
This manual supports the
following TEKTRONIX products:

8550 8540
Options Options Products

2P
3U

2P
3U

Tektronix, Inc.
P.O. Box 500

8300E26
8300P26

Beaverton, Oregon 97077

070-3970-00
Product Group 61

COMMITTED TO EXCELLENCE

This manual supports a software/firmware
module that is compatible with:

005/50 Version 2 (8550)
05/40 Version 1 (8540)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8500
MODULAR MOL SERIES

68000
EMULATOR SPECIFICS

USERS MANUAL

Serial Number --------

First Printing FEB 1982

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: .Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications ofthe portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which orwith
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1982 Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

Section 1L

68000 EMULATOR SPECIFICS

Introduction

General Information ..
Emulator Hardware Configuration ••••••••••••••.•••••••••••••••••••.
Microprocessors Supported •••••..•••.•••••••••••••••••••••••••••.
Emulation Modes ••.••••••••.
Clock Rates
Symbolic Debug

Emulator-Specific Parameters, Commands, and Displays ••••••••••••••
Byte/Word Parameter
Register Designators
The 68000 Status Register
DOS/50 and OS/40 Commands

AL---Allocate Memory to Logical Memory Map ••••••••••••••••••••••
BK---Sets or Displays Breakpoint Conditions •••••••.••••••••••••.
D---Dump; Displays Memory Contents
DI---Disassembles Object Code into Mnemonics ••••••••••••••••••.•
DS---Display Contents of Emulator Processor Registers •••••••••••
EX---Displays or Alters Memory Contents ••••••••••••••••••••.••••
F---Fills Program/Prototype Memory with Data ••••••••••••••••••••
G---Begins Program Execution
MAP---Sets or Displays Memory Map Assignments •••••••••••••••••••
MEMSP---Defines Default Memory Space ••••••••••••••••••••••••••••
MOV---Moves Data Between Program and Prototype Memory •••••••••••
P---Alters Memory Contents
RD---Reads from Emulator Port
RESET---Reinitializes Emulator
S---Assigns Value to Register or Symbol •••••••••••••••••••••••••
SEA---Searches Memory for Value or String •••••••••••••••••••••••
SEL---Selects the Emulator
TRA---Controls Display of Executed Instructions ••••••••••••••••••••
WRT---Writes to Emulator I/O Port

Real-Time Prototype Analyzer
Trigger Trace Analyzer (TTA) Commands and Parameters

EVE and BUS Command Parameters
CONS---Set Consecutive Ev"ents
DISP---Display Contents of Acquisition Memory
TS---Display Status of TTA Triggers

Service Calls ••••.••••••.••

@

SVC Address Range •.••••••
SRB Format
SVC Demonstration

Page

7L-1

1L-1
1L-1
1L-1
7L-1
7L-2
1L-2

7L-2
7L-2
1L-2
1L-4
7L-5
7L-5
1L-5
7L-6
1L-1
1L-9
1L-9
1L-9
1L-9

1L-10
1L-11
1L-11
1L-11
1L-11
1L-11
1L-13
1L-13
7L-14
1L-14
1L-15
1L-16
1L-16
1L-16
1L-11
1L-11
1L-18

7L-19
1L-19
1L-21
1L-21

1L-i

b~OOO Emulator Specifics Users

Special Considerations
Fetching and the Prefetch Pipeline
Interrupts
Memory Spaces
Memory Space Partitioning
The 68000 STOP Instruction

Jumpers ...
EMU 1 Board

P1080---Emulator Halt Control Selector
EMU 2 Board

J2144---Break Cycle Control Selector
Interface Buffer Board

P1---Data Transfer ACKnowledge (DTACK) Delay ••••••••••••••••••••.••
P2 and P3---Prototype Bus Arbitration Control
P6---Address Strobe Control •••••••••••••••••.
P7---DTACK Timeout Control
P8---Internal Generation of DTACK in Mode

Interface Control Board ...
............................... J4011---Save Non-Maskable Interrupts

J6021---Save Prototype Interrupts • •••••••••••••••••••••••••••••••• 0

Mobile Microprocessor Board ..
J1045 and J2045---Delay of DTACK Assertion •••••••••••••••••••••••••

7L-25
7L-25
7L-26
7L-33
7L-34
7L-44

7L-45
7L-45
7L-45
7L-45
7L-45
7L-46
7L-46
7L-46
7L-47
7L-47
7L-48
7L-48
7L-48
7L-49
7L-49
7L-49

Emulator Timing ••••••••••••••••••••.••••••••••••••••••••.•••••••••••• 7L-51

Probe/Prototype Interface Diagram •••••••••••••••••••••••••••••••••••• 7L-54

Installing Your 68000 Emulator Software
8540 Software Installation Procedure ••••••
8550 Software Installation Procedure

68000 Demonstration Run
Introduction
Examine the Demonstration Program
Assemble and Load the Demonstration Program •••••••••••.••••••••••••
Case 1: Assemble and Load on the 8550
Case 2:
Case 3:
Case 4:
Run the
Monitor
Summary

Assemble on the 8560; Download to the 8540 ••••••••••••••••••
Download from Your Host to the 8540 •••••••••••••••••••••••••
Patch the Program into Memory · ·

Demonstration Program · · ·
Program Execution · · ·
of 68000 Emulator Demonstration Run ·

7L-55
7L-55
7L-55

7L-59
7L-59
7L-62
7L-63
7L-63
7L-70
7L-76
7L-80
7L-83
7L-87
7L-96

Error Messages ••• 7L-98

Reprints
Microprogrammed Implementation of a
Design and Implementation of System
Instruction Prefetch on the MC68000

7L-ii

Single Chip Microprocessor ••••••
Features for the MC68000 ••••••••

7L-99
7L-101
7L-110
7L-118

68000 Emulator Specifics Users

Table
No.

TABLES

7L-1 68000 Registers and Flags •• 7L-3
7L-2 Register Symbols Accepted by S Command •••.•••••••••••••••..••..• 7L-13
7L-3 EVE/BUS Signal Symbols •••••••••••••••••••••••••••••••••••••.•••• 7L-16
7L-4 68000 Service Calls ••••••••.••••••••••••••.•••••••.••••••.••.•.• 7L-20
7L-5 Encoding of the Memory. Space Byte •••••••••••••••••••.••••••••••• 7L-21
7L-6 Classification of Memory Space References ••••••••••••••••••••••• 7L-33
7L-7 68000 Exception Vector Assignment ••••••••••••••••••••••••••••••• 7L-40
7L-8 J1045 and J2045 Configurations •.••••••••••••••••.••••••••••••••• 7L-50
7L-9 68000 Emulator/Microprocessor Timing Differences •••••••••••••••• 7L-51
7L-10 Basic 8560 Editing Commands ••••.•••••••••••••••••••••••••••.••• 7L-72

Fig.
No.

ILLUSTRATIONS

7L-1 Status Register ••••••••••.•••.••••••••••••••••••••.•••.•••.•.•••. 7L-4
7L-2 Sample disassembly •••••••••.••••••••••••••••••••••••••.•••••••••• 7L-8
7L-3 Sample DISP display ••••••.••••••••••••••••.•••.•.•••••.••••••••• 7L-17
7L-4 A 68000 SRB pointer located at CO--C3 •••••••••.••••••.•••••••••• 7L-21
7L-5 68000 SVC demonstration program listing ••••••••••••••••••••••••• 7L-22
7L-6 Alternate executable code for SVC demonstration program ••••••••• 7L-24
7L-7 68000 instruction pipeline block diagram •••••••••••••••••••••••• 7L-25
7L-8 Program example ••••••••••••••••••••.•••.•••••••••••••••••••••••• 7L-27
7L-9 Example program run with TRA OFF •••••••••••••••••••••••••••••••• 7L-28
7L-10 Example program run with TRA ON •••••••••••••••••••••.•••••••••• 7L-30
7L-11 Memory partitioning example program •••.•••••••••••••••••••••••• 7L-35
7L-12 68000 timing diagram, read cycle •.••••••••••••••••••••••••••••• 7L-52
7L-13 68000 timing diagram, write cycle •••••.•••••••••••••••.•••••••• 7L-53
7L-14 68000 Prototype Control Probe interface •••••••••••••••••••••••• 7L-54
7L-15 68000 demonstration run program ••••••••••••••••••••.••••.••••.. 7L-60
7L-16 68000 demonstration program: Extended Tekhex format ••••••••••• 7L-61
7L-17 Symbol table listing .•••••••••••••••••.•••••••••••••••••••••••• 7L-66
7L-18 Host computer commands for preparing demonstration program ••••• 7L-76

7L-iii

Section 7L

68000 EMULATOR SPECIFICS

INTRODUCTION

This supplement is designed to be inserted into Section 7 of the 8550 System
Users Manual (DOS/50 Version 2) or the 8540 System Users Manual. This
Emulator Specifics section explains the features of the 8550 and 8540 that
are unique to the 68000 emulator. Throughout this section, "your System
Users Manual" refers to the 8550 System Users Manual or 8540 System Users
Manual.

The 68000 demonstration run is designed to
Learning Guide of your System Users
contains reference material.

be used with Section 1, the
Manual; the rest of this section

As a user of the 68000 emulator, you should be familiar with the material in
the MC68000 16-Bit Microprocessor User's Manual, by Motorola. In addition,
you should be familiar with the internal operation of the 68000.
Information is available in the booklet MC68000 Article Reprints, by
Motorola. Three of the more pertinent articles from that booklet have been
reprinted here in the subsection "Reprints". Some of the effects of the
68000's design on the behavior of the emulator are discussed under the
topic, "Special Considerations".

GENERAL INFORMATION

EMULATOR HARDWARE CONFIGURATION

Throughout this Emulator Specifics section, the term "68000 emulator" refers
to a 68000 Emulator Processor board configured with a 68000 Prototype
Control Probe. In emulation mode 0, the prototype control probe must be
connected to the main emulator boards. In modes 1 and 2, the prototype
control probe must be connected to both the emulator and your prototype.
For instructions on installing your emulator boards and probe, refer to your
68000 Emulator Processor and Prototype Control Probe Installation Service
Manual.

MICROPROCESSORS SUPPORTED

The 68000 emulator emulates the Motorola MC68000 microprocessor.

EMULATION MODES

The 68000 supports emulation modes 0, 1, and 2, as described in the
Emulation section of your System Users Manual.

7L-1

General Information 68000 Emulator Specifics Users

CLOCK RATES

In emulation mode 0, the emulator clock rate is 8MHz. In emulation modes
and 2, the prototype clock rate may range from 2MHz to 8MHz.

SYMBOLIC DEBUG

The 68000 emulator supports the use of symbolic debug. Most of the displays
in this manual include symbolic debug information.

EMULATOR-SPECIFIC PARAMETERS, COMMANDS, AND DISPLAYS

BYTE/WORD PARAMETER

Several commands allow you to operate on memory on a byte-oriented or
word-oriented basis. This choice is represented by the -B or -W parameter.
For the 68000 emulator, the default setting is -W, except for the MOV, RD
and WRT commands, where the default is -B.

REGISTER DESIGNATORS

Table 7L-1 alphabetically lists the symbols used by
designate the registers and flags used by the 68000.
following information for each symbol:

DOS/50 and OS/40 to
The table provides the

• a description of the register or flag that the symbol represents

7L-2

• the size of the register or flag

• the value assigned to the register or flag by the RESET command

• whether the register or flag can be assigned a value by the S (Set)
command.

68000 Emulator Specifics Users Parameters, l"ommanUl:), U.l.i;)~.l.Cl'y~

Table 7L-1
68000 Registers and Flags

I
I

Symbol : Description
: Size I Value After I Altered by
I(Bits)1 RESET I S Command?

--
AO--A6 I seven address registers

C I Carry bit of CCR

CCR : Condition Code portion of SR

00--07 I eight data registers

I : Interrupt mask of SR

N : Negative bit of CCR

PC : Program Counter

S : Supervisor/User bit of SR

SR I Status Register

32 : unchanged

I unchanged

5 I unchanged

32 : unchanged

3 I 7

I unchanged

24 : contents of :
: SP:000004 * :

I 1 (on)

16 : 27XX

SSP : Supervisor Stack Pointer (A7): 32 : contents of :
: SP:OOOOOO * :

T : Trace bit of SR I 0 (off)

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes
--------------------------------~---------------------------------------
USP I User Stack Pointer (A7Y 32 : unchanged yes

V : oVerflow bit of CCR I unchanged yes

x : eXtend bit of CCR I unchanged yes

Z I Zero bit of CCR : unchanged yes

* SP: is Supervisor Program space.

7L-3

Yarameters~ Commands, Displays 68000 Emulator Specifics Users

THE 68000 STATUS REGISTER (SR)

The 16-bit Status Register (SR) has a system byte (high order) and a user
byte (low order). The system byte contains the Trace Mode and Supervisor
State bits, and contains the three bits used as the Interrupt Mask. The
user byte contains five status flag bits, which are used primarily for
branch nontrol within a program, and for error detection. Figure 7L-1 shows
the Status Register.

System Byte User Byte

1\ 1\ 1------------ ---------------\1-------------- ---------------\
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
: T: : S : : 12: 11: 10: : X : N : Z : V : C :
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Trace +

Supervisor ---+

IUser

\ ---
v

Interrupt -------------------+
Mask

I

I Extend ------------------------------+

Negative --------------------------------+
Condition

Codes < Zero --+
I
I

Overflow --+

\ Carry ---+

Fig. 7L-1. Status Register.

7L-4

68000 Emulator Specifics Users Parameters, Commands, Displays

DOS/50 AND OS/40 COMMANDS

AL---Allocate Memory to Logical Memory Map

The AL command allocates 4K-bytes blocks of program memory to the
processor's logical memory space. The MAC (Memory Allocation Controller)
option must be installed. For example, the command AL SP:UP:O allocates one
block of program memory for location O--OFFF of the two memory spaces SP and
UP. Thus, for the range O--OFFF, these two memory spaces will be in the
same physical memory. References to either of those two memory spaces in
that range will access the same physical location. For example, the address
OA40 in the supervisor program space (SP) will be at the same physical
location as the address OA40 in the user program space (UP).

With the 68000 emulator, the AL command may be used only if the Memory
Allocation Controller (MAC) option is installed. The use of the AL command
does not follow that described by the Command Dictionary of your System
Users Manual. Refer to the Emulation section of your System Users Manual
for a detailed description of the AL command when the MAC option is
installed.

BK---Sets or Displays Breakpoint Conditions

With the 68000 emulator, the BK command syntax and parameters are
described in the Command Dictionary of your System Users Manual.
following information instead.

bk

or

{ 1 }
{2 }
{3 }

SYNTAX

bk (all} clr

or

{1 [-a]}
{2" [-a]} [rd] [.£¥.]

bk [-c] (~ -} [expression) [wt] [wd]

PARAMETERS

1, 2, and 3. The number specifies the desired breakpoint.

ALL. This specifies all breakpoints.

CLR. This parameter clears the specified breakpoint(s).

not as
Use the

7L-5

Parameters, Commands, Displays 68000 Emulator Specifics Users

-C. This parameter causes execution to continue after each breakpoint
occurs. If -C is not specified (the default), the BK command stops
execution after a breakpoint occurs. To resume program execution, enter the
G command without parameters.

-A. This mode sets breakpoint 1 to arm breakpoint 2. When the mode is set,
breakpoint 2 will not occur unless breakpoint 1 has already happened.
Arming mode may be set when entering either breakpoint 1 or breakpoint 2,
but one of these two breakpoints must already be defined. When you redefine
either breakpoint 1 or 2 this setting is cancelled.

expression. This parameter is an expression that represents the address
where program execution is to be interrupted. The expression may include
don't-care bits and/or a memory space designator. The address expression
may also be omitted. For example, BK 1"BY WT will cause a break on the
first byte write.

RD and WT. These parameters designate that a breakpoint occurs when a memory
read (or write) occurs at the specified address. The default is any access
(read or write).

BY and WD. These parameters designates that a breakpoint occurs when a byte
(or word) operation occurs at the specified address. The default is any
access (byte or word).

NOTE

When you use TRA, and breakpoints are set, the break may occur
before the address where the breakpoint is set. This occurs
because the address has been identified going into the 68000
prefetch pipeline. Be sure to check the display to see if the
last instruction executed was the one on which you wanted to
break. If it is not, enter G again, and the next instruction will
be executed. Check the display again, and repeat the G command,
if necessary. It is recommended that you put NOP statements in
your program around the statements where you want to break.

D---Dump; Displays Memory Contents

The D command allows memory space designators in the address expressions.

7L-6

68000 Emulator Specifics Users Parameters, Commands, Displays

DI---Disassembles Object Code into Mnemonics

The DI command translates object code in memory into
object code,

assembly
assembly

language
language instructions. It displays addresses,

mnemonics, and operands.

DI Display Format. In general, the format of the disassembly follows the
conventions of both the Motorola cross-assembler and the TEKTRONIX 8500
Series B 68000 Assembler. An example of a disassembled instruction is:

000712 13CO MOVE.B DO,F00007H

In this example:

000712

13CO

MOVE

.B

DO

F00007H

is the memory location of the instruction being disassembled.

is the opcode.

is the opcode mnemonic.

is the size extension. In the DI display, the size extension
may be shown on some instructions where it may not be
required or allowed for assembly.

is the source operand.

is the destination operand.

Exceptions from the Assembler Format. The opcode variations ADDA, ADDI,
ANDI, CMPA, CMPI, EORI, MOVEA, ORI, SUBA, and SUB I do not appear in the
disassembly. The assembler chooses the correct A or I opcode variation by
~xamining the operands in the instruction, rather than by the opcode suffix.
Thus, ADDI H035FH,DO and ADD H035FH,DO would both generate the same
opcode, and their disassembly will be displayed as ADD.W H035FH,DO.

The opcodes for BT and DBF are disassembled as the equivalent mnemonics, BRA
and DBRA, respectively.

The mnemonics EMT A and EMT_F are displayed whenever an attempt is made to
disassemble opcodes in the ranges AOOO--AFFF and FOOO--FFFF. These opcode
ranges are reserved by Motorola for future enhancements.

A line of asterisks (**1*1***) is displayed in the instruction field if an
attempt is made to disassemble an illegal opcode.

7L-7

Parameters, Commands, Displays

A sample disassembly is shown in Fig. 7L-2.

