

String Text Substitution

String variables may be used for modification of source text being processed by the
assembler. Using string variables makes it possible to insert code into a source line, thus
allowing the code to be processed as if it were part of the original source line. Before the
assembler processes a source line, it scans the line for string variables enclosed within single
quote characters. When such a variable is encountered, it is replaced with the specified

value and the scan continues. When the entire line has been scanned and all code substitutions
are made, the assembler then processes the line. For example assume the assembler

processes the following code.

LABEL OPERATION OPERAND
STRING opP

opP SET “WORD"
‘OP’ 123

When the assembler scans the line containing ‘OP’ 1,2,3, the string variable ‘OP’ is replaced
with the value defined for the substitution, “WORD’‘. The line resulting upon assembly
follows:

WORD 1,2,3

2-26 @ 8002: 9900 Assembler and Emulator Users

Assembler Source Module Format

String substitutions can occur anywhere within a line of code, including within string
constants and comments. For the examples that foilow, assume that A1, A2, A3, and A4
are defined as specified.

LABEL OPERATION OPERAND
STRING A1,A2,A3,A4

Al SET “YTE”

A2 SET 123,456"

A3 SET “COMMENT"”

A4 SET e

Assume that the following substitutions are then performed.

SOURCE CODE RESULTS AFTER SUBSTITUTION

BYTE 'A1','A2’ BYTE YTE, 123,456

WORD 1 ‘A4’ WORD 1

A4 SET " ‘A3" A4 SET “COMMENT"

WORD “ ‘A4’ " WORD “COMMENT"

B'A1' 'A2'-200 BYTE 123,456—-200

B’A1“A2’ BYTE123,456 (error code displayed due to undefined instruction

mnemonic, since space was omitted ‘A1’ and ‘A2’)

Since the single quote character always signals string substitution, it is necessary to precede
the character with a caret { A) if string replacement is not to be performed. The caret
character allows the single quote character to then be interpreted as a literal character in a
statement. An example demonstrating caret usage follows.

ASCII “WHATAS UP DOC?” results in WHAT’S UP DOC?

8002: 9900 Assembler and Emulator Users @ 2-27

Section 3

STATEMENT SYNTAX CONVENTIONS

INTRODUCTION

Many of the following sections in this manual contain TEKTRONIX Assembler and
TEKDOS statement descriptions. Each statement description is preceded by a syntactical
block showing the required statement format. This section describes the syntax
conventions for TEKTRONIX Assembler and TEKDQOS statements.

TEKTRONIX ASSEMBLER STATEMENT SYNTAX

TEKTRONIX Assembler directives and macro calls may contain up to four fields. Each

field name is indicated in the syntactical block above the corresponding field item, as shown
in the following example.

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] BYTE {expression} [,expression] [;charstring]

8002: 9900 Assembler and Emulator Users

31

Statement Syntax Conventions

—

Use of Upper and Lower Case Letters and Punctuation

A capitalized item in a field must be entered exactly as shown. Punctuation delimiters such
as commas, semicolons, or parentheses must also be entered exactly as shown. Spaces or
tab characters terminate each field and begin the next. An item shown in lower case letters

is a term signifying the entry type. The following descriptive terms are used to signify entry
type unless otherwise specified:

1) symbol — as defined in Section 2
2) expression — as defined in Section 2

3) charstring — a string of one or more characters.

Blank Fields

Any field left blank is an illegal field for that statement.

Braces and Brackets

When an item is enclosed in braces { } , the item must be present in the statement. Items
enclosed in brackets [] are optional. Braces and brackets are used for syntactical
representation only and should not be entered as part of the statement. Braces and

brackets may be nested. The following is an example of braces and brackets nested in
braces.

{{strvar1} [Ienexp1]}

Trailing Dots

A line of dots foliowing an item indicates that the item can be repeated a number of times
The item cannot be repeated beyond the end of the line being entered. In the example
that follows, the item can be repeated.

i,symbol].

8002: 9900 Assembler and Emulator Users

Statement Syntax Conventions

L e

TEKDOS STATEMENT SYNTAX

A TEKDOS statement contains a command and in most cases, one or more parameters
with delimiting characters. An example of a typical TEKDOS statement syntactical block
follows.

SYNTAX -

device r
NUDGE ({filename} | filename [/disc drive] L{Iine number 1} {line number 2}|. ..

Command Name

A minimum set of characters (short form) is required for each TEKDOS command. This
minimum character set is underlined in the syntactical description. In the page heading for
the command, the exact spelling of the command name is given with the short form
underlined. Commands without a short form are not underlined.

In addition to the minimum set of characters in the command name, a maximum set (long
form) is also given for each command name. Any number of characters in the command
name, ranging from the short form spelling to the long form spelling, may be used as long as
the exact spelling is followed.

Delimiters

Items in the command line must be separated by delimiters when entered into the terminal.
A space is used as the main delimiter. The slash (/) is used to delimit a file name and the disc
drive number.

8002: 9900 Assembler and Emulator Users @ 3-3

Statement Syntax Conventions

]

The comma may be used as a delimiter in most cases. Two commas are used to specify
null or empty fields in a parameter list. Three commas are used to specify two adjacent
null fields.

Parameters

The parameters or controlling conditions of each command line are shown in the preceding
TEKDOS statement syntactical block. These parameters may be names, numbers, characters
or symbols. When a parameter is shown capitalized, it must be entered exactly as shown.
Parameters shown in lower case letters are descriptive terms to signify the type of entry.

Braces and Brackets

When appearing in TEKDOS statement syntactical descriptions, braces and brackets have
the same meaning as when used with TEKTRONIX Assembler statements. Additionally,
parameters stacked within either braces or brackets indicate that only one of the enclosed
items should be selected for statement entry. In the following example, an object file name
or an object device may be selected, but not both.

object filename
object device

Trailing Dots

Trailing dots within TEKDOS statement syntactical blocks indicate repetitive parameters.

34 @ 8002: 9900 Assembler and Emulator Users

Section 4

ASSEMBLER DIRECTIVES

INTRODUCTION

The following assembler directives are available:
Listing Format Control Directives -

LIST
NOLIST
PAGE
SPACE
TITLE
STITLE
WARNING

Symbol Definition Directives

EQU
STRING
SET

Workspace Location Determination Directive

WENT

Location Counter Control Directive
ORG

Data Storage Control Directives
BYTE
WORD
ASCII
BLOCK

8002: 9900 Assemblier and Emulator Users @

4-1

Assembler Directives

4-2

Macro Definition Directives

MACRO
ENDM
REPEAT
ENDR
INCLUDE

Conditional Assembly Directives

IF
ELSE
ENDIF
EXITM

Relocatable Section Definition Directives

SECTION
COMMON
RESERVE
RESUME
GLOBAL
NAME

Module Termination Directive

END

8002: 9900 Assembler and Emulator Users

Assembiler Directives

LISTING FORMAT CONTROL DIRECTIVES

The assembiler iisting format directives are presented in the order shown beiow:

Mnemonic
LIST
NOLIST
PAGE
SPACE
TITLE

STITLE

WARNING

8002: 9900 Assembler and Emulator Users

Purnose

Enables display of assembler listing features.
Disables display of assembler listing features.

Begins the next listing line on the following page.
Spaces dpwnward a specified number of listing lines.

Creates a text line at the top of each listing page for
program identification.

Creates a text line on the second line of each listing
page heading for program identification.

Upon assembly, generates a warning message on the
output device and in the listing. Also allows the user to
specify his own warning message.

4-3

LIST

NO LI ST Assembler Directives
—

4-4

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symboll LIST [CNDI] [,TRM] [,SYM] [,CON] [,MEG] [ME] [;charstring]
[symbol] NOLIST [CND] [,TRM] [,SYM] [,CON] [,MEG] [,ME] [;charstring]
PURPOSE

Two assembler listing control directives, LIST and NOLIST, respectively enable and disable
display of assembler listing features.

EXPLANATION

When NOLIST is specified without operands, all output to the listing file (except the
symbol table) is suppressed. When LIST is entered without operands, the listing is turned
back on.

General Listing Format Control Options

Four general listing control options (CND, TRM, SYM, and CON) may be entered with

the listing control directive, LIST, when specific features in the assembler listing are desired
for viewing. The same four listing options may be entered with the assembler listing control
directive, NOLIST, when specific features in the assembler listing are not desired for
viewing.

@ 8002: 9900 Assembler and Emulator Users

LIST
Assembler Directives NOL'ST

The general listing control options are summarized as follows:

CND — Lists unsatisfied conditions for IF and REPEAT operations. (Refer to the
subsections describing macro definition directives and conditional assembly
directives.) The listing defaults to an OFF condition, thus displaying only those
instructions within an |F or REPEAT condition occurring when the condition is
satisfied.

TRM — Causes the listing to be trimmed to a 72-character format during display. Defaults
to an OFF condition, causing the listing to be displayed in the standard 132-
character format.

SYM — Lists the symbol table. Defaults to an ON condition.

CON — Displays all assembly errors to the console. Defaults to an ON condition.

Macro Listing Format Control Options

A macro is a shorthand approach for inserting a pre-defined source code block into a
program. Refer to Section b for a discussion of macro procedures.

Only those macro instructions generating object code appear in an assembler listing. Some
of the code generated during a macro expansion does not generate object code upon
assembly, making it impossible under normal conditions to view the entire macro expansion
sequence within the assembler listing. Therefore, in addition to the four general listing
control options, two macro listing control options (MEG and ME) may be entered with the
LIST and NOLIST directives to enable and disable macro expansion visibility. These
options are summarized as follows:

8002: 9900 Assembler and Emulator Users @ 4-5

LIST
NOL'ST Assembler Directives

e e

MEG — Lists only macro expansion code that changes the location counter. Defaults to
an ON condition.

ME — Lists all macro expansion code except for any unsatisfied IF or REPEAT
conditions. When the listing control option CND is on, unsatisfied conditions
are also listed. Defaults to an OFF condition. If either ME or MEG is turned
OFF by the user, the other is automatically turned OFF. If ME is turned ON
by the user, MEG is automatically turned ON.

The following table demonstrates LIST and NOLIST effects on the ME and MEG options:

ENTRY RESULTS
NOLIST MEG MEG is OFF ME is OFF
NOLIST ME MEG is OFF ME is OFF
LIST MEG MEG is ON ME is OFF
LIST ME MEG is ON ME is ON
NOLIST MEG is OFF ME is OFF

Status of both options is saved

LIST Restores status of both options

Upon exit from a macro expansion, the main program listing status is restored to the status
that prevailed before the macro was called.

Conventions for Listing Control

The LIST and NOLIST directives are always entered in the operation field of the listing
control statements where they appear. More than one listing control option may be entered
with the LIST and NOLIST directives. In this case, each option is separated from other
options by a comma. When entering the listing control options with the LIST or NOLIST
directives, the options are placed in the operand field of the listing control directive in any
order. If the NOLIST directive is entered without options to suppress display, and the LIST
directive is again entered without options specified; the original specified options are
retained. The number on any listing line corresponds to the original input source line
number. The NOLIST directive does not affect this line number correlation.

4-6 @ 8002: 9900 Assembler and Emulator Users

LIST
Assembler Directives N 0 LIST

EXAMPLE

The following listing control statement suppresses the symbol table listing.

LABEL OPERATION OPERAND COMMENT
NOLIST SYM ;SUPPRESSES SYMBOL TABLE LISTINC

The following listing control statement causes all subsequent macro expansions and unsatisfied
conditions to be included within the assembler listing.

LABEL OPERATION OPERAND COMMENT
LIST ME,CND ;LISTS MACRO EXPANSIONS
;AND ALL UNSATISFIED
;CONDITIONS

8002: 9900 Assembler ard Emulator Users @ 4-7

PAGE

Assembler Directives

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] PAGE [charstring]
PURPOSE

The PAGE directive causes the next listing line to begin on the following page.

EXPLANATION

As the source lines are read by the assembler in its second pass, they are output to the
listing along with any object code produced. When the PAGE directive is encountered, a
page heading is printed at the top of the new page and the next iisting iine begins beiow the
heading. The actual PAGE directive is not printed in the listing.

A label is generally not used with the PAGE directive; however, if used, the symbol
represents the address in the assembler location counter. The location counter contains the
address of the next instruction or data byte in the program sequence.

8002: 9900 Assembler and Emulator Users

Assembler Directives PAG E

L

EXAMPLE

The following program illustrates PAGE directive usage:

LABEL OPERATION OPERAND COMMENT
STRING S1(80) ;DEFINE STRING VARIABLE S1
WITH 88 - CHARACTER
MAXIMUM
L1 EQU 3 ;DEFINE CONSTANT SYMBOL

;L1 TO EQUAL 3

L2 SET 4 - ;DEFINE VARIABLE SYMBOL L2
: ;TO EQUAL 4

PAGE ;BEGINS NEW LISTING PAGE

ORG 1100H ;STARTS OBJECT CODE OF NEXT
/INSTRUCTION AT 1100H

Mov R1,R2 ;LOADS THE CONTENTS OF R1
;INTO R2

END ;END OF PROGRAM
;REG. A

Upon assembly, the following listing file results from this source program. A new page is
generated after the SET directive.

TEKTRONIX 9800 ASM Vx.x PAGE 1

00001 STRING S1 (80) ;DEFINE STRING VARIABLE S1
WITH 88 -CHARACTER
;MAXIMUM

002 ?003 L1 EQU 3 ;DEFINE CONSTANT SYMBOL
;L1 TO EQUAL 3

00003 0004 L2 SET 4 ;DEFINE VARIABLE SYMBOL

;L2 TO EQUAL 4

{Program continued on next page)

8002: 9900 Assembler and Emulator Users @ 4-9

PAGE Assembler Directives

N

TEKXTRONIX 9900 ASM Vx.x PAGE 2

20005 11006 > ORG 1100H ;STARTS OBJECT CODE OF
;NEXT INSTRUCTION AT 1100H

o006 1100 CO81 Mov R1,R2 ;LOADS THE CONTENTS OF R1
JINTO R2

p0oa7 END ;END OF PROGRAM

TEKTRONIX 9900 ASM Vx.x ~ SYMBOL TABLE LISTING PAGE 3

STRINGS AND MACROS

St————— 0050 S
SCALARS
RGO ——— 0000 R1 —— 0001 R2 ——— 0002
R3 ——— 00@3 R4 —— 0@G4 R5 ——— 0005
R6 ——— G006 R7 ——— 0007 R8 ——— 00@8
RO ——— 0009 R10 —— 0@GA R11 ——— 000B
R12 ——— 0QGC R13 —— @0@D R14 —— 0O0QE
R15 ——— QOQF L1 —— 1100 L2 ——— 0004V
SI ——— 0850S

% {(default) SECTION (@102)

7 50URCE LINES 7 ASSEMBLED LINES 1000 BYTES AVAILABLE

Note that the symbol indicators V and S respectively follow the symbols L2 and S1. The
svmbol indicator V indicates that L2 is a SET symbol. The symbol indicator S indicates
that S1is a string. The symbol L1 has no symbol indicator following it, indicating that L1

is an EQU symbol. For a more complete description of symbol indicators, refer to Section 7,
ertitied ASSEMBLER LiSTING FORMAT.

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives S PAC E

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] SPACE [expression] [;charstring]
PURPOSE

Whenever the SPACE directive appears in the source module, the assembler spaces downward
a specified number of lines in the listing.

EXPLANATION

The number of lines to be spaced downward is indicated by the expression in the SPACE
directive operand field. If no expression is entered, one space is generated. I the execution
of the SPACE directive crosses a page boundary, the effect is the same as that of the PAGE
directive. The actual SPACE directive is not printed in the listing.

A label is generally not used with the SPACE directive; however, if used, the symbol
represents the address in the assembler location counter. The location counter contains the
address of the next instruction or data byte in the program sequence.

8002: 9900 Assembler and Emulator Users @ 4-11

SPACE

Assembler Directives

4-12

EXAMPLE

Assume the following source program resides on disc.

LABEL

L1

L2

OPERATION
STRING

EQU

SET

SPACE

ORG

MoV

END

OPERAND

S1(80)

10

1100H

R1,R2

COMMENT

;DEFINE STRING VARIABLE St
WITH 88-CHARACTER MAXIMUM
;DEFINE CONSTANT SYMBOL
;L1 TO EQUAL 3

;DEFINE VARIABLE SYMBOL
;L2 TO EQUAL 4

;SPACES DOWNWARD 10
;LISTING LINES

;STARTS OBJECT CODE OF
;NEXT INSTRUCTION AT 11@6H
;LOADS THE CONTENTS OF R1
JINTO R2

;END OF PROGRAM

8002: 9800 Assembler and Emulator Users

Assembler Directives SPACE

Upon assembly, the following listing file results from this source program. Ten lines are
generated between the SET and ORG directives.

TEKTRONIX 9900 ASM Vx.x PAGE 1

ao001 STRING S1(89) ;DEFINE STRING VARIABLE §1
WITH 80-CHARACTER
;MAXIMUM

00002 0063 L1 EQU 3 ;DEFINE CONSTANT SYMBOL
;L1 TOEQUAL 3

000@3 00m4 L2 SET 4 ;DEFINE VARIABLE SYMBOL

;L2 TO EQUAL 4

0005 100 > ORG 1100H ;STARTS OBJECT CODE OF
;NEXT INSTRUCTION AT 1100H

00006 1100 CO81 MOV R1,R2 ;LOADS THE CONTENTS OF R1
;INTO R2

00007 {END | ;END OF PROGRAM

TEKTRONIX 8900 ASM Vx.x SYMBOL TABLE LISTING PAGE 2

STRINGS AND MACROS

S1————— 0050 S

SCALARS
RO ——— 0000 R1 —— 0001 R2 —— 0002
R3 ——— 0003 R4 —— 0004 R5 ——— (0B5
R6 ——— 00d6 R7 —— 0007 R8 ——— 0008
RO ——— 0009 R10 —- @0GGA R11 ——— QGOB
R12 —— 000C R13 —— 006D R14 ——— QOGE
Ri5 ——— G00OF Li —— 1160 L2 ——— 0004V
Si ——— 0050S

% (default) SECTION (8102)

7 SOURCE LINES 7 ASSEMBLED LINES 100¢ BYTES AVAILABLE

8002: 9900 Assembler and Emulator Users @ 4-13

TITLE

Assembler Directives

4-14

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] TITLE {string expression } [;charstring]
PURPOSE

The TITLE directive creates a text line at the top of each listing page for program
identification.

EXPLANATION

The character string specified as the TITLE operand is printed in the page heading between
the assembler version number and the page number. As many as 31 characters may be
entered. Any characters exceeding the 31-character limit are truncated. The actual TITLE

directive is not printed on the listing.

EXAMPLE

Assume the following TITLE statement is entered in a source program:
LABEL OPERATION OPERAND

TITLE “THIS IS THE PROGRAM TITLE”

Upon assembly, the specified title appears within the heading at the top of each listing
page of the program as follows:

TEKTRONIX 8900 ASM Vx.x THIS IS THE PROGRAM TITLE PAGE 1

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives STlTLE

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] STITLE {string expression } [;charstring]
PURPOSE

The STITLE directive creates a text line on the second line of each listing page heading for
program identification.

EXPLANATION

The character string specified as the STITLE operand is printed between the page heading
and the first source code line. A blank line is automatically inserted between the string and
the beginning of the source code. As many as 72 characters may be entered. Any characters
exceeding the 72-character limit are truncated. The actual STITLE directive is not printed
on the listing.

EXAMPLE

Assume the following STITLE statement is entered in a source program.

LABEL OPERATION OPERAND
STITLE “THIS LINE DEMONSTRATES STITLE USAGE”

8002: 9900 Assembler and Emulator Users @ 4.15

STlTLE Assembler Directives
]

Upon assembly, the specified STITLE line appears within the heading at the top of each
listing page as follows:

TEKTRONIX 9900 ASM Vx.x PAGE 1
THIS LINE DEMONSTRATES STITLE USAGE
{blank line)
(source code)
@ 8002: 9900 Assembler and Emulator Users

4-16

Assembler Directives WAR NI N G

L -~~~ —

SYNTAX

LAREL OPERATION OPERAND COMMENT
[symbol] WARNING [message]
PURPOSE

When an error is suspected within source code, the WARNING directive can be entered to
generate an error message at assembly time. Thus, the nature of the errors in a program can
be described upon assembly and listing.

EXPLANATION

A warning message may be entered as a comment in the WARNING directive. Unlike other
comments, the warning message is not preceded by a semicolon. Upon assembly, this
optional message is printed on the assembly listing and on the output device, flagging the
suspected error. The following assembler message is also displayed on both the assembler
listing and the output device during assembly, below the specified warning message:

* X * ¥ ERROR m.]

8002: 9900 Assembler and Emuiator Users @ 4-17

WARNING ~ Assembler Directives

4-18

EXAMPLE

Assume the following WARNING directive is entered within a source program below a line
containing an error.

LABEL OPERATION COMMENT
WARNING **** ENTRY OUT OF SEQUENCE

Upon assembly, the specified warning line appears below the source line containing the
error. The message, ***** ERROR 001 also appears below the specified warning message.

000C 0083 + LEN SET NCHR(“ABB*)
0gD WARNING ****ENTRY OUT OF SEQUENCE
"X ERROR 001

@ 8002: 9900 Assembler and Emulator Users

Assembiler Directives

SYMBOL DEFINITION DIRECTIVES

The assembler symbol definition directives are presented in the order shown in the
following summary.

Mnemonic Purpose

EQU Permanently assigns a value to a symbolic name.

STRING Declares the named statement symbols as string
variables.

SET Assigns or reassigns an expression’s value to a string

or numeric variable symbol.

8002: 9900 Assembler and Emulator Users @ 4-19

EQU

Assembler Directives

4-20

SYNTAX

LABEL OPERATION OPERAND COMMENT
{symbol} EQU {expression} [;charstring]
PURPOSE

The EQU directive permanently assigns a value to a symbolic name.

The symbol in the label field of an EQU directive is the symbolic name and the expression
in the operand field represents the value. The symbol acquires the same base as the operand

expression. No redefinition of this symbol is permitted.

The EQU directive operand field may contain a forward reference to a symbol label if the
symbol does not appear in the operand field of an ORG, BLOCK, or another EQU
directive.

If a symbol is declared in a GLOBAL directive and is defined by an EQU directive, the
expression in the operand field of the EQU directive may not contain a HI, LO, or ENDOF
function applied to an address. An error results when this occurs.

EXAMPLE

The following line demonstrates EQU directive usage:

LABEL OPERATION OPERAND COMMENT
L1 EQU 3 ;ASSIGNS THE VALUE 3 TO THE

;CONSTANT SYMBOL Li.

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives STRI N G
L. |

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] STRING {{strvaﬂ} [(Ienexp‘l)]}[{,strvarZ} [(Ienexp2)]:|. .. [;charstring]
PURPOSE

The STRING directive declares the symbols named in the statement to be string variables.

EXPLANATION

The STRING directive declares the symbols ““strvar1’’ and “strvar2‘’ to be string variables. A
string variable is a symbol with an associated string value. Numeric expressions “lenexp1”’

and “lenexp2” may be optionally entered next to the string variabies to specify the maximum
character length of the values stored in the string variables. This maximum character length
must be a scalar value greater than or equal to zero. When the optional character length
expression is not specified, an eight-character maximum length is assumed. If the optional
character length expression is specified, it must be enclosed within parentheses. An operand
symbol named in a statement containing the optional character length expression must not
be a forward reference.

A symbol must be declared with the STRING directive before it may be used as a string
variable. Symbols declared as string variables must not be used for any other purpose within
a program. Any number of string variables may be declared with the STRING directive. When
a string variable is initially declared, its value is the same as that of the null string.

8002: 9900 Assembler and Emulator Users @ 4'21

STR | NG Assembler Directives

4-22

EXAMPLES

The following examples demonstrate STRING directive usage:

LABEL OPERATION OPERAND COMMENTS

STRING STR(14) ;DECLARES STR
;AS A STRING
;VARIABLE WITH
;A MAXIMUM
;CHARACTER
;LENGTH OF 14

STRING A1,A2, A3,A4,X(NCHR("1234")) ;DECLARES A1
;THROUGH A4
;AS STRING
;VARIABLES
WITH A
;MAXIMUM
;CHARACTER
;LENGTH OF 8.
;DECLARES X AS
;A 4-CHARACTER
STRING
;VARIABLE SINCE
;THE NUMBER
;OF CHARACTERS
;IN ““1234" IS 4.

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives SET
—

SYNTAX
LABEL OPERATION OPERAND COMMENT
Ksymbol} SET {expression} [;charstring]
PURPOSE

The SET directive is used to assign or reassign an expression value to a string or numeric
variable symbol.

EXPLANATION

The string or numeric variable symbol is entered in the label field of a SET directive. A
string variable symbol must have first been defined with the STRING directive. A numeric
variable symbol must not have been previously defined, unless by another SET directive.
Variable symbols may not be subsequently redefined as labels, or be redefined by an EQU,
STRING, SECTION, COMMON, RESERVE, GLOBAL, or MACRO directive. The value of
a variable symbol may, however, be redefined by another SET directive.

The expression value is entered in the operand fieid. The expression is then evaluated and
the value is assigned to the variable symbol.

If a SET directive contains a string-valued symbol and a numeric-valued expression, the
numeric expression is converted to a string. This conversion is valid only when the numeric
expression is a scalar value. The decimal value of the numeric expression is assigned to the
string-valued symbol. The assigned string is six characters long, with the leftmost character
being a minus sign if the value is negative. All numeric values are prefixed with leading
zeros if less than six characters long. The numeric-expression to string-symbol conversion
process is diagrammed as follows:

8002: 9900 Assembler and Emulator Users @ 4-23

SET

Assembler Directives

0

4-24

LABEL OPERATION OPERAND COMMENT

string ISET numeric . ;RESULTS IN EXPRESSION
;CONVERSION TO STRING

If the SET directive contains a numeric-valued symbol and a string-valued expression, the
string expression is converted to a numeric value. Refer to Section 2 of this manual,
ASSEMBLER SOURCE MODULE FORMAT, which describes String to Numeric
Conversion. The string-expression to numeric-symbol conversion process is diagrammed as
follows:

LABEL OPERATION OPERAND COMMENT

numeric SET string ;RESULTS IN EXPRESSION
;CONVERSION TO NUMERIC

Conversion is not required when a string-valued symbol is set to a string expression or a
numeric-valued symbol is set to a numeric expression. When a symbol is set to an expression
value, the symbol acquires the same section as the expression.

