Tektronix, inc.
P.O. Box 500
Beaverton, Oregon

070-2701-00

97077

Tektronix:

COMMITTED TO EXCELL!

8002A

H#PROCESSOR LAB

SYSTEM USER’'S MANUAL

This manual supports TEKDOS Version 1.

INSTRUCTION MANUAL

Serial Number

First Printing JUL 1978

WARRANTY

The 8002A uProcessor Lab System (including options) is
warranted against defective materials and workmanship under
normal use and service for a period of 90 days from date of initial
shipment. CRTs found to be defective within 12 months from the
date of shipment will be exchanged at no charge (this does not
include installation).

On site warranty repair is provided during normal working hours
(for the 90-day period). Travel to the site is confined to those
areas in which Tektronix states it has service facilities available
for this product.

Tektronix shall be under no obligation to furnish warranty service
if:
a. Attempts to install, repair, or service the equipment are

made by personnel other than Tektronix service
representatives.

b. Modifications are made to the hardware or software by
personnel other than Tektronix service representatives.

c. Damage resuits from connecting the 8002A uProcessor
Lab System to incompatible equipment.

Specifications and price change privileges reserved.

Copyright © 1978 by Tektronix, Inc., Beaverton, Oregon. Printed
in the United States of America. All rights reserved. Contents of
this publication may not be reproduced in any form without
permission of Tektronix, Inc.

U.S.A. and foreign Tektronix products covered by U.S. and
foreign patents and/or patents pending.

TEKTRONIX is a registered trademark of Tektronix, Inc.

All software products including this document, all associated
flexible discs and the programs they contain are the sole property
of Tektronix, Inc., and may not be used outside the buyer’s
organization. The software products may not be copied or
reproduced in any form withoui the express written permission of
Tektronix, Inc. All copies and reproductions shall be the property
of Tektronix and must bear this copyright notice and ownership
statement in its entirety.

NOTE

IN THIS MANUAL, ALL REFERENCES TO THE “8002 uPROCESSOR
LAB" APPLY EQUALLY TO THE 8002A uPROCESSOR LAB.

The TEKTRONIX 8002A uProcessor Lab, containing a standard 32k-byte
program memory, replaces the TEKTRONIX 8002 uProcessor Lab with its
standard 16k-byte program memory. At the time of this writing, the 8002A
1Processor Lab functions identically to the 8002 uProcessor Lab.

Contact your Tektronix field service representative to order manuals for the
8002A uProcessor Lab.

Tektronix, Inc.
P.O. Box 500

Beaverton, Oregon 97077
070-2313-01

TEKTRONIDC
8002

#PROCESSOR LAB

SYSTEM USER’S MANUAL

This manual supports TEKDOS Version 1.

Serial Number

First Printing April 1977

WARRANTY

The 8002 uProcessor Lab System (including options) is warranted against
defective materials and workmanship under normal use and service for a
period of 90 days from date of initial shipment. CRTs found to be de-
fective within 12 months from the date of shipment will be exchanged at
no charge. (This does not include installation.)

On site warranty repair is provided during normal working hours (for the
90-day period). Travel to the site is confined within the country of pur-
chase.

Tektronix shall be under no obligation to furnish warranty service if:

a. Attempts to install, repair, or service the equipment are made by
personnel other than Tektronix service representatives.

b. Modifications are made to the hardware or software by personnel
other than Tektronix service representatives.

¢. Damage results from connecting the 8002 uProcessor Lab System
to incompatible equipment.

Specifications and price change privileges reserved.

Copyright © 1977 Tektronix, Inc.
All Rights Reserved.

All software products including this document, all associated flexible
discs and the programs they contain are the sole property of Tektronix,
Inc., and may not be used cutside the buyer’s organization. The software
products may not be copied or reproduced in any form without the ex-
press written permission of Tektronix, Inc. All copies and reproductions
shall be the property of Tektronix and must bear this copyright notice
and ownership statement in its entirety.

DOCUMENTATION OVERVIEW

Introduction

The 8002 uPROCESSOR LAB support documentation consists of two groups of manuais;

user's manuais and service manuals. User's manuals expiain the procedures reguired {0

operate the 8002 uPROCESSOR LAB system and its peripheral devices. They are identified by
their gray covers and are a standard part of the system package.

Service manuals provide the information necessary to perform routine maintenance and to
make minor repairs to system components. The hardware test manuals, within this group,
provides detailed trouble-shooting information beyond the scope of routine maintenance.
Service manuals are identified by their blue covers and may be purchased as optional
accessories.

User Manual Organization

The 8002 uPROCESSOR LAB user's manuals are incorporated into a series of user support
packages. Each package contains a three-ring binder, a manual, a reference card that

summarizes the contents of the manual, and one or more flexible discs. Some discs are blank

and others contain coded programs.

The contents of the user support packages at the time of this writing are as foliows:

8002 uPROCESSOR LAB System User’'s Package

Contents Part Number
General purpose three-ring binder 016-0367-00
8002 uPROCESSOR LAB System User’'s Manual 070-2313-01
8002 uPROCESSOR LAB System Reference Card 070-2350-01
Two blank flexible discs 119-0848-01
Description

This package is a standard accessory to every 8602 uPROCESSOR LAB System. The System
User's Manual is the fundamentai documentation and contains information on how to use the
8002 uPROCESSOR LAB operating system. The System Reference Card summarizes the
contents of the System User’s Manual. The two blank flexible discs are provided so back-up
copies of software can be safely stored. A blank disc may also be used to store user written
programs.

8002 uUPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978

DOCUMENTATION OVERVIEW

8002 uPROCESSOR LAB Assembler & Emulator Support Package
for 8080 Microprocessor

Contents Part Number
General purpose three-ring binder ‘ 016-0367-00
8002 uPROCESSOR LAB Assembler & Emulator User’s Manual

for 8080 Microprocessor 070-2341-00
8002 uPROCESSOR LAB 8080 Assembler and Emulator Reference Card 070-2351-00

8002 uPROCESSOR LAB System Disc for 8888 Microprocessor

Description

This package contains the necessary software and documentation to support 8080
microprocessor program development. The system disc contains the TEKDOS operating
system and the TEKTRONIX 80808 Assembler. The manual explains how to operate the
TEKTRONIX 8080 Assembler and Emulator modules. This manual and the System User’s
Manual provide complete user information for 8080 program development. The 8080
Assembler and Emulator Reference Card, a summary of the commands in the 8880 Assembler
and Emulator User's manual, serves as a quick reference guide.

8002 uPROCESSOR LAB Assembler & Emulator Support Package
for 6800 Microprocessor

Contents Part Number
General purpose three-ring binder 016-0367-00
8gg2 uPROCESSCR LAB Assembler & Emulator User's Manua!

for 680@ Microprocessor 070-2349-00
‘8002 uPROCESSOR LAB 6800 Assembler and Emulator Reference Card 070-2352-00

8002 uPROCESSOR LAB System Disc for 6808 Microprocessor

Description

This package supports program development for the 6800 microprocessor. The system disc
contains the TEKDOS operating system and the TEKTRONIX 6808 Assembler. The manual
contains the details necessary to operate the TEKTRONIX 6808 Assembier and Emuiator

REV. B, MAR. 1978 8092 uPROCESSOR LAB SYSTEM USER'S

DOCUMENTATION OVERVIEW
L " e

modules. This manual and the System User’s Manual provide complete user information for
8080 program development. The 8080 Assembler and Emulator Reference Card is a summary
of the commands in the 8080 Assembler and Emulator User's manual and serves as a quick

reference guide.

Future User Support Packages

Support packages similar to those packages described are planned for each microprocessor
development module to be introduced in the future.

Service Manuals

The 8002 uPROCESSOR LAB consists of a main system service manual and supplementary
service manuals for each plug-in module. The service manuals contain information pertinent
to installation, servicing, and maintaining system components. Diagrams and circuit
descriptions are provided, as are specifications and parts lists. Detailed information facilitates
all necessary cleaning, lubrication, calibration, and diagnostic trouble-shooting.

Available service manuals with their respective part numbers and general content are as
follows:

8002 uPROCESSOR LAB System Service Manual
Part No. 070-2312-00

. System Memory

. Program Memory

. Assembler Processor

. System Communications

. Debug and Front Panel I/0
. Flexible Disc Unit

8002 uPROCESSOR LAB 8080 Emulator Processor Service Manual
Part No. 070-2353-00

. 8080 Emulator Processor
. 8080 Prototype Control Probe

8002 xPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 iii

DOCUMENTATION OVERVIEW

8002 uPROCESSOR LAB 6800 Emulator Processor Service Manual
Part No. 070-2354-00

. 6800 Emulator Processor
. 6800 Prototype Control Probe

8002/8001 uPROCESSOR LAB Real-Time Prototype Analyzer System Service Manual
Part No. 070-2356-00

. Data Acquisition Interface
. P6451 Data Acquisition Probe

8002 uPROCESSOR LAB 2704/2798 PROM Programmer Service Manual
Part No. 070-2355-00

. Service Instructions

8002 uPROCESSOR LAB 1702A PROM Programmer Service Manual
Part No. 070-2357-00

. Service Instructions

8002 uPROCESSOR LAB Maintenance Front Panel Instruction Manual
Part No. 070-2358-00

. Operating Instructions
. Service Instructions

8002 .PROCESSOR LAB Hardware Test Manual
Part No. 070-2375-00

Contains support documentation necessary to effectively troubleshoot the 8802
u#PROCESSOR LAB System. The manual, together with diagnostic software and a test fixture,
forms the 8002 uPROCESSOR Hardware Test Package, Part No. 067-0841-00.

iv REV.B, MAR. 1978 80¢2 LPROCESSOR LAB SYSTEM USER'S

SECTION 2

SECTION 3

TABLE OF CONTENTS

8002 uPROCESSCOR LAB SYSTEM INTRODUCTION PAGE
THE PURPOSE OF ANMDA 1-1
KINDS OF MDAs e 1-1
IMPORTANT MDA FEATURES 1-2
MICROPROCESSOR DEVELOPMENT CYCLE 1-4
8002 uPROCESSOR LAB HARDWARE COMPONENTS 1-8
8002 uPROCESSOR LAB SOFTWARE COMPONENTS 1-13
SUMMARY . . 1-15

BECOMING FAMILIAR WITH THE SYSTEM

INTRODUCTION e e, 2-1
SYSTEM POWER-UP PROCEDURE 2-3
Turn on the Flexible Disc Unit 2-3
Turnonthe Terminal, 2-4
Turn on the 8002 uProcessorlab 2-6
TurmonthelinePrinter, 2-7
insert the System Fiexibie Disc 2-8
TEKDOS Ready State 2-9
LISTING THE FLEXIBLE DISC DIRECTORY 2-9
SYSTEM POWER-DOWN PROCEDURE 2-9
Remove the Flexible Discs 2-10
Turn off the Terminal Power 2-10
Turn off the Line Printer 2-10
Turn off the 8002 uProcessorLab 2-10
Turn off the Flexible Disc Unit 2-11
FLEXIBLE DISC INITIALIZATION 2-1
Flexible Disc Formatting 2-11
Flexible Disc Verification 2-12
Disc Duplication 2-12
TEXT EDITING . .. e e 2-13
Text Creation 2-13
TextStorage 2-15
Text Retrieval 2-15
Text Alteration e 2-16

COMMAND CONVENTIONS

INTRODUCTION 3-1
COMMAND NAME 3-1
DELIMITERS e 3-1
PARAMETERS 3-2

8092 u.PROCESSOR LAB SYSTEM USER'S REV. A JUN 1877

TABLE OF CONTENTS (cont)

SECTION 4 TEKTRONIX DISC OPERATING SYSTEM PAGE
INTRODUCTION e 4-1
SYSTEM DESCRIPTION e e 4-3
TEKDOS DISC AND FILEUTILITIES 4-9

FORMAT . . 4-10
VERIFY . 4-12
RENAME e 4-13
DUP . e 4-15
COPYSYS . . . e 4-17
LDIR . 4-18
DELETE 4-19
CMPF . . 4-20
COPY 4-21
PRINT . 4-24
TEKDOS CONTROL COMMANDS 4-25
Space Bar e 4-26
CTRL-Z . . 4-27
RUBOUTKeEY i 4-28
ESC . 4-29
SUSPEND e A3
CONT e 4-32
ABORT 4-3
TEKDOS OPTION COMMANDS i 4-34
SYSTEM e 4-35
DEVICE 4-36
CLOCK 4-37
ASSIGN . . . e 4-38
CLOSE 4-39
EMULATE 4-40
COMMAND FILES e 4-41
Command Description 4-42
e e 4-46
KILL . 4-47
TYPE .. e 4-48

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

TABLE OF CONTENTS (cont)

SECTIONSE TEXT EDITOR PAGE
INTRODUCTION TOTHE TEXTEDITOR 5-3
INVOKING THE TEXTEDITOR, i 5-4
COMMAND CONVENTIONS e 5-7
TEXT TRANSFERCOMMANDS 5-10

INPUT e 5-11
INSERT . .. e 5-13
FILE . .o e 5-14
GET . 5-17
PUT L e 5-21
COPY L 5-26
TYPE . o e 5-32
LIST . e e 5-33
SEARCHING AND ALTERATIONCOMMANDS 5-34
N o e 5-35
UP 5-36
DOWN . . . e 5-38
BEGIN . . e e 5-40
END . . e 5-41
FIND 42
SUBSTITUTE e e e e 5-44
REPLACE e e e 5-46
KILL . e 5-48
) UTILITY COMMANDS e 5-50
TAB . e e 5-51
TABS . . e e 5-563
MACRO ... e e 5-54
Space Bar 5-56
ESC .. e 5-57
QUIT e 5-58
BRIEF . .. e 5-60
O 5-61
AGAIN . e 5-62

SECTION 6 ASSEMBLING AND LINKING

INTRODUCTION . . . e 6-1
ASM . 6-2
LINK e 6-5

8092 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 vii

TABLE OF CONTENTS (cont)

SECTION 7 EMULATOR ENVIRONMENT PAGE
INTRODUCTION e 7-1
OPERATING MODES i 7-2

EMULATE 7-4
LOADING AND STORING 7-5
WHEX . 7-8
RHEX . . 7-9
LOAD 7-10
MODULE 7-11
FETCH 7-12
MEMORY CONTROL i 7-13
DUMP . 7-14
EXAM . . 7-16
PATCH 7-18
MAP . e 7-19
MOVE . . . e 7-22
FILL .. 7-23
USER PROGRAM EXECUTION 7-24
GO . 7-26
XEQ .. . 7-27
STATUS . .. 7-28

SECTION 8 DEBUG SYSTEM

INTRODUCTION 8-1
DEBUG SYSTEM STRUCTURE 8-2
DEBUG SYSTEM FUNCTION 8-6
DEBUG SYSTEM ENTRY ANDEXIT 8-8
COMMAND DESCRIPTIONS 8-10
DEBUG 8-11
TRACE e 8-12
DSTAT . . 8-18
BKPT .. e 8-20
CLBP . . 8-23
SET .. 8-24
RESET 8-26

SECTION 9 PROM PROGRAMMER

DOCUMENTATION NOTE i 9-1
INTRODUCTION e 9-2
PROM PROGRAMMER COMMANDS 9-3
RPROM 9-5
WPROM . e 9-6
CPROM .. 9-7

viii REV. A JUN 1977 8092 uPROCESSOR LAB SYSTEM USER’S

'TABLE OF CONTENTS (cont)

SECTION 9 PROM PROGRAMMER (cont) PAGE
HOW TO USE THE PROM PROGRAMMER 9-8
SMS FORMAT COMMANDS 9-8
CSMS . . e 9-9
RSMS . . . e 9-10
WSMS . 9-11
SECTION 10 SERVICE CALLS
INTRODUCTION . . . e e e e e 10-1
SERVICE CALL DESCRIPTION 10-2
SERVICE REQUEST BLOCK e e e e e 10-3
SRBBYtES 10-5
SVC Functions e 10-7
SVC FUNCTION CODES e 10-11
SECTION 11 REAL-TIME PROTOTYPE ANALYZER
INTRODUCTION . .. 11-1
DESCRIPTION 11-2
COMMANDS . . . 11-3
EV T e e e e 11-4
BIF . . 11-7
RTT . . e e e e 11-8
DRT .. . e 11-9
CNT . e 11-10
SECTION 12 INTER-SYSTEM COMMUNICATION
APPENDIX A TEKDOS ERROR CODES
EDITOR ERROR MESSAGES i ittt i it A-2
APPENDIX B TABLES
HEXADECIMAL-DECIMAL CONVERSION B-3
HEXADECIMAL ADDITION e e e e B-5
HEXADECIMAL MULTIPLICATION, B-7
POWERS OF 2 B-9
ASCIl CODE CONVERSION i B-11
APPENDIX C SYSTEM INSTALLATION
APPENDIX D COMMAND INDEX
APPENDIX E SOFTWARE ERROR REPORT FORMS
CHANGE INFORMATION

8002 uPROCESSOR LAB SYSTEM USER’S REV. B, MAR. 1978

2313-1

Fig. 1-1. The 88092 uPROCESSOR LAB System with Optional CT810@ CRT Terminal and Prototype Control Probe.

X REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

Section 1

8002 uPROCESSOR LAB SYSTEM
INTRODUCTION

Microprocessor-based product development requires new and different design tools. In
general, these design tools are called microprocessor development aids (MDAs). MDAs
provide a total microprocessor design environment that closely approximates the actual
environment of the product under deveiopment. The 8002 yPROCESSOR LAB provides these
surroundings and allows all design team members to work within a common environment as
they develop a product.

This section will introduce you to the terminology, concepts, and methods used in an MDA
environment. First, we'll look at the features most desirable in an MDA system, and see how the
8002 uPROCESSOR LAB provides these features. Next, we'll iook at the microprocessor
development cycle. We'll point out typical microprocessor design problems and see how these
problems are avoided while using the 8802 uPROCESSOR LAB. Finaily, we'll discuss
individual hardware and software modules within the 8002 uPROCESSOR LAB system and
refer to documentation explaining their use.

THE PURPOSE OF AN MDA

An MDA, functioning as a design tool, is used to develop microprocessor software programs
and to design microprocessor hardware circuits. The MDA then helps integrate the software
and the hardware into a complete stand-alone microprocessor-based product.

KINDS OF MDAs

Avariety of MDAs are available on the market today. They range from simple one-circuit board
learning aids, to sophisticated multi-cabinet work stations. Most MDAs are tailored to support
only one commercial microprocessor, and only a few can support the design activity for more
than one. The TEKTRONIX 8002 uPROCESSOR LAB supports several.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 11

8002 uUPROCESSOR LAB
SYSTEM INTRODUCTION

L]

IMPORTANT MDA FEATURES

Some of the many features that can make one MDA better than another are listed here.

System Programs Can Make a Difference

Most MDAs comprise three basic elements: a central processing unit (typically, a
microprocessor); memory; and input/output (I/0) facilities. Most also contain support
programs to perform supervisory functions. These "system programs” help enter
microprocessor instructions into the MDA, and then assemble the instructions into a
meaningful program for the prototype instrument under development. This resuiting program
is usually called a "user program.”

System programs also monitor user program execution in the MDA emulator processor. The
emulator processor, a microprocessor within the MDA, is identical to the microprocessorin the
prototype. If errors are discovered, the system programs help make the corrections. One
measure of an MDAs worth is the ease with which system programs perform user program
entry, editing, assembly, and program debugging.

Memory and I/O Capability

Other differentiating MDA features are memory and 1/0O capability. An MDA with fast and
convenient data handling capabilities can develop a program in minutes instead of hours. An
MDA with resident random access memory (RAM) and on-line disc storage, allows information
to be stored on disc until needed; then quickly transferred into RAM work space for processing.
Clearly, efficient memory and I/0O capability can decrease the development cycle turn-around
time. The 8002 uPROCESSOR LAB features a fast, convenient, flexible disc operating system
with 64K bytes of dynamic RAM storage in program memory. Approximately 630K bytes of on-
line storage are available in the flexible disc unit.

Simulation Versus Emulation

MDAs can use either simulation or emuiation to locate run-time errors and errors in program
logic. When the simulation method is used, an MDA software program “acts” like the prototype
microprocessor. The program interpreter reads a microprocessor user program instruction,
then executes the instruction like the microprocessor in the prototype. Program iogic fiow can
be checked in this manner. However, the simulation program often runs slower than the real
microprocessor, and critical timing relationships between hardware and software are
impossibie to verify.

1.2 REV. A JUN 1977 8092 uPROCESSOR LAB SYSTEM USER'S

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

An emulation method MDA contains a hardware model of the prototype microprocessor. The
model may be centered around discrete logic, another type micreoprocessor, or a
microprocessor identical to the prototype microprocessor. When the processor is identical to
the prototype microprocessor, the method is called "substitutive emulation.” The 8002
uPROCESSOR LAB uses the substitutive emulation method. Aii user programs executed on
the system can be checked for critical timing relationships between the software and the
prototype hardware..

Value of In-Prototype Testing

Typically, the simplest MDAs do not have facilities for hardware development and testing.
More complete MDAs provide limited signal monitoring functions, but most of these functions
could be handled by conventional hardware test equipment. The most advanced MDAs (the
8002 uPROCESSOR LAB, for example), have the ability to swap known-good hardware
elements into the prototype hardware, and can also swap known-good software programs. By
connecting portions of the MDA circuitry to the prototype hardware in the early stages of
development, the two parts can be exercised together as one complete microcomputer. The
combined unit then runs under the control of the developmental software while being
supervised by the MDAs debug system program. This technique, in-prototype testing, allows
both hardware and software subcomponents to be tested, debugged, and verified as soon as
they are complete. The entire prototype system is developed from the ground up, on known-
good building blocks, and the chance of total system failure at the end of the development
cycle is eliminated. The 80092 uPROCESSOR LAB supports in-prototype testing to the fullest
extent.

8002 uPROCESSOR LAB SYSTEM USER'’S REV. A JUN 1977 1-3

8002 APROCESSOR LAB
SYSTEM INTRODUCTION

MICROPROCESSOR DEVELOPMENT CYCLE

Unified hardware/software effort from conception to completion eliminates many problems,
and hard to find system integration bugs can usually be avoided. A commonly beneficial
environment is available to all design team members throughout the microprocessor product
development cycle. Figure 1-2 illustrates the development cycle.

A New Product is Conceived

Management determines the need for a new product based on microprécessor technology.
The hardware and software design teams are organized, time schedules are defined, and the
funds are appropriated. The purchase of a TEKTRONIX 8802 uPROCESSOR LAB is included.

Microprocessors are Evaluated

Because the 8002 uPROCESSOR LAB supports several commercial microprocessors, the
performance of each microprocessor can be evaluated and compared before a final selection
is made. Using the emulator processors available in the 8092 uPROCESSOR LAB, the software
team evaluates the different microprocessor instruction sets and software architecture
facilities. The hardware team evaluates hardware features, execution speeds, and I/O handling
facilities. Hardware/software trade-offs are discussed and a microprocessor selection is based
on the overall requirements for the new product.

Prototype Functions are Defined

Both teams are now ready to define each function in the new product and to determine whether
the function should be handied by the software or the hardware. Software flow charts are then
drawn for each function. Since the design team is now familiar with the strengths and
weaknesses of the selected microprocessor, the software architecture is structured
appropriately.

Specification documents are written to ensure that every team member clearly understands
the definition of each hardware and software function and how they are related. The 8002
uPROCESSOR LAB has a powerful text editor and convenient flexible disc storage facilities.
Specification documents are entered and stored on the flexible discs. The documents are then
easiiy updated as the prodict matures. Copies are quickly available from the optional LP320@
Line Printer.

14 REV. A JUN 1977 8092 uPROCESSOR LAB SYSTEM USER'S

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

Start
Software
Design

!

Define

Start
Hardware
Design

!

Evailuate
Different

Prototype el —
Functions

Design
Software
{Flow Chart)

|

Enter & Edit
i
Source Code

Assemble
; Object Code

l

1

Debug
Program

Everything
0oK?

Support Logic

P
Microprocessors
Design
/ Microprocessor
\
\,

l

Breadboard &
Evaluate Each
Circuit

8002
uProcessor Lab

!

Integrate
the
System

|
1

Final
Debug

Buiid
Production
Models

Build
Prototype
Hardware

1

Debug
Prototype
Hardware

Everything
0K?

2313-2

Fig. 1-2. Microprocessor Deveiopment Cycle with the 8002 APROCESSOR LAB.

8002 uPROCESSOR LAB SYSTEM USER'S

REV. A JUN 1977

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

-
()]

Hardware Team Draws Schematics and Breadboards the Circuits

While the software team is working on the software specifications, the hardware team designs
the support logic circuits for the prototype microprocessor. As each circuit is built, it is
connected to the emulator processor via the prototype microprocessor. Using their own test
programs, stored on the flexible disc unit, the engineers test each circuit. Circuits are modified
as required to improve their performance.

Software Team Starts Coding

Using assembly language, the software engineers code the prototype microprocessor
program. Because the total program is large and complex, sub-modules are created. One
software engineer is assigned to the software keyboard drive; another to the math routines, and
so on. Each engineer enters his assembly language program via the system console, and uses
the text editor to add, delete, or change code lines. After editing, the updated program is
automatically stored on a flexible disc.

Software Team Assembles the Source Code

As each program sub-module becomes ready, the software engineer invokes the TEKTRONIX
Assembler. The assembler assembles the source code into machine executable object code.
Source code errors are then corrected by the engineer with the text editor.

The source code program is then re-assembled. This process is repeated untii an error-free

assembler listing is obtained. The program sub-module is then executed on the emulator
processor.

Software Team Debugs the Software

Programs loaded into program memory are executed under the supervision of the debug
system. Each program can be single-stepped through execution, or executed in multiple step
sequences, or executed continuously to completion. At any point, the debug system aillows
program execution to be suspended. Stack pointers, program counters, or general registers
can be modified to correct errors. Execution can then continue.

REV. A JUN 1977 8002 4PROCESSOR LAR SYSTEM USER'S

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

Software and Hardware Sub-Systems are Debugged Together

As each software module and its associated hardware moduie becomes error-free, they are
tested together. All design personnel are able to observe realistic results without the need to
"second guess” actual conditions.

The software is ioaded into the emuiator processor, the emuiator processor is then connected
to the prototype hardware, and testing begins. Under the supervision of the debug software
and the optional real-time prototype analyzer, prototype functions are brought to life. Logic
errors are immediately detected and can be corrected quickly. System integration continues
until all prototype components are joined. After all hardware circuits have been tested with
their software counterparts, the prototype instruments are built.

Total System Integration Begins

When all prototype hardware is assembled, the emulator processor is connected to the
prototype microprocessor socket via the optional prototype control probe. The total software
program is loaded into program memory from the flexible disc files. Prototype hardware is
activated, the emulator processor is turned on, and final system integration begins. Again, the
debug system and the real-time prototype analyzer are used to monitor software/hardware
activities. System integration proceeds rapidly and smoothly because each subsystem has
already been debugged individually.

PROM Programming

VAL o £ {s are com 10 2% g 20 gm am m u [Prppr
[}

VVHUII Illldl lc S dare Col d tO I’lUgldlllllllee neau
Only Memory (PROM) chips, us mgt e optional PROM Programmer. After being programmed,
the PROMSs are plugged into the prototype memory siots. The prototype control probe is
removed from the prototype microprocessor socket and is replaced by the actual
microprocessor. The prototype has now become a complete, thoroughly tested, stand-alone
unit. Production can begin.

Using the 8092 uPROCESSOR LAB as a Manufacturing Test Device

After the new productis in production, the 8802 uPROCESSOR LAB is used to test production
models before shipment to customers. If troubles exist, the 8002 uPROCESSOR LAB quickly
isolates the problem. Troubleshooting time and troubleshooting costs are sharply reduced.

8002 pPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 1-7

8002 /PROCESSOR LAB
SYSTEM INTRODUCTION

Conclusions

A microprocessor design effort centered on the 8802 uPROCESSOR LAB provides the
necessary system integration tools from the start. Decisions are based on test results, not
guess work. Each hardware/software module is tested before further decisions are based on its
use, and system integration proceeds in an orderly manner.

The 8002 uPROCESSOR LAB removes the doubt from the microprocessor design process.
Therefore, decisions are based on fact, and system integration results are clearly visible.

8002 uPROCESSOR LAB HARDWARE COMPONENTS

The 8002 uPROCESSOR LAB internal architecture centers around a system microprocessor
that uses other microprocessors to perform different software and hardware support
functions. The system contains 16K bytes of system random access memory (RAM) and up to
64K bytes of RAM program memory (depending on the options selected). The system also
supports two flexible disc drives with approximately 315K bytes on each disc.

An 8002 uPROCESSOR LAB system block diagram is shown in Figure 1-3. The system
contains three microprocessors—the system processor, the assembler processor, and the
emulator processor. Each microprocessor resides on a separate plug-in circuit card in the
system mainframe. These cards are connected to each other through a common system bus.
Alsoresiding in the mainframe is the optional PROM programmer, the RS-232-C interface with
three 1/0 ports, the 16K byte system memory, and the standard 16K byte program memory
(expandable to 64K).

The flexible disc unit is housed in a separate chassis and communicates with the other system
components through the system processor. Other optional system peripherals such as the
CT8100 CRT Terminal and the LP820@ Line Printer communicate with the system through the
RS-232-C interface. The following is a brief description of each component in the system.

1-8 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

8002 PROCESSOR LAB
SYSTEM INTRODUCTION

Peripherals PROM f
(Optional) Sockets
Prototype “——I Emulator PROM \—dSystem
Control Processor ﬁieffsif Programmer fs’:’:::ee;nsor Terminal (Not
Probe {Opt) {Opticnal) {Optional) Supplied)
System Bus System Bus
Program Real Time System
Memory 16K srs;ec:‘s:;? Prototype Memory
(Opt to 64K) Analyzer (Opt) 16K
2313-3

Fig. 1-3. 8002 uPROCESSOR LAB System Block Diagram.

System Processor

The system processor performs the foliowing supervisory functions:

@

System Input/Output

File Management

Text Editing

Debugging

System Utilities

PROM Programming

8002 uPROCESSOR LAB SYSTEM USER’S

directs all I/0 activity for the system
peripherais, such as the flexible disc,

the console, and the line printer.

organizes, stores, and retrieves user
programs and system programs from the
disc drives.

executes the text editor program and
maintains text files on the flexible

disc unit.

executes the debug program and controls
the emulator processor through separate
debug hardware.

performs all system utility functions such

as processing the messages between system
peripheral devices.

monitors and controls all PROM (Programmable
Read Only Memory) activity.

REV. A JUN 1977 19

8002 PROCESSOR LAB
SYSTEM INTRODUCTION

Assembler Processor

The assembler processor runs the TEKTRONIX Assembler program when the TEKDOS ASM
command is executed. All assembler I/0 activity to and from the fiexible disc unitis handled by
the system processor.

Emulator Processor

The emulator processor, a system option, runs and debugs user programs written for a
particular commerical microprocessor. A separate processor is available for each commercial
microprocessor you wish to emulate. Emulator processors available at the time of this writing
are the 8080 and the 6800. More are planned for the near future.

The emulator processor serves two purposes. First, the emulator processor runs the user
program while the system debugger program is active. This detects program run-time errors
and program logic errors. Second, with the addition of an optional prototype control probe, the
emulator processor takes the place of the actual microprocessor in the prototype under
development. The user program can then drive and test the prototype hardware while under
the supervision of the debug system.

System Memory

The system memory is a 16K-byte dynamic RAM located on a separate module within the main
chassis. The system memory is accessed only by the system processor and is used to store

- TEKDOS programs while they are executing. The system memory also provides buffer space
for all I/0 activities.

Program Memory

The standard 16K byte program memory is located on a separate module within the main
chassis. Additional 16K byte memory modules can be added to increase the total capacity to
64K bytes. The primary purpose of program memory is to store a user program while the
program is being executed by the emulator processor. The system processor also uses
program memory as a text buffer during text editing sessions.

1-10 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

Prototype Control Probe

The optional protctype control probe consists of cables, interface circuits, and a 49-pin
connector. The connector plugs into the empty microprocessor socket on the prototype circuit
board. The prototype control probe allows the emulator processor and program memory to
take the place of the actual microprocessor and its associated memory in the prototype. Thus,
the user program can be run, tested, and debugged in the prototype while under the
supervision of the debug system.

The following three emulator operational modes are availabie with the prototype control probe
plugged into the prototype:

e System Mode — the emulator processor runs the program
"~ (Mode @) residing in program memory.
e Partial Emulation Mode — the emulator processor runs the program
(Mode 1) residing in program memory and prototype

memory. All 1/0 signals and data are
supplied by the external prototype hardware.
e Full Emulation Mode — the emulator processor runs the program
{Mode 2) resident in the external prototype memory.
All 1/0 signals and data are also supplied
by the prototype hardware.

Real-Time Prototype Analyzer

The optional real-time prototype analyzer enables you to dynamically monitor the prototype
address bus, data bus, and up to eight other locations of your choice on the prototype circuit
board. The analyzer’s main function is to locate critical timing problems and ’
hardware/software sequence problems in the prototype during the last stages of system
integration and debugging. The analyzer monitors prototype activity while the prototype is
running at full speed. The test results are printed on either the system console or the optional
LP820@@ Line Printer.

8002 .PROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 ‘ 1-11

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

PROM Programmer

The PROM programmer option allows user programs to be transferred from program memory
into Programmable Read Only Memory (PROM) chips. These PROM chips are then plugged
into the prototype memory sockets and provide permanent program instructions for the
prototype microprocessor. Not only can user programs be transferred from program memory
into PRdMs, but the reverse action can also take place; the contents of PROMs can beread into
program memory. In addition, the user program residing in a PROM can be compared with the
user program residing in program memory. The differences are displayed on the system
console. This comparison technique is used to verify the contents of a PROM.

The 80082 uPROCESSOR LAB presently supports two different PROM programmers—one type
for 1702A PROMs and another type for 2704/2708 PROMS.

PROM programming is accomplished by plugging a PROM chip into the appropriate socketon
the front panel. TEKDOS commands are then executed from the system keyboard to transfer
program instructions back and forth between the PROM and program memory.

An 8002 uPROCESSOR LAB without the PROM programmer option still has the PROM sockets
on the front panel. The PROM programmer circuit board, however, will not be in the
mainframe. This renders the PROM programmer inactive. This circuit board can be ordered as
a field installation kit at a later time and plugged into the 8092 yPROCESSOR LAB mainframe
to activate the PROM programmer.

RS-232-C Interface

The RS-232-C interface board provides three 1/0O ports for connecting optional peripheral
devices to the system. Any device that conforms to the EIA standard RS-232-C can be
connected to the interface board. Typically, devices such as the LP82@@ Line Printer are
connected to the interface. A larger host computer can also be connected to the 8002
HPROCESSOR LAB. User programs can be transferred from the host and down-loaded into
program memory for execution.

Flexible Disc Unit

Aflexible disc unit is the on-line mass storage device for the 8002 yPROCESSOR LAB system.
The fiexible disc unit consists of two separate disc drive assembiies, a microprocessor
controller, a power supply, and a cabinet. The flexible disc unit communicates directly with the
system processor module through an interconnecting cable. Another flexible disc unit can be
connected into the system to provide a four disc drives option.

1-12 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

8002 xPROCESSOR LAB
SYSTEM INTRODUCTION

System Terminal

The 8002 uPROCESSOR LAB System Terminal serves as the main communication channei
between the system and the operator. (The system terminal is also referred to as the system
console in this manual.)

Any terminal-like device can be used as the sysiem terminail if the device has a keyboard, a
display and an RS-232-C communications port. The terminal cable is connected directly to the
system processor board in the mainframe.

Two TEKTRONIX System Terminals are available as options. The CT8100 CRT Terminal
(Cathode Ray Tube) features a 9-inch refresh alphanumeric display. The CT8101 Printing
. Terminal features a paper print-out display instead of a refresh CRT display.

