Tektronix

COMMITTED TO EXCELLENCE

This manual supports the

This manual supports a software/firmware
following TEKTRONIX products:

module that is compatible with:

8550 8540 DOS/50 Version 2 (8550)
Options Options Products 0S/40 Version 1 (8540)

2P 2P 8300E26

3uU 3U 8300P26

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500

MODULAR MDL SERIES

68000

EMULATOR SPECIFICS
USERS MANUAL

Tektronix, Inc.
P.O. Box 500

Beaverton, Oregon 97077 Serial Number

070-3970-00
Product Group 61

First Printing FEB 1982

LIMITED RIGHTS LEGEND

Software License No.

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data ldentification Method
Used: .Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1982 Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and @ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

Section 7L

68000 EMULATOR SPECIFICS

Page

IntrOdUCtion ® 0 0. 0.0 00 6000000000500 0808000000000 0000s800s08000000000s00000s000 7L"1

General Information ...ceeesesccscecesscsssascsocssonoscscsossassssnssseses [L=1
Emulator Hardware Configurationeeceeeevcscessssoccsssosesssssnasss [L=1
Microprocessors Supported .¢.c.... Y L
Emulation Modesceceesecnessecsssoscconsnssossssssassasssesnsssnsnse TL=1
Clock Rates Y §
Symbolic Debug Ceecesssecssecssesseasassesansesacnne cesecssssasss TL=2

Emulator-Specific Parameters, Commands, and DiSplaysS .eeeeeceoesssessss TL=2
Byte/Word Parameterceeeescceeccscoscecsoserssncscssssncnsassossssssne [L=2
Register Designators ...iieieecsecoesssssnsesscosnossssconsssssassssssss (L2
The 68000 Status ReZisSter .iieeeeeenceeeseceacscessoascasssossascsssees [L=l
DOS/50 and 0S/40 Commands cecencseeans Ssesesesesssassascsascasnnn 7L-5
AlL.—--Allocate Memory to Logical Memory Map T)
BK---Sets or Displays Breakpoint Conditions ...ccevceeeee cessesccnns .. TL=5
D——-Dump; Displays Memory Contents ...ceeeescececcsssscssasssscssssss TL=D
DI---Disassembles Object Code into Mnemonicseeeeeecececveessess TL=T
DS---Display tontents of Emulator Processor Registers ...ecceeeeeeee. TL=9
EX---Displays or Alters Memory Contents ...eccececececccecsesessesess TL=9
F---Fills Program/Prototype Memory with Datavecececsoncencseeses TL=O
G---Begins Program Execution et essecesesasesessasaaan eeeees TL=9
MAP---Sets or Displays Memory Map Assignmentseeeeeeeessceseees TL=10
MEMSP——-Defines Default MemoOry SpPaAcCe .eveeecesscscsccsscscsssacnssoe TL-11
MOV---Moves Data Between Program and Prototype Memory eeseas TL=11
P-—-Alters Memory Contentseeseeveeveccccssssessnssascsascsscnses TL-11
RD---Reads from Emulator POrtceeeescecssoscesccscssaasessacesnsss TL=11
RESET---Reinitializes Emulatoreceeeecececsscocssscacnssnsssees [L=11
S——-Assigns Value to Register or Symbol cessesccecroas s TL-13
SEA---Searches Memory for Value or Stringccecececececcsccoesess TL=13
SEL---Selects the Emulator ceessssceacccsssssessesscsssseas [L=TU
TRA-—-Controls Display of Executed Instructionscccveveeveacecss TL=14
WRT-—-Writes to Emulator I/0 Porteceeececasccccccacsascssssssee TL=15
Real-Time Prototype Analyzerceeesee U ¢ S 1)
Trigger Trace Analyzer (TTA) Commands and Parameterseeeecesvece. TL=16
EVE and BUS Command Parametersccceecececassaccaascns cessensses TL=16
CONS——-Set Consecutive EVeNntS ..eceeeeeececcceccsacensconens ceeseees TL=17
DISP---Display Contents of Acquisition Memorycieeeceeeececeess TL=17
TS-—-Display Status of TTA Triggers ...ceececeoccsccscsscscassncessses TL-18

Service €CallS .tvouiiecesssosassossessssoscssnscscsssassscsssasssasassasases TL=19
SVC Address RanNge ...eeeeeecsecesscssscsscassssssascsassssecsssssceceass TL=19
SRB Formatcoveeveeese tsecsvsstecsscssessesscssssscsasesssscssase [L=21
SVC Demonstration Y 2

68000 Emulator Specifics Users

Special Considerations ...ceeececeeecces Y b
Fetching and the Prefetch P1pe11ne chessesesecscsacnas ceessesssecess (L=25
Interrupts cueiveseeeseescsssnccns ceeccecsassecnasscsssssscanarsasnes [L=26
MemoOry SpPacCeS cveeececessosnscscssessscssssssscsssscasansasass eeessesss TL=33
Memory Space Partitioning ..eeeeeececsesscececscesscsasossasnsssosss [L=34
The 68000 STOP Instructionce.c.. cteesteeasenetaannan ctessssesana TL-4Yy

Jumpers ...cceeeee Cesecesessscasacecsaseesseassesssasonas s e eeeerss TL=U5
EMU 1 Board «ecece. crsceesesseesensessasens cesesnas carsseceessancs eeees TL=U5
P1080---Emulator Halt Control Selectoreecesceccecssscancnsese e.. TL-U45
EMU 2 Board ..ceveenns ceesana ceeasna ceeesaas Y)
J214Y4——-Break Cycle Control Selector Cesseccesessesssessncesasscesss [L=U5
Interface Buffer Board ..ceceeeveccscses ceseecssassesseractesnias ceeses TL-UE
P1---Data Transfer ACKnowledge (DTACK) Delay ceveeeeencecsoncccans .. TL-46
P2 and P3---Prototype Bus Arbitration Controleceeeveeeceens ces. TL-U6
P6---Address Strobe Controlceeeeeees Ceeessscasesrsersesccnans .. TL=U47
P7-=—=DTACK Timeout CONtrol ...ieeevecsesssscsocasccsccssassncns eeeees TL=HT
P8---Internal Generation of DTACK in Mode 1eceeeeescsncesnsssss [L=HU8
Interface Control Board ..ccecececescesne tecesrecsseann cesresessrsennaa 7L-48
JB4011---Save Non-Maskable INterrupts .ceeeeseessessoacccs tececosesees TL-U8
J6021-—=Save Prototype Interrupts ...eeeeeeceecscconscncosasasssnsss (L=U9
Mobile Microprocessor Board ...ceeeececsccssccesssccsssanssssanssansse [L-U9
J1045 and J2045---Delay of DTACK Assertion Y g

EMUIGtOP TiMing ® 6000060000000 006000000000008000000000600s000000c000c00s00re 7L—51

Probe/Prototype Interface Diagram ...ccoeeeeessceesscannses ceeessesses [L=54
Installing Your 68000 Emulator Software .ec.cececescesca cesesscsssssss [L=B5
8540 Software Installation Procedure ...eeevececesescccas cesessrereas . TL-55
8550 Software Installation Procedureeeeeeecesceccoseoscsas eeeees [L=55
68000 Demonstration Run cecstesesecerenesns ceveans cevesssseses [L=59
Introduction ..eveveeececannns cecesanne ceesreses cesecssrssessans essses TL-59
Examine the Demonstration Programceeevvevcenconnes [teeeees TL=62

Assemble and Load the Demonstration Programceeeeeeseeesesasssceess (L=63
Case 1: Assemble and Load on the 8550 ...icveerioessnccnoenessscsaaass TL=63
Case 2: Assemble on the 8560; Download to the 8540cveeveeenesees TL=TO
Case 3: Download from Your Host to the 8540 crecesessesesss TL=T6
Case 4: Patch the Program into Memory cecsscsssens cesesesessas 7L-80
Run the Demonstration Programccceeeee Ceeecresseseerassasasanas .. TL-83
Monitor Program Executionveececececoccoscssanccascscsscesacncass [L=8T
Summary of 68000 Emulator Demonstration Runeeeeecercccces ceeesss TL=96

EPFOF Messages ® 0 ¢ 0 00 00000000 000G POELO000L0EI00ESLCLOLLILIELESIGIEOIEINOEPIOETDITOIETE . 7L-98

Reprints ...ocveveeen. ceresences cesesssseatesesesesssssacensenneannsns 7L-99
Microprogrammed Implementation of a Single Chip Microprocessor 7L-101
Design and Implementation of System Features for the MC68000 7L-110
Instruction Prefetch on the MC68000vvevevecsncoccneascnsans ceeese TL=118

TL-ii e

68000

Emulator Specifics Users

Table
No.
TL-1
TL-2
TL-3
TL=Y
TL-5
TL-6
TL-T7
7L-8
TL-9
TL-10

Fig.
No.
TL-1
TL=-2
TL-3
TL-4
TL-5
7L-6
TL-7
7L-8
TL-9
7L-10
TL-11
TL-12
TL-13
TL-14
TL=-15
TL-16
TL-17
TL-18

TABLES
68000 Registers and Flags ceeeeeecececascacaans ceerreenanas cesaans
Register Symbols Accepted by S Command eeseececsssscscessnssean e
EVE/BUS Signal Symbols ...cececees seessceaas cececesssescasasans .o
68000 Service CallsS cuieeeeseecscscsoasascscscanass cieesseecacsens

Encoding of the Memory Space Byte ..ciceeeceeessccacsesscccsccscns
Classification of Memory Space References ...ceeeeecececcccocncacses

68000 Exception Vector AsSSignment ...eececeessssecescsscsassnocns
J1045 and J20U5 Configurations ...eeeeeeceeeceecscnns T,
68000 Emulator/Microprocessor Timing Differencescececeeceeceece
Basic 8560 Editing Commandseeeeececcsccccccocs cececetesanae
ILLUSTRATIONS
Status Registerceeceerccceccenne cesecsecrctesrscenencescsenons
Sample disassembly .eeeeeeccconecs eseececssaresessssssesccaneranns
Sample DISP display sceececeses seecesesesnosns seesreesessnscns ceeae
A 68000 SRB pointer located at CO-=C3 ..iiieeeerococoocrososcncne
68000 SVC demonstration program listingceceeeee. cecasens ees

Alternate executable code for SVC demonstration program
68000 instruction pipeline block diagram .eeececscesccocsssoasanse
Program eXample ..c.ceececcecscsoracsosasesescsossossasossosssosssss
Example program run with TRA OFF ceeecsecns secesecssessenas
Example program run with TRA ONccveeeionsrcansocsnscsnnssnne
Memory partitioning example programcccececeeeeccocccccsoscss
68000 timing diagram, read cycle teeeccscsscsnsssscssann e
68000 timing diagram, write cycle .v.vevveevas cesecccssaas cecees
68000 Prototype Control Probe interfaceeeeeeececcesccscsass
68000 demonstration run program ..cececececcscsccccsccscscascsescs
68000 demonstration program: Extended Tekhex format e
Symbol table 1isting ...eveeecieceerescarsasesscssasccsosncssonnssns
Host computer commands for preparing demonstration program

TL-4

TL-8
TL-17
TL-21
TL-22
TL-24
TL-25
TL=-27
TL-28
TL-30
TL-35
TL=52
TL-53
TL-54
TL-60
TL-61
TL-66
TL-76

TL-iii

Section 7L

68000 EMULATOR SPECIFICS

INTRODUCTION

This supplement is designed to be inserted into Section 7 of the 8550 System
Users Manual (DOS/50 Version 2) or the 8540 System Users Manual. This
Emulator Specifics section explains the features of the 8550 and 8540 that
are unique to the 68000 emulator. Throughout this section, "your System
Users Manual" refers to the 8550 System Users Manual or 8540 System Users
Manual.

The 68000 demonstration run is designed to be wused with Section 1, the
Learning Guide of your System Users Manual; the rest of this section
contains reference material. .

As a user of the 68000 emulator, you should be familiar with the material in
the MC68000 16-Bit Microprocessor User's Manual, by Motorola. In addition,
you should be familiar with the internal operation of the 68000,
Information is available in the booklet MC68000 Article Reprints, by
Motorola. Three of the more pertinent articles from that booklet have been
reprinted here in the subsection "Reprints". Some of the effects of the
68000's design on the behavior of the emulator are discussed under the
topic, "Special Considerations".

GENERAL INFORMATION

EMULATOR HARDWARE CONFIGURATION

Throughout this Emulator Specifics section, the term "68000 emulator" refers
to a 68000 Emulator Processor board configured with a 68000 Prototype
Control Probe. In emulation mode 0, the prototype control probe must be
connected to the main emulator boards. In modes 1 and 2, the prototype
control probe must be connected to both the emulator and your prototype.
For instructions on installing your emulator boards and probe, refer to your
68000 Emulator Processor and Prototype Control Probe Installation Service
Manual.

MICROPROCESSORS SUPPORTED

The 68000 emulator emulates the Motorola MC68000 microprocessor.

EMULATION MODES

The 68000 supports emulation modes O, 1, and 2, as described in the
Emulation section of your System Users Manual.

General Information 68000 Emulator Specifics Users

CLOCK RATES

In emulation mode 0, the emulator clock rate is 8MHz. In emulation modes 1
and 2, the prototype clock rate may range from 2MHz to 8MHz.

SYMBOLIC DEBUG

The 68000 emulator supports the use of symbolic debug. Most of the displays
in this manual include symbolic debug information.

EMULATOR-SPECIFIC PARAMETERS, COMMANDS, AND DISPLAYS

BYTE/WORD PARAMETER

Several commands allow you to operate on memory on a byte-oriented or
word-oriented basis. This choice is represented by the -B or -W parameter.
For the 68000 emulator, the default setting is -W, except for the MOV, RD
and WRT commands, where the default is -B.
REGISTER DESIGNATORS
Table 7L-1 alphabetically lists the symbols used by DOS/50 and O0S/40 to
designate the registers and flags used by the 68000. The table provides the
following information for each symbol:

® a description of the register or flag that the symbol represents

e the size of the register or flag

e the value assigned to the register or flag by the RESET command

e whether the register or flag can be assigned a value by the S (Set)
command. i

TL=2 e

68000 Emulator Specifiecs Users

Parameters, uvommanus, viopiayw

, Table 7L-1
68000 Registers and Flags

i | Size | Value After | Altered by
Symbol | Description i (Bits) | RESET | S Command?
AO__A6 | seven address registers | 32 | unchanged | yes
C | Carry bit of CCR | 1 | unchanged i yes
CCR | Condition Code portion of SR | 5 | unchanged i yes
DO--D7 | eight data registers i 32 | unchanged H yes
I ! Interrupt mask of SR i 3407 H yes
N | Negative bit of CCR i 1 | unchanged i yes
PC i Program Counter i 24 | contents of | no
i i i SP:000004 * |
S | Supervisor/User bit of SR ' 1 11 (on) | yes)
SR ! Status Register P16 | 27XX H yes
SSpP i\ Supervisor Stack Pointer (A7) { 32 | contents of | yes
! H i SP:000000 * |
T i Trace bit of SR] 1 | 0 (off) i yes
USP { User Stack Pointer (A7f ! 32 | unchanged i yes
v i oVerflow bit of CCR i 1 | unchanged i yes
X | eXtend bit of CCR i 1 | unchanged ! yes
YA | Zero bit of CCR i 1 | unchanged i yes
* SP: is Supervisor Program space.

TL-3

Parameters, Commands,»Displays 68000 Emulator Specifics Users

THE 68000 STATUS REGISTER (SR)

The 16-bit Status Register (SR) has a system byte (high order) and a user
byte (low order). The system byte contains the Trace Mode and Supervisor
State bits, and contains the three bits used as the Interrupt Mask. The
user byte contains five status flag bits, which are used primarily for
branch control within a program, and for error detection. Figure 7L-1 shows
the Status Register.

Codes < Zero

Overflow

System Byte User Byte
/\ /\
/ \/ \
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P T i S i v I21 113 I0; | i P X I NV Z iV C

i i \ / i i i i i
| | v | i ' i i
[} 1 |] [} [} 1]
1 1 [} 1]] [}]
Trace + | i | i i i i
[} [| 1 I)]]
i I 1 1 I] I
Supervisor ———+ ! | i i i i
/User i | i i i i
i I i i | i
Interrupt + | | i i i
Mask i i | i i
] [} | I [}
i | i | I
/ Extend + | i i
1] [} 1]
1 [} [} 1]
| Negative + i i
Condition | | i i
+ i
1 I
] [}
e [}
+]
[}
[}

1
t
|
i
\ Carry

Fig. 7L-1. Status Register.

7L~ e

68000 Emulator Specifics Users Parameters, Commands, Displays

DOS/50 AND 0S/40 COMMANDS

AL—--Allocate Memory to Logical Memory Map

The AL command allocates U4K-bytes blocks of program memory to the
processor's 1logical memory space. The MAC (Memory Allocation Controller)
option must be installed. For example, the command AL SP:UP:0 allocates one
block of program memory for location 0--OFFF of the two memory spaces SP and
UP. Thus, for the range 0--0FFF, these two memory spaces will be in the
same physical memory. References to either of those two memory spaces in
that range will access the same physical location. For example, the address
OA40 in the supervisor program space (SP) will be at the same physical
location as the address OA40 in the user program space (UP).

With the 68000 emulator, the AL command may be used only if the Memory
Allocation Controller (MAC) option is installed. The use of the AL command
does not follow that described by the Command Dictionary of your System
Users Manual. Refer to the Emulation section of your System Users Manual
for a detailed description of the AL command when the MAC option 1is
installed.

BK—--Sets or Displays Breakpoint Conditions

With the 68000 emulator, the BK command syntax and parameters are not as
described in the Command Dictionary of your System Users Manual. Use the
following information instead.

SYNTAX
bk
or
{1 1
{2 1}
{3 1
bk {all} clr
or
{1 [-al}
{2 [-al} [rd] [byl
bk [-c] {3 } [expression] [wt] [wd]
PARAMETERS

1, 2, and 3. The number specifies the desired breakpoint.
 ALL. This specifies all breakpoints.

CLR. This parameter clears the specified breakpoint(s).

e TL=-5

Parameters, Commands, Displays 68000 Emulator Specifics Users

=C. This parameter causes execution to continue after each breakpoint
occurs. If -C is not specified (the default), the BK command stops
execution after a breakpoint occurs. To resume program execution, enter the
G command without parameters.

—A. This mode sets breakpoint 1 to arm breakpoint 2. When the mode is set,
breakpoint 2 will not occur unless breakpoint 1 has already happened.
Arming mode may be set when entering either breakpoint 1 or breakpoint 2,
but one of these two breakpoints must already be defined. When you redefine
either breakpoint 1 or 2 this setting is cancelled.

expression. This parameter is an expression that represents the address
where program execution is to be interrupted. The expression may include
don't-care bits and/or a memory space designhator. The address expression
may also be omitted. For example, BK 1,,BY WT will cause a break on the
first byte write.

RD and WT. These parameters designate that a breakpoint occurs when a memory
read (or write) occurs at the specified address. The default is any access
(read or write).

BY and WD. These parameters designates that a breakpoint occurs when a byte
(or word) operation occurs at the specified address. The default is any
access (byte or word).

NOTE

When you use TRA, and breakpoints are set, the break may occur
before the address where the breakpoint 1is set. This occurs
because the address has been identified going into the 68000
prefetch pipeline.” Be sure to check the display to see if the
last instruction executed was the one on which you wanted to
break. If it is not, enter G again, and the next instruction will
be executed. Check the display again, and repeat the G command,
if necessary. It 1is recommended that you put NOP statements in
your program around the statements where you want to break.

D——-Dump; Displays Memory Contents

The D command allows memory space designators in the address expressions.

TL-6 e

68000 Emulator Specifics Users Parameters, Commands, Displays

DI---Disassembles Object Code into Mnemonics

The DI command translates object code in memory into assembly language
instructions. It displays addresses, object code, assembly language
mnemonics, and operands.

DI Display Format. In general, the format of the disassembly follows the
conventions of both the Motorola cross-assembler and the TEKTRONIX 8500
Series B 68000 Assembler. An example of a disassembled instruction is:

000712 13C0 MOVE.B DO,F00007H

In this example:

000712 is the memory location of the instruction being disassembled.
13C0 is the opcode.

MOVE is the opcode mnemonic.

.B is the size extension. 1In the DI display, the size extension

may be shown on some instructions where it may not be
required or allowed for assembly.

DO is the source operand.

FOO0O0OTH is the destination operand.

Exceptions from the Assembler Format. The opcode variations ADDA, ADDI,
ANDI, CMPA, CMPI, EORI, MOVEA, ORI, SUBA, and SUBI do not appear in the
disassembly. The assembler chooses the correct A or I opcode variation by
examining the operands in the instruction, rather than by the opcode suffix.
Thus, ADDI #035FH,DO and ADD #035FH,DO0 would both generate the same
opcode, and their disassembly will be displayed as ADD.W #035FH,DO.

The opcodes for BT and DBF are disassembled as the equivalent mnemonics, BRA
and DBRA, respectively.

The mnemonics EMT_A and EMT_F are displayed whenever an attempt is made to
disassemble opcodes in the ranges A000O--AFFF and FOO00--FFFF. These opcode
ranges are reserved by Motorola for future enhancements.