For string variable symbols where the length of the resulting expression value exceeds the
maximum symboi string length, the expression value is truncated on the right before
assignment. A truncation error code is then displayed.

EXAMPLES

Examples of typical SET instructions and the resulting string-valued symbol expression
values follow:

LABEL OPERATION OPERAND COMMENT

STRING A1,A2(2),A3(45),A4(0) ;DEFINES STRING VARIABLE
AT WITH A DEFAULTING
;VALUE LIMIT QF 8
;CHARACTERS. DEFINES
/STRING VARIABLES A2, A3,
;AND A4 WITH RESPECTIVE
;VALUE LIMITS OF 2, 45, AND
;@ CHARACTERS

(Program continued on next page)

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives SET

LABEL OPERATION OPERAND COMMENT

Al SET “AB" ;VALUE OF A1 1S “AB"
A2 SET A1l ;VALUE OF A2 IS “AB"
A4 SET Al1:A2 ;VALUE OF A4 1S,

;TRUNCATION ERROR SINCE
;A4 ALLOWS A VALUE OF
JONLY @ CHARACTERS

A3 SET “A MEDIUM LONG STRING” ;VALUE OF A3 IS “A MEDIUM
;LONG STRING"
A1 SET A3 ;VALUE OF A1 IS “A MEDIUM",

;TRUNCATION ERROR
The following example demonstrates string-to-numeric and numeric-to-string expression

conversion.
LABEL OPERATION OPERAND ‘ COMMENT
STRING A1,A2 :DEFINES STRING VARIABLES
;A1 AND A2
Al SET 14 VALUE OF A1 1S 003314
A2 SET -1 VALUE OF A2 1S “—00001°’
Al SET bEH VALUE OF A1iS 000094
B1 SET A2 ;NUMERIC SYMBOL, B1, ISSET

,TO THE NUMERICALLY
;,CONVERTED EXPRESSION, A2,
;TRUNCATION ERROR OCCURS,
;SINCE A2 IS GREATER THAN
;TWO CHARACTERS (—00001).
;THE TWO RESULTING
;LEFTMOST ASCll CHARACTERS
;ARE —@, GIVING B1 A
/NUMERIC SET VALUE OF
;2D306H

8002: 9900 Assembler and Emulator Users @ 4-25

W P N T Assembler Directives

WORKSPACE LOCATION DETERMINATION DIRECTIVE

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] WPNT [/] expression [;charstring]
PURPOSE

The WPNT directive tells the assembler the location of your current workspace.

EXPLANATION

The operand expression defines the location of the current workspace. Subsequent
instructions containing symbolic addresses that are within 32 bytes of the location defined by
the operand expression generate into register address references. The value of the expression
must be an address and must not contain forward references.

EXAMPLE
LABEL OPERATION OPERAND COMMENT
WRKSPACE BLOCK 32
SYMX EQU WRKSPACE+2
SYMY EQU WRKSPACE+4
WPNT WRKSPACE :DEFINE CURRENT WORKSPACE
sus LWPI WRKSPACE ;LOAD WORKSPACE POINTER
INC WRKSPACE ANCREMENT Rg
MOV SYMY+4,SYMX :MOVE CONTENTS OF R4 TO
;R1

4-26 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives ORG

LOCATION COUNTER CONTROL DIRECTIVE

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] ORG {[/] expression} [charstring]
PURPOSE

The ORG directive sets the contents of the assembler location counter to either the address
specified by the operand expression, the next address divisible by the operand expression,
or the next odd address.

Omission of the optional / (slash) operator sets the location counter to the address specified
by the operand expression. For example, when the following ORG directive is entered, the
next instruction in the program begins at location 11@@H in the current section.

ORG 1100H

If an ORG directive is omitted at the beginning of a program, the assembler location counter
is set to @. Usage of the / operator in the operand field causes the location counter to be set
to the next location divisible by the operand expression. For example, when the current
location counter contains 110@H and the following ORG directive is entered, the next
instruction begins at iocation 111H. {(The next location divisibie by 15H is 111H].

ORG /15H

8002: 9900 Assembler and Emuiator Users @ 4-27

ORG Assembler Directives
.

If the current location counter is divisible by the operand condition when the / operator is
present, the location counter is unaffected. If the operand expression is */@", the location
counter is set to the next odd value. For example, when the current location counter
contains 1100H, and the following ORG directive is entered, the next instruction begins at
location 1101H.

ORG /@

If the current location counter is already set to an odd value when the ““/@" operand is
entered, the location counter is unaffected.

The optional / operator may be used only with scalar-valued operand expressions.

Use care when entering the / operator, since the expected results may not be retained

upon linking. For example, if ORG /0 is entered, and the linker puts the section containing
this directive on an odd address, the ORG result is on an even address. This problem can

be corrected by using the LOCATE command in the Linker. (Refer to Section 9, THE
LINKER.)

Any symbol contained in the operand expression must have been defined in the label field
of a previous statement in the program. If the operand expression contains a symbol
previously defined in the label field of an EQU directive, the operand field of that EQU
directive must not contain forward-referenced symbols.

A iabei symboi is generally not entered with this statement; however, it used, the symbol
represents the resulting value of the location counter.

The ORG directive should be used to locate instructions on even-numbered addresses. The
assembler will correctly assemble instructions with odd-numbered addresses, but will cause
an error code to appear.

4-28 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives 0 RG

o e

EXAMPLE

The foliowing ORG statement ca

begin at location 1100H.

LABEL OPERATION OPERAND COMMENT

ORG 110¢H ;STARTS OBJECT CODE OF
SNEXT INSTRUCTION AT 110GH
;LOADS THE CONTENTS OF R1
;/INTO R2

L1 MoV R1,R2

Upon assembly, the listing lines for the preceding instructions appear as follows. The MOV
instruction object code begins at location 11@@H. Notice the relocation indicator (>) on

line ODOO8.

30008 1100 > ORG 1100H :STARTS OBJECT CODE OF
20009 NEXT INSTRUCTION AT 1100H
00010 1100 C081 L1 MOV R1,R2 ;LOADS THE CONTENTS OF R1

;INTO R2

8002: 9900 Assembier and Emulator Users @ 4-29

Assembler Directives

L -~ " R

4-30

DATA STORAGE CONTROL DIRECTIVES

The assembler data storage control directives appear in the order shown in the following
summary.

Mnemonic Purpose

BYTE Allocates one byte of memory to each expression
specified in the operand field.

WORD _ Allocates two bytes of memory to each expression
specified in the operand field.

ASCII Stores ASCI1 text in memory.

BLOCK Reserves a specified number of bytes in memory.

@ 8002: 9900 Assemblier and Emulator Users

Assembler Directives BYTE
R R

SYNTAX
LABEL OPERATION . GCPERAND COMMENT
[symbol] BYTE {expression} [,expression] ... [;charstring]
PURPOSE

This directive allocates one byte of memory to each expression specified in the operand
field.

EXPLANATION

Each data byte is represented by an expression. The data is stored in the object module in
the order in which it appears in the operand field. If more than one expression is specified in
the operand field, the expressions are stored in consecutive bytes. The optional label field
symbol represents the address of the first byte of data specified by the directive.

If the expression represents a value exceeding the eight-bit capacity, the eight least significant
bits are used and a truncation error code is displayed. For example, a statement containing
the following BY TE directive generates 32H upon assembly and issues a truncation error
response. ‘

LABEL OPERATION OPERAND COMMENT

BYTE "K2" ;GENERATES 32H,
;TRUNCATION ERROR

8002: 9900 Assembler and Emulator Users @ 4-31

BYTE

Assembler Directives

EXAMPLE

in the following BYTE directive, one byte of memory is allocated to the expression

values 24 hexadecimal and 22 decimal. The label symbol, FSTBYT, represents the address
of the first byte specified, 24H. '

LABEL OPERATION OPERAND COMMENT
FSTBYT BYTE 24H,22 ;ALLOCATES ONE BYTE OF
;MEMORY TO THE

;EXPRESSION VALUES 24H
;AND 22 DECIMAL

4-32 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives WORD

SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] WORD {expression} [,expression] ... [;charstring]
PURPOSE

The WORD directive ailocates two bytes of memory to each expression specified in the
operand field.

EXPLANATION

This directive is identical to the BYTE directive except that two bytes of memory are
allocated in the object module for every expression specified in the operand fieid. These
two-byte values are stored in memory with the high byte first, followed by the low byte. If an
expression represents a single byte value, the high byte is stored as zero. |f more than one
expression is specified in the operand field, the expressions are stored in consecutive words.
The optional label field symbol represents the address of the first byte of data stored in
memory. :

8002: 9900 Assembler and Emulator Users @ 4-33

WO R D Assembler Directives

EXAMPLE

In the following WORD directive, two bytes of memory are allocated to the expression
values 356 and 427 decimal. The label symbol LABSYM represents the address of the first
byte of the value 356 decimal.

LABEL OPERATION OPERAND COMMENT

LABSYM WORD 356,427 ;ALLOCATES TWO BYTES OF
:MEMORY EACH TO THE
;EXPRESSION VALUES 356 AND
/427 DECIMAL

4-34 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives ASC"

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] ASCI| {string expression } [,string expression] . . . [;charstring]
PURPOSE

The ASC!! directive allows the user to store text in memory easily.

EXPLANATION

ASCI| characters may be specified in the operand field in the form of a string expression.
if more than one operand is specified on a line, each operand is separated by a comma. The

optional label symbol represents the memory address allocated to the first operand field

(SO0}

character.

4-35

8002: 9500 Assembler and Emulator Users @

ASCII

Assembler Directives

EXAMPLES

Assume the following lines of source code reside on disc:

LABEL OPERATION

ASCII

ASCII

ASCII

STRING

STR1 SET

ASCII

ASCII

4-36

OPERAND

“HELLO", “GOODBYE"

MBYEM

e

STR1 (20)

"“ABCDEF*”

STR1

STR1:* “:STRING(NCHR(STR1))

COMMENT

;PUTS HELLO AND
;GOODBYE IN OBJECT
;MODULE AS ASCII
,CODE

;PUTS BYE IN OBJECT
;MODULE AS ASCII
;CODE

;PUTS NULL STRING
;IN OBJECT MODULE
;AS ASCII CODE
;DEFINES STR1 AS
;STRING VARIABLE
WITH A MAXIMUM
;CHARACTER LIMIT
;OF 20

;ASSIGNS ASCII
;VALUE OF ABCDEF
;TO STR1

;PUTS ABCDEF IN
;OBJECT MODULE AS
;ASCII CODE

;PUTS ABCDEF, A
;BLANK, AND THE
;NUMBER OF
:CHARACTERS IN
;ABCDEF (6) IN
;OBJECT MODULE AS
;CONCATENATED

JASCII CODE

8002: 9900 Assembler and Emulator Users

Assembler Directives ASC"
—

The hexadecimal object code generated by the string expressions in the preceding source
code is shown as follows.

SOURCE OBJECT

“HELLO"”, “GOODBYE" 48454CACAF474F4F44425945
“BYE” 425845

2112 (nothing)

“ABCDEF" (string value of STR1) 414243444546

""ABCDEF 000006’ 41424344454620303030303036

For hexadecimal and ASCii conversion tabies, refer to Appendix E.

8002: 9900 Assembler and Emulator Users @ 4-37

B LO C K Assembler Directives

—

4-38

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] BLOCK {expression} [;charstring]
PURPOSE

The BLOCK directive reserves a specified number of bytes in memory.

EXPLANATION

The BLOCK operand expression indicates the number of bytes to reserve in memory. The
operand expression must be a positive value. The operand expression must be either a
numeric or string constant, or a symbol. If the operand expression contains a symbol,

the symbol must be previously defined in the program. Additionally, if the symbol is
defined by the EQU directive, that EQU directive’s operand field must conform to these
same rules. The expression specified in the BLOCK operand must be a scalar value.

EXAMPLE
The foliowing BLOCK directive reserves a 32-byte memory storage biock:
LABEL OPERATION OPERAND COMMENT
BLOCK 32 ;RESERVES 32 BYTES OF
;MEMORY

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives

MACRO DEFINITION DIRECTIVES

The macro definition directives are presented in the order shown in the following summary.

Mnemonic Purpose

MACRO Defines the name of a source code block used repeatedly
within a program.

ENDM Terminates the macro definition block.

REPEAT Enables the macro lines following the REPEAT
statement up to the ENDR statement to be assembled
repeatedly.

ENDR Signals the corresponding REPEAT block termination.

INCLUDE Inserts text from a specified file into the program.

8002: 9900 Assembler and Emulator Users @ 4-39

MACRO Assembler Directives

SYNTAX
LABEL OPERATION OPERAND j COMMENT
[symbol] MACRO {symbol } [;charstring]
PURPOSE

The MACRO directive defines the name of a source code block used repeatedly within a
program.

EXPLANATION

A macro is a shorthand method for inserting a block of source code into a program one or
more times. The MACRO directive names the source code block to be inserted into the

main program. The symbolic macro name appears in the operand field of the MACRO
directive, and is later used as a reference when the source code block is called for insertion
during assembly. The block of source code to be inserted is called the macro definition

block, and immediately follows the MACRO directive. The macro definition block terminates
with an ENDM directive. When the macro name appears within the operation field of the
main program during assembly, the macro definition block is inserted and assembled within
the main program. This process is called macro expansion.

4-40 @

8002: 9900 Assembler and Emulator Users

Assembler Directives MACR 0
S

The symbolic macro name and the macro definition block are generally defined at the
beginning of a user program. The macro name and definition block must be defined prior
to the initial macro definition block usage.

For a further description of macro capability and usage, refer to Section 5.

EXAMPLE

The MACRO directive below defines the block of macro code following the directive.

LABEL OPERATION OPERAND COMMENT
MACRO MACRNAME ;DEFINES MACRNAME AS MACRO
;NAME
BYTE 3,5,1 ;ALLOCATES ONE BYTE OF

;MEMORY EACH TO THE CONSTANT
JVALUES 3,5, AND 1

WORD 2 JALLOCATES TWO BYTES OF
;MEMORY TO THE CONSTANT
JVALUE 2

ENDM ;END OF MACRO DEFINITION,
;MACRNAME

Later statements in this program may call the macro definition block whenever the specified
BYTE and WORD statement sequence is desired.

8002: 9900 Assembler and Emulator Users @ 4-41

E N D M Assembler Directives
—

4-42

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] ENDM [;charstring]
PURPOSE

The ENDM directive signals the end of a macro definition block.

EXPLANATION

When an ENDM directive is encountered in a macro definition block, the macro is terminated
and assembly continues with the next statement in the program following the macro call.

EXAMDI E

FUraNvIs Bm

The following ENDM directive terminates the macro definition block named NUMNAK.

LABEL OPERATION OPERAND COMMENT
MACRO NUMNAK ;DEFINES NUMNAK AS MACRO
:NAME
BYTE 3,27,22 ;ALLOCATES ONE BYTE OF

;MEMORY TO THE CONSTANT
'VALUES 3, 27, AND 22

WORD 255 ;ALLOCATES TWO BYTES OF
;MEMORY TO THE CONSTANT
;VALUE 255

ENDM ;END OF MACRO DEFINITION

@ 8002: 9900 Assembler and Emulator Users

REPEAT
Assembler Directives EN DR

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] REPEAT {expressiom} [,expression2] [;charstring]
[symbol] ENDR [;charstring]
PURPOSE

The REPEAT directive enables the macro lines following the REPEAT directive, up to the
ENDR directive, to be assembled repeated!y. The ENDR directive signals the end of each
repeat cycle.

EXPLANATION

When a REPEAT directive is encountered upon macro expansion, the first expression
specified in the operand field is evaluated. The lines up to the ENDR directive are ignored
when the REPEAT operand, “‘expression1‘ is equal to zero (false). If the expression is true
(non-zero), the lines up to the ENDR directive are assembled repeatedly until the expression
does equal zero, or the maximum number of repeat cycles is exceeded. The second operand,
“expression2’’ may be optionally entered to specify the maximum number of repeat cycles.
If the maximum number of repeat cycles is not specified, the value of “expression2‘’ defaults
to 255. Attempts to repeat beyond the value of “expression2’ cause an error code to be
displayed. Both operand expressions must be scalar vaiues.

8002: 9900 Assembler and Emulator Users @ 4-43

REPEAT

EN D R Assembler Directives

REPEAT — ENDR blocks may be nested. The nesting depth is limited only by the amount
of memory available to the assembler. Each REPEAT condition must be properly nested,
thus having a matching ENDR occurring within the scope of that particular REPEAT
condition. REPEAT — ENDR blocks may not cross the boundary of a macro expansion or
ofan IF — ENDIF block. A REPEAT — ENDR block is valid only within a macro definition
block.

EXAMPLE

The example that follows demonstrates REPEAT — ENDR block usage within a macro
named CONDRID.

LABEL OPERATION OPERAND COMMENT
MACRO CONDRID ;DEFINES CONDRID AS MACRO
'NAME
AGAIN SET 1 JINITIALIZES AGAIN TO EQUAL
;1 AT ASSEMBLY TIME
REPEAT AGAIN < =27 ;REPEAT WHILE AGAIN IS LESS
;THAN OR EQUAL TO 27
BYTE AGAIN ;GENERATES ONE BYTE OF
;MEMORY TO AGAIN
AGAIN SET AGAIN +1 JINCREMENT AGAIN AT
;ASSEMBLY TIME
ENDR ;END OF REPEAT CONDITION
BYTE @DH ;GENERATES CARRIAGE
;RETURN
ENDM ;END OF MACRO DEFINITION

4-44 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives IN CLU DE
“

SYNTAX
LABEL OPERATION OPERAND COMMENT
{symboi] INCLUDE {string expression} [;charstring]
PURPOSE

The INCLUDE directive is used to insert text from a specified file into a program.

EXPLANATION

When the INCLUDE directive is encountered, text from the file specified in the operand
field is inserted into the program. If the INCLUDE directive is contained in a macro body,
the text file is inserted at macro expansion time. Parameters within the included file cannot
reference arguments used in the containing macro. Refer to Section 5 for a discussion of
text substitution within macros. The text file specified by the INCLUDE directive may not
terminate a MACRO, REPEAT or IF block. Additionally, the text may not contain another
INCLUDE directive.

An INCLUDE directive may also be used within normal source code, outside of macro
definition blocks. When this occurs, the inserted text may contain macro definitions.

8002: 9900 Assembler and Emulator Users @ 4-45

|NCLU DE Assembler Directives
—

EXAMPLE

The following example demonstrates INCLUDE directive usage.

LABEL OPERATION OPERAND COMMENT

INCLUDE "OTHFILE" INSERTS OTHFILE INTO THE
;CURRENT PROGRAM AT THE
;ADDRESS OF THE CURRENT
;LOCATION COUNTER.

4-46 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives

CONDITIONAL ASSEMBLY DIRECTIVES

The conditional assembiy directives are presented in the order shown in the foliowing

summary,
Mnemonic Purpose
IF Causes the assembly of the source code lines following
the IF directive, up to the ENDIF directive, when
the specified operand expression is true (non-zero).
ELSE Causes an alternate source block to be assembled when
the containing |F expression is false.
ENDIF Signals the corresponding IF block termination.
EXITM Terminates the current macro expansion before

encountering an ENDM directive.

8002: 9900 Assembler and Emuiator Users @ 4-47

IF
ELSE

END | F Assembler Directives

4-48

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] IF {expression} {charstring]
[symbol] ELSE [:charstring]
[symbol] ENDIF [;charstring]
PURPOSE

The IF directive causes assembly of the source code lines following the |F directive, up to
the ENDIF (or ELSE, if present) directive, when the specified operand expression is true.
The ELSE directive causes an alternate source block to be assembled when the containing | F
expression is false. ENDIF signals the corresponding IF block termination.

EXPLANATION

When an IF directive is encountered, the expression specified in operand field is evaluated.

If the result of the expression is zero (false), source lines between the |F and ENDIF
directives are ignored (not assembled). The ENDIF directive then terminates the condition.

If the result of the expression is non-zero (true), the source lines are assembled once normally.

An optional ELSE directive block may be nested within the IF source block. !f an ELSE
block is present, a false |F expression causes assembly of the source lines from the ELSE
directive up to the ENDIF directive. The ELSE block is ignored when the expression in the
IF directive operand field is true. Only one ELSE directive is allowed within each

IF — ENDIF block.

@ 8002: 9900 Assembler and Emulator Users

IF
ELSE
Assembler Directives ENDIF

“

IF — (ELSE) — ENDIF blocks may be nested as deeply as desired, limited only by the
amount of memory available to the assembler. Each IF directive must be properly nested,
thus having a matching ENDIF occurring within the scope of that particular |F condition.
IF — (ELSE) — ENDIF blocks may not cross the boundaries of REPEAT — ENDR blocks,
macro expansions, and other IF — (ELSE) — ENDIF blocks.

EXAMPLES

The following example demonstrates |F — (ELSE) — ENDIF block usage:

LABEL CPERATION OPERAND COMMENT

IF reprr=nn ;CHECKS TO SEE IF THE FIRST
;MACRO ARGUMENT IS
JUNDEFINED

WORD @F7H ;IF SO, GENERATES A WORD
;CONTAINING @F7H

ELSE JOTHERWISE

WORD "’ ;GENERATES A WORD
;CONTAINING THE FIRST
;JARGUMENT

ENDIF ;END OF IF CONDITION

The following example demonstrates nested IF — (ELSE) — ENDIF block usage:

LABEL OPERATION OPERAND COMMENT
IF > ;CHECKS TO SEE IF THE FIRST
;MACRO ARGUMENT
JEXISTS
iF 1< @F@H ;IF SO, CHECKS TO SEE IF THE

;FIRST MACRO ARGUMENT IS
;LESS THAN @FQH

WORD OF7H — 1" JIF SO, GENERATES ONE WORD
;CONTAINING THE DIFFERENCE
;BETWEEN @F7H AND THE
:FIRST ARGUMENT

ELSE OTHERWISE, IF FIRST
;ARGUMENT IS GREATER
;THAN GFGH. . .

(Program continued on next page)

8002: 9900 Assembler and Emulator Users @ 4-49

IF
ELSE
END'F Assembler Directives

"

LABEL OPERATION OPERAND COMMENT

WORD 1’ ;GENERATES ONE WORD
;CONTAINING FIRST MACRO
;/ARGUMENT

ENDIF :END OF INNER IF CONDITION

ELSE :OTHERWISE, IF THE
:ARGUMENT DOES NOT EXIST. ..

WORD :GENERATE A WORD
:CONTAINING @F7H

ENDIF :END OF OUTER IF CONDITION

4-50

®

8002: 9900 Assembler and Emulator Users

Assembler Directives EX'TM

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] EXITM [;charstring]
PURPOSE

The EXITM directive terminates the current macro expansion before encountering an
ENDM directive.

EXPLANATION

EXITM is generally used within IF — (ELSE) — ENDIF and REPEAT — ENDR blocks to
conditionally terminate macro expansions. EXITM is valid only within a macro definition
block.

8002: 9900 Assembler and Emulator Users @ 4-51

EX'TM Assembler Directives

EXAMPLE

The following example demonstrates conditional macro termination with the EXITM

directive.
LABEL OPERATION OPERAND COMMENT
MACRO CONDMAC ;:DEFINES CONDMAC AS MACRO
:NAME
BYTE 12,0 ;ALLOCATES ONE BYTE OF

:MEMORY FOR EACH OF THE
;THREE VALUES 1,2, AND @

IF B HE ;TESTS TO DETERMINE IF
;3RD PARAMETER IN
;MACRO CALL EXISTS

BYTE 255 ;IF 3RD ARGUMENT DOES NOT
;EXIST, ONE BYTE IS ALLOCATED
;CONTAINING 255 DECIMAL

EXITM ;TERMINATES MACRO
;EXPANSION IF CONDITION IS
;SATISFIED

ENDIF ;END OF IF CONDITICON

BYTE ‘3 ;OTHERWISE, ONE BYTE IS
;ASSIGNED CONTAINING THIRD
;/ARGUMENT

ENDM ;END OF MACRO DEFINITION

4-52 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives

SECTION DEFINITION DIRECTIVES

The section definition directives appear in this subsection in the order shown in the summary
below. The ABSOLUTE option, which may be used with the SECTION and COMMON

[al &4

directives, is described following this summary. For a discussion of the methods by which the
Linker relocates sections, refer to Section 9, THE LINKER.

Mnemonic Purpose

SECTION Declares a Linker section, assigns a section name, and
defines the section parameters.

COMMON Declares a Linker section, assigns a section name, and
defines the section type to be common.

RESERVE Sets aside a work space in memory. Upon linking, all
reserve sections with the same name are concatenated
into a single reserve section.

RESUME Continues the definition of code for a given section.
GLOBAL Declares one or more symbols to be global variables.
NAME Declares the name of an object module.

8002: 9900 Assembler and Emulator Users @ 4.53

Assembler Directives

RELOCATION OPTION

The ABSOLUTE option may be specified in the operand field of the SECTION and COMMON
directives. This option causes the memory allocation to be the actual area specified by the
ORG directive at assembly time. (No relocation of this section is performed.) When this
option is not specified, the section is relocated on any even-numbered byte address (word

relocatable).

4-54 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives SECTI ON

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] ~ SECTION {symbol} [ABSOLUTE] [icharstring]
PURPOSE

The SECTION directive is used to declare a program section, assign the section a name, and
define its parameters.

EXPLANATION

All program text following the SECTION directive, up to the next SECTION, COMMON,
or RESUME directive, is defined to be a program section. All text within a program section
is assembled with the same location counter, and hence, has the same base. Each section has
a separate location counter and must be relocated as a block. The initial value of the
location counter for a given section is @. The symbol! specified in the SECTION operand
field is the section name, and is a global symbol. The section name must be unique to each
assembly and, therefore, cannot appear in multiple SECTION directives. When separate
object modules containing sections with the same name are linked, an error is generated.

8002: 9900 Assembler and Emulator Users @ 4-55

SECT|ON Assembler Directives

The optional second operand (,ABSOLUTE) in the SECTION directive may be used to
prevent text block relocation. (Refer to previous discussion on Absolute Option in this
subsection.) If no option is specified, the program text block may be relocated on any even
address (word) boundary.

