8500

MODULAR MDL SERIES

TRIGGER TRACE
ANALYZER

USERS MANUAL

Tektronix:

COMMITTED TO EXCELLENCE

This manual supports the following
TEKTRONIX product:

8550F03

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500

MODULAR MDL SERIES

TRIGGER TRACE
ANALYZER

USERS MANUAL

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077 Serial Number

070-3760-01 First Printing OCT 1981
Product Group 61 Revised JAN 1984

LIMITED RIGHTS LEGEND

Software License No.

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not.
without the written permission of the above Tektronix, be either {(a) used,
released or disciosed in whole or in part outside the Customer, (b) used in whoie
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (i)
reiease to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shail be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1981, 1983 Tektronix, Inc. All rights reserved. Contents of this pub-
lication may not be reproduced in any form without the written permission of
Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and jor pending patenis.

TEKTRONIX, TEK, SCOPE-MOBILE, and @ are registered trademarks of

Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

PREFACE

ABOUT THIS MANUAL

The Trigger Trace Analyzer (TTA) is an option for a TEKTRONIX microcomputer
development system. This manual provides information on the functions and
usage of the TTA.

The Trigger Trace Analyzer Users Manual is divided into five sections, as

follows:

Section 1 This Learning Guide contains general information about this
instrument as well as examples of basic operating techniques.

Section 2 This Command Dictionary provides information about the commands
that govern the operation of the TTA.

Section 3 This section (TTA Applications) contains examples that suggest
how the TTA is used in typical design applications.

Section U This section (Technical Notes) provides information on TTA
abilities, restrictions, and signal timing.

Section 5 This section (The Data Acquisition 1Interface) provides
information on the function and use of the Data Acquisition
Interface, an accessory to the TTA.

CHANGE INFORMATION

Change notices are issued by Tektronix, Inc., to document changes to the
manual after it has been published. Change information is located at the back
of this manual, following the yellow tab marked "CHANGE INFORMATION". When you
receive this manual, you should enter any change information into the body of
the manual, according to instructions on the change information page.

REVISION HISTORY

As this manual is revised and reprinted, revision history information is
included on the text and diagram pages. Existing pages of manuls that have
revised are indicated by REV and date (REV MAR 1983) at the bottom inside
corner of the page. New pages added to an existing section, whether they
contain old, new, or revised information, contain the word “ADD’ alongside the
revision date (ADD MAR 1983).

REV SEP 1983 i

Preface - TTA Users

DOCUMENTATION OVERVIEW

Support documentation for TEKTRONIX microcomputer development system consists
of two groups of manuals: users manuals and service manuals.

Y- PRI R Ry E

Service manuals provide the information necessary to perform system testing,
to isolate hardware problems, and to repair system components. Service manuals
are identified by their blue covers and may be purchased from Tektronix as

optional acecessories.

The Trigger Trace Analyzer Installation Manual, although technically a service
manual, is provided as a standard accessory to the TTA. This manual provides
information on how to install the TTA.

S\/WW\/\I\,\/Z
) CAUTION

The TTA may be factory-installed, if ordered with your
microcomputer development system, or obtained as a field

T
option. If your TTA has not been factory-installed; do not

try to install it yourself. Since Tektronix, Inc., is not
obligated to repair damage resulting from attempts by
unauthorized personnel to install this product, you should
have a Tektronix Field Service Specialist install your
TTA. Please call the nearest Tektronix Field Service
Office for installation.

User manuals describe how to operate a TEKTRONIX microcomputer development
system and its associated options. User manuals are identified by their grey
covers and are provided as a standard accessory to an instrument. The
following manuals provide information on the use of Tektronix development
systems:

° 8550 Microcomputer Development Lab System Users Manual

° 8540 Integration Unit System Users Manual

The Trigger Trace Analyzer Users manual is provided as a standard accessory to
the Trigger Trace Analyzer.

To derive the greatest benefit from this manual, you should be familiar with
your TEKTRONIX development system, as described in its system users manual.

ii REV MAR 1683

TTA Users

CONTENTS

Page

Safety Summary © 5 90 00 0000009060000 06000 0000006000800 000060600000000800000606000000 0 Vi

SECTION 1 LEARKING GUIDE

IntroduCtion ceccsecececesescscssssescassscasocsesasscsssscssasssssssscsssnes =1
Specifications, Installation, Configuration,
and Verificalion seeececcccceccescscsosocscccossosssscncsssssstssascsosassnose 1=
Overview of TTA Operation scececececescccessccsccscsosososscsscsssscassscsosse 1=
Trigger ChanNelsS ceeseccssoscsccsssesrsssssoscsosssscssssessesossssscscsscse 1=
Event Comparators esesececcccccscsscscescscsocssossossossssosssosssasssssss 1=
Programmable COUNters cccececesssescecccssccscsssosccccosaccssesscsanss 1=
Trigger SigNalsS ceeecceccecscccsosscscsssssccscsossossscsosscssccsssssssnsssse |=
Acquisition MemOry ececeecccececscscssosscccscsscssasocosssscsssssssssnsssse |-
TTA Status DiSPlay cececcccccccscsseccssscecscsssssosssacsassncssssssnsase 1=
Physical Parts Of the TTA .ceeeecececscososcsrsossccassssscscssssssssscsssnas 1=
Demonstration RUN seeeceescesceccessossossossosecscsssssscsssancscsssssscssss 1m
Getting Started ccceeeeccecectecccccccecoesccsccsscnsccascsscssssssnssne 1=
The Sample Program ccecececcccscesssoscccssssccsosssssnssosssscnssssscsasssnse 1=
Entering the Sample Program e.ceccesecscccscccssssoscscssscsssscssassssacse 1=
Using the TTA ccceceeccocccncosonossssesssssocssasssssssossssssssasscsssssse 1=
The Display Command eceeececcceescescscecsscsssossscsascsccssscssssssasossscse 1=
Defining a Simple EVENt ceeececcccscscccssscsssscccacscsssnsssscssssce 1=1
Setting a Breakpoint cceeesscccsessessesscessssssccssscssscascsssssss
Setting the Breakpoint OpPtion ceesecccesccsssseesvsescssvessccscsasssee 1=11
Eliminating Unwanted Parameters c.eeseececscccssesssssssssessnsscssese 1=11
Debugging a PrOZram ceeesscocscccscscesescscsoescacsssscscssscsssccnsssse 1=12
Introducing an Error cccscccscesccsccscscscssoccssssccessscososcosoase =12
Finding the Error c.cecececceccesesesssessssscsssessssssssossscsssssscsee 1=12
Summary of the TTA Demonstration RUN ceeceececcessscsssssssscecsssssssssss 1=15

XA UTUITVNIE FZFWWWMNOND -

o

-
—_
o

SECTION 2 COMMAND DICTIONARY

INtroduCtion seeeeesesecscesccscscsssssossosscasosossosssssssossssescsssssssans
Command SyNtaX ecececececcssccscososcssccssssococsssescssssacscsnsssccscssascss
Command ParametersS scesececcccescosssssscsssesaosnsscssssssssssssssnssssssssses
The TTA COMMANAS ceeeesescsnsssscscsssasossossassososscssssnssossosscssnsessasss

acq © 0 06 0000000000000 00000000000060060606000060000000606060°0006000060606006000000s0s060O0TSL

l\)l\)l'\)l\)l\)
ELWN 2

A0 ceesecscssrsnssessscssesssescsscsssssssssasesescssssssesssscsssesssecse O—
DrE cevesecoccescesossessescccssensessssnssssossossssssssssscssscsssssssscse 2=10
DUS ecoececcvcocossnasscosssssossencssessssssssssesssssssnssscssscsssecssscssse 2=—13
CONS eesassesecsssnsasssssasssssasssecssssesosssescssssssesssscsssessscecncss 2=16
COU sossssssoocasssssssssasssssssasscssssssssssnssssasssssssscscsssnecces 2=18
ClP teeeeevenseosvesnsosssessossssssnssscsssessssesrscsesssscssnsesssscase 2=2U
dAtA ceseecccecansesscrssscestssssssssssssoscsrsseresensecssrssscccccsse 2=20

diSp 9 0000008000 POLLLL0L LI E OO 0L L00EP 0L EI L0 EOL0POOLNINIEEPLOTOE 2—29

REV MAR 1983 iii

Contents - TTA Users

CONTENTS (CONT)

EVE seeeesvsecsscncscssoscsossssoscsossoscsssosscssscscscsononsesssssscscsscscsscsssossse 2—31
pPO ® 5850696865 Es ST ESTIITSTITLSSLeLS e nans ®s e se0ss0s0c0s 0000000 2—34
qua ® 0 0 0 0000000020000 00000 LLLLLLILLELEESTITPIEEESSTSESTFTESSEESSSSsese00e000a0na 2-36

tClP © © 000006000600 000008500600000000008000000000080609068000600s0600b0000c0OCGCITSIEEEES 2—38

tS © 0 0 0 6000000000090 0000000006000 00000006000000000000000000c000PIEPIIPIROIECEOEEOIETISLE 2-40

TS Comand Notes © 0 0000000000000 0000000000 C00E0000000080000ePs0IOIIBIREOISTTOEOS 2—)"'3

SECTION 3 TTA APPLICATIONS

1
OOV EFWMN N —

INtroduCtion seeecscccsrcenscsesoscssossssesesssasnsocssscssssssesssossoasnssnas
An Example PrototypPe etecececseseesensaccscssessscsosossccosssscsnssssnsonoacs
Breaking on an Illegal AJAIreSS cececcosccrscoscocsvsscsacsssssncssssosossoses
Performance AnalySiS ceeeccccccscscesescscscssnsscoccoacssaccscsosnssseasssssse
Asynchronous Data Transfer cceeeceessccessosesesasssscsossascsssasssnsosssos
Stack OVErflOW ceceseeseossccsossscssssescssssosossssocsessnssscesossnnssssssss
Code Timing Measurements with The TTA .ceceeseoscscscsccsssesccavsasnscssscsses
Trigger N Arms Trigger N+41 cccecceccscscccccssossssnscscssssosnsssssscacnscss
Pre, Post and Center Positioning of

Trigger in Acquisition MEmOPrY eeseeecesecscssossssccsnsccsnsossssssssnssssns

wwwws.l»www

0t
o)

SECTION 4 TECHNICAL NOTES

Introduction C..l..l.........‘.I....'...O.ll.’.‘...‘.."'...l.."".'..... u—1
Definition of SLV OPREQ(L) and TOP SLV OPREQ(L) SigNalS eveeecesesscanssss 43

SECTION 5 THE DATA ACQUISITION INTERFACE

INtroduCEion cuceececcecconsseacsoseensansesssssessessossssnssssnsssnssscssees B=1l
The Data Acquisition Interfacse vv.ivevernenevicscscscsscssonssssssnascaceannnaa B2l
Data Acquisition Interface Control Panel ..scesecccccccsesssssccsssnncss 5=2
The Data Acquisition Probe c.ceeeceessscscocsssoscescenansassssscssssssassss 5=3
Data Acquisition Interface Demonstration seveecesescessssesessssssssacesas 5=U
5-4

Getting Started ® 090009 9006085000000 0000200 E P e P sIO0EEIS SO0 EIILIEINSEEOIEOTOETD

iv REV MAR 1983

Contents -~ TTA Users

ILLUSTRATIONS

Fig.
No.
Page

Sample Syntax BloCK ceveecceccocssccssscscscsscscsscsosscssscssssscssss 2=1
TTA Timing SigZN318 ceeevecsveracceasasscsssssssssssssssssssssscssssss U=l
Control Panel of the Data Acquisition Interface ceeeeeessceccsceccesss 5=2
Test-Clip Positioning eececesececccecccsccscccssscsssscsscssscssssosscse HD=5

U'\\lﬂ-l‘—‘l\)
N =

TABLES

Page

2=1 Acquisition Source Parameters ccecceccsscscccsccccscssssscsscscsssscss 2=5
2-2 Counter Source ParamebersS cecececscscscscscsscscsssasssssassccssscsses 2=19
2-3 Counter Gate Parameters ccececscscssescaccscssssssassssssscssssssosscs 2=20
2-U Counter ResStriCtions ceeeescecsccccesssscsccccssssscsasccsscnnsssssss 2=21
2-5 Counter OQutput Parameters ceceeccccccescccescsecscsccssssscssnsccsanase 2=22

REV MAR 1983 v

TTA Users

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both
operating and servicing personnel. Specific warnings and cautions will be

L ppevs | L Vel s Ta k] i i
found throughout the manual where they apply, but may not appear in this
summary.

In This Manual

CAUTION statements identify conditions or practices that could result in
damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in
personal injury or loss of life.

As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one
reads the marking, or a hazard to property including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads
the marking.

SYMBOLS

As Marked on Equipment

k DANGER high voltage.
@ Protective ground (earth) terminal.

Zﬁ& ATTENTION - Refer to manual.

vi REV MAR 1983

Safety Summary - TTA Users

SAFETY PRECAUTIONS

Grounding the Product

This product is grounded through grounding conductors in the interconnecting
cables. To avoid electrical shock, plug the supporting system’s power cord
into a properly wired receptacle. A protective ground connection by way of the
grounding conductor in the power cord is essential for safe operation.

Use the Proper Power Cord

Use only the power cord and connector specified for your product. Use only a
power cord that is in good condition. Refer cord and connector changes to
qualified service personnel.