8002 uPROCESSOR LAB SOFTWARE COMPONENTS

TEKDOS (TEKTRONIX Disc Operating System)

TEKDOS is the operating system for the 8002 uPROCESSOR LAB and is loaded from the
system disc in the fiexibie disc unit each time the system is powered up. TEKDCS contains the
supervisory software programs for the system. The TEKDOS operation commands are
described fully in the TEKtronix Disc Operating System section of this manual.

Text Editor

The text editor is invoked by the TEKDOS EDIT command and performs powerful text editing
functions. The text editor is used to (1) enter new user programs into memory, then store the
programs ondisc and (2) correct user programs for errors detected during assembty. The text
editor can also be used to store and update the support documentation for the prototype under
development. Compiete text editor instructions are given in the Text Editor section of this
manual.

8092 uPROCESSOR LAB SYSTEM USER'S REV.B, MAR. 1978 113

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

L -~]

TEKTRONIX Assembler

After asource program has been entered and stored on a flexible disc unit by the text editor, the
user program must be translated into machine-executable object code. This function is
performed by the TEKTRONIX Assembler. The assembler then stores the assembled object
code on disc in another file.

- The assembleris loaded from disc into program memory and runs on the assembler processor.
The assembler uses free space in program memory for I/0 buffers and symbol tables. Versions
of the TEKTRONIX Assembler exist for each microprocessor supported by the 8002
UPROCESSOR LAB. A separate disc is used for each version.

Instructions for calling the assembler from TEKDOS are given in the Assembling and Linking
section of this manual. Instructions for the assembler are given in the Assembler and Emulator
User’'s Manual specific to each microprocessor chip.

Linker

The linker software is considered a sub-module of the assembler software and is provided with
each system disc. The linker is used to join several smaller user program modules into one

large program. This feature allows several software engineers to work on program segments

independently, and then join the segments into a large workabie program.

section of this manual. Instructions for the Linker are given in the Assembler and Emulator
User's Manual.

Emulator

for operation, testing and debugging. Emulator software instructions are given in the Emulator
Environment section of this manual.

Theemulator software allows user nrograms to be loaded into the optional emulator processor

1-14 REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER’S

8002 uPROCESSOR LAB
SYSTEM INTRODUCTION

Debug System

Since the assembler software detects syntax errors in the user program, a number of program
logic errors usually remain undetected until the user program is executed on a real
microprocessor. The debug system monitors user program execution on the emulator
processor and the prototype microprocessor. The debug software allows you to examine,
trace, modify, and change portions of your program as the program executes. This feature
ensures that your program will be clean and free of “bugs” before it is placed in PROMs and
plugged into the prototype instrument. ‘

PROM Programmer

The PROM programmer software supervises and controls the transfer of user programs
between program memory and PROM chip plugged into the front panel. Instructions for using
the optional PROM programmer are given in the PROM Programmer section of this manual.

SUMMARY

The 8002 uPROCESSOR LAB is a design aid that integrates software and hardware into a
microprocessor-based product. Efficient system programs, large memory, versatile 1/0O, and
in-prototype testing are featured. Substitutive emulation permits an authentic microprocessor
model to be tested in the prototype hardware. The 8802 uPROCESSOR LAB reduces
microprocessor design guesswork by permitting system integration and debugging in the
early phases of product development.

The 8002 yPROCESSOR LAB system centers around a system microprocessor using other
microprocessors for support. The assembler runs on the assembler processor. User programs
residing in program memory run on the emulator processor, under the supervision of the
debug system. The optional prototype control probe connects the system to the prototype
hardware for in-prototype testing. The flexible disc unit provides 63@K bytes of on-line storage.
The 8002 uPROCESSOR LAB software includes a disc operating system called TEKDOS, a
text editor, an assembier, a linker, an optional emulator, a debug system, and an optionai
PROM programmer.

8092 LPROCESSOR LAB SYSTEM USER’S REV. B, MAR. 1978 1-15

Section 2

BECCMING FAMILIAR WITH THE SYSTEM

INTRODUCTION

The procedures described in this section provide an initial overview of the 8802 yPROCESSOR
LABs operation. Procedures demonstrated include system power up, directory listing, system
power down, flexible disc initialization and a sample editing session. Since this section will
guide you through a typical operating sequence for the first time, the emphasis is placed on the
way the different procedures fit together. Detailed descriptions of each procedure and system
command are provided in later sections of this manual. After completing this section, you

should be able to:

1. Power up the system and ioad the Tektronix Disc Operating System (TEKDOS) froma
flexible disc into system memory, as well as power down the system;

2. Display a directory listing on the console;

3. Format and verify a new flexible disc, as weli as perform fiexible disc file duplication;

CONTENTS

SECTION 2 BECOMING FAMILIAR WITH THE SYSTEM

INTRODUCTION . . i 21
SYSTEM POWER-UP PROCEDURE 2-3
Turn on the Flexible Disc Unit 2-3
Turnonthe Terminal 2-4
Turn on the 8002 yProcessor Lab P 2-6
TurnonthelinePrinter, 2-7
Insert the System Flexible Disc 2-8
TEKDOS Ready State 2-9

8002 4PROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 2-1

BECOMING FAMILIAR
WITH THE SYSTEM

LISTING THE FLEXIBLE DISC DIRECTORY 2-9
SYSTEM POWER-DOWN PROCEDURE 2-9
Remove the Flexible Discs 2-10
Turn off the Terminal Power 2-10
Turn off the Line Printer 2-10
Turn off the 8002 uProcessorbLab 2-10
Turn off the Flexible Disc Unit 2-11
FLEXIBLE DISC INITIALIZATION 2-11
Flexible Disc Formatting 2-11
Flexible Disc Verification 2-12
Disc Duplication 2-12
TEXT EDITING ... e e e e e e 2-13
Text Creation e 2-13
TextStorage e 2-15
Text Retrieval e 2-15
Text Alteration 2-16

2-2 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

BECOMING FAMILIAR
WITH THE SYSTEM

SYSTEM POWER-UP PROCEDURE

Turn on the Flexible Disc Unit

Always remove all flexible discs prior to turning the power on or off. If you do not,
valuable data may be destroyed.

The flexible disc unit has a single front panel POWER rocker switch, as shown in Figure 2-1.
Push the switch to its ON position. Allow a five minute warm-up time to permit the disc drive

electronics to reach a stable temperature.

POWER Rocker Switch
___ AN
. |
IJ‘I ‘1 i{ | E
! |
l |
| i |
%\\) 1 | ‘ f
\\\\ s ™ ! L wel)

Fig. 2-1. Flexible Disc Unit Front panel.

8002 uUPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977

BECOMING FAMILIAR
WITH THE SYSTEM

Turn on the Terminal

If you are using the optional CT81090 CRT Terminal, a power ON/OFF rocker switch is located
ontherightside of the terminal. Push the switch to its ON position to activate the terminal. The

green POWER indicator in the upper right corner of the front panel should light. Refer to Figure
2-2.

POWER
Indicator

2313-5

Fig. 2-2. Optional CT8129 CRT Terminal.

REV. A JUN 1977 8092 uPROCESSOR LAB SYSTEM USER'S

BECOMING FAMILIAR
WITH THE SYSTEM

S O S ST P A

A slide switch is located on the top of the optional CT8101 Printer Terminal, as shown in Figure
2-3. Slide the switch to the rear to turn the terminal power on. The green POWER indicator
below the keyboard should light.

Slide Switch

Green POWER Indicator

2313-6

Fig. 2-3. Optional CT8101 Printing Terminai.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 25

BECOMING FAMILIAR
WITH THE SYSTEM

A S

Turn on the 8002 uPROCESSOR LAB

An ON/OFF rocker switch labeled POWER is located on the front panel of the 8002
uPROCESSOR LAB. Refer to Figure 2-6. Press this switch to its ON position. The SYS, RUN,

and PWR indicator lights on the backlighted display should light. Applying power to the 8002

#PROCESSOR LAB causes an automatic read from drive @, and loads TEKDOS into System
Memory.

SYS RUN PWR

/
\\..
@
—

Ll

CAUTION. PULSES UP 1O SOV APREAR
ON SOCKET DUAMG PROGRAMMING

RESTANT It

Sem} I

i IR

2313-7

Fig. 2-6. 8002 uPROCESSOR LAB Front Panel.

REV. A JUN 1077 2002

BECOMING FAMILIAR
WITH THE SYSTEM

Turn on the Line Printer

Apply power to the optional LP820@ Line Printer by pressing the POWER ON/OFF rocker
switch toits ON position. Press the ON LINE/OFF LINE rocker switch to its ON LINE position.
The LP82@0 Line Printer is shown in Figure 2-5.

2313-8

Fig. 2-5. Optional LP8269 Line Printer.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 2.7

BECOMING FAMILIAR
WITH THE SYSTEM

Insert the System Flexible Disc

Insert a system disc into drive @ on the flexible disc unit. The correct method for inserting a
flexibledisc is shown in Figure 2-4. Make sure that the flexible disc’s label is facing the POWER
switch and that the label is the last part of the flexible disc to be inserted into the drive. Ciose the
disc drive door with a firm push to the left, making sure the door snaps shut.

2313-9

Fig. 2-4. Flexible Disc Insertion.
NOTE

Before the flexible disc can be formatted or have any data written on it, the write-
protect notch must be covered with one of the opaque self-adhesive tabs that are
provided with the discs. The write-protect notch is the largest (approximately .5 cm
by .4 cm) one of the three notches in the bottom edge of the flexible disc. Any
opaque adhesive-backed material may be used to cover this notch.

n
2)

ooy B MAR 1078 RARD
YEV. B, MAR 278 202

BECOMING FAMILIAR
WITH THE SYSTEM

TEKDOS Ready State

As soon as TEKDOS is loaded, a bell rings and a welcoming message is dispiayed on the
console as shown below:

>TEKDOQOS type VERSION 1.6

>

In the above example, TEKDOS is an acronym for Tektronix Disc Operating System. TYPE
indicates the type of emulator processor enabled, such as 8080, 6800, or Z80. VERSION 1.6 is
the version and release number. Your number may be a later release due to software
improvements. The ">" character following the welcoming message is the TEKDOS prompt
character, which indicates that TEKDOS is ready to accept commands. If the welcoming
message does not appear within 15 seconds, toggle the RESET switch on the right side of the
8002 uPROCESSOR LAB. If the system again does not respond correctly, a damaged or

improperly loaded flexible disc or faulty disc drive may be causing the problem. If trouble
persists, request service assistance from your Tektronix Customer Service Representative.

LISTING THE FLEXIBLE DISC DIRECTORY

After TEKDOS has been successfully loaded into system memory, you may wish to display the
directory contents of your system disc. This is implemented by entering the LDIR command
shown below.

>LDIR @

SYSTEM FLEXIBLE DISC

FILE NAME BLOCKS

TEKDOS 16

COPYSYS 1
TOTAL FILES 42
TOTAL BLOCKS USED 78
BLOCKS AVAILABLE 226
TOTAL BAD BLOCKS]

>

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 29

BECOMING FAMILIAR
WITH THE SYSTEM

The "0" following the LDIR command indicates that the system disc drive (or drive @) is the
drive containing the desired directory listing. A carriage return follows this line (and all
command lines) and is entered by pressing the RETURN key. The carriage return cues the
system to execute the LDIR command line, thus causing a directory listing to be displayed.

The two files that appear in your directory listing are TEKDOS and COPYSYS. As you know,
TEKDOS is Tektronix Disc Operating System. COPYSYS is a command file that copies
TEKDOS from one flexible disc to another.

SYSTEM POWER-DOWN PROCEDURE

Remove the Flexible Discs

Suppose you now wish to shut down the power on your 8092 uPROCESSOR LAB. Remove
your flexible disc from the flexible disc unit. This again eliminates the danger of possible data
destruction when turning off the power. To remove your flexible disc, squeeze the drive door
handle and slide the door to the right. Pull out the flexible disc and place the disc back in its
storage envelope.

Turn off the Terminal Power

Slide the optional CT81@1 Printer Terminal POWER slide switch toward you. The green power
indicator below the keyboard should turn off. If you are using the optional CT818@ CRT
Terminal, push the rocker switch on the terminal’s right side to the OFF position. The green
POWER indicator below the keyboard should turn off.

Turn off the Line Printer

For the LP820® Line Printer, press the ON LINE/OFF LINE rocker switch to its OFF LINE
position. Press the POWER ON/OFF rocker switch toward its OFF position.

Turn off the 8002 uPROCESSOR LAB

Press the ON/OFF POWER rocker switch on the front panel of the 8092 yPROCESSOR LAB
System to its OFF position. At this point, aii the indicator iights on the backiighted dispiay
should turn off.

N

BECOMING FAMILIAR
WITH THE SYSTEM

o S A

Turn off the Flexible Disc Unit

Press the POWER rocker switch on the flexible disc unit’s front panel to its OFF position.

The 8902 yPROCESSOR LAB is now shut down.

FLEXIBLE DISC INITIALIZATION

Included with each 8002 uPROCESSOR LAB is one system disc for each emulator processor
ordered. Also two blank flexible discs are included to be used for creating system back ups and
storing user programs. Before a blank flexible disc is used, it must be formatted and verified.
After formatting and verifying the blank disc, files may be duplicated from a system disc to a
blank flexible disc.

NOTE

Before the flexible disc can be formatted or have any data written on it, the write-
protect notch must be covered with one of the opaque self-adhesive tabs that are
provided with the discs. The write-protect notch is the largest (approximately .5 cm
by .4 cm) one of the three notches in the bottom edge of the flexible disc. Any
opaque adhesive-backed material may be used to cover this notch.

Flexible Disc Formatting

First, power up the 8002 uPROCESSOR LAB, as previously described in the SYSTEM
STARTUP PROCEDURE. Insert one of the system flexible discs into drive @, one of the biank
flexible discs into drive 1. Enter the following command line to the keyboard to invoke the
flexible disc formatting:

>FORMAT 1, NEW FLEXIBLE DISC

In this FORMAT command the 1 refers to the disc drive location of the flexible disc to be
formatted. NEW FL EXIBLE DISC is an arbitrary flexible disc identifier that names the newly
formatted flexible disc. Execution of this command should take approximately three minutes.
When the flexible disc formatting process is complete, the following system response should
be displayed on the console.

* FMT * EOJ
>

This response indicates that an End of Job status is reached for the FORMAT command.

8002 UPROCESSOR LAB SYSTEM USER'S REV.B, MAR. 1978 2-11

BECOMING FAMILIAR
WITH THE SYSTEM

Flexible Disc Verification

The flexible disc verification process is necessary for detecting possibie bad sectors that might
exist on a newly formatted flexible disc. To verify a flexible disc enter:

>VERIFY 1

In this VERIFY command 1 refers to the disc drive location of the newly formatted flexible disc.
Execution of this command should take approximately three minutes. When flexible disc
verification is complete, the following system response is displayed on the console:

*VER * EOJ
>

This response indicates that an End of Job status is reached for the VERIFY command.

Disc Duplication

You may now duplicate your system disc files onto your newly formatted and verified disc. Disc
duplication is implemented with the DUP command as follows:

>DUP @ 1 NEW FLEXIBLE DISC

The @in this DUP command refers to the drive which contains the disc source of the files to be
copied. The 1 refers to the destination drive. NEW FLEXIBLE DISC is an arbitrary flexible disc
identifier for the flexible disc in drive 1. The duplication process should take approximately five
minutes, depending on the quantity of information to be duplicated. When completed, the
following system response should appear on the console.

* DUP* EOJ
>

This response indicates that an End of Job status is reached for the DUP command. The entire
contents of the system flexible disc is now duplicated onto the new flexible disc.

2-12 REV. A JUN 1977 8002 4PROCESSOR LAB SYSTEM USER'S

BECOMING FAMILIAR
WITH THE SYSTEM

In order to verify that a copy of all system disc files is loaded onto the flexible disc in drive 1, you
may request a directory listing for drive 1 as foiiows:

>LDIR 1

NEW FLEXIBLE DISC

FILE NAME BLOCKS
TEKDOS 16
COPYSYS 1

TOTAL FILES 42

TOTAL BLOCKS USED 78

BLOCKS AVAILABLE 226

TOTAL BAD BLOCKS 2

TEXT EDITING

The 8002 uPROCESSOR LAB Text Editoris used to create new source programs or to change
existing ones. The text editor is discussed here through the use of the examples of text
creation, text storage, text retrieval, and text alteration.

Text Creation

Suppose you conceive and code a program to run on an 8080 microprocessor. The program
computes the average of four numbers and stores the result in a particular register. You now
wish to create a new file, AVERAGE, that contains the source program. Start the text editor by
entering:

>EDIT AVERAGE/®

AVERAGE is thesource file name and ""/@" indicates the disc drive where the file is to be output.
This command string loads the text editor into program memory and causes command

execution. The text editor dispiays ihe foliowing:
* x EDIT VERSION 1.6 * *

* * NEW FILE * *
*

The ending " * ” character is the text editor prompt character, indicating that the text editor is
ready to accept commands.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 2-13

BECOMING FAMILIAR
WITH THE SYSTEM

The INPUT command allows source code to be entered into your file. Upon entering INPUT,
followed by a carriage return, the system response INPUT: should appear as shown below:

* INPUT
INPUT:

Begin typing source code as follows:

START ORG 00
XRA A ;CLEAR ACC
MOV B,A
MOV H,A
LXI D,13FFH ;LOAD TOP OF MEMORY
LDAX D
DCX D
MOV C.A
LDAX D ;LOAD SECOND NUMBER
DCX D ;DECREMENT POINTER
MOV LA
DAD B .
LDAX D ;LOAD THIRD NUMBER
DCX D ;DECREMENT POINTER
MOV CA
DAD B ;DOUBLE PRECISION ADD
LDAX D ;LOAD FOURTH NUMBER
MQV C,A
DAD B
STC ;SET CARRY
CMC ;COMPLEMENT CARRY. I.LE. CLEARIT
MOV AH ;MOVE HiGH ORDER BYTE
RAR :DIVIDE BY TWO
MOV H,A SWAP REG. 4
MOV AL
RAR
MOV LA ;SWAP REG.
MOV AH
RAR ;DIVIDE BY TWO UPPER BYTE
MOV AL ;LOAD LOWER BYTE
RAR :DIVIDE BY TWO ANSWER IN ACC.
LXI D,13FFH
STAX D
HALT
END

2-14 REV. A JUN 1977 8302 sPROCESSOR LAR SYSTEM USER'S

BECOMING FAMILIAR
WITH THE SYSTEM

“

Text Storage
After the last line of text "END" has been entered, press two carriage returns. The text editor

prompt character " *” appears as indicated in the previous program.

Entering FILE transfers all text entered in program memory to a permanent output file. The
command FILE then closes the output file and terminates the editing session with a display of
the system response * PGM * EOJ. The TEKDOS prompt character ">" announces the return
of TEKDOS. :

*FILE

* PGM=* EOJ

>
The permanent file AVERAGE has now been created with the text editor.

A disc directory listing verifies that the new file AVERAGE is stored:

>LDIiR @

NEW FLEXIBLE DISC

FILE NAME BLOCKS
TEKDOS 16
COPYSYS 1
AVERAGE 2

TOTAL FILES 43

TOTAL BLOCKS USED 80

BLOCKS AVAILABLE 224

TOTAL BAD BLOCKS 2

Text Retrieval

Again enter the following:
>EDIT AVERAGE/®
The text editor displays the following:

= * EDIT VER 1.6 * *

*

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 2-15

BECCMING FAMILIAR
WITH THE SYSTEM

To read the source code into program memory enter GET, followed by a number large enough
toreadin all the lines of code. In this case itis clear that there are under 100 lines of code. Enter

the following:

*GET 100
* % EOF * *

*

* * EOF * * s a text editor response indicating that all lines of text have been read into
program memory and the end of the file has been found. The contents of AVERAGE are now

ready for alteration.

Text Alteration

Suppose the correction you wish to make is the addition of a text line just below the first line.
First, indicate that you wish to reference the beginning of the text:

* BEGIN
START ORG 00

*

Press the N key foliowed by a carriage return to verify the current iine of text. The system
response should be:

LINE =1

*

To refer to the line iust below the beginning line of text, enter DOWN 1 as shown below:

* DOWN 1
MOV H,A

The text editor responds by dispiaying the iine of text that is presently beiow the first iine of
text, MOV H,A. Text may now be inserted above the line where the current line pointer is

positioned.

2-16 REV. A .JUN 1977 8032 sPROCESSOR LAB SYSTEM LISER’S

BECOMING FAMILIAR
WITH THE SYSTEM

Toinsertthe needed line of text enter INSERT followed by a space and the line of text. Enter the
necessary spaces before the characters MOV B,A to align this text with the other lines.

* INSERT MOV B,A

*

Now display the contents of program memory to verify the correction. Again type BEGIN
followed by a carriage return. Follow with the TYPE command and a number to indicate the
desired number of lines of code to be displayed. The foliowing list should appear on the

console:

* BEGIN

* TYPE 100

START ORG 00
XRA A :CLEAR ACC
MOV B,A
MOV H,A
LX| D,13FFH :LOAD TOP OF MEMORY
LDAX D
DCX D
MOV CA
LDAX D :LOAD SECOND NUMBER
DCX D :DECREMENT POINTER
MOV LA
DAD B
LDAX D ;LOAD THIRD NUMBER
DCX D :DECREMENT POINTER
MOV CA
DAD B :DOUBLE PRECISION ADD
LDAX D ‘LOAD FOURTH NUMBER
MOV C,A
DAD B
STC :SET CARRY
CMC :COMPLEMENT CARRY. L.E. CLEARIT

8002 ,PROCESSOR LAB SYSTEM USER'S REV. A JUN 1877 2-17

BECOMING FAMILIAR
WITH THE SYSTEM

MOV AH ;MOVE HIGH ORDER BYTE
RAR ;DIVIDE BY TWO

MOV H,A ;SWAP REG. 4

MOV AL

RAR

MOV L,A ;SWAP REG.

MOV AH

RAR ;DIVIDE BY TWO UPPER BYTE
MOV AL ;LOAD LOWER BYTE

RAR ;DIVIDE BY TWO ANSWER IN ACC.
LXI D,13FFH

STAX D

HALT

END

* x EOF * %

Again enter FILE to transfer the text in program memory to the permanent output file.

The text editing session is again terminated with a display of the system response * PGM
EQJ, followed by the TEKDOS prompt character ">" as shown below:

* FILE
* PGM * EOJ

>

-

V. A JUN 1977 8692 uPROCESSOR LAB SYSTEM USER'S

N
L]
o
X
m

Section 3

COMMAND CONVENTIONS

INTRODUCTION

A command line contains a command and in most cases, one or more parameters with
delimiting characters. In this section you will find descriptions of the conventions used in
describing the command line structure.

COMMAND NAME

A minimum set of characters is required foreach command. This minimum set of characters is
underlined in the syntactical description. In the page heading for the command the exact
spelling of the command name is given with the short form capitalized.

In addition to the minimum set of characters in the command name, a maximum set {long formj
is also given for each command name. Any number of characters in the command name
ranging from the short form spelling to the long form spelling may be used as long as the exact
speiling is followed.

DELIMITERS

The components in the command line must be separated by delimiters when entered into the
computer. Aspaceis used as the main delimiter. The slash /" is used to delimit a file name and
the disc drive number.

The comma may be used as a delimiter in most cases. In the text editor a comma may not be
used as a delimiter between a command and the parameters. Two commas are used to specify
null or empty fields in a parameter list. Three commas are used to specify two adjacent null
fieids.

Special delimiters may be specified in some text editor commands. The two text editor
commands FIND and SUBSTITUTE use special delimiters that are specified by you. The
delimiters you specify in these cases must not be any of the characters in the string being
sought or replaced. For example, if you are trying to find the string $15 in the text, you might
use the ampersand "&" character as the delimiter in this way:

* FIND &$15&

8002 uUPROCESSOR LAB SYSTEM USER'S REV. A JUN 1877 31

COMMAND CONVENTIONS

SYNTAX

device
NUDGE { file name} file name[/disc drive] [{ line number 1 } { line number 2 }]

PARAMETERS

The parameters or controlling conditions of each command line are shown in the syntactical
description above. These parameters may be names, numbers, characters or symbols. When
the parameter is shown capitalized it must be entered exactly as shown. A parameter shown in
lower case letters is a descriptive term to signify the type of entry, as shown above.

Braces and Brackets

When the parameter is enclosed in braces, the parameter must be present in the command line.
Parameters enclosed in brackets are optional. Brackets and braces may be nested. The
following is an example of braces nested in brackets:

[{tine number 1} {line number 2}]

The use of braces and brackets are for syntactical representation and should not be entered as
part of the command line.

Stacked Item

Parameters stacked within either braces or brackets indicate that only one of the enclosed
items should be selected. In the example below a peripheral device name may be selected ora
file name with a disc drive number, but not both.

[-device _
| file name [/disc drive] |

2.2 REV. A JUN 1977 aaa2 OB

COMMAND CONVENTIONS

Trailing Dots

A line of dots following a parameter indicate that the parameter may be repeated a number of
times. Usually the number of times cannot exceed the length of the display console field. In the
exampie below the line number parameters can be repeated:

Fallt]

[{line number 1} {line number 2}] ...

Numeric Values

A parameter calling for a numeric value may be referenced in the explanation by “n”. A
parameter range may be referenced by "a” and "b”. Multiple numeric parameters may be
referenced in order by "a”, "b", "c", etc.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 3-3

Section 4

TEKTRONIX DISC OPERATING SYSTEM

INTRODUCTION

This section describes the Tektronix Disc Operating System (TEKDOS). Topics covered
include descriptions of the system, flexible disc and file utilities, control commands, system
option commands, and command files. Acommand summary is also given at the beginning of
each subsection.

CONTENTS

SECTION 4 TEKTRONIX DISC OPERATING SYSTEM

INTRODUCTION e, 4-1
SYSTEM DESCRIPTION i 4-3
TEKDOS DISC AND FILEUTILITIES 4-9
FORMAT e 4-10
VERIFY 4-12
RENAME e 4-13
DUP 4-15
COPYSYS . . . 4-17
LDIR e 4-18
DELETE 4-19
CMPFE 4-20
COPY e 4-21
PRINT 4-24
TEKDOS CONTROL COMMANDS 4-25
Space Bar 4-26
CTRL-Z . . e 4-27
RUB QUT Key e, 4-28
ESC . . e 4-29
SUSPEND 4-31
CONT 4-32
ABORT . . 4-33

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977

4-1

TEKTRONIX DISC
OPERATING SYSTEM

TEKDOS OPTION COMMANDS 4-34
SYSTEM 4-35
DEVICE 4-36
CLOCK . 4-37
ASSIGN . . e 4-38
CLOSE 4-39
EMULATE e 4-40

COMMAND FILES 4-41
Command Description 4-42
e 4-46
KILL . 4-47
TYPE . 4-48

4-2 REV. A JUN 1877 8022 zPROCESSOR LAB SYSTEM USER'S

TEKTRONIX DISC
OPERATING SYSTEM

SYSTEM DESCRIPTION

The Tektronix Disc Operating System (TEKDOS) performs flexible disc and file utility
functions, data transfer functions, and system and peripnerai device controi functions. The
Tektronix Disc Operating System (TEKDOS) executes in system memory. However, due to the
size of TEKDOS only a portion of the system is resident in memory. Other portions are brought
into memory from the system disc when needed to execute system commands.

System Memory

The system memory contains both PROM (Programmable Read Only Memory) and RAM
{Random Access Memory). The PROM holds the bootstrap loader that initially lcads TEKDOS
from the flexible disc into the RAM system memory when the POWER switch on the 8002
uPROCESSOR LAB s turned on. This PROM resident bootstrap aiso loads TEKDOS when the
RESTART switch on the front panel of the 8002 yPROCESSOR LAB is toggled.

Some of the Tektronix Disc Operating System is resident on the RAM portion of the system
memory during operation. The remainder is loaded from the system disc as needed. The
resident part of TEKDOS includes some system commands and the following modules:

e Command Line Processor
e Service Call Processor

e Job Dispatcher

e File Manager

® Device Drivers

A more complete description of these modules will be found in the next section.
The system commands in the system memory include SYSTEM, LOAD, GO, and XEQ. Most of
the remainder of the system commands are brought into system memory as needed. System

commands EDIT, ASM, and LINK are executed in program memory of the 8002 uPROCESSOR
LAB and thus are only invoked through TEKDOS.

8002 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 4-3

TEKTRONIX DISC
OPERATING SYSTEM

RESIDENT TEKDOS MODULES

Command Line Processor: The command line processor operates on commands entered from
the system control console or from a command file stored on the flexible disc. The command
line processor interprets the commands and prepares a parameter list. Then the function is
performed by transferring control to the appropriate resident procedure or by loading and
executing a system command.

Service Call Processor: The service call processor operates on internal requests for input and
output (1/0) or a TEKDOS function. All of the I/0 communication between the emulator
processor and system peripherals is performed by the service call processor.

Job Dispatcher: The job dispatcher controls execution of the active jobs in the system. The job
dispatcher transfers control to the highest priority job whose 1/0O operation has been
completed or which is ready to run.

File Manager and Device Drivers: The flexible disc drive file manager and other device drivers
control operation of the peripheral devices in the system.

MEMORY AREA ASSIGNMENT

Most TEKDOS commands are brought into system memory as needed. System memory
contains two memaory areas into which the commands are loaded prior to execution. These
areas are referred to as memory area 1 and memory area 2. Some system commands are
executed in memory area 1 and some in memory area 2. Some system commands require both
memory areas for execution.

in thefollowing listthe TEKDOS commands are categorized by the memory area in which they
are executed:

Memory Area 1 Memory Area 2 Memory Area 1 & 2
AN _— - e =~

COPY RHEX ABORT DEVICE MOVE COMM
CSMS RSMS ASSIGN DRT PATCH CPROM
DEBUG VERIFY BIF DSTAT RENAME LDIR
DUP WHEX BKPT DUMP RESET MODULE
FORMAT WSMS CcLBP EVT RTT RPROM
PRINT CLOSE EMULATE SET WPROM

CMPF EXAM STATUS

CNT FILL SUSPEND

CONT KILL TRACE

DELETE MAP TYPE

4-4 REV. B, MAR. 1978 8092 uPROCESSOR LAB SYSTEM USER'S

TEKTRONIX DISC
OPERATING SYSTEM

TEKDOCS commands can be executed concurrently as long as their associated programs do
not occupy the same memory area. In addition the concurrent execution must be consistent
with the current state of the peripheral devices and must not cause any system conflicts.

As an example of concurrent execution of commands, a paper tape is being read into program
memory while disc files are being deleted. The following dialog shows how this is carried out:

> RHEX PPTR
ESC
>> DELETE FILE/1 DATA/1 SOURCE/N

The command RHEX PPTR starts the system reading the paper tape into program memory.
Striking the ESC key suspends execution of the RHEX command and displays the TEKDOS
prompt character >>, The DELETE command is then entered. When you strike the RETURN
key the RHEX command continues execution and the DELETE command starts. Note that
RHEX executes in memory area 1 while DELETE executes in memory area 2. This allows
execution of both commands at the same time.

Files, Devices, and Channels

The Tektronix Disc Operating System (TEKDOQOS) is a file-oriented system. Understanding a
file-oriented system is greatly enhanced by understanding the concepts of a file, a device, and
a channel.

Afileis a discrete set of data with a logical beginning and a logical end. The files used for the
8002 uPROCESSOR LAB are stored on flexible discs. A file can be accessed through its logical
beginning address, a map that indicates the location of the data on the flexible disc and a
logical ending address.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4.5

TEKTRONIX DISC
OPERATING SYSTEM

4-6

A file name must have the following properties:

The file name must contain at least one character but not more than eight
characters.

The characters in the file name must come from the following set:
The alphabetic characters (A-Z)

The numeric characters (8-9)

The special characters | " # % & " () *; =7

The file name may not begin with a numeric character.
The file name must not be one of the reserved names that identify the following
physical devices: CONO, CONI, PPTP, PPTR, REMI, REMO, TTYR, and LPT1.

(See Table 4-1 for a definition of these names.)

The file name must be unique to the flexible disc containing the file.

Every flexible disc has a system area called the directory, where system information is kept
concerning all the files on the flexible disc. This information includes the file name, disc
sectors used, beginning and ending disc addresses, etc. The directory also includes system
information that prevents bad disc sectors from being allocated for file usage.

Devices are physical peripherals that provide input and output services for TEKDOS. The eight
standard devices are the console output and input devices, the teletypewriter reader, the paper
tape reader, the paper tape punch, the line printer, and the remote input and output data
communication lines (RS-232-C). These devices have reserved names that you must specify in
crder to access them. These names appear in Table 4-1.

Table 4-1
List of TEKDOS Device Names

DEVICE NAME
CONI Console Terminal Input
CONO Consoie Terminai Output
LPT1 Line Printer
PPTP Paper Tape Punch
PPTR Paper Tape Reader
REMI Remote Input (RS-232-C)
REMO Remote Output (RS-232-C)
TTYR Teletypewriter Reader

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEKTRONI!X DisSC
OPERATING SYSTEM

L

For example, the command:
>COPY PPTR LPT1
copies the information from the paper tape reader (PPTR) to the line printer (LPT1).

Files may also be viewed as devices and specified either as input or output devices. You referto
afile as a device by using the file name and the disc drive on which the flexible disc with that file
is located.

For example:
>COPY NAVERAGE/1 LPT1

In this example the file named NAVERAGE on disc drive 1 is to be copied to the line printer
LPT1. Ifthefile is located on the system disc drive, the drive number usually does not have to be
specified.

TEKDOS is oniy aware of fiexible discs that are loaded in the available disc drives. For this
reason flexible discs are referred to by drive number and not by name. As an example, flexible
discs are loaded in drives @ and 1 with drive @ designated as the system drive. A file named
NAVERAGE is on drive 1. Drive @ also contains a file named NAVERAGE. The following
command string shows how to copy the file NAVERAGE on disc 1 to the line printer:

>COPY NAVERAGE/1 LPT1

This command specifies flexible disc drive 1 with the /1 after the file name. TEKDOS assumes
that afile resides on the systemdisc if a numberis notappended to the file name and searches
only the system disc for that file.

Channeis are used by the program running on the emulator processor. A channel can be
assigned to a device to enable the emulator processor to perform input and output operations
to the device through that channel. The device specified in the assignment may be a physical
device or a file.

8092 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 4-7

TEKTRONIX DiSC
OPERATING SYSTEM

TEKDOS Commands

The TEKDOS command line consists of the command name and its parameters. Most
commands require that parameters be specified. The command is always separated from its
parameter by one or more spaces or by acomma. When two or more parameters are presentin
a command line, the parameters must also be separated by spaces or a comma. The following
two command lines are interpreted by TEKDOS in the same way:

>LDIR@/
> LDIR,®,/

The command line is entered after the prompt character > is displayed. In the example above,
each command line is preceded by the prompt character. LDIR is the command to be executed,
the zero "@" is the first parameter, and the "/" is the second parameter.

Most TEKDOS commands indicate that they have completed their function by displaying an
End-Of-Job message. The form of this message is * id * EOJ where 'id" isthe TEKDOS system

command identifier and EQOJ is the end of job message. Completion of any command causes

the TEKDOS prompt character > to be displayed.

TEKTRONIX DISC
OPERATING SYSTEM

TEKDOS DISC AND FILE UTILITIES

You can perform flexible disc and file utilities and move data around the 8692 uPROCESSOR
LAB System with these commands.

Command Name Description Page
FORMAT Initializes a flexible disc. 4-10
VERIFY Finds and catalogs defective blocks on a flexibie 4-12
disc.
RENAME Changes the name of a file or flexible disc. 4-13
DUP Duplicates all files on a flexible disc. 4-15
COPYSYS Copies the operating system to a blank flexible disc. 4-17
LDIR Lists directory of a flexible disc. 4-18
DELETE Removes a file from a flexible disc. 4-19
CMPF Compares two files. 4-20
COPY Moves data between system devices. 4-21
PRINT and PRINTL Prints out lines of data to devices. 4-24

These commands are explained in detail on the following pages.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

TEKTRONIX DisC

FORMAT OPERATING SYSTEM

SYNTAX

FORMAT {discdrive } [name]

PURPOSE

A new flexible disc must be formatted and verified before it can be used by TEKDOS.