When a label symbol is entered on the SECTION directive, the symbol represents address
@, the initial value of the resulting section’s location counter. Additionally, the declared
section name in the operand field may be used as a normal global symbol, and referenced in
the operand field of other statements throughout the assembly. The section name has the
same value as$ the label on the SECTION directive.

EXAMPLE

The following source line demonstrates SECTION directive usage.

LABEL OPERATION OPERAND COMMENT
SECTION SEC1 ;GENERATES WORD-
;RELOCATABLE SECTION,
'SEC1

4-56 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives CO MM O N

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] COMMON {symbol } [ABSOLUTE] [;charstring]
PURPOSE

The COMMON directive declares a section, associates a name with the section, assigns the
section parameters, and defines the section type to be common.

EXPLANATION

The COMMON directive performs the same functions as the SECTION directive, except
that the same name may identify common sections in more than one source module.
Common sections with the same name are relocated at the same address by the Linker. Each
section with the same name should specify the same relocation type; otherwise, the desired
relocation might not result at link time. The Linker allocates enough memory to contain
the largest of the common sections with the same name.

This section type is modeled after the COMMON area of FORTRAN.

8002: 9900 Assembier and Emulator Users @ 4-57

C 0 M M 0 N Assembler Directives

EXAMPLE

The following example demonstrates COMMON directive usage.

LABEL OPERATION OPERAND COMMENT

COMMON WRKAREA ;DEFINES WRKAREA AS A
;COMMON SECTION. IF
'WRKAREA EXISTS IN
;MULTIPLE OBJECT MODULES,
;LINKER CHOOSES THE
;LARGEST SECTION NAMED
WRKAREA FOR MEMORY
;ALLOCATION.

4-58 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives RESERVE

SYNTAX
LABEL OPERATION OPERAND . COMMENT
[symbol] RESERVE {symbol, expression} [;charstring]
PURPOSE

The RESERVE directive is used to set aside a workspace in memory. Upon linking, all
reserved workspaces (sections) with the same name are combined into a single section.

EXPLANATION

The symbol in the operand field of the RESERVE directive is the assigned name of the
section. The operand expression specifies the number of bytes to be reserved for the current
object module. The expression must be a scalar value. The RESERVE directive does not
change the current section.

More than one object module may contain reserve sections of the same name. The length
of the reserve section allocated by the Linker is the sum of all reserve sections with the same
name. '

8002: 9900 Assembler and Emulator Users @ 4-59

RESERVE Assembler Directives
|

EXAMPLE

The following example demonstrates section space allocation with the RESERVE directive.

LABEL OPERATION OPERAND COMMENT
RESERVE BNCHCODE, 10¢8H ;RESERVES A SECTION DEFINED
;AS BNCHCODE AND
JALLOCATES 256 BYTES OF

;MEMORY TO BE ADDED TO THE
;SIZE OF BNCHCODE

WORD BNCHCODE ;PLACES ONE WORD iN THE
;CURRENT SECTION HAVING
;THE ADDRESS OF THE
;BEGINNING OF THE BNCHCODE
;SECTION

WORD ENDOF(BNCHCODE) ;PLACES ONE WORD IN THE
;,CURRENT SECTION HAVING
;THE ENDING ADDRESS OF
;BNCHCODE

4-60 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives R ESU ME

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] RESUME [symbol] [;charstring]
PURPOSE

The RESUME directive continues the definition of a given section.

EXPLANATION

The RESUME directive continues the definition of the section specified by the optional
operand symbol. If no operand symbol is used, the definition of the default section is
continued. Any source code that is not preceded by a SECTION or COMMON directive is
included in the default section. The name given to the default section is a percent sign (%)
followed by the object file name. When no object file is present, the name given to the
default section is %.

If used, the label symbol is assigned the value of resumed section’s location counter.

8002: 9900 Assembler and Emulator Users @ 4‘61

RESUME Assembler Directives

EXAMPLE

The example that follows demonstrates section definition resumption with the RESUME
directive.

LABEL OPERATION OPERAND COMMENT

SECTION A31

;DEFINES SECTION A31
SECTION B31 ;DEFINES SECTION B31
RESUME A31

;RESUMES SECTION A31

4-62

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives GLO BAL

SYNTAX
LAREL OPERATION OPERAND COMMENT
[symbol] GLOBAL {symbol} [,symbol] ... [:charstring]
PURPOSE

The GLOBAL directive declares one or more symbols to be global variables. A global
variable located in one source module may be referenced by another source module.

EXPLANATION

Symbols specified in the GLOBAL directive operand field are designated to be global
variables. Global variables defined in the current assembly are called bound globals. If the
global variables are not defined in the current assembly, they are called unbound globals
and their references must be resolved by the Linker.

The value of a global symbol must be unique within an assembly. A maximum of 254 names
may be defined to be global variables. This maximum includes ail names used in SECTION,
COMMON, RESERVE, and GLOBAL directives. When the default section is used, the names
in the default section are also counted toward the maximum.

4-63

8002: 9900 Assembler and Emulator Users

®

GLO BAL Assembler Directives

EXAMPLE

The following example demonstrates definition of global variables with the GLOBAL

directive.
LABEL OPERATION OPERAND COMMENT
GLOBAL HIGUY,BYEGUY ;DEFINES THE SYMBOLS HIGUY
;AND BYEGUY TO BE USED AS
:GLOBAL SYMBOLS
HIGUY EQU $:HIGUY IS EQUIVALENT TO
,CURRENT LOCATION
:COUNTER
BL BYEGUY JUMPS TO SUBROUTINE

;BYEGUY DEFINED IN

;ANGTHER ASSEMBLY

4-64 @ 8002: 9900 Assembler and Emulator Users

Assembler Directives NAME

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] NAME {symbol } [:charstring]
PURPOSE

The NAME directive declares the name of an object module.

EXPLANATION

The symbol in the operand field of the NAME directive is the name assigned to the object
module. If more than one NAME directive appears within an assembly, only the first NAME
directive is used; the rest are ignored.

Note that the object module name, as declared by the NAME directive, is distinct from the
file name that the object module is stored under. Note also that the default section derives

A mom -

its name from the object fiie, not the NAME directive.

EXAMPLE
The following example demonstrates object module naming with the NAME directive.
LABEL OPERATION OPERAND COMMENT
NAME “XMPLSUB" ;NAMES OBJECT MODULE
;XMPLSUB

4-65

®

8002: 9900 Assembler and Emulator Users

EN D Assembler Directives

MODULE TERMINATION DIRECTIVE

SYNTAX
LABEL OPERATION OPERAND COMMENT
[symbol] END [expression] [;charstring]
PURPOSE

The END directive terminates source modules.

EXPLANATION

The END directive terminates a source module contained in one or more disc files. A source
module is also terminated when the end of the last input file is read. END directive usage is,
therefore, optional.

The optional expression in the operand field represents the starting address for program
execution, which is called a transfer address. |f present, the specified operand value is placed
in the object module and may be used by the TEKDOS LOAD command when loading the
object module into program memory. At link time, if more than one module has a transfer
address, the first one encountered is used.

4-66 @ 8002: 9900 Assembler and Emulator Users

Section 5

MACROS

INTRODUCTION

A macro is a shorthand approach for inserting source code into a program. A macro is
often used when the same, or nearly the same, code is repeatedly used within a program. A
block of macro code is called a macro definition block. The source code that results from
this block may be altered each time the macro is called so that the object code generated
depends on the information specified in the macro call. The code generated by a macro
call is called a macro expansion, since it results from, and is usually larger than, the macro
call.

This section describes all phases of macro definition, calling, and expansion. The structure
of this section closely follows the process leading up to macro expansion. First, an
examination of the general macro expansion process is illustrated to provide a basis of
understanding. An examination of each phase of the process is then presented in greater
detail.

BASIC MACRO EXPANSION PROCESS

The macro expansion process is illustrated in Fig. 5-1. A written explanation of the
process follows the figure.

Lines of Defined Source Code

5 MACRO name
MACRO DEFINITION '

\ ENDM
User Program Source Code
MACRO CALL name arguments

MACRO EXPANSION {
Us'er Program Source Code
END

Fig. 5-1. The Macro Expansion Process. 24154

8002: 9900 Assembler and Emulator Users @ 5-1

Macros

As mentioned, there are three phases of macro usage: definition, calling, and expansion.
First the macro must be defined. The macro is given a name followed by a body. The
macro is defined in a macro definition directive. The macro body is called a macro
definition block. The macro definition block is made up of source lines that are stored in
unassembled form, until the macro is used. To use the macro, the programmer codes a
macro call within a program. The macro name appears in the macro call directive’s
operation field. When the macro call is encountered during assembly, the macro definition
block is inserted and assembled within the main program. This process is called macro
expansion.

The user may alter any parameters used within the macro definition block by inserting
corresponding arguments within the operand field of a macro call. One line at a time, the
assembler replaces the specified parameters with corresponding arguments in the macro
call. The assembler inserts the line from the macro definition block into the user program.
The line is then assembled. This procedure repeats for each line in the macro definition
block.

MACRO DEFINITION DIRECTIVE

A mannen io dafimad b Floas amdawe:
AAIAUITU 1D UGHHITU Y HITJL Gl

In this macro definition directive,
reference for the macro call.

HTS S PAGP |) S PP Py MO Py | PRuiys JUQY Sy
LIV UNTCLLIVE (] LS 1VHOWITHY 10UTTTd L.

name’’ is the macro name that is later used as a

7

MACRO name

5.2 @ 8002: 9900 Assembler and Emulator Users

Macros

Macro Definition Directive Conventions

A macro is generally defined at the beginning of a program. A macro must always be defined
prior to its initial use. A macro may not be defined within another macro definition block.
A macro name is a symbol containing up to eight characters, the first character being

alphabetic. The macro name must be unique from all symbols in a user program.

MACRO DEFINITION BLOCK

The lines following the macro definition directive, up to and including an ENDM directive,
become a pre-defined biock of code referred to as a macro definition biock. A macro
definition block may contain any instruction or assembler directive (except the END and
MACRO directives). A macro definition block may contain calls to other macros or even
calls to itself. When a macro call occurs within another macro definition block, any
replacement that may occur on the macro call is performed before the inner macro is
called. A macro definition block may not contain the definition of another macro.

Source Code Alteration

An additional macro capability allows code to be altered within a macro definition block.
Upon expansion, parameters within single quotes, serving as place holders in the macro
definition block, are replaced by the arguments defined in a macro call.

8002: 9900 Assembler and Emulator Users @

Macros

5-4

In summation:

Parameters — are place holders within a macro-definition block.

Arguments — are values, defined within a macro call directive, that
replace parameters.

Any numeric parameter surrounded by single quotes (‘N’) is replaced by the Nth argument
passed to the current macro expansion. In the following BYTE directive, for example, the
first argument passed to the current macro expansion is substituted for the first parameter,
labeled ‘1’, upon macro expansion.

BYTE 3,5,1°

N may be either a number or a numeric-valued SET symbol. A SET symbol is assigned a value
by the SET directive. This capability is discussed in Section 4, ASSEMBLER DIRECTIVES,
describing the SET directive. If N is greater than the number of arguments provided, the null
string is substituted. Text substitution may occur anywhere on a line.

Additional Special Macro Definition Characters

The following special characters are only available for use within macro definition blocks.

The @ Character

The “at” character, when surrounded by single quotes (‘@’), provides unique labels for each
macro expansion. The @ character is replaced by a four-character hexadecimal value that is
unique within each macro call. In the example that follows, each time the macro is called,

a unique four-character hexadecimal value replaces the @ character. The following statement
creates a unique seven-character label.

LABEL OPERATION OPERAND
LAB ‘@’ EQU $

@ 8002: 9900 Assembler and Emulator Users

Macros

The ‘@’ in the preceding label is replaced by a number unique to the current macro call.
This replacement prevents LAB from being defined more than once by subsequent macro
calls.

The # Character

The “pound” character, when surrounded by single quotes (“#’), is replaced by a five-digit
decimal number. The number represents the total number of arguments that are passed to
the current macro expansion. In the example that follows, expansion of all lines of code
within a REPEAT block continues until the total number of arguments passed is exceeded.
Suppose three arguments are passed during expansion of the macro containing this code:

LABEL OPERATION OPERAND COMMENT
J SET 1 JINITIALIZES J TO EQUAL 1
;AT ASSEMBLY TIME
REPEAT J<="# :REPEAT WHILE J IS LESS THAN
:OR EQUAL TO 3
J SET J+1 ANCREMENT J
ENDR :END OF REPEAT CONDITION
The % Character

The “percent’’ character, when surrounded by single quotes (‘%’), is replaced by the name
of the current section or common. The name is returned as a string. If the current section is
the default section, the null string is returned.

8002: 9900 Assembler and Emulator Users @ b5

Macros

- ___]

In the example that follows, the percent sign character is used to represent the name of the

current section.
LABEL OPERATION OPERAND COMMENT
STRING SECNAM(8) :DEFINES STRING, SECNAM,
WITH EIGHT-CHARACTER
MAXIMUM
SECNAM SET R 7AR :SECNAM IS SET TO NAME OF
;CURRENT SECTION
SECTION BBB :DEFINES NEW SECTION BBB
RESUME ‘SECNAM’ :RESUMES PREVIOUS SECTION

The + or A Character !n Macro Definition

The up-arrow (1) or caret (A) character may be entered just prior to any character having
special meaning, thus allowing the special character to be interpreted as a reguiar part of
the text. The t or A is available in all phases of the TEKTRONIX Assembler and is
described in the manner in which it affects macro definition. In the example that follows,
the caret (A) character removes the special meaning of the single quote character.

Upon macro expansion, the following code is generated in memory:

THAT'S ALL FOLKS.

MACRO TERMINATION

A macro definition block is terminated by an ENDM statement.

5'6 @ 8002: 9900 Assembler and Emulator Users

Macros

MACRO CALLING

A macro is invoked when a macro call is encountered within a program. A macro call

PP PP AT Ry PROSQUpE, P | R 4 ca

contains the macro name to be called in the statement’s operation field as follows:
LABEL OPERATION OPERAND

name

INCLUDE Directive Text Insertion

Another method for calling text into a program involves INCLUDE directive usage. The
INCLUDE directive (see Section 4, describing ASSEMBLER DIRECTIVES) may be used
to insert text into a program from a specified fiie. The iNCLUDE directive may be part of
a MACRO, IF — ENDIF, or REPEAT — ENDR block, as long as it does not terminate any
of those blocks. The name of the file to be inserted is entered in the operand field of the
INCLUDE directive as follows:

LABEL OPERATION OPERAND
INCLUDE **filename*’

8002: 9900 Assembler and Emuiator Users @ 5'7

Macros

Text Substitution

Optional arguments separated by commas within the operand field of the macro call define
the values to replace the parameters within the block as the macro is expanded. For
example, the following macro call invokes the macro named EVALC and defines the
arguments 25 and ARG2 for substitution within the block of code as the macro is expanded.

LABEL OPERATION OPERAND COMMENT

EVALC 25,ARG2 /INVOKES MACRO EVALC AND
;DEFINES FIRST TWO
;JARGUMENTS FOR
SUBSTITUTION WITHIN MACRO
;DEFINITION BLOCK AS 25
;/AND ARG2

The preceding example contains the following arguments:

Argument 1=25

Argument 2= ARG2

A label appearing in a macro call is assigned the value of the location counter prior to macro
expansion.

5'8 @ 8002: 9900 Assembler and Emulator Users

Macros

Special Macro Calling Characters

The following special function is available for use within macro calls.

The [] Construct

cali. Ail characters enciosed within square brackets are considered to represent a single
argument. Square brackets may not be nested. Unlike the argument resulting when a
character string is enclosed within double quotes, the square brackets are not passed to the
source text during macro expansion. For example, the following macro call parameters
produce the corresponding arguments.

LABEL OPERATION OPERAND COMMENT
PNPDG ABC,1,“ABC,1,[ABC,1] JINVOKES MACRO
;PNPDG AND
;SUBSTITUTES THE
;JARGUMENTS ABC,

;1, “ABC,1”, ABC1

The preceding example contains the following arguments.

Argument 1= ABC
Argument 2 =1
Argument 3= "ABC,1"
Argument 4 = ABC,1

8002: 9900 Assembler and Emulator Users @ 59

Macros

The 1 or A Character In Macro Calls

The up-arrow 1 or caret A character may be entered just prior to any character having
special meaning, thus allowing that character to be interpreted as a regular part of the
text. The 1 or A symbol is available in all phases of the TEKTRONIX Assembler and is
described in the manner in which it affects macro calls. The example that follows allows
the comma and square bracket characters, respectively, to be interpreted as part of the
arguments SML,J and [BC] when the macro TIME is invoked.

LABEL OPERATION OPERAND COMMENT
TIME 1,2,SMLAJ,A[BCA] ;INVOKES MACRO TIME AND
;SUBSTITUTES THE
;ARGUMENTS

;1,2,SML,J, AND [BC]

The preceding example contains the following arguments.
Argument 1 =1
Argument 2 =2
Argument 3= SML,J
Argument 4 = [BC]

Additional Macro Argument Conventions

Blanks inserted within an argument are retained. If there are only blanks between two
commas, the resulting argument is empty.To force a parameter to be replaced by blanks,
it may be enclosed within square brackets. Examples of these conventions follow.
LABEL OPERATION OPERAND

PQRD AB.C .IDEI1”“ [1.IAIlI

5-10 @

8002: 9900 Assembler and Emulator Users

Macros

The preceding example expands to the following arguments. Asterisks are used only in this
example to indicate the beginning and end of the argument and are not expanded as part of
the macro text.

Argument 1= *A*

Argument 2 = *B*

Argument 3=*C*

Argument 4 = **

Argument5=* D,E *

Argument 6= **" "'*

Argument 7 =

Argument 8 = *[*

Any number or length of arguments may be entered within the operand field of a macro
call, as long as the line does not exceed 128 characters (not including a carriage return).
In addition, after arguments are substituted for parameters, the lines resulting from the
macro expansion must not exceed 128 characters. Otherwise, an error code is displayed.

EXAMPLES

The following text includes two examples of macro definition, calling, and the resulting
expansions. The first example illustrates a simple macro expansion. The second example is
more complex and illustrates two contiguous macro expansions, where one is referenced by
the other.

8002: 9900 Assembler and Emuiator Users @ 5-11

5-12

Macros

Example 1

In this example, a macro is defined as EVALC. Two parameters, 1 and 2, are defined and
surrounded by single quotes within the macro definition block.

LABEL OPERATION OPERAND COMMENT
MACRO EVALC ;DEFINES EVALC AS MACRO
;NAME
BYTE 5,1 ;ALLOCATES ONE BYTE OF

;MEMORY FOR THE CONSTANT
;VALUE 5 AND ONE BYTE FOR
;THE FIRST PARAMETER
WITHIN EVALC

WORD ‘2 ;ALLOCATES TWO BYTES OF
;MEMORY FOR THE SECOND
;PARAMETER WITHIN EVALC

ENDM ;END OF MACRO DEFINITION

Assume the following call appears within a user program.

LABEL OPERATION OPERAND COMMENT

EVALC 25,357 ;INVOKES MACRO EVALC AND
;SUBSTITUTES THE
;ARGUMENTS 25 AND 357 FOR
;THE FIRST TWO
;PARAMETERS WITHIN EVALC

This macro call generates the following macro expansion and substitutes the arguments 25
and 357 for the first two parameters (‘1 and ‘2‘) within the macro definition block. The
argument 357 requires two bytes of memory as defined by the WORD statement within

the macro definition block,

LABEL OPERATION OPERAND
BYTE 5,25
WORD 357

@ 8002: 9900 Assembler and Emulator Users

Macros

Example 2

In the following example, two macro definition blocks are sequentially defined Q1 and Q2.
One parameter is defined within each macro definition block. A macro call, Q1 7, is defined
within Q2. This statement cails the macro, Q1.

LABEL OPERATION

MACRO
PARM1 SET

BYTE

ENDM
MACRO
BYTE

Q1

BYTE

ENDM

8002: 9900 Assembier and Emulator Users

OPERAND

Qi
1

3,6,'PARM1’

Q2
3,6,'1"

89,10

COMMENT

:DEFINES Q1 AS MACRO NAME
;ALLOWS SYMBOLIC REFERENCE
;TO THE FIRST PARAMETER
;ALLOCATES ONE BYTE OF
;MEMORY EACH FOR THE
;:CONSTANT VALUES 3 AND 5,
;AND FOR THE FIRST
:PARAMETER PASSED TO Q1,
JPARMY’

:END OF MACRO DEFINITION Q1
:DEFINES Q2 AS MACRO NAME
;/ALLOCATES ONE BYTE OF
:MEMORY EACH FOR THE
;CONSTANT VALUES 3 AND 5,
;AND FOR THE FIRST
;PARAMETER PASSED TO

;Q2, ‘1"

;CALLS MACRO Q1 AND
;ASSIGNS THE VALUE 7 TO THE
;FIRST PARAMETER PASSED
;TO Q1, PARMT’

;ALLOCATES ONE BYTE OF
:MEMORY EACH TO THE
;CONSTANT VALUES 8,9, AND
10

;END OF MACRO DEFINITION
;Q2

5-13

Macros

Assume the following macro call appears within a user program to invoke the macro defined
as Q2.

LABEL OPERATION OPERAND COMMENT

Q2 3 ;CALLS THE MACRO Q2 AND
SUBSTITUTES THE ARGUMENT
;3 FOR THE FIRST PARAMETER
;l1l

This macro call generates the following macro expansion.

LABEL OPERATION OPERAND
BYTE 35,3
BYTE 35,7
BYTE 89,10

In this example, the macro call Q2 3, causes the first statement within the macro Q2,
BYTE 3,5,'1°, to be expanded to BYTE 3,5,3. Expansion proceeds to the next statement
that calls the macro Q1 and appears as Q1 7. This statement causes expansion to continue
with the statement, PARM1 SET 1, thus allowing PARM1 to be used as a symbolic
reference to the first parameter. This causes the next statement within Q1 to be expanded
as BYTE 3,5,7, replacing BYTE 3,5,'PARM1’. Expansion within macro Q1 then terminates
with the ENDM directive. This termination causes expansion to continue with the next
statement in the referencing macro, Q2. The statement, BYTE 8,9,10 is the next statement
that is expanded. Contro! then returns to the main program upon expansion of the ENDM
directive, which terminates the macro expansion, Q2.

5-14 ’ @ 8002: 9900 Assembler and Emulator Users

Macros
—

CONDITIONAL ASSEMBLY

Macros may be defined such that their expansion is conditional; that is, based upon the
values of the parameters they use. IF — ELSE — ENDIF blocks allow conditional assembly
and are valid in all phases of the TEKTRONIX Assembler. REPEAT — ENDR blocks also
allow conditional assembly and are only valid within a macro definition. The two methods
for performing conditional assembly are summarized as follows. For further information
pertaining to |F — ELSE — ENDIF and REPEAT — ENDR usage, refer to Section 4,

ASSEMBLER DIRECTIVES.

OPERATION OPERAND

1) IF expr Turns off the assembly process if
the expression is equal to zero
(false). Succeeding statements are
passed over and are not acted upon
until the ENDIF, or optional ELSE,
statement is encountered.

ELSE Regenerates assembly process
when IF expression equals zero.
Usage is optional.

ENDIF Terminates the program text
controlled by the corresponding
i statement.

2) REPEAT expr1,expr2 If expr1 is equal to zero (false),
statements up to the ENDR
statement are ignored. Otherwise,
the statements are assembled and
the assembler repeats the process
again until the expression is equal
to zero. A REPEAT block stops
iterating when the specified
expression maximum, expr2, is
reached, If expr2 is not specified,
the REPEAT block stops after 255
iterations.

ENDR Terminates the program text
controlled by the corresponding
REPEAT statement.

8002: 9900 Assembler and Emulator Users @ 5-15

Macros

5-16

Nesting

IF — ELSE — ENDIF blocks and REPEAT — ENDR blocks may be nested. The nesting
depth is limited only by the amount of memory available to the assembler. Each IF
condition must be properly nested, having a matching ENDIF statement that occurs within
the scope of that particular |F condition. Only one ELSE directive is permitted within each
IF — ENDIF block. In addition, each REPEAT condition must be properly nested, having a
matching ENDR statement occurring within the scope of that particular REPEAT
condition. |IF — ENDIF and REPEAT — ENDR blocks may not cross the boundary of a
macro expansion or the boundaries of each other.

Conditional Macro Termination

The EXITM directive terminates the current macro expansion before the assembler
encounters an ENDM directive. The EXITM directive is generally used within IF — ELSE —
ENDIF and REPEAT — ENDR blocks to conditionally terminate macro expansions. EXITM
is valid only within macro definition blocks.

EXAMPLES

IF—ENDIF Blocks

The following example demonstrates the definition, calling, and expansion of a macro
using an IF — ENDIF block. The example also demonstrates the use of an EXITM directive

@ 8002: 9900 Assembler and Emulator Users

Macros
0 S

to conditionally terminate the macro expansion. In this example, a macro is defined as
CONDIF and uses four parameters.

LABEL OPERATION OPERAND COMMENT
MACRO CONDIF ;DEFINES CONDIF AS MACRO
NAME
BYTE '1',2',0,0.0 ;ALLOCATES ONE BYTE OF

;MEMORY FOR EACH OF FIVE
;VALUES. THE FIRST AND
;SECOND VALUES ARE THE
;FIRST AND SECOND
;PARAMETERS FOR
;SUBSTITUTION BY THE MACRO
;CALL ARGUMENTS. THE 3RD,
/ATH, AND 5TH VALUES ARE
;THE CONSTANT, 0@

IF B ;TESTS 3RD PARAMETER TO
;DETERMINE IF IT EXISTS
BYTE 255 ;IF 3RD PARAMETER DOES NOT

;EXIST, ONE BYTE IS
;GENERATED CONTAINING

;255 DECIMAL

EXITM ;TERMINATES MACRO
;EXPANSION, IF CONDITION
;IS SATISFIED

ENDIF ;END OF IF CONDITION

BYTE 3 ;OTHERWISE, ONE BYTE IS
;/ASSIGNED CONTAINING 3RD
;PARAMETER

BYTE HI('4'),LO('4") /SWAPS BYTES OF 4TH
;PARAMETER

ENDM ;END OF MACRO DEFINITION

Assume the following macro cal! appears within a main program.