Use the Proper Fuse

To avoid fire hazard, use only the fuse specified in the parts list for your
product. Be sure the fuse is identical in type, voltage rating, and current
rating.

Refer fuse replacement to qualified service personnel.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an atmosphere of explosive
gases unless it has been specifically certified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not
qperate the product without the covers and panels properly installed.

REV MAR 1983 vii

Section 1

LEARNING GUIDE

INTRODUCTION
This Learning Guide provides an overview of the features and functions of the
Trigger Trace Analyzer (TTA). It also contains a Demonstration Run that you

can use to obtain hands-on experience. The Learning Guide is divided into the
following parts:

° Overview of TTA Operation

° Physical Parts of the TTA

e Demonstration Run

SPECIFICATIONS, TNSTALLATION, CONFIGURATION, AND VERIFICATION

For information on how to install your TTA hardware, and for product
specifications, refer to your Trigger Trace Analyzer Installation Service
Manual.

OVERVIEW OF TTA OPERATION

The Trigger Trace Analyzer (TTA) is a real-time debugging tool. When used in
conjunction with a TEKTRONIX 8500-series development system, the TTA will
monitor each bus transaction of a program as that program is executed. Before
you execute a program, you can program the TTA to perform several kinds of
operations on the bus transactions that it monitors. These operations include
the TTA’s ability to:

° recognize one bus transaction as an event.

° recognize consecutive bus transactions as an event.

° count the iterations of an event.

' measure the interval (in real time or clock cycles) between events.

REV MAR 1983 1-1

Learning Guide -~ TTA Users

° halt program execution when an event occurs.

° display information about a bus transaction that the TTA recognizes as an
event, without halting program execution.

bout up to 255 bus transactions that occur

TRIGGER CHANNELS

The TTA has four trigger channels. Each channel consists of an event
comparator and a programmable counter. Within the trigger channel, an event
signal (from an event comparator) and a counter signal {(from a programmable
counter) are ANDed together to create a trigger signal.

Event Comparators

Essentially, an event comparator functions as a word recognizer. An event is
some unique set of signal states that occurs during a single bus transaction.
Each of the TTA's four event comparators may be programmed to detect a
specific event.

The following signals are input to each event comparator and may be used to
define an event:

. 24 address bus signals

° 16 data bus signals

° 8 probe signals

° 4 counter ouﬁput signals

[] 1 event qualifier signal

° 11 emulator-dependent bus control signals

You can define any combination of these signals as an event. That is, an event
is actually the "sum" of six possible event definitions. For example, if an
address and a byte of data were both defined as an event for the same event
comparator, the TTA would only recognize a bus transaction that contained both
that address and that byte of data as an event.

i-2 REV MAR 1983

Learning Guide - TTA Users

Programmable Counters

Each trigger channel has a programmable counter. The outputs from these
counters act to qualify the event signal within a trigger channel, or work
independently of the event comparator to create a trigger signal for some
counter operation.

Trigger Signals

Trigger signals 1—3 (SN B030000 and up) or trigger signals 1-—4 (SN B029999
and below) are available via a BNC connector on the Data Acquisition
Interface. These external signals may be used to trigger some device external
to the development system, such as a logic analyzer. In addition, the trigger
signal is used internally to support the following functions:

o triggering a breakpoint
° clocking a programmable counter
° gating a programmable counter

Beginning with SN B030000 and up, an Acquisition Clock Output is available via
a BNC connector, marked ACQ CLK OUT on the Data Acquisition Interface. This
clock signal occurs when the TTA has acquired a sample of address, data, or
other information. The signal is intended for operation together with a
TEKTRONIX DAS 9100-Series System.

ACQUISITION MEMORY

Acquisition Memory captures and stores information about the bus transactions
of a program. This information may be recorded for selected bus transactions,
or (at default) for the last 255 bus transactions that occurred. For each bus
transaction, the recorded information consists of:

° an address

° data

° an opcode mnemonic

e the states of the eight Data Acquisition Probe signals

° symbols representing the type of I/0 operation that occurred

REV MAR 1983 1-3

Learning Guide - TTA Users

Refer to the acq and disp commands, within the Command Dictionary, for

information on accessing the TTA's Acquisition Memory.

TTA STATUS DISPLAY

o]
=

The TTA status display provides information about the current programming
the TTA. This display is called up with the ts command and will indicate:

] current event definitions for each trigger channel

L currently selected cons (consecutive) command parameters
[current counter programming for each trigger channel

° currently selected bre (breakpoint) command parameters

® currently selected acq (acquire) command parameters

When learning to use the TTA, you should use the ts command frequently, before
and after entering a command, to observe the effect of that command upon the
TTA status display and current TTA programming.

PHYSICAL PARTS OF THE TTA

The TTA option consists of the following subassemblies:

. two TTA circuit boards

° two TTA interconnect cables

) the data acquisition interface unit
° the data acquisition probe

The two TTA circuit boards plug into the Main Interconnect Board of a
TEKTRONIX 8500-series development system. These circuit boards contain all of
the circuitry associated with the functions and features of the TTA commands.

The TTA Interconnect Cables fit across the two top edge connectors on TTA
Circuit Board #1 and TTA Circuit Board #2. The TTA Interconnect Cables simply
make an electrical connection between these two circuit boards.

The Data Acquisition Interface is installed within the rear panel of your
development system. This subassenmbly provides an output for trigger signals

1-4 REV MAR 1983

Learning Guide - TTA Users

and allows you to interface the Data Acquisition Probe and external
instruments to the rest of TTA circuitry. Refer to Section 5 for a description
of the Data Acquisition Interface and its operation.

The Data Acquisition Probe allows you to monitor an external clock and eight
external data channels. The Data Acquisition Probe attaches to the Data
Acquisition Interface via a connector at the end of a 25-line cable. This
connector fits into a socket on the control panel of the Data Acquisition
Interface.

DEMONSTRATION RUN

This demonstration provides basic information you will need to begin using
your TTA. Since the TTA may be used with more than one TEKTRONIX 8500-series
development system, initial start-up procedures will vary. Thus, this
demonstration run will begin at a point that is common to all compatible
systems. However, it is assumed that your development’ system, the TTA, and
your system terminal have been unpacked, installed, and tested by qualified
personnel.

This Demonstration Run can be completed in approximately twenty minutes.

GETTING STARTED

Since the TTA is emulator-dependent, a sample program for the 8085A emulator
is used here as an example. If you are using an emulator other than the 80854,
refer to the Emulator Specifics section of your System Users Manual for a
sample program that is parallel to this one.

To complete this demonstration run, you will need a development system with
the following options installed:

° Trigger Trace Analyzer
° 80854 Emulator Processor

° 8085A emulator software

THE SAMPLE PROGRAM

The 8085A sample program begins at location 0100 in program memory. This
program sums five numbers (1, 2, 3, Y4, and 5) and places the result in the
80854 s accumulator. The last instruction of this program initiates an SVC and
returns control of the system to the user. Display 1-1 illustrates a program
listing for the 8085A sample program.

REV MAR 1983 1-5

Learning Guide - TTA Users

ADDRESS DATA MNEMONIC Explanation

0040 00

0041 42 Set up service call-

och2 A for exit.

0100 210005 LXI H,500 Set table pointer.

0103 0605 MVI B,5 Set pass counter.

0105 AF XRA A Clear accumulator.

0106 86 ADD M Add byte from table.

0107 23 INX H Point to next byte.

0108 05 DCR B Decrement pass counter.

0109 C20601 JNZ 0106 Loop if not fifth pass.

010C D3F7 OUT F7 If fifth pass then exit.

0500 01 First location in data table.

0501 02 Second location in data table.

0502 03 Third location in data table.

0503 o4 Fourth location in data table.

0504 05 ifth location in data table.
Display 1-1

Sample Program Listing

ENTERING THE SAMPLE PROGRAM
The following steps are used to enter the 8085A sample program into your
system’s program memory.
NOTE
Before you enter this sample program, you must first start

up your development system and system terminal, as
explained in your System Users Manual.

After the appropriate "boot-up" message for your system has appeared, and the
system has displayed a prompt sign (>), select the 8085 emulator, with the
following command:

> sel 8085 <CR>

1-6 REV MAR 1983

Learning Guide - TTA Users

Fill the program memory that you will be using with zeros, with the following
command :

> £ 0 600 00 <CR>

Patch the 8085A sample program’s SVC set-up information into program memory, with
the following command:

> p 040 00 42 14 <CR>

Dump the program memory that you just patched, with the following command:
> d 040 <CR>

Compare the display on your terminal with the one shown here, and verify that
program memory was patched correctly:

01 2 3 45 6 7 8 9 A BCDEF
000040 00 42 1A 00 00 00 00 00 OO 00 00 00 OO0 00 00 00 .Biessesosascnss

Patch the main body of the 8085A sample program into program memory, with the
following command:

> p 100 21 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 <CR>

Dump the program memory that you just patched, with the following command:
> d 100 <CR>

Compare the display on your terminal with the one shown here and verify that
program memory was patched correctly.

012 3 456 7 8 94 BCUDEF
000100 21 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00 !evevoeeooennnse

Patch the five bytes that the 8085A sample program will sum into program memory,
with the following command:

> p 500 01 02 03 O4 05 <CR>

Dump the program memory that you just patched, with the following command:
> d 500 <CR>

Compare the display on your terminal with the one shown here, and verify that
program memory was patched correctly:

01 2 3 45 6 7 8 9 A BT CUDEF
000500 01 02 03 O4 05 00 00 00 00 00 00 00 OO0 OO0 00 00 seevecconccvascs

At this point, you have entered the 8085A sample program into your system’s
program memory. To verify that this program was entered correctly, execute the
sample program, with the following command:

> g 100 <CR>

REV MAR 1983 1-7

Learning Guide - TTA Users

The following information is displayed on your system terminal:

LOC 1INST MNEM OPER SP F A B C D E H L 1IMSOD
010F 00 NOP 0000 54 OF 00 00 00 00 05 05 00 O
010F <BREAK >

The "A" in the top row of this display represents the accumulator for the
80854 Emulator. The "OF" below the "A" indicates that the content of the
accumulator is OF hexadecimal (15 decimal), the sum of the five numbers

(1+2+43+445). Essentially, this display indicates that the sample program
operated as intended.

USING THE TTA

The following examples illustrate how to use the TTA. These examples are
organized in a sequence that gradually introduces you to TTA operations. Each
example describes a TTA operation and tells you how to perform that operation
on the 8085A sample program. For information about any command used within the
examples, refer to the Command Dictionary, in Section 2 of this manual. For
examples of more complex TTA operations, or examples of typical design
applications for the TTA, refer to Section 3 of this manual.

The Display Command

The disp (display) command is used to call up the window of data that is
stored in the TTA’s Acquisition Memory. Each time a program is executed, some
information is stored in Acquisition Memory. To demonstrate this, enter:

> g 100 <CR>

The following information is displayed on your system terminal:

LOC INST MNEM OPER SP F A B C D E H L IMSOD

010F 0O NOP 000C 54 OF 00 00 00 00 0505 0C O

010F <BREAK >

T“ 3 dlspla’ indicates that the program was execubted. Now, display th

i ¥
information that was stored during the execution of this program, by entering

> disp <CR>

Display 1-2 shows how information is displayed on your terminal:

1-8 REV MAR 1983

Learning Guide - TTA Users

ADDR DATA MNEMONIC 7-PROBE-0 BUS
000100 21 LXT H 0000 0000 MRD F
000101 00 0000 0000 M RD
000102 05 0000 0000 M RD
000103 06 MVI B 0000 0000 MR F
000104 05 0000 0000 M RD
000105 AF XRA A 0000 0000 M RD F
000106 86 ADD M 0000 0000 M RD F
000500 01 0000 0000 M RD
000107 23 INX H 0000 0000 M RD F
000108 05 DCR B 0000 0000 M RD F
000109 cC2 JNZ 0000 0000 M RD F
00010A 06 0000 0000 M RD
00010B O1 0000 0000 M RD
000106 86 ADD M 0000 0000 M RD F
000501 02 0000 0000 M RD
000107 23 INX H 0000 0000 MRD F
000108 05 DCR B 0000 0000 M RD F
000109 cC2 INZ 0000 0000 M RD F
00010A 06 0000 0000 M RD
00010B 01 0000 0000 M RD
000106 86 ADD M 0000 0000 M RD F
000502 03 0000 0000 M RD
000107 23 INX H 0000 0000 MRD F
000108 05 DCR B 0000 0000 M RD F
000109 C2 JNZ 0000 0000 M RD F
00010A 06 0000 0000 M RD
00010B 01 0000 0000 M RD
000106 86 ADD M 0000 0000 MRD F
000503 04] 0000 0000 M RD
000107 23 INX H 0000 0000 M RD F

ADDR DATA MNEMONIC 7-PROBE-0 BUS
000108 05 DCR B 0000 0000 MRD F
000109 cC2 JINZ 0000 0000 M RD F
00010A 06 0000 0000 M RD
00010B 01 0000 0000 M RD
000106 86 ADD M 0000 0000 M RD F
000504 05 0000 0000 M RD
000107 23 INX H 0000 0000 M RD F
000108 05 DCR B 0000 0000 M RD F
000109 cC2 INZ 0000 0000 M RD F
000104 06 0000 0000 M RD
00010C D3 ouT 0000 0000 MRD F
00010D F7 0000 0000 M RD
O0OF7FT OF 0000 0000 I WT
00010F 0O NOP 0000 0000 M RD F

Display 1-2

REV MAR 1983 1-9

Learning Guide - TTA Users

Display 1-2 illustrates the information that is stored within the TTA s
Acquisition Memory. This information pertains to each recorded bus transaction
and includes:

° an address

] data

° an opcode mnemonic

] the states of the eight Data Acquisition Probe signals

symbols representing the type of I/0 operation that occurred

The ad command is used to define an address or a range of addresses as an
event. For our first example, let’s define any access of a single address as
an event. To do this, we select address 0106 and trigger channel 1. Enter the
following command line to define any access of location 0106 as event 1:

> ad 1 106 <CR>

Setting a Breakpoint

The bre command is used to set a breakpoint for a trigger channel. Now that
you have defined event 1, you can tell the TTA to halt program execution when
event 1 occurs, and return control to the system terminal. Enter:

> bre 1 <CR>

> g 100 <CR>

The following display appears on your terminal:

LOC INST MNEM OPER SP F A B C D E H L IM SOD
0106 86 ADD M 0000 00 Ot 05 00 00 00 05 00 O7T O
0106 <BREAK TRIG1>

This display indicates that a breakpoint occurred when location 0106 was
accessed and that this breakpoint was associated with trigger channel 1. Since
the trigger signal for trigger channel 1 is enabled by event 1, we know that
event 1 occurred.

