
Tektronix, inc.
P.O. Box 500
Beaverton, Oregon 97077
070-2463-00

TEKTRDNI»

8002
µPROCESSOR LAB

SUPPLEMENT TO

SYSTEM USER'S MANUAL

This manual supper~ Tektronix Disc Op3iating System {TEKDOS) Version 2.

Serial Number
First Printing jAN 1978

WARRANTY

The 8001/8002 µProcessor Lab System (including options) is warranted against defective materials and
workmanship under normal use and service for a period of 90 days from date of initial shipment. CRTs
found to be defective within 12 months from the date of shipment will be exchanged at no charge (this
does not include installation).

On site warranty repairs is provided during normal working hours (for the 90.:day period). Travel to the site
is confined to those areas in which Tektronix states it has service facilities available for this product.

Tektronix shall be under no obligation to furnish warranty service if:

a. Attempts to install, repair, or service the equipment are made by personnel other than Tektronix
service representatives.

b. Modifications are made to the hardware or software by personnel other than Tektronix service
representatives.

c. Damage results from connecting the 8001 /8002 µProcessor Lab System to incompatible equipment.

Specifications and price change privileges reserved.

Copyright © 1978 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All
rights reserved. Contents of this publication may not be reproduced in any form without permission of
Tektronix, Inc.

U.S.A. and foreign Tektronix products covered by U.S. and foreign patents and /or patents pending.

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SECTION 7

SECTION 8

SECTION 9

SECTION 10

SECTION 11

SECTION 12

CONTENTS
PAGE

8002 µPROCESSOR LAB SYSTEM INTRODUCTION 1-1

BECOMING FAMILIAR WITH THE SYSTEM 2-1

COMMAND CONVENTIONS . 3-1

TEKTRONIX DISC OPERATING SYSTEM 4-1

TEXT EDITOR . 5-1

ASSEMBLING AND LINKING . 6-1

EMULATOR ENVIRONMENT 7-1

INTRODUCTION 7-1
LOADING & STORING 7-2

TEKTRONIX HEXADECIMAL FORMAT 7-3
WHEX 7-7
RVHEX 7-8
WVHEX 7-9

MEMORY CONTROL . 7-11
BIAS .. 7-12
DUMP
EXAM
PATCH

7-13
7-14
7-15

DEBUG SYSTEM . 8-1

INTRODUCTION . 8-1
TRACE ~ 8-2
DEBUG & REAL-TIME . 8-3

PROM PROGRAMMER . 9-1

SERVICE CALLS . 10-1

REAL-TIME PROTOTYPE ANALYZER 11 -1

INTER-SYSTEM COMMUNICATIONS . 12-1

INTRODUCTION . 12-1
SYSTEM 1/0 PORTS . 12-2
JACK ASSIGNMENTS . 12-3
CONTROL CHARACTER HANDLING 12-4
COMM 12-6

OPERATIONAL LEVELS 12-7
r""IA n A 11.jlr""Tl""'r""lt' 'I~ 'I 'I
rJ"'\nMIVIC: I c:no:> • I, .. I I

DOWNLOADING & UPLOADING 12-16
SEND 12-23

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @

ii @ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

Section 2
Change Information

BECOMING FAMILIAR WITH THE SYSTEM
Section 2 of the 8002 System User's Manual describing the macroscopic features of the 8002
Lab is not affected by the Version 2 update to the Tektronix Disc Operating System.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 2-1

Section 3
Change Information

COMMAND CONVENTIONS
Section 3 of the 8002 System User's Manual describing command conventions is not affected by
the Version 2 update to the Tektronix Disc Operating System.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 3-1

Section 4
Change Information

TEKTRONIX DISC OPERATING SYSTEM
Section 4 of the 8002 System User's Manual describing the Tektronix Disc Operating System
(TEKDOS) is not affected by the Version 2 update to TEKDOS.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 4-1

Section 5
Change Information

TEXT EDITOR
Section 5 of the 8002 System User's Manual describing the Text Editor is not affected by the
Version 2 update to TEKDOS.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 5-1

Section 6
Change Information

ASSEMBLING AND LINKING
Section 6 ofthe 8002 System User's Manual describing the Assembler and Linker commands is
not affected by the Version 2 update to TEKDOS.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 6-1

Section 7
Change Information

EMULATOR ENVIRONMENT
This section supplements the description of the operating environment of the emulator processor
contained in Section 7 of the 8002 System User's Manual. The changes and additions specific to
Version 2 of TEKDOS include user program loading and storing and memory coniroi.

TABLE OF CONTENTS

DESCRIPTION Page

INTRODUCTION .. 7-1
LOADING AND STORING .. 7-2

TEKTRONIX HEXADECIMAL FORMAT 7-3
WHEX ... 7-7
RVHEX ... 7-8
WVHEX .. 7-9

MEMORY CONTROL ... 7-11
BIAS .. 7-12
DUMP ... 7-13
EXAM .. 7-14
PATCH ... 7-15

8002 1iPROCESSOR LAB SYSTEM USER'S SUPPLEMENT 7-1

7-2

EMULATOR ENVIRONMENT

LOADING AND STORING
The commands in this section are used to move object code between program memory and
flexible disc storage. The changes and additions specific to Version 2 of TEKDOS include the
implementation of a second hexadecimal format; TEKDOS now supports both Intel and Tektronix
hexadecimal formats, as explained in the following commands.

COMMAND NAME Page

WHEX ... 7-7
RVHEX ... 7-8
WVHEX .. 7-9

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

EMULATOR ENVIRONMENT

Tektronix Hexadecimal Format

Object code from the Assembler is stored on a flexible disc in either Intel hexadecimal format or in
Tektronix Hexadecimal Format (TEKHEX). Files in Intel format are serviced by the RVHEX and
WVHEX commands; Intel hexadecimal format is described in the discussion of these two
commands. The RHEX and WHEX commands require TEKHEX format.

Additionally, data transferred by the TEKDOS command, SEND, between the 8002 µProcessor
Lab and the 8001 µProcessor Lab is automatically formatted in Tektronix Hexadecimal Format.

A Tektronix Hexadecimal Formatted file consists of message blocks. Types of message blocks
include data blocks, terminating blocks, and abort blocks.

GENERAL FEATURES

The following features apply to all message blocks:

• Each message block has a slash (I) as a header character.

• Every message block is terminated by a carriage return.

• A message block is limited to 72 characters. As a result, a full-length data block contains 30
data bytes (that is, 60 hexadecimal characters).

• All characters must' belong to the printable ASCII character set. Any characters
encountered during decoding that are not in the ASCII character set are disregarded as
random interline characters or line hits.

• All characters except header characters and error information must be ASCII-encoded
hexadecimal integers.

• A checksum is calculated as the sum of the four-bit hexadecimal digits, modulo 256.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 7-3

7-4

EMULATOR ENVIRONMENT

DATA BLOCK FORMAT DESCRIPTION

2463-8

All entries in the data block are ASCII-encoded hexadecimal digits, except the Header Character
and the EOL. The following list describes each entry in the data block:

The Header Character is always a slash (/).

The Location Counter consists of four hexadecimal digits and gives the starting location of
the block in program memory.

The Byte Count is the number of data bytes in this block. The byte count is a two-digit
hexadecimal number.

The First Checksum is the eight-bit sum of the four-bit hexadecimal values of the six digits
that make up the location counter and the byte count. The checksum is a two-digit
hexadecimal number.

DATA consists of n data bytes, each composed of two hexadecimal digits. The maximum
number of data bytes per block is 30. Thus, the maximum number of hexadecimal digits in
the data section is 60.

The Second Checksum is the eight-bit sum, modulo 256, of the four-bit hexadecimal
values of the digits that make up the n bytes of data. The checksum is a two-digit
hexadecimal number.

EOL is a carriage return.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

EMULATOR ENVIRONMENT

TERMINATING BLOCK FORMAT DESCRIPTION

2463-6

All entries in the terminating block are ASCII-encoded hexadecimal digits, except the Header
Character and the EOL. The following list describes each entry in the terminating block:

The Header Character is always a slash (/).

The Transfer Address consists of four hexadecimal digits.

The Byte Count is set to zero, indicating a terminating block.

The Checksum is the eight-bit sum of the four-bit hexadecimal values of the six digits that
make up the transfer address and the byte count. The checksum is a two-digit hexadecimal
number.