LABEL OPERATION OPERAND COMMENT

CONDIF 22,29,27,25 ;INVOKES MACRO CONDIF AND
;USES THE ARGUMENTS 22, 29,
;27, AND 25 FOR SUBSTITUTION
;OF THE FIRST FOUR
:PARAMETERS

8002: 9900 Assembler and Emulator Users @ 5'17

Macros

This macro call substitutes the arguments 22, 29, 27, and 25 for the parameters labeled ‘1’,
‘2','3’, and ‘4’, Notice that the substitution indicator (+) is displayed prior to each listed
source line where substitution occurs.

0000 161DOAGA+ BYTE 22,29,0,0,0 ;ALLOCATES ONE BYTE OF
:MEMORY

0d04 00

90095 1B + BYTE 27 ;OTHERWISE, ONE BYTE IS
;ASSIGNED

0og6 0019 + BYTE HI(26),LO(25) ;SWAPS BYTES OF 4TH
;PARAMETER

If the third substituted argument in this expansion had been empty rather than 27, the
EXITM statement would have terminated further macro expansion.

REPEAT — ENDR Blocks

In the following example of a REPEAT — ENDR block, a macro is defined as CONDR and
defines the SET symbol, AGAIN.

LABEL OPERATION OPERAND COMMENT
MACRO CONDR ;DEFINES CONDR AS MACRO
NAME
AGAIN SET 1 JINITIALIZES AGAIN TO EQUAL
;1 AT ASSEMBLY TIME
REPEAT AGAIN <="'# ;REPEAT WHILE AGAIN IS LESS

;THAN OR EQUAL TO TOTAL
;NO. OF ARGUMENTS ON THIS

;CALL

BYTE ‘AGAIN’ ;GENERATES ONE BYTE OF
;MEMORY CONTAINING THE
;CURRENT PARAMETER

AGAIN SET AGAIN +1 /INCREMENT AGAIN AT

;ASSEMBLY TIME

ENDR ;END OF REPEAT CONDITION

BYTE @DH ;GENERATES A CARRIAGE
;RETURN

ENDM ;END OF MACRO DEFINITION

5-18 @ 8002: 9900 Assembler and Emulator Users

Macros
... |

Assume the following macro call appears within 2 main program.

LABEL OPERATION OPERAND COMMENT

CONDR 25,26,27 ;INVOKES MACRO CONDR AND
;SUBSTITUTES THE ARGUMENTS
;25, 26, AND 27 FOR THE FIRST
;THREE PARAMETERS

This macro call generates the following macro expansion and substitutes the arguments
25, 26, and 27 for the parameter labeled ‘AGAIN’. The substitutions occur for as many
times as there are arguments specified in the macro call, as defined by the ‘#’ character. In
this case, there are three arguments specified and the ‘#’ character is replaced by 3.

0001 AGAIN SET 1
FFFF + REPEAT AGAIN<=00003
0000 19 + BYTE 25
0002 AGAIN SET AGAIN+1
ENDR
FFFF + REPEAT AGAIN<=00003
o001 1A + BYTE 26
0003 AGAIN SET AGAIN+1
ENDR
FFFF + REPEAT AGAIN<=00003
0002 1B + BYTE 27
0004 AGAIN SET AGAIN+1
ENDR
0003 oD BYTE @DH
ENDM

00005 G004 END

8002: 9900 Assembler and Emulator Users @ 5-19

Macros

[e e

5-20

MACRO EXPANSION SUMMARY

The lines of code within the macro definition block are not assembled with the rest of the
program, but are saved until macro expansion time. Blank lines or comment lines are
exceptions to this rule since they are not saved for expansion. The macro definition block,
therefore, does not generate object code upon assembly. When the macro name appears
within the operation field of the main program during assembly, the body of the macro is
inserted and assembled within the main program.

Prior to the assembly of each line in the macro definition block, the assembler scans for
the presence of the single quote character. An argument defined in the macro call then
replaces the parameter within the single quote characters. After substitution, the scan
continues from the first character following the replaced text until the end of the current
line. The line is inserted into the user program. The assembler then generates object code
and processes the line. The assembler continues to obtain lines from the macro definition
block in this manner until an ENDM or EXITM statement is encountered. At that time,
expansion continues with the statement following the macro call.

@ 8002: 9900 Assembler and Emulator Users

Section 6

ASSEMBLER OPERATING PROCEDURES

INTRODUCTION

This section describes the syntax required for the Tektronix Assembler to translate source
code into executable binary object code.

SYNTAX

object filename list filename source filename source filename
ASM | object device list device source device source device
PURPOSE

The ASM command invokes the assembler when the 8002 uProcessor Lab is under TEKDOS
control.

8002: 9900 Assembler and Emulator Users @

6-1

Assembler Operation Procedures

EXPLANATION

The optional object device or filename parameter causes the assembler to output the binary
object module to the specified disc file or device. The optional list filename or device
parameter causes the assembler to output a listing to the specified device or disc file. The
source filename or device parameter specifies the source module to be translated.

All parameters within the ASM command line must be separated either by spaces or by
commas. The object filename or device parameter is optional and, if omitted, must be
replaced by two commas in the following manner. In this case an object file is not generated.

ASM, ,LIST SOURCE

The list filename or device parameter is also optional and, if omitted, must be replaced by
two commas in the following manner. In this case an assembled listing is not generated.

ASM OBJECT, ,SOURCE

If the object and list filenames or devices are both omitted, they must be replaced by three
commas in the following manner.

ASM, , .SOURCE

If the object and list files are intended to reside on a disc other than the system disc, the
appropriate disc drive number must follow the slash character (/} in the following manner.

ASM OBJECT/1 LIST/1 SOURCE

@ 8002: 9900 Assembler and Emulator Users

Assembler Operation Procedures
]

At least one source filename or device must be specified in the ASM command line. More
than one source filename or device is acceptable if the ASM command and its parameters
do not exceed one line. If the source file is stored on a disc other than the system disc, the
appropriate disc drive number must be specified after the / character in the following
manner.

ASM OBJECT LIST SOURCE/1

it the specified source module is a device, the assembler source code must be entered twice;
once for each assembler pass. In addition, if the source module is the console input device
{CONI), care shouid be taken to ensure that the source code is entered exactly the same
for both assembler passes.

ASSEMBLY COMPLETION

After assembly completion, each line containing an error is displayed along with an error
code describing the nature of the error. Refer to Appendix F for a list of all error codes,
messages, and their explanations. Below all error displays, two lines appear on the output
device showing the number of source lines, the number of assembled lines, the number of
available bytes, and the number of errors and undefined symbols. |f an irrecoverable assembly
error occurs, the program aborts and a message indicates the error in the followng form:

FATAL ERROR, ASSEMBLY ABORTED AT LINE XXXX

The TEKDOQOS prompt character (>) appears after all assembler messages have been displayed
indicating assembly completion.

8002: 9900 Assembler and Emulator Users @ 6-3

Assembler Operation Procedures
]

If an object filename or device parameter has been specified in the ASM command line, the
translated program is stored as relocatable binary object code. A correctly assembled object
file may be linked, and then executed or debugged.

if a list filename or device parameter has been specified in the ASM command line, the
assembled listing is output to a device or disc file.

6-4 @ 8002: 9900 Assembler and Emulator Users

Section 7

ASSEMBLER LISTING FORMAT

INTRODUCTION
The assembler listing is composed of two parts:

1) the source program assembler listing with the object code generated for each
instruction; and

2) atable of all symbols used in the program.

THE ASSEMBLER LISTING

The assembler listing is composed of headings, lines of source code listing information, and
error responses relating to any assembling errors.

8002: 9900 Assembler and Emulator Users @ 7-1

Assembler Listing Format
]

Headings

Each page of the assembler listing contains a heading. The heading includes the assembler
version on the left side of the page, and the page number on the right side of the page, as
shown below:

TEKTRONIX 9900 ASM Vx.x’ PAGE X

If the TITLE directive is used, a 30-character string expression may be inserted at the top
of each listing page for program identification. The character string specified as the TITLE
operand is printed on the first character line between the assembler version number and the
page number, shown as follows.

TEKTRONIX 9900 ASM Vx.x' THIS IS THE PROGRAM TITLE PAGE X

If the STITLE directive is used, a 72-character string expression may be inserted on the
second line of each listing page for program identification. The character string specified
as the STITLE operand is printed between the page heading and the first source code line.
A blank line is automatically inserted between the string and the beginnihg of the source
code. A program identification heading created with the STITLE directive appears below:

TEKTRONIX 9900 ASM Vx.x! PAGE X
THIS LINE DEMONSTRATES STITLE USAGE
(blank line)

(source code)

7-2 @ 8002: 9900 Assembier and Emulator Users

Assembler Listing Format

S

The Listing Line

The heading is followed by a blank line and the listing information. Each source program
line is translated and output in the following sequence:

1) aline number,

2) the memory location of the instruction or data,

3) the translated object code,

4) a relocation indicator if relocation occurs on the line,

5) a substitution indicator if substitution occurs on the line, and

8) the original source line.

The listing line may be 72 or 132 characters wide, dependent upon whether the TRM
option for the LIST and NOLIST directives is active. The first listing line field is a
five-character decimal line number. Line numbers are not listed for macro expansion lines.
The second listing field is a four-character hexadecimal location counter. This field may
also represent a symbol value for an EQU directive. Both the line number and the location
counter are right justified with leading zeros when necessary, and are separated from each
other by one space.

The object field follows the location counter field, and the fields are separated by one
space. The object code is left justified and may be a maximum of twelve hexadecimal
characters wide. If an instruction generates more than twelve hexadecimal characters, all
additional object code is listed on subsequent lines.

If relocation occurs in a line, the greater-than character (>) follows the object field. Actual
relocation is performed at link time.

8002: 9900 Assembler and Emulator Users @ 7-3

Assembler Listing Format

L -~~~

If a substitution occurs in a line, the plus character (+) follows the relocation indicator or the
object field. All substitutions occur before the line is listed. The example that follows
shows the plus sign preceding a line where a substitution occurs.

00001 P00 @30502 + BYTE 3,5,2 ;/ALLOCATE ONE BYTE OF
;MEMORY FOR EACH OF THE
;CONSTANT VALUES 3 AND 5,
;AND FOR THE VALUE DEFINED
;TO SUBSTITUTE FOR “1° (IN
;THIS CASE THE VALUE IS 2)

The source code follows the relocation or substitution indicators or the object code field,
and the fields are separated by one space. If the TRM option is ON when entered with the
LIST directive, 47 spaces remain in the listing line for the source code. Any source

code exceeding the 47-character limit is truncated. If the TRM option is OF F, whether by
default or when entered with the NOLIST directive, 103 characters remain in the listing for
the source code. Any source code exceeding the 103-character limit is truncated.

Any non-printing character, other than the space, tab, or carriage return characters, is
represented by a question mark (?) in the listing. The assembler translates the character
replaced by the ? to the original character form.

To summarize, the listing line appears as follows.

XXXX LLLL DDDDDDDD > + SSSSS.....

7'4 @ 8002: 9900 Assembler and Emulator Users

Assembler Listing Format

Each field is represented as follows:

X = Line number, right justified

L = Memory location (or EQU statement symbol value)

D = Object code

> = Relocation indicator (relocation is performed at link time)

+ = Substitution indicator (substitution has occurred before listing)
S = Source line

Error Response

If an error occurs in an instruction, the line containing the error is followed by an error
response. This is also true when the instruction generates more than one line of object
code. The error response takes the following form:

***** ERROR code

The ““code’’ in the above error response is replaced by a three-digit number indicating the
type of error detected. For a description of all error codes and their corresponding
messages, refer to Appendix F. |f the error response precedes an additional message,
“FATAL ERROR; ASSEMBLY ABORTED AT LINE XXXX", the severity of the error is
such that the Assembler cannot continue execution.

8002: 9900 Assembler and Emulator Users @

7-5

Assembler Listing Format

e

THE SYMBOL TABLE

The symbol table follows the listing, indicating all symbols used in the source module and
the values these symbols represent. The symbol table also categorizes all symbols according
to their type or base, for ease in referencing. The structure of the symbol table follows a
three-part format: a heading, symbols and their values (categorized by type or base), and

" two lines providing statistical program assembly information.

Each symbol table page contains a heading following the format shown below:

TEKTRONIX 9900 ASM Vx.x SYMBOL TABLE LISTING PAGE X

Below the heading, symbols and their corresponding hexadecimal values appear in categories
according to their type or base. Headings precede each category describing the group of
symbols in each category. The possible symbo! headings are as follows:

STRING AND MACROS All string and macro symbols are listed under this
category.
SCALARS All symbols having scalar values and all undefined

symbols are listed under this category. Additionally,
all 9900 Microprocessor registers (R@ through R15)
and their values are listed under this category.

name SECTION characteristic (length) All symbols based to the named Linker section are
listed. If specified, the section characteristic indicates
that the section is based to the actual address specified
by the ORG directive at assembly time (ABSOLUTE).
Refer to the discussion on Section Definition Directives
in Section 4. [f no characteristic is listed, the section
is byte relocatable. The length of the named section
is specified in bytes.

@ 8002: 9900 Assembler and Emulator Users

Assembler Listing Format

S

name COMMON characteristic (length) Same as SECTION category, except that more than
one common section with the same name is vaiid at
link time.

name RESERVE characteristic {length) Same as SECTION category, except that all sections
with the specified name are combined into a single
section at link time.

name UNBOUND GLOBAL An unbound global is a symbol declared in a
global statement, having no value in this assembly.
The named unbound global must be defined in
other assemblies or at link time. If an unbound
global is used to assign a value to a symbol in this
assembly, that symbol is listed under the UNBOUND
GLOBAL category in the symbol table listing.

Columns containing symbols and their corresponding hexadecimal values are listed
alphabetically under each category. When a symbol has fewer than eight characters, dashes
and spaces (— — —) serve as padding between a symbol and its value. The value field
contains four hexadecimal characters and is right justified, with leading zeros where
necessary. The value field for undefined symbols appears as a series of asterisks (****). Each
value is followed by several spaces and the next symbol. A typical symbol table listing line

might appear as follows:

SYM1 —— 0101 SYMB2 — 0025 SYMB3 —— 0022 SYMBOL4 **** SYMBOL5 @121

The number values for string and macro symbols indicate the number of bytes used by the
symbol for text storage. The number values for SET symbols indicate the last values
assigned to the symbols. The number values for GLOBAL and ENDOF symbols represent
the addresses prior to relocation.

7-7

®

8002: 9900 Assembler and Emulator Users

Assembiler Listing Format

o,

Symbol indicators may appear after the symbol values. An indicator also appears if a high or
low truncation occurs at link time. The symbol indicators are summarized as follows:

S — String symbol

M — Macro symbol

V — SET symbol

G — Global symbol

H — High truncation indicator (truncation will occur at link time)

L — Low truncation indicator (truncation will occur at link time)

E — ENDOF symbol (value will be adjusted at link time)

All symbols without indicators are EQU symbols. The number values for these symbols
indicate their values during assembly.

If the TRM option is specified with the NOLIST directive, or is otherwise OFF due to
default, the symbol table listing is five columns wide. If the TRM option is specified with
the LIST directive, causing the option to be ON, the symbol table listing is three columns
wide.

Two lines appear below the symbol table display providing statistical information about the
current assembly. The first line shows the number of source lines, the number of assembled
lines, and the number of available bytes, The number of available bytes indicates the amount
of space available for further data manipulation or symbol storage within the assembler. The
second statistical line indicates the number of errors and undefined symbols, if any.

@ 8002: 9900 Assembler and Emulator Users

Assembler Listing Format

[T A S

A sample assembler and symbol table listing is shown in Fig. 7-1.

TEKTRONIX 9900 ASM V3.0 THIS ISTHE TITLE PAGE 1
THIS LINE IS THE STITLE OF MY PROGRAM

00093 STRING S1(80@) ;DEFINE STRING VARIABLE S1 WITH
;80-CHARACTER MAXIMUM

00004 0003 L1 EQU 3 ;DEFINE CONSTANT SYMBOL L1 TO

*X*** ERROR 003 ;EQUAL 3

000as 0004 L2 SET 4 :DEFINE VARIABLE SYMBOL L2 TO
JEQUAL 4

00006 1100> ORG 1108H ;STARTS OBJECT CODE OF NEXT
JINSTRUCTION AT 1100H

00007 11080 Co@81 L1 MOV R1,R2 ;LOAD THE CONTENTS OF REGISTER R1

***** ERROR 002 JINTO REGISTER R2. MULTIPLY-DEFINED
;SYMBOL, L1.

00008 END ;END OF PROGRAM

TEKTRONIX 9900 ASM V3.0 SYMBOL TABLE LISTING PAGE 2

STRINGS AND MACROS

S1 ————— 9958 S
SCALARS
L2 --—0004V RO —— 0006 R1 ——— 0001
R2 ——— @002 R3 —— 0003 R4 ——— 0004
RS ——— 0005 R6 ———0006 R7 —— 0007
R8 —— 0008 R9 —— @009 RI0 ——— 0OGA
R11 —— 0008 R12 —— 0@00C R13 ——— G@OD

R14 ——— QOOE R15 —— Q@@F

% (default) SECTION (0101)

Lt 2100
15 SOURCE LINES 15 ASSEMBLED LINES 1000 BYTES AVAILABLE
2 ERRORS

Fig. 7-1. Sample Assembler and Symbol Table Listing.

8002: 9900 Assembler and Emulator Users @

7-9

Section 8

ASSEMBLER OBJECT MODULE FORMAT

INTRODUCTION

The TEKTRONIX Assembler object module output can be stored on flexible disc in binary
code. The binary object code may then be linked or loaded into program memory for
execution and debugging. if a moduie contains more than one section or references giobal
symbols declared in other modules, it must be linked before loading its object code into

program memory.

PROGRAM LOADING AND EXECUTION

The TEKDOS command, LOAD, is used to load an assembled binary object file or linked
load module into program memory. The TEKDOS command, GO, may then be entered to
begin program execution or debugging. The following descriptions outline LOAD and GO
command usage. For further details describing binary object code execution procedures,
refer to the EMULATOR ENVIRONMENT section in the 8002 uProcessor Lab System
User’s Manual.

8002: 9900 Assembler and Emulator Users @

81

LOAD Assembler Object Module Format
]

SYNTAX

LOAD {file name [/disc drive]} [file name [/disc drive]] e

PURPOSE

The LOAD command program loads Assembler and Linker object files into program
memory.

EXPLANATION

The specified file name is loaded into program memory with the LOAD command. The file
must have been previously created by the Assembler or the Linker. Assembler object files
containing reiocatabie sections or references to giobai symbols may execute incorrectly if not
linked before loading.

The named file is loaded into program memory starting at the location specified in the
source code.

Possible *DOS* error responses for the LOAD command are as follows:

6 — Device read error
14 — Invalid input device
48 — Load file not found
49 — Load file assign failure
51 — Invalid load request

8-2 @ 8002: 9900 Assembler and Emulator Users

Assembler Object Module Format GO

SYNTAX

GO [address]

PURPOSE

The GO command causes execution control to be passed to the emulator processor.

EXPLANATION

The GO command causes execution control to be passed to the emulator processor with
execution to begin at the specified address. When the address is not specified, execution
begins at the start address of a previously loaded module, or continues from the last
stopping point.

ALY

The GO command is a forced jump and will supersede a RESET command.

The possible *DOS* error response for the GO command is shown below:

37 — Invalid GO address

8002: 9900 Assembler and Emulator Users @ 8-3

Section 9

THE LINKER

INTRODUCTION

The 8002 uProcessor Lab Assembier converts user-written program instructions into machine
language modules, each module consisting of one or more sections. The Linker, a system
utility program, merges the independently assembled sections into an 8002 ioad file.

The Assembler creates machine-language output files, which the Linker may then convert
into a single binary file, suitable for loading into program memory by the LOAD command.

The object files output from the Assembler consist of Text Blocks, Relocation Blocks,
and Global Symbol Directory Blocks. Text Blocks from an indepe‘ndently assembled
program section consist of three distinct item types:

1. Constants and machine instructions whose values are independent of their position in
memory;

2. Addresses or address constants whose values are relative to the starting location (base) of
a section; and

3. Global! references to other object modules whose values cannot be determined until all
sections are assegned memory locations.

This information is in binary data form.

Relocation Blocks contain information neéessary to update and relocate bytes of program
text. Giobal Symboi Directory Blocks define global symbois and sections.

8002: 9900 Assembler and Emulator Users @

The Linker

Each microprocessor supported by the 8002 uProcessor Lab has unique qualities. The Linker
supports these unique qualities and permits the interchange of microprocessors within the
8002. The Linker's outward appearance and operational method remain the same, regardless
which microprocessor is supported.

To prepare object modules for the 8002 Load program, the Linker performs three specific
functions:

1) Allocates memory space for each section of the loadable program;

2) Establishes a reference table of global symbols; and

3) When necessary, relocates address-dependent locations to correspond to allocated
space.

In addition, the Linker generates a listing that indicates where sections are allocated, and the
values of all global symbols.

LINKER INVOCATION

Three methods of Linker invocation are available: simple invocation, interactive command
invocation, and command file invocation. Simple invocation requires entry of filenames

T N T T Y (A Py ol e a mandbe o ~11

Uluy, all othei paraimeLers aie Sev W reasonable detault values. This method is usuany
adequate for most linking situations.

For more precise control, the Linker can be invoked by an interactive command series
using default or user-specified parameters. The user can specify section attributes and section
location, define global symbols, and control the listing content.

Linker activation through command file invocation is accomplished by specifying a named
file containing a Linker command series.

9-2 @ 8002: 9900 Assembler and Emulator Users

The Linker

PROGRAM SECTIONS

A section is a collection of object code that has been assembled with the same location
counter. An object module may consist of several sections. These sections are treated
separately by the Linker and each section is independently relocatabie. No iimit is piaced
on the number of sections per link, but no more than 255 sections or globals may exist in

any one object module.

SECTION ATTRIBUTES

A section has four attributes that provide the Linker with information regarding memory
allocation and where to link the section. These attributes are Name, Section Type, Size,
and Relocation Type.

NAME A section has an eight-character Name, assigned by the section
directives, COMMON, RESERVE, and SECTION at assembly
time. The Name must be a valid identifier. The section Name is
entered into the Linker’s symbol table and is a valid external
symbol.

YPE A section may be either a SECTION, RESERVE, or

COMMON. The specification is made through use of the
SECTION, RESERVE, or COMMON directive at assembly
time,

Each SECTION Name must be different. Multiple SECTIONS
with the same name will be fiagged as errors, and only the
first one will be linked.

RESERVE sections with the same name are concatenated by
the Linker. The length of a RESERVE section in a load
module is the sum of all RESERVE sections with the same
name.

COMMON sections with the same name are allocated the same

space in memory. The length of the linked COMMON is that
of the largest COMMON section.

8002: 9900 Assembler and Emulator Users @ 9-3

The Linker

]

SIZE The size of each section in an object file is determined at
assembly time. Section size is the number of program memory
bytes that the section may occupy.

RELOCATION TYPE A section may be Absolute (non-relocatable) or Byte
Relocatable.

An Absolute section is not relocated by the Linker. Memory
locations in an Absolute section where code has been
generated, or locations that have been explicitly reserved by
the assembler BLOCK directive, are not allocated to any
relocatable section at link time. However, if two or more
absolute sections have code at the same address, the contents
of those memory locations after linking is undefined. These
memory conflicts, if they occur, are noted on the Linker
memory map.

A Byte Relocatable section can be placed anywhere in
memory.

94 @ 8002: 9900 Assembler and Emulator Users

The Linker LINK

LINKER INVOCATION

Simple Invocation

SYNTAX

LINK [load file] [tist file] {object1} [,object2] ...

The “load file" represents the name to be assigned to the Linker-created load module. The

““list file”’ represents the listing file name, and ‘‘object1”, “object2" are input object files to
be linked.

. With simple invocation, all filename parameters must be entered on one line. No other
parameter entries are permitted. |f filenames for load file or list file are not entered, a
null specification is assumed and the corresponding file is not generated. A map and error
messages are output to the list file, and error messages are also logged to the console.

8002: 9900 Assembler and Emulator Users @ 9-5

LINK

The Linker

Interactive Command Invocation

SYNTAX

LINK (carriage return)

The Linker responds with the prompt character (an asterisk), to indicate that a Linker
command will be accepted. Each command must be terminated by a carriage return.
Commands will be accepted until an END command is received. An END command directs
the Linker to discontinue command entry mode and to begin processing the object files.

9-6 @ 8002: 9900 Assembler and Emulator Users

The Linker Ll NK .

Command File Invocation

SYNTAX

LINK { @filename }

Commands are read from filename until an end of file or an END command is encountered.
End of file or END directs the Linker to discontinue command mode and begin processing
object files. If errors have been generated, the Linker aborts with the message:

ERRORS IN INDIRECT FILE, LINK ABORTED.

8002: 9900 Assembler and Emulator Users

The Linker

9-8

Commands

The following commands may be used in interactive or command file invocation:

1. LOG

Print messages to the console and log commands on the list file if one has been
specified. All commands are echoed to the list file after log has been indicated.

2. NOLOG

Don’t log Linker messages on the console.

3. MAP

Generate a memory map in the list file. A memory map lists module names, section
names and attributes, global symbols defined within sections, and undefined global
symbols. (See Linker Output description for further information.)

4. NOMAP

Do not output a memory map.

5. LIST filename or device

Generate a list file named ““filename”’. See the listing file description for contents of the
list file. “filename’ is any valid TEKDOS file specification. A disc drive can be
specified by appending the drive number to “‘filename’’ (filename/0, or filename/1).
Instead of a filename, any valid output device may be designated.

6. LOAD filename

Create load file. This command directs the Linker to generate a load file named
“filename"’. The file will contain the executable output of the Linker and can be loaded
using the LOAD command.

7. DEFINE symbol1 = value, . ..

Define symbol. Symbol is the name of a global symbol; value is a hexadecimal number.

8. LINK objectl, object2, ...
Link object files. This command directs the Linker to include the specified object files
in the load file.

@ 8002: 9900 Assembler and Emulator Users

The Linker
O

9. LOCATE section name [,memory location] [,BYTE]

- -F

Allocate section declaration. Allows the user to locate a section and/or redefine its
relocation type. Note that redefining the relocation type of a section may cause the
linked code te execute differently than intended. Valid parameters for memory location
are:

BASE (starting address)

or :

RANGE (starting address, ending address)

where starting and ending addresses are hexadecimal numbers.