110 REV MAR 1983

Learning Guide - TTA Users

Selecting the Breakpoint Option

The cont parameter, entered within a bre command line, selects the breakpoint
optlon. This option allows you to monitor a program without interrupting the
execution of that program. In the preceding example, you set a breakpoint for
event 1. When this event occurred, the sample program was interrupted. Now,
use the breakpoint option to display every occurrence of event 1, without
interrupting the program. Enter:

> bre 1 cont <CR>

> g 100 <CR>

The following display appears on your terminal:

LOC INST MNEM OPER SP F A B C D E H L IM SOD
0106 86 ADD M 0000 00 01 05 00 00 00 05 00O 07 O
0106 86 ADD M 0000 04 03 04 00 00 00 05 01 O7T O
0106 86 ADD M 0000 04 06 03 00 00 00 05 02 07 O
0106 86 ADD M 0000 04 06 02 00 00 00 05 03 O7 0
0106 86 ADD M 0000 O4 0B 01 00 00 00 05 O4 07 0
010F 00 NOP 0000 54 OB 00 00 00 00 05 05 07 O

010F <BREAX >

This display indicates that address 0106 was accessed five times during the
execution of the sample program. The last line of this display shows that a
system breakpoint occurred at location 010F (the SVC routine) and that the
sample program ran through to its conclusion.

Eliminating Unwanted Parameters

At this point, you’ve defined an event, set a breakpoint, and used the
breakpoint option. In the following examples, you will expand upon these
functions. First, however, you must eliminate the parameters that you have
already selected.

To eliminate the event you defined as address 0106, enter:

>ad 1 clr <CR>

To eliminate the breakpoint (or the breakpoint option in this case), enter:

> bre 1 eclr <CR>

REV MAR 1983 1-11

Learning Guide - TTA Users

DEBUGGING A PROGRAM

Thus far, we’ve looked at some independent TTA operations. Now, we’ll use
these same operations and others while debugging a program. However, since the
program now executes correctly, we must first introduce an error into the
sample program.

Introducing an Error

The sample program adds five numbers and stores the result in the emulator’s
accumulator. To introduce a deliberate error into this program, let’s change
one of the five numbers (04) to another number (00). Enter:

> ex 503 <CR>

When 00000503=04 is displayed, enter 00

When 00000504=05 is displayed, enter a carriage return.

The sample program now contains an error. You changed the value that was
stored at location 503 from O4 to 00. To demonstrate this, enter:

> g 100 <CR>
The following display appears on your terminal:
LOC INST MNEM OPER SP F A B C D E H L IM SOD

010F 00 NOP 0000 54 OB 00 00 00 00 05 05 O7 O
010F <BREAK >

Note that the accumulator now contains the hexadecimal value OB (11 decimal)
rather than OF (15 decimal).

Finding the Error

Let s make some assumptions: The sample program is a subroutine within a very
large program. You executed the program and detected an error. When you

mATrI Arra WA P

A +lan ™ TiatSnme o Anr
reviewed the program listing, the cause c¢f the errcr was neot apparent. You

v rav v rr Tiive

could use your system’s tra (trace) command and step through the entire
program, but this would be very time-consuming.

Recall that the program adds five numbers, and that these five numbers are
contained in separate memory locations. This means that the program must
execute the 8085A ADD M instruction five times. Therefore, the first step in
debugging this program might be to verify that each of these five ADD M
instructions were executed.

1-12 REV MAR 1983

Learning Guide - TTA Users

First, define the ADD M instruction as an event. (The 8085A°s ADD M
instruction is opcode 86.) Enter:

> data 1 86 <CR>

At this point, we could set a breakpoint for trigger channel 1. However, the
breakpoint would halt the program on the first occurrence of this event. Since
you want to monitor all occurrences of event 1 (the ADD M instruction), use
the breakpoint option. Enter:

> bre 1 cont <CR>

Now, execute the program. Enter:

> g 100 <CR>

The following display appears on your terminal:

LOC INST MNEM OPER SP F A B C D E H L IM SO0D
0106 86 ADD M 0000 00 01 05 00 00 00 05 00 07 O
0106 86 ADD M 0000 O4 03 O4 00 00 00 05 01 07 O
0106 86 ADD M 0000 04 06 03 00 00 00 05 02 07 O
0106 86 ADD M 0000 04 06 02 00 00 00 05 03 07 O
0106 86 ADD M 0000 O4 OB 01 00 00 00 05 04 07 O
010F 00 NOP 0000 54 OB 00 00 00 00 05 05 07 O

010F <BREAK >

This display indicates that the program did execute the ADD M instruction five
times. However, note that the contents of the accumulator (register A) did not
change following the fourth ADD operation. This suggests that the number
stored at the fourth memory location, and accessed by the fourth ADD M
instruction, is not correct.

Now, let’s assume that the error was not entered deliberately. You suspect
that one of the data locations contains an error, but how do you determine
which one? One method available with the TTA is to selectively acquire the

data accessed from each of the five memory locations. First, eliminate the
parameters that were previously set:

> data 1 clr <CR>
> bre 1 clr <CR>

These command lines clear the event and breakpoint option that you used to
monitor the five ADD M instructions.

Now, we’ll select events and cause a window of data associated with these
events to be stored in the TTA’s Acquisition Memory.

First, define event 3 as the ADD M instruction. Enter:

> data 3 86 <CR>

REV MAR 1983 1-13

Learning Guide - TTA Users

Next, define event 4 as any memory-read operation:

> bus 4 m rd <CR>

> cons cyc 34 <CR>

Finally, enter the acq evl command. With this command, only bus transactions
recognized as event 4, as you have just defined it, will be recorded in
Acquisition Memory. Enter:

> acq evl4 <CR>

At this point, you have programmed the TTA to store information about a bus
transaction (defined as event 4) only if it follows the occurrence of event 3
(an ADD M instruction).

.

To obtain the result o

L]

the operation, enter:

> g 100 <CR>

The following display appears on your terminal:

LOC INST MNEM OPER Sp F A B C D EH L IM SO0D
010F 00 NOP 0000 54 OB 00 00 00 00 05 05 07 0
010F <BREAK >

The sample program has been executed and the TTA has stored information within
Acquisition Memory. To view this window of data, enter:

> disp <CR>

The following display appears on your terminal:

ADDR DATA MNEMONIC 7—PROBE—0 BUS
000106 86 ADD M 0000 0000 M RD F
000500 01 0000 0000 M RD
000106 86 ADD M 0000 0000 M RD F
000501 02 0000 0000 M RD
000106 86 ADD M 0000 0000 M RD F
000502 03 0000 0000 M RD
000106 86 ADD M 0000 00000 MRD F
000503 00 0000 0000 M RD
000106 86 ADD M 0000 0000 M RDF
000504 05 0000 0000 M RD

This display shows the contents of each of the five memory locations that the
8085A ADD instruction operated upon. Note the error at location 0503. If you
were debugging this program, you could now use your system’s e (exam) or P
(patch) command to correct the error.

1-14 REV MAR 1983

Learning Guide - TTA Users

SUMMARY OF THE TTA DEMONSTRATION RUN
In this demonstration, you loaded the sample program, monitored it with the

TTA, and used the TTA to detect an error. Now, review the TTA commands that
you used to perform these operations:

° disp —- displays the contents of Acquisition Memory

] ad —- defines an address as an event

° bre —- sets a breakpoint

) data —- defines a byte of data as an event

° bus —- defines the states of bus control signals as an event

o cons —- links the occurrence of events

] acq —- selects the information to be placed in Acquisition Memory

REV MAR 1983 1-15

Section 2

COMMAND DICTIONARY

INTRODUCTION

This Command Dictionary describes each of the TTA commands. The section is
divided into the following parts:

° Command Syntax. Describes the notation used within the syntax blocks of
this dictionary.

° Command Parameters. Describes the notation used within the explanation of
a command ‘s parameters.

e The TTA Commands. Describes each TTA command individually. The commands
are described in alphabetical order.

COMMAND SYNTAX

The description of each command includes a syntax block. The syntax block
illustrates one or more command 1line formats. Each command 1line format
contains the command name and indicates those parameters that can or must be
included in the command line. Figure 2-1 is an example of a syntax block.

sample

sample all clr

Fig. 2-1 Sample Syntax Block

REV MAR 1983 2-1

Command Dictionary - TTA Users

In Fig. 2-1, three command line formats are shown. Any of the three formats

may be used with this command.
In the first command line format, the command name (sample) is used without

parameters.

In the second command line format, the "all cir" parameter must be included.
In the third command line format, the command name and a parameter from within
each of two braces (a number and a value) must be included to call up some
function. In addition, the optional parameters "-s" or "-c" may be used, with
or without the optional parameter "-n".

COMMAND PARAMETERS

Parameters specify or modify the way in which a command is used. The function
of each parameter is described for every command within this command
dictionary. The following rules apply to parameters within the Syntax blocks.

° Parameters and special characters that appear in boldface must be entered
exactly as they appear within a syntax block.

° Parameters not in ©boldface indicate a variable parameter. The
replacements for these variables are listed in the parameter description
that follows each command explanation.

e A single parameter that is required appears in the syntax block without
braces or brackets.

° If there is a choice of required parameters, each parameter appears in
the syntax block stacked within the braces {}.

) Optional parameters appear in the syntax block within brackets []. If
there is a choice of optional parameters, they will be stacked within the
brackets.

° If more than one of the parameters stacked within braces or brackets can

be used within a command line, these braces or brackets will be followed
by an ellipsis [...].

. Command modifiers are indicated by a single letter preceded by a hyphen
(-). These parameters are optional and will appear in brackets.

° Where permitted, the short form of a command or parameter is underlined.

2-2 REV MAR 1983

Command Dictionary - TTA Users

THE TTA COMMANDS

There are 14 TTA commands. In this section, the commands are listed in
alphabetical order. Each command 1listing contains a syntax block, an
explanation of the command, an explanation of the parameters that can be used
with the command, and examples of command usage. The TTA commands are:

° acq - determines what is stored in Acquisition Memory
] ad - defines address parameters for events

° bre - controls the breakpoint for each trigger

° bus - defines bus signal parameters for events

) cons - defines consecutive events

[] cou - programs the TTA’s four counters

] ctr - defines the counter outputs for events

° data - defines data parameters for events

° disp - displays acquisition memory

° eve - defines all parameters for an event

) pro - defines the probe parameters for events

) qua - defines external event qualifiers for events
° telr - returns the TTA parameters to default status
° ts - displays current TTA programming status

REV MAR 1983 2-3

Command Dictionary - TTA Users acq

acq

gvll {gor expression source
acq jall{ ggpr expression source thertrigng
— -

EXPLANATION

The acqg (acquire) command determines which bus transactions are to be stored
in the TTA’s Acquisition Memery. This command selects some number of
transactions to be stored or the kind of transaction to be stored. If no
parameters are selected, the most recent 255 bus transactions of a program
will be stored in Acquisition Memory.

PARAMETERS

acq When you enter the acq command without parameters, the
currently selected acg parameters are displayed on the
system terminal.

all Specifies that all bus transactions will be stored in the

’ . » . Y P
TTA s Acquisition Memory as they occur.

evl Specifies that only those bus transactions defined as event
b will be stored in Acquisition Memory.

for expression Causes Acquisition Memory to stop storing bus transactions
source at some point other than the end of a program.

The expression must evaluate to some number from 1 to 65535
(decimal). The numeric value for this expression is assumed
to be decimal, unless another format is specified. Refer to
your system’s user manual for information on other formats
for representing numeric values.

The source portion of this parameter identifies a specific
kind of bus transaction. Table 2-1 lists valid options for
the acq command s source parameters. Note that these
source parameters are also used with the cou command.

aftertrigi Disables the counting of the source until trigger 4 occurs.

If this option is specified, the expression is limited to
some number from 2 to 65535 (decimal).