EOL is a carriage return.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 7-5

7-6

ABORT BLOCK FORMAT DESCRIPTION

2463-7

The following list describes each entry in the abort block:

The two Header Character entries are slashes (I I).

Error Information is an arbitrary string of ASCII characters.

EOL is a carriage return.

EMULATOR ENVIRONMENT

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

EMULATOR ENVIRONMENT WHex

SYNTAX
~EX)address 1 j

[!address 31

!address 2 l [! .. address 1 I

{
device }]
file name [/disc drive]

I address 2 l]

In addition to the description of the WHEX command in the System User's Manual, the following
two changes in command line format apply:

1. No more than 13 pairs of start and stop addresses may be specified in one command line.

2. The entire command line must be entered as a single line on the system console.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 7-7

RVhex EMULATOR ENVIRONMENT

7-8

SYNTAX
.B.YHEX . [device]

[/bias amount] filename [/disc drive]

PURPOSE
The RVHEX command reads and converts Intel format hexadecimal code from the specified
device or disc file into binary code, and loads the binary code into program memory.

EXPLANATION
The bias amount parameter is the positive or negative hexadecimal amount by which the initial
load address is to be altered. The default value for the bias amount is 0.

The default input device is the paper tape reader (PPTR).

The INTEL load module format is as follows:

0 2 3 4 5 6 7 8 9 n n+1 n+2

RECOR STARTING
LENGTH ADDRESS

character 0

1 & 2

3 through 6

7&8

9 through n

(n+1) & (n+2)

TYPE DATA

The header character; a colon.

The number of data bytes.

CHECK­
SUM

2463-3

The program memory address of the first data byte in this record.

The record type where 00 =normal data record, and 01 =last record
of a file.

Data. Each pair of hexadecimal digits represents one data byte.

The checksum, the 2's complement of the sum of the eight-bit bytes
from columns 1 through n.

A record length of 0 indicates the last record of a file.

This is the load module format required by the system loader of previous TEKDOS versions.

@ 8002 µPROCESSOR LAB SYSTt:M USER'S SUPPLEMENT

EMULATOR ENVIRONMENT WVhex

SYNTAX
WHEX jstart address I I stop address l [! .. start address!

[
!transfer address 1

1

!device ~]
\ filename [/disc drive] '

j stop address l]

PURPOSE
The WVHEX command converts binary code in program memory to ASCII characters
representing the binary code. It then writes these ASCII characters in INTEL format to the
specified output device or file.

EXPLANATION
The start and stop addresses are hexadecimal program memory addresses; they are the upper
and lower bounds of the binary code to be converted and written. There can be no more than 13
pairs of start and stop addresses. Each pair must be separated by two commas, The entire
command must be entered as a single line on the system console.

The transfer address denotes the first executable instruction of the object program, and is
included only as a reference for the user. It has no effect on the object program, the Assembler, or
the WVHEX command.

The default output device is CONO (console output).

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 7-9

WV hex EMULATOR ENVIRONMENT

7-10

WVHEX outputs hexadecimal ASCII characters in INTEL format:

0 2 3 4 5 6 7 B 9 n n+1 n+2

RECOR STARTING
LENGTH ADDRESS

character 0

1 & 2

3 through 6

7&8

9 through n

(n+1) & (n+2)

TYPE DATA

The header character; a colon.

The number of data bytes.

CHECK
UM

2463-3

The program memory address of the first data byte in this record.

The record type, where 00 =normal data record, 01 =last record of a
file.

Data. Each pair of hexadecimal digits represents one data byte.

The checksum, the 2's complement of the sum of the eight-bit bytes
from columns 1 through n.

A record length of 0 indicates the last record of a file.

This is the load module format required by the system loader of previous TEKDOS versions.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

EMULATOR ENVIRONMENT

MEMORY CONTROL
The commands in this section are used to manipulate system memory, program memory, and the
user's prototype memory. The changes and additions specific to Version 2 of TEKDOS include the
commands listed below.

COMMAND NAME Page

BIAS ... 7-12
DUMP .. 7-13
EXAM .. 7-14
PATCH .. 7-15

8002 ,uPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 7-11

Bias

7-12

EMULATOR ENVIRONMENT

SYNTAX
§IAS [W =amount 1] [X =amount 2] [Y =amount 3] [Z =amount 4]

PURPOSE
The BIAS command sets or displays the bias applied to addresses in the DUMP, EXAM, and
PATCH commands.

EXPLANATION
The main use of this command is to allow relative addressing when working with one or more
relocatable load modules. This is the reason for the four indices: W, X, Y, and Z. The amount
parameters are positive hexadecimal values. If no BIAS command is given, 0 bias is assumed by
DUMP, EXAM, and PATCH. Bias can be removed, from Y and X, for example, by the command:

>BIAS Y = 0 X=O

When BIAS is entered without parameters, all current index assignments are displayed on the
system console.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

EMULATOR ENVIRONMENT Dump

SYNTAX

.QUMP { H m start address j [stop address] rdevice]
rilenarne [/disc drive]

PURPOSE

The DUMP command copies the specified contents of either program or system memory to the
device or file named.

EXPLANATION
The DUMP command displays the contents of memory between the start and stop addresses as
hexadecimal digits. The display format is either 8 words or 16 bytes per line where two
hexadecimal digits represent one byte and four digits represent one word. The specific format
depends on the microprocessor used. Each line of the display begins with the address of the first
byte or word in that line.

If the asterisk is present, system memory is selected; otherwise, program memory is accessed.

The start address may also include a bias index, W, X, Y, or Z; this index indicates the amount
added to both the start and stop addresses. The bias indices are set and changed by the BIAS
command. Delimiters should not be used between the asterisk, bias index, and start address. If no
bias index is given, 0 bias is applied.

If the stop address is omitted, only one line of 8 words or 16 bytes is displayed. If no device or file is
specified, the command defaults to CONO (console output).

The DUMP command reduces the value of the start address to the next lower multiple of 1016,
while the stop address is increased to one less than the next higher multiple of 1016; that is, the
right-most hexadecimal digit of the start address is set to 0, and the right-most digit of the stop
address is set to F. The adjusted stop address must be greater than the adjusted start address.

> DUMP *2456 2455 LPT1

> DUMP *245D 245D LPT1

> DUMP *245F 2450 LPT1

These three commands will all output system memory between 2450 and 245F to the line
printer.

> DUMP 6AOO 69FF CONO

This command will result in an error message, since the adjusted start address exceeds the
adjusted stop address.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 7-13

Exam

7-14

EMULATOR ENVIRONMENT

SYNTAX

fXAM ! [*] l~J address l

PURPOSE
The EXAM command displays the contents of the specified hexadecimal address of either
program or system memory, and permits those contents to be altered.

EXPLANATION
The EXAM command displays the specified address in memory as hexadecimal digits on the
system console. The contents of the address may be a two-digit byte or a four-digit word,
depending on the processor. The display format is: the specified address, followed by an"=" sign,
and then by the contents of that address. When the current address is a multiple of 1016, the
display moves to the beginning of the next line on the console.

If the asterisk is present, system memory is accessed; otherwise, program memory is selected.

Bias can be applied to the address by using a bias index, W, X, Y, or Z, in the address. Bias values
are set and changed by the BIAS command. Delimiters should not be used between the asterisk,
bias index, and address. If no bias index is given, 0 bias is applied.

Once EXAM is entered, further display or alterations may be made using the following keys:

•SPACE BAR

• LINE FEED or
RUB OUT

• RETURN or ESC

displays the contents of the next address.

advances to the next line, and displays the current address
and its contents.

terminates the EXAM command.

•Entering a hexadecimal digit pair (for 8-bit processor) or digit quadruple (for 16-bit
processor) replaces the contents of the current address with the entered value, and displays
the contents of the next address.

Memory contents that have been altered with the EXAM command remain altered after the ESC
key is used to terminate EXAM.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

EMULATOR ENVIRONMENT

SYNTAX

fATCH ! [-] ff] address l I hexadecimal string l

PURPOSE
The PATCH command alters either program or system memory with the specified string of
hexadecimal constants.

EXPLANATION
The PATCH command is used to replace the contents of memory at the specified hexadecimal
address with the string of hexadecimal digits listed. The string replaces the contents of the
specified address and subsequent addresses, continuing unti! the string is exhausted. The string
may be from one to 29 bytes long. Word-addressable microprocessors require that the string
length be a multiple of four digits; byte-addressable microprocessors require that the string
length be a multiple of two digits.

If the asterisk appears in the address, system memory is selected; if not, program memory is
accessed.