The formatting process prepares a blank flexible disc for use with TEKDOS by writing such
information as clock bits, sync patterns, track and sector numbers, data patterns and CRC
characters on the flexible disc. The formatting process also presets the flexible disc director to
reserve tracks 1 through 4 for TEKDOS.

EXPLANATION

The FORMAT command causes the flexible disc on the specified drive to be formatted. The
drive specified must not be the designated system drive. For example, if the designated system
drive isdrive 1, the appropriate command format is FORMAT 0. In this case the flexible disc on
drive 0 is formatted.

The NAME portion of the command is optional but serves to identify the flexible disc. This
identification is always displayed when the disc directory is listed. If the NAME is not specified
at the time of formatting, a string of blanks is used to identify the flexible disc. The NAME is
truncated to 48 characters if more than that are entered.

If the flexible disc is not used for storage of system software, the area reserved for TEKDOS
may be freed for other uses after formatting by entering the DELETE TEKDOS/n command.
This prevents the use of this flexible disc for system programs unless it is again formatted, in
which case the files on the flexible disc are destroyed.

The DELETE TEKDOS command can delete TEKDOS from your system disc. If this
happens, the system is non-recoverable and you will need to obtain a new system
disc from Tektronix.

4.10 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’'S

TEKTRONIX DiIsSC

OPERATING SYSTEM FORMAT

Procedure for Formatting a Flexible Disc
NOTE

Before the flexible disc can be formatted or have any data written on it, the write-

e fm ok m A e om i iomd i A iaaid A ~amrs h
protect notch must covered with one of the opaque self-adhesive tabs that are

provided with the discs. The write-protect notch is the largest (approximately .5 cm
by .4 cm) one of the three notches in the bottom edge of the flexible disc. Any
opaque adhesive-backed material may be used to cover this notch.

1. Power up the 8002 uPROCESSOR LAB as previously described in Section 2 of this manual.
2. insert a system disc into drive @ of the Flexible Disc Unit.
3. insert a blank flexible disc into drive 1.
4. Enter the following command string after the prompt character:
> FORMAT 1 NAME

5. Execution of this command takes approximately three minutes. When the formatting
process is completed, TEKDOS responds with:

*FMT *» EOJ
* FMT * Error Responses
2—Directory write error
9—Invalid drive number
17—O0utput device assign failure

18—Device in use
47—System area bad

80062 uPROCESSOR i.AB SYSTEM USER'S REV. B, MAR. 1978 4-11

TEKTRONIX DISC

Verify OPERATING SYSTEM

SYNTAX

Verify {disc drive }

PURPOSE

The verification process determines if any sectors on a flexible disc are defective, then records
the location of the defective track on the block bit map.

EXPLANATION

This command causes the flexible disc on the specified disc drive to be verified.

This verification process consists of reading every sector on the flexible disc and noting any
errors that occur. When an error on a sector is found, the four blocks on the track in which the
defective sector resides are recorded in the block bit map. In addition, the track and sector
number of the defective sector are printed on the console. When all the sectors have been read,
the block bit map is written on the flexible disc.

Whenever files are created and disc space allocation for the file is performed, reference is made
to the block bit map and any defective blocks are not allocated.

If a defective sector is detected on tracks @ through 4 (the TEKDOS area) during the verification
process, the process is aborted and an appropriate message displayed on the console.

VER Error Responses:
1—Directory read error
2—Directory write error
9—Invalid drive number

16—Input device assign failure

18—Device in use

47—System area bad

REV. A JUN 1977 8092 uPROCESSOR LAB SYSTEM USER’S

TEKTRONIX DISC ‘
OPERATING SYSTEM REName

SYNTAX

RENAME { filename 1/discdrive } { fiiename2}
or
RENAME {disc drive} { flexible disc identifier }

PURPOSE

The RENAME command has two forms. The first form is used to rename a file and the second
form is used to rename a flexible disc.

EXPLANATION

Renaming a File

The first form of the RENAME command causes the name of a file on the specified disc drive to
be changed. This form requires that a disc drive number be specified with the OLDFILE name.
A disc drive number may be specified with the NEWFILE name, however, it must be the same as
the drive number specified for the OLDFILE name. The following is a typical transaction:

> REN TEST/@ TEXT
* REN * EOJ

80092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

4-13

REName

TEKTRCNIX DiSC

OPERATING SYSTEM

Y
-
FEY

Renaming a Flexible Disc

> REN @ MASTER SYSTEM DISC

*REN * EOJ

*REN % Error Responses

1—Directory read error
2—Directory write error
8—Drive not specified
9—Invalid drive number
12—Invalid file name
13—Input file not found
16—Input device assign failure
18—Device in use
30—Invalid parameter
31—Parameter required
32—Too many parameters
57—File name in use

REV A I1IN 1077
TREN oy v i

2002 4PROCE

T

The second form renames the flexible disc on the specified disc drive with the character string
NAME. The identifier NAME is truncated if longer than 48 characters. The following is a typical
transaction:

OR LAB SYSTEM USER’'S

TEKTRONIX DISC
OPERATING SYSTEM DUP

SYNTAX

DUP { disc drive 1 } { disc dnvez} [fiexibie disc identifier j

PURPOSE

The DUP command causes an exact duplicate of the contents of one flexible disc to be created
on another flexible disc.

EXPLANATION

The DUP command causes the files stored on the flexible disc on disc drive 1 to be copied onto
the flexible disc on disc drive 2. The disc drive number entered for 1 may not be the same as the
number used for 2. in addition, the number used for 2 may not specify the system drive.

The NAME portion of the command is optional but serves to identify the flexible disc. This
identification is always displayed when the flexible disc directory is listed. If the NAME is not
specified at the time of formatting, a string of blanks is used to identify the flexible disc. The
NAME is truncated to 48 characters if more than that are entered.

If adisc read or write error occurs during afile copy, the output file is deleted from the flexible
disc on drive 2, a warning message is displayed and the DUP process continues with the next
file.

The flexible disc on drive 2 should be verified before the DUP command is executed in order to
establish the block bit map for the disc.

Uses for the DUP command include making backup discs for your system. At times you may
want to make a backup disc for a non-system disc. If your system has more than two disc
drives, the DUP command can be used if you have the system disc in the system drive and the
other two flexible discs in other drives. The system disc is needed to provide the DUP
command.

If you have the minimum system you have only two disc drives and it might seem to be

impossible to DUP a non-system disc. The following procedure allows you to use your system
to duplicate non-system discs.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-15

DUP

TEKTRONIX DISC
OPERATING SYSTEM

Procedure for Duplicating Non-system Discs

1.

4-16

Insert the system disc into drive zero and toggle the RESET switch.

After the prompt character is displayed on the console, enter the following command:
>DUP 10

The following error will be displayed along with an End-Of-Job message:

* DUP* ERROR 9
DUP EOJ

Now the DUP command program is resident in system memory and the system disc is not
required for execution of the DUP command.

Insert the non-system disc to be copied into disc drive one.
Remove the system disc from drive zero and insert a blank flexible disc into drive zero.
Enter the following command:
>SYS 1
Next enter the command:
>DUP 10

When the files on the flexible disc in drive one have been copied onto the blank disc drive @,
the following message will be displayed on the console:

*DUP * EOJ

* DUP * Error Responses:

1—Directory read error
2—Directory write error
6—Read error, DUP continues
7—Write error, DUP continues
9—Invalid drive number
16—Iinput device assign failure
17—0utput device assign failure

21—Channel assign failure

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

TEKTRONIX DISC

OPERATING SYSTEM COPYSYS

SYNTAX

COPYSYS { disc drive 1 } {diss drive2 }

PURPOSE

COPYSYSisacommand file that copies the TEKDOS operating system from one flexible disc
to another.

EXPLANATION

The COPYSYS command causes the system files on the flexible disc mounted on disc drive 1 to
be copied to the flexible disc on disc drive 2. The COPYSYS command is entered after the
TEKDOS prompt character > is displayed. The following example iliustrates the use of this
command to copy the TEKDOS system from a disc on disc drive @ to a disc on disc drive 1:

>COPYSYS @ 1

TYPE OFF

COPYSYS COMPLETED
>

The underlined portion is entered from the keyboard. When execution of the command has
been completed, the following files have been copied over:

@ The resident TEKDOS binary load file.
o All TEKDOS overlays including the assembler and the editor.
e The COPYSYS command file.

The operating system should be copied onto a flexible disc before any other files to achieve the
most rapid system response to commands. This allocates the system files to the tracks on the
outside of the disc and minimizes read head movement when the commands are brought into
memory.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 4-17

. TEKTRONIX DISC
Ldir OPERATING SYSTEM

SYNTAX

device name
LR [discdrive] [.] [/] [filename/discdrive]

PURPOSE

The LDIR command causes the contents of a flexible disc directory to be sent to the specified
device.

EXPLANATION

The LDIR command program lists the contents of the disc directory that is mounted on the
specified disc drive. If the disc drive is not specified, the system disc directory is listed. When a
decimal point "."” is specified as a parameter, the command program includes all of the
TEKDOS system fiies. When a siash "/ is specified as one of the parameters, space aliocation
information and file identification information are included in the listing.

Any one of the four output device names CONO, LPT1, PPTP or REMO is a valid entry (see
Table 4-1). In addition, any valid file may be named as an output device; however, the operator
must specify the disc drive on which the flexible disc with that file is located. The listing of the
directory to a file will overlay any data in that file. A new file will be created if a file with the
specified name does not exist.

* DIR * Error Responses

1—Directory read error

7—Device write error
10—Overlay load failure
15—invalid output device
17—Output device assign failure

4-18 REV. A JUN 1977 8092 uPROCESSOR LAB SYSTEM USER'S

TEKTRONIX DISC ‘ DELete

OPERATING SYSTEM

SYNTAX

DELETE {file name/disc drive } [file name/disc drive] .

PURPOSE

The DELETE command is used to delete specified files from a flexible disc.

EXPLANATION

The DELETE command causes the file named to be deleted from the specified disc drive.
[file name] ... indicates that more than one file can be specified for deletion in one command
line, however each file specified must have a disc drive number associated with it.

Upon execution of the DELETE command, each file specified in the parameter list is deleted
from the directory of the flexible disc on which it resides. The sector blocks allocated to the

deleted file are released for reallocation.

*DEL * Error Responses

2—Directory write error

8—Drive not specified
9—Invalid drive number
12—invalid file name
13—File not found
18—Device in use
21—Channel assign failure
30—Invalid parameter
31—Parameter required
61—File in use

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

4-19

TEKTRONIX DISC
CMpf OPERATING SYSTEM

SYNTAX

output device name
CMPF {filename1 [/disc drive] } {filename2 [/disc drive] } | outputfile namereisc drive

PURPOSE

The CMPF command is used to compare two files and list their differences on the specified
device.

EXPLANATION

The CMPF command compares the first file specified on a byte for byte basis with the second
file specified. Any differences are printed out on the device named. If adevice is not named, the
output is sent to the console (CONO).

The disc drive number for either file is optional, but if either file is not stored on the system disc
then the drive number must be specified.

Any one of the four output device names CONO, LPT1, PPTP, or REMO is a valid entry. In
addition, any valid file may be named as an output device. The output to a file overlays any data
in that file. A new file is created if a file with the specified name does not exist.

If the first file named is an ASClII file, the output will be line oriented; otherwise the output will
be block oriented. When differences are found, the line or block number is printed out,
followed by the first file name and the line or block of text, Then the second file name is printed
out with its corresponding line or block of text. The comparison continues until an end-of-file
marker is reached on either file.

* CMP * Error Responses

6—Device read error
10—Overlay load failure
13—Input file not found
14—Invalid input device
15—Invalid output device
16—input device assign failure
17—Output device assign failure
31—Parameter required

REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER'S

»
N
o

TEKTRONIX DISC
OPERATING SYSTEM - COPy

SYNTAX

input device name \ input device name
COPY input file name/disc drive input file name/disc drive

output device name
output file name/disc drive

PURPOSE

The COPY command is used to transfer data from one device or file to another.

The COPY command transfers data from the input device or file to an output device or file.
More than one input device or file may be specified; however, the output device or file may not

be used as an input device or file.

Data is transferred from the input device or file to the specified output device until an
end-of-file condition is encountered on the input. If more than one input device or file is
specified, the data is transferred to the output device or file in the following manner:

1. The data from the first input device or file is transferred to the output device or file until an
end-of-file condition is reached.

2. The data from the second input device or file is transferred to the output device or file and
concatenated directly to the first set of data.

w

The data from the third input file or device is then transferred to the output device orfile, etc.

4. When the end-of-file condition is encountered in the last input device or file the output
device or file is closed.

When an ASCIl file is being input from one of the system devices, (CONI, PPTR, or REMI), the
CTRL-Z character is interpreted as the end-of-file condition.

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-21

COPy

TEKTRONIX DISC
OPERATING SYSTEM

EXAMPLE

A programmer used the COPY command to create a file directly from the console as shown
below. In this case a partial 6800 Assembly program was created from the keyboard. It was

named AVER.

> COPY CONI AVER
START LDX
CLR

LDD

ADD

ADC

ADD

ADC

ADD

ADC

© oo ~N®D O A WN
®>O>O>>D

_
(S}

* COP * EOJ

13FCH ;LOAD LOCATION OF NUMBER
;ZERO B
;LOAD A INDEXED

1,X ;ADD 2ND NUMBER

0

2,X ;ADD 3RD NUMBER

9

3,X ;ADD 4TH NUMBER

]

After entering iine 9, the programmer entered a carriage return. At this point, wishing to stop,
he entered a CTRL-Z and terminated the COPY transaction. If he had entered the CTRL-Z at
the end ofiine 9instead of the carriage return, the biank iine wouid not have been added to the

file at line 10.

Later, the programmer had another segment of 6800 code on paper tape. The following
transaction shows how he entered the data into a file called AGE.

> COPY PPTR AGE
*COPx EOJ
>COPY AGE CONO

AVG ROR B
ROR A
ROR B
ROR A
STA A

COP EOJ

.‘.b

;DIVIDE BY TWO

;DIVIDE BY TWO
;RESULT IN ACC A
3,X

TEKTRONIX DISC
OPERATING SYSTEM COPy

At this point the programmer wanted to combine these two programs and store the resultina
file named AVERG80. The transaction follows:

> COPY AVER AGE AVER680
* COP* EOJ

The programmer then used the COPY command to print out the AVER6E8@ file contents on the
console display as shown below:

>COPY AVER680 CONO
1 START LDX 13FCH ;LOAD LOCATION OF NUMBER
2 CLR B ;ZERO B
3 LDD A X ;LOAD A INDEXED
4 ADD A 1X ;ADD 2ND NUMBER
5 ADC B 0
6 ADD A 2X ;ADD 3RD NUMBER
7 ADC B 0
8 ADD A 3X ;ADD 4TH NUMBER
9 ADC B 0
10
11 AVG ROR B ;DIVIDE BY TWO
12 ROR A
13 ROR B ;DIVIDE BY TWO
14 ROR A ;RESULT IN ACC A
15 STA A 3X

* COP* EOJ

* COP * Error Responses

6—Input read error

7—Output write error
13—Input file not found
14—Invalid input device
15—Invalid output device
16—Input device assign failure
17—Output device assign failure
3@0—Parameter error

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-23

TEKTRONIX DISC

PRint OPERATING SYSTEM

P Y

F 2N

SYNTAX

PRINT device
PRINTL{ {file name } | file name/disc drive | [{line number 1} {lline number 2}]

PURPOSE

The PRINT and PRINTL commands transfer lines of data from an input file to an output device
or file. in addition, the PRINTL command also numbers each line in succession.

EXPLANATION

The PRINT or PRINTL commands transfer lines of data from the specified input file to the
specified output device or file. When the output device or file is not specified, the data lines are
printed to the line printer LPT1.

The line numbers must be greater than or equal to one and less than 32,768. Line number 2
must be greater than or equal to line number 1. When the line range is specified using 1 and 2,
only the lines from 1 through 2 are transferred. For example, when the first numberis 4 and the
second number is 7, then lines 4, 5, 6, and 7 are transferred from the specified file. If only the
firstline number is specified, all lines from the first line in the file through the specified line are
transferred. When a line range is not specified the entire file is transferred.

When the PRINTL command form is used the lines are numbered as they are transferred.

* PRN* Error Response

6—Input read error

7—Output write error
13—Input file not found
14—Invalid input device
15—Invalid output device
16—Input device assign failure
17—Output device assign failure
30—invalid parameter

QEV A ILIN 1077 Qan9 .,
[=S PR WV W R E D A et

TEKTRONIX DISC
OPERATING SYSTEM

TEKDOS CONTROL COMMANDS

The following control commands and special characters are used to control execution of both

system and emulation programs.

Command Name

Space Bar Suspends console display.

CTRL Z Issues an end-of-file character during an ASCII
read operation.

RUBOUT Deletes the last character from the line buffer.

ESC Suspends or terminates any action.

SUSPEND Suspends program execution.

CONT Continues execution of suspended programs.

ABORT Terminates program execution.

8092 yPROCESSOR LAB SYSTEM USER’S

Description of Command

REV. A JUN 1977

Page
4-26
4-27

4-28
4-29
4-31
4-32
4-33

4-25

Space Bar

TEKTRONIX DISC
OPERATING SYSTEM

4-26

SYNTAX

Space Bar

PURPOSE

The space baris used to halt the display output to the console or cause the display to continue.

EXPLANATION

Striking the space bar during console display temporarily halts the display. Striking the space
bar again causes the display to continue. The display may be halted and continued as many

times as needed.

REV. A JUN 1977 8002 ;PROCESSOR LAR SYSTEM USER'S

TEKTRONIX DISC CTR L-Z

OPERATING SYSTEM

SYNTAX

CTRL Z

PURPOSE

The CRTL-Z (control-Z) provides an end-of-file character during as ASCI| read operation.

EXPLANATION
A CRTL-Z is sent by holding down the CTRL (control) key while striking the Z key.

The CTRL-Z is treated as an end-of-fiie character when an ASCIi read is being performed from
the console or other system input device.

CTRL-Z does not send a visual character to the console.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-27

TEKTRONIX DISC
RUB OUT Key OPERATING SYSTEM

SYNTAX

RUB OUT Key

PURPOSE

The RUB OUT key is used to delete an incorrectly entered character.

EXPLANATION

Striking the RUB OUT key deletes the last character input from the console keyboard. This
function deletes the last characterin the line buffer and echoes that character to the display. If
more than one character has been entered incorrectly, the RUB OUT key may be used to delete
each character in the string. The entry can then be completed as if the incorrect characters
were never entered.

Example

If when entering the command line to copy the file AVER to the console, you enter the device
name by mistake before the file name, the entry may be corrected with the RUB OUT key as
follows:

> COPY,CONOONOQCAVER,CONO

The underlined portion of the command line above shows the incorrect entry and the effect of
using the RUB OUT key four times followed by the correct entry.

N
o

REV. A JUN 1977 2002

th

TEKTRONIX DISC
OPERATING SYSTEM ESC

SYNTAX

ESC Key

PURPOSE

Striking the ESC key (escape) causes suspension or termination of program execution and
returns conirol to TEKDOS.

EXPLANATION

Striking the ESC key twice (ESC ESC) suspends all active programs. A program suspended by
this means (ESC ESC) does not resume execution unless a CONT (continue execution)
command is entered from the consoie.

The response to striking the ESC key once varies depending on whether input is being
performed or a program is being executed.

ESC During Console Input

Striking the ESC key during an input operation produces differing results as follows:

e |f a TEKDOS command line is being entered, the system deletes the command line and
responds to the dispiay console with a double prompt character >>.

e |f the EXAM command is being executed, the command is terminated and a double
prompt character is displayed. Any memory locations that were altered prior to striking
the ESC key remain altered.

e If the EDIT command is being executed, the Editor prompt character * is displayed.
When the Editor is in the Input mode, striking the ESC key deletes the current line being
entered and moves the display cursor to the next line. In this case a prompt character is
not displayed. '

e If a user program is being executed, the response depends on the function that has been
programmed for the ESC key.

8002 uPROCESSOR LAB SYSTEM USER’S REV. B, MAR. 1978 4-2%

ESC

TEKTRONIX DiISC
OPERATING SYSTEM

»
‘!

[

ESC During Program Execution

Striking the ESC key during the execution of a TEKDOS command causes the execution of that
command to pause. Execution of the command may be continued either by striking the
RETURN key or by entering the CONT * command.

The execution of the TEKDOS commands LDIR, CMPF, TRACE, STATUS, EXAM, and DUMP
will be terminated by striking the ESC key instead of just being paused.

REV. A JUN 1977 80@2 LPROCESSOR LAR SYSTEM USER'S

TEKTRONIX DISC
OPERATING SYSTEM Suspend

SYNTAX

é program name L
1
U

SiSPENI / |

PURPOSE

The SUSPEND command suspends the execution of active programs.

EXPLANATION

The SUSPEND command may be used with any active program except DEBUG.
This command is mainly used in conjunction with the command file capability. Inserting the
SUSPEND command ina command file suspends system operation and allows some required
user action, such as inserting a special flexible disc into one of the drives.
The SUSPEND command must be accompanied by one of the parameters.

e SUSPEND,* suspends all active programs.

e SUSPEND,/ suspends any active user program.

® SUSPEND,program name suspends the specified program.

* SUS * Error Responses

24—Job not active
26—Job not suspended
31—Parameter required

80602 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-31

TEKTRONIX DISC
Cont OPERATING SYSTEM

SYNTAX

program name
CONT |/

PURPOSE

The CONT command continues the execution of a suspended program.

EXPLANATION

A suspended program may be continued by entering the CONT command. TEKDOS returns
execution to the suspended program at the point where execution ceased.

When the ESC key has been.used to terminate execution of the TEKDOS commands LDIR,
CMPF, TRACE, STATUS, EXAN and DUMP, they cannot be continued.

The CONT command must be accompanied by one of the following parameters:
® CONT, * causes execution of all active programs to be resumed.
e CONT,/ causes execution of an active user program to be resumed.
e CONT,program name causes execution of the specified program to be continued.

* CON * Error Respones

24—Job not active
25—Job not suspended

3i—Parameter required

REV. A JUN 1977 8002 LPROCESSOR LAB SYSTEM USER’'S

J]}
[
N

TEKTRONIX DISC
OPERATING SYSTEM Abort

SYNTAX

/ N\

programname ﬁ

ABORT % /
- i\

PURPOSE

The ABORT command terminates execution of an active program.

EXPLANATION

The ABORT command causes the execution of an active program to be terminated. The
ABORT command must be accompanied by one of the parameters.

e ABORT, * causes all active programs to be terminated.
& ABORT,/ causes an active user program to be terminated.
o ABORT,program name causes the named program to be terminated.

* ABT * Error Responses

24—Job not active
31—Parameter required

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-33

TEKTRONIX DISC
OPERATING SYSTEM

TEKDOS OPTION COMMANDS

You may set the value of various system options. These options remain in effect during all
subsequent operations until removed or changed.

Command Name Description of Command Page
SYSTEM Designates the system drive. 4-35
DEVICE Specifies the device status to TEKDOS. 4-36
CLOCK Specifies the real time clock status. 4-37
ASSIGN Connects user channels for I/0O devices. 4-38
CLOSE Disconnects user channels from 1/0 devices. 4-39
EMULATE Activates the emulator processor and sets the 4-40

emulation mode.

o
w
S

REV. A JUUN 1077 8002 uPROCESSOR LAB SYSTEM USER'S

TEKTRONIX DISC
OPERATING SYSTEM SYstem

SYNTAX

SYSTEM {discdrive}

PURPOSE

The SYSTEM command is used to specify the disc drive to be used as the system drive.

EXPLANATION

The SYSTEM command allows you to designate any disc drive as the system drive. The default
value for the system drive is @.

At power-up or onreset the system selects the system drive as the first disc drive that contains a
flexible disc. This search starts with drive 0.

*DOS * Error Responses

9—Invalid drive number

8p@2 uPROCESSOR LAB SYSTEM USER'’S REV. A JUN 1977 4-35

DEVice

TEKTRONIX DISC
OPERATING SYSTEM

£

(5]

SYNTAX

U
DEVICE {device name } { D

}

PURPOSE

The DEVICE command informs TEKDOS of the availability of a peripheral device.

EXPLANATION

The DEVICE command specifies the availability of the named device. The device named must
be one of the system device names (CONI, CONO, LPT1, PPTP, PPTR, REMI, or REMO:; see

Table 4-1).

The second parameter, either U or D, must be specified. If U is specified, the systemisinformed
that the device is up and available for use. If D is specified, the system is informed that the

device is down and not available for use.

* DEV * Error Responses

30—Invalid parameter
31—Parameter required
52—Invalid device

REV, B, MAR, 10782

TEKTRONIX DISC CLOCk

OPERATING SYSTEM

SYNTAX

ON
CLOCK OFF

PURPOSE

The CLOCK command enables or disables the real time clock.

EXPLANATION

The command CLOCK,ON enables the 100 millisecond real time clock. The real time clock is
synchronized with the system clock and is available out of system memory for use by user

programs.

The power-up default value of the CLOCK command is OFF.

NOTE

The real time clock shouid be disabied when running a prototype system with the
emulator processor in either emulation mode 1 or mode 2.

* CLK* Error Responses

30—Invalid parameter
31—Parameter required

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-37

ASsign

TEKTRONIX DISC

OPERATING SYSTEM

£

co

SYNTAX

device name
ASSIGN { channel number } file name/disc drive

device name
channel number) file name/disc drive N

PURPOSE

The ASSIGN command causes the connection of an I/0 channel to the specified device.

EXPLANATION

The ASSIGN command causes an emulator I/O channel to be connected to a device. The
channel number must be in the range from0to 7. The device named may be a file on the flexible
disc or one of the system device names (CONI, CONO, LPT1, PPTP, PPTR, REMI, or REMO;

see Table 4-1).

Any legitimate file may be named as a device. A new file is created if a file with the specified
name does not exist.

* ASN * Error Responses

1—Directory read error

S—Invalid drive number
12—Invalid file name
19—Invalid channel number
2@0—Channel in use
21—Channel assign failure
31—Parameter required

RFV A JUN 1977 8002 4PROCESSOR LARB SYSTEM

c

SER'S

TEKTRONIX DISC
OPERATING SYSTEM ClLose

SYNTAX

CLOSE {channe!number} [channe!number] e

PURPOSE

The CLOSE command disconnects the specified 1/0 channel from the specified device.

EXPLANATION

The CLOSE command disconnects the channel from the device that was created by the
ASSIGN command.

CLS Error Responses

2—Directory write error

7—Device write error
19—Invalid channel number
31—Parameter required
62—Device not operational
64—Iinvalid flexible disc

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-39

TEKTRONIX DISC

EMulate OPERATING SYSTEM

4-40

SYNTAX

EMULATE { operational mode }

PURPOSE

The EMULATE command activates the emulator processor and sets the mode of operation.

EXPLANATION

The EMULATE command activates the emulator processor and sets the mode in which it will
operate. The possible values for the operational mode are:

@ — System mode. Uses program memory, system I/0O, and system clock.

1 — Partial emulation mode. Uses program memory, user prototype memory, prototype /0O
and user clock.

2 — Full emulation mode. Uses user prototype memory, prototype 1/0O and user ciock.

(Note that in mode 2 the TRACE JUMP option is not available.)

The emulation mode may be changed while the DEBUG command is active. However,

changing the emuiation mode whiie a user program is being executed causes execution 1o be
aborted.

* EMU * Error Responses

31—Parameter required
32—Too many parameters
54—Invalid mode
56—Invalid device address

REV. A JUN 1977 8002 PROCESSOR LAB SYSTEM USER'S

TEKTRONIX DISC
OPERATING SYSTEM

COMMAND FILES

Command files provide you with the capability of multiple command execution by entering a
single command. You store the desired TEKDOS commands in the desired order on one file.
Then enter that file name to TEKDOS as if the file name were a system command. The
commands are executed in sequence using the specified parameters.

This section contains the following:

Command Description 4-42

* Prefaces comment statements. 4-46

KILL Aborts a system command on error 4-47
condition.

TYPE Prints the system command being 4-48
executed.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-41

. TEKTRONIX DISC
Command Files OPERATING SYSTEM

SYNTAX

{tile name} [/discdrive] [parameter [parameter] .]

PURPOSE

Command files provide you with the capability of executing a sequence of system commands
by entering a single command.

EXPLANATION

The command file is identified by a single name that must conform to the file naming
conventions specified in the section under SYSTEM DESCRIPTION.

When the command file is not resident on the system disc, the disc drive must also be specified.
This value defaults to the system disc.

Parameters specified in the command line may be used by the system commands that make up
the command file. For example, you may specify a program file name as a parameter in the

command line and then have several system commands within the command file use or modify
that file. Later you can have that same command file perform the same action on another

program file.

Command files cannot be nested but they can be chained. That is, if the last system command
in a command file is the name of another command file, the command file being executed is
terminated and the next command file is started. The parameters are passed from one
command file to another in the same way they are passed to the system commands within the
command file.

A command file may be created either using the text editor or using the COPY command.

TEKTRONIX DISC o
OPERATING SYSTEM Command Files

Examples

A command file may be created by using either the TEKDOS command COPY or the text
editor. The following is an example of creating a file with the COPY command:

> COPY CONI LISTALL
LDiR,0,LPT1
LDIR,1,LPT1
LDIR,2,LPT1
LDIR,3,LPT1 CTRL-Z

The COPY command line says to COPY input from the console input CONI to the file named
LISTALL. The CTRL-Z is the end-of-file marker and returns control to the TEKDOS monitor.

The following is an example of creating a file with the Text Editor:

>EDIT LISTALL

* ¥ EDIT VERSION 1.6 * *
* * NEW FILE * *

* INPUT

INPUT:

LDIR@,LPT1

LDIR,1,LPT1

LDIR,2,LPT1

LDIR,3,LPT1

*FILE

*PGM x EOJ

The underlined portions above are entered from the console keyboard, all else is a computer
response. The EDIT LISTALL command creates a temporary fite which has data put into it with
the INPUT command.

After the command file has been entered, striking the RETURN key a second time returns

control to the text editor from INPUT. Then issuing the command FILE stores the entered daia
onto the file LISTALL and returns control to the TEKDOS monitor.

8092 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 4-43

TEKTRONIX DISC

Command Files OPERATING SYSTEM

>
S
>

in the following example, the command file named LISTALL contains the following lines:

LDIR,®,LPT1
LDIR,1,LPT1
LDIR,2,LPT1
LDIR,3,LPT1

The command line that invokes this command file is:
>LISTALL

Execution of this command file results in the directories of each flexible disc mounted on disc
drive @ through 3 being printed on the line printer in order. If a flexible disc is not mounted on
one of the disc drives an error results and execution of the command file is halted.

The following change in the command file LISTALL allows the execution to continue after the
error is detected:

KIiLL OFF

LDIR,0,LPT1
LDIR,1,LPT1
LDIR,2,LPT1
LDIR,3,LPT1

If the system drive is @ but the command file LISTALL is on the flexible disc mounted on disc
drive 2, you enter the following command line for execution:

>LISTALL/2

Parameters may be entered in the command line; however, the order of entry isimportant. Each
parameter entered is referenced by its position in the command line. When the following
command line is entered:

>LISTALL,.,/
and the command file contains:

KILL OFF
LDIR,Q,LPT1,$1,%2
LDIR,1,LPT1,$1,$2

1 ™I AL DT
Luin,Z,ur i |,$2

LDIR,3,LPT1,$1

REV. B, MAR. 1978 8002 xNPROCESSOR LAB SYSTEM USER'S

TEKTRONIX DISC]
OPERATING SYSTEM Command Files

The result is that the "." (the first parameter) replaces each $1 and the "/" (the second
parameter) repiaces each $2 in the system commands within the command fiie. The resuit is
the same as when the following system commands are executed:

KILL OFF
LDIRALPTY,./
LDIR,1,LPT1,.,/
LDIR,2,LPT1,/
LDIR,3,LPT1,.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 4-45

TEKTRONIX DISC
* OPERATING SYSTEM

SYNTAX

* (The Asterisk)

PURPOSE

The asterisk * is used to insert comments into the job flow of the command file.

EXPLANATION

The asterisk is used to insert comments into the job flow of the command file. The asterisk is
entered into the first character position and must be followed by a space. The comment
inserted is printed on the console as its turn comes up in the job flow. The print out of the
comment may be inhibited by invoking the TYPE OFF command.

Comment lines must be entered on their own lines and not entered on a line with a system
command. :

4.46 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEKTRONIX DISC .
OPERATING SYSTEM Kill

SYNTAX

{ ON
KILL JOFF

PURPOSE

The KiLL command causes termination of command file execution upon detection of an error.

EXPLANATION

After the KILL ON command has been invoked, a command file will be terminated if an erroris
encountered during the execution of any of the system commands within that file.

The KILL OFF command allows execution of a command file to be continued starting with the
next system command in the file.

The KILL command defaults to ON.

* KIL * Error Responses

30—Invalid parameter
31—Parameter required

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 4-47

TEKTRONIX DISC
TYpe OPERATING SYSTEM

SYNTAX

ON
TYPE | OFF

PURPOSE

The TYPE command causes each system command in the command file to be printed on the
console as the command is interpreted.

EXPLANATION

After the TYPE ON command has been invoked, either from the keyboard or within the
command file, the command line for each system command is printed on the console at the
start of the command execution.

The TYPE OFF command inhibits the printing of the command line and only error messages
are output.

The system defaults to TYPE ON at power-up and reset.

* TYP * Error Responses

30—Invalid parameter
31—Parameter required.

A48 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

Section 5

TEXT EDITOR

INTRODUCT!ON

This section describes the capabilities of the 8092 uPROCESSOR LAB Text Editor. General
topics of discussion include an introduction to the text editor, text transfer commands,
searching and alteration commands, and system utility commands. Detailed descriptions and
examples of each command are given to provide a full grasp of text editor capabilities.

CONTENTS

SECTION 5 TEXT EDITOR

INTRODUCTION TO THE TEXT EDITOR 5-3
INVOKING THE TEXT EDITOR\ o0toeaeeen ., 5-4
COMMAND CONVENTIONS oot 5-7
TEXT TRANSFER COMMANDSot 5-10
INPUT e 5-11
INSERT ..ottt e et 5-13
FILE oottt e e 5-14
GET o 5-17
PUT ot 5-21
COPY . oot 5-26
TYPE ot 5-32
LIST .o e 5-33
SEARCHING AND ALTERATION COMMAND 5-34
N 5-35
UP ot 5-36
DOWN . ottt 5-38
BEGIN . ..ot 5-40
END oot 5-41
FIND ettt et 5-42
SUBSTITUTE . ..ottt et 5-44
REPLACEo\ ott e 5-46
KILL & o oo e e e 5-48

8002 ,PROCESSOR LAB SYSTEM USER’S REV. A JUN 1977

51

TEXT EDITOR

UTILITY COMMANDS e 5-50
TAB . 5-51
TABS . . 5-53
MACRO e 5-54
Space Bar 5-56
ESC .. e 5-57
QUIT o 5-58
BRIEF . . 5-59
14 5-61
AGAIN . 5-62

5-2 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

TEXT EDITOR

INTRODUCTION TO THE TEXT EDITOR

The 8002 uPROCESSOR LAB Text Editor aids in the creation and modification of programs
written in source code. The editor performs these functions by processing key-entered
command iines in program memory and storing the resulting data on flexible discs. Each
command line specifies one action or series of actions for the text editor to undertake.