> D1 3000 3022 <CR>
ADDRESS

DEMO+OOOOOO
003000

DEMO+000002
003002

DEMO+000006
003006

DEMO+OOOOOC
00300C

LOOP
003012

DEMO+000018
003018

DEMO+00001A
00301A

DEMO+00001E
00301E

DEMO+000020
003020

SELF
003022

DATA MNEMONIC

4280 CLR.L

323C MOVE.W

207c MOVE.L

227C MOVE.L

31FA MOVE.W

22D8 MOVE.L

51C9 DBF

4E71 Nap

4E71 Nap

60FE BT

68000 Emulator Specifics Users

DO

113H,D1

1I1000H,AO

112000H,A1

3024H,3026H

(AO)+, (A 1)+

D1,3012H

3022H

Fig. 7L-2. Sample disassembly.

This display was generated when SYMD was ON.

7L-8

68000 Emulator Specifics Users Parameters, Commands, Displays

DS---Display Contents of Emulator Processor Registers

The OS command displays the 68000 registers. The display contains PC(next),
the fifteen 32-bit general registers, the system and user stack pointers,
and the system status register. The status register is displayed in
hexadecimal, and in binary with each bit labelled. Refer to the following
example:

> OS

02=00000000 03=00000000
06=00000000 07=00000000
A2=00000000 A3=00001000

PC=00132C
OO=OOOOOOOF
D4=00BC48FF
AO=OOFOOOOO
A4=00000004

01=0001FFOO
05=00000000
A1=00000000
A5=00000008 A6=00000000 SSP=000C1000 USP=00100000

T.S .• 111 ••• X NZVC
SR=850A ---> 1.0 •. 101 ••• 0 1010

The long and short forms of the OS display are the same: the -L modifier has
no effect.

EX---Oisplays or Alters Memory Contents

The EX (EXamine) command allows memory space designators in the address
expression.

An error will occur if you attempt to examine memory that is not on a word
boundary while in word mode (-W).

F---Fills Program/Prototype Memory with Oata

The F command allows memory space designators in the address expression.

An error will occur if you attempt to fill memory that is not on a word
boundary while in word mode (-W).

G---Begins Program Execution

The G (Go) command starts the emulator at the 24-bit address specified. The
processor examines the S bit of the 68000 stattis register to determine
whether to start in supervisor or user program space. Memory' space
designators are not allowed; however, you may select the program space with
the Set command.

If breakpoints have been set, it may be necessary to invoke G more
to actually execute the instruction on which you wish the break
This is because the 68000 performs prefetching and does not have
signal. Refer to the discussions under "Special Considerations"
this section. Also, refer to the BK command discussion.

than once
to occur.

a fetch
later in

7L-9

Parameters, Commands, Displays 68000 Emulator Specifics Users

MAP---Sets or Displays Memory Map Assignments

The MAP command enables you to assign blocks of , memory to either program or
prototype memory, and to designate blocks of memory as read-only. The 68000
MAP command differs from the description given in the Command Dictionary as
follows:

• The -M modifier is not allowed. Displays are in tabular form only.

• Entering MAP with no parameters causes the display of the current
memory map assignments for the default memory spaces (MEMSP M).

• Entering MAP -A displays the current memory map assignments for all
valid memory spaces.

• Entering MAP followed by one or more memory space designators
displays the current mapping for the indicated memory space(s).

• The block size default is 4K bytes.

• Unlike most other emulators, the 68000 emulator supports write
protection for prototype memory through use of the URO parameter.

• Multiple memory space designators are allowed as part of the loaddr
parameter. They are not allowed in the hiaddr parameter. The
hiaddr parameter defaults to the same memory space(s) as loaddr.

If you attempt to change the program/prototype map assignments and are not
currently in emulation mode 1, a warning message is displayed indicating
that you are not in mode 1. The mapping of read-only and read/write is
valid in any emulation mode.

Here is a sample 68000 MAP assignment and display:

> MAP PRW 000000 70FFFF <CR>
> MAP URW SD:710000 7FFFFF <CR>
> MAP -A <CR>

UD OOOOOO-FFFFFF PRW

UP OOOOOO-FFFFFF PRW

SD 000000-70FFFF PRW
SD 710000-7FFFFF URW
SD 800000-FFFFFF PRW

SP OOOOOO-FFFFFF PRW

7L-10

68000 Emulator Specifics Users Parameters, Commands, Displays
---~~~----

MEMSP---Defines Default Memory Space

The 68000 emulator's default MEMSP settings are as follows:

) MEMSP <CR)
Default single memory space .•.•.. SP
Default multiple memory spaces •.• UD UP SD SP

MOV---Moves Data Between Program and Prototype Memory

The MOV command allows memory space designators in the address expressions.

For example, the command:

) MOV UD:3640 4340 SD:2000 <CR)

moves User Data space 3640--4340 to Supervisor Data space beginning at
address 2000.

An error occurs if you attempt to move data that is not on a word boundary
while in word mode (-W). The default mode for the MOV command is -B.

P---Alters Memory Contents

The P (Patch) command allows a memory space designator in the address
expression.

RD---Reads from Emulator Port

Because the 68000's 1/0 is memory-mapped, the 68000 RD command works like
the D command, except that prototype memory is referenced, and only one word
is displayed.

RESET---Reinitializes Emulator

The RESET command simulates a hardware reset by modifying the registers of
the 68000 as follows:

• The Trace bit is turned off (0).

• The Supervisor bit is turned on (1).

• The interrupt level is set to 7.

• The stack pointer is loaded from Supervisor Program memory location
000000.

• PC(next) is set to the value in Supervisor Program memory location
000004.

7L-11

Parameters, Commands, Oisplays 68000 Emulator Specifics Users

Here is an example of register contents before invoking RESET:

> OS <CR>

PC=00132C
OO=OOOOOOOF
04=00BC48FF
AO=OOFOOOOO
A4=00000004

01=0001FFOO 02=00000000 03=00000000
05=00000000 06=00000000 07=00000000
A1=00000000 A2=00000000 A3=00001000
A5=00000008 A6=00000000 SSP=000C1000 USP=00100000

T.S .. III ••• x NZVC
SR=850A ---> 1.0 •• 101 ••• 0 1010

After RESET, the display changes. Assume for this example that the contents
of SP:OOOOOO is 000000, and that the contents of SP:000004 is 020000. The
arrows show the altered registers and bits:

> RESET <CR> --> OS <CR>

v

PC=020000
OO=OOOOOOOF
04=00BC48FF
AO=OOFOOOOO
A4=00000004

01=0001FFOO 02=00000000 03=00000000
05=00000000 06=00000000 07=00000000
A1=00000000 A2=00000000 A3=00001000
A5=00000008 A6=00000000 SSP=OOOOOOOO USP=00100000

T .S •• III ••. X NZVC

SR=270A ---> 0.1 .. 111 ... 0 1010
= =

7L-12

68000 Emulator Specifics Users Parameters, Commands, Displays

S---Assigns Value to Register or Symbol

The S (Set) command changes the values of the 68000's registers. The
symbols allowed and the registers they represent are shown in Table 1L-2.

Table 1L-2
Register Symbols Accepted by S Command

------------+--
Symbol I Register
============+==
DO--D1 I the eight 32-bit data registers

------------+--
AO--A6 I the seven 32-bit address registers

------------+--
SR (*a) the 16-bit Status Register

T the Trace bit of the SR
S the Supervisor bit of the SR
I the three Interrupt level bits of the SR
CCR the 5-bit Condition Code part of the SR

------------+--
X the eXtend bit of the CCR
N the Negative bit of the CCR
Z the Zero bit of the CCR
V the oVerflow bit of the CCR
C the Carry bit of the CCR

------------+--
*a---The emulator does not check whether you have specified

values for the unused bits in the Status Register.

SEA---Searches Memory for Value or String

Try to limit your value and string searches to the smallest portion of
memory necessary. The hiaddr parameter of the SEA command defaults to the
end of memory. Therefore, it is strongly recommended that you specify the
hiaddr parameter of the SEA command. Otherwise, you may experience
extremely lengthy search times, due to the 68000's large memory capability.

1L-13

Parameters, Commands, Displays 68000 Emulator Specifics Users

SEL---Selects the Emulator

The following command selects the 68000 emulator:

> SEL 68000 <CR>

The system responds with the software version number and version date. The
emulator hardware need not be in the system when you SELect it.

NOTE

The 68000 emulator cannot be selected while you are programming a
PROM.

TRA---Controls Display of Executed Instructions

The TRA command sets the conditions for displaying trace lines during
program execution. Memory space designators may be used when defining the
loaddr parameter. However, they may not be used in hiaddr. If a memory
space is not designated, the default is to all memory spaces. Here is a
sample 68000 TRA display:

7L-14

> SYMD -SL ON <CR>
> TRA ALL <CR>
> G MAIN <CR>

MAIN
UP:001000 227C

PC=001006
DO=OOOOOOOF
D4=00000000
AO=00000505
A4=00000000
SSP=OOOOOOOO

PROG+000006
UP:001006 207C

PC=00100C
DO=OOOOOOOF
D4=00000000
AO=00000500
A4=00000000
SSP=OOOOOOOO

PROG+OOOOOC
UP:00100C 323C

PC=001010
DO=OOOOOOOF
D4=00000000
AO=00000500
A4=00000000
SSP=OOOOOOOO

MOVE.L HFOOOOOH,A1

D1=0000FFFF
D5=00000000
A1=00FOOOOO
A5=00000000
USP=OOOOOOOO

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=OOOO

MOVE.L H500H,AO

D1=0000FFFF
D5=00000000
A1=00FOOOOO
A5=00000000
USP=OOOOOOOO

MOVE.W H4H,D1

D1=00000004
D5=00000000
A1=00FOOOOO
A5=00000000
USP=OOOOOOOO

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=OOOO

D2=00000000
D6=OOOOOOOO
A2=00000000
A6=00000000
SR=OOOO

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

D3=00000000
D7=00000000
A3=00000000

68000 Emulator Specifics Users

PROG+000010
UP:001010 4280

PC=001012
DO=OOOOOOOO
D4=00000000
AO=00000500
A4=00000000
SSP=OOOOOOOO

PROG+000012

CLR.L DO

D1=00000004
D5=00000000
A1=00FOOOOO
A5=00000000
USP=OOOOOOOO

Parameters, ~ommanQs, Ul~piay~

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=0004

D3=00000000
D7=00000000
A3=00000000

UP:001012 D018 ADD.B
PC=001014

(AO)+,DO

DO=00000001 D1=00000004
D4=00000000 D5=00000000
AO=00000501 A1=00FOOOOO
A4=00000000 A5=00000000
SSP=OOOOOOOO USP=OOOOOOOO

(BREAK TRACE,ESC)

D2=00000000
D6=00000000
A2=00000000
A6=00000000
SR=OOOO

D3=00000000
D7=00000000
A3=00000000

The lines below each assembly language instruction show the program counter,
the data and address registers, the stack pointers and the status register.
The line above the instruction shows the program label or "section +
offset."

Notes and Exceptions. When any TRA selections are in effect, your program
executes at much less than normal speed, even in those parts of the program
that are not traced. If execution speed is important, but you want to step
through part of a program, you can use the following TTA command:

) EVE 1 A=loaddr hiaddr -C (CR)

This makes the 68000 emulator pause and print the register contents after
executing each instruction in the specified range. Instructions outside the
range will be executed at full speed if TRA is OFF.

When TRA ALL is set and execution of the user program comes within 10 bytes
of a non-allocated or NOMEMed section of memory, instruction disassembly is
no longer performed. This occurs because the disassembler tries to read
enough words to disassemble the longest possible instruction. Instruction
execution proceeds normally and breaks if the memory boundary is reached.

The emulator does not use the 68000 status register trace bit (T). The user
has full use of this bit.

If your program contains only absolute sections, the trace display will not
show the "section + offset" line, even if SYMD -SL is ON. However,. labels
are still displayed.

WRT---Writes to Emulator I/O Port

The WRT command allows you to write to a memory location as an I/O port. It
has the same function as the P command, except that WRT always writes to
prototype memory, and does not do a read-back check. A word write to an odd
boundary causes an error.

@ 7L-15

Parameters, Commands, Displays 68000 Emulator Specifics Users

REAL-TIME PROTOTYPE ANALYZER

You may not use the Real-Time Prototype Analyzer (RPTA) with the 68000
emulator. An error message is issued if you attempt to use the RTPA while
you are using the 68000 emulator.

TRIGGER TRACE ANALYZER (TTA) COMMANDS AND PARAMETERS

The Trigger Trace Analyzer provides real-time tracing and break conditions
for the 68000 emulator running at up to 8MHz.

Memory space designators are allowed as part of the address expression, but
are ignored in the actual programming of the TTA. To reference a particular
memory space, you must use the BUS command.

1'.h~"Tr.igger_TraGe !malyzer Users Manual describes the TTA and its commands.

EVE and BUS Command Parameters

Table 7L-3 shows the bus signal symbols which may be used as parameters for
the BUS command, and for the B parameter of the EVE command. The DISP
command also uses these symbol in its display.

Table 7L-3
EVE/BUS Signal Symbols

------------+--
Symbol : Description
============+==
UP (*a) User Program
UD (*a) I User Data
SP (*a) Supervisor Program
SD (*a) Supervisor Data

U (*a)
S (*a)
P (*a)
D (*a)

INTA
IPLO - IPL7

BY
WD

RD
WT

VPA
BERR
HLT

any operation occurring in User mode
any operation occurring in Supervisor mode
any operation occurring in Program memory
any Data operation

INTerrupt Acknowledge
Interrupt Levels

BYte operation
WorD operation

ReaD operation
WriTe operation

Valid Peripheral Address
Bus ERRor
Halt

------------+--
(*a)---The DISP command displays these symbols as part of

the address field instead of the bus signal field.

7L-16

68000 Emulator Specifics Users Parameters, Commands, Displays

CONS---Set Consecutive Events

The EMU and FET parameters are not supported.

DISP---Display Contents of Acquisition Memory

The DISP command displays the contents of the TTA Acquisition Memory. This
memory acquires a record of bus activity that occurred while your program
was running.

Because the 68000 has a prefetch pipeline, and no fetch signal as discussed
under "Special Considerations", the DISP command attempts to disassemble
every word as an instruction, unless it is obviously not code. This ensures
that every word that really is an instruction is disassembled. However, it
also generates superfluous disassembly lines, which should be ignored.

The DISP command also displays the signal symbols shown in Table 7L-3 as
part of its ADDRESS and BUS fields. When an INTA (interrupt acknowledge)
cycle occurs, the notation **: will be displayed in place of an memory space
designator, since the function code lines (FCx) do not show a valid memory
space.

Figure 7L-3 shows a sample display of the following program lines when the
program was run with TRA OFF:

CLR.L
MOVE.W
MOVE.L

> DISP <CR>

ADDRESS

PROG+OOOOOO
SP:003000

PROG+000002
SP:003002

PROG+000004
SP:003004

PROG+000006
SP:003006

PROG+000008
SP:003008

PROG+OOOOOA
SP:00300A

DO
1I1H,D1
1I1000H,AO

DATA

4280 CLR.L

323C MOVE.W

0001 OR.B
-

207C MOVE.L

0000 OR.B
c,··-----"

1000 .~gYE.B

Fig.

7-PROBE-0 BUS

DO 0000 0000 WD IPLO RD

1I1H,D1 0000 0000 WD IPLO RD

117CH,D1 0000 0000 WD IPLO RD

1I1000H,AO 0000 0000 WD IPLO RD

IIOH, DO 0000 0000 WD IPLO RD

00,00 0000 0000 WD IPLO RD

7L-3. Sample DISP di splay.

Note that the third, fifth, and sixth lines are superfluous. They
result from disassembly on the oper~nds of the other instructions.

7L-17

Parameters, Commands, Displays 68000 Emulator Specifics Users

TS---Display Status of TTA Triggers

In a TS display, the "bus" signals may not be identical to the parameters
you enter with a BUS command or the B parameter of the EVE command.
However, the signals displayed are functionally equivalent to the parameters
you specified. The format of the display is as described in the 8500
Trigger Trace Analyzer Users Manual.

When an INTA (interrupt acknowledge) cycle occurs, the notation **: will be
displayed in place of a memory space designator, since the function code
lines (FCx) do not show a valid memory space.

Supervisor mode (S) will be indi~ated any time interrupt acknowledge (INTA)
is shown.

7L-18

68000 Emulator Specifics Users 68000 Service ~allS
-------------------~--~~~~~~--
SERVICE CALLS

Service calls (SVCs) allow your program to use many system capabilities of
your 8540, 8550, or 8560. The 68000 emulator supports service calls in all
three modes.

An SVC is invoked with any byte instruction which writes to the address
range specified by the SVC command. The operand of the instruction directs
the system to a specified memory address called the SRB pointer. (The
pointer points to the SRB, the Service Request Block.) The SRB pointer
tells the system where to find the data (stored in the SRB) that informs the
system which service to perform. The SRB pointer and the SRB may be located
in any of the four memory spaces.

Table 7L-4 shows the default addresses for the eight SRB pointers. You can
use the SVC command to alter these addresses and their associated port
values to suit your program requirements.

The memory space of the SRB vector can be specified with a memory space
designator in the address parameter of the SVC command. The default memory
space is the value of MEMSP S. If you do not use the SVC command to specify
the SRB vector, the vector defaults to supervisor data space (SO).

Refer to the Command Dictionary of your System Users Manual for syntax and
use of the SVC command.

SVC Address Range

The 68000 uses memory-mapped 1/0. In order for a byte-write instruction to
invoke a Service Call, its address operand (the "port") must be in the
proper SVC address range. This range may be anywhere in memory; however, it
is recommended that the range used be above address 400H. The default
address range is FOOOOO--F00007. You can change this range with the SVC
command.

Mul tiple memory spaces are allowed for the "port" parameter in the SVC
command. If memory space designators are omitted, the value of MEMSP M at
the time the SVC command is executed is used. In the SVC command, the least
significant digit of the "port" range will be set to 0 (i.e., OFFF7 will be
rounded to OFFFO).

Example. The following co·mmand changes the SVC address range to 1000--1007
and causes the SRB vector to start at location FOO in Supervisor Data space.