Bias may be applied to the address by including a bias index, W, X, Y, or Z, in the address. Bias
values are set and changed by the BIAS command. If no bias index is given, 0 bias is applied.
Delimiters should not be used between the asterisk, bias index, and address.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @

Patch

7-15

Section 8
Change Information

DEBUG SYSTEM
This section supplements the information pertaining to the debug system described in Section 8
of the 8002 System User's Manual. The changes and additions specific to Version 2 of TEKDOS
are iisted beiow:

TABLE OF CONTENTS

DEBUG SYSTEM Page

INTRODUCTION . 8-1
THE TRACE COMMAND . 8-2
DEBUG AND REAL-TIME .. 8-3

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 8-1

TR ace DEBUG SYSTEM

8-2

SYNTAX

TRACE [§TEP] [start address] [stop address]

or

If1ACE QFF

PURPOSE
The TRACE command allows you to monitor program execution through the debug system.

EXPLANATION
The TRACE ALL command monitors all instructions executed by the emulator processor; the
TRACE JMP command monitors only jump instructions. Enter the TEKDOS command GO after
TRACE ALL or TRACE JMP to begin program execution. The TRACE OFF command stops all
monitor activity.

If STEP is specified in the command line, the GO command must be entered after each trace line
to continue program execution. If STEP is not specified, two commas must be inserted in the
command line. The start and stop addresses are the hexadecimal program memory addresses
denoting the beginning and the end of the program that is being traced. The stop address must be
greater than the start address. The default value for the stop address is FFFF.

The TRACE command generates the display of a trace line on the system console for every
program instruction monitored. For the 8080 Emulator Processor, the trace follows the format
below:

ADDR INST MNEM OPER SP RF RA RB RC RD RE RH RL

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

DEBUG SYSTEM TR ace

The trace line elements, all of which are in hexadecimal digits, are described:

ADDR The address of the last instruction executed.

INST The hexadecimal representation of the instruction.

MNEM The instruction mnemonic.

OPER The value or address of the operand.

SP The contents of the stack pointer.

RF The contents of the flag register.

RA The contents of register A.

RB The contents of register B.

RC The contents of register C.

RD The contents of register D.

RE The contents of register E.

RH The contents of register H.

RL The contents of register L.

Pressing the ESC key while in TRACE command mode suspends program execution; entering a
GO command resumes execution and monitoring from the point in the program at which
execution was suspended.

DEBUG AND REAL TIME
Because of the large volume of information made available by the TRACE and BKPT commands,
the debug system is not able to keep pace with the emulator processor when either of these
commands has been invoked through the debug system. To avoid erroneous displays as a result
of the incompatible activity rates, the emulator processor's operation is slowed whenever a
TRACE or BKPT command is current. If neither a debug TRACE or BKPT is in effect, the emulator
processor runs at its normal rate.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 8-3

Section 9
Change Information

PROM PROGRAMMER
Section 9 of the 8002 System User's Manual describing the PROM Programmer is not affected by
the Version 2 update to TEKDOS.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 9-1

Section 1
Change Information

8002 µPROCESSOR LAB SYSTEM
INTRODUCTION

ihis manuai suppiements the information contained in the 8002µProcessor Lab System User's
Manual. The material that follows is presented in the same format used in the 8002 System
User's Manual; each section in this supplement corresponds to its parallel section in the User's
manual. Note that this is a supplement to the 8002 System User's Manual, rather than its
repiacement.

This manual describes all Version 2 changes and additions to the Tektronix Disc Operating
System (TEKDOS). The changed and additional Version 2 information includes such features as
hexadecimal data formats, the emulator environment, the debug system, and inter-system
cornrnunlcatlons.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 1-1

Section 10
Change Information

SERVICE CALLS
Section 10 of the 8002 System User's Manual describing service calls is not affected by the
Version 2 update to TEKDOS.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 10-1

Section 11
Change Information

REAL-TIME PROTOTYPE ANALYZER
Section 11 of the 8002 System User's Manual describing the Real-Time Prototype Analyzer is not
affected by the Version 2 update to TEKDOS.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 11-1

Section 12

Change Information
INTER-SYSTEM COMMUNICATION

By virtue of its inter-system communications capability, the 8002 µProcessor Lab may
communicate with another computer system (referred to here as the external computer), or with
various peripheral devices.

In this section you will find:

•information about the four RS-232-C ports used for communication with peripheral
equipment and modems.

•descriptions of the commands and methods used by the 8002 µProcessor Lab to
communicate with another computer system.

•descriptions of the commands and methods used by the 8002 µProcessor Lab in
downloading object code from another computer system into the 8002 µProcessor Lab
program memory.

CONTENTS

Page

SYSTEM 1/0 PORTS .. 12-2
JACK ASSIGNMENTS ... 12-3
CONTROL CHARACTER HANDLING 12-4
COMM COMMAND .. 12-6

OPERATIONAL LEVELS .. 12-7
PARAMETERS .. 12-11
DOWN LOADING AND UPLOADING 12-16

SEND COMMAND ... 12-23

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-1

12-2

INTER-SYSTEM COMMUNICATION

SYSTEM 1/0 PORTS
The 8002µProcessor Lab has four RS-232-C 1/0 ports. These ports are used for transferring data
between the 8002µProcessor Lab and peripheral equipment. Each of these ports is associated
with specific device names in the software system. Electrical specifications for these ports
conform to the RS-232-C standards and can be found in the 8002µProcessor Lab System Service
Manual.

The ports are set up for asynchronous serial data transmission. The byte structure is: one start
bit, eight data bits and one stop bit. More stop bits are ignored when received. The eighth data bit,
the parity bit, is not used.

The jacks for the four 1/0 ports are located on the rear panel of the main chassis as shown in the
drawing below:

J100

'IRE HAZARD.
"ING OF FUSE.

, QUALIFIED
"'llSCONNECT

(,INE

J101

:·::::::::~·:. @

J102

J103

@

2393-2

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION

JACK ASSIGNMENTS
Each 1/0 port has a specific software device assignment. Each 1/0 port may connect to a
peripheral device by a specific jack on the rear panel of the 8002 µProcessor Lab. Thus, each jack
is assigned to a specific software device.

The system console connects to jack J100. Any terminal-like device may be used as the system
console, so long as it has a keyboard, a display and an RS-232-C communications port. Two
Tektronix terminals are available as options: the CT8100 CRT Terminal and the CT8101 Printing
Terminal.

Jack J 101 is usually connected to a communications modem. This allows the 8002 µProcessor
Lab to serve as a remote terminal in communication with another computer system.

Jack J 102 is used to connect the line printer to the 8002 µProcessor Lab. The TEKTRONIX Line
Printer LP8200 is available as an option.

Jack J 103 is the paper tape reader /punch connection. The Rernex RAR 8050 is recommended
for use v·vith the system.

The software device names and their jack assignments are shown in Table 12-1.

Table 12-1

JACK AND DEVICE ASSIGNMENTS

Jack Number Input Device Output Device Device Description

J100* CONI CONO Console Terminal
J101 REMI REMO Communications Module
J102 LPT1 Line Printer
J103 PPTR PPTP Paper Tape Reader/Punch

*Device TTYR (Teletypewriter reader) may also be used for input to J100.

The software does not accept any input from J102. This jack only provides output service to a line
printer type of device.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT 12-3

12-4

INTER-SYSTEM COMMUNICATION

CONTROL CHARACTER HANDLING
When TEKDOS is performing a binary read or write operation, all data transferred is treated as
binary data. However, when TEKDOS is performing an ASCII read or write operation, the control
characters are handled uniquely for each device.

ASCII Write

For an ASCII write, TEKDOS handles the carriage return character uniquely for each output
device. The other control characters are not affected on an ASCII write.

For example, in an ASCII write operation to LPT1, the line printer, carriage return characters are
transformed into linefeed characters.

Table 12-2

CARRIAGE RETURN TRANSFORMATION ON AN ASClll WRITE

Device Name

CONO
REMO
LPT1
PPTP

Transformation from a CR

CR, LF, XOF, NULL, NULL, NULL
CR
LF
CR, LF

CR-carriage return
LF-linefeed
XOF-transmitter off
NULL-null character

Table 12-2 shows how a carriage return character is handled for each of the output devices. The
other control characters are not affected on an ASCII write.