The text editor resides in program memory and occupies approximately seven thousand bytes
of the memory. This allows approximately 15@ 6@-character lines of program memory to
remain for the creation and modification of text in a 16k system.

Two important terms are used throughout this discussion. These are:

Program Memory:

Line Pointer:

Program memory is the storage area that contains the text on
which the editor operates. Lines of text are written into and read
from program memory by the editor. Text stored in program
memory can be viewed in terms of having a beginning and ending
line.

The text editor can operate on any line in program memory.
Program code is edited by first locating and examining a line, and
then changing, inserting or replacing the line. The text editor
keeps track of the line presently being worked on by keeping a
pointer at the line to be edited. The line pointer can be positioned
upward or downward, depending on the desired program
memory location.

This section describes how to invoke the text editor and outlines the editor command

description conventions.

8002 uPROCESSOR LAB SYSTEM USER'S

REV. A JUN 1977

53

TEXT EDITOR

M

INVOKING THE TEXT EDITOR

The text editor is invoked with the TEKDOS command EDIT. Although EDIT is part of the
TEKDOS command set, the EDIT command executes out of program memory after being
loaded from the system disc. The EDIT command has three forms:

1) EDIT INFILE OUTFILE
2) EDIT OUTFILE
3) EDIT

EDIT INFILE OUTFILE

When EDIT INFILE OUTFILE is used, INFILE is the name of a file that has previously been
created and stored on flexible disc. A copy of INFILE is read into program memory for
modification, and the original INFILE remains unchanged.

After modification the edited data must be stored back onto the flexible disc. OUTFILE
becomes the name of the new file on the flexible disc where the edited text is written after the
editing session is terminated.

This form of invoking the editor enables you to modify a file without disturbing the original text.
An example of this application is shown in the command line below. A carriage return follows
the last character of the command line, EDIT CLD NEW. * *EDIT VER 1.6x x is the editor
welcoming message that indicates successful command line loading. * * NEW FILE* *
indicates that a new file (in this case NEW) will be created as a result of the editing session.
These messages are entered by the editor, not the user. The final prompt character " *”

indicates the editor's readiness to accept commands.

> EDIT OLD NEW
* % EDIT VER 1.6 % #

* * NEW FILE * *

In this general form of the text editor command line (EDIT INFILE OUTFILE) INFILE may be
more descriptively referred to as the Primary Input file. The final output filename, OUTFILE, is
the Primary Output file. To illustrate this concept:

EDIT INFILE OUTFILE

PRIMARY INPUT FILE PRIMARY OUTPUT FILE

o
H

REV A JUN 1977 8002 wPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR
L -]

EDIT OUTFILE

When EDIT OUTFILE is used, the editor interpretation is based on whether QUTFILE is an
existing file or a new file.

If OUTFILE is an existing file, the file is edited onto itself at termination of the editing session.
OUTFILE is both the primary input and the primary ouiput fiie. This is accomplished by the
creation of a temporary file. The temporary file is identified by a filename with the first letter
replaced by an *. In the example below, OLD is read into program memory and given the
name, * LD. After modification takes place and the editing session is terminated, the new data

held in * LD is stored back on the flexible disc. The * is replaced by the first letter of the

original file name. In the example below, * LD becomes OLD again. In effect, the original text
has been deleted. Since a modification to the original file has occurred, a new file name has not
been stored, as in the previous example. Therefore, the editor message * * NEW FiLE * *

does not appear.

> EDIT OLD
* x EDIT VER 1.6 * *

*

If OUTFILE is a new file, the name designates the disc file where text is to be written after the
editing session isterminated. OUTFILE is the primary output file. There is no primary input file
since the process creates a new file. An example is shown below:

> EDIT OLD
* * EDIT VER 1.6 * *
* % NEW FILE * *

*

The editor response * * NEW FILE * * indicates the creation of a new file.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-5

&

[(52]

TEXT EDITOR

EDIT

Afterentering EDIT, lines of text may be read into program memory from a file not named in the
EDIT command line. This file type may be referred to as an Alternate Input file. Lines of text in
program memory may also be written to a file not named in the EDIT command line. This file
type may be referred to as an Alternate Output file.

When entering EDIT, there is no primary input and no primary output file. This form is primarily
used for reading text into program memory from alternate input files and for writing text from
program memory into alternate outputfiles. In the example below, the editor response * * NO

FILES SPECIFIED * * is a reminder of this operational mode:

> EDIT
* * EDIT VER 1.6 * %

* * NO FILES SPECIFIED * =*
*

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’'S

TEXT EDITOR

COMMAND CONVENTIONS

As a prelude to the description of each text editor command, this subsection outlines the
conventions and terms used in each command description.

Command Lines

After the editorisinvokedinits proper form, the prompt character” * ” is displayed to indicate
the editor’s readiness to accept command lines. The command line has two basic
components—the command name and the parameter list. The command identifies the
particular action the editor executes. The parameter list identifies the necessary variables for
the command to act upon. In some cases there may not be a parameter list. Command lines are
foliowed by a carriage return that signifies execution of the command line. A command line
may not exceed 128 characters.

The Space as a Delimiter

The components of the command line are generally separated by delimiters to aid in execution.
A space between the command and each parameter separates the two components in most
cases. Unlike TEKDOS commands, commas may not be used in place of spaces between
commands and parameters.

The n Parameter

The exceptionto the above convention occurs when a parameter is represented by the symbol
"n". The parameter represented by "n” can be directly appended (without a space) to any
command.

The symbol “n” generally means "number” and takes two possible forms. These formsinclude
an absolute number form "a” and line range form "b-c”. When invoking the KILL command, for
example, you can delete the next "a” lines with the command KILL a or delete lines "b” through
“c" with KILL b-c. Parameters a, b, and ¢ must be in the range 1 to 32,767.

When using the b-c form, the letters B, E, and C may be used where applicable to refer to the
Beginning, Ending, and Current lines in program memory. If used, these letters may not be
directly appended to the command. A space after the command is required. A default value
"n = 1" is assumed if “n” is omitted except in cases where otherwise specified.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

TEXT EDITOR
L R SRR R R

Special Command Characters

The text editor has three special delimiting characters and three special parameter characters.
The special delimiting characters are :, <<, and >.

The colon character ":" allows several commands to be stacked in one command line. For
example, the following command allows you to advance the line pointer to the beginning of
program memory and then move the line pointer downward two lines:

* BEGIN:DOWN 2

When used as a pair, the angle bracket characters "<” and ">" execute a command line
repetitively. Implementation of this capability requires the syntax, “n<<command >"."n" is the
number of times the command line is performed, and the command entered between the angle
brackets is the command line to be performed. In the following example the command line
between the angle brackets is executed twice:

* 2<FIND WD:SUBSTITUTE $WDSWCS$>

Inthis case the first occurrence of the characters WD is found in program memory and then WD
is replaced with the characters WC. This action is then repeated a second time for the next
occurrence of the characters WD. If the 2 had been omitted in the previous command line, the
commands inside the angle brackets would have been performed once. Repetitive commands
may be nested to a depth of sixteen levels.

Three other special characters, B, E and C, may be used as command parameters. B, Eand C
represent the Beginning line, the Ending line and the Current line. Any one of these characters
may be entered to define the range parameterin place of the actual line numbers. A space must
be used as a delimiter between the command and the range parameter pair.

G
20

REV. A JUN 1877 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR

Line Pointer

The editor maintains a line pointer that is positioned at the line in program memory that is
currently being referenced. The line is known as the current line. The line pointer will be
designatedin this discussion as: —. Forexample, suppose the text in program memory appears
as:

LDAX D
— DCRE
MOV C,R

The line pointeris currently positioned at the line of text containing DCR E. Atthe completion
of most editor commands the system responds by displaying the line pointed to by the line
pointer.

8902 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-9

TEXT EDITOR

TEXT TRANSFER COMMANDS

The transfer of textin and out of program memory can be accomplished with these commands.

COMMAND NAME DESCRIPTION PAGE

INPUT Allows any number of text lines to be entered into 5-11
program memory.

INSERT Allows single lines to be entered into program 5-13
memory.
FILE Transfers all text in program memory to a 5-14

permanent file on flexible disc.
Terminates the EDIT session and returns
control to TEKDOS.

GET Read text into program memory from an input file. 5-17

PUT Writes text from program memory to an output file. 5-21

COPY Copies the specified number of text lines from the 5-26
input file to the output file.

TYPE Displays lines of text in program memory on the 5-32
console.

LIST Lists the specified text lines on the line printer. 5-33

i
o—
(=)

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

TEXT EDITOR Input
L~~~

SYNTAX

INPUT

PURPOSE

The INPUT command allows any number of text lines to be entered into program memory.
INPUT is used both when creating new text and when adding to existing text.

EXPLANATION

The INPUT command is entered, followed by a carriage return. The editor response "INPUT:"
weicomes you to enter text. Textlines are then entered, each one ending with a carriage return.
If a new file is being created, the text entered makes up the entire file on termination of INPUT.
On INPUT termination, if a file has been modified, all newly entered text lines precede the line
of text where the line pointer was previously located. The original line pointer position remains
unaltered, regardless of the number of lines entered. A line of text may not exceed 127
characters. The INPUT command is terminated by entering two carriage returns at the end of

the last line of text.

Examples

The editor may be piaced in INPUT mode by entering:

= INPUT

The editor responds with:
INPUT:

This response indicates that the editor has entered the INPUT mode. Lines of text may now be
entered into program memory.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5-11

Input TEXT EDITOR

L]

Suppose you wish to modify an already existing file. The text in program memory may appear
as follows:

LDAX D
- DADB

Perform the following sequence and terminate INPUT by pressing two carriage returns after
the last line.

* INPUT
INPUT:
DCRE
MOV CA

The editor prompt character returns. The text in program memory has now been altered to:

LDAX D

DCRE

MOV C,A
— DAD B

P

Toview the text now in program memory advance the line pointer tc the beginning and print all
lines to the console with the command line:

BEGIN:TYPE 100

The text in program memory should be displayed as indicated above.

REV. A JUN 1877 8002 uPROCESSOR LAB SYSTEM USER'’S

TEXT EDITOR Insert
-~]

SYNTAX

INSERT { command linetobeentered }

PURPOSE

The INSERT command allows single text lines to be entered into program memory. The
command is generally used when adding text lines to existing files.

EXPLANATION

Atextlineisentered into program memory and precedes the current line where the line pointer
is located. The INSERT command is entered, foliowed by the single delimiting space and the
text line to be added. The carriage return terminates the inserted line and the editor prompt
character " * " returns. if a null line of text is attempted by entering a carriage return after the
single delimiting space, the editor enters INPUT mode rather than INSERT mode.

Examples

Suppose the buffer appears as:

The command line below is entered, followed by a carriage return to end the text line as well as
terminating the INSERT command. Control returns to the editor with the prompt character

"% n-

#*INSERT DCR E

*
The text in program memory is now aitered to:
LDAX D

DCRE
- MOV CA

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1677 5.13

F“_E TEXT EDITOR

5-14

SYNTAX

FILE

PURPOSE

Temporary text is transferred from program memory to the primary output file with the FILE
command. The command creates a permanent file, terminates the editing session, and returns
control to TEKDOS.

EXPLANATION

Temporary text in program memory is transferred to the primary output file beginning at the
primary output file pointer. The primary output pointer is then repositioned to the end of the
transferred text. Any text remaining between the primary input pointer and the end of the
primary input file is then transferred to the primary output file and is positioned below any
previously transferred text. Both files are then closed. The editing session is terminated and
system control returns to TEKDOS.

Examples

The file NEW is used throughout this example. NEW contains the following lines of text:

NEW1
NEW2
NEW3
NEW4
NEWS

Suppose you wish to add three lines of code, starting at the third line of text in NEW. You then
wish to save this modified text in a file named NEWER. NEWER has never been created before.
The command below names NEW as the primary input file and NEWER as the primary output
file:

> EDIT NEW NEWER

All five lines of text in NEW are called into the buffer with the command:

*GET 5

REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR FILE

Theline pointer is positioned to the third line of text in the primary input file with the command
string,

* BEGIN:DOWN 2
In this command string BEGIN positions the line pointer tc the beginnin

memory and DOWN 3 moves the pointer downward three lines. The text in
now exists as,

rogram

3

emory

NEW 1
NEW 2
— NEW3
NEW 4
NEW 5

You may now input three lines of text:

*INPUT
INPUT:
LINE 1
LINE 2
LINE 3

Two carriage returns follow the last text line input to the file. Text in program memory now
exists as:

NEW 1
NEW 2
LINE 1
LINE 2
LINE 3
— NEW 3
NEW 4
NEW 5

The new text lines are inserted prior to the line containing NEW 3, where the line pointer was
positioned.

8092 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 5-15

@

FILE TEXT EDITOR

The line pointer has moved downward, relative to the number of lines entered. You may now

terminate the editing session and create a permanent file named NEWER by entering the
command:

* FiLE

This transfers all text lines that reside in program memory to the primary output file NEWER
and then transfers any data remaining between the primary input file pointer and the end of the
primary input file to the end of NEWER. After the FILE command is entered, the system

response * PGM* EQJ is displayed. System control returns to TEKDOS and the prompt
character ">" returns.

NEWER is now a permanent file that contains the text:

NEW 1
NEW 2
LINE 1
LINE 2
LINE 3
NEW 3
NEW 4
NEW 5

REV. A JUN 1877 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR Get

SYNTAX
T absolute number of lines 7 [{ PRIMARY INPUIT file name
QET L range of lines J ALTERNATE INPUT file namef [/diSC drlve] J

PURPOSE

The GET command reads textinto program memory from an input file. This command is used
when calling lines of text into program memory from a primary input file or an alternate input
file for modification purposes.

EXPLANATION

The GET command is followed by an absolute number of lines or range of lines "n"”. The GET
command reads textinto program memory from an input file INFILE. INFILE may be either the
primary input or alternate input file name. The disc drive number identifies where INFILE is
located if the file does not reside on the system disc.

'n” iines of text or an "n" range of text may be read into program memory. “n" must be
specified when an alternate inputfile is specified and does not defaultton = 1.”n" need not be
specified with a primary inputfile if a default of n = 1isdesired. A space between GET and "n”
is optional.

INFILE specifies the input file that is accessed to provide text for program memory
manipulation. INFILE is optional and can be either a primary input or alternate input file. The
primary output file may not be used as INFILE.

If INFILE is omitted, text is read into program memory from the primary input file. In this case,
the primary input file line pointer position is altered downward according to the number of lines
read into program memory. Each GET command causes text to be inserted in program
memory just prior to the line pointer.

Ifthe primary input file is specified as INFILE, text is also inserted in program memory just prior
to the line pointer.The primary input file line pointer position remains unaltered when the

primary input file name is specified in the command.

If an alternate input file is specified, text is inserted just prior to the line pointer. The alternate
input file line pointer position remains unaltered when the alternate input file is specified.

The disc drive number where the disc of the primary input or alternate input file resides, must
be specified if the input file does not reside on the system disc.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5-17

Get

TEXT EDITOR

Examples
The exampiles to follow relate to the PRIMARY INPUT file NEW. NEW contains the following
lines of text:

NEW 1

NEW 2

NEW 3

NEW 4

NEW 5

Reading Text Into Program Memory from Primary Input File with Filename
Omitted

Suppose the primary input file NEW has been specified with the EDIT command. Presently text
has not been read into program memory. When program memory is empty, the line pointer
points to line 1. Three lines of text are read into program memory with the command:

* GET 3

The primary input file line pointer is now positioned at line 4, which contains the text, NEW 4.
Subsequent GET commands of this kind would read lines of text into program memory
beginning atline 4 in the primary inputfile. After the GET command above is entered, the textin
program memory exists as shown below:

NEW 1

NEW 2
NEW 3

In this case three lines were read. Since the line pointer was originally positioned at line 1, it is
now positioned three lines below line 1 to the fourth line in program memory.

5-18 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

TEXT EDITOR Get

Reading Text Into Program Memory from Primary Input File with Filename
Specified

Suppose the primary input file NEW has again been specified with the EDIT command. The
firstthreelines have been read into program memory with the GET command. The textand line
pointers in both program memory and the primary input file exist as follows:

Program Memory Primary Input File NEW
NEW 1 NEW 1
NEW 2 NEW 2
NEW3 NEW 3
- —- NEW 4
NEW 5

When the primary input file name, NEW, is specified with the GET command, the line pointerin
the primary input file does not move. The data read into program memory is stored ahead of the
line pointer in program memory.

The command below reads thetwo lines NEW 3and NEW 4 from input file NEW. These lines are
stored after the third line in program memory as shown below:

*GET 3-4 NEW
Program Memory Input File NEW
NEW 1 NEW 1
NEW 2 NEW 2
NEW 3 NEW 3
NEW 3 — NEW 4
NEW 4 NEW 5

Now the command GET 2 wouid read the two lines NEW 4 and NEW 5 from the primary input
file NEW and append these lines to the lines already in program memory, as shown below:

Program Memory Input File NEW
NEW 1 NEW 1
NEW 2 NEW 2
NEW 3 NEW 3
NEW 3 NEW 4
NEW 4 NEW §
NEW4
NEW 5

8002 ,PROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 5-19

Get TEXT EDITOR

Reading Text Into Program Memory from an Alternate Input File

Suppose the primary input file NEW has again been specified with the EDIT command. The
first three lines have been read into program memory and the line pointer is positioned below
the last line of text. The text in program memory exists as follows:

NEW 1
NEW 2
NEW 3

Suppose you wish to read two lines of text into program memory from an alternate input file
named OLD. OLD is not located on the system disc in drive @ but on a work disc in drive 1.

The file OLD contains the five lines:

OLD 1
OLD 2
OLD 3
OLD 4
OLD 5

Enter the command:
* GET 4-5 OLD/
This action causes the text in program memory to be altered to:

NEW 1
NEW 2
NEW 3
OLD 4
OLD 5

Note that the text retrieved with the GET command is inserted between the line pointer and the
previously entered text. Since the alternate input file OLD was specified in the above GET
command, subsequent GET commands from OLD would cause the line pointer to remain
positioned at line 1 in the alternate input file.

5-20 REV. A JUN 1977 8002 LPROCESSOR LAB SYSTEM USER'’S

TEXT EDITOR Put

SYNTAX

[absolute number of lines l' PRIMATRY OUTPUT file name
PUT range of lines i ALTERNATE OQUTPUT file name
L [/disc drive] |

ALTERNATE OUTPUT device

or

absolute number of lines PRIMARY OUTPUT file name
PUTK range of lines ALTERNATE OUTPUT file name
ALTERNATE OUTPUT device [/disc drive]

PURPOSE

The PUT command writes textin program memory to an output file or device. This command is
implemented in two forms, PUT and PUTK. These forms are valuable when used in conjunction
with the GET command for manipulative transfer of text between program memory and output

files or devices.

EXPLANATION

The PUT command writes lines of copied text from program memery to an output file or device.
The PUTK command writes lines of copied text from program memory to an output file or
device and then deletes the corresponding text from program memory. PUT and PUTK write
“n" lines of text to an output file or device OUTFILE. OUTFILE may be either an aiternate
output file or device or the primary output file. The disc drive number identifies where
OUTFILE is located if the file does not reside on the system disc.

“n" lines of text or an "n” range of text may be written to OUTFILE. "n"” must be specified when
an alternate output file is specified and does not default to n = 1. "n” need not be specified
when the primary output file is specified if a default of n = 1 is desired. Lines located prior to
the current line pointer position may be written to OUTFILE if they are specified as a range of
lines. A space between PUT and "n” and PUTK and "n"” is optional.

8892 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-21

Put ‘ TEXT EDITOR
“

OUTFILE specifies the file where text is to be written. OUTFILE is optional. If OUTFILE is
specified, text is written to an alternate output file or device. If OUTFILE is not specified, text is
written to the primary output file. If OUTFILE is specified, text copying begins at the line
pointerin program memory and is written to the alternate output file or device. In this case text
is written starting at the beginning of the aiternate output file or device. The file or device is
closed when the write is complete. Thus, if OUTFILE already contains text, the old text in the
file or device is lost.

If OUTFILE is not specified, text writing defaults to the primary output file. Text is written,
beginning at the line pointer in program memory to the primary output file. Each time this
occurs text is inserted between the line pointer in the primary output file and any previously
inserted text. This allows text to be continually written to the output file in sequential order.

Each text line left in program memory on termination of the editing session is written to the
primary output file unless killed prior to termination with the PUTK command. Text lines
written to the primary output file with the PUT command are not killed. Therefore, all text lines
leftin program memory are repeated at the end of the primary output file on termination of the
editing session. Text lines written to the primary output file with the PUTK command are killed.
Thus with the PUTK command none of the text lines written to the primary output file are
repeated on termination of the editing session.

The disc drive number, where the fiexible disc of the primary output or alternate output file
resides, must be specified if the output file does not reside on the system disc.

Examples

The examples below relate to the file name NEW that contains the following lines of text:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

5-22 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR Put

Writing Text from Primary Input File to Alternate Output File

Suppose the primary input file NEW has been specified with the EDIT command. Ail text in
NEW has been read into program memory with the GET command. The line pointer is
positioned at the second line in program memory by entering:

* BEGIN:DOWN 1
The text in program memory exists as:

NEW 1
— NEW 2
NEW 3
NEW 4
NEW 5

Suppose you wish to create an alternate output file ALT to contain the two lines of text below
the line pointer, NEW 2 and NEW 3. Enter the following command line:

*PUT 2 ALT

This creates the alternate output file ALT on the system disc and writes the foilowing text in the
file on termination of the editing session.

NEW 2
NEW 3

If ALT had been created previously, all old text within ALT would now be lost. All subsequent
PUTs to ALT from NEW or other primary input files destroy text.

Text may be read back into NEW from ALT or any other alternate output file with the GET

command. When PUT and GET are used together in this manner, they provide a powerful data
manipulation tool.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5-23

Put TEXT EDITOR

Writing Text from Primary Input to Alternate Output Device

The above two lines of text could have been written to a device, such as the console, with the
command:

* PUT 2 CONO

This command line treats the console as the alternate output device, and the lines are typed on
the console display as follows:

NEW 2
NEW 3

Writing Text from Primary Input to Primary Output File

Suppose the primary input file NEW has again been specified with the EDIT command. All text
in NEW has been read into program memory with the GET command. The line pointer is
positioned to the fourth line in program memory by entering:

* BEGIN:DOWN 3
The text in program memory exists as:

NEW 1
NEW 2
NEW 3
— NEW 4
NEW 5

Suppose vou now wish to repeat the fourth line at the beginning of the primary output file. The

primary output file line pointer always points to line 1 on the first PUT execution. The
command:

*PUT

writes one line of text (in this case NEW 4) above the primary output file line pointer. The
primary ouiput file now coniains:

NEW 4

Subsequent PUT commands would write any new text between the last text written and the line

i
pVITICT .

REV. A JUN 1977 8002 4PROCESSOR LAB SYSTEM USER’S

TEXT EDITOR Put

Since the text written to the primary output file is not killed with each PUT, all text remaining in
program memory on termination of the editing session is also written to the primary output file.
Ontermination and saving of the above editing session the text stored in the primary output file
is:

NEW 4
NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

The PUTK Command

If the PUTK command had been used in the above example, the resulting primary cutput file
would contain the following text:

NEW 4
NEW 1
NEW 2
NEW 3
NEW 5

NEW 4 was not repeated when the remaining text in program memory was written to the

primary output file at the end of the session. The original line in program memory was killed
when NEW 4 was written to the beginning of the primary output file.

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 b-25

Copy TEXT EDITOR

5-26

SYNTAX

absolute number of lines PRIMARY INPUT file name
COoPY range of lines ALTERNATE INPUT file name

PRIMARY OUTPUT file name
ALTERNATE OUTPUT file name
[rdisc drive] ALTERNATE OUTPUT device [rdiscarive |

PURPOSE

A specified number of text lines are copied from an input file to an output file or device with the
COPY command.

EXPLANATION

The COPY command copies a specified number of lines "n” from an input file INFILE to an
output file or device OUTFILE. INFILE may be either a primary input or alternate input file.
OUTFILE may be either a primary output or alternate output file or device.

“n" may be an absolute number of lines or a range of lines. Lines prior to the line pointer may be
copied to OUTFILE if they are specified as a range of iines. A space between COPY and “n” is
optional. "n” must always be specified and does not default to n = 1.

INFILE is the file name from which lines of text are copied. INFILE must always be specified in

the COPY statement. INFILE may be either the primary input or the alternate input file. Unlike
other editor commands, text is always copied directly from the beginning of INFILE, rather
than from a line pointer position in program memory. More than one INFILE is disallowed.

OUTFILE is the file name or device name where lines of text are sent from INFILE. OUTFILE is
optional and may be either an alternate output file or device, or the primary output file.

If OUTFILE is specified, text is copied from INFILE to an alternate output file or device. When
this occurs, lines of text are copied directly to the alternate output file or device. The file or
device is then closed when the write is complete. Thus, if OUTFILE already contains text, the
old text in the file is lost.

If OUTFILE is not specified, text is copied from INFILE to the primary output file. Each
subsequenttime this occurs, text is inserted below the previously inserted text. This allows text
to be continually written to the output file in sequential order. When all files are closed, text
residing in INFILE is written below the copied text. The disc drive number where INFILE or
OUTFILE reside, must be specified if either do not reside on the system disc.

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR Copy

Examples

All examples to follow in this subsection relate to the primary input file, NEW, which contains
the following lines of text:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

Copying Primary Infile to Alternate Outfile

Suppose the primary input file NEW has been specified with the EDIT command below:

> EDIT NEW

Perhaps you wish to copy three lines of text from NEW tc an alternate file ALT. In this example
NEW is the INFILE and ALT is the OUTFILE. The following command is entered:

* COPY 3 NEW ALT
ALT is closed and saved at this point and exists as:
NEW 1
NEW 2
NEW 3
Any subsequent COPY statements to ALT at this time would cause newly copied text to be

overlayed in place of old text. Old text in ALT would be lost with each subsequent COPY
statement.

8002 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 A 5-27

Copy TEXT EDITOR

Copying a Primary Infile to an Alternate Device

Inthe preceding example a device such as CONO could have been used in place of ALT. In this
case the command below is typed at the keyboard:

* COPY 3 NEW CONO
The following lines of data are output to the console:

NEW 1
NEW 2
NEW 3

Copying Primary Infile to Primary Outfile

Suppose the primary input file, NEW, has again been specified with the EDIT command.
Remember that NEW contains:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

This time a primary output file, OLD, is specified as well.

> EDIT NEW OLD

Perhaps you wish to copy lines 3 through 5 of NEW to the primary output file, OLD. The
command below is entered:

* COPY 3-5 NEW

If OLD has not been previously created and all files are not closed, the following text is loaded
into a temporary file, OLD.

NEW 3
NEW 4
NEW 5

>
N
0

REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM LISER’'S

TEXT EDITOR Copy

Subsequent lines of text could be copied to the temporary file, OLD. Perhaps the following
command is entered:

* COPY 1 NEW
The first line of text in NEW is now loaded into the primary output file. OLD contains the text:

NEW 3
NEW 4
NEW 5
NEW 1

If all files are closed and saved at this point, the primary output file, OLD, contains the text:

NEW 3
NEW 4
NEW 5
NEW 1
NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

All copied text is inserted, followed by all text located in the primary input file, NEW.

Copying Alternate Infile to Primary Outfile

Suppose the primary input file, NEW, has been specified with the EDIT command. Remember
that NEW contains:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5-29

Copy

TEXT EDITOR

Since a name is not specified for the primary output file, NEW also defaulits to the name of the
primary output file.

> EDIT NEW

Perhaps you wish to copy three lines of text from the alternate input file, ADD, to the primary
output file NEW. ADD contains the following lines of text:

ADD 1
ADD 2
ADD 3
ADD 4
ADD 5

The command below is entered:
* COPY 3 ADD

If all files are closed and saved, text in the primary output file, NEW, now appears as:

ADD 1
ADD 2
ADD 3
NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

Copying an Alternate Infile to an Alternate Outfile

Supposethe primary input file NEW has been specified with the EDIT command. Perhaps you
wish to copy three lines of text from an alternate input file, ALT, to an empty aiternate output
file to be named SUBALT. ALT contains the following lines of text:

ALT 1
ALT 2
ALT 3
ALT 4
ALT 5

5-30 REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR Copy

The command below is entered:
* COPY 3 ALT SUBALT

All files are closed. Data in SUBALT now exists as:
ALT 1
ALT 2

ALT 3

Any subsequent COPY statements at this time would cause newly copied text to be overlayed
in place of old text in SUBALT. Old text in the file is lost when the file is closed.

8002 LPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-31

Type TEXT EDITOR

SYNTAX

absolute number of lines
TYPE range of lines

PURPOSE

Lines of text in program memory may be displayed on the console with the TYPE command.

EXPLANATION

The TYPE command displays "n" lines of téxt on the console. The current line pointer position
remains unaltered after TYPE execution. "n"” may be an absolute number of lines or a range of
lines. Lines prior to the current line pointer position may be displayed if they are specified in a
range of lines. "n" need not be specified if adefault of n = 1isdesired. In this case the current
line is displayed. A space between TYPE and "n" is optional.

EXAMPLES

Suppose the text in program memory appears as follows:

LINE 1
LINE 2
— LINE 3
LINE 4
LINE 5
The following command is entered:
* TYPE 2-4
The following lines are displayed on the console:
LINE 2

LINE 3
LINE 4

The line pointer position remains unaltered.

5-32 REV. A JUN 1977 8092 APROCESSOR LAB SYSTEM USER’S

TEXT EDITOR List

SYNTAX

-

absoiute number of iines
LIST range of lines _|

PURPOSE

A specified number of lines of text are listed on the line printer with the LIST command.

EXPLANATION

This command lists "n” iines of text on the line printer. "n” may be an absolute number of lines
orarange of lines. Lines prior to the line pointer may be listed if they are specified as a range of
lines. A space between LIST and "n" is optional. "n"” need not be specified ifadefaultofn = 1is
desired. The current line pointer position in program memory remains unchanged throughout
the LIST execution.

Examples

Suppose the primary input file, NEW, has been specified with the EDIT command. All text in
NEW has been read into program memory with the GET command. The line pointer is
positioned to the third line in program memory after the command, BEGIN:DOWN 2, is
entered:

NEW 1
NEW 2
- NEW3
NEW 4
NEW 5
The command below is entered:
* LIST 1-2

The foilowing iines are output to the iine printer:

NEW 1
NEW 2

The line pointer in program memory continues to be positioned at the line containing NEW 3.

8092 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5-33

TEXT EDITOR

SEARCHING AND ALTERATION COMMANDS

The line pointer position in program memory can be repositioned upward and downward in
order to allow access to specific lines of text. The editor has five commands that facilitate line
pointer repositioning so as to aid in text searching. Characters within lines of text, as well as
entire lines of text, can then be altered by way of three other editor commands.

COMMAND NAME DESCRIPTION OF COMMAND PAGE

N Displays number of line where line pointer 5-35
is positioned.

upP Moves line pointer upward a specified number 5-36
of lines.

DOWN Moves line pointer downward a specified number 5-38
of lines.

BEGIN Positions line pointer to the first line in program 5-40
memory.

END Positions line pointer one line below last line in 5-41

program memory.

FIND Searches the program memory for the first 5-42
line that contains a specified string of
characters and positions the line pointer
to that line.

SUBSTITUTE Finds the first occurrence of a specified 5-44
character string within the current line and
replaces the string with a newly specified string.

REPLACE Replaces the current line with a new line of text. 5-46
KILL Deletes a specified number of lines or range 5-48
of lines.

5-34 REV. A JUN 1877 8002 uPROCESSOR LAB SYSTEM USER’S

TEXT EDITOR N

SYNTAX

N key

PURPOSE

The number of the line pointed to by the current line pointer is displayed on the console after
pressing the N key. This command allows you to keep track of the current line pointer position
without taking time to print out lines of text.

EXPLANATION

When the N key is pressed and followed by a carriage return, the number of the current line in
program memory is displayed. This number is always reiative to the first line in program
memory. The system responds with LINE = n, where "n” is the line number of the current line.

Suppose you have several text lines in program memory and want to know where the line
pointer is positioned. Press the N key as follows:

*N

The command invokes the following system response when the line pointer is positioned at the

seventh line in the program memory.

LINE=7

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-35

TEXT EDITOR

SYNTAX

upP [specified number of Iines]

PURPOSE

This command moves the line pointer upward a specified number of lines of text.

EXPLANATION

The UP command moves the line pointer upward "n"” lines. "n"” may be a specified number of
lines and may not be arange of lines. “n" defaultston = 1 when not specified. If the current line
in program memory is "qg” and “q"” minus "n” islessthan 1, the line pointer is positioned to the
first line in program memory. A space between UP and "n” is optional.

After the UP command is entered, the system responds by displaying the current text line
residing where the line pointer has been positioned.

Examples

Suppose the primary input file, NEW, has been specified with the EDIT command. NEW
contains the following text.

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

Read all five lines of text into program memory with the GET command.

*GET 5

5.36 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR Up

Theline pointer is now positioned to the line below the last line of text in program memory. The
N key affirms the position:

LINE=6

Suppose you now wish to make changesto line 3 in program memory. The command below is

*UP 3

This command moves the line pointer upward in program memory three lines and displays the
line residing where the line pointer is now positioned as follows:

NEW 3
Suppose you now enter the command:

* UP 289

8002 LPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5.37

Down TEXT EDITOR

5-38

SYNTAX

DOWN [specified number of Iines]

PURPOSE

This command moves the line pointer downward a specified number of lines of text.

EXPLANATION

The DOWN command moves the line pointer downward "n” lines. "n” may be a specified
number of lines and may not be arange of lines. "n" defaultston = 1 when not specified. If the
current line in program memory is “q” and "q"” plus "n" is greater than the number of lines in
program memory, the line pointer is positioned to the line below the last line in program
memory. In this case the system response * * EOF * % is dispiayed to indicate an end of file
condition. A space between DOWN and "n" is optional.

After the DCOWN command is entered, the system responds by typing the current line of text
residing where the line pointer has been positioned.

Examples

[aIET VP PN o a el ama rememird Ella AIETAAY bhmn bnmmon mmm w8l Al ael
QUPPOSE i€ primary input yii€ (Nevv nasS OEen SPEeECinied wi

contains the following text:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

All five lines of text are read into program memory with the GET command:

*GET 5

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

TEXT EDITOR Down

The line pointer now points to the line below the last line in program memory. Pressing the N
key and following with a carriage return confirms the position:

LINE=6

Siippose you now wish to make changes to lines 2 and § in program memory. The following

command is entered:
*UP 4

The system response below indicates the line pointer position:
NEW 2

The line pointer is positioned and ready for changes to be made to line 2. Now enter the
command:

* DOWN 3

The foliowing system response indicates the iine pointer position.
NEW 5

Changes may now be made to line 5.

Entering the following command results inthe system response #* * EOF * * , since the current
line number plus 289 is greater than the number of lines in program memory.

* DOWN 289
* *x EOF * *

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-39

Begin TEXT EDITOR

5-40

SYNTAX

BEGIN

PURPOSE

This command positions the line pointer to the first line in program memory and displays the
first line on the console terminal.

Examples

Suppose the primary input file, NEW, has been specified with the EDIT command. New
contains the following text:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5
Read all lines of text into program memory with the GET command:

*GET 5

The line pointer is now positioned to the line below the last line ot text. This can be affirmed by
pressing the N key. The following system response appears:

LINE=6
Enter the following command:
* BEGIN
If the N key is now pressed and followed by a carriage return, the system responds with:

LINE =1

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR End

]

SYNTAX

END

PURPOSE

This-command positions the line pointer one line below the last line in program memory.

EXPLANATION

When the END command is entered, the system response * %« EOF * * is displayed toindicate
that the line pointer is positioned to the end of the file.

Examples

Suppose the primary input file, NEW, has been specified with the EDIT command. NEW
contains the following text:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

Read all lines of text into program memory with the GET command. Suppose you wish to make
changes to text in the middle of program memory.

