Tektronix:

COMMITTED TO EXCELLENCE

8002A

#PROCESSOR LAB

8080A/8085A

ASSEMBLER & EMULATOR
USER’S MANUAL
Opt. 1,5,16,20,31&35

Tektronix, Inc.
P.O. Box 500

Beaverton, Oregon 97077 Serial Number
070-2702-01

First Printing JUL 1978

WARRANTY

The 8001/8002A uProcessor Lab System and options, excluding customer supplied equipment,
is warranted against defective materials and workmanship, under normal use, for a period of
ninety (90) days from date of shipment. CRTs found to be defective after the ninety (90) day
period and up to twelve (12) months from date of shipment will be exchanged at no charge for the
material. Tektronix will repair or replace, at its option, those System components which
Tektronix determines to be defective within the warranty period.

In addition, in those areas where Tektronix has service centers available for this system, on-site
warranty repair is provided at no charge during the first ninety (90) days from date of shipment.

Tektronix shall be under no obligation to furnish warranty service if:

a. Attempts to install, repair, or service the equipment are made by personnel other then
Tektronix service representatives.

b. Modifications are made to the hardware or software by personnel other than Tektronix
service representatives.

c. Damage results from connecting the 8001/8002A uProcessor Lab System to
incompatible equipment.

There is no implied warranty for fitness of purpose. Tektronix is not liable for consequential
damages.

Copyright © 1978, 1979 by Tektronix, Inc. All rights reserved. Contents of this
publication may not be reproduced in any form without the permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents
and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, TELEQUIPMENT, and are registered
trademarks of Tektronix, Inc.

Printed in U.S.A. Specification and price change privileges are reserved.

8002A:8080A/8085A Users

CONTENTS

Page

SECTION 1 TEKTRONIX 8080A/8085A ASSEMBLER INTRODUCTION
Assembier INPUL e e e 1-1
Assembler QUIPDUTot i e e e e e e 11

SECTION 2 ASSEMBLER SOURCE MODULE FORMAT

Introduction. e e e e 2-1
8080A/8085A Symbolic Statement Format 2-1
The Label Field. e 2-2
The Operation Field. i i e e e e 2-3
The Operand Field. e e 2-3
The Comment Field. i e e 2-7
Using Symbolso e e e 2-8
Programmer-Defined Symbols 2-8
Pre-defined Symbols e 29
Rules for CreatingSymbols. e 29
Numeric Values. 2-9
Scalar Values e e e 2-9
Address Values e e 2-10
Notation Rules for SpecifyingConstants 2-10
Numeric Constants it i i e e e 2-10
StriNG CONStaNTSo i e e e e 2-11
NU StriNgs o e e e e e e 2-11
String to Numeric Conversion i 2-11
Expressions Permitted inthe Operand Field 2-12
FUNCTIONS . o it e et e e e e et e e e e e 2-13
Hierarchy of Expression Operators and Functions 2-14
Description of Expression Operators and Functions. 2-15
Binary ArithmeticOperators ottt e 2-15
Unary Operators i i i e e e e e e e 2-16
Relational Operators i it it it e e e 2-16
Numeric Comparisonsvuu e innenenaneneo... 216
String CompParisOns vt v it e e e e e e e 2-17
String Concatenation e 2-18
Functions e e 2-18
String Variables. 2-21
SET StriNgs - . o i e e 2-22
String Text Substitution e 2-22

REV B MARCH 1979

Contents— 8002A:8080A/8085A Users

Page

SECTION 3 STATEMENT SYNTAX CONVENTIONS
INtrOdUCHION. + v v v v e e et e e e e e e e e e e e 3-1
Tektronix Assembler Statement Syntax., i i 3-1
Use of Upper and Lower Case Letters and Punctuation. 31
Blank Fields. v i e e e e 3-1
Bracesand Brackets. i i e e e 3-2
Trailling Dots ottt e 3-2
TEKDOS Statement SYyntaXt vv it ittt e e e 3-2
Command Nameot e e e e e e e 3-2
DElimMiterS . o ot o e e e e e e s 3-3
ParAmMIE IS . . . e e e e e e e e e e 3-3
Bracesand Brackets. v v v i e s 3-3
Trailing Dots . . .ot i e e s 3-3

SECTION 4 ASSEMBLER DIRECTIVES

INtrodUCHION. « o o i i e e i e e e e e 441
Listing Format Control Directives. oo, 4-3
LIST and NOLIST o i e e e e e e 4-4
Assembler Listing Format Control Options. 4-4
Macro Listing Format Control Options v 4-5
Linker Listing Format Control Option. 4-5
Conventions for ListingControl. 4-6
PAGE . .. e e 4-7
SPACE e e e e 4-9
TITLE. .o o e e e e 4-11
STHITLE . . ot e e e e e 4-12
WARNING. e e e e e e 4-13
Symbol Definition Directives. 4-14
EQU . . .t e e e e e e 4-15
STRING . ..ttt e e e e 4-16
SET ot e e 4-17
Location Counter Control Directive 4-19
ORG . . . e e e s 4-19
Data Storage Control Directivest 4-21
BY TE . . ot e e e 4-22
WORD oottt e e e e e e e 4-23
ASCI . o e e e 4-24
BLOCK . o vt it e e e e e e 4-26
Macro Definition Directives. ittt i e e 4-27
MACRO . .ttt e e e 4.28
EN DM, L e e e 4-29
REPEATand ENDR i e 4-30
INCLUDE . . ottt i e e e e e e e e 4-31
Conditional Assembly Directiveso i 4-32
IF,ELSE,and ENDIF e 4-33
EX TN L e e 4-35

i REV B MARCH 1979

Contents—8002A: 8080A/8085A Users

SECTION 4

SECTION 5

REV B MARCH 1979

Page

ASSEMBLER DIRECTIVES (cont)

Section Definition Directives.o i e 4-36
Relocation Optionso it i e e e e 4-36
SECTION ... e e 4-37
COMMON | e 4-38
RESERVE e e e 4-39
RESUME. i e e e e e e 4-40
GLOBAL. e e 4-41
NAME. © . e e e 4-42

Module Termination Directive i e 4-43
END . . e e 4-43

MACROS

ItroduUcCtion. e e e e 5-1

Basic Macro Expansion Processo i e e 5-1

Macro Definition Directive e 5-2
Macro Definition Directive Conventions. 5-2

Macro Definition Block i i e 5-2
Source Code Alteration i 5-3
Additional Special Macro Definition Characters. 5-3

The @ Character i i i e e e e 5-3
The #Character e e 5.4
The % Character i i et i e e e e 5-4
The 1 or A Character in Macro Definition 5-5

Macro Termination i it e 5-6

Macro Callingo oo i e e e 5-5
INCLUDE Directive Text Insertion. 5-5
Text Substitution e 5-6
Special Macro CallingCharacters 5-6

The [1 Construct e 5-6
The tor ASymbolinMacro Calls, 5-7
Additional Macro Argument Conventions. 5-7

ERamMIPIES. o it e e e 5-8

Conditional Assembly e e 5-10
Nesting e e e 5-10
Conditional Macro Termination i 5-11

Examples. e e e e 5-11
IF—ENDIF BIOCKS. . . . o i i e e e e e e e e e e e 5-11
REPEAT—ENDR Blocks. i i i 5-12

Macro ExXpansion SUMMary.ottt 5-13

Contents—8002A: 8080A/8085A Users

Page
SECTION 6 ASSEMBLER OPERATING PROCEDURES
INtroduction. o e e e 6-1
PUMDOSE . . o i e e e 6-1
EXplanation i e e e e e e e e e e 6-1
Assembly Completion e e 6-2
SECTION 7 ASSEMBLER LISTING FORMAT
INtrodUCtioN. o e e e e e e e 7-1
The Assembler Listing e 71
Headings v vttt e e e e 7-1
The Listing Line e e 7-2
Error Responseo it e e e 7-3
The Symbol Table. e 7-4
SECTION 8 ASSEMBLER OBJECT MODULE APPLICATION
INtrodUCHION. . . .o it e e e e e s 8-1
Program Loading and Execution. 8-1
LOAD . .. e e e 8-2
GO . e e e e 8-3
SECTION 9 THE LIBRARY GENERATOR
INtroduction. e e e 91
Invoking LIBGEN e e e 9-1
Command File Invocation. i i 9-1
Interactive Invocation 9-2
LIBGEN Commandsottt it i e e e e e e e e 9-3
LIBGEN Execution i e e e e 9-5
LIBGEN QULPUL . . .o vt it vt e et et e e e e e e e e et et e 9-5
= 0 9-6
Non-Fatal Errors.o i e e e e 9-6
Fatal Errors . . . oo v it e e e e e s 9-7
ReStriCtiONS . . o o it e e e e 9-8
EXampPIes. . ot e e e e e 9-8
SECTION 10 THE LINKER
INtrodUCTION. & . ot i e e e e e e e e e e e e e 10-1
Linker Invocation e e 10-2
Simple Invocation e e 10-3
Interactive Command Invocation, 10-4
Command File Invocation. it i e e 10-5
Linker Commands. o .ttt e e s 10-6
Command Processing Errors e 10-8

iv REV B MARCH 1979

Contents—8002A: 8080A/8085A Users

SECTION 10

SECTION 11

SECTION 12

SECTION 13

SECTION 14

REV B MARCH 1979

Page

THE LINKER (cont)

Linker EXECULION . . o v v o o e e e e e e e e e 10-9
Program SECtioNS. . . . v v v i e 10-9
The Default SeCtion. . . . v v it e e e e s 10-11
Memory Allocation of Sections i 10-11
ENDREL. . ottt e e e i e 10-11
Linking the Library File oo 10-12

Linker QUIPUL . . oot it e e e et it e e e e 10-12
Linker Listing File.ot 10-12

Global Symbol List 10-12

Internal Symbol List 10-13

MaD .« ot e e e 10-14

Linker Statistics & . v v v v v e e e e e e 10-156

Error MBSSages . . o o o vt v it e e e e e 10-15

Load Flle. . . v o e e e e e e 10-18
8080A/8085A SERVICE CALLS

INtrOdUCHION. .« v e e e e e e e e e e e e e e e e 111

The 8080A/8085A SVC Operation. v vt it e i e e e 1-2

8080A/8085A DEBUGGING

Nt OQUCHION. o e e e e e e e e e e 1241

TRACE e e e 12-2
The Trace Modes. . . . o i e e e e e e et e e 12-2
The Trace Line . . . oo vttt e e e e e e e e 12-3
Trace Line Terminationo v vttt i et ettt e e 12-3

DS T AT . . s e e e e 12-6

L] = 129

DISM L ottt e e e e e 12-12

RESET .ottt s e e e e e e e e e e 12-13

8080A REAL-TIME PROTOTYPE ANALYZER

PROTOTYPE CONTROL PROBE

IEEOGUCTION. + o v v v e e e e e e e e e 1A

Description and Installation. e 1441

Operation e e 14-5

SECTION 15

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F
APPENDIX G

APPENDIX H

Contents—8002A: 8080A/8085A Users

Page
8080A CONVERTER
INtrodUCHION. . . o ot e e e e e e e e e e 15-1
Replacements. . o v v v et e e s 15-2
Incompatibilities.o i s 15-4
ArtAMELIC . . . o ot e e e e e e e e 154
EXpression Operators.o v vt vt it it i i e 156
Macro Call Parameters oo o it e i et e e s 15-5
Scope of Symbols 15-6
StringCapability s 15-6
Incompatibility Warnings 15-6
OutpUt FOrmat. . . .o ot e e 15-7
SOURCE MODULE CHARACTERSET A-1
ASSEMBLER DIRECTIVES
Assemnbly Directive Syntaxo ittt B-3
SUMMARY OF 8080A/8085A INSTRUCTIONS
Data Transfer InstruCtions. v v vt i e i e e e e e C-5
Register Increment and Decrement Instructions C-5
Arithmetic INStrUCtiONS o o v it i e e e e e e e s C-6
Logical Instructions. i s C-7
Rotate InstruCtions v v i i ittt e e e e e e Cc-7
Branch INStruCtions o v v v it i e e e i e C-7
Stack INSErUCHIONS . & & v e et e e e e e e e e e C-1
Input/Output INStrUCtioNs. it C-12
Interrupt and Control Instructions oo Cc-12
SERVICE CALL FUNCTIONCODES D-1
HEXADECIMAL CONVERSION TABLES
ASCIHI Code CONVErSION . . v v v v v ot it e e et e et e et e e e e e e E-1
Decimal-Hexadecimal-Binary Equivalents. L E-2
Hexadecimal Addition oo oo vt e e e E-3
Hexadecimal Multiplication. ot E-4
ASSEMBLER ERRORCODES F-1
RESERVEDWORDS G-1
OBJECTCODE OF INSTRUCTIONS H-1

REV B MARCH 1879

8002A:8080A/8085A Users

ABOUT THIS MANUAL

This manual explains 8002A uProcessor Lab assembly, linking, converting and emulation
procedures for 8080A/8085A-based microcomputer development. The user should be
familiar with hexadecimal and binary number systems, and with ASCIl character code. It is
especially helpful if your programming background includes assembly language experience.

The manual describes all Tektronix 8080A/8085A Assembler features and procedures in
detail. These include: the basic source module format; all assembler. directives; macro
capability; assembled listing and object module formats; procedures for linking assembled
object code; and procedures for converting Intel source code into Tektronix source code.
Assembler operating procedures are discussed in this manual and in the source code.
Assembler operating procedures are discussed in this manual and in the Tektronix 8002A
pProcessor Lab System User’s Manual.

The closing sections provide a detailed description of emulation procedures specific to
8080A/8085A-based microprocessor development, including 8080A/8085A service calls,
debugging, and prototype control probe specifics.

The appendices contain essential summarized information and conversion tables. Appendix C
is an alphabetical summary of 8080A/8085A assembly language instructions. Appendix F
lists all error codes, messages, and their associated explanations.

Throughout this manual, zeros are slashed where needed for clarity.

REV B MARCH 1979 vii

8080A/8085A Users

8002A

o
,m&&imv

o
.

Fig. 1-1. The 8002A uProcessor Lab System with optional CT8100 CRT Terminal and 8080A/8085A Prototype Control Probe.

8002A:8080A/8085A Users

Section 1
TEKTRONIX 8080A/8085A
ASSEMBLER INTRODUCTION

ASSEMBLER INPUT

The Tektronix 8080A/8085A Assembler translates user-written programs (Assembler source
files) into executable binary format (object files). The user’s program must be written in
8080A/8085A symbolic notation (assembly language), and becomes the Assembler source
file for Assembler operation. User-written programs can be entered into disc files with the
text editor program, using procedures described in the Tektronix 8002A pProcessor Lab
System User’s Manuai. If the Assembler source file is contained in more than one flexible
disc file, each file name must be specified by assemble (ASM) command parameters.

All valid input devices can originate Assembler input. The Assembler reads the Assembler
source file twice, once for each pass. When it encounters an END directive or reads the end
of the last file during the first pass, the Assembler begins the second pass and starts
assembly.

ASSEMBLER OUTPUT

Assembler output comprises an object module, Assembler listings, and appropriate
information messages. The object module contains executable binary instructions and data

constants translated from the source file. The entire object module must be linked, if it
contains relocatable code, and then loaded into program memory in order to be executed on

LJ.alddi) LOUE Lallou VIOl WV WU TATVULY

the 8080A/8085A Emulator Processor.

Assembler listings are composed of line numbers, the generated object code, and the source
code as entered in the source file. Wherever an error is detected, an error code is printed on
the dispiay device and on the listing to specify the nature of the problem.

Following the source code listing, a symbol table alphabetically lists all symbols entered in
the program. The table also gives the hexadecimal value of each symbol and indicates
undefined symbois. Below the symbol table, a message indicates the number of source lines,
the number of assembled lines, the number of bytes available, and the number of errors and
undefined symbols.

To transfer the Assembler listing and object module to a disc, output file names are entered
as ASM command parameters. To transfer Assembier listing and object modules to an output
device (such as a line printer) instead of a file, the name of the device is specified as the ASM
command parameter.

REV B MARCH 1979

Tektronix 8080A/8085A Assembler Introduction
8002A:8080A/8085A Users

The Tektronix Assembier makes two passes through the source file. The first pass
determines the number of storage bytes required for each statement, and assigns a starting
address value for the first byte of each statement line. The location counter, set to zero
before the first pass begins, advances after each statement is read. This action effectively
generates the starting address for each statement. The symbol table is also constructed
during the first pass. During the second pass, the source file and the symbol table are used to
generate the object module and the listings.

After assembly completion, each line containing an error is output to the display device, with
an error code specifying the nature of the error. Below all error displays, a message
indicates the number of source lines, the number of assembled lines, the number of bytes
available, and the number of any errors or undefined symbols. f an irrecoverable error
prevents assembly completion, the program aborts and an error code indicates the cause.

1-2 REV B MARCH 1979

8002A:8080A /8085A Users

Section 2
ASSEMBLER SOURCE FILE FORMAT

INTRODUCTION

Symbolic 8080A/8085A instructions, Assembler directives, macro calls, and explanatory
comments form the Assembler source file. Each 8080A/8085A source file statement must
be entered according to the Tektronix 8O80A/8085A -Assembler format. When translated by
the Assembler, the source file becomes the obejct module to be executed.

Three types of Assembler source file statements may be used:
1. 8080A/8085A symbolic instructions,
2. Assembler directives, and

3. macro calls.

8080A/8085A SYMBOLIC STATEMENT FORMAT

Each Assembler source file line may contain up to 128 characters, and is terminated by a
carriage return. Allowable Assembler source file characters are detailed in Appendix A.
Blank lines can be used to improve readability of the source file listing. The blank lines do not
affect the translated program.

Each 8080A/8085A instruction, Assembler directive, or macro call consists of four fields:
the label field, the operation field, the operand field, and the comment field. During program

assembly, each 8080A/8085A source file instruction is translated by the Assembler into
one, two, or three, bytes of code in the object module. The length depends upon the

instruction type, and the number and type of operands required.

The tabel field, when used, must begin in the first character position of a line. The operation
and operand fields must begin anywhere after the first character position and end in any line
character position within the 128-character range. The comment field may begin in any line
character position and must end within the 128-character range. Field sequence may not be
changed, however, and the correct order can only be as follows.

LABEL OPERATION OPERAND COMMENT

Throughout this manual, this field sequencing format is shown above each source line to
illustrate proper Assembier source line formatting.

REV B MARCH 1979

Assembler Source File Format—8002A:8080A/8085A Users

Readability is improved when each field in the source file begins at a constant position within
the line. This columnar format can be easily implemented by using the tab setting function to

define field starting positions. Fig. 2-1 is an example of a properly formatted 8080A/8085A
Assembler source file.

LABEL DOPERATION OPERAND COMMENT
STRING 51(80) i DEFINE STRING VARIABLE S1 WITH
i BO-CHARACTER MAXIMUM
L1 EQU 3 ; DEFINE CONSTANT SYMBOL L1 TO EGQUAL 3
La SET 4 i DEFINE VARIABLE SYMBOL L2 TO EQUAL 4
ORG 100H i STARTS OBJECT CODE OF NEXT
i INSTRUCTION AT 100H
MOV ArM ; LOAD REG. A WITH CONTENTS OF MEMORY
i POINTED TO BY HL REGISTER PAIR.
END i END OF PROGRAM

Fig. 2-1. Properly Formatted 8080A/8085A Program.

A general description of the characteristics of each source file field follows. The entire
8080A /8085A instruction set is listed in Appendix C. The Tektronix Assembler directives are
described in Section 4 and listed in Appendix B. Macro calls are described in Section 5.

The Label Field

Labels represent addresses associated with locations in a source file. Labels may be used in
all 8080A/8085A instructions macro calls, and Assembler directives. Every label must be
unique within each Assembler source file. Duplicate labels prevent proper program execution
and cause an error code to appear on the display device and in the Assembler listing. The
label field, when used, must start in the first character position of the line. A blank or tab

terminates the label field; therefore, imbedded blanks or tabs are not permitted within the
field.

The EQU and SET directives are the only statements requiring label usage. In all other
directives, label usage is optional. EQU and SET directives alwavs equate the reguired label
to the constant or expression value in the operand field. The SET directive allows the
assigned symbol value to be modified; the EQU directive does not. For all other directives, the
label meaning is dependent upon the particular directive. Generally, the label translates to
the memory address of data or a data constant value. A label in an 8080A/8085A instruction
translates to the address of the first byte of the instruction.

ORG and BLOCK directives must contain constants or operand symbols that have aiready
been defined. Operands in aii other directives may reference iabei symbols that are defined
in later statements.

2-2 REV C MARCH 1979

Assembler Source File Format—8002A:8080A /8085A Users

e

The Operation Field

The operation field contains the mnemonic operation code for an 8080A/8085A symbolic
instruction, an Assembler directive, or a macro call. The mnemonic specifies the operation or
function to be performed at program execution time, or by the Assembler during program
translation and assembly. An instruction specifies the object code to be generated and the
action to be performed on any operands that follow. An Assembler directive specifies certain
actions to be performed during assembly and might not generate any object code. The macro
call specifies the macro definition block to be expanded.

The operation field begins after the label field is terminated. If the label is omitted, the
operation field may begin anywhere after the first character position in the line. The
operation field is terminated by one or more spaces, by a tab or carriage return, or by a
semicolon indicating the start of a comment field.

If the operation field does not contain an 8080A/8085A instruction, an Assembler directive,
or a macro call, the Assembler rejects the entire statement and prints an error code. Three
bytes of zero value are generated by the Assembler to fill the area where a valid instruction
would otherwise have been stored.

The Operand Field

The operand field specifies values or locations required for the given Assembler directive,
instruction, or macro call. The operand field, if present, begins after the operation field is
terminated. Spaces may be used in the operand field. Two or more operands are separated by
commas. The field is terminated by a carriage return, or by a semicolon indicating the start of
a comment field.

The operation code (appearing in the operation field) determines the type and number of
items required for the operand field. If more than one item is required, the sequence of item
appearance is determined by the operation code.

Operands required for macro calls and Assembler directives are discussed in Sections 4 and
5, and summarized in Appendix B.

Seven types of information are permitted in the instruction operand field. Each instruction

determines the operand types and their proper sequence. Refer to Appendix C for a summary
of 8080A/8085A instruction requirements.

REV C MARCH 1979 2.3

Assembler Source File Format— 8002A:8080A/8085A Users

The following list defines the seven operand item types and their required syntax for
8080A/8085A instructions:

Operand Item Type Operand Item Syntax
1) An 8080A/8085A 8-bit register B
containing the operand data. C
D
E
H
L
A
2) An B080A/8085A 16-bit register B
pair address containing the operand D
data. H
PSW
SP
3} A memory indicator for the M
address containing the operand
data and pointed to by the H,L
register pair.
4) An 8-bit data or address constant Expression
within the range, — 128 to 255. An
immediate value.
5) A 16-bit data or address constant Expression
within the range, 0 to 65,535. An
immediate value.
6) An 8-bit {/0O device address within Expression
the range, 0 to 255.
7) A 16-bit absolute memory address Expression

within the range, 0 to 65,535,

containing the operand data,

2-4 REV C MARCH 1979

Assembler Source File Format— 8002A:8080A/8085A Users

“

Several 8080A/8085A instructions operate on data in the seven 8-bit registers. The operand
field for these instructions must contain the register symbol or register value for each
register involved. Pre-defined register values are as follows:

Register Symbol Register Value
B 0
C 1
D 2
E 3
H 4
L 5
A 7

The register pair symbois B, D, H, and PSW each represent two 8080A/8085A registers. The
register pairs are used in combination and function as though they were one 16-bit register.
Register pair symbols are as follows:

Register Symbol Register Value Register Content
B oH High byte in B; low byte in
C.
D 2 High byte in D; low byte in
E.
H 4 - High byte in H; low byte in
L.
PSW 6 Register A is high byte.

Low byte contains sign,
zero, half carry, parity,
and carry flags.

The SP register pair symbol represents the 16-bit stack pointer register. Like the PSW
register pair, the SP register value is 6. Instructions using either the PSW or SP pointer
register pairs are mutually exclusive so that no conflicts can arise.

REV B MARCH 1979 2-5

i e e -

The memory indicator symbol "M” can appear in any operand where a register symbol is
acceptable. The M indicates that data is to be obtained from or stored to memory instead of a
register. Memory location M is pointed to by the H,L register pair. For example, the
instruction below stores the contents of register B to the memory location contained in
registers H and L.

>MOQOV M,B
The symbol for the Assembler location counter contents “$” can appear in any operand item

where a memory address is allowed. The $ represents the memory address of the first byte in
the statement containing the $. For example, the following two instruction sequences are

equivalent:
LABEL OPERATION OPERAND COMMENT
10 TIMER DCR c ; DECREMENT € REGISTER,
s LABEL INSTRUCTION TIMER
JNZ TIMER i JUMP BACK IF C NON-ZERO
2) DCR c ; DECREMENT € REGISTER
JINZ $-1 i JUMP BACK IF C NON-ZERD

The $ represents the address of the first byte in the JNZ instruction. Since the DCR
instruction takes one byte, $—1 represents the first byte in the preceding instruction.

Caution should be exercised when using the $ symbol, since program logic errors could
result. In the preceding example, an error might occur if an instruction were inserted
between the DCR and JNZ instructions without changing the $—1 expression. Inserting an
instruction in the first exampie requires no other changes.

The symbols for the 8080A/8085A registers, register pairs, and memory address registers
have been predefined by the Assembler. Any data constant, I/O device address, or memory
address in the operand field may be represented by expressions. An expression may consist
of the following:

1. a single number,

2. a string constant,

3. a symbol, or

4. multiple numbers, string constants, and/or symbols combined with arithmetic and/or
logical operations.

The Assembler evaluates an expression in the operand field of a statement. If the expression

violates permissible limits for the operand field, an error code is displayed. Additional
information concerning expressions appears later in this section.

2-6 REV B MARCH 1979

Assembler Source File Format—8002A:8080A/8085A Users

L]

Any symbol appearing in the operand field that is not predefined by the Assembler (see
Predefined Symbols in this section) must be defined in the label field of an EQU and SET
directive or any 8080A/8085A instruction in the Assembler source file, or in the operand
field of a GLOBAL, STRING, SECTION, COMMON, or RESERVE directive.

A statement may contain both the operand symbol and its label definition, as in the case of
an instruction that branches to itself. For example:

LABEL OPERATION OPERAND COMMENT

HERE Jz HERE i HANG HERE IF LAST RESULT
i IS EQUAL TO ZERO

Typically, however, the symbol is defined in another statement. If the symbol is not defined in
any statement, an error code is displayed. Additionally, symbols appearing in the operand
field of SET, EQU, ORG, and BLOCK directives must have been defined in the label field of a
previous statement. Operand symbols in all other statements may be defined in the label
fields of later statements.

If an illegal item appears in the operand field, the Assembler flags the item with an error
code on the display device and in the listing. All operand expressions are processed by the
Assembler to obtain 16-bit results. The Assembler ignores any overflow conditions that

occur while evaluating expressions. If the operand item requires an 8-bit value and the value
represented is greater than 8-bits, an error code is displayed and the Assembler processes
only the lower eight bits of the 16-bit value. An undefined value in the operand field is
treated as zero, and causes an error.

The Comment Field

Programs containing comments are more readable, and hence easier to debug and modify.
The optional comment field begins with a semicolon, is terminated by a carriage return, and
follows all other statement fields. If no other fields are used, the comment field may begin
anywhere in the statement.

String and macro substitution may be performed in the comment field. (Refer to the
subsection entitled String Text Substitution and to Section 5 for discussion of string and
macro substitution.) Since the single quote character signals substitution, the character must
be preceded by a caret (A) or up-arrow (1) character when used for purposes other than
substitution.

REV C MARCH 1979 2.7

Assembier Source Fiie Format— 8002A:8080A/8085A Users

USING SYMBOLS

Symbol usage makes a program easier to read and modify, and reduces the risk of error
during program modification. Symbols are defined when they appear in the label field of
8080A/8085A instructions, macro calls, and Assembler directives, or in the operand field of
GLOBAL, SECTION, COMMON, RESERVE, MACRO, or STRING directives. Once defined,

symbols can be used in the operation and operand fields of 8080A/8085A instructions,
macro calls, and Assembler directives.

A symbol label in an 8080A/8085A instruction represents the address of the first byte of
that instruction. Such a label allows the user to transfer control (jump or call) to an
instruction without knowing its absolute address. To transfer control, place the instruction
symbol in the operand field of the jump or call instruction.

The meaning of a label symbol used as an operand for an Assembler directive is dependent
upon the directive. Generally, the symbol represents the memory address of data or a data
constant vatue. Through the use of symbols, the directive operand field can refer to a data
constant or a memory data area without regard to the absolute memory address. This is
especially helpful when modifying a data constant frequently referred to by other statements.
The programmer need only change the defining statement, rather than all statements
referencing the constant.

Some symbols are created by the programmer, and others are predefined by the Assembler.

Programmer-Defined Symbols

Programmer-defined symbols are assigned values during the Assembler’s first pass. Operand
fields referring to the symbols are translated during the Assembler’s second pass. The ORG
and BLOCK directives each alter the contents of the Assembler location counter during both
Assembler passes. Because the alteration value is specified in the operand field of the ORG
and BLOCK directives, any symbol appearing in the operand field of these directives must
also be defined in the label field of a previous statement in the Assembler source file. The
EQU directive operand field may contain a forward reference to a symbol, if the symbol does

not appear in the operand field of an ORG, BLOCK, or another EQU directive. Forward
referencing operand symbols are, however, allowed in all other statements,

Redefinition of symbols is generally not allowed. A previously defined SET symbol, however,
may be redefined in another SET directive.

REV B MARCH 1979

Assembler Source File Format— 8002A:8080A/8085A Users

e

Pre-defined Symbols

Certain words are reserved as predefined symbol names for use in the operation and operand
fields of source programs. Among these words are the following register symbols, Assembler
directives, instruction mnemonics, Assembler listing options and operators.

1. The contents of 8-bit registers are specified by the character corresponding to the
register name. The register names are A, B, C, D, E, H, and L.

2. The contents of 16-bit double registers and register pairs consisting of two 8-bit
registers are specified by the two characters corresponding to the register name or
register pair. The double register names are PSW and SP. The register pair names are
BC, DE, and HL.

3. The 8080A/8085A instruction mnemonics (refer to Appendices C and G).

4. The Tektronix Assembler directives, options, and operators (refer to Appendices B and
G).

5. The Tektronix Assembler directives reserved for future use (refer to Appendix G).
6. Memory indicator “M" referencing address pointed to by H,L register pair.

Refer to Appendix G for a complete list of reserved words for the 8080A/8085A Assembiler.

Rules of Creating Symbols

The first character in a symbol must be alphabetic. The remainder of the symbol may be
composed of the following characters: the letters A through Z; the numbers @ through 9; and
the special characters, . (period), — (underscore), and $ (dollar sign). Lowercase letters are
interpreted in their uppercase form. A symboi may contain up to eight characters. Oniy the
first eight characters of the symbol are used; excess characters are ignored. All predefined
symbols are reserved words and cannot be redefined.

NUMERIC VALUES

The Assembler defines two types of numeric values, scalars and addresses. Scalar values
represent arbitrary numeric values. Address values represent actual memory locations within
a program.

Scalar Values

Scalar values are signed integers ranging from —32,768 to +32,767. Scalar values serve as
counting values in a program, rather than as actual references to memory locations. Scalar
values are completely defined upon assembly.

REV C MARCH 1979 29

Assembler Source File Format— 8002A:8080A/8085A Users

Address Values

Address values represent actual memory locations within a user program. Address values
are unsigned numbers ranging from O to 65,535. The Assembler produces relocatable object
code, that is, object code whose locations are defined during linking (see Section 10). Upon
assembly, address values are relative to an Assembler-defined section (or starting point).
Therefore, actual memory locations associated with address values are unknown until after
the linking process occurs.

More than one address base may exist within a given assembly. The user may define
additional address bases by issuing a SECTION, COMMON, or RESERVE directive. Refer to
Section 4 describing these directives and their relocation options. Since an address value
lacks complete definition upon assembly, address value usage is more restrictive than scalar
value usage. A unique location counter exists for each Assembler-defined base in a user
program. The $ symbol (current location counter contents) represents an address value.

NOTATION RULES FOR SPECIFYING CONSTANTS

Constants may be either numeric or string constants.

Numeric Constants

Numbers are integers and are assumed to be decimal uniess otherwise specified. This means
that a number without a suffix is evaluated according to the decimal number base. A suffix
letter code must be used to specify a radix other than decimal. The following suffixes are
used:

1. H for hexadecimal. For example: 35H

All numbers must begin with a numeric digit; therefore, a zero must precede all
hexadecimal numbers beginning with the hexadecimal digits A through F. For
example:

PB5H and @FFH
2. O (capital o, not zero) or Q for octal. For example: 760 and 76Q
3. B for binary. For example: 10110110B
Leading zeros are appended to or truncated from constants to produce 8- or 16-bit values as

required by the particular operand. Blanks are not permitted within a numeric constant. Refer
to Appendix E for hexadecimal, decimal, and binary number conversion tables.

2-10 REV B MARCH 1979

Assembler Source File Format—8002A:8080A/8085A Users

e

String Constants

In addition to symbols and numeric constants, operations may aiso contain string constants.
String constants can be generated by using ASCII strings. ASCIl {American Standard Code
for Information Interchange) is a standard code for representing characters transmitted
between the computer and periphera! devices such as teletypes, printers, and terminals.
String constants and variables may be combined into string expressions using special
operators. A string expression may be used anywhere a normai expression is aiiowed. String
constants are written by enclosing ASCII characters within double quotes (”). A string
constant may contain any character within the source code character set, except a carriage
return.

A double quote character may be included within a string by preceding it with a caret
character (A). The caret character removes the special meaning from any character and
allows the special character to be treated as a regular part of the text. A caret may aiso be
included within a string by entering two carets. Examples of string constants and caret usage

follow:
“ABCADEF” results in the string ABCDEF
123N "'34" results in the string 12334
AN results in the string A

Null Strings

A string containing zero characters is a null string. A null string is entered as two double
quotes without intervening text ().

String to Numeric Conversion

If a string expression is used where a numeric value is required, the string is automatically
converted to a numeric value. The numeric value of a string is defined as follows:

The numeric value of the null string (") is zero.

The numeric value of a one-character string is a 16-bit value whose high order nine bits
are zeros and whose low order seven bits contain the ASCIlI code for the character.

The numeric value of a two-character string is a 16-bit value as well. In this case, the
ASCII code for the leftmost character is in the high-order byte. The ASCIl code for the
second character from the left is in the low-order byte.

The numeric value of a string longer than two characters is the numeric value of the
leftmost two characters in the string. An error code is displayed when this occurs.

REV B MARCH 1979 2-11

Assembler Source File Format—8002A:8080A/8085A Users

2-12

Examples of string to numeric conversion follow. The numeric values for ASCIl characters

are found in Appendix E.

String Numeric Value
s 11 w
YA 414
12" 3132H
123" 3132H (truncation error occurs

EXPRESSIONS PERMITTED IN
THE OPERAND FIELD

The operand field may contain an expression consisting of one or more terms acted on by
expression operators. A term is either a symbol, a numeric constant, a string constant, or an
expression enclosed within parentheses. The value of a term may be an address, a scalar
value, or undefined. Spaces are permitted within an expression; the Assembler reduces the
expression to a single value. When an invalid term is used, the display device and the listing
show an error code, and the value of the expression is undefined.