When BASE is specified in the LOCATE command, the Linker places the section at the
designated starting iocation. if RANGE is specified, the Linker piaces the section between
the starting and ending locations. |f there is not enough space within the specified range,
the section will not be linked.

A section specified as ABSOLUTE at assembly may be changed to BYTE relocatable with
the LOCATE command.

Valid relocation types are PAGE, INPAGE, and BYTE.

10. @filename

indicate indirect command file. This command directs the Linker to obtain subsequent
commands from filename. Commands are read from the filename until an end of file or
an END command is encountered. Indirect commands are echoed on the console as they
are read. Nested indirect command files are illegal; a command file may not contain an
""@filename’’ command.

11. TRANSFER symbol or value

Specify load module transfer address. “Symbol!* is a global symbol and “value* is a
hexadecimal number with a leading character ranging from @ through 9. This transfer
value supersedes any transfer address encountered in linking object modules.

12. END

End command entry mode. |f no errors have been generated in command file invocation,
this command will terminate command entry mode and initiate the processing of

object files. If errors are detected, an appropriate message is issued and control is
returned to the system monitor.

8002: 9900 Assembier and Emulator Users @ 9-9

The Linker

9-10

If an error is detected during command entry, a caret (/) is printed below the line to
indicate the error location. A message defining the error is also printed. Following are
examples of errors during interactive command entry. Throughout the examples, Linker
generated characters have been underlined.

HLINK FILEL FILES ZFILE
N
INYALID FILE NAME
¥LIST LISTFILE
¥OEFINE p==hR
A
STYMTAX ERROR
¥LEFIN Eymp. = 3
A

Sl EGal COMMAND

FLOG NGO FARAMETERS NEEDED
A

EXTRANEOUS INFORMATION IGHORED

If these errors had been contained in a command file, and if the LOG command had been
activated, the errors would have been logged to the listing.

@ 8002: 9900 Assembler and E

mulator Users

The Linker

MEMORY LOCATION

At link time the user may specify a relocatable section location, in the form of either a base
address or an address range where the section may be placed. The default range for a

ToS i : e S OTL L

relocatable section is the entire address space of the microprocessor. If the user elects not
to specify a location for a section, the Linker will locate the section. An Absolute section
cannot be moved at link time.

MEMORY ALLOCATION OF SECTIONS

The Linker allocates memory in the sequence shown here.

1. Absoiute sections.

2. Based sections.
Based means a program section starting location has been specified by a LOCATE

command.

3. Ranged byte relocatable sections.
Ranged means the user explicitly declared a RANGE (starting location, ending
location) with the LOCATE command at link time.

4. Byte relocatable sections.

Absolute and based sections are linked even if conflicts occur. A conflict exists when two

or more sections have bytes at the same address. Other section types are not linked if a
conflict occurs. If any conflict occurs during allocation, a memory conflict is noted on the
memory map. The content of memory in the conflicting area is undefined.

8002: 9900 Assembler and Emulator Users @ 9-11

The Linker

PR — e - o

ENDREL

ENDREL is a pre-defined symbol whose value is assigned at link time. After memory is
allocated, ENDREL is assigned the value of the first memory address available for use. This
address is 1 greater than the highest address used by a non-based relocatable section. All
relocatable sections are located below the value of ENDREL. Absolute sections, or sections
relocated using the LOCATE command with a BASE specified, may or may not be located
above the ENDREL address.

The user can override the default by assigning any other value to ENDREL. If ENDREL is
neither defined nor referenced, no value is assigned.

LINKER OUTPUT

Listing File

The listing file may be output either to a flexible disc file or to the console, line printer,
or other output device.

The following information may be included in a Linker output listing.

Command Simple Linker
lovocation [nvocation
Non-Fatal Errors and Messages If specified Yes
Map If specified Yes
Symbol List Yes) Yes
Linker Statistics Yes Yes

9-12 @ 8002: 9900 Assembler and Emulator Users

The Linker

PR i - e

Error Messages

An explanation of the Linker error messages is located at the end of this manual section.

MAP

A map consists of two parts:

1. A memory map

2. A module map

An ordered listing of the memory allocated to
sections. The list starts with the lowest allocated
address and proceeds to the highest allocated

address space of linked sections.

A listing of modules linked into the load file. The
map contains information concerning sections

and global symbols defined in each module.

TEKTRONIX 9900 LINKER Vx.x MEMORY MAP

0000 — BB3F TVALUES
000 — 007F ABSTABLE
00980 — @3D® FOO
03D2- 13D2 MAIN
13D4 - 1454 VECTORS

SECTION ABSOLUTE
SECTION ABSOLUTE
SECTION BYTE
SECTION BYTE
COMMON BYTE

NO ERRORS NO UNDEFINED SYMBOLS
3 MODULES 6 SECTIONS
TRANSFER ADDRESS UNDEFINED

PAGE 1

Addresses are starred ‘*’ if a conflict (an overlap) with another section occurred during
allocation. Section type is either SECTION, COMMON, or RESERVE. Relocation type is

ABSOLUTE.

The TRANSFER ADDRESS identifies program starting location. After loading the
program in this example, the appropriate command would be “GO 0".

8002: 9900 Assembler and Emulator Users

9-13

The Linker

TEKTRONIX 9900 LINKER Vx.x MODULE MAP PAGE 2

FILE: FILE1
MODULE: MAINPROG
ABSTABLE SECTION ABSOLUTE 0000—007F

FOO SECTION BYTE 0080—03D0
MAKEREC 0280
MAIN SECTION BYTE @3D2-13D2

FIXVALUE 9808 GETCHAR 0932

FILE: FILE 2
MODULE: TRANSFOR
TVALUES SECTION ABSOLUTE 0000—003F
VECTORS COMMON BYTE 13D4—-1454
XVALUE 13D4 YVALUE 13F4 ZVALUE 1434
FILE: FILE3

MODULE: INPUT

EMPTYABS SECTION ABSOLUTE *EMPTY”*
VECTORS COMMON BYTE 13D4—1454
APRIME 13E4 YPRIME 1404

The module map lists linked modules. An alphabetical list of sections and entry points
appears for each module. If no sections were linked in a module, an appropriate message
so indicates. | f no room for section is available, an appropriate message so indicates.

SYMBOL LIST

A symbol list is an alphabetical list of all global symbols (sections and symbols) and their
assigned values. |f a symbol is undefined, its value field is starred.

9-14 @ 8002: 9900 Assembler and Emulator Users

The Linker

TEKTRONIX 9900 LINKER Vx.x SYMBOL LIST PAGE 3

ABSTABLE 000@ APRIME 13E4 EMPTYABS 0008 FIXVALUE 0808

FOO §080 GETCHAR @932 MAIN ¢3D2 MAKEREC 0280
TVALUES peg@ VECTORS 13D4 XVALUE 13D4 YPRIME 1404
YVALUE 13F4 ZVALUE 1434

LINKER STATISTICS

The Linker Statistics include the number of errors, the number of undefined symbols, the
number of sections, the number of modules, and the transfer address.

THE LOAD FILE

The primary output from Linker processing is the Load file. A Load file is a subset of the
Linker input object files with all references and relocation resolved. It consists of a Module
Block, a Global Symbol Directory Block, Relocation and Text Blocks, followed by an END
Block. Load files are read into program memory with the LOAD command.

8002: 9900 Assembler and Emulator Users @ 9-15

The Linker
—

ERRORS AND ERROR MESSAGES

Three classes of errors can be generated during Linker execution:

WARNINGS (W) A potential problem may exist but the linked
program can probably be executed.

ERRORS (E) Linked program probably will not execute properly.

FATAL ERRORS (F) Errors directly affecting the Linker’s execution.

The Linker closes all open channels and returns
control to TEKDOS.

All error classes cause an appropriate message to be output to the LOG and LIST file or
device. A fatal error will be output to the console even if NOLOG was specified.

ERROR MESSAGES AND EXPLANATIONS

F. LINKER INTERNAL ERROR AT nnnn

An error occurred in the Linker. Try linking again. If this error persists, carefully
document the incident and submit an LDP Software Performance Report to Tektronix.

E. NO ROOM IN RANGE nnnn-nnnn FOR SECTION NAME

The SECTION length is greater than available contiguous memory in range nnnn through
nnnn of allocated section memory.

9-16 @ 8002: 9900 Assembler and Emulator Users

The Linker

—

F. INVALID OBJECT CODE FORMAT FOR FILE NAME
LOCATION = nnnn
The information in file is not valid input object format. Ascertain that all files to be
linked have been assembled. Location is the internal Linker address where the object
file error was detected.

F. UNABLE TO ASSIGN file or device name

A file name specified as an Input Object File does not exist, or File/Device is
unavailable.

F. MEMORY FULL

Linker memory is totally allocated and linking has been terminated. The total number
of globals, sections, or object files must be reduced in order to link in the avaiiabie
memory.

W. TRANSFER ADDRESS UNDEFINED

No transfer address was specified to the Linker either through the transfer command or
by specifying “END (expression)’’ during assembly. When no transfer address is
specified, the Linker creates transfer address 0.

W. TRANSFER ADDRESS MULTIPLY DEFINED IN MODULE name FILE name

The module has attempted to redefine the transfer address previously specified by a
linked module or by the transfer command. The Linker uses the first encountered
transfer address to generate a transfer address for the load module. If no transfer address
is specified, a transfer of @ is generated.

W. RELOCATION TYPE OF SECTION name MULTIPLY DEFINED IN MODULE name
FILE name

An attempt was made to redefine the section relocation type (Byte or Absolute). This
occurs when the LOCATE command defined a relocation type that differs from that
specified at assembly time. The error aiso occurs when relocation attributes of a
COMMON or RESERVE section differ between modules. The Linker uses the first
encountered relocation attribute to define the section.

E. Symbol name MULTIPLY DEFINED IN MODULE name FILE name

An attempt was made to redefine a Global Symbol or SECTION. This occurs when two
modules both define a Global of the same name or when two SECTIONS have the
same name. SECTION names must be unique. In the event of multiply defined
SECTIONS, the Linker will only include the first one in the Load Module.

8002: 9900 Assembler and Emulator Users @ 9-17

The Linker

E. TRUNCATION ERROR AT nnnn IN MODULE name FILE name

The relocated value computed for byte relocation is too large to fit into one byte.

E. UNRESOLVED REFERENCE AT nnnn MODULE name FILE name

A reference to an undefined global or section was specified at this point in the object
code. This occurs when a global is used in one module but was never defined. The
unresolved reference is zero filled in the load file.

W. MICROPROCESSOR REDEFINED FROM “microprocessor’’ IN MODULE name
FILE name

The current input module has been generated for a different microprocessor than the
previous object modules. Differences between microprocessor definitions may cause
incompatabilities during linking (e.g., page length, alignment, etc.).

E. SECTION name EXCEEDS MAXIMUM SIZE

Section length is greater than the address space of the microprocessor. The section
is not included in the load module. This error may occur when a RESERVE is too
long. The maximum size for 9900 is 64k bytes.

W. IMPLICIT REORIGIN TO @ IN SECTION name IN MODULE name FILE name

The Linker processed an obiect file where code in an absolute SECTION wrapped around
from location FFFFH to 0.

E. SECTION name CHANGED FROM PAGE TO BYTE RELOCATABLE
Either:

1) the section was declared to be page relocatable and the Linker doesn‘t support paging
for that microprocessor; or,

2) there was insufficient room for a paged section in available memory. The Linker will
attempt to allocate memory for the SECTION on a Byte Relocatable Boundary.

F. LISTFILE 1/OERROR # nn
LOAD FILE
CONSOLE
COMMAND FILE
OBJECT FILE

This error indicates that the Linker was unable to read to or write from the specified file
or device. The error number corresponds to the SVC status byte.

9-18 @ 8002: 9900 Assembler and Emulator Users

The Linker

COMMAND PROCESSING ERRORS
Extraneous Information Ignored

Extra characters are on a command line that only requires an instruction (e.g., LOG,
NOLOG, MAP). The Linker performs the appropriate action for the command, ignoring

AL R

extra characters on the line.

lllegal Command

The command was not recognized.

Syntax Error

Statement syntax is invalid. This occurs when a command is incorrectly formed. For
example, unmatched parentheses are found in the LOCATE command, or an operand is
missing after the equal sign in the DEFINE command.

Indirect File Depth Exceeded

A filename command was found during processing of an indirect command file. The command
is ignored.

Invalid File Name

The file in a LIST, LOAD, or LINK command contains illega

s smomd i aart 'k num l.-. 12 T

imay Notl 0EgiNn Witna n

are acceptable:

Alphabetic (A—Z), numeric (0—9), or special characters (" # &’ () * ;= ?). An optional
two-character disc drive indicator (/O or /1) can follow the filename.

NOTE: Processing of the command line ceases when an invalid filename is encountered.

All files up to the invalid filename, in the case of the LINK command, are
added to the list of files to be linked.

Invalid Range Specified

The range (starting address through ending address) in the LOCATE command is invalid.
The ending address must be greater than the starting address.

8002: 9900 Assembler and Emulator Users @ 9-19

Section 10

9900 SERVICE CALLS

INTRODUCTION

A service cail (SVC) allows the 9900 Emulator Processor to obtain peripheral service from
the system processor during program execution. The SVC is an instruction sequence in the
user program containing:

1) a 9900 compare word instruction (c), referring to the address of the emulator
processor output port; and

2) ano-operation instruction, allowing time for the SVC to occur.

The SVC references the emulator processor output port address and cues the system
processor that an |/O (input/output) function is to occur. The system processor then
references a service request block pointer in the user program. The service request block

(SRRB) pointer in turn references a block of memaory containing the actual service request

VoS & iUV soNila S glLligal oFb LD

1/0 specifications. The I/O specification block is called the service request block (SRB).
The SRB contains parameters such as:

1) the type of 1/0 to be performed,
2) the 1/0O device or file channel assignments, and

3) the size of buffers for data transfer.

With these parameters, the service call can then be executed within a defined SVC buffer
area. A broader description of SVCs is given in the Service Call section of the 8002
uProcessor Lab System User’s Manuai.

8002: 9900 Assembler and Emulator Users @ 10-1

9900 Service Calls

10-2

SVC procedures specific to the 9900 Emulator Processor are described in this section. The
specific procedures describe the way the 9900 SVC compare word (c) instruction refers to
the SRB pointer word address. Table 10-1 shows the SRB pointer word address referred to by

each 9900 SVC compare word instruction.

SVC 9900 SVC OUTPUT INSTRUCTION
AND ADDRESS

@F1EEH,RO
@F1ECH,R0O
@F1EAH,RO
QF1E8H,RO
@PF1E6H,RO
OF 1E4H,R0Q

O g dH W N =
O 0O 0O 000

SRB POINTER WORD ADDRESS

PO40H
PP42H
0044H
Pp46H
0048H
PP4AH

Table 10-1. 9900 SVC Compare Word Instruction References

THE 9900 SVC COMPARE WORD OPERATION

The 9900 SVC compare word operation is initiated with the 9900 instruction, “C". The “C*
instruction references the SRB pointer, which in turn references the appropriate SRB. The
SRB then defines the peripheral I/O operations, and the buffer area where the 1/0 is to be
performed. In the final step, peripheral 1/0 is performed within the defined buffer area.

An example of the 9900 SVC process follows. The program, named NEWPRQOG, uses an SVC
that causes an ASCI!I line to be read into the SRB 1/0 buffer from the console input device.
After the line is read into the buffer, the program halts. The comments to the right of each

instruction explain the SVC execution sequence.

8002: 9900 Assembler and Emulator Users

9900 Service Calls

;PROGRAM TO READ ASCII DATA FROM THE CONSOLE INPUT DEVICE AND HALT

SECTION EXAMPLE,ABSOLUTE ;DECLARES SECTION NAMED EXAMPLE
;TO BE NON-RELOCATABLE
CONFOR ORG) ;BEGINNING ADDRESS OF SVC LABELED
;CONFOR

;THE NEXT TWO LINES COMPOSE THE SVC

C QF1EEH,RO ;SvCi
NOP ;ALLOWS TIME FOR SVC TO OCCUR
IDLE ;PROGRAM HALTS AFTER SVC IS
;COMPLETE
ORG B40H ;BEGINNING ADDRESS OF SRB POINTER
;THE NEXT TWO LINES COMPOSE THE SRB POINTER
WORD CONSRB ;RESULT IS WORD FOR SVC1, POINTS
;TOSRB
ORG 1100H ;BEGINNING ADDRESS OF SRB
;THE NEXT EIGHT LINES COMPOSE THE SRB
CONSRB BYTE 1H ;READ ASCIHI AND WAIT
BYTE 1H ;CHANNEL NUMBER 1
BYTE [1]1] SSTATUS
BYTE 00 SINGLE BYTE DATA
BYTE 09 ;BYTE COUNT
BYTE CONIRD +1 'BUFFER LENGTH
WORD CONBUF ;BUFFER POINTER
ORG 200H ;BEGINNING OF BUFFER
CONIRD EQU 8¢ MAXUINPUT LINE LENGTH LESSCR
;THE FOLLOWING LINE DEFINES THE SRB BUFFER AREA
CONBUF BLOCK CONIRD + 1; ;DEFINES BUFFER FOR SVC
END CONFOR ;SPECIFIES STARTING INSTRUCTION

;IN PROGRAM

The program is assembled and loaded as follows:

> ASM NEWOBJ NEWLIST NEWPROG
> LOAD NEWOBJ

Channel 1 is also assigned to the console input device. This assignment corresponds to the
channel byte assignments in the preceding SRB.

> ASSIGN 1 CONI

8002: 9900 Assembler and Emulator Users @ 10-3

10-4

9900 Service Calls
- -}

Now the program is executed.

>GO09

The desired character string “STRING" is entered and read from the console input device
as follows:

STRING

The ASCII characters S, T, R, |, N and G are now stored in the buffer.

The DUMP command may be used to display the hexadecimal contents of the buffer. The
beginning address of the buffer was defined in the program as 200H.

> DUMP 200

9200=53 54 52 49 4E 47 OD XX XX XX XX XX XX XX XX XX
[T Y

/
~
i 1 i ! 1
s T

R | N G

{carriage return, followed by previous
contents of program memory)

8002: 9900 Assembler and Emulator Users

Section 11

9900 DEBUGGING

INTRODUCTION

Three debugging commands support the unique 9900 Emulator Processor architecture, and
thus require special mention. These commands are summarized below, in the order in which
they are presented in this section. For further debugging information, refer to the Debug
System section of the 8002 uProcessor Lab System User’s Manual.

COMMAND NAME 9900 DEBUGGING COMMAND SUMMARY

TRACE Enables or disables program execution monitoring. When
TRACE is enabled, program execution trace lines display
the current instruction location, its hexadecimal
representation, mnemonic, and operands. Trace lines also
show the contents of the workspace pointer register (WP),
status register (ST), and registers RO through R15.

DSTAT Dispiay iine shows the current status of the debugging
session. The display line shows the emulator processor’s
next instruction address, all active breakpoints and their
parameters, and the contents of the registers labeled WP, ST,
and RQ through R15.

SET Reassigns hexadecimal values to registers labeled WP, ST and
RO through R165.

8002: 9900 Assembler and Emulator Users @ 11’1

TRACE 9900 Debugging

SYNTAX

TRACE ALL [STEP] [[start address] {stop address}]
or

TRACEJMP [STEP]- [[start address] {stop address}]
or

TRACE OFF

PURPOSE

The TRACE command enables or disables program execution monitoring.

EXPLANATION

When TRACE is enabled, program execution trace lines display the location of the current
instruction, its hexadecimal representation, mnemonic, and operands. Trace lines also show
the contents of the workspace pointer register (WP), the status register (ST), and all other
registers as follows:

R2 R3 R4 R5 R6 R7

RA° RB RC RD RE RF

- X
0w o
o B v
O —

11-2 @ 8002: 9900 Assembler and Emulator Users

9900 Debugging TRACE
¢~

The Trace Modes

The three trace modes are TRACE ALL, TRACE JMP, and TRACE OFF. When

TRACE ALL or TRACE JMP is entered in the DEBUG mode, displayed trace lines allow
program execution flow monitoring. TRACE ALL causes trace information for all
instructions executed by the emulator processor to be displayed on the DEBUG display
device.

TRACE JMP causes trace information to be displayed each time one of the following
9900 branch, return, or jump instructions causes trace information to be displayed:

B, BL, BLWP, RTWP, JMP, JLT, JLE, JEQ, JHE, JET,
JNE, JNC JOC, JNO, JL, JH, JOP, and XOP

If the STEP option is entered with either the TRACE ALL or TRACE JMP command, and
a program is executed, control is returned to the DEBUG display device, allowing
programmer intervention after each instruction’s trace line is displayed.

When TRACE OFF is entered, all trace display is disabled.

The Trace Line

Each trace line resulting from TRACE ALL or TRACE JMP contains one program
instruction and information pertinent to its execution. Displayed trace lines appear in the
following format:

LOC INSTRUCTION ST wp REGISTERS

#3160 MOV 1234 *RE+ 0000 0000 0000 0000 0000 0000 0000 9000
CD601234 COOF 1000 0000 0000 G000 0000 0000 0000 0000 0000

8002: 9900 Assembler and Emulator Users @ 11-3

TRACE
-

114

9900 Debugging

All trace line values are displayed in hexadecimal format. A description of the 8900 trace

line follows:

LOC The location of the last executed instruction.

INSTRUCTION The first line shows the mnemonics of the last executed instruction.
The second line is the hexadecimal representation of the instruction.

ST The contents of the processor status register after the last
instruction execution.

WP The contents of the workspace pointer after the last instruction
execution,

REGISTERS The contents of the registers R@ through R 15 corresponding to the

above WP after the last instruction execution.

Debug Error Responses

Debug system error messages consist of the notation *“* DEB *** and a number indicating
the error type, as follows:

31
35
36
44

Parameter required
invaiid start address
Invalid end address

Invalid trace mode parameter

@ 8002: 9900 Assembler and Emulator Users

9900 Debugging TRACE
_

Trace Line Termination

in TRACE ALL or TRACE JMP mode, trace lines of ail statements or all branch instructions,
respectively, are continuously displayed during program execution. Tracing stops when one of
the following occurs: (1) an end of job condition is reached, {2) a breakpoint suspends the
display, (3) the space bar is pressed to suspend the display, (4) the IDLE instruction suspends
the display, or (5) the ESC key is pressed to suspend program execution.

The ESC key may be pressed while the display has been suspended by a an IDLE instruction.
To re-enter the TRACE mode, enter the following command:

GO [address]

Execution then continues at the beginning of the IDLE instruction, if no other address
is specified.

EXAMPLE

Suppose the following 9900 assembly language user program resides on your work disc:

LABEL OPERATION OPERAND COMMENT
START LWPI] SSET WP

LI R9,14 ;SET START CLEAR ADDRESS
CONT CLR *RO+ ,CLEAR AWORD

Ci R9,0FBFEH ;DONE?

JNE CONT ;NO—CONTINUE

IDLE ;YES-STOP

END

The preceding program clears program memory from location 14 through FBFE. The program
is assembled. Emulation mode @ is assigned. The absolute binary object code is read into
program memory with LOAD. Entering the DEBUG command as follows places the system

in debug mode.

8002: 9900 Assambler and Emulator Users @ 116

TRACE 9900 Debugging

L -~~~ — " "

>DEBUG

The program may now be traced for errors in execution flow.

Suppose a continuous trace of all instructions in the program’s execution sequence is
desired. Enter the command sequence below. The appropriate trace lines follow.

>TRACE ALL
>GOo 0o

LOC INSTRUCTION ST WP REGISTERS

@000 LWPI 0000 02EQ 0000 0209 0014 @4F9 @289 FBFE 16FC
02300000 0000 0000 0340 FFFF FFFF FFFF FFFF FFFF FFFF FFFF
9004 LI R9, 0014 02EC 0000 0209 0014 ©G4F9 0289 FBFE 16FC
62090014 0000 @000 0340 0014 FFFF FFFF FFFF FFFF FFFF FFFF
00@8 CLR *RO+ G2EQ 0000 0209 0014 @4F9 0289 FBFE 16FC
P4F9 @000 0000 0340 P16 0000 FFFF FFFF FFFF FFFF FFFF

Trace lines of all instructions are continuously displayed until a trace line termination
condition is met.

11-6 @ 8002: 9900 Assembler and Emulator Users

9900 Debugging DSTAT

SYNTAX

DSTAT

PURPOSE

The DSTAT command causes display of the current debugging session status.

EXPLANATION

The DSTAT command sends two display lines to the DEBUG display device permitting the
debugging status observation. The display for the current line in a 9900 program takes the

form below:

w W
P=xxxx BP=xxxx R XXXX g XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

ST=xxxx WP=xxxx XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

All DSTAT display line values are in hexadecima! format. A description of the display line
for a program written in 9900 assembiy language follows.

8002: 9900 Assembler and Emulator Users

QSTAT 9900 Debugging

11-8

P The emulator processor’s next instruction address.

BP The two possible active breakpoints and the breakpoint parameters.
If the R parameter is shown, a breakpoint is set to occur whenever
an attempt is made to read from the specified breakpoint. If the W
parameter is shown, a breakpoint is set to occur whenever an
attempt is made to write from the specified breakpoint. If neither
parameter is shown, a breakpoint is set to occur whenever an
attempt is made to read from or write to the specified breakpoint.

ST The value of the processor status word.

WP The value of the processor workspace pointer.

The values of the registers R@ through R 15 appear on the right-hand side of the DSTAT
display entry. The values of R@ through R7 appear on the first line and the values of R8
through R 15 appear on the second line.

@ 8002: 9900 Assembler and Emulator Users

DSTAT

9900 Debugging

EXAMPLES

Suppose breakpoints are set at addresses 008 and BOPA in a 9900 program. Whenever an
attempt is made to read (specified by ‘“R*’) from either of these addresses, a breakpoint is
set to occur. The following command lines set those breakpoints:

>BKPT 0088 R
>BKPT G@6A R

When the program is executed with the GO command, the first breakpoint occurs at
address 0008.

>GO

LOC INSTRUCTION ST wp REGISTERS

o@@8 CL RO @goeed 1111 1111 1111 1111 1111 1111 1N
@4co CeoF 1000 1111 1111 1111 1111 1111 1111 1111 1111

BREAK

The second breakpoint occurs at address O00A:

>GO
000A LWPI 2000 0000 0000 0000 0008 0000 00P 0008 GO0
@2E02000 COOF 2000 000 0000 0000 0GOG 0000 0000 0000 0000
BREAK
>
8002: 9900 Assembler and Emulator Users @ 11-9

DSTAT

9900 Debugging

A debug status line might now be useful to examine the current status of the debugging
session.