) SVC"SD:FOO 1000 <CR)

Then, to invoke SVC1, include the following instructions in your program:

@

MOVE.B DO,1007H
NOP
NOP

7L-19

68000 Service Calls 68000 Emulator Specifics Users

Table 7L-4
68000 Service Calls

--------+--
: Service Call (*a) : Default

SVC +--------------------------+--------------+ Location of
Number I Mnemonic (*b) (*c) I Hexadecimal I SRB Pointer

--
I MOVE.B DO, (GEN.L)F00007H
I Nap
: Nap

13COOOF00007
: 4E71
: 4E71

CO,C1,C2,C3

--------+--------------------------+--------------+------------
2 : MOVE.B DO, (GEN.L)F00006H : 13COOOF00006 C4,C5,C6,C7

: Nap : 4E71
: Nap : 4E71

--------+--------------------------+--------------+------------
3 : MOVE.B DO,(GEN.L)F00005H I 13COOOF00005 C8,C9,CA,CB

: Nap I 4E71
: Nap : 4E71

--------+--------------------------+--------------+------------
4 : MOVE.B DO, (GEN.L)F00004H 13COOOF00005 CC,CD,CE,CF

: Nap : 4E71
: Nap : 4E71

--------+--------------------------+--------------+------------
5 I MOVE.B DO,(GEN.L)F00003H : 13COOOF00004 DO,D1,D2,D3

I Nap : 4E71
: Nap I 4E71

--------+--------------------------+--------------+------------
6 : MOVE.B DO,(GEN.L)F00002H : 13COOOF00002 D4,D5,D6,D7

: Nap : 4E71
: Nap : 4E'71

--------+--------------------------+--------------+------------
7 : MOVE.B DO,(GEN.L)F00001H : 13COOOF00001 D8,D9,DA,DB

: Nap : 4E71
: Nap : 4E71

--------+--------------------------+--------------+------------
8 : MOVE.B DO, (GEN.L)FOOOOOH : 13COOOFOOOOO DC,DD,DE,DF

: Nap : 4E71
: Nap : 4E71

--------+--------------------------+--------------+------------
(*a) The default SVC address range (FOOOOO--F00007) is assumed.
(*b) The MOVE.B instruction is used in this table. However,

any byte-write instruction can be used to invoke an SVC.
(*c) The 68000-specific assembler directive, GEN.L, generates

a long word address.

NOTE

Include two Nap instructions immediately following the byte-write
instruction. The Naps fill the 68000 prefetch pipeline so that
other instructions following the SVC will not be lost~

When SVCs are enabled, the addresses used by the SVCs should not
be used in any write instruction except to invoke an SVC. A read
instruction will not invoke an SVC.

7L-20

68000 Emulator Specifics Users 68000 Service Calls

SRB Format

The 68000 emulator uses the LAS (Large Address Space) format for SRBs and
SRB pointers. This format is described in the Service Calls section of your
System Users Manual. Fig. 7L-4 illustrates the format of a 68000 SRB
pointer for SVC1.

co C1 C2 C3
+---------+---------+---------+---------+

Memory
Space
Byte

I .

I

24-Bit Address

+---------+---------+---------+---------+

Fig. 7L-4. A 68000 SRB pointer located at CO--C3.

Table 7L-5 list the value of the Memory Space byte that corresponds to each
memory space. For more information on memory spaces, refer to the heading
"Memory Spaces" under "Special Considerations" later in this section.

Table 7L-5
Encoding of the Memory Space Byte

-----------------+------
Memory Space : Code

--
current default 0000
UD: 0001
UP: 0010
SD: 0100
SP: 1000

-----------------+------

SVC Demonstration

Figure 7L-5 lists a 68000 program that uses four SVC functions: Assign
Channel, Read ASCII, Write ASCII, and Abort. The program's algorithm is
explained in the Service Calls section of your System Users Manual, which
also demonstrates a version of the program written in 8080A/8085A assembly
language. Using the program in Fig. 7L-5, you can perform a parallel
demonstration with the 68000 B Series Assembler and 68000 emulator.

7L-21

68000 Service Calls

SSSSS V
S V
SSSSS

V CCCCC
V C

V V C
V V C is

SSSSS V CCCCC

ORG
LONG
LONG
LONG
LONG
LONG

ORG

SRB1FN BYTE
BYTE

SRB1ST BLOCK
BLOCK
BLOCK
WORD
LONG

SRB2FN BYTE
BYTE

SRB2ST BLOCK
BLOCK
BLOCK
WORD
LONG

SRB3FN BYTE
BYTE

SRB3ST BLOCK
BLOCK
BLOCK
WORD
LONG

SRB4FN BYTE
BYTE

SRB4ST BLOCK
BLOCK
BLOCK
WORD
LONG

·OCOH
SRB1FN
SRB2FN
SRB3FN
SRB4FN
SRB5FN

400H

10H
OOH
01H
01H
02H
05H
CONI

10H
01H
01H
01H
02H
04H
LPT

01H
OOH
01H
01H
02H
100H
BUFFER

02H
01H
01H
01H
02H
100H
BUFFER

68000 Emulator Specifics Users

DEMONSTRATION: 68000 EMULATOR

;Beginning of SRB vector.
;SRB1 LAS specification.
;SRB2 LAS specification.
;SRB3 LAS specification.
;SRB4 LAS specification.
;SRB5 LAS specification.
;End of SRB vector.

;Set up SRB areas.

;SRB1 = Assign 'CONI' to Channel O.
;Assign

to Channel O.
;Status returned here.
;Reserved.
;Reserved.
;Length of 'CONI' + <CR>.
;LAS pointer to 'CONI' + <CR>.
;End of SRB1.

;SRB2 = Assign 'LPT' to Channel 1.
;Assign

to Channel 1.
;Status reserved here.
; Reserved.
;Reserved.
;Length of 'LPT' + <CR>.
;LAS pointer to 'LPT' + <CR>.
;End of SRB2.

;SRB3 = Read ASCII line from CONI (Channel 0).
;Read ASCII

from Channel O.
;Status returned here.
;Reserved.
;Byte count returned here.
;256 bytes in our buffer.
;LAS pointer to our buffer.
;End of SRB3.

;SRB4 = Write ASCII line to LPT (Channel 1).
;Write ASCII

to Channel 1.
;Status returned here.
; Reserved.
;Byte count returned here.
;256 bytes in our buffer.
;LAS pointer to our buffer.
;End of SRB4.

Fig. 7L-5. 68000 SVC demonstration program listing (part 1 of 2).

7L-22

68000 Emulator Specifics Users 68000 Service Calls
--

SRB5FN BYTE 1FH
;SRB5 = Abort (Close all channels and terminate).
;Abort.

BLOCK OBH ;Reserved.
;End of SRB5.

BUFFER BLOCK 100H ;Our I/O area.
;ASCII of 'CONI'

+ <CR>.
;ASCII of 'LPT'

+ <CR>.

CONI

LPT

START

LOOP

ABORT

ASCII 'CONI'
BYTE OOH
ASCII 'LPT'
BYTE OOH

;End of data definitions.

Beginning of executable code.

ORG
MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BEQ

MOVE.B
NOP
NOP
END

1000H
DO,(GEN.L)OF00007H

SRB1ST
ABORT
OO,(GEN.L)OF00006H

SRB2ST
ABORT
OO,(GEN.L)OF00005H

SRB3ST
ABORT
OO,(GEN.L)OF00004H

SRB4ST
LOOP

OO,(GEN.L)OF00003H

START

;Entry point into program.
;Call SVC1 to

assign 'CONI'
to Channel O.

;Check status to see if all went well.
;No? Stop everything.
;Call SVC2 to

assign 'LPT'
to Channel 1.

;Check status to see if all went well.
;No? Stop everything.
;Call SVC3 to read

a line from 'CONI'
into the buffer.

;Check status to see if
;No? Stop everything.
;Call SVC4 to write

,
a line to 'LPT'
from the buffer.

all went well.

;Check status to see if all went well.
;Yes? Go back to read another line.
;No? Fall through to termination.
;Call SVC5

to do the abort.

;End of the program.

Fig. 7L-5. 68000 SVC "demonstration program listing (part 2 of 2).

This program shows the use of four service calls. The program's
algorithm is explained in the Service Calls section of your System
Users Manual. The program accepts a line of ASCII characters from
the system terminal. Then, when it receives a RETURN character,
the program writes the line to the line printer and accepts
another line. (On the 8550, output to the line printer is
buffered. No text is printed until the 8550's line printer buffer
is full or the program ends.) To terminate the program, enter a
CTRL-Z while the program is waiting for input.

7L-23

68000 Service Calls 68000 Emulator Specifics Users

Figure 7L-6 shows another way to code the executable portion of the program.
By inserting the statement MOVE.L HOFOOOOO,A1 at the beginning of the code,
and the block of EQU statements at the end, you can save object code space
and reference the SVCs symbolically.

START

LOOP

ABORT

SVC1
SVC2
SVC3
SVC4
SVC5

Beginning of executable code.

ORG
MOVE. L

MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BNE
MOVE.B
NOP
NOP
TST.B
BEQ

MOVE. B
NOP
NOP

EQU
EQU
EQU
EQU
EQU

END

1000H
HOFOOOOO,A1

DO,SVC1(A1)

SRB1ST
ABORT
DO,SVC2(A1)

SRB2ST
ABORT
DO,SVC3(A1)

SRB3ST
ABORT
DO,SVC4(A1)

SRB4ST
LOOP

DO ,SVC5 (A 1)

7
6
5
4
3

START

;Entry point into program.
;Set a register to the SVC

trigger location.
;Call SVC1 to

assign 'CONI'
to Channel O.

;Check status to see if all went well.
;No? Stop everything.
;Call SVC2 to

assign 'LPT'
to Channel 1.

;Check status to see if all went well.
;No? Stop everything.
;Call SVC3 to read

a line from 'CONI'
into the buffer.

;Check status to see if all went well.
;No? Stop everything.
;Call SVC4 to write

a line to 'LPT'
from the buffer.

;Check status to see if all went well.
;Yes? Go back to read another line.
;No? Fall through to termination.
;Call SVC5

to do the abort.

;Define SVC symbols.

;End of the program.

Fig. 7L-6. Alternate executable code for SVC demonstration program.

7L-24 @

68000 Emulator Specifics Users 68000 Special Considerations

SPECIAL CONSIDERATIONS

Some of the characteristics of the 68000 microprocessor greatly affect the
behavior and appearance of several commands; in particular, BK, TRA, and
DISP. These characteristics are discussed in the following paragraphs, and
in much greater detail in the reprints at the back of this section.

Fetching and the Prefetch Pipeline

The 68000 microprocessor has a prefetch pipeline which speeds up the
instruction fetch-decode-execute process. The processor does not, however,
have a fetch signal available. These two factors combine to cause
differences in many of the emulator's displays.

Figure 7L-7 shows a simplified diagram of the pipeline.

Instruction
Register

---------+---------

v

Instruction

Decode

: Address :
+--------->:
I I
I I

: <---------+
Branch
Select

Micro and Nano

Control Stores

--+--+------------------ ----+-+-----------------

v v

ALU
Function
& Register
Selection

Conditionals
\ /
v

Timing & Switch
Control Signals

--------------------+-------------------------------------

Execution Unit

Fig. 7L-7. 68000 instruction pipeline block diagram.

The pipeline consists of an Instruction Register, an Instruction Decoder,
and an Execution Unit. The Instruction Register holds the most recently
fetched instruction word. The Instruction Decoder, using the Micro and Nano
Control Stores, decodes the instruction. When the instruction reaches the
Execution Unit, it is executed.

7L-25

68000 Special Considerations 68000 Emulator Specifics Users

It is the responsibility of the instruction that is executing to ensure two
things before it finishes its execution:

1. that the next instruction word is accessed with sufficient time
for complete decoding by the end of the current instruction;
and

2. that the instruction word following the next instruction is
fetched by the end of the current instruction

Since there is no instruction fetch signal, the only time the emulator knows
that an instruction has been fetched into the instruction pipeline is when
it sees the appropriate values on the bus. The emulator doesn't know
whether the instruction is actually executing from this information.

Interrupts

The 68000 has seven interrupt levels. Higher-numbered interrupts have
higher priority. The level 7 interrupt is a non-maskable interrupt (NMI).

Interrupts are controlled by the three interrupt mask bits (12--10) in the
Status Register.

When an interrupt request is made, the 68000 compares the level of the
interrupt with the interrupt mask. If the new interrupt has a level higher
than the mask setting, the interrupt is recognized. When this occurs, the
68000 has to stack its Program Counter and Status Register so that it can
return to the interrupted task after the interrupt has been processed.

This stacking is done in the following time sequence: First, PC(L) is
stacked, then the interrupt is acknowledged. Next, the status register is
stacked, and last, PC(H). Because PC(L) is stacked before the emulator
knows that an interrupt has occurred, this Supervisor Data write always
appears on a DISP display of your program run.

7L-26

68000 Emulator Specifics Users

Program example. The program example in Fig. 7L-8 is used to illustrate the
effects of the 68000 characteristics previously described.

The program was loaded beginning at address 3000H. After moving values into
three registers, the program enters the LOOP and executes it twice. The two
Naps are then executed, followed by the branch to SELF. Execution of this
instruction would continue indefinitely, but breakpoint 1 was set at SELF
before the program was executed.

CLR.L DO
MOVE.W 1I1H,D1
MOVE.L 1I1000H,AO
MOVE. L 112000H,A1

LOOP MOVE.W A,B
MOVE. L (AO)+,(A1)+
DBF D1 ,LOOP
Nap
Nap

SELF BT SELF
A BLOCK 02H
B BLOCK 02H

Fig. 7L-8. Program example.

Figures 7L-9 and 7L-10 use the DISP command to show the contents of the TTA
acquisition memory for this program run with TRA OFF and TRA ON,
respectively.

Refer to the following comments while examining these two figures:

Each of the superfluous disassembly lines is crossed out. These lines
resulted from disassembly of the operand(s) in the preceding instruction.
Boxes are drawn around the operands in the object code field, and arrows
show where they came from in the preceding instruction.

Data reads and data writes from A, B, and the MOVE.L (AO)+,(A1)+ instruction
are interleaved with fetches from the instruction stream.

The effects of prefetching appear in the figures. Notes in each figure
indicate where the instfuctions start, and which ones were actually
executed.

At the end of both figures, you can see the next PC(L) stacked in SD- space
before the interrupt acknowledge to the break interrupt occurred. In Figure
7L-10, where TRA is ON, the display shows that PC(L) was also stacked each
time an interrupt to print a trace line occurred.

The run with TRA ON terminated two instructions before the run with TRA OFF,
because of the decrease in execution speed with TRA ON. When TRA was OFF,
the two additional instructions reached the Execution Unit before the break
interrupt occurred. Note that with TRA ON, the instruction on which the
breakpoint was set was not executed.

@ 7L-27

68000 Special Considerations 68000 Emulator Specifics Users

7L-28

> DISP

ADDRESS DATA 7-PROBE-0

DEHO+OOOOOO
SP:003000 4280 CLR.L DO 0000 0000

DEMO+000002
SP:003002 323C MOVE.W H1H,D1 0000 0000

0000 0000
DEMO+000004 ~
SP:003004 ~R-;-D-IJ'j'GH,D1

prefetch of operand. not an instruction
one prefetch because this is a 2-word instruction

DEMO+000006
SP:003006 207C HOVE. L IJ1000H,AO 0000 0000

DEHO+000008 __
SP: 003008 0000 +tH-~-""""itH¥O*II""""+TDA-O} 0000 0000

DEMO+OOOOO - prefetch of operand :-OJ'~~~~!C~~-!~~~~~~truction
SP: 00300A 1000 HOVE. B DO, DO 0000 0000

DEMO+OOOOOC
SP:00300C 227C MOVE.L IJ2000H,A1

DEMO+OOOOOE
SP:00300E 0000

DENO+00001
- prefetch of operand

SP:003010 2000 MOVg.L DO,DO

0000 0000

0000 0000

0000 0000

BUS

WD IPLO RD - instruction
starts

WD IPLO RD- instruction
starts

WD IPLO RD

WD IPLO RD - instruction
starts

WD IPLO RD

WD IPLO RD

WD IPLO RD- instruction
starts

\rIO IPLO RD

WD IPLO RD

LOOP Beginning of LOOP execution

A
SP:003024

absolute
destination

0000 }
data read of operand

DEHO+000018
SP:003018 22D8 MOVE.L (AO)+,(A1)+

B
SD:003026 OOOO} data write ----

0000 0000 iVD IPLO RD - instruction

0000 0000

0000 0000

0000 0000

0000 0000

0000 0000

starts

WD IPLO RD

~JD IPLO RD

WD IPLO RD

WD IPLO RD- instruction
starts

WD IPLO WI

DEHO+00001A
SP:00301A 51 cg DBF D1,3012H 0000 0000 WD IPLO RD - Instruction

{

SD:001000
SD:001002
SD:002000
SD:002002

1772 }
2 B 73 data resulting
1772 from MOVE.L

2B73

0000 0000
0000 0000
0000 0000
0000 0000

oooe 0000

WD IPLO RD
WD IPLO RD
WD IPLO WI
WD IPLO \H

WD IPLO RD

Fig. 7L-9. Example program run with TRA OFF (part '-of 2).

starts

3970-1

@

68000 Emulator Specifics Users

ADDRESS DATA

LOOP
SP:003012 31FA MOVE.W

DEMO+000014
SP:003014 0010 OR.D

DEMO+000016
SP:003016 3026 ~10VE .',.

A
SP:003024 0000

DHlO+0000 18
SP:003018 22D8 MOVE.L

B
SD:003026 0000

DEMO+00001A
SP:00301A 51Cg DBF
SD:001004 2B70
SD:001006 2B71
SD:002004 2B70
SD:002006 2B71

DEMO+00001C
SP:00301C FFF6 ~

3024H,3026H

112GIl, (AO)

(AG),DO

(AO)+,(A1)+

D 1,30 12H

LOOP
SP:003012 31 FA - prefetch of LOOP.

not executed. or
disassembled; flushed

DEMO+00001E
SP:00301E 4E71 NOP

DEMO+000020
SP:003020 4E71 NOP--thisNOPcauses

this prefetch J
SELF - breakpoint was set here (BK 1 SELF) ..
SP:003022 60FE BT 3022H

A } prefetch. not program read.
The branch above (BT) causes

SP: 003024 0000 this to be flushed.

SELF
SP:003022

A
SP:003024
SD:FFFFFE

60FE} BT 3022H not executed

prefetched by first BT

0000
3 a 2 2 - stack of next PC before

interrupt acknowledge
is issued.