The following outline lists the expression operators and functions. A chart describing the
hierarchy of all expression operators and functions follows this summary. Each expression
operator and function is then described in greater detail, completing the discussion.

Unary Arithmetic Cperators Relational Operators

Operator Meaning Operator Meaning
+ identity = equal
— sign inversion <> not equal
. . . > greater than
Blnal'y Arlthmet'c Opel’atOl’S > = greater than or equal
Operator Meaning < less than
* multiplication <= less than or equal
/ division Bi .
inary Logical Operators
+ addition Y 9 P]
—_ Subtraction Opﬂrator Mean'ng
MOD remainder & and
SHL shift left ! inclusive or
SHR shift right 1 exclusive or

Unary Logical Operator String Concatenation Operators

Operator Meaning Operator Meaning

\ not (bit inversion) string concatenation

REV B MARCH 1879

Assembler Source File Format—8002A:8080A/8085A Users

Functions
HI! {exp)

Returns the most significant byte of a numeric expression. The expression may be either
an address or a scalar value. If an address is specified as the Hl function argument,
subsequent operations must not be performed on the HI function argument, subsequent
operators must not be performed on the HI function result. The HI function result is
numeric.

LO (exp)

Returns the lest significant byte of a numeric expression. The expression may be either an
address or a scalar value. If an address is specified as the LO function argument,
subsequent operations must not be performed on the LO function result. The LO function
result is numeric.

DEF (sym)

Returns —1 (true) if the symbol has been previously defined in this pass. Otherwise,
returns O (false). The DEF function result is numeric.

SEG (string expression,expl,exp2)
Extracts exp2 characters from the specified string, starting with the character, exp1. If the
end of the string is encountered before exp2 characters are extracted, only those
characters up to the string end are extracted. Both exp1 and exp2 must be scalar values.
The SEG function result is a string.

NCHR (string expression)

Datiirne tha aAnirrant niimhar af charantare in tha enanifind atrima Car o atrina varinhla tha
TICLUIITIYD UIT LVUHIGIIL TIUWNTIVOT Vi VIIIATAaulilTl o 1) LT °pc\:l|lcu oL IIIU- TVl g ounl vaiiauvic, uic
length returned may be less than the length defined by the STRING directive. The NCHR

function result is numeric.

ENDOF (section name)
Upon linking, the ENDOF function returns the address of the last byte of the specified
section. The symbol specified in this function must be a global symbol. If the symbol is not
a section name, the address of the symboi is returned. Further operations may be
performed on the result of ENDOF, provided the operations are allowed for address values.
The ENDOF function resuit is numeric.

BASE (exp1,exp2)

Returns —1 (true) if the two expressions, exp1 and exp2, share the same base. Otherwise,
returns O (false). The BASE function result is numeric.

REV B MARCH 1979 2-13

2-14

Assembler Source File Format—8002A:8080A/8085A Users

STRING (exp)

Returns the value of the expression as a six-character string. The five rightmost characters
represent the decimal value of the expression; the leftmost character indicates whether
the number is positive or negative. If the leftmost character is a minus, “—", the number is
negative. If that character is a zero, "0”, the number is positive. The expression must be a
scalar value.

SCALAR (exp)

Converts the address value of the expression to a scalar value.

Hierarchy of Expression Operators and Functions

In multiple-operator expressions, operators and functions are evaluated in the order of their
precedence. Table 2-1 illustrates this hierarchy. The functions at the top of the table have the
highest precedence. The operators at the bottom of the table have the lowest precedence. All
expression operators and functions located on the same line have equal precedence, and are
evaluated from left to right. Parentheses may be used to override the order of precedence.
Parentheses are evaluated from inward to outward. The most deeply parenthesized
subexpressions are evaluated first.

If the expression entered is too complex for the Assembler to translate, an expression error
code is displayed. This does not occur when parentheses nesting depth is three or less.

Tabie 2-1
Hierarchy of Expression Operators and Functions

LO HI SEG NCHR DEF ENDOF BASE STRING SCALAR
— (unary plus and minus} \

+ — (unary plus and minus) \

* / SHL SHR MOD

+ — (addition and subtraction)

= <> < <= >=

|

REV B MARCH 1979

Assembler Source File Format—8002A:8080A/8085A Users

Description of Expression Operators and Functions

in addition to the arithmetic {(+, — ¥, /) and logical {\, &, !, !l} operators, several other
operators and functions are allowed within numeric expressions. These operators and
functions provide additional arithmetic functions and a means for comparing numeric
guantities.

Binary Arithmetic Operators

Binary arithmetic operators act on numeric values, which may be scalar or address values.
Scalar values may appear within arithmetic operations in any combination. Only the followig
binary arithmetic operations are permitted when acting upon addresses:

SCALAR VALUE + ADDRESS = ADDRESS
ADDRESS + SCALAR VALUE = ADDRESS
ADDRESS — SCALAR VALUE = ADDRESS
ADDRESS — ADDRESS = SCALAR VALUE (Both addresses must be

based to the same section.)

Any other combination of address terms yields an undefined result.

MOD is a binary operator that computes the remainder when the first operand is divided by
the second operand. For example, an instruction entered as A MOD B yields the remainder
resulting from A/B. The following program segment demonstrates MOD operator usage.

LABEL OPERATION OPERAND COMMENT

AX EQU S5 MOD 2 ;AX IS SET TO 1, SINCE 5/2 YIELDS
i A REMAINDER OF 1

BX EQU 14 MOD AX i BX IS SET TO O, SINCE 14/1 YIELDS
i A REMAINDER OF O

CX EGU (BX+29)MOD 25 ;CX I8 SET TO 4, SINCE 0+29 YIELDS 29
; AND 29/25 YIELDS A REMAINDER OF 4

DX EQU (=5) MOD 2 ;DX 18 SET TO -1, SINCE -5/2 YIELDS

i A REMAINDER OF -1

SHL and SHR are binary operators that shift their first operands the number of bit positions
specified by their second operands.

SHL performs a left logical shift (equivalent to multiplying by two). Zeros are shifted into the
right end of the 16-bit value. Bits shifted out of the leftmost bit position are lost.

SHR performs a right logical shift. Zeros are shifted into the leftmost bit positions. Bits
shifted from the rightmost bit position are lost. Shifts of 16 or more bits generate a result of
zero and produce a truncation error code. The following program segment demonstrates SHL
and SHR operator usage.

REV B MARCH 1979 2-15

2-16

Assembler Source File Format— 8002A:8080A/8085A Users

LABEL OPERATION OPERAND COMMENT

DX EQU 1 SHL 1 i VALUE ASSEIGNED TO DX IS5 2, SINCE
iA SHIFT LEFT ONCE CAUSES 1 TO BE
i MULTIPLIED BY 2

EX EQU DX SHR 1 i VALUE ASSIGNED TO EX IS 1 SINCE DX
i (2) SHIFTED RIGHT IN A BINARY
i FAGSHION YIELDS 1

FX EQU O06EOH SHL 3 i VALUE ASSIGNED TO FX IS 3700H.
i SINCE 2 CUBED IS 8, AND 8 TIMES
i O6EOH IS 3700H

GX EQU OFFFFH SHR 16 i VALUE ASSIGNED TO 6X IS 0. SINCE

i ANY NUMBER SHIFTED 16 TIMES IN
i BINARY YIELDS O

Unary Operators

All unary operators may act upon scalar values. The plus sign (+) is the only unary operator
permitted to act upon addresses.

Relational Operators
The relational operators include =, < >, >, <, <=, and >=, Relational operators allow signed
numeric, unsigned numeric, and string comparisons.

Numeric Comparisons

If either of the operands of a relational operator is numeric, the relational operators perform
signed or unsigned numeric comparisons. A signed numeric comparison is performed on two
scalar values, a string and a scalar value, or a scalar and a string value. An unsigned
numeric comparison is performed whenever one of the operands is an address. Comparison
of two addresses based in different sections results in an undefined value. These
comparisons are summarized in the following table.

STRING SCALAR ADDRESS
STRING String Comparison Signed Numeric Unsigned Numeric
Comparison Comparison
SCALAR Signed Numeric Signed Numeric Unsigned Numeric
Comparison Comparison Comparison
ADDRESS Unsigned Numeric Unsigned Numeric Unsigned Numeric
Comparison Comparison Comparison

REV A MARCH 1979

Assembler Source File Format—8002A:8080A/8085A Users

If a comparison is performed between an address and a string or scalar value, the base of the
address is first added to the string or scalar value. If two addresses are compared, they must
have the same base, or an error results.

For signed comparisons, numbers range from —32768 to 32767. For unsigned comparisons,
numbers range from @ to @FFFFH (65,535).

An operator in a numeric comparison determines whether the specified relationship exists
between its two operands. The resulting value is O if the relationship is false and —1
(QFFFFH) if the relationship is true. Examples of relational operator usage follow.

LABEL OPERATIDN OPERAND COMMENT

T " EQU -5>7 i VALUE ASSIGNED TO T IS O, SINCE -5
+ IS NOT GREATER THAN 7

P EQU 7>==9 i VALUE ASSIGNED 70 P IS -1, SINCE 7
i 1S GREATER THAN -5

U EQU TP ; VALUE ASSIGNED TO U IS8 -1, SINCE T

; IS NOT EQUAL TO P

String Comparisons

The relational operators (=, < >, >, <, <=, >=) may be used to compare the values of two string
expressions. When strings are compared using these relational operators, the comparison is
made numerically, according to the ASCII collating sequence. Refer to Appendix E for the
correct character ordering sequence of ASCIl characters.

String comparison is performed only when both operands of a relational operator are strings.
If only one of the operands of a relational operator is a string, the string is converted to a
scalar value and a numeric comparison is performed.

String comparison always proceeds from left to right. If two strings are equal through the last
character of the shorter string, the shorter string is considered to be less than the longer
string.

Examples of string comparisons follow.

“AB"="AB" results in -1 (true)

“AB" <> “AB” results in O (false)

“A> B results in 0, since A is less than B

“ABC" > “AAAA" results in -1, since B is greater than A

“ABC’ > ""ABC" results in @, since '“ABC’ has three characters and

“ABC’ has four including the final space

e results in -1, since a null string is less than a
blank character

1< results in -1, since the numeric value of the

ASCI!1 character “1" is 31H and is
greater than 1.

REV A MARCH 1979 2-17

Assembler Source File Format—8002A:8080A/8085A Users

2-18

String Concatenation

The concatenation operation combines two strings into a single string. The operator used to
specify string concatenation is the colon (:). The colon may be used to concatenate any two
string expressions. An error occurs when an attempt is made to concatenate two numeric
values or a string and a numeric value. Examples of string concatenation follow:

“ABY results in “AB"

A results in ' since two null strings produce a
null string

YAt resultsin “AB", since a null string and a character
produce the character

IIA!I:II £ results in IIAI X

“ABC": 174112 results in “ABC12"

Functions

HI and LO are unary functions that respectively extract the high- and low-order eight bits of
their operands. References to Hl or LO are written as single argument functions. The value to
be acted on appears in parentheses, following the keyword Hl or LO. If this value is an
address, further operations on the result of HI or LO are not allowed. Examples of HI and LO
function usage follow:

LABEL OPERATION OPERAND COMMENT

IXB EQU HI(OCOOFH) i VALUE ASSIGNED TO IXB IS COH
JX EQU LO{OCOOFH) i VALUE ASSIGNED TO JX IS OFH
KX EQU LO(HI(OCOOFH)+1); VALUE ASSIGNED TO KX IS C1H
z EQU S+L0(Q) ; INVALID WHEN @ IS AN ADDRESS

DEF is a unary function that determines whether a symbol has already been defined. DEF is
referenced as a single-argument function. The argument must be a symbol and may not be
an expression. ! the argument symbo! has already been defined, the value of DEF is —1
(@FFFFH). If the argument has not been defined, the value of DEF is O. A pre-defined symbol
used as an argument causes an error. Examples of DEF function usage follow.

LABEL OPERATION OPERAND COMMENT
MK EQU DEF (K) i VALUE ASSIGNED TO MK IS -1 IF K
i 1S ALREADY DEFINED
Q EQU DEF (N) i VALUE ASSIGNED 70 @ IS O
i IF N IS UNDEFINED
RX EQU DEF (RX) i VALUE ASSIGNED IS 0. THE SYMBOL ON

i THE LEFT OF THE EGQU DIRECTIVE IS
s UNDEFINED UNTIL THE EXPRESSION
i ON THE RIGHT IS EVALUATED

S WORD DEF(S) iA WORD OF OBJECT CODE CONTAINING
i OFFFFH(-1) IS GENERATED. THE LABEL
i ON THE WORD STATEMENT IS UNDEFINED
i BEFORE THE STATEMENT IS EVALUATED

REV A MARCH 1979

Assembler Source File Format—8002A:8080A/8085A Users

The SEG function (segmentation) is used to extract a portion of a string. The SEG function
uses three arguments. The first argument is the string (or string expression) from which a
substring is to be extracted. The second argument is a numeric expression specifying the
position of the leftmost character of the string where the substring is to be extracted.
Characters within the string are numbered from left to right, starting with 1. The third
argument is a numeric expression specifying the number of characters to be extracted. The
specified characters are extracted unless the end of the string is encountered first. In this
case, only those characters up to the end of the string are extracted. The following examples
illustrate properties of the SEG function:

SEG(“ABCD",2,2) results in “BC"

SEG("“ABCD",1,4) results in “ABCD"

SEG(""ABCD",3,3) results in “CcD”

SEG(“ABCD" 5,2) results in **(the null string, resulting in zero
characters)

SEG("ABCD",3,0) resuits in

The NCHR function may be used to determine the number of characters in a string
expression. NCHR is referenced as a single-argument function. Its argument is the string
expression whose length is to be determined. The result of NCHR is numeric and not a strmg
vaiue. The foliowing examples iilustrate NCHR function usage.

NCHR (") results in ()
NCHR("“ABC*) resuits in 3
NCHR(SEG({'"XYZ",2,1) results in 1
SEG(""ABC’ NCHR("“ABC"),1) results in "C", since C is the last character

of “ARCH
A TA\LI

The ENDOF function returns the address of the last byte of a section. The argument for
ENDOF must be the section name whose ending address is to be determined. An example of
ENDOF usage follows:

LLABEL OPERATION OPERAND COMMENT
hESERVE STACK, 100H i NAMES A SECTION, STACK AND
i ALLOCATES AT LEAST 254 BYTES

LXI SP, ENDOF (STACK) ; LOAD STACK REGISTER WITH THE END
. i OF THE STACK

REV A MARCH 1979 2-19

Assembler Source File Format— 8002A:8080A/8085A Users

The BASE function determines whether two expressions share the same base. If the
expressions share the same base, the value of BASE is true (dFFFFH). Otherwise, the value
of BASE is false (0). In the following examples, Q, R, and ZZ represent addresses where Q
and R share a common base, while ZZ does not.

BASE (Q,R) results in @FFFFH (true)

BASE (Q,Q+15) results in OFFFFH (true)

BSSE (Z2Z,Q) results in @ (false)

BASE (Q,0-R) results in 0 (false) because Q- R is scalar

BASE (5,15) results in OFFFFH (true) because 5 and 15 are
both scalar

BASE (5,Q-R) results in OFFFFH (true)

BASE (5,Z2Z- Q) results in Error since subtraction is not valid

between addresses with different bases

The STRING function returns the decimal value of an expression as a six-character string.
The expression must be a scalar value. When the value does not fill six digits, leading zeros
appear in the resulting string. If the expression value is negative, a minus sign is placed in
the leftmost position in the resulting string. Examples of STRING function results follow:

STRING(b5) results in 000005
STRING(5+15) results in “000020*
STRING(@FFH) results in ‘000255
STRING(- @FFH) results in - 00255"

The SCALAR function converts the address value of the expression to a scalar value. The
resulting scalar value is equal to the displacement of the address value from the address
value's base. Upon linking, the resulting scalar value might not be the same as the final
value of the expression. The SCALAR function does not affect scalar-valued expressions.

2-20 REV A MARCH 1979

Assembler Source File Format— 8002A:8080A/8085A Users

An example of scalar conversion follows:

LABEL OPERATION OPERAND COMMENT
SECTION X ; DEFINES A NEW SECTION
;i NAMED X
Al ORG 7 i ADVANCES LOCATION COUNTER
; TO ADDRESS 7. ASSIGNS ADDRESS
i 7 TO Al
WORD SCALAR (%) MOD 2 ; CONVERTS ADDRESS 7 TO SCALAR

i VALUE. PERFORMS 7/2 AND
i RETAINS REMAINDER 1
i ALLOCATES ONE WORD TO

i VALUE 1
SECTION ASDF i DEFINES NEW SECTION
i NAMED ASDF
A2 ORG & ;s ADVANCES LDCATION

i COUNTER TO ADDRESS & WITHIN

i SECTION ASDF. ASSIGNS & TO A2
WORD SCALAR (A1)+SCALAR(AZ) i ALLOCATES ONE WORD

i CONTAINING SCALAR VALUE 13

Note that if the SCALAR function were not entered in the above WORD directives, an error
would result. Scalar values are unaffected by changes in address base. Thus, in the above
program, the scalar result of the operation WORD SCALAR(A1)+SCALAR(A2) remains
unchanged no matter what base values are assigned to sections X and ASDF upon linking.

STRING VARIABLES

String variables enchance the value of string expressions by providing a means for storing
string expression values. A string variable is a symbol with an associated string value, and is
created by use of the STRING directive.

maximum character length of the value to be stored in the string variable may be specified by
entering a numeric expression in the operand field. When this optional character iength
expression is not specified, an eight-character length is assumed. In the following example, a
string variable is defined as STRVAR, with a maximum character length of 16.

LABEL OPERATION OPERAND

STRING STRVAR(164)

For further discussion of the STRING directive, refer to Section 4, Assembler Directives.

REV A MARCH 1979 2-21

Assembler Source File Format— 8002A:8080A/8085A Users

e

2-22

SET Strings

The SET directive assigns a string expression value to a string variable defined with the
STRING directive. The string variable is entered in the label field of the SET directive; the
string expression is entered in the operand field. The string expression value is evaluated and
assigned to the string variable. If the resulting string expression’s length is longer than the
maximum string variable length, the string expression is truncated before assignment, and
an error code is displayed. Examples of SET string usage follow.

LABEL OPERATION OPERAND COMMENT |

\
STRING Al, A2(2), A3(45), A4(0) ; DEFINES STRING VARIABLE Al
‘ i WITH A DEFAULTING VA&yE
i LIMIT OF 8 CHARACTERS
i DEFINES STRING VARIABLES
i A2, A3, AND A4 WITH
i RESPECTIVE VALUE LIIMITS OF
i2, 49, AND O CHARACTERS

Al SET "AB" i VALVE OF Al IS "AB"
A2 SET Al i VALUE OF A2 IS "AB"
A4 SET Al: A2 i VALUE OF A4 I8 ""

i TRUNCATION ERROR SINCE A4
i ALLOWS A VALUE LIMIT OF O

;s CHARACTERS
A3 SET "A MEDIUM LONG STRING" VALUE OF A3 IS "A
s MEDIUM LONG STRING™
Al SET A3 i VALUE OF Al IS "A MEDIUM®

i STRING TRUNCATED

String Text Substitution

String variables may be used to modify source text being processed by the Assembler. Using
string variables makes it possible to insert code into a source line; the code can be processed
as if it were part of the original source line. Before the Assembler processes a source line, it
scans the line for string variables enclosed within single quote characters. When such a
variable is encountered, it is replaced with the specified value and the scan continues. When
the entire line has been scanned and all code substitutions are made, the Assembler then
processes the line. For example, assume the Assembler processes the following code.

LABEL OPERATION OPERAND
STRING op

oP SET "WORD"
‘op’ 1,2,3

When the Assembler scans the line containing ‘OP’ 1,2,3, the string variable 'OP’ is replaced
with the value defined for the substitution, "WORD"”. The following line results upon
assembly:

WORD 1,2,3

REV A MARCH 1979

Assembler Source File Format—8002A:8080A/8085A Users

String substitutions can occur anywhere within a line of code including within string
constants and comments. For the following examples, A1, A2, A3, and A4 are defined as

specified.

LABEL OPERATION OPERAND
STRING . Al, A2, A3, A4

Al SET “YTE"

Az SET "123, 456"

a3 SET “COMMENT"

A4 SET w

The following substitutions are then performed.

SOURCE CODE RESULTS AFTER SUBSTITUTION

BYTE‘AL‘, ‘A2’ BYTE YTE, 123, 4564

WORD1 ‘A4 WORD 1

A4 SET"'A3"" A4 SET "COMMENT"

WORD" ‘A4« ¢ WORD "COMMENT"

B’Al’’A2°-200 BYTE123, 456-200

B’/A1"A2" BYTE123, 456 (error code displayed due to undefined

instruction mnemonic, since space was omitted
between ‘A1’ and ‘A27)

Since the single quote character always signals string substitution, it is necessary to precede
the character with a caret (A} if string replacement is not to be performed. The caret
character causes the single quote character to then be interpreted as a literal character in a
statement. The following example demonstrates caret usage;

ASCIHl "WHATA'S UP DOC?” results in WHAT'S UP DOC?

REV A MARCH 1979 2-23

8002A:8080A/8085A Users

Section 3
STATEMENT SYNTAX CONVENTIONS

INTRODUCTION

Many of the following sections in this manual contain Tektronix Assembler and TEKDOS
statement descriptions. Each statement description is preceded by a syntactical block
showing the required statement format. This section describes the syntax conventions for
Tektronix Assembler and TEKDOS statements.

TEKTRONIX ASSEMBLER STATEMENT SYNTAX

Tektronix Assembler directives and macro calls may contain up to four fields. Each field
name is indicated in the syntactical block above the corresponding field item, as shown in the
following example.

Syntax
Label Operation Operand Comment
[symbol] BYTE expression [,expression] ... [;charstring]

Use of Upper and Lower Case Letters and Punctuation
A capitalized item in a field must be entered exactly as shown. Punctuation delimiters such

as commas, semicolons, or parentheses must also be entered exactly as shown. Spaces or
tab characters terminate each field and begin the text. An item shown in lowercase letters is
a term signifying the entry type. The following descriptive terms are used to signify entry type
unless otherwise specified:

1. symbol—as defined in Section 2

2. expression—as defined in Section 2

3. charstring—a string of one or more characters.

Blank Fields
Any field left blank is an illegal field for that statement.

REV B MARCH 1979

Statement Syntax Conventions— 8002A:8080A/8085A Users

80—

Braces and Brackets

When an item is enclosed in braces { } , the item must be present in the statement. Items
enclosed in brackets [] are optional. Braces and brackets are used for syntactical
representation only and should not be entered as part of the statement. Braces and brackets
may be nested. The following is an example of braces and brackets nested in braces.

{{strvaﬂ} [lenexp1]l

Trailing Dots

A line of dots following an item indicates that the item can be repeated a number of times.
The item cannot be repeated beyond the end of the line being entered. In the example that
follows, the item can be repeated to the end of the line.

{,symbol]. ..

TEKDOS STATEMENT SYNTAX

A TEKDOS statement contains a command and in most cases, one or more parameters with
delimiting characters. The following example shows a typical TEKDOS statement syntactical
block.

Syntax

device
KEYWORD {ﬁlename}[ﬁlename [/disc drive]] |:{Iine number 1} {line number zﬂ

Command Name
The TEKDOS command is the leftmost item in the syntax block.

A minimum set of characters (short form) is required for each TEKDOS command. This
minimum character set is underiined in the syntacticai description. in the page heading for
the command, the exact spelling of the command name is given with the short form
underlined. Commands without a short form are not underlined.

In addition to the minimum set of characters in the command name, a maximum set (long
form) is also given for each command name. Any number of characters in the command
name, ranging from the short form spelling to the long form spelling, may be used as long as
the exact speiiing is foilowed.

REV B MARCH 1979

Statement Syntax Conventions—8002A:8080A/8085A Users

Delimiters

Items in the command line must be separated by delimiters when entered into the terminal.
A space is used as the main delimiter. The slash (/) is used to delimit a file name and the
disc drive number.

The comma may be used as a delimiter in most cases. Two commas are used to specify null

s
or empty fields in a parameter list. Three commas are used to specify two adjacent null fields.

Parameters

The parameters or controlling conditions of each command line are shown in the TEKDOS
statement syntactical block. These parameters may be names, numbers, characters, or
symbols. When a parameter is shown capitalized, it must be entered exactiy as shown.
Parameters shown in lowercase letters are descriptive terms to signify the type of entry.

Braces and Brackets

Braces and brackets have the same meaning as when used with Tektronix Assembler
statements. Additionally, parameters stacked within either braces or brackets indicate that
only one of the enclosed items should be selected for statement entry. In the following
example, an object file name or an object device may be selected, but not both.

object file name
object device

Trailing Dots
As with Assembler directive syntax, a line of dots indicates the item can be repeated to the
end of the line.

REV B MARCH 1979 33

8002A:8080A/8085A Users

Section 4
ASSEMBLER DIRECTIVES

INTRODUCTION
The 8002A uProcessor Lab 8080A/8085A Assembler features the following directives.

Listing Format Control Directives
LIST
NOLIST
PAGE
SPACE
TITLE
STITLE
WARNING
Symbol Definition Directives
EQU
STRING
SET
Location Counter Control Directive
ORG
Data Storage Control Directives
BYTE
WORD
ASCII

BLOCK

REV B MARCH 1979

4-1

Assembler Directives— 8002A:3080A/8085A Users
—

Macro Definition Directives
MACRO
ENDM
REPEAT
ENDR
INCLUDE
Conditional Assembly Directives
IF
ELSE
ENDIF
EXITM
Section Definition Directives
SECTION
COMMON
RESERVE
RESUME
GLOBAL
NAME
Module Termination Directive

END

4.2 REV B MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users

“

LISTING FORMAT CONTROL DIRECTIVES

The Assembler listing format directives are presented in the order shown below.

Mnemonic Purpose
LIST Enables display of Assembler listing features.

NOLIST Disables display of Assembler listing features.

PAGE Begins the next listing line on the following page.

SPACE Spaces downward a specified number of listing lines.

TITLE Creates a text line at the top of each listing page for program identification.
STITLE Creates a text line on the second line of each listing page heading for program

identification.

WARNING Upon assembly, generates a warning message on the output device and in the
listing. Also allows the user to specify a warning message.

REV B MARCH 1979 4.3

LIST

NOLIST Assembler Directives— 8002A:8080A/8085A Users
Syntax
Label Operation Operand Comment
[symboll LIST {CND] [, TRM] [,SYM] [,CON] [MEG] [,ME] [,DBG] [;charstring]
[symbol]l NOLIST [CND] [, TRM] [,SYM] [,CON] [MEG] [[ME] [,DBG] [;charstring]
Purpose

Two Assembler listing control directives, LIST and NOLIST, respectively enable and disable
display of Assembler and Linker listing features.

Explanation
When NOLIST is specified without operands, all output to the Assembler listing file (except

the symbol table) is suppressed. When LIST is entered without operands, the Assembler
listing is turned back on.

Assembler Listing Format Control Options

Four general listing control options (CND, TRM, SYM, and CON) may be entered with the LIST
directive, when specific features in the Assembler listing are desired for viewing. The same
four listing options may be entered with the NOLIST directive, when specific features in the
Assembler listing are not desired for viewing.

The general listing control options are summarized as follows.

CND Lists unsatisfied conditions for IF and REPEAT operations. (Refer to the
subsections describing macro definition directives and conditional assembly
directives.) The listing defaults to an OFF condition, thus displaying only those
instructions within an IF or REPEAT condition that occur when the condition is
satisfied.

TRM Causes the listing to be trimmed to a 72-character format during display. Defaults
to an OFF condition, causing the listing to be displayed in the standard 132-
character format.

SYM Lists the symbol table. Defaults to an ON condition.

CON Displays all assembly errors to the console. Defaults to an ON condition.

4-4 REV B MARCH 1979

LIST

Assembler Directives— 8002A:8080A/8085A Users N 0 LI ST

Macro Listing Format Control Options

A macro is a shorthand approach for inserting a pre-defined source code block into a
program. Refer to Section 5 for a discussion of macro procedures.

Only those macro instructions generating object code appear in an Assembler listing.
Some of the code generated during a macro expansion does not generate object code upon
assembly. Thus it is impossible under normal conditions to view the entire macro expansion
sequence within the Assembler listing. Therefore, in addition to the four general listing
control options, two macro listing control options (MEG and ME) may be entered with the
LIST and NOLIST directives to enable and disable macro expansion visibility. These options
are summarized as follows.

MEG Lists only macro expansion code that changes the location counter. Defaults to an
ON condition.
ME Lists all macro expansion code except for any unsatisfied IF or REPEAT conditions.

When the listing control option CND is on, unsatisfied conditions are also listed.
Defauits to an OFF condition. If either ME or MEG is turned OFF by the user, the
other is automatically turned OFF. if ME is turned ON by the user, MEG is
automatically turned ON.

The following table demonstrates LIST and NOLIST effects on the ME and MEG options:

ENTRY RESULTS
NOLIST MEG MEG is OFF ME is OFF
NOLIST ME MEG is OFF ME is OFF
LIST MEG MEGisON ME is OFF
LIST ME MEGisON ME is ON
NOLIST MEG is OFF ME is OFF

AAAAAA £

Status of both options is saved

LIST Restores status of both options

Upon exit from a macro expansion, the main program listing status is restored to the status
that prevailed before the macro was called.

Linker Listing Format Control Option

DBG Lists all global and local symbols in the Linker listing. Remains in the ON or OFF
state until another LIST or NOLIST DBG is entered. See The Linker, Section 10.

REV C MARCH 1979 4.5

LIST

NO LIST Assembler Directives- 8002A:8080A/8085A Users

Conventions for Listing Control

The LIST and NOLIST directives are always entered in the operation field of the listing control
statements where they appear. More than one listing control option may be entered with the
LIST and NOLIST directives. In this case, each option is separated from other options by a
comma. When entering the listing control options with the LIST or NOLIST directives, the
options are placed in the operand field of the listing control directive in any order. If the
NOLIST directive is entered without options to suppress display, and the LIST directive is
again entered without options specified, the original specified options are retained. The
number on any listing line corresponds to the original input source line number. The NOLIST
directive does not affect this line number correlation.

Example

The following listing control statement suppresses the symbol table listing in the Assembler
listing.

LABEL - OPERATION OPERAND COMMENT

NOLIST SYM i SUPPRESSES S5YMBOL TABLE LISTING

The following listing control statement causes all subsequent macro expansions and
unsatisfied conditions to be included within the Asssembler listing.

LABEL OPERATION OPERAND COMMENT

LIST ME, CND i LISTS MACRO EXPANSIONS AND ALL
i UNSATISFIED CONDITIONS

4-6 REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users PAGE

0

Syntax

Label Operation Operand Comment

[symbol] PAGE [;charstring]
Purpose

The PAGE directive causes the next Assembler listing line to begin on the following page.

Explanation

As the source lines are read by the Assembler in its second pass, they are output to the
Assembler listing along with any object code produced. When the PAGE directive is
encountered, a page heading is printed at the top of the new page; the next listing line begins
below the heading. The actual PAGE directive is not printed in the listing.

A label is generally not used with the PAGE directive; however, if used, the symbol
represents the address in the Assembler location counter. The location counter contains the
address of the next instruction or data byte in the program sequence.

Example
The following program illustrates PAGE directive usage:

LAREL CPERATION OFERAND COMMENT
STRING 51(80) i DEFINE STRING VARIABLE 51 WITH
i BO~CHARACTER MAXIMUM
L1 EQU 3 ; DEFINE CONSTANT SYMBOL L1
; TO EQUAL 3
L2 SET 4 i DEFINE VARIABLE SYMBOL L2
i TO EQUAL 4
PAGE s BEGINS NEW LISTING PAGE
ORG 100H i STARTS OBJECT CODE OF NEXT
i INSTRUCTION AT 100H
MOV A M i LOADS THE CONTENTS OF
i MEMORY INTO REG. A
END i END OF PROGRAM

Upon assembly, the following Assembler listing file results from this source program. A new
page is generated after the SET directive.

REV A MARCH 1979 4.7

PAGE

Assembler Directives- 8002A:8080A/8085A Users

4-8

TEKRTRONIX B8080A/B0B5A ASM V. x PAGE 1
00001 STRING S1(80) ;DEFINE STRING VARIABLE S1 WITH
i 80~CHARACTER MAXIMUM
00002 0003 L1 EQU 3 ; DEFINE CONSTANT SYMBOL L1
; TO EQUAL 3
00003 0004 L2 SET 4 ;s DEFINE VARIABLE SYMBOL L2
; TO EQUAL 4
TEKTRONIX 8080A/8085A ASM Vx. x PAGE 2
00005 0100 > ORG 100H i STARTS OBJECT CODE OF NEXT
;s INSTRUCTION AT 100H
00006 0100 7E MOV A M ; LOADS THE CONTENTS OF
; MEMORY INTO REG. A
00007 END ;s END OF PROGRAM

TEKTRONIX BOBOA/BO85A ASM Vx. x

SYMBOL TABLE LISTING PAGE 3

STRINGS AND MACROS

Sl-——~- 0050 §
SCALARS

A --- 0007 B --- 0000 ¢ =--- 0001

D --- 0002 E --- 0003 H --- 0004

L =--— 0005 L2 -—— 0004V M ~-- 000&

PSW——— 0006 SP --- 0006

% (default) SECTION 0001

(0100)

7 SOURCE LINES 7 ASSEMBLED LINES

1000 BYTES AVAILABLE

Note that the symbol indicators V and S respectively follow the symbols L2 and S1. The
symbol indicator V indicates that L2 is a SET symbol. The symbol indicator S indicates that
S1 is a string. The symbol L1 has no symbol indicator following it, indicating that L1 is an
EQU symbol. For a more complete description of symbol indicators, refer to Section 7,
entitied Assembler Listing Format.

REV A MARCH 1879

Assembler Directives— 8002A:8080A/8085A Users SPACE

Syntax

Labe/ Operation Operand Comment

[symbol] SPACE [expression] [;charstring]
Purpose

Whenever the SPACE directive appears in the Assembler source file, the Assembler spaces
downward a specified number of lines in the Assembler listing.

Explanation
The expression in the SPACE directive operand field indicates the number of lines to be
spaced downward. If no expression is entered, one space is generated. If the execution of the

SPACE directive crosses a page boundary, the effect is the same as that of the PAGE
directive. The actual SPACE directive is not printed in the Assembler listing.

A label is generally not used with the SPACE directive; however, if used, the symbol
represents the address in the Assembler location counter. The location counter contains the
address of the next instruction or data byte in the program sequence.

Example
Assume the following source program resides on disc.

LABEL OPERATION OPERAND COMMENT
STRING S1(80) i DEFINE STRING VARIABLE Si
i WITH B0O-CHARACTER MAXIMUM
L1 EQU 3 ; DEFINE CONSTANT SYMBOL
;L1 7O EQUAL 3
L2 SET 4 i DEFINE VARIABLE SYMBOL
;L2 TO EQUAL 4
SPACE 10 i SPACES DOWNWARD 10
s LISTING LINES
ORG 100H i STARTS OBJECT CODE OF
i NEXT INSTRUCTION AT 100H
MOV AM ; LOADS THE CONTENTS OF
i MEMORY INTO REG. A
END i END OF PROGRAM

REV B MARCH 1979 4.9

SPACE Assembler Directives— 8002A:8080A/8085A Users

Upon assembiy, the foiiowing listing fiie results from this source program. Ten lines are
generated between the SET and ORG directives.