ASCII Read

When TEKDOS is performing as ASCII read operation from a device into the 8002 µProcessor
Lab, the control characters are transformed. In some cases these transformations are echoed
back to the device. In addition, the internal operating status of TEKDOS is affected. Table 12-3
shows the device, each control character, its transformation, and the effect on the status.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION

Table 12-3

CONTROL CHARACTER TRANSFORMATION ON AN ASCII READ

Control
Device Character Transformations

CONI BS Echo BS and delete
(backspace) last character entered.

l""O ,....0 I I"" Vr'\I"" llcll 11 I llcll II I llcll II I
vn \.,,n L..r AVr P<IUL..L 1\JULL 1\JULL.

(carriage return)

CTRL-Z CR.

DEL Echo and delete last
character.

ESC CR LF XOF NULL NULL NULL.

LF Ignored~

NULL Ignored.

XOF Echo XON.

TIYR Treats all control characters in the same

PPTR
and
REMI

manner as CONI. In addition, an ASCII read
from TIYR: 1) enables the TIY reader bit in
the 1/0 port that starts the reader on a mini­
computer-modified ASR-33, and 2) sends XON to
CONO.

CR CR.

CTRL-Z No transformation.

DEL Ignored.

LF Ignored.

NULL Ignored.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @

Status Effect

EOL (end of iine;.

EOL EOF (end of line,
then end of file).

Break, then EOL.

EOL.

Kills line, EOF.

12-5

COMM INTER-SYSTEM COMMUNICATION

12-6

SYNTAX

~ [e= I L I] [L = I I I]
/RI IOI [P =prompt sequence] [T =delay time] [M =parity]

PURPOSE
The TEKDOS command COMM, allows the 8002 µProcessor Lab to communicate with an
external computer system.

EXPLANATION
To communicate with an external computer, connect the communications modem to J 101 on the
rear panel of the 8002 µProcessor Lab. The logical devices REMI and REMO are assigned to this
port.

The COMM command invokes the communications support package which allows operation of
the 8002 µProcessor Lab either as a terminal or in a transfer level mode with an external
computer.

The external computer software must provide for transferring files. In the case of the load mode
or the save mode, the external computer software must be capable of transmitting or receiving
object code files prepared in Tektronix Hexadecimal Format. In the unformatted modes, the
external computer software must be able to transmit or receive any file, regardless of format or
content. A discussion of Tektronix Hexadecimal Format appears beginning on page 7-3 of this
supplement.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

OPERATIONAL LEVELS
The TEKDOS communication command, COMM, supports two operational levels: the terminal
level and the transfer level. In addition, the transfer level can be entered in anyone of four modes:
load mode, save mode, or one of two unformatted modes.

I TEKDDS I

~
Terminal Level COMM

Transfer Level Download

2463-1

Whenever the COMM command is invoked, the terminal level is entered. One of the operational
modes in the transfer level can then be entered. Each operational mode can be entered only from
the terminal level. After exiting from the transfer level, control is passed back to the terminal
level. Control can then be returned to TEKDOS from the terminal level.

Terminal Level

When the COMM command is invoked and the terminal level is entered, the 8002 µProcessor
Lab acts as a terminal to the external computer. With the exception of the first null character
typed, every character typed on the keyboard is sent to the external computer. To send a null to
the external computer, two null characters must be entered from the keyboard.

A null character is entered from most terminals by holding down the CTRL and SHIFT keys while
striking the "P" key. However, with the TEKTRONIX CT8101 Printing Terminal, the null character
is entered by holding down the CTRL key while striking the semicolon key.

Control is returned to TEKDOS from the terminal level by entering NULL ESC.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-7

COMM INTER-SYSTEM COMMUNICATION

12-8

Transfer Level

Each operational mode at the transfer level is entered from the terminal level. The method of
entry, conditions for exit, and uses of each mode are described in the following text.

Load Mode

The load mode is used to download Tektronix Hexadecimal Formatted files from an external
computer system into the program memory of the 8002µProcessor Lab. The load mode is entered
from the terminal level by typing a null character followed by a carriage return.

When the external computer has sent a message block and its prompt sequence, if any, and the
delay time has elapsed, the 8002 µProcessor Lab sends an acknowledgment back to the external
computer. Receipt of the message block is also indicated on the console by an asterisk. If the
message block is correctly received and a positive acknowledgment has been sent, the load
address and the byte count are displayed on the console.

Exit from the load mode to the terminal level may be caused by an of the following coniditions:

•Entering a BREAK from the keyboard.

•Receiving a terminating message from the external computer.

•Receiving an abort message from the external computer.

•Attempting to load beyond location FFFF in program memory.

•Memory write error in the 8002 µProcessor Lab.

•Device read error in the 8002 µProcessor Lab.

Save Mode

The save mode is used to transfer object code in TEKHEX format from the program memory of the
8002 µProcessor Lab to an external computer. The save mode is entered from the terminal level
by typing the following command sequence:

) NULL ~ startaddr J \endadd rJ [\startaddrj \endaddr~ . . [tra nsaddr]

The NULL character is entered by holding down the CTRL and the SHIFT keys while striking
the "P" key (with the TEKTRONIX CT8101 Printing Terminal, by holding down the CTRL key while
striking the semicolon key). The start address (startaddr) and the end address (endaddr) are the
addresses of the lower and upper bounds, respectively, of the object code in program memory.
The transfer address (transaddr), is an optional address for the location to begin execution. These
addresses are entered as hexadecimal values in a single command line. Control is returned to the
terminal level as soon as the specified data blocks have been transferred.

@ 8002 uPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

The save mode waits for the prompt sequence (if one was specified) from the external computer
before sending each message block. Each message block consists of 72 or fewer characters, and
is terminated by a carriage return. If the external computer sends a negative acknowledgment,
the current message block is sent again. If the external computer sends a positive acknow­
ledgment, the value ofthe current location and the byte count are displayed on the console. Then
the next message block is transferred to the external computer.

Exit from the save mode to the terminal level may be caused by any one of the following
conditions:

•Entering an ESC from the keyboard.

•Receiving an abort message from the external computer.

•Device read or write error in the 8002 µProcessor Lab.

Unformatted Modes

The unformatted modes are used to transfer files between the 8002 µProcessor Lab and an
externai computer. The files to be transferred may be in any ASCii format and are transferred
directly as they appear, with no error checking.

The unformatted modes are entered from the terminal level by typing one of the following
command sequences:

{::::and} !NULL II > II file name I Unformatted down-transfer mode

}name } !NULL ll < ~file namel
lcommand

Unformatted up-transfer mode

•The first element is the name or command that starts execution of the transfer program on
the external computer.

NOTE

Since the 8002 is acting as a terminal to the external computer, the user
may enter any number of instructions valid to the external computer
operating system; the 8002 µProcessor Lab is not invoked until a NULL
character is entered. The last command sent to the external computer
before this NULL character is entered should be the name of the transfer
command or program on the external computer.

•Then enter the NULL character. The NULL character is sent from most terminals by holding
down the CTRL and SHIFT keys while striking the "P" key. On the TEKTRONIX CT8101
Printing Terminal, the NULL character is sent by holding down the CTRL key while striking
the semicolon key.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT
@ 12-9

COMM INTER-SYSTEM COMMUNICATION

12-10

•The next character is either a greater-than or a less-than.

When a file residing on the extern a I computer is to be transferred to the 8002 µProcessor
Lab, enter the greater-than character >.

When a file residing on the 8002 µProcessor Lab is to be transferred to the external
computer, enter the less-than character<.

•Next enter the file name of the file to be transferred.

•Finally, enter a carriage return.

Exit from the unformatted down mode to the terminal level may be caused by striking the BREAK
key when the file tranfer from the external computer is finished. This may be signified on the
console by an asterisk. Exit from the unformatted up mode to the terminal level may be caused by
entering NULL ESC. Exit from either unformatted mode may be caused by a device read or write
error.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

PARAMETERS
The parameters E, L, P, M, and Tare optional; each defaults to a preset value if not included in
the command line. The order of entry in the command line is not important.

Commas or spaces may be used as delimiters between the parameters.

Echo Parameter, E=

The echo parameter specifies local or remote echoing of any character entered on the console
keyboard. The two variables for the echo parameter are Land R. E=L (local echo) directs the 8002
µProcessor Lab to echo any character entered. E=R (remote echo) directs the 8002 µProcessor
Lab not to echo characters, indicating that the external computer is expected to echo any
character entered. R is the default variable.

If the external computer does not echo the entered character, the character is not displayed
unless the 8002 µProcessor Lab is set for local echo.