68000 Special Considerations

7-PROBE-0 BUS

0000 0000 WD IPLO RD"""- instruction
starts

0000 0000 WD IPLO RD

0000 0000 WD IPLO RD

0000 0000 WD IPLO RD

0000 0000 WD IPLO RD- instruction
repeat of LOOP. as above starts

0000 0000 WD IPLO WT

0000 0000 WD IPLO RD - instruction
0000 0000 WD IPLO RD starts

0000 0000 WD IPLO RD
0000 0000 WD IPLO WT
0000 0000 WD IPLO WT

0000 0000 WD IPLO RD

0000 0000 WD IPLO RD

0000 0000 WD IPLO RD

0000 0000 WD IPLO' RD

this fetch triggers this interrupt
0000 0000 WD IPLO 7 bot by <h;, time. the branch

is already executing
so the target
of the branch

0000 0000 WD IPt.® RD!' ... ""hed

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD
0000 0000 WD VPA IPL7 WT

3970-2

Fig. 7L-9. Example program run ~ith TRA OFF (part 2 of 2).

7L-29

68000 Special Considerations 68000 Emulator Speci~ics Users
----------------~---

7L-30

> DISP

ADDRESS DATA

DEMO+OOOOOO
SP:003000 4280 CLR.L DO

DEMO+000002
SP:003002 323C MOVE.W 81H'D1}

DEMO+000004 operand

SP:003004 0001
SD: FFFFFE 3002 -- stack of.PC(next) caused

by TRA Interrupt

DEMO+OOOOO~ .,,,,,;on ... um ..

SP:003002 323C MOVE.W 81H,D1

DEMO+000004
SP:003004 0001

DEMO+000006
SP: 003006 207C}

DEMO+000008
SP:003008 0000

flushed by interrupt

SD: FFFFFE 3006 -- stack PC (next)

not executed

DEMO+OOOOO~ utlon ... u~.
SP:003006 207C MOVE.L 81000H,AO

DEMO+000008 __ ~
S P : 00 3 a 08 00 a a -+HT~--llTH+--A-H-

DEMO+OOOOO
SP:00300A

-- prefetch of operand

1000 HOYE.B DO,DO

DEMO+OOOOOC
SP:00300C 227C}

DEMO+OOOOOE
SP:00300E 0000

flushed by interrupt

SD: FFFFFE 300C - stack of PC(next)

DEMO+OOOO~
SP:00300C 227C MOVE.L 82000H,A1

DEMO+OOOOOE
SP:00300E

DEMO+000010
SP:003010

LOOP
SP: 0030 12 31FA}

DEMO+000014
SP:003014 0010

(lOII,DO

t10'lE. L 90, 90

flushed by interrupt

SD: FFFFFE 30 12-- stack PC (next)

7-PROBE-0 BUS

0000 0000 WD IPLO RD- executed

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD
0000 0000 WD VPA IPL7 WT

0000 0000 WD IPLO RD- executed

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD
0000 0000 WD VPA IPL7 WT

0000 0000 WD IPLO RD-- executed

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD
0000 0000 WD VPA IPL7 WT

0000 0000 WD IPLO RD- executed

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD
0000 0000 WD VPA IPL7 WT

Fig. 7L-10. Example program run with TRA ON (part 1 of 4).

3970-3

68000 Emulator Specifics Users

ADDRESS

LOOP
SP:003012

DATA ,
31FA MOVE.W

DEMO+000014 ._

3024H,3026H

S P : 0030 1 4 00 1 0 -HI+..,.....H----ii-() 2~6"r+-1+-:-1 ,+(*AI+O)~

D HI 0+ 0 0 0 0 1 6.-----.,--_
SP: 003016 3026 ~H.{40~VEj.:..,.,..v.',/I---+-J(t1Wo.6'14)...,..,~ElI+O

A
SP:003024

DEMO+000018

}
data from

0000 (read)

SP:003018 22D8 MOVE.L (AO)+,(A1)+

B
SD:003026

DEMO+00001A
SP:00301A
SD:FFFFFE

DEMO+000018

interleaved prefetch. flushed

}
data from

0000 (write)

5 1 C 9 -- flushed

3018- stack PC (next)

SP:003018 22D8 MOVE.L (AO)+,(A1)+

DEMO+00001A
SP:00301A 51C9 DBF D1,3012H
SD:001000 1772} \
SD: 00 1 002 2B73 data

transfer
SD:002000 1772 from inter.leaVed

SD:002002 2B73 -EMT--¥ ~prefetChes

DEMO+00001C
SP:00301C IFFF6/
SD :FFFFFE 301 A -sta~ PC(next)

DEMO+OOOO l' /
SP:00301A~1C9 DBF

DEMO+00001C~ __ __
SP:00301C FFF6 -EMT-F-

LOOP
SP:003012 31FA}

DEMO+OOOO 14 prefetch. not executed

SP:003014 0010
SD: FFFFFE 30 12 - stack PC(next)

68000 Special Considerations

7-PROBE-0 BUS

Beginning of LOOP execution

0000 0000 WD IPLO RD-- executed

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD

0000 0000 WD.IPL7 RD

0000 0000 WD IPL7 RD

0000 0000

0000 0000
0000 0000

WD IPL7 WT

WD IPL7 RD
WD VPA IPL7 WT

0000 0000 WD IPLO RD - executed

0000 0000 WD IPL7 RD
0000 0000 WD IPL7 RD
0000 0000 WD IPL7 RD
0000 0000 WD IPL7 WT
0000 0000 WD IPL7 WT

0000 0000 WD IPL7 RD
0000 0000 WD VPA IPL7 WT

0000 0000 WD IPLO RD __ executed

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD

0000 0000 WD IPL7 RD
0000 0000 WD VPA IPL7 WT

3970-4

Fig. 7L-10. Example program run 'with TRA ON (part 2 of 4).

7L-31

68000 Special Considerations 68000 Emulator Specifics Users

ADDRESS DATA 7-PROBE-0 BUS

LOOP
SP:003012 31FA MOVE.W 3024H,3026H 0000 0000 WD IPLO RD - executed

DEMO+000014
SP:003014 0010 OR.B {J2611, (AO) 0000 0000 WD IPL7 RD

DEMO+OOO016
SP:003016 3026 tlOVE .',; (:'6),DO 0000 0000 WD IPL7 RD

A
SP:003024 0000 0000 0000 WD IPL7 RD

DEMO+000018
SP:003018 22D8 MOVE.L (AO)+, (A 1)+ 0000 0000 WD IPL7 RD

B
SD:003026 0000 0000 0000 WD IPL7 WT

DEMO+00001A
SP:00301A 51C9 0000 0000 WD IPL7 RD
SD:FFFFFE 3018 0000 0000 WD VPA IPL7 WT

DEMO+000018 repeat of LOOP

SP:003018 22D8 MOVE.L (AO)+,(A1)+ 0000 0000 WD IPLO RD- executed

DEMO+00001A
SP:00301A 51C9 DBF D1,3012H 0000 0000 WD IPL7 RD
SD:001004 2B70 0000 0000 WD IPL7 RD
SD:001006 2B71 0000' 0000 WD IPL7 RD
SD:002004 2B70 0000 0000 WD IPL7 WT
SD:002006 2B71 0000 0000 WD IPL7 WT

DEMO+00001C
SP:00301C FFF6 -eff---F- 0000 0000 WD IPL7 RD
SD:FFFFFE 301A 0000 0000 WD VPA IPL7 WT

DEMO+00001A
SP:00301A 51C9 DBF D1,3012H 0000 0000 WD IPLO RD- executed

DEMO+00001C
SP:00301C FFF6 EHT F 0000 0000 WD IPL7 RD

LOOP
SP:003012

branch OBF. flushed
} prefetch of target of

31 F A because branch not taken 0000 0000 WD IPL7 RD

3970-5

Fig. 7L-10. Example program run with TRA ON (part 3 of 4).

7L-32 @

68000 Emulator Specifics Users 68000 Special Considerations

ADDRESS DATA 7-PROBE-0 BUS

DEMO+00001E

prefetch of next
two words,

SP:00301E 4E71 NOP}

DEMO+000020 not executed

SP:003020 4E71 NOP
SD:FFFFFE 301E- stackPC(next)

DEMO+00001E /
SP: 0030 1 E ~E71 NOP this one executed

DEMO+000020
SP: 003020 4E71 NOP prefetch

0000 0000

0000 0000
0000 0000

0000 0000

0000 0000

SELF
SP:003022
SD:FFFFFE

60FE BT 3022H prefetch of 0000 0000
3020 - stack of branch. This 0000 0000

PC(next) which triggers breakpoint set
would have been at SELF, so execution
taken if break is not resumed after
had not occurred. the trace is finished.

WD IPL7 RD

WD IPL7 RD
WD VPA IPL7 WT

WD IPLO RD- executed

WD IPL7 RD

WD IPL7 RD
WD VPA IPL7 WT

Fig. 7L-10. Example program run with TRA ON (part 4 of 4).

Memory Spaces

3970-6

The 68000 supports four memory spaces: User Data (UD), User Program (UP),
Supervisor Data (SD) and Supervisor Program (SP). You may partition memory,
using the MAP command, so that certain address blocks are accessed only for
a particular type of reference. The default is for all of memory to be
acc~ssible by all four types of memory spaces.

The processor determines the type of reference by examining the three
Function Code pins (FC2--FCO). The reference made based on the encoding of
these three pins is shown in Table 7L-6.

Table 7L-6
Classification of Memory Space References

---------------+-----------------------
Function 'Code
FC2 FC' FCO Type of Reference
--

0 0 0 (Reserved)
0 0 , User Data
0 , 0 User Program
0 , 1 (Reserved)
1 0 0 (Reserved)
1 0 , Supervisor Data
1 1 0 Supervisor Program , , , Interrupt Acknowledge

---------------+-----------------------

7L-33

68000 Special Considerations 68000 Emulator Specifics Users

Memory Space Partitioning

The 68000 emulator supports memory space partitioning. You must have the
Memory Allocation Controller (MAC) option installed in your system in order
to use memory partitioning in program memory. If your prototype supports
memory partitioning, you do not need the MAC option to access memory
partitions.

This discussion includes an example program that shows the kind of
statements you need to include in your program to use partitioned memory
spaces. The example program shows you how to define the 68000 interrupt
vectors and interrupt handlers, how to start a User program, and how to
return to the Supervisor from the User's routine.

After the program has been linked and loaded as described in this example,
it uses the four memory spaces:

7L-34

• Supervisor Program
interrupt handlers,
job is finished.

(SP) space contains the reset vector and
starts the User job, and exits when the User

• Supervisor Data (SD) space contains the interrupt vectors, the SHB
used by the exit SVC in the Supervisor Program, and the Supervisor
stack.

• User Program (UP) space contains a program that opens a channel,
writes to it, and returns to Supervisor control.

• User Data (UD) space contain the SHBs and other data used by the
SVCs in the User Program. It also contains the User stack.

• The example program ends with the SVC trigger defitiitions which are
available to all memory spaces (non-partitioned).

68000 Emulator SpeCifics Users . 68000 Special Considerations
----------------------------.-------------.-.. -----------~-~-----------~----
The Example Program. A listing of the example program source, called
MEMPAR.SRC, is shown in Figure 7L-11. There are many 6ther" ways to cod~
routines that perform these tasks;. but this example will help you understand
what must be included. Comments within the code explain what the program is
doing.

;--

This example program shows the use of memory partitioning.

;--

LIST
GEN.L

DBG ;Pass symbols to. the linker
;Default to long addresses

------Define the vectors. The locations of the reset apd interrupt
vectors in memory are shown in Table 7L-7.

-----Define the reset vector.
(The reset vector is in Supervisor Program space.)

SECTION RESET.VEC

ADDRESS STACK
ADDRESS START

------Define the interrupt vectors.

;Initial SSP
;Initial PC

(The rest of the vector table is in Supervisor Data space.)

SECTION INTERRUPT.VEC

V.BUS.ERR
V.ADDRESS.ERR
V.ILLEGAL.INS
V.ZDIVIDE
V.CHK.INS
V.TRAPV.INS
V.PRIVILEGE
V.TRACE.BIT
V.EMT.A
V.EMT.F

ORG 08H
ADDRESS BUS.ERR
ADDRESS ADDRESS. ERR
ADDRESS ILLEGAL. INS
ADDRESS ZDIVIDE
ADDRESS CHK.INS
ADDRESS TRAPV.INS
ADDRESS PRIVILEGE
ADDRESS TRACE. BIT
ADDRESS EMT.A
ADDRESS EMT.F

;This is where the Bus Error vector
starts.

V.TRAP.INS

V.SVC1
V.SVC2
V.SVC3

BLOCK 50H

BLOCK 04H

BLOCK 3CH

ADDRESS OPEN.SRB
ADDRESS PRINT.SRB
ADDRESS EXIT.SRB

;Reserve space for vectors between
V.EMT.F and V.TRAP.INS.

;Trap 0 set by Supervisor Program.

;Reserve space for other vectors.

;Define the SRB vectors.

Fig. 7L-11. Memory partitioning eiample program (part 1 of 5).