TEKTRONIX B8080A/80835A ASM Vx. x PAGE 1
00001 STRING ©51(80) ,DEFINE STRING VARIABLE Si
. i WITH BO-CHARACTER MAXIMUM
00002 0003 L1 EQU 3 ; DEFINE CONSTANT SYMBOL
;L1 TO EQUAL 3
00003 0004 L2 SET 4 i DEFINE VARIABLE SYMBOL

L2 TO EQUAL 4

00005 0100 ORG 100H ; STARTS OBJECT CODE OF

i NEXT INSTRUCTION AT 100H
00006 0100 7E MOV AM i LOADS THE CONTENTS OF

i MEMORY INTD REG. A
00007 END i END OF PROGRAM
fEKTRDNIX 8080A/8085A ASM Vx. x SYMBOL TABLE LISTING PAGE 2

STRINGS AND MACROS

Sl-——-- 0050 §

SCALARS
A —-—— 0007 B --- 0000 ¢ --- 0001
D =--- 0002 . E -—- 0003 H --- 0004
L -—-- 0005 L2 --- 0004V M -—-- 0006
PSW-~— 0006 SD -—-- 0006

% (default) SECTION (0001)

<

Li-———- 0i0

7 SOURCE LINES 7 ASSEMBLED LINES 1000 BYTES AVAILABLE

REV B MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users TITLE

Syntax

Label Operation Operand Comment

[symbol] TITLE {string expression} [;charstring]
Purpose

The TITLE directive creates a text line at the top of each Assembler listing page for program
identification.

Explanation

The character string specified as the TITLE operand is printed in the page heading between
the Assembler version number and the page number. As many as 31 characters may be

entered, including the carriage return. Any characters beyond the 31-character limit are
truncated. The actual TITLE directive is not printed on the listing.

Example
Assume the following TITLE statement is entered in a source program:

LABEL OPERATION OPERAND

TITLE "THIS 1S THE PROGRAM TITLE"

Upon assembly, the specified title appears within the heading at the top of each listing page
of the program as follows:

TEKTRONIX BOBOA/B085A ASM Vx. x THIS IS THE PROGRAM TITLE PAGE 1

REV A MARCH 1979 4-11

STITLE Assembler Directives— 8002A:3080A/8085A Users
|

Syntax

Label Operation Operand Comment

[symbol] STITLE {string expression} [;charstring]
Purpose

The STITLE directive creates a text line on the second line of each Assembler listing page
heading for program identification.

Explanation

The character string specified as the STITLE operand is printed between the page heading
and the first source code line. A blank line is automatically inserted between the string and
the beginning of the source code. As many as 72 characters may be entered. Any characters
beyond the 72-character limit are truncated. The actual STITLE directive is not printed on the
listing.

Example
Assume the following STITLE statement is entered in a source program.

LABEL OPERATION OPERAND

STITLE "THIS LINE DEMONSTRATES STITLE USAGE"

Upon assembly, the specified STITLE line appears within the heading at the top of each
listing page as follows:
TEKTRONIX BOB0OA/BOB5A ASM Vx. x PAGE 1

THIS LINE DEMONSTRATES STITLE USAGE
(blank line)

(source code)

4-12 REV B MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users WAR N | NG

Syntax

Label Operation Operand Comment

[symbol] WARNING [message]
Purpose

When an error is suspected within source code, the WARNING directive can be entered to
generate an error message at assembly time. Thus, the nature of the errors in a program can
be described upon assembly and listing.

Explanation

A warning message may be entered as a comment in the WARNING directive. Unlike other
comments, the warning message is not preceded by a semicolon. Upon assembly, this
optional message is printed on the Assembly listing and on the output device, flagging the
suspected error. The following Assembler message is also displayed on both the Assembler
listing and the output device during assembly, below the specified warning message:

#####ERROR 001

Example

Assume the following WARNING directive is entered within a source program below a line
containing an error.

LABEL OPERATION COMMENT

WARNING ####ENTRY QUT OF SEQUENCE

Upon assembly, the specified warning line appears below the source line containing the
error. The message ****ERROR 001: also appears below the specified warning message.

COOC OQO3+LEN SET NCHR ("ABD")
000D WARNING ####ENTRY OUT OF SEQUENCE
#####ERROR 001

REV B MARCH 1979 413

Assembler Directives—3002A: 8080A/8085A Users

L~

SYMBOL DEFINITION DIRECTIVES

The Assembler symbol definition directives are presented in the order shown below:

Mnemonic Purpose

EQU Permanently assigns a value to a symbolic name.

STRING Declares the named statement symbols as string variables.

SET Assigns or reassigns an expression’s value to a string or numeric variable
symbol.

4-14 REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users EQU

Syntax

Label Operation Operand Comment

{symbol} EQU {expression} [,charstring]
Purpose

The EQU directive permanently assigns a value to a symbolic name.

Explanation

The symbol in the label field of an EQU directive is the symbolic name. The expression in the
operand field represents the value of that name. The symbol acquires the same base as the
operand expression. This symbol may not be re-defined.

The EQU directive operand field may contain a forward reference to a symbol label if the
symbol does not appear in the operand field of an ORG, BLOCK, or another EQU directive.

If a symbol is declared in a GLOBAL directive and is defined by an EQU directive, the
expression in the operand field of the EQU directive may not contain a HI, LO, or ENDOF
function applied to an address. An error results when this occurs.

Example
The following line demonstrates EQU directive usage:

LABEL OPERATION OPERAND COMMENT

L1 EQU 3 i ASSIGNS THE VALUE 3 TO THE
;s CONSTANT SYMBOL L1.

REV A MARCH 1979 4-15

STRING Assembler Directives— 8002A:8080A/8085A Users

Syntax

Label Operation Operand Comment

[symbol] STRING g{strvaﬂ} [(Ienexpﬂ]i[{,strvarZ} [(Ienepo)]] ... [;charstring]
Purpose

The STRING directive declares the symbols named in the statement to be string variables.

Explanation

The STRING directive declares the symbols “strvar1” and "strvar2” to be string variables. A
string variable is a symbol with an associated string value. Numeric expressions "lenexp1”
and “lenexp2” may be optionally entered next to the string variables to specify the maximum
character length of the values stored in the string variables. This maximum character length
must be a scalar value greater than or equal to zero. When a numeric “lenexp” length
expression is not specified, an eight-character maximum length is assumed. If "lenexp”
expression is specified, it must be enclosed within parentheses. An operand symbol named
in a statement that contains the optional character length expression must be a forward
reference.

A symbol must be declared with the STRING directive before it may be used as a string
variable. Symbols declared as string variables must not be used for any other purpose within
a program. Any number of string variables may be declared with the STRING directive. When
a string variable is initially declared, its value is the same as that of the null string.

Example
The following examples demonstrate STRING directive usage:

LABEL OPERATION OPERAND COMMENT

STRING STR(14) i DECLARES STR AS A STRING
i VARIABLE WITH A MAXIMUM
i CHARACTER LENGTH OF 14
STRING Al, A2, A3: A4, XINCHR("1234")) DECLARES Al THROUGH A4 AS
i STRING VARIABLES WITH A
i MAXIMUM CHARACTER LENGTH
iOF 8. DECLARES X AS A
; 4-CHARACTER STRING VARIABLE
i SINCE THE NUMBER OF
i CHARACTERS IN "1234" 1S 4.

4-16 REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users S ET

Syntax

Label Operation Operand Comment

{symbol} SET {expression} [;charstring]
Purpose

The SET directive is used to assign or reassign an expression value to a string or numeric
variable symbol.

Explanation

The string or numeric variable symbol is entered in the label field of a SET directive. A string
variable symbol must have first been defined with the STRING directive. A numeric variable
symbol must not have been previously defined, unless by ancther SET directive. Variable
symbols may not be subsequently redefined as labels, or be redefined by an EQU, STRING,
SECTION, COMMON, RESERVE, GLOBAL, or MACRO directive. The value of a variable
symbol may, however, be redefined by another SET directive.

The expression value is entered in the operand field. The expression is then evaluated and
the value is assigned to the variable symbol.

If a SET directive contains a string-valued symbol and a numeric-valued expression, the
numeric expression is converted to a string. This conversion is valid only when the numeric
expression is a scalar value. The decimal value of the numeric expression is assigned to the
string-valued symbol. The assigned string is six characters long, with the leftmost character
being a minus sign if the value is negative. All numeric values are prefixed with leading zeros
if the values are less than six characters long. The numeric-expression to string-symbol
conversion process is diagrammed as follows:

LABEL OPERATION OPERAND COMMENT

string SET numeric i RESULTS IN EXPRESSION
; CONVERSION TO STRING

If the SET directive contains a numeric-valued symbol and a string-valued expression, the
string expression is converted to a numeric value. Refer to Section 2 of this manual,
Assembler Source File Format, which describes string-to-numeric conversion. The string-
expression to numeric-symbol conversion process is diagrammed as follows:

LABEL OPERATION OPERAND COMMENT

numeric SET string i RESULTS IN EXPRESSION
; CONVERSION TO NUMERIC

Conversion is not required when a string-valued symbol is set to a string expression or a
numeric-valued symbol is set to a numeric expression. When a symbol is set to an
expression value, the symbol acquires the same section as the expression.

REV A MARCH 1979 4-17

SET

Assembier Directives- 8002A:8080A/8085A Users

4-18

For string variable symbols where the length of the resulting expression value exceeds the
maximum symbol string length, the expression value is truncated on the right before
assignment. A truncation error code is then displayed.

Example

Examples of typical SET instructions and the resulting string-valued symbol expression

values follow:

LABEL OPERATION

STRING
Al SET
AZ SET
Al SET
A3 SET
Al SET

OPERAND

COMMENT

Al, AZ(2), A3(45), A4(0) i DEFINES STRING VARIABLE

"ARY

Al: A2

iAl WITH A DEFAULTING

i VALUE LIMIT OF 8

i CHARACTERS. DEFINES

i STRING VARIABLES A2, A3,
i AND A4 WITH RESPECTIVE

i VALUE LIMITS OF 2. 45, AND
i 0 CHARACTERS

i VALUE OF Al IS "aB"

i VALUE OF A2 IS "AB"

i VALUE OF A4 IS5 "V,

i TRUNCATION ERROR SINCE
iAd ALLOWS A VALUE OF

i ONLY O CHARACTERS

"A MEDIUM LONG STRING" ;VALUE OF A3 15 "A MEDIUM

A3

i LONG STRING"
i VALUE OF Al IS5 "A MEDIUM",
i TRUNCATION ERROR

The following example demonstrates string-to-numeric and numeric-to-string expression

conversion.

LABEL OPERATION

STRING
Al SET
A2 SET
Al SET
Bl SET

OPERAND

Al, A2

14
-1
SEH
A2

COMMENT

i DEFINES STRING VARIABLES
iAl AND A2

; VALUE OF A1 IS "000014"

i VALUE OF A IS "-00001"

i VALUE OF Al IS "000094"

; NUMERIC SYMBOL, Bi, I8 SET
; TO THE NUMERICALLY

i CONVERTED EXPRESSION. A2
3 TRUNCATION ERROR OCCURS,

i SINCE A2 IS GREATER THAN
; TWO CHARACTERS (-00001)

i THE TWO RESULTING

i LEFTMOST ASCII CHARACTERS
i ARE -0, GIVING Bl A

i NUMERIC SET VALUE OF

i 2D30H

REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users 0 R G

LOCATION COUNTER CONTROL DIRECTIVE

Syntax

Labei Operation Operand Comment

[symbo!] ORG {[_/] expression} [;charstring]
Purpose

The ORG directive sets the contents of the Assembler location counter to either the address
specified by the operand expression, the next address divisible by the operand expression, or
the next odd address.

Explanation

If an ORG directive is omitted at the beginning of a program, the Assembler location counter
is set to @.

Omission of the optional / (slash) operator sets the location counter to the address specified
by the operand expression. For example, when the following ORG directive is entered, the
next instruction in the program begins at location 100H in the current section.

ORG 100H

Usage of the / operator in the operand field sets the location counter to the next location
divisible by the operand expression. For example, when the current location counter contains
100H and the following ORG directive is entered, the next instruction begins at location 111H.
(The next location divisible by 15H is 111H.)

ORG /15H

If the current location counter is divisible by the operand condition when the / operator is
present, the location counter is unaffected.

If the operand expression is “/@", the location counter is set to the next odd value. For
example, when the current location counter contains 100H, and the following ORG directive
is entered, the next instruction begins at location 101H.

ORG /@

If the current location counter is already set to an odd value when the "/@” operand is
entered, the location counter is unaffected. The optional / operator may be used only with
scalar-valued operand expressions. Use care when entering the / operator, since the
expected results may not be retained upon linking. For example, if ORG /@ is entered, and
the Linker puts the section containing this directive on an odd address, the ORG result is on
an even address. This problem can be corrected by using the Locate command in the Linker.
(Refer to Section 10, The Linker.)

REV A MARCH 1979 4-19

O R G Assembler Directives— 8002A:8080A/8085A Users

Any symbol contained in the operand expression must have been defined in the label fieid of
a previous statement in the program. If the operand expression contains a symbol previously
defined in the label field of an EQU directive, the operand field of that EQU directive must not
contain forward-referenced symbols. A label symbol is generally not entered with this

statement; however, if used, the symbol represents the resulting value of the location
counter.

Example

The following ORG statement causes the Assembler object code generated by the next
instruction to begin at location 100H.

LABEL OPERATION OPERAND COMMENT
ORG 100H + STARTS OBJECT CODE OF NEXT
i INSTRUCTION AT 100H
L1 MoV A M ; LOADS THE CONTENTS OF

s MEMORY INTO REG. A

Upon assembly, the Assembler listing lines for the preceding instructions appear as follows.
The MOQV instruction object code begins at location 100H. Notice the relocation indicator (>)

on line 00005.

00005 0100 ORG 100H ; STARTS OBJECT CODE OF NEXT
; INSTRUCTION AT 100H

00006 0100 7E L1 MOV A M i LOADS THE CONTENTS OF

i MEMORY INTO REG. A

4-20 REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users

o)

DATA STORAGE CONTROL DIRECTIVES

The Assembler data storage control directives appear in the order shown in the following

summary.

Mnemonic Purpose

BYTE Allocates one byte of memory to each expression specified in the operand field.
WORD Allocates two bytes of memory to each expression specified in the operand field.
ASCII Stores ASCII text in memory.

BLOCK Reserves a specified number of bytes in memory.

REV A MARCH 1979 4.21

BYTE Assembler Directives- 8002A:8080A/8085A Users
R

Syntax

Label Operation Operand Comment

[symbol] BYTE {expression} [,expression]. .. [;charstring]
Purpose

This directive allocates one byte of program memory to each expression specified in the
operand field.

Explanation

Each data byte is represented by an expression. The data is stored in the Assembler object
module in the order in which it appears in the operand field. If more than one expression is
specified in the operand field, the expressions are stored in consecutive bytes. The optional
label field symbol represents the address of the first byte of data specified by the directive.

If the expression represents a value exceeding the eight-bit capacity, the eight least
significant bits are used and a truncation error code is displayed. For example, a statement
containing the following BYTE directive generates 32H upon assembly and issues a
truncation error response.

LABEL OPERATION OPERAND COMMENT

BYTE "Ka" : GENERATES 32H, VALUE DF ASCII "2"
i TRUNCATION ERROR

Exampie
In this example, one byte of memory is allocated to the expression values 24 hexadecimal
and 22 decimal. The label symbol, FSTBYT, represents the address of the first byte specified,

24H.
LABEL OPERATION OPERAND COMMENT
FSTBYT BYTE 24H, 22 ; ALLOCATES ONE BYTE OF

i MEMORY TO THE
i EXPRESSION VALUES 24H
i AND 22 DECIMAL

4.22 REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users WO R D
L]

Syntax

Label Operation Operand Comment

[svmbol] WORD {expression} [,expression]. .. [;charstring]
Purpose

The WORD directive allocates two bytes of program memory to each expression specified in
the operand field.

Explanation

This directive is identical to the BYTE directive except that two bytes of program memory are
allocated in the Assembler object module for every expression specified in the operand field.
These two-byte values are stored in memory with the low byte first, foliowed by the high
byte. if an expression represents a single byte value, the high byte is stored as zero. If more
than one expression is specified in the operand field, the expressions are stored in
consecutive words. The optional label field symbol represents the address of the first byte of
data stored in memory.

Example

In the following WORD directive, two bytes of memory are allocated to the expression values
356 and 427 decimal. The label symbol LABSYM represents the address of the first byte of
the value 356 decimal.

LABEL OPERATION OPERAND COMMENT

LABSYM WORD 356, 427 i ALLOCATES TWO BYTES OF
i MEMORY EACH TO THE
i EXPRESSION VALUES 356 AND

s AV AT TREAL
P/ MEWATIML

REV A MARCH 1979 4-23

ASC l ' Assembler Directives- 8002A:8080A/8085A Users

X

Syntax

Label Operation Operand Comment

[symbol] ASCII string expression [,string expression]. .. [;charstring]
Purpose

The ASCIl directive allows easy storage of text in program memory.

Explanation

ASCIl characters may be specified in the operand field in the form of a string expression. If
more than one operand is specified on a line, each operand is separated by a comma. The
optional label symbol represents the memory address allocated to the first operand field
character.

Example
Assume the following lines of source code reside on disc:

LABEL OPERATION OFERAND COMMENT

ASCIT "HELLO", "GOODBYE" i PUTS HELLO AND
i GOODBYE IN OBJECT
i MODULE AS ASCII CODE

ASCI1I "BYE" i PUTS BYE IN OBJECT
i MODULE AS ASCII CODE
ASCII " :PUTS NULL STRING IN
i OBJECT MODULE AS
i ASCI1 CODE
STRING STR1(20) ; DEFINES STR1 AS

i STRING VARIABLE WITH
i A MAXIMUM CHARACTER
iLIMIT OF 20

STR1 SET "ABCDEF" i ASSIGNS ASCII VALUE
: OF ABCDEF TO STRi
ASCII STR1 i PUTS ABCDEF IN OBJECT
i MODULE AS ASCII CODE
ASCII STR1:" ":STRING(NCHR(STR1)) ;PUTS ABCDEF, A BLANK,

; AND THE NUMBER OF

i CHARACTERS IN ABCDEF (&)
i IN OBJECT MODULE A8

;s CONCATENATED ASCI1 CODE

The following hexadecimal object code is generated from the preceding source code.

4.24 REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users AS CI I

SOURCE OBJECT

"HELLO", "GORDBYE" 48454C4CAFA74F4F 44405945
“BYE™ 425945

wu (nothing)

"ABCDEF" (string value of STR1) 4142434445446
"ABCDEF 0Q00006" 41424344454620303030303036

For hexadecimai and ASCii conversion tabies, refer to Appendix E.

REV A MARCH 1979 4-25

BLOCK Assembler Directives- 8002A:8080A/8085A Users

4-26

Syntax

Label Operation Operand Comment

[symbol] BLOCK {expression} [;charstring]
Purpose

The BLOCK directive reserves a specified number of bytes in program memory.

Explanation

The BLOCK operand expression indicates the number of bytes to reserve in program memory.
The operand expression must be a positive value. Negative or invalid blocks change the
location counter. The operand expression must be either a numeric or string constant, or a
symbol. If the operand expression contains a symbol, the symbol must be previously defined
in the program. Additionally, if the symbol is defined by the EQU directive, that EQU
directive’s operand field must conform to these same rules. The expression specified in the
BLOCK operand must be a scalar value.

Example
The following BLOCK directive reserves a 32-byte program memory storage block:

LABEL OPERATION OPERAND COMMENT

BLOCK 32 ; RESERVES 32 BYTES OF MEMORY

REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users

MACRO DEFINITION DIRECTIVES

The macro definition directives are presented in the order shown in the following summary.
A complete description of macro capability is presented in Section 5.

Mnemonic Purpose
MACRO Defines the name of a source code block used repeatedly within a program.
ENDM Terminates the macro definition block.

REPEAT Enables the macro lines following the REPEAT statement up to the ENDR
statement to be assembled repeatedly.

ENDR Signals the corresponding REPEAT block termination.

INCLUDE Inserts text from a specified file into the program.

REV A MARCH 1979 4-27

M AC R 0 Assembler Directives— 8002A:8080A/8085A Users

Syntax

Label Operation Operand Comment

[symbol] MACRO {symbol} [;charstring]
Purpose

The MACRO directive defines the name of an Assembler source code block used repeatedly
within a program.

Explanation

A macro is a shorthand method for inserting a block of Assembler source code into a
program one or more times. The MACRO directive names the Assembler source code block to
be inserted into the main program. The symbolic macro name appears in the operand field of
the MACRO directive, and is later used as a reference when the Assembler source code
block is called for insertion during assembly. The block of source code to be inserted is called
the macro definition block, and immediately follows the MACRO directive. The macro
definition block terminates with an ENDM directive. When the macro name appears within
the operation field of the main program during assembly, the macro definition block is
inserted and assembled within the main program. This process is called macro expansion.

The symbolic macro name and the macro definition block are generally defined at the
beginning of a user program. The macro name and definition block must be defined prior to
the initial macro definition block usage.

For a further description of macro capability and usage, refer to Section 5, Macros.

Example
The MACRO directive below defines the block of macro code following the directive.

LABEL OPERATION OPERAND COMMENT
MACRO MACRNAME i DEFINES MACRNAME AS MACRO NAME
BYTE 2591 : ALLOCATES ONE BYTE OF MEMORY EACH
; TO THE CONSTANT VALUES 3, 5, AND 1
WORD 2 i ALLOCATES TWO BYTES OF MEMORY TO
i THE CONSTANT VALUE 2

ENDM i END OF MACRO DEFINITION, MACRNAME

Later statements in this program may call the macro definition block whenever the specified
BYTE and WORD statement sequence is desired.

4-28 REV B MARCH 1979

Assembler Directives— 8002A:3080A /8085A Users E N D M

Syntax

Label Operation Operand Comment

[symbol] ENDM o [;charstring]
Purpose

The ENDM directive signals the end of a macro definition block.

Explanation

When an ENDM directive is encountered in a macro definition block, the macro is terminated
and assembly continues with the next statement following the macro call in the source
program.

Example
The following ENDM directive terminates the macro definition block named NUMNAK.

LABEL OPERATION OPERAND COMMENT
MACRO NUMNAK s DEFINES NUMNAK AS MACRO NAME
BYTE 3,27, 22 i ALLOCATES ONE BYTE OF MEMORY
i TO THE CONSTANT VALUES 3, 27 AND 22
WORD 255 i ALLOCATES TWO BYTES OF MEMORY
i TO THE CONSTANT VALUE 255
ENDM i END OF MACRO DEFINITION

REV A MARCH 1979 4-29

REPEAT

ENDR Assembler Directives- §002A:8080A/8085A Users
Syntax
Label Operation Operand Comment
[symbot] REPEAT {expression1} [,expression2] [;charstring]
[symbol] ENDR [;charstring]
Purpose

4-30

The REPEAT directive enables the macro lines following the REPEAT directive, up to the
ENDR directive, to be assembled repeatedly. The ENDR directive signals the end of each
repeat cycle.

Explanation

When a REPEAT directive is encountered upon macro expansion, the first expression
specified in the operand field is evaluated. The lines up to the ENDR directive are ignored
when the REPEAT operand, "expression1” is equal to zero (false). If the expression is true
(non-zero), the lines up to the ENDR directive are assembled repeatedly until the expression
does equal zero, or the maximum number of repeat cycles is exceeded. The second operand,
"expression2” is not specified, the number of repeat cycles defaults to 255. Attempts to
repeat beyond the value of “expression2” cause an error code to be displayed. Both operand
expressions must be scalar values.

REPEAT—ENDR blocks may be nested. The nesting depth is limited only by the amount of
memory available to the Assembler. Each REPEAT condition must be properly nested, thus
having a matching ENDR occurring within the scope of that particular REPEAT condition.
REPEAT—ENDR blocks may not cross the boundary of a macro expansion or of an IF—ENDIF
block. A REPEAT—ENDR block is valid only within a macro definition block.

Example

The example that follows demonstrates REPEAT—ENDR block usage within a macro named
CONDRID.

LABEL OPERATION OPERAND COMMENT
MACRO CONDRID ; DEFINES CONDRID AS MACRO NAME
AGAIN SET 1 s INITIALIZES AGAIN TO EQUAL 1
; AT ASSEMBLY TIME
REPEAT AGAINC=27 i REPEAT WHILE AGAIN IS LESS
i THAN OR EQUAL TO 27
BYTE AGAIN ; GENERATES ONE BYTE OF MEMORY
i TO AGAIN
AGATN SET AGATIN+1 i INCREMENT AGAIN AT ASSEMBLY TIME
ENDR i END OF REPEAT CONDITION
BYTE ODH i GENERATES CARRIAGE RETURN
ENDM ; END OF MACRO DEFINITION

REV A MARCH 1979

Assembier Directives— 8002A:8080A/8085A Users I N CLU D E

Syntax

Label Operation Operand Comment

[symbol] INCLUDE {string expression} [;charstring]
Purpose

The INCLUDE directive is used to insert text from a specified file into a program.

Explanation

When the INCLUDE directive is encountered, text from the file specified in the operand field
is inserted into the Assembler source program. If the INCLUDE directive is contained in a
macro body, the text file is inserted at macro expansion time. Parameters within the included
file cannot reference arguments used in the containing macro. Refer to Section 5, Macros,
for a discussion of text substitution within macros. The text file specified by the INCLUDE
crective may not terminate a MACRO, REPEAT or IF block. Additionally, the text may not
contain another INCLUDE directive.

An INCLUDE directive may also be used within normal Assembler source code, outside of
macro definition blocks. When this occurs, the inserted text may contain macro definitions.

Example
The following example demonstrates INCLUDE directive usage.

LABEL OPERATION OPERAND COMMENT
iNCLUDE "OTHFILE" i INSERTS OTHFILE INTD THE
i CURRENT PROGRAM AT THE

; ADDRESS OF THE CURRENT
i LOCATION COUNTER.

REV A MARCH 1979 4-31

Assembler Directives—8002A:8080A/8085A Users

CONDITIONAL ASSEMBLY DIRECTIVES

The conditional assembly directives are presented in the order shown below.

Mnemonic Purpose

IF Causes the assembly of the source code lines following the IF directive, up to
the ENDIF directive, when the specified operand expression is true (non-zero).

ELSE Causes an alternate source block to be assembled when the containing IF
expression is false.

ENDIF Signals the corresponding IF block termination.
EXITM Terminates the current macro expansion before encountering an ENDM
directive.

4.32 REV A MARCH 1979

IF
Assembler Directives—3002A:8080A/8085A Users E LS E

ENDIF

L A

Syntax
Label Operation Operand Comment
[symbol] IF {expression] [;charstring]
[symbol] ELSE [;charstring]
[symboi] ENDIF [;charstring]
Purpose

The IF directive causes assembly of the Assembler source code lines following the IF
directive, up to the ENDIF (or ELSE, if present) directive, when the specified operand
expression is true. The ELSE directive causes an alternate source block to be assembled

when the containing IF expression is false. ENDIF signals the corresponding IF block
terminaticn.

Explanation

When an IF directive is encountered, the expression specified in operand field is evaluated. If
the result of the expression is zero (false), source lines between the IF and ENDIF directives
are ignored (not assembled). The ENDIF directive then terminates the condition. If the resu't
of the expression is non-zero (true), the source lines are assembled once normally.

An optiona! ELSE directive block may be nested within the !F source block. If an ELSE block is
present, a false IF expression causes assembly of the source lines from the ELSE directive up
to the ENDIF directive. The ELSE block is ignored when the expression in the IF directive
operand field is true. Only one ELSE directive is allowed within each IF—ENDIF block.

IF—(ELSE}—ENDIF blocks may be nested as deeply as desired, limited only by the amount of
memory available to the Assembler. Each IF directive must be properly nested, thus having a
matching ENDIF occurring within the scope of that particular IF condition. IF—(ELSE)—ENDIF
blocks may not cross the boundaries of REPEAT—ENDR blocks, macro expansions, and other
IF—(ELSE)—ENDIF blocks.

Example
The following example demonstrates |IF—(ELSE}—ENDIF block usage:

LABEL OPERATION OPERAND COMMENT

IF Moy =y + CHECKS TO SEE IF THE FIRST MACRO
i ARGUMENT IS UNDEF INED

WORD OF 7H i IF 80, GENERATES A WORD
i CONTAINING OF7H

ELSE i OTHERWISE

WORD ‘17 ; GENERATES A WORD CONTAINING
i THE FIRST ARGUMENT

ENDIF ; END OF IF CONDITION

REV A MARCH 1979 4-33

IF
ELSE
ENDIF

Assembler Directives— 8002A:8080A/8085A Users

The following example demonstrates nested IF—(ELSE}—ENDIF block usage:

LABEL OPERATION OPERAND COMMENT
IF repenonn i CHECKS TO SEE IF THE FIRST
; MACRD ARGUMENT EXISTS
IF ’1 '<OFOH i IF 80, CHECKS TO SEE IF THE

i FIRST MACRO ARGUMENT IS
;i LESS THAN OFOH

WORD OF7H~"1" i IF 80, GENERATES ONE WORD
i CONTAINING THE DIFFERENCE
; BETWEEN OF7H AND THE FIRST

i ARGUMENT
ELSE i OTHERWISE:, IF FIRST ARGUMENT
; IS8 GREATER THAN OFOH. .
WORD L1 ; GENERATES ONE WORD CONTAINING
i FIRST MACRO ARGUMENT
ENDIF ; END OF INNER IF CONDITION
ELSE i OTHERWISE, IF THE ARGUMENT
; DOES NOT EXIST..
WORD OF7H ; GENERATE A WORD
i CONTAINING OF7H
ENDIF ; END OF OUTER IF CONDITION

4.34 REV A MARCH 1979

Assembler Directives— 8002A:8080A/8085A Users EXITM

Syntax
Label Operation Operand Comment
[symbol] EXITM [:charstring]

Purpose
The EXITM directive terminates the current macro expansion before encountering an ENDM
directive.

Explanation

EXITM is generally used within IF—ELSE)—ENDIF and REPEAT—ENDR blocks to
conditionally terminate macro expansions. EXITM is valid only within a macro definition
block.

Example
The following example demonstrates conditional macro termination with the EXITM directive.

LABEL OFERATION OFPERAND COMMENT
MACRO CONDMAC ; DEFINES CONDMAC AS MACRO NAME
BYTE 1,2,0 ; ALLOCATES ONE BYTE OF MEMORY

i FOR EACH OF THE THREE VALUES
il, & AND O

IF "zt ; TESTS TO DETERMINE IF 3RD
;s PARAMETER IN MACRO CALL EXISTS
BYTE 255 i IF 3RD ARGUMENT DOES NOT

i EXIST, ONE BYTE IS ALLOCATED
s CONTAINING 255 DECIMAL

EXITH i TERMINATES MACRO EXPANSION IF
; CONDITION IS SATISFIED

ENDIF ;END OF IF CONDITION

BYTE '3’ i DOTHERWISE: ONE BYTE IS5 ASSIGNED
; CONTAINING THIRD ARGUMENT

ENDM ; END OF MACRO DEFINITION

REY A MARCH 1979 4.35

Assembler Directives—8002A:8080A/8085A Users

SECTION DEFINITION DIRECTIVES

The section definition directives appear in this subsection in the order shown in the summary
below. Relocation options used with the section definition directives follow this summary.
For a discussion of the methods by which the Linker relocates sections, refer to Section 10,

The Linker.
Mnemonic Purpose
SECTION Declares a program section, assigns a section name, and defines the section

parameters.

COMMON Declares a program section, assigns a section name, and defines the section
type to be common.

RESERVE Sets aside a work space in memory. Upon linking, all reserve sections with the
same name are concatenated into a single reserve section.

RESUME Continues the definition of code for a given section.
GLOBAL Declares one or more symbols to be global variables.

NAME Declares the name of an object module.

RELOCATION OPTIONS

The PAGE, INPAGE, or ABSOLUTE option may be specified in the operand field, to direct the
relocation of a block of code in the SECTION and COMMON directives.

The PAGE or INPAGE option is also available to the RESERVE directive. When options are not
specified, the section is relocated on any byte address. The effects of these options are
summarized as follows.

PAGE Causes the section to be relocated at the starting address of a physical block of
memory. This block of memory, also called a "page”. is 256 bytes long. Its
starting address is evenly divisible by 256. Therefore, the starting address of a
page may be 0, 256, 512, etc.

INPAGE Causes the section to be relocated on any byte address provided the section
does not extend across page boundaries.

ABSOLUTE Causes the memory allocation to be the actual areas specified by the ORG
directives at assembly time. (No relocation of this section is performed.)
Arithmetic functions performed on addresses defined in absolute sections are
subject to the same restrictions as addresses performed on relocatable sections.
Refer to Section 2 describing Binary Arithmetic Operators.

If no option is entered with the section definition directives, the specified section is byte
relocatable, indicating there are no restrictions on where the Linker may place the section.

4-36 REV A MARCH 1979

Assembler Directives—8002A:8080A/8085A Users S ECTI 0 N

T —

Syntax
Label Operation Operand Comment
Isymbol] SECTION {symbol} | PAGE [:charstring]
,INPAGE
L,ABSOLUTE_I
Purpose

The SECTION directive is used to declare an Assembler source program section, assign the
section a name, and define its parameters.

Explanation

Ail program text following the SECTION directive, up to the next SECTION, COMMON, or
RESUME directive, is defined to be a program section. All text within a program section is
assembled with the same location counter, and hence, has the same base. Each section has
a separate location counter and must be relocated as a block. The initial value of the location
counter for any given section is @. The symbol specified in the SECTION operand field is the
section name, and is a global symbol. The section name must be unique to each assembly
and, therefore, cannot appear in multiple SECTION directives. When separate Assembler
object modules containing sections with the same name are linked, an error is generated.

The optional second operand in the SECTION directive can be used to place restrictions on
the relocatability of the section. {Refer to the previous discussion of Relocation Options in
this subsection.) If no option is specified, the Linker considers the section to be byte
relocatable.

When a label symbol is entered on the SECTION directive, the symbol represents address @,
the initial value of the resulting section’s location counter. Additionally, the declared section
name in the operand field may be used as a normal global symbol, and referenced in the
operand field of other statements throughout the assembly. The section name has the same
value as the label on the SECTION directive.

Example
The following source line demonstrates SECTION directive usage.

LABEL OPERATION OPERAND COMMENT

SECTION SECI ; GENERATES BYTE-RELOCATABLE
; SECTION, SBEC1

REV A MARCH 1979 4.37

CO M MO N Assembler Directives—8002A:8080A/8085A Users

Syntax
Label Operation Operand Comment
[symbol] COMMON {symbol} | PAGE [;charstring]
JNPAGE
LABSOLUTE
Purpose

The COMMON directive declares an Assembler source program section, associates a name
with the section, assigns the section parameters, and defines the section type to be common.

Explanation

The COMMON directive performs the same functions as the SECTION directive, except that
the same name may identify common sections in more than one Assembler source file.
Common sections with the same name are relocated at the same address by the Linker. Each
section with the same name should specify the same relocation option; otherwise, the
desired relocation might not result at link time. The Linker allocates enough memory to
contain the largest of the common sections with the same name.

This section type is modeled after the COMMON area of FORTRAN.

Example
The following example demonstrates COMMON directive usage.