A line of asterisks (¥%#%¥¥%%) j5 displayed in the instruction field if an
attempt is made to disassemble an illegal opcode.

] TL=-T

Parameters, Commands, Displays 68000 Emulator Specifics Users

A sample disassembly is shown in Fig. 7L-2.

> DI 3000 3022 <CR>
ADDRESS DATA MNEMONIC
DEMO+000000
003000 4280 CLR.L DO
DEM0+000002
003002 323C MOVE.W #3H,D1
DEM0O+000006
003006 207C MOVE.L #1000H,A0
DEMO+00000C
00300C 227C MOVE.L #2000H,A1
LOOP
003012 31FA MOVE.W 3024H,3026H
DEMO+000018
003018 22D8 MOVE.L (AO)+,(A1)+
DEMO+00001A
00301A 51C9 DBF =~ D1,3012H
DEMO+00001E
00301E 4ET1 NOP
DEMO+000020
003020 4ET1 NOP
SELF
003022 60FE BT 3022H

7L-8

Fig. TL-2. Sample disassembly.

This display was generated when SYMD was ON.

68000 Emulator Specifics Users Parameters, Commands, Displays

DS-—-Display Contents of Emulator Processor Registers

The DS command displays the 68000 registers. The display contains PC(next),
the fifteen 32-bit general registers, the system and user stack pointers,
and the system status register. The status register 1is displayed 1in
hexadecimal, and 1in binary with each bit labelled. Refer to the following
example:

> DS

PC=00132C

DO=0000000F D1=0001FF00 D2=00000000 D3=00000000

D4=00BC48FF D5=00000000 D6=00000000 DT7=00000000

A0=00F00000 A1=00000000 A2=00000000 A3=00001000

A4=00000004 A5=00000008 A6=00000000 SSP=00DC1000 USP=00100000

T.S. .IITI ...X NzZVC
SR=850A ---> 1.0, .101 ...0 1010

The long and short forms of the DS display are the same: the -L modifier has
no effect.

EX---Displays or Alters Memory Contents

The EX (EXamine) command allows memory space designators in the address
expression.

An error will occur if you attempt to examine memory that is not on a word
boundary while in word mode (-W). '

F——-Fills Program/Prototype Memory with Data

The F command allows memory space designators in the address expression.

 An error will occur if you attempt to fill memory that is not on a word
boundary while in word mode (-W).

G---Begins Program Execution

The G (Go) command starts the emulator at the 24-bit address specified. The
processor examines the S bit of the 68000 status register to determine
whether to start in supervisor or user program space. Memory - space
designators are not allowed; however, you may select the program space with
the Set command.

If breakpoints have been set, it may be necessary to invoke G more than once
to actually execute the instruction on which you wish the break to occur.
This is because the 68000 performs prefetching and does not have a fetch
signal. Refer to the discussions under "Special Considerations™ later in
this section. Also, refer to the BK command discussion.

e TL-9

Parameters, Commands, Displays 68000 Emulator Specifics Users

MAP---3ets or Displays Memory Map Assignments

The MAP command enables you to assign blocks of ‘memory to either program or
prototype memory, and to designate blocks of memory as read-only. The 68000
MAP command differs from the description given in the Command Dictionary as
follows:

e The -M modifier is not allowed. Displays are in tabular form only.

e Entering MAP with no parameters causes the display of the current
memory map assignments for the default memory spaces (MEMSP M).

e Entering MAP -A displays the current memory map assignments for all
valid memory spaces.

e Entering MAP followed by one or more memory space designators
displays the current mapping for the indicated memory space(s).

e The block size default is 4K bytes.

e Unlike most other emulators, the 68000 emulator supports write
protection for prototype memory through use of the URO parameter.

° Multiple memory space designators are allowed as part of the loaddr
parameter. They are not allowed in the hiaddr parameter. The
hiaddr parameter defaults to the same memory space(s) as loaddr.

If you attempt to change the program/prototype map assignments and are not
currently in emulation mode 1, a warning message 1is displayed indicating
that you are not in mode 1. The mapping of read-only and read/write is
valid in any emulation mode.

Here is a sample 68000 MAP assignment and display:

> MAP PRW 000000 T7OFFFF <CR>
> MAP URW SD:710000 TFFFFF <CR>
> MAP -A <CR>

UD O000000-FFFFFF PRW
UP O000000-FFFFFF PRW
SD 000000-7O0FFFF PRW
SD 710000-7FFFFF URW
SD 800000-FFFFFF PRW

SP 000000-FFFFFF PRW

7L-10 e

68000 Emulator Specifics Users Parameters, Commands, Displays

MEMSP---Defines Default Memory Space

The 68000 emulator's default MEMSP settings are as follows:
> MEMSP <CR>

Default single memory space......SP
Default multiple memory spaces...UD UP SD SP

MOV---Moves Data Between Program and Prototype Memory

The MOV command allows memory space designators in the address expressions.
For example, the command:

> MOV UD:3640 4340 SD:2000 <CR>

moves User Data space 3640--U4340 to Supervisor Data space beginning at
address 2000.

An error occurs if you attempt to move data that is not on a word boundary
while in word mode (-W). The default mode for the MOV command is -B.

P——-Alters Memory Contents

The P (Patch) command allows a memory space designator in the address
expression,

RD-—-Reads from Emulator Port

Because the 68000's I/0 is memory-mapped, the 68000 RD command works 1like
the D command, except that prototype memory is referenced, and only one word
is displayed.

RESET---Reinitializes Emulator

The RESET command simulates a hardware reset by modifying the registers of
the 68000 as follows:

o The Trace bit is turned off (0).
® The Supervisor bit is turned on (1).
e The interrupt level is set to 7.

® The stack pointer is loaded from Supervisor Program memory location
000000.

e PC(next) 1is set to the value in Supervisor Program memory location
000004.

e TL-11

Parameters, Commands, Displays

68000 Emulator Specifics Users

Here is an example of register

After RESET, the display changes.
of SP:000000 is 000000, and that the contents of SP:000004 is
arrows show the altered registers and bits:

TL-12

> DS <CR>

PC=00132C

DO=0000000F
D4=00BC48FF
A0O=00F 00000
Al=00000004

SR=850A --->

> RESET <CR>

> DS <CR>

- o - - -
P—a——2——2—

PC=020000

DO=0000000F
D4=00BCU48FF
AO0=00F 00000
A4=00000004

SR=2T70A ——->

"

D1=0001FF00
D5=00000000
A1=00000000
A5=00000008

T.s. .III
1.0.

D1=0001FFO00
D5=00000000
A1=00000000
A5=00000008

u o3
H =W
H - H

101 ..

II
L1111 ..

contents before invoking RESET:

D2=00000000
D6=00000000
A2=00000000
A6=00000000

...X NZVC
.0 1010

D2=00000000
D6=00000000
A2=00000000

D3=00000000
D7=00000000
A3=00001000

L3

SSP=00DC1000 USP=00100000

D3=00000000
D7=00000000
A3=00001000

020000,

A6=00000000 SSP=00000000 USP=00100000

.X NZVC
.0 1010

- - o - -

Assume for this example that the contents

The

68000 Emulator Specifics Users Parameters, Commands, Displays

S—--Assigns Value to Register or Symbol

The S (Set) command changes the values of ¢the 68000's registers. The
symbols allowed and the registers they represent are shown in Table T7L-2.

Table TL-2
Register Symbols Accepted by S Command

the eXtend bit of the CCR
the Negative bit of the CCR
the Zero bit of the CCR

the oVerflow bit of the CCR
the Carry bit of the CCR

Q<N = X4

Symbol | Register
33ttt ittt ittt it ittt ittt i i ittt
D0--D7 | the eight 32-bit data registers
AO--A6 | the seven 32-bit address registers
SR (*a) | the 16-bit Status Register
1
|
T | the Trace bit of the SR
S | the Supervisor bit of the SR
I i the three Interrupt level bits of the SR
CCR i the 5-bit Condition Code part of the SR
)
i
]
t
i
|

¥a--—-The emulator does not check whether you have specified
values for the unused bits in the Status Register.

SEA—--Searches Memory for Value or String

Try to limit your value and string searches to the smallest portion of
memory necessary. The hiaddr parameter of the SEA command defaults to the
end of memory. Therefore, it is strongly recommended that you specify the
hiaddr parameter of the SEA command. Otherwise, you may experience
extremely lengthy search times, due to the 68000's large memory capability.

e TL-13

Parameters, Commands,kDisplays 68000 Emulator Specifics Users

SEL-—-Selects the Emulator

The following command selects the 68000 emulator:
> SEL 68000 <CR>

The system responds with the software version number and version date. The
emulator hardware need not be in the system when you SELect it.

NOTE

The 68000 emulator cannot be selected while you are programming a
PROM.

TRA-—-Controls Display of Executed Instructions

The TRA command sets the
program execution.

conditions for displaying trace 1lines during
Memory space designators may be used when defining the
loaddr parameter. However, they may not be used in hiaddr. If a memory
space 1s not designated, the default is to all memory spaces. Here is a
sample 68000 TRA display:

> SYMD -SL ON <CR>
> TRA ALL <CR>
> G MAIN <CR>

MAIN

UP:001000 227C MOVE.L #FO0OOOOQH,A1

PC=001006
DO=0000000F
D4=00000000
A0=00000505
A4=00000000
SSP=00000000

PROG+000006

TL-14

UP:001006 207C

PC=00100C
D0O=0000000F
D4=00000000
A0=00000500
Al4=00000000
SSP=00000000

PROG+00000C
UP:00100C 323C

PC=001010
D0=0000000F
D4=00000000
A0=00000500
A4=00000000
SSP=00000000

MOVE.L

MOVE.W

D1=0000FFFF
D5=00000000
A1=00F00000
A5=00000000
U3SP=00000000

D1=0000FFFF
D5=00000000
A1=00F00000
A5=00000000
USP=00000000

D1=00000004
D5=00000000
A1=00F00000
A5=00000000
USP=00000000

#4H,D1

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

#500H,A0

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

68000 Emulator Specifics Users Parameters, Commanas, wvispiays

PROG+000010

UP:001010 4280 CLR.L DO

PC=001012

D0=00000000
D4=00000000
A0=00000500
A4=00000000

D1=00000004
D5=00000000
A1=00F 00000
A5=00000000

D2=00000000
D6=00000000
A2=00000000
A6=00000000

SSP=00000000 USP=00000000 SR=0004
PROG+000012 ‘
UP:001012 D018 ADD.B (A0)+,DO

PC=001014

D0=00000001
D4=00000000
A0=00000501
A4=00000000

D1=00000004
D5=00000000
A1=00F00000
A5=00000000

D2=00000000
D6=00000000
A2=00000000
A6=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

SSP=00000000 USP=00000000
<BREAK TRACE,ESC>

SR=0000

The lines below each assembly language instruction show the program counter,

the data and address registers, the stack pointers and the status register.
The line above the instruction shows the program 1label or "section +
offset."

selections are in effect, your program
speed, even in those parts of the program
speed is important, but you want to step
use the following TTA command:

Notes and Exceptions. When any TRA
executes at much less than normal
that are not traced. If execution
through part of a program, you can

> EVE 1 A=loaddr hiaddr -C <CR>

This makes the
executing each instruction in the specified range.
range will be executed at full speed if TRA is OFF.

68000 emulator pause and print the register contents after
Instructions outside the

When TRA ALL is set and execution of the user program comes within 10 bytes
of a non-allocated or NOMEMed section of memory, instruction disassembly is
no longer performed. This occurs because the disassembler +tries to read
enough words to disassemble the longest possible instruction. Instruction
execution proceeds normally and breaks if the memory boundary is reached.
The emulator does not use the 68000 status register trace bit (T). The user
has full use of this bit.

If your program contains only absolute sections, the trace display will not
show the '"section + offset" line, even if SYMD -SL is ON. However, labels
are still displayed.

WRT~--~-Writes to Emulator 1/0 Port

The WRT command allows you to write to a memory location as an I/0 port. It
has the same function as the P command, except that WRT always writes to
prototype memory, and does not do a read-back check. A word write to an odd
boundary causes an error.

e TL-15

Parameters, Commands, Displays v 68000 Emulator Specifics Users

REAL-TIME PROTOTYPE ANALYZER

—

You may not use the Real-Time Prototype Analyzer (RPTA) with the 68000
emulator. An error message is issued if you attempt to use the RTPA while
you are using the 68000 emulator.

TRIGGER TRACE ANALYZER (TTA) COMMANDS AND PARAMETERS

The Trigger Trace Analyzer provides real-time tracing and break conditions
for the 68000 emulator running at up to 8MHz.

Memory space designators are allowed as part of the address expression, but
are ignored in the actual programming of the TTA. To reference a particular
memory space, you must use the BUS command.

The Trigger Trace Analyzer Users Manual describes the TTA and its commands.

EVE and BUS Command Parameters

Table 7L-3 shows the bus signal symbols which may be used as parameters for
the BUS command, and for the B parameter of the EVE command. The DISP
command also uses these symbol in its display.

Table TL-3
EVE/BUS Signal Symbols

Symbol i Desecription
AR e TS C T4 oo E IS S CoCE oS- oSS CCoCCEZoSZoERES=mzZSz=mesz=====
UP (*a) i User Program
UD (*a) i User Data
SP (*a) ! Supervisor Program
SD (*a) | Supervisor Data
]
]
U (*a) | any operation occurring in User mode
S (*a) | any operation occurring in Supervisor mode
P (*a) | any operation occurring in Program memory
D (*a) | any Data operation
1
i
INTA i INTerrupt Acknowledge
IPLO - IPL7 | InterruPt Levels
|
1
BY { BYte operation
WD | WorD operation
]
1
RD i ReaD operation
WT | WriTe operation
[}
1
VPA i Valid Peripheral Address
BERR i Bus ERRor
HLT i Halt

(*#a3)—--~The DISP command displays these symbols as part of
the address field instead of the bus signal field.

TL-16 e

68000 Emulator Specifics Users Parameters, Commands, Displays

CONS——-3et Consecutive Events

The EMU and FET parameters are not supported.

DISP---Display Contents of Acquisition Memory

The DISP command displays the contents of the TTA Acquisition Memory. This
memory acquires a record of bus activity that occurred while your program
was running.

Because the 68000 has a prefetch pipeline, and no fetch signal as discussed
under "Special Considerations", the DISP command attempts to disassemble
every word as an instruction, unless it is obviously not code. This ensures
that every word that really is an instruction is disassembled. However, it
also generates superfluous disassembly lines, which should be ignored.

The DISP command also displays the signal symbols shown in Table T7L-3 as
part of its ADDRESS and BUS fields. When an INTA (interrupt acknowledge)
cycle occurs, the notation *¥*: will be displayed in place of an memory space
designator, since the function code lines (FCx) do not show a valid memory
space.

Figure 7L-3 shows a sample display of the following program lines when the
program was run with TRA OFF:

CLR.L DO
MOVE.W #1H,D1
MOVE.L #1000H,AO

> DISP <CR>

ADDRESS DATA 7-PROBE-0 BUS
PROG+000000

SP:003000 4280 CLR.L DO 0000 0000 WD IPLO RD
PROG+000002

SP:003002 323C MOVE.W #1H,D1 0000 0000 WD IPLO RD
PROG+000004

SP:003004 0001 OR.B #7CH,D1 0000 0000 WD IPLO RD
PROG+000006

SP:003006 207C MOVE.L #1000H,A0 0000 0000 WD IPLO RD
PROG+000008 .

SP:003008 0000 OR.B #OH, DO 0000 0000 WD IPLO RD
PROG+00000A

SP:00300A 1000 MOVE.B DO,DO 0000 0000 WD IPLO RD

Fig. T7L-3. Sample DISP display.

Note that the third, fifth, and sixth lines are superfluous. They
result from disassembly on the operands of the other instructions.

e TL=-17

Parameters, Commands,_Displays 68000 Emulator Specifics Users

TS--—-Display Status of TTA Triggers

In a TS display, the "bus" signals may not be identical to the parameters
you enter with a BUS command or the B parameter of the EVE command.
However, the signals displayed are functionally equivalent to the parameters
you specified. The format of the display is as described in the 8500
Trigger Trace Analyzer Users Manual.

When an INTA (interrupt acknowledge) cycle occurs, the notation *¥: will be
displayed in place of a memory space designator, since the function code
lines (FCx) do not show a valid memory space.

Supervisor mode (S) will be inditated any time interrupt acknowledge (INTA)
is shown.

7L-18 e

68000 Emulator Specifics Users 68000 Service Calls

SERVICE CALLS

Service calls (SVCs) allow your program to use many system capabilities of
your 8540, 8550, or 8560. The 68000 emulator supports service calls in all
three modes.

An SVC is invoked with any byte instruction which writes to the address
range specified by the SVC command. The operand of the instruction directs
the system to a specified memory address called the SRB pointer. (The
pointer points to the SRB, the Service Request Block.) The SRB pointer
tells the system where to find the data (stored in the SRB) that informs the
system which service to perform. The SRB pointer and the SRB may be located
in any of the four memory spaces.

Table TL-4 shows the default addresses for the eight SRB pointers. You can
use the SVC command to alter these addresses and their associated port
values to suit your program requirements.

The memory space of the SRB vector can be specified with a memory space
designator in the address parameter of the SVC command. The default memory
space is the value of MEMSP S. If you do not use the SVC command to specify
the SRB vector, the vector defaults to supervisor data space (SD).

Refer to the Command Dictionary of your System Users Manual for syntax and
use of the SVC command.

SVC Address Range

The 68000 uses memory-mapped I1/0. In order for a byte-write instruction to
invoke a Service Call, its address operand (the "port") must be in the
proper SVC address range. This range may be anywhere in memory; however, it
is recommended that the range used be above address 400H. The default
address range is F00000--F00007. You can change this range with the SVC
command .

Multiple memory spaces are allowed for the '"port" parameter in the SVC
command. If memory space designators are omitted, the value of MEMSP M at
the time the SVC command is executed is used. In the SVC command, the least
significant digit of the "port" range will be set to 0 (i.e., OFFF7 will be
rounded to OFFFO0). '

Example. The following command changes the SVC address range to 1000--1007
and causes the SRB vector to start at location FO0O in Supervisor Data space.

> SvC,,SD:F00 1000 <CR>

Then, to invoke SVC1, include the following instructions in your progfam:
MOVE.B DO, 1007H

NOP
NOP

e TL-19

68000 Service Calls 68000 Emulator Specifics Users

Table 7L-4
68000 Service Calls

" Service Call (*a) | Default

SvVC + + + Location of

Number | Mnemonic (¥Db) (¥*c) i Hexadecimal | SRB Pointer

1 i MOVE.B DO, (GEN.L)FO0007H | 13CO00F00007 { €0,C1,C2,C3
| NOP I 4ET1 i
! NOP i 4ET71 H

2 ! MOVE.B DO, (GEN.L)FOO006H | 13CO00F00006 | C4,C5,C6,C7
i NOP i 4ET1 i
i NOP | 4ET1 1

3 i MOVE.B DO, (GEN.L)FO00O005H } 13CO00F00005 |} C8,C9,CA,CB
i NOP 1 UET !
i NOP | 4ET71 !

4 \ MOVE.B DO, (GEN.L)FQO0004H }{ 13CO00F00005 |} CC,CD,CE,CF
i NOP i 4ET71 !
i NOP i 4ET71 '

5 { MOVE.B DO, (GEN.L)FOO0003H | 13CO00F00004 | DO,D1,D2,D3
i NOP i 4ET1]
| NOP i U4ET1 i

6 | MOVE.B DO,(GEN.L)F00002H | 13CO00F00002 | D4,D5,D6,D7
| NOP I 4ET71 i
1 NOP 1 4ET1 i

7 { MOVE.B DO, (GEN.L)F00001H | 13C000F00001 | D8,D9,DA,DB
| NOP I 4ETI |
i NOP I UET1 i

-8 i MOVE.B DO, (GEN.L)FOOQ00H | 13C000F00000 | DC,DD,DE,DF
| NOP 1 U4ET1 i
! NOP i]

BET1

+

+

(*¥*a) The default SVC address range (F00000--F00007) is assumed.

(*b) The MOVE.B instruction is used in this table. However,
any byte-write instruction can be used to invoke an SVC.

(¥c) The 68000-specific assembler directive, GEN.L, generates
a long word address.

NOTE

Include two NOP instructions immediately following the byte-write
instruction. The NOPs fill the 68000 prefetch pipeline so that
other instructions following the SVC will not be lost.

When SVCs are enabled, the addresses used by the SVCs should not
be wused in any write instruction except to invoke an SVC. A read
instruction will not invoke an SVC.

TL-20 e

68000 Emulator Specifics Users 68000 Service Calls

SRB Format

The 68000 emulator uses the LAS (Large Address Space) format for SRBs and
SRB pointers. This format is described in the Service Calls section of your
System Users Manual. Fig. TL-4 illustrates the format of a 68000 SRB
pointer for SVCI1.

co C1 c2 C3

1 5 i) i
! Memory | !
i Space | 24-Bit Address i
| Byte i i
]] i
1 1 [}

Fig. T7L-4., A 68000 SRB pointer located at CO--C3.

Table TL-5 list the value of the Memory Space byte that corresponds to each
memory space. For more information on memory spaces, refer to the heading
"Memory Spaces" under "Special Considerations" later in this section.