2-4 REV MAR 1083

acqg Command Dictionary - TTA Users

Table 2-1
Acquisition Source Parameters

Parameters | Signal Source for Acquisition Counter
s=200nsec | 200 nsec clock

s=2usec | 2 usec clock

s=20usec | 20 usec clock

s=200usec 200 usec clock

s=2msec 2 msec clock

s=zevl The event signal for channel 1 ANDed with cyec
s=zev2 The event signal for channel 2 ANDed with cye
s=ev3 The event signal for channel 3 ANDed with cye
szevl The event signal for channel 2 ANDed with cye
s=trig’ The trigger signal for channel 1

|
|
|
|
|
I
|
s=trig?2 | The trigger signal for channel 2
|
|
|
|
|
|

s=trig3 The trigger signal for channel 3
s=trigh The trigger signal for channel 4
s=acq The INCR PTR signal (¥*a)

s=eye The SLV OPREQ signal (¥b)
szemueclk The emulator’s clock signal
s=qua The event qualifier signal (¥*e)

(*a) The INCR PTR signal occurs each time the TTA stores a bus transaction.
(*b) The SLV OPREQ signal occurs on each emulator cycle.

(%*c) The event qualifier signal comes from the Data Acquisition Probe.

EXAMPLES

Store up to 255 bus transactions that precede the end of the program or a
breakpoint, with the following command line:

> acq all <CR>

Store only those bus transactions that satisfy the definition of event 4, with
the following command line:

> acq evl <CR>
Store only the first 10 bus transactions, with the following command line:

> acq all for 10 cyc <CR>

Store only the first 10 bus transactions that satisfy the definition of event
4, with the following command line:

> acq evl for 10 acq <CR>

REV MAR 1983 2-5

Command Dictionary - TTA Users acq

Store all bus transact;ons until the occurrence of the 10th cycle after the

" mwA TiwmAaa

AAAITIMW .
116 MULIILIJGLI\J LLllT e

enc
voLwulL L Tlliv

a
[¢]

> acq all for 10 eyec aftertrigh <CR>

2-6 REV MAR 1983

ad Command Dictionary - TTA Users

SYNTAX
ad all eclr
n
3
=
ad |-s | [1]) {elr}
3
3
[-cJ 2(faddress address
ad [-n] |- 1) |address
EXPLANATION

The ad (address) command defines an address or a range of addresses as an
event or part of an event.

PARAMETERS

1 Specifies that the command line applies only to event 1.

2 Specifies that the command line applies only to event 2.

3 Specifies that the command line applies only to event 3.

j Specifies that the command line applies only to event 4.

all Specifies that the command line applies equally to all four events.
clr Clears the current address definition for the indicated event(s).
-3 Sets a breakpoint for the trigger channel associated with the

indicated event. This breakpoint interrupts the program when the
trigger channel’s output signal is enabled, prints a trace line, and
returns control to the operating system. The -s parameter may be
placed anywhere within a command line and takes precedence over any
-8, =c¢, stop, or cont parameter previously set for the indicated
trigger channel.

REV MAR 1983 2-7

Command Dictionary - TTA Users ad

-c Selects the breakpoint "continue" option. This option sets a
breakpoint for the trigger channel associated with the indicated
event, interrupts the program when that trigger channel’s output
signals is enabled, and prints a trace line. However, unlike the
stop™ option, the "continue®™ option returns control to the program
rather than toc the operating system. The -c parameter may be placed
anywhere within a command line and takes precedence over any =s, =C,
stop, or cont parameter previously set for the indicated trigger
channel.

-n Defines the event as any address other than the address specified by
the address parameter(s).

address Specifies the address value (or range of values) to be detected. An
address may be defined as a symbolic expression or an absolute
address. An absolute address is assumed to be hexadecimal; however,
any numeric format may be used if the rules appropriate for your
system are observed. An "x" may be substituted for any digit within
a legal numeric expression for a "don’'t care" situation. Note that
the number of address lines, and legal addresses, are
emulator-dependent.

EXAMPLES

Define event 1 as the absolute address 0500H, with the following command line:

> ad 1 500 <CR>

Define event 3 as a binary absolute address, with the following command line:

> ad 3 1010101010101111Y <CR>

Define event 2 as a range of addresses between 0500H and 0505H, with the
following command line:

> ad 2 500 505 <CR>
Define event 2 as any address not within a range of addresses between 0500H
and 0505H, with the following command line:

> ad =n 2 500 505 <CR>

2-8 REV MAR 1983

ad ' Command Dictionary - TTA Users

Define event 3 as a hexadecimal address with "don’t care" digits, with the
following command line:

> ad 3 O0X5XX <CR>
Define event 3 as a binary address with "don’t care" digits, with the
following command line:

> ad 3 OXXXIXX1X1XXXX1XXY <CR>

Clear the address parameters previously defined as event 4, with the following
command line:

> ad U4 clr <CR>

Clear the address parameters previously defined for all four events, with the
following command line:

> ad all clr <CR>

NOTE

Many processors have two-digit I/0 ports that are seen as
addresses by the emulator. The upper eight address lines
“float’ and may not always be 00. It is recommended that
when using I/0 perts, the unused address bits be padded
with don’t-cares. For example, I/0 port 73 would be
defined as an address event by entering OXX73 as the
address parameter. If you omit the don’t-cares with I/0
ports, the TTA software will assume leading 0’s.

REV MAR 1983 2-9

Command Dictionary - TTA Users bre

———— - " = - T - S S T " S W it — S W " " T P W S o v S O

SYNTAX
bre
/N
4
s |
2
1
bre | all
L} -c
3 -s
2 cont
1 Etop
brejall eclr jl...]
EXPLANATION

The bre (breakpoint) command controls the effects of an event’s trigger
signal. For each trigger, this command can set a breakpoint, clear a
breakpoint, enable the continue function, or disable the continue function.
The breakpoint, if enabled, causes a program to halt execution when an event
and its associated trigger signal occurs. The continue function, if enabled,
causes 2 trace line to be displayved on the system terminal when an event and
trigger signal occurs, and allows program execution to continue.

PARAMETERS
bre When you enter the bre command without parameters, the currently
selected bre parameters are displayed on the system terminal.
1 Specifies that the command line applies only to trigger channel 1.
2 Specifies that the command line applies only to trigger channel 2.

Specifies that the command line applies only to trigger channel 3.

)

y Specifies that the command line applies only to trigger channel 4.
all Specifies that the command line applies equally to all four trigger
channels.

2-10 REV MAR 1983

bre Command Dictionary - TTA Users

clr Clears the current breakpoint or continue option previously
selected for the indicated trigger channel(s).

stop (or -s) Sets a breakpoint for the indicated trigger channel. This
breakpoint interrupts the program when the trigger channel’s
output signal 1is enabled, prints a trace line, and returns
control to the operating system. The stop parameter takes
precedence over any -s, -¢, stop, or cont parameter previously
set for the indicated trigger channel.

cont (or -c) Selects the breakpoint "continue" option. This option sets a
breakpoint for the indicated trigger channel, interrupts the
program when that trigger channel’s output signals is enabled,
and prints a trace line. However, unlike the "stop" option, the
"econtinue" option returns control to the program rather than to
the operating system. The -c parameter takes precedence over
any -s, =-c, stop, or cont parameter previously set for the
indicated trigger channel.

ces Indicates that parameters in the preceding set of braces or
brackets may be repeated in the command line.

EXAMPLES
Set a breakpoint for trigger channel 1, with the following command line:
> bre 1 stop <CR>
(or)

> bre 1 <CR>

Clear the breakpoint for trigger channel 1, with the following command line:

> bre 1 clr <CR>

Enable the continue function for trigger channel 2, with the following command
line:

> bre 2 cont <CR>

Clear the breakpoints for all four trigger channels, with the following
command line:

> bre all clr <CR>

REV MAR 1983 2-11

Command Dictionary - TTA Users bre

Set breakpoints for trigger channels 1, 2, and 3, with the following command

1ines
Lines

> bre 1 stop 2 stop 3 stop <CR>

Set a breakpoint for trigger channel 2 and clear the breakpoints for trigger
channels 1 and 3, with the following command lines

> bre 1 clr 2 stop 3 clr <CR>

2-12 REV MAR 1983

bus Command Dictionary - TTA Users

SYNTAX
bus all eclr
)1
3
-3|)2 eclr
bus |-¢ | {1 symbol) [...]
EXPLANATION

The bus command is used to define an event or part of an event as the
assertion of one or more bus/control signals. Within the bus command line,
each bus/control signal is represented by an emulator-dependent symbol. Since
these symbol parameters are ANDed, an event occurs only when all of the
selected signals are asserted. Refer to the Emulator Specifics section of your
system users manual for a list of the symbols appropriate for your emulator.

PARAMETERS
1 Specifies that the command line applies only to event 1.
2 Specifies that the command line applies only to event 2.
3 Specifies that the command line applies only to event 3.
4 Specifies that the command line applies only to event 4.
all Specifies that the command line applies equally to all four events.
elr Clears the current bus definition for the indicated event(s).
-5 Sets a breakpoint for the trigger channel associated with the

indicated event. This breakpoint interrupts the program when the
trigger channel’s output signal is enabled, prints a trace line, and
returns control to the operating system. The -s parameter may be
placed anywhere within a command line and takes precedence over any
-s, =-c, stop, or cont parameter previously set for the indicated
trigger channel.

REV MAR 1983 2-13

Command Dictionary - TTA Users bus

[o P, ISRy Tapy P e oo Voo o 2 L [| JPRpRpURy Sat S U 1 —— b mu. = _ PRpUy EaS S Py T -

-C JCLEeC LD LIIe vrreakpolLiie TCULIvLIIuUEe ™ OpPULLUll. 1IlLS opuLrioill SELDS [=§
breakpoint for the trigger channel associated with the indicated
event, interrupts the program when that trigger channel’s output
siny\n'l a ta Aarmahl A av\d Nt mba o Fana A T3ma Uaeratran mmlilra +he
Hlialo Lo TliavlT\uUy alll ML LllUO a viavo LL1iT e 1LIUWT VTl ULLL L AT vilc
"stop" option, the "continue" option returns control to the program
rather than to the operating system. The -c parameter may be placed
anywhere within a command line and takes precedence over any -s, -¢c,
stop, or cont parameter previously set for the indicated trigger

channel.

symbol A symbol that represents one of the emulator-dependent bus/control
signals. Refer to the Emulator Specifics section of your system
users manual for a list of those symbols that apply to your
emulator.

e This parameter indicates that more than one symbol may be entered

within one command line; selecting more than one bus/control signal
as an event.

NOTE

The symbols used in the following examples represent the
bus/control signals of the 8085A emulator. These symbols

& 2 | T r 'S bl 2 b
do not necessarily represent the bus/control signals for

TLToo LT ivi U4

other emulators.

EXAMPLES
Define event 1 as a fetch cyele, with the following command line:

> bus 1 f <CR>

Define event 2 as a non-fetch cycle, with the following command line:

> bus 2 nf <CR>

Define event 3 as a memory write cycle, with the following command line:

> bus 3 m wt <CR>

2-14 REV MAR 1982

bus Command Dictionary - TTA Users

Clear the bus command parameters for event 4, with the following command line:
> bus 4 clr <CR>
Clear the bus command parameters for all events, with the following command

lines:

> bus all clr <CR>

REV MAR 1983 2-15

Command Dictionary - TTA Users cons

cons

cons clr
(emu
fet

cons | cyc

{sequence} [...]

EXPLANATION

The cons (consecutive) command defines a sequence of consecutive events. Once
a sequence is defined, only the last event in that sequence can enable its

respective

trigger signal. The events that precede the last event in a

sequence act to qualify that last event. Note that all of the events within a
sequence must occur on consecutive cycles of the specified type.

cons

eye

fet

emu

sequence

PARAMETERS

When you enter the cons command without parameters, the currently
selected cons parameters are displayed on the system terminal.

Specifies that the linked events may occur on any consecutive bus
cycle.

Specifies that the linked events must occur on consecutive fetch
cycles. Note that this parameter is emulator-dependent. Refer to
the Emulator Specifics section of your System Users Manual to
determine if this function is available for your emulator. When
fet is specified, the last event in the series must include b=f.

Specifies that ¢the 1linked events must occur on consecutive
emulator cycles. Note that this parameter is emulator-dependent.
Refer to the Emulator Specifics section of your System Users
Manual to determine if this function is available [or your
emulator.

This parameter selects the events that form a sequence and the
order of those events within that sequence. There are 12 possible
event sequences, as follows:

12 123 1234
23 234 2341
34 341 3412
41 412 4123

REV MAR 1883

cons Command Dictionary - TTA Users

clr Clears the currently selected cons parameters.

cee This parameter indicates that more than one sequence may be
entered within the same command line.

EXAMPLES

Make the occurrence of event 2, on any cycle, depend upon the occurrence of
event 1, with the following command line:

> cons cyc 12 <CR>

Make the occurrence of event 3, on a fetch cycle, depend upon the occurrence
of event 2 (on the preceding fetch cycle), with the following command line:

> cons fet 23 <CR>

Make the occurrence of event 2 dependent upon the occurrence of event 1, and
make the occurrence of event 4 dependent upon the occurrence of event 3, with
the following command line:

> cons cyc 12 34 <CR>

Display the current parameters for the cons command, with the following
command line:

> cons <CR>

Clear the previously defined cons command parameters to a default condition,
with the following command line:

> cons clr <CR>

NOTE

In order to use the cons command, the emulator must run at
full speed. That is, the system’s TRACE function and the
TTA’s -c option must both be disabled. In addition, the
TTA stop or -s functions can be set only for the 1last
event in a linked sequence. Note also that the TTA counter
functions will only affect the last event in a 1linked
sequence.