LABEL OPERATION OPERAND COMMENT

COMMON WRKAREA i DEFINES WRKAREA AS A COMMON
i SECTION. IF WRKAREA EXISTS IN
i MULTIPLE OBJECT MODULES,
i LINKER CHOOSES THE LARGEST

L DAY T MR I A R LI A A font
i BECTION NAMED WRKAREA D

i MEMORY ALLOCATION

4-38 REV A MARCH 1979

Assembler Directives—8002A:8080A/8085A Users R ES E RVE

Syntax

Label Operation Operand Comment

[symbol] RESERVE {symbol, expression} [PAGE -] [;charstring]
|.INPAGE

Purpose

The RESERVE directive is used to set aside a workspace in program memory. Upon linking,
all reserved workspaces (sections) with the same name are combined into a single section.

Explanation

The symbol in the operand field of the RESERVE directive is the assigned name of the
section. The operand expression specifies the number of bytes tc be reserved for the current
Assembler object module. The expression must be a scalar value. The RESERVE directive
does not change the current section.

More than one object module may contain reserve sections of the same name. The length of
the reserve section allocated by the Linker is the sum of all reserve sections with the same
name.

Example
The following example demonstrates section space allocation with the RESERVE directive.

LABEL OPERATION OPERAND COMMENT

RESERVE BNCHCODE, 100H i RESERVES A SECTION DEFINED
i AS BNCHCODE AND ALLOCATES
; 256 BYTES OF MEMORY TO BE.
i ADDED TO THE SIZE OF BNCHCODE

WORD BNCHCODE i PLACES ONE WORD IN THE
i CURRENT SECTION HAVING THE
i ADDRESS OF THE BEGINNING OF
; THE BNCHCODE SECTION

WORD ENDOF (BNCHCODE) i PLACES ONE WORD IN THE
i CURRENT SECTION HAVING
; THE ENDING ADDRESS OF
i BNCHCODE

REV A MARCH 1979 4-39

R Es U M E Assembler Directives— 8002A:8080A/8085A Users

X O O

Syntax

Label Operation Operand Comment
[symbol] RESUME [symbol] [;charstring]
Purpose

The RESUME directive continues the definition of a given Assembler source file section.

Explanation

The RESUME directive continues the definition of the section specified by the optional
operand symbol. If no operand symbol is used, the definition of the default section is
continued. Any source code that is not preceded by a SECTION or COMMON directive is
included in the default section. The name given to the default section is a percent sign (%)
followed by the Assembler object module name. When no object module is present, the
name given to the default section is %.

If used, the label symbol is assigned the value of resumed section’'s location counter.

Example
The example that follows demonstrates section definition resumption with the RESUME
directive.
LABEL OPERATION OPERAND COMMENT
SECTION AS1 i DEFINES SECTION A31
SECTION B31 s DEFINES SECTION B31

RESUME AS1 ; RESUMES SECTION A31

4-40 REV A MARCH 1979

Assembler Directives—8002A:8080A/8085A Users GLOBAL

Syntax

Label Operation Operand Comment
[symbol] GLOBAL {symbol} [symbol] . .. [;charstring]
Purpose

The GLOBAL directive declares one or more symbols to be global variables. A global variable
located in one Assembler source file may be referenced by another source module, after the
modules are linked.

Explanation

Symbols specified in the GLOBAL directive operand field are designated to be global
variables. Global variablesdefined in the current assembly are called bound globals. If the
global variables are not defined in the current assembly, they are called unbound globals and
their references must be resolved by the Linker.

The value of a global symbol must be unique within an assembly.

If the modules are to be stored in the library file (see Section 9, The Library Generator) the
value of each global symbol in the library file must be unique. A maximum of 254 names may
be defined to be global variables. This maximum inciudes all names used in SECTION,
COMMON, RESERVE, and GLOBAL directives.

Example
The following example demonstrates definition of global variables with the GLOBAL
directive.
LABEL OPERATION DPERAND COMMENT
GLOBAL HIGUY, BYEGUY i DEFINES THE SYMBOLS HIGUY AND
i BYEGUY TO BE USED AS GLOBAL
; SYMBOLS
HIGUY EGQU $ iHIGUY 1S EQUIVALENT TO CURRENT
s LOCATION COUNTER
cALL BYEGUY i JUMPS TO SUBROUTINE BYEGUY

 DEFINED IN ANOTHER ASSEMBLY

REV A MARCH 1979 4-41

N AM E Assembler Directives— 8002A:8080A/8085A Users
=,

Syntax

Label Operation Operand Comment
[symbol] NAME {symbol} [;charstring]
Purpose

The NAME directive declares the name of an Assembler object module.

Explanation

The symbol in the operand field of the NAME directive is the name assigned to the
Assembler object module. If more than one NAME directive appears within an assembly, only
the first NAME directive is used; the rest are ignored.

Note that the object module name, as declared by the NAME directive, is distinct from the file

name that the object module is stored under. Note also that the default section derives its
name from the object file, not from the NAME directive.

Example
The following example demonstrates object module naming with the NAME directive.

LABEL OPERATION OPERAND COMMENT

NAME XMPL.SUB i NAMES OBJECT MODULE XMPLSUB

4-42 REV A MARCH 1979

Assembler Directives—8002A:8080A/8085A Users EN D

L R

MODULE TERMINATION DIRECTIVE

Syntax

Label Operation Operand Comment
[symbol] END [expression] [:charstring]
Purpose

The END directive terminates Assembler source files.

Explanation

The END directive terminates a source file contained in one or more disc files. A source file is
also terminated when the end of the last input file is read. END directive usage is, therefore,
optional.

The optional expression in the operand field represents the starting address for program
execution, which is called a transfer address. If present, the specified operand value is placed
in the object module and may be used by the TEKDOS LOAD command when loading the
object module into program memory. At link time, if more than one module has a transfer
address, the first one encountered is used.

REV A MARCH 1979 4-43

8002A:8080A/8085A Users

Section b

MACROS

INTRODUCTION

A macro is a shorthand approach for inserting Assembler source code into a program. A
macro is often used when the same, or nearly the same block of code is repeatedly used
within a program. A block of macro code is called a macro definition block. The source code
that results from a macro definition block may be altered each time the macro is called. Thus,
the object code generated depends on the information specified in the macro call. The code
generated by a macro call is called a macro expansion, since it results from, and is usually
longer than, the macro call.

This section describes all phases of macro definition, calling, and expansion. The structure of
this section closely follows the process leading up to macro expansion. First, an examination

of the general macro expansion process is examined. Then, each phase of the process is
presented in greater detail.

BASIC MACRO EXPANSION PROCESS

The macro expansion process is illustrated in Fig. 5-1. A written explanation of the process
follows the figure.

(MACRO name

MACRO DEFINITION

ENDM
user program source code

MACROCALL name argumants

MACRO EXPANSION {
user program source code
END

Fig. 5-1. The macro expansion process.

REV B MARCH 1978

Macros—8002A:8080A/8085A Users

As mentioned, there are three phases of macro usage; definition, calling, and expansion.
First the macro must be defined. The macro is named in a macro definition directive. The
directive is followed by a macro definition block. The macro definition block is made up of
source lines that are stored in unassembled form until the macro is used. To use the macro,
the programmer codes a macro call within a program. The macro name appears in the macro
call directive’s operation field. When the macro call is encountered during assembly, the
macro definition block is inserted and assembled within the main program. This process is
called macro expansion.

The user may alter any parameters used within the macro definition block by inserting
corresponding arguments within the operand field of a macro call. One line at a time, the
Assembler replaces the specified parameters with corresponding arguments in the macro
call. The Assembler inserts the line from the macro definition block into the user program.
The line is then assembled. This procedure repeats for each line in the macro definition
block.

MACRO DEFINITION DIRECTIVE

A macro is defined by first entering the macro definition directive in the following format. In
this macro definition directive, "name” is the macro name that is later used as a reference
for the macro call.

MACRO name

Macro Definition Directive Conventions

A macro is generally defined at the beginning of an Assembler source program. A macro
must always be defined prior to its initial use. A macro may not be defined within another
macro definition block. A macro name is a symbol containing up to eight characters. The first
character must be alphabetic. The macro name must be unique from all symbols in an
Assembier source program.

MACRO DEFINITION BLOCK

The lines following the macro definition directive, up to and including an ENDM directive,
become a predefined block of code. The block of code is referred to as a macro definition
block. A macro definition block may contain any instruction or Assembler directive {(except
the END and MACRO directives). A macro definition block may contain calls to other macros
or even calls to itself. When a macro call occurs within another macro definition block, any
replaement that may occur on the macro call is performed before the inner macro is called. A
macro definition block may not contain the definition of another macro.

5-2 REV B MARCH 1979

Macros—8002A:8080A/8085A Users

Source Code Alteration

An additional macro capability allows code to be altered within a macro definition biock.
Upon expansion, parameters within single quotes, serving as place holders in the macro
definition block, are replaced by the arguments defined in a macro call.

In summation:
Parameters are place holders within a macro definition block.
Arguments are values, defined within a macro call directive, that replace parameters.

Any numeric parameter surrounded by single quotes ('N’) is replaced by the Nth argument
passed to the current macro expansion. In the following BYTE directive, for example, the first
argument passed to the current macro expansion is substituted for the first parameter ('1’)
upon macro expansion.

BYTE 3.5."1’

The parameter within single quotes ('N‘) may be either a number or a numeric-valued SET
directive. This capability is discussed in Section 4, Assembler Directives, describing the SET
directive. If ‘N’ is greater than the number of arguments provided, the null string is
substituted. Text substitution may occur anywhere on a line.

Additional Special Macro Definition Characters
The following special characters may be used only within macro definition blocks.

The @ Character

The "at” character, when surrounded by single quotes ('@’), provides unique labels for each
macro expansion. The @ character is replaced by a four-character hexadecimal value that is
unique within each macro call. In the example that follows, each time the macro is called, a
unique four-character hexadecimal value replaces the @ character. The following statement
creates a unique seven-character label.

LABEL OPERATION OPERAND

LAB’@’ EQU %

The ‘@’ in the preceding label is replaced by a number unique to the current macro call. This
replacement prevents LAB from being defined more than once by subsequent macro calls.

Reserved words, however, should not be used with the '@’ character.

REV B MARCH 1979 5-3

Macros—8002: 8080A/8085A Users

The # Character

The “pound” character, when surrounded by single quotes (‘#'), is replaced by a five-digit
decimal number. The number represents the total number of arguments that are passed to
the current macro expansion. In the example that follows, expansion of all lines of code
within a REPEAT block continues until the total number of arguments passed is exceeded.
Suppose three arguments are passed during expansion of the macro containing this code:

LABEL OPERATION OPERAND COMMENT
J éET 1 i INITIALIZES J TO EQUAL 1
i AT ASSEMBLY TIME
REPEAT K= i REPEAT WHILE J IS LESS THAN
iOR EQUAL TO 3
J SET J+1 i INCREMENT J
ENDR ;END OF REPEAT CONDITION

The % Character

The “percent” character, when surrounded by single quotes ('%’), is replaced by the name of
the current section or common. The name is returned as a string. If the current section is the
default section, the null string is returned.

in the following example, the percent sign character is used to represent the name of the
current section.

LABEL OPERATION OPERAND COMMENT
STRING SECNAM(8) ; DEFINES STRING., SECNAM, WITH
i EIGHT-CHARACTER MAXIMUM
SECNAM SET wowan i SECNAM IS SET TO NAME OF
; CURRENT SECTION
SECTION BBB ; DEFINES NEW SECTION BBB
ﬁESUME ‘SECNAM’ ; RESUMES PREVIOUS SECTION

5-4 REV B MARCH 1979

Macros—8002: 8080A/8085A Users

e

The ! or /A Character in Macro Definition

The up-arrow (1), or caret (A), character may be entered just prior to any character having
special meaning, thus causing the special character to be interpreted as a regular part of the
text. The 1 or A is available in all phases of the Tektronix Assembler. in the following
example, the caret (A) character removes the speciai meaning of the singie quote character.

LABEL OPERATION OPERAND

ASCII "THAT™’S ALL FOLKS. "

Upon macro expansion, the following code is generated in memory:

THAT’'S ALL FOLKS.

MACRO TERMINATION

A macro definition block is terminated by an ENDM statement.

MACRO CALLING

A macro is invoked when a macro call is encountered within a program. The operand field of
a macro call contains the macroc name to be called.

LABEL OPERATION OPERAND

name

|NCLUDE Directive Text Insertion

Another method for calling text into a program involves INCLUDE directive usage. The
INCLUDE directive (see Section 4, Assembier Directives) may be used to insert text into a
program from a specified file. The INCLUDE directive may be part of a MACRO , IF—ENDIF, or
REPEAT—ENDR block, as long as it does not terminate any of those blocks. The name of the
file to be inserted is entered in the operand field of the INCLUDE directive, as follows:

LABEIL OPERATION OPERAND

INCLUDE filename

REV A MARCH 1979 5-5

Macros—8002A:8080A/8085A Users

0 ———————————,————]

Text Substitution

Optional arguments within the operand field of the macro call are separated by commas.
These arguments define the values to replace the parameters within the block as the macro
is expanded. For example, the following macro call invokes the macro named EVALC and
defines the arguments 25 and ARG2 for substitution within the block of code as the macro is

expanded.
LABEL OPERATION OPERAND COMMENT
EVALC 25, ARG2 ; INVOKES MACRO EVALC AND DEFINES

i FIRST TWO ARGUMENTS FOR SUBSTITUTION
i WITHIN MACRO DEFINITION BLOCK AS 25
i AND ARG2

The preceding example contains the following arguments:

Argument 1 = 25

Argument 2 = ARG2

A label appearing in a macro call is assigned the value of the location counter prior to macro
expansion.

Special Macro Calling Characters
The [] Construct

Square brackets [] may be used to group code for inclusion as an argument within a
macro call. All characters enclosed within square brackets are considered to represent a
single argument. Square brackets may not be nested. Square brackets are not passed to the
source text during macro expansion. For example, the following macro call parameters

LABEL OPERATION OPERAND COMMENT

PNPDG ABC, 1"ABC, 1", [ABC, 11 i INVOKES MACRO PNPDG AND
: SUBSTITUTES THE ARGUMENTS

Lo]

i ABC, 1, "ABC, 1", ABC, 1

produce the following arguments.

Argument 1 = ABC

i
-

Argument 2
Argument 3 = "ABC,1”

ABC 1

Argument 4

5-6 REV A MARCH 1979

Macros—8002A:8080A/8085A Users

oS e S e

The ' or A Symbol in Macro Calls

The up-arrow {1}, or caret {\), character may be entered just prior to any character having
special meaning, thus causing that character to be interpreted as a regular part of the text.
The 1 or A symbol is available in all phases of the Tektronix Assembler. The example that
follows allows the comma and square bracket characters, respectively, to be interpreted as
part of the arguments SML,J and [BC] when the macro TIME is invoked.

LABEL OPERATION OPERAND COMMENT

TIME 1,2, SML™, J, ~“[BC™] ; INVOKES MACRO TIME AND
i SUBSTITUTES THE ARGUMENTS
i1,2,5ML, J, AND [BC1

The preceding example contains the following arguments.

1

Argument 1

Argument 2 = 2

Argument 3 = SML,J

Argument 4 = [BC]

Additional Macro Argument Conventions

Any leading or trailing blanks are removed from the argument upon macro expansion.
However, blanks inserted within an argument are retained. If there are only blanks between
two commas, the resulting argument is empty. To force a parameter to be replaced by blanks,
it may be enclosed within square brackets.

LABEL OPERATION OPERAND

PGRD A)B, C,,[L DE, 3", L 3, L7013

The preceding example expands to the arguments listed below. Asterisks are used only in
this example to indicate the beginning and end of the argument, and are not expanded as
part of the macro text.

Argument 1 = *A* Argument 5 = * D,E *
Argument 2 = *B* Argument 6 = *” "*
Argument 3 = *C* Argument 7 = * *
Argument 4 = ** Argument 8 = *[*

REV A MARCH 1979 5-7

Macros—8002A:8080A/8085A Users

-

L IIN—————

Any number or length of arguments may be entered within the operand field of a macro call,
as long the line does not exceed 128 characters (not including a carriage return). When
arguments are substituted for parameters, the lines resulting from the macro expansion
must not exceed 128 characters. Otherwise, an error code is displayed.

EXAMPLES

The following text includes two examples of macro definition, calling, and the resulting
expansions. The first example illustrates a simple macro expansion. The second example is

more complex and illustrates two contiguous macro expansions, one of which is referenced
by the other.

Example 1

In this example, a macro is defined as EVALC. Two parameters, 1 and 2, are defined and
surrounded by single quotes within the macro definition block.

LABEL OPERATION OPERAND COMMENT
MACRO EVALC i DEFINES EVALC AS MACRD NAME
BYTE S5, "1 i ALLOCATES ONE BYTE OF MEMORY

i FOR THE CONSTANT VALUE 5 AND
i ONE BYTE FOR THE FIRST PARAMETER
i WITHIN EVALC

WORD 2 i ALLOCATES TWO BYTES OF MEMORY
i FOR THE SECOND PARAMETER WITHIN
i EVALC

ENDM i END OF MACRO DEFINITION

Assume the following call appears within a user program.
LABEL OPERATION OPERAND COMMENT

EVALC 25, 357 i INVOKES MACRO EVALC AND SUBSTITUTES
i THE ARGUMENTS 25 AND 357 FOR THE
i FIRST TWO PARAMETERS WITHIN EVALC

This macro call generates the following macro expansion and substitutes the arguments 25
and 357 for the first two parameters ('1’ and '2’) within the macro definition block. The
argument 357 requires two bytes of memory as defined by the WORD statement within the
macro definition block.

LABEL OPERATION OPERAND
BYTE 5,25
WORD 357

5-8 REV A MARCH 1979

Macros—8002A:8080A/8085A Users

Example 2

In the following example, two macro definition blocks are sequentially defined Q1 and Q2.
One parameter is defined within each macro definition block. A macro call, Q1 7, is defined
within Q2. This statement calls the macro, Q1.

LABEL OPERATION OPERAND COMMENT
MACRO Q1 ;DEFINéS Q@1 AS MACRO NAME
PARM1 SET 1 i ALLOWS SYMBOLIC REFERENCE
; TO THE FIRST PARAMETER
BYTE 3,5, ‘PARML’ i ALLOCATES ONE BYTE OF MEMORY

; EACH FOR THE CONSTANT VALUES
i3 AND 5, AND FOR THE FIRST
; PARAMETER PASSED TO Q1, 'PARMI’

ENDM ; END OF MACRO DEFINITION Q1
MACRO Qa2 ; DEFINES Q2 AS MACRO NAME
BYTE 3,5 1’ ; ALLOCATES ONE BYTE OF MEMORY

; EACH FOR THE CONSBTANT VALUES
i3 AND 5, AND FOR THE FIRST
i PARAMETER PASSED 70 G2, ‘1’

a1 7 i CALLS MACRD @1 AND ASSIGNS

i THE VALUE 7 TO THE FIRST

i PARAMETER PASSED TO Q1, ‘PARM1’
BYTE 8,9 10 i ALLOCATES ONE BYTE OF MEMORY EACH

i TO THE CONSTANT VALUES 8, 9 AND 10
ENDM ; END OF MACRO DEFINITION Q2

Assume the following macro caii appears within a user program to invoke the macro defined
as Q2.

LABEL OPERATION OPERAND COMMENT

Q2 3 i CALLS THE MACRO G2 AND
i SUBSTITUTES THE ARGUMENT
i3 FOR THE FIRST PARAMETER
'.III

This macro call generates the following expansion.

LABEL OPERATION OPERAND
BYTE 35,3
BYTE 3,5, 7
BYTE 8,910

In this example, the macro call Q2 3, causes the first statement within the macro Q2, BYTE
3,5'1’, to be expanded to BYTE 3,5,3. Expansion proceeds to the next statement, which calls
the macro Q1 and appears as Q1 7. This statement causes expansion to continue with the
statement, PARM1 SET 1, which allows PARM1 to be used as a symbolic reference to the
first parameter. The next statement within Q1 is expanded as BYTE 3,5,7, replacing BYTE
3,5,'PARM1’. Expansion within macro Q1 then terminates with the ENDM directive. This
termination causes expansion to continue with the next statement in the referencing macro,
Q2. The statement, BYTE 8,9,10 is the next statement expanded. Control then returns to the
main program upon expansion of the ENDM directive, which terminates the macro
expansion, Q2.

REV A MARCH 1979 5-9

Macros—8002A:8080A/8085A Users

CONDITIONAL ASSEMBLY

Macros may be defined such that their expansion is conditional; that is, based upon the
values of the parameters they use. IF—ELSE—ENDIF blocks allow conditional assembly and
are valid in all phases of the Tektronix Assembler. REPEAT—ENDR blocks also allow
conditional assembly and are only valid within a macro definition. The two methods for
performing conditional assembly are summarized below. For further information pertaining
to IF—ELSE—ENDIF and REPEAT—ENDR usage, refer to Section 4, Assembler Directives.

OPERATION OPERAND

1) IF expr Turns off the assembly process if
the expression is equal to zero
(false). Succeeding statements are
passed over and are not acted upon
untl the ENDIF, or optional ELSE,
statement is encountered

ELSE Regenerates assembly process when
IF expression equals zero. Usage
is optional.

EMDIF Terminates the program text
controlled by the corresponding
IF statement.

2) REPEAT exprl, expre If exprl is equal to zero (false),
statements up to the ENDR
statements are ignored. Otherwise,
the statements are assembled and
the assembler repeats the process
again until the expression is equal
to zero. A REPEAT block stops
iterating when the specified
expression maximum, expra, is
Treached. If expr2 is not specified,
the REPEAT block stops after 255
iterations.

ENDR Terminates the program text
controlled by the corresponding
REPEAT statement.

Nesting

IF—ELSE—ENDIF blocks and REPEAT—ENDR blocks may be nested. The nesting depth is
limited only by the amount of memory available to the Assembler. Each IF condition must be
properly nested, having a matching ENDIF statement that occurs within the scope of that
particular IF condition. Only one ELSE directive is permitted within each IF—ENDIF block. In
addition, each REPEAT condition must be properiy nested, having a matching ENDR
statement occurring within the scope of that particular REPEAT condition. IF—ENDIF and
REPEAT—ENDR blocks may not cross the boundary of a macro expansion or the boundaries
of another IF—ENDIF or REPEAT—ENDR biock.

5-10 REV A MARCH 1979

Macros—8002A:8080A/8085A Users

Conditional Macro Termination

The EXITM directive terminates the current macro expansion before the Assembler
encounters an ENDM directive. The EXITM directive is generally used within IF—ELSE—
ENDIF and REPEAT—ENDR blocks to conditionally terminate macro expansions. EXITM is
valid only within macro definition blocks.

EXAMPLES

IF—ENDIF Blocks

The following example demonstrates the definition, calling, and expansion of a macro using
an IF—ENDIF block. The example also demonstrates the use of an EXITM directive to
conditionally terminate the macro expansion. In this example, a macro is defined as CONDIF
and uses four parameters.

LABEL. OPERATION OPERAND COMMENT
MACRO CONDIF s DEFINES CONDIF AS MACRO NAME
BYTE '17,72,0,0,0 ; ALLOCATES ONE BYTE OF MEMORY

i FOR EACH OF FIVE VALUES. THE

;s FIRST AND SECOND VALUES ARE

i THE FIRST AND SECOND PARAMETERS

i FOR SUBSTITUTION BY THE MACRO

; CALL ARGUMENTS. THE 3RD, 4TH,

; AND 5TH VALUES ARE THE CONSTANT, ©

IF "egon=nn ; TESTS 3RD PARAMETER TO DETERMINE
» IF IT EXISTS
BYTE 255 ; IF 3RD PARAMETER DOES NOT EXIST.

; ONE BYTE IS GENERATED CONTAINING
; 255 DECIMAL

EXITM ; TERMINATES MACRO EXPANSION. IF
; CONDITION IS SATISFIED

ENDIF ; END OF IF CONDITION

BYTE ‘3 ;s OTHERWISE, ONE BYTE IS ASSIGNED
i CONTAINING 3RD PARAMETER

BYTE HI(’4’),L0¢(’4’) ; SWAPS BYTES OF 4TH PARAMTER

ENDM ; END OF MACRO DEFINITION

Assume the following macro call appears within a main program.

LABEL OPERATION OPERAND COMMENT

CONDIF 22, 29,27, 25 i INVOKES MACRO CONDIF AND USES
i THE ARGUMENTS 22, 29, 27 AND 25
i FOR SUBSTITUTION OF THE FIRST
i FOUR PARAMETERS

REV A MARCH 1979 511

Macros—8002A:8080A/8085A Users

5-12

This macro call substitutes the arguments 22, 29, 27, and 25 for the parameters labeled '1’,
'2’, '3’, and '4’. Notice that the substitution indicator (+) is displayed prior to each listed
source line where substitution occurs.

0000 161D0O000O+ BYTE 22,89, 0,0,0 ; ALLOCATES ONE BYTE OF MEMORY
0004 00

0005 iB + BYTE 27 ; OTHERWISE, ONE BYTE IS ASSIGNED
0006 0019 + BYTE HI(25),L0(25) ; SWAPS BYTES OF 4TH PARAMETER

if the third substituted argument in this expansion had been empty rather than 27, the
EXITM statement would have terminated further macro expansion.

REPEAT—ENDR Blocks

In the following example of a REPEAT—ENDR block, a macro is defined as CONDR and
defines the SET symbol, AGAIN.

LABEL OPERATION OPERAND COMMENT
MACRO CONDR ; DEFINES CONDR AS MACRO NAME
AGAIN SET 1 i INITIALIZES AGAIN TO EQUAL
i1 AT ASSEMBLY TIME
REPEAT AGAINI="#" ; REPEAT WHILE AGAIN IS LESS

i THAN OR EQUAL TO TOTAL NO.
; OF ARGUMENTS ON THIS CALL

BYTE "AGAIN' i GENERATES ONE BYTE OF MEMORY
; CONTAINING THE CURRENT PARAMETER
AGAIN SET AGATIN+1 ; INCREMENT AGAIN AT ASSEMBLY TIME
ENDR ; END OF REPEAT CONDITION
BYTE ODH ; GENERATES A CARRIAGE RETURN
ENDM ; END OF MACRO DEFINITION

Assume the following macro call appears within a main program.

LLABEL OPERATION OPERAND COMMENT

CONDR 25, 26, 27 ; INVOKES MACRO CONDR AND
;i SUBSTITUTES THE ARGUMENTS
i 29, 26, AND 27 FOR THE FIRST
i THREE PARAMETERS

REV A MARCH 1979

Macros—8002A:8080A/8085A Users

This macro call generates the following macro expansion and substitutes the arguments 25,
28, and 27 for the parameter iabeled "AGAIN’. The substitutions occur for as many times as
there are arguments specified in the macro call, as defined by the '# character. In this
example, there are three arguments specified and the '#' character is replaced by 3.

0001 AGAIN SET 1
FFFF + REPEAT AGAIN<{=00003
0000 19 + BYTE 25
0002 AGAIN SET AGAIN+1
ENDR
FFFF + REPEAT AGAIN<{=00003
0001 1A + BYTE 26
0003 AGAIN SET AGAIN+1
ENDR
FFFF + REPEAT AGAIN<=00003
0002 1B + BYTE 27
0004 AGAIN SET AGAIN+1
ENDR
0003 oD BYTE ODH
ENDM
00005 0004 END

MACRO EXPANSION SUMMARY

The lines of code within the macro definition block are not assembled with the rest of the
program, but are saved until macro expansion time. However, blank lines or comment lines
are not saved for expansion. The macro definition block, therefore, does not generate object
code upon assembly. When the macro name appears within the operation field of the main
program during assembly, the body of the macro is then inserted and assembled within the
main program.

Refore it assembles each line in the macro definition block, the Assembler scans for the
presence of single quotes. An argument defined in the macro call then replaces the
parameter within the single quotes. After substitution, the scan continues from the first
character following the replaced text until the end of the current line. The line is inserted into
the user program. The Assembler then generates object code and processes the line. The
Assembler continues to obtain lines from the macro definition block in this manner until an
ENDM or EXITM statement is encountered. At that time, expansion continues with the

statement following the macro call.

REV A MARCH 1979 5-13

8002A:8080A/8085A Users

Section 6

ASSEMBLER OPERATING PROCEDURES

INTRODUCTION

This section describes the syntax required for the Tektronix Assembler to translate source
code into executable binary object code.

Syntax

object filename [/disc drive]| |list filename [/disc drive]
ASM |object device list device

source filename [/disc drive]| |source filename [/disc drive]
source device source device

PURPOSE

The ASM command invokes the Assembler when the 8002A uProcessor Lab is under
TEKDOS control.

EXPLANATION

The optional filename or device parameter causes the Assembler to output the binary object
module to the specified disc file or device. The optional list filename or device parameter
causes the Assembler to output an Assembler listing to the specified device or disc file. The
source filename or device parameter specifies the source file to be translated.

All parameters within the ASM command line must be separated either by spaces or by
commas. The object filename or device parameter is optionai and, if omitted, must be
replaced by two commas in the following manner. In this case an object file is not generated.

ASM, LIST SOURCE

REV B MARCH 1979

Assembler Operating Procedures—8002A:8080A/8085A Users

The list filename or device parameter is also optional and, if omitted, must be replaced by two
commas in the following manner. In this case an Assembler listing is not generated.

ASM OBJECT, SOURCE

If the object and list filenames or devices are both omitted, they must be replaced by three
commas in the following manner.

ASM,,, SOURCE

If the object and list files are intended to reside on a disc other than the system disc, the
appropriate disc drive number must follow the slash character (/) in the following manner.

ASM OBJECT/1 LIST/1 SOURCE

At least one source filename or device must be specified in the ASM command line. More
than one source filename or device may be specified if the ASM command- and its
parameters do not exceed one line. If the source file is stored on a disc other than the system
disc, the appropriate disc drive number must be specified after the / character in the
following manner.

ASM OBJECT LIST SOURCE/1

If the specified source file is a device, the Assembler source code must be entered twice,
once for each assembler pass. In addition, if the source file is the console input device
(CONI), care should be taken to ensure that the source code is entered exactly the same for
both Assembler passes. '

ASSEMBLY COMPLETION

After assembly completion, each line containing an error is displayed, followed by an error
code describing the nature of the error. Refer to Appendix F for a list of error codes,
messages, and their explanation. Below all error displays, two lines appear on the output
device showing the number of source lines, the number of assembled lines, the number of

assembly error occurs, the program aborts and a message indicates the error in the following
form:

FATAL ERROR, ASSEMBLY ABORTED AT LINE XXXX

The TEKDOS prompt character (>) appears after all Assembler messages have been displayed
indicating assembly completion.

If an object filename or device parameter has been specified in the ASM command line, the
translated program is stored as relocatable binary object code. A correctly assembled object
file may be linked, if necessary, and then loaded, executed or debugged.

If a list filename or device parameter has been specified in the ASM command line, the
assembled listing is output to a device or disc file.

6-2 REV B MARCH 1979

8002A:8080A/8085A Users

Section 7

ASSEMBLER LISTING FORMAT

INTRODUCTION

The Assembler listing is composed of two parts:

1. the source program assembler listing with the object code generated for each
instruction; and

2. a table of all symbols used in the program.

THE ASSEMBLER LISTING

The Assembler listing is composed of headings, lines of source code information, and error
responses related to any assembling errors.

Headings
Each page of the Assembler listing contains a heading. The heading includes the Assembler

version on the left side of the page, and the page number on the right side of the page, as shown
below:

TEKTRONIX 8080A/8085A ASM Vx. x PAGE X

With the TITLE directive, a 30-character string expression may be inserted at the top of each
listing page for program identification. The character string specified as the TITLE operand is
printed on the first character line between the Assembler version number and the page
number, as follows. Refer to the TITLE directive in Section 4, Assembler Directives.

TEKTRONIX B0BOA/B8085A ASM Vx. x THIS IS THE PROGRAM TITLE FAGE X

With the STITLE directive, a 72-character string expression may be inserted on the second
line of each listing page for program identification. The character string specified as the
STITLE operand is printed between the page heading and the first source code line. A blank
line is automatically inserted between the string and the beginning of the source code. A
program identification heading created with the STITLE directive appears below. Refer to the
STITLE directive in Section 4, Assembler Directives.

TEKTRONIX B080A/8085A ASM Vx. x PAGE X

THIS LINE DEMONSTRATES STITLE USAGE
(blank line)

(source code)

REV B MARCH 1979

Assembler Listing Format—8002A:8080A/8085A Users

The Listing Line

The heading is followed by a blank line and the listing information. Each source program line
is translated and output in the following sequence:

1. a line number,

2. the memory location of the instruction or data,

3. the translated object code,

4. a relocation indicator if relocation occurs on the line,

5. a substitution indicator if substitution occurs on the line, and

6. the original source line.

The listing line may be 72 or 132 characters wide, depending upon whether the TRM option
for the LIST and NOLIST directives is active. The first listing line field is a five-character
decimal line number. Line numbers are not listed for macro expansion lines. The second
listing field is a four-character hexadecimal location counter. This field may also represent a
symbol value for an EQU directive. Both the line number and the location counter are right

justified with leading zeros when necessary, and are separated from each other by one
space.

The object code field follows the location counter field, and the fields are separated by one
space. The object code is left justified and may be a maximum of eight hexadecimal
characters wide. if an instruction generates more than eight hexadecimai characters, aii
additional object code is listed on subsequent lines.

If relocation occurs in a line, the greater-than character (>) follows the object field. Actual
relocation is performed at link time.

If a substitution occurs in a line, the plus character (+) follows the relocation indicator if
present or the object code field. All substitutions occur before the line is listed. The example
that follows shows the plus sign preceding a line where a substitution occurs.

00001 0000 030502 + BYTE 3.5,2 i ALLOCATE ONE BYTE OF MEMORY
i FOR EACH OF THE CONSTANT
i VALUES 3 AND S5, AND FOR THE
i VALUE DEFINED TO SUBSTITUTE
iFOR ‘1’ (IN THIS CASE THE
i VALUE IS8 2

The source code follows the relocation or substitution indicator (if present) or the object code
field. The fields are separated by one space. If the TRM option is ON when entered with the
LIST directive, 52 spaces remain in the listing line for the source code. Any source code
exceeding the 52-character limit is truncated. If the TRM option is OFF, either by default or
when entered with the NOLIST directive, 112 characters remain in the listing for the source
code. Any source code exceeding the 112-character limit is truncated.

REV B MARCH 1979

Assembler Listing Format—8002A:8080A/8085A Users

Any non-printing character, other than the space, tab, or carriage return character, is
represented by a question mark (?) in the listing. The Assembler translates the character
replaced by the ? to the original character form.

To summarize, the listing line appears in the following format.

XXXX Liib DDDDDDDD > + 858585

Each field is represented as follows:

X = line number, right justified

L= memory location (or EQU statement symbol value)

D= object code

> = relocation indicator {relocation is performed at link time)

+ = substitution indicator (substitution Has occurred before listing)
S = source line

Error Response

if an error occurs in an instruction, the line containing the error is followed by an error
response. This is also true when the instruction generates more than one line of object code.
The error response takes the following form:

ERROR code

The "code” in the above error response is replaced by a three-digit number indicating the type of
error detected. For a description of all error codes and their corresponding messages, refer to
Appendix F.

If the error response precedes an additional message, “"FATAL ERROR, ASSEMBLY
ABORTED AT LINE XXXX", the error is so severe that the Assembler cannot continue
execution.