If the 8002 µProcessor Lab is set for local echo and the computer also echoes the character, the
character is displayed twice.

Linefeed Parameter, L=

The linefeed parameter is used to echo a line feed by the 8002 µProcessor Lab when a carriage
return is entered at the keyboard. Two variables, I and 0. I (included) causes the 8002 to echo the
linefeed. O (omitted) causes the carriage return alone to be echoed without linefeed. 0 is the
default variable.

With the echo parameter set to local (E=L), the 8002 µProcessor Lab echoes only those
characters entered from the keyboard. When local echo is specified, you must enter L=I (linefeed
included), to echo a linefeed with the carriage return; otherwise you get a carriage return without
linefeed.

If the external computer is echoing characters entered from the keyboard and in addition is
returning a linefeed with the carriage return, set the linefeed parameter to L=O (linefeed
omitted). If the external computer is echoing a linefeed and you specify L=I you receive two
linefeeds with every carriage return.

If the external computer is not echoing a linefeed with the carriage return, set L=I to get the
linefeed echoed with the carriage return.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-11

COMM INTER-SYSTEM COMMUNICATION

12-12

Prompt Sequence Parameter, P=

This parameter is used to specify the prompt character sequence of the external computer
communicating with the 8002 µProcessor Lab at transfer level. The prompt character sequence
parameter defaults to the equivalent of no prompt sequence from the external computer.

The prompt sequence consists of up to six ASCII characters, represented by up to twelve
hexadecimal digits. Refer to Appendix B of this supplement, "ASCII Code Conversion Table".

The prompt parameter is used in both unformatted modes to indicate an end of data transfer. In
an unformatted upload, the prompt sequence may be sent by the external computer after each
line of text is received and verified. In an unformatted download, the prompt character indicates
an end of transmission. If no prompt sequence is specified, the BREAK key is used to end
transmission.

The following examples show several prompt sequences and the parameter entry for specifying
each.

Prompt Sequence

WHAT ?

(space)*

>

Delay Parameter, T=

Parameter Entry

P=57484154203F

P=202A

P=3E

The delay parameter indicates the time required by the external computer to prepare itself to
receive a message after sending a message to the 8002 µProcessor Lab at transfer level. The
unformatted modes do not require the T parameter. The variable is given in 100 millisecond
units, and is entered as a two digit hexadecimal number. For example, a 300 ms delay is entered
asT=03. The maximum turnaround time is 25.5 seconds, entered as T=FF. The default value for
this parameter is 0 (no delay).

Parity Parameter, M=

The following table shows the values which may be assigned to M.

M= Character Length Parity Stop Bits

0 7 even 2

1 7 odd 2

2 7 even

3 7 odd 1

4 8 none 2

5 8 none

6 8 even

7 8 odd

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

Parameter Selection

Selecting the parameters and variables needed for communicating with your external computer
involves some experimentation on your part. You may be able to get some information from your
computer center. However, the final set of parameters and variables you will need will have to be
determined by experimentation. Select those parameters that work.

The best order to use ir:i trying to select your parameters and variables is:

1. E-echo

2. L-linefeed

3. P-prompt sequence

A T-delay time -r.

5. M-parity

This whole series of experiments will require thatthe 8002µProcessor Lab be connected to your
external computer. Each experiment may require invoking the CO~v~~v1 command and logging on
the external computer a number of times.

1. E-echo parameter: This experiment is used to determine if the external computer is echoing
each character received from the 8002 µProcessor Lab.

First, invoke the COMM command without any parameters. Next, log on to your computer.

Now strike a character key on the console keyboard. Two conditions may occur; either the
character entered appears on the console display, or nothing new appears on the display.

A. If the character entered does not appear on the console display, your external computer is
not echoing each character. Try several other characters to double check. If the characters
entered are still not being echoed to the console by the external computer, you should use
the local echo parameter, E=L, when invoking the COMM command.

B. If the entered character does appear on the console display, your external computer is
echoing each character it receives. Try several other characters to double check. If these
characters also appear, you do not need to enter an echo parameter, or you may use the
remote echo parameter, E=R.

2. L-linefeed parameter: This experiment is used to determine if a carriage return-linefeed is
echoed by the external computer when it receives a carriage return.

Enter a NULL ESC, returning control to TEKDOS. (NULL is entered on most terminals by
holding down the CTRL and SHIFT keys while striking the P key.)

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-13

COMM INTER-SYSTEM COMMUNICATION

12-14

Now invoke the COMM command, entering the echo parameter determined in experiment
one. Example: enter one of the following commands:

COMM E=L or COMM E=R

A. If a linefeed is echoed with the carriage return (i.e., the console display cursor or print
head returns to the start of the next line), your external computer has echoed the carriage
return as a carriage return-linefeed. Try the carriage return several more times. If a
linefeed is still echoed with the carriage return, you do not need to specify any linefeed
parameter.

B. If the linefeed is not echoed with the carriage return (i.e., the console display cursor or
print head returns to the beginning of the current line), your external computer is not
echoing a linefeed with the carriage return. Confirm this with several more tries.

If the I ine feed is not being echoed with the carriage return by the extern a I computer, you
should use the linefeed included parameter, L=I, when invoking the COMM command.

3. P-prompt sequence parameter: The purpose of this experiment is to determine the
characters, if any, that make up the prompt sequence from your external computer. By now
you may have observed several prompt sequences from your external computer. The external
computer may use different prompts for specific situations. A simple prompt like an asterisk
or an exclamation mark may be used when the monitor is prompting. A response to
unintelligible input may be the prompt sequence, "WHAT ?", or even the comment,
"SYNTAX ERROR", followed on the next line with "OK".

The prompt sequences above are not the type sought by this experiment. Here you want to
determine the prompt sequence generated by your external computer during the execution of
the download program. This prompt sequence can be determined by observing the console
display during execution of the download program on the external computer.

First, enter NULL ESC to return control to TEKDOS. Next, invoke the COMM command with
the previously determined echo and linefeed parameters.

Now, call up and execute your download program on the external computer. The download
program should have the external computer perform the following actions:

A. Read the first message block from the data file.

B. Transmit the message block to the 8002 µProcessor Lab, where the message will be
displayed on the console.

C. Transmit a prompt sequence to the 8002 µProcessor Lab, which will display the prompt
sequence on the console.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

The visible portion of the external computer prompt sequence is then used in the P=
parameter.

For example, your external computer may send a space followed by a question mark as the
visible portion ofthe prompt sequence. You would then enter the following prompt sequence
parameter as part of your COMM command:

P=203F

Your external computer may not send a visibie prompt sequence. in this case, you do not need to
enter a prompt sequence parameter when invoking the COMM command.

4. T-delay parameter: The delay time must be long enough to ailow your external computer to
prepare itself to receive a response from the 8002 µProcessor Lab. A good starting place for
this experiment is 300 milliseconds1

• Invoke the COMM command with the previously defined
parameters, and set T=03. Then enter the command line needed to call up and start
execution of your external computer download program. Instead of striking the carriage
return, enter a NULL character and then the carriage return. This puts COMM into !cad mode
while sending the command line to your external computer.

After the first message block is received, the 8002 µProcessor Lab displays an asterisk,
followed by the load address and byte count.

A. If the delay time is long enough, the 8002 µProcessor Lab continues to display a new
asterisk, load address and byte count for each message block. This indicates that the
specified turnaround time is sufficient. It may, however, be unnecessarily long. You may
want to invoke the COMM command with the turnaround time set to a lesser value, or
even to zero.

B. If the first asterisk, load address and byte count are displayed but after 5 to 10 seconds
nothing else appears, then the delay time is too short and the system is very likely hung up.
Strike the ESC key several times to return to terminal mode. Then enter NULL ESC to
return control to TEKDOS. Now, start over with a larger turnaround time. Some
timesharing systems may need 500 milliseconds or longer.

5. M-parity parameter: Consult the specifications for your external computer to determine the
correct parity option.

"Remember. delay time is specified in hundred millisecond units (one hundred milliseconds equals one tenth of a
second). The variable portion of the turnaround time parameter must contain at least two digits-hence T=03.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-15

COMM INTER-SYSTEM COMMUNICATION

12-16

DOWNLOADING AND UPLOADING
The terms downloading and uploading refer to the transfer of files between the 8002
µProcessor Lab and and external computer. Downloading and uploading require thatthe COMM
command be invoked so that the 8002 µProcessor Lab can properly handle the messages and
check for the receipt of valid data.