7L-35

68000 Special Considerations 68000 Emulator Specifics Users
~~~~~~-~-~~~---~~---------~--~-~-~--~--~-----~------~~----~--~----~---------

;~~--~~---~--~~-~~--~--~~---~---~~--------~-~--------------------~---------

~----The following section will be linked to run 
in Supervisor Program memory. 

SECTION SUPER.PROG 

------Define the interrupt handlers. 

BUS.ERR EQU $ ;> Normally, 
ADDRESS. ERR EQU $ ;> these statements 
ILLEGAL. INS EQU $ ;> would reference 
ZDIVIDE EQU $ ;> the appropriate 
CHK.INS EQU $ ;> interrupt handlers. 
TRAPV.INS EQU $ ;> Since this is just 
PRIVILEGE EQU $ ;> an example of 
TRACE. BIT EQU $ ;> how they are set up, 
EMT.A EQU $ ;> we just do the 
EMT.F EQU $ ; > dummy NOP which follows. 

NOP ;Dummy routine for this example. 
RTE 

Fig. 7L-11. Memory partitioning example program (part 2 of 5). 

7L-36 



68000 Emulator Specifics Users 68000 Special Considerations 

------Start of executable code. 
(Note: SSP and Supervisor mode must have been set by Reset.) 

START EQU $ 

------Prepare to start User job. 

Since this program will be linked to run in partitioned 
memory spaces, the addresses will have eight additional 
high-order bits (two hex digits) appended: 

UD: space starts at 01000000H 
UP: space starts at 02000000H 
SD: space starts at 04000000H 
SP: space starts at 08000000H 

The assembler will be able to strip off these extra bits when 
the operand is an address field, but it does not know whether 
an immediate value should be 24 or 32 bits. So you must use 
the BITS assembler directive to explicitly remove the extra bits. 

MOVE.L HBITS(SUSPEND,O,24),V.TRAP.INS ;Put return address 

LEA 

MOVE 

PEA 
MOVE.W 
RTE 

f/USER.STACK,A 1 

A 1, USP 

USER. JOB 
fI0700H,-(A7) 

;Define User stack. 

in TRAP vector, 
taking low 24 bits. 

;Here, the assembler knows it's 
looking at an address. 

;Push User start address on stack. 
;Push User SR on stack. 
;Start User job. 

------ «« A TRAP 0 instruction by user causes a return to this point.»» 

SUSPEND EQU 
MOVE.B 
NOP 
NOP 

$ 
DO,SVC3 ;Invoke the Exit SVC. 

------End of Supervisor Program execution. 

;-----------------------------------------------------------------------------

------Supervisor Data memory space definition. 

SECTION SUPER. DATA 

EXIT.SRB EQU $ 
BYTE 1AH ;1A is the Exit SVC function code. 

ORG 12 ;Start the stack on an even address. 
BLOCK 400H ;Reserve supervisor stack space. 

STACK EQU $ 

;----------------------------------------------------------------------------

Fig. 7L-11. Memory partitioning example program (part 3 of 5). 

7L-37 



68000 Special Considerations 68000 Emulator Specifics Users 

------User Program section. 

USER.JOB 

SECTION USER.PROG 

MOVE.B DO,SVC1 
Nap 
Nap 
MOVE.B DO,SVC2 
Nap 
Nap 
TRAP 110 

;Invoke SVC1 to open channel. 

;Invoke SVC2 to write to channel. 

;Trap back to Supervisor state. 

;---------------------------------------------------------------------------

------User Data section. 

OPEN.SRB 

PRINT.SRB 

OPEN.STRNG 

PRINT.STRNG 

USER.STACK 

SECTION USER. DATA 

EQU 
BYTE 
BYTE 
BYTE 
BYTE 
WORD 
WORD 
LONG 

EQU 
BYTE 
BYTE 
BYTE 
BYTE 
WORD 
WORD 
LONG 

ASCII 
BYTE 
ASCII 
BYTE 

ORG 
BLOCK 
EQU 

$ 
50H 
01H 
OOH 
OOH 
OOOOH 
OOOOH 
OPEN.STRNG 

$ 
02H 
01H 
OOH 
OOH 
OOOOH 
80H 
PRINT.STRNG 

;Open for write to 
Channel 1. 

;Status. 
;Reserved. 
;Not used. 
;Not used. 
;Pointer to 'CONO' string. 

;Write ASCII and wait 
; on Channel 1. 
;Status. 
;Reserved. 
;Not used. 
;Buffer length. 
;Pointer to string. 

'CONO' ;ASCII of 'CONO', plus 
ODH a carriage return. 
'MEMORY PARTITIONING EXAMPLE' ;ASCII of the printed 
ODH string, plus carriage return. 

/2 
400H 
$ 

;Start User stack on an even byte. 
;Reserve User stack space. 

Fig. 7L~11. Memory partitioning example program (part 4 of 5). 

7L-38 



68000 Emulator Specifics Users 68000 Special Copsideratlons 

;----------------------------------------------------------------------------
------SVC trigger definitions. 

SVC8 
SVC7 
SVC6 
SVC5 
SVC4 
SVC3 
SVC2 
SVC1 

We'll want these to be in all memory spaces (non-partitioned). 

SECTION SVCTRIG 

BLOCK 
BLOCK 
BLOCK 
BLOCK 
BLOCK 
BLOCK 
BLOCK 
BLOCK 

1 
1 
1 
1 
1 
1 
1 
1 

END START 

Fig. 7L-11. Memory partitioning example program (part 5 of 5). 

7L-39 



68000 Special Considerations 68000 Emulator Specifics Users 

The memory location assigned to each exception vector by the 68000 is listed 
in Table 7L-7. 

Table 7L-7 
68000 Exception Vector Assignment 

Vector Number I Address (Hex) I Memory Space I Vector Assignment 
~---------------------------------------------------------------------------­-----------------------------------------------------------------------------

o 
000 I 

I SP I Reset: Initial SSP (*a) 
+---------------+--------------+-------------------------------

004 SP I Reset: Initial PC (*a) 

--------------+---------------+--------------+-------------------------------
2 008 SD I Bus Error 

--------------+---------------+--------------+-------------------------------
3 OOC SD I Address Error 

--------------+---------------+--------------+-------------------------------
4 010 SD: Illegal Instruction 

--------------+---------------+--------------+-------------------------------
5 I 014 SD I Zero Divide 

--------------+---------------+--------------+-------------------------------
6 018 SD I CHK Instruction 

--------------+---------------+--------------+-------------------------------
7 01C SD I TRAPV Instruction 

. --------------+---------------+--------------+-------------------------------
8 020 SD: Privilege Violation 

--------------+---------------+--------------+----------~--------------------
9 024 SD: Trace 

--------------+---------------+--------------+-------------------------------
10 028 SD: Line 1010 Emulator 

--------------+---------------+--------------+-------------------------------
11 02C SD I Line 1111 Emulator 

--------------+---------------+--------------+-------------------------------
12 (*b) 030 SD I (Unassigned, Reserved) 

--------------+---------------+--------------+-------------------------------
13 (*b) 034 SD I (Unassigned, Reserved) 

--------------+---------------+--------------+-------------------------------
14 (*b) 038 SD: (Unassigned, Reserved) 

--------------+---------------+--------------+-------------------------------
15 03C SD I Unini tialized Interrupt Vector 

--------------+---------------+--------------+-------------------------------
I 040 I 

16--23 (*b) +---------------+ SD I (Unassigned, Reserved) 
05F 

--------------+---------------+--------------+-------------------------------
24 060 SD I Spurious Interrupt (*c) 

--------------+---------------+--------------+-------------------------------

7L-40 @ 



68000 Emulator Specifics Users 68000 Special Considerations 

Table 7L-7 (con't) 

Vector Number : Address (Hex) : Memory Space : Vector Assignment 
----------------------------------------------------------------------------------------------------------------------------------------------------------

25 064 SD : Level 1 Interrupt Autovector 
--------------+---------------+--------------+-------------------------------

26 068 SD: Level 2 Interrupt Autovector 
--------------+---------------+--------------+-------------------------------

27 06C SD: Level 3 Interrupt Autovector 
--------------+---------------+--------------+-------------------------------

28 070 SD: Level 4 Interrupt Autovector 
--------------+---------------+--------------+-------------------------------

29 074 SD: Level 5 Interrupt Autovector 
--------------+---------------+--------------+-------------------------------

30 078 SD: Level 6 Interrupt Autovector 
--------------+---------------+--------------+-------------------------------

31 07C SD: Level 7 Interrupt Autovector 
--------------+---------------+--------------+-------------------------------

080 I 
I 

32--47 +---------------+ SD : TRAP Instruction Vectors (*d) 
OBF 

--------------+---------------+--------------+-------------------------------
: OCO 

48--63 (*b) +---------------+ 
OFF 

SD 
I 
I 

: (Unassigned, Reserved) 

--------------+---------------+--------------+-------------------------------
100 

64--255 +---------------+ 
3FF 

SD 
1 
I 

: User Interrupt Vectors 

--------------+---------------+--------------+-------------------------------

(*a) The reset vector (0) requires four words, unlike other vectors which 
only require two words. It is located in Supervisor Program (SP) space. 

(*b) Vectors 12, 13, 14, 16--23, and 48--63 are reserved by Motorola for 
future enhancements. No user peripheral devices should be assigned 
to these numbers. 

(*c) The spurious interrupt vector is taken when a bus error is indicated 
during interrupt processing. 

(*d) TRAP #n uses vector number 32+n. 

7L-41 



68000 Special Considerations 68000 Emulator Specifics Users 

The remainder of this discussion steps you through the procedure you follow 
to assemble, link, allocate memory, load and run the example program. 

Assembling and Linking the Program. Assemble MEMPAR.SRC with the following 
command: 

> ASM MEMPAR.OBJ"MEMPAR.SRC <CR> 

Assume that you have a linker command file called MEMPAR.LNK which contains 
the following linker command options: 

-1 f 
-d 
-0 MEMPAR.OBJ 
-0 MEMPAR.LOA 
-m RVEC=08000000-08000007 
-m IVEC=04000000-040003FF 
-m SVCTRAP=00FOOOOO-00F00007 
-m UD=01000000-0100FFFF 
-m UP=02000000-0200FFFF 
-m SD=04000400-0400FFFF 
-m SP=08000008-0800FFFF 
-L SEC=RESET.VEC BASE RVEC 
-L SEC=INTERRUPT.VEC BASE IVEC 
-L SEC=SVCTRIG BASE SVCTRAP 
-L SEC=SUPER.CODE BASE SP 
-L SEC=SUPER.DATA BASE SD 
-L SEC=USER.CODE BASE UP 
-L SEC=USER.DATA BASE UD 

Link using this command: 

> LINK -C MEMPAR.LNK <CR> 

The linker options are explained in the following paragraphs: 

The -1 f option gives you a full linker listing, and -d puts symbol 
information for symbolic debug in the load module. MEMPAR.OBJ and 
MEMPAR.LOA are the names of the object module from the assembler, and the 
load module output by the linker, respectively. 

The -m option assigns logical memory names to blocks of program memory. 
Here, RVEC is the block in Supervisor Program space for the reset vector; 
IVEC is the block in Supervisor Data space for the exception vectors; and 
SVCTRAP is the block for the SVC trigger locations. When the program is 
loaded, SVCTRAP will be in the default memory space as selected by the 
MEMSP S command. 

The names UD and UP are assigned to two 64K blocks of memory. The first is 
in User Data space and the second in User Program space. SD is the block 
starting after the IVEC block in Supervisor Data space. SP starts after the 
RVEC block in Supervisor Program space. 

7L-42 



68000 Emulator Specifics Users 

The -L option locates the program sections in the memory blocks just 
defined. Since there is only one section in each memory block, you can use 
the BASE parameter. This causes each section to be located at the beginning 
of its memory block. If there was more than one section in a memory block, 
you would used the RANGE parameter to locate those sections somewhere within 
the desired block. 

Allocate Memory. You must allocate memory to load and execute the program in 
mode O. Enter the following command line: 

> AL UD:O 1FFF AL UP:O 1FFF ; AL SD:O 1FFF ; AL SP:O 1FFF ; AL OFOOOOO (CR> 

You can check the memory allocations by entering the AL command with no 
parameters: 

> AL (CR> 
00000000 OOOOOFFF 
00000000 OOOOOFFF 
00000000 OOOOOFFF 
00000000 OOOOOFFF 
00001000 00001FFF 
00001000 00001FFF 
00001000 00001FFF 
00001000 00001FFF 
OOFOOOOO OOFOOFFF 
9 BLOCK(S) ALLOCATED 

UD: 
UP: 

SD: 
SP: 

UD: 
UP: 

SD: 
SP: 

UD: UP: SD: SP: 
23 BLOCK(S) FREE 

Each of the four memory spaces has two blocks allocated to it exclusively. 
The block used for the SVC trigger locations has been allocated to all four 
memory spaces. 

Now you can load the program: 

> LO MEMPAR.LOA (CR> 

The processor must be in Supervisor mode to start running the program. Use 
the RESET command to set Supervisor mode and put the start address in the 
reset vector. 

> RESET (CR> 

Start program execution with the G command: 

> G (CR> 
MEMORY PARTITIONING EXAMPLE 
> 

Program execution begins at the label START in the Supervisor Program. The 
Supervisor starts the User job. The User job opens a channel to the system 
terminal and prints the string "MEMORY PARTITIONING EXAMPLE." The User then 
returns control to the Supervisor, which exits, and control returns to the 
operating system. 

7L-43 



68000 Special Considerations 68000 Emulator Specifics Users 

The 68000 STOP Instruction 

In Mode O. A break is always generated when a STOP instruction is executed 
in mode O. The <BREAK STOP) message and the registers are displayed, and 
PC(next) points to the instruction after the STOP. 

With TRA ON. If TRA is ON, a STOP instruction will cause a break in all 
three modes. 

In Mode 1 or 2 with TRA OFF. When the 68000 emulator is running in mode 1 or 
2 with TRA OFF and encounters a STOP instruction, it stops and waits for an 
interrupt. However, if a system interrupt occurs instead of a user 
interrupt, a break is generated, and the registers and <BREAK STOP) message 
are displayed. If you want to execute the STOP again, you must adjust the 
PC, which is pointing to the instruction after the STOP. This can be 
accomplished with a command like, "G PC-4". 

In addition, since these system interrupts are usually keyboard or timer 
interrupts, you can avoid them (1) by not typing on the keyboard while the 
emulator is running, and (2) by using the TTA timing options rather than the 

. CLOCK command. 

If a user interrupt occurs after a STOP break, it will still be latched, and 
will be honored at the next G command. 

NOTE 

The preceding paragraphs assume that jumper J2144 on the EMU 2 
board is in its normal position. In the optional position, a STOP 
instruction always generates a break. Refer to the subsection, 
"Jumpers", in this section for further information. 

When an Interrupt Occurs Near a STOP. When the emulator is running with TRA 
OFF, and breaks because of a breakpoint, or a TTA, SVC, or MAC interrupt in 
the vicinity of a STOP instruction, the STOP will not be detected. Because 
of this, the 68000 emulator does not adjust the PC when a STOP is detected. 

7L-44 



68000 Emulator Specifics Users 68000 Jumpers 

JUMPERS 

The 68000 Emulator Processor Module and Prototype Control Probe have several 
user-selectable configuration jumpers. The following paragraphs describe 
the functional characteristics of each of these jumpers. All jumpers are in 
the "normal" position (1-2) when shipped from the factory. These jumpers 
affect the operation of the emulator in all three emulation modes unless 
otherwise indicated. 

EMU 1 BOARD 

P1080---Emulator Halt Control Selector 

After a 68000 HALT condition occurs (double bus error or double address 
error), P1080 determines whether control returns to the operating system, or 
remains with the prototype. 

In the normal position (1-2), control is returned to the system in all three 
emulation modes. 

In the optional position (2-3), control is returned to the system only in 
mode O. In modes 1 and 2, control remains with the prototype. Since the 
microprocessor must exit the halted condition, the system will hang unless 
the prototype circuitry resets the microprocessor. 

EMU 2 BOARD 

J2144---Break Cycle Control Selector 

NOTE 

EMU 2 must be removed from your development system to access 
J2144. 

J2144 controls the break cycle of the emulator after the emulator executes a 
STOP instruction. 

In the normal position (1-2), when the emulator is running in emulation mode 
0, and a STOP instruction is executed, the emulator will break and return 
control to the operating system. 

In the optional position (2-3), the emulator will always break and return 
control to the operating system when a STOP instruction is executed. 

7L-45 



68000 Jumpers 68000 Emulator Specifics Users 

NOTE 

When J2144 is in its normal (1-2) position and the emulator is 
operating in emulation mode 1 or 2, the system will appear to 
hang. You must type CTRL-C or issue a prototype interrupt, to 
return control to the operating system. 

INTERFACE BUFFER BOARD 

The Buffer board contains six configuration jumpers. To access these 
jumpers, you must perform the Prototype Control Probe Assembly/Disassembly 
procedure described in the 68000 Emulator Service Manual. 

P1---Data Transfer ACKnowledge (DTACK) Delay 

P1 inserts or removes a delay of the prototype's Data Transfer ACKnowledge 
(DTACK) to the 68000 microprocessor when the emulator is in mode 1. 

NOTE 

The configuration of P1 depends on the configuration of jumpers 
J1045 and J2045 on the Mobile Microprocessor board. These jumpers 
are discussed later in this section. 

In the normal position (1-2), the prototype's DTACK is delayed at the rate 
determined by J1045 and J2045. This prevents overdriving of the program 
memory's access time. 

In the optional position (2-3), J1045 and J2045 are bypassed, so that the 
prototype returns DTACK without delay. 

NOTE 

When P1 is in the optional (2-3) position, data may be invalid or 
lost if program memory is accessed faster than its time 
limitations allow. 

P2 and P3---Prototype Bus Arbitration Control 

P2 and P3 determine when the prototype is allowed to control the 68000 bus. 

In the normal position (1-2), the prototype's Bus Request and Bus Grant 
Acknowledge signals to the 68000 microprocessor are disabled whenever the 
emulator returns control to the operating system. 

1L-46 



68000 Emulator Specifics Users 68000 Jumpers 

In the optional position (2-3), the prototype's Bus Request and Bus Grant 
Acknowledge signals are allowed to request and hold the 68000 bus, ~ven when 
the emulator has started its Dump and Restore, and has returned control to 
the operating system. 

NOTE 

In the optional (2-3) positions for P2 and P3, the system may 
hang. To return to normal operation, you must release the bus. 

P6---Address Strobe Control 

P6 determines when the 68000 microprocessor address strobe is driven to the 
prototype circuit. 

In the normal position (1-2), the 68000 microprocessor address strobe is 
driven in all cycles except: (1) during an emulator Dump and Restore, and 
(2) during an interrupt acknowledge of a Non-Maskable Interrupt (NMI) issued 
by the emulator. 

In the optional position (2-3), the 68000 microprocessor address strobe is 
driven in all cycles except during an interrupt acknowledge of an NMI from 
the emulator. 

P7---DTACK Timeout Control 

P7 controls how the emulator will behave when no prototype DTACK occurs 
within 1 ms. This jumper is used when any of the following conditions 
exist: 

• P8 is in normal (1-2) position, memory is mapped to the prototype, 
and no prototype DTACK is generated. 

• P8 is in optional (2-3) position and no DTACK is generated by the 
prototype. 

• The development system is operating in mode 2 and no prototype 
DTACK is generated. 

In the normal position (1-2), the system will hang until a DTACK is received 
from the prototype, or until a break condition occurs. 

In the optional position (2-3), the system will hang until a DTACK is 
received from the prototype, at which time the system will continue 
operating as usual. A break condition will not clear the system. 

7L-47 



68000 Jumpers 68000 Emulator Specifics Users 

P8---Internal Generation of DTACK in Mode 1 

P8 allows or prevents the internal generation of a Data Transfer ACKnowledge 
(DTACK) signal by the 68000 emulator while in emulation mode 1. 

In the normal position (1-2), the prototype's DTACK is used until memory has 
been mapped. If memory is mapped to program memory, then an internal DTACK 
is generated. If memory is mapped to the prototype, DTACK must be generated 
by the prototype. 

In the optional position (2-3), no internal generation of a DTACK signal is 