REV C MARCH 1979 7-3

Assembler Listing Format—8002A:8080A/8085A Users

THE SYMBOL TABLE

The symbol table follows the listing, and indicates all symbols used in the source module and
the values these symbols represent. The symbol table also categorizes all symbols according
to their type or base, for ease in referencing. The structure of the symbol table follows a
three-part format: a heading, symbols and their values (categorized by type or base), and two
lines providing statistical program assembly information.

Each symbol table page contains a heading following the format shown below:

TEKTRONIX 80B0A/B085A ASM Vx. x SYMBOL. TABLE LISTING PAGE X
Below the heading, symbols and their corresponding hexadecimal values appear in
categories according to their type or base. Headings precede each category describing the

group of symbols in each category. The possible symbol headings are as follows:

STRING AND All string and macro symbols are listed under this category.
MACROS
SCALARS All symbols having scalar values and all undefined symbols are

listed under this category. All register values are also described
here.

name SECTION
characteristic (length)

All symbols based to the name Linker section are listed. The
section characteristic indicates whether the section is relocated at
the starting address of a physical memory block (PAGE), whether
the section is relocated on any byte address within & page
(INPAGE), or whether the section is based to the actual address
specified by the ORG directive at assembly time (ABSOLUTE). Refer
to the discussion on Section Definition Directives in Section 4. If no
characteristic is listed, the section is byte relocatable. The length of
the named section is specified in bytes.

name COMMON
characterisiic (lengih)

name RESERVE
characteristic (length)

name UNBOUND
GLOBAL

Same as SECTION category, except that more than one common
section with the same name is valid at link time.

Same as SECTION category, except that all sections with the
specified name are combined into a single section at link time.

An unbound global is a symbol declared in a global statement,
having no value in this assembly. The named unbound global must
be defined in other assemblies or at link time. If an unbound global
is used to assign a vaiue to a symbol in this assembiy, that symboi
is listed under the UNBOUND GLOBAL category in the symbol
table listing.

REV C MARCH 1979

Assembler Listing Format—8002A:8080A/8085A Users

Columns containing symbels and their corresponding hexadecimal vaules are listed
alphabetically under each category. When a symbol has fewer than eight characters, dashes
and spaces (— — —) serve as padding between a symbol and its value. The value field
contains four hexadecimal characters and is right justified, with leading zeros where
necessary. The value field for undefined symbols appears as a series of asterisks (****). Each
value is followed by several spaces and the next symbol. A typical symbol table listing line
might appear as follows:

SYMiI ---0101 SYMB2 --0025 SYMB --0022 SYMBOL4 #### SYMBOLS 0121

The number values for string and macro symbols indicate the number of bytes used by the
symbol for text storage. The number values for SET symbols indicate the last values assigned
to the symbols. The number values for global and ENDOF symbols represent the addresses
prior to relocation.

Symbol indicators may appear after the symbol values. An indicator also appears if a high or
low truncation occurs at link time. The symbol indicators are summarized as follows:

S string symbol

M macro symbol

\ SET symbol

G global symboi

H high truncation indicator (truncation will occur at link time)
L low truncation indicator {truncation will occur at link time)
E ENDOF symbol (value will be adjusted at link time)

All symbols without indicators are EQU symbols. The number values for these symbols
indicate their values during assembly.

If the TRM option is specified with the NOLIST directive, or is otherwise OFF due to default,
the symbol table listing is five columns wide. If the TRM option is specified with the LIST
directive, causing the option to be ON, the symbol table listing is three columns wide.

Two lines appear below the symbol table display providing statistical information about the
current assembly. The first line shows the number of source lines, the number of assembled
lines, and the number of available bytes. The number of available bytes indicates the amount
of space available for further data manipuiation or symbol storage within the Assembler. The
second statistical line indicates the number of errors and undefined symbols, if any.

REV B MARCH 1879 7-5

Assembler Listing Format—8002A:8080A/8085A Users

—

A sample Assembler and symbol table listing is shown in Fig. 7-1.
TEKTRONIX B8080A/885A ASM Vx. x PAGE 1

STRING S51(80) ;DEFINE STRING VARIABLE S1
i WITH 80-CHARACTER MAXIMUM

0003 L1 EQU 3 ; DEFINE CONSTANT SYMBOL L1
i TO EQUAL 4
##4#3#3# ERROR 003 Symbol value Phase Error
0004 L2 SET 4 ; DEFINE VARIABLE SYMBOL L2
i TO EQUAL 4
0100 > ORG 100H i STARTS OBJECT CODE OF NEXT
i INSTRUCTION AT 100H
0100 7E00 L1 MOV AM ; LOAD REG. A WITH CONTENTS
; OF MEMORY. MULTIPLY-DEFINED
; SYMBOL., L1
###%# ERROR 002 Symbol already defined
END i END OF PRDOGRAM
TEKTRONIX 8080A/8085A ASM Vx. x ASSEMBLER SYMBOL TABLE PAGE 2

STRINGS AND MACROS

Sl-———- 0030 S

SCALARS
A —-—— 0007 B -—- 0000 ¢ --— 0001
D --— 0002 E --- 0003 H -—- 0004
L -—— 0005 L2 —-—— 0004V M -—— 0006
PSW-—— 0006 Sp -—— 0006

% (default) SECTION (0101)

13 SOURCE LINES 15 ASSEMBLED LINES 23 BYTES AVAILABLE
2 ERRORS

Fig. 7-1. Sample Assembler and symbol table listing.

8002A:8080A/8085A Users

ection 8

S
ASSEMBLER OBJECT MODULE

INTRODUCTION

The Tektronix Assembler object module can be stored on flexible disc in binary code. The
binary object code may then be linked or loaded into program memory for execution and
debugging. If a moduie contains more than one section or references GLOBAL symbols
declared in other modules, it must be linked before its object code is loaded into program
memory.

PROGRAM LOADING AND EXECUTION

The TEKDOS command, LOAD, is used to load an assembled binary object module or linked
load fite into program memory. The TEKDOS command, GO, may then be entered to begin
program execution or debugging. This section outlines LOAD and GO command usage. For
further details describing binary object code execution procedures, refer to the 8002A
uProcessor Lab System User’'s Manual.

REV C MARCH 1878

81

Assembler Object Module Application
8002A:8080A/8085A Users

PR e e e

Syntax
LOAD [/offset] {filename [/disc drive]} filename [/disc drive]

PURPOSE
The LOAD command program loads Assembler object modules and Linker load files into
program memory.

EXPLANATION

The specified files are loaded into program memory with the LOAD command. The files must
have been previously created by the Assembler or the Linker. Assembler object files
containing relocatable sections or references to global symbols may execute incorrectly if not
linked before loading.

The specified files are loaded into program memory starting at the location specified in the
source code.

The offset amount alters the LOAD memory address.

8-2 REV C MARCH 1979

Assembler Object Module Application
8002A:8080A/8085A Users

PRmmiiiimmmmmmmmmmmm e e e S

Syntax
GO [address]

PURPOSE

The GO command causes execution control to be passed to the emulator processor.

EXPLANATION

This command passes execution control to the emuiator processor. The first time you enter
the GO command without an address parameter, executicn begins at address 0. Thereafter,
if you enter the GO command without an address parameter, execution begins at the address
following the last instruction executed. When you enter the GO command with an address
parameter, execution begins at the specified address in program memory.

Execution is suspended by pressing the ESC key. Breakpoints set with the BKPT command
interrupt program execution when the program reads from or writes to the specified address.

When a transfer address is specified with the Assembler directive END, the LOAD command
passes this transfer address to the GO command. Execution will begin at the transfer
address when the GO command is specified without an address parameter. The GO
command may be invoked in or out of the debug system and still have control passed to the
transfer address.

REV C MARCH 1979 8-3

8002A:8080A/8085A Users

Section 9

THE LIBRARY GENERATOR

INTRODUCTION

The Library Generator, LIBGEN, is a general purpose library-generating routine for the
8002A uProcessor Lab.

LIBGEN collects TEKDOS Assembler object modules into library files. These modules can

then be retrieved by the Linker as needed. Each object module must be entered into a library
file from a separate object file.

LIBGEN also allows the modification of an existing LIBGEN generated library file. Modules
may be inserted into, deleted from, replaced, and extracted from disc files. More than one
library file may exist at a time.

INVOKING LIBGEN

LIBGEN can be invoked in two different ways: command file or interactive.

Command File Invocation

Syntax
LIBGEN @file

LIBGEN will read the commands from "“@file” until either an end-of-file is encountered or
the END command is read.

If any errors are detected in the command file, LIBGEN will abort with the message:
"ERRORS IN COMMAND FILE, LIBGEN ABORTED.”

Read the following subsection, LIBGEN, for a list of allowable commands for your command
file.

REV B MARCH 1979

The Library Generator-8002A:8080A/8085A Users

Interactive Invocation

Syntax
listfile [/disc drive]
LIBGEN [newlib] {}|listdevice {} loldlib]
"newlib” is the name of a new library file to be generated. To omit, replace with a comma.
For example:
LIBGEN .listfile,oldlib
"listfile” is the name of the listing file. The listing file contains a summary of action

taken, any error messages, and a summary of the contents of the new library
file. If omitted, no listing file will be generated. To omit, replace with a comma.
For example:

LIBGEN newlib,,oldlib
To omit both “newlib” and "listfile”, enter:
LIBGEN,,,oldlib

"listdevice” is any output device.

"oldlib” is the name of an old library file to be modified. This parameter must be entered
if an old library file exists.

When the LIBGEN command line is entered, an asterisk {*) prompt character will appear,

indicating that LIBGEN is ready to accept commands. Enter the desired LIBGEN commands.

See the following subsection, LIBGEN Commands, for a list of allowable commands. To

process the library file and return to TEKDOS, enter the END command.

9-2 REV B MARCH 1972

The Library Generator—8002A:8080A/8085A Users

LIBGEN COMMANDS

The TEKDOS syntax ruies apply to LIBGEN commands. Refer back to Statement Syntax
Conventions, in the Preface. Commands may be entered in either the short or the long form.
For example, INSERT may be entered *| or *INSERT. Do not attempt to enter commands in
any other form. For exampie, *INSER and *INS are not acceptable forms for the INSERT
command.

Each command must be terminated by a carriage return.
NEWLIB {filename}

"filename” is the name of a new library file to be generated. Only one new "filename” is
allowed. If this command is entered more than once, the name assigned to the file will be the
one in the last command.

filename [/disc drive]
LIST |device

"filename” or “device” will contain a summary of action taken, any error messages
generated, and a summary of the new library file. Only one list file is allowed. If this
command is entered more than once, the name assigned to the file will be the one in the last
command. See the LIBGEN OUTPUT discussion later in this section for listing format.

OLDLIB f{filename [/disc drive]}
"filename” is the old library file to be modified. Only one old library file may be modified per

LIBGEN invocation. If this command is entered more than once, the name assigned to the file
will be the one in the last command.

The object modules in “file1” " file2"”... will be inserted into the new library file.

If the "BEFORE/AFTER libmodule” parameter is not entered, the object files will be inserted
at the beginning of the library file.

If the "BEFORE/AFTER libmodule” parameter is entered, the object files will be inserted
before or after the module named “libmodule” in the library file.

If the "BEFORE/AFTER libmodule” parameters are entered, but the module named libmodule
cannot be found in the old library file, the object files are inserted at the end of the new
library file. A warning message is given. See the Errors subsections.

If the BEFORE/AFTER parameter is entered without specifying a libmodule, a syntax error
will occur.

REV B MARCH 1979 9.3

The Library Generator-8002A:8080A/8085A Users

If duplicate file names are entered, a warning message will be printed on the console, and
modules will be inserted as requested. See the Errors subsection.

If different modules contain symbols with identical names, errors may occur at link time.

DELETE {mod1} [,mod2] [,mod3]

The DELETE command will prevent modules "mod1”, "mod2”, "mod3”... from being copied
from the old library file into the new library file.

If duplicate module names are present in the library file, the DELETE command will delete all
modules with that name.

REPLACE {libmodule BY file [/disc drive]}

The REPLACE command is a combination of the DELETE and INSERT BEFORE commands.
The library file is scanned for the module "libmodule”. The location of the module after

"libmodule” is noted, “libmodule” is deleted, and the object module in "file” is inserted
before the module that followed "libmodule”.

If duplicate module names exist in the library file, the REPLACE command will delete all
modules with that name. It will then place the new file where the first module was.

Using the REPLACE command with a non-existing "file” deletes the "libmodule”.

If different modules contain global symbols with identical names, the wrong module may be
linked at link time.

EXTRACT {libmodule TO file [/disc drive]}
The library module “libmodule” will be extracted from the old library file and placed in an

object disc file named "file”. The library module will still exist in the old library file. If a file
named "file” already exists on the disc, it will be replaced by the new file.

NCLCG

LIBGEN will not print the LIBGEN commands to the listing file or the console (in the case of
command file invocation). LIBGEN defaults to LOG (see the following discussion).

LOG

LIBGEN will print the LIBGEN commands to the listing file, or the system console. LIBGEN
defaults to LOG.

END

LIBGEN will begin processing ail the LIBGEN commands.

9.4 REV A MARCH 1979

The Library Generator—8002A:8080A/8085A Users

LIBGEN EXECUTION

LIBGEN will read all commands and collect information into its own internal data structures
until the END command is read. it will then process the commands in the following order:

INSERT BEFORE
EXTRACT
DELETE

INSERT AFTER

LIBGEN makes two passes over each object module. During the first pass, the Library Module
Block will be written and the Section Definition, Entry Point Definition, and the Global
Definition records from the Global Symboi Directory biock wiil be combined and written as a
Symbols Defined Here (SDH) Block.

The symbols in the SDH Block identify the module for the Linker. Make sure that each global
symbol in each module of the library file is unique.

On the second pass, the entire Assembler object module will be copied into the new library
file.

Modules must be placed in the library file in the correct order. A modulie that references
global symbols must precede the module that defines them. Otherwise, errors may occur at
link time.

If more than one module with the same name is entered into the library file, a warning
message will be sent to the listing file and the console. The Linker will link the first module

,,,,,,

LIBGEN OUTPUT

The optional listing is a three-part summary. Part one shows the LIBGEN commands used in
the last execution. Part two contains a list of all modules now in the library file, in order, and
their symbols. Section symbols are given an "S" prefix, entry point definitions, an “E"”; and
global symbols, a “G”. Part three is a summary of modules extracted, deleted, and inserted in
the last execution. Refer to the examples at the end of this section.

REV A MARCH 1979 9-5

The Library Generator—8002A:8080A/8085A Users

ERRORS
Non-Fatal Errors

Entering faulty input commands, or specifying non-existent files or modules, will cause an
error or warning message to be displayed. Processing will continue

WARNING. DUPLICATE MODULE NAME: mod1

The module “mod1” exists more than once in the library.
MODULE(S) NOT FOUND IN oldlib

The modules listed after this message were not found in the old library file “oldlib”.
UNABLE TO ASSIGN filel

The object file “file1” is not on the disc. Check the spelling of the file name and the disc
number.

COULD NOT FIND MODULE mod1 IN oldlib, newmod INSERTED AT END OF newlib
The module "mod1” was not found in the old library file "oldlib.” The module "newmod”
has been inserted at the end of the new library file "newlib.” See the INSERT and
REPLACE command decriptions.

NO OLD LIBRARY GIVEN, file INSERTED AT END OF newlib
The name of the old library file was not entered. The module in “file” has been inserted at

the end of the new library file, "newlib”. See the REPLACE and INSERT command
descriptions.

SYNTAX ERROR

The command is not of the correct form.
ILLEGAL COMMAND

The command is illegal. Check the spelling.
INVALID FILE NAME

The file name contains an invalid character.
INDIRECT FILE DEPTH EXCEEDED

A command file cannot contain the name of another command file.

REV A MARCH 1979

The Library Generator—8002A:8080A/8085A Users

Fatal Errors
Improperly formatted object files, an improperly formatted old library file, lack of symbol
blocks in a module, and other system problems will cause an error message to be displayed.
Processing will stop.
command DATA STRUCTURE OVERFLOW
“"command” may be INSERT, DELETE, or EXTRACT. Too many modules are specified in the
input commands. A maximum of 100 modules may be INSERTed, DELETEd, or EXTRACTed, or
a maximum of 150 for any combined operation.
oldlib NOT A LIBRARY
"oldlib” is not a LIBGEN-generated library file.
CAN NOT FIND END BLOCK FOR MODULE IN FILE file1
Module in "file1” is not of the proper format.

CAN NOT FIND END BLOCK FOR MODULE mod1 OF LIBRARY oldlib

Module “mod1” of the oid library file “oidlib” is not of the proper format. “mod1” cannot
be copied into the new library file from “oldlib.”

FILE file1 IS NOT AN OBJECT FILE

Object format for file "file1” is incorrect.
filename [/0O ERROR #nn

"nn” is the TEKDOS SVC status byte.
INVALID OBJECT FORMAT FOR FILE file1
LOCATION = nnnn

The file “file1” located at address “nnnn” is not an object file.

REV B MAY 1979 9.7

The Library Generator—8002A:8080A/8085A Users

9-8

RESTRICTIONS

A library file may contain a maximum of 100 modules. During one execution of LIBGEN, a
maximum of 100 modules may be INSERTed, DELETEd, or EXTRACTed. A combination of up
to 160 INSERTs, DELETEs, and EXTRACTs may be requested.

LIBGEN will accept only one command line at a time. Continuation lines are not allowed.
Lines may be a maximum of 128 characters from the console or file.

To execute LIBGEN, an 8002A uProcessor Lab with 32K of program memory is required. To

selectively link modules from the library file, version 2.0, or a later version of the LINKER is
required. :

EXAMPLES
Example 1
Create a new library file where no old library file exists. Output the listing to the line printer:

>LIBGEN NEW,LPT1
*| ABIO/1 MPIO/1
*INSERT STSO/0

*END

REV A MARCH 1979

The Library Generator— 8002A:8080A/8085A Users

—

The listing file for this execution will be printed on the line printer (LPT1), as follows:
Tektronix Library Generator Vx.x COMMAND LOG Page 1

| ABIO/1 MPIO/1

INSERT STSO/0
END
Tektronix Library Generator Vx.x SYMBOLS DEFINED Page 2

MODULE: (*modulenamel)

(S) (names of any sections) (G) (names of any global symbols) (E) (names of any entry
point symbols)

MODULE: (*modulename2)

(S) (names of any sections) (G) (names of any global symbols) (E) (names of any entry
point symbols)

MODULE: (*modulename3)

(S) (names of any sections) (G) (names of any global symbols) (E) (names of any entry
point symbols)

Tektronix Library Generator Vx.x SUMMARY OF ACTION Page 3

NEW LIBRARY GENERATED: NEWL1

MODULE: "modulenamel” FROM ABIO/1 INSERTED
MODULE: "modulename2” FROM MPIO /1 INSERTED
MODULE: "modulename3” FROM STSO/0 INSERTED

*See NAME in the Assembler Directives section of this manual.

REV A MARCH 1979 9.9

The Library Generator—8002A:8080A/8085A Users

.

Example 2
Modify the library file "NEWL"” using a command file:

>LIBGEN @FIXLIB
(where the file “"FIXLIB” contains the following commands:)
LIST LIBLST
NEWLIB NEW1
OLDLIB NEWL
INSERT SPSO/1
END
The console will display the following message:
NEWLIB NEWL1
OLDLIB NEWL
INSERT SPSO/1

END

9-10 REV A MARCH 1979

The Library Generator—8002A:8080A/8085A Users

L

The listing file, "LIBLST” will contain the following:
Tektronix Library Generator Vx.x COMMAND LOG Page 1
NEWLIB NEWL1

LDLIB NEWL

Q

INSERT SPSO/1

END
Tektronix Library Generator Vx.x SYMBOLS DEFINED Page 2
MODULE: {modulename4)

(S) (names of any sections) (G) (names of any global symbols (E) (names of any entry
point symbols)

MODULE: (*modulename1)

(S) (names of any sections) (G) (names of any global symbols) (E) (names of any entry
point symbois)

MODULE: (*modulename2)

(S) (names of any sections) (G) (hames of global symbols) (E) (names of any entry point
symbols)

MODULE: (modulename3)

(S) (names of any sections) (G) (names of any global symbols) (E) (names of any entry
point symbols)

Tektronix Library Generator Vx.x SUMMARY OF ACTION Page 3
NEW LIBRARY GENERATED: NEWL1

MODULE: “modulename4” FROM SPSO/1 INSERTED

*See NAME in the Assembler Directive section of this manual.

REV A MARCH 1979 9-11

8002A:8080A/8085A Users

Section 10
THE LINKER

INTRODUCTION

The Linker merges independently assembled sections into an 8002A file, suitable for loading
into memory. Linker input may come from the Assembler, and from the library files. (See
Section 9, The Library Generator, for information on the library files.)

The 8002A wuProcessor Lab Assembler converts user-written source files into machine
language object modules. Each module consists of one or more sections.

The object modules output from the Assembler consist of Text Blocks, Relocation Blocks, and
Global Symbol Directory Blocks. Text Blocks from an independently assembled program
section consist of three types of information.

1. Constants and machine instructions whose values are independent of their position in
memory;

2. Addresses or address constants whose values are relative to the starting location
(base) of a section; and

3. Global references to other object modules whose values cannot be determined unti! all
sections are assigned memory locations.

Text blocks are in binary data form.

Relocation Blocks contain information necessary to update and relocate bytes of program
text. Global Symbol Directory Blocks define global symbols and sections.

The Linker supports the unique qualities of each of the microprocessors supported by the

8002A. The Linker's outward appearance and its operational method remain the same,
regardless which microprocessor is supported.

To prepare object modules for the 8002A LOAD program, the Linker performs three specific
functions for each module, in the order of entry:

1. allocates memory space for each section of the load file;
2. establishes a reference table of global symbols; and

3. when necessary, relocates address-dependent locations to correspond to allocated
space.

REV B MARCH 1979 10-1

The Linker—8002A:8080A/8085A Users

In addition, the Linker generates a listing that indicates where sections are allocated, and states
the values of all global symbols.

LINKER INVOCATION

Three methods of Linker invocation are available: simple invocation, interactive command
invocation, and command file invocation. Simple invocation requires entry of filenames only;
all other parameters are set to reasonable default values. This method is usually adequate for
most linking situations.

For more precise control, the Linker can be invoked by an interactive command series using
default or user-specified parameters. The user can specify section attributes and section
location, define global symbols, and control the listing content.

In command file invocation, the Linker is activated by specifying a file containing a Linker
command series.

10-2 REV A MARCH 1979

The Linker—8002A:8080A/8085A Users L' N K

Simple Invocation

Syntax_ list file [/disc drive]] fobject1 [/disc drive]
LINK l_load file[/disc drive]] list device }LIB(libfile [/disc drive]
[,LIB(libfile [/disc drive]|
Lobjecﬂ [/disc drive] _|

The "load file” represents the name to be assigned to the Linker-created ioad module. The
"list file” represents the listing file name. “list device” is the name of any output device used
to print out the listing. “object1” represents any object file output by the Assembler.
"LIB{iibfile)” must be entered if any of the object code to be linked is in the library file {see
The Library Generator). “libfile” is the name of the desired library file. The parentheses
around "libfile” are required. Object and library files must be entered in the command line in
the proper order, or linking errors may occur.

With simple invocation, all filename parameters must be entered on one line. No other
parameter entries are permitted. If filenames for “load file”, “list file”, or "list device” are not
entered, the corresponding file is not generated. If the list file or load file is not entered, it
must be replaced by commas, as follows.
LINK,, list file object file

(Load file omitted, replaced by two commas.)
LINK load file ,, object file

{List file omitted, replaced by two commas.)
LINK ,,, object file

(Load and list file omitted, replaced by three commas.)

A map and error messages are output to the list file, and error messages are also logged to
the console.

REV A MARCH 1979 10-3

The Linker—8002A:8080A/8085A Users LINK

—

Command File Invocation

Syntax
LINK {@filename}

Commands are read from “filename” until an end-of-file or an END command is
encountered. End of file or END directs the Linker to discontinue command mode and begin
processing object modules. If errors have been generated, the Linker aborts with the
message: ERRORS IN INDIRECT FILE, LINK ABORTED.

See the Linker Commands subsection for a list of legal commands for your command file.

@ MARCH 1979 10-5

The Linker—8002A:8080A/8085A Users

. i s .

LINKER COMMANDS

The following commands may be used in interactive or command file invocation.
' LOG

Print messages to the console and log commands on the list file, if one has been specified.
All commands are echoed to the Linker list file after LOG has been indicated.

NOLOG
Do not log Linker messages on the console.
MAP

Generate a memory map in the Linker list file. A memory map lists module names, section
names and attributes, entry points within sections, and undefined global symbols. (See the
Linker Output description in this section.)

NOMAP

Do not generate a memory map
LIST

Generates a Linker list file named "filename”. See the listing file description for contents
of the Linker list file. "filename” is any valid TEKDOS file specification. Instead of a
filename, any valid output device may be designated.

LOAD {filename}

Generates a load file named "filename”. The file will contain the executable output of the
Linker and can be loaded using the LOAD command.

DEFINE {symbol1 = value} [.symbol2 = value] .
Define symbols. “symbol1”, “symbol2”. . . are names of global symbols. “value” is a

hexadecimal number.

object1 [/disc drive] } ,LIB(libfile [/disc drive])
LIB(libfile [/disc drive])] |,object1 [/disc drive]

Link modules. This command directs the Linker to include the specified object modules in
the load file. The object modules and library modules must be entered in the correct order,

LINK

10-6 @ MARCH 1979

The Linker—8002A:8080A/8085A Users

S

[PAGE 7]
,BASE (starting address) JINPAGE
LOCATE (section name} | RANGE (starting address, ending address)| |, BYTE

Locate a section and/or redefine its relocation type. Note that redefining the relocation
type of a section may cause the linked code to execute differently than intended.

section name

The name of the section to be allocated.

BASE

The hexadecimal starting address.

RANGE

The hexadecimal starting and ending addresses. If there is not enough space within the
specified range, the section will not be linked.

PAGE
A relocation type; causing relocation at the beginning of a physical block of memory.

INPAGE
A relocation type causing relocation on any byte address, provided the section does not
extend across page boundaries.

BYTE
A relocation type causing reiocation at any byte address.

Relocation type is originally specified during assembly. (See SECTION, COMMON, and
RESERVE Assembler directives; and Relocation Options.) If not specified before assembly,
the section is byte-relocatable. If ABSOLUTE was specified before assembly, the relocation
type may not be re-defined during linking, and the section may not be re-located.

@filename

Indicate indirect command file. This command directs the Linker to obtain subsequent
commands from “filename.” Commands are read from “filename” until an end of file or an
END command is encountered. Iindirect commands are echoed on the console as they are
read, if LOG is specified. Nested indirect command files are illegal; a command file may
not contain an "@filename” command.
symbol
TRANSFER{ }
value
Specify load module transfer address. “symbol” is a global symbo! and "value” is a
hexadecimal number with a leading character ranging from O through 9. This transfer
value supersedes any transfer address encountered in linking object modules.

@ MARCH 1979 10-7

The Linker—-8002A:8080A/8085A Users

END

End command entry mode. If no errors have been generated in command file invocation,
this command will terminate command entry mode and initiate the processing of object
modules. If errors are detected, an appropriate message is issued and control is returned
to the system console.

Command Processing Errors
EXTRANEOUS INFORMATION IGNORED

Extra characters are on a command line that only requires an instruction (e.g., LOG, NOLOG,
MAP). The Linker performs the appropriate action for the command, ignoring extra characters
on the line. :

ILLEGAL COMMAND
The command was not recognized.
SYNTAX ERROR

Statement syntax is invalid. This error occurs when a command is incorrectly formed. For
example, unmatched parentheses are found in the LOCATE command, or an operand is
missing after the equals sign in the DEFINE command.

INDIRECT FILE DEPTH EXCEEDED

A filename command was found during processing of an indirect command file. The
command is ignored.

INVALID FILE NAME

The file in a LIST, LOAD, or LINK command contains illegal file characters, the filename
mav not begin with a numeric character (0—9). One to eight characters from the following
set are acceptable:

Alphabetic (A—2), numeric (0—9), or special characters ("# & ' () * ; = ?). An optional
two-character disc drive indicator (/O or/1) can follow the filename.

NOTE
Processing of the command line ceases when an invalid filename is

Iy

encountered. Aii files up to the invalid filename, in the case of the LINK
command, are added to the list of files to be linked.

INVALID RANGE SPECIFIED

The range (starting address through ending address) in the LOCATE command is invalid.
The ending address must be greater than the starting address.

10-8 @ MARCH 1979

The Linker—8002A:8080A/8085A Users

Examples

If an error is detected during command entry, a caret (A} is printed below the line to indicate
the error location. A message defining the error is also printed. The following are examples
of errors during interactive command entry. Linker-generated characters are underlined.

#LINK FILE1 FILE2 3FILE

INVALID FILE NAME

—

#_IST LISTFILE
#DEF INE A==BB

SYNTAX ERROR
#DEFIN SYMBOL=3

ILLEGAL COMMAND

#.06 NO PARAMETERS NEEDED

EXTRANEOUS INFORMATION IGNORED

If these errors have been contained in a command file, and if the LOG command had been
activated, the errors would have been logged to the Linker listing.

LINKER EXECUTION

Program Sections

A section is a collection of object code that has been assembled with the same location
counter. An object module may consist of several sections. These sections are treated
separately by the Linker and each section is independently relocatable. No limit is placed on
the number of sections per link, but no more than 255 sections or globals may exist in any
one object module.

A section has five attributes that provide the Linker with information regarding memory
allocation and where to link the section. These attributes are name, section type, size,
relocation type, and memory location.

NAME A section has a name consisting of up to eight characters, assigned by the
section directives, SECTION, RESERVE, or COMMON, at assembly time.
The name must be a valid identifier. The section name is entered into the
Linker's symbol table and is a valid external symbol.

SECTION TYPE A section may be either a SECTION, RESERVE, or COMMON. The

specification is made through use of the SECTION, RESERVE, or COMMON
directive at assembly time.

@ MARCH 1979 10-9

The Linker—8002A:8080A/8085A Users

Each SECTION name must be unique. Multiple SECTIONs with the same
name will be flagged as errors, and only the first one will be linked.

RESERVE sections with the same name are concatenated by the Linker.
The length of a RESERVE section in a load module is the sum of all
RESERVE sections with the same name.

COMMON sections with the same name are allocated the same space in
memory. The length of the linked COMMON is that of the largest
COMMON section.

SIZE The size of each section in an object file is determined at assembly time.
Section size is the number of program memory bytes that the section may
occupy. ‘

RELOCATION A section may be absolute (non-relocatable) byte relocatable, page
TYPE boundary relocatable, or inpage relocatable.

An absolute section is not relocated by the Linker. Memory locations in an
absolute section where code has been generated, or where locations have
been explicitly reserved by the Assembler BLOCK directive, are not
allocated to any relocatable section at link time. However, if two or more
absolute sections have code at the same address, the contents of those
memory locations after linking are undefined. These memory conflicts, if
they occur, are noted on the Linker memory map.

A byte relocatable section can be placed anywhere in memory.

The two remaining relocation types are allocated according to page
boundaries. A page is a physical block of memory having a size and a
starting address. The size of a memory page is microprocessor-dependent.
8080A/8085A pages are 256 bytes long. All pages start on boundaries
evenly divisible by the page length. Page size 256, for example, implies
pages starting at O, 256, 512,

A page boundary relocatable section is allocated memory, starting on a
page boundary.

An inpage relocatable section may be linked on any byte boundary, as long
as it does not span two or more pages. If an inpage relocatable section is
longer than the microprocessor page length, the Linker generates an error,
redefines the program section to be page-boundary-relocatable, and
continues linking. ‘

MEMORY At link time the user may specify a relocatable section location, in the form

LOCATION of either a base address or an address range where the section may be
placed. The default range for a relocatable section is the entire address
space of the microprocessor. If the user elects not to specify a location for
a section, the Linker will locate the section. An absolute section cannot be
moved at iink time.

10-10 ® MARCH 1979

The Linker—8002A:8080A/8085A Users

.—

The Default Section

If no SECTION directive is entered before assembly, the entire module is considered to be a
byte-relocatable section with the same name as the object module.

Memory Allocation of Sections
The linker allocates memory in the following sequence:

1. Absolute sections.
2. Based sections.

Based means a program section starting location has been specified by a LOCATE
command.

3. *Ranged page relocatable sections

Ranged means the user has explicitly declared a RANGE (starting address, ending
address) with the LOCATE command at link time.

4. *Ranged inpage-relocatable sections.

o

*Ranged byte-relocatable sections.
6. Page-boundary-relocatable sections.
7. Inpage-relocatable sections.

8. Byte-relocatable sections.

Absolute and based sections are linked even if conflicts occur. A conflict exists when two or
more sections have bytes at the same address. Other section types are not linked if a conflict
occurs. If any memory conflict occurs during allocation, the conflict is noted on the memory
map. The content of memory in the conflicting area is undefined.

Endrel

ENDREL is a pre-defined symbol whose value is assigned at link time. After memory is
allocated, ENDREL is assigned the value of the first memory address available for use. This
address is one greater than the highest address used by a non-based relocatable section. All
relocatable sections are located below the value of ENDREL. Absolute sections, or sections
relocated using the LOCATE command with a BASE specified, may or may not be located
above the ENDREL address.

The user can override the value of ENDREL by assigning any other value to ENDREL. If
ENDREL is neither defined nor referenced, no value is assigned.

*Range was declared at link time.

® MARCH 1979 10-11

The Linker—8002A:8080A/8085A Users

Linking the Library File

A portion of the object code for linking may reside in the library file (see The Library
Generator). The Linker scans the Symbols Defined Here (SDH) blocks of each module in the
library file. If it finds a symbol that matches one in the Linker symbol reference table, it links
the module for that SDH block. It is important to define all global symbols uniquely if they are
to be stored in the library file. Otherwise, the wrong module may be linked. It is also
important to link the files and library modules in the correct order. (See The Library
Generator.)

LINKER OUTPUT
Linker Listing File

The listing file may be output either to a flexible disc file or to the console, line printer, or
other output device.

The following information may be included in a Linker output listing:

Command Simple Linker
Invocation Invocation
Global Symbol List Yes Yes
Internal Symbol List If specified I specified
Map If specified Yes
Linker Statistics Yes Yes
Error Messages If specified Yes

Global Symbol List

A global symbol list is an alphabetical list of all global symbols (sections and symbols) and
their assigned values. If a symbol is undefined, its value field contains asterisks.
TEKTRONIX BOBOA/S8085A LINKER Vx.x GLOBAL SYMBOL LIST PAGE X

ABSECT2 0000 DO_10 3700 ENTRY1 4091 ENTRYZ2 43A1
ENTRY3 0090 ENTRY4 0450 INPUT 3A00 MAINPROG 3E41
NOTHERE ##3# OUTPUT 3B50 RELSECT2 0400 RELSECT3 2500
STACK 3600

In the preceding example, the global symbol NOTHERE was undefined, but was referenced by
one or more input object modules.

10-12 @ MARCH 1979

The Linker—8002A:8080A/8085A Users

Internal Symbol List
The internal symbol list contains aii symbois in the source file and their actual values. The

list consists of three parts:

1. Scalars.

2. Aliphabeticai list of iabeis for each section.
3. Alphabetical list of labels for each unbound global.

If there are no labels for a section or global, then no list for that section or global is output.

The internal symbol list will be displayed only if the BDG Parameter was entered with the
LIST directive before assembly.