Formatted downloading requires that the external computer be programmed to transmit the
object code in hexadecimally formatted message blocks. In addition, the downloading program
on the external computer should respond to message acknowledgments from the 8002
µProcessor Lab.

Formatted uploading requires that the external computer be programmed to receive and store the
hexadecimally formatted object code message blocks. Upon receipt of each message block, the
uploading program on the external computer should return a message acknowledgment to the
8002 µProcessor Lab.

Formatted Download Message Handling (LOAD Mode)

Formatted downloading procedure involves several steps:

•The external computer sends a message block containing data to the 8002 µProcessor Lab.

•The 8002 µProcessor Lab checks the validity of the message block received.

•The 8002 µProcessor Lab sends a message acknowledgment to the external computer.

If either a prompt character sequence or a turnaround delay has been specified as a parameter in
the COMM command, the specified parameters must be satisfied before the 8002 µProcessor
Lab sends an acknowledgment to the external computer.

The external computer program sends one message block and then waits for an
acknowledgment. If the message block is correct, the 8002 µProcessor Lab returns a positive
acknowledgment to the external computer. The external computer then sends the next message
block.

If the message block received from the external computer is not correct, the 8002µProcessor Lab
returns a negative acknowledgment to the external computer. Upon receipt of this
acknowledgment the external computer may take some appropriate action. Usually the action is
to retransmit the message block. If the 8002 µProcessor Lab continues to issue a negative
acknowledgment, the external computer may then send an abort message.

A negative acknowledgment is sent back to the external computer when either checksum is
wrong, or when a header character is not detected at the beginning of the message block.

The ASCII character "0" is a positive acknowledgment. The ASCII character "7" is a negative
acknowledgment. Either acknowledgment is followed by the EOL character, a carriage return.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

Comparison of Checksums

When the external computer sends a message block, the 8002 µProcessor Lab receives the
entire block. The first checksum of the message block is verified. If the first checksum is bad, the
8002 µProcessor Lab returns a negative acknowledgment to the external computer and then
waits for the next transmission.

If the first checksum veri.fies the location counter and the byte count data as being good, the data
characters received are converted into bytes and are stored in the appropriate program memory.
During this conversion, a second checksum is accumulated.

The second checksum transmitted by the external computer is then compared with the
calculated second checksum. If these two checksums are the same, a positive acknowledgment
is returned to the external computer. If these two checksums are not the same, a negative
acknowledgment is sent to the external computer.

In summary, a negative acknowledgment may be sent to the external computer if either the first
or the second checksum verification is bad. A positive acknow!edment is not sent until the second
checksums are verified as being the same. Whether the second checksum verification is positive
or negative, the data block is stored in program memory. If the first checksum verification is
negative, the data block is not stored in program memory.

Sample Download Program

The following program listing is an example of a downloading program written in FORTRAN. This
program resides in the external computer and is used in transferring data blocks to the 8002
µProcessor Lab. The data to be downloaded must have been previously converted to Tektronix
Hexadecimal Format by the external computer. (The Tektronix Hexadecimal Format is explained
in Section 7.)

In this sample downloading program, the line numbers are for reference only and are not to be
entered as part of the program code. A positive acknowledgment is often referred to as an ACK,
while a negative acknowledgment is referred to as a NAK.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-17

COMM INTER-SYSTEM COMMUNICATION

12-18

3
4

c
c
c
c
c

*
* * * *

THIS PROGRAM TRANSMITS A TEKTRONIX HEXADECIMAL FILE TO THE
8002 uPROCESSOR LAB PROGRAM MEMORY. THIS PROGRAM IS RUN IN
CONJUNCTION WITH THE COMMUNICATIONS PROGRAM ON THE 8002
uPROCESSOR LAB. EACH MESSAGE SF.NT TO THE 8002 rJPF:OCESSOR
LAB IS ACKNOWLEDGFD RY FITHER A POSJTIVE ArKNOWI FDGMFNT,

B
9

10
1l.
1.2
13
14

c
c
c

* * *

A ZFRO, OR A NF.GA TI VE' ACKNOWl..EDGMFNT, A SF:.VF.N. IF 5
NEGATIVE ACKNOWLEDGMENTS TO A MESSAGE ARE RECEIVED, THIS
PROGRAM HALTS AFTER SFNDING THE 8002 uPROCESSOR LAB AN

c
c
c
c
c
c

15 c

* * * * * * *

ABOFH MESSAGE.

LOGICAL UNIT ASSIGNMENTS
5 - 8002 <TERMINAL> INPUT
6 - 8002 <TERMINAL> OUTPUT
7 - MESSAGE FILE

16 DIMENSION MESS C80>
17 DATA I ZEF~O/ I 0 I;, I ACK/ I 0 I;, I SPACE/ I I I' I SLASH/ I/ I/
18 C * INITIALIZE THE NEGATIVE ACKNOWLEDGMENT COUNTER
19 10 NAKCT = 0
20 C * READ A MESSAGE
21 READ (7,20,END = 999) MESS
22 20 FORMAT (80A1)

24 c *
25
26
27
28 30
29 c *
30 40
31

IF <MESS<l>.NE.ISLASH> GO
FIND THE END OF THE MESSAGE

DO 30 J = 1,BO
NUM :::: 81. - J
IF <MESS (NUM) • NE. I SPACE)
CONTINUE

TRANSMIT THE MESSAGE

TO l.O

GO TO 40

WRITE (6,20> <MESS(J),J = 1,NUM>
READ <5,20) IREPLY

32 IF <IREPLY.EQ.IACK> GO TO 10
33 NAKCT = NAKCT + 1
34 C * RETRANSMIT IF LESS THAN 5 CONSECUTIVE NEGATIVE ACKNOWLEDGMENTS
35 IF <NAKCT.LT.5> GO TO 40
36 GO TO 1000
37 C * IF THE LAST MESSAGE WASN'T AN END MFSSAGE, SEND ONE
38 999 IF CMESS<6>.EQ.ZERO.AND.MESS<7>.EG.ZERQ) STOP
39
40 50
41 60

NAKCT = 0
WRITE (6,60)
FORMAT ('/00000000')

42 READ (5,20) !REPLY
43 IF <IREPLY.EQ.IACK> STOP
44 NAKCT = NAKCT + 1
45 IF <NAKCT.LT.5) GO TO 50
46 C * SEND AN ABORT MESSAGE
47 1000 WRITE (6,70)
48 70 FORMAT ('//DOWNLOAD ABORTED - 5 CONSECUTIVE NAKS RECEIVED'>
49 STOP
50 END

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

The object code to be downloaded by this program must be converted to Tektronix Hexadecimal
Format and stored on a message file prior to execution of this program. The download program
reads each message block in turn from the message file. The current message is then sent to the
8002 µProcessor Lab which acknowledges receipt of the message.

In the program listing, lines 24 through 28 show that this program can handle a maximum of 80
characters in a message.

Lines 35 and 36 a!!ow the current message to be transmitted five times with negative
acknowledgments. After receiving the fifth NAK, the computer jumps to 1000 at line 4 7 and
sends an abort message to the 8002 µProcessor Lab.

VVhen an end-of-file condition is detected at line 21, the computer jumps to 999 at line 38. If the
previous message was not an end message, the end message shown at line 41 is sent. This may
also be transmitted five times with a negative acknowledgment. But after the fifth NAK, the abort
message is sent.

The FORTRAN code at line 21, specifically END=999. is the method used by an IBM 370 to check
for and end-of-file condition. If you are using a CDC computer, the following two lines of code are
substituted for line 21:

READ (7,20) MESS

IF (EOF (7)) GO TO 999

The method used in checking for the end-of-file condition varies with the computer being used.
Change this code to comply with the FORTRAN subset of your computer system.

The first character in a Tektronix Hexadecimal Formatted message block is a slash (/). If a
message block is transmitted without a slash as the first character, the 8002 µProcessor Lab
returns a negative acknowledgment. The fifth NAK received by the download program causes an
abort message to be downloaded. The download program contains code at line 23 to detect and
then disregard any message block without a header slash.

Your download program should check for the absence of the header slash in every message
block, and should then take appropriate action when the header slash is not present.

Unformatted Download Message Handling

In this mode, the transfer program on the external computer can be any program that can copy or
read from the system console. An example of such a program is the TEKDOS command, COPY.
No verification or error checking is done in this mode.