Table TL-5
Encoding of the Memory Space Byte

Memory Space Code
current default | 0000
UD: 1 0001
UP: 1 0010
SD: i 0100
SP: i 1000

SVC Demonstration

Figure 7L-5 lists a 68000 program that uses four SVC functions: Assign
Channel, Read ASCII, Write ASCII, and Abort. The program's algorithm is
explained in the Service Calls section of your System Users Manual, which
also demonstrates a version of the program written in 8080A/8085A assembly
language. Using the program in Fig. 7L-5, you can perform a parallel
demonstration with the 68000 B Series Assembler and 68000 emulator.

e TL-21

68000 Service Calls 68000 Emulator Specifics Users

; SSS3S V V CCCCC
HN) v Ve
; SSSSS VvV C DEMONSTRATION: 68000 EMULATOR
; S Vv c
s SSSSS \ cccce
ORG "0COH ;Beginning of SRB vector.

LONG SRB1FN ;SRB1 LAS specification.

LONG SRB2FN ;SRB2 LAS specification.

LONG SRB3FN ;SRB3 LAS specification.

LONG SRBYFN ;SRB4 LAS specification.

LONG SRBS5FN ;SRB5 LAS specification.
;End of SRB vector.

ORG 4OOH ;ySet up SRB areas.
+SRB1 = Assign 'CONI' to Channel O.

SRB1FN BYTE 10H sAssign

BYTE OOH s to Channel 0.
SRB1ST BLOCK 01H :Status returned here.

BLOCK 01H sReserved.

BLOCK 02H s Reserved.

WORD O5H sLength of 'CONI' + <CR>.

LONG CONI ;LAS pointer to 'CONI' + <CR>.
;End of SRB1.

+SRB2 = Assign 'LPT' to Channel 1.

SRB2FN BYTE 10H sAssign
BYTE O1H ; to Channel 1.
SRB2ST BLOCK O1H sStatus reserved here.
BLOCK O1H sReserved.
BLOCK 02H s Reserved.
WORD O4H sLength of 'LPT' + <CR>.
LONG LPT sLAS pointer to 'LPT' + <CR>.

;End of SRB2.

;SRB3 = Read ASCII line from CONI (Channel 0).

SRB3FN BYTE 01H sRead ASCII
BYTE OOH ; from Channel O,

SRB3ST BLOCK 01H ;Status returned here.
BLOCK O1H ;Reserved.
BLOCK 02H ;Byte count returned here.

WORD 100H ;1256 bytes in our buffer.
LONG BUFFER ;LAS pointer to our buffer.
;End of SRB3.

sSRBY = Write ASCII line to LPT (Channel 1).

SRBU4FN BYTE 02H ;Write ASCII
BYTE 01H ; to Channel 1.

SRB4ST BLOCK 01H ;Status returned here.
BLOCK 01H sReserved.
BLOCK 02H ;Byte count returned here.

WORD 100H ;256 bytes in our buffer.
LONG BUFFER ;LAS pointer to our buffer.
;End of SRBA4.

Fig. 7L-5. 68000 SVC demonstration program listing (part 1 of 2).

TL-22 ' e

68000 Emulator

Specifics Users 68000 Service Calls

SRBSFN BYTE
BLOCK

BUFFER BLOCK

CONI ASCII
BYTE

LPT ASCII
BYTE

T es we we

TART ORG
MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BNE
LOOP MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BEQ

ABORT MOVE.B

+SRB5 = Abort (Close all channels and terminate).
1FH sAbort.
OBH ;Reserved.

sEnd of SRBS5.

100H ;0ur I/0 area.
'CONI' ASCII of 'CONI'

ODH ; + <CR>.
'LPT! ;ASCII of 'LPT'
ODH ; + <CR>.
;sEnd of data definitions.

Beginning of executable code.

1000H yEntry point into program.
DO, (GEN.L)OF00007H ;Call SVC1 to
H assign 'CONI'
H to Channel O.
SRB1ST ;Check status to see if all went well,
ABORT +No? Stop everything.
DO, (GEN.L)OF00006H ;Call SVC2 to
s assign 'LPT'
H to Channel 1.
SRB2ST ;Check status to see if all went well.
ABORT sNo? Stop everything.
DO, (GEN.L)OF00005H ;Call SVC3 to read
s a line from 'CONI'
s into the buffer.
SRB3ST ;Check status to see if all went well.
ABORT ;+No? Stop everything.
DO, (GEN.L)OF00004H ;Call SVC4 to write
; a line to 'LPT'
4 from the buffer.
SRB4ST ;Check status to see if all went well.
LOOP ;Yes? Go back to read another line.
+No? Fall through to termination.
DO, (GEN.L)OF00003H ;Call SVC5

NOP ; to do the abort.
NOP
END START yEnd of the program.
Fig. TL-5. 68000 SVC demonstration program listing (part 2 of 2).

This program shows the use of four service calls. The program's
algorithm is explained in the Service Calls section of your System
Users Manual. The program accepts a line of ASCII characters from
the system terminal. Then, when it receives a RETURN character,
the program writes the 1line to the 1line printer and accepts

another
buffered.
is full

line. (On the 8550, output to the 1line printer is

No text is printed until the 8550's line printer buffer

or the program ends.) To terminate the program, enter a

CTRL-Z while the program is waiting for input.

TL-23

68000 Service Calls 68000 Emulator Specifics Users

Figure TL-6 shows another way to code the executable portion of the program.
By inserting the statement MOVE.L #OF00000,A1 at the beginning of the code,
and the block of EQU statements at the end, you can save object code space
and reference the SVCs symbolically.

TL-24

; Beginning of executable code.
L
START ORG 1000H +Entry point into program.
MOVE.L #0F00000,A1 ;Set a register to the SVC
4 trigger location.
MOVE.B DO,SVC1(A1) ;Call SVC1 to
NOP : H assign 'CONI'
NOP ; to Channel O.
TST.B SRB1ST ;Check status to see if all went well.
BNE ABORT ;No? Stop everything.
MOVE.B DO,SVC2(A1) ;Call 3VC2 to
NOP ; assign 'LPT!
NOP H to Channel 1.
TST.B SRB2ST ;Check status to see if all went well.
BNE ABORT yNo? Stop everything.
LOOP MOVE.B DO,SVC3(A1) ;Call SVC3 to read
NOP o a line from 'CONI'
NOP : into the buffer.
TST.B SRB3ST ;Check status to see if all went well.
BNE ABORT sNo? Stop everything.
MOVE.B DO,SVC4(A1) ;Call SVCH4 to write
NOP 5 a line to 'LPT'
NOP s from the buffer.
TST.B SRB4ST sCheck status to see if all went well.
BEQ LOOP yYes? Go back to read another line.
sNo? Fall through to termination.
ABORT MOVE.B DO,SVC5(A1) ;Call SVC5
NOP ; to do the abort.
NOP
;Define SVC symbols.
SvVC1 EQU 7
svc2 EQU 6
SVC3 EQU 5
SvVCu EQU y
1SVC5 EQU 3
END START sEnd of the program..
Fig. T7L-6. Alternate executable code for SVC demonstration program.

68000 Emulator Specifics Users 68000 Special Considerations

SPECIAL CONSIDERATIONS

Some of the characteristics of the 68000 microprocessor greatly affect the
behavior and appearance of several commands; in particular, BK, TRA, and
DISP. These characteristics are discussed in the following paragraphs, and
in much greater detail in the reprints at the back of this section.

Fetching and the Prefetch Pipeline

The 68000 microprocessor has a prefetch pipeline which speeds up the
instruction fetch-decode-execute process. The processor does not, however,
have a fetch signal available. These two factors combine to cause
differences in many of the emulator's displays.

Figure 7L-7 shows a simplified diagram of the pipeline.

1 1
] 1
| Instruction i
' Register i
i i
|
i
v
1]] 1
1] [}]
| | Address |]
i Instruction o > Micro and Nano !
1] 1 1
] | I]
i Decode [QR ——— + Control Stores i
i { Branch | '
i { Select | H
—t——t— +—+
i 1 ALU ~ . ,
i | Function i i I Timing & Switch
i | & Register | Conditionals i | Control Signals
i | Selection | \ /
vV Vv i v
| , |
i i
! Execution Unit i
i i
i H
] 1

Fig. 7L-7. 68000 instruction pipeline block diagram.

The pipeline consists of an Instruction Register, an Instruction Decoder,
and an Execution Unit. The Instruction Register holds the most recently
fetched instruction word. The Instruction Decoder, using the Micro and Nano
Control Stores, decodes the instruction. When the instruction reaches the
Execution Unit, it is executed. ’

e 7L-25

68000 Special Considerations 68000 Emulator Specifics Users

It is the responsibility of the instruction that is executing to ensure two
things before it finishes its execution:

1. that the next instruction word is accessed with sufficient time
for complete decoding by the end of the current instruction;
and

2. that the instruction word following the next instruction is
fetched by the end of the current instruction

Since there is no instruction fetech signal, the only time the emulator knows
that an instruction has been fetched into the instruction pipeline is when
it sees the appropriate values on the bus. The emulator doesn't know
whether the instruction is actually executing from this information.

Interrupts

The 68000 has seven interrupt 1levels. Higher-numbered interrupts have
higher priority. The level 7 interrupt is a non-maskable interrupt (NMI).

Interrupts are controlled by the three interrupt mask bits (I2--I0) in the
Status Register.

When an interrupt request is made, the 68000 compares the 1level of the
interrupt with the interrupt mask. If the new interrupt has a level higher
than the mask setting, the interrupt is recognized. When this occurs, the
68000 has to stack its Program Counter and Status Register so that it can
return to the interrupted task after the interrupt has been processed.

This stacking is done in the following time sequence: First, PC(L) 1is
stacked, then the interrupt is acknowledged. Next, the status register is
stacked, and last, PC(H). Because PC(L) is stacked before the emulator
knows that an interrupt has occurred, this Supervisor Data write always
appears on a DISP display of your program run.

TL-26 e

68000 Emulator Specifics Users b8UUU Speclal lonsiaeravivus

Program example. The program example in Fig. T7L-8 is used to illustrate the
effects of the 68000 characteristics previously described.

The program was loaded beginning at address 3000H. After moving values into
three registers, the program enters the LOOP and executes it twice. The two
NOPs are then executed, followed by the branch to SELF. Execution of this
instruction would continue indefinitely, but breakpoint 1 was set at SELF
before the program was executed.

CLR.L DO

MOVE.W #1H,D1

MOVE.L #1000H,A0Q

MOVE.L #2000H,A1
LOOP MOVE.W A,B

MOVE.L (A0)+, (A1) +

DBF D1,LOCP
NOP.
NOP

SELF BT SELF

A BLOCK 02H

B BLOCK 02H

Fig. 7TL-8. Program example.

Figures 7L-9 and 7L-10 use the DISP command to show the contents of the TTA
acquisition memory for this program run with TRA OFF and TRA ON,
respectively.

Refer to the following comments while examining these two figures:

Each of the superfluous disassembly lines 1is crossed out. These 1lines
resulted from disassembly of the operand(s) in the preceding instruction.
Boxes are drawn around the operands in the object code field, and arrows
show where they came from in the preceding instruction.

Data reads and data writes from A, B, and the MOVE.L (A0)+,(A1)+ instruction
are interleaved with fetches from the instruction stream.

The effects of prefetching appear in the figures. Notes in each figure
indicate where the instructions start, and which ones were actually
executed.

At the end of both figures, you can see the next PC(L) stacked in SD' space
before the interrupt acknowledge to the break interrupt occurred. In Figure
7L-10, where TRA is ON, the display shows that PC(L) was also stacked each
time an interrupt to print a trace line occurred.

The run with TRA ON terminated two instructions before the run with TRA OFF,
because of the decrease in execution speed with TRA ON. When TRA was OFF,
the two additional instructions reached the Execution Unit before the break
interrupt occurred. Note that with TRA ON, the instruction on which the
breakpoint was set was not executed.

e TL=27

68000 Special Considerations 68000 Emulator Specifics Users

> DISP
ADDRESS DATA 7-PROBE-0 BUS
DEMO+000000
SP:003000 4280 CLR.L Do 0000 0000 WD IPLO RD-—iT2ummn
starts
DEM0+000002
SP:003002 323C MOVE.W #1H,D1 0000 0000 WD IPLO RD""Sﬁx“m"
DEMO+000004
SP:003004 |0001 -BR-B—#7E€HBY 0000 0000 WD IPLO RD
prefetch of operand, not an instruction
one prefetch because this is a 2-word instruction
DEMO+000006
SP:003006 207C MOVE.L #1000H,A0 0000 0000 WD IPLO RD-—-gﬁgﬂbn
DEMO+000008
SP:003008 [0000] BR-B—0CH;DPO 0000 0000 WD IPLO RD
DENOL00000d | =T ot orng 1 TS e ction
SP:00300A [1000| ME¥E-B—bBo+bo6- 0000 0000 WD IPLO RD
DEM0O+00000C
SP:00300C 227C MOVE.L #2000H,A1 0000 0000 WD IPLO RD<-—-3:gmmn
DEMO+00000E
SP:00300E [0000| -6R<-B—#0HDo6— 0000 0000 WD IPLO RD
-=-— prefetch of operand
DEMO+000010
SP:003010 {2000| -MoVE-L—bPosbo— 0000 0000 WD IPLO RD
LOOP Beginning of LOOP tion

SP:003012 31FA MOVE.W 3024H,3026H 0000 0000 WD IPLO RD <= instruction

. starts

DEMO+0000 14
SP:003014 10010

PC relative source
10 = displacement

DEMO+000016
SP:003016 3026
absolute

destination

0000 0000 WD IPLO RD

MOYEMW——~—AEDO- 0000 0000 WD IPLO RD

A
SP:003024 oooo}

data read of operand

0000 0000 WD IPLO RD

DEM0+000018

SP:003018 22D8 MOVE.L 0000 0000 WD IPLC RD -=— instruction

starts

(A0)+, (A1) +

B } data write

SD:003026 0000 0000 0000 WD IPLO WT
DEMO+0000 1A

SP:00301A 51C9 LBF D1,3012H 0000 0000 WD IPLO RD-=— mstruction

starts

0000 0000 WD IPLO RD
0000 0000 WD IPLO RD
0000 0000 WD IPLO WT
displacement 0000 0000 WD IPLO WT

to return
to LOOP

SD:001000 1772
SD:001002 2B73 data resulting
SD:002000 1772 [from MOVE.L
SD:002002 2B73

DEMO+00001C

SP:00301C |FFF6| -EMF— 000C 0000 WD IPLO RD

3970-1

Fig. 7L-9. Example program run with TRA OFF (part 1-of 2).

7L-28 @

68000 Emulator Specifics Users

68000 Special Considerations

interrupt acknowledge
is issued.

ADDRESS DATA 7-PROBE-0 BUS
LOOP
SP:003012 31FA MOVE.W 3024H,3026H 0000 0000 WD IPLO RD"—gxgmwn
DEMO+000014
SP:003014 0010 BRB—H#26H(AG 0000 0000 WD IPLO RD
DEMO+000016
SP:003016 3026 MOVEW—=FCAODE 0000 0000 WD IPLO RD
A
SP:003024 0000 0000 0000 WD IPLO RD
DEMO+000018
SP:003018 22D8 MOVE.L (AQ0)+,(A1)+ 0000 0000 WD IPLO RD == instruction
} repeat of LOOP, as above starts
B
SD:003026 0000 0000 0000 WD IPLO WT
DEMO+00001A
SP:00301A 51C9 DBF D1,3012H 0000 0000 WD IPLO RD == instruction
SD:001004 2B70 0000 0000 WD IPLO RD
SD:001006 2BT71 0000 0000 WD IPLC RD
SD:002004 2B70 0000 0000 WD IPLO WT
SD:002006 2BT71 0000 0000 WD IPLO WT
DEM0+00001C
SP:00301C FFF6 EMTH 0000 0000 WD IPLO RD
LOOP
SP:003012 31FA ~a— prefetch of LOOP, 0000 0000 WD IPLO RD
not executed, or
disassembled; flushed
DEMO+00001E
SP:00301E 4E71 NOP 0000 0000 WD IPLO RD
DEMO+000020
SP: 003020 U4E71 NOP -=— this NOP causes 0000 0000 WD IPLO RD
this prefetch
SELF «#— breakpoint was set here (BK 1 SELF) - this fetch triggers this interrup.t
SP:003022 60FE BT 3022H 0000 0000 WD IPLO RD/ BUtEy b neh
is already executing

. so the target
A B oranch atiove (BT) causos o pratarcned
SP:003024 oooo} this to be flushed. 0000 0000 WD IPLDRD % ‘
SELF
SP:003022 60FE} BT 3022H not executed 0000 0000 WD IPL7 RD
A prefetched by first BT
SP:003024 0000 0000 0000 WD IPL7 RD
SD:FFFFFE 3022 == stack of next PC before 0000 0000 WD VPA IPL7 WT

3970-2

Fig.

TL-9.

Example program run with TRA OFF

(part 2 of 2).

TL-29

68000 Special Considerations 68000 Emulator Specifics Users

> DISP
ADDRESS DATA 7-PROBE-0 BUS
DEMO+000000
SP:003000 4280 CLR.L DO 0000 0000 WD IPLO RD-<e— executed
DEMO+000002
SP:003002 323C MOVE.W #1H,D1 0000 0000 WD IPL7 RD
DEMO+OOOOOM aperand not executed
SP:003004 [0001 0000 0000 WD IPL7 RD
SD:FFFFFE 3002«;;8;';‘22:%332? causad 0000 0000 WD VPA IPL7 WT
DEMO0O+000002, execution resumes
SP:003002 7 323C MOVE.W #1H,D1 this time 0000 0000 WD IPLO RD-=— executed
i
DEMO+000004 E:;:::"
SP:003004 0001 -HOR-B—#7CHD+ 0000 0000 WD IPL7 RD
DEMO+000006
SP:003006 207C 0000 0000 WD IPL7 RD
flushed by interrupt
DEMO+000008
SP:003008 0000 0000 0000 WD IPL7 RD
SD:FFFFFE 3006 ==— stack PC(next) 0000 0000 WD VPA IPLT7 WT
DEMO+000006, execution resumes
SP:003006 © 207C MOVE.L #1000H,A0 0000 0000 WD IPLO RD ==— executed
DEMO+000008
SP:003008 |0000| -6R=B—#oHD6- 0000 0000 WD IPLT RD
-=— prefetch of operand
DEMO+00000
SP:00300A [1000] MEVE-B—bBo+D6- 0000 0000 WD IPL7 RD
DEMO+00000C
SP:00300C 227C 0000 0000 WD IPL7 RD
DEMO+00000E flushed by interrupt
SP:00300E 0000 0000 0000 WD IPLT7 RD
SD:FFFFFE 300C -=— stack of PC(next) 0000 0000 WD VPA IPLT WT
DEMO+00000C
SP:00300C “ 227C MOVE.L #2000H,A1 0000 0000 WD IPLO RD-=— executed
DEMO+00000E
SP:00300E (0000| BR~B—#6H:DO 0000 0000 WD IPL7 RD
DEMO+000010 -w— prefetch of operand
+
SP:003010 pR0O00} MOVE-+L—DOD6- 0000 0000 WD IPLT7 RD
LOQOP
SP:003012 31FA 0000 0000 WD IPLT RD
flushed by interrupt
DEMO+0000 14
SP:003014 0010 0000 0000 WD IPLT RD
SD:FFFFFE 3012-e— stack PCinext) 0000 0000 WD VPA IPL7 WT

3970-3

Fig. T7L-10. Example program run with TRA ON (part 1 of 4).

TL-30 e

68000 Emulator Specifics Users

68000 Special Considerations

ADDRESS DATA

LOOP T
SP:003012 31FA MOVE.W 3024H,3026H

displacement

DEMO+000014
SP:003014 [0010] -BR-B—H26HAD>-
DEMO+000016

SP:003016 MOVE-W——artAb)DE-

A } data from
SP:003024 0000/ e

DEMO+000018
SP:003018 22D8 MOVE.L (AO0)+,(A1)+

interleaved prefetch, flushed

B } data from
SD:003026 0000/ fwrite)

DEMO+00001A
SP:00301A 571CQ~=— flushed
SD:FFFFFE 30 18- stack PC(next)

DEMO+000018
SP:003018 22D8 MOVE.L (AQ)+,(A1)+

DEMO+00001A
SP:00301A
SD:001000
SD:001002
SD:002000
SD:002002

51C9 DBF

1772

2B73 | data
transfer

1 77 2 | from
2B73

D1,3012H

interleaved

prefetches
DEM0O+00001C

SP:00301C [FFF6 {QHL4=“/////////////

SD:FFFFFE 30 7A==—stack PCtext)

DEMO+00001
SP:00301A#51C9 DBF D1,3012H
DEMO+00001C

SP:00301C [FFFG] EME—F

displacement

LOOP
SP:003012 31FA

prefetch, not executed
DEMO+000014
SP:003014 0010
SD:FFFFFE 3012 <e— stack PC(next)

7-PROBE-0

BUS

Beginning of LOOP execution

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000
0000 0000

0000 0000

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

0000 0000
0000 0000

0000 0000

0000 0000

0000 0000

0000 0000
0000 0000

WD IPLO RD-e— executed
WD IPL7 RD
WD IPLT7 RD
WD .IPL7 RD
WD IPL7 RD
WD IPL7 WT

WD IPLT7 RD
WD VPA IPL7 WT

WD IPLO RD ==— executed

WD IPLT RD
WD IPL7 RD
WD IPL7 RD
WD IPL7 WT
WD IPL7 WT

WD IPLT RD
WD VPA IPL7 WT

WD IPLO RD ==— executed
WD IPLT7 RD
WD IPLT7 RD

WD IPL7 RD
WD VPA IPL7 WT

3970-4

Fig. 7L-10.