>DSTAT

P=000E BP=0008 R 000A R 0000 0000 0000 0000 0000 0000 0000 0000
ST=C@QF WP=2000 0000 0000 0000 0000 0000 0000 0000 0000

The debug status line displays the emulator processor’s next instruction address (POQE, since
LWPI is a two-word instruction), the active breakpoints and their parameters (0008 R and
POPA R), the workspace pointer (2000), the status register contents (CO@F) and the contents
of the emulator processor registers, R@ through R15.

11-10 @

8002: 9900 Assembler and Emulator Users

SET

9900 Debugging

PURPOSE

To reassign hexadecimal values to the 9900 Emulator Processor registers, workspace pointer,
or status register, enter the SET command line.

EXPLANATION

Values may be reassigned for a continuous series of one or more registers, beginning with
the first register specified. This series should not exceed the available registers.

The 9900 Emulator Procesor may be reassigned in the following sequence:

R@ R1...R15 WP ST

@ 11-11

8002: 9900 Assembler and Emulator Users

SET

9900 Debugging

1112

A description of the register sequence is outlined below:

RO Register @
R1 Register 1

R15 Register 15
WP Workspace Pointer
ST Status Register

Note when reassigning values to these registers, a two-byte hexadecimal value must be
specified. When values under two bytes in length are specified, the high bytes of the registers
are filled with zeros.

EXAMPLE

Suppose the register contents below are displayed by the DSTAT command:

P=0104 G000 0001 0002 0003 0004 0GOS 0006 0@07
ST=000F WP=2000 0008 0009 O00A 000B GOAC 000D OGOE OOOF

To reassign zeros to registers R14 and R15, and change the workspace pointer to 2002,
enter the following SET command line:

>SETR14 0 0 2002
Another look at the register contents with the DSTAT command shows the change.
>DSTAT

P=0104 0001 0002 0003 0004 0GOS 0006 0007 0008
ST=000F WP=2002 0009 00GA 000B 00OC 00D 0000 (dA0 FFFF

Since the new workspace pointer {WP) now points to location 2802 in memory, the register
set is effectively changed. Register 1 becomes Register @, Register 2 becomes Register 1, and
so on. Register 15 is filled with an unknown value (in this case, FFFF).

@ 8002: 9900 Assembler and Emulator Users

Section 12
PROTOTYPE CONTROL PROBE

INTRODUCTION

The prototype control probe links the prototype system to the emulator processor module.
When this option is installed, the prototype microprocessor is replaced by the probe,
permitting the prototype to be tested and debugged under 8002 uProcessor Lab control.
Hardware debugging is accomplished through the emulator processor; the emulator
software; and the probe, which substitutes for the microprocessor in the prototype.
Programs written for execution by the microprocessor can be monitored compieteiy, and
emuiation permits thorough prototype testing.

DESCRIPTION AND INSTALLATION

The prototype control probe consists of three connected parts: a 6-foot ground plane cable
pair, driver/receiver board, and an 18-inch cable pair with a 64-pin plug. The complete
assembly is shown in Fig. 12-1.

The 6-foot ground plane cable pair consists of two 40-conductor flat cables with ground,
power, and signal lines. The free end of the cable pair connects to the emulator processor
module by means of a cable termination card inserted at the top of the emulator board. The
9900 CPU is then moved to the prototype control probe module to minimize emulation

delays.

Receivers for data, address, and circuit board control are located in the prototype control
probe assembly. The module assembly provides signal integrity and minimizes loading on
circuits connected to the microprocessor socket.

8002: 9900 Assembier and Emulator Users @ 12-1

Prototype Control Probe

Prototype Control Probe

Prototype Hardware

24174

Fig. 12-1. 9900 Emulator Processor and Prototype Control Probe Assembly.

A 64-pin plug at the end of the 18-inch twisted-pair cables fits into the prototype
microprocessor socket. Pin 1 on the plug must be mated to receptacle 1 on the socket.
An indentation is located near pin 1 on the plug base to aid in pin identification. Refer to
Fig. 12-2, demonstrating proper plug insertion.

12-2

@ 8002: 9900 Assembler and Emulator Users

Prototype Control Probe

If the plug is incorrectly inserted, damage to the prototype control probe will result.

Fig. 12-2 illustrates the proper method for plug insertion.

If the plug is incorrectly inserted, the following parts may require replacement:

Within the Prototype Control Probe Driver/Receiver Board

DIP No.

u1030
u1040
u1050
u1060
u2070
ud010
udd20
udn30
udpap
udps0
ud070

Tektronix Part No.

156-P956-00
156-0956-00
156-0480-00
156-0383-00
156-0480-00
156-0480-00
156-0928-00
156-0928-00
156-0928-00
156-0928-00
156-0383-00

Emulator Processor Board

3AG 250V

Manufacturing No.

7415244
7415244
74LS08
74502
741508
74LS08
7415243
7415243
7415243
7415243
74L502

1A Fast Blow Fuse — Tektronix Part No. 159-0022-00

3AG 250V 3A Fast Blow Fuse —— Tektronix Part No. 1569-0015-00

Buffer in Special Purpose Cable

Tektronix Part No. 156-0720-00 — Mfg. No. 74LS368 located in 64-pin probe

8002: 9900 Assembler and Emulator Users

12-3

Prototype Control Probe

& | <)

2417-2

Fig. 12-2. Proper Plug Insertion.

When using the spring-plate protected 64-pin plug with a ero-insertio -force socket, place

R +4 PR P P PP

I.. N € DIuG an -
[~ U"f‘plll IUW'plUIIIC IJII' bUbl\Bl \lllblUUCUI UBLWUUH e p uy diiu uie

The prototype control probe, properly installed, is shown in Fig.12-3. If the pins on the
plug are not shorted, the cable assembly can remain connected to the prototype hardware
while the prototype control probe is not in use.

12'4 @ 8002: 9900 Assembler and Emulator Users

Prototype Control Probe
.|

9900 Emulator
Processor Module

> interface Asﬁmbly

Fig. 12-3. Prototype Controi Probe Connected to Prototype Hardware.

OPERATION

Once the prototype control probe is connected to the prototype hardware, the prototype
hardware and software are exercised under TEKDOS control. Refer to the 8002 uProcessor
Lab System User's Manual for details.

8002: 9900 Assembier and Emulator Users @ 12-5

Appendix A

SOURCE MODULE CHARACTER SET

SYMBOLS
A.Z

Q
[e]

, lcomma)

14

[]

%

DEFINITION

letters used in symbols; lower-case characters (other than in strings
and comments) are interpreted as the corresponding upper-case
characters

numbers used in symbols and constants

used in symbols, and to represent assembler location counter contents

used in symbols

used in symbols

precedes a comment

delimiter for operand items

string delimiter

string concatenation operator

string substitution delimiter

total number of arguments passed to current macro expansion
group macro code to be treated as a single argument

provides unique labels for each macro expansion

is replaced by name of current section or common in a macro expansion
binary arithmetic operation, multiplication

binary arithmetic operation, division

unary or binary arithmetic operator, addition

unary or binary arithmetic operator, subtraction

override precedence of operators

unary logical operator, not

binary logical operator, and

binary logical operator, inclusive or

binary logical operator, exclusive or

field delimiter

8002: 9900 Assembler and Emulator Users @

Source Module Character Set

SYMBOLS DEFINITION

TAB field delimiter

CARRIAGE field and line delimiter

RETURN

ALL ASCII valid in string constants or in comments

CHARACTERS

EXCEPT THE

CARRIAGE RETURN

CHARACTER

Aort allows following special character to have literal meaning
AN or t1 allows the second caret or up-arrow character to have literal meaning

1

relational operator, equal
> relational operator, not equal
relational operator, greater than

relational operator, less than

vV AV A

i

relational operator, greater than or equal

A
]

relational operator, less than or equal

A-2 @ 8002: 9900 Assembler and Emulator Users

Appendix B

ASSEMBLER DIRECTIVES

DIRECTIVE
ASCIi
BLOCK
BYTE
COMMON
ELSE

END
ENDIF
ENDM
ENDR
EQU
EXITM
GLOBAL
IF

INCLUDE
LIST
MACRO

NAME
NOLIST
ORG
PAGE
REPEAT

8002: 9900 Assembler and Emulator Users

OPERATION

stores ASC!| text in memory

reserves a specified number of bytes in memory

allocates one byte of memory to each expression specified
declares Linker section, assigns name, defines type to be common

when expression is false, causes assembly of alternate source lines
between ELSE and ENDIF directives

terminates source modules

signals corresponding |IF block termination

terminates a macre definition block

signals end of each REPEAT cycle

permanently assigns a value to a symbol

terminates expansion of current macro before encountering ENDM
declares symbols to be global variables

when expression is true, causes assembly of source lines between

iF and ENDIF directives
inserts text from specified file into the program
enables display of assembler listing features

defines the name of a source code block used repeatedly within a
program

declares name of an object module

disables display of assembler listing features

sets contents of location counter

begins the next listing line on the following page

enables macro !ines between REPEAT and ENDR directives to be
assembled repeatedly

(Directives continued on next page)

B-1

Assembler Directives

—

B-2

DIRECTIVE

RESERVE
RESUME
SECTION
SET

SPACE
STITLE

STRING
TITLE

WARNING

WORD
WPNT

OPERATION

sets aside an area in memory
continues definition of code for a given section
declares Linker section, assigns name, defines parameters

assigns or reassigns an expression value to a string or numeric variable
symbol

spaces downward a specified number of listing lines

creates a text line on the second line of each listing page heading
for program identification

declares symbol to be a string variable

creates a text line at the top of each listing page heading for
program identification

generates specified warning message on the output device and in the
listing
allocates two bytes of memory to each expression specified

informs the Assembler of the location for the user’s current workspace

@ 8002: 9900 Assembler and Emulator Users

Assembler Directives

ASSEMBLER DIRECTIVE SYNTAX

LABEL

[symbol]
[symbol]
{symbol]
{symboi]
[symbol]
[symbol]
[symbol]
[symbol]
[symbol]
{symbol}
[symbol]
[symbol]
[symbol]
{symbol]
{symbol]
[symbol]
[symbol]
[symbol]
[symbol]
[symbol]
[symbol]
[symbol]
{symbol]
[symbol]
{symbol}

[symbol]

OPERATION
ASCII
BLOCK
BYTE
COMMON
ELSE
END
ENDIF
ENDM
ENDR
EQU
EXITM
GLOBAL
IF
INCLUDE
LIST
MACRO
NAME
NOLIST
ORG
PAGE
REPEAT
RESERVE
RESUME
SECTION
SET
SPACE

8002: 9900 Assembler and Emulator Users

OPERAND

{string expression} [,string expression] . ..
{ expression }

{expression} {,expression] ...

{ symboi } [LABSOLUTE]

[expression]

{ expression }

{ symbol} [symbol] . ..
{ expression }
{ string expression }
[CND] [,TRM] [,SYM] [,CON] [MEG] [ME]
{ symbo }
{ symbol }
[CND] [,TRM] [,SYM] [,CON] [MEG] [,ME]

{in expression }

{ expression1} [.expression2]

{ symbol, expression} [,ABSOLUTE]
[symbol]

{ symbol } [,ABSOLUTE]

{ expression }

[expression]

COMMENT
[;charstring]
[;charstring]

[charstring)

[;charstring]
[;charstring]
[charstring]
[;charstring]
{;charstring]
[;charstring]
[;charstring]
[;charstring]
[;charstring]
[;charstring]
[;charstring]
[;charstring]
[;charstring]
[charstring]
[;charstring]
[;charstring]
[;charstring]
[;charstring]
[;charstring)
[;charstring]

[;charstring]

{Directives continued on next page)

Assembler Directives

B-4

LABEL

[symbol]
[symbol]
[symbol]
[symbol]
[symbol]

[symbol]

OPERATION
STITLE
STRING
TITLE
WARNING
WORD
WPNT

OPERAND

{string expression }
{string expression}

{expression} [expression] . ..

{expression}

COMMENT

[;charstring]

{{strvaﬂ} [(Ienexp1)]}[{,strvar2} [(lenexp2)]]. .. [:charstring]

[;charstring]

[message]
[;charstring]

[;charstring]

8002: 9900 Assembier and Emulator Users

Appendix C
SUMMARY OF 9900 INSTRUCTIONS

All 9900 instructions are summarized in this appendix. For a detailed description of the
instruction set, consult a 9900 assembly language programming manual.

Each 9900 instruction statement consists of an operation code and up to two operands,
depending upon the operation to be performed. An operation involving an implied operand
consists of an operation code only. If an instruction involves data movement, the data flows
from the first operand (origin) to the second operand (destination).

8002: 9900 Assembler and Emulator Users @

C-1

Summary of 9900 Instructions

—

In the instruction summary that follows, the pre-defined symbols described in Section 2 are
used in their correct context. Other operand notation is used as follows.

expd an expression representing a 4-bit XOP vector number, shift count, or
CRU communications register unit bit count.

exp8 an expression representing a signed 8-bit CRU displacement address in
the range —128 to 127.

exp16 an expression representing a 16-bit data or address constant.

r one of the workspace registers, R@ to R15, or an expression that
evaluates to a numeric register value.

rs or rd represents one of the following (rs is the source and rd the
destination):

r one of the 16 workspace registers (Register Addressing
Mode)
*r the memory address contained in the workspace register

specified by r {Register Indirect Addressing Mode)

*r+ the memory address contained in the workspace register
specified by r. After this address is obtained, the
contents of r are incremented by one (Register Indirect
Auto Increment Addressing Mode)

If *r or *r+ is specified, the address in the register is treated as a word
address, i.e., the least significant bit is ignored.

ms or md represents one of the following (ms is the source address and md the
destination address):

exp16 an address in memory {(Memory Addressing Mode)

exp16{r} the address in memory computed during program
execution by adding the memory address specified by
exp16 to the contents of the specified workspace register,
r (Indexed Memory Addressing Mode)

This address is always a word {even-numbered) address. If an
odd-numbered address is specified, the least-significant bit is ignored.

C-2 @ 8002: 9900 Assembler and Emulator Users

Summary of 9900 Instructions
. __________________________________]

rsB or rdB

msB or mdB

rsH or rdH

rsL or rdLL

msH or mdH

msL or mdL

(r,r+1)
R0Og..3
R12 .12

rexp

rad

PC

WP

LSB

MSB

8002: 9900 Assembler and Emulator Users

same as rs or rd except, that if Register Addressing Mode is specified,
rsB or rdB refers to the high byte of rs or rd respectively. |f Register
indirect or Register Indirect Autoincrement Addressing Mode is
specified, the address contained in rs or rd is treated as a byte (odd or
even) address.

same as ms or md except the address is treated as a byte (odd or even)
address.

same as rs or rd except only the high byte of rs or rd is used (the most
significant byte).

same as rs or rd except only the low byte of rs or rs is used {the least
significant byte).

same as ms or md, except only the high byte of the contents of ms or
md is used (the most significant byte).

same as ms or md, except only the low byte of the contents of ms or
md is used {the least significant byte).

one of the workspace registers and the next higher numbered registers.

bits @ through 3 of R@ where bit @ is th

viiwa . H g

LSB,

bits 1 through 12 of R12 where bit @ is the LSB.

a 16-bit memory address within the range —126 to 129 bytes from the
current instruction. This address is translated to a PC-relative address,
rad, in the object module.

an 8-bit PC-relative address in two’s complement form within the
range —128 to 127. (This offset is relative to the address in the PC, the
next instruction). rad is computed from rexp by the Assembler.

the 16-bit program counter (points to the next instruction).

the 16-bit workspace pointer register (points to the start of the
workspace register area in memory).

least significant bit.

most significant bit.

@ C-3

Summary of 9900 Instructions

X

Cc4

ST

AB,

the 4-bit interrupt control mask specifying the interrupt levels
enabled.

the 16-bit status register containing the condition codes and the
interrupt control mask as follows:

15 14 13 12 11 10 9 84 340
L A Z cy v P EX |

the meaning of the condition codes follows:

L logical greater than status bit

A arithmetic greater than status bit
z zero status bit

CY carry-borrow status bit

overflow status bit
P parity status bit
EX extended operation status bit

the meaning of the condition code symbols follows:

u status bit unaffected by instruction result
X status bit set or reset depending on instruction result
z the status bit may or may not be affected dependent on

which instruction is executed by the XOP instruction.
The XOP instruction does not affect the status bit.

nth bit of the address bus where @ is the least significant byte.
indicates “‘is transferred to".

indicates "‘is exchanged with”’,

addition operator.

subtraction operator.

multiplication operator.

division operator.

@ 8002: 9900 Assembler and Emulator Users

Summary of 9900 Instructions

—

()

()

Memory Access

Machine Cycles

msMemAcc

absolute value of expression between two bars.
quotient of the division specified in the brackets.
remainder of the division specified in the b
logical NOT operator.

logical AND operator.

logical inclusive OR operator.

logical exclusive OR operator.

refers to contents of address, register or flag.

refers to the contents of allocation whose address is contained in the
specified register (indirect addressing).

the total number of memory accesses needed to execute the
instruction.

the number of system clock cycles needed to execute the instruction.

b
]

e
at the address contained in rs.

~t

meamala
TRATHID

-t

a
<

the number of memory accesses needed for the instruction located
at address ms.

NOTE

All 9900 instructions require additional memory accesses and machine cycles
when Register Indirect, Register Indirect Autoincrement, or Indexed Memory
Addressing modes are used. Refer to Table A for additional memory accesses
and machine cycles for word instructions; refer to Table B for byte instructions.

8002: 9900 Assembler and Emulator Users

C-5

Summary of 9900 Instructions

Table A if rsor rd = *r, add 1 to Mem Acc, and 4 to machine cycles
if rs or rd = *r+, add 2 to Mem Acc, and 8 to machine cycles
if ms or md = exp16(r), add 1 to Mem Acc

Tabie B if rsorrd = *r, add 1 to Mem Acc, and 4 to machine cycles

ifrsorrd = *r+, add 2 to Mem Acc, and 6 to machine cycles
if ms or md = exp16(r), add 1 to Mem Acc

C-6 @ 8002: 9900 Assembler and Emulator Users

si@s(JOIB|NWT puUe Ja|quiassy D066 2008

LD

Object
Module
Words

DATA TRANSFER INSTRUCTIONS

N = = = W NN = WNN=NN

ARITHMETIC INSTRUCTIONS

N = W NN = WNN =

Memory
Access

w

W N OGO, P

P WNNOOOOO DA OOREN

Machine
Cycles

12
10
14
22
22
30
14
22
22
30
8

8

10
18

14
22
22
30
14
22
22
30
12
20

Source Mo;:lule Syntax

Operation

Ll
LWPI
MoV
MOV
MOV
MOV
MOvB
Movs
MOVB
MOVB
STST
STWP
SwPB
SWPB

> > > >

>

B
AB
AB
AB
ABS
ABS

Operand

r,exp16
exp16
rs,rd
rs,md
ms,rd
ms,md
rs,rd
rs,md
ms,rd
ms,md
r

r

rs

ms

rs,rd
rs,md
ms,rd
ms,md
rs,rd
rs,md
ms,rd
ms,md
rs

ms

Instruction Description

(r)<exp16
(WP)<exp16
(rd)<(rs)
(md)<(rs)
(rd)<(ms)
{md)}(ms)
(rdB)<(rsB)
{mdB)<«(rsB)
(rdB)<«(msB)
(mdB)<«(msB)
(r)«(ST)
(r)}<(wP)
(rsH)<—>(rsL)
(msH)<—(msL)

(rd)<(rd)+(rs)
{md)<(md)+(rs)
(rd)<(rd)+(ms)
{md)<(md)+{ms)
(rdB)<(rdB)+(rsB)
{mdB)<(mdB)+(rsB)
(rdB)<(rdB)+(msB)
(mdB)<(mdB)+(msB)
(rs)< I{rs)!

(ms)<« I{ms)I

Condition Codes
LAZCYVP?P

cC € £ c X X X X X X X X € X

X X X X X X X X X X

C C £ £c X X X X X X X X € X

X X X X X X X X X X

c € £ £c X X X X X X X X € X

X X X X X X X X X X

cC € € £ £ C €Cc cCc c £ c c Cc C

X X X X X X X X X X

C £ £ € € € € € Cc Cc Cc Cc C C

X X X X X X X X X X

u
u
u
u
u

EX

cC £ £ € € Cc € Cc C C

c

C € € £ € € € c Cc C

SUOIIONJISU| 00B6 JO Alewwing

8-

$43SM) 401B|NW T PuUB J8|qUIassy 0066 2008

Object
Module
‘Words

2
1
2
1
2
1

_ W NN =N =N =N =N =

Memory
Access

- Hh WL WS

A oo A WO A WSAEW

Machine
Cycles

14
10
18
10
18
92-124

100-132

10
18
10
18
52
60
12
20
14
22
22
30
14

Source Module Syntax
Operation Operands
Al r.exp16
DEC rs

DEC ms
DECT rs
DECT ms

DIV rs,r
DIV ms,r
INC rs

INC ms
INCT rs
INCT ms
MPY rs,r
MPY ms,r
NEG rs

NEG ms

S rs,rd

S rd,md
S ms,rd

S ms,md
SB rs,rd

Instruction Description

(r)=(r)+exp16

(rs)<(rs) — 1

{ms)<(ms) — 1

(rs)<(rs) — 2

(ms)<(ms) — 2

If unsianed (rs) > unsigned (r),
(r)}<-QUO[(r,r+1)=(rs)}
(r+1)<REM[(r,r+1)=(rs)]
Otherwise (v)}<1, MemAcc = 3
and Cycles = 16

If unsigned (ms) > unsigned (r),
(r)<QUO[(r,r+1)+(ms)]
(r+1)<REM{(r,r+1)+(ms)}
Otherwise (v)<1, MemAcc = 4
and Cycles = 24

(rs)<(rs)+1

(ms)<(ms)+1

(rs)<(rs)+2

(ms)«<(ms)+2

(r,r+1)<unsigned(rs) *unsigned(r)
{r,r+1)<unsigned(ms) *unsigned(r)

(rs}e —{rs)

{ms)< —(ms)
(rd)<(rd) —(rs)
{md)<(md) —(rs)
(rd)<(rd}—(ms)
(md)<(md)—(ms)
(rdB)<(rdB)—(rsB)

Condition Codes

L

c X X X X X

X X X X X X X € £ X X X X

A

c X X X X X

X X X X X X X € € X X X X

z

c X X X X X

X X X X X X X € € X X X X

cYy v
X X
X X
X X
X X
X X
u x
u X
X X
X X
X X
X X
u u
u u
u x
(VI ¢
X X
X X
X X
X X
X X

P

c c € € Cc cC

€ € Cccc £ € C Cc c Cc Cc ¢

c Cc € Cc c C

€ € C £ £ c € cCc c c Cc cC

SUOIONJISU| 0066 4O Alewwng

sies(| JO1B|NWIF PUB J8|qWessY 0066 $Z008

6-0

Object
Module
Words

Memory
Access

Machine
Cycles

22
22
30

COMPARISON INSTRUCTIONS

1

3

14

22

22

30

14

Source Médule Syntax
Operands

Operation

sSB
SB
SB

C

C

cB

rs,md
ms,rd
ms,md

rs,rd

rs,md

ms,rd

ms,md

rs,rd

Instruction Description

(mdB)<(mdB)—(rsB)
(rdB)<(rdB)—(msB)
(mdB)A(mdB)—(msB)

If unsigned (rs) > unsigned (rd);
set (L)<1

If signed (rs) > signed (rd);
set (A)<1

If (rs)=(rd); set Z<1

If unsigned (rs) > unsigned (md);
set (L)<1

If signed (rs) > signed (md);
set (A)<1

If (rs)=(md); set (Z)<«1

If unsigned (ms) > unsigned (rd);
set (L)<1

If signed (ms) > signed (rd);
set (A)<1

If (ms)=(rd); set (Z)«1

If unsigned (ms) > unsigned (md);

set (L)<1

If signed (ms) > signed (md);
set (A)<1

If (ms)=(md) set (Z)«<1

If unsigned (rsB) >> unsigned (rdB);

set (L)1

If signed (rsB) >> signed (rdB);
set (A)«1

If (rsB)=(rdB); set (Z)<1

Condition Codes

L

X X X X

AZCYve

EX

SUOIIONJISU} 0066 JO Alewiuing

oL-0

s4asn 401B|NW 3 pue Ja|quessy 0066 :Z008

Object
Module
Words

2

Memory
Access

4

Machine
Cycles

22

22

30

14

14

22

14

22

Source Module Syntax

Operation

cB

cB

cB

Ci

cocC

cocC

czC

czc

Operands

rs,md

ms,rd

ms,md

rexp16

Instruction Description

If unsigned (rsB) > unsigned (mdB);
set (L)<1

If signed (rsB) > signed (mdB);
set (A)<1

If (rsB)=(mdB); set (Z)<1

If unsigned (msB) > unsigned (rdB);
set (L)<1

If signed (msB) > signed (rdB);
set (A)<1

1¥(msB)=(rdB); set (Z)<1

If unsigned {msB) > unsigned (mdB);
set (L)<1

If signed (msB) > signed (mdB);
set (A)<1

If (msB)=(mdB); set (Z)<1

If unsigned (r) > unsigned exp16;
set (L)1

I signed (r) > signed exp16;
set (A)<1

If (r)= exp16; set (Z)<1

If (rs) & (r) = (rs);
set (Z)<1

If (ms) & (r) = (ms);
set (Z)«1

If(rs) & (r)=0;
set (Z)<1

If (ms) & (r) = @;
set (Z)<1

Condition Codes
LAZCYVP

X

x

X

X

X

EX

SUOIONJISU| 0066 4O AJewwung

Object _
Module Memory Machine Source Module Syntax Condition Codes
Words Access Cycles Operation Operands Instruction Description LAZCYVP

LOGICAL INSTRUCTIONS

slasn) 401BjNUIg Pue J3|qwessy 0066 2008

LL-0

N = W NN = WNN-=2WNN=WNN=N=RNN=N=N

R OO O DO AT D OO OSESWRARDWDR WSS

14
10
18
10
18
14
10
18
14
22
22
30
14
22
22
30
14
22
22
30
14
22
22
30
14
22

ANDI
CLR
CLR
INV
INV
ORI
SETO
SETO
SacC
sSacC
SCcC
SOC
sccB
sOocCB
SOCB
socB
szcC
SzZC
SzC
SZC
SZCB
SZCB
SZCB
SzCB
XOR
XOR

rexp16
rs

ms

rs

ms
rexpl16
rs

ms
rs,rd
rs,md
ms,rd
ms,md
rs,rd
rs,md
ms,rd
ms,md
rs,rd
rs,md
ms,rd
ms,md
rs,rd
rs,md
ms,rd
ms,md
rs,r

ms,r

(r)<H(r) & exp16
(rs)<0

(ms)<0

{rs)< \(rs)

(ms)< \(ms)
(r)<(r)lexp16
(rs)}<FFFF16
(ms)<FFFF1g
(rd)<(rd)!(rs)
{md)<(md)!(rs)
(rd)<(rd)!(ms)
(md)<(md)!{ms)
(rdB)<«(rdB)!(rsB)
(mdB)«-(mdB)!(rsB)
(rdB)<(rdB)! (msB)
{mdB)<-(mdB)!(msB)
{rd)< \(rd) & (rs)
(md)< \{md) & (rs)
(rd)< \(rd) & {ms)
(md)< \(md) & (ms)
(rdB)< \(rdB) & (rsB)
(mdB)<« \{mdB) & (rsB)
{rdB)« \(rdB) & (msB)
{mdB)< \(mdB) & {msB)
{r)<{r)!(rs)
{r)<=(r)!!{ms)

X X X X X X X X X X X X X X X X X X € € xXx X xXx € C X

X X X X X X X X X X X X X X X X X X € € X X X € € X

u

x

c
€ £ € € CC CcCECcC EC CcC eCcgCc e eCc e € cCc e c e e € Cc C C

X X X X X X X X X x X X X X X X X X <

C € CE£c EC EC EC EC C e ceCc g€ cCc cCcgc e cc Cc ©cc C C

cC X X X X € € € € € £ € € € € Cc C

c c C

u
u

C € £ CcCCc CcCEcCcC cC EC e cC EeEC ecCc e ecC e e Cc Cc c e € € C

SUOIIONIISU| D066 JO Alewiwung

cL-0

$48s() 401B|NW T PUE 1B{qLIBSSY 0066 2008

Object
Module Memory Machine Source Module Syntax
Words Access Cycles Operation Operands Instruction Description

SHIFT AND ROTATE INSTRUCTIONS

Note: In all the following instructions, exp4 is an optional operand which is assumed to be zero when absent.