After these changes are made, you may decide to add lines of text to the end of the text in

* END

The following system response indicates that the line pointer is positioned at the end of the text
in program memory.

* x EOF % *

You may now add new text lines to the end of the text in program memory.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5-41

Find TEXT EDITOR

[T S S

SYNTAX

FIND {delimiter, string of text, delimiter}

PURPOSE

The FIND command searches downward into text in program memory for the first line
containing a specified string of characters and positions the line pointer to that line.

EXPLANATION

Beginning with the current line, the FIND command searches program memory, for the first
line containing STRING. STRING may be any combination of characters and spaces found in
thetext. STRING is found, the line pointer is repositioned to the line where STRING occurs. |
STRING is not found, the system response * * NOT FOUND * * is displayed and the line

pointer remains unaltered.

There must be at least one space between the FIND command and the first delimiter
surrounding STRING. The delimiters surrounding STRING may be represented by any
character on the keyboard except a space. Caution must be used when using delimiters. They
must not be the same as any characters appearing within STRING. The first delimiter marks the
beginning of STRING, and the second marks the end. The second delimiter must always be the
same character as the first.

if ihe FIND command is invoked by using the AGAIN command, the search staris at the current
line plus one. The AGAIN command repeats the last command entered.

Examples

Suppose the primary input file NEW has been specified with the EDIT command. NEW
contains the text:

NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

K.42 REV. A JUN 1977 8002 yPROCESSOR LAB SYSTEM USER’S

TEXT EDITOR Find

All text lines are read into program memory with the GET command. The line pointer is
positioned at the beginning of the text in program memory with the BEGIN command.

— NEW 1
NEW 2
NEW 3
NEW 4
NEW 5

The following command is executed, and the line pointer moves to the first line in program
memory containing a 4:

*FIND 343
The line pointer now appears as follows:
NEW 1
NEW 2
NEW 3
— NEW 4
NEW 5
The command below is entered.

*FIND 1

The following system response is displayed on the console since the specified STRING is
above the current line pointer:

* * NOT FOUND * x

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-43

Substitute TEXT EDITOR

SYNTAX

substituted, delimiter, string of text to replace,

delimiter, string of text to be searched and
SUBSTITUTE delimiter

PURPOSE

The SUBSTITUTE command performs both searching and alteration functions. The command
finds the first occurrence of a specified character string within the current line and replaces the
string with a newly specified character string.

EXPLANATION

The SUBSTITUTE command searches the current line for the first occurrence of a specified
string of characters OLDSTRING. OLDSTRING is then replaced with NEWSTRING.
OLDSTRING may be any combination of characters found in the line of text. f OLDSTRING is
found, the substitution takes place. If OLDSTRING is not found, the system response, * * NOT
FOUND * * | is displayed on the console.

NEWSTRING may be any desired combination of characters. NEWSTRING may contain TAB
characters. TAB characters are used to pre-define and simplify column spacing in program

memory. The conversion of the TAB characters to spaces in program memory depends on the

column in which the substitution occurs. The substitution of spaces for TAB characters is

always in accordance with the current TAB positions.

There must be one space between the SUBSTITUTE command and the first delimiter to
surround OLDSTRING. All delimiters surrounding the two text strings may be represented by
any single character on the keyboard. Caution should be taken when using delimiters.
Delimiters may not be the same as any characters appearing within the two text strings.
Delimiters may not be the same as the current TAB character. The first delimiter marks the
beginning of the text string to be searched and substituted. The second delimiter separates the
two text strings. The third delimiter marks the end of the substitution string. The second and
third delimiters must always be the same character as the first.

TEXT EDITOR Substitute

If a substitution causes aline to exceed 127 characters, the message * * TRUNCATED * * ,is
displayed on the console to indicate that only the first 127 characters are accepted into
program memory.

The line pointer position remains unaitered, no matter what the resuit of a substitution.

Examples

Suppose the text in the current line is:
— MOV C,A
In order to change the "A" in this iine to a "B”, the following command is entered:
* SUBSTITUTE ABS$
The line now appears as follows:

- MOV C,B

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5.45

Replace TEXT EDITOR

SYNTAX

REPLACE { specified line of text to replace currentline }

PURPOSE

The REPLACE command replaces the current line of text in its entirety with a newly specified
line of text.

EXPLANATION

This command replaces the current line of text with a new line, STRING. There must be one
space between the replace command and STRING. A blank line of text is not allowed as
STRING. The line pointer position remains unaltered after the REPLACE command is
executed.

The deiimiters :,<,and > are special command delimiting characters. The ":" character aliows
several commands to be stacked on the onecommand line. The<<and > characters are used to
executeacommand line repetitively. If the REPLACE commandis used ina command line that

contains more than one command, these characters may also be used to indicate the end of
STRING.

Examples

Suppose the current line in program memory appears as:
— MOV CA
Entering the following command string replaces this line with a new line of text:
* REPLACE LDAX D
The text in program memory is now altered to:

— LDAX D

(&)}

A8 REV. A JUN 1977 8002 PROCESSOR LAB SYSTEM USER'’S

TEXT EDITOR Replace

Suppose you wish to perform a group of commands on the same line. The following command
moves the line pointer downward four lines, and replaces that line with a new line of text ADD 1,
and then inserts a new line of text SUB 1 just before the line containing ADD 1.

* DOWN 4:REPLACE ADD 1:1 SUB 1

In addition to aliowing multiple commands per line, the ;" character indicates the end of the
replacement string ADD 1.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-47

Kill TEXT EDITOR

SYNTAX

absolute number of lines
KILL range of lines

PURPOSE

A specified number of lines are deleted from program memory with the KILL command.

EXPLANATION

The KILL command deletes a specified number of lines "n"”. "n"” need not be specified if the
default n = 1 is desired. A space between KILL and "n" is optional. "n” may take two forms in
the KILL command. The first occurs when "n" is an absolute number of lines; the second when

"n" is a range of lines.

The first form begins with the current text line in program memory and deietes the next "n"
lines. In this case "n” is represented by an absolute number of lines. If the line pointer is

originally positioned at line "a” and KILL n is executed, the line pointer is repositioned to the
line that was equal to “a" plus "n" before the deletion took place.

When the second form of "n"” is used with the KILL command, arange of lines "b"” through “c”

are deieted from program memory. Tnis form ailows for two possibie positionings of the iine
pointer:

e The first positioning occurs when the line pointer points to a line between lines "b" and
"c". After execution of the KILL command, the line pointer is positioned at what was
originally line "c” plus 1.

@ The second positioning occurs when the line pointer points to a line that is not between

lines "b” and "c". Lines may be deleted that reside before line "b"” or after line “c”. The
position of the line pointer remains unaltered after execution occurs.

5-48 REV. A JUN 1977 8082 PROCESSOR LAB SYSTEM USER'S

TEXT EDITOR

Examples

Suppose the text in program memory exists as foliows:
— LINE1
LINE 2
LINE 3

LINE 4
LINE 5

The following command is performed:
* KILL 4
The text in program memory now appears as follows:

— LINE 5

In another example, suppose the text in program memory appears as:

TEXT i
TEXT 2
— TEXT3
TEXT 4
TEXT 5

The following command is performed:
*KiLL 2-5
The text in program memory now appears as follows:
TEXT 1

— TEXT6
TEXT 7

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

Kill

5-49

TEXT EDITOR

e - ______J}

UTILITY COMMANDS

The Text Editor has several utility commands that perform service or program maintenance

functions.

TAB Defines a single character as the tab 5-51
character.

TABS Assigns non-standard tab positions. 5-53

MACRO Defines and executes an integer that is 5-54
assigned to represent a command line.

SPACE BAR Temporarily halts the system display 5-56
to the console and then resumes the display.

ESC Suspends the editing session or rubs 5-57
out the current input line.

Qu! Closes all files and terminates the editing session. 5-58

BRIEF Disables and enables display of current line 5-59
after searching and atteration.

? Displays editor 1/0O status. 5-61

AGAIN Repeats the previous command 5-62

REV. A JUN 1977

(4]
(]

TEXT EDITOR TAB

SYNTAX

TAB { character defined as tab character }

PURPOSE

The TAB command defines asingle character as the tab character. Using tab characters in this
way speeds up keyboard input and increases column spacing accuracy much more efficiently
than the use of spaces.

EXPLANATION

This command defines the single character CHAR as the tab character for the current editing
session. If a character is defined as the tab character, the character is not displayed with the
textin program memory after execution. Whenever the tab character is entered in input mode,
the next character to foliow starts at the next tab position.

The tab character must be defined prior to entering the INPUT mode. The character being
defined as CHAR must not be a part of the text to be input. The tab character cannotbe the :, <,
—, or>characters. A space between TAB and CHAR is required. The default tab character is
CTRL-I, which is produced by holding down the CTRL key while pressing the | key. When
CTRL-i is used, a character is not echoed to the consoie during input. An additional tab key
labeled TAB is iocated on the keyboard of the CT818@ CRT Terminal and performs the same
function as CTRL-I. Tab column positions default to 8, 16, 24, 32, 40, 48, 56, and 64 unless
defined with the TABS command. A maximum of eight tabs are allowed per text line.

8092 u,PROCESSOR LAB SYSTEM USER'S REV.B, MAR. 1978 5-51

TAB TEXT EDITOR

Examples

Suppose the character # is defined as the TAB character as in the following command line:

* TAB #

Enter the following lines of text after entering the INPUT command:
THIS#IS#A#LINE#OF#TEXT
HERE#IS#ANOTHER

#HERE#IS#ONE#MORE
A#BIG#WORD#OVERRIDES#TABS

The result of the preceding execution produces the following lines of text in program memory:

THIS IS A LINE OF TEXT
HERE 1S ANOTHER

HERE IS ONE MORE
A BIG WORD OVERRIDES TABS

5-52 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR TABs

O

SYNTAX

TABS { coiumni } [columnE] [columnsj‘ . [coiumnB]

PURPOSE

Non-standard tab positions are assigned with the TABS command.

EXPLANATION

This command sets non-standard tab positions to the given columns 1 through 8. TABS must
be defined prior to entering INPUT mode. A space between TABS and each column
assignment is required. If TABS is not specified, the default column positions are 8, 16, 24, 32,
40, 48, 56, and 64. A maximum of eight tab positions may be defined.

Examples

The tab positions for the text could be altered as follows:
*TABS 6 12 18 24 30 36 42

Suppose the $ character is defined as the TAB character in the following command line:
*TAB $

Enter the following lines after entering the INPUT command:
THIS$ISSASLINESOFSTEXTSWITHSTABS
THIS$ISSONESMORE
$HERES$IS$ONESMORE

The result of the preceding execution produces the following lines of text in program memory:

THIS IS A LINE OF TEXT WITH TABS
THIS IS ONE MORE
HERE 1S ONE MORE

The first column of text begins at column 1, the second at column 6, the third at column 12, the
fourth at column 18, the fifth at column 24, the sixth at column 38, the seventh at column 38, and
the eighth at column 42.

8092 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 5-53

Macro TEXT EDITOR

SYNTAX

MACRO {integer=a desired command line }
or
MACRO { integer that represents command line to be executed }

PURPOSE

An editor command line may be defined and executed as an integer, rather than being entered
as an entire command line. This capability is implemented with the MACRO command and
provides a time-saving function when editing.

EXPLANATION

The MACRO command takes two forms. One form defines an integer as a command line. The
second form executes the command line when you enter its integer form.

An integer may be defined as a command line if MACRGC n = COMMANDLINE is performed.
Defining an integer as a command line requires that each identifying integer "n"” be greater
than @ and less than 128. COMMAND LINE can be any legal editor command line but cannot
contain a MACRO execution or definition command. If "n" is already defined and a new
definition for "n" is performed, the new COMMANDLINE is identified as "n". When defining an
integer to represent a command line, there need not be spaces between MACRO and the

parameters in the line.

Executing a command line that has been entered in its integer form is implemented with the
MACRO nform of this command. The effect of executing the integer is equivalent to executing
COMMANDLINE in its normal form. There need not be a space between MACRO and "n"” when
entering the two components.

Examples

Suppose the text in program memory appears as foiiows:

LINE 1
LINE 2

5-b4 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR Macro

The following line defines the integer 99 as a command line whose function advances the line

pointerto the beginning of the textin program memory and then displays all lines of text on the
console:

* MACRO 99 = BEGIN:TYPE 100
Anytime you wish to perform the above function, simply enter:

* MACRO 99
The results of this execution are the same as if the long form of the command line were entered:

LINE 1

— LINE 1
LINE 2
LINE 3
LINE 4
LINE S
* * EOF * *

8002 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 5-55

Space Bar

0

o
[#2]
[#2}

TEXT EDITOR

SYNTAX

Space Bar

PURPOSE

The space bar is used to halt the display on the console and then cause the display to continue.

EXPLANATION

Pressing the space bar during console display temporarily halts the display. Pressing the
space bar again causes the display to continue. The display may be halted and continued as

many times as is needed.

REV. A JUN 1977

TEXT EDITOR ESC

SYNTAX

ESC key

PURPOSE

Pressing the ESC key (escape) once causes deletion of the line currently being input to
program memory. Pressing the ESC key twice causes suspension of program execution and
returns control to TEKDOS.

EXPLANATION

Pressing the ESC key once causes deletion of the current input line. The system reponse after
ESC execiution is the editor prompt character ” * " uniess the editor is in the INPUT mode. ifin
the INPUT mode, the current input line is deleted and the display cursor is moved to the next
line to await further input.

Pressing the ESC key twice (ESC ESC) resuits in the deietion of the current input iine and
suspension of all active editor programs. Control returns to TEKDOS. A program suspended
by this means will not resume execution unless you issue a CONT * (continue execution)

command.

8092 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5.57

QUIT

TEXT EDITOR

[#1]

(9]

SYNTAX

QUIT

PURPOSE

The QUIT command closes all files, terminates the editing session, and returns control to
TEKDOS.

EXPLANATION

This command closes the primary input and primary output files, terminates the editing

session, and returns control to TEKDOS. Text input to program memory during the current
editing session is not saved in the primary output file. If the primary output file is a new file, the
file is deleted before control returns to TEKDOS. Text written to an alternate output file during

net a“ected since el#nrnatn Aiitmod filae arn hlﬁsl\f‘ e lsse] A:atc!y

+h + additi i H
€ Current eGiting sessicn HIVLT Qilsii cvutpdtulcoalc VIVOTU HHnivu

LT vu 1L G\Jlklils SIS IS TA B :3 i ait

after receiving data.

REV A ILIN 1Q77 AN ..
VLA JUN T8 Uwe pd s

BRief

TEXT EDITOR

SYNTAX

BRIEF
or

PURPOSE

The BRIEF command suppresses the display of the text located atthe current line pointer after
most searching and alteration commands. Entering the BRIEF command once again reinstates
the display. When aperiod "." is appended to a command, the BRIEF status forthe current line

is canceled.

EXPLANATION

At compietion of the commands, END, UP, DOWN, FIND, SUBSTITUTE, and REPLACE, the
editor responds by displaying the text line located at the line pointer. Entering the BRIEF
command suppresses this display action. The BRIEF command is said to be on when in this
state. Entering the BRIEF command a second time reinstates the display activity. The BRIEF
command is said to be off when in this state.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-59

BRief TEXT EDITOR

If the BRIEF switch is off (display is enabled), display can be suppressed on a line-by-line basis
ifa”.” is appended to the command. if the BRIEF switch is on (display is suppressed), display
can also be reinstated on a line-by-line basis by appending a ".” to the command.

Examples

Suppose the text in program memory exists as shown below:

— LINE 1
LINE 2
LINE 3
LINE 4

The following command is performed:
* DOWN 1

The editor moves the line pointer downward one line and displays the text located there as
follows:

* BRIEF
* DOWN 1

The text editor again moves the line pointer downward one line, but does not display that line.
The BRIEF command is in the on state.

Suppose the line pointer is moved downward once again. This time a display of the currentline
may be viewed after command execution by entering:

* DOWN.1

The editor moves the line pointer downward one line and displays the text located there as
follows:

LINE 4

5-60 REV. A JUN 1977 8p@2 uPROCESSOR LAB SYSTEM USER'S

TEXT EDITOR .
0 S

SYNTAX

PURPOSE

The ? displays the editor I/0 status.

EXPLANATION

Entering the ? character results in the following informative messages being displayed on the
console:

STATUS
Pl = primary input file name

LINE next line to "GET"” from the primary input file
PO = primary output file name

LINE next line to "PUT" to the primary output file
LAST Al = Last alternate input file referenced
LAST AO = Last alternate output file referenced

This command provides a helpful record-keeping service for referencing the status of files
accessed in the current text editing session.

1101 LACAL Ty

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 5-61

Again TEXT EDITOR

TR e

SYNTAX

AGAIN

PURPOSE

This command repeats execution of the previous repeatable command. AGAIN provides time-
saving capabilities when entering editor commands.

EXPLANATION

The AGAIN command repeats the execution of the last editor command with the following
exceptions:

— AGAIN

— BRIEF

— QUIT

— FILE

— TAB

— TABS

— MACRO (AGAIN does not repeat the definition of a MACRO, but
does repeat the execution of a MACRO.)

If a non-repeatable command was the last command specified and the AGAIN
command is entered, the AGAIN command continuzs to search backward until a
repeatable command is found. That command line is then executed.

(4]

52 REV. A JUN 1977 8002 4 PROCESSOR LAB SYSTEM

TEXT EDITOR Again

Examples

Suppose the text in program memory exists as follows:

LINE 1
— LINE 2
LINE 3
LINE 4
LINE 5
LINE 6

The command below is entered:
*KILL 2
The text in program memory now exists as:
LINE 1
— LINE 4
LINE 5
LINE 6
The next command performed is:
* AGAIN
The text in program memory is now aitered to:

LINE 1
— LINE 6

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 5-63

Section 6

ASSEMBLING AND LINKING

INTRODUCTION

This section describes the syntax required to translate source code into absolute binary object
code. In addition, the resulting assembler output is described. Further information pertaining
to the assembler for a specific emulator microprocessor is found in the corresponding
Assembler and Emuiation User's Manual.

This section also describes the syntax required to merge several independently assembled
modules into one executable program with the linker. In addition, the resulting linker output is
described. Further information pertaining to the linker is found in the Assembler and
Emulation User's Manual.

COMMAND NAME DESCRIPTION

ASM Translates the source code relating to the 6-2
microprocessor being used into absolute
binary object code.

LINK Merges several independently assembled 6-5
modules into one executable program.

8002 uPROCESSOR LAB SYSTEM USER'’S REV. A JUN 1977 6-1

ASM ASSEMBLING AND LINKING

SYNTAX

object file name list device source file name source file name
SM object device list file name source device source device cee

PURPOSE

The ASM command translates the source code of the microprocessor being used into absolute
binary object code. The object code is then executable by the emulator processor.

EXPLANATION

The ASM command invokes the assembler when the 8002 uPROCESSOR LAB is under
TEKDOS control. The OBJECT parameter causes the assembler to output the absolute binary
object code to the specified disc file or device. The LIST parameter causes the assembler to
output a listing of the assembled code to the specified device or disc file. SOURCE is the name
of the disc file or device that contains the symbolic code pertaining to the particular emulator
processor being used.

All parameters within the ASM command line may be separated by spaces or commas. The
.OBJECT parameter is optional and may be replaced by two commas in this manner:

ASM,,LIST SOURCE>

In this case an object file is not generated. The LIST parameter is also optional and may be
replaced by two commas in this manner:

ASM OBJECT,,SOURCE

In this case an assembled listing is not generated. If OBJECT and LIST are both omitted, they
must be replaced by three commas in this manner:

ASM,,,SOURCE

»
(X

REV.B, MAR, 1078 8ga2

ASSEMBLING AND LINKING ASM

Ifthe OBJECT or LIST files are not intended to reside on the system disc, the appropriate disc
drive number must follow the "/” character in this manner:

ASM OBJECT/1 LIST/1 SOURCE

Atieastone SOURCE file must be specified in the ASM command line. Muitipie SOURCE files
are acceptable as long asthe ASM command line is notlonger than one line. If the SOURCE file
is not stored on the system disc, the appropriate disc drive must be specified after the /"

character in this manner:
ASM OBJECT LIST SOURCE/1

After the assembler has completed execution, an assembler message is displayed. This
message indicates the number of source code lines assembied, the number of errors, and the
number of undefined symbols. The TEKDOS prompt character ">" appears below the
assembler message to indicate assembly completion.

If you specified the OBJECT parameterinthe ASM command line, your assembled programis
stored in the form of binary object code. A correctly assembled object file may be executed,

linked or debugged.

It you specified the LIST parameter, information is output to a device or file in the form of an

assembled listing. LIST is composed of two parts — the assembled listing and the symbol table.

Each page of the assembled listing contains a header. The header is followed by a blank line
and the listing information. The header includes the assembler version on the left side of the
page and the page number on the right side of the page, as shown below:

TEKTRONIX 8088 ASM Vn.m PAGE XXXX

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

6-3

ASM ASSEMBLING AND LINKING

Each instruction in your source program is converted into an assembled line. The assembled
line includes the line number of the instruction, the instruction’s location in program memory,
the object code, and the source code. The assembled line may be a maximum of 72 characters.
The linenumber is five characters wide and the location is four characters wide. Both are right
justified and are separated by one space. The object code follows the location and aspace. The
object code is left justified and may be a maximum of eight characters wide. The source code
follows the object code and a space. There are 51 characters remaining in the assembled line
for the source code. Any source line exceeding the 51-character limit is truncated. Any non-
printing character, other than the space and tab characters, is represented by a "?” in the
assembled listing. The assembled line appears as shown below:

XXXXX ':l—}-.': DDDDDDDD SOURCE CODE ----

location
line object
number code

If an error occurs in a particular instruction, the appropriate assembled line is followed by an
error response. The error response takes the form shown below:

*dck ok E

Following the assembled listing is the symbol table. The symbol table indicates those labels,
defined, or undefined, and the location in program memory that the iabels represent. This table
may also contain other special symbols.

The symbol table contains a header. The header includes the words, "SYMBOL TABLE" in the
center of the page and the page number on the right, as shown below:

TEKTRONIX M680@ ASM V1.0A SYMBOL TABLELISTING PAGE 10

T (e 3 0 Ly

and their hexadecimal values are specified on each line. If undefined, the value field is
indicated in this manner: **%%. Symbols may be a maximum of six characters and are
followed by at least one space. The value field may be a maximum of four characters and is
right justified. If a value field is under four characters wide, the remainder of the field is filled
with leading zeroes. Each value field is foliowed by four spaces and the next symbol. Asample
symbol table format is shown below:

The header is followed by a blank line and the symbol table information. Up to four symbols

SYM1 0009 SYM2 P1A1 SYM3 * 4k ok SYM4

Gl)
£
2
m
<
bl
=
I»
)]
©
~J
0

ASSEMBLING AND LINKING LINK

SYNTAX

LINK [[Ioad module file name] [Iist file name] {input file name } [input file nameJ -]

PURPOSE

The LINK command merges several independently assembled modules generated by the
assembler into one executable program. The linked file may be either in hexadecimal or binary
format.

EXPLANATION

The linker is invoked in one of two ways:

o Simple invocation
e® interactive command invocation

Simple invocation is performed by entering LINK, followed by ali file name parameters on one
line. The linker assumes a set of default options for parameters that are not specified in this
linker form.

All parameters within the LINK command line may be separated by spaces or commas. The
LODMOD parameter is the name of the binary formatted load module created by the linker.

LODMOD is optional and may be replaced by two commas in this manner:

LINK,.LIST,INFILE

80092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 6-b

LINK ASSEMBLING AND LINKING

LIST is the name of the file or device where the linker listing is output. LIST is optional and may
be replaced by two commas in this manner:

LINK LODMOD,,INFILE

If LODMOD and LIST are both omitted, the parameters are replaced by three commas in this
manner:

LINK,, INFILE

INFILE is the name of the object file to be linked. Multiple INFILE parameters are acceptablein
a command line, however, all file names must fit on one line. At least one INFILE must be
specified in the simple invocation linking form.

Upon correct completion of the LINK command line execution LODMOD is created in a binary
format. A binary LODMOD file may be read into program memory with LOAD. A hexadecimal
LODMOD file may be read into program memory with RHEX. Data is checksummed at the time
of linking and when read into program memory.

If LIST is specified in the simple invocation form of the linker, error messages, a memory map,
and linker statistics are output to the specified file or device.

Interactive command invocation ailows you to enter a series of commands to the linker. To
invoke this form enter LINK, followed by a carriage return. The linker responds with the
asterisk character, prompting you to enter a linker command. The linker continues to prompt
for commands until an "END"” command is entered.

Interactive command invocation allows you to do the following things: specify modules to be
linked, configure memory, override section configurations set at assembly time, and control
and format the contents of linker output files. For a more descriptive view of interactive
command invocation, refer to the Assembler and Emulation User’s manual corresponding to
your particular microprocessor.

P
(42}

REV. A JUN 1977 8022 uPROCESSCR LAB SYSTEM USER'S

Section 7

EMULATOR ENVIRONMENT

INTRODUCTION

This section describes the operating environment of the emulator processor and the user
program. The topics covered include emulator operating modes, user program loading and
storing, memory control, and execution of user programs.

CONTENTS

SECTION 7 EMULATOR ENVIRONMENT

INTRODUCTION e 7-1
OPERATING MODES 7-2
EMULATE e 7-4
LOADING AND STORING 7-5
WHEX 7-8
RHEX . . 7-9
LOAD . .. e 7-10
MODULE e 7-11
FETCH . . . 7-12
MEMORY CONTROL e 7-13
DUMP . . e e 7-14
EXAM . e 7-16
PATCH . . e 7-18
MAP . . e e 7-19
MOVE . .. e 7-22
FILL .. e 7-23
USER PROGRAM EXECUTION e e e 7-24
GO e 7-26
XEQ . . e 7-27
STATUS . . e e 7-28

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977

71

EMULATOR ENVIRONMENT

OPERATING MODES

User programs are executed by the emulator processor using the same microprocessor chip as
you are using in your prototype system. The program may be residing either in program
memory or in your prototype system memory during execution. The mode of operation (either
in program memory or in prototype system memory) must be set by the EMULATE command
before starting user program execution. Setting the operational mode activates the emulator
processor, defines the memory that holds the user program, and defines other operational
parameters that will be defined later.

The system processor controls the emulator processor. However, the two processors can not
talk directly to each other. The system processor controls the emulator processor through the
interrupt utility module, as shown in Fig. 7-1. You can also see in Fig. 7-1 that both processors
can access program memory. Program memory serves as a link over which the system
processor and the emulator processor can pass data. Thus full communication is
accomplished through the use of these two routes (control through the interrupt utility module
and data passed by storage in program memory).

The emulator processor is completely controlled by the system processor. The emulator
processor can execute (mode @ only) the user program at full speed until a breakpoint or an
operator console command stops it. The system processor using the forced jump sequencer
can start the user program at any location or cause the emulator processor to jump to a trace
routine to dump the register contents.

The emulator processor can operate in three modes: a system mode, a partial emulation mode,
and a full emulation mode. Setting the emulator’s operating mode determines more than just
the location where the emulator processor will look for the user program. The mode also
specifies the input/output devices to use and the clocking sources. When the mode is set with
the value of zero, the emulator processor executes the program in program memory and uses
the system input and output. Emulation mode @ is the system mode.

Setting the mode to a value of one causes the emulator processor to execute the user program
in the program memory and prototype memory. However, emulation mode 1 uses the user’s
prototype system input/output and clocking signals.

Emulation mode 2 is the full emulation mode using the user’s prototype system memory,
input/output and clocking.

The emulation mode may be changed while the DEBUG command is active. However,

changing the emulation mode while a user program is being executed will cause execution to
be aborted

REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT

c | Flexible PROM
onsole Disc Programmer
c 7
System System
[~ Processor - Memory

Debug

Board

Interrupt Program

Utility Memory

Moduie
i
! Assembler Emulator
. - Processor Processor

| Y

!

Prototype
Control ettt —————]

Prohe

Yooe

User
Prototype
System

2313-10

8002 uPROCESSOR LAB SYSTEM USER'S

Fig. 7-1. System Functional Overview.

REV. A JUN 1977

7-3

EMulate EMULATOR ENVIRONMENT

SYNTAX

EMULATE {operational mode }

PURPOSE

The EMULATE command activates the emulator processor and sets the mode of operation.

EXPLANATION

The EMULATE command activates the emulator processor and sets the mode in which it
operates. The possible values for the operational mode are:

P - System mode. Uses program memory and system /0.

1 - Partial emulation mode. Uses program memory, user prototype memory; prototype
1/0 and user clock.
2 - Full emulation mode. Uses user prototype memory, prototype /O and clock.

{Note that in mode 2 the TRACE JUMP option is not available.)

The emulation mode may be changed while the DEBUG command is active. However
changing the emulation mode while a user program is being executed wiil cause execution to
be aborted.

* EMU * Error Response

31—Parameter required
32—Too many parameters
54—Invalid mode
56—Invalid device address

UN 1977 8002 4.PROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT

LOADING AND STORING

The commands in this section are used to move object code between program memory and
flexible disc storage or a peripheral device. The object code may be stored on a flexible disc
either in binary or hexadecimal format. The object ccde is loaded into program memory in

binary format.

COMMAND NAME

WHEX

RHEX

LOAD

MODULE

FETCH

DESCRIPTION

Converts binary code to hexadecimal format and
writes it on the flexible disc or to a device

Reads hexadecimal formatted code converts it
to binary code and loads the binary code in
program memory

Loads assembler and linker object files
into program memory

Moves binary code from program memory to a
flexible disc or to a device

Loads absolute object code from a flexible
disc intc program memory

8002 uPROCESSOR LAB SYSTEM USER’'S REV. A JUN 1977

PAGE

7-8

7-10

7-11

7-12

7-5

EMULATOR ENVIRONMENT

INTRODUCTION

The output of the TEKTRONIX Assembler is stored on a flexible disc in absolute binary code.
This absolute binary code is then loaded into program memory for execution and debugging.
Absolute code means that each memory address reference is an actual address, not a relative
address that may not be determined until used.

Hexadecimal Code

Binary code cannot be directly displayed on the terminal. The console considers the code to be
ASCII and many ASCII characters are unprintable or are control characters to the console.
When you want the code printed out on the console use hexadecimal format. That is, use two
hexadecimal digits to represent the eight binary digits in each byte.

The WHEX command converts the binary code in program memory to hexadecimal format,
then stores the hexadecimal form on flexible disc. This hexadecimal form of the code is read
back into program memory from the flexible disc with the RHEX command.

Hexadecimal Loading Format

The hexadecimal object code is stored as an absolute hexadecimalfile. This file is composed of
one or more data blocks and a terminating block. The terminating block is the last block in the
file. The following example is a listing of a hexadecimal file. ”

/00001 EQFAF476711FF131A1D4F1A1DCF@91A1D4F@91A4F@9373F761F677D1FE6F7C1FB6

/001FP6167D1F11FF13124B
/00000000

The format of a normal data block is prescribed in digits as:

&/ §
&/ L 3 ©
&/ S S
> S o
QOQQ S
C/e/ /L QO
& /8/S/& &
b&'onkve
o
§/8/L/E/5/ 8/
T/IVv/ 0/ /0 /9 /&

2313-11

7-6 REV. A JUN 1977 8002 ,PROCESSOR LAB SYSTEM

EMULATOR ENVIRONMENT
P e R e R e e S

All entries in the normal data block are hexadecimal digits except the header byte and the EOL
byte. The following list describes each entry in the normal data block:

e HEADER CHARACTER is always a slash "/".

e LOCATION COUNTER is four hexadecimai digits and gives the starting location of the
block in program memory.

e BYTE COUNT is the number of bytes in this block. The byte count uses two hexadecimal
digits .

o FIRST CHECKSUM is the sum of the hexadecimal values of the six digits that make up the
location counter and the byte count. The first checksum uses two hexadecimal digits.

o DATA consists of two hexadecimal digits per data byte. The maximum number of data
bytes (n) per block is thirty. This means that the maximum number of hexadecimai digits
in the data section is sixty.

e SECOND CHECKSUM is the sum of the hexadecimal values of the digits that make up the
“n” bytes of data. The second checksum uses two hexadecimal digits (modulo 256).

e EOL is a carriage return.

2313-12

All entries in the terminating block are hexadecimal except the header byte and the EOL byte.
The following list describes each entry in the terminating block.

e HEADER CHARACTER is always a slash "/".

o TRANSFER ADDRESS, four hexadecimal digits, is the location where the code begins
executing. The transfer address can be supplied by the linker or as a parameter to the
WHEX command. If the transfer address is not suppiied to WHEX, a 3900 is entered here.
The RHEX command ignores this field and returns to TEKDOS when the terminating
block is encountered.

o BYTE COUNT is set to zero to indicate a terminating block.

e CHECKSUM is the sum of the hexadecimal values of the six digits that make up the
transfer address and the byte count. The checksum uses two hexadecimal digits (modulo
256).

e EOL is a carriage return.

80902 xPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 7-7

WHex

7-8

SYNTAX

WHEX {address 1} {address 2} [{.,address1} {address 2}]...

jdevice
{ address 3} | file name [/disc drive]

PURPOSE

The WHEX command converts binary code to hexadecimal format and writes the hexadecimal
code blocks on the flexible disc.

EXPLANATION

The WHEX command program causes an absolute hexadecimal format file to be written from
the binary code in program memory to the flexible disc. Address 1 and address 2 are the
addresses of the lower and upper bounds respectively of the user program in program
memory. The addresses 1, 2, and 3, are to be entered in hexadecimai, not decimai. Address 3is
an optional starting address.

The device is an optional output device or file. When the device is specified, the starting
address 3 must be specified. When the device is not specified, the output is to the console
output device, CONO.

The WHEX command writes in hexadecimal ASCII format, the data from address 1 to address 2
for each 1, 2 pair present in the parameter list. Note that two commas are required between
address pairs if multiple address pairs are specified.

* WHX * Error Responses

7—Device write error
15—Invalid output device
17—Output device assign failure

Py o

3%—invaiid parameter

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT

EMULATOR ENVIRONMENT Rhex

SYNTAX

device 1
RHEX [/bias amount] file name [/disc drive] _J

PURPOSE

The RHEX command reads the hexadecimal formatted code from the flexible disc or from a
device, converts it to binary code and loads the binary code into program memory.

EXPLANATION

The RHEX command loads the absolute hexadecimal code into program memory. The
absoiute hexadecimai code is read into memory from the specified device or file. The device
defaults to the paper tape reader PPTR.

The biasamountis used to alter the absolute load address for the file. The default value for the
bias amount is zero. The initial load address is altered by the bias amount that is entered as a
signed hexadecimal value. When the sign is not specified, of the bias amount is assumed to be
positive.

* RHX * Error Responses

6—Device read error
14—invalid input device
16—Input device assign failure
33—Bias parameter error
4@—invalid input format

8002 uPROCESSOR LAB SYSTEM USER’'S REV. A JUN 1977 7-9

LOad EMULATOR ENVIRONMENT

SYNTAX

LOAD {file name [/disc drive]} [file name [/disc drive] :]

PURPOSE

The LOAD command program loads assembler and linker object files into program memory.

EXPLANATION

The specified file name is loaded into program memory by the LOAD command. The file must
have been previously created by the assembler or the linker.

The file named is loaded into program memory starting at the location specified in the source
code.

* DOS * Error Responses

6—Device read error
14—Invalid input device
48—Load file not found
49— oad file assign failure
51—Invalid load request

7-10 REV. A JUN 1977 8042 yPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT Module

SYNTAX

MODULE {file name} [/disc arive] {address 1} {address2} {address 3}

-

...... it PR

Liuerllifylﬁg String]

PURPOSE

The MODULE command program writes binary code onto the flexibie disc from program
memory.