allowed, regardless of mapping. All DTACK signals must originate from the 
prototype. 

NOTE 

When P8 requires a prototype DTACK, the prototype must generate a 
DTACK within 1 ms. If DTACK is not generated within 1 ms, then a 
DTACK timeout occurs. Refer to the preceding discussion of jumper 
P7. 

INTERFACE CONTROL BOARD 

The Interface Control board contains two configuration jumpers. To access 
these jumpers, follow the Prototype Control Probe Assembly/Disassembly 
procedure described in the 68000 Emulator Service Manual. 

J4011---Save Non-Maskable Interrupts 

J4011 controls whether Non-Maskable Interrupts. (NMIs) are saved during Dump 
and Restore (D/R) routines. 

In the normal position (1-2), NMIs are saved during D/R routines (for 
example, when the development system has control and the emulator is not 
running) . 

In the optional position (2-3), NMIs are not saved under any circumstances. 

7L-48 

NOTE 

Saved NMIs are issued to the 68000 microprocessor when the 
development system relinquishes control, and the emulator begins 
program execution. 



68000 Emulator Specifics Users 68000 Jumpers 

J6021---Save Prototype Interrupts 

J6021 controls whether prototype circuit interrupts (interrupt levels 
than level 7) are saved during Dump and Restore (D/R) routines. 

In the normal position (1-2), prototype interrupts, if held 
acknowledged, are saved during D/R routines (for example, when 
development system has control and the emulator is not running). 

other 

until 
the 

In the optional position (2-3), prototype circuit interrupts are not saved 
under any circumstances. 

NOTE 

Saved interrupts are issued to the 68000 microprocessor when the 
development system relinquishes control, and the emulator begins 
program execution. 

MOBILE MICROPROCESSOR BOARD 

Two configuration jumpers are located on the Mobile Microprocessor 
To access these jumpers, perform the Prototype Control 
Assembly/Disassembly procedure as described in the 68000 Emulator 
Manual. 

board. 
Probe 

Service 

J1045 and J2045---Delay of DTACK Assertion 

Two different DTACK (Data Transfer ACKnowledge) signals may be issued to the 
emulator: the 68000 microprocessor's DTACK and the prototype's DTACK. With 
both J1045 and J2045 in their optional positions, assertion of all 68000 
microprocessor DTACK signals to the emulator is delayed. In addition, 
assertion of the prototype's DTACK signals to the emulator is delayed only 
when operating in mode 1 with jumper P1 in its normal position. (Refer to 
the discussion of Interface Buffer board jumper P1 earlier in this section.) 

CAUTION 

Use of J1045 and J2045 in their normal positions may cause invalid 
data or loss of data if program memory is accessed faster than its 
limitations allow. However, no component damage will result. 

The positioning of these jumpers depends on the program memory configuration 
installed in your development system, as shown in Table 7L-8. 

7L-49 



68000 Jumpers 68000 Emulator Specifics Users 

Table 7L-8 
J1045 and J2045 Configurations (*a) 

--------------------------+---------------------------+------------------
: Jumper Configuration (*b) : 

Memory Configuration :---------------------------: Characteristic 
J1045 J2045 

==========================+=============+=============+================== 

32K Program Memory board A1 to A A1 to A 

I 
I 

: Normal (no delay) 
--------------------------+-------------+-------------+------------------
64K or 128K Static A1 to A A1 to A : Normal (no delay) 
Program Memory board 
--------------------------+-------------+-------------+------------------
64K or 128K Static 
Program Memory board A1 to A A1 to A Normal (no delay) 

and 
Memory Allocation Ctrlr. 
--------------------------+-------------+-------------+------------------
32K Program Memory board : Option (one 

and A5 to B A1 to A : wait state delay 
Memory Allocation Ctrlr. : at > 6.4MHz) (*c) 
--------------------------+-------------+-------------+------------------

(*a)---Jumper configurations listed are for < 8 MHz operation. 
(*b)---Jumper configurations not listed are for future use. 
(*c)---One wait state is equivalent to one extra clock cycle per 

memory cycle. 

7L-50 @ 



68000 Emulator Specifics Users btlOUU ~mulator llIDlng 

EMULATOR TIMING 

The signals between the prototype and the emulating microprocessor are 
buffered. Therefore, some timing differences exist between the 68000 
emulator and a 68000 microprocessor inserted directly into the prototype. 
Table 7L-9 lists the emulator/microprocessor timing differences for the 
68000. Figures 7L-12 and 7L-13 are timing diagrams that correspond to the 
signals listed in Table 7L-9. 

Table 7L-9 
68000 Emulator/Microprocessor Timing Differences 

Processor 

Number Characteristic Symbol Min Max 

1 Clock Period 'cyc 125 500 

2 Clock Width Low 'CL 55 250 

3 Clock Width High 'CH 55 250 

4 Clock Fall Time 'Cf - 10 

5 Clock Rise Time 'Cr - 10 

6 Clock Low to Address 'CLAV - 70 

6A Clock High to FC(H) Valid 'CHFCV - 70 

7A Clock High to Address High Impedance (Max.) 'CHAZx - 80 

7B Clock High to Data High Impedance (Max.) 'CHDZx - 80 

8 Clock High to Address/FC(H) Invalid (Min.) 'CHAZn 0 -
91 Clock High to AS(L), DS(L) Low (Max.) 'CHSLx - 60 

10 Clock High to AS(L), DS(L) Low (Min.) 'CHSLn 0 -
112 Address to AS(L), DS(L) (Read) Low/ AS(L) Write 'AVSL 30 -

11A2 FC(H) Valid to AS(L), DS(L) (Read) Low/AS(L) Write 'FCVSL 60 -
121 Clock Low to AS(L), DS(L) High 'CLSH - 70 

132 AS(L), DS(L) High to Address/FC(H) Invalid 'SHAZ 30 -
142.5 AS(L), DS(L) Width Low (Read)/AS(L) Write 'SL 240 -

14A2 DS(L) Width Low (Write) - 115 -
152 AS(L), DS(L) Width High 'SH 150 -
16 Clock High to AS(L), DS(L) High Impedance 'CHSZ - 80 
172 AS(L), DS(L) High to R(H)/W(L) High 'SHRH 40 -
181 Clock High to R(H)/W(L) High (Max.) 'CHRHx - 70 

19 Clock High to R(H)/W(L) High (Min.) 'CHRHn 0 -
201 Clock High to R(H)/W(L) Low 'CHRL - 70 
212 Address Valid to R(H)/W(L) Low 'AVRL 20 -

21A2 FC(H) Valid to R(H)/W(L) Low 'FCVRL 60 -
222 R(H)/W(L) Low to DS(L) Low (Write) 'RLSL 80 -
23 Clock Low to Data Out(H) Valid 'CLDO - 70 

252 DS(L) High to Data Out(H) Invalid 'SHOO 30 -
262 Data Out(H) Valid to DS(L) Low (Write) 'DOSL 30 -
276 Data In to Clock Low (Setup Time) 'DICL 15 -
282 AS(L), DS(L) High to DTACK(L) High 'SHOAH 0 120 

29 DS(L) High to Data Invalid (Hold Time) 'SHDI 0 -
30 AS(L), DS(L) High to BERR(L) High 'SHBEH 0 -

31 26 DTACK(L) Low to Data In (Setup Time) 'DALDI - 90 

32 HALT(L) and RESET(L) Input Transition Time 'RHrf 0 200 

33 Clock High to BG(L) Low 'CHGL - 70 

34 Clock High to BG(H) High 'CHGH - 70 

35 7 BR(L) Low to BG(L) Low 'BRLGL 1.5 3 

36 7 BR(L) High to BG(L) High 'BRHGH 15 3 

37 BGACK(L) Low to BG(L) High 'GALGH 1.5 3 

38 BG(L) Low to Bus High Impedance (With AS(L) High) 'GLZ - 80 

39 BG(L) Width High 'GH 15 -

46 BGACK(L) Width 'BGL 15 -
4766 Asynchronous Input Setup Time 'ASI 20 -
48 BERR(L) Low to OT ACK(L) Low3 'BELOAL 50 -
53 Data Hold from Clock High 'CHOO 0 -
55 R(H)/W(L) to Data Bus Impedance Change 'RLOO 30 -
56 HAL T(H)/RESET(L) Pulse Width 4 'HRPW 10 -

1 For a loading capacitance of less than or equal to 50 picofarads. subtract 5 nanoseconds from the values given in these columns. 

2 Actual value depends on clock period. 

3 If #47 is satisfied for both DTACK(L) and BERR(L). #48 may be 0 ns. 

4 After Vcc has been applied for 100 ms. 

5 For T6E. BF4. and R9M mask sets #14 and #14A are one clock period less than the given number. 

Emulator 

Min Max Unit 

125 500 ns 

55 250 ns 

55 250 ns 

- 10 ns 

- 10 ns 
- 92 ns 

- 92 ns 

- 114 ns 

- 130 ns 
14 - ns 

- 86 ns 

14 - ns 

24 - ns 

44 - ns 

- 96 ns 

20 - ns 

240 - ns 

115 - ns 

150 - ns 

- 93 ns 

40 - ns 

- 96 ns 

14 - ns 

- 96 ns 

14 - ns 

54 - ns 

80 - ns 

- 95 ns 

20 - ns 

20 - ns 

17 - ns 

0 94 ns 

0 - ns 

0 - ns 

- 88 ns 

0 200 ns 

- 93 ns 

- 93 ns 

1.5 3 Clk Per 

1.5 3 Clk Per 

1.5 3 Clk Per 

- 148 ns 

1.5 - Clk Per 

1.5 - Clk Per 

20 - ns 

50 - ns 

0 - ns 

20 - ns 

10 Clk Per 

6 If the asynchronous setup time (#47) requirements are satisfied. the DTACK(L)low-to-data setup time (#31) requirement can be ignored. The data must 
only satisfy the data-in to clock-low setup time (#27) for the following cycle. . 

7 For the Probe-tip add 20 nanoseconds to the clock periods listed. 

8 VPA = 50 nanoseconds for the Probe-tip. 

7L-51 



68000 Emulator Timing 68000 Emulator Specifics Users 
----------------------------------------------------------------------------

ClK 

A1-A23 

AS(l) 

lDS(l)/UDS(l) 

R(H)/W(l) 

FC9'-FC2 

Asynchronous 
Inputs 
(Note 1) 

HAlT(l)/RESET(l) 

BERR(l)/BR(l) 
(NOTE 2) 

DTACK(l) 

Data In 

Fig. 7L-12. 68000 timing diagram, read cycle. 

Notes and circled numbers refer to Table 7L-9. 

7L-52 

12609-14 



68000 Emulator Specifics Users 

ClK 

A1-A23 

A5(l) 

lD5(l)/UD5(l) 

R(H)/W(l) 

Data Out 

FCIl-FC2 

Asynchronous 
Inputs 

HAlT(l)/RE5ET(l) 

BERR(L)/BR(L) 

DTACK(l) 

51 52 

68000 Emulator Timing 

53 54 55 56 57 50 

12609-13 

Fig. 7L-13. 68000 timing diagram, write cycle. 

Circled numbers refer to Table 7L-9. 

7L-53 



b~OOO Probe/Prototype Interface 68000 Emulator Specifics Users 

PROBE/PROTOTYPE INTERFACE DIAGRAM 

Figure 7L-14 is a block diagram of the interface between the prototype and 
the 68000 Prototype Control Probe. 

7L-54 

(12609-2)3970-7 

Fig. 7L-14. 68000 Prototype/Control Probe interface. 

This figure provides a functional overview of signal buffering 
between the prototype and the emulating microprocessor. A more 
detailed circuit description can be found in the 68000 Emulator 
Processor and Prototype Control Probe Service Manual. 

@ 



68000 Emulator Specifics Users 68000 Software InstallatIon 

INSTALLING YOUR 68000 EMULATOR SOFTWARE 

8540 SOFTWARE INSTALLATION PROCEDURE 

The ROMs that contain the control software for your 68000 emulator must be 
installed in your 8540's System ROM Board. Refer to your 8540 Installation 
Guide for instructions on how to install these ROMs. 

8550 SOFTWARE INSTALLATION PROCEDURE 

Your emulator software installation disk contains two types of software: 

• emulator control software, which you install onto your DOS/50 
system disk so that DOS/50 can control your emulator hardware; 

• emulator diagnostic software, which you install onto your 8550 
system diagnostic disk so that diagnostic tests can be run on your 
emulator as well as on other 8550 system hardware. 

This subsection describes how to install the control software and diagnostic 
software for your 68000 emulator. 

To complete these installation procedures you need the following items: 

• an 8550 system (with or without a 68000 emulator) 

• a DOS/50 system disk with a write-enable tab over the write-protect 
slot 

• a 68000 emulator software installation disk with no write-enable 
tab 

• (for installation of diagnostic software) an 8550 system diagnostic 
disk with a write-enable tab over the write-protect slot. 

Each installation procedure takes about five minutes. 

Start Up and Set the Date 

Turn on your 8550 system. (For start-up instructions, refer to the Learning 
Guide of your System Users Manual.) Place your system disk in drive 0 and 
shut the drive 0 door. When you see the> prompt on your system terminal, 
place your installation disk in drive 1 and shut the drive 1 door. 

Use the DAT command to set the date and time. For example, if it is 11:05 
am on October 12, 1982, type: 

> DAT 12-0CT-82/11:05 <CR> 

The system uses this information when it sets the CREATION time attribute of 
each file copied from your installation disk. 

7L-55 



68000 Software Installation 68000 Emulator Specifics Users 
----------------------------------------------------------------------------
Install the Emulator Control Software 

The command file INSTALL2, which installs the emulator control software, 
resides on the installation disk. To execute the command file, simply type 
its filespec: 

) /VOL/EMU.68000/INSTALL2 <CR) 

DOS/50 responds with the following message: 

* During this installation procedure, one or more of the 
* ,following messages may appear. IGNORE THESE MESSAGES: 

* * Error 6E - Directory alteration invalid 
* Error 7E - Error in command execution 
* Error 1D - File not found 
* * If any OTHER error message appears, see your 
* Users Manual for further instructions. 

* * If no other error message appears, you'll receive a 
* message when the installation procedure is complete. 

* 
T,OFF 

In this installation procedure, you may disregard error messages 6E, 7E, and 
1D; these messages have no bearing on the success of the installation. 
However, if a message other than 6E, 7E, or 1D appears, take the following 
steps: 

1. Make sure you are using the right disks. 

2. Make sure your system disk has a write-enable tab. 

3. Make sure there are at least 16 free files and 150 free blocks 
on your system disk. 

4. Begin the installation procedure again. 

If the installation procedure fails again, copy down the error message and 
contact your Tektronix service representative. 

The "T,OFF" command suppresses subsequent output to your system terminal 
(except error messages) until INSTALL2 finishes executing. Within about 
five minutes, INSTALL2 will finish and your system terminal will display the 
following message: 

* * Your installation has been completed. 
) 

7L-56 



68000 Emulator Specifics Users 68000 Software Installation 

Install the Emulator Diagnostic Software 

Note the Name of Your Diagnostic Disk. In order to install the emulator 
diagnostic software, you must know the name of your 8550 system diagnostic 
disk. Remove your emulator installation disk from drive 1 and insert the 
diagnostic disk. Enter the following command to list the names of the two 
disks mounted in your 8550: 

> ATT /VOL/* WHERE <CR> 
sysvol WHERE=FLXO <-- DOS/50 system disk 
8550DIAGx.x WHERE=FLX1 <-- 8550 system diagnostic disk 

Note the name of your diagnostic disk. 
"8550DIAG2.0".) 

(It should be something like 

Insert Your Emulator Installation Disk into Drive 1. INSTALLDIAGS, the 
command file that installs the diagnostics, resides on the installation 
disk. Remove your diagnostic disk from drive 1 and insert your installation 
disk. Invoke the INSTALLDIAGS command file and pass it the name of your 
diagnostic disk, which you just noted: 

> /VOL/EMU.68000/INSTALLDIAGS 8550DIAGx.x <CR> 

DOS/50 responds with the following messages: 

@ 

* 
********************************************* 
* DIAGNOSTIC INSTALLATION PROCEDURE * 
********************************************* 
* 
* During this installation procedure, the following error 
* message will appear once. IGNORE THIS MESSAGE: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
T,OFF 
COP: 

* 

Error 2A Parameter required 

If any OTHER error message appears or this appears more 
than once, see your Users Manual for further instructions. 

If no other error message appears, you'll receive a message 
when the installation is complete. 

Error 2A Parameter required 

*-----> Remove the DOS/50 System Disc 
*-----> Insert the 8550 System Diagnostic Disc 
*-----> Type CO -A 

* 
SUSP,-A 

» 

7L-57 



68000 Software Installation 68000 Emulator Specifics Users 

Insert Your Diagnostic Disk into Drive O. Remove your DOS/50 system disk 
from drive 0 and insert your 8550 system diagnostic disk. Then enter the 
command CO -A to continue execution of the command file: 

» CO -A <CR> 

After a few minu~es, the following message is displayed: 

COP,-BN,/VOL/EMU.68000/DIAGS/68000TST.SAV,/VOL/8550DIAGx.x/68000TST.SAV 

* 
*-----> Remove 8550 System Diagnostic Disc 
*-----> Insert DOS/50 System Disc 
*-----> Type CO -A 

* 
SUSP,-A 

Insert Your DOS/50 System Disk into Drive O. Remove your diagnostic disk 
from drive 0 and insert your DOS/50 system disk. Then type CTRL-C and enter 
the CO -A command again: 

» CO -A <CR> 

The command file finishes with the following message: 

USER"NO.NAME 
******************************************** 
* DIAGNOSTIC INSTALLATION COMPLETE * 
******************************************** 
> 

In this installation procedure, error message 2A should appear once. If any 
other error message appears, check your disks and begin the diagnostic 
installation pro~edure again. If the installation procedure fails again, 
copy down the error message and contact your Tektronix service 
representative. 

Once your software is installed, you can: 

7L-58 

o remove your disks and turn off your 8550 system, or 

o install more software, or 

o continue with the 68000 Emulator Demonstration Run that follows in 
this section. If you do this, you do not have to restart the 
system or reset the date and time. 

NOTE 

At this point, "NONAME" is the current user. To change the 
current user back to "yourname," enter USER"yourname. 

@ 



68000 Emulator Specifics Users 68000 Demo -- Introduction 

68000 DEMONSTRATION RUN 

INTRODUCTION 

This demonstration run shows you how to load, execute, and monitor a simple 
68000 assembly language program on your 8540 or 8550. To perform this 
demonstration, your 68000 emulator hardware and control software must be 
installed in your 8540 or 8550. Throughout this demonstration run, the term 
"68000 assembler" refers to a B Series 68000 Assembler. 

Figure 7L-15 shows the source and object code for the demonstration program. 

This demonstration run includes procedures for four different system 
configurations: 

Case 1: If you have an 8550, the source 
code and object code for the 
demonstration program are provided on 
the installation disk that contains your 
68000 emulator control software. This 
demonstration shows you how to assemble 
the program on your 8550. (If your 
system disk does not have a 68000 
assembler, you must skip that part of 
the demonstration.) 

Case 2: If you have an 8540/8560 system, 
and your 8560 has a 68000 assembler, you 
can create and assemble the program on 
the 8560 and download it to the 8540. 
This demonstration shows how. 

Case 3: If you have an 8540 that is 
connected to a host computer other than 
an 8560, we cannot give you a specific 
list of commands for creating and 
assembling the program on your host. 
However, Fig. 7L-16 gives the program 
object code in Extended Tekhex format. 
You can create the Tekhex file using 
your host's assembler or text editor, 
and then download the file to the 8540 
via the 8540's optional COM interface. 

Case 4: If none of the other cases 
applies to you, you can patch the 
program into memory using the P command. 
This demonstration shows how. 

Case 1: 

Case 2: 

Case 3: 

Case 4: 

must have 68000 
assembler 

? 
• 

8540 + other host 

any other configuration 
(3964-5)3970-8 

Once the program is loaded or patched into memory, you can execute the 
program on your emulator. 

7L-59 



68000 Demo -- Introduction 68000 Emulator Specifics Users 

NOTE 

The 8540 commands shown in this demonstration can also be used on 
an 8550 that is connected to an 8560 or another host computer. 

ASM 68000 
Xnn.nn-nn (8550) 

1 
2 
3 
4 700 R 
5 00000700 207COOOO 

0500 R 
6 00000706 323C0004 
7 0000070A 4280 
8 
9 0000070C D018 

10 0000070E 51C9FFFC 
11 
12 00000712 13COOOFO 

0007 
13 00000718 4E71 
14 0000071A 4E71 
15 
16 0000071C 1A 
17 
18 CO 
19 OOOOOOCO 0000071C 
20 
21 5 
22 500 
23 00000500 5 
24 
25 700 

R 
R 

R 

-------- ------------ -------- ----------
I I 
I I 

address object code 

Page 
dd-rnmm-yy/hh:mm:ss 

LIST DBG 

SECTION DEMO 
ORG 700H 

START MOVEA.L #TABLE,AO 

MOVE.W 
CLR.L 

LOOP ADD.B 
DBRA 

#TSIZE-1 , D1 
DO 

(AO)+,DO 
D1,LOOP 

MOVE.B DO,(GEN.L)OF00007H 

EXIT 

TSIZE 

NOP 
Nap 

BYTE 

ORG 
LONG 

EQU 
ORG 

TABLE BLOCK 

END 

1AH 

OCOH 
EXIT 

5 
500H 
TSIZE 

START 
----------------------------------------------------------------

I 
I 

source code 

;Turn on symbolic debug 
option. 

;Begin summing routine. 
;Set the table pointer. 