4

Example program run.with TRA ON (part 2 of 4).

TL-31

68000 Special Considerations

68000 Emulator Specifics Users

ADDRESS DATA
LOOP
SP:003012 31FA

DEMO+000014
SP:003014 0010

DEMO+000016
SP:003016 3026
A

SP:003024 0000

DEMO0+000018
SP:003018 22D8

B
SD:003026 0000

DEMO+0000 1A
SP:00301A 51C9
SD:FFFFFE 3018

DEM0+000018
SP:003018 22D8

DEMO+0000 1A
SP:00301A
SD:001004
SD:001006
SD:002004
SD:002006

51C9
2BT0
2B71
2B70
2B71

DEMO+00001C
SP:00301C FFF6
SD:FFFFFE 301A

DEMO+00001A
SP:00301A 51C9

DEMO0+00001C
SP:00301C FFF6

LOOP

SP:003012 31FA

7-PROBE-0
)
MOVE.W 3024H,3026H 0000 0000
SR B—26HAE> 0000 0000
-MOVEW—={AE DO 0000 0000
0000 0000
MOVE.L (AO)+,(A1)+ 0000 0000
0000 0000
0000 0000
0000 0000
L repeat of LOOP

MOVE.L (A0)+,(A1)+ 0000 0000
DBF D1,3012H 0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
EMTF 0000 0000
0000 0000
DBF D1,3012H 0000 0000
EMTF 0000 0000

prefet:!;)of;aage;:;
} :::;fne bBra;\c!l\‘snot taken) 0000 0000

BUS

WD

WD

WD

WD

WD

WD

WD
WD

WD

WD
WD
WD
WD
WD

WD
WD

WD

WD

WD

IPLQO RD == executed

IPLT RD

IPL7 RD

IPLT RD

IPLT7 RD

IPL7 WT

IPLT RD
VPA IPLT WT

IPLO RD-=— executed

IPLT7 RD
IPL7 RD
IPL7 RD
IPLT WT
IPLT WT

IPLT RD
VPA IPL7 WT

IPLQO RD ==— executed

IPL7 RD

IPL7 RD

3970-5

TL-32

Fig. T7L-10.

Example program run with TRA ON (part 3 of 4).

68000 Emulator Specifics Users _ 68000 Special Considerations

ADDRESS DATA T7-PROBE-0 BUS
DEMO+00001E
SP:00301E 4ET1 NOP 0000 0000 WD IPL7 RD
prefetch of next
two words,
DEMO+000020 not executed
SP:003020 4ET71 NOP 0000 0000 WD IPL7 RD
SD:FFFFFE 301E ==— stack PCinext) 0000 0000 WD VPA IPLT7 WT
DEMO+00001E
SP:00301E Z 4E71 NOP this one executed 0000 0000 WD IPLO RD ==— executed
DEMO+000020
SP:003020 U4E71 NOP prefetch 0000 0000 WD IPL7 RD
SELF)
SP:003022 60FE BT 3022H prefetch ot 0000 0000 WD IPL7 RD
SD:FFFFFE 3020——stackof = = CCoN breakpoint 560000 0000 WD VPA IPL7 WT
would have been at SELF, so execution
taken if break is not resumed after
had not occurred. the trace is finished.
3970-6

Fig. T7L-10. Example program run with TRA ON (part 4 of 4),.

Memory Spaces

The 68000 supports four memory spaces: User Data (UD), User Program (UP),
Supervisor Data (SD) and Supervisor Program (SP). You may partition memory,
using the MAP command, so that certain address blocks are accessed only for
a particular type of reference. The default is for all of memory to be
accessible by all four types of memory spaces.

The processor determines the type of reference by examining the three
Function Code pins (FC2--FC0). The reference made based on the encoding of
these three pins is shown in Table T7L-6.

Table 7L-6
Classification of Memory Space References

Function Code :
FC2 FC1 FCO Type of Reference

T T e L T T
- e

(Reserved)

User Data

User Program
(Reserved)

(Reserved)

Supervisor Data
Supérvisor Program
Interrupt Acknowledge

—_ = L OO0 0 0
-_ e OO0 00
PRGN o ST I g JESEE WY b

 mm e e - e = -

e TL-33

68000 Special Considerations 68000 Emulator Specifics Users

Memory Space Partitioning

The 68000 émulator supports memory sSpace partitioning. You must have the
Memory Allocation Controller (MAC) option installed in your system in order
to use memory partitioning in program memory. If your prototype supports
memory partitioning, you do not need the MAC option to access memory
partitions.

This discussion includes an example program that shows the kind of
statements you need to include in your program to use partitioned memory
spaces. The example program shows you how to define the 68000 interrupt
vectors and interrupt handlers, how to start a User program, and how to
return to the Supervisor from the User's routine.

After the program has been linked and loaded as described in this example,
it uses the four memory spaces:

e Supervisor Program (SP) space contains the reset vector and
interrupt handlers, starts the User job, and exits when the User
job is finished.

e Supervisor Data (SD) space contains the interrupt vectors, the SRB
used by the exit SVC in the Supervisor Program, and the Supervisor
stack.

® User Program (UP) space contains a program that opens a channel,
writes to it, and returns to Supervisor control.

e User Data (UD) space contain the SRBs and other data used by the
SVCs in the User Program. It also contains the User stack.

e The example program ends with the SVC trigger definitions which are
available to all memory spaces (non-partitioned).

TL-34 @

68000 Emulator Specifics Users . 68000 Special Considerations

The Example Program. A listing of the example program source, called
MEMPAR.SRC, is shown in Figure 7L-11. There are many other ways to code
routines that perform these tasks;. but this example will help you understand
what must be included. Comments within the code explain what the program is
doing. : ‘

’
,
;+ This example program shows the use of memory partitioning.
’
1

LIST DBG sPass symbols to the linker .
GEN.L ;Default to long addresses

—————=Define the vectors. The locations of the reset and interrupt
vectors in memory are shown in Table TL-7,

;y ————-Define the reset vector.
s (The reset vector is in Supervisor Program space.)

SECTION RESET.VEC

ADDRESS STACK ;Initial SSP
ADDRESS START syInitial PC
; =—————=Define the interrupt vectors.
; (The rest of the vector table is in Supervisor Data space.)

SECTION INTERRUPT.VEC

ORG 08H +This is where the Bus Error vector
V.BUS.ERR ADDRESS BUS.ERR H starts.
V.ADDRESS.ERR ADDRESS ADDRESS.ERR
V.ILLEGAL.INS ADDRESS ILLEGAL.INS

V.ZDIVIDE ADDRESS ZDIVIDE
V.CHK.INS ADDRESS CHK.INS
V.TRAPV.INS ADDRESS TRAPV.INS ,
V.PRIVILEGE ADDRESS PRIVILEGE =
V.TRACE.BIT ADDRESS TRACE.BIT o
V.EMT.A ADDRESS EMT.A
V.EMT.F ADDRESS EMT.F
BLOCK 50H sReserve space for vectors between
; V.EMT.F and V.TRAP.INS.
V.TRAP.INS BLOCK O4H ;Trap O set by Supervisor Program.
BLOCK 3CH sReserve space for other vectors.
V.SVC1 ADDRESS OPEN.SRB sDefine the SRB vectors.
V.3VC2 ADDRESS PRINT.SRB
V.3SVC3 ADDRESS EXIT.SRB

Fig. 7L-11. Memory partitioning example program (part 1 of 5).

e - TL=35

68000 Special Considerations

68000 Emulator Specifics Users

-

o we we wo wo

SECTION SUPER.PROG

——--=The following section will be linked to run
in Supervisor Program memory.

; =——----Define the interrupt handlers.

BUS.ERR EQU $;> Normally,

ADDRESS.ERR EQU $;> these statements

ILLEGAL.INS EQU $ +> would reference

ZDIVIDE EQU $;> the appropriate

CHK.INS EQU $;> interrupt handlers.

TRAPV.,INS EQU $;> Since this is just

PRIVILEGE EQU $ +> an example of

TRACE.BIT EQU $ 3> how they are set up,

EMT.A EQU $ +> we Jjust do the

EMT.F EQU $ s> dummy NOP which follows.
NOP ;Dummy routine for this example.
RTE

Fig. 7L-11. Memory partitioning example program (part 2 of 5).

TL=-36

68000 Emulator Specifics Users 68000 Special Considerations

§ ————— Start of executable code.

4 (Note: SSP and Supervisor mode must have been set by Reset.)
’

START EQU $

——-———Prepare to start User job.

Since this program will be linked to run in partitioned
memory spaces, the addresses will have eight additional
high-order bits (two hex digits) appended:

UD: space starts at 01000000H
UP: space starts at 02000000H
SD: space starts at O4000000H
SP: space starts at 08000000H

The assembler will be able to strip off these extra bits when
the operand is an address field, but it does not know whether

an immediate value should be 24 or 32 bits. So you must use

the BITS assembler directive to explicitly remove the extra bits.

Ws we we We We WE WE WP We we We We W We we we w

MOVE.L #BITS(SUSPEND,0,24),V.TRAP.INS ;Put return address
s in TRAP vector,
4 taking low 24 bits.

LEA #USER.STACK,A1 ;Define User stack.
;Here, the assembler knows it's
MOVE A1,USP ’ looking at an address.
PEA USER.JOB sPush User start address on stack.
MOVE.W #0700H,-(AT) sPush User SR on stack.
RTE yStart User job.
; ——=—=—=— <K<K A TRAP O instruction by user causes a return to this point.>>>>
SUSPEND EQU $
MOVE.B DO,SVC3 sInvoke the Exit SVC.
NOP
NOP
;y —=---End of Supervisor Program execution.
3y ———==Supervisor Data memory space definition.
SECTION SUPER.DATA
EXIT.SRB EQU $
BYTE 1AH s1A is the Exit SVC function code.
’
ORG /2 yStart the stack on an even address.
BLOCK 4OOH sReserve supervisor stack space.
STACK EQU $

-e

Fig. TL-11. Memory partitioning example program (part 3 of 5).

e TL=-37

68000 Special Considerations

68000 Emulator Specifics Users

3y ————-User Program section.
SECTION USER.PROG

USER.JOB MOVE.B DO,SVC1
NOP
NOP
MOVE.B DO,SVC2
NOP
NOP
TRAP #0

sInvoke SVC1 to open channel.
sInvoke SVC2 to write to channel.

;Trap back to Supervisor state.

—————=User Data section.

“we woe we we we

SECTION USER.DATA

OPEN.SRB EQU $
BYTE 50H
BYTE 01H
BYTE OOH
BYTE = OOH

WORD 0000H
WORD 0000H

LONG OPEN.STRNG

;Open for write to

: Channel 1.

yStatus.

s Reserved.

sNot used.

sNot used.

;Pointer to 'CONO' string.

PRINT.SRB EQU $
BYTE 02H sWrite ASCII and wait
BYTE O1H ; on Channel 1.
BYTE OOH sStatus.
BYTE OCH s Reserved.
WORD 0000H sNot used.
WORD 80H sBuffer length.
LONG PRINT.STRNG sPointer to string.
OPEN.STRNG ASCII 'CONO'! ;ASCII of 'CONO', plus
BYTE ODH 4 a carriage return.
PRINT.STRNG ASCII 'MEMORY PARTITIONING EXAMPLE' +sASCII of the printed
BYTE ODH s string, plus carriage return.
ORG /2 ;Start User stack on an even byte.
BLOCK 4OOH +Reserve User stack space.

USER.,STACK EQU $

Fig. 7L-11. Memory partitioning example program (part 4 of 5).

TL-38

68000 Emulator Specifics Users

68000 Special Considerations

we we we we woe wo w»

We'll want these to be in all memory spaces (non-partitioned).

—=-==SVC trigger definitions,

SECTION SVCTRIG

SVC8 BLOCK 1
SVCT BLOCK 1
SVC6 BLOCK 1
SVC5 BLOCK 1
SvVCy BLOCK 1
SVC3 BLOCK 1
SvVC2 BLOCK 1
SVC1 BLOCK 1
END START
Fig. 7L-11. Memory partitioning example program (part 5 of 5).

TL-39

68000 Special Considerations 68000 Emulator Specifics Users

The memory location assigned to each exception vector by the 68000 is listed
in Table 7L-7.

Table 7L-7
68000 Exception Vector Assignment

Vector Number | Address (Hex) | Memory Space | Vector Assignment

! 000 ' SP | Reset: Initial SSP (*a)
° T 004 T SP T Reset: Initial PC (*a)
2 ; 008 ? SD ? Bus Error
3 ; 00C ? SD T Address Error
4 i 010 E SD { Illegal Instruction
5 ? 014 ? SD ? Zero Divide
6 ? 018 ? SD ? CHK Instruction
7 T 01¢C ? SD ? TRAPV Instruction
8 T 020 ; SD ? Privilege Violation
9 ? o024 ? SD { Trace
10 T 028 T SD T Line 1010 Emulator
11 ; 02c ? SD ? Line 1111 Emulator
12 (*b) ? 030 i SD ? (Unassigned, Reserved)
13 (*Db) ; 034 ; SD ; (Unassigned, Reserved)
14 (¥*b) T 038 ; SD ? (Unassigned, Reserved)
15 E 03C ; SD { Uninitialized Interrupt Vector
T e ;
16-=23 (*b) + + SD i (Unassigned, Reserved)
i O5F i i
24 ? 060 ? SD ? Spurious Interrupt (¥c)

TL-40 e

68000 Emulator Specifics Users

68000 Special Considerations

Table T7L-T7 (con't)

Vector Number |

- - - - > " - UP P P e M N W S P P G D D e St D WY i D T S D P WP D P W G W A M T A G P M W P WP . AP W W v M - P
-ttt it s i s it i

Address (Hex)

Memory Space

Vector Assignment

25 ! 064 ! SD | Level 1 Interrupt Autovector
26 ! 068 ' SD i Level Interrupt Autovector
27 i 06C i SD i Level Interrupt Autovector
28 | 070 i SD | Level Interrupt Autovector
29 i 074 ' SD i Level Interrupt Autovector
30 ! 078] SD | Level Interrupt Autovector
31 | 07C i SD 1 Level 7 Interrupt Autovector
i 080 d i
32-=47 + + SD i TRAP Instruction Vectors (*d)
i OBF | i
! 0Co i i
48——63 (*b) + + SD | (Unassigned, Reserved)
! OFF ! i
i 100 i i
64--255 + + SD i User Interrupt Vectors
i 3FF i i
(*a) The reset vector (0) requires four words, unlike other vectors which
only require two words. It is located in Supervisor Program (SP) space.
(¥b) Vectors 12, 13, 14, 16--23, and 48--63 are reserved by Motorola for
future enhancements. No user peripheral devices should be assigned
to these numbers.
(¥c) The spurious interrupt vector is taken when a bus error is indicated
during interrupt processing.
(*d) TRAP #n uses vector number 32+n.

@ TL-41

68000 Special Considerations 68000 Emulator Specifics Users

The remainder of this discussion steps you through the procedure you follow
to assemble, link, allocate memory, load and run the example program.

Assembling and Linking the Program. Assemble MEMPAR.SRC with the following
command :

> ASM MEMPAR.OBJ, ,MEMPAR.SRC <CR>

Assume that you have a linker command file called MEMPAR.LNK which contains
the following linker command options:

-1 f

-d

-0 MEMPAR.OBJ

-o MEMPAR.LOA

-m RVEC=08000000-08000007

-m IVEC=04000000-040003FF

-m SVCTRAP=00F00000~-00F00007
-m UD=01000000-0100FFFF

-m UP=02000000-0200FFFF

-m SD=04000400-0400FFFF

-m SP=08000008-0800FFFF

-L SEC=RESET.VEC BASE RVEC
-L SEC=INTERRUPT.VEC BASE IVEC
-L SEC=SVCTRIG BASE SVCTRAP
-L SEC=SUPER.CODE BASE SP

-L SEC=SUPER.DATA BASE SD

-L SEC=USER.CODE BASE UP

-L SEC=USER.DATA BASE UD

Link using this command:

> LINK -C MEMPAR,LNK <CR>

The linker options are explained in the following paragraphs:

The -1 f option gives you a full 1linker 1listing, and -d puts symbol
information for symbolic debug in the 1load module. MEMPAR.OBJ and
MEMPAR.LOA are the names of the object module from the assembler, and the
load module output by the linker, respectively.

The -m option assigns logical memory names to blocks of program memory.
Here, RVEC 1is the block in Supervisor Program space for the reset vector;
IVEC is the block in Supervisor Data space for the exception vectors; and
SVCTRAP is the block for the SVC trigger locations. When the program is
loaded, SVCTRAP will be in the default memory space as selected by the

MEMSP S command.

The names UD and UP are assigned to two 64K blocks of memory. The first 1is
in User Data space and the second in User Program space. SD is the block
starting after the IVEC block in Supervisor Data space. SP starts after the
RVEC block in Supervisor Program space. '

TL-42 e

68000 Emulator Specifics Users 68000 Speciali rLonsiueravivuo

The -L option locates the program sections in the memory blocks just
defined. Since there is only one section in each memory block, you can use
the BASE parameter. This causes each section to be located at the beginning
of 1its memory block. If there was more than one section in a memory block,
you would used the RANGE parameter to locate those sections somewhere within
the desired block.

Allocate Memory. You must allocate memory to load and execute the program in
mode 0. Enter the following command line:

> AL UD:0 1FFF ; AL UP:0 1FFF ; AL SD:0 1FFF ; AL SP:0 1FFF ; AL OF00000 <CR>

You can check the memory allocations by entering the AL command with no
parameters:

> AL <CR>

00000000 - O0000OFFF UD:
00000000 - O00000FFF ... UP:
00000000 - O0000OFFF SD: ...
00000000 = O0000OFFF SP:
00001000 - O00001FFF UD:
00001000 - O00001FFF ... UP:
00001000 - O00001FFF SD: ...
00001000 - O00001FFF SP:
00F 00000 OOFOOFFF ~ UD: UP: SD: SP:

9 BLOCK(S) ALLOCATED 23 BLOCK(S) FREE
Each of the four memory spaces has two blocks allocated to it exclusively.
The block used for the 3SVC trigger locations has been allocated to all four
memory spaces.

Now you can load the program:

> LO MEMPAR.LOA <CR>

The processor must be in Supervisor mode to start running the program. Use
the RESET command to set Supervisor mode and put the start address in the
reset vector.

> RESET <CR>
Start program execution with the G command:

> G <CR>
MEMORY PARTITIONING EXAMPLE
>

Program execution begins at the label START in the Supervisor Program. The
Supervisor starts the User job. The User job opens a channel to the system
terminal and prints the string "MEMORY PARTITIONING EXAMPLE." The User then
returns control to the Supervisor, which exits, and control returns to the
operating system.

e TL-43

68000 Special Considerations 68000 Emulator Specifics Users

The 68000 STOP Instruction

In Mode 0. A break is always generated when a STOP instruction 1is executed
in mode O. The <BREAK STOP> message and the registers are displayed, and
PC(next) points to the instruction after the STOP.

With TRA ON. If TRA is ON, a STOP instruction will cause a break in all
three modes.

In Mode 1 or 2 with TRA OFF. When the 68000 emulator is running in mode 1 or
2 with TRA OFF and encounters a STOP instruction, it stops and waits for an
interrupt. However, if a system interrupt occurs instead of a user
interrupt, a break is generated, and the registers and <BREAK STOP> message
are displayed. If you want to execute the STOP again, you must adjust the
PC, which is pointing to the instruction after the STOP. This can be
accomplished with a command like, "G PC-U",

In addition, since these system interrupts are wusually Kkeyboard or timer
interrupts, you can avoid them (1) by not typing on the keyboard while the
emulator is running, and (2) by using the TTA timing options rather than the
"CLOCK command.

If a user interrupt occurs after a STOP break, it will still be latched, and
will be honored at the next G command.

NOTE

The preceding paragraphs assume that jumper J2144 on the EMU 2
board is in its normal position. In the optional position, a STOP
instruction always generates a break. Refer to the subsection,
"Jumpers", in this section for further information.

When an Interrupt Occurs Near a STOP. When the emulator is running with TRA
OFF, and breaks because of a breakpoint, or a TTA, SVC, or MAC interrupt in
the vicinity of a STOP instruction, the STOP will not be detected. Because
of this, the 68000 emulator does not adjust the PC when a STOP is detected.

TL-4Y4 e

68000 Emulator Specifics Users 68000 Jumpers

JUMPERS

The 68000 Emulator Processor Module and Prototype Control Probe have several
user-selectable configuration Jjumpers. The following paragraphs describe
the functional characteristics of each of these jumpers. All jumpers are in
the "normal" position (1-2) when shipped from the factory. These jumpers
affect the operation of the emulator in all three emulation modes unless
otherwise indicated.

EMU 1 BOARD

P1080---Emulator Halt Control Selector

After a 68000 HALT condition occurs (double bus error or double address
error), P1080 determines whether control returns to the operating system, or
remains with the prototype.