Example

TEXKTRONIX S8080A/8085A LINKER Vx. x INTERNAL SYMBOL LIST PAGE X
FILE: OBJECT FILE

MODULE: MODULE NAME

SCALARS:
SYMBOL. 1 NNNN SYMBOLZ NNNN SYMBOL3 NNNN SYMBOL 4 NNNN

SYMBOLN NNNN

LABELS: (SECTION SECTION NAME 1)
LABEL1 NNNN LABELZ2 NNNN LABELS3 NNNN LABEL4 NNNN

LABELN NNNN
LABELS: (SECTION SECTION NAME N)
LABEL1 NNNN LABEL® NNNN LABEL3 NNNN LABEL4 NNNN

LABELN NNNN

LABELS: (GLOBAL GLOBAL 1)
SYMBOL 1 NNNN SYMBOL2 NNNN SYMBOL3 NNNN SYMBOL.4 NNNN

SYMﬁ OLN NNNN

LABELS: (GLOBAL GLOBAL N»
SYMBOL 1 NNNN SYMBOL2 NNNN SYMBOL3 NNNN SYMBOL 4 NNNN

SYMBOLN NNNN

@ MARCH 1979

10-13

The Linker—8002A:8080A/8085A Users

L ————

Map

A map consists of two parts: a module map and a memory map.

A module map is a listing of modules linked into the load file. The map contains information
concerning sections and global symbols defined in each module.

TEKTRONIX 8080A/8085A Vx. x MODULE MAP
FILE: FILE

MODULE: MAINMOD

DO-10 SECTION BYTE 3700-3E40
INPUT 3A00 OUTPUT 3B50
MAINPROG SECTION BYTE 3E41-5141
ENTRY1 4091 ENTRYZ 43A1
STACK RESERVE PAGE 3600-36FF

FILE: FILEZ2

MODULE: OBJFILEZ2

ABSECT2 SECTION ABSOLUTE 0040-0357
ENTRY3 00%0

RELSECT2 SECTION PAGE 0400-2400
ENTRY4 0450

FILE: FILE3

MODULE: OBJFILE3
RELSECT3 SECTION PAGE 2500-3500

The module map lists linked modules. An alphabetical list of sections and entry points
appears for each module. If no sections were linked in a module, an appropraite message so
indicates. If no room for section is available, a *NO ROOM* message will be displayed. If a
section was empty, an *EMPTY* message will be displayed.

A memory map is an ordered listing of the memory allocated to sections. The list starts with
the lowest allocated address and proceeds to the highest allocated address space of linked
sections.

TEKTRONIX B0B0A/B085A LINKER Vx. x MEMORY MAP

0040-0357 ABEECT2 SECTION ABSOLUTE
0400~2400 RELSECT2 SECTION PAGE
2500-3500 RELSECT3 SECTION PAGE
3600-3&4FF STACK RESERVE PAGE
3700-3E40 DO_ID SECTION BYTE
3E4A-5141 MAINPROG SECTION BYTE

Addresses are starred *' if a conflict (an overlap) with another section occurred during
aiiocation. Section type is either SECTION, COMMON, or RESERVE. Relocation type is either
PAGE, INPAGE, BYTE, or ABSOLUTE.

10-14 @ MARCH 1979

The Linker—8002A:8080A /8085A Users

L .

Linker Statistics
The Linker Statistics inciude the number of errors, the number of undefined symbols, the
number of sections, the number of modules, and the transfer address.

1 ERROR 1 UNDEFINED SYMBOL
3 MODULE 6 SECTIONS
TRANSFER ADDRESS IS G040

The TRANSFER ADDRESS identifies program starting location. After loading the program in
this example, the appropriate command would be "GO 40".

Error Messages
Three classes of errors can be generated during Linker execution:

WARNINGS (W)

A problem may exist but the linked program can probably be executed.
ERRORS (E)

Linked program probably will not execute properly.
FATAL ERRORS (F)

Errors directly affecting the Linker’s execution. The Linker closes all open channels and
returns control to TEKDOS.

All errors cause a message to be output to the LOG and LIST file or device. A fatal error
will be output to the console even if NOLOG was specified.

In the foltowing list, each error message is indicated as being a Warning (W), an Error (E),
or a Fatal Error (F).

F. LINKER INTERNAL ERROR AT nnnn

An error occurred in the Linker. Try linking again. If this error persists, carefully document
the incident and submit an LDP Software Performance Report to Tekronix.

E. NO ROOM IN RANGE nnnn-nnnn FOR SECTION name

The section length is greater than available contiguous memory in range nnnn-nnnn of
allocated section memory.

@ MARCH 1979 » 10-15

The Linker—8002A:8080A/8085A Users

BYTE
W. SECTION name CHANGED FROM INPAGE TO(PAGE)RELOCATABLE

Section length is greater than the page size of the microprocessor. This could occur if
several inpage reserve sections were linked together and their total size exceeded the
page size of the microprocessor. A section declared to be inpage relocatable, in a LOCATE
command, will generate this error if the section exceeds microprocessor page size. If
section size exceeds available page size, relocation will then be to a byte boundary.

F. INVALID OBJECT CODE FORMAT FOR FILE name LOCATION = nnnn

The information in file is not valid input object format. Ascertain that all files to be linked
have been assembled. Location is the internal Linker address where the object file error
was detected.

F. UNABLE TO ASSIGN file or device name

A file name specified as an input object module does not exist, or file device is unavailable.

F. MEMORY FULL

Linker memory is totally allocated and linking has been terminated. The total number of
globals, sections, or object modules must be reduced in order to link in the available
memory.

W. TRANSFER ADDRESS UNDEFINED

No transfer address was specified to the Linker either through the TRANSFER command or
by specifying "END (expression)” during assembly. When no transfer address is specified,
the Linker creates transfer address O.

W. TRANSFER ADDRESS MULTIPLY DEFINED IN MODULE name FILE name

Aeda b oaAM_ PN N lam $m
QuIS Nnas auein 1L U LU ICUGIIIIC l i ua

he mo sfer address previously apc\,incu by a linked

module or by the TRANSFER command. The Lmker uses the first encountered transfer
address to generate a transfer address for the load module. If no transfer address is
specified, a transfer address of O is generated.

-

W. RELOCATION TYPE OF SECTION name MULTIPLY DEFINED IN MODULE name FILE name

An attempt was made to redefine the section reiocation type (byte, page, inpage, or
absolute). This occurs when the LOCATE command defined a relocation type differing from
that specified at assembly time. The error also occurs when relocation attributes of a
COMMON or RESERVE section differ between modules. The Linker uses the first
encountered relocation attribute to define the section.

10-16 ® MARCH 1979

The Linker—8002A:8080A/8085A Users

E. Symbol name MULTIPLY DEFINED IN MODULE name FILE name
Indicates that an attempt was made to redefine a global symbol or section. This error
occurs when two modules both define a global of the same name or when two sections
have the same name. Code section names must be unique. In the event of multiply-
defined sections, the Linker wiil only include the first one in the load moduie.

W. TRUNCATION ERROR AT nnnn IN MODULE name FILE name
The relocated value computed for LO byte relocation is too large to fit into one byte.

E. UNRESOLVED REFERENCE AT nnnn MODULE name FILE name
A reference to an undefined global or section was specified at this point in the object code.
This occurs when a global is used in one module but was never defined. The unresolved
reference is filled with zeros in the load file.

W. MACHINE REDEFINED FROM microprocessor IN MODULE name FILE name
The current input module has been generated for a different microprocessor than the
previous object modules. Differences between microprocessor definitions may cause
incompatabilities during linking (e.g., page length, alignment, etc.).

E. SECTION name EXCEEDS MAXIMUM SiZE
Section length is greater than the address space of the microprocessor. The section is not
included in the load file. This error may occur when a Reserve is too long. The maximum
size for the 8080A/8085A is 64K bytes. '

W. IMPLICIT REORIGIN TO O IN SECTION name IN MODULE name FILE name

The Linker processed an object file where code in an absolute Section wrapped around
from location FFFFH to O.

W. SECTION name CHANGED FROM PAGE RELOCATABLE
Either:

1. the section was declared to be page relocatable and the Linker does not support
paging for that microprocessor; or

2. there was insufficient room for a paged section in available memory. The Linker will
attempt to allocate memory for the Section on a Byte Relocatable Boundary.

® MARCH 1979 10-17

The Linker—8002A:8080A/8085A Users

F/ LIST FILE
LOAD FILE
CONSOLE 1/0 ERROR #nn
COMMAND FILE
OBJECT FILE

This errorjindicates that the Linker was unable to read to or write from the specified file or
device. The error number corresponds to the SVC status byte.

W. ATTEMPT TO RE-DEFINE FILE TYPE FOR filename

"filename” was specified twice: once as an object file and once as a library file. The Linker
uses the first file type specified.

The Load File

The primary output from Linker processing is the Load file. A Load file is a subset of the
Linker input object modules with all references and relocation resolved. It consists of a
Module Block, a Global Symbol Directory Block, Relocation Reserve, and Text Blocks, and
symbol table blocks, (if present in input modules) followed by an END Block. Load files are
read into program memory with the LOAD command.

10-18 @ MARCH 1979

8002A:8080A/8085A Users

Section 11
8080A/8085A SERVICE CALLS

INTRODUCTION

A service call (SVC) allows the 8080A/8085A Emulator Processor to obtain peripheral
service from the system processor during program execution. The SVC is an instruction
sequence in the user program containing:

1. an 8080A/8085A output instruction, including the address of the emulator processor
output port; and

2. a no-operation instruction, allowing time for the SVC to occur.

This section gives SVC information specific to the 8080A/8085A Emulator Processor. A
broader description of SVC's is given in the 8002A uProcessor Lab System User’s manual.

The SVC references the emulator processor output port address and cues the system
processor that an |/O (input/output) function is to occur. The system processor then
references a service request block pointer in the user program. The service request block
(SRB) pointer in turn references a block of memory containing the actual service request |/0
specifications. The 1/0 specification block is called the service request block (SRB). The SRB
contains parameters such as:

1. the type of 1/0 to be performed,

2. the 1/0 device or file channel assignments, and

3. the size of buffers for data trasfer.
With these parameters, the service call can be executed within a defined SVC buffer area.
SVC procedures specific to the 8080A/8085A Emulator Processor are described in this
section. The specific procedures describe the way the 8080A/8085A SVC output instruction

refers to the SRB pointer address pair. The table below shows the SRB pointer address pair
referred to by each 8080A/8085A SVC output instruction.

® MARCH 1979 11

8080A/8085A Service Calls—8002A:8080A/8085A Users

8080A/8085A SVC Output
SvC Instruction and Address SRB Pointer Address Pair
1 OF7H 0040H 0041H
2 OF6H 0042H 0043H
3 OF5H 0044H 0045H
4 OF4H 0046H 0047H
5 OF3H 0048H 0049H
6 OF2H 004AH 004BH

The 8080A/8085A SVC Operation

The 8080A/8085A SVC operation is initiated with the 8080A/8085A instructions “IN” and
"OUT". The "IN" and "OUT" instructions reference the SRB pointer, which in turn references
the appropriate SRB. The SRB then defines the peripheral 1/0 operations, and the buffer
area where the 1/0 is to be performed. In the final step the peripheral 1/0 is performed
within the defined buffer area.

An example of the 8080A/8085A SVC process follows. The program, named NEWPROG,
uses an SVC that causes an ASCIl line to be read into the SRB |/0 buffer from the console
input device. After the line is read into the buffer, the program halts. The comments to the
right of each instruction explain the SVC execution sequence.

; PROGRAM TO READ ASCII DATA FROM THE CONSOLE INPUT DEVICE AND HALT

SECTION . EXAMPLE. ABSOLUTE i DECLARES SECTIDON NAMED
;s EXAMPLE 7O BE RELOCATABLE
CONFOR ORG o] ; BEGINNING ADDRESS OF SVC

i LABELED CONFOR
i THE NEXT TWO LINES COPMPOSE THE SVC

ouT OF7H 3 8VC1
NOP ; ALLOWS TIME FOR SVC TO OCCUR
HLT ; PROGRAM HALTS AFTER SVC IS
i COMPLETE
ORG 040H ; BEGINNING ADDRESS OF SRB
; POINTER
i THE NEXT TWO LINES COMPOSE THE SRB PODINTER
BYTE HI(CONSRB) ; RESULT IS HI BYTE FOR SVC1i
BYTE LO(CONSRB) ;RESULT IS LO BYTE FOR SVC1
ORG 100H i BEGINNING ADDRESS OF SRB
i THE NEXT EIGHT LINES COMPOSE THE SRB
CONSRB BYTE 1H i READ ASCII AND WAIT
BYTE iH i CHANNEL NUMBER 1
BYTE 00 i STATUS
BYTE 00 i SINGLE BYTE DATA
BYTE 00 3 BYTE COUNT
BYTE CONIRD+1 i BUFFER LENGTH
BYTE HI (CONBUF) i HI BYTE OF BUFFER FOINTER
BYTE LO(CONBUF) ; LO BYTE OF BUFFER POINTER
ORG 200H ; BEGINNING ADDRESS OF BUFFER
CONIRD EQU 80 i MAX INPUT LINE LENGTH LESS CR
i THE FOLLOWING LINE DEFINES THE SRB BUFFER AREA
CONBUF BL.OCK CONIRD+1; ; DEFINES BUFFER FOR SVC
END CONFOR ; SPECIFIES STARTING

i INSTRUCTION IN PROGRAM

11-2 @ MARCH 1979

8080A/8085A Service Calls—8002A:8080A/8085A Users

N O

To assemble and load the program, enter the following command lines:
>ASM NEWOBJ NEWLIST NEWPROG

>LDAD NEWOBJ

Assign channel 1 to the console input device.
>ASSIGN 1 CONI

This assignment corresponds to the channel byte assignments in the preceding SRB.

Now execute the program.
>60 0

The desired character string "STRING"” is entered and read from the console input device as
follows:

STRING

The ASCIHl characters S, T, R, I, N, and G are then stored in the buffer.

The DUMP command may be used to display the hexadecimal contents of the buffer. The
beginning address of the buffer was defined in the program as 200H.
>DUMF 200

0200=533 34 52 9 4E 47 QP XX XX XX XX XX XX XX XX XX

] T R I N G (carriage return, followed by previous
contents of program memory)

@ MARCH 1979

8002A:8080A/8085A Users

Section 12
8080A/8085A DEBUGGING

INTRODUCTION

Five debugging commands support the unique 8080A/8085A Emulator Processor
architecture, and thus require special mention. These commands are summarized below, in
the order in which they are presented in this section. For further debugging information,
refer to the Debug Command in the 8002A uProcessor Lab System User’s Manual.

The 8080A contains only one accessible interrupt function. The function can be enabled and
disabled by using the El and DI instructions. (See Appendix C, Interrupt and Control
Instructions.)

The 8085A adds three more programmable interrupts, plus interrupt masking capabilities. A
non-programmable TRAP function is also added.

These three new interrupts may be masked by using the SIM instruction. They may be
enabled by the use of IE.

NOTE

A clock failure will cause DEBUG to be aborted. The system will remain in the
same emulation mode.

Command Name 8080A Debugging Command Summary

TRACE Enables or disables program execution monitoring. When TRACE is
enabted, program execution trace lines display the current instruction
location, its hexadecimal representation, mnemonic, and operands.
Trace lines aiso show the contents of the stack pointer and certain other
register values.

DSTAT Display line shows the current status of the debugging session. The
display line shows the emulator processor’s next instruction address, all
active breakpoints and their parameters, the current emulation mode,
and the contents of the two-byte stack pointer and all other registers.

SET Reassigns hexadecimal values to the two-byte stack pointer (SP), and
registers labeled RF, RA, RB, RC, RD, RE, RH, and RL.

DISM Disassembles object code from program memory into assembler
mnemonics and hexadecimal operand.

REV A MARCH 1979 1241

TR ACE 8080A/8085A Debugging— 8002A:8080A/8085A Users

12-2

Syntax

TRACE
or

TRACE {JMP } [STEP] [[Iower address] [upper address]]

PURPOSE

The TRACE command enables or disables program execution monitoring.

EXPLANATION

When TRACE is enabled, program execution trace lines display the location of the current
instruction, its hexadecimal representation, mnenonic, and operands. Trace lines also show
the contents of the stack pointer and register values, labeled in the following order.

SP, RF, RA, RB, RC, RD, RE, RH, and RL.

The Trace Modes

TRACE displays all TRACE commands currently in effect. When TRACE ALL or TRACE JMP is
entered in the DEBUG mode, displayed trace lines allow program execution flow monitoring.
TRACE ALL causes trace information for all instructions executed by the emulator processor
to be displayed on the DEBUG display device.

TRACE JMP causes trace information to be displayed each time program execution flow is
altered. Conditional branches are traced only if the conditions are met.

If the STEP option is entered with either the TRACE ALL or TRACE JMP command, and a
program is executed, control is returned to the DEBUG display device, allowing programmer
intervention after each instruction’s trace line is displayed.

When TRACE OFF is entered, all trace display is disabled
The "lower address” parameter marks the beginning of the block to be treated. The default is

0. The “upper address” parameter marks the end of the block. It must be equal to or greater
than the "lower address” parameter. The default value is FFFF.

REV A MARCH 1979

8080A/8085A Debugging—8002A:8080A/8085A Users TRACE

I

The Trace Line
Each trace line resulting from TRACE ALL or TRACE JMP contains one program instruction

and information pertinent to its execution. Displayed trace lines appear in the following
format:
LOC INST MNEM OPER SP RF RA RB RC RD RE RH RL
All trace line values are displayed in hexadecimal format. Definitions of the elements of the
8080A trace line follow:
LOC The location of the last executed instruction
INST The hexadecimal representation of the last executed instruction
MNEM The instruction mnemonic
OPER The operands
SP The stack pointer value
RF The flag register value
RA The value of register A

RB The vaiue of register B

RC The value of register C

o

RD The value of register

RE The value of register E
RH The value of register H

RL The value of register L

Trace Line Termination

In TRACE ALL or TRACE JMP mode, trace lines of all instructions or all branch instructions,
respectively, are continuously displayed during program execution. Tracing stops when one
of the following occurs: (1) an end of job condition is reached, (2) a breakpoint suspends the
display, (3) the space bar is pressed to suspend the display, (4) the HLT instruction suspends
the display, or {5) the ESC key is pressed to suspend program execution.

REV A MARCH 1979 12-3

TRACE

12-4

The ESC key may be pressed while the display has been suspended by a HLT instruction, in
emulation modes 1 and 2. To reenter the TRACE mode, enter the following command.

GO [address]

Execution then continues at the beginning of the HLT instruction, if a GO "address” is not
specified. :

EXAMPLE
Suppose the following 8080 assembly language user program resides on your work disc:
LABEL. DPERATION DPERAND COMMENT
START ORG 00
XRA A s CLEAR ACC
MoV B, A i CLEAR REG. B
MOV H: A i CLEAR REG. H
LXI D, 13FFH ; LOAD TOP OF MEMORY
LDAX D ; LOAD 1ST NUMBER
DCX D ; POINT TO NEXT NUMBER
MOV C. A ; PUT 18T NUMBER IN REG. C
LDAX D ; LOAD 2ND NUMBER
DCX D i DECREMENT POINTER
MOV L, A i PUT 2ND NUMBER IN REG. L
DAD B ; DOUBLE PRECISON ADD
LDAX D ; LDAD 3RD NUMBER
DCX D ; DECREMENT POINTER
MOV C, A ; PUT 3RD NUMBER IN REG.C
DAD B s DOUBLE PRECISIDN ADD
LDAX D i LOAD 4TH NUMBER
MOV C. A i PUT 4TH NUMBER IN REG.C
DAD B ; DOUBLE PRECISION ADD
sSTC i SET CARRY
CMC ; COMPLEMENT CARRY, (CLEAR IT)
MoV A H i MOVE HIGH ORDER BYTE OF
s RESULT INTO REGISTER A
RAR ; DIVIDE UPPER BYTE BY TWD
MOV H: A i SWAP REG.H AND L
MOV AL
RAR s DIVIDE LOWER BYTE BY TwWD
MOV LA i SWAP REG. H AND L
MOV AH
RAR i DIVIDE UPPER BYTE BY TWO
MOV AL i LOAD LOWER BYTE
RAR ; DIVIDE BY TWO ANSWER IN ACC.
DCX D ; DECREMENT POINTER
STAX D i BTORE RESULT IN STH LOCATION
HLT
END

The preceding program calculates the average of four numbers and stores the result in a
specified location. The program is assembled and emulation mode O is assigned. The
absolute binary object code is read into program memory with the LOAD command. Entering
the DEBUG command as follows places the system in debug mode.

>DEBUG

REV A MARCH 1979

8080A/8085A Debugging—8002A:8080A/8085A Users

8080A/8085A Debugging—8002A:8080A/8085A Users

The program may now be traced for errors in execution flow.

TRACE

To trace all instructions in the program’s execution sequence, enter the command sequence

below.

>TRACE ALL

»G0 O

The appropriate Trace lines are displayed, as follows:

LOC

0000
0001
0002
0003
0006
0007

INST

MNEM

XRA
MOV
MOV
LXI
LDAX
DCX

OPER

A

B, A

H,2 A

D, 13FFH
D

D

SP

0000
0000
0000
Q000
0000
0000

Trace lines of all instructions are continuously displayed until a trace line termination

condition is met.

8085A

The 8085A display includes all the information in the 8080A display, plus a display of the
hexadecimal representation of the interrupt mask register as read by the 8085A RIM

cprcok

instruction. (See Appendix C for RIM format.) A binary representation of the current value of

the SOD (Serial QOutput Data) bit is also provided.

LOC

0000
0001

@ MARCH 1979

INST

00

MNEM

NOP
C30000 JMP

OPER

0000

SP

RF

RA RB RC

RD RE RH RL

0000 02 00 00 00 OO0 00 00 00 07 O
0000 02 00 OO0 OO0 OO 00 00 00 07 O

126

DSTAT 8080A/8085A Debugging—8002A:8080A /8085A Users

L

12-6

Syntax
DSTAT

PURPOSE

The DSTAT command causes display of the current debugging session status.

EXPLANATION

The DSTAT command sends a display line to the Debug display device. The DSTAT display
line for a 8080A program takes the form shown below.

PC=xxxx BP=xxxx RW xxxx RW M=x SP=xxxx RF=xx RA=xX XX XX XX XX XX XX

Al DSTAT display line values are in hexadecimal format. A description of the display line for
a program written in 8080A assemble language follows.

PC The emulator processor’'s next instruction address.

BP The two possible active breakpoints and their parameters. If the R parameter is shown,
a breakpoint is set to occur whenever an attempt is made to read from a specified
address. If the W parameter is shown, a breakpoint is set to occur whenever an attempt
is made to write to a specified address. If the RW parameter is shown, a breakpoint is
set to occur whenever an attempt is made to read from or write to the specified address.

M The current emulation mode.
SP The value of the stack pointer (two bytes).
RF The value of the flag register.

RA The value of register A, followed by the values for the unlabeled registers B, C, D, E, H,
and L.

EXAMPLE

Suppose breakpoints are set at addresses 2909 and @@0A in an 8080A program. Whenever
an attempt is made to read {specified by "R") from either of these addresses, a breakpoint is
set to occur. The following command lines set those breakpoints.

>BKPT 0009 R
>BKPT 000A R

@ MARCH 1979

® MARCH 1979

8080A/8085A Debugging—8002A:8080A/8085A Users ' DSTAT

. .

When the program is executed with the GO command, the first breakpoint occurs at address

0009.

>G0

Loc INST MNEM OPER SP RF RA RB RC RD RE RH RL
0007 1A LDAX o Q00C %2 00 00 00 13 FE 0C OO

0009 BREAK

>

The second breakpoint occurs at address Q@QA:

>60

000A iD DCX c 0000 92 00 O0 00 13 FD 00 OO0
000A BREAK

A debug status line might now be useful to examine the current status of the debugging

session.

>DSTAT

PC=000B BP=0009 R O000A R M=0 SP=0000 RF=92 RA=00 00 00 13 FD 00 00

The debug status line displays the emulator processor’s next instruction address (3@@B), the
active breakpoints and their parameters (3029 R and @@0A R), the emulation mode (0), the

stack pointer contents (0000), the flag register contents (92), the emulator processor register
contents (00, 00, 00, 13, FD, 00, 00).

8085A
The display line for the current line in an 8085A program takes the form shown below:

Loc INST MNEM OPER SP RF RA RB RC RD RE RH RL IM 80D
0000 00 NOP 0000 02 00 OO0 00 OO0 OO0 OO0 OO0 07 O
0001 C30000 JMP 0000 0000 02 00 OO0 00 OO0 QO OO0 00 07 O
>DSTAT

PC=0004 BP=0001 R M=0 BSP=0000 RF=02 RA=00-00 00 00 00 00 00
S0D=0 SID=0 17=0 16=0 15=0 IE=0 M7=0 Mé&=0 M5=0

12-7

DSTAT

12-8

8080A/8085A Debugging— 8002A:8080A/8085A Users

The values and format of the first line are identical to those of the 8080A display line.

In the 2nd line, all values are single digit binary.

SOD

SID

17, 16, 156
IE

M7, M6, M5

Serial output data

Serial input data

RST 7.5, RST 6.5, RST 5.5 interrupts pending status.
Interrupt enable, enables INTR, RST 5.5, RST 6.5, RST 7.5.

RST 7.5, RST 6.5, RST 5.5 interrupt masks (O equals enable).

@ MARCH 1979

8080A/8085A Debugging—8002A:8080A/8085A Users SET

A

Syntax

SET {initial register} {first hex value} [second hex value] ...

PURPOSE

To reassign hexadecimal values to the 8080A Emuilator Processor two-byte stack pointer or
other registers, enter the SET command line.

EXPLANATION

Values may be reassigned for a continuous series of one or more registers, beginning with
the first register specified. This series should not exceed the available registers.

The 8080A Emulator Processor registers may be reassigned in the following sequence:
SF (two bytes) RF RA RB RC RD RE RH RL

A definition of each element in the SET sequence foliows:

SP Stack Pointer (two bytes)

RF Flag Register

RA Register A

RB Register B

RC Register C

RD Register D

RE Register E

RH Register H

RL Register L

Note that when reassigning hexadecimal values to the stack pointer register, a two-byte

hexadecimal value must be specified for the register. When vaiues under two bytes in iength
are specified for the stack pointer register, the high byte of the register is filled with zeros.

® MARCH 1979 129

S ET 8080A/8085A Debugging—8002A:8080A/8085A Users

EXAMPLE

Suppose the stack pointer and register contents below are displayed by the DSTAT
command:

PC=0009 BP= M=0 SP=FDFA RF=92 RA=00 00 00 13 13 FD 00

The following command line reassigns values to the stack pointer, the flag register, and
registers A, B, and C.

>SET SP 1A 2A 22 01 02

Another look at the register contents with the DSTAT command shows the change.
>DSTAT

PC=0009 BP= M=0 SP=001A RF=2A RA=22 01 02 13 13 FD 00

Since the stack pointer is a 16-bit (2-byte) register, and only eight bits (1A) were specified,
the high byte is filled with zeros. To set the stack pointer with hexadecimal values exceeding
one byte, enter both bytes as one value. For example:

SET SP 0124
>DSTAT
PC=00%9 BP= M=0 SP=012A RD=2A RA=22 01 02 13 13 FD 00
808EBA

The 8085A Emulator Processor registers may be reassigned in the following sequence:

17, 1E. M7, M&, SP, RF, A, B, C, D, E: H: L

(R7, M7, M6, and M5 are not names of actual registers, but may have binary value assigned
to them as shown. |IE may be set or reset.)

I7 resets (assigns a value of zero to) the highest priority interrupt, RST 7.5. Thus, the
parameter following "17” will be automatically read as zero, regardless of the value entered.
The parameter must not be omitted, however. The 17 should be entered as follows:

SET {1 {0}

IE allows the interrupts to be enabled (1) or disabled ().

12-10 @ MARCH 1979

8080A/8085A Debugging—8002A:8080A/8085A Users SET

S S P

Suppose after invoking the DSTAT command, the following contents are observed:

PC=0000 BP=0001 WR M=0 SP=0000 RF=02 RA=00 00 00 00 00 00 00
S0D=0 SID=0 17=0 16=0 15=0 IE=0 M7=1 Mé&=1 M5=1

You wish to assign new values to M7, M6, and register A. The SET command line that
follows performs this function.

>8ET M7,0,0,,.,.,2D

All parameters need not be present following the SET command, but the ones that are
present must be placed in the correct sequence shown.

If the next parameter directly follows in sequence, it is not necessary to enter its name. In the
example, “M6"” is omitted, but the zero value holds its place. Commas may be inserted as
delimiters for parameters not desired in the command line. The commas in the example
delimit the parameter field for M5, SP, and F; the hexadecimal value "2D" is p|aced in
register A.

® MARCH 1979 12-11

DISM 8080A/8085A Debugging— B002A:8080A/8085A Users

Syntax
DISM [lower address] [upper address]

PURPOSE

The DISM command dis-assembles object code in memory back into Assembler mnemonics
and hexadecimal operands.

EXPLANATION

The “lower address” parameter represents the program or user prototype memory address
where disassembly begins. The default value is 0. The "upper address” parameter represents
the program or user prototype memory address where disassembly ends.

The DISM command prints a display on the system console consisting of the address of an
instruction, its hexadecimal object code, mnemonic, and operand. The dispiay takes the form
shown below.

LOC INST MNEM OPER

LOC is the memory address of the instruction.

INST is the hexadecimal object code at the address.

MNEM is the dis-assembled mnemonic of the instruction.

OPER is the hexadecimal operand(s), of the instruction.

See Appendix H for a complete list of dis-assembled 8080A/8085A instructions.

12-12 @ MARCH 1979

8080A/8085A Debugging— 8002A:8080A/8085A Users RESET

[T

Syntax
RESET

PURPOSE

The RESET command changes the contents of certain 8085A emulator processor registers.

EXPLANATION
The registers changed are:
The Registers Changed Are Value is Changed To
PC The Program Counter 0000
SOD The Serial Output Data 0

17 The RST 7.5 Interrupt Pending Status
IE The Interrupt Enable Fiag

M7 RST 7.5 interrupt Mask

M6 RST 6.5 Interrupt Mask

M5 RST 5.5 Interrupt Mask

_ - = OO

EXAMPLE
Assume the following DSTAT display:

PC=010C BP=0103 RW 0504 R M=0 SP=FF8C RF=54 RZI=07 FF FF FF FF 05 04
S0D=0 SID=0 17=0 16=0 15=0 IE=0 M7=1 Mé=1 M5=1

The RESET command is then entered:
SRESET
»DSTAT

PC=0000 BP=0103 RW 0504 R M=0 SP=FF8C RF=00 RA=07 FF FF FF FF 05 04
SOD=0 SiD=0 17=0 16=0 15=0 IE=0 M7=1 Mé=1 MS=1

@ MARCH 1979 12-13

8002A:8080A/8085A Users

Section 13
8080A REAL-TIME-PROTOTYPE-ANALYZER

If the system is operating in emulation mode 1, and the prototype clock fails, the system may
not recover. The System Restart switch must be toggled to make the system operational
again.

" REV A MARCH 1979 13-1

8002A:8080A/8085A Users

Section 14
PROTOTYPE CONTROL PROBE

INTRODUCTION

The prototype control probe links the prototype hardware to the emulator processor module.
The probe replaces the microprocessor on the prototype hardware, permitting the prototype
to be tested and debugged under 8002A uProcessor Lab control.

Hardware debugging is accomplished through the emulator processor; the emulator
software; and the probe. Programs written for execution by the microprocessor can be
monitored completely, and emulation permits thorough prototype testing.

DESCRIPTION AND INSTALLATION

The prototype control probe consists of three connected parts: a 6-foot ground plane cable
pair, a driver/receiver board, and an 18-inch cabie pair with a 40-pin piug. The complete
assembly is shown in Fig. 14-1.

The 6-foot ground plane cable pair for the 8080A prototype control probe consists of two 40-
conductor flat cables with ground, power, signal lines, and ground plane attached to the
8002A chasis. The free end of the cable pair connects to the emulator processor module by
means of two edge card connectors inserted at the top of the emulator board.

The 6-foot ground plane cable pair for the B0O85A prototype control probe consists of two 40-
conductor flat cables with ground, power, and signal lines. The free end of the cable pair
connects to the emulator processor module by means of a cable terminaton card inserted at
the top of the emulator board. The 8085A CPU is then moved to the prototype control probe
module to minimize emulation delays.

Receivers for data, address, and circuit board control are located in the prototype control
probe assembly. The probe assembly provides signal integrity and minimizes loading on
circuits connected to the microprocessor socket.

@ MARCH 1979 14-1

Prototype Control Probe—8002A:8080A/8085A Users

8085A Emulator
Processor Module

I nterface
Assembly

40-Pin
Plug

2702-2
Fig. 14-1. 80805A Emuiator processor and prototype control probe assembly.

A 40-pin plug at the end of the 18-inch twisted-pair cables fits into the prototype
microprocessor socket. Pin 1 on the plug must be mated to receptacle 1 of the socket. An
indentation is located near pin 1 on the plug to aid in pin identifi

cation. Refer to Fig. 14-2,
demonstrating proper plug insertion.

Ve

é\/\pAUTION g

N~

If the plug is incorrectly inserted, damage to the prototype control probe will
result. Fig. 14-2 illustrates the proper method for plug insertion.

14-2 @ MARCH 1979

Prototype Control Probe— 8002A:8080A/8085A Users

m

If the plug is incorrectly inserted, the following parts may need to be replaced:

8080A Prototype Control Probe Driver Receiver Board

DIP No. Tektronix Part No. Manufacturer No.
uz2010 156-0999-00 8798
U2030 156-0996-00 8726
u2040 156-0996-00 8T26
U2060 156-0996-00 8T26
U2080 156-0999-00 8T98
Uu2100 156-0999-00 8798
U3100 156-0999-00 8798
u3010 156-0323-00 74504

8080A Personality Board

DIP No. Tektronix Part No. Manufacturer No.
Uu1020 156-0180-00 74500
Uz2030 156-0180-00 74S00

8085A Prototype Control Probe Driver Receiver Board

DIP No. Tektronix Part No. Manufacturer No.
u1010 156-0956-00 7415244
u3010 156-0956-00 7415244
u6020 156-0928-00 741.5243
u6010 156-0928-00 741.8243
Uz010 156-0956-00 741.5244
us010 156-0382-00 741500
u5020 156-0382-00 74LS00

8085A Prototype Control Probe

DIP No. Tektronix Part No. Manufacturer No.
156-0462-00 7414
—3 Dual-Junction FET 151-1049-00 D/2N38 Fmiy
Diode 152-0008-00 T12G

@ MARCH 1979 14-3

Prototype Control Probe— 8002A:8080A/8085A Users

o e

8080A Emulator Processor Board

3AG 250V 2A Fast Blow Fuse — Tektronix Part No. 159-0023-00 (DIP’s are mounted in
sockets for easy replacement.)

REVERSE INSERTION
CAN CAUSE EQUIPMENT DAMAGE
PP e el r b rrrrer

2702-3

Fig. 14-2. Proper plug insertion.

When using the spring-plated-protected 40-pin plug with a zero-insertion-force socket, place
the 40-pin low-profile DIP socket (included) between the plug and the socket.

The prototype control probe, properly installed, is shown in Fig. 14-3. If the pins on the plug
are not shorted, the cable assembly can remain connected to the prototype hardware while
the prototype control probe is not in use.

14-4 @ MARCH 1979

Prototype Control Probe—8002A:8080A/8085A Users

Protbfype Control Probe

Prototype Hardware

2702-4

Fig. 14-3. Prototype control probe connected to prototype hardware.