EXPLANATION

The MODULE command writes binary cede into the specified file from program memcry.
Address 1 and address 2 are the addresses of the iower and upper bound respectively of the
user program in program memory. Address 2 must be greater than or equal to address 1.
Address 3 is the starting address of the program. The addresses, 1, 2, and 3, are to be entered in
hexadecimal, not decimal. The load module is preceded by a header which contains the

addresses 1, 2, and 3.

The identifying string is an optional character string used to identify the module. The
identifying string is truncated after the first 21 characters.

* MOD * Error Responses

7—Device write error
10—Overlay load failure
12—Iinvalid file name
32—Too many parameters
34—Invalid address

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 7-11

FEtch EMULATOR ENVIRONMENT
”

SYNTAX

FETCH {file name [/disc drive]}

PURPOSE

The FETCH command loads binary code into program memory from a fiexible disc.

EXPLANATION

The binary code specified by the file name is loaded into program memory by the FETCH
command.

The file named is ioaded into program memory starting at the iocation specified atthetime the
code was created.

* DOS * Error Responses

6—Device read error
14—Invalid input device
48—Load file not found
49—L oad file assign failure
5@—File not a load module
51—Invalid load request

7-12 REV. A JUN 1077 2002 wPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT

MEMORY CONTROL

The commands in this section are used for manipulating the contents of program memory and
the user’s prototype memory. The contents of memory may be examined, altered, or shifted in
memory location. Depending on emulation mede, program memory or user’s prototype
memory may also be filled with a repeating hexadecimal pattern.

COMMAND NAME DESCRIPTION PAGE

DUMP Copies program memory contents to the specified 7-14
device

EXAM Displays a data byte and permits that byte to 7-16
be altered

PATCH Alters program memory with the specified 7-18
hexadecimal constants

MAP Sets and displays the memory map assignments. 7-19

MOVE Copies the specified data block to a new 7-22
location in program memory or prototype
memory

FILL Fills program memory or prototype memory 7-23

with the specified hexadecimal constants

8002 PROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

Dump EMULATOR ENVIRONMENT

SYNTAX

device
DUMP {address 1} [address 2] file name [/disc drive]

PURPOSE

The DUMP command copies the specified contents of program memory to the device named in
the command line.

EXPLANATION

The DUMP command copies the contents of program memory starting with address 1 to the
device named. Two hexadecimal characters are used to represent each data byte. Address 1
and address 2 must be in hexadecimal form.

When address 2 is not specified, only sixteen data bytes are copied. If the output device is not
specified, the data is displayed on the system console.

Addresses 1 and 2 are automatically adjusted in the following manner. The least significant
digit of both addresses is replaced with a zero. For example, the address 3F4E is altered to
3F4@. Then address 2 is replaced by the sum of itand 1@ base 16. This automatic change results
inaddress 1 being reduced to the next lowest multiple of 1@ base 16, and address 2 being raised
to the next higher multiple of 10 base 16.

714 REV. A JUN 1977 8002 ;PROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT Dump

Forexample, if you specify the block of data between 7D and B4 the DUMP command reduces
7D to 70 and raises B4 to BF and the display foilows:

> DUMP 7D B4

pg7¢ =93 9C 19 18 E4 20 18 79 E4 0D 98 2E @9C 19 15 18

gg8e =17 28 CC 1¢ 15 @C 1 1 18 18 @E 19 4E @F 19 A4F

P99 =CE 19 4A CF 19 4B 1B 4D 0C 19 14 1C 480 03 20 CC
PpA0 =19 14 QE 19 4C OF 19 4D 1B 66 E4 3A 98 @C CC 19

90B@ =2B @PC 19 15 1C 490 65 1F 40 81 @C 19 19 1C 41 00

Each line in the dispiay of the block of data that includes the data between 7D and B4 begins
with the address of the first byte on that line. Each line displays sixteen bytes of data (i.e., 10
base 16).

* DMP * Error Responses

17—Output device assign failures
31—Parameter required
35—invalid starting address 1
36—Invalid ending address 2

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 7-15

Exam

EMULATOR ENVIRONMENT

SYNTAX

EXAM {address }

PURPOSE

The EXAM command displays the data byte at the specified address in program memory and
permits that data byte to be aitered.

EXPLANATION

The EXAM command causes a single data byte from program memory to be displayed on the
system console. The data byte displayed is the byte at the specified address. The address must
be given in hexadecimal form. The data byte is displayed as two hexadecimal digits.

After the first byte is displayed, further display and altering functions may be achieved by using
the following keys:

SPACE BAR Causes the display of the next byte in memory.

LINE FEED or Moves the display cursor to the next line, displays the

RUB OUT key address of the currently referenced byte and displays the byte.
RETURN key Terminates the EXAM command.

Entering a hexadecimal data pair replaces the current data byte with the entered line.

Then the next data byte is displayed.

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT Exam

When the address of the data byte being displayed is a multiple of 18 base 16, the dispiay cursor
moves down o the beginning of the next line.

If you strike the ESC key while EXAM is being performed, the memory locations that were
altered before you struck the ESC key remain altered.

The followingis an example of replacing a data byte. In this example the data byte D7 located at
address 3723 is to be changed to C2.

>EXAM 3723
3723=D7-C2 98
>

The response 3723=D7 is displayed on the system console. When you enter C2 the system
responds with -C2 and then displays the next data byte in memory. Note that the system
provides the hyphen (-) when you enter the new data.

* EXM * Error Responses

31—Parameters required
35—Invalid start address
39—Invalid hexadecimal character

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 7-17

Patch EMULATOR ENVIRONMENT

SYNTAX

PATCH {address} {hexadecimal string }

PURPOSE

The PATCH command alters program memory with the specified hexadecimal string of
constants.

EXPLANATION

The PATCH command is used to alter program memory starting at the specified address (n).
Address n is a hexadecimal value. The contents of program memory starting at address n is
replaced by the hexadecimal string specified. The data in the hexadecimal string directly
replaces the data in memory, the hexadecimal string data is not inserted between the currently
existing data.

The hexadecimal string specified may be from 1 to 58 digits long.

The following is an example of using the PATCH command to replace the data beginning at
address 7A with 49 27 CC:

> DUMP 7A

Pg70—=03 @C 19 18 E4 20 18 70 E4 @D 9‘8 2E @C 19 15 18
> PATCH 7A 4927CC \Address 7A

> DUMP 7A

00790=03 OC 19 18 E4 20 18 70 E4 @D 49 27 CC 19 15 18

* PAT * Error Responses

31—Parameter required
34—invalid address
39—Invalid hexadecimal character

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT MAp

SYNTAX
s 1]
re
MAP l, :‘J [:gg:::: range :I see MAP [:LPJ] [aa?ji';zzss range} ves
PURPOSE

The MAP command is used to display or set memory map assignments.

EXPLANATION
Display

The MAP command is used to display memory map assignments either in tabular form or in
graphic form.

Using eitheran "R" parameter or no parameter with the map command will cause the memory
map assignments to be displayed in tabular form. Each dispiayed item inciudes the address
range (hexadecimal) and a symbol indicating assignment to prototype memory (U) or to

program memory (P). The following is an example of MAP command with the R parameter:

>MAP R
0000-07FF=U 0800-3FFF=P

This response says that memory locations @00@ through @7FF are assigned to the User
prototype memory. The memory from @800 through 3FFF is assigned to program memory.

Entering an “M" parameter with the MAP command will cause the memory map assignments to
be displayed in graphic form. The graphic display is a matrix with each element representing
128 bytes of prototype or program memory. (128 base 10 is 8@ base 16.) An asterisk (*) is used
to represent the user prototype memory assignment of each 128 bytes. A hyphen (-) represents
each 128 bytes of program memory assignment.

The following is a sample printout of MAP R and MAP M commands:
>MAP R
P00P-7FFF=P 8000-BFFF=U

COPP-FBFF=P FC@@-FC7F=U
FC80-FFFF=P

892 uPROCESSOR LAB SYSTEM USER’S REV. B, MAR. 1978 7-19

EMULATOR ENVIRONMENT

N
)
(]

>MAP M
1700 G - - -

AXXX == = - - - S - e -
BXXX - - - - S — S - -

SXXX ** * %k * * ** ** *k ok * %k *x * % *x * % * * %k *k *x
gxxx * * * % * * * % %k * % * % * ok * & * % * % * % * * %* %k * % * k
AXXX * k * * * % * % * %k * A * % *%* * % * x * % * % * * * * * %k * %
BXXX * % * %k * % * %* * * * * %k * * * * % * % * * * % ** * %k * &

DXXX == - - - S — S S -

@ 1 2 3 4 5 6 7 8 9 A B C D E F
Each double column above has a number typed in below it to identify the column. Column @ is
composed of two 80 byte blocks. If you look at row 4XXX, the address range of the first block

is 40006 through 407F 6. The address range of the next block is 4880, through 40FF .

The memory represented by one line is 4K bytes (4K = 496 bytes, base 1@). The memory
represented on the map from 000@ to 3FFF s is the memory on the first 16K memory module.

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT

Assignment

The MAP command is used to set memory map assignments either to program memory (P) or
to user prototype memory (U). Either type of memory is mapped in blocks of 128 bytes (128

base 10 equals 80 base 16).

You may specify an address or an address range. More than one specification may be included

in a command line. Also the addresses or address ranges do not need to be in ascending

numeric order. However, the second address given in an address range must be within the
same address block as the firstaddress or greater than the first address. As an example: 947E-
9427 is valid, but 9481-9427 results in an error message.

The following are examples of setting memory map assignments:

The result of setting these memory map assignments can be seen below:

PXXX
1XXX
2XXX
3XXX

4XXX
5XXX
6XXX
7XXX

8XXX
9XXX
AXXX
BXXX

CXXX
DXXX
EXXX
FXXX

8002 uPROCESSOR LAB SYSTEM USER’S

* %

*x

* %

* %

* %

* *

**

* %

* %

* k

%

* *

* %

* %

* %

* %

**

*

* *

* %

* %

*k

* k

* %

> MAP P 0000-7FFF CQ@0-FFFF
> MAP U FC00
> MAP U 8000-BFFF

* %
* %
* %k

* %

7

* *

*x

*x

*x

REV. B, MAR. 1978

*

* %

* *

* %

*x

* %k

* %*

*x

* &

*x

* %

**

7-21

MOVe EMULATOR ENVIRONMENT

PP

SYNTAX PU

uu
upP

u P
MOVE {P} {U} {address 1 } {address 2 } { address 3 }

PURPOSE

The MOVE command copies the specified data block from either program memory or user
prototype memory to a new location in either program memory or user prototype memory.

EXPLANATION

The MOVE command program copies the data at address 1 through address 2 to memory
starting at address 3. The data source may be either program memory or user prototype
memory. The destination may also be either program memory or user prototype memory.

The letter "P"” designates program memory.

The ietter "U"” designates user prototype memory.

Do not use a delimiter between the P-U parameters.

* MOV * Error Responses

30—Invalid parameter (P or U)
31—Parameter required

32—Too many parameters
34—Address 1>>2 or invalid address 3
35—1Invalid address 1

36—Invalid address 2

59—Memory write error

7-22 REV.B, MAR. 1978 8002 LPROCESSOR LAB SYSTEM USER’S

EMULATOR ENVIRONMENT Fill

SYNTAX

FitL {addressnij {addressn2} {hexadecimai data string }

PURPOSE

The FILL command fills the specified memory area in either program memory or user
prototype memory with the repeating hexadecimal data string.

EXPLANATION

The FILL command causes the hexadecimal data string that is entered to be repeatedly placed
into the memory area specified by address 1 and address 2. The area filled may be either in
program memory, in prototype memory, or in both.

When the system is set to emulation mode @, then the program memory is filled with the

hexadecimal data string. When in emulation mode 1, program memory or user prototype

memory is filled in accordance with the user prototype memory map. When emulation mode 2
is invoked, user prototype memory is filled with the hexadecimal data string.

The hexadecimal data string must be an even number of hexadecimal characters, i.e.,
composed of hexadecimal pairs. For example, if the value B is to be used, you enter 8B. A
maximum of sixty digits may be entered (thirty hexadecimal pairs).

When the memory area to be fiiled is not an exact multiple of the hexadecimal data string
iength, the hexadecimal data string is truncated at address 2 and a warning message * FIL *
ERROR 36 is displayed on the console.

* FIL * Error Responses

30—Invalid parameter

31—Missing parameter

32—Too many parameters
34—Invalid address - 2<1

36—Fill string truncated at address 2
59—Memory write error

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 7-23

EMULATOR ENVIRONMENT

7-24

USER PROGRAM EXECUTION

The commands in this section invoke execution or provide execution status information.

COMMAND DESCRIPTION PAGE

GO Causes the emulator processor to begin 7-26
execution of the user program

XEQ Loads a binary load module and causes execution 7-27
to begin
STATUS Causes emulator processor status to be displayed 7-28

on the system console

REV. A JUN 1977 8002 /PROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT

INTRODUCTION

The steps required to execute an assembly language program inciude:

e Assemble the user program and store on flexible disc

® Set the emulation mode:
@ - operate entirely within the system using program memory.
1 - operate with program memory, or user prototype memory, using the prototype
timing and 1/0.

2 - operate with the prototype memory, timing and i/0.
e Set the system clock on or off based on the emulation mode.

e load program into program memory. Ifin emulation mode 1 or 2 operating with prototype
memory, move program into prototype memory.

e Enter the GO command.

In the following example the assembly program IRSPEC is to be executed in emulation mode 0.
The commands needed to achieve execution are:

>ASM IRPROG LPT1 IRSPEC
>EMULATE @

>CLOCK ON

>LOAD IRPROG

>GO 9

in the ASM command IRPROG is the designated object file. The assembly listing is written to

the line printer LPT1. The object file IRPROG is read into program memory with the LOAD
command because the file is stored by the assembler on the flexible disc.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

7-25

Go

EMULATOR ENVIRONMENT

7-26

SYNTAX

GO [address]

PURPOSE

The GO command causes execution control to be passed to the emulator processor.

EXPLANATION

The GO command causes execution control to be passed to the emulator processor with
execution to begin at the specified address. When the address is not specified, execution
begins at the start address of a previously loaded module or execution continues from the last

stop point.

The GO command is a forced jump and will supercede a RESET command.

* DOS * Error Responses

37—Invalid GO address

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

EMULATOR ENVIRONMENT Xeq

SYNTAX

XEQ {load module file name [/disc drive] }

PURPOSE

The XEQ command causes a binary module to be loaded into program memory and then be
executed.

EXPLANATION

The XEQ command is equivalent to the commands LOAD FILENAME and GO.

* DOS * Error Responses

6—Device read error
14—Iinvalid input device
48—Load file not found
49—Load file assign failure
50—File not a load module
51—Invalid load request

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 7-27

STatus

EMULATOR ENVIRONMENT

SYNTAX

STATUS

PURPOSE

The STATUS command causes the status of the emulator processor to be displayed on the

system console.

EXPLANATION

The STATUS command provides the status of the emulator processor and the program being
executed. The statusis displayed on the system console. Also the status of any command file in
progress is displayed.

The status information and possible parameters are:

(user program name) IS

CHAN (n) ASSIGNED TO (device)

COMMAND FILE (name) IS

REV. A JUN 1977

ANMNTIVS
[aAVERA)

IDLE

LOADED

EXECUTING

IN 1I/0 WAIT

SUSPENDED

UNDER DEBUG CONTROL

OPEN
READ
WRITE
EOF

IN PROGRESS
SUSPENDED

8002 sPROCESSOR LAR SYSTEM USER'S

Section 8

DEBUG SYSTEM

INTRODUCTION

This section describes the methods you may use to monitor your software and hardware
execution flow with the debug system. General discussion topics include an overall debug
system description, a debugentry and exit sequence, and debug command descriptions. This
section provides a working knowledge of debugging capabilities.

The basic operation of the debug and the DEBUG command functions are the same for ail
emulator processors. However, some command parameter formats and some display formats
generated in response to commands vary, depending on the specific microprocessor version.
Further information on particular versions of the debug system, related to each type of
emulator processor, is contained in the corresponding 8002: Assembler and Emulator User’s
Manual.

CONTENTS

SECTION 8 DEBUG SYSTEM

INTRODUCTION 8-1
DEBUG SYSTEM STRUCTURE 8-2
DEBUG SYSTEM FUNCTION e ... 86
DEBUG SYSTEM ENTRY AND EXIT 8-8
COMMAND DESCRIPTIONS 8-10
DEBUG ... 8-11
TRACE . . . 8-12
DSTAT . 8-18
BRPT . 8-20
CLBP . . 8-23
SET 8-24
RESET . . . 8-26

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 8-1

DEBUG SYSTEM

T

DEBUG SYSTEM STRUCTURE

The debug system is a subsystem of TEKDOS. When you invoke the TEKDOS command
DEBUG the debug system is transferred from the flexible disc and stored in system memory.
This transfer is controlled by the system processor. The debugging routines appropriate to the
type of emulator processor being used are loaded into system memory.

Debug System Communications Route

Program memory contents, emulator processor register contents, and user prototype memory
contents are made available for your examination through a unique communications route.

The communications route that is enabled by the debug system in accomplishing its functions
is illustrated in Fig. 8-1.

Disqlay Flexible
Device Disc
System System
r“ - Processor - Memory
i TEKDOS
] . System
[Debugger _J
Cebug
Board
Interrupt Program
Utility Memory
Module

Prototype Users
Emulator jesg———p» Control Prototype

Processor Probe System

)
[}
%)
P
[&]

Fig. 8-1. Debug System Communication Route.

(<]
h)

REV. A JUN 1977 8882 xPROCESSCR

DEBUG SYSTEM
B K R A

Remember that the debug system is controlled through the system processor. The system
processor cannot directly access data located in the emulator processor. The system
processor can, however, directly access program memory. The communications link between
the debug system and the data in the emulator processor registers is achieved by way of
program memory. Object program data located in a region of program memory is saved in
system memory by the debug system as shown below. This transfer reserves space in program

memory for the emulator processor register contents to be stored.

Program
Memory Em—
Data

System
Memory

2313-14

The system processor then transfers control to the emulator processor. The emuiator
processor stores its register contents in the space left vacant in program memory, as shown
below

Emulator
Pro(fessor I Program
Register Memory
Contents

2313-15

The system processor again takes control and accesses the data in program memory, thus
allowing you to examine or modify the data by invoking the debugging commands.

Program Display
Memory S Device
Data

2313-16

8002 PROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 8-3

DEBUG SYSTEM

Control is passed back to the emulator processor, which restores the data from program
memory that has been examined or modified.

Program Emulator
Memory - Processor
Data Registers

231317

The system processor again takes control and restores the original object program data back
into program memory from system memory.

:n\:;f::v Program
Data Memory

2313-18

Thus, the communications link between the debug system and the data in the emulator
processor registers is achieved.

’-4 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

DEBUG SYSTEM

Accessing Prototype Memory

Your prototype’s memory contents are directly accessible by only the emulator processor. The
system processor transfers control to the emulator processor via the Debug Board’s Interrupt
Utility Module. The Prototype Control Probe is the cable used to link the emulator processor to
your prototype system. When accessing prototype memory, the emulator processor moves

Y3 . 1 rem Naamiral woakbha Thic raiida o il indeanda | R
data in prototype memory across the Prototype Control Probe. This route is illustrated below:

Prototype
System . : Emulator . Control |] Prototype
Processor Processor P Memory
robe
Debug
Board
Interrupt '
Utility
Module l
l Prototype E
: mulator
Control Processor
Probe

2313-19

After the prototype memory is accessed by the emuiator processor in the manner above, the

debug system achieves a communications link with data in the emulator processor registers in
its usual manner.

Summary

As a result of the debug system’s communications route, program memory, emulator

processor register contents, and prototype memory are available to the system processor to
facilitate your examination and modification.

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 8-5

DEBUG SYSTEM
e

DEBUG SYSTEM FUNCTION

The debug system’s structure allows the various examination and modification functions
described below:

Examination Commands

The debug system includes several commands that allow memory and register content
examination. The following debugging commands are useful when monitoring the effects of
program execution.

The TRACE command monitors the progress and state of object program execution and
displays pertinent information about desired program locations. Such information pertains to
the last instruction executed in the sequence, the instruction mnemonic, index register states,
the operand, addresses, and register contents.

The DSTAT command displays information pertaining to the general debugging status such as
the emulator processor’s last instruction address, the active breakpoints, and the emulator
processor’s register contents.

Breakpoints may be used to control program execution at specified locations. Breakpoints
suspend program execution and allow you to view the effects of read and write executions at
specified addresses in program memory. The BKPT and CLBP commands are used to assign
and clear breakpoints, respectively.

User program execution is not intended to work in real-time when the TRACE or BKPT
commands are invoked. Only the Real-time Prototype Analyzer provides real-time tracing.

Maoditication Commands

Register content modification may be implemented by way of the SET command.

The emulator processor’s hardware sequencing may be reset to a known beginning state with
the RESET command.

86 REV.B. MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER'S

DEBUG SYSTEM

Other Commands Available While in Debug Mode

In addition to the debug system’s command repertoire, a collection of TEKDOS commands is
also available while debug is active. The TEKDOS commands that are legal when in debug

mode include:

ABORT
ASSIGN
CLOSE
CONT
DEBUG
DELETE
DEVICE
DSTAT
DUMP
EMULATE
EXAM
FILL

GO
KILL
LOAD
MAP
MOVE
PATCH
RENAME
STATUS
SYSTEM
TYPE
XEQ

The following TEKDOS commands may NOT be used when the debug system is active:

ASM
CMPF
COMM
COPY
CPROM
DuP
EDIT
FORMAT
LDIR

8002 uPROCESSOR LAB SYSTEM USER'S

MODULE
PRINT
RHEX
RPROM
SUSPEND

(W 1] =g

VERIFY
WHEX
WPROM

REV. B, MAR. 1978

8-7

DEBUG SYSTEM

DEBUG SYSTEM ENTRY AND EXIT

The sequence below describes the steps to be taken when entering or exiting the debug
system.

1. As a precautionary measure, you may choose to write-protect the system disc that
contains TEKDOS and supports the emulator processor being used for microprocessor
development. Remove the write-enable tab in the lower right corner of the system disc.
Insert the system disc into disc drive @. Insert the work disc containing your source mode
program into disc drive 1.

2. Assign the appropriate emulation mode with the TEKDOS command EMULATE.

3. If you wish to enable the 180 millisecond real-time clock inierrupt in emulation mode @,
enter the TEKDOS command CLOCK ON. If you later wish to operate in emulation modes
10r2, you may disable reai-time clock interrupt with the TEKDOS command CLOCK OFF.
The clock interrupt may be undesirable when operating in emulation modes 1 or 2 since
the system processor updates the clock every 10@ milliseconds and takes time away from
program execution.

4. Invoke the assembler, thus converting the source code to absolute binary object code and
storing the code on the specified storage device.

5. Read the absolute binary object code into program memory with the TEKDOS command
LOAD.

6. Invoke the debug system with the DEBUG command. The debug system is now loaded
into system memory. The TEKDOS prompt character ">" is displayed on the display
device. The prompt character indicates the debug system’s readiness to accept

commands.

7. Invoke any desired debug system commands suchas TRACE, DSTAT, BKPT, CLBP, SET,
or RESET.

8. Initiate program execution by entering the TEKDOS command GO.

8-8 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

DEBUG SYSTEM

9. If the TEKDOS prompt character is not displayed on the display device during program
execution and you wish to enter TEKDOS, the following procedure should be used.

a. Press the ESC key once.

o

When the TEKDOS prompt character ">" appears, you may enier the TEKDOS

commands that are legal while in DEBUG mode.

c. When you desire to resume your program’s execution, enter the TEKDOS command
GO. This action continues your program from the point at which it was interrupted.

10. When program execution is stopped or suspended, the TEKDOS prompt character ">" is
displayed and the system awaits your TEKDOS input. Your program is stopped or
suspended under the following conditions:

a. you request control by pressing the ESC key;
b. your program has encountered a breakpoint that suspends program execution;

c. your program has executed a halt instruction in emulation mode @;

d. your program has executed one instruction after the TRACE STEP command is
invoked; or

e. your program has reached an End-of-Job condition.

11. The only way you may terminate the debug system is to use the TEKDOS command,
ABORT. This may be accomplished by entering ABORT DEBUG or ABORT". In either
case both the debug system and program execution are terminated.

12. When you have completed program or prototype debugging, you may wish to store your

modified program code on the specified storage device in hexadecimal format with the
TEKDOS command WHEX.

8092 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 89

DEBUG SYSTEM

®

o -

COMMAND DESCRIPTIONS

This section describes the DEBUG command, as well as the commands that are unique to the

debug system.

COMMAND NAME
DEBUG

TRACE
DSTAT

BKPT

CcLBP
SET

RESET

DESCRIPTION

Causes the debug system to be loaded into
system memory and initialized.

Enables or disables program execution
monitoring.

Displays the current status of the
debugging session.

Sets breakpoints in program memory that
suspend program execution when read and
write operations are performed.

Clears breakpoints previously set in
program memory.

Reassigns hexadecimal values of the
emulator processor’s registers.

Resets the emulator processor hardware
to a known beginning state.

REV. & JUN 1977

PAGE
8-11

8-18

8-20

8-23

8-24

8-26

DEBUG SYSTEM DEBug
PRmmmm R

SYNTAX

DEBUG [output device or flexible disc file name]

PURPOSE

The DEBUG command causes the debug system to be loaded into system memory.

EXPLANATION

Entering DEBUG invokes the debug system. DEVICE is the output device or flexible disc file
where the debug system’s output is written. If DEVICE is not specified, the console output
device CONO is assumed. After invoking the debug system the TEKDOS prompt character ">"
awaits your debug or TEKDOS commands.

Example

Invoking the DEBUG command below directs any output resulting from the debug commands
to the line printer.

>DEBUG LPT1

8002 uLPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 8-11

TRace DEBUG SYSTEM

SYNTAX
TRACE ALL [§TEP] [[start address] {stop address fjl
EACE JMP [_S_TEP] [[start address] { stop address }]
%ACE OFF

PURPOSE

The debug system allows you to enable or disable program execution monitoring with the
TRACE command.

EXPLANATION

The Trace Line

When the appropriate TRACE command mode is invoked, a trace line is displayed to the
display device specified in the DEBUG command. The trace line contains one line of program
execution along with information pertaining to the executed line. The trace line display format
varies with the type of microprocessor under development. This difference is outlined in the
appropriate 8002: Assembler and Emulation User's Manual.

User program execution is not intended to work in real-time when the TRACE command is
invoked.

For the debug system pertaining to the 8980 Emulator Processor, the trace line follows the
format below:

LOC INST MNEM OPER SpP RF RA HB RC RD RE HRH HL

A description of this trace line is outlined below:
LOC — The location of the last instruction executed.
INST — The hexadecimal representation of the instruction

executed.
MNEM — The instruction mnemonic.
OPER — The value or address of the operand.
SP — The value of stack pointer.
RF — The value of the flag register.
8-12 REV.E, MAR. 1978 8002 xPROCESSOR LAB SYSTEM USER'S

DEBUG SYSTEM . ~ TRace

RA — The value of register A.
RB — The value of register B.
RC — The value of register C.
RD — The value of register D.
RE — The value of register E.
RH — The value of register H.
RL — The value of register L.

All values are displayed in hexadecimal format.

The Trace Command Forms

The TRACE command may be invoked in three forms: TRACE ALL, TRACE JMP, and TRACE
OFF. TRACE ALL and TRACE JMP cause trace lines to be displayed during program
execution. The third TRACE command form, TRACE OFF, disables all trace displays.

if TRACE ALL is specified, all instructions executed by the emulator processor have their trace
information displayed on the DEBUG display device.

If TRACE JMP is specified, only jump instructions in the program’s execution sequence have
their trace information displayed on the DEBUG display device.

— e

program execution and to display the appropriate trace lines. The appropriate trace lines are
then displayed to the DEBUG display device until you suspend program execution or an End of
Job condition is reached. Pressing the ESC key once is sufficient to suspend program
execution and display during the TRACE command mode. |f program execution is suspended
in this manner before an End of Job condition is reached, entering GO resumes the execution
and display from the point in execution where the suspension occurred.

If STEP is specified when monitoring program execution in either the TRACE ALL or TRACE
JMP modes, control is returned to the DEBUG display device after every instruction’s trace line
is displayed. If the STEP option is used, the TEKDOS command GO must be entered to
continue program execution after each trace line is displayed.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 8-13

TRace

DEBUG SYSTEM

If address range 1 through 2 is specified, only the instructions executed between address
locations 1 and 2 have their trace information displayed. Addresses 1 and 2 are hexadecimal
address constantsin the range @ to FFFF. Address 2 must be equal to or greater than address 1.
The default value foraddress 1is @. The default value for address 2 is FFFF. If an address range
is specified and STEP is not, the address range must be preceded by two commas in this

manner:

TRACE ALL,,address 1, address 2

The TRACE OFF form disables all trace display. Instruction traces are not displayed on the
display device after program execution is invoked with the GO command.

* DEB * Error Responses:

31—Parameter required
35—Invalid start address
36—Invalid end address

44—Invalid trace mode parameter

Example

Suppose the following 8080 Assembly Language user program resides on your work disc:

START ORG

XRA
MOV
MOV
LXI
LDAX
DCX
MOV
LDAX
DCX
MOV

8-14

00

A ;CLEAR ACC

B,A

HA

D,13FFH ;LOAD TOP OF MEMORY
D

D

C.A

D ;LOAD SECOND NUMBER
D ;DECREMENT POINTER
LA

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

DEBUG SYSTEM

TRace

DAD
LDAX
DCX
MOV

NAD
N

LDAX
MOV
DAD
STC
CMC

MOV
RAR
MOV
MOV
RAR
MOV
MOV
RAR
MOV
RAR

LXI
STAX
HALT
END

B

D ;LOAD THIRD NUMBER

D ;DECREMENT POINTER

C.A

B ;DOUBLE PRECISION ADD

D ;LOAD FOURTH NUMBER

CA

B
;SET CARRY
;COMPLEMENT CARRY. L.LE. CLEARIT

AH ;MOVE HIGH ORDER BYTE
;DIVIDE BY TWO

H.A ;SWAP REG. 4

AL

LA ;SWAP REG.

AH

;DIVIDE BY TWO UPPER BYTE
AL ;LOAD LOWER BYTE
;DIVIDE BY TWO ANSWER IN ACC.

D,13FFH
D

The program’s function is to calculate the average of four numbers and store the result in a
specified location. The program is assembled. Emulation Mode @ is assigned. The absolute
binary object code is read into program memory with LOAD. Entering DEBUG puts you in

debug mode.

>DEBUG

8092 uPROCESSOR LAB SYSTEM USER'S

REV. A JUN 1977 8-15

TRace DEBUG SYSTEM

Your program’s execution may now be traced. Suppose you suspect a logic error between
address locations 9@0B and @@QE in your program’s execution. You wish to examine the
register contents resulting from the execution of four lines of code at address locations 0@9B
through @@0E. You wish to examine all types of instructions executed. You also want to return
control to the console after the trace line of every instruction is displayed. Enter the following
sequence:

>TRACE ALL STEP 000B 000E
>GO @

When the instruction at address location @@@B is executed, the following system response
appears on the display device:

LOC INST MNEM OPER SP RF RA RB RC RD RE RH RL
000B 6F MOV LA 0000 92 00 090 19 13 FD 00 00

Entering GO again executes the next instruction and causes the next trace line to be displayed:

>GO
000C 09 DAD B pPP@ 92 00 00 19 13 FD 00 10

Continuing this sequence displays the next two trace lines:

>GO
000D 1A LDAX D 000 92 41 990 19 13 FD 00 10
>GO
P@PE 1D DCR E 0000 9% 41 00 19 13 FC 00 10

All instructions within the range 900B through O@0E have been displayed. Entering GO at this
point continues program execution, until the program is suspended or reaches an End of Job

condition.

>GO

8-16 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

DEBUG SYSTEM TRace

Now, suppose you wish to run a continuous trace of all instructions in your program’s
execution. Enter the sequence beiow:

>TRACEALL

>GO 9

LOC INST MNEM OPER SP RF RA RB RC RD RE RH RL
0000 AF XRA A 0000 46 00 00 00 00 00 00 00
p001 47 MOV B,A 0000 46 00 00 00 00 00 00 00
o002 67 MOV HA 0000 46 00 00 00 00 00 00 00
0003 11FF13 LXI D,13FF 0000 46 090 00 00 13 FF 00 00
o006 1A LDAX D 0000 46 12 00 00 13 FF 00 00
o097 1D DCX D o009 92 12 00 00 13 FE 00 00
oPe8 4F MOV CA opo@ 92 12 00 12 13 FE 00 00
0009 1A LDAX D 000 92 @C @@ 12 13 FE 00 00
P00A 1D DCX D 0000 92 @9C 09 12 13 FD 00 00
p0PB 6F MOV LA o008 92 @C 9@ 12 13 FD 090 0oC
200C 99 DAD B oo 92 @9C @9 12 13 FD @0 1E
208D 1A LDAX D opp@ 92 B1 98 12 13 FD 00 1E
PopE 1D DCX D poP6 96 B1 06 12 13 FC 00 1E
POOF 4F MOV CA o000 96 Bl @99 B1 13 FC 09 1E
0010 09 DAD B P00 96 B1 08 B1 13 FC 98 CF
9911 1A LDAX D 0000 96 54 00 B1 13 FC 00 CF

Trace lines of all instructions are continuously displayed as your program executes until an
End of Job condition is reached a suspending breakpoint is encountered, the space bar is

N nlav or the ESC kev is entered to susnend nrogram exegution
L] “ V 1 1 Plu,, Al LY R A S r\\d W willwil v W O\J\J’lvl LA rll vul CATIT VAV VULIVIL.

Now, suppose you wish to trace only the jump instructions in your program’s execution. You
want to display the trace lines resulting from each jump instruction in a step-by-step fashion.
Enter the following sequence:

>TRACE JMP STEP
>GO @

The following trace line is displayed showing a jump instruction at address location 8924 in
your program’s execution:

LOC INST MNEM OPER SP RF RA RB RC RD RE RH RL
0924 FE RST FFFE 97 15 00 00 13 FF @@ 2B

8092 uPROCESSOR LAB SYSTEM USER'S REV.B, MAR. 1978 8-17

DStat

DEBUG SYSTEM

8-18

SYNTAX

DSTAT

PURPOSE

The DSTAT command displays the current status of the debugging session.

EXPLANATION

This command sends a display line to the DEBUG display device. The display line includes:

1. The emulator processor’s last instruction address;
2. The active breakpoints and the breakpoint parameters; and

3. The emulator processor’s stack pointer, flag register, and register contents.

The DSTAT display format varies somewhat, depending on the type of microprocessorusedin
your prototype.

Example

Suppose breakpoints are set at address Iocations @009 and (MMA in an 8@80 program

++ Pt I - V2 P Y Y WP S S ST
Wheneveran auemp. ismadetcread {specifie

a breakpoint will occur. The following command lines set those breakpoints.

>BKPT 0009 R
>BKPT 000AR

When the program is executed with the GO command, the first breakpoint occurs at address
location 0009.

>GO
LOC INST MNEM OPER SP RF RA RB RC RD RE RH RL

0009 1A LDAX D oop@ 92 00 00 00 13 FE 00 00
9999 BREAK
>

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM Ui

Ih
I'll

(h

DEBUG SYSTEM DStat

The second breakpoint occurs at address location @00A:

>GO
000A 1D DCR E 0000 92 00 00 00 13 FD 09 00
0P0A BREAK

At this point, a debug status line may be useful in order to examine the effects of the above
breakpoints:

>DSTAT
P=000A BP—=0009 R 0OBA R SP=000@ RF=92 RA=00 00 00 13 FD 09 00
>

The debug status iine displays the emuiator processor’s last instruction address (8@0A), the
active breakpoints and their parameters (0009 R and @00A R), the stack pointer contents
(0000), the flag register contents (92), and the emulator processor register contents (90 60 00
13 FD 00 90).