In the normal position (1-2), control is returned to the system in all three
emulation modes.

In the optional position (2-3), control is returned to the system only in
mode O. In modes 1 and 2, control remains with the prototype. Since the
microprocessor must exit the halted condition, the system will hang wunless
the prototype circuitry resets the microprocessor.

EMU 2 BOARD

J2144——~Break Cycle Control Selector

NOTE

EMU 2 must be removed from your development system to access
J2144,

J2144 controls the break cycle of the emulator after the emulator executes a
STOP instruction.

In the normal position (1-2), when the emulator is running in emulation mode
0, and a STOP instruction is executed, the emulator will break and return
control to the operating system.

In the optional position (2-3), the emulator will always break and return
control to the operating system when a STOP instruction is executed.

e TL-45

68000 Jumpers 68000 Emulator Specifics Users

NOTE

When J2144 is in its normal (1-2) position and the emulator is
operating in emulation mode 1 or 2, the system will appear to
hang. You must type CTRL-C or issue a prototype interrupt, to
return control to the operating system.

INTERFACE BUFFER BOARD
The Buffer board contains six configuration jumpers. To access these

jumpers, you must perform the Prototype Control Probe Assembly/Disassembly
procedure described in the 68000 Emulator Service Manual.

P1---Data Transfer ACKnowledge (DTACK) Delay

P1 inserts or removes a delay of the prototype's Data Transfer ACKnowledge
(DTACK) to the 68000 microprocessor when the emulator is in mode 1.

NOTE

The configuration of P1 depends on the configuration of jumpers
J1045 and J2045 on the Mobile Microprocessor board. These jumpers
are discussed later in this section.

In the normal position (1-2), the prototype's DTACK is delayed at the rate
determined by J1045 and J2045. This prevents overdriving of the program
memory's access time.

In the optional position (2-3), J1045 and J2045 are bypassed, so that the
prototype returns DTACK without delay.

NOTE

When P1 is in the optional (2-3) position, data may be invalid or
lost if program memory is accessed faster than its time
limitations allow.

P2 and P3-—-Prototype Bus Arbitration Control

P2 and P3 determine when the prototype is allowed to control the 68000 bus.

In the normal position (1-2), the prototype's Bus Request and Bus Grant
Acknowledge signals to the 68000 microprocessor are disabled whenever the
emulator returns control to the operating system.

TL-46 e

68000 Emulator Specifics Users 68000 Jumpers

In the optional position (2-3), the prototype's Bus Request and Bus Grant
Acknowledge signals are allowed to request and hold the 68000 bus, even when
the emulator has started its Dump and Restore, and has returned control ¢to
the operating system.

NOTE

In the optional (2-3) positions for P2 and P3, the system may
hang. To return to normal operation, you must release the bus.

P6—---Address Strobe Control

P6 determines when the 68000 microprocessor address strobe is driven to the
prototype circuit.

In the normal position (1-2), the 68000 microprocessor address strobe 1is
driven in all cycles except: (1) during an emulator Dump and Restore, and
(2) during an interrupt acknowledge of a Non-Maskable Interrupt (NMI) issued
by the emulator.

In the optional position (2-3), the 68000 microprocessor address strobe is

driven in all cycles except during an interrupt acknowledge of an NMI from
the emulator.

P7---DTACK Timeout Control

P7 controls how the emulator will behave when no prototype DTACK occurs
within 1 ms. This jumper 1is wused when any of the following conditions

exist:

e P8 is in normal (1-2) position, memory is mapped to the prototype,
and no prototype DTACK is generated.

e P8 is in optional (2-3) position and no DTACK is generated by the
prototype.

o The development system is operating in mode 2 and no prototype
DTACK is generated.

In the normal position (1-2), the system will hang until a DTACK is received
from the prototype, or until a break condition occurs.

In the optional position (2-3), the system will hang until a DTACK is
received from the prototype, at which time the system will continue
operating as usual. A break condition will not clear the system.

e TL-47

68000 Jumpers 68000 Emulator Specifics Users

P8-—-Internal Generation of DTACK in Mode 1

P8 allows or prevents the internal generation of a Data Transfer ACKnowledge
(DTACK) signal by the 68000 emulator while in emulation mode 1.

In the normal position (1-2), the prototype's DTACK is used until memory has
been mapped. If memory is mapped to program memory, then an internal DTACK
is generated. If memory is mapped to the prototype, DTACK must be generated
by the prototype.

In the optional position (2-3), no internal generation of a DTACK signal is
allowed, regardless of mapping. All DTACK signals must originate from the
prototype. ‘

NOTE

When P8 requires a prototype DTACK, the prototype must generate a

DTACK within 1 ms. If DTACK is not generated within 1 ms, then a
DTACK timeout occurs. Refer to the preceding discussion of jumper
P7o

INTERFACE CONTROL BOARD
The Interface Control board contains two configuration jumpers. To access

these jumpers, follow the Prototype Control Probe Assembly/Disassembly
procedure described in the 68000 Emulator Service Manual.

J4011---Save Non-Maskable Interrupts

J4011 controls whether Non-Maskable Interrupts. (NMIs) are saved during Dump
and Restore (D/R) routines.

In the normal position (1-2), NMIs are saved during D/R routines (for
example, when the development system has control and the emulator is not
running).

In the optional position (2-3), NMIs are not saved under any circumstances.

NOTE

Saved NMIs are issued to the 68000 microprocessor when the
development system relinquishes control, and the emulator begins
~program execution.

TL-48 e

68000 Emulator Specifics Users 68000 Jumpers

J6021--=Save Prototype Interrupts

J6021 controls whether prototype circuit interrupts (interrupt levels other
than level 7) are saved during Dump and Restore (D/R) routines.

In the normal position (1-2), prototype interrupts, if held until
acknowledged, are saved during D/R routines (for example, when the
development system has control and the emulator is not running).

In the optional position (2-3), prototype circuit interrupts are not saved
under any circumstances.

NOTE

Saved interrupts are issued to the 68000 microprocessor when the
development system relinquishes control, and the emulator begins
program execution.

MOBILE MICROPROCESSOR BOARD

Two configuration jumpers are located on the Mobile Microprocessor board.
To access these Jjumpers, perform the Prototype Control Probe
Assembly/Disassembly procedure as described in the 68000 Emulator Service
Manual.

J1045 and J2045---Delay of DTACK Assertion

Two different DTACK (Data Transfer ACKnowledge) signals may be issued to the
emulator: the 68000 microprocessor's DTACK and the prototype's DTACK. With
both J1045 and J2045 in their optional positions, assertion of all 68000
microprocessor DTACK signals to the emulator is delayed. 1In addition,
assertion of the prototype's DTACK signals to the emulator is delayed only
when operating in mode 1 with jumper P1 in its normal position. (Refer to
the discussion of Interface Buffer board jumper P1 earlier in this section.)

CAUTION

Use of J1045 and J2045 in their normal positions may cause invalid
data or loss of data if program memory is accessed faster than its
limitations allow. However, no component damage will result.

The positioning of these jumpers depends on the program memory configuration
installed in your development system, as shown in Table 7L-8.

e TL-49

68000 Jumpers 68000 Emulator Specifics Users

Table 7L-8
J1045 and J2045 Configurations (*a)

| Jumper Configuration (¥b) |
Memory Configuration i i Characteristic
i J1045 i J2045 i
oL S I I T LTS SIS N oI oo T4 oIS NI4T EI SR 4EEESZsCIITToZZooS==s=
i i i
32K Program Memory board | A1 to A | Al to A i Normal (no delay)
64K or 128K Static i Al to A i A1 to A i Normal (no delay)
Program Memory board | ' i
64K or 128K Static | i |
Program Memory board i A1 to A i Al to A i Normal (no delay)
and i i i
Memory Allocation Ctrlr. | i i
32K Program Memory board | | i Option (one
and o A5 to B i A1 to A | wait state delay
Memory Allocation Ctrlr. | i | at > 6.U4MHzZ) (%*c)

(*a)=--Jumper configurations listed are for < 8 MHz operation.

(¥b)-——Jumper configurations not listed are for future use.

(*¥c)-—=0One wait state is equivalent to one extra clock cycle per
memory cycle.

TL=50 e

68000 Emulator Specifics Users

68000 Emulator 1iiming

EMULATOR TIMING

The signals between the
buffered. Therefore, some timing differences

prototype

emulating microprocessor

are

exist between the 68000

emulator and a 68000 microprocessor inserted directly

Table 7L-9 1lists the emulator/microprocessor

68000. Figures 7L-12 and 7L-13 are timing diagrams that correspond to ¢t

signals listed in Table TL-9.

into

the

prototype.
timing differences for the

he

Table TL-9
68000 Emulator/Microprocessor Timing Differences
Processor Emulator
Number Characteristic Symbol Min Max | Min Max | Unit
1 Clock Period ‘cyc 126 500 | 126 500 ns
2 Clock Width Low 'CL 55 250 55 250 ns
3 Clock Width High 'CH 55 250 55 250 ns
4 Clock Fall Time 'Cf — 10 — 10 ns
5 Clock Rise Time 'Cr — 10 — 10 ns
6 Clock Low to Address 'CLAV — 70 — 92 ns
B6A Clock High to FC(H) Valid ‘CHFCV — 70 —_ 92 ns
7A Clock High to Address High Impedance (Max.) 'CHAZx — 80 — 114 ns
7B Clock High to Data High Impedance {Max.) 'CHDZx — 80 — 130 ns
8 Clock High to Address/FC(H) Invalid (Min.) 'CHAZn 0 — 14 — ns
9’ Clock High to AS(L), DS{L) Low {Max.) ‘CHSLx — 60 — 86 ns
10 Clock High to AS(L), DS(L) Low (Min.) 'CHSLn 0 —_ 14 — ns
112 Address to AS(L), DS(L) {Read) Low/AS(L) Write 'AVSL 30 — 24 — ns
11A? FC(H) Valid to AS(L), DS(L) {Read) Low/AS(L) Write 'FCVSL 60 — 44 — ns
12! Clock Low to AS(L), DS(L} High 'CLSH — 70 — 96 ns
132 AS(L), DS(L) High to Address/FC(H) Invalid 'SHAZ 30 — 20 — ns
14*° | AS(L), DS(L) Width Low (Read)/AS(L) Write 'SL 240 — [240 — ns
14A° DS(L} Width Low (Write) — 115 — 115 e ns
15° AS({L), DS(L) Width High 'SH 150 — 160 — ns
16 Clock High to AS(L), DS(L) High impedance 'CHSZ — 80 — 93 ns
172 AS(L), DS(L) High to R(H)/W(L) High 'SHRH 40 — | 40 — ns
18’ Clock High to R(H)/W(L) High (Max.) ‘CHRHx — 70 — 96 ns
19 Clock High to R(H)/W(L) High (Min.) 'CHRHn 0 — 14 — ns
20" Clock High to R(H)/W(L) Low 'CHRL — 70 — 96 ns
212 Address Valid to R(H)/W(L) Low ‘AVRL 20 — 14 — ns
21A% FC(H) Valid to R(H)/WI(L) Low ‘FCVRL 60 — 54 — ns
222 R{H)/W(L) Low to DS(L} Low (Write) ‘RLSL 80 — 80 — ns
23 Clock Low to Data Out{H) Valid 'CLDO — 70 —_ 95 ns
25° DS(L) High to Data Qut(H) Invalid ‘SHDO 30 — 20 — ns
262 Data Out(H) Valid to DS(L) Low (Write) 'DOSL 30 — 20 — ns
27° Data In to Clock Low (Setup Time) ‘DICL 15 — 17 — ns
28° AS{L), DS(L) High to DTACK(L) High ‘SHDAH 0 120 [0] 94 ns
29 DS(L) High to Data Invalid (Hold Time) ‘SHDI 0 — 0 — ns
30 AS{L). DS(L) High to BERR(L) High 'SHBEH 0 — 0 — ns
31%¢ | DTACK(L) Low to Data In (Setup Time) ‘DALDI — 90 | — 88 ns
32 HALT(L) and RESET(L) Input Transition Time ‘RHrf 0 200 0 200 ns
33 Clock High to BG(L) Low ‘CHGL — 70 — 93 ns
34 Clock High to BG(H) High ‘CHGH — 70 — 93 ns
357 BR(L) Low to BG(L) Low ‘BRLGL 1.5 3 1.5 3 Clk Per
367 BR(L) High to BG(L) High ‘BRHGH 1.5 3 1.6 3 Cik Per
37 BGACK(L) Low to BG(L) High ‘GALGH 1.5 3 1.5 3 Clk Per
38 BG(L) Low to Bus High impedance (With AS(L} High) ‘GLZ — 80 — 148 ns
39 BG(L) Width High 'GH 1.5 — 15 — | Clk Per
46 BGACK(L) Width 'BGL 1.5 — 1.5 — |Clk Per
47°° Asynchronous Input Setup Time 'ASI 20 — 20 — ns
48 BERR(L) Low to DTACK(L) Low® '‘BELDAL 50 — 50 — ns
53 Data Hold from Clock High 'CHDO 0 — 0 — ns
55 R(H)/W(L) to Data Bus Impedance Change ‘RLDO 30 — 20 — ns
56 HALT(H)/RESET(L) Pulse Width* ‘HRPW 10 — 10 Clk Per

1 For a loading capacitance of less than or equal to 50 picotarads, subtract 5 nanoseconds from the values given in these columns.
2 Actual value depends on clock period.

3 If #47 is satisfied for both DTACK(L) and BERR(L}), #48 may be O ns.

4 Atter Vcc has been applied for 100 ms.

5 For T6E, BF4, and RO9M mask sets #14 and #14A are one clock period less than the given number.

6 If the asynchronous setup time (#47) requirements are satisfied, the DTACK(L) low-to-data setup time (#31) requirement can be ignored. The data must
only satisfy the data-in to clock-low setup time (#27) for the following cycle.

7 For the Probe-tip add 20 nanoseconds to the clock periods listed.
8 VPA = 50 nanoseconds for the Probe-tip.

e

TL-51

68000 Emulator Timing 68000 Emulator Specifics Users

[72]
L1
7]
ey
[}
N

S§3 S4 S5 S6 s7

® -
ciK / A é)j& N/ N/ N/
A1—A23 = i D
— —-| — ‘@)
AS(L) w; ©® _;F < (9 =1
OFr® <3=[1%

LDS(L)/UDSIL) 7/ \ B

£
G @

R(H)/WI(L)

FC@—FC2

é@
?

Asynchronous
Inputs X
{(Note 1)

I
HALT(L)/RESET(L) }\‘ Ji
D

BERR(L}/BR(L) \"""

(NOTE 2)

-3
o= "3 [° 3

Dataln 0 e e e e o e e o e o e e e e e e e] 4:1E_

)

12608-14

Fig. 7L-12. 68000 timing diagram, read cycle.

Notes and circled numbers refer to Table 7L-9.

TL=52 e

68000 Emulator Specifics Users 68000 Emulator Timing

CLK

A1—A23

AS(L) _475-¢—(>) N ‘E%.. - o N

LosuvuosuiJ7

i 44

R(H)/W(L) S

Data Out

@"—.

FC@—FC2

Asynchronous
Inputs

HALT(L)/RESET(L)

BERR(L)/BR(L)
e
| —
DTACK(L))7

12609-13

Fig. 7L-13. 68000 timing diagram, write cycle,

Circled numbers refer to Table 7L-9.

e TL-53

68000 Probe/Prototype Interface 68000 Emulator Specifics Users

PROBE/PROTOTYPE INTERFACE DIAGRAM

Figure 7L-14 is a block diagram of the interface between the prototype and
the 68000 Prototype Control Probe.

Top Plane Interconnect
(TTA and MAC)(P6 and P7)

1/0 and
A RAM Access [~
Control

Buffers 4

UMAP . Shared . Dump/
Write Protect BreRa:r’)‘:mt Communication Restore
RAM RAM PROM

Development System Bus (P1)

Prototype Control Probe
{via Cable Termination Board) (J2)

Buffers 6

Run and
Sequence K
Control

EMU
~ Control

(12609-2)3970-7

Fig. 7L-14. 68000 Prototype/Control Probe interface.

This figure provides a functional overview of signal buffering
between the prototype and the emulating microprocessor. A more
detailed circuit description can be found in the 68000 Emulator
Processor and Prototype Control Probe Service Manual.

TL-54 €

68000 Emulator Specifics Users 68000 Software Installation

INSTALLING YOUR 68000 EMULATOR SOFTWARE

8540 SOFTWARE INSTALLATION PROCEDURE

The ROMs that contain the control software for your 68000 emulator must be
installed in your 8540's System ROM Board. Refer to your 8540 Installation
Guide for instructions on how to install these ROMs.

8550 SOFTWARE INSTALLATION PROCEDURE

Your emulator software installation disk contains two types of software:

e emulator control software, which you install onto your DOS/50
system disk so that DOS/50 can control your emulator hardware;

e emulator diagnostic software, which you install onto your 8550
system diagnostic disk so that diagnostic tests can be run on your
emulator as well as on other 8550 system hardware.

This subsection describes how to install the control software and diagnostic
software for your 68000 emulator.

To complete these installation procedures you need the following items:
e an 8550 system (with or without a 68000 emulator)

e a DOS/50 system disk with a write-enable tab over the write-protect
slot

e a 68000 emulator software installation disk with no write-enable
tab

e (for installation of diagnostic software) an 8550 system diagnostic
disk with a write-enable tab over the write-protect slot.

Each installation procedure takes about five minutes.

Start Up and Set the Date

Turn on your 8550 system. (For start-up instructions, refer to the Learning
Guide of your System Users Manual.) Place your system disk in drive O and
shut the drive 0 door. When you see the > prompt on your system terminal,
place your installation disk in drive 1 and shut the drive 1 door.

Use the DAT command to set the date and time. For example, if it is 11:05
am on October 12, 1982, type:

> DAT 12-0CT-82/11:05 <CR>

The system uses this information when it sets the CREATION time attribute of
each file copied from your installation disk.

e _ TL-55

68000 Software Installation 68000 Emulator Specifics Users

Install the Emulator Control Software

The command file INSTALL2, which installs the emulator control software,
resides on the installation disk. To execute the command file, simply type
its filespec:

> /VOL/EMU.68000/INSTALL2 <CR>

DOS/50 responds with the following message:

During this installation procedure, one or more of the
following messages may appear. IGNORE THESE MESSAGES:

Error 6E - Directory alteration invalid
Error 7E - Error in command execution
Error 1D - File not found

If any OTHER error message appears, see your
Users Manual for further instructions.

If no other error message appears, you'll receive a
message when the installation procedure is complete.

1 ok M ok dk kK K Kk Nk ok dk Kk ok ok

,OFF

In this installation procedure, you may disregard error messages 6E, TE, and
1D; these messages have no bearing on the success of the installation.
However, if a message other than 6E, TE, or 1D appears, take the following
steps:

1. Make sure you are using the right disks.
2. Make sure your system disk has a write-enable tab.

3. Make sure there are at least 16 free files and 150 free blocks
on your system disk.

4, Begin the installation procedure again.

If the installation procedure fails again, copy down the error message and
contact your Tektronix service representative.

The "T,OFF" command suppresses subsequent output to your system terminal
(except error messages) until INSTALL2 finishes executing. Within about
five minutes, INSTALL2 will finish and your system terminal will display the
following message:

*

¥ Your installation has been completed.
>

TL-56 e

68000 Emulator Specifics Users ' 68000 Software Installation

Install the Emulator Diagnostic Software

Note the Name of Your Diagnostic Disk. In order to install the emulator
diagnostic software, you must know the name of your 8550 system diagnostic
disk. Remove your emulator installation disk from drive 1 and insert the
diagnostic disk. Enter the following command to list the names of the two
disks mounted in your 8550:

> ATT /VOL/* WHERE <CR>
sysvol WHERE=FLX0 <-- DOS/50 system disk
8550DIAGX . x WHERE=FLX1 <~- 8550 system diagnostic disk

Note the name of your diagnostic disk. (It should be something 1like
"8550DIAG2.0".)

Insert Your Emulator Installation Disk into Drive 1. INSTALLDIAGS, the
command file that installs the diagnostics, resides on the installation
disk. Remove your diagnostic disk from drive 1 and insert your installation
disk. Invoke the INSTALLDIAGS command file and pass it the name of your
diagnostic disk, which you just noted:

> /VOL/EMU.68000/INSTALLDIAGS 8550DIAGx.x <CR>

DOS/50 responds with the following messages:
*

(2222222222222 22222 X2 X222 2222222 2222222222 2]

* DIAGNOSTIC INSTALLATION PROCEDURE *
ERRERRREREERRRRERRRRRRRRR R AR RRRARARRRRRRRRR

* ‘
* During this installation procedure, the following error

* message will appear once, IGNORE THIS MESSAGE:

*

* Error 2A Parameter required

*

* If any OTHER error message appears or this appears more

* than once, see your Users Manual for further instructions.
*

* If no other error message appears, you'll receive a message
* when the installation is complete.