REV MAR 1983 2-17

Command Dictionary - TTA Users cou

cou

SYNTAX
all elr
clr
N r:re§uart
L] g=gate
31{\ o=output
2(] s=source
1)\ v=value [eee]
EXPLANATION

The cou (count) command defines a counter operation. This command selects a
value to be counted, a source that is counted, a gate signal that will enable
or disable the counting process, and the kind of signal that will be output
when the counting operation is completed.

all

clr

-S

-C

=211

PARAMETERS

Specifies that the command line applies only to counter 1.
Specifies that the command line applies only to counter 2.
Specifies that the command line applies only to counter 3.
Specifies that the command line applies only to counter 4.
Specifies that the command line applies equally to all four counters.
Clears the current cou command programming for the indicated counter.

Sets a breakpoint for the trigger channel associated with the
indicated event. This breakpoint interrupts the program when the
trigger channel’s output signal is enabled, prints a trace line, and
returns control to the operating system. The -s parameter may be
placed anywhere within a command line and takes precedence over any
-s, =¢, stop, or cont parameter previously set for the indicated
trigger channel.

Selects the breakpoint "continue" option. This option sets a
breakpoint for the trigger channel associated with the indicated
event, interrupts the program when that trigger channel’s output
signal is enabled, and prints a trace line. However, unlike the "stop"
option, the "continue" option returns control to the program rather
than to the operating system. The -c parameter may be placed anywhere
within a command line and takes precedence over any -s, -¢, stop, or
cont parameter previously set for the indicated trigger channel.

REV MAR 1983

Command Dictionary -~ TTA Users

cou

value This parameter selects the value to be counted. The format is v=n.
Unless specified otherwise, n is assumed to be decimal. Any valid
numeric format may be used if the rules for your development system
are followed. The allowable value is affected by the output parameter
specified, and the gate option. See Table 2-5 for output parameter
details.

source This parameter selects the signal that the counter is to count. The

options for this parameter are listed in Table 2-2.
Table 2-2
Counter Source Parameters
Parameters | Signal Source for Counter N
s=200nsec | The counter’s 200 nsec clock
s=2usec | The counter’s 2 usec clock
s=20usec | The counter’s 20 usec clock
s=200usec | The counter’s 200 usec clock
s=2msec | The counter’s 2 msec clock
s=zev1 | The event signal for channel i
s=zev2 | The event signal for channel 2
s=zev3 | The event signal for channel 3
szevl | The event signal for channel 2
s=trigi | The trigger signal for channel 1
s=trig?2 | The trigger signal for channel 2
s=trig3 | The trigger signal for channel 3
s=trigh | The trigger signal for channel 4
s=acq | The INCR PTR signal (¥a)
s=cye | The SLV OPREQ signal (*b)
s=zemuclk | The emulator’s clock signal (¥c)
s=qua] The event qualifier signal (*d)

(*a) The INCR PTR signal occurs each time the TTA stores a bus transaction.

(*b) The SLV OPREQ signal occurs on each emulator cycle.

(¥c) The emulator’s clock signal may be divided down in frequency before being
presented to the TTA counters. Check the Emulator Specific manual for
your emulator for details.

(*d) The event qualifier signal comes from the Data Acquisition Probe.

REV MAR 1983 2-19

Command Dictionary - TTA Users

NOTE
Only one of the three counter source signals (cyc, emuclk,
and qua) may be selected at one time. However, each of the

four counters may operate upon the selected signal.

gate This parameter places a restriction on the indicated counter
specifies those conditions during which the counter can count.
options are listed within Table 2-3.

NOTE

The gate parameter is not allowed on Counter 1.

Table 2-3
Counter Gate Parameters
Parameters| Explanation
“geoff | Removes any other counter gate restrictions
“gectr | Counter N will count only when TCN-1 is high (%a)
‘getrigh | Counter N will count only when trigger N-1 remains high
“getrigl | Counter N will count only when brigger N-1 remains low
“geseah | Counter N will start counting when trigger N-1 pulses high
‘g=seal | Counter N will start counting when trigger N-1 pulses low
“geself | Counter N will count only when trigger N remains high

cou

and
The

(*3a) TCN is an internal signal that precedes the output signal circuitry for a
given counter. Initially low, this signal pulses high when the counter has

reached 0, then goes low again on the next counter source signal.

2-20 REV MAR 1983

cou

restart

1-65535|not selected

1 I
2-65535]
1 !
2 |
3 |
4_65535]

output

Command Dictionary - TTA Users

Selects the restart function. The restart function causes a counter
to be reloaded with its initial "value" when the "gate" source is
asserted. The options are R=on, to enable the function, and R=off,
to disable the function. Note that a "gate" parameter must be
selected if the restart function is used.

NOTE

The accuracy of the counters within the AM9513 is limited
for certain counter operations. When a counter is
incrementing, with restart on and a gate signal selected,
the actual count will be 1 less than the number of source
signals that occur. When a counter is decrementing, the
initial value and the selection of a gate signal and the
restart function will affect the accuracy of the counter,
as shown in Table 2-1.

Table 2-4
Counting Restrictions

off source signal times value (accurate)
selected off the second source signal
selected off source signal times value (accurate)

| |
I I
I I
selected | on | the fourth source signal
| |
I I
I I

selected on the fourth source signal
selected on the fourth source signal
selected on source signal times value plus 1

This parameter controls the output of the counter and also when
the associated event is armed. The valid options are 1listed
within Table 2-5. The output selected will affect the low value
listed under Value Parameter in Table 2-5.

REV MAR 1983 2-21

Command Dictionary - TTA Users

D s > o A O P > D " T A €X T AR D € > T = G - = o - - -

cou

—— " — - - - o " S o=

i T T I T T T -

The event of the selected trigger
channel is armed. The counter
operates independently.

The event of the selected trigger
channel is disarmed. The counter
operates independently.

The event of the selected trigger
channel is armed only when the
counting is complete for the
interval between two successive
clock sources.

V=1—65535

The event of the selected trigger
channel is disabled during
counting, but is enabled after
the counting is complete.

The event of the selected trigger
channel is initially armed while
counting, but is disarmed after
the counting is complete.

- — — — - — - — - — Y "R T " T " S e S W G . T T T — ———— —— " = W~ o — — o - — s T o

This parameter indicates that more than one of the parameters within
the preceding braces {} may be entered on the same command line.

EXAMPLES

Program counter 2 to be asserted after the fourth occurrence of event 1, with
the following command line:

> cou 2 v=4 s=zevl o=delay <CR>

Program counter 3 to be asserted after the twenty-second program cycle, with
the following command line:

> cou 3 v=22 s=cyc o=delay <CR>

Force the output of counter 4 high, with the following command line:

2-22

REV MAR 1983

cou Command Dictionary - TTA Users

Clear the counter parameters for event 3, with the following command line:

> cou 3 clr <CR>

Clear the counter parameters for all four events, with the following command
line:

> cou all elr <CR>

NOTE
Three gate parameters, if selected, will affect the
accuracy of certain counter operations. These gate
parameters and the affected counter operations are as
follows:

seql -~ This gate parameter causes counter n to begin
counting when the trigger signal for counter n-1 pulses
low. Since all four trigger signals are sent low when an
emulator is halted, counter n will begin counting
prematurely if the emulator is halted and restarted prior
to the occurrence of the selected event. To avoid this
problem, do not interrupt the execution of your program
when this gate parameter is selected.

trigl - This gate parameter causes counter n to count only
while the trigger signal for counter n-1 remains low.
Since all four counter signals are low when an emulator is
started, counter n will begin counting prematurely if a
counter time-base is selected as the source and any of the
pulses of this time-base occur.

trigh - This gate parameter causes counter n to count only
while the trigger signal for n-1 remains high. Since the
time-bases for the counters are asynchronous with
reference to bus transactions, a counter operation that
involves both a high frequency time-base and frequent
fluctuations of the trigh gate signal may have a different
result each time the program is run. To avoid this
problem, limit your use of the higher frequency time-bases
to counting operations that involve a small number of
transitions.

REV MAR 1983 2-23

Command Dictionary - TTA Users ctr

EXPLANATION

The ctr (counter) command defines an event or part of an event as a specific
pattern of signal states for the four counter output signals. This pattern may
be defined as an event for all or any one of the four event channels.

all

clr

=C

2-24

PARAMETERS

Specifies that the command line applies only to event 1.

Specifies that the command line applies only to event 2.

Specifies that the command line applies only to event 3.

Specifies that the command line applies only to event 4.

Specifies that the command line applies equally to all four events.
Clears the current ctr definition for the indicated event(s).

Sets a breakpoint for the trigger channel associated with the
indicated event. This breakpoint interrupts the program when the
trigger channel’s output signal is enabled, prints a trace line, and
returns control to the operating system. The -s parameter may be
placed anywhere within a command line and takes precedence over any
-s, -¢, stop, or cont parameter previously set for the indicated
trigger channcl.

Selects the breakpoint "continue™ option. This option sets a
breakpoint for the trigger channel associated with the indicated
event, interrupts the program when that trigger channel’s output
signals is enabled, and prints a trace line. However, unlike the
"stop" option, the "continue" option returns control to the program
rather than to the operating system. The -c parameter may be placed
anywhere within a command line and takes precedence over any -s, -C,
stop, or cont parameter previously set for the indicated trigger
channel.

ctr Command Dictionary - TTA Users

pattern Selects some combination of the states of the four counter outputs
to be defined as an event. The outputs of counters 1 through 4 are
represented as four digits, where each digit is a 1 (high), 0 (low),
or X (don’t care).

EXAMPLES

Define event 1 as a counter pattern in which counters 1 and 2 output a high
state and counters 3 and U4 output low states, with the following command line:

> ctr 1 1100 <CR>

Define event 2 as a counter pattern in which counters 1 and 2 output a low
state and counters 3 and 4 output high states, with the following command
line:

> ctr 2 0011 <CR>
Define event 3 as a counter pattern in which counters 1 and 2 output a low
state and counters 3 and 4 output high states and set a breakpoint for this

event, with the following command line:

> etr -s 3 0011 <CR>

Define event 2 as a counter pattern in which counter 1 outputs a low state,
counter 3 outputs a high state, and counters 2 and Y4 are don’t cares, with the
following command line:

> ctr 2 OX1X <CR>

Clear the ctr parameters that previously defined event 3, with the following
command line:

> etr 3 clr <CR>

Clear the ctr parameters for all four events, with the following command line:

> ctr all clr <CR>

NOTE
For an application of the ctr command, see Code Timing

Measurements With The TTA in Section 3, TTA Applications,
of this manual.

REV MAR 1983 2-25

Command Dictionary - TTA Users data

data all elr
(1)
)3(
f-s132¢
data | -c | (1) {elr}
~ (a
3
2(Jdata
data [-n] [:2] 1 {data data}

oy oy S D S S T T S . A S O 5 S S e e i i i e S e S o e e e s G G S - S S S T T - - T - - - -

EXPLANATION

The data command defines an event or part of an event as a specific data value or
a range of data values.

PARAMETERS
1 Specifies that the command line applies only to event 1.
2 Specifies that the command line applies only to event 2.
3 Specifies that the command line applies only to event 3.
y Specifies that the command line applies only to event 4,
all Specifies that the command line applies equally to all four events.
elr Clears the current data definition for the indicated event(s).
-3 Sets a breakpoint for the trigger channel associated with the indicated

event. This breakpoint interrupts the program when the trigger
channel ‘s output signal is enabled, prints a trace line, and returns
control to the operating system. The -s parameter may be placed
anywhere within a command line and takes precedence over any -s, -c,
stop, or cont parameter previously set for the indicated trigger
channel.

2-26 REV MAR 1983

data Command Dictionary - TTA Users

-C Selects the breakpoint "continue® option. This option sets a breakpoint
for the trigger channel associated with the indicated event, interrupts
the program when that trigger channel’s output signals is enabled, and
prints a trace line. However, unlike the "stop" option, the "continue"
option returns control to the program rather than to the operating
system. The -c parameter may be placed anywhere within a command line
and takes precedence over any -s, -¢, stop, or cont parameter
previously set for the indicated trigger channel.

-n Defines the event as any data other than the values specified within
the command line.

data Specifies the data value that is to be detected. Although any numeric
expression that is wvalid for your system may be used, an absolute
hexadecimal value is assumed unless noted otherwise. An "x" may be
substituted for any digit within a legal numeric expression for a
"don ‘t-care" situation. Note that the number of data lines, and legal
values, may vary between emulators.

EXAMPLES
Define event 1 as the data value 05, with the following command line:
> data 1 05 <CR>
Define event 2 as any data value within a range of data between 01 and FF, with
the following command line:

> data 2 01 OFF <CR>

Define event 2 as any data value not within a range of data between 01 and FF,
with the following command line:

> data -n 2 01 OFF <CR>

Define event 3 as a data value with "don’t care"™ digits, with the following
command line:

> data 3 OXF <CR>
Clear the data parameters previously defined as event 4, with the following
command line:

> data 4 clr <CR>

REV MAR 1983 2-27

Command Dictionary - TTA Users data

Clear the data parameters previously defined for all four events, with the
following command line:

> data all elr <CR>

2-28 REV MAR 1983

disp Command Dictionary - TTA Users

) SYNTAX
-3
all
disp | value
EXPLANATION

The disp (display) command displays the contents of the TTA’s acquisition memory
on the system terminal. You may display all bus transactions that have been
stored, or display only some number of bus transactions that you want to see.
Each start/stop of the emulator is indicated by a dotted line between bus
transactions in a display.