8002 UPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 8-19

BKpt DEBUG SYSTEM
- __|

SYNTAX

R C
BKPT {address in program memory} [W] [S]

PURPOSE

When read and write operations are performed within program execution, you may monitor
their effects by suspending execution with breakpoints. Breakpoints are set with the debug
system command BKPT.

EXPLANATION

The BKPT command suspends program exection after a read and write operation is performed
at a specified address location, ADDRESS. If R is specified, program execution is suspended
after an attempt is made to read from ADDRESS. If W is specified, program execution is
suspended after an attempt is made to write to ADDRESS. If neither R nor W is specified,
program execution is suspended whenever an attempt is made to read from or write to
ADDRESS.

it C is specified in the BKPT command iine, execution continues after each breakpoint is
encountered. If Sis specified, execution is suspended after each breakpointis encountered. If
neither C nor Sis specified, execution is suspended after each breakpoint is encountered. If R
or W are not specified, C or S must be preceded by two commas, in this manner:

BKPT address,,C

When a breakpoint is encountered during program execution, a trace line of the instruction
where the break occurred is output to the DEBUG display device. The traceline is followed by a
breakpoint message that indicates the current address location followed by the word, BREAK.

User program execution is not intended to work in real-time when the BKPT command is
invoked.
Up to two breakpoints may be set at one time. if you attempt to set more than two breakpoints,
the system response TOO MANY BREAKPOINTS occurs.

* DEB * Error Responses

30—Iinvalid Parameter
34—Invalid Address

(64}
N
[}
a
n
(W]
>
=<
pH
0
©
~J
co
0
=]
=)
N
=
O
o)
Q
[e)
m
2]
7]
Q
0
-
-
s]
wn
<
"
-]
m
=
»
m
o]
w

DEBUG SYSTEM BKpt

Example

Suppose the following user program written in 8080 Assembly Language resides on your work

disc:

START ORG 0g
XRA A ;CLEAR ACC
MOV B,A
MOV H,A
LXI D,13FFH ;LOAD TOP OF MEMORY
LDAX D
DCX D
MOV CA
LDAX D ;LOAD SECOND NUMBER
DCX D ;DECREMENT POINTER
MOV LA
DAD B
LDAX D ;LOAD THIRD NUMBER
DCX D ;DECREMENT POINTER
MOV CA
DAD B ;DOUBLE PRECISION ADD
LDAX D ;LOAD FOURTH NUMBER
MoV C.A
DAD B
STC ;SET CARRY
CMC ;COMPLEMENT CARRY. |.E. CLEARIT
MOV AH ;MOVE HIGH ORDER BYTE
RAR ;DIVIDE BY TWO
MOV H,A ;SWAP REG. 4
MOV AL
RAR
MOV LA ;SWAP REG.
MOV AH :
RAR ;DIVIDE BY TWO UPPER BYTE
MOV AL ;LOAD LOWER BYTE
RAR ;DIVIDE BY TWO ANSWER IN ACC.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 8-21

BKpt DEBUG SYSTEM
e -]}

LXI D,13FFH
STAX D

HALT

END

The program is assembled and emulation mode @ is selected. The absolute binary object code
is read into program memory with LOAD.

Now suppose you wish to set a breakpoint at address location 13FF. Each time an attempt is
made to read from address location 13FF, you wish for the emulator processor execution to
halt. Enter the TEKDOS command, DEBUG, to enter debug mode. Enter the following BKPT
command line. Then begin program execution starting at location @ with GO @

>DEBUG
>BKPT 13FF R
>GO ¢

The trace line of the instruction at address location @006 is displayed, indicating the first
attempt to read from memory location 13FF. The address location and the breakpoint message
BREAK follow the trace line.

LOC INST MNEM OPER SP RF RA RB RC RD RE RH RL

0006 1A LDAX D P0P0 46 4E 00 00 13 FF 00 00
P096 BREAK

Program execution is again suspended after any subsequent execution attempts are made to
read from address location 13FF.

%
N
N

REV. A JUN 1977 2942

DEBUG SYSTEM CLBp

SYNTAX

CLBP [address in program memory]

PURPOSE

The CLBP command clears breakpoints that were previously set in program memory.

EXPLANATION

The CLBP command may be used to clear breakpoints set at specified addresses in program
memory or to clear all breakpoints. If ADDRESS is specified in the CLBP command line, an
active breakpoint set at ADDRESS is cleared. lf the address specified has not been previously
assigned a breakpoint, the error response BREAKPOINT NOT ACTIVE is displayed. If
ADDRESS is not specified, all breakpoints set in program memory are cleared.

* DEB * Error Responses

32—To0 many parameters
34—Invalid address

Example

Suppose breakpoints have previously been set in program memory at address locations 9009
and P00A. An examination of the debug status as shown below verifies these breakpoints:

>DSTAT
P=000A BP=0003 R GPBA R SP=FDFA RF=92 RA=00 00 00 13 FD 00 00

Now suppose you wish to clear the breakpoint set at address location 8089. Enter the
command below:

>CLBP 0009

Further examination of the Debug status shows that the breakpoint previously set at address
location 9009 is now cleared.

>DSTAT
P=00PA BP= PPOPA R SP=FDFA RF=92 RA=00 00 00 00 13 FD 00

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 8-23

SEt DEBUG SYSTEM

SYNTAX

SET R { initial register } { first hex value } {second hex value }

PURPOSE

The SET command allows you to reassign hexadecimal values in the emulator processor’s
registers.

EXPLANATION

Hexadecimal values "V" are reassigned to the emulator processor registers, beginning with the
register specified "Rm". A series of one or more hexadecimal values "V1” through “Vn" is
specified after Rm. All registers or any continuous group of registers may be reassigned
values. Only those values specified change the register contents. The series of values must not
exceed the registers available.

The command “SET Rm V..." causes the emulator processor registers beginning with Rm to be
reassigned the values specified. Rmis set to V1. If V2 is specified, Rm + 1 is set to V2, and so-
forth.

* DEB * Error Responses:

36—invalid parameter
43—Invalid data parameter
32—Too many parameters

Example

Suppose you observe the register contents below with the DSTAT command:

>DSTAT
P=p@@9 BP= SP=FDFA RF=92 RA=00 ¢¢ 9¢ 13 13 FD 00

w
o
ELS

REV R MAR 1078 SAGK2
~oV. o, MARE/S L0

DEBUG SYSTEM SEt

You wish to reassign registers B through D with the vaiues 1A, 33 and 7. The command line
below performs this function:

>SETRB 1A 337
Anocther look at the register contents shows the change:

>DSTAT .
P=0p@9 BP= SP=FDFA RF=92 RA=00 1A 33 07 13 FD 090

8092 LPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 8-25

REset DEBUG SYSTEM
M

SYNTAX

RESET

PURPOSE

The RESET command allows you to enable a reset pulse to the emulator processor hardware.
Enabling the reset pulse allows the emulator processor’s hardware to be reset to a known
beginning state. This command is useful if the emulator processor hardware enters an
unknown execution state.

EXPLANATION

Invoking the RESET command allows you to arm the debug system with a reset capability.
When the emulator processor is activated, a pulse is sent to the reset pin. This allows the
emulator processor hardware to be put in an initial state.

The RESET command has no immediate visibie effect. After the RESET command is invoked,
the GO command overrides the operation of the RESET command and resumes program
execution from the point of suspension. If you wish to simulate the effect of the
microprocessor’s reset signal, enter GO 0.

8-26 REV. A JUN 1977 8092 PROCESSOR LAB SYSTEM USER'S

Section 9

PROM PROGRAMMER

DOCUMENTATION NOTE

At the time of this writing two PROM Programmer options are available. Option 47 isthe 1702A
PROM Programmer, and option 48 is the 2704/2708 PROM Programmer. Additional PROM
Programmer options may be available in the future.

CONTENTS
SECTION 9 PROM PROGRAMMER
DOCUMENTATIONNOTE i, 9-1
INTRODUCTION e 9-2
PROM PROGRAMMER COMMANDS 9-3
RPROM . .. e e 9-5
WPROM . . e 9-6
CPROM . . e 9-7
HOW TO USE THE PROM PROGRAMMER 9-8
SMS FORMAT COMMANDS 9-8
CSMS . e 9-9
RSMS .. . 9-10
WSMS . . e 9-11
8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

91

PROM PROGRAMMER

9-2

INTRODUCTION

The 1702A and 2704/27@8 PROM Programmer options provide the ability to program PROM
{(programmable read only memory) chips. Each option consists of an appropriate circuit card
module and necessary support software. When the module is installed in the 80@2
#PROCESSOR LAB mainframe, the PROM Programmer software allows object code to be
written to or read from a PROM. Object code residing on a programmed PROM can also be
compared to object code in program memory.

Because unprogrammed 2704 and 2708 PROMs have all bits set to 1, the PROM program writes
@'s to selected bits. After programming, the PROM can only be erased by exposure to an
ultraviolet light source. The transparent PROM cover allows the ultraviolet light to reset all bits
to 1. The PROM can then be programmed again.

1702A PROM programming and erasure procedure is identical to that just described for the
2704 and 2708 except that bit settings are reversed. An unprogrammed or erased 1702A has all
bits set to @. Writing to the 1702A consists of setting selected bits to 1.

PROM Programmer software transfers one data byte at atime. This method permits command
parameters to read, write, or compare the total PROM or any contiguous portion.

PROM data byte capacity is shown in the following table:

PROM BYTES (DECIMAL) HIGHEST ADDRESS (HEX)
1702A 256 FF
2704 512 1FF
2708 1024 3FF

PROM Programmer Precautions

@ You should use care in handling PROMSs. Static electricity discharges may destroy the
microcircuit. You should ground yourself, preferably through the Logic Ground terminal
on the rear panel, while handling the PROM.

e Front panel PROM Power switch must be turned off while inserting or removing a PROM
from the socket.

e |f more than one PROM Programmer Module is resident in the system insertion of a
PROM into the wrong socket, whether the power is on or off, may destroy the PROM. Pay
attention to the stick-on label that is attached to the programmer porch alongside the
correct socket.

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

PROM PROGRAMMER

PROM PROGRAMMER COMMANDS

Three PROM programmer commands are availablie to read, write, or compare PROMdata. The
respective operating system commands are RPROM, WPROM, and CPROM.

Parameters have identical significance for the three commands, and the default values are the

same. The command entry sequence is as foiiows:
COMMAND nt type n2 n3 n4

The parameter values are defined in the following table.

PARAMETER VALUE TABLE

PARAMETER PARAMETER USAGE
ni The first program memory location to
be written to, read from, or compared.
type The RPOM type to be used is designated
as 17902, 2704, or 2708.
n2 The first PROM location to be read

from, written to, or compared.

n3 The last PROM location to be read

from, written to, or compared.

n4 if PROM data is complemented, n4 is
set to 1. When set to @, or if omitted,
PROM data is not compiemented.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

DEFAULT VALUE
]

2708

highest
addressable
PROM location

)

PROM PROGRAMMER

94

If a command is entered without parameter values, default parameters are assumed. When
parameter values are entered, a space or a comma is an acceptable delimiter between values.

|f parameters are a combination of default and entered values, a comma can be entered for
each omitted (default) parameter. A comma is not required for trailing default values.

Examples of command entries are shown in the foliowing table.

ENTRY = COMMAND n1 type
RPROM = RPROM) 2708
WP,, 1702,,1 = WPROM) 1702
CP,,,7F = CPROM) 2708

n2 n3 n4

2 Highest @
Address

2 Highest 1
Address

0] 7F 0

As shown here, the command RPROM, with no parameters entered, causes 1024 bytes to be
read from a 2708 PROM. The data is written to memory, starting at location @.

REV. A JUN 1977

8092 uPROCESSOR LAB SYSTEM USER’S

PROM PROGRAMMER RProm

SYNTAX

1702
2704

0
RPROM rmemory start address] [2708] LPROM start address] [PROM stop address] [1]

PURPOSE

The RPROM command transfers data from PROM to program memory.

EXPLANATION

RPROM reads data from the "PROM start address” through the "PROM stop address”. The
data is stored in program memory beginning at the "memory start address”.

If the complement parameter is setto 1, the data is complemented before storage. The End-of-
Job message appears on the console when the specified PROM data has been successfully

stored in memory.

9-5

8002 uPROCESSOR LAB SYSTEM USER’'S REV. B, MAR. 1878

WProm PROM PROGRAMMER

SYNTAX

1702
2704 0
WPROM [memory start address] 2708 [PROM start address] [_PROM stop address] 1

PURPOSE

The WPROM command writes data from program memory to a PROM in a microprocessor
PROM socket.

EXPLANATION

WPROM reads data beginning at the "“memory start address” and writes data to the PROM,
beginning at the "PROM start address”. If the complement parameter is set to 1, the data is
complemented before writing occurs.

Writing terminates after the data is written to the "PROM stop address”.

For the 1702A, each data byte is read immediately after being written and is compared to the
equivalent byte in memory. If the bytes are not equal, the procedure is repeated. If the
comparison is still unequal after 16 attempts, the PROM address, the PROM byte, and the
memory byte are displayed on the console. The job is then terminated.

For the 2704 and the 2708, all data bytes are programmed 117 times. A comparison is then
made between each byte in the PROM and the equivalent byte in program memory. The PROM
is programmed once more during this operation for a total of 118 times. |f the comparison is
unequal, the PROM address, the PROM byte, and the memory byte are displayed on the
console. A 2704 or 2708 must have all addresses programmed. If only a part of the PROM is to
be programmed, read the PROM intc program memory with RPRCM. Then change the desired
section in program memory and program the PROM using the WPROM command.

A console End-of-Job message indicates successful completion of PROM programming.

9-6 REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER’S

PROM PROGRAMMER CProm

SYNTAX
1702
[2704 |’ o'l
CPROM [memory start address | | 2708 | rDPOM start address | rP'%OMscs address] {1 |
PURPOSE

The CPROM command compares PROM data to data in program memory.

EXPLANATION

The CPROM command causes PROM data content to be compared, byte by byte, to data in
memory. If the complement parameter is set to 1, data in memory is complemented before
comparison. The comparison begins by comparing the data byte at the "PROM start address”
with the memory byte at the "memory start address”. if the bytes are equal, each address is
incremented by one and the procedure is repeated. The byte at the “PROM stop address” is the
last PROM location compared.

he memory address, memory byte

PRy |

Inequality between PROM and memory bytes causes t
the console. The job is then terminated.

N
content, and PRCOM byte content to be displayed at

Successful comparison between designated PROM and memory bytes is indicated by a
displayed End of Job message at the console.

8002 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 9-7

PROM PROGRAMMER

HOW TO USE THE PROM PROGRAMMER

When the TEKDOS prompt character appears:

1. Turn the PROM POWER switch OFF.

2. Push the PROM socket locking lever DOWN.
3. Insert a PROM chip in the socket.

4. Push the locking lever UP.
5
6

. Turn the PROM POWER switch ON.
. Enter the appropriate PROM command.

SMS FORMAT COMMANDS

Data files in SMS format can be read, written, and compared by the PROM software. The
RSMS, WSMS, and CSMS commands, described here, may be used to input or output coded
data to peripheral devices and to compare data to program memory.

The SMS format consists of a block of data preceded by a tape-on character and terminated by
a tape-off character. The tape-on character is a control R which has the hexadecimal value of
12. As you know, control Ris sent by holding down the CTRL key on the terminal while striking
the Rkey. The tape-on character causes the address counter to be set to zero and as a result the
first data byte will be stored at location @.

An apostrophe is used as a delimiter between data bytes. Each data byte is represented by its

hexadecimal value. The last data byte is followed by an apostrophe and then the tape-off
character. The tape-off character is control T which has the hexadecimal value of 14.

9-8 REV. A JUN 1977 8002 yPROCESSOR LAB SYSTEM USER'S

CSms

PROM PROGRAMMER

SYNTAX

CSMS [memory start address] [device or file containing SMS data]

PURPOSE

The CSMS command compares data from an SMS device of file to data in program memory.

EXPLANATION

CSMS reads an SMS file or device, translates to binary, and compares the binary data to
program memory data. The default address value is @, and the default device is TTYR. The
console cannot be the device from which data is compared. If the comparison is not equal,
memory location, SMS value, and memory location value are displayed.

8002 xPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977

9-9

RSms PROM PROGRAMMER
“

SYNTAX

RSMS [memory start address] [device or file containing SMS data]

PURPOSE

The RSMS command reads data from an SMS device or file into program memory.

EXPLANATION

RSMS reads data from an SMS device or file, translates to binary and stores the binary data in
program memory. The default address value is @, and the default device is TTYR, the console
cannot be the device from which data is read.

REV. A JUN 1977 PROCESSOR LAB SYSTEM USER'S

[T T
vewe

©
b
o

WSms

PROM PROGRAMMER

SYNTAX

WSMS [memory start address] [device or file to be written to]

PURPOSE

The WSMS command writes data from program memory to an SMS output device or file.

EXPLANATION

WSMS reads a 512-byte data block from memory, transiates the data to SMS format, and writes
the data to an output device or disc file. The default address is @, and the default device is the

consoie.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 9-11

Section 10

SERVICE CALLS

INTRODUCTION

Service calls are used by the emulator processor to obtain input and output service from the
system peripherals including the console terminal and the flexible disc drives. This section
contains the following:

INTRODUCTION i, 10-1
SERVICE CALL DESCRIPTION 10-2
SERVICE REQUESTBLOCK e 10-3
SRBBytes e 10-5
SVC Functions 10-7
SVCFUNCTIONCODES10-11

8802 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 10-1

SERVICE CALLS

TR

SERVICE CALL DESCRIPTION

The system processor in the 8892 uPROCESSOR LAB has as one of its functions, the
monitoring of the emulator processor. Providing all of the input and output for the emulator
processor is one of the services included in the monitoring function. The emulator processor
has no direct access to any of the system peripherals, including the console terminal and the
flexible disc drive. All access to peripherals for the emulator processor are serviced by the
system processor.

The emulator processor obtains service from the system processor by issuing a service call

(SVC). The service call actually exists as an output instruction sequence in the user program.
Some of the items in the instruction sequence include specification of the type of input or
output (1/0) to be performed, channel assignments to I/0 devices or files, and sizes of buffers
for data transfer. The specification for service requested is stored in your program in a block
of code called the service request block (SRB).

A total of six SVC'’s may be defined at any one time in a program. Each SVC refers to a
predetermined location in memory. The referenced location and the memory location
immediately following it, contain the address of the SRB (service request block). The SRB
address stored in the SVC referenced location is called the "SRB pointer” because the stored
SRB address points to the service request block. In summary, the SVC refers to the SRB pointer
which points to the service request biock. The foliowing table shows each SVC and the address
of the SRB pointer. These addresses are all hexadecimal.

Table 10-1
SVC REFERENCES (HEXADECIMAL)

SvC 1/0 Address SRB Pointer Location
1 XXF7 0040 0041
2 XXFo 0042 0043
3 XXF5 P44 8045
4 XXF4 046 0047
5 XXF3 0048 9049
6 XXF2 PO4A 004B

The SVC is an address, 2 bytes in length. In Table 10-1, the "XX" portion of the 1/O address,
which is the high order byte of the address word, varies with the microprocessor. In some cases
this high order byte may be @@. For example, SVC5 shown in Table 10-1 as XXF3, would be #9F3
when the high-order byte specified for the emulator being used is 00@.

To restate the concept above, each SRB pointeris stored in a fixed predetermined location and
that location is referred to by issuing a corresponding SVC.

10-2 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM LISER'S

SERVICE CALLS
R AT

SERVICE REQUEST BLOCK (SRB)

A service request block must be included in your program for each service call that is issued.
The SRB contains the information that is needed to perform the function requested by an SVC.
Each SRB contains eight bytes of data. The foilowing tabie contains a iisting of the SRB

+ ta inm ~ +h i
contenis in the order they must appear in your program.

Table 10-2
CONTENTS OF THE SERVICE REQUEST BLOCK
Byte Contents

SVC function code
Channel number
SRB status

Single byte data
1/0 byte count

I/0 buffer length
7-8 I/0 buffer pointer

O O~ WN

Inthe following subsections you will find more complete descriptions of the SRB contents and
the SVC function codes.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 : 10-3

—

SERVICE CALLS

The SRB pointeris the address of the first byte in the service request block. The actual location
of the SRB is determined by the assembler at the time of assembling the source code.

FEF4 — — — —» (046 00 } SRB
0047 68 Pointer
0068 82 (1) SVC function code
0069 03 (2) Channel number
PO6A 00 (3) SRB status
pp6B 00 (4) Single byte data
op6C 00 (5) 1/0 byte count
peeD FF (6) 1/0 buffer length
PO6E 03 (7) High-order buffer address
0O6F 7D (8) Low-order buffer address
@37D
Buffer
. Area
947B

2313-20

Fig. 10-1. A Typical SVC Instruction Sequence.

In Fig. 10-1an SVCisissued as FEF4. This SVC refers to the SRB pointer at memory addresses
2046 and 9047. The SRB pointer contains the address 068 which is the address of byie 1 of the
SRB. The byte at this address is the hexadecimal value 82—the function code for Write ASCII
and proceed. (The SVC function codes are listed in Table 10-6.) Byte 2 is the assigned channel
number over which the action takes place. Bytes 3, 4 and 5 will be provided by the system
processor as it services this request. Byte 6 specifies the maximum number of bytes of data to
be output. Bytes 7 and 8 contain the starting address of the buffer which holds the data to be

nutnut
ouiput,

o
£a

(¢]
m

SERVICE CALLS
e e e

Description of SRB Bytes

This subsection contains a description of each byte in the service request biock. The SVC
function codes, byte 1 of the SRB, are more completely described in the subsection titled "SVC
Function Codes”.

SVC FUNCTION CODE. The SVC function code, byte 1, specifies the 1/0 or service function to
be performed. The functions are described in the subsection titled “SVC Function Codes”, and
listed in the tabie in that section.

CHANNEL NUMBER - Byte 2. A logical channel number must be assigned for each SVC
function code that requests 1/0 service. (See the ASSIGN command in Section 4—
TEKTRONIX DISC OPERATING SYSTEM.) The channel number must be in the range @to 7.
When a channel is assigned to a physical device or file, the channel stays connected to that
device or file until a CLOSE command is issued on the channel or the job is aborted.

The console devices CONO and CONI as well as the flexible disc are sharable devices which
can be assigned to more than one channel. The other devices are non-sharable and can be
assignedto only onechannel atatime. A user program can have a maximum of seven channels
assigned to files.

SRB STATUS - Byte 3. The system processor stores an SRB status code in this byte. When a
"Read and Proceed” or a "Write and Proceed” SVC function is requested, the system
processor will write 7F (1/0 in progress) in this byte. When the I/O operation is completed, one
of the other SRB status codes will be stored in this byte. The following table lists the SRB status
codes in hexadecimal, and a short interpretation of each.

8662 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 10-5

SERVICE CALLS

Table 10-3
SRB STATUS CODES FOR BYTE 3

@@ — Function complete/no error
@1 — Channel assigned to new file
@2 — lllegal channel number

@3 — Channel not assigned

@4 — Channel busy

@5 — lllegal function code

@6 — No EOL on ASCII read

@7 — No EOL on ASCI!I write

@8 — lllegal drive number

@9 — Filein use

@A — Device not operational

@B — Device not available

@#C — Device not ready

@D — Devicein use

PE — Directory read error

@F — Directory write error

10 — Directory full

11— Device read error

12 — Device write error

15 — File name in use

16 — lllegal file name

17 — File in read/write progress
18 — Channel already assigned
19 — Incorrect flexible disc

7F — 1/O in progress

FF — End of file or end of device

SINGLE BYTE DATA - Byte 4. This byte is used by the system processor to return single byte
data requested by a non-1/0 SVC function. For an 1/0 requested SVC function, the system
processor will store the physical status of the device being accessed in this byte.

I/0 BYTE COUNT - Byte 5. In this byte, the system processor stores the actual number of bytes
of data input or output. For line oriented ASCII I/0 operations, this count is the actual number
of characters plus the end-of-line character. For binary /0O the count is the actua! number of
bytes. Byte 5, I/0 Byte Count, is also used with Byte 4, Single Byte Data, to return double byte
data requested by a non-1/0O SVC function (e.g., GET TIME).

-
<
oW

REV. A JUN 1077 8002 nPROCESSOR LAB SYSTEM L

[
[

m
)
2]

SERVICE CALLS
A S

1/0 BUFFER LENGTH - Byte 6. In this SRB byte, you store the maximum number of bytes for
i/0 that you wiii expect from the buffer.

/0 BUFFER POINTER - Bytes 7 and 8. These bytes point to the address of the I/0 buffer. The
location of this buffer must be in the first 16K page of program memory. Thisbufferis used for

data transfer to or from your program.

SVC Functions

Each of the SVC functions that may be referenced in byte 1 of the service request block is
described below.

ASSIGN CHANNEL - Code 10. A channel is assigned to a device or fiie by issuing an SVC in
your program using code 10 in byte 1. Then in byte 2, you specify the channel number in the
range of @ - 7. Bytes 7 and 8 reference the starting address of the device or file name. If a file is
named that does not exist, that file will be created and the system processor will store a @1 in
byte 3 - SRB status.

READ OR WRITE ASCII - Codes 01, 81, 82, and 82. An ASCii read or write function is
performed over the assigned channe! specified in byte 2. The maximum number of characters
that may beinatransactionis specified in byte 6 - 1/0O Buffer Length. Every ASCil line must be
terminated by a carriage return - @D hexadecimal. As a result, both byte 6 and the I/0 buffer
must be large enough to contain the ASCII line plus one character - the carriage return. The
system processor will store the status of the 1/O device in byte 3 and will store the actual
number of characters handled in byte 5. Again, the count of characters in the ASCII line

H o o +h H
includes the carriage return.

READ OR WRITE BINARY - Codes 41, C1, 42, and C2. A binary read or write function is
performed over the assigned channel specified in byte 2. The maximum number of characters
that may be in a transactionis specified in byte 6 - 1/O Buffer Length. The system processor will
store the actual number of characters handled in byte 5. Binary read and write operations are
performed according to byte count. Up to 256 bytes of data may be handled.

CLOSE CHANNEL - Code 03. The close function disconnects the given channel from the
device or file to which it was assigned. When the channel is assigned to a file on a flexible disc,
the data stored in the system memory buffer is output to the file and the disc directory is
updated to indicate the length of the file.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 10-7

SERVICE CALLS

e e

REWIND FILE - Code @4. The rewind function applies only to files on a flexible disc. Rewind
has the effect of positioning the file pointer to the beginning of the file. If a device other than a
file is assigned to the channel, the rewind function will be treated as a NOP.

When thefileis rewound, itis treated as if it had just been assigned. If the first operation for the
rewoundfileisaread, the dataisinputfrom the file inthe normal manner. If the first operation
from the rewound file is a write, the file is treated as if it were a new file.

DELETEFILE - Code @5. The delete function causes the file assigned to the given channel to be
deleted from the directory of the flexible disc. Also, the channel is disconnected from thefile. If
a device is assigned to the channel, the delete function will be treated the same as the close
function.

RENAME FILE - Code 06. To rename a file which has been assigned to the channel specified by
byte 2, the 170 buffer pointer (bytes 7 and 8) must contain the starting address of the new name
given asan ASCll line. Afile which is to be renamed must not be in the process of being read or
written. The file must have just been assigned or rewound. If a device has been assigned to the
channel specified in byte 2, the rename function will be treated as a NOP.

GETPARAMETER - Codes 13and 1C. Parameters in the command line of acommand invoking
an application program are stored in either a procedure buffer or an emulation bufferin system
memory. The parameters are identified by number according to the order in which they appear
in the command line and are stored as strings of ASCII characters terminated by an EOL
character. The desired parameter is requested as a number in byte 4 - single byte data. The
actual parameter is returned to program memory and stored as an ASCII line starting at the
location specified by bytes 7 and 8 - the I/0 buffer location.

When a command line is originally entered from the console, parameters are delimited by a
space, comma, or EOL character. A comma or space delimiter is replaced with an EOL
character before the parameter is stored in the parameter buffer in system memory. A
parameter may be omitted from an ordered sequence by two consecutive commas. When a
parameter is omitted, the first character stored by the system processor in the /O buffer for the
SVC will be an EOL character.

When the parameter number requested in byte 4 is greater than the number of parameters
included in the command line, the first byte in the I/O buffer for the SVC will be —1. The stored
value, —1, will be followed by an EQL character and byte 3 - the SRB Status will contain status
code @6.

10-8 REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM USER’S

SERVICE CALLS
B o e P e T e e

LOAD OVERLAY -Code 17. Overlays stored on a flexible disc may be loaded by a resident user
pregram. Each overlay must be stored on the disc as a ioad moduie compiete with beginning

and ending ioad addresses, and the address for starting execution. The resident user program

loads an overlay by first presetting data in the SRB; then completes the load sequence by

issuing the SVC.

The file name of the overlay is given as an ASClII string terminated by an EQL character. Bytes 7
and 8 of the SRB must point to the location of the string. The header information in the ioad
module determines where the overlay is to be loaded in memory. The result of the load
operation is stored in byte 4 - status, by the system processor. Execution of the overlay is not
started and control remains with the requesting program.

EXECUTE OVERLAY - Code 18. This function is called and performed in the same way as the
LOAD OVERLAY function. In addition to this, execution of the overlay is started after being
loaded. The EXECUTE OVERLAY function also provides the capability of chaining separate
programs.

GET OVERLAY ADDRESS - Code 12. The beginning and ending addresses along with the
execution address of the overlay are stored in six consecutive bytes starting at the address
given in bytes 7 and 8 of the specified i/O buffer. The first iwo bytes contain the beginning
address, the next twc bytes contain the ending address, and the iast two bytes contain the
address at which execution is to start.

SUSPEND EXECUTION - Code 19. This function will cause the requesting program to be
suspended at the location after the one where the SVC isissued. The program can be restarted
by entering the TEKDOS command CONT with the appropriate parameter.

EXIT - Code 1A. This function terminates program execution. The assigned channels will not
be closed.

ABORT -Code 1F. This function terminates program execution. However, all channels
assigned to the program will be ciosed.

GET TIME - Code 11, This function causes the accumulative time in milliseconds since start of
execution, to be stored in bytes 4 and 5 of the SRB. The time will notaccumulate if the ciock has
been disabled by the TEKDOS command CLOCK OFF.

GET DEVICE STATUS - Code 15. This function causes the status of the device assigned to the

channelin byte 2, to be stored in byte 4 of the SRB. Azero will be stored in byte 4 if a status is not
available.

8992 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 10-9

SERVICE CALLS

GETDEVICE TYPE - Code 14. This function causes the device type to be stored in byte 5. This
function also causes the identification number of the device assigned to the channel numberin
byte 2, to be stored in byte 4. The device name, the device identification number, and the device
type are shown in the table below.

Table 10-4
DEVICE IDENTIFICATION AND TYPE

1.D. TYPE
NAME DESCRIPTION NUMBER CODE
CONI Console Input 1 1
CONO Console Output 2 2
LPT1 Line Printer 3 2
TTYR TTY 6 1
PPTR Paper Tape Reader 8 1
PPTP Paper Tape Punch 9 2
REMI Remote Input 1A 1
REMO Remote Output 1B 1
Flexible Disc File Name —1 43

The device type is a code signifying the type of I/0O normallyperformed. The device types given
in Table 10-4 show the usual way in which the devices are used. A user program can read from
any inputdeviceineither ASCIi or binary. Also, a user program can write to any output device
in either ASCII or binary. The full iist of codes and a brief description are shown in Table 10-5.

Table 10-5
DEVICE TYPE CODE AND DESCRIPTION
TYPE
CODE DESCRIPTION
1 ASCII read
41 Binary read
2 ASCII write
42 Binary write
3 ASCII read/write
43 Binary read/write

-

©
—
)

REV. A IUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

SERVICE CALLS
T

GETLAST CONSOLEINPUT CHARACTER - Code 16. This function causes the last character
entered from the console terminal to be stored in byte 4 of the SRB. if sensed in a ioop whiie
performing extensive calculations or 1/0, this function provides the user program with a way of
responding to a request for attention or other action by you.

Table 10-6
SVC FUNCTION CODES (HEXADECIMAL)
CODE FUNCTION

10 Assign channel to device or channel
91 Read ASCIt and wait

81 Read ASCIii and proceed

@2 Write ASCI!I and wait

82 Write ASCII and proceed

41 Read binary and wait

C1 Read binary and proceed

42 Write binary and wait

Cz Write binary and proceed

@3 Close device or file on channel

04 Rewind file on channel

05 Delete file on channel

06 Rename file on channel

13 Get parameter (procedure parameter buffer)
1C Get parameter (emulation parameter buffer)
17 Load overlay

18 Execute overlay

12 Get overlay addresses

19 Suspend execution

1A Exit

1F Abort

11 Get time (milliseconds)

15 Get device status

14 Get device type

16 Get last console input character

8002 PROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 10-11

REAL-TIME PROTOTYPE ANALYZER

INTRODUCTION

The Real-Time Prototype Analyzer, Option 46, readily isolates prototype problems by
providing real-time tracing, event comparison, and expanded breakpoint capability. The
prototype address bus, the data bus, and eight selected locations on the prototype circuit
board can be dynamically monitored. During the final stages of system integration and
debugging, the analyzer can locate timing problems and hardware/software sequence
discrepancies.

The Real-Time Prototype Analyzer functions in all emulation modes, and its operation is
enhanced by the emulation and debug system modules.

CONTENTS
SECTION 11 REAL-TIME PROTOTYPE ANALYZER
INTRODUCTIONttt 11-1
DESCRIPTION . ..ottt 11-2
EVT e 11-4
BIF 11-7
RTT 11-8
DRT L 11-9
ONT L 11-10

8002 uPROCESSOR LAB SYSTEM USER’'S REV. A JUN 1977 11-1

REAL-TIME
PROTOTYPE ANALYZER

DESCRIPTION

Component parts of the Real-Time Prototype Analyzer are:

1. The Real-Time Protoype Analyzer module;
2. A Data Acquisition Interface; and
3. An 8-channel Data Acquisition Probe.

Theinterface and probe permit data transmission between the instrument being tested and the
analyzer. Data from the prototype is buffered and driven by the probe to the interface; then to
the analyzer module.

The real-time trace buffer, located within the module, can retain up to 128 data words. This
dynamic storage ability allows the analyzer to continuously store the last 128 program bus
transactions. Each 48-bit word contains a 16-bit address, 8-bit or 16-bit data from the system
bus, and 8 data bits from the test probes. The other 8 bits identify cycle type; read, write, 1/0
memory, or instruction fetch. An identification number assigned to each program starting
point permits displays to begin at the most recent start.

Two comparators within the analyzer module can halt program execution and stop or start
real-time trace. The comparators can be set to trigger on internal data, address, instruction
cycle type, input from the probe, or on any combination of these factors. Triggering can be
immediate, or can be delayed until n repetitions of the event combination have occurred. Delay
of n ciocks is aiso permitted, where ciocks can be trace stores, microseconds, miliiseconds,
instruction fetches, or 1/0 operations.

A breakpoint can be enabled so program execution can be halted at any time. Stored
transactions can then be displayed or printed, and register contents can be examined. Two
comparators (triggers) may be used as independent breakpoints, or they may be combined in
the ARM, LIM, IND, or FRZ modes. These modes are defined in the command descriptions
contained in this section. The program can be instructed to break when a Read or Write is
performed anywhere within a designated address range.

From the time the emulator processor is initiated, transactions are stored continuously until
the processor stops for any reason. Whether or not the halt is at a designated breakpoint,
contents of the real time trace buffer can be displayed in whole or in part. '

Memory mapping, while not part of the Real Time Prototype Analyzer, is used to enhance the
analyzer’s capabilities. The memory mapping feature divides program memory into 128-byte
blocks. One data bitin the buffer is then assigned to represent each block. The state of each bit
determines whether the represented transaction is routed tc program memory or to user

prototype memory.