*

T,0FF

COP: Error 2A Parameter required

*

L > Remove the DOS/50 System Disc

| J— > Insert the 8550 System Diagnostic Disc

¥———--> Type CO -A

*

SuUsp,-A

>>

e : TL-57

68000 Software Installation - 68000 Emulator Specifics Users

Insert Your Diagnostic Disk into Drive 0. Remove your DOS/50 system disk
from drive 0 and insert your 8550 system diagnostic disk. Then enter the
command CO -A to continue execution of the command file:

>> CO -A <CR>
After a few minutes, the following message is displayed:

COP,-BN,/VOL/EMU.68000/DIAGS/68000TST,.SAV,/VOL/8550DIAGX .x/68000TST,SAV

*

e > Remove 8550 System Diagnostic Disc
¥ > Insert DOS/50 System Disc

o > Type CO -A

*

SUSP,-A

Insert Your DOS/50 System Disk into Drive 0. Remove your diagnostic disk
from drive 0 and insert your DOS/50 system disk. Then type CTRL-C and enter
the CO -A command again:

>> CO -A <CR>
The command file finishes with the following message:

USER, ,NO.NAME
EERREERRERRRERRRRRREERXRR KRR KRR RRRRRRRRHRR

* DIAGNOSTIC INSTALLATION COMPLETE *
RERRERRERRRE R RRRRR R XXX RRRR R RRRRRRRRRRRRR
>

In this installation procedure, error message 2A should appear once. If any
other error message appears, check your disks and begin the diagnostic
installation procedure again. If the installation procedure fails again,
copy down the error message and contact your Tektronix service
representative.

Once your software is installed, you can:
o remove your disks and turn off your 8550 system, or
o install more software, or
o continue/ with the 68000 Emulator Demonstration Run that follows in

this section. If you do this, you do not have to restart the
system or reset the date and time.

NOTE

At this point, "NONAME"™ is the current user. To change the
current user back to "yourname," enter USER,,yourname.

TL-58 €

68000 Emulator Specifics Users 68000 Demo -- Introduction

68000 DEMONSTRATION RUN

INTRODUCTION

This demonstration run shows you how to load, execute, and monitor a simple
68000 assembly language program on your 8540 or 8550. To perform this
demonstration, your 68000 emulator hardware and control software must be
installed in your 8540 or 8550. Throughout this demonstration run, the term
"68000 assembler" refers to a B Series 68000 Assembler.

Figure 7L-15 shows the source and object code for the demonstration program.

This demonstration run includes procedures for four different system
configurations: Case 1:

Case 1: If you have an 8550, the source
code and object code for the
demonstration program are provided on
the installation disk that contains your
68000 emulator control software. This
demonstration shows you how to assemble
the program on your 8550. (If your
system disk does not have a 68000 must have 68000
assembler, you must skip that part of assembler
the demonstration.)

prmem———]

s 111

Case 2: If you have an 8540/8560 system,
and your 8560 has a 68000 assembler, you
can create and assemble the program on
the 8560 and download it to the 8540.
This demonstration shows how.

8540 + 8560

Case 3: If you have an 8540 that is
connected to a host computer other than f:::::::::::::;;7
an 8560, we cannot give you a specific

list of commands for creating and Case3:
assembling the program on your host.
However, Fig. 7L-16 gives the program
object code in Extended Tekhex format.
You can create the Tekhex file using
your host's assembler or text editor,
and then download the file to the 8540
via the 8540's optional COM interface.

8540 + other host
Case 4: If none of the other cases
applies to you, you can patch the Case 4:
program into memory using the P command.

This demonstration shows how. any other configuration
(3964-5)3970-8

Once the program is loaded or patched into memory, you can execute the
program on your emulator.

e TL-59

68000 Demo -- Introduction 68000 Emulator Specifies Users

NOTE

The 8540 commands shown in this demonstration can also be used on
an 8550 that is connected to an 8560 or another host computer.

ASM 68000 Page 1
Xnn.nn-nn (8550) dd-mmm-yy/hh:mm:ss
1 LIST DBG ;Turn on symbolic debug
2 5 option.
3 SECTION DEMO
4 700 R ORG TOOH sBegin summing routine.
5 00000700 207C0000 START MOVEA.L #TABLE,AQ ;Set the table pointer.
0500 R ,
6 00000706 323C0004 MOVE.W #TSIZE-1,D1 ;Set the pass counter.
7 0000070A 4280 CLR.L DO ;Clear the register to be
8 ; used for summation.
9 0000070C D018 LOOP ADD.B (A0)+,DO +Add byte from table to DO
10 00000T70E 51C9FFFC DBRA D1,LOOP sDecrement, and branch
11 5 if not 5 passes yet.
12 00000712 13CO00FO0 MOVE.B DO, (GEN.L)OFO0007H ;Else exit, trigger 3SVC 1.
' 0007
13 00000718 4ET1 NOP ;Two NOPs for SVC.
14 0000071A 4ET1 NOP +End of summing routine.
15 H
16 0000071C 1A EXIT BYTE 1AH ; 1AH = function code
17 H for the exit SVC.
18 CO R ORG OCOH +Define SRB vector space.
19 000000CO 0000071C R LONG EXIT ;Define the SRB pointer.
20 ;
21 5 TSIZE EQU 5 ;Set table size = 5.
22 500 R ORG 500H s Put TABLE at 500H.
23 00000500 5 TABLE BLOCK TSIZE ;Space for TABLE.
24 s
25 700 END START
l:: ==='T"_'=== ====?===== :::::::::::::::?::::'_'-'.:::::::‘_':: ::::::::::::?::::::::::::::
[} [} 1 1 1
i address object code source code comments
|
1

+=-— source code line number

Fig. 7L-15. 68000 demonstration run program.

This display appears on the first page of your 68000 Series B
Assembler listing using an 8550.

TL-60 ‘ e

68000 Emulator Specifics Users 68000 Demo -- Introduction

(A)

%436263700207C00000500323C00044280D01851CIFFFC13CO00F00007HETTUET11A
%106292C00000071C ’
%443DBUDEMO010371D14LOOP370C15START370015TABLE350025TSIZE1514EXIT371C
%0981B3700

(B)
FIRST DATA BLOCK: object code for addresses 700--71B

header
| load address ob ject code

- e L e o e o " v = et P M P P AW S = ur Sm D MmN S R N W M M M W T S MM S S W e =
gL g e R e L T R

%436263700207C00000500323C00044280D01851C9FFFC13CO00F000074E71HET 11A

SECOND DATA BLOCK: object code for addresses CO--Ci

header

| load object
{ address code
]
|

%106292C00000071C

SYMBOL BLOCK

header section
i section definition

name field symbol definition fields
]

%$443DB4DEMO010371D14LOOP370C15START370015TABLE350025TSIZE 15 14EXIT371C

TERMINATION BLOCK

header
: transfer
address

%0981B3700

Fig. 7L-16. 68000 demonstration program: Extended Tekhex format.

Figure T7L-16A 1lists an Extended Tekhex load module that contains
the object code and program symbols for the demonstration program.
Figure 7L-16B gives the meanings of the different fields in the
message blocks. If you have a host computer other than an 8560,
you can create this load module and download it to your 8540 or
8550.

@ TL-61

68000 Demo —- Examine Program 68000 Emulator Specifics Users

EXAMINE THE DEMONSTRATION PROGRAM

The demonstration program adds five numbers from a table stored in locations
500--504 in program memory, and puts the sum in register DO. (You will
place values in the table later in this demonstration.) The 8085A Emulator
Demonstration Run in the Learning Guide of your System Users Manual contains
a flowchart that illustrates the steps of the program.

The source code contains two kinds of statements: assembler directives (like
ORG, WORD, BYTE, and GEN.L), and 68000 assembly language instructions. Most
assembler directives are microprocessor-independent and are explained in the
8085A Emulator Demonstration Run. The only assembler directive that is
68000-specific is the GEN.L directive. This causes a long word address to
be encoded. The 68000 assembly language instructions are discussed in the
following paragraphs.

Set Table Pointer. The MOVEA.L #TABLE,A0 instruction moves the address of
the table (500) into register AO. As a result, A0 points to the first
element of the table. The 1label START is used by the END directive to
specify that the MOVEA.L #TABLE,AO instruction is the first to be executed.

Set Pass Counter. Register D1 is used as the pass counter. The MOVE.W
" #TSIZE-1,D1 instruction moves the value 5-1=z4 into register D1. This causes
the number of passes to be 5, since the DBRA instruction used for the branch
will loop until the value in D1 is -1, Each time a number is taken from the
table and added to register DO, register D1 is decremented.

Clear Summation Register. The CLR.L DO instruction zeros register DO so that
you can start adding numbers from the table.

Add Byte from Table and Point to Next Byte. The next instruction, ADD.B
(A0)+,D0, adds the byte addressed by AO to register DO. After the byte is
added, A0 is incremented to point to the next byte 1in the table. For
example, AO is initialized to contain 500. After the add is performed, the
+ part of the instruction causes A0 to be incremented to 501, the address of
the second byte in the table. The label LOOP represents the address of the
ADD.B instruction; this label is used by the DBRA D1,LOOP instruction.

Decrement Pass Counter and Loop If Not Yet Five Passes. The DBRA D1,LOOP
instruction decrements register D1, the pass counter. Then it jumps to the
LOOP 1label if Dt does not contain -1. If D1 does contain -1, the program
proceeds to the next instruction, MOVE.B DO, (GEN.L)OFOO0OOTH.

Exit. The MOVE.B DO,(GEN.L)OFO00007H and two NOP instructions constitute a
service call (SVC) that causes an exit from the program. Any byte-write
instruction to the address F00007 would cause an SVC, and the contents of DO
are not affected. For more information on SVCs, refer to the Service Calls
section of your System Users Manual.

TL=62 | ' e

68000 Emulator Specifics Users 68000 Demo -- Prepare rrogram

ASSEMBLE AND LOAD THE DEMONSTRATION PROGRAM

Now it's time to create the program so you can run it on your emulator. One
of the following discussions describes the set of steps that is appropriate
for your hardware configuration:

e For 8550 users —--- Case 1: Assemble and Load on the 8550

e For 8560 users --- Case 2: Assemble and Load on the 8560; Download
to the 8540

e For 8540 users with host computers other than the 8560 --- Case 3:
Download from Your Host to the 8540

e For other hardware configurations --—- Case 4: Patch the Program
into Memory

Work through the discussion that is appropriate for you. Once you have put
the program into program memory, turn to the heading, "Run the Demonstration
Program", later in this section.

CASE 1: ASSEMBLE AND LOAD ON THE 8550
This discussion shows you how to copy the demonstration program from your

68000 emulator software installation disk, assemble the program, and load it
into 8550 program memory. '

Start Up and Log On

Turn on your 8550 system. (For start-up instructions, refer to the
paragraph, "Start Up the 8550 and Its Peripherals", in the Learning Guide of
your System Users Manual.) Place your system disk in drive 0 and shut the
drive 0 door. When your system displays the ">" prompt, place your 68000
emulator software installation disk in drive 1 and shut the drive 1 door.

Use the DAT command to set the current date and time. For example, if it
were 2:30 pm on October 12, 1982, you would enter the following command
line:

> DAT 12-0CT-82/2:30 PM <CR>

Use the SEL command to tell DOS/50 to use the emulator and assembler
software designed for the 68000:

> SEL 68000 <CR>
The system responds with the current version number:
68000 emulator V n.nn mm/dd/yy

The SEL command automatically sets the emulation mode to O.

e TL-63

68000 Demo ~- Prepare Program 68000 Emulator Specifics Users

Copy the Demonstration Run Program from the Installation Disk

Enter the following command lines to create an empty directory called DEMO
on your system disk, and to make DEMO the current directory. The BR command
creates a brief name, ROOT, to mark the old current directory. At the end
of this demonstration, you will return to this ROOT directory and delete the
DEMO directory and its contents.

> BR ROOT /USR <CR>
> CREATE DEMO <CR>
> USER DEMO <CR>

Now use the COP command to copy all the files in the DEMO2 directory on the
installation disk to the DEMO directory you just created:

> COP /VOL/EMU.68000/DEMO2/* * <CR>

Remove your installation disk from drive 1 and put it away.

Now list the files you have just copied to the current directory:

> L <CR>

FILENAME

ASM

LOAD

Files used 124
Free files 132
Free blocks 813
Bad blocks 0

The file named ASM contains the assembly language source code for this
demonstration program, and the file named LOAD contains the executable
object code. This copy of LOAD is used in the demonstration only if you do
not have a 68000 assembler, and thus cannot create your own object file and
load file from the source file.

TL-64 e

68000 Emulator Specifics Users 68000 Demo -- Prepare Program

Examine the Demonstration Program

Enter the following command line to display the source file, ASM, on the
system terminal:

> CON ASM <CR>
LIST DBG sTurn on symbolic debug
; option.
SECTION DEMO

ORG T700H ;Begin summing routine.
START MOVEA.L #TABLE,AQ ;Set the table pointer.
MOVE.W #TSIZE-1,D1 sSet the pass counter.
CLR.L DO sClear the register to be
s used for summation.
LOOP ADD.B (A0)+,DO ;Add byte from table to DO.
DBRA D1,LOOP ;Decrement, and branch

: if not 5 passes yet.
MOVE.B DO, (GEN.L)OFOOOO7H ;Else exit, trigger SVC 1.

NOP yTwo NOPs for SVC.

NOP sEnd of summing routine.
EXIT BYTE 1AH s JAH = function code

s for the exit SVC.

ORG OCOH sDefine SRB vector space.

LONG EXIT ;Define the SRB pointer.
TSIZE EQU 5 ;5et table size = 5.

ORG 500H sPut TABLE at 500H.
TABLE BLOCK TSIZE sSpace for TABLE.

END START

Assemble the Source Code

If you do not have a 68000 assemblef on your system disk, you cannot perform
this step, so skip the next four commands (ASM, COP, LINK, and L).

The ASM (assemble) command translates assembly language (source code) into
binary machine 1language (object code). The ASM command also creates an
assembler listing that correlates the object code with the source code.
Enter the following command 1line to assemble the source code in the file
ASM, and to create the listing and object files, ASML and OBJ:

e TL-65

68000 Demo -- Prepare Program 68000 Emulator Specifics Users

> ASM OBJ ASML ASM <CR>

source file

+
i
1

m——————— assembler listing file

Fmm e object file

ASM 68000 Xnn.nn-nn Copyright (C) 19nn Tektronix, Inc.
*****Pass 2

25 Lines Read
25 Lines Processed
0 Errors

Make sure the printer is turned on and properly connected. Then, copy the
assembler listing to the line printer with the following command.

> COP ASML LPT <CR>

The fields of the assembler listing are shown in Fig. 7L-15. The entries in
the symbol table are also displayed, as shown in Fig. 7L-17. For a detailed
"explanation of assembler listings, consult your Assembler Users Manual.

ASM 68000 SYMBOL TABLE Page 2
Xnn.nn-nn (8550) dd-mmm-yy/hh:mm:ss
Scalars

TSIZEmm—ec——aee 00000005

Section = DEMO, Aligned to 00000000, Size = 0000071D

EXIT-emmmo— 0000071C LOOP—=e e -——0000070C START —~=mm —00000700
TABLE———=—=e—- 00000500

Section = %0BJ, Aligned to 00000000, Size = EMPTY

25 Lines Read
25 Lines Processed
0 Errors

Fig. T7L-17. Symbol table listing.

TL-66 e

68000 Emulator Specifics Users 68000 Demo -~ Prepare rrogram

Link the Object Code

The linker creates an executable load file from one or more object files,
Enter the following linker command to create a load file called LOAD from
your object file, OBJ:

> LINK -0 OBJ -o LOAD -d <CR>

The system responds with the version number, listing status, and transfer
address: :

Tektronix Linker Vnn.nn-nn (8550)
Copyright (C) 19nn Tektronix, Inc.
Listing file not generated
Transfer address: 700

If you wish to get a full linker listing written to your system terminal,
include the -1 f option in the LINK command line. The linker command
options -0 and -o specify the object file and load file, respectively. The
—d command option causes the linker to pass the program symbols from the
object file to the load file for use in program debugging.

The files generated by the ASM and LINK commands should now be on your disk.
Enter this command to list the files in your current directory:

> L <CR>
FILENAME

ASM
LOAD
OBJ
ASML

Files used 126
Free files 130
Free blocks 811
Bad blocks 0

Notice that there are now four files listed in your directory. OBJ and ASML
were created by the assembler, and LOAD was created by the linker.

Load the Program into Memory

Now it's time to load the object code from the load file LOAD into program
memory.

e TL-67

68000 Demo —-- Prepare Program 68000 Emulator Specifics Users

Allocate Memory. If you have the Memory Allocation Controller (MAC) option
installed, you need to allocate memory for the program. (If you do not have
the MAC option, do not enter the AL command that follows.) The AL command
allocates memory space to program memory. The default condition at start-up
is zero blocks allocated to program memory. Enter the following command
line:

> AL 0 ; AL OF00000 ; AL OFFFFFF <CR>
1 BLOCK(S) ALLOCATED 000000 OOOCFFF
1 BLOCK(S) ALLOCATED FO00000 FOOFFF
1 BLOCK(S) ALLOCATED FFFO000 FFFFFF

These commands allocate 12K bytes (3 blocks) of program memory for the
logical addresses used by the demonstration program. The first block is
used by the program and the SRB pointer; the second block will contain the
SRB (Service Request Block) used by the SVC (Service Call); and the third
block is used by the 68000 system stack. For more information on memory
allocation and use of the AL command, refer to the Emulation section of your
System Users Manual. ‘

Zero Out Memory. Before you load the code, use the F (Fill) command to fill
program memory with zeros. Later, when you examine memory, the zeros will
make it easy to identify the beginning and end of your code. (Zeroing out
‘"memory has no effect on how the program is 1loaded.) Enter the following
command line to fill memory at addresses CO~-7FF with zeros:

> F 0CO 7FF 0000 <CR>

Check that Memory Was Filled with Zeros. Check the contents of memory with
the D (Dump) command. The display shows the data in hexadecimal format, as
well as the corresponding ASCII characters. Display the contents of memory
addresses CO--CF and 700--7FF with the following commands:

> D 0CO <CR>
0 2 4 6 8 A C E
0000CO 0000 0000 0000 0000 0OOO0 0000 0000 0000 cesensenaas ceaes

> D 700 7FF <CR>
0 2 4 6 8 A c E

000700 0000 0000 0000 0000 OO00 0000 0000 0000 .s.ieeieeeieocosans
000710 0000 0000 0000 0000 0000 0000 0000 0000 ceseasesnen
000720 0000 0000 0000 0000 0000 0000 0000 0000 ..i.iieveveceecens
000730 0000 0000 0000 0000 0000 0000 0000 0000 ceresnsescces aee
000740 0000 0000 0000 0000 0O00C 0000 0000 0000 cesesecee ceasens
000750 0000 0000 0000 0000 0000 0000 0000 0000 cesecesscerceans
000760 0000 0000 0000 0000 0000 0000 0000 0000 tesesesesesencns
000770 0000 0000 0000 0000 0000 0000 0000 0000 .eeeeceeosss o
000780 0000 0000 0000 0000 0000 0000 0000 0000 cesesscasacvenns
000790 0000 0000 0000 0000 0000 0000 0000 0000 - ..vieveeeenanees

0007A0 0000 0000 0000 0000 0000 0000 0000 0000 cesene
0007B0O 0000 0000 0000 0000 0000 0000 0000 0000 cetecacsan
0007C0O 0000 0000 0000 0000 0000 0000 0000 0000 cesesescsssenens
0007D0O 0000 0000 0000 0000 0000 0000 0000 0000 ..i.eeieeveecccans
0007E0 0000 0000 0000 0000 0000 0000 0000 0000 cseesetnenne coee

0007F0 0000 0000 0000 0000 0000 0000 0000 0000 ceecseenessasees

T7L-68 e

68000 Emulator Specifics Users 68?00 Demo -- Prepare Program

Load the Object Code into Memory. Load the objectfcode for the demonstration
program into program memory with the following gommand:

> LO <LOAD <CR>

load file

Load the Program Symbols. Recall that the source code for the demonstration
program contained the directive, LIST DBG. Because of this directive, the
object file contains a list of the symbols that appeared in the source code,
and their associated values. And, since you included the -d command when
you invoked the linker, these symbols were passed to the load file.

Now, you can use the SYMLO command to load the symbols into the symbol table
in 8550 system memory:

> SYMLO -S <LOAD <CR>

The -S option means that both address symbols and scalar symbols are loaded.
If you omit the -S, only address symbols are loaded. (A scalar is a number
that is not an address; for example, TSIZE, the length of the table.) Later
in this demonstration, whenever you use a symbol in a command, DOS/50 refers
to the symbol table to find the value that the symbol represents.

You have assembled and linked the demonstration program and loaded it into
memory. Now skip forward to the heading, "Run the Demonstration Program."

e TL-69

68000 Demo -- Prepare Program 68000 Emulator Specifics Users

CASE 2: ASSEMBLE ON THE§85‘60; DOWNLOAD TO THE 8540

This discussion shows you how to create the demonstration program source
code and assemble it on the 8560, and then download the object code to 8540
(or 8550) program memory. If your 8560 does not have a 68000 assembler, you
cannot do this part of the demonstration, so skip forward to the heading,
"Case 4: Patch the Program into Memory", for instructions. \

Start Up and Log In

Start up your 8540, make sure that it is in TERM mode, and 1log in to the
8560 TNIX operating system. Refer to your 8560 System Users Manual for
detailed instructions.