OPERATION

Once the prototype control probe is connected to the prototype hardware, the prototype
hardware and software are exercised under TEKDOS control. Refer to the 8002A pProcessor
Lab System User's Manual for details.

@ MARCH 1979 14-5

8002A:8080A/8085A Users

Section 15
8080A CONVERTER

INTRODUCTION

This section describes the TEKDOS syntax required to convert intel source code into
Tektronix source code.

Syntax

{source file [/disc drive]{ Ydestination file [/disc drive]
CONVERT }source device destination device -

PURPOSE

The CONVERT command invokes the Converter when the 8002A uProcessor Lab is under
TEKDOS control.

EXPLANATION

The Tektronix 8080A Converter is a system program that translates 8080A programs from
Intel’s 8080 Macro Assembler format to Tektronix 8080A/8085A Assembler, Version 3,
format. The Intel 8080A Macro Assembler generates absolute object code that is described in
the Intel 8080A Assembly Language Programming Manual (1976). The converter input is
source code written in Intel assembly language. The Converter output is source code written
in Tektronix assembly language.

Both the source and destination parameters are mandatory. The first parameter is the name
of the file or device from which the Converter reads the Intel assembly language source code.
The second parameter is the name of the destination file or device to which the Converter
outputs the converted Tektronix assembly language code.

The Tektronix 8080A Converter output is then acceptable as input to the Tektronix 8080A
Assembler. It is important to note that incompatibilities exist between the Intel and the
Tektronix assembly language formats. They are discussed in the subsection entitied
“Incompatibilities”. Often, however, the user will be able to assemble the converted code
without actuaily having to rewrite any code.

The end of the conversion is signaled by a console message. This message alsc indicates the

number of replacements (see subsection on Replacements) made and the number of
incompatibility warnings given.

@ MARCH 1979 151

8080A Converter— 8002A:8080A/8085A Users

The Tektronix 8080A Converter makes two passes through the source program. During the
first pass a partial symbol table is constructed for use in converting macros. During the
second pass the converted program is generated.

Input to the Converter may come from any valid TEKDOS input device. However, since the
Converter makes two passes through the source material, the same material should be
available for both passes. The Converter terminates after reading to the end of the input

source file on the second pass. The converted program may be output to either a flexible disc
file or to a device.

REPLACEMENTS

Each Intel assembly language statement consists of four fields in the following order:
LABEL FIELD OPERATION FIELD OPERAND FIELD COMMENT FIELD

In conversion to Tektronix code, replacements are made in all fields.

In the label field the following replacements are made:
1. A colon (:) after a label, or two consecutive colons after a label, is replaced by a blank.

2. In a MACRO directive label field, the macro name is replaced by a blank. The macro
name is placed in the operand field of this statement.

3. Anv local symbol, as defined by an EQU directive or by its use in the label field of a
macro definition block statement, is replaced by the concatenation of the symbol with

the unique macro call number character, @, enclosed in substitution delimiters (single
quotes).

In the operation field the following replacements are made:

1. The DB directive is replaced by either the BYTE or the ASCII directive. The Converter
creates one BYTE statement for each numeric operand and one ASCII statement for
each string operand.

2. The DW directive is replaced by the WORD directive.

3. The DS directive is replaced by the BLOCK directive.

In the operand field, the following replacements are made:
1. The first single quote (') on a MACRO call is replaced by a left square bracket, L.

2. The last single quote ('} on a MACRO call is replaced by a right square bracket,] .

3. Any single quotes between the first and singie quotes on a MACRO calii are treated as
for strings. (See items 4 and 5 which follow).

15-2 @ MARCH 1979

8080A Converter—8002A:8080A/8085A Users

e)

4. On all statements except MACRO directives, the first and last single quotes are each
replaced by double quotes ().

5. Any two consecutive apostrophes that follow the first single quote, are replaced by an
up-arrow (1) or caret {(A) followed by the single quote ().

. Any double quote ("} tha
caret (/) followed by t

(«2)

FIRTIN ; irai
follows the first singl

t follows the e
he double quotation m

[\
D

guote is repiaced by

ark.

7. Any up-arrow (1) or caret (A) that follows the first single quote is replaced by two up-
arrows or carets.

8. Any local symbol (as defined by an EQU directive or by its use in the label field of a
macro definition block statement) in the operand field of a macro definition block
statement is replaced by the concatenation of the symbol with the unique macro call
number character, @, enclosed in substitution delimiters {single quotes).

9. All macro parameters in the operand field of a MACRO directive are replaced by the
macro name from the label field.

10. In all other macro definition block statements, any macro parameter is replaced by its
position number enclosed in single quotes. For example, the following Intel format
macro definition statement indicates that parameter X has position number one and
parameter Y has position number two:

SHvV MACRO XY

Therefore, in the operand field of a subsequent statement within this macro definition
block, any X is replaced by ‘001’, and any Y is replaced by '002".

11. Intel logical operators (NOT, AND, OR, and XOR) are replaced by Tektronix logical
operators (\, &, !, and I!).

In the comment field any singlequoteis reptaced by an up-arrow followed by a single quote
(1), and any up-arrow is replaced by two up-arrows (11).

Symbo! replacements are made in the label, operation, and operand fields. An illegal symbol,
one which contains one or more at-signs (@) or question marks (?), is replaced by a converted
symbol. This converted symbol is formed by replacing any initial @ by A$, any initial ? by Q _,
any subsequent @ by $, and any subsequent ? by.—.

@ MARCH 1979 15-3

8080A Converter—8002A:8080A/8085A Users

L

A symbol reserved by the Tektronix Assembler cannot be defined by the user. The following
symbols are reserved by the Tektronix Assembler, although they are not reserved in the Intel
Macro Assembler:

ASCII ENDR PAGE
BASE EXITM RIM
BLOCK HI SEG
BYTE LIST SIM
CND LO SPACE
CON ME SYM
DEF MEG TRM
ELSE NAME WORD
ENDOF NCHR XREF

These reserved symbols are replaced by the same symbol followed by "$"”. Any statement
that contains a label, no operation, and no operand is replaced by the label followed by the
EQU directive and the location counter character, as shown in the following example:

LABEL OPERATION OPERAND COMMENT
Intel Code:
SRBUF ; DEFINE BUFFER

Tektronix Converted Code:

SRBUF EQU $ i DEFINE BUFFER
There are several important differences between the assembly process of the Intel Macro
Assembler and the Tektronix Assembler. These differences do not involve easily recognized

syntax variations, but rather the actual operation of the assemblers. It is highly
recommended that the user evaluate the converted program carefully before assembly to
ensure that the program will assemble as intended. The following differences are important
to keep in mind when evaluating a program.

Arithmetic

Both Assemblers use two’s complement arithmetic. The Intel Macro Assembler treats all
arguments of its expression operators as unsigned quantities; the Tektronix Assembler treats
them as signed.

154 @ MARCH 1979

8080A Converter—8002A:8080A/8085A Users

ee———————

Expression Operators

The types of expression operators used by the two Assemblers differ, as does the relative
precedence of these operator types. Therefore, an expression is not necessarily evaluated
identically by the Intel Macro Assembler and the Tektronix Assembler.

The following table illustrates the precedence of the expression operators in the intei Macro
Assembiler. All items on the same line have egual precedence.

Highest Priority # / MOD SHL SHR
+ - (Unary and Binary)
NOT
AND

Lowest Priority OR XOR

The following table illustrates the precedence of the expression operators and functions in
the Tektronix Assembler. All items on the same line have equal precedence.

Highest Priority DEF HI LO NCHR SEG ENDOF BASE STRING SCALAR

- (unary plus and minus) \
/ MOD SHL SHR
- (addition and subtraction)

> < = > >=

—E N+ ok 4
~

Lowest Priority H

It is strongly recommended that the user check expressions to ensure that they assemble as
intended. The Converter does not replace an Intel expression with a Tektronix expression in
which precedence has been adjusted appropriately. However, an incompatibility warning is
given for NOT operator conflicts. (See the subsection, “Incompatibility Warnings”.)

Macro Caii Parameters

The Intel Macro Assembler passes parameters by value. The Tektronix Assembler passes
parameters by name. Therefore, a macro may not expand to the intended code. The following
example illustrates this incompatibility:

INTEL CODE TEKTRONIX CONVERTED CODE
SAMPL MACRO X MACRO SAMPL
VAL SET 4 VAL SET 4 MACRQ
DW X WORD ’001° DEFINITION
ENDM ENDM
VAL SET 0 VAL SET 0 PROGRAM
STATEMENT
SAMPL VAL SAMPL. VAL MACRO CALL
+ VAL SET 4 + VAL SET 4 MACRO
+ DW o} + WORD VAL EXPANSION

@ MARCH 1979 15-6

8080A Converter—8002A:8080A /8085A Users

L e

In this example, the Intel Macro Assembler limits macro parameters to the operand field.
However, the Tektronix Assembler allows macro parameters in all statement fields.

Single quote conversion within a macro parameter may produce code that does not assemble
in the intended manner. All macro definitions should be carefully reviewed after conversion
to ensure correct assembly. To remind the user of potential conflicts, an incompatibility
warning is given for each MACRO directive.

Scope of Symbols

In Intel assembly language, any SET symbol defined in a macro expansion statement is local
to the current macro expansion, unless that symbol has previously been defined globally by
another SET statement. In Tektronix assembly language, unique labels for macro expansion
can be generated by using a label concatenated with the unique macro call number
character, @, enclosed in single quotes.

String Capability

The Tektronix Assembler has a powerful string variable capability, including string function
operators. These string features are particularly useful in macros.

Incompatibility Warnings
The converter includes incompatibility warnings with the converted output code in the form
of WARNING directive statements. The following types of warnings are possible:

1. ILLEGAL OPERAND. An instruction mnemonic is used in the operand field.

2. OPERATOR PRECEDENCE CONFLICT. A NOT operator is used in an expression
containing one or more of the foilowing operators: +, —, *, /, MOD, SHL, SHR.

w

MACRO INCOMPATIBILITY. See the

LR) s . ~ i

potential incompatibilities.

4. NEXT LINE CONTAINS SOURCE FFORMAT ERROR. An incorrect Intel source line
follows.

The incompatibility warning statement precedes the line containing the incompatibility. Only
one incompatibility warning may precede a converted source line. The following is an
exampie of a source line with an incompatibility;

LABEL OPERATION OPERAND

TBL: DB (ADD C)

15-6 @ MARCH 1979

8080A Converter—8002A:8080A/8085A Users

L

The converted code is output as follows:

LABEL OPERATION OPERAND COMMENT
WARNING i ILLEGAL. DPERAND
TBL BYTE (ADDC)

OUTPUT FORMAT

The destination file or device receives the converted code. Converted code consists of:
statements copied unchanged from the Intel source code, corrected source code with
appropriate replacements, and incorrect statements preceded by incompatibility warnings.

Here is an example of an Intel assembly language code segment:

LABEL OPERATION OPERAND
XRA A
vAL EQU 100H
LXI H, VAL
MoV B, M
@COMF: CMP B
JZ DEF
INR B
JMP eCOomP
DEF: DB VAL, ‘A’

Here is that same code, after conversion:

LABEL OPERATION OPERAND
i XXXX TEKTRONIX 2080A CONVERTER Vi 0
XRA A
VAL EQU 100H
LXI H: VAL
MOV B, M
ASCOMP CMP B
JZ DEF$
INR B
JMP ASCOMP
DEF$ BYTE VAL
BYTE » A n

i XXXX CONVERSION COMPLETE
i XXXX NUMBER OF WARNINGS=0
i XXXX NUMBER OF REPLACEMENTS=9

At the beginning of the conversion a message is sent to the console. This message indicates
the type of microprocessor conversion program and the version designation.

At the end of the conversion a message is sent to the console. This message indicates that

the conversion is complete, and shows the number of warnings, and the number of
replacements.

® MARCH 1979 15-7

8002A:8080A/8085A Users

Appendix A
SOURCE MODULE CHARACTER SET

SYMBOLS DEFINITION
A.Z letters used in symbols; lower-case characters (other than in strings
and comments) are interpreted as the corresponding upper-case
characters
.9 numbers used in symbols and constants

used in symbols, and to represent Assembler location counter contents
used in symbols

- used in symbols

; precedes a comment

, (comma) delimiter for operand items

“ string delimiter

string concatenation operator

! string substitution delimiter

total number of arguments passed to current macro expansion

[] group macro code to be treated as a singie argument

@ provides unique labels for each macro expansion

% is replaced by name of current section or COMMON in a macro
expansion

* binary arithmetic operation, multiplication

binary arithmetic operation, division
+ unary or binary arithmetic operator, addition

- unary or binary arithmetic operator, subtraction

() override precedence of operators
\ unary logical operator, not
& binary logical operator, and

! binary logical operator, inclusive or
1 binary logical operator, exclusive or
SPACE field delimiter

REV B MARCH 1979 A-1

Source Module Character Set—8002A:8080A/8085A Users

S

A-2

SYMBOLS
TAB

CARRIAGE
RETURN

Aor?
AAort?

]

ANV AV A

DEFINITION
field delimiter

field and line delimiter

allows following special character to have literal meaning

allows the second caret or up-arrow character to have literal meaning
relational operator, equal

relational operator, not equal

relational operator, greater than

relational operator, less than

relational operator, greater than or equal

relational operator, less than or equal

REV B MARCH 1979

8002A:8080A/8085A Users

—

Appendix B
ASSEMBLER DIRECTIVES

DIRECTIVE OPERATION

ASCII stores ASCII text in memory

BLOCK reserves a specified number of bytes in memory

BYTE allocates one byte of memory to each expression specified

COMMON declares Linker section, assigns name, defines type to be common

ELSE when expression is false, causes assembly of alternate source lines
between ELSE and ENDIF directives

END terminates source modules

ENDIF signals corresponding |F block termination

ENDM terminates a macro definition block

ENDR signals end of each REPEAT cycle

EQU permanently assigns a value to a symbol

EXITM terminates expansion of current macro before encountering ENDM

GLOBAL declares symbols to be global variables

IF when expression is true, causes assembly of source lines between
IF and ENDIF directives

INCLUDE inserts text from specified file into the program

LIST enables display of Assembler listing features

MACRO defines the name of a source code block used repeatedly within a
program

NAME declares name of an object module

NOLIST disables display of Assembiler listing features

ORG sets contents of location counter

PAGE begins the next listing line on the following page

REPEAT enables macro lines between REPEAT and ENDR directives to be

assembled repeatedly

{Directives continued on next page}

REV B MARCH 1979 B-1

Assembler Directives—8002A:8080A/8085A Users

—

DIRECTIVE OPERATION

RESERVE sets aside a workspace in memory

RESUME continues definition of code for a given section

SECTION declares Linker section, assigns name, defines parameters

SET assigns or reassigns an expression value to a string or numeric
variable symbol

SPACE spaces downward a specified number of listing lines

STITLE creates a text line on the second line of each listing page heading
for program identification

STRING declares symbol to be a string variable

TITLE creates a text line at the top of each listing page heading for
program identification

WARNING generates specified warning message on the output device and in
the listing

WORD allocates two bytes of memory to each expression specified

B-2 REV A MARCH 1979

Assembler Directives—S002A:8080A/8085A Users

ASSEMBLER DIRECTIVE SYNTAX

LABEL OPERATION OPERAND COMMENT
[symbol] ASCHI { string expression } [,string expression] . . . [;charstring]
[symbol] BLOCK { expression } [icharstring]
[symbol] BYTE {expression} [,expression] ... [charstring]
[symbol] COMMON {symbol} [PAGE [;charstring]

JINPAGE

LABSOLUTE
[symbol] ELSE [;charstring]
[symbol] END [expression] [;charstring]
{symbol] ENDIF [;charstring]
[symbol] ENDM [charstring]
[symbol] ENDR [;charstring]
{symbol} EQU { expression } [;charstring]
{symbol] EXITM [:charstring]
[symbol] GLOBAL { symbo!} [,symbol] ... [;charstring]
[symbol] IF { expression} [;charstring]
[symbol] INCLUDE { string expression} [;charstring]
[symbol] LIST [CND] [,TRM] [,SYM] [,CON] [MEG] [,ME][,DBG] [:charstring]
[symbol] MACRO { symbol } [;charstring]
[symbol] NAME { symbol } [;charstring]
[symbol] NOLIST [CND] [, TRM] [,SYM] [,CON] [,MEG] [,ME] [,DBG] [;charstring]
[symbol] ORG {I1 expression} [charstring]
[symbol] PAGE [;charstring)
[symbol) REPEAT {expression1} [.expression2] [;charstring]
[symbol] RESERVE { symbol, expression}r,PAGE 1 [;charstring]

LINPAGEJ

[symbol] RESUME [symbol] [;charstring]
[symbol] SECTION { symbol } [,PAGE [;charstring]

LINPAGE

,ABSOLUTE
{symbol} SET { expression} [;charstring)
[symbol] SPACE [expression] [:charstring]

REV A MARCH 1979

(Directives continued on next page)

B-3

Assembler Directives— 8002A:8080A/8085A Users

e

LABEL OPERATION OPERAND COMMENT
[symbol] STITLE {string expression} [;charstring]
[symbol] STRING {{strvaﬂ) [{lenexp1)}} [{,strvar2} [_(Ienexp2)]:|. .. [xcharstring]
[symbol] TITLE {string expression} [;charstring]
[symbol} WARNING [message]

[symbol] WORD {expression} [,expression] . .. [;charstring]

B-4 REV A MARCH 1979

8002A:8080A/8085A Users

—

Appendix C
SUMMARY OF 8080/8085 INSTRUCTIONS

All B0BOA/8085A instructions are summarized in this appendix. For a detailed description
of the instruction set, consult an 8080/8085 assembly language programming manual.

Each 8080A/8085A instruction corisists of an operation code and up to two operands.

An operation invoiving implied operands consists of an operation code oniy. Other
instructions require one or two written operands, dependent upon the operation to
be performed.

Descriptive symbols used in this appendix to represent items in the operand field
are as follows:

Symbol Description

r,rl, r2 One of the registers A, B, C, D, E, H, L or an expression that evaluates to
a numeric register value assigned by the Assembler as shown in this table:

register value
B 1)
C 1
D 2
E 3
H 4
L 5
A 7
pair One of the register pairs:

B represents B and C.
D represents D and E.
H represents H and L.
SP represents a two-byte stack pointer register.

REV B MARCH 1979 C1

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

C-2

pairh
pairl

exp8

exp16
exp16h
exp 16l

expv

PSW
AD
A1
A2
A3
A4
AB
A6
A7
sp

PC

High register of a register pair: B, D, H, or SPH.
Low register of a register pair: C, E, L, or SPL.

An expression representing a one byte data or address constant or 1/0
port address.

An expression representing a two byte data or address constant.
The high byte of a two byte constant.
The low byte of a two byte constant.

An expression representing a restart vector number. Its possible values
are@to 7.

A memory reference to the contents of the address contained in the H, L
register pair. The H register contains the high byte. The L register contains
the low byte. The assigned value of M is 6.

Two bytes containing register A and the state of the condition flags.

Bit @ of register A.

Bit 1 of register A.

Bit 2 of register A.

Bit 3 of register A.

Bit 4 of register A.

Bit 5 of register A.

Bit 6 of register A.

Bit 7 of register A.

The two byte stack pointer.

The two byte program counter in the CPU (points to current instruction).

REV B MARCH 1979

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

PCH High byte of the program counter.

PCL Low byte of the program counter.

F Condition flags, treated as an 8-bitregister S Z ©® HCY 9 P 1 CY
« Left arrow indicates "is transferred to”".

> Indicates “is exchanged with”’.

Multiplication operator.

\ Logical NOT operator.

& Logical AND operator.

! Logical Inclusive OR operator.

" Logical Exclusive OR operator.

() Refers to contents of address, register, or flag.

() Refers to the contents of a location whose address is contained in the

specified register (indirect addressing).

Condition Codes

CcY Carry-borrow flag (from bit 7), 1 if the result of an instruction is a carry
or borrow.

P Parity flag, 1 if the result of an instruction has an even parity.

HCY Half carry flag (from bit 3), 1 is the result of an instruction has a half
carry.

z Zero flag, 1 if the result of an instruction is zero.

S Sign flag, 1 if the result of an instruction is negative.

REV B MARCH 1978 C-3

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

Condition Code Indicators

X The effect on the flag is dependent on the result of an instruction.
0 Reset

u The flag is unaffecfed by the result of an instruction.

1 Set

c4 REV B MARCH 1979

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

e

Object
Source Module Syntax Module Machine Instruction Description Condition Codes
Operation Operand Bytes Cycles CY P HCYZ S

DATA TRANSFER INSTRUCTIONS

LDA expl6 3 4 {A)<{exp16} u u u U u
LDAX pair 1 2 {A)<((pair)) u u u uu
Note: only pair =B or
pair = D is allowed.

LHLD exp16 3 5 (L)< (exp16) u uu u u
(H)<(exp16 + 1)

LXI pair,exp 16 3 3 (pairh)«<exp16h u u u uou
{pairi)<expibi

MOV r1,r2 1 1 (r1)<(r2) u u u uu

MOV rM 1 2 (r)<(M) u u u uu

MOV M,r 1 2 (M)<(r) u uu uu

MV r.exp8 2 2 (r)<exp8 u uu u u

MV M,exp8 2 3 (M)<exp8 u u u U u

SHLD exp 3 5 (exp16)<(L) u uu uu
{exp 16 + 1) « (H)

STA exp16 3 4 (exp16)<(A) u uu u u

STAX pair 1 2 ({pair))<(A) u u u u u

Note: only pair = B or
pair = D is allowed.
XCHG 1 1 (H)«=>(D) u u u uu

(L)(——)(E) 9] uou 0o

REGISTER INCREMENT AND DECREMENT INSTRUCTIONS

DCR M 1 3 (M)<(M) — 1 u X X X X
DCR r 1 1 (r)<(r) — 1 u X X X X
DCX pair 1 1 (pair)«(pair) — 1 u u u u u
INR M 1 3 (M)<(M) +1 u X X X X
INR r 1 1 (ry<(r) +1 u X X X X
INX pair 1 1 (pair)<(pair) + 1 u uu uu

REV C MARCH 1979 C-5

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

X5

Object

Source Module Syntax Module Machine Instruction Description Condition Codes
Operation Operand Bytes Cycles CYP HCY Z S
ARITHMETIC INSTRUCTIONS

ACI exp8 2 2 (A)<(A) +exp8 + (CY) X X X X X
ADC M 1 2 (A)<(A)} + (M) + (CY) X X X X X
ADC r 1 1 (A)<(A) + (r) + (CY) X X X X X
ADD M 1 2 (A)<(A) + (M) X X X X X
ADD r 1 1 {A)<(A) + (r) X X X X X
ADI exp8 2 2 (A)<(A) + exp8 X X X X X
CMP r 1 1 (A) —(r) X X X X X

Note: The result is not stored.
Zissetto 1if (A)=(r).CY is
set to 1if (A} < (r)
CMP M 1 2 (A) — (M) X X X X X
Note: The result is not stored.
Alissetto 1if (A} =(M). CY is
set to 1 if (A) < (M).
CPI exp8 2 2 (A) —exp8 X X X X X
Note: The result is not stored.
Z is set to 1if (A) =exp8. CY
is set to 1 if (A) <exp8.
DAA 1 1 Decimal adjust register A, X X X X X
accumulator to form two
four-bit Binary-Coded-Decimal
digits.
If D_ is greater than 9 or HCY is
set ADD 6 to ACC
Then
If DY is greater than 9 or CY is set
ADD 60H to ACC.
This is only valid after an ADD
operation. (Non-Intel-manufactured
cpu will perform the operation
differently.)

DAD pair 1 3 (H,L)<(H,L) + {pair) X U u uu
SBI exp8 2 2 (A)<(A) — exp8 — (CY) X X X X X
SBB vi i 2 (AJ={A) — (M) — (CY) X X X X X
SBB r 1 1 (A)=(A) — (M) - (CY) X X X X X
SUB M 1 2 (A)<=(A) — (M) X X X X X
SUB r 1 1 (A)<(A) — (r) X X X X X

C-6 REV B MARCH 1979

Summary of 8080A/8085A instructions
8002A:8080A/8085A Users

o

Object
Source Moduie Syntax Module Machine instruction Description Condition Codes
Operation Operand Bytes Cycles CYP HCY Z S
SuU! axp8 2 2 {A)<{A} —exp8 X X X X X

LOGICAL INSTRUCTIONS

ANA M 1 2 (A)<(A) & (M) 0 x x X X
ANA r 1 1 (A)(A} & (r) 0 x x X X
ANI exp8 2 2 (A)<(A) & exp8 0 x @ X X
CMA 1 1 {A)<\(A) u uwu uu
cMC 1 1 (CY) < \(CY) X uwu uu
ORA M 1 2 (A)<(A) ! (M) 6 x @ X X
ORA r 1 1 (A)(A) ! {r) 6 x @ X X
ORI exp8 2 2 {A)<(A) ! exp8 2 x 0 X X
STC 1 1 (CY)<1 1 uwu uu
XRA M 1 2 (A)<(A) IT (M) 0 x @ X X
XRA r 1 1 (A)=(A) 1 (r) 0 x 0 X X
XRI exp8 2 2 (A)<(A) 1 exp8 e x 0 X X
ROTATE INSTRUCTIONS
RAL 1 1 (CY)<(A7) X Uuu u u
(A7 to A1)<(A6 to AB)
(AB)<(CY)
RAR 1 1 (CY)<(AQ) X uwu uu
(A6 to AB)<(A7 to A1)
(A7)<(CY)
RLC 1 1 (A7 to A1)<(A6 to AQ) X uwu uu
(AB)<(A7)
(CY)«<(A7)
RRC 1 1 (A6 to AB)<(A7 to A1) X uwu uu
(A7)<(AQ)
(CY)(AD)
BRANCH INSTRUCTIONS
CALL exp16 3 5 ({SP) — 1)« (PCH) u uu uu
((SP) — 2)«(PCL)
{SP)«(SP) — 2
(PC)<expib

REV B MARCH 1979 Cc-7

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

Object
Source Module Syntax Module Machine Instruction Description Condition Codes
Operation Operand Bytes Cycles CYP HCY Z S

BRANCH INSTRUCTIONS (contd.)

CC exp16 3 3orb If (CY) =1 then u uu uu
({SP) — 1)«<(PCH)
((SP) — 2)«(PCL)
(SP)«(SP) — 2
(PC)<exp16
Note: Cycles = 5if (CY) =1
otherwise cycles = 3
CM exp 16 3 3orb 1f (S) = 1 then u uu u u
((SP) — 1)«<(PCH)
((SP) — 2)«(PCL)
(SP)<(SP) —2
(PC)<exp16
Note: Cycles =5 if (S) = 1,
otherwise cycles = 3,
CNC exp16 3 3or3 If (CY) = 0 then u uu u u
({SP) — 1)«(PCH)
((SP) — 2)«(PCL)
(SP)«(SP) — 2
(PC)«exp16
Note: Cycles=5if (CY) =0
otherwise cycles = 3.
CNZ2 exp16 3 3orb If (Z) = @ then u uu uu
({SP) — 1)«<(PCH)
{{SP) — 2)«(PCH)
(SP)«(SP) — 2
(PClexp18
Note: Cycles = 5 if (Z) = @,
otherwise cycles = 3.
CP exp16 3 3orb If (S) = @ then u u u u u
({SP) — 1)«(PCH)
({SP) — 2)«(PCL)
(SP)«(SP) — 2
{PCj<expib
Note: Cycles =5 if (S) = @,
otherwise cycles = 3.
CPE exp16 3 3orb IF (P} =1 then u uwu u u
{({SP) — 1)«(PCH)

C-8 REV B MARCH 1979

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

“

Object
Source Module Syntax Module Machine Instruction Description Condition Codes
Operation Operand Bytes Cycles CYP HCY Z S

BRANCH INSTRUCTIONS (contd.)
({SP) — 2)«(PCL) u uu uu
{SP}«<(SP}) - 2
{PC)<exp16
Note: Cycles = 5 if (P) = 1,
otherwise cycles = 3.
CPO exp16 3 3or5 If (P) = @ then u uwu uu
((SP) — 1)«(PCH)
{({SP) — 2)«(PCL)
{SP)«(SP) — 2
{PCj<exp16
Note: Cycles=5if (P} =0,
otherwise cycles = 3.
cz exp16 3 3or5 1T (Z)= 1 then U u u uu
((SP) — 1)«(PCH)
{{SP) — 2)«(PCL)
{SP)«(SP) — 2
(PCj<exp16
Note: Cycles = 5 if {(Z) = 1,
otherwise cycles 3.

JC exp16 3 3 If (CY)} =1 then (PC)<exp16 u uu uu
JM exp16 3 3 If (S) = 1 then (PC)<exp16 u uu u u
JMP exp16 3 3 (PC)<exp16 u uwu uu
JNC exp16 3 3 If (CY) = @ then (PC)<exp16 u uwu uu
JNZ exp16 3 3 1f (Z) = @ then (PC)<exp16 u uu u u
JP exp16 3 3 If (S) = @ then (PC)<exp16 Uu uu uu
JPE exp16 3 3 If (P) = 1 then (PC)«exp16 u uwu uu
JPO exp16 3 3 If (P) = @ then (PC)<exp16 u uu uu
JZ expl16 3 3 I1f {Z) = 1 then (PC)<exp16 U uu u u
PCHL 1 1 (PCH)<(H) u uu uu

(PCL)<{L)
RC 1 lor3 If (CY) =1 then u uu uu

(PCL)<{(SP))

(PCH)<((SP}) +1)

(SP}«(SP) + 2

Note: Cycles = 3 if (CY) =1,
otherwise cycles = 1.

REV B MARCH 1979 Cc9

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

Object
Source Module Syntax Module Machine Instruction Description Condition Codes
Operation Operand Bytes Cycles CY P HCY Z S

BRANCH INSTRUCTIONS (contd.)

RET 1 3 (PCL)<((SP)) u uwu uu
{PCH)<((SP) + 1)
(SP)«(SP) + 2
RM 1 1or3 If (S) = 1 then u uwu uu
(PCL)<((SP))
(PCH)<((SP + 1)
(SP)«(SP) + 2
Note: Cycles = 3 if (S) =1,
otherwise cycles = 1.
RNC 1 1or3 1f (CY) = 0@ then u uu uu
(PCL)+((SP))
(PCH)<({SP + 1)
{SP)«{SP) + 2
Note: Cycles = 3if (CY) =0,
otherwise Cycles = 1.
RNZ 1 1or3 If (Z) = @ then u uu u u
(PCL)<«({SP))
{PCH)«({SP) + 1)
(SP)«(SP) + 2
Note: Cycles = 3if (Z) =0,
otherwise Cycles = 1.
RP 1 1or3 If (S) =@ then u uu uu
(PCL)<((SP))
(PCH)<((SP) + 1)
(SP)<(SP) + 2
Note: Cycles = 3 if (S} =0,
otherwise Cycies = 1.
RPE 1 1or3 If (P) =1 then u uu uu
(PCL}<((SP))
(PCH)<((SP} + 1)
(SP)<(SP) + 2
Note: Cycles =3 if (P} =1,
otherwise Cycles = 1.

C-10 REV B MARCH 1979

Summary of 8080A/8085A Instructions
8002A:8080A/8085A Users

50—

Object
Source Module Syntax Module Machine Instruction Description Condition Codes
Operation Operand Bytes Cycles CY P HCY Z S
BRANCH INSTRUCTICNS (contd.)
RPO 1 1or3 1f (P) = @ then u uu uu

(PCL)<((SP})
(PCH)<((SP) + 1)
(SP)«(SP) + 2
Note: Cycles = 3 if (P) =0,
otherwise Cycles = 1.
RST expv 1 3 ({SP) — 1)«<(PCH) u u u uu
{{SP) — 2)«(PCL)
(SP)«(SP) — 2
(PC)«8 * expv
RZ 1 tor3 If (Z) = 1 then u uu uu
(PCL)<((SP))
(PCH)<((SP) + 1)
(SP)«(SP) + 2
Note: Cycles = 3 if (Z) =1,
otherwise Cycles = 1

STACK INSTRUCTIONS

POP pair 1 3 (pairl)<((SP)) u uu u u
(pairh)<{(SP) + 1)
(SP)<(SP) + 2
Note: pair = SP is not allowed.

POP PSW 1 3 (F)<((SP)) X X X X X

(A)«<((SP) + 1)
{SP)«(SP) + 2
PUSH pair 1 3 ({SP) — 1)«(pairh) u uu uu
{(SP) — 2)«{pairl)
{SP)<(SP) — 2
Note: pair = SP is not allowed.

PUSH PSW 1 3 ((SP) — 1)<({A) u uwu uu
{{SP) — 2)«(F)
(SP)«-{SP) — 2

SPHL 1 1 (SPH)<«(H) u uu uu
{SPL}«(L)

XTHL 1 5 (L)«<—((SP)) U uwu uu

(H)<—=>((SP} + 1)

REV B MARCH 1979 C-11

Summary of 808B0A/8085A instructions
8002A:8080A /8085A Users
L ..

Object
Source Module Syntax Module Machine Instruction Description Condition Codes
Operation Operand Bytes Cycles CYP HCY Z S

INPUT/OUTPUT INSTRUCTIONS

IN exp8 2 3 (A)<(exp8) u uwu uu
. Note: exp8 = specified port.
ouT exp8 2 3 (exp8)«(A) u uu u u

Note: exp8 = specified port.

INTERRUPT AND CONTROL INSTRUCTIONS

Dl 1 1 Disable interrupt after u uu u u
execution of next instruction.
El 1 1 Enable interrupt after Uu uu uu

execution of next instruction.
Therefore, the next instruction
should not be a HLT.

HLT 1 1 Halt Processor. u uu u u

NOP 1 4 No operation u uu u u
PC<«PC + 1

*RIM: 1 1 Load accumulator with u uwu uu

restart interrupt masks, any
pending interrupts, and contents
of serial input data line.

*SIM: 1 1 Use the contents of the
accumulator to program the
restart interrupt mask.