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

REAL-TIME
PROTOTYPE ANALYZER

COMMANDS

The Real-Time Prototype Analyzer commands are described in the sequence shown in this

summary.

COMMAND FUNCTION SUMMARY PAGE

EVT Set or display event comparator trigger options. 11-4
BIF Set or clear break options. 11-7
RTT Select transaction type to be stored. 11-8
DRT Display real-time trace buffer contents. 11-9
CNT Set or display general purpose delay counter units count. 11-10

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 11-3

REAL-TIME
EVt PROTOTYPE ANALYZER

SYNTAX

EVT [n-trigger] [mode] [option Iist]

PURPOSE

The EVT command sets or displays event comparator trigger options.

EVT COMMAND PARAMETERS

The n-trigger parameter specifies which trigger is addressed: 1, 2, or both. Both triggers are
addressed when this parameter is not entered.

CLR clears all previously designated EVT command options.

Selected options (the option list) must be entered as parameter pairs consisting of an option
identifier and an option value. Pair members are separated by relational operators defined as
follows:
= 16 bit equality
—_— 16 bit equality
8 bit equality
> 16 bit greater than or equal

< 16 bit less than or equal

The EVT command is not effective while the TRACE command is active.

11-4 REV. B, MAR. 1978 8092 uPROCESSOR LAB SYSTEM USER'S

REAL-TIME

PROTOTYPE ANALYZER

EVt

Available options are shown in the following table.

OPTION
IDENTIFIER

A
D
T

80¢2 uPROCESSOR LAB SYSTEM USER'S

OPTION VALUE
0000 to FFFF
0000 to FFFF

-= 00000000 to
11111111

OPERATORS
-= >
-= Ll >

Mw

ALL
-= @ to 65535
-= @ to 65535

REV. B, MAR. 1978

FUNCTION

Hexadecimal bus address.

Hexadecimal bus data.

Test clip bits. "X"” may be

used to indicate "don’t
care”.

Bus options.
Instruction fetches only.
I/O address only.
Memory accesses only.
Read operations only.
Write operations only.
1/0 reads only.

i/0 writes only.
Memory reads only.
Memory writes only.
All bus activity.
Decimal pass count.

Decimal counter delay
units specified by CNT
command.

EVt

REAL-TIME
PROTOTYPE ANALYZER

11-6

Until the CLR option is entered, the EVT command can be used to modify previcusly entered
options.

The following options may be used in the mode parameter:

ARM — Trigger 1 arms EVT comparator 2. Trigger 2 subsequently arms EVT
Comparator 1.

LIM — EVT 1 and EVT 2 must both be satisfied to generate trigger 1.

IND — Trigger 1 and trigger 2 are independent.

CLR — All options are cleared from both comparators.

The EVT mode overrides the current BIF mode.

When entered without parameters, EVT displays the current status of event comparators 1 and
2.

EVT COMMAND EXAMPLES

EVT 1 CLR Clear EVT 1

EVT Display status of EVT 1 & 2

EVT 2 CLR A=2DCO Set EVT 2 to trigger on bus address = 2DCO base 16
EVT 2 B=MR Modify EVT 2 to respond to memory reads only

EVT CLR Clear EVT 1 & 2

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER’S

REAL-TIME
PROTOTYPE ANALYZER Bif

SYNTAX

BIF [n—trigger] [mode] [return-option]

PURPOSE

The BIF command sets or clears break options for the two event comparators.

BIF COMMAND PARAMETERS

The n-trigger parameter specifies which trigger is addressed: 1, 2, or both. Both triggers are
addressed when this parameter is not entered.

CLR clears all previously selected breaks.

Two return-options are available to contro!l execution after breaks. The default value, “S”
(step), returns control to TEKDOS at the console. "C” (cont) causes control to revert to the
program.

If the "mode” option is selected, one of the following parameters must be entered:

ARM — Trigger 1 arms EVT comparator 2. Break on trigger 2.

LiM — EVT 1 further includes EVT 2 address and control requirements.

IND — Trigger 1 and trigger 2 are independent and either or both may
generate a break.

CLR — Clear the selected breaks.

FRZ — Same as ARM. Additionally, the real time trace buffer is frozen
at trigger 1.

The BIF modes override previously entered EVT modes. if no parameters are entered, current
break options will be displayed.

At a break, a line of text will be displayed at the console. Information in the text line will be

contingent upon emulator type, but will contain the program counter value, program memory
register contents, and the instruction mnemonic.

8092 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 11-7

RTt

REAL-TIME
PROTOTYPE ANALYZER

X

SYNTAX

RTT [option]

PURPOSE

The RTT command selects or displays the transaction type stored in the real-time trace buffer.

RTT COMMAND PARAMETERS

The options available are:

F Instruction fetches only.

| 170 accesses only.

M Memory accesses only.
R Read operations only.
w Write operations only.
IR 1/0 reads only.

W I/0 writes only.

MR Memory reads only.
MW Memory writes only.
ALL All bus transactions.

If no option is entered, the existing RTT option will be displayed.

REV. A JUN 1977

8092 uPROCESSOR LAB SYSTEM USER’S

REAL-TIME
PROTOTYPE ANALYZER DRt

SYNTAX

DRT [option]

PURPOSE

The DRT command displays real-time trace buffer content.

DRT COMMAND PARAMETERS

if an asterisk (*) is entered as the option parameter, all buffered bus transactions will be
displayed.

if a number, n, is entered, n transactions will be displayed. DRT, without an option parameter,
displays only those transactions stored since the most recent program started. If none were

stored, none will be printed.

Transactions are displayed sequentially, from oldest to most recent. Blank lines will separate
items associated with each start.

Display format is as follows:

>DRT 10

LOC DATA MNEMONIC CLIPS BUSS
F8BF FE OPI 20000000 MRF
F8Co DA 00000000 MR
F8a1 08 RZ 00000000 MRF
IESD BA 00000000 MR
IESD 30 00000000 MR
30BA D3 ouT 00000000 MRF
3088 F3 00000000 MR
F3F3 PA 00000000 W
39BC 00 NOP 00000000 MRF
308D 76 HLT 00000000 MRF

>

8092 LPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 11-9

REAL-TIME
CNt PROTOTYPE ANALYZER

SYNTAX

CNT [option]

PURPOSE

The CNT command sets the general purpose delay counter count units, or displays the current
count value.

CNT COMMAND PARAMETERS

The available options are:

Bus instruction fetches.
Bus cycles.

Emulator clocks.
Real-time trace stores.

Microseconds.

2 C 4 »nw O =

Miiliseconds.
1 EVT 1 Compares.
2 EVT 2 Compares.

The delay counter will be reset whenever the program is started. The counter will “freeze” at
65,5634 if the count reaches that value.

When EVT or BIF arein ARM mode, the counter will not start until EVT 1 occurs. The count will
stop at the next occurrence of EVT 2,

11-10 REV. B, MAR. 1978 8002 uPROCESSOR LAB SYSTEM tISER'S

Section 12

INTER-SYSTEM COMMUNICATION

This section will contain a description of the methods, commands and parameters required to
effect communications between the 8002 uPROCESSOR LAB and another computer system.

One purpose for inter-system communications is to interchange developmental code and
data. '

Full information for the writing of this section is not available at the time of this printing.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 121

Appendix A

TEKDOS ERROR CODES

8002 yPROCESSOR LAB SYSTEM USER’'S

1 — DIRECTORY READ ERROR
2 — DIRECTORY WRITE ERROR
3 — COMMAND FILE NOT FOUND
4 — COMMAND FILE INPUT ERROR
5 — PROCEDURE BUSY
6 — DEVICE READ ERROR
7 — DEVICE WRITE ERROR OR
END-OF-DEVICE
8 — DRIVE NOT SPECIFIED
9 — INVALID DRIVE
10 — COMMAND LOAD FAILURE
11 — MEMORY AREA IN USE
12 — INVALID FILE NAME
13 — INPUT FILE NOT FOUND
14 — INVALID INPUT DEVICE
15 — INVALID OUTPUT DEVICE
16 — INPUT DEVICE ASSIGN FAILURE
17 — OUTPUT DEVICE ASSIGN FAILURE
18 — DEVICE IN USE
19 — INVALID CHANNEL NUMBER
20 — CHANNEL IS USE
21 — CHANNEL ASSIGN FAILURE
22 — COMMAND LINE BUFFER OVERFLOW
23 — INVALID COMMAND
24 — JOB NOT ACTIVE
25 — JOB NOT SUSPENDED
26 — JOB ALREADY SUSPENDED
27 — JOB EXECUTING
28 — JOB UNDER DEBUG CONTROL
29 — PROM POWER FAILURE
30 — INVALID PARAMETER
31 — PARAMETER REQUIRED
32 — TOO MANY PARAMETERS
33 — BIAS PARAMETER ERROR

REV. B, MAR. 1978

34 — INVALID ADDRESS

35 — INVALID START ADDRESS

36 — INVALID END ADDRESS

37 — INVALID GO ADDRESS

38 — INVALID DEBUG USER PROGRAM
ADDRESS

39 — INVALID HEX CHARACTER

49 — INVALID RHEX INPUT FORMAT

41 — INVALID BREAKPOINT ACCESS
MODE

42 — INVALID REGISTER PARAMETER

43 — INVALID DATA PARAMETER

44 — INVALID TRACE MODE PARAMETER

45 — INVALID EMULATOR SRB ADDRESS

46 — EMULATOR HALTED

47 — SYSTEM AREA BAD

48 — FETCH FILE NOT FOUND

49 — FETCH FILE ASSIGN FAILURE

50 — FILE NOT A FETCH MODULE

51 — INVALID FETCH REQUEST

52 — INVALID DEVICE

53 — INVALID EMULATOR PROCESSOR

54 — INVALID MODE

55 — INVALID MEMORY

56 — INVALID DEVICE ADDRESS

57 — FILE NAME IN USE

58 — DEVICE ASSIGN FAILURE

59 — MEMORY WRITE ERROR

60 — END OF MEDIA

61 — FILE IN USE

62 — DEVICE NOT OPERATIONAL

63 — DIRECTORY FULL

64 — INVALID DISC

65 — SYSTEM MEMORY PARITY ERROR

66 — PROGRAM MEMORY PARITY ERROR

A-1

EDITOR ERROR MESSAGES

This section provides a list of all Editor messages and an explanation of their meaning.

* % WSP FULL **
The buffer is full.

«x NOT FOUND #**
The given string could not be found.

** DISC FULL *=*
Output disc is full.

** NUMBER =* *
The parameter n is in error.

** RANGE * *
The parameter N is an error oran attempt was made to reference lines which are not in the
workspace.

** MODE **
An attempt was made to execute a macro string from within a macro string; this is not
allowed.

* % NEST **
The nesting brackets << and > do not balance.

** COMMAND? %=
An unknown command was encountered in the command line.

**x BREAK *x*
The ESCAPE Console Key was depressed to terminate execution of a file 1/0 function.

** PROCEDURE ERROR =* *
Editor usage is in error.

**x TEKDOS STAT=XX % =*
XX is the TEKDOS SRB status byte returned to the Editor when an unusual request or
event has occurred. The meaning of the status byte can be found in Chapter 10.

xx NO P| **
For this editing session there is no PRIMARY INPUT file; the user may not do "GET’s"
without specifying an Alternate Input file.

**x NO PO *=*
For this editing session there is no PRIMARY OUTPUT file; the user may notdo "PUT's”
without specifying an Alternate Output file.

** READ FILE? *=*
An attempt was made to read from a non-existent file or an illegal input device.

>
N
®
<o
@
1)
9

*# (INPUT) ®=x%
The Editor response is in reference to an input attempt.
*% (OUTPUT) *=*
The Editor response is in reference to an output atiempt.
% P| ok
kk PO %%
sk Al k%
* % AQ **
The Editor response occurred in reference to the Primary or Alternate Input or Output, as
applicable.

*% NEW FILE *=*
A new file was created.

x (LPT1) ®
The Editor response occurred in reference to the line printer.

**x ASSIGN PROBLEM =*x*

The Editor was unable to assign a channel to a given device.

*x PI=NEW FILE? *=*
An attempt was made to "EDIT INFILENAME OUTFILENAME" where INFILENAME and
OUTFILENAME were not the same file and INFILENAME was non-existent.

x% EOF %%
An end-of-file was reached on input or output or the end of workspace text was reached.

**NO FILES SPECIFIED *=*
The user initiated the Editor without specifying any primary files; for this editing session
the user may not do "GET’s” or "PUT’s"” without specifying an Alternate file.

** ABORTED **
A command line exceeded 128 characters and was rejected.

x=* TRUNCATED % *
An INPUT line exceeded 128 characters and was truncated to the first 128 characters
entered.

A SUBSTITUTE caused the line to exceed 128 characters and the line was truncated to 128
characters (see example in paragraph 6.5.5).

80@2 uPROCESSOR LAB SYSTEM USER'S @ A-3

Appendix B

CONTENTS

APPENDIXB TABLES
HEXADECIMAL-DECIMAL CONVERSION B3
HEXADECIMAL ADDITION B-5
HEXADECIMAL MULTIPLICATION B-7
POWERS OF 2 ...\ttt B-9
ASCII CODE CONVERSIONt B-11

8092 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977

TABLES

REV. A JUN 1977

[y}
o0

TABLES

[

HEXADECIMAL TO DECIMAL CONVERSION TABLE

HEX DEC HEX DEC HEX DEC HEX DEC
0000 0 000 0 00 0 0 0
1000 4,096 100 256 10 18 1 1
2000 8,192 200 512 20 32 2 2
3000 12,288 300 768 30 48 £
4000 16,384 400 1,024 40 64 4 4
5000 20,480 500 1,280 50 80 5 5
6000 24,576 600 1,536 60 96 6 6
7000 28,672 700 1,792 7 7
8000 32,768 800 2,048 80 128 8 8
9000 36,864 900 2,304 90 144 9 9
A000 40,960 A0O 2,560 A0 160 A 10
B0O0O 45,056 BO 176 B 11
C000 49,152 C00 3,072 Cco 192 C 12
D000 53,248 D00 3,328 DO 208 D 13
E000 57,344 EOO 3,584 EO 224 E 14
FOO 3,840 FO 240 F 15
HEX | FO00+B0O0+70+3=FB73
DEC | 61440+2816+ 112+ 3=64371

8002 uPROCESSOR LAB SYSTEM USER'S

REV. A JUN 1977

B-3

TABLES

R4 REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TABLES

HEXADECIMAL ADDITION TABLE

1]2]3fafls]el7]l8]lolalBlclDlE]F
1 2 3 4 5 6 7 8 Al B|C[DI]E F 110
2 3 4 5 6 7 8 9 B|C|D E F |10] 11
3 4 5 6 7 8 9 A C| D E F {110 |11] 12
4 5 6 7 8 9 A B D E F|l10} 11 [12| 13
5 6 7 8 9 A B! C E F {10111} 12 [13]| 14
6 7 8 9 A B C D F {10] 11|12 13 |14 | 15
7 8 9 A B|{C|D E 1011|112} 13|14 | 15| 16
8 9 A B| C D E F 11 (12 13|14 | 15 | 16 | 17
9 A B C| D E F 12 {13 14| 15| 16 | 17 | 18
A B, C|D E F 110 13114 | 15| 16 | 17 | 18 | 19
BB Ci! D E F 1101 11 14115 116 | 17] 18 | 19 | 1A
C D E F 12 15116 (17] 18] 19 | 1A | 1B
D E F 10 13 16 17 1 18| 19 1A 1B 1C
E F {10 | 11 1& 17 118 | 19| 1A | 1B |1C | 1D
S AN LS BN RN 18 19 1A 18 1C 1D 1E
HEX F+8 = 17
HEX 10 = 16 DEC
HEX 7 = 7 DEC
HEX 17 = 23 DEC

8062 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 B-5

TABLES

R-6 REV. A JUUN 1077 8002 /PROCESSOR LAB SYSTEM IISER'S

TABLES
L

HEXADECIMAL MULTIPLICATION TABLE

1| 2]3 AlBlc|DJE]F
1 [11 23 A B ,C|D EIF
2 | 2] 4686 14 [16 | 18 | 1A [1C | 1E
3 | 3| 609 1E | 21 | 24 | 27 | 2A| 2D
4 |4 8[C 28 [2C [30 | 34 | 38 [3C
5 | 5 A|F 32 | 37 | 3C | 41 | 46 | 4B
6 | 6 | C |12 3C | 42 | 48 | 4E | 54 | 5A
7 | 7 | E 15 46 | 4D | 54 | 5B | 62 | 69
8 [8 [10 50 | 58 | 60 | 68 | 70 | 78
9 19 12 5A | 63 | 6C | 75 | 7E | 87
A A 14]1E 64 | 6E | 78 | 82 | 8C | 96
B | B | 16|21 6E | 79 | 84 | 8F | 9A| A5
C [C | 18|24 78 | 84 | 90 | 9C | A8 | B4
D | D | 1Al 27 82 | 8F |9C | A9 | B6 | C3
E | E | 1C|2A 8C | 9A | A8 | B6 | C4| D2
F | F | 1E 2D 96 | A5 | B4 | C3|D2| E1

HEX 9x8 = 48

HEX 40 = 64 DEC

HEX 8 = 8 DEC

HEX 48 = 72 DEC

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 B-7

TABLES

B8 REV. A JUN 1977 2002 tPROCESSOR LAR SYSTEM LISER'S

TABLES

TABLE OF POWERSOF TWO
n 2"
c 1
1 2
3 8
4 16
5 32
6 64
7 128
] 512
10 1 024
11 2 048
12 4 096
13 8 192
14 16 384
15 32 768

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 B-9

TABLES

0
-
[}

REV. A JUN 1977 8002 uPROCESSOR LAB SYSTEM USER'S

TABLES

ASCIlI CODE CONVERSION TABLE

HEXADECIMAL

MOST SIGNIFICANT CHARACTER
— | o 1 2 3 4 5 6 7
B | NUL DLE SP © @ P ' p
1 |SOH DC1T ! 1 A Q a g
2 |STX DC2 " 2 B R b r
3 |ETX DC3 # 3 C S ¢ s
4 | EOT DC4 $ 4 D T d t
LEAST 5 |ENQ NAK % 5 E U e u
SIGNIFICANT 6 | ACK SYN & 6 F V. f v
CHARACTER 7 | BEL ETB ' 7 G W g w
8 BS CAN (8 H X h x
9 | HT EM) 9 I Y i |y
Al L suB * - 0 zZ | z
B! VT ESC + ; K [k |
C | FF FS ., < L v
D | CR Gs - = M] m |
E | soO RS . > N A n =
F S| us / ? O — o DEL
EXAMPLES
W =57
H =48
a =61
t=74
@ = 49
NUL = 00
DEL = 7F

8002 uPROCESSOR LAB SYSTEM USER'S REV. B, MAR. 1978 B-11

Appendix C

SYSTEM INSTALLATION

INTRODUCTION

This appendix describes unpacking, installation and interconnection instructions for the 89@2
UPROCESSOR LAB and Flexible Disc Unit. Refer to the individual peripheral manuals for
specific unpacking and installation procedures for these peripheral devices.

UNPACKING

The 8002 uPROCESSOR LAB and Flexible Disc Unit are shipped in separate cartons. Before
unpacking these units, inspect each carton for signs of external damage. If any damage is
detected, contact your Tektronix representative.

Unpacking the 8002 uPROCESSOR LAB

Tounpack the 8092 uPROCESSOR LAB, open the outer carton and remove the corner packing
supports. Lift the inner carton out and place on a flat surface. Remove the coiled power cord
taped to the top of the inner carton and set it aside until the unit is to be connected to the
primary power source. Open both ends of the inner carton and slide the 8092 uPROCESSOR
LAB out of the carton. Remove the piastic bag, cardboard packing and front panel protective
foam cushion from around the unit. The top cover is secured to the 8092 uPROCESSOR LAB
with three screws located along each side of the unit. Remove the screws and lift the top cover
straight up. Remove the protective foam cushion on top of the modules (printed circuit cards).

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 C-1

SYSTEM INSTALLATION
e e e e e

The recommended arrangement for the modules (printed circuit cards) is shownin Figure C-1.
The modules may be arranged in other configurations if the following guidelines are not

violated:

1. Positions 1 and 2 PROM programmer modules may be located in
either of these positions. (2 positions)

2. Positions 3 thru 8 The system modules may be located in any
position within this section. (6 positions)

3. Position 9 Debug/front panel module. (1 position)

4. Positions 10 thru 20 The program modules may be located in any.

position within this section. (11 positions)

Due to power supply limitations, no more than two emulator processor modules should be
installed in a 8092 uPROCESSOR LAB configured for 60 Hz operation. No more than one
emulator processor module should be installed in a 8982 uPROCESSOR LAB configured for

5@ Hz operation (special order).

e

-]

£
. | § e
® | = g -
El 8 S E

= -
g | & S £18
| 2 e | w | 8| >
[e} s| >l e8| &
- Ll g1 Q| 0
o | & Elo|g =8| E
2|y ElEiglzial e
o8 sislelgtiL 2

Ol2|a | €| 2
@ |~ Q-QE
o | o E|IE|E|o2|E| s ® ®
njisg|s|le|le|8lesisti2|glB|e2|eleg|2|e|e]e2]le}
RIR|IZ| 2|8 |2&8|2|8|2|2|8|8IE8|8|&8|8|8|&8|8
crld|lo|vlola|lala|l0|<|&|a|jnfa|n|la|a|a|r|a
m|e|w|le © 2lz|e(2(d|eleg|elg|e |8

s|81%9|13|18|18(5|18(8|S5|(s5|5|5|5|5(5|5({5|5]|8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1
I-”‘”“)""J——--svs SECTION PRGM s:scnom————I

PRGM DBUG

Front Panel 2313-21

Fig. C-1. Typical Module Arrangement for the 8802 yPROCESSOR LAB.

(@]
N
0
m
>
e=
>
a
(o]
N
3
»
1
3
o
bl
O
0
m
(7]
w
o}
0
I~
-]
[+)
w
<
(/]
—'
m
=
[
wn
m
x
w

SYSTEM INSTALLATION

NOTE

The location of a module within a section may be limited by the length of
interconnecting cables. :

After modules have been correctly positioned, make sure they are properly seated by pushing

them firmly into the sockets. The module’'s 188 pin edge connector is offset to prevent the
modules from being installed backwards. The ribbon cables and connectors within the 8002
uPROCESSOR LAB are installed prior to shipping. Make sure each connector is properly

seated. Figure C-2illustrates the correct location for each connector on the modules. Visually

inspect inside the unit for physical damage that might have been incurred during shipping. Do

not replace the top cover on the 8082 uPROCESSOR LAB at this time.

NOTE

The red wire on each cable designates the side of the cable plug that is connected to
pin 1 in the mating connector.

Unpacking the Flexible Disc Unit

To unpack the Flexible Disc Unit, follow the same procedure as for the 8802 yPROCESSOR
LAB. Remove the three screws along each side and lift the top cover straight up. Visually
inspect inside the unit for physical damage that might have been incurred during shipping.
Uncoil the Flexible Disc Unit interconnect cabie (Part No. 96014821) and feed it through the
channel opening provided in the rear panel. Replace the top cover on the Flexible Disc Unit.

INSTALLATION

The 8002 uPROCESSOR LAB and Flexible Disc Unit should be installed and operated on a flat
surface. The units should be close enough to each other for the interconnecting cables io
reach. (Figure C-3 shows the envelope dimensions for each unit.) Both units draw cooling air
through openings in the bottom of the cabinets. The air is expelled out the back by two fans.
These units should not be located where paper, plastic, carpeting or other materiais might
block the air intakes and cause overheating. Allow at least two inches clearance behind the
units so that the air flow is not restricted.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 C-3

SYSTEM INSTALLATION

I
L -
8 -1z
-y al®
e N 5 £
% g <) Probe Probe
2 a
(-] ~
[E .~ &
=] [<
2 F
° t ®
5 2 2
r 3 ~
A | System Control 8080 6800 Emulation
_.i Console Prototype Prototype Cable
({CRTor TTY) Control Control Assembly

FLI I'LH'"I [LI

U LJ LJLrJ

Data
Acquisition 101 J103 4100
Interface J102
—
5 g
: 3
] 5
g 3
a o
=
ol . & N P
@ E a 2 =]
£ °°L} 5 J—-— } b I | —
El & 5 2 é
2l 5 K] IN 8l 8 | o
5| g = & sle | &
< 3
) S Note 1 - o =
a] Q £]_ ®]——— - S
S|~ EH- E 2 5
Q 8 a i K} El
| F 3 £
: & | E -i =) ey :’ g 'g o] gl
<° o - = o - o)
2lh U s sl—gl——
a 26|m Sl “|w
o gsg o ol o
%3
7?a
PROM 1 PROM 2 Front Panel
r'Lu--1
8002 uProcessor Lab 2315-22
NOTES:

1. P2 to front panel cable used only when the Maintenance Front Panel is used on the uProcessor Lab.

2. All units shown {except Emulation Cable Assemblies) are connected to primary power source {115 or 230
Vac). Power cables not shown.

3. PROM 1 may be connected to either 1702A or 2704/2708 PROM Programmers. PROM 2 is connected only
to 2704/2708 PROM Programmer.

Fig. C-2. Typical Cabling Diagram of the 8302 uPROCESSOR LAB System Installation.

REV A JUN 1977 8002 4PROCESSOR LAB SYSTEM LISER'S

SYSTEM INSTALLATION
T —

- 18.842" e
#;WW_» o H | [T e \1

e g i

8.995" lj M@ @]} XF IL_ - \ I W' \}10,755"
' [/‘ e ;“__ J \
L S S

2313-23

Fig. C-3. 8002 uPROCESSOR LAB System Envelope Dimensions.

8002 uPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977 C-5

SYSTEM INSTALLATION

CABLE INTERCONNECTIONS

Refer to Figure C-2 for the system interconnect diagram. Connect the cables as follows:

1. Connect the Flexible Disc Unit to the 80082 uPROCESSOR LAB by routing the 4@ conductor
ribbon cable (Part No. 99014021) from the rear of the Flexible Disc Unit through the center
cableway on the rear panel of the 8002 uPROCESSOR LAB to P2 on the system processor
module. Make sure that pin 1 of the cable plug (red strip) is mated to pin 1 on P2. Replace the
top cover on the 8002 uPROCESSOR LAB.

2. Otherinterconnecting cables from optional or peripheral equipment must be accomplished
in accordance with Figure C-2 and the individual equipment manuals.

3. Auxilliary bus and ground connections are provided to the user from terminal block TB2
located on the back panel of the 8002 uPROCESSOR LAB. The following connections are
available on TB2 from within the 8002 uPROCESSOR LAB.

TB2-1 to auxilliary power bus lines
TB2-2 to logic ground bus lines
TB2-3 to chassis ground

NOTE
A shorting strap is instalied between TB2-2 and TB2-3 which provides a singie
common tie point between logic ground and chassis ground. In the event the
shorting strap is removed a one megohm resistor is provided between logic and
chassis ground.

POWER SOURCE

CAUTION

The 80082 uPROCESSOR LAB and Flexible Disc Unit are both designed to be
operated from a single-phase power source that has one of its current-carrying
conductors (neutral) at ground (earth) potential. Operating from other power
sources where both current-carrying conductors are live with respect to ground
(such as phase-to-phase on a multiphase system, or across the legs of a 119-220 volit

single-phase, three wire system) is not recommended, since only the line conductor
has over-current fuse) prnfgr\!r'o'n within the unit.

A0 UVGr TUUW UL (1 uwol FULCU L LR LS

C-6 REV. A JUN 1977 8002 LPROCESSOR LAB SYSTEM USER'S

SYSTEM INSTALLATION
e R R e R R S

The ac power connector is a three-wire polarized plug with one lead connected directly to the
instrument frame to provide electric shock protection. Connect this plug only to a three-wire
outiet which has a safety ground. If the unit is connected to any other power source, the unit

frames must be connected to a safety ground system.

The 8002 uPROCESSOR LAB and Flexible Disc Unit are both designed to operate froma 115-
230 volt nominal line voltage that has a frequency of 50-6@ Hz. The Flexible Disc Unitis factory
wired for 115 volts, 60 Hz operation; however, 230 volts, 50 Hz configuration is available by
special order. Each unit has a separate power cord and requires a separate outlet for the
primary power. The system power requirements are listed below:

8002 uPROCESSOR LAB 3.5 amps at 115 V, =10%, 60 Hz
2.0 amps at 230 V, =10%, 50 Hz
Flexible Disc Unit 3.0 amps at 115 V, =10%, 60 Hz

1.5 amps at 23@ V, +10%, 50 Hz

NOTE

The Fiexible Disc Unit has a warning sign above the primary input power jack stating
the unit is wired for a specific voitage and frequency at the factory.

The system fusing requirements for 115 volt or 23@ volt primary power source are listed below:

8002 uPROCESSOR LAB AMP VOLTS
Primary (F4) 6 A 115V
3A 230 V
+12 V Supply (F3) 2A 115V
1A 230V

Flexible Disc Unit
Primary (F1) 4 A 115 Vv
2A 230 V
Disc Drive {F3) 25 A 115V
15A 230V

WARNING I

Dangerous voltages exist at several places inside the units. Disconnect the 8002
UPROCESSOR LAB and Flexible Disc Unit from the power source before removing
or replacing the top cover. Only qualified technical personnel should attempt to
change the power supply jumper arrangement. Unfamiliarity with electronic
equipment and safety procedures can result in personal injury.

8002 uPROCESSOR LAB SYSTEM USER’S REV. A JUN 1977 C-7

SYSTEM INSTALLATION

c-8

REPACKAGING FOR SHIPMENT

If either the 8002 uPROCESSOR LAB or Flexible Disc Unit is to be shipped to a Tektronix
Service Center for service or repair, attach a tag showing: owner (with address), name of
individual at your firm that can be contacted, complete serial number, and a description of the
service required. If the original packaging is unfit for use or not available, repackage the

equipment as follows:

1. Obtainacarton of corrugated cardboard having in

sidedimensions of no less that six inches

more than the equipment dimensions; this allows for cushioning.

Refer to Table C-1 for carton strength requirements.

2. Surround the equipment with polyethylene sheeting to protect the finish.

3. Cushion the equipment on all sides with packing
carton and the sides of the equipment.

4. Seal with shipping tape or industrial stapler.

material or urethane foam between the

TABLE C-1
Shipping Carton Test Strength
Gross Weight Carton Test Strength

Pounds Kilograms Pounds Kilograms
0-10 0-3.73 200 746
10-30 3.73-11.19 275 102.5
30-120 11.19-44.76 375 140.0
120-140 44.76-52.22 500 186.5
140-160 52.22-59.68 600 223.8

REV. A JUN 1977

8092 uPROCESSOR LAB SYSTEM USER’S

8092 uPROCESSOR LAB SYSTEM USER’S

APPENDIX D
COMMAND INDEX

The minimum set of characters for each command is underlined.

COMMAND PAGE
ABORT ... 4-33
AGAIN 5-62
ASM . 6-2
ASSIGN 4-38
BEGIN 5-40
BIF 11-7
BKPT .o 8-20
BRIEF . .. 5-60
CLBP .\ 8-23
CLOCK . . 4-37
CLOSE ... 4-39
CMPF . 4-20
CNT 11-10
CONT oo 4-32
COPY (TEKDOS) . ..o 4-21
COPY (EDITOR)o, 5-26
COPYSYS ..\t 4-17
CPROM, 9-7
CSMS ... 9-9
CTRL-Z ..o\t 4-27
DEBUGooiiinniii. 8-11
DELETE, 4-19
DEVICE 4-36
DOWNo 5-38
DRT .. 11-9
DSTAT 8-18
DUP 4-15
DUMP 7-14
EDIT o 5-4
END ... 5-41
EMULATE (TEKDOS}ooo. .. 4-40
EMULATE (EMULATOR

ENVIRONMENT) 7-4
ESC (TEKDOS)ccoviin... 4-29
ESC(EDITOR)cooonon.. 5-57
EVT oo 11-4
EXAM ... 7-16

COMMAND PAGE
FETCH oottt 7-12
FILE © oot 5-14
FILL oot 7-23
FIND © .o it 5-42
FORMAT ...\t 4-10
GET .ot 5-17
GO 7-26
INPUT oo 5-11
ANSERT .o 5-13
KILL (TEKDOS) .\ oteanaee o 4-47
KILL (EDITOR) ...\ 5-48
LDIR .ot 4-18
LINK e 6-5
LIST ot 5-33
LOAD .ottt 7-10
MAP . 7-19
MACRO . ..ottt 5-54
MODULEt 7-11
MOVE ...\ttt 7-22
N oo 5-35
PATCH ...t 7-18
PRINT oo 4-24
PRINTL ..ot 4-24
PUT 5-21
PUTK oot 5-23
QUIT 5-59
RENAMEo, 4-13
BEPLACE\t 5-46
RESET .ttt 8-26
RHEX .o 7-9
RPROM ...t 9-5
BSMS ..o 9-10
BTT ot 11-8
RUBOUT ..., 4-28

- REV. A JUN 1977

)
N}

COMMAND PAGE
SET ... 8-24
Space Bar (TEKDOS) 4-26
Space Bar (EDITOR) 5-56
STATUS ... 7-28
SUBSTITUTE, 5-44
SUSPEND 4-31
SYSTEM 4-35
TAB .. 5-51
TABS 5-53
TRACE 8-12
TYPE(TEKDOS) 4-48
JYPE(EDITOR) 5-32

REVY. A JUN 1977

COMMAND INDEX

8002 uPROCESSOR LAB SYSTEM USER'S

APPENDIX E
SOFTWARE ERROR REPORT FORMS

You may feel that you have discovered an error in the software for the 8802 uPROCESSOR

LAB. Piease fill out one of the following Software Performance Reports, describing the errorin
as much detail as possible. Also indicate whether the error is predictably repetitive or only
occurs randomly.

When you have completed the Software Performance Report, please mail the report to

Tektronix, inc., LDP, Group 132, P.O. Box 500, Beaverton, Oregon 97005. Postage is prepaid
by Tektronix, Inc. A reply will be forthcoming.

8002 ,PROCESSOR LAB SYSTEM USER’S REV. A JUN 1977

E-1

N
wl

eme Tektronix

Address COTTEO TOBXGRnE
LDP
Phone Exi i SOFTWARE
PERFORMANCE

Date REPORT
Software Title REASON FOR REPORT PRIORITY

O Design Failure O Low
Version O Software Error O Standard
Release O Documentation Error O High

O Suggestion
Date

Is the error reproducible? O Yes O No
Type (for 8080, 6800, etc) O iniermittent
SYSTEM CONFIGURATION
0] O 8002
EMULATORS O 8080 O 6800 O 280 O 9900 O Others
OPTIONS O R.T.P. Analyzer PROM PGMER: QO 1702 O 2708 O Others
PROGRAM MEMORY O 16K O 32K O 48K O 64K
PERIPHERALS O CT8100 O CT8101 O LP8200 O Others

DESCRIPTION OF PROBLEM (Please attach any listings if available).

Please send to: TEKTRONIX, INC, LDP, GROUP 132, P.O. Box 500, Beaverton, OR 97005

REPLY [Date

Error #

Signed

8002 LPROCESSOR LAB SYSTEM USER'S REV. A JUN 1977

FOLD

FIRST CLASS
PERMIT NO. 61
BEAVERTON, OREGON

BUSINESS REPLY MAIL

No postage necessary if mailed in the United States

Postage will be paid by

TEKTRONIX, INC.

LOGIC DEVELOPMENT PRODUCTS
GROUP 132

P. O. Box 500

Beaverton, Oregon 97005

FOLD o FOLD

l]!'l
E Y

REV. A JUN 1

«)
~1
~l
[- 1]
EI
N
r
b
X
(«}
(4]
m
u)
(7]
[«]
X
r
>
44}
[/7]
-
g
m
2
[=
7
m
x
wn

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	00a
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	12-01
	12-02
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	E-02
	replyA
	replyB