The external computer sends the prompt sequence specified in the COMM command line, to
indicate the end of data transfer. If no prompt sequence has been specified, the BREAK key is
used to end transmission.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-19

COMM INTER-SYSTEM COMMUNICATION

12-20

Formatted Upload Message Handling (SAVE Mode)

Formatted uploading follows these general steps:

•The 8002 µProcessor Lab sends a message block to the external computer.

•The external computer checks the validity of the message block received.

•The external computer sends a message acknowledgment to the 8002 µProcessor Lab.

If either a prompt character sequence or a turnaround delay has been specified as a parameter in
the COMM command, the specified parameters must be satisfied before the 8002 µProcessor
Lab sends a message block to the external computer. After the 8002 µProcessor Lab sends one
message block, it waits for an acknowledgment from the external computer.

If the external computer receives a valid message block, the upload program on the external
computer should return a positive acknowledgment. The 8002 µProcessor Lab then sends the
next message block.

If the message block received by the external computer is invalid, the upload program on the
external computer should return a negative acknowledgment. When the 8002 µProcessor Lab
receives a negative acknowledgment, it retransmits the current message block. The upload
program on the external computer should count the numbers of times it receives a negative
acknowledgment for a message block. After a number of tries (any number may be used, but
usually three tries is sufficient) the upload program on the external computer should take some
appropriate action.

The action taken after sending a given number of negative acknowledgments might be to send an
abort message to the 8002 µProcessor Lab. If you want to continue uploading in spite of an invalid
message block, you could program the external computer to send a positive acknowledgment to
the 8002 µProcessor.

The ASCII character "0" is a positive acknowledgment. The ASCII character "7" is a
negative acknowledgment. Either acknowledgment is followed by the EOL character, a
carriage return.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION COMM

Sample Upload Program Flowchart

The following flowchart is for a formatted upload program that is to reside in the external
computer.

The program written from this flowchart receives message blocks from the 8002µProcessor Lab.
The data to be uploaded is in Tektronix Hexadecimal Format.

In the flowchart, a positive acknowledgment is referred to as an ACK and a negative
acknowiedgment is referred to as a NAK.

The NAK counter is used to count the number of negative acknowledgments sent to the 8002
µProcessor Lab for each message block. A negative acknowledgment is sent each time that either
checksum is determined to be invaiid. When five NAKs have been sent for a message block, this
flowchart shows that the external computer sends an abort message to the 8002µProcessor Lab.
Further transmission is then stopped.

The upload program checks for zeros at data items six and seven in each message b!ock received.
\Nhen data items six and seven are both zero, a terminating biock has been received.

The upload program checks data items one and two in each message block for slashes. A slash in
one and two indicates receipt of an abort block.

Every valid message block (this includes terminating blocks, abort blocks, and data blocks) is
stored on a file in the external computer.

Every message block received, whether valid or invalid, must be acknowledged by the external
computer.

Unformatted Upload Message Handling

In this mode, the transfer program on the external computer can be any program that can copy or
read from the system console. An example of a transfer program is the TEKDOS command,
COPY. No verification or error checking is done in this mode.

The external computer echoes the prompt sequence specified in the COMM command line after
receiving each message block. This initiates transfer of the next message block.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-21

COMM

START

Set "NAK"
Counter
to 0

Sum Data
Items 2, 3,
4, 5, 6 & 7

6

Sum Data Items
10 thru 10 + (2 X
Byte Count)

8

Yes

Yes

No

INTER-SYSTEM COMMUNICATION

Program Name: UPLOAD

@

STOP

Increment
"NAK"
Counter

Send
"NAK" to
8002 µPL

14

17

12

2463-9

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

INTER-SYSTEM COMMUNICATION SEND

SYNTAX

PURPOSE

ihe SEND command transfers iektronix object code fiies from the 8002 µProcessor Lab to the
8001 µProcessor Lab.

EXPLANATION
The SEND command invokes a computer program that allows the 8002 µProcessor Lab to
function as an external computer to the 8001 µProcessor Lab. When the SEND program receives
a valid filename from the 8001 µProcessor Lab, it initiates transfer of message blocks in Tektronix
Hexadecimai Format. A description of Tektronix Hexadecimal (TEKHEX) Format appears in
section 7 of this supplement.

Receipt of a positive acknowledgment initiates transfer of the next message block. Receipt of a
negative acknowledgment causes the current message block to be retransmitted. An abort
message block is transmitted if an invalid filename is received or a file read error occurs.

The SEND command returns control to TEKDOS when any one of the following conditions is met

•Transmission of a terminating message and receipt of a positive acknowledgment.

•Receipt of two break signals from the 8001 µProcessor Lab System.

•The ESC key is struck twice on the console of the 8002µProcessor Lab, followed by ABORT
SEND (or ABORT *).

Procedure for Use of the SEND Command

The following procedure is used for effecting communication between the 8002 µProcessor Lab
and the 8001 µProcessor Lab. Both labs must be operating as stand-alone units, that is the 8001
µProcessor Lab cannot be considered as the terminal for the 8002 µProcessor Lab. Each must
have its own console.

The cable connecting the two labs is plugged into J101 (REMl,REMO) on the 8001 µProcessor
Lab. The other end of the cable is plugged into J 101 (REMl,REMO) on the 8002 µProcessor Lab.
The cable should be an RS-232-C standard cable with a null modem attached, or equivalent. For
further explanation of a null modem, see Appendix C of this supplement.

The transmission rates for the ports being used for this communication link should be set at 2400
baud.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ 12-23

SEND INTER-SYSTEM COMMUNICATION

12-24

Procedure Steps:
1. Start both the 8002 µProcessor Lab and the 8001 µProcessor Lab.

2. Invoke the COMM command on the 8001 µProcessor Lab by entering the following command
line:

COMM P=3F E=L L=I

3. Invoke the SEND command on the 8002 µProcessor Lab.

4. On the 8001 µProcessor Lab enter the following command line to invoke the load mode:

file-name NULL carriage return

NOTE

A NULL character is entered from most terminals by holding down the CTRL and SHIFT
keys while striking the "P" key. On the CT8101 Printing Terminal the NULL character
is entered by holding down the CTRL key while striking the semicolon key.

At this point the file named will be loaded from the 8002 µProcessor Lab into the 8001
µProcessor Lab program memory.

8002 8001

TEKDOS , TE KOPS

•

·~ ••

Terminal Level SEND ~ COMM

Transfer Level Load

SEND Command Organization. 2463-2

When transmission is completed, enter a NULL ESC on the 8001 µProcessor Lab console.
To abort SEND during execution and thus return both µProcessor Labs to their operating systems,
enter either:

1. BREAK BREAK NULL ESC on the 8001 µProcessor Lab System or

2. ESC ESC ABORT SEND on the 8002 µProcessor Lab System, followed by NULL ESC on the
8001 µProcessor Lab System.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

Appendix A
ERROR CODES

TEKDOS ERROR CODES
1 - DIRECTORY READ ERROR
2 - DIRECTORY WRITE ERROR
3 - COMMAND FILE NOT FOUND
4 - COMMAND FILE INPUT ERROR
5 - PROCEDURE BUSY
6 - DEVICE READ ERROR
7 - DEVICE WRITE ERROR OR

END-OF-DEVICE
8 - DRIVE NOT SPECIFIED
9 - INVALID DRIVE

10 - COMMAND LOAD FAILURE
11 - MEMORY AREA IN USE
12 - INVALID FILE NAME
13 - INPUT FILE NOT FOUND
14 - INVALID INPUT DEVICE
15 - INVALID OUTPUT DEVICE
16 - INPUT DEVICE ASSIGN FAILURE
17 - OUTPUT DEVICE ASSIGN

FAILURE
18 - DEVICE IN USE
19 - INVALID CHANNEL NUMBER
20 - CHANNEL IN USE
21 - CHANNEL ASSIGN FAILURE
22 - COMMAND LINE BUFFER

OVERFLOW
23 - INVALID COMMAND
24 - JOB NOT ACTIVE
25 - JOB NOT SUSPENDED
26 - JOB ALREADY SUSPENDED
27 - JOB EXECUTING
28 - JOB UNDER DEBUG CONTROL
29 - PROM POWER FAILURE
30 - INVALID PARAMETER
31 - PARAMETER REQUIRED
32 - TOO MANY PARAMETERS
33 - BIAS PARAMETER ERROR
34 - INVALID ADDRESS
35 - INVALID START ADDRESS
36 - INVALID END ADDRESS
37 - INVALID GO ADDRESS
38 - INVALID DEBUG USER