For expd4 # 0; SLA r.exp4 Shift (r) left. Fill vacated bits

1 3 12+2*exp4 with 0.

For exp4 = @& (R@g..3) 0 If exp4 # @, shift (r) exp4 bits

1 4 20+2*(R00__3) If exp4 = 0 & (R@p..3) + 0,

For exp4 =0 & (R@gp..3) = ¢ shift (r} (R@g..3) bits

1 4 52 Ifexpd =0 & (R@y..3) =0
shift (r) 16 bits.

Forexp4 #+0; SRA r.expd Shift (r) right. Extend sign bit

1 3 12+2%expd through vacated bits.

Forexp4 =0& (R@g..3) @ If exp4 # 0, shift {r) exp4 bits

1 4 20+2*(R0yg..3) If exp4 = 0 & (R@g..3) 0,

Forexp4=08& (R@g..3) =0 shift (r) (R@g..3) bits

1 4 52 Ifexpd = 0 & (R@y.3) =0
shift (r) 16 bits

For expd #* 0; SRC r.expd Shift (r) right. Bits shifted

1 3 12+2%exp4 out of (rg) enter (rqy5)

For exp4 = 0 & (R@g..3)F0 If exp4 # @, rotate (r) exp4 bits

1 4 20+2*(R0y.3) Ifexpd = 0 & (R@p_3) 0,

Forexpd = 0 & (R@g..3) = 0; (r) (RBg..3) bits

1 4 52 Ifexpd =0 & (R@g.3)=0
shift (r) 16 bits

For exp4 #+ 0; SRL r,expéd Shift (r) right. Fill vacated

1 3 12+2*exp4 bits with @,

Forexp4 = @ & (R@g..3) # 0; If expd # @, shift (r) exp 4 bits

1 4 20+2*(R0y..3) If exp4 = 0 & (R@g..3) # 0,

Forexp4 = @ & (R@g_3) =0 shift (r) (R@g_.3) bits

1 4 52 Ifexpd = @ & (RBg_.3) =0
shift (r) 16 bits

Condition Codes
LAZCYVP?P

EX

SUOIIONIISU| 066 4O Alewiung

$485(J03B|NW3 PUE J8|qWessy 0066 :Z008

€L-0

Object
Module
Words

CONTROL TRANSFER INSTRUCTIONS

1
2

Memory
Access

2
3
3

Machine
Cycles

8
16
12

20

26

34

10

10

10

10

Source Module Syntax

Operation

BL

BL

BLWP

BLWP

JEQ

JGT

JH

JHE

Operands

rs

rs

rs

rexp

rexp

rexp

rexp

Instruction Description

(PC)<rs

(PC)<ms

(R11)<(PC)

(PC)<rs

(R11)<(PC)

(PC)<ms

(R13)<(WP)

{R14)«(PC)

(R15)«(ST)

(WP)<(rs)

(PC)<«(rs+2)

(R13)<(WP)

(R14)<(PC)

(R15)<(ST)

(WP)<(ms)

(PC)+{ms+2)

If (Z) =1, (PC)<(PC)+rad
Otherwise (PC)«(PC) and
Machine Cycles = 8

If (A) =1, (PC)«(PC)+rad
Otherwise (PC)«(PC) and
Machine Cycles = 8
f(L)=18&(Z)=0,
(PC)«(PC)+rad
Otherwise, (PC)<(PC) and
Machine Cycles = 8
If(L)=10r(2) =1,
{(PC)«(PC)+rad
Otherwise (PC)<{PC) and
Machine Cycles = 8

Condition Codes
LAZCYVP

EX

suononIIsu| 0066 40 Adewwing

¥L-0

$iaSM J03e|NW 3 PUE J3|q WSSy 0066 (2008

Object
Module
Words

1

Memory
Access

1

Machine
Cycles

10

10

10

10
10

10

10

10

10

12

Source Module Syntax
Operands

Operation

JL

JLE

JLT

JMP
JNC

JNE

JNO

Joc

Jop

RT

rexp

rexp

rexp

rexp
rexp

rexp

rexp

rexp

rexp

Instruction Description

If(L)=0&(Z)=0,
(PC)<(PC)+rad
Otherwise, (PC)<(PC) and
Machine Cycles = 8
If(L)=0or(2)=1,
(PC)<(PC)+rad
Otherwise, (PC)<(PC) and
Machine Cycles = 8
If(A)=08&(2Z2)=0,
(PC)<-(PC)+rad
Otherwise, (PC)<(PC) and
Machine Cycles = 8
(PC)<(PC)+rad

If (CY) = @, (PC)<(PC)+rad
Otherwise, (PC)«(PC) and
Machine Cycles = 8

If (Z) = @, (PC)«(PC)+rad
Otherwise, (PC)<«(PC) and
Machine Cycles = 8

If (V) =0, (PC)<(PC)+rad
Otherwise, (PC)«(PC) and
Machine Cycles = 8

If (CY) =1, (PC)<«{(PC)+rad
Otherwise (PC)«(PC) and
Machine Cycles = 8

If (P) = 1, (PC)«<(PC)+rad
Otherwise, (PC)<(PC) and
Machine Cycles = 8
(PC)<(R11)

Condition Codes
LAZCYV?P

u u uwu u u

EX

SUOIIANIISU| 0066 JO Alewwng

3
8
0
<]
(=]
P's
@ Object
:_3)_' Module Memory Machine Source Module Syntax
§ Words Access Cycles Operation Operands
3
o
5‘ 1 4 14 RTWP
=
8
% 2 2+rsMemAcc—1 8+rsCycles—4 X rs
2 3+msMemAcc—1 16+msCycles—4 X ms
1 8 36 XOP rs,expd
2 9 44 XOoP ms,exp4

COMMUNICATIONS REGISTER UNIT (CRU) INSTRUCTIONS
1 3 20+2%expd L.DCR rs,expd

S1-0

Instruction Description

(WP)<(R13)
(PC)+<(R14)
(ST)<(R15)

Execute instruction at rs.

If this instruction requires one

or two 16 bit operands, they must
follow the X instruction

Execute instruction at ms.

If this instruction requires one

or two 16 bit operands, they must
follow the X instruction
(R11)<(rs)

(R13)<(WP)

(R14)«(PC)

(R15)«(ST)

(WP)<«(40, g+expd™*4)
(PC)+(42,g+expa™4)
(R11)<(ms)

(R13)«(WP)

(R14)«(PC)

(R15)«(ST)

(WP)<-(404 g+expd *4)

(PC)<_(421 6+exp4*4)

Transfer bits serially from (rs) to
CRU in LSB to MSB order.

If expd + @,
transfer the low order exp4 bits of
(rs) to the CRU bit addresses,
(starting at (R124_.12))

Condition Codes

L AZCYVP?P
X X X X X
z z z
z z z
u u u
u u u
X X X

EX

SUO{IONIISU} 0066 JO Alewwng

91-0

548SM 401@|Nwi Y Pue 43|qwassy 0066 :Z008

Object
Module Memory Machine Source Module Syntax Condition Codes
Words Access Cycles Operation Operands Instruction Description LAZCYVPEX

If 1<<exp4<8, (rs) is a byte address
If 9<exp4<.15, (rs) is a word address
and (P) is unaffected
If expd = 0, 16 bits of (rs) are transfered,
(P) is unaffected and Machine
Cycles = 52
2 4 28+2*exp4 LDCR ms,expd Transfer bits serially from {ms) to X X X U uXxu
CRU in LSB to MSB order.
If exp4 # @, transfer exp4 of the
low order bits of (ms) to the
CRU bit addresses (starting at
(R124..12))
If 1<exp4<8, (ms) is a byte address
If 9<expa<15, (ms) is a word address
and (P) is unaffected
if exp4 = @, 16 bits of (ms) are
transferred, (P) is unaffected, and
Machine Cycles = 52
1 2 12 SBO exp8 Set a bit on the CRU Uuuu uuu
((R124_.12)+exp8)<1
1 2 12 SBZ exp8 Reset a bit on the CRU Uuuu uuu
((R127_4 2)+exp8)<d
1 4 58 STCR rs,exp4d Transfer bits serially from the X X X u uxu
CRU to (rs) in LSB to MSB order.
I1f exp4 # 0,
transfer exp4 bits of the
CRU (starting from (R124..12)) to
{rs). Any unfilled bits in (rs),
are set to @.

SUOIIONIISU| Q066 JO AJewwing

SJ9S(4103R|NW T PUB JB|qUesSY 0066 :Z008

LL-D

Object
Module Memory Machine
Words Access Cycles
2 5 66
1 2 12

Source Module Syntax

Condition Codes
Instruction Description LAZCYVP EX

If 1<<exp4<8, (rs) is a byte
address and Machine Cycles = 44
(48 if exp4 = 8)
If 9<exp4d<15, (rs) is a word address
and (P) is unaffected
If expd = @, transfer 16 bits from
CRU (starting at address (R12¢__¢2)
to (rs), Machine Cycles = 60 and
(P) is unaffected
Transfer bits serially from the CRU X X X U uxu
to (ms) in LSB to MSB order.
If expd # 0,
transfer exp4 bits of the
CRU (starting from (R124_.12)) to (ms)
Any unfilled bits in {ms) are set to @.
If 1<<exp4<8, (ms) is a byte address
and Machine Cycles = 50
(52 is exp4d = 8)
If 9<expd<8, (ms) is a word address
and (P) is unaffected
If expd = 9, transfer 16 bits of the
CRU (starting from (R124_42)) to
{ms), Machine Cycles = 68 and
(P) is unaffected.

Test specified (RU bit Uuxu uuu
(Z)<((R124_.19)+exp8)

suo1IdNIISU| 0066 30 AJewiung

8L-0

$i9S() J01B|NWIT PUE JB|GWessY 0066 :Z008

Object
Module Memory Machine Source Module Syntax Condition Codes
Words Access Cycles Operation Operands Instruction Description LAZCYVP

INTERRUPT CONTROL INSTRUCTIONS

y 1 12 CKOF (ABq2)<0 Uuuu uu
(ABy3)<1
(A’B14)“1

1 1 12 CKON (ABq2)<1 Uuuu uu
(ABq3)<0
(ABq14)<1

1 1 12 IDLE Suspend instruction execution Uuuu uu
until an interrupt, LOAD or
RESET occurs.
(ABq2)<0
(ABq3)<1
(AB14)<0

2 2 16 LIMI exp16 {e)<exp16p.3 Uuuu uuu
1 1 12 - LREX {AB32)<1 Uuuu uuu

(AB13)<1
(AB14)<1
1 1 10 NOP No operation Uuuuu
1 1 12 RSET (1)<0 Uuuuu
(ABq2)<1
(ABq13)<1
(ABq14)<0

suonanAsu| 0066 40 Aewwng

SERVICE CALL FUNCTION CODES

CODE

01
02
03

05

10
1
12
13
14
15
16
17
18
19
1A
1C
1F
41
42
81
82
C1
c2

8002: 9900 Assembler and Emulator Users

Appendix D

FUNCTION

Read ASCII and wait

Write ASCII and wait

Close device or file on channel
Rewind file on channel

Delete file on channel

Rename file on channel

Assign channel to device or channel
Get time (milliseconds)

Get overlay addresses

Get parameter (procedure parameter buffer)
Get device type

Get device status

Get last console input character
Load overlay

Execute overlay

Suspend execution

Exit

Get parameter (emulation parameter buffer)
Abort

Read binary and wait

Write binary and wait

Read ASCII and proceed

Write ASCIt and proceed

Read binary and proceed

Write binary and proceed

Appendix E
HEXADECIMAL CONVERSION TABLES

ASCII CODE CONVERSION TABLE

HEXADECIMAL

MOST SIGNIFICANT CHARACTER
— | 1 2 3 4 5 6 7
@ {NUL DLE SP 8 @ P ' p
1 1SOH DbCc1t ' 1 A Q a g
2 | STXx DC2 " 2 B R b r
3 ET DC3 # 3 C S c]
4 EOT DC4 $ 4 D T d t
LEAST 5 | ENQ NAK % 5 E U e u
SIGNIFICANT 6 | ACK SYN & 6 F V f v
CHARACTER 7 | BEL ETB ' 7 G W g w
8 | BS CAN (8 H X h x
9 | HT EM) 9 | Y i y
A| LF suB * : g z j 2
B | Vi EC + ; K [k |
c | FF FS ., < Lo\
DjiCR G - = M] m |
E | so RS . > N A n =
F SI uUs / ? O — o DEL
EXAMPLES
W =57
H=48
a =61
t=74
@ = 40
NUL = 00
DEL = 7F

8002: 9900 Assembler and Emulator Users @

Hexadecimal Conversion Tables

’

Decimal-Hexadecimal-Binary Equivalents 0-255:

Hexa-| Binary Hexa-| Binary Hexa-| Binary Hexa-| Binary
Deci- | deci- 8-bit Deci- | deci- 8-bit Deci- | deci- 8-bit Deci-| deci- 8-bit
mal mal Code mal mal Code mal mal Code mal mal Code

o | oo |oooooooo | 64 | 40 |o1000000 | 128 | 80 |10000000 | 192 | CO | 11000000
01 |ooooooot | 65 | 41 |o01000001 | 129 | 81 [10000001 | 193 f C1 11000001
02 |oocoooto | &6 | 42 |o1000010 | 130 | 82 | 10000010 | 194 | C2 |11000010
03 |{00000011 | 67 | 43 |01000011 | 131 | 83 |10000011 | 195 | C3 | 11000011
o4 |ooooo100 | 68 | 44 01000100 | 132 | 84 [10000100 | 196 | C4 |11000100
05 00000101 | 69 [45 [01000101 | 133 [85 |[10000707 | 197 [~ C5 [11000101
06 |00000110 | 70 | 46 |ot000110 | 134 | 86 [10000110 | 198 | C6 }11000110
o7 |ooooo111 | 71 | 47 |ot00111 | 135 | 87 [10000111 | 199 | C7 |11000111
08 |oo001000 | 72 | 48 |01001000 | 136 | 88 [10001000 | 200 | C8 | 1100 1000
0o |oooo1001 | 73 | 49 |01001001 | 137 | 89 [10001001 | 201 | CO 111001001
OA 00001070 | 74 [4A [01001010 | 138 [8A |10001010 | 202 [CA [1100 1010
o8 |ooco1011 | 75 | 4B |ot001011 | 139 | 8B |10001011 | 203 | CB |1100 1011
oc |oooco1100 | 76 | 4c |o01001100 | 140 | 8C | 10001100 | 204 | CC | 11001100
oo |ooco1101 | 77 | 4D |o1001101 | 141 | 8D | 10001101 | 205 | CD | 1100 1101
oE |oooo1110 | 78 | 4E |o1001110 | 142 | 8E [10001110 | 206 | CE |1100 1110
OF 00001111 | 79 | 4F 01001111 | 143 [8F [1000 1111 | 207 [CF 11100 1111
10 |ooo10000 | 80 | s0 [o1010000 | 144 | 90 |10010000 | 208 | DO | 11010000
11 |ooo1o0001 | 81 | 51 [o1010001 | 145 | 91 10010001 | 209 | D1 | 11010001
12 |ooo1o00t0 | 82 | 52 [o01010010 | 146 | 92 10010010 | 210 | D2 | 11010010
13 looo10011 | 83 | 53 [o01010011 | 147 | 93 110010011 § 211 | D3 111010011
14100010100 | 84 | 54 [01010100 | 148 [94 [10010100 | 212 [D4 [11010100
15 |ooo10101 | 8 | 55 [o1010101 | 149 | 95 |10010101 | 213 | D5 | 11010101
16 |oo010110 | 86 | 56 [01010110 | 150 | 96 |10010110 | 214 | D6 | 11010110
17 loooro111 | 87 | s7 [ot010111 | 151 | 97 10010111 | 215 | D7 | 11010111
18_|ooo1 1000 | 88 | 58 [o01011000 | 152 | 98 10011000 | 216 | D8 | 11011000
19 100017001 | 89 [59 |01011001 | 153 [99 [10011001 | 217 [DS [1101 1001
1A |00011010 | 90 | 5A |01011010 | 154 | 9A [10011010 | 218 | DA | 11011010
18 |o00011011 | 91 | 5B |[01011011 | 155 | 98 [10011011 | 219 | DB | 11011011
1c |ooo11100 | 92 | 5C |01011100 | 156 | 9C 10011100 | 220 | DC | 11011100
10_looo11101 | 93 | sD |oio11101 | 157 | 9D |10011101 | 221 | DD 11101 1101
1E (00011110 | 94 [5E |0101 1110 | 158 [9E | 1001 1110 | 222 | DE | 11011110
1F |ooo1 1111 | 95 | sF {0101 1111 | 159 | 9F 10011111 | 223 | DF | 1101 1114
20 |00100000 | 96 | 60 01100000 | 160 | A0 [10100000 | 224 | EO | 11100000
33 + losicooot | e7 | et loiwoooor | 161 | A1 110100001 | 225 | E1 111100001
22 looioo010 | 98 | 62 01100010 | 162 | A2 |10100010 | 226 | E2 111100010
23 100100011 | 99 | 63]01100011 | 163 [A3 [10700011 | 227 | E3 }11100011
24 |00100100 | 100 | 64 |01100100 | 164 | A4 [10100100 | 228 | E4 | 11100100
25 |00100101 | 101 | 65 |o1100101 | 165 | A5 |10100101 | 229 | E5 | 11100101
26 |00100110 | 102 | 66 01100110 | 186 ,| A6 [10100110 | 230 | E6 | 11100110
27 loow00111 | 103 |_67 |ot1100111 | 167 | A7 |10100111 | 231 | E7 l1110011d
28 100101000 | 104 | 68 [01101000 | 168 [A8 |[10101000 | 232 f E8 [11101000
29 |oo101001 | 105 | 69 |o01101001 | 169 | A9 |10101001 | 233 | E9 | 11101001
2a |oo101010 | 106 | €A |01101010 | 170 | AA |10101010 | 234 | EA |11101010
28 |oo101011 | 107 | €8 |o01101011 | 171 | AB [10101011 | 235 | EB | 1110 1011
2c |oo101100 | 108 | _6c [o1101100 | 172 | Ac }10101100 | 236 | EC 11101100
20 {0010 1107 | 109 | B0 [01101101 | 173 | AD [1010 101 ¢ 237 T UED 111101101
2€ |oo101110 | 110 | eE |o1101110 | 174 | AE [10101110 | 238 | EE [11101110
2F 00101111 | 111 | eF |o1101111 | 175 | AF |10101111 | 239 | EF | 11101111
30 |oot10000 | 112 | 70 |o01110000 | 176 | BO | 10110000 | 240 | FO | 11110000
3100110001 | 113 | 71 |01110001 [177 | B1 10110001 | 241 | F1_|11110001
32 100170010 | 114 [72 01110010 | 178 [B2 [10110010 | 242 [F2 [11110010
33 {00110011 | 115 | 73 [01110011 | 179 | B3 [10110011 | 243 | F3 | 11110011
34 00110100 | 116 | 74 [01110100 | 180 | B4 10110100 [244 | F4 |11110100
35 00110101 | 117 | 75 |[01110101 | 181 | BS |10110101 | 245 | F5 |11110101

WWWRRNRNADNNDRNRN NN = = b b o
M—~ozoonwmmnumaowmwmmammaowm‘JO’UIAmro—l

BB D WL W W WG

54 36 |00110110 118 76 1 0111 0110 182 B6 | 10110110 246 F6 | 11110110
55 37 [00110111 119 77 | 01110111 183 B7 10110111 247 F7 1111 o
56 38 | 0011 1000 120 78 {0111 1000 184 B8 | 10111000 248 F8 | 11111000
57 39 {0011 1001 21 79 | 0111 1001 185 B9 | 1011 1001 249 F9 | 11111001
58 3A | 0011 1010 122 7A | 0111 1010 186 BA 110111010 250 FA 11111010
59 38 10011 1011 123 78 10111 1011 187 BB _]1011 1011 251 FB | 1111 1011
60 3C | 00111100 124 7C | 0111 1100 188 BC [1011 1100 252 FC 11111100
61 3D |0011 1101 125 7D | 0111 1101 189 BD |1011 1101 253 FD [1111 1101
62 3E }0011 1110 126 7E | 01111110 190 BE | 1011 1110 254 FE | 11111110
63 3F 0011 iiid 127 7F 01i 1 181 BF 1011 1111 258 FF 1111t 1IN

E-2 @ 8002: 9900 Assembler and Emulator Users

Hexadecimal Conversion Tables

HEX ADDITION

HEXADECIMAL ADDITION TABLE

Ll213415]6] | AlBlClDE|F
1021314151617 BIC|D|E]TF]10
2]3|4[5]6|7]8 C|I/D|E[F/[10]11
3J4|5|6| 7|88 DIE[Fl10]11]12
456 [7]8]9]A E|F[10[11]12]13
56| 7]8]/9]A[B F]10]11][12]13] 14
67/ 8[e]A]B[C 1011 12[13[14] 15
7lsl9lAlB]ICID 11112113114 115] 16
8lo9/ABIC|DIE 12 113 1415 [16 | 17
9lA[B|C[D|E|F 13|14 15[16 [17 | 18
AIB|[C|D|E|F][10 14 (15[16| 17 [18 | 19
BUC|[D|E]|F | 10]11 1516 17| 18 [19 | 1A
| CID[E|F[10][11]12 16 [17 | 18 19 [1A] 1B
DIE[F 1011 1213 1718119 1AT1B1C |
EJF 10112113] 14 1819 1A 1B [1C | 1D

18 {19 [1A]1B{1C |1D | 1E
HEX F+8 = 17 |
HEX 10 = 16 DEC
HEX 7 = 7 DEC
HEX 17 = 23 DEC

8002: 9900 Assembler and Emulator Users @ E-3

Hexadecimal Conversion Tables

HEX MULTIPLY

HEXADECIMAL MULTIPLICATION TABLE

12114116 |18 | 1A|1C | 1E
1B[1E| 21 |24 |1 27 [2A | 2D
30 (34 [38]3C
2D | 32 | 37 |3C| 41 | 46 | 4B
36 |3C | 42 |48 | 4E | 54 | 5A
3F |46 4D |54 | 5B | 62 | 69
48 (50 [58 |60 | 68 | 70 | 78
51 | 5A [63 |6C| 75 | 7E | 87
32 [3C | 46 5A| 64 |6E |78 | 82 |8C | 96
16 121 | 2C| 37 [42 |4D | 58 [63 | 6E [79 | 84 | 8F | 9A | A5
18 |24 (30| 3C[48 |54 |60 6C| 78 (84 |90|9C | A8 | B4
1A (27 | 34 {41 |4E | 5B | 68| 75| 82 | 8F |9C | A9 | B6 | C3
1C|2A [38|46 [54 |62 | 70| 7TE | BC[SA | A8| B6 | C4 | D2
1E(2D|3C|4B|5A| 69| 78| 87 | 96 | A5 | B4 C3|D2| E1

N[O~ |W[N |-
~N[O| N I[N -l
mlO|»|o|o|e ol
(';,R;TIO(DCD“’“’

N

s>

N

[4]

N

(@]

m|m|O|O|m|>»

mmlUOm)

HEX 9x8 = 48

HEX 40 64 DEC
HEX 8 8 DEC
HEX 48 72 DEC

@ 8002: 9900 Assembler and Emulator Users

Assembler Error Codes

Appendix F

ASSEMBLER ERROR CODES

The following error code numbers signify the TEKTRONIX Assembler error messages
describing them. For 8002 nProcessor Labs purchased with 16k-byte program memory

modules, error codes are displayed. For systems purchased with program memory modules

totaling more than 16k-bytes, error messages are displayed along with the error codes.
Upon assembly and in assembler listings, error codes and messages appear immediately
below the source line containing an error.

***** ERROR:

***** ERROR:

***** ERROR:

***** ERROR:

P01 (no message displayed.)

Indicates that a user entered WARNING message has assembled. Refer
to WARNING directive explanation in Section 4.