* Available only on 8(85]

C-12 REV B MARCH 1979

8002A:8080A/8085A Users

Appendix D

SERVICE CALL FUNCTION CODES

CODE

01
02
03
04
05
06
10
"
13
14
156
16
17
18
19
1A
1C
1F
21

41

42
57

81

82
C1
C2

REV C MARCH 1979

FUNCTION

Read ASCII and wait

Write ASCII and wait

Close device or file on channel
Rewind file on channel

Detlete file on channel

Rename file on channel

Assign channel to device or channel

Get time (milliseconds)
Get parameter (procedure parameter buffer)

Get device type

Get device status

Get last console input character

Load overlay

Execute overlay

Suspend execution

Exit

Get parameter (emulation parameter buffer)
Abort

Read ASCI! and wait without echo from CONJ.
Read binary and wait

Write binary and wait

Load overlay with bias

Read ASCII and proceed

Write ASCII and proceed

Read binary and proceed

Write binary and proceed

D-1

8002A:8080A/8085A Users

Appendix E

HEXADECIMAL CONVERSION TABLES

ASCIl CODE CONVERSION

HEXADECIMAL

MOST SIGNIFICANT CHARACTER
-) 1 2 3 4 5 6 7
@ | NUL DLE SP ¢ @ P * p
1 SOH DCH1 ! 1 A Q a q
2 |STX DC2 " 2 B R b r
3 | ETX DC3 # 3 C S ¢ s
4 | EOT DC4 $ 4 D T d t
LEAST 5 ENQ NAK % 5 E U e u
SIGNIFICANT 6 | ACK SYN & 6 F V f v
CHARACTER 7 | BEL ETB ' 7 G W g w
8 | BS CAN (8 H X h «x
9 | HT EM) 9 1Y i oy
A| LF suB * = J Z j 9z
B| vi EC + ; K [k 1
c | FF FS < L\ T
D | CR Gs - = M 1 m }
E | SO RS . > N A n -~
F sl us / ? O — o DEL
Example W =57
H =48
a =61
t=74
@ =40
NUL = 09
DEL = 7F

REV B MARCH 1979

E-1

E-2

Hexadecimal Conversion Tables—8002A:8080A/8085A Users

DECIMAL-HEXADECIMAL-BINARY EQUIVALENTS 0—255

Hexa- Binary Hexa- Binary Hexa- Binary Hexa- Binary
Deci- | deci- 8-bit Deci-| deci- 8-bit Deci- | deci- 8-bit Deci-| deci- 8-bit
mal mal Code mal mal Code mal mal Code mal mal Code

0 00 | 0000 0000 64 40 | 0100 0000 128 80 | 1000 0000 192 C0 | 1100 0000
1 01 0000 0001 65 41 0100 0001 129 81 1000 0001 193 C1 1100 0001
2 02 | 0000 0010 66 42 | 0100 0010 130 82 1000 0010 194 C2 | 1100 0010
3 03 | 0000 0011 67 43 10100 0011 131 83 1000 0011 195 C3 | 1100 0011
4 04 | 0000 0100 68 44] 01000100 132 84 1000 0100 196 C4 | 1100 0100
5 05 [0000 0101 69 45 | 0100 0101 133 85 1000 0101 197 C5 | 1100 0101
6 06 | 0000 0110 70 46 | 0100 0110 134 86 1000 0110 198 Cé | 11000110
7 07 | 0000 0111 71 47 | 0100 0111 135 87 1000 0111 199 C7 | 1100 0111
8 08 | 0000 1000 72 48 | 0100 1000 136 88 1000 1000 200 C8 | 1100 1000
9 09 | 0000 1001 73 49 | 0100 1001 137 89 | 1000 1001 201 C9 | 1100 1001
10 0A | 0GOO 1010 74 4A | 0100 1010 138 8A | 1000 1010 202 CA | 1100 1010
11 0B | 0000 1011 75 4B | 0100 1011 139 8B | 1000 1011 203 CB | 1100 1011
12 0C 10000 1100 76 4C | 0100 1100 140 8C | 1000 1100 204 CC 11100 1100
13 0D | 0000 1101 77 4D | 0100 1101 141 8D | 1000 1101 205 CD | 1100 1101
14 OE | 0000 1110 78 4E | 0100 1110 142 8E | 1000 1110 206 CE_ {1100 1110
15 OF {0000 1111 79 4F | 0100 1111 143 8F | 1000 1111 207 CF | 1100 1111
16 10 | 0001 0000 80 50 | 0101 0000 144 90 | 1001 0000 208 DO | 1101 0000
17 11 0001 0001 81 51 0101 0001 145 91 1001 0001 209 D1 1101 0001
18 12 | 0001 0010 82 52 | 0101 0010 146 92 1001 0010 210 D2 | 1101 0010
19 13 | 0001 0011 83 53 | 0101 0011 147 93 | 1001 0011 211 D3 | 1101 0011
20 14 | 0001 0100 84 54 | 0101 0100 148 94 11001 0100 212 D4 | 11010100
21 15 {0001 0101 85 55 | 0101 0101 149 95 1001 0101 213 D5 11010101
22 16 | 000t 0110 86 56 | 01010110 150 96 1001 0110 214 D6 1101 0110
23 17 | 0001 0111 87 57 | 0101 0111 151 97 1001 0111 215 D7 | 11010111
24 18 | 0001 1000 88 58 | 0101 1000 152 98 1001 1000 216 D8 | 1101 1000
25 19 | 0001 1001 89 59 | 0101 1001 153 99 1001 1001 217 D9 | 1101 1001
26 1A | 0001 1010 90 S5A | 0101 1010 154 9A 11001 1010 218 DA | 1101 1010
27 1B {0001 1011 91 58 | 0101 1011 155 98 | 1001 1011 219 DB | 1101 1011
28 1C | 0001 1100 92 5C | 0101 1100 156 9C | 1001 1100 220 DC | 1101 1100
29 1D | 0001 1101 93 5D | 0101 1101 157 9D | 1001 1101 221 DD | 1101 1101
30 1E | 0001 1110 94 S5E | 0101 1110 158 9E | 1001 1110 222 DE | 1101 1110
31 1F | 0001 1111 95 5F | 0101 1111 159 9F {100t 1111 223 DF | 1101 1111
32 20 | 0010 0000 96 60 | 0110 0000 60 A0 | 1010 0000 224 E0 | 1110 0000
33 21 0010 0001 97 61 0110 0001 161 Al 1010 0001 225 E1 1110 0001
34 22 100100010 98 62 | 0110 0010 162 A2 | 1010 0010 226 E2 |1110 0010
35 23 | 0010 0011 99 63 | 01100011 163 A3 | 1010 0011 227 E3 | 1110 0011
36 24 | 0010 0100 100 64 | 0110 0100 164 A4 | 1010 0100 228 E4 | 1110 0100
37 25 | 00100101 101 65 | 0110 0101 165 A5 }1010 0101 229 ES | 1110 0101
38 26 |00100110 102 66 | 01100110 166 A6 | 10100110 230 E6 | 11100110
39 27 00100111 103 67 0110 0111 167 A7 1010 0111 231 E7 1110 0111
40 28 10010 1000 104 68 | 0110 1000 168 A8 11010 1000 232 E8 | 1110 1000
41 29 | 0010 1001 105 69 | 0110 1001 169 A9 | 1010 1001 233 E9 | 1110 1001
42 2A | 0010 1010 106 6A | 0110 1010 170 AA {1010 1010 234 EA | 1110 1010
43 28 | 0010 1011 107 6B | 0110 1011 171 AB | 1010 1011 235 EB | 1110 1011
44 2C 10010 1100 108 6C_| 0110 1100 172 AC 11010 1100 236 EC 111101100
45 2D | 0010 1101 109 6D | 0110 1101 173 AD | 1010 1101 237 ED | 1110 1101
46 2E 0010 1110 110 6E 0110 1110 174 AE 1010 1110 238 EE 1110 1110
47 2F 0010 1111 111 6F 0110 1111 175 AF 1010 1111 239 EF 1110 1111
48 30 | 0011 0000 112 70 | 0111 0000 176 BO | 1011 0000 240 FO | 1111 0000
49 31 0011 0001 113 71 0111 0001 177 B1 1011 0001 241 F1 1111 0001
50 32 | 00110010 114 72 | 01110010 178 B2 | 10110010 242 F2 [11110010
51 33 | 00110011 115 73 | 0111 0011 179 B3 {1011 0011 243 F3 | 11110011
52 34 | 00110100 116 74 | 0111 0100 180 B4 | 1011 0100 244 F4 [11110100
53 35 00110101 117 75 | 0111 0101 181 B5 | 1011 0101 245 F5 [11110101
54 36 100110110 118 76 | 0111 0110 182 B6 |10110110 246 F6 111110110
55 37 100110111 119 77 1011101 183 87 110110111 247 F7 111110111
56 38 | 0011 1000 120 78 | 0111 1000 184 B8 | 1011 1000 248 F8 | 1111 1000
57 39 | 0011 1001 121 79 | 0111 1001 185 B9 | 1011 1001 249 F9 | 11111001
58 3A 0011 1010 122 7A | 0111 1010 186 BA | 1011 1010 250 FA | 11111010
59 3B [0011 1011 123 7B] 01111011 187 BB 11011 1011 251 FB | 11111011
60 3C 0011 1100 124 7C 0111 1100 188 BC 1011 1100 252 FC 1111 1100
61 3D |0011 1101 125 7D | 0111 1101 189 BD | 1011 1101 253 FD | 1111 1101
62 3E }0011 1110 126 7E | 0111 1110 190 BE | 1011 1110 254 FE | 11111110
63 3F 0011 1111 127 7F 0111 1111 191 BF 1011 1111 255 FF 1111 1111

REV B MARCH 1979

Hexadecima! Conversion Tables—8002A:8080A/8085A Users

HEXADECIMAL ADDITION
112 13lalslel7 o lalBlclDlELF
1§23 ;41516178 A, B/ C/ D/ E F 10
2|1 3|41 5167|8189 B|C|[D|E|F]|]10]|11
3P 4151861718131 A C|DJE]| F|10]11]i2
415678 |]9[A]|B D|E|F|[10]11]12] 13
516 7]8]9]A|B|C E|F|10][11]12 1314
617/ 8]1]9]A|B|C|D F |10 /11] 12|13 {14 | 15
71819 | A} BJC|D|E 10111 (12 1314 |15 | 16
8|9 | A|B|C|D|[E]|F 11 {12 113]| 1415 [16 | 17
9JA BJ]C|DJEJ[F]|10 12 113 14| 15| 16 | 17 | 18
Al B|C|D|E]|F]|]10] 11 13114 115|116 17 | 18 | 19
BIC/ DJE{lFJ]10[11]12 14115116 17 18 | 19 | 1A
C{D!/!E]| Fl10]11[12]13 15116 1171181 19 |1A | 1B
DfE! F|l10l11]12]13] 14 16 |17 118 19| 1A [1B | 1C
EJF 10]11]12]13[1415 17 {18 |19 1A 1B 1C | 1D
19 |1A| 1B{1C 1D | 1E
Example |[HEX F+8 = 17

HEX 10 = 16 DEC

HEX _7 = _1 DEC

HEX 17 = 23 DEC

REV B MARCH 1979

E-3

[T e

E-4

Hexadecimal Conversion Tables—8002A:8080A/8085A Users

HEXADECIMAL MULTIPLICATION

1 2 | 314,65 16]7 9 LA B CI!DIE]|F |
1 1 2 131415 617 9| A|B|[C[IDJ|ETF
2 2 4 | 6| 8] A|CIlE 1214116 | 18 | 1A |1C | 1E
3 3 6 | 9 C| F |[12]15 1B|1E [21 |24 |27 [2A [2D
4 4 8 1 C |10 1418 |1C 24 128 [2C |30 (34 |38)3C
5 5 A|F|14]19 | 1E| 28 2D [32 [37 |3C| 41 [46 | 4B
6 6 C [12| 18| 1E| 24 [2A 36 |3C| 42 (48 | 4E | 54 | 5A
7 7 E |15]|1C| 23 | 2A | 31 3F| 46 4D | 54 | 5B | 62 | 69
8 8 10 [18| 20 [28 | 30 | 38 48 | 50 | 58 | 60 | 68 [70 | 78
- 51 [5A | 63 |6C| 75 | 7TE | 87
A A 14 |1E| 28 | 32 [3C | 46 5A [64 |6E | 78 | 82 |8C | 96
B B 16 [211 2C [37 |42 14D 63 |6E | 79 | 84 | 8F [9A | AS
o] C 18 |24 | 30 | 3C | 48 | 54 6C [7884 [90|9C | A8 | B4
D D | 1A[27] 34| 41 | 4E | 5B 75|82 | 8F |9C| A9 | B6| C3
E E | 1C[2A]| 38| 46 | 54 | 62 7E | 8C | 9A | A8 B6 [C4 [D2
F F 1E |2D | 3C | 4B | 5A | 69 87 |96 | A5 | B4|C3|D2| E1
Example HEX 9x8 = 48
HEX 40 = 64 DEC
HEX _8 = _8 DEC
HEX 48 = 72 DEC

REV B MARCH 1979

8002A:8080A/8085A Users

Appendix F
ASSEMBLER ERROR CODES

***x*x ERROR: 001 (no message displayed.)

Indicates that a user entered WARNING message has assembled. Refer to WARNING
directive explanation in Section 4.

*»*x*x FRROR: 002 Symbol Already Defined

indicates that the symbol defined has been previously defined in the program assembiing
sequence. Occurs when the same symbol is equated to two values (with EQU directive) or
when the same symbol labels two instructions.

***%x FRROR: 003 Symbo! Value Phase Error

Indicates that the label or EQU symbol value differs between passes, or that the section
assignment of a label or EQU symbol value differs between passes.

**xxx FRROR: 004 lllegal EQU of GLOBALS

Indicates that an unbound global is assigned the value of another unbound global (with
EQU directive). Error occurs because unbound globals are not assigned values in the
current assembly.

*»**** ERROR: 005 Global Definition May Not Use HI, LO, or ENDOF

Indicates that the value assigned to the global symbol involved HI, LO, or ENDOF function
usage. Occurs when a global symbol is equated to H! (x) or LO {x), where x is an address,
or ENDOF (y), where y is the section name whose ending address is to be found.

*»**xx ERROR: 006 String Expression Required
Indicates that a numeric value appears where a string value is required. Operations
requiring string expressions involve concatenation, SEG and NCHR function usage, and
ASCII, TITLE, or STITLE directive usage.

**»*¥*x*x ERROR: 007 Undefined BLOCK or ORG Expression
The operand expression of an ORG or BLOCK directive is either undefined or a forward
reference. Occurs when an undefined or misspelled symbol appears in an ORG or BLOCK

directive, or a symbol is assigned a value after the ORG or BLOCK directive references the
symbol.

REV B MARCH 1979

Assembler Error Codes—8002A:8080A/8085A Users

***x* ERROR: 008 Invalid ORG Qut of Section

Indicates that the ORG operand expression represents an address defined outside the
current section. Examine previous RESUME or SECTION statements for errors.

***** ERROR: 009 Negative Block Length

Indicates the BLOCK operand expression represents a negative value.
**x*xx ERROR: 010 Macro Already Defined

Indicates that more than one MACRO directive contains the same name.
¥xx ERROR: 011 Macro Definition Phase Error

Indicates two possible errors: The macro was called before being defined, or the macro
was defined during the secod Assembler pass, but not the first.

****x* ERROR: 012 Memory Full on Macro Call
Indicates insufficient space to perform macro expansion. Occurs when too many long
arguments are specified for parameter substitution, too many symbols are entered in
macro defintion, or the macro repeats itself infinitely.

***x* ERROR: 013 Missing ENDR or ENDIF
Indicates that a conditional assembly (IF or REPEAT) block failed to complete assembly.
Occurs when a conditional assembly block begins assembly within a macro definition and

the macro terminates (with an ENDM directive) before the conditional assembly terminates
(with an ENDR or ENDIF directive).

***** ERROR: 014 Duplicate Definition of Section Name

Indicates that the section name has already been defined as a label symbol during the
current Assembler pass.

x ERROR: 015 End Directive Invalid Within an INCLUDE File
Indicates that an END directive is present in an INCLUDE file.
***x* ERROR: 016 ENDR or ENDIF Mis-matched
Indicates that an improper termination directive was used for a conditional assembly block.

Occurs when ENDR is entered to terminate an IF block, ENDIF is entered to terminate a
REPEAT block, or when IF and REPEAT blocks overlap each other.

F-2 REV A MARCH 1979

Assembler Error Codes—8002A:8080A/8085A Users

L~

**xx* ERROR: 017 lteration Limit Exceeded
Indicates an attempt to assemble a REPEAT block more than the specified number of
times. If the allowed number of repeat cycles is left unspecified, the error message is
displayed when 256 repeat cycles are completed.

***x** ERROR: 018 Misplaced ELSE

Indicates that an ELSE directive occurs outside its corresponding IF—ENDIF block, or that
more than one ELSE directive occurs within the scope of one IF—ENDIF block.

xxx ERROR: 019 Operation Invalid For Address
Indicates that an operation allowing only scalar values was applied to an address value.
x*xxx* FRROR: 020 Divisor is Zero
Indicates that the Assembler attempted to divide by zero. Also occurs when the Assembler
attempts to determine the remainder of a division by zero with the MOD operator (for
example, A MOD 0).
**xx* ERROR: 021 Text Following ” 7] ” Ignored
Indicates that information following a bracketed macro parameter has been ignored.

***** ERROR: 022 ENDOF Operand is Scalar

Indicates that the specified section name in the ENDOF statement is a non-global, scalar
symbol.

Indicates an attempt to perform an ENDOF function upon an address resuiting from a
previous ENDOF function.

***** ERROR: 024 ENDOF Operand is Not Global

Indicates that the specified section name in the ENDOF statement represents a non-global
symbol.

**xx* ERROR: 025 Operation on Hl or LO of address.

Indicates an attempt to perform arithmetic or unary operation upon an address that has
had Hl or LO applied to it.

**xx* ERROR: 026 Addition of Addresses
Indicates an attempt to add one address to another.

**xx* ERROR: 027 Conflicting Section Bases

REV A MARCH 1979 F-3

Assembler Error Codes—8002A:8080A/8085A Users

***** ERROR: 028 Address Subtracted From Scalar'
Indicates an attempt to subtract an address from a scalar value.
*»**xx ERROR: 029 Negative String Length

Indicates that a negative value was specified for the string length when the string was
declared with the STRING directive.

**xx*x FRROR: 030 String Length Phase Error

Indicates that the string expression value differs between the Assembler’s first and second
pass. Occurs when the string length expression contains a forward reference.

x ERROR: 031 Redeclaration of String Variable

Indicates a second attempt to declare the same string variable.

**xxx ERROR: 032 String Declaration Phase Error

Indicates that the string value was defined during the Assembler’s second pass, but not its
first.

**xx* ERROR: 033 Invalid String Name

Indicates that an invalid string variable name has been entered as an operand in the
STRING directive.

***x* ERROR: 034 END Inside an Unclosed Block

indicates that an END statement occurs within an IF, REPEAT, or MACRO definition block.
Occurs when an ENDIF, ENDR, or ENDM directive is either missing or misspelled.

***x** ERROR: 035 Value Truncated to Byte

Indicates that the value entered exceeds one byte (value falls outside the range —128 to
255). The value is truncated to fall within one-byte range. Address values do not cause the
error to be displayed.

***** ERROR: 036 Invalid Character Follows Label

Indicates that a character other than a space was encountered following a label.

F-4 REV A MARCH 1979

Assembler Error Codes—8002A:8080A/8085A Users

*x*x** FRROR: 037 Extra Operands Ignored

indicates that extra operands appear in the statement. The complete statement entered
prior to the extra operands is assembled, and the extra operands are ignored. Occurs when
a statement is miscoded, an invalid delimiter occurs in the operand list, or a2 semicolon
does not precede a comment. This error also occurs when a logical NOT “\" operator or a
function follows what could be interpreted as a compleie expression. This compiete

< LT © TOSS IV th vie

expression is either composed of or ends in a constant, a symbol, or a right parenthesis
")*. The portion of the statement that precedes the logical NOT operator or function is
assembled and the remaining portion of the operand is ignored.

***x** ERROR: 038 String Variable Used as Label

Indicates that a string variable is present in the label field of an instruction. Label is
ignored.

*x*** ERROR: 039 Invalid Operation Code

Indicates that the Assembler is unable to recognize the operation in the statement, or that
the Assembler prevents the operation from being processed in its entered context. Occurs
when the operation is misspelled, an invalid delimiter follows the label, or a macro is
called prior to its definition.

***x* ERROR: 040 invalid Character

Indicates that the Assembler encountered a character, outside the valid character set, that
was not enclosed within double quotes.

**xxx FRROR: 041 Syntax Error

Indicates that the statement does not conform to the required syntax. Refer to Appendices
B and C for required syntax for Assembler directives and 8080A/8085A instructions.

***xx ERROR: 042 Invalid Option or Separator

Indicates that the Assembler encountered an invalid delimiter between listing control
options in the LIST or NOLIST directive operand field. Occurs when spaces are used in
place of commas to delimit options, or when an invalid listing control option is entered.

***** ERROR: 043 No Label on EQU or SET

Indicates that a symbol is either missing from or invalid for the iabel field of an EQU or SET
directive.

**xx* FRROR: 044 Invalid Macro Name
Indicates that the macro name is missing from the operand field of the MACRO directive,
or that the macro name is an invalid symbol. Occurs when a previously-defined symbol is

entered as a macro name, a macro name is missing from the MACRO directive operand
field, or an invalid delimiter is entered between the macro operation and macro name.

REV A MARCH 1979 F-5

Assembler Error Codes—8002A:8080A/8085A Users

xxx ERROR: 045 Invalid Relocation Option
Indicates an attempt to specify an invalid relocation operation (other than PAGE, INPAGE,
or ABSOLUTE) when declaring a section. When this error occurs, the Assembler ignores
the invalid option, and handles the specified section as if it were byte relocatable.

***** ERROR: 046 MACRO Within a Macro

Indicates that a macro definition statement was encountered within a macro expansion or
a macro definition block.

***x* FRROR: 047 Invalid Except in Macro

Indicates that an EXITM, ENDM, REPEAT, or ENDR directive appeared outside a macro
definition block.

***** ERROR: 048 Invalid Operand
Indicates that the specified operand is either incomplete or inaccurate for the context
required by the operation. If the required operand is an expression, this error indicates that
the first item in the operand field is not a variable, constant, a left parenthesis “(”, a minus
sign "—", or a logical NOT "\".

*¥**xx* ERROR: 049 Address Assigned to String
Indicates an attempt to assign an address value to a string variable symbol.

**xx* ERROR: 050 Section Definition Phase Error

Indicates that the specified section or relocation option differs between the Assembler’s
first and second pass.

**xx* FRROR: 051 Section Definition Phase Error

Indicates that the specified section was defined during the second, but not the first,
Assembler pass.

***** ERROR: 052 Too Many Sections or Globals

Indicates that the number of declared sections and global symbols exceeds 254. The
Assembler does not accept the current section or global declaration.

***** ERROR: 053 Invalid Relocation Operation

Indicates that the ABSOLUTE relocation option was specified in the RESERVE directive
operand field.

F-6 REV A MARCH 1979

Assembler Error Codes—8002A:8080A/8085A Users

L

¥***x* ERROR: 054 Negative RESERVE Length

Indicates that a negative-value byte length was specified as the RESERVE operand
expression.

***x* ERROR: 055 Invalid Section Name
Indicates that an invalid symbol was declared as a SECTION, COMMON, or RESERVE
name. Occurs when the symbol name is misspelled, contains invalid characters, is a
reserved word, or is a previously defined label.
***x* ERROR: 056 Invalid RESERVE Length
Indicates that the required RESERVE operand expression (specifying the number of bytes
reserved for the current object module) is either entered incorrectly, entered without a
comma before the expression, or absent from the RESERVE directive.
***xx* ERROR: 057 RESUME Section Undefined
Indicates that the resumed section is defined in a later statement in the assembly process.
*x*x** ERROR: 058 RESUME or RESERVE Section
indicates an attempt to resume a reserved section.

***x* ERROR: 059 Resumed Section Invalid

Indicates that the resumed section was declared after the 254th section or global symbol
was declared.

***** ERROR: 060 GLOBAL Operand Already Defined

Indicates that the global symbol was referenced before it was declared to be global. See
GLOBAL directive explanation in Section 4.

***** ERROR: 061 GLOBAL Declaration Phase Error

Indicates that a symbol was not declared global in both passes of the Assembler.
**xx* ERROR: 062 Too Many SECTIONS and GLOBALS

Indicates undefined globals, or more than 254 globals and sections defined.
***¥* ERROR: 063 Invalid Radix

Indicates an invalid radix character in the constant. The 8002A uProcessor Lab Assembler
recognizes only hexadecimal (H), octal (Q) or (O), and binary (B) radix codes.

REV A MARCH 1979 F-7

Assembler Error Codes— 8002A:8080A/8085A Users

X —

**xxxx ERROR: 064 Invalid Digit

Indicates an invalid digit in the indicated number base. For example, 10031B contains an
invalid digit. Radix B indicates this to be a binary number, making digit 3 invalid.

**xx* ERROR: 065 Unmatched String or Parameter Delimiter
Indicates an unmatched quotation mark delimiter or square bracket delimiter.
xxx ERROR: 066 Line too Long After Replacement

Indicates that an expanded line is too long. Only 128 characters are allowed.

*»*x%*x ERROR: 067 Extra Replacement ldentifier

Indicates extra information following the replacement indicator in a macro definition block.

**xxx ERROR: 068 Replacement Invalid Outside of Macro

Indicates improper use of replacement indicators #, @, and % outside of a macro definition
block.

**xx* ERROR: 069 Undefined Replacement String
Indicates that the string variable has not yet been defined as a string.

**»x*x ERROR: 070 Invalid Replacement Identifier
Indicates that the replacement specification used is invalid.

**x¥x ERROR: 071 Scalar Value Required
Indicates an address value where a scalar value was required.

**xx* ERROR: 072 Invalid Expression
Indicates that the specified expression is either incomplete or inaccurate for the context
required by the operation. Expressions are recognizable when the following values appear
in the first item position of the operand: a variable, a constant, a left parenthesis "(”, a
minus sign "—”, or a logical NOT character "\".

#=#*%* ERROR: 073 Section Size Phase Error

Indicates that the number of bytes generated for this séction during the first pass is
smaller than the number of bytes generated during the second pass.

F-8 REV A MARCH 1979

Assembler Error Codes— 8002A:8080A/8085A Users

***xx* ERROR: 074 Undefined Symbol
Indicates that a symboil in an expression has no value.
xxx ERROR: 075 String Truncated

Indicates that the number of characters assigned to the string is greater than the string
definition. See SET Strings, Section 2.

xx ERROR: 076 Negative SEG Operand
Indicates a negative number in the operand of the SEG function. See SEG, Section 2.
**xx*x ERROR: 077 SEG Starting Operand is Zero
Indicates a zero in the starting position of the SEG operand. See SEG, Section 2.
**xxx* ERROR: 078 insufficient Workspace
Indicates that a temporary data manipulation area has been exceeded. Could be caused by
conditional assembly or string functions that leave too little memory to perform the
required operations.
xxx ERROR: 079 Value too Large

Indicates that the space directive’s operand value exceeds 255 and has been truncated.

**xxx ERROR: 080 Invalid NAME Symbol

**x*x* ERROR: 081 lllegaily Substituted ENDM

Indicates that an ENDM directive was substituted within the body of a macro expansion
before the normal end of the macro is encountered.

¥**xxx ERROR: 082 Nested INCLUDE Directive

indicates that the file inserted into the program with the INCLUDE directive contains
another INCLUDE directive.

**xxx FRROR: 083 Missing ENDIF

Indicates that a conditional IF block with a missing ENDIF directive was included in the
program.

**xxx ERROR: 084 Missing ENDM for Included Macro

Indicates that a macro definition block with a missing ENDM directive was included in the
program.

REV A MARCH 1979 F-9

Assembler Error Codes—8002A:8080A/8085A Users

L e]

» ERROR: 085 String Value too Large

Indicates that string value to be used as a number exceeds two characters in length.
***** ERROR: 086 Shift Count Exceeds 16

Indicates an attempt to shift right or left more than 16 bits.
¥xxx* ERROR: 087 Too Many Symbols

Indicates a lack of room in the Assembler’s symbol table to contain all symbols used by the
program. The Assembler discontinues processing the program.

¥**x* ERROR: 088 Invalid Transfer Label

Indicates that the label is used for the transfer address on an END directive is an unbound
global, a scalar, or the result of a previous HI, LO, or ENDOF function.

*¥*** ERROR: 090 ENDOF Applied to a Bound GLOBAL

Indicates that an ENDOF function was used with a bound GLOBAL instead of a SECTION.
In the case of an unbound GLOBAL, the function will be resolved at link time.

¥**x* ERROR: 091 Unable to Assign INCLUDE File
Indicates that TEKDOS could not gain access to the file. This message will be accompanied
by a message on the console during each pass. An SRB status code will indicate the
reason that TEKDOS could not assign the file.

The following error messages apply only to the 8080A/8085A:

***** ERROR: 254 Register Expression is Not Scalar
Indicates that an address expression is used where a register expression is required.

¥*¥x* ERROR: 253 Invalid Register Pair

Indicates that the specified register either is greater than the number 6, represents an odd
value, or is an invalid register pair for the specified instruction.

¥¥*x* ERROR: 252 Register Expression Greater Than 7
Indicates that the value assigned to the specified register exceeds the number 7.

¥**** ERROR: 251 Missing or Invalid Operand

Indicates a missing operand or a syntax error in the current operand.

F-10 REV A MARCH 1979

Reserved Words—8002A:8080A/8085A Users

8080A/8085A microprocessor instruction names, register symbol names, and Tektronix
Assembler Directive names shouid not be used as symbolic labels. The following names are

reserved for these special uses:

8080A/8085A INSTRUCTIONS

ACI cMmC
ADC CMP
ADD CNC
ADI CNz
ANA cp

ANI CPE
CALL CP{

CcC CPO
M cz

CMA DAA

DAD
DCR
DCX
DI
El
HLT
IN
INR
INX
JC

JM
JMP
JNC
JNZ
JP
JPE
JPO
Jz
LDA
LDAX

8080A/8085A REGISTER SYMBOL

A B
H]

Appendix G

LHLD PUSH
LXi RAL
MOV RAR
MV RC
NOP RET
ORA RIM
ORI RLC
ouT RM
PCHL RNC
POP RNZ
E

sP

RESERVED WORDS

TEKTRONIX ASSEMBLER DIRECTIVES, OPTIONS and OPERATORS
ABSOLUTE END

ASCH ENDIF
BASE ENDM
BLOCK ENDOF
BYTE ENDR
CND EQU
COMMON EXITM
CON GLOBAL
DBG H!

DEF IF

ELSE INCLUDE

INPAGE PAGE
LIST REPEAT
LO RESERVE
MACRO RESUME
ME SCALAR
MEG SECTION
MOD SEG
NAME SET
NCHR SHL
NOLIST SHR
ORG SPACE

RP SPHL
RPE STA
RPC STAX
RRC STC
RST SuB
RZ Sul
SBB XCHG
SBI XRA
SHLD XRI
StM XTHL

STITLE

STRING

SYM

TITLE

TRM

WARNING

WORD

FUTURE TEKTRONIX ASSEMBLER DIRECTIVES (TENTATIVE)

XREF

REV C MARCH 1979

G-1

8002A:8080A/8085A Users

e R

Appendix H
OBJECT CODE OF INSTRUCTIONS

HEX OP BYTES 2-3 HEX OP BYTES 2-3 HEX OP BYTES 2-3
00 NOP 37 STC 6B MOV L,E
01 LXI B data-16 39 DAD SP 6C MOV L H
02 STAX B 3A LDA address 6D MOV L,L
03 INX B 3B DCX SP 6E MOV LM
04 INR B 3C INR A 6F MOV LA
05 DCR B 3D DCR A 70 MOV M,B
06 MViB data-8 3E MViI A data-8 71 MOV M,C
07 RLC 3F CMC 72 MOV M,D
09 DAD B 40 MOV B,B 73 MOV M,E
0A LDAX B 41 MOV B,C 74 MOV M, H
OB DCX B 42 MOV B,D 75 MOV M.L
oC INR C 43 MOV B,E 76 HLT

(¢]] DCRC 44 MOV B, H 77 MOV M,A
OE MVIC data-8 45 MOV B,L 78 MOV A,B
QF RRC 46 MOV B M 79 MOV AC
1 LX!D data-16 47 MOV B.A 7A MOV AD
12 STAX D 48 MOV C,B 7B MOV AE
13 INX D 49 MOV C,C 7C MOV A H
14 INRD aA MOV C,D 7D MOV AL
15 DCR D 4B MOV C.E 7E MOV A M
16 MVI D data-8 4C MOV C,H 7F MOV A A
17 RAL 4D MOV C,L 80 ADDB
19 DADD 4E MOV CM 81 ADDC
1A LDAX D 4F MOV CA 82 ADDD
1B DCX D 50 MOV D,B 83 ADDE
1C INR E 51 MOV D.C 84 ADDH
1D DCRE 52 MOV D,D 85 ADD L
1E MVI E data-8 53 MOV DE 86 ADDM
1F RAR 54 MOV D H 87 ADD A
20 RIM 55 MOV D,L 88 ADC B

21 LX1 H data-16 56 MOV DM 89 ADCC
22 SHLD address 57 MOV D A 8A ADCD
23 INX H 58 MOV E,B 8B ADCE
24 INR H 59 MOV E,C 8C ADCH
25 DCR H 5A MOV E,D 8D ADC L
26 MVI H data-8 5B MOV EE 8E ADC M
27 DAA 5C MOV E H 8F ADCA
29 DADH 5D MOV E,L 90 suB B
2A LHLD address 5E MOV EM 91 suBC

2B DCXH 5F MOV E,A 92 susD
2C INR L 60 MOV H,B 93 SUB E
2D DCR L 61 MOV H,C 94 SUBH
2E MVI L data-8 62 MOV H,D 95 suB L
2F CMA 63 MOV H.E 96 SUB M
30 SIM 64 MOV H,H 97 SUB A

31 LXI SP data-16 65 MOV H,L 98 SBB B

32 STA address 66 MOV H M 99 SBB C

33 INX SP 67 MOV H.A 9A SBB D

34 INR M 68 MOV L,B 9B SBB E

35 DCR M 69 MOV L,C ‘ ac SBB H

36 MVIM data-8 6A MOV L,D 9D SBB L

9E SBB M

@ MARCH 1979 H-1

Object Code of Instructions—8002A:8080A/8085A Users

TEEmeRRRRR___— e

HEX OP BYTES2-3 HEX OP BYTES 2-3

9E SBB M D2 JNC address

9F SBB A D3 ouT data-8

A0 ANA B D4 CNC address

A1l ANA C D5 PUSH D

A2 ANAD D6 SuUl data-8

A3 ANA E D7 RST 2

A4 ANA H D8 - RC

A5 ANA L DA JC address

Ab6 ANA M DB IN data-8

A7 ANA A DC cC address

A8 XRA B DE SB! data-8

A9 XRAC DF RST 3

AA XRA D EO RPO

AB XRAE E1 POPH

AC XRAH E2 JPO address

AD XRAL E3 XTHL

AE XRA M E4 coP address

AF XRA A ES PUSH H

BO ORA B E6 ANI data-8

B1 ORAC E7 RST 4

B2 ORAD E8 RPE

B3 ORAE EQ PCHL

B4 ORAH EA JPE address

B5 ORA L EB XCHG

B6 ORAM EC CPE address

B7 ORA A EE XRt data-8

B8 CMP B EF RST 5

B9 CMPC FO RP

BA CMP D F1 POP PSW

BB CMP E F2 JP address

BC CMP H F3 ot

BD CMP L F4 cp

BE CMP M F5 PUSH PSW

BF CMP A Fg OR! data-8

Cco RNZ F7 RST 6

C1 POPB F8 RM

Cc2 JNZ address F9 SPHL

C3 JMP address FA JM address

c4 CNZ address FB El

C5 PUSH B FC CM address

C6 ADI data-8 FE CPI data-8

Cc7 RSTO FF RST 7

c8 RZ

c9 RET address

CA Jz

cC cz address

CD CALL address

CE ACI data-8

CF RST 1 Mnemonic Hex Mnemonic Hex Mnemonic Hex

DO RNC

D1 POP D JNZ c2 CNZ c4 RNZ co
Jz CA cz cc RZ Cc8
JNC D2 CNC D4 RNC DO
Jc DA cC DC RC D8
JPO E2 CPO E4 RPO EO
JPE EA CPE EC RPE E8
JP F2 CP F4 RP FO
JM FA CM FC RM F8

H-2 @ MARCH 1979

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	10-01
	10-02
	10-03
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	13-01
	13-02
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	G-01
	G-02
	H-01
	H-02