PARAMETERS

disp When you enter the disp command without parameters, those bus
transactions that have been stored since the last start/stop of the
emulator are displayed on the system terminal.

value Selects some number of those bus transactions stored in acquisition
memory to be displayed. Note that the transactions are counted
backward rather than forward. That is, if 10 is the selected value,
the last ten transactions would be displayed, rather than the first
ten transactions. Unless specified otherwise, the value is assumed
to be a decimal number between 1 and 255.

~-a Displays the last 255 (decimal) bus transactions that have been
stored within the TTA s acquisition memory.

EXAMPLES

Display the entire contents of acquisition memory, with the following command
line:

> disp all <CR>

Display the last 12 bus transactions stored within acquisition memory, with the
following command line:

> disp 12 <CR>

REV SEP 1983 2-29

Command Dictionary - TTA Users disp

Display only those bus transactions that occurred during the last start/stop of
the emulator, with the following command line:

> disp <CR>

Display 2-1 shows the information that is displayed on your terminal when you
enter the disp command:

- . S - - " . e " A - - s S s Gt Tt e G e B P T S . o - - S R S - S S e . T S S M e — o

ADDR DATA MNEMONIC T-PROBE-0 BUS
000100 21 LXI H 0000 0000 M RD F
000101 00 0000 0000 M RD
000102 05 0000 0000 M RD
000103 06 MVI B 0000 DOOO0O M RD F
000104 05 0000 0000 M RD
000105 AF XRA A 0000 0000 M RD F
000106 86 ADD M 0000 0000 M RD F
000501 02 0000 0000 M RD
00010F 00 NOP 0000 0000 M RD F

Display 2-1

Display 2-1 illustrates the information that is displayed when you enter the disp
command. This information pertains to each recorded bus transaction and includes:

ADDR The processor address that was on the bus during a bus cycle. May
contain symbolic references if debug in in use.

DATA The data that was on the bus during a bus cycle.

MNEMONIC If the bus cycle in question is an instruction fetch, and all
transactions were acquired, disassembly of the DATA is attempted.

PROBE Indicates the states of the eight Data Acquisition Probe lines.

BUS Indicates what type of bus cycle occurred: instruction fetch,

memory read, memory write, I/0 read, I/0 write, ect. Refer to the
Emulator Specifics section of your System Users Manual for details.

2-30 REV MAR 1983

eve

Command Dictionary - TTA Users

clr

- W e

[clr

q=X

e=pattern

p=value

b=symbol [...]
dn=data [data]
d=data [datal
an=address [address]
‘azaddress [address]

EXPLANATION

The eve command defines each part of an event with a single command line. That
is, the eve command can be used in place of the six commands that define each
part of an event. The commands replaced by the eve command are the:

. ad command

] data command
® bus command
o pro command
[] ctr command
° qua command

REV MAR 1983

2-31

Command Dictionary - TTA Users eve

all
clr

-3

-c

q=state

cz=pattern

p=value

b=symbol

2-32

PARAMETERS

Specifies that the command line applies only to event 1.
Specifies that the command line applies only to event 2.
Specifies that the command line applies only to event 3.
Specifies that the command line applies only to event U.
Specifies that the command line applies equally to all four events.
Clears the current definition for the indicated event(s).

Sets a breakpoint for the trigger channel associated with the indicated
event. This breakpoint interrupts the program when the trigger

channel’s output signal is enabled, prints a trace iine, and returns
control to the operating system. The -s parameter may be placed
anywhere within a command line and takes precedence over any -s, =C,
stop, or cont parameter previously set for the indicated trigger
channel.

Selects the breakpoint "continue" option. This option sets a breakpoint
for the trigger channel associated with the indicated event, interrupts
the program when that trigger channel’s output signals is enabled, and
prints a trace line. However, unlike the "stop" option, the "continue"
option returns control to the program rather than to the operating
system. The -c parameter may be placed anywhere within a command line
and takes precedence over any -s, =-¢, stop, or cont parameter
previously set for the indicated trigger channel.

Can be used in place of the qua command. The state
parameter for the eve command may be any state parameter
valid for the qua command.

Can be used in place of the ctr command. The pattern
parameter for the eve command may be any pattern parameter
valid for the ctr command.

Can be wused in place of the pro command. The value
parameter for the eve command may be any value parameter
valid for the pro command.

Can be used in place of the bus command. The symbol
parameter for the eve command may be any symbol parameter
valid for the ctr command. Any number of symbols may be
used, if they are followed by a space.

REV MAR 1083

eve Command Dictionary - TTA Users

dn=data [datal Can be used in place of the data command with its -n
modifier. The data parameters for the eve command may be
any data parameters valid for the data command.

d=data [data] Can be used in place of the data command without its -n
modifier. The data parameters for the eve command may be
any data parameters valid for the data command.

anzaddress [address] Can be used in place of the ad command with its -n
modifier. The address parameters for the eve command may be
any address parameters valid for the address command.

azaddress [address] Can be used in place of the ad command without its -n

modifier. The address parameters for the eve command may be
any address parameters valid for the address command.

EXAMPLES

Define event 1 as a bus transaction during which the data FF is written to memory
location FFFF, while the data AA is on the Data Acquisition Probe and is
qualified by a high on the event qualifier input.

> eve 1 clr a=0FFFF d=0FF b=m wt gq=1 p=0AA <CR>

Define event 2 as a bus transaction during which I/0 address 5050 is written to
and the four counter outputs are low, low, high, and high respectively.

> eve 2 a=5050 b=i wt ¢=0011 <CR>

Clear the current event definitions for event 1.

> eve 1 clr <CR>

Clear the current event definitions for all four events.

> eve all elr <CR>

REV MAR 1983 2-33

Command Dictionary - TTA Users pro

2 elr
1 value

EXPLANATION

The pro (probe) command defines an event or part of an event as a value that

represents

all
clr

=S

-C

2-34

the states of the eight probe signals from the Data Acquisition Probe.

PARAMETERS

Specifies that the command line applies only to event 1.

Specifies that the command line applies only to event 2.

Specifies that the command line applies only to event 3.

Specifies that the command line applies only to event 4.

Specifies that the command line applies equally to all four events.
Clears the current probe definition for the indicated event(s).

Sets a breakpoint for the trigger channel associated with the indicated
event. This breakpoint interrupts the program when the trigger
channel ‘s output signal is enabled, prints a trace line, and returns
control to the operating system. The -3 parameter may be placed
anywhere within a command line and takes precedence over any -s, -¢,
stop, or cont parameter previously set for the indicated trigger
channel.

Selects the breakpoint "continue" option. This option sets a breakpoint
for the trigger channel associated with the indicated event, interrupts
the program when that trigger channel’s output signals is enabled, and
prints a trace line. However, unlike the "stop" option, the "continue"
option returns control to the program rather than to the operating
system. The -c¢ parameter may be placed anywhere within a command line
and takes precedence over any -s, -c¢, stop, or cont parameter
previously set for the indicated trigger channel.

REV MAR 1983

pro Command Dictionary - TTA Users

value Indicates the value that is to be detected on the Data Acquisition
Probe. Unless specified otherwise, this value is assumed to be binary,
represented by eight digits (1s, 0s or Xs). The value may be any valid
expression that evaluates to a binary number between 00000000 and
11111111. Don’t-care bits (x) are allowed.

EXAMPLES

Define event 1 as probe value 05 (hexadecimal), with any of the following command
lines:

> pro 1 O05H <CR>
or
> pro 1 5T <CR>
or

> pro 1 000000101 <CR>

Define event 2 as a probe value with "don’t care" bits, with the following
command line:

> pro 2 0X111XX11 <CR>

Clear the probe parameters previously defined as event 4, with the following
command line:

> pro 4 elr <CR>

Clear the probe parameters previously defined for all four events, with the
following command line:

> pro all elr <CR>

REV MAR 1983 2-35

Command Dictionary - TTA Users qua

SYNTAX
/ 0\
)]
' 3 .
2 {clr }
l1 state
EXPLANATION

The qua (qualify) command defines an event or part of an event as the state of
the Event Qualifier input from the Data Acquisition Probe. The state, a high or a
low, may be defined as an event for all or any one of the four event channels.

all

clr

2-36

PARAMETERS

Specifies that the command line applies only to event 1.
Specifies that the command line applies only to event 2.
Specifies that the command line applies only to event 3.
Specifies that the command line applies only to event U.
Specifies that the command line applies equally to all four events.

Clears the current event qualifier definition for the indicated
event(s).

Sets a breakpoint for the trigger channel associated with the indicated
event. This breakpoint interrupts the program when the trigger
channel’s output signal is enabled, prints a trace line, and returns
control to the operating system. The -s parameter may be placed
anywhere within a command line and takes precedence over any =-s, =C,
stop, or cont parameter previously set for the indicated trigger
channel.

REV MAR 1983

qua ' Command Dictionary - TTA Users

-C Selects the breakpoint "continue™ option. This option sets a breakpoint
for the trigger channel associated with the indicated event, interrupts
the program when that trigger channel’s output signals is enabled, and
prints a trace line. However, unlike the "stop"™ option, the "continue"
option returns control to the program rather than to the operating
system. The -c parameter may be placed anywhere within a command line
and takes precedence over any =-s, =-¢, stop, or cont parameter
previously set for the indicated trigger channel.

state Indicates the state of the event qualifier signal that is to qualify
the selected event: 1 (high) or 0 (low).

EXAMPLES

Define event 2 as a high state on the event qualifier input, with the following
command line:

> qua 2 1 <CR>

Define event 3 as a low state on the event qualifier input, with the following
command line:

> qua 3 0 <CR>

Clear the event qualifier parameters that previously defined event 3, with the
following command line:

> qua 3 eclr <CR>

Clear the event qualifier parameters for all four events, with the following
command line:

> qua all clr <CR>

REV MAR 1983 2-37

Command Dictionary - TTA Users telr

SYNTAX
telr -x
1
2
<3
(u
teir \a11/ [...]
EXPLANATION

The telr (TTA clear) command clears the parameters previously set for the trigger
channels (1-4). In addition, this command can be used to clear parameters for
acquisition control (acqa command parameters) and for the consecutive event
function (cons command parameters).

PARAMETERS

-X Specifies that the teclr command will clear the parameters previously
set for acquisition control, consecutive event functions, and for each
of the four trigger channels.

1 Specifies that the tclr command clears only the parameters previously
set for trigger channel 1.

2 Specifies that the teclr command clears only the parameters previously
set for trigger channel 2.

3 Specifies that the teclr command clears only the parameters previously
set for trigger channel 3.

y Specifies that the tclr command clears only the parameters previously
set for trigger channel Y.

all Specifies that the teclr command clears the parameters previously set
for each of the four trigger channels.

EXAMPLES

Clear the parameters previously set for trigger channel 1, with the following
command line:

> telr 1 <CR>

2-38 REV MAR 1983

telr Command Dictionary - TTA Users

Clear the parameters previously set for trigger channels 2 and 3, with the
following command line:

> telr 2 3 <KCR>

Clear the parameters previously set for all four trigger channels, with the
following command line:

> telr all <CR>

Clear the parameters previously set for acquisition control, consecutive event
functions, and all four trigger channels, with the following command line:

> telr -x <CR>

REV MAR 1983 2-39

Command Dictionary - TTA Users ts

=]
ts |-e |

)

g
3
2
1

ts [-e] [-c]i [...]

EXPLANATION
The ts (TTA status) command causes the current status of the TTA to be displayed
on the system terminal.

PARAMETERS

ts When used without parameters, the ts command causes the complete
status of the TTA to be displayed on the system terminal.

1 Specifies that only the parameters for trigger 1 will be displayed.
2 Specifies that only the parameters for trigger 2 will be displayed.
3 Specifies that only the parameters for trigger 3 will be displayed.
4 Specifies that only the parameters for trigger 4 will be displayed.
-C Specifies that only the counter parameters of the selected

trigger(s) will be displayed.

-e Specifies that only the event parameters of the selected trigger(s)
will be displayed.