Since you're logged in to TNIX, your system prompt is "$", (Later in the
" demonstration, we show the system prompt as ">", for people using 8540s and
8550s in LOCAL mode.) Every command you enter is processed by TNIX. If you
enter an 0S/40 command, TNIX passes it to the 8540,

Enter the following commands to select the 68000 assembler on the 8560, and
the 68000 emulator on the 8540:

$ uP=68000; export uP <CR>
$ sel 68000 <CR>

The sel command automatically sets the emulation mode to O.

Create the Demonstration Program

Enter the following TNIX command lines to create an empty directory called
demo and to make it the working directory. You'll create your source file
and related files in this directory.

$ mkdir demo <CR>
$ cd demo <CR>

Now use the TNIX editor, ed, to create the demonstration program source
file. This command line invokes the editor and specifies that you want to
create a file called asm:

$ ed asm <CR>
?asm

The editor responds "?asm" to remind you that asm does not already exist.
Notice that the editor does not prompt you when it's ready for input.

7L-70 e

68000 Emulator Specifics Users

68000 Demo —-- rrepare rrograin

Enter the Text. Now enter the editor command a (append text) and type in the

program.
a <CR>
column column
9 17
1]
] 1
v v
LIST DBG

Use the BACKSPACE key to erase typing mistakes.

N

;Turn on symbolic debug <CR>

’ option. <CR>

SECTION DEMO <CR>
ORG 700H

;Begin summing routine. <CR>

START MOVEA.L #TABLE,AQ

;oet the table pointer. <CR>

MOVE.W #TSIZE-1,D1

;Set the pass counter. <CR>

CLR.L DO

;Clear the register to be <CR>

s used for summation. <CR>

LOOP ADD.B (A0)+,DO

;Add byte from table to DO. <CR>

DBRA D1,LOOP

yDecrement, and branch <CR>

H if not 5 passes yet. <CR>

MOVE.B DO, (GEN,L)OF0000T7H

7Else exit, trigger SVC 1. <CR>

NOP

sTwo NOPs for SVC. <CR>

NOP

;End of summing routine. <CR>

3 <CR>
EXIT _ BYTE _ 1AH

s 1AH = function code <CR>

i for the exit SVC. <CR>

ORG OCOH ;Define SRB vector space. <CR>
LONG EXIT ;Define the SRB pointer. <CR>
5 <CR>
TSIZE EQU 5 ;Set table size = 5. <CR>
ORG 500H sPut TABLE at 500H., <CR>
TABLE BLOCK TSIZE ;Space for TABLE. <CR>
3 <CR>
END START <CR>
. <CR>

At the end
will now accept new commands.

Check for Errors. Type
have entered.

1,$p <CR>

of your text, enter a period on a line by itself.

1
]
+-- print command: displays the 1lines

]]

§]

P

P in the designated range

[} |

1 1

| +-—— designates last line in file
]
]

o designates first line in file

If you made any mistakes, you can correct them now.

The editor

the following editor command to display the text you
Check for typing mistakes.

If you're not familiar

Wwith the editor, Table 7L-10 lists the commands you need to add, delete, and

replace lines.
System Users Manual.

For more information on the TNIX editor, refer to your

8560

TL-T1

68000 Demo -- Prepare Program 68000 Emulator Specifics Users

Table 7L-10
Basic 8560 Editing Commands

Command Function

mm,nnp <CR> | Displays lines mm through nn

nn <CR> | Makes line nn the current line

d <CR> | Deletes the current line

a <CR> | Adds text below the current line
<line(s) of text> |

. <CR> i

¢ <CR> | Replaces the current line with the
<line(s) of text> | text you type in

. <CR> i

Once your text is correct, enter the w command to write the text to the
source file, asm:

W <CR>
760

The editor responds with the number of characters it wrote to the file.
Finally, enter the g command to quit the editor and return to TNIX:

q <CR>

$ <—-- TNIX prompt

Assemble the Source Code

The TNIX asm (assemble) command translates assembly language (source code)
into binary machine language (object code). The asm command also creates an
assembler listing that you use to correlate the object code with the source
code. Enter the following command line to assemble the source code in the
file asm and create the listing and object files asml and obj:-

$ asm obj asml asm <CR>

[}
1
i +-— source file

[}

1

| e ——— assembler listing file
I

|

o —————— object file

ASM 68000 Xnn.nn-nn Copyright (C) 19nn Tektronix, Inc.

25 Lines Read
25 Lines Processed
0 Errors

TL-T72 e

68000 Emulator Specifics Users 68000 Demo -- Prepare Program

Print the assembler listing on the 8560's line printer with the following
command :

$ lpir asml <CR>

Examine page 1 of your listing. Did the assembler issue any error messages?
There should be none. However, if your source code contains errors, take
the following steps:

1. Refer to your Assembler Users Manual to see what the error
messages mean.

2. Enter the command ed asm to get back into the editor and fix
the mistakes 1in your source code. Exit the editor with the w
and q commands, as before.

3. Enter the command asm obj asml asm to re-assemble your source
code.

Link the Object Code

The linker creates an executable load file from one or more object files.
Enter the following command to create a load file called load from your
object file, obj. Be sure to capitalize the parameters exactly as shown.

$ link -d -0 obj -o load <CR>

The system responds with the linker version, 1listing file status, and
transfer address.

Tektronix Linker Vnn.nn-nn (8560)
Copyright (C) 19nn Tektronix, Inc.
Listing file not generated
Transfer address: 700

If you wish to get a full linker listing, include the -1 f option on the
link command line. The linker options -0 and -o specify the object file and
load file, respectively. The -d command option causes the 1linker to pass
the program symbols from the object file to the load file, for use in
program debugging.

The files generated by the asm and link commands should now be in your
working directory, demo. Enter the following command to list the files in
your working directory:

$ 1s <CR>
asm
asml
load
obj

Notice that there are now four files listed in your directory: obj and asml
were created by the assembler, and load was created by the linker.

@ ‘ 7L=T3

68000 Demo —- Prepare Program 68000 Emulator Specifics Users

Download the Program.to the 8540

Now it's time to download the object code produced by the 8560's linker into
8540 program memory.

Allocate Memory. If you have the Memory Allocation Controller (MAC) option
installed, you need to allocate memory for the program. (If you do not have
the MAC option, do not enter the AL command that follows.) The AL command
allocates memory space to program memory. The default condition at start-up
is zero blocks allocated to program memory. Enter the following command
line:

> al 0 ; al 0f00000 ; al Offffff <CR>
1 BLOCK(S) ALLOCATED 000000 OOOFFF
1 BLOCK(S) ALLOCATED FFFO00 FFFFFF
1 BLOCK(S) ALLOCATED FO0000 FOOFFF

This command allocates 12K bytes (3 blocks) of program memory for the
logical addresses used by the demonstration program. The first block is
used by the program and the pointer to the SRB (Service Request Block); the
second block will contain the SRB used by the Service Call; and the third
block is used by the 68000 system stack. For more information on memory
allocation and use of the AL command, refer to the Emulation section of your
"System Users Manual.

Zero Qut Memory. Before you download any code, use the O0S/40 F (Fill)
command to fill 8540 program memory with zeros. Later, when you examine
memory, the zeros make it easy to identify the beginning and end of your
code. (Zeroing out memory has no effect on how the program is loaded.)
Enter the following command 1line to fill memory addresses CO--7TFF with
zeros:

$ f OcO Tff 0000 <CR>

Check that Memory Was Filled with Zeros. Check the contents of memory with
the 0S/40 D (Dump) command. The display shows the data in hexadecimal
format, as well as the corresponding ASCII characters. Display the contents
of memory addresses CO--CF and 700--7FF with the following commands:

TL-74 _ e

68000 Emulator Specifics Users 68000 bemo —=- rrepare rrougram

> d 0cO <CR>
0 2 4 6 8 A C E
0000C0O 0000 0000 0000 0000 0000 0000 0000 0000 ceeseseseneacane

> d 700 7ff <CR>

0 2) 6 8 A C E
000700 0000 0000 0000 0000 0000 0OCOO 0000 0000 ceseasnsne crsenn
000710 0000 0000 0000 0000 0000 0000 0000 0000 ceesecssnn
000720 0000 0000 0000 0000 0000 0000 0000 0000 ceencs ceseecsaas

000730 0000 0000 0000 0000 0000 0000 0000 0000 ctessecsarencnns
000740 0000 0000 0000 0000 0000 0000 0000 0000 creccaneenesrsae
000750 0000 0000 0000 0000 0000 0000 0000 0000 cececsrssccsaane
000760 0000 0000 0000 0000 0000 0000 0000 0000 ceteecrsscscsnaa

000770 0000 0000 0000 0000 0000 0000 0000 0000 cesasecssssenn eee
000780 0000 0000 0000 0000 0000 0000 00CO 0000 cesesesescncanans
000790 0000 0000 0000 0000 0000 0000 0000 0000 sesecnsassstccnn
0007A0 0000 0000 0000 0000 0000 0000 0000 0000 ceetscsstcscanss

0007BO 0000 0000 0000 0000 0000 0000 0000 0000 cecsesecesesrnene
0007CO 0000 0000 0000 0000 0000 0000 0000 0000 S

0007DO 0000 0000 0000 0000 0000 0000 0000 0000 cesrensens
0007EO0 0000 0000 0000 0000 0000 0000 0000 0000 cececctetseanene
0007FO 0000 0000 0000 0000 0000 0000 0000 0000 ciecsesestecanes

Download the Object Code. Enter the following command line to download the
object code from the 8560 file load to 8540 program memory:

$ lo <load <CR>

load file

Download the Program Symbols. Recall that the source code for the
demonstration program contains the directive LIST DBG. Because of this
directive, the object file contains a list of the symbols that appear in the
source code, and the values associated with those symbols. And, because you
included the -d option in the link command line, those symbols were passed
to the 1load file. Use the 0S/40 SYMLO command to download those symbols
into the symbol table in 8540 system memory:

$ symlo -s <load <CR>

The -S option means that both address symbols and scalar symbols are
downloaded. If you omit the =S, only address symbols are downloaded. (A
scalar is a number that is not an address; for example, TSIZE, the length of
the table.)

Later in this demonstration, whenever you use a symbol in an O0S/40 command
line, O0S/40 refers to the symbol table to find the value that the symbol
represents. '

You've assembled and linked the demonstration program and downloaded it into
memory. Now skip forward to the heading, "Run the Demonstration Program.”

e TL=T5

68000 Demo -- Prepare Program 68000 Emulator Specifics Users

CASE 3: DOWNLOAD FROM YOUR HOST TO THE 8540

This discussion gives some general instructions for downloading the
demonstration - program from a host computer other than an 8550 or 8560 to
8540 (or 8550) program memory. If your 8540 is not equipped with the
optional COM Interface Package, you cannot complete this part of the
demonstration, so skip forward to the heading, "Case 4: Patch the Program
into Memory" for instructions. COM Interface software is standard on the
8550.

Since we don't know what host computer you are using, we can only provide a
general outline for creating the demonstration program and downloading it to
the 8540. Once you have determined the command sequence that is appropriate
for your host, record this information in the space provided in Fig. T7L-18.

Create the Extended Tekhex Load Module

"Prepare the 8540

Establish Communication

Download the Load Module

Terminate Communication

Fig. TL-18. Host computer commands for preparing demonstration program.

TL-76 e

68000 Emulator Specifics Users 68000 Demo —-- Prepare Program

Create the Extended Tekhex Load Module

In order for the object code to be downloaded to the 8540, it must be in
Extended Tekhex format, as shown in Fig. 7TL-16. You can create the load
module in one of two ways:

1. Use your host computer's text editor, and key the load module
in by hand.

2. Use your host computer's 68000 assembler:

a. Translate the demonstration program into the language
of your host's 68000 assembler.

b. Create and assemble the source file,.
c. Link the object code, if necessary.

d. Translate the object code produced by the assembler or
linker into Extended Tekhex format. The Intersystem
Communication section of your System Users Manual
provides a general algorithm for conversion to Extended
Tekhex format.

Prepare the 8540

Start up your 8540 and enter the following command to select the 68000
emulator:

> SEL 68000 <CR>

The SEL command automatically sets the emulation mode to O.

Allocate Memory. If you have the Memory Allocation Controller (MAC) option
installed, you need to allocate memory for the program. (If you do not have
the MAC option, do not enter the AL command that follows.) The AL command
allocates memory space to program memory. The default condition at start-up
is zero blocks allocated to program memory. Enter the following command:

> AL 0 ; AL OFO00000 ; AL OFFFFFF <CR>
1 BLOCK(S) ALLOCATED 000000 000FFF
1 BLOCK(S) ALLOCATED FFFO000 FFFFFF
1 BLOCK(S) ALLOCATED FO00000 FOOFFF

This command allocates 12K bytes (3 blocks) of program memory for the
logical addresses wused by the demonstration program. The first block is
used by the program and the pointer to the SRB (Service Request Block); the
second block will contain the SRB used by the SVC (Service Call); and the
third block is used by the 68000 system stack. For more information on
memory allocation and use of the AL command, refer to the Emulation section
of your System Users Manual.

e TL=77

68000 Demo —- Prepare Program 68000 Emulator Specifics Users

Zero Out Memory. Before you download any code, use the O0S/40 F (Fill)
command to fill 8540 program memory with zeros. Later, when you examine
memory, the zeros make it easy to identify the beginning and end of your
code. (Zeroing out memory has no effect on how the program is loaded.)
Enter the following command line to fill memory addresses CO--7FF with
zeros:

> F 0CO 7FF 0000 <CR>

Check that Memory Was Filled with Zeros. Check the contents of memory with
the 0S/40 D (Dump) command. The display shows the data in hexadecimal
format, as well as the corresponding ASCII characters. Display the contents
of memory addresses CO--CF and 700--7FF with the following commands:

> D 0CO <CR>
0 2 4 6 8 A C E
0000CO 0000 0000 0000 0000 0000 0000 0000 0000 ceceseseescsanna

> D 700 7FF <CR>

0 2 4 6 8 A C E
000700 0000 0000 0000 0000 0000 0000 0000 0000 ceerecesssereees .
000710 0000 0000 0000 0000 0000 0000 0000 0000 crescenccscnenas
000720 0000 0000 0000 0000 0000 0000 0000 0000 cecesnens
~000730 0000 0000 0000 0000 0000 0000 0000 0000 N cecessnee

000740 0000 0000 0000 0000 0000 0000 0000 0000 cssstsscssnansan
000750 0000 0000 0000 0000 0000 0000 0000 0000 ceeesessaessanas
000760 0000 0000 0000 0000 0000 0000 0000 0000 ceesesrecscanes .
000770 0000 0000 0000 0000 0000 0000 0000 0000 ctercecssccns oo
000780 0000 0000 0000 0000 0000 0000 0000 0000 sieeeesoncenceas
000790 0000 0000 0000 0000 0000 0000 0000 0000 ettt escasecenes
0007AO0 0000 0000 0000 0000 0000 0000 0000 0000 ...eve. ceceas e
0007BO 0000 0000 0000 0000 0000 0000 0000 0000 ctecteesesecnans
0007C0O 0000 0000 0000 0000 0000 0000 0000 0000 ctecscesaccesras
0007D0 0000 0000 0000 0000 0000 0000 0000 0000 ..eveecoencessse
0007EO 0000 0000 0000 0000 0000 0000 0000 0000 ctecscssasetenans
0007FO0 0000 0000 0000 0000 0000 0000 0000 0000 cseevsesesanans

7L-78 e

68000 Emulator Specifics Users 68000 Demo -- Prepare rrogram

Download the Load Module to the 8540

Be sure that your 8540 and your host computer are connected via an
RS-232-C-compatible communications 1link. Then perform the following steps
to download the Tekhex load module to 8540 program memory. (Refer to the
Intersystem Communication section of your System Users Manual to determine
the commands and parameters that are appropriate for your host computer.)

a. Enter the 8540 COM command to establish communication. (The
parameters of the COM command are host-specific.) Log on to
your host and execute any necessary host initialization
commands,

b. Enter the command line that downloads the Tekhex load module to
the 8540, This command 1line consists of a host computer
command that performs the download, followed by a null
character (CTRL-@ on most terminals) and a carriage return.
COM places the object code in 8540 program memory, and puts the
program symbols into the symbol table in 8540 system memory.

c. Log off your host, then terminate COM command execution by
entering the null character, and then pressing the ESC key.

Once you've downloaded the program to the 8540, skip forward to the heading,
"Run the Demonstration Program."

e TL-79

68000 Demo -- Prepare Program 68000 Emulator Specifics Users

CASE 4: PATCH THE PROGRAM INTO MEMORY

This discussion shows you how to patch the demonstration program into 8540

(or 8550) program memory using the P command, and then add the program
symbols into the symbol table using the ADDS command.

Ordinarily, you would load the object code and symbols from a binary or
hexadecimal load file, as illustrated for Cases 1, 2, and 3. The procedure
presented here is not normally used for preparing a program for execution.
~Use this procedure only if you have no standard means for preparing the
program, but would still like to try out your emulator.

Start Up the 8540

Start up your 8540 and enter the following command to select the 68000
emulator:

> SEL 68000 <CR>

The SEL command automatically sets the emulation mode to O.

Allocate Memory. If you have the Memory Allocation Controller (MAC) option
"installed, you need to allocate memory for the program. (If you do not have
the MAC option, do not enter the AL command that follows.) The AL command
allocates memory space to program memory. The default condition at start-up
is zero blocks allocated to program memory. Enter the following command:

> AL 0 ; AL OF00000 ; AL OFFFFFF <CR>
1 BLOCK(S) ALLOCATED 000000 O00OFFF
1 BLOCK(S) ALLOCATED FFF000 FFFFFF
1 BLOCK(S) ALLOCATED FO00000 FOOFFF

This command allocates 12K bytes (3 blocks) of program memory for the
logical addresses used by the demonstration program. The first block is
used by the program and the pointer to the SRB (Service Request Block); the
second block will contain the SRB used by the SVC (Service Call); and the
third block is used by the 68000 system stack. For more information on
memory allocation and use of the AL command, refer to the Emulation section
of your System Users Manual.

Zero Out Memory. Before you download any code, use the O0S/40 F (Fill)
command to fill 8540 program memory with zeros. Later, when you examine
memory, the zeros make it easy to identify the beginning and end of your
code. (Zeroing out memory has no effect on how the program 1is 1loaded.)
Enter the following command 1line to fill memory addresses CO0--T7FF with
zeros:

> F 0CO 7FF 0000 <CR>

TL-80 e

68000 Emulator Specifics Users 68000 Demo -—- Prepare Program

Check that Memory Was Filled with Zeros. Check the contents of memory with
the 0S/40 D (Dump) command. The display shows the data in hexadecimal
format, as well as the corresponding ASCII characters. Display the contents
of memory addresses C0--CF and 700--7FF with the following commands:

> D 0CO <CR>
0 2 4 6 8 A C E
0000CO 0000 0000 0000 0000 0000 0000 0000 O0OO0CO ceetecstseanenans

> D 700 TFF <CR>

0 2 y 6 8 A c E
000700 0000 0000 0000 0000 0000 0000 0000 0000 O
000710 0000 0000 0000 0000 0000 0000 0000 0000 cetedsssecnnsnes
000720 0000 0000 0000 0000 0000 0000 0000 0000 certecnanas cevsne
000730 0000 0000 0000 0000 0000 0000 0000 0000 seterecssesesans
000740 0000 0000 0000 0000 0000 0000 0000 0000cveevecvenenn

000750 0000 0000 0000 0000 0000 0000 0000 0000 cetssescsasanses
000760 0000 0000 0000 0000 0000 0000 0000 0000 tesssescsscenons
000770 0000 0000 0000 0000 0000 0000 0000 0000 teessetsetscanans
000780 0000 0000 0000 QOO0 0000 0000 0000 0000 O .
000790 0000 0000 0000 0000 0000 0000 0000 0000 cetertessatresnns
0007A0 0000 0000 0000 0000 0000 0000 0000 0000 tessesesereenans
0007BO 0000 0000 0000 0000 0000 0000 0000 0000 A
0007CO 0000 0000 0000 0000 0000 0000 0000 0000 csteeetesseseccnas
0007D0O 0000 0000 0000 0000 0000 0000 0000 0000 sertececsacnana .o
0007EO 0000 0000 0000 0000 0000 0000 0000 0000 setecasseceanane
0007F0 0000 0000 0000 0000 0000 0000 0000 0000 sevecsesessenans

Patch the Object Code into Memory

The 0S/40 P (Patch) command stores a sequence of bytes into memory,
replacing the previous memory contents. Enter the following command to
store the object code for the first three instructions 1in the program
(MOVEA, MOVE, and CLR) starting at location 700:

> P 700 207C00000500 323C0004 4280 <CR>

|

|

i CLR.L DO

1
MOVE.W #TSIZE-1,D1
MOVEA.L #TABLE,AQ

patch address

Now patch in the next five instructions (ADD, DBRA, MOVE, and two NOPs), and
the Exit SVC function code ...

> P T0E D018 51C9FFFC 13CO00F00007 HE71 4ET71 1A <CR>

e TL-81

68000 Demo -~ Prepare Program 68000 Emulator Specifics Users

Finally, patch in the SRB information for the Exit SVC at address CO:

- > P _0CO 0000071C <CR>

You'll examine the contents of memory later in this demonstration.