;Set the pass counter. 
;Clear the register to be 

used for summation. 
;Add byte from table to DO 
;Decrement, and branch 
; if not 5 passes yet. 
;Else exit, trigger SVC 1. 

;Two Naps for SVC. 
;End of summing routine. 

;1AH = function code 
for the exit SVC. 

;Define SHB vector space. 
;Define the SRB pointer. 

;Set table size = 5. 
;Put TABLE at 500H. 
;Space for TABLE. 

------------------------------------------------------
I 
I 

comments 

+-- source code line number 

7L-60 

Fig. 7L-15. 68000 demonstration run program. 

This display appears on the first page of your 68000 Series B 
Assembler listing using an 8550. 

@ 



68000 Emulator Specifics Users 68000 Demo -- Introduction 
----------------------------------------------------------------------------
(A) 

%43 62,63700207C00000500323C00044280DO 1851 C 9FFFC 13COOOF00007 4E71 4E711 A 
%106292C00000071C 
%443DB4DEM0010371D14LOOP370C15START370015TABLE350025TSIZE1514EXIT371C 
%0981B3700 

(B) 

FIRST DATA BLOCK: object code for addresses 700--71B 

header 
: load address object code 

======----========================================================== 
%436263700207C00000500323C00044280D01851C9FFFC13COOOFO00074E714E711A 

SECOND DATA BLOCK: object code for addresses CO--C4 

header 
: load object 
: address code 

======---======== 
%106292C00000071C 

SYMBOL BLOCK 

header section 
section definition 

name field symbol definition fields 

======-----=======---------------------------------------------------
%443DB4DEM0010371D14LOOP370C15START370015TABLE350025TSIZE1514EXIT371C 

TERMINATION BLOCK 

header 
transfer 
address 

======----
%0981B3700 

Fig. 7L-16. 68000 demonstration program: Extended Tekhex format. 

Figure 7L-16A 
the ob ject code 
Figure 7L-16B 
message blocks. 
you can create 
8550. 

lists an Extended Tekhex load module that contains 
and program symbols for the demonstration program. 
gives the meanings of the different fields in the 
If you have a host computer other than an 8560, 
this load module and download it to your 8540 or 

7L-61 



68000 Demo -- Examine Program 68000 Emulator Specifics Users 

EXAMINE THE DEMONSTRATION PROGRAM 

The demonstration program adds five numbers from a table stored in locations 
500--504 in program memory, and puts the sum in register DO. (You will 
place values in the table later in this demonstration.) The 8085A Emulator 
Demonstration Run in the Learning Guide of your System Users Manual contains 
a flowchart that illustrates the steps of the program. 

The source code contains two kinds of statements: assembler directives (like 
ORG, WORD, BYTE, and GEN.L), and 68000 assembly language instructions. Most 
assembler directives are microprocessor-independent and are explained in the 
8085A Emulator Demonstration Run. The only assembler directive that is 
68000-specific is the GEN.L directive. This causes a long word address to 
be encoded. The 68000 assembly language instructions are discussed in the 
following paragraphs. 

Set Table Pointer. The MOVEA.L #TABLE,AO instruction moves the address of 
the table (500) into register AO. As a result, AO points to the first 
element of the table. The label START is used by the END directive to 
specify that the MOVEA.L #TABLE,AO instruction is the first to be executed. 

Set Pass Counter. Register D1 is used as the pass counter. The MOVE.W 
. #TSIZE-1,D1 instruction moves the value 5-1:4 into register D1. This causes 
the number of passes to be 5, since the DBRA instruction used for the branch 
will loop until the value in D1 is -1. Each time a number is taken from the 
table and added to register DO, register D1 is decremented. 

Clear Summation Register. The CLR.L DO instruction zeros register DO so that 
you can start adding numbers from the table. 

Add Byte from Table and Point to Next Byte. The next instruction, ADD.B 
(AO)+,DO, adds the byte addressed by AO to register DO. After the byte is 
added, AO is incremented to point to the next byte in the table. For 
example, AO is initialized to contain 500. After the add is performed, the 
+ part of the instruction causes AO to be incremented to 501, the address of 
the second byte in the table. The label LOOP represents the address of the 
ADD.B instruction; this label is used by the DBRA D1,LOOP instruction. 

Decrement Pass Counter and Loop If Not Yet Five Passes. The DBRA D1,LOOP 
instruction decrements register D1, the pass counter. Then it jumps to the 
LOOP label if D1 does not contain -1. If D1 does contain -1, the program 
proceeds to the next instruction, MOVE.B DO, (GEN.L)OF00007H. 

Exit. The MOVE.B DO,(GEN.L)OF00007H and two NOP instructions constitute a 
service call (SVC) that causes an exit from the program. Any byte-write 
instruction to the address F00007 would cause an SVC, and the contents of DO 
are not affected. For more information on SVCs, refer to the Service Calls 
section of your System Users Manual. 

7L-62 @ 



68000 Emulator Specifics Users 68000 Demo -- prepare ~rogram 

ASSEMBLE AND LOAD THE DEMONSTRATION PROGRAM 

Now it's time to create the program so you can run it on your emulator. One 
of the following discussions describes the set of steps that is appropriate 
for your hardware configuration: 

• For 8550 users Case 1: Assemble and Load on the 8550 

• For 8560 users 
to the 8540 

Case 2: Assemble and Load on the 8560; Download 

• For 8540 users with host computers other than the 8560 --- Case 3: 
Download from Your Host to the 8540 

• For other hardware configurations --- Case 4: Patch the Program 
into Memory 

Work through the discussion that is appropriate for you. Once you have put 
the program into program memory, turn to the heading, "Run the Demonstration 
Program", later in this section. 

CASE 1: ASSEMBLE AND LOAD ON THE 8550 

This discussion shows you how to copy the demonstration program from your 
68000 emulator software installation disk, assemble the program, and load it 
into 8550 program memory. 

Start Up and Log On 

Turn on your 8550 system. (For start-up instructions, refer to the 
paragraph, "Start Up the 8550 and Its Peripherals", in the Learning Guide of 
your System Users Manual.) Place your system disk in drive 0 and shut the 
drive 0 door. When your system displays the ">,, prompt, place your 68000 
emulator software installation disk in drive 1 and shut the drive 1 door. 

Use the DAT command to set the current date and time. For example, if it 
were 2:30 pm on October 12, 1982, you would enter the following command 
line: 

> DAT 12-0CT-82/2:30 PM <CR> 

Use the SEL command to tell DOS/50 to use the emulator and assembler 
software designed for the 68000: 

> SEL 68000 (CR> 

The system responds with the current version number: 

68000 emulator V n.nn mm/dd/yy 

The SEL command automatically sets the emulation mode to O. 

7L-63 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

CoPY the Demonstration Run Program from the Installation Disk 

Enter the following command lines to create an empty directory called DEMO 
on your system disk, and to make DEMO the current directory. The BR command 
creates a brief name, ROOT, to mark the old current directory. At the end 
of this demonstration, you will return to this ROOT directory and delete the 
DEMO directory and its contents. 

) BR ROOT IUSR <CR) 
) CREATE DEMO <CR) 
) USER DEMO <CR) 

Now use the COP command to copy all the files in the DEM02 directory on the 
installation disk to the DEMO directory you just created: 

) COP IVOL/EMU.68000/DEM02/* * <CR) 

Remove your installation disk from drive and put it away. 

Now list the files you have just copied to the current directory: 

) L <CR) 

FILENAME 

ASM 
LOAD 

Files used 124 
Free files 132 
Free blocks 813 
Bad blocks 0 

The file named ASM contains the assembly language source code for this 
demonstration program, and the file named LOAD contains the executable 
object code. This copy of LOAD is used in the demonstration only if you do 
not have a 68000 assembler, and thus cannot create your own object file and 
load file from the source file. 

7L-64 



68000 Emulator Specifics Users 68000 Demo -- Prepare Program 

Examine the Demonstration Program 

Enter the following command line to display the source file, ASM, on the 
system terminal: 

> CON ASM <CR> 

START 

LOOP 

EXIT 

TSIZE 

TABLE 

LIST DBG 

SECTION 
ORG 
MOVEA.L 
MOVE.W 
CLR.L 

ADD.B 
DBRA 

MOVE.B 
NOP 
NOP 

BYTE 

ORG 
LONG 

EQU 
ORG 
BLOCK 

DEMO 
700H 
IITABLE,AO 
IITSIZE-1,D1 
DO 

(AO)+,DO 
D1,LOOP 

DO,(GEN.L)OF00007H 

1AH 

OCOH 
EXIT 

5 
500H 
TSIZE 

END START 

Assemble the Source Code 

;Turn on symbolic debug 
option. 

;Begin summing routine. 
;Set the table pointer. 
;Set the pass counter. 
;Clear the register to be 

used for summation. 
;Add byte from table to DO. 
;Decrement, and branch 

if not 5 passes yet. 
;Else exit, trigger SVC 1. 
;Two NOPs for SVC. 
;End of summing routine. 

;1AH = function code 
for the exit SVC. 

;Define SRB vector space. 
;Define the SRB pointer. 

;Set table size = 5. 
;Put TABLE at 500H. 
;Space for TABLE. 

If you do not have a 68000 assembler on your system disk, you cannot perform 
this step, so skip the next four commands (ASM, COP, LINK, and L). 

The ASM (assemble) command translates assembly language (source code) into 
binary machine language (object code). The ASM command also creates an 
assembler listing that correlates the object code with the source code. 
Enter the following command line to assemble the source code in the file 
ASM, and to create the listing and object files, ASML and OBJ: 

1L-65 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

> ASM OBJ ASML ASM <CR> 

+-- source file 

+------- assembler listing file 
I 
I 

+----------- object file 

ASM 68000 Xnn.nn-nn Copyright (C) 19nn Tektronix, Inc. 
*****Pass 2 

25 Lines Read 
25 Lines Processed 
o Errors 

Make sure the printer is turned on and properly connected. Then, copy the 
assembler listing to the line printer with the following command. 

> COP ASML LPT <CR> 

The fields of the assembler listing are shown in Fig. 7L-15. The entries in 
the symbol table are also displayed, as shown in Fig. 7L-17. For a detailed 

'explanation of assembler listings, consult your Assembler Users Manual. 

ASM 68000 SYMBOL TABLE Page 2 
Xnn.nn-nn (8550) dd-mmm-yy/hh:mm:ss 

Scalars 

TSIZE---------00000005 

Section = DEMO, Aligned to 00000000, Size = 00000710 

EXIT----------0000071C LOOP----------0000070C 

TABtE---------00000500 

Section = $OBJ, Aligned to 00000000, Size = EMPTY 

25 Lines Read 
25 Lines Processed 
o Errors 

START---------00000700 

Fig. 7L-17. Symbol table listing. 

7L-66 



68000 Emulator Specifics Users 68000 Demo -- ~repare rrogram 
----~-----------------------------------------------------------------------
Link the Object Code 

The linker creates an executable load file from one or more object files. 
Enter the following linker command to create a load file called LOAD from 
your object file, OBJ: 

> LINK -0 OBJ -0 LOAD -d <CR> 

The system responds with the version number, listing status, and transfer 
address: 

Tektronix Linker Vnn.nn-nn (8550) 
Copyright (C) 19nn Tektronix, Inc. 
Listing file not generated 
Transfer address: 700 

If you wish to get a full linker listing written to your system terminal, 
include the -1 f option in the LINK command line. The linker command 
options -0 and -0 specify the object file and load file, respectively. The 
-d command option causes the linker to pass the program symbols from the 
object file to the load file for use in program debugging. 

The files generated by the ASM and LINK commands should now be on your disk. 
Enter this command to list the files in your current directory: 

> L <CR> 

FILENAME 

ASM 
LOAD 
OBJ 
ASML 

Files used 126 
Free files 130 
Free blocks 811 
Bad blocks 0 

Notice that there are now four files listed in your directory. OBJ and ASML 
were created by the assembler, and LOAD was created by the linker. 

Load the Program into Memory 

Now it's time to load the object code from the load file LOAD into program 
memory. 

@ 7L-67 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

Allocate Memory. If you have the Memory Allocation Controller (MAC) option 
installed, you need to allocate memory for the program. (If you do not have 
the MAC option, do not enter the AL command that follows.) The AL command 
allocates memory space to program memory. The default condition at start-up 
is zero blocks allocated to program memory. Enter the following command 
line: 

> AL a ; AL'OFOOOOO ; AL OFFFFFF <CR> 
1 BLOCK(S) ALLOCATED 000000 OOOFFF 
1 BLOCK(S) ALLOCATED FOOOOO FOOFFF 
1 BLOCK(S) ALLOCATED FFFOOO FFFFFF 

These commands allocate 12K bytes (3 blocks) of program memory for the 
logical addresses used by the demonstration program. The first block is 
used by the program and the SRB pointer; the second block will contain the 
SRB (Service Request Block) used by the SVC (Service Call); and the third 
block is used by the 68000 system stack. For more information on memory 
allocation and use of the AL command, refer to the Emulation section of your 
System Users Manual. 

Zero Out Memory. Before you load the code, use the F (Fill) command to fill 
program memory with zeros. Later, when you examine memory, the zeros will 
make it easy to identify the beginning and'end of your code. (Zeroing out 

'memory has no effect on how the program is loaded.) Enter the following 
command line to fill memory at addresses CO--7FF with zeros: 

> F OCO 7FF 0000 <CR> 

Check that Memory Was Filled with Zeros. Check the contents of memory with 
the D (Dump) command. The display shows the data in hexadecimal format, as 
well as the corresponding ASCII characters. Display the contents of memory 
addresses CO--CF and 700--7FF with the following commands: 

> D OCO <CR> 
a 2 4 6 8 A C E 

OOOOCO 0000 0000 0000 0000 0000 0000 0000 0000 

> D 700 7FF <CR> 
a 2 4 6 8 A C E 

000700 0000 0000 0000 0000 0000 0000 0000 0000 
000710 0000 0000 0000 0000 0000 0000 0000 0000 
000720 0000 0000 0000 0000 0000 0000 0000 0000 
000730 0000 0000 0000 0000 0000 0000 0000 0000 
000740 0000 0000 0000 0000 0000 0000 0000 0000 
000750 0000 0000 0000 0000 0000 0000 0000 0000 
000760 0000 0000 0000 0000 0000 0000 0000 0000 
000770 0000 0000 0000 0000 0000 0000 0000 0000 
000780 0000 0000 0000 0000 0000 0000 0000 0000 
000790 0000 0000 0000 0000 0000 0000 0000 0000 
0007AO 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007BO 0000 0000 0000 0000 0000 0000 0000 0000 
0007CO 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007DO 0000 0000 0000 0000 0000 0000 0000 0000 
0007EO 0000 0000 0000 0000 0000 0000 0000 0000 
0007FO 0000 0000 0000 0000 0000 0000 0000 0000 

7L-68 



68000 Emulator Specifics Users 68900 Demo -- Prepare Program 
----------------------------------------------------------------------------
Load the Object Code into Memory. Load the objec~tcode for the demonstration 
program into program memory with the following command: , ~ 

) LO <LOAD <CR) 

I 
I 

load file 

Load the Program Symbols. Recall that the source code for the demonstration 
program contained the directive, LIST DBG. Because of this directive, the 
object file contains a list of the symbols that appeared in the source code, 
and their associated values. And, since you included the -d command when 
you invoked the linker, these symbols were passed to the load file. 

Now, you can use the SYMLO command to load the symbols into the symbol table 
in 8550 system memory: 

) SYMLO -S <LOAD <CR) 

The -S option means that both address symbols and scalar symbols are loaded. 
If you omit the -S, only address symbols are loaded. (A scalar is a number 
that is not an address; for example, TSIZE, the length of the table.) Later 
in this demonstration, whenever you use a symbol in a command, DOS/50 refers 
to the symbol table to find the value that the symbol represents. 

You have assembled and linked the demonstration program and loaded it into 
memory. Now skip forward to the heading, "Run the Demonstration Program." 

7L-69 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 
------------------------r---------------------------------------------------
CASE 2: ASSEMBLE ON THEi8~0; DOWNLOAD TO THE 8540 

This discussion shows you how to create the demonstration program source 
code and assemble it on the 8560, and then download the object code to 8540 
(or 8550) program memory. If your 8560 does not have a 68000 assembler, you 
cannot do this part of the demonstration, so skip forward to the~heading, 
"Case 4: Patch the Program into Memory", for instructions. -

Start Up and Log In 

Start up your 8540, make sure that it is in TERM mode, and log in to the 
8560 TNIX operating system. Refer to your 8560 System Users Manual for 
detailed instructions. 

Since you're logged in to TNIX, your system prompt is "$". (Later in the 
demonstration, we show the system prompt as ")", for people using 8540s and 
8550s in LOCAL mode.) Every command you enter is processed by TNIX. If you 
enter an OS/40 command, TNIX passes it to the 8540. 

Enter the following commands to select the 68000 assembler on the 8560, and 
the 68000 emulator on the 8540: 

$ uP=68000; export uP <CR) 
$ sel 68000 <CR) 

The sel command automatically sets the emulation mode to O. 

Create the Demonstration Program 

Enter the following TNIX command lines to create an empty directory called 
demo and to make it the working directory. You'll create your source file 
and related files in this directory. 

$ mkdir demo <CR) 
$ cd demo <CR) 

Now use the TNIX editor, ed, to create the demonstration program source 
file. This command line invokes the editor and specifies that you want to 
create a file called asm: 

$ ed asm <CR) 
?asm 

The editor responds "?asm" to remind you that asm does not already exist. 
Notice that the editor does not prompt you when it's ready for input. 

7L-70 



68000 Emulator Specifics Users 68000 Demo -- t'repare rrogr·ClllJ 

-------------------------------------------------~--------------------------
Enter the Text. Now enter the editor command a (append text) and type in the 
program. Use the BACKSPACE key to erase typing mistakes. 

a <CR> 

START 

LOOP 

..!.. <CR> 
EXIT 

..!.. <CR> 
TSIZE 

TABLE 
..i.. <CR> 

• <CR> 

column 
9 

v 
LIST 

column 
17 

v 
DBG 

SECTION DEMO <CR> 
ORG 700H 
MOVEA.L UTABLE,AO 
MOVE.W HTSIZE-1,D1 
CLR.L DO 

ADD.B 
DBRA 

(AO)+,DO 
D1 ,LOOP 

MOVE.B DO,(GEN.L)OF00007H 
Nap 
Nap 

BYTE 

ORG 
LONG 

EQU 
ORG 
BLOCK 

1AH 

OCOH 
EXIT 

5 
500H 
TSIZE 

END START <CR> 

;Turn on symbolic debug <CR> 
option. <CR> 

;Begin summing routine. <CR> 
;Set the table pointer. <CR> 
;Set the pass counter. <CR> 
;Clear the register to be <CR> 

used for summation. <CR> 
;Add byte from table to DO. <CR> 
;Decrement, and branch <CR> 
; if not 5 passes yet. <CR> 
;Else exit, trigger SVC 1. <CR> 
;Two Naps for SVC. <CR> 
;End of summing routine. <CR> 

;1AH = function code <CR> 
for the exit SVC. <CR> 

;Define SRB vector space. <CR> 
;Define the SRB pointer. <CR> 

;Set table size = 5. <CR> 
;Put TABLE at 500H. <CR> 
;Space for TABLE. <CR> 

At the end of your text, enter a period on a line by itself. The editor 
will now accept new commands. 

Check for Errors. Type the following editor command to display the text you 
have entered. Check for typing mistakes. 

1dE <CR> 
I I 
I I 

:+-- print command: displays the lines 
in the designated range 

+--- designates last line in file 

+----- designates first line in file 

If you made any mistakes, you can correct them now. If you're not familiar 
with the editor, Table 7L-10 lists the commands you need to add, delete, and 
replace lines. For more information on the TNIX editor, refer to your 8560 
System Users Manual. 

@ 7L-71 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

Table 7L-10 
Basic 8560 Editing Commands 

------------------+-----------------------------------
Command : Function 