EXAMPLES

When the emulator is first selected, view the status of the TTA’s default
parameters, with the following command line:

> ts <CR>

2-40 REV MAR 1983

ts Command Dictionary - TTA Users

Display the status of the TTA parameters for trigger 4, with the following
command line:

> ts 4 <CR>

Display the event parameters for trigger U4, with the following command line:

> ts -e U4 <CR>

Display the counter parameters for trigger 3, with the following command line:

> ts -c 3 <CR>

Display the event parameters for trigger channels 2 and 3, with the following
command lines:

Display 2-1 illustrates the TTA status display as it would appear after the
following commands were entered:

> telr -x

> eve 1 a=1000 2000 b=rd <CR>

> eve 3 an=3000 4000 b=f -s <CR>

ADD MAR 1983 2-41

Command Dictionary - TTA Users

TRIGGER 1 TRIGGER 2 TRIGGER 3 TRIGGER &

EVENT

Lower Address 1000 —_— 3000 —
Upper Address 2000 R — KOO0 N —
Lower Data —~—— —— —— _——
Upper Data -_— _— —_— _—
Bus RD J— F —
Probe (7-0) - — —_— —
Qualifier (X) --- —_— — _——
Ctr (1234) -— _— _— _—
Consec CLR

COUNTER
Current Output 1 1 1 1
Output Mode — —-— —— —
Initial Value =-- —_— — ——
Current Value —-- —— S - _—
Source —_— N — —
Gate — -— - -——
Restart —— — - _—

Breakpoint — — STOP —_—

Acquire All
Display 2-1

Display 2-1 contains:

° current event definitions for each trigger channel (EVENT)

) currently selected cons command parameters (Consec)

e current counter programming for each trigger channel (COUNTER)
° currently selected bre command parameters (Breakpoint)

) currently selected acqg command parameters (Acquire)

2-42

ts

ADD MAR 1983

ts Command Dictionary - TTA Users

TS COMMAND NOTES

Upper address and data fields will be followed by one of the following letters:

R Indicates an address/data range or single address/data range or single
address/data value. For example:

Lower Address 1000
Upper Address 1000 R
N Indicates an address/data exclusion (ad 1 -n 1000 2000). For example:
Lower Address 1000
Upper Address 2000 N
M Indicates the presence of don’t care bits in the address/data field. M

stands for Mask, a number in which a “1° value indicates a care bit, and a
*0° value indicates a don’t care position. The lower address/data value
represents the value of each care bit. For example, 123X would be displayed
as:

Lower Address 1230
Upper Address FFFO M
NOTE

Don‘t care data and address fields will be automatically
expanded to show the X bits if a single trigger only is
displayed (i.e.: ts 1 will do the don’t care interpretation,
if any).

Symbolic substitution is performed on address fields only if
single triggers are displayed.

ADD MAR 1983 2-43

Seetion 3

TTA APPLICATIONS

INTRODUCTION

The Learning Guide (Section 1) provides an overview of how the TTA is used.
The Command Dictionary (Section 2) describes each of the TTA commands in
detail. This section contains some examples of how the TTA commands can be
combined to solve typical design problems.

Essentially, this section is intended to provide you with a Dbasic
understanding of TTA applications, so that you can determine how best to
combine the TTA commands to solve your own specific design problems.

The following examples are included in this section:

) Breaking on an Illegal Address

° Performance Analysis

° Asynchronous Data Transfer

[Stack Overflow

° Code Timing Measurements with The TTA

[Trigger N Arms Trigger N+1

° Pre-, Post-, And Center-Positioning of Trigger in Acquisition Memory

REV MAR 1983 3-1

TTA Applications - TTA Users

AN EXAMPLE PROTOTYPE

In the following examples, we 'll be referring to an example prototype. The
intent here is to provide you with a series of hypothetical situations that
you might find while debugging your own hardware or software.

In these examples;

fAallatrine AaamnaAanantae

-\ A e \STY J.l.xa vvuxyvxa\;&a Vo e

° A single microprocessor
°® A single clock

° 2K of ROM, located at 0000-—QTFF

® 2K of RAM, located at 0800—OEFF

° A parallel to serial I/0 device, located at address F001
° A read-only I/0 port, located at F002

° A write-only I/0 port, located at F003

® A read or write I/0 port, located at FOO4

BREAKTNG ON AN ILLEGAL ADDRESS

Accessing an illegal address is a common software and hardware debugging
problem. During software development, most programs are long enocugh to provide
many opportunities to accidentally incorporate an illegal address. During
hardware development, many kinds of devices, if defective or not yet correctly
configured, can introduce an illegal address into your program. In either
case, if your system’s microprocessor tries to access an illegal address,

o s
several kinds of pregram faults could occur.

With the TTA, the solution to this problem is the same for both hardware and
software. In our example prototype, legal addresses would be 0000—O07FF (ROM),
0800—O0EFF (RAM), and the four I/0 ports (F001, FO002, FO003, FOO4). The
following TTA commands would detect an illegal address:

> ad -n -s 1 0000 OFO004 <Cmr>

> ad -s 2 OF00 OF000 <CR>

> g (starting address) <CR>

During program execution, these commands would cause a breakpoint, if any

illegal address was accessed. The breakpoint associated with trigger 1 would
oceur when an address greater than F00! was accessed. The breakpoint

3-2 REV MAR 1983

TTA Applications - TTA Users

associated with trigger 2 would occur, when an address between OF00 and FOO0O
(inclusive) was accessed.

PERFORMANCE ANALYSIS

The execution time of a program is often the most critical part of software
development. Although your program may function as it was intended to
function, it may still need to be reworked to meet certain timing
requirements.

Performance Analysis is a method of determining which parts of your program
are time-intensive. With performance analysis, you can find and begin to
optimize the code that will be executed most often.

In our example prototype, a program resides in ROM at locations 0000—7FFF.
With the TTA, we could do a real-time performance analysis of a program that
was designed for this example prototype. Let’s assume that the following
conditions exist:

° Our sample programs takes too much time to perform some function.
° There is a major subroutine, at locations 0100—200.
. There is a second major subroutine, at locations 0300—0600.

Since the subroutine beginning at 0300 has more code than the subroutine
beginning at 0100, we could simply try to optimize this longer block first.
Without performance analysis, this might be the best approach. However, if the
subroutine at 0100 is executed much more often than the subroutine at 0300,
the shorter subroutine could be the most logical place to start optimizing our
code. The following TTA commands would tell us which subroutine is executed
more often:

> ad 1 0100 <CR>

> cou 2 clr s=zevil <CR>

> ad 3 0300 <CR>

> cou 4 clr s=ev3 <CR>

> g (starting address) <CR>

> ts <KCR>

During program execution, counter 2 counts the number of times that the
subroutine beginning at 0100 (event 1) is accessed and counter U4 counts the
number of times that the subroutine beginning at 0300 (event 3) is accessed.

REV MAR 1983 3-3

TTA Applications - TTA Users

The ts command calls up the TTA status display. The results of both counting

. . .
cns would be in this display.

ASYNCHROROUS DATA TRANSFER

A microprocessor-based system cannot operate upon asynchronocus data, unless
that data is first processed by some kind of input routine. In addition, the

input routine must complete the processing of asynchronous data within a
specific time interval. That is, if the input routine does not complete the
processing of one byte and acquire a second byte on time, a third byte might
be "written over" that second byte.

With the TTA, the execution time of an input routine can be measured against
the interval between incoming bytes of asynchronous data. To demonstrate this,

we wWill use our example prototype. However, we must first make the following
assumptions:

° F002 is the control port of an I/0 device.

° A peripheral will send a 256-byte block of data to the I/O device.

) The asynchronous data from the peripheral will come at 90-usec intervals.
[The prototype’s program polls control port F002.

° If data A5 is read at F002, asynchronous data is available and the input
routine is called.

° The input routine, when finished, returns control to the polling program.

We would use the following TTA commands to measure the interval between each
call for the input routine:

> eve 1 a=0F002 d=0A5 <CR>

> cou -s 2 v=45 s=2usec o=delay g=segh r=on <CR>

> g (start of Program) <CR>

During program execution, trigger 1 occurs each time that data A5 is read at
F002, but a breakpoint is not initiated. Counter 2 is given a value of 45 (the
number it will count) and a source of 2-usec (the signal it will count). When
trigger 1 occurs, counter 2 will begin to count 2-usec intervals from 45 down
to 0. If trigger 1 (g=segh) occurs before counter 2 reaches 0, the restart
function agains loads 45 into the counter and starts the count over. If

trigger 1 does not occur, and the counter reaches 0, a breakpoint is
initiated. When a breakpoint occurs, control of the program returns to the

3-14 REV MAR 1983

TTA Applications - TTA Users

system. At this point, you can enter the disp command to view the information
that preceded the breakpoint (in this case, the input routine).

STACK OVERFLOW

Some microprocessor-based systems require that a certain number of memory
locations be reserved for temporary data storage. This "stack" area in memory
is usually accessed sequentially, via an incremented or decremented address
register. The use of an address register to access a memory location within
the stack provides the software designer with a potential problem: if the
address register is incremented too often, data intended for the stack may
overflow into another area of memory.

With the TTA, stack memory can be monitored for an overflow condition during
program execution. To demonstrate this, we again refer to our example
prototype and make the following assumptions:

) The program exists entirely in RAM.
° Address locations 0100—O01FF are designated as the stack.
) Data is loaded into the stack sequentially, beginning at 0100.

° Essential program information is stored at locations 0200-—-0300.

The following TTA commands would detect a stack overflow for our example
prototype:

> eve 1 a=01FF b=wt <CR>

> eve -s 2 a=0200 b=wt <CR>

> cons cye 12 <CR>

> g (starting address) <CR>

During program execution, these commands would cause a breakpoint (trigger 2),
if the last location of the stack was written to on that cycle that preceded a
write to the first location after the stack.

REV MAR 1983 3-5

TTA Applications - TTA Users

CODE TIMING MEASUREMENTS WITH THE TTA

The following discussion shows how you can use the TTA to measure the
execution time of a segment of code.

Each trigger channel of the TTA was designed to offer a comprehensive set of
breakpoint options, including breaking inside or outside of a specific address
range. This capability, however, prevents the TTA from measuring the execution
time of a segment of code with a single channel. It can, however, be measured
with a combination of channels by setting up one event to start a counter and
a second event to stop the counter. The counter result will display the total
real time between the two events.

EXAMPLE

*A” represents the start of the program. Let’s say you want to time code
execution between points "B’ and “C° (the first occurrence of each), and to

stop execution at ‘D’. The following setup will produce a result in counter 3
which gives the time between event 1 and event 2 with an accuracy of plus or

minus one bus cycle.

Waveforms shown for channel 1 and channel 2 are the counter outputs; waveform
3 is that of trigger 3, not counter 3.

>telr 1 2 3 . A B o) D

\4

eve 1 a="address of B’ <CR> |
> cou 1 s=evl O=delay v=1 <CR> !

> eve az"address of C”~ <CR> |
> cou 2 s=ev2 o=delay v=1 <CR> !

n

c=10xx <CR> | |
g=self s=(timebase) <CR> ! !
o=zarm v=0 <CR>

eve
cou

v Vv
ww

(@)

REV MAR 1083

Channel 1:

Channel 2:

Channel 3:

TTA Applications - TTA Users

These commands force the output of counter 1 low until the first
occurrence of event 1. Event 1 represents the start of the code
segment to be timed.

Event 2 represents the end of the code segment to be timed.

This setup causes counter 3 to be gated by event 3, which is true
only while the output of counter 1 is true and the output of counter
2 is false. Counter 3 must be programmed to count one of the TTA
timebases, and will count only while event 3 is true. Event 3
represents the code segment under test.

The program can be stopped anytime after event 'C° ocecurs by an emulator
breakpoint, the event U4 breakpoint, or a CTRL-C. In addition, the following two
commands will cause the TTA buffer to store only those cycles (up to 255) which
occurred during the counter gate:

eve 4 c¢=10xx <CR>

acq evl <CR>

Using the command file capability of the 8550 or 8560, you can even automate this
process. Just create the following file (named TIMER) on your 8550 or 8560:

telr 1 2 3

eve 1 a=$1

cou 1 s=evl o=delay v=1
eve 2 a=$2

cou 2 s=evl o=delay v=1
eve 3 c=10xx

cou

3 g=self o=zarm v=0 s=$3

$1, $2, and $3 are the first, second, and third parameters of the command line,
respectively. Therefore, the command

TIMER 100 0Of3 2 usec <CR>

would program the TTA to measure the time from address 100H to address OF3H in 2
microsecond units.

ADD MAR 1983 3-7

TTA Applications - TTA Users

NOTE

plus or minus one cycle means that when the time

f

C is large, the measurement will be quite accurate.
e Furmam D PR T

b

e
ential one-bus-cycle

)

§

)

-}

et

+

>

)

)
ch

P] =~
Irom o ¢C U 18 Smail, Cne

This technique measures the time from the FIRST occurrence of
event 1 to the FIRST occurrence of event 2. You cannot make
cumulative time measurements with this setup.

Counting emulator clocks (emuclk) instead of an internal time
base may produce unexpected results, since emulator clock
signals are often ‘divided down’ Dbefore going to the TTA
counter chips. On the 280, 9900/9989, 1802, 8086/88/87, and
68000 emulators, the emulator clock is divided by two. On the
8048 the clock is divided by 15 or 30, depending on the
setting of clock divider jumpers on the emulator, and the ALE
signal is used as emuclk. Time base counts will be accurate.

TRIGGER N ARMS TRIGGER N+1

A common situation in advanced debugging occurs when a particular event must be
detected after the occurrence of a different event. The TTA can be programmed to
perform |“sequential’ triggering as follows.

You may wish te delay the arming of a trigger until another trigger occurs.
Trigger 1 is a simple event, with no counter parameters specified. Trigger 2 is
also a simple event, but you wish to enable its trigger after trigger 1 has
occurred. The counter programming is:

> cou 1 elr s=evl v-1 O=delay <CR>

> eve 1 ... <CR>

> eve 2 ... C=1xxx <CR>

This will arm trigger 2 after the first occurrence of event 1.

3-8 ADD MAR 1983

TTA Applications - TTA Users

PRE, POST AND CENTER POSITIONING OF TRIGGER IN ACQUISITION MEMORY

This example will show 2 ways of positioning the trigger in the acquisition
memory. The first will demonstrate how to freeze acquisition without stopping the
program. This method retains real-time performance but loses information after
the freeze. The second method will show how to stop both the program and the
acquisition, thus gaining a 255 transaction window around the trigger.