PROGRAM ADDRESS

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @

39 - INVALID HEX CHARACTER
40 - INVALID RHEX INPUT FORMAT
41 - INVALID BREAKPOINT

ACCESS MODE
42 - INVALID REGISTER PARAMETER
43 - INVALID DATA PARAMETER
44 - INVALID TRACE MODE

PARAMETER
45 - INVALID EMULATOR SRB

ADDRESS
46 - EMULATOR HALTED
47 - SYSTEM AREA BAD
48 - FETCH FILE NOT FOUND
49 - FETCH FILE ASSIGN FAILURE
50 - FILE NOT A FETCH MODULE
51 - INVALID FETCH REQUEST
52 - INVALID DEVICE
53 - INVALID EMULATOR

PROCESSOR
54 - INVALID MODE
55 - INVALID MEMORY
56 - INVALID DEVICE ADDRESS
57 - FILE NAME IN USE
58 - DEVICE ASSIGN FAILURE
59 - MEMORY WRITE ERROR
60 - END OF MEDIA
61 - FILE IN USE
62 - DEVICE NOT OPERATIONAL
63 - DIRECTORY FULL
64 - INVALID DISC
65 - SYSTEM MEMORY PARITY

ERROR
66 - PROGRAM MEMORY PARITY

ERROR
67 - EMULATOR CLOCK MISSING
68 - EMULATOR FAULTED
69 - ADDRESS NOT ON WORD

BOUNDARY
70 - WORD OR BYTE BOUNDARY

ERROR

A-1

A-2

ERROR CODES

TEXT EDITOR ERROR MESSAGES
This section provides a list of all Editor messages and an explanation of their meaning.

WSP FULL

The buffer is full.

NOT FOUND

The given string could not be found.

DISC FULL

Output disc is full.

NUMBER

The parameter n is in error.

RANGE

The parameter N is in error, or an attempt was made to reference lines which are not in the
workspace.

MODE

An attempt was made to execute a macro string from within a macro string; this is not
allowed.

NEST

The nesting brackets < and > do not balance.

COMMAND?

An unknown command was encountered in the command line.

BREAK

The ESCAPE Console Key was depressed to terminate execution of a file 1/0 function.

PROCEDURE ERROR

Editor usage is in error.

TEKDOS STAT=XX

XX is the TEKDOS SRB status byte returned to the Editor when an unusual request or event
has occurred. The meaning of the status byte can be found in Section 10 of the System
User's Manual.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

ERROR CODES

NO Pl

For this editing session there is no PRIMARY INPUT file; the user may not do GETs without
specifying an Alternate Input file.

NO PO

For this editing session there is no PRIMARY OUTPUT file; the user may not do PUTs without
specifying an Alternate Output file.

READ FILE?

An attempt was made to read from a non-existent file or an illegal input device.

(iNPUT)

The Editor response is in reference to an input attempt.

(OUTPUT)

Tho c,.,i;+"r roc:.nl"\nc:.o ic:. in rafaranra tn !:in n11tn11t :::iittcmnt
I 11~ ~UILUI I 'V~t-'UI 1.;;;f'-' I~ II I I""'''-''"""' IV"" .. ""' """"'I ""'""" .. !"""'""".,,..,.,""' 1 '!'""••

Pl
PO
Al
AO

The Editor response occurred in reference to the Primary or Alternate Input or Output, as
applicable.

NEW FILE

A new file was created.

(LPT1)

The Editor response occurred in reference to the line printer.

ASSIGN PROBLEM

The Editor was unable to assign a channel to a given device.

Pl=NEW FILE?

An attempt was made to "EDIT INFILENAME OUTFILENAME" where INFILENAME and
OUTFILENAME were not the same file and INFILENAME was non-existent.

EOF

An end-of-file was reached on input or output, or the end of workspace text was reached.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ A-3

A-4

ERROR CODES

NO FILES SPECIFIED

The user initiated the Editor without specifying any primary files; for this editing session the
user may not do GETs or PUTs without specifying an Alternate file.

ABORTED

A command line exceeded 128 characters and was rejected.

TRUNCATED

An INPUT line exceeded 128 characters and was truncated to the first 128 characters
entered.

A SUBSTITUTE caused the line to exceed 128 characters and the line was truncated to 128
characters.

@ 8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

Appendix B

CONVERSION TABLES
HEXADECIMAL TO DECIMAL CONVERSION TABLE

HEX DEC HEX DEC HEX DEC
0000 0 000 0 00 0
1000 4,096 100 256 10 16
2000 8,192 200 512 20 32
3000 12,288 300 768 30 48
4000 16,384 400 1,024 40 64
5000 20,480 500 1,280 50 80
6000 24,576
7000 28,672

600 1,536
700 1,792

L... 60 96 I
%\!\\\f\:\:::\\\ll\\ ~'.'.'.'.;.'.,;/;;:i: ,;;;:.; :'\\\t\'\\\\1,\\l\l\\\\\:\t\\\\\f

8000 32,768 800 2,048 80 128
9000 36,864 900 2,304 90 144
AOOO 40,960 AOO 2,560 AO 160
8000 45,056 :::,,:·:-:·::•:·1:::-:::-' -:.: :::,::_-::::::::::e.;.1:1,1:=:,:::::-:1:: BO 176
cooo 49,152 coo 3,072 co 192
DOOO 53,248 DOO 3,328 DO 208
EOOO 57,344 EOO 3,584 EO 224

[~::111g:t:1:::1::: :::1:::::::::1J.::~~~J :::;:) FOO 3,840 FO 240

HEX FOOO+B00+70+3=FB73

DEC 61440 + 2816 + 112 + 3 = 64371

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @

HEX
0
1
2

DEC
0
1
2

::::::::]:]:]:::::a::::::::::::::::::::::
4
5
6
7
8
9
10
11
12
13
14
15

B-1

0
1

2

3
4

LEAST 5
SIGNIFICANT 6
CHARACTER 7

8

9
A

B

c
D

E
F

B-2

CONVERSION TABLES

ASCII CODE CONVERSION TABLE

0

NUL
SOH

STX
ETX

EOT

ENO

ACK

BEL

BS

HT

LF

VT

FF

CR

so
SI

HEXADECIMAL

MOST SIGNIFICANT CHARACTER

1 2

DLE SP
DC1

DC2

DC3 #

DC4 $
NAK %

SYN &
ETB

CAN

EM

SUB

ESC +
FS

GS
RS

us I

EXAMPLES

w =57
H = 48
a = 61

t = 74
@=40

NUL = 00
DEL= 7F

3 4

0 @

1 A

2 B

3 c
4 D

5 E

6 F

7 G

8 H

9 I
J
K

< L

= M

> N

? 0

@

5 6 7

p p

a a q
R b r
s c s
T d t
u e u
v f v
w g w
x h x
y y

z j z
[k {
\ I I

I

] m }

" n =
0 DEL

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT

Appendix C

NULL MODEM
DESCRIPTION
A null modem consists of two RS-232 standard female plugs hard-wired back-to-back with the
following pin connections:

At both ends, pin 1 is grounded to the metal mainframe.

Pin 2 (data transmission path) at one end is connected to pin 3 (data reception path) at the
other end.

Pin 4 (request-to-send line) at one end is connected to pin 5 (clear-to-send line) at the other
end.

Pin 7 (signal ground) is connected to pin 7,

Pin 8 (external-computer-is-operational) at one end is connected to pin 20 (terminal-is­
operational) at the other end.

Supervisory signal lines (pins 11, 12, and 19) from one end are connected to their
corresponding pins at the other end (11 connected to 11, etc.).

2463-5

Wiring Diagram for NULL Modem.

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT @ C-1

Appendix D

COMMAND INDEX
This appendix supplements the command index contained in Appendix D of the 8002
System User's Manual. Page references are to this supplement.

COMMAND Page

BIAS .. 7-12
COMM ... 12-6
QUMP ... 7-13
~X-AM .. 7~14
.PATCH ... 7-15
RVHEX ... 7-8
SEND .. 12-23
TRACE ... 8-2
WHEX , , , , 7-7
\WHEX .. 7-9

8002 µPROCESSOR LAB SYSTEM USER'S SUPPLEMENT D-1

	0001
	0002
	001
	002
	02-01
	03-01
	04-01
	05-01
	06-01
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-01
	08-02
	08-03
	09-01
	1-01
	10-01
	11-01
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	D-01