P02 SYMBOL ALREADY DEFINED
Indicates that the symbol defined has been previously defined in the

program assembiing sequence. Occurs when the same symboi is
equated to two values (with EQU directive) or when the same symbol

labels two instructions.

P03 SYMBOL VALUE PHASE ERROR

Indicates that the label or EQU symbol value differs between passes,
or that the section assignment of a label or EQU symbol value differs
between passes.

P4 ILLEGAL EQU OF GLOBALS

Indicates that an unbound global is assigned the value of another
unbound global (with EQU directive). Error occurs because unbound
globals are not assigned values in the current assembly.

8002: 9900 Assembler and Emulator Users @

F-1

Assembler Error Codes

F-2

¥ ERROR:

*¥*** ERROR:

¥*¥** ERROR:

¥*¥** ERROR:

***** ERROR:

***** ERROR:

¥*¥** ERROR:

005 GLOBAL DEFINITION MAY NOT USE HI, LO, OR ENDOF

Indicates that the value assigned to the global symbol involved Hi, LO,
or ENDOF function usage. Occurs when a global symbol is equated to
HI(x) or LO(x), where x is an address, or ENDOF (y), where y is the
section name whose ending address is to be found.

006 STRING EXPRESSION REQUIRED

Indicates that a numeric value appears where a string value is required.
Operations requiring string expressions involve concatenation, SEG
and NCHR function usage, and ASCII, TITLE, or STITLE directive
usage.

P07 UNDEFINED BLOCK OR ORG EXPRESSION

The operand expression of an ORG or BLOCK directive is either
undefined or a forward reference. Occurs when an undefined or
misspelled symbol appears in an ORG or BLOCK directive, or a
symbol is assigned a value after the ORG or BLOCK references the
symbol.

@08 INVALID ORG OUT OF SECTION

Indicates that the ORG operand expression represents an address
defined outside the current section. Examine previous RESUME or
SECTION statements for errors.

P09 NEGATIVE BLOCK LENGTH
Indicates that the BLOCK operand expression represents a negative
value.

010 MACRO ALREADY DEFINED

indicates that more than one MACRO directive contains the same
name.

@11 MACRO DEFINITION PHASE ERROR

Indicates two possible errors: The macro was called before being
defined, or the macro was defined during the second assembler pass,
but not the first.

@ 8002: 9900 Assembler and Emulator Users

Assembiler Error Codes

{50

¥*¥** ERROR: @12 MEMORY FULL ON MACRO CALL

Indicates insufficient space to perform macro expansion. Occurs when
too many long arguments are specified for parameter substitution, too
el e mem A e Aafimitian A

v O Lol bl e
many symbols are entered in macro definition, or the macro repeats

itself infinitely.

***** ERROR: P13 MISSING ENDR OR ENDIF

Indicates that a conditional assembly (IF or REPEAT) block failed to
complete assembly. Occurs when a conditional assembly block begins
assembly within a macro definition and the macro terminates (with an
ENDM directive) before the conditional assembly terminates (with an
ENDR or ENDIF directive).

***** ERROR: P14 DUPLICATE DEFINITION OF SECTION NAME

Indicates that the section name has aiready been defined as a iabei
symbol during the current assembler pass.

***** ERROR: P15 END WITHIN INCLUDE FILE
Indicates that an END directive is present in an INCLUDE file.

¥**** ERROR: @16 ENDR OR ENDIF MIS-MATCHED

Indicates that an improper termination directive was used for a
conditional assembly block. Occurs when ENDR is entered to
terminate an |F block, ENDIF is entered to terminate a REPEAT
block, or when |F and REPEAT blocks overlap each other producing
the same effect.

¥ ERROR: 917 ITERATION LIMIT EXCEEDED

Indicates an attempt to assemble a REPEAT block more than the
specified number of times. if the ailowed number of repeat cycles is
left unspecified, the error message is displayed when 256 repeat
cycles are completed.

8002: 9900 Assembler and Emulator Users @ F-3

Assembler Error Codes

L -~~~]

F-4

***** ERROR:

***+* ERROR:

***** ERROR:

¥**** ERROR:

***** ERROR:

¥¥* ERROR:

*¥*** ERROR:

x ERROR:

@18 MISPLACED ELSE

Indicates that an ELSE directive occurs outside its corresponding
IF-ENDIF block, or that more than one ELSE directive occurs within
the scope of one IF-ENDIF block.

@19 OPERATION INVALID FOR ADDRESSES

Indicates that an operation allowing only scalar values was applied
to an address value.

020 DIVISOR IS ZERO

Indicates that the Assembler attempted to divide by zero. Also occurs
when the Assembler attempts to determine the remainder of a division
by zero with the MOD operator (for example, A MOD 0).

021 HI OR LO ALREADY APPLIED

indicates an attempt to extract the most- or least-significant byte of
an address expression, when the expression is already the result of a
previous extraction.

022 ENDOF OPERAND IS SCALAR

Indicates that the specified section name in the ENDOF statement is a
non-global, scalar symbol.

#23 ENDOF ALREADY APPLIED

Indicates an attempt to. perform an ENDOF function upon an address
resulting from a previous ENDOF function.

024 ENDOF OPERAND IS NOT GLOBAL

Indicates that the specified section name in the ENDOF statement
represents a non-global symbol.

®25 OPERATION ON HI OR LO OF ADDRESS

Indicates an'attempt to perform an arithmetic or unary operation
upon an address that has had Hi or LO applied to it.

@ 8002: 9900 Assembler and Emulator Usars

Assembler Error Codes
.-~~~ e

¥#®%* ERROR:

#r##x EDDOR:

¥**** ERROR:

**¥*¥ ERROR:

***** ERROR:

¥**%* ERROR:

**¥*¥* ERROR:

***** ERROR:

8002: 9900 Assembler and Emulator Users

$26 ADDITION OF ADDRESSES

Iindicates an attempt to add one address to another.

A%7 CONEI iICTING QEf‘Tiﬁf\‘i ﬁAQCQ
WL UUINT LIVITNING OEV I TVIN DAOED

Indicates an attempt to subtract or compare addresses based to
different sections or having different ending byte addresses.

028 ADDRESS SUBTRACTED FROM SCALAR
Indicates an attempt to subtract an address from a scalar value.

029 NEGATIVE STRING LENGTH

Indicates that a negative value was specified for the string length
when the string was declared with the STRING directive.

@30 STRING LENGTH PHASE ERROR

Indicates that the string expression value differs between the
assembler’s first and second pass. Occurs when the string length
expression contains a forward reference.

@31 REDECLARATION OF STRING VARIABLE

Indicates a second attempt to declare the same string variable.

P32 STRING DECLARATION PHASE ERROR

indicates that the string value was defined during the assembler’s
second pass, but not its first.

@33 INVALID STRING NAME

Indicates that an invalid string variable name has been entered as an

operand in the STRING directive.

F5

Assembiler Error Codes

***** ERROR: @34 END INSIDE AN UNCLOSED BLOCK

Indicates that an END statement occurs within an |[F, REPEAT, or
MACRO definition block. Occurs when an ENDIF, ENDR, or
ENDM directive is either missing or misspelled.

¥ ERROR: @35 VALUE TRUNCATED TO BYTE

Indicates that the value entered exceeds one byte (value falls
outside the range—128 to 255). The value is truncated to fall
within one-byte range.

¥¥*¥* ERROR: @36 COLON FOLLOWS LABEL

Indicates that a colon (:), rather than a space, was encountered
following a label. Occurs when a program is improperly converted to
Tektronix Assembler format, or when the label is improperly entered.

¥*¥** ERROR: @37 EXTRA OPERANDS IGNORED

indicates that extra operands appear in the statement. The compiete
statement entered prior to the extra operands is assembled, and the
extra operands are ignored. Occurs when a statement is miscoded, an
invalid delimiter occurs in the operand list, or a semicolon does not
precede a comment. This error also occurs when a logical not *“\"
operator or a function follows what could be interpreted as a complete
expression. This complete expression is either composed of or ends

in a constant, a symbol, or a right parentheses ‘‘)*’. The portion of the
statement that precedes the logical not operator or function is assembled
and the remaining portion of the operand is ignored.

***** ERROR: @38 SET SYMBOL USED AS LABEL

Indicates that a symbol that was previously assigned a vaiue with the
SET directive appears in the [abel field of an instruction. Occurs when a
SET symbol is redefined as a label, or when a subsequent SET
operation is misspelled when reassigning a value to a symbol.

F~6 @ 8002: 9900 Assembler and Emulator Users

Assembler Error Codes

[

**¥*¥* ERROR:

¥**** ERROR:

****% ERROR:

¥*¥** ERROR:

¥**¥** ERROR:

¥¥** ERROR:

8002: 9900 Assembler and Emulator Users

@39 INVALID OPERATION CODE

Indicates that the Assembler is unable to recognize the operation in
the statement, or that the Assembler disallows the operation to be
processed in its entered context. Occurs when the operation is
misspelled, an invalid delimiter follows the label, or a macro is called
prior to its definition.

P40 INVALID CHARACTER

Indicates that the Assembler encountered a character, outside the
valid character set, that was not enclosed within double quotes.

@41 SYNTAX ERROR

Indicates that the statement does not conform to the required syntax.

Refer to Appendices B and C for required syntax for Assembler
directives and 9900 instructions.

@42 INVALID OPTION SEPARATOR

Indicates that the Assembler encountered an invalid delimiter
between listing control options in the LIST or NOLIST directive
operand field. Occurs when spaces delimit the options where commas
are required, or when an invaiid listing controi option is entered.

@43 NO LABEL ON EQU OR SET

Indicates that a symbol is either missing from or invalid for the label
field of an EQU or SET directive.

@44 INVALID MACRO NAME

Indicates that the macro name is missing from the operand fieid

of the MACRO directive or that the macro name is an invalid symbol.
Occurs when a previously defined symbol is entered as a macro name,
a macro name is missing from the macro directive operand field, or an
invalid delimiter is entered between the macro operation and macro
name.

F-7

Assembler Error Codes

PR e e s e -

¥*¥** ERROR: P45 INVALID RELOCATION OPTION

Indicates an attempt to specify an invalid relocation option (other
than ABSOLUTE) when declaring a section. When this error occurs,
the Assembler ignores the invalid option, and handles the specified
section as if it were byte-relocatable.

¥¥*** ERROR: P46 MACRO WITHIN A MACRO

Indicates that a macro definition statement was encountered within
a macro expansion or a macro definition block.

x ERROR: 047 INVALID EXCEPT IN MACRO

Indicates that an EXITM, ENDM, REPEAT, or ENDR directive
appeared outside a macro definition block.

¥ ERROR: P48 INVALID OPERAND

Indicates that the specified operand is either incomplete or inaccurate
for the context required by the operation. I the required operand is
an expression, this error indicates that the first item in the operand
field is not a variable, constant, a left parentheses *)*', a minus sign
""" or alogical not "'\"".

¥* ERROR: P49 ADDRESS ASSIGNED TO STRING
Indicates an attempt to assign an address value to a string variable
symbol.

»x ERROR: P50 SECTION DEFINITION PHASE ERROR

Indicates that the specified section or relocation option differs
between the Assembler’s first and second pass.

***¥*¥* ERROR: @51 SECTION DEFINITION PHASE ERROR

Indicates that the specified section was defined during the second,
but not the first, Assembler pass.

F-8 @ 8002: 9900 Assembler and Emulator Users

Assembler Error Codes
—

¥*¥** ERROR: @52 TOO MANY SECTIONS AND/OR GLOBALS

Indicates that the number of declared sections and global symbols
exceeds 254. The Assembier does not accept the current section or
global declaration.

¥*%¥* ERROR: 053 INVALID RELOCATION OPTION

Indicates that the ABSOLUTE relocation option was specified in
the RESERVE directive operand field.

x ERROR: 954 NEGATIVE RESERVE LENGTH

. Indicates that a negative-vaiued byte iength was specified as the
RESERVE operand expression.

**E*¥ ERROR: @55 INVALID SECTION NAME

indicates that an invalid symbol was declared as a SECTION,
COMMON, or RESERVE name. Occurs when the symbol name is
misspelled, contains invalid characters, is a reserved word, or is a
previously defined label.

P el s T T e Y -~

""""" ERROR: P56 INVALID RESERVE LENGTH
Indicates that the required RESERVE operand expression (specifying
the number of bytes reserved for the current object module) is either
entered incorrectly, entered without a comma before the expression,
or absent from the RESERVE directive.

¥*¥** ERROR: @57 RESUME SECTION UNDEFINED

Indicates that the resumed section is defined in a later statement
in the assembly process.

¥*x¥*¥* ERROR: @58 RESUME OF RESERVE SECTION

Indicates an attempt to resume a reserved section.

8002: 9900 Assembler and Emulator Users @ F-9

Assembler Error Codes

R A A e e

¥*¥** ERROR: 059 RESUMED SECTION INVALID

Indicates that the resumed section was declared after the 254th
section or global symbol was declared.

¥¥*%* ERROR: 060 GLOBAL OPERAND ALREADY DEFINED

Indicates that the global symbol was referenced before it was
declared to be global. See GLOBAL directive explanation in
Section 4.

***** ERROR: P61 GLOBAL DECLARATION PHASE ERROR

Indicates that a symbol was not declared global in both passes
of the assembler.

¥ ERROR: P62 TOO MANY SECTIONS AND GLOBALS
Indicates undefined globals, or more than 254 globals and sections
defined.

x ERROR: @63 INVALID RADIX

Indicates an invalid radix character in the constant. The 8002
uProcessor Lab Assembler recognizes only (H) hexadecimal,
(O) or (Q) octal, and (B) binary radix codes.

¥ ERROR: @64 INVALID DIGIT

Indicates an invalid digit in the indicated number base. For
example, 10031B contains an invalid digit. Radix B indicates
this to be a binary number, making digit 3 invalid.

FEEEX ERROR: P65 UNMATCHED STRING OR PARAMETER DELIMITER

Indicates an unmatched quotation mark delimiter or square bracket
delimiter.

¥ ERROR: P66 LINE TOO LONG AFTER REPLACEMENT

Indicates expanded line is too long. Only 128 characters are
allowed.

F-10 @ 8002: 9900 Assembler and Emulator Users

Assembiler Error Codes
L e e e e e =

***x* ERROR: @67 EXTRA REPLACEMENT IDENTIFIER
Indicates extra information following the replacement indicator in
a macro definition block.

¥**¥** ERROR: 068 REPLACEMENT INVALID OUTSIDE OF MACRO

Indicates improper use of replacement indicators #, @, and %
outside of a macro definition block.

*¥*x** ERROR: P69 UNDEFINED REPLACEMENT STRING

Indicates that the string variable has not vet been defined as a string.

¥*¥**¥ ERROR: @70 INVALID REPLACEMENT IDENTIFIER

Indicates that the replacement specification used is invalid.

¥**** ERROR: @71 SCALAR VALUE REQUIRED

Indicates an address value where a scalar value was required.

***¥* ERROR: @72 INVALID EXPRESSION

indicates that the specified expression is either incompiete or
inaccurate for the context required by the operation. Expressions are
recognizable when the following values appear in the first item
position of the operand: a variable, a constant, a left parentheses
a minus sign “‘=*/, or a logical not character ‘*’,

ll(”
’

¥*¥** ERROR: @73 SECTION SIZE PHASE ERROR

Indicates that the number of bytes generated for this section during
the first pass is smaller than the number of bytes generated during
the second pass.

¥**** ERROR: @74 UNDEFINED SYMBOL

Indicates that a symbol in an expression has no value.

8002: 9900 Assemblar and Emulator Users @ F'1 1

Assembler Error Codes
]

***** ERROR: @75 STRING TRUNCATED

Indicates that the number of characters assigned to the string is
greater than the string definiton. See SET Strings, Section 2.

®*¥** ERROR: @76 NEGATIVE SEG OPERAND

Indicates a negative number in the operand of the SEG function.
See SEG, Section 2.

¥ ERROR: @77 SEG STARTING OPERAND IS ZERO

Indicates a zero in the starting position of the SEG operand. See
SEG, Section 2.

¥ ERROR: 078 INSUFFICIENT WORKSPACE

Indicates that a temporary data manipulation area has been
exceeded. Could be caused by conditional assembly or string functions
that leave too little memory to perform the required operations.

**X¥¥ ERROR: ®79 VALUE TOO LARGE

Indicates that the space directive’s operand value exceeds 255.

***¥* ERROR: P80 INVALID NAME SYMBOL

Indicates that the symbol in the operand field of the NAME directive
begins with a non-aiphabetic character and is, therefore,
invalid.

¥*¥** ERROR: @81 ILLEGALLY SUBSTITUTED ENDM

Indicates that an ENDM directive was substituted within the
body of a macro expansion before the normal end of the macro
is encountered.

“*¥** ERROR: $#82 NESTED INCLUDE DIRECTIVE

Indicates that the file inserted into the program with the
er |

[ENTo Y BE Y o Y «dit LIy Ry peguguruny. Sugipuiesery Mugsay | YVl BN T o ¥ ot | JUPIPS Rppie
TNULUULD UilcLuive LOUNwainid> daituliiel 1NV LU D LE Jdifeclive,

F-1 2 @ 8002: 9900 Assembler and Emulator Users

Assembler Error Codes

***** ERROR: @83 MISSING ENDIF

Indicates that a conditional |F block with a missing ENDIF directive
was included in the program.

¥**** ERROR: - P84 MISSING ENDM FOR INCLUDED MACRO

Indicates that a macro definition block with a missing ENDM directive
was included in the program.

***** ERROR: ?¥85 STRING VALUE TOO LARGE

Indicates that a string value to be used as a number exceeds two
characters in length.

x ERROR: @86 SHIFT COUNT EXCEEDS 16
indicates an attempt to shift right or left more than 16 bits.

¥ ERROR: @87 TOO MANY SYMBOLS

Indicates a lack of room in the Assembler’s symbol table to
contain all symbols used by the program. The Assembler
discontinues processing the program.

*¥¥*** ERROR: @88 INVALID TRANSFER LABEL

Indicates that a label used for the transfer address on an END directive
is an unbound global, a scalar, or the result of a previous HI, LO,
or ENDOF function.

8002: 9900 Assembler and Emulator Users @ F-13

Assembler Error Codes
.- .|

The following error messages apply only to the 9900.

¥**¥* ERROR: 254 REGISTER ADDRESS IS OUTSIDE OF CURRENT WORKSPACE

Indicates that an address specified in the register field of an
instruction was in the same section as the current workspace, but was
more than 16 words -- beyond the base of the workspace.

*¥**¥** ERROR: 253 REGISTER REFERENCED AT AN ODD ADDRESS

Indicates that an odd address was specified as the location of a
workspace register.

¥ ERROR: 262 REGISTER ADDRESS IS NOT IN SAME SECTION AS WORKSPACE

Indicates that an address specified in a register field of an instruction
was not in the same section as the current workspace.

***** ERROR: 251 SCALAR REGISTER SPECIFICATION NOT IN THE RANGE 0-15
Indicates that a scalar value greater than 15 was specified in a register
fiald

***** ERROR: 250 RO NOT VALID AS AN INDEX REGISTER

Indicates that a register @ was specified as an index register.

¥ ERROR: 249 SYMBOLIC MODE ASSUMED FOR ODD WORKSPACE ADDRESS

Indicates that an odd address within the current workspace was specified.

¥ ERROR: 248 SCALAR OPERAND INVALID FOR WPNT

Indicates that an invalid scalar operand was specified for WPNT.

x ERROR: 247 WPNT OPERAND CONTAINS A FORWARD REFERENCE

indicates a forward reference in the operand fieid of a WPNT
instruction.

F-1 4 @ 8002: 9900 Assembler and Emulator Users

Assembler Error Codes

T A

¥*%** ERROR:

***** ERROR:

***** ERROR:

¥*¥** ERROR:

¥**** ERROR:

***** ERROR:

***** ERROR:

¥***¥* ERROR:

8002: 9900 Assembler and Emulator Users

246 ODD ADDRESS NOT VALID AS OPERAND TO WPNT

Indicates an invalid odd address in the operand field of WPNT
instruction.

245 RELATIVE JUMP OR CRU OFFSET OUT OF RANGE

Indicates that either a relative branch or a CRU offset is out of range.

244 JUMP OUT OF CURRENT SECTION

indicates that the destination of a reiative jump instruction is outside
the current section.

243 JUMP TO AN ODD ADDRESS

Indicates that the destination of jump instruction is an odd address.

242 COUNT ISTOO LARGE

Indicates that the shift count, CRU transfer length, or XOP code is
greater than 15.

241 INVALID MACHINE INSTRUCTION OPERAND

Indicates that the syntax of the machine instruction operand is
invalid.

240 INVALID WORD ALIGNMENT
Indicates that a word value was generated at an odd address.

239 WPNT OPERAND INVOLVES HI, LO, OR ENDOF

Indicates that the operand to WPNT has had a HI, LO, or ENDOF
function applied to it.

@ F-15

Appendix G
RESERVED WORDS

The 9900 Microprocessor instruction mnemonics, register symbols, and Tektronix Assembler
directive names must not be used as symbolic labels. The following names are reserved for

these special uses:

9900 INSTRUCTION MNEMONICS

A

AB
ABS
Al
ANDI

BL
BLWP

c

CB

Ci
CKOF
CKON
CLR
cocC
czc

DEC
DECT
DIV
IDLE
INC
INCT
INV
JEQ

9900 REGISTER SYMBOLS

RO
R1
R2

R3
R4

R6
R6
R7
R8
R9

R10
R11
R12
R13
R14

JGT
JH

JHE
JL

JLE
JLT
JMP
JNC

R156

JNE
JNO
Joc
Jop
LDCR
LI
LIMi
LREX

LWPl RT SOC SWPB
MOV RTWP socB SszC
MOVB S SRA SZCB
MPY SB SRC B
NEG SBO SRL X
NOP SBZ STCR XOP
ORi SETO STST XOR
RSET SLA STWP

RESERVED FOR FUTURE USE

XREF

TEKTRONIX ASSEMBLER DIRECTIVES, OPTIONS & OPERATORS

ABSOLUTE

ASCII
BASE
BLOCK
BYTE
CND
COMMON
CON

DEF
ELSE

ENDIF
ENDM
ENDOF
ENDR

* EXITM
GLOBAL

8002: 9900 Assembler and Emulator Users

INCLUDE
LIST

LO
MACRO
ME

MEG
MOD
NAME
NCHR
NOLIST

ORG SHR
PAGED SPACE
REPEAT STITLE
RESERVE STRING
RESUME SYM
SCALAR TITLE
SECTION TRM

SEG WARNING
SET WORD
SHL WPNT

G-1

TEK

MANUAL CHANGE INFORMATION

TRONIIX| propuct 9900 ASSEMBLER & | cHANGE REFERENCE _ C1/178

- committed to EMULATOR USER'S | paTE 1-27-78
CHANGE: DESCRIPTION
070-2417~00

The 8002 uProcessor Lab Hardware Test Manual, mentioned in the Documentation
Overview section, is no longer available for distribution.

Page 2-5 — The operand syntax for the fifth operand type (““A 16-bit indexed memory
address . . .”) should be as follows:

expression {R1)
@expression (R1)

expression (R15)
@expression (R15)
expression (expression)
®@expression (expression)

Page 4-26 — The syntax line for the WPNT directive should be as follows:

[symbol] WPNT {expression} [;charstring]
Page 4-50 — The operand @F7H should follow the WORD directive in the example.

[o P8

Page 4-65 — The syntax iine for the SECTION directive should be as follows:

[symbol] SECTION {symbol} [LABSOLUTE] [;charstring]

Page 4-57 — The syntax line for the COMMON directive should be as follows:
[symbol] COMMON {symbol} [, ABSOLUTE] [;charstring]

Page 9-9 — The sixteenth line ("'Valid relocation types are PAGE, INPAGE, and BYTE."”)
should be removed.

Page 9-13 — The last line on the page should be as follows:

program in this example, the appropriate command would be “GO 40",

Page 9-17 — Line 21 ("is specified, a transfer of @ is generated.”} should be as follows:

"“is specified, a transfer address of @ is generated.”’

PAGE 1 o 3

PRODUCT

CHANGE:

DESCRIPTION

Page C-2 — The explanation of operand notation r should be as follows:

one of the workspace registers, RO to R15; or an expression that evaluates to a scalar value
of @ to 15: or an even address not greater than 30 bytes beyond the current workspace
base as defined by WPNT. '

Appendix F: The following additions and corrections should be noted.

***** ERROR:

***** ERROR:

***** ERROR:

***** ERROR:

x+* ERROR:

¥**** ERROR:

¥ ERROR:

@15 END DIRECTIVE NOT VALID WITHIN AN INCLUDE FILE
Indicates that an END directive is present in an INCLUDE file.

19 OPERATION INVALID FOR ADDRESS

Indicates that an operation allowing only scalar values was applied
to an address value.

@21 TEXT FOLLOWING “]” IGNORED

Indicates that information following a bracketed macro parameter
has been ignored.

036 INVALID CHARACTER FOLLOWS LABEL

Indicates that a character other than a space was encountered
following a lable.

@38 STRING VARIABLE USED AS LABEL

Indicates that a string variable is present in the label field of an
instruction. Label is ignored.

042 INVALID OPTION OR SEPARATOR

Indicates that the Assembler encountered an invalid delimiter
between iisting controi options in the LiST or NOLIST directive
operand field. Occurs when spaces delimit the options where commas

are required, or when an invalid listing control option is entered.

@52 TOO MANY SECTIONS OR GLOBALS

Indicates that the number of declared sections and global symbols
exceeds 264 The Assembler does not accept the current section or
global declaration.

PAGE 2 oOfF 3

propucT 2900 ASSEMBLER CHANGE REFERENCE ___C1/178 paTe__ 1727778

CHANGE: DESCRIPTION

¥ ERROR: 099 ENDOF APPLIED TO A BOUND GLOBAL

Indicates that an ENDOF function was used with a bound GLOBAL
instead of a SECTION. In the case of an unbound GLOBAL, the
function will be resolved at link time.

***** ERROR: 091 UNABLE TO ASSIGN INCLUDE FILE

Indicates that TEKDOS could not gain access to the file. This
message will be accompanied by a message on the console during
each pass. An SRB status code will indicate the reason that TEKDQOS
could not assign the file.

PAGE 3 OF 3

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	12-01
	12-02
	12-03
	12-04
	12-05
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	D-01
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	G-01
	_1
	_2
	_3