Put Symbols into the Symbol Table

Later in this demonstration, you will use symbols from the demonstration
program (START, LOOP, TSIZE, TABLE, and EXIT) when communicating with 0S/40.
Whenever you use a symbol in a command line, OS/U0 refers to a symbol table
in 8540 system memory to find the values that the symbol stands for. Enter
the following command line to add the program symbols to the symbol table,
along with their values:

> ADDS START=700 LOOP=70C =S TSIZE=5 TABLE=500 EXIT=71C <CR>

The ADDS command cannot provide all the symbol-related information that is
provided by the SYMLO command (as in Cases 1 and 2) or the COM command (as
in Case 3). Because this information is missing, some of the displays you
produce later in this demonstration will not match the symbolic displays
shown in this manual. For more information on the ADDS command, refer to
the Command Dicticnary of your System Users Manual.

You've patched the demonstration program into program memory and placed the
program symbols in the symbol table. Now it's time to run the program.

TL-82 e

68000 Emulator Specifics Users 68000 Demo -- Run Program

RUN THE DEMONSTRATION PROGRAM

From now until the end of the demonstration, the commands you are to enter
are shown in lowercase. If you are not logged in to an 8560, you may enter
commands in either lowercase or uppercase. If you are using an 8560, you
must enter the name of every command in lowercase, and your system prompt is
"$ll ’ not |l>|| .

Now that you've loaded the program into memory, you need to:
e verify that the program was loaded correctly; and

e put yalues into the table in memory, for the program to add.

Check Memory Contents Again. Before you 1loaded the program, you filled
memory locations CO--TFF with zeros. Look again at the memory areas used by
the program with the following command lines:

> d OcO <CR>
0 2 4) 8 A C E
0000CO 0000 0O71C 0000 0000 0000 0000 0000 0000 cecetesnas ceaces
> d 700 71f <CR>
0 2) 6 8 A C E
000700 207C 0000 0500 323C 0004 4280 D018 51C9 1eees2<,..B...Q.

000710 FFFC. 13CO O0OF0O 0007 U4E71 4ET71 1A00 0000 eesess..NgNq....

The object code is loaded in two different blocks:

e The 68000 machine instructions are loaded at address 700 (specified
by the first ORG directive).

e Information for the Exit SVC is loaded at address CO (specified by
the second ORG directive).

The contents of the table at address 500 are still undefined, but you will
put some values into the table in just a few minutes.

Turn Symbolic Debug On. Enter the following command to turn on symbolic
debug. This causes symbols from your code to be displayed when disassembly
is performed. (The -S and -L options are already set by default.)

> SYMD ON <CR>

Disassemble the Object Code. The DI (DIsassemble) command displays memory
contents both in hexadecimal notation and in assembly language mnemonics.
You can use the DI command to verify that the object code in memory
corresponds to your source code. Enter the following command to disassemble
the area of memory occupied by the executable part of your program:

e TL-83

68000 Demo -- Run Program 68000 Emulator Specifics Users

> di 700 71a <CR>

ADDRESS DATA MNEMONIC

START

000700 207C MOVE.L #500H,A0
DEM0+000706

000706 323C MOVE.W #4H,D1
DEMO+00070A

00070A 4280 CLR.L DO

LOOP

00070C D018 ADD.B (A0)+,DO
DEMO+00070E

00070E 51C9 DBRA D1,70CH
DEMO+000712

000712 13¢0 MOVE.B DO,FO0COT7H
DEMO+000718

000718 HYET1 NOP

DEMO+00071A

00071A 4ET1 NOP

Compare the DI display with the assembler listing you generated earlier, or
refer back to Fig. TL-15.

The DI display contains two lines for each disassembled instruction. The
second line contains the absolute location of the instruction (ADDRESS), the
machine language instruction itself (DATA), the instruction mnemonic
(MNEMONIC), and the instruction operands. The first line contains symbolic
representations for the location. The symbolic 1location enables you to
correlate the display with your assembler listing. The symbols START and
LOOP correspond to the labels START and LOOP in the source code.

For those lines of the display where the location does not correspond to a
label in the symbol table, DI substitutes the section name plus the address
of the instruction relative to the beginning of the section as shown in the
location counter field of your assembler 1listing. (Since section DEMO
begins at address 0, the offset is 0, and the relative address is the same
as the absolute address in this display. This offset feature is much more
useful for sections that don't start at address 0.) E

If you didn't load the pertinent symbols and related information into the
symbol table (using a command such as SYMLO), the DI command cannot supply
this symbolic information.

TL-84 ; e

68000 Emulator Specifics Users 68000 Demo -- Run Program

Now, you've seen that your system can use the symbol table to translate
numbers into symbols, to make a display easier to read. Your system can
also translate a symbol in a command line into an address. For example,
since your system knows that the symbol START is equivalent to the address
700, you could have entered the DI command in any of the following ways:

di 700 T1A

di START T71A

di start start+1la
di 700 START+1la

Notice that a symbol can be entered in either lowercase or uppercase.

The feature that enables DOS/50 and 0S/40 to correlate symbols from your
program with the numbers they represent is termed symbolic debug.

Put Values into the Table in Memory. The demonstration program sums five
numbers from a table in memory. Use the P (Patch) command to store the
numbers 1, 2, 3, 4, and 5 in the table. Do you remember what the address of
the table 1is? It doesn't matter, as long as you remember that the symbol
TABLE represents that address.

> p -b table 0102030405 <CR>

]
address of string of bytes to be stored
table: 500 at addresses 500—-504

Check the Contents of the Table, Use the D command with the -B
(byte-oriented) parameter to display the contents of the table. (When you
don't specify an upper boundary for the area to be dumped, the D command
dumps 16 bytes.)

PSS lower address: 500

i (defaults to lower address + OF)

1
]
g +-- upper address: omitted
]
\
[} 1

> d -b table <CR>
01t 2 3 456 78 9A B CDEF
000500 01 02 03 O4 05 00 00 00 00 00 00 00 00 00 00 00 ...eeeeeeccannns

Notice that bytes 500--504 (the table) contain the values you patched in.
Bytes 505--50F were zeroed earlier by the F command.

The following command dumps only the contents of the table:
> d -b table table+tsize—1 <CR>

01 2 3 45 6 7 8 9 A B C D E F
000500 01 02 03 04 05 EEETER

e TL-85

68000 Demo -- Run

Program

68000 Emulator Specifics Users

Start Program Execution

(stops).
1+2+3+U4+5=0F.

> g <CR>

> ds <CR>
PC=00071C

D0=0000000F
D4=00000000
A0=00000505
A4=00000000

SR=0000 —-—->

TL-86

D1=0000FFFF
D5=00000000
A1=00F00000
A5=00000000

T.S. .III
0.0. .000

Enter the G (Go) command to start program execution
transfer address specified by the END directive in the source code.

D2=00000000
D6=00000000
A2=00000000
A6=00000000

.0 .X NZVC
...0 0000

at 1location 700, the

The program executes, and when the Exit SVC occurs, the program breaks
Register DO contains the sum of the numbers in the
You can use the DS command to examine the register contents:

memory table:

D3=00000000
D7=00000000
A3=00000000
SSP=00000000 USP=00000000

68000 Emulator Specifics Users 68000 Demo —- MON1tor rrogram

MONITOR PROGRAM EXECUTION

You have assembled, loaded, and executed the demonstration program. The
rest of this demonstration shows you some commands for monitoring program
execution. You can watch the changes in the emulator's registers and
observe the effect of each instruction as the program proceeds.

Trace All Instructions. The TRA (TRAce) command lets you observe the changes
in the 68000 registers as the program proceeds. When you enter a TRA
command and then start execution with the G command, display lines are sent
to the system terminal. As each instruction executes, the display line
shows the instruction (as in the DI display) and the contents of the
registers after that instruction has executed. Enter the following command
to trace all of the program's instructions:

> tra all <CR>

Enter the command G START (or G 700) to resume program execution back at the
beginning of the program:

> g start <CR>

As the program executes, the following trace is displayed. Remember that
you can type CTRL-S to suspend the display and CTRL-Q to resume the display.

START
UP:000700 207C MOVE.L #500H,A0
PC=000706

D0O=0000000F
D4=00000000
A0=00000500
AY4=000000Q0
SSP=00000000

DEMO+000706
UP:000706 323C

PC=00070A
D0=0000000F
D4=00000000
A0=00000500
Al4=00000000
SSP=00000000

DEMO+00070A
UP:00070A 4280

PC=00070C
D0=00000000
D4=00000000
A0=00000500
A4=00000000
SSP=00000000

MOVE.W

D1=0000FFFF
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=00000004
D5=00000000
A1=00000000
A5=00000000
USP=00000000

CLR.L DO

D1=00000004
D5=00000000
A1=00000000
A5=00000000
USP=00000000

#4H, D1

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0004

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

TL-87

08000 Demo -- Monitor Program 68000 Emulator Specifics Users

LOOP
UP:00070C D018
PC=00070E

ADD.B (A0)+,DO

D0=00000001
D4=00000000
A0=00000501
A4=00000000

D1=00000004
D5=00000000
A1=00000000
A5=00000000

D2=00000000
D6=00000000
A2=00000000
A46=00000000

SSP=00000000 USP=00000000 SR=0000
DEMO+00070E
UP:00070E 51C9 DBRA D1,70CH
PC=00070C

LOOP

D0=00000001
D4=00000000
A0=00000501
A4=00000000

SSP=00000000

UP:00070C D018

PC=00070E

D0=00000003
D4=00000000
A0=00000502
Al4=00000000

ADD.B

D1=00000003
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=00000003
D5=00000000
A1=00000000
A5=00000000

DP2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

(A0)+,DO

D2=00000000
D6=00000000
A2=00000000
A6=00000000

SSP=00000000 USP=00000000 SR=0000
DEMO+00070E
UP:00070E 51C9 DBRA D1,70CH
PC=00070C

D0=00000003
D4=00000000
A0=00000502
A4=00000000

SSP=00000000

LOOP

UP:00070C DO18 ADD.B

PC=00070E

D0=00000006
D4=00000000
A0=00000503
A4=00000000

D1=00000002
D5=00000000
A1=00000000
A5=00000000

USP=00000000

D1=00000002
D5=00000000
A1=00000000
A5=00000000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

(A0)+,DO

D2=00000000
D6=00000000
A2=00000000
A6=00000000

SSP=00000000 USP=00000000 SR=0000
DEMO+00070E
UP:00070E 51C9 DBRA D1,70CH
PC=00070C

7L-88

D0=00000006
D4=00000000
A0=00000503
Al4=00000000

SSP=00000000

D1=00000001
D5=00000000
A1=00000000
A5=00000000

USP=00000000

D2=000060000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

68000 Emulator Specifics Users 68000 Demo -- Monitor Program

LOOP

UP:00070C DO18 ADD.B (A0)+,DO

<BREAK

added.

PC=00070E
D0=0000000A
D4=00000000
A0=00000504
A4=00000000
SSP=00000000

DEMO+00070E
UP:00070E

51C9
PC=00070C
D0=0000000A
D4=00000000
A0=00000504
A4=00000000
S3P=00000000

UP:00070C D018

PC=00070E
D0=0000000F
D4=00000000
A0=00000505
A4=00000000
SSP=00000000

DEMO+000T70E
UP:00070E 51C9

PC=000712
D0=0000000F
D4=00000000
A0=00000505
A4=00000000
SSP=00000000

DEMO+000712
UP:000712

PC=000718
D0=0000000F
D4=00000000
A0=00000505
A4=00000000
SSP=00000000

The

DBRA

APD.B

DBRA

D1=00000001
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=00000000
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=00000000
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=0000FFFF
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=0000FFFF
D5=00000000
A1=00000000
A5=00000000
USP=00000000

TRACE, SVC>

D1,70CH

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

(A0)+,DO

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D1,70CH

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

13C0 MOVE.B DO,FO0007H

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

After register DO is cleared, it begins to store
ADD.B instruction adds a number from the table into DO.

the

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

sum of the

At the end of the program, DO contains the sum of the numbers you
the table.

(TSIZE-1) at the
of the DBRA
ends after

contain 4
by one (because
The program

Register D1, the pass counter, 1is set to
beginning of the program. It decreases
instruction) each time a number is added to DO.
register D1 reaches minus one (FFFF).

e TL-89

68000 Demo -—— Monitor Program 68000 Emulator Specifics Users

Register AO, set to contain 500 (TABLE) at the start of the progran,
increases by one each time a number is added to the accumulator. At the end

of the program, register AO has been incremented five times and contains
505.

Trace to the Line Printer. By adding the parameter >LPT to a command, you
can direct that command's output to the line printer instead of to the
system terminal. First verify that your line printer is properly connected
and powered up. Then enter the following command to execute the program
with trace output directed to the line printer:

> g start DLPT <CR>

NOTE

If you're operating in TERM mode with an 8560, use one of the
following commands in place of the command shown:

e g start | lpilr sends the display to the 8560 line
printer.

e g start \DLPT sends the display to the 1line printer on
the 8540 or 8550.

Trace Jump Instructions Only. Another way to monitor the program's execution
is to look only at the jump instructions. By tracing the jump instructions,
you can still observe the changes in the registers, but you save time and
space by not tracing the instructions within the loop. Enter the following
command to trace only the jump instructions when the loop is being executed:

> tra jmp loop 7OE <CR>

|

[}

' +-- upper address } Within this range,

| } only jump instructions
- lower address } are traced.

(70C)

Check the Status of the Trace. The TRA command - without any parameters
displays the trace conditions that are currently set. Because you can have
up to three trace selections in effect at the same time, it is useful to be
able to see which selections are active. Check your trace status with the
following command line:

> tra <CR> .
TRACE ALL,DEMO+000000,FFFFFF
TRACE JMP, LOOP,DEMO+00070E

As you've specified, TRA ALL is in effect for addresses 0--70B, TRA JMP is

in effect for addresses TO0C--70E, and TRA ALL is again in effect for
addresses TOF—FFFFFF.

7L-90 e

68000 Emulator Specifics Users

68000 Demo —-— Monitor rrograim

Again, start your program with the G command.

displayed:

> g start <CR>

START

UP:000700 207C

PC=000706
D0=0000000F
D4=00000000
A0=00000500
Al4=00000000
SSP=00000000

DEM0+000706
UP:000706 323C

PC=00070A
D0=0000000F
D4=00000000
A0=00000500
A4=00000000

SSP=00000000

DEMO+00070A
UP:00070A 4280

PC=00070C

D0=00000000
D4=00000000
A0=00000500
Al4=00000000

SSP=00000000

DEMO+00070E
UP:00070E 51C9

PC=00070C

D0=00000001
D4=00000000
A0=00000501
AY4=00000000

SSP=00000000

DEMO+00070E
UP:00070E 51C9

PC=00070C

D0=00000003
D4=00000000
A0=00000502
A4=00000000

SSP=00000000

DEMO+000TOE
UP:00070E 51C9

PC=00070C

D0=00000006
D4=00000000
A0=00000503
Al4=00000000

SSP=00000000

MOVE.L

MOVE.W

DBRA

DBRA

DBRA

D1=0000FFFF
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=00000004
D5=00000000
A1=00000000
A5=00000000

USP=00000000

CLR.L DO

D1=00000004
D5=00000000
A1=00000000
A5=00000000

USP=00000000

D1=00000003
D5=00000000
A1=00000000
A5=00000000

USP=00000000

D1=00000002
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=00000001
D5=00000000
A1=00000000
A5=00000000

USP=00000000

#4H, D1

#500H, AO

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0004

D1,70CH

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D1,70CH

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D1,70CH

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

The following trace

D3=00000000
DT7=00000000
A3=00000000

-D3=00000000

DT7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

is

TL-91

68000" Demo —-- Monitor Program 68000 Emulator Specifies Users

DEMO+00070E

UP:00070E 51C9 DBRA D1,70CH

PC=00070C

D0=0000000A
D4=00000000
A0=00000504
Al4=00000000

D0=0000000F
D4=00000000
A0=00000505
Al4=00000000

D1=00000000
D5=00000000
A1=00000000
A5=00000000

D1=0000FFFF
D5=00000000
A1=00000000
A5=00000000

D2=00000000
D6=00000000
A2=00000000
A6=00000000

SSP=00000000 USP=00000000 SR=0000
DEMO+000712
UP:000712 13C0O MOVE.B DO,FO0007H
PC=000718

D2=00000000
D6=00000000
A2=00000000
A6=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

SSP=00000000 USP=00000000 SR=0000
<BREAK TRACE, SVC> .

As with the TRA ALL display, observe that register D1 (the pass counter) is
decremented; register AO (the table pointer) is incremented; and DO stores
the sum of the numbers from the table. With the TRA JMP selection in
effect, the instructions within the loop are not displayed.

Set a Breakpoint after a Specific Instruction. Now that you've seen how the
program adds the numbers together, here's a new task: add only the third
and fourth numbers from the table. To perform this task, you want the pass
counter to contain 1, and the table pointer to contain 502 (the address of
the third number in the table). You can accomplish these changes without
altering the object code in memory. First, stop program execution after the
pass counter and the table pointer have been set. Next, while the program
is stopped, enter new values for the pass counter and table pointer. When
execution resumes, the program will treat the new values as if they were the
original programmed values.

Enter the following command line to trace all of the instructions as the

program executes:
> tra all <CR>

Check the status of the trace with the following command line:

> tra <CR>
TRACE ALL,DEM0O+000000,FFFFFF
The TRA ALL command Jjust entered makes the previous trace selections

obsolete.

Now, set a breakpoint so that the program stops after the table pointer and
pass counter have been set. The next command causes the program to stop
after the address of the MOVE.W instruction (706) has been seen on the bus.
This happens first when the address is prefetched. You may have to use the
G command several times to actually execute the instruction where the
breakpoint has been set. Be sure to check the last disassembled instruction
line to see which instruction was last executed.

TL-92 e

68000 Emulator Specifics Users 68000 Demo -- Monitor Program

> bk 1 706 <CR>

]
1
| +-- breakpoint address
1
1

breakpoint number
(can be 1, 2, or 3)

Check the breakpoint setting with the BK command:
> bk <CR>

BK 1 DEMO+000706

BK 2 CLR

BK 3 CLR

Use the G command to start program execution:

> g start <CR>

START
UP:000700 207C
PC=000706

MOVE.L #500H,A0

D0=0000000F
D4=00000000
A0=00000500
A4=00000000
SSP=00000000

D1=0000FFFF
D5=00000000
A1=00000000
A5=00000000

D2=00000000
D6=00000000
A2=00000000
A6=00000000

USP=00000000 SR=0000

D3=00000000
D7=00000000
A3=00000000

<BREAK TRACE, BKPT1>
All instructions up to and including the instruction last executed are
displayed. The break occurred when the emulator detected the breakpoint
address going into the 68000 prefetch pipeline. However, by examining the
trace, you can see that the instruction on which you want to break has not
yet executed. So, enter the G command again.
> g <CR>
DEMO+000706
UP:000706 323C MOVE.W #4H,D1
PC=00070A
D0O=0000000F D1=00000004 D2=00000000 D3=00000000
D4=00000000 D5=00000000 D6=00000000 DT7=00000000
A0=00000500 A1=00000000 A2=00000000 A3=00000000
A4=00000000 A5=00000000 A6=00000000
SSP=00000000 USP=00000000 SR=0000
<BREAK TRACE, BKPT1>
This time, the trace shows that the MOVE.W instruction was executed. The
number of times you must enter the G command before the instruction at the

breakpoint

address

is

executed depends

on

instructions and the TRA mode settings.

number of words in the

7L-93

68000 Demo -- Monitor Program 68000 Emulator Specifics Users

Set New Values in Pass Counter and Table Pointer; Check Results. Now that
you've reached the breakpoint, you can change the contents of the registers
while execution is stopped. The break display shows that register Dt (the
pass counter) contains 4, and register AO (the table pointer) contains the
address 500. Use the S (Set) command to set the number of passes to two and
set the table pointer to 502:

> 8 dl1=1 a0=502 <CR>

The S command does not produce a display, but you can use
Status) command to check the values in the registers you changed. DS
displays the contents of each emulator and status register. Check the
result of the previous S command with the following command line:

the DS (Display

> ds <CR>
PC=00070A

DO=0000000F
D4=00000000
A0=00000502
AY¥=00000000

SR=0000 --->

D1=00000001
D5=00000000
A1=00F 00000
A5=00000000

JIIT .

T.S.
0.0. .000

D2=00000000 D3=00000000
D6=00000000 D7=00000000
A2=00000000 A3=00000000
A6=00000000 SSP=00000000 USP=00000000

..X NzZvC

...0 0000

The DS display shows that the
new values.

pass counter and table pointer now contain the

Resume Program Execution. If you enter the G
program execution starts where it left off.
the breakpoint with the following command:

command with no parameters,
Resume program execution after

> g <CR>
DEMO+00070A

UP:00070A 4280 CLR.L DO

LOOP

PC=00070C
D0=00000000
D4=00000000
A0=00000502
A4=00000000
SSP=00000000

UP:00070C D018

TL-94

PC=00070E
D0=00000003
D4=00000000
A0=00000503
A4=00000000
SSP=00000000

ADD.B

D1=00000001
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D1=00000001
D5=00000000
A1=00000000
A5=00000000
USP=00000000

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0004

(A0)+,DO

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0000

D3=