Event 4 is programmed to be the event of interest. The acquisition memory is
programmed using the ACQUIRE command, to acquire the 128 acquisitions after
trigger 4 occurs:

> eve 4 ... <CR>

> acq all for 128 acqg aftertrigh <CR>

The program is stopped by some means (escape, breakpoint). Acquisition will stop
after 128 transactions have been stored, and the trigger will be centered in the
buffer.

In the second example, event 1 is programmed to the event of interest. Counter 2
programming is:

>eve 1 ... <CR>

> cou -s 2 elr v=128 s=zacq O=delay g=segh <CR>

When trigger 1 occurs, counter 2 will begin counting. Its output will go high
after 128 acquisitions have been counted. Event 2 must be cleared, and counter 1
output must be high. By changing the value field of counter 2, the trigger can be
moved around in the buffer.

ADD MAR 1983 3-9

Section U

TECHNICAL NOTES

INTRODUCTION

At SN B030000 and up, an improvement was made in the TTA’s ability to count
events, and is shown in the following example:

> sel 8085 <CR>

[fill memory with NOPs]

> eve 1 b=f <CR>

> cou 1 clr <CR>

> cou 2 s=evl <CR>

> eve 2 -s a=b6 b=f <CR>

> g 0 <CR>

> ts <CR> (Counter will display 7 events)

This improvement has resulted in a change in the way the TTA is used to count
the number of times a program enters a range. See the following example.

> sel 8085 <CR>

[fill memory with NOPs]

>ad 1 0 0a <CR>

> cou 1 clr <CR>

> cou 2 s=evl O=arm <CR>

>ad 3 -s Ob <CR>

> g 0 <CR>

> ts <CR>

REV MAR 1983 b1

Technical Notes - TTA Users

In this case, the counter will not have counted the number of times the event
(address range) was entered (one time), but will have counted the number of

Llme l,; DUL W1ll fAave coullted

cycles executed while the event is true.

This improvement also results in a restriction on the ACQuire command.
example, when the following commands are added to the previous commands, the

P o b]

DISPiay will show only one acquisition:

> acq all for 1 evl <CR>

> g 0 <CR>

> disp <CR>

In both of the previous examples, if the source (of the cou command) is

changed from evl to trigl, the TTA will operate as it did in the TTA versions
B029999 and below.

One application of the counter portion of the TTA would be to time a code
segment (possibly only one instruction) while stopping the emulator at the
same point that the counters are stopped:

A B C

Start Counting l I Stop Emulator
Stop Counting

For example, assume you want to know the amount of time from B to C. In this
configuration, the signal that indicates that the emulator is stopped is also
used to stop the TTA counters. Due to design constraints of certain
microprocessors, the emulator in gquestion may not be able to indicate
immediately that it has stopped. Therefore, if the time from B to C is very
short, a 1large amount of error will be introduced into the timing

rly true for the Z8001/Z8002, 8086/8087/8088,

moaacintmamanta Thio e
1S parvifusal’lly Wiul LTI VAT 4LTVV LUV y

WO QD UL DI VD . Liiaes

and 68000 emulators.

) REV MAR 1983

Technical Notes - TTA Users

The best way to accomplish this measurement is documented earlier in this
section, under the heading Code Timing Measurements with the TTA. In this
case, a counter is gated on at B and off at C, but the emulator is not
actually stopped until sometime 1later, thereby eliminating the error
introduced by stopping the emulator and counters at the same time. The
recommended method is shown below.

A B C D

| Gate | Gate I I

Counter _ } Counter _} stop }
On off Emulator

DEFINITION OF SLV OPREQ(L) AND TOP SLV OPREQ(L) SIGNALS

SLV OPREQ(L) is a signal generated by the active emulator and received by the
TTA. This signal is the source for all timing operations when monitoring
emulator bus activity. Alternatively, TOP SLV OPREQ(L) from the top plane
(used by some of the newer emulators) may be used with the same timing
constraints as SLV OPREQ(L). See Fig. U4-1 for TTA timing signals.

The leading edge of SLV OPREQ(L) indicates that the emulator address and
control lines are valid and is used to strobe them into the TTA latches. If
the top plane is not used, the trailing edge of SLV OPREQ(L) indicates that
the emulator data is valid and strobes it into the TTA data 1latches. The
trailing edge is also used to sample the external probe inputs. If the top
plane is used, data from the emulator is sampled on the leading edge of the
signal TOP DATA STROBE(L), which occurs before the trailing edge of TOP SLV
OPREQ(L).

Refer to the service manual for your emulator for more details on the
generation of these signals and also to determine whether the top plane is
used.

REV MAR 1983 4.3

Technical Notes - TTA Users

SAMPLE TOP DATA LATCH
(IF USED) AND PROBE

STORE INTO ACQ LATCH

SAMPLE: ADDRESS COUNTERS CLOCKS AND
CONTROL LINES GATED,EVENTS AND
TRIGGERS GENERATED

STORE IN ACQ MEMORY

J
SAMPLE .DATA 0 40¢ 80 120

\v 20] 60 1ool1uo
16BIT i i Pl (TIME IN NS)
168000 ——{8 BIT»| |
8086/87/88
SLV OPREQ_—
or TOP SLV OPREQ |
’ |
|
\
TOP DATA STROBE/ |
|
|
| — - 36-6Tns WIDE
| 88-
|e—120nS =

TRIG OUT BNC Connector

Fig. 4-1. TTA Timing Signals.

4y REV MAR 1983

Section 5

THE DATA ACQUISITION INTERFACE

INTRODUCTION

This section describes the functions and operation of the Data Acquisition
Interface and its accompanying Data Acquisition Probe. The Data Acquisition
Interface is a standard accessory to the Trigger Trace Analyzer and should be
installed when the TTA is installed. This section is divided into the
following parts:

° The Data Acquisition Interface
° The Data Acquisition Probe
® Data Acquisition Interface Demonstration

THE DATA ACQUISITION INTERFACE

Trigger signals 1--3 (SN B030000 and up) or trigger signals 1--4 (SN B029999
and below) are output via a BNC connector on the Data Acquisition Interface.
Also provided is a BNC input for the TTA s event qualifier signal, and a
connector for the signal channels of the Data Acquisition Probe. Circuitry
within the Data Acquisition Interface buffers and controls the signals paths

to and from the TTA.

With SN B0O30000 and up, an Acquisition Clock Output is available via a BNC
connector on the Data Acquisition Interface. This clock signal occurs when the
TTA has acquired a sample of address, data, or other information. The signal
is intended for operation with a TEKTRONIX DAS 9100-Series System.

The operation of the Data Acquisition Interface is controlled by its control
panel and two TTA commands; pro and qua. The pro command defines 8 bits of
data from the Data Acquisition Probe as an event. The qua defines the state of
the event qualifier signal (1 or 0) as an event. Refer to Section 2, the
Command Dictionary, for more information about these two commands.

ADD MAR 1983 5-1

Data Acquisition Interface - TTA Users

DATA ACQUISITION INTERFACE CONTROL PANEL

The control panel of the Data Acquisition Interface provides controls and
connectors for the Data Acquisition Interface’s internal circuitry. Figure 5-1

iliustrates the control panel of the Data Acquisition Interface. The text that
follows the figure describes each connector or control

2V |92 481 ows T LTS

Lodivl s

1889 9 7

O ® ©® ®

3760-2A

5-2

Fig. 5-1. Control Panel of the Data Acquisition Interface.

EXT CLK PLRT: This three-position toggle switch selects the polarity of
the external clock signal. which is used to sample the eight external
input signals. If the switch is up, a positive input clock must be used
to sample the input signals. If the switch is centered, the signals pass
transparently through the external input latch and are sampled at the end
of each emulator bus cycle. If the switch is down, a negative input clock
must be used to sample the input signals.

TTL VAR: This three-position toggle switch selects the threshold voltage
level for the Data Acquisition Interface’s eight data paths. If the
switch is up, all eight lines may be at the variable voltage levels. If
the switch is down, all eight lines can carry only TTL voltage levels. If
the switch is centered, lines 0—3 are variable and lines 4—7 are at TTL
levels.

VAR ADJ: This trimmer is used to adjust the variable voltage level
selected by the TTL VAR switch.

ADD MAR 1983

Data Acquisition Interface - TTA Users

4, VAR MON: This testpoint allows the variable voltage 1level to be
monitored, as it is being adjusted.

5. Data Acquisition Probe Socket: This socket accepts the 25-pin connector
on the end of the Data Acquisition Probe’s cable.

6. EVENT QUALIFIER: This BNC connector provides a point of entry for the
Event Qualifier signal that is used in conjunction with the QUA command.

Te TRIG OUT 1: This BNC connector makes the trigger signal for Event 1
available to the user.

8. TRIG OUT 2: This BNC connector makes the trigger signal for Event 2
available to the user.

9. TRIG OUT 3: This BNC connector makes the trigger signal for Event 3
available to the user.

10. ACQ CLK OUT (SN B030000 and up): This BNC connector makes the ACQ CLK
signal available. The signal occurs when the TTA has acquired a sample of
address, data, or other information.

TRIG OUT 4 (SN B029999 and below): This BNC connector makes the trigger
signal for Event 4 available.

THE DATA ACQUISITION PROBE

The Data Acquisition Probe (P6451) is a nine-channel active probe. Eight of
the channels are used for data acquisition. The ninth channel is used for a
clock signal. The probe’s ten test clips are connected as follows:

° 8 leads to an 8-bit data source
° 1 lead to a clock source
° 1 lead to logic ground

The connector on the Data Acquisition Probe’s cable fits into a socket on the
control panel of the Data Acquisition Interface. The probe clips may be
connected to external signal sources. Refer to the P6451 Data Acquisition
Probe s product literature for more information.

ADD MAR 1983 5-3

Data Acquisition Interface - TTA Users

DATA ACQUISITION INTERFACE DEMONSTRATION

PRy P P hmee b woma blaa TNadbasa AAamnivT 4
This demonstration shows how to use the Data Acguisition Interface and Pr

In the example, you will connect the probe to a TEKTRONIX Microlab I t
fixture, define the data on the probe inputs as an event, and observe the
effect on the TTA when this event occurs. To do this demonstration; you will
need a TEKTRONIX 8500-series Microcomputer Development System, with the
following options installed:

° An Emulator Processor with a Prototype Control Probe

) A Trigger Trace Analyzer with a Data Acquisition Interface and Data
Acquisition Probe

In addition, you will need a TEKTRONIX MicroLab I test fixture, with a
personality card installed.

GETTING STARTED

The first portion of this demonstration shows how to configure, power-up, and
initialize the instruments that are used. To do this, complete the following
steps:

1. With all power turned off, connect the prototype control probe to the
zero-insertion-force socket on the MicrolLab I°s Personality Card.

2. Refer to Fig. 5-2. This figure illustrates the near edge of a circuit
board that protrudes from the MicrolLab I above the personality card.
Along the exposed edge of this upper board is a row of jumper positions
with two jumpers in place. Connect test-clip O (the black lead) of the
Data Acquisition Probe to one of the square pins in the row of pins
closest to the board edge. Note that each pin in this nearer row of
square pins is tied together. Next, connect test clip 7 (the violet lead)
to one of the square pins in this samé row. Then, connect the ground
(gnd) test clip of the Data Acquisition Probe as shown in Fig. 5-2. Do
not connect the clock test clip.

3. Turn on the power to your development system.
y, Enter the sel command to select the emulator you will use.

5. Enter > em 2 <CR> to select the emulation mode.

5-4 ADD MAR 1983

Data Acquisition Interface - TTA Users

§

C) Connect GND Clip Here——\

§

Connect .
Clip #0 (Black) Personality Card
Here

Connect
Clip #7 (Violet) doonoaoaaoonogaaaogoooaoa

Here

3760-3

Fig. 5-2. Test-clip Positioning.

NOTE

This figure shows the positions of the test clips on the
upper circuit board in the Microlab I test fixture.

6. Turn on the MicrolLab I.

T. Enter > g <CR>

8. Press the ESC key on your terminal. The system displays a trace line and
returns control of the system to you.

ADD MAR 1983 5-5

Data Acquisition Interface - TTA Users

10.
11.
12.

13.

1”.

5-6

Enter > disp <CR>

Note that the display that appears contains a series of high states for
the column of probe data that represents test-pins zero and seven of the
Data Acquisition Probe.

Enter > pro 1 81H <CR>

Enter > cou 2 v=5 s=evl o=delay <CR>

Enter > bre 2 <CR>
Enter > g 00 <CR>

A trace line should appear after control of the system returns to you.
The trace line indicates that trigger 2 occurred.

Enter > disp <CR>

Note that the display that appears now contains only five occurrences of

. . :
v Aatan Q1 T3S a
event 1, which was defined by the probe command as data ¢1. This

indicates that Trigger 2 occurred after the fifth iteration of event 1.

NOTE

The signals on the Data Acquisition Probe are sampled by
the TTA at the end of an emulator’s bus cycle. Since this
sample interval is determined by signals internal to the
TTA, there is a restriction on the use of the Data
Acquisition Probe. Essentially, changes in the states of
the probe signals will not be acquired by the TTA, if they
precede or extend beyond the sample interval.

ADD MAR 1983

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06