------------------------------------------------------------------------------------------------------------
mm,nnp <CR> : Displays lines mm through nn 
------------------+-----------------------------------
nn <CR> : Makes line nn the current line 

------------------+-----------------------------------
d <CR> : Deletes the current line 
------------------+-----------------------------------
a <CR> l Adds text below the current line 
<line(s) of text> : 
• <CR> 
------------------+-----------------------------------
c <CR> : Replaces the current line with the 
<line(s) of text> l text you type in 
• <CR> 
------------------+-----------------------------------

Once your text is correct, enter the w command to write the text to the 
source file, asm: 

w <CR> 
760 

The editor responds with the number of characters it wrote to the file. 

Finally, enter the S command to quit the editor and return to TNIX: 

~ <CR> 
$ <--- TNIX prompt 

Assemble the Source Code 

The TNIX asm (assemble) command translates assembly language (source code) 
into binary machine language (object code). The asm command also creates an 
assembler listing that you use to correlate the object code with the source 
code. Enter the following command line to assemble the source code in the 
file asm and create the listing and object files asml and obj:' 

7L-72 

$ asm obj asml asm <CR> 

+-- source file 

+------- assembler listing file 

+----------- object file 

ASH 68000 Xnn.nn-nn Copyright (C) 19nn Tektronix, Inc. 
*****Pass 2 

25 Lines Read 
25 Lines Processed 
o Errors 



68000 Emulator Specifics Users 68000 Demo -- Prepare Program 

Print the assembler listing on the 8560's line printer with the following 
command: 

$ lp1r asml <CR) 

Examine page 1 of your listing. Did the assembler issue any error messages? 
There should be none. However, if your source code contains errors, take 
the following steps: 

1. Refer to your Assembler Users Manual to see what the error 
messages mean. 

2. Enter the command ed asm to get back into the editor and fix 
the mistakes in your source code. Exit the editor with the w 
and ~ commands, as before. 

3. Enter the command asm obj asml asm to re-assemble your source 
code. 

Link the Object Code 

The linker creates an executable load file from one or more object files. 
Enter the following command to create a load file called load from your 
object file, obj. Be sure to capitalize the parameters exactly as shown. 

$ link -d -0 obj -0 load <CR) 

The system responds with the linker version, listing file status, and 
transfer address. 

Tektronix Linker Vnn.nn-nn (8560) 
Copyright (C) 19nn Tektronix, Inc. 
Listing file not generated 
Transfer address: 700 

If you wish to get a full linker listing, include the -1 f option on the 
link command line. The linker options -0 and -0 specify the object file and 
load file, respectively. The -d command option causes the linker to pass 
the program symbols from the object file to the load file, for use in 
program debugging. 

The files generated by the asm and link commands should now be in your 
working directory, demo. Enter the following command to list the files in 
your working directory: 

$ ~ <CR) 
asm 
asml 
load 
obj 

Notice that there are now four files listed in your directory: obj and asml 
were created by the assembler, and load was created by the linker. 

@ 7L-73 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

Download the Program to the 8540 

Now it's time to download the object code produced by the 8560's linker into 
8540 program memory. 

Allocate Memory. If you have the Memory Allocation Controller (MAC) option 
installed, you need to allocate memory for the program. (If you do not have 
the MAC option, do not enter the AL command that follows.) The AL command 
allocates memory space to program memory. The default condition at start-up 
is zero blocks allocated to program memory. Enter the following command 
line: 

> al 0 ; al Of 00000 ; al Offffff (CR> 
1 BLOCK(S) ALLOCATED 000000 OOOFFF 
1 BLOCK(S) ALLOCATED FFFOOO FFFFFF 
1 BLOCK(S) ALLOCATED FOOOOO FOOFFF 

This command allocates 12K bytes (3 blocks) of program memory for the 
logical addresses used by the demonstration program. The first block is 
used by the program and the pointer to the SRB (Service Request Block); the 
second block will contain the SRB used by the Service Call; and the third 
block is used by the 68000 system stack. For more information on memory 
allocation and use of the AL command, refer to the Emulation section of your 

'System Users Manual. 

Zero Out Memory. Before you download any code, use the OS/40 F (Fill) 
command to fill 8540 program memory with zeros. Later, when you examine 
memory, the zeros make it easy to identify the beginning and end of your 
code. (Zeroing out memory has no effect on how the program is loaded.) 
Enter the following command line to fill memory addresses CO--7FF with 
zeros: 

$ f OcO 7ff 0000 (CR> 

Check that Memory Was Filled with Zeros. Check the contents of memory with 
the OS/40 D (Dump) command. The display shows the data in hexadecimal 
format, as well as the corresponding ASCII characters. Display the contents 
of memory addresses CO--CF and 700--7FF with the. following commands: 

7L-74 



68000 Emulator Specifics Users 6~000 Vemo -- t'repare rTU~Idlll 
----------------------------------------------------------------------------
) d OcO <CR) 

a 2 4 6 8 A C E 
OOOOCO 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
) d 700 7ff <CR) 

a 2 4 6 8 A C E 
000700 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000710 ooeo 0000 0000 0000 0000 0000 0000 0000 · ............... 
000720 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000730 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000740 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000750 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000760 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000770 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000780 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
000790 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
0007AO 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
0007BO 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
0007CO 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
0007DO 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
0007EO 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 
0007FO 0000 0000 0000 0000 0000 0000 0000 0000 · ............... 

Download the Object Code. Enter the following command line to download the 
object code from the 8560 file load to 8540 program memory: 

$ 10 <load <CR) 

load file 

Download the Program Symbols. Recall that the source code for the 
demonstration program contains the directive LIST DBG. Because of this 
directive, the object file contains a list of the symbols that appear in the 
source code, and the values associated with those symbols. And, because you 
included the -d option in the link command line, those symbols were passed 
to the load--file. Use the OS/40 SYMLO command to download those symbols 
into the symbol table in 8540 system memory: 

$ symlo -s <load <CR) 

The -S option means that both address symbols and scalar symbols are 
downloaded. If you omit the -S, only address symbols are downloaded. (A 
scalar is a number that is not an address; for example, TSIZE, the length of 
the table.) 

Later in this demonstration, whenever you use a symbol in an OS/40 command 
line, OS/40 refers to the symbol table to find the value that the symbol 
represents. 

You've assembled and linked the demonstration program and downloaded it into 
memory. Now skip forward to the heading, "Run the Demonstration Program." 

7L-75 



b8000 Demo -- Prepare Program 68000 Emulator Specifics Users 

CASE 3: DOWNLOAD FROM YOUR HOST TO THE 8540 

This discussion gives some general instructions for downloading the 
demonstration program from a host computer other than an 8550 or 8560 to 
8540 (or 8550) program memory. If your 8540 is not equipped with the 
optional COM Interface Package, you cannot complete this part of the 
demonstration, so skip forward to the heading, "Case 4: Patch the Program 
into Memory" for instructions. COM Interfac~ software is standard on the 
8550. 

Since we don't know what host computer you are using, we can only provide a 
general outline for creating the demonstration program and downloading it to 
the 8540. Once you have determined the command sequence that is appropriate 
for your host, record this information in the space provided in Fig. 7L-18. 

Create the Extended Tekhex Load Module 

. Prepare the 8540 

Establish Communication 

Download the Load Module 

Terminate Communication 

Fig. 7L-18. Host computer commands for preparing demonstration program. 

7L-76 @ 



68000 Emulator Specifics Users 68000 Demo -- Prepare Program 

Create the Extended Tekhex Load Module 

In order for the object code to be downloaded to the 8540, it must be in 
Extended Tekhex format, as shown in Fig. 7L-16. You can create the load 
module in one of two ways: 

1. Use your host computer's text editor, and key the load module 
in by hand. 

2. Use your host computer's 68000 assembler: 

Prepare the 8540 

a. Translate the demonstration program into the language 
of your host's 68000 assembler. 

b. Create and assemble the source file. 

c. Link the object code, if necessary. 

d. Translate the object code produced by the assembler or 
linker into Extended Tekhex format. The Intersystem 
Communication section of your System Users Manual 
provides a general algorithm for conversion to Extended 
Tekhex format. 

Start up your 8540 and enter the following command to select the 68000 
emulator: 

) SEL 68000 (CR) 

The SEL command automatically sets the emulation mode to O. 

Allocate Memory. If you have the Memory Allocation Controller (MAC) option 
installed, you need to allocate memory for the program. (If you do not have 
the MAC option, do not enter the AL command that follows.) The AL command 
allocates memory space to program memory. The default condition at start-up 
is zero blocks allocated to program memory. Enter the following command: 

) AL 0 ; AL OFOOOOO ; AL OFFFFFF (CR) 
1 BLOCK(S) ALLOCATED 000000 OOOFFF 
1 BLOCK(S) ALLOCATED FFFOOO FFFFFF 
1 BLOCK(S) ALLOCATED FOOOOO FOOFFF 

This command allocates 12K bytes (3 blocks) of program memory for the 
logical addresses used by the demonstration program. The first block is 
used by the program and the pointer to the SRB (Service Request Block); the 
second block will contain the SRB used by the SVC (Service Call); and the 
third block is used by the 68000 system stack. For more information on 
memory allocation and use of the AL command, refer to the Emulation section 
of your System Users Manual. 

7L-71 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

Zero Out Memory. Before you download any code, use the OS/40 F (Fill) 
command to fill 8540 program memory with zeros. Later, when you examine 
memory, the zeros make it easy to identify the beginning and end of your 
code. (Zeroing out memory has no effect on how the program is loaded.) 
Enter the following command line to fill memory addresses CO--7FF with 
zeros: 

> F OCO 7FF 0000 <CR> 

Check that Memory Was Filled with Zeros. Check the contents of memory with 
the OS/40 0 (Dump) command. The display shows the data in hexadecimal 
format, as well as the corresponding ASCII characters. Display the contents 
of memory addresses CO--CF and 700--7FF with the following commands: 

> 0 OCO <CR> 
024 6 8 ACE 

OOOOCO 0000 0000 0000 0000 0000 0000 0000 0000 

> 0 700 7FF 
a 

000700 0000 
000710 0000 
000720 0000 

'000730 0000 
000740 0000 
000750 0000 
000760 0000 
000770 0000 
000780 0000 
000790 0000 
0007AO 0000 
0007BO 0000 
0007CO 0000 
000700 0000 
0007EO 0000 
0007FO 0000 

7L-78 

<CR> 
2 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

4 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

6 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

8 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

A 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

C 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

E 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 



68000 Emulator Specifics Users 68000 Demo -- l"'repare t'rogram 

Download the Load Module to the 8540 

Be sure that your 8540 and your host computer are connected via an 
RS-232-C-compatible communications link. Then perform the following steps 
to download the Tekhex load module to 8540 program memory. (Refer to the 
Intersystem Communication section of your System Users Manual to determine 
the commands and parameters that are appropriate for your host computer.) 

a. Enter the 8540 COM command to establish communication. (The 
parameters of the COM command are host-specific.) Log on to 
your host and execute any necessary host initialization 
commands. 

b. Enter the command line that downloads the Tekhex load module to 
the 8540. This command line consists of a host computer 
command that performs the download, followed by a null 
character (CTRL-@ on most terminals) and a carriage return. 
COM places the object code in 8540 program memory, and puts the 
program symbols into the symbol table in 8540 system memory. 

c. Log off your host, then terminate COM command execution by 
entering the null character, and then pressing the ESC key. 

Once you've downloaded the program to the 8540, skip forward to the heading, 
"Run the Demonstration Program." 

@ 7L-79 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

CASE 4: PATCH THE PROGRAM INTO MEMORY 

This discussion shows you how to patch the demonstration program into 8540 
(or 8550) program memory using the P command, and then add the program 
symbols into the symbol table using the ADDS command. 

Ordinarily, you would load the object code and symbols from a binary or 
hexadecimal load file, as illustrated for Cases 1, 2, and 3. The procedure 
presented here is not normally used for preparing a program for execution. 
Use this procedure only if you have no standard means for preparing the 
program, but would still like to tryout your emulator. 

Start Up the 8540 

Start up your 8540 and enter the following command to select the 68000 
emulator: 

> SEL 68000 <CR> 

The SEL command automatically sets the emUlation mode to O. 

Allocate Memory. If you have the Memory Allocation Controller (MAC) option 
. installed, you need to allocate memory for the program. (If you do not have 
the MAC option, do not enter the AL command that follows.) The AL command 
allocates memory space to program memory. The default condition at start-up 
is zero blocks allocated to program memory. Enter the following command: 

> AL 0 ; AL OFOOOOO ; AL OFFFFFF <CR> 
BLOCK(S) ALLOCATED 000000 OOOFFF 
BLOCK(S) ALLOCATED FFFOOO FFFFFF 
BLOCK(S) ALLOCATED FOOOOO FOOFFF 

This command allocates 12K bytes (3 blocks) of program memory for the 
logical addresses used by the demonstration program. The first block is 
used by the program and the pointer to the SRB (Service Request Block); the 
second block will contain the SRB used by the SVC (Service Call); and the 
third block is used by the 68000 system stack. For more information on 
memory allocation and use of the AL command, refer to the Emulation section 
of your System Users Manual. 

Zero Out Memory. Before you download any code, use the OS/40 F (Fill) 
command to fill 8540 program memory with zeros. Later, when you examine 
memory, the zeros make it easy to identify the beginning and end of your 
code. (Zeroing out memory has no effect on how the program is loaded.) 
Enter the following command line to fill memory addresses CO--7FF with 
zeros: 

> F oeo 7FF 0000 <CR> 

7L-80 



68000 Emulator Specifics Users 68000 Demo -- Prepare Program 

Check that Memory Was Filled with Zeros. Check the contents of memory with 
the OS/40 D (Dump) command. The display shows the data in hexadecimal 
format, as well as the corresponding ASCII characters. Display the contents 
of memory addresses CO--CF and 700--7FF with the following commands: 

> 0 OCO <CR> 
a 2 4 6 8 A C E 

OOOOCO 0000 0000 0000 0000 0000 0000 0000 0000 

> D 700 7FF <CR> 
a 2 4 6 8 A C E 

000700 0000 0000 0000 0000 0000 0000 0000 0000 
000710 0000 0000 0000 0000 0000 0000 0000 0000 
000720 0000 0000 0000 0000 0000 0000 0000 0000 
000730 0000 0000 0000 0000 0000 0000 0000 0000 
000740 0000 0000 0000 0000 0000 0000 0000 0000 
000750 0000 0000 0000 0000 0000 0000 0000 0000 
000760 0000 0000 0000 0000 0000 0000 0000 0000 
000770 0000 0000 0000 0000 0000 0000 0000 0000 
000780 0000 0000 0000 0000 0000 0000 0000 0000 
000790 0000 0000 0000 0000 0000 0000 0000 0000 
0007AO 0000 0000 0000 0000 0000 0000 0000 0000 
0007BO 0000 0000 0000 0000 0000 0000 0000 0000 
0007cO 0000 0000 0000 0000 0000 0000 0000 0000 
000700 0000 0000 0000 0000 0000 0000 0000 0000 
0007EO 0000 0000 0000 0000 0000 0000 0000 0000 
0007FO 0000 0000 0000 0000 0000 0000 0000 0000 

Patch the Object Code into Memor:!: 

The OS/40 P (Patch) command stores a sequence of bytes into memory, 
replacing the previous memory contents. Enter the following command to 
store the object code for the first three instructions in the program 
(MOVEA, MOVE, and CLR) starting at location 700: 

> P 700 207C00000500 323C0004 4280 <CR> 
------------ -------------------- --------

CLR.L DO 

MOVE.W HTSIZE-1,D1 

MOVEA.L HTABLE,AO 

patch address 

Now patch in the next five instructions (ADD, DBRA, MOVE, and two Naps), and 
the Exit SVC function code 

> P 70E 0018 51C9FFFC 13COOOF00007 4E71 4E11 1A <CR> 

@ 1L-81 



68000 Demo -- Prepare Program 68000 Emulator Specifics Users 

Finally, patch in the SRB information for the Exit SVC at address CO: 

) POCO 0000071C <CR) 

You'll examine the contents of memory later in this demonstration. 

Put Symbols into the Symbol Table 

Later in this demonstration, you will use symbols from the demonstration 
program (START, LOOP, TSIZE, TABLE, and EXIT) when communicating with OS/40. 
Whenever you use a symbol in a command line, OS/40 refers to a symbol table 
in 8540 system memory to find the values that the symbol stands for. Enter 
the following command line to add the program symbols to the symbol table, 
along with their values: 

) ADDS START=700 LOOP=70C -S TSIZE=5 TABLE=500 EXIT=71C <CR) 

The ADDS command cannot provide all the symbol-related information that is 
provided by the SYMLO command (as in Cases 1 and 2) or the COM command (as 
in Case 3). Because this information is missing, some of the displays you 
produce later in this demonstration will not match the symbolic displays 
shown in this manual. For more information on the ADDS command, refer to 
the Command Dictionary of your System Users Manual. 

You've patched the demonstration program into program memory and placed the 
program symbols in the symbol table. Now it's time to run the program. 

7L-82 @ 



68000 Emulator Specifics Users 68000 Demo -- Run Program 

RUN THE DEMONSTRATION PROGRAM 

From now until the end of the demonstration, the commands you are to enter 
are shown in lowercase. If you are not logged in to an 8560, you may enter 
commands in either lowercase or uppercase. If you ~ using an 8560, you 
must enter the name of every command in lowercase, and your system prompt is 
"$", not ">". 

Now that you've loaded the program into memory, you need to: 

• verify that the program was loaded correctly; and 

• put ~alues into the table in memory, for the program to add. 

Check Memory Contents Again. Before you loaded the program, you filled 
memory locations CO--7FF with zeros. Look again at the memory areas used by 
the program with the following command lines: 

> d OcO <CR> 
0 2 4 6 8 A C E 

OOOOCO 0000 071C 0000 0000 0000 0000 0000 0000 ................ 
> d 700 71f <CR> 

0 2 4 6 8 A C E 
000700 207C 0000 0500 323C 0004 4280 0018 51C9 : •••• 2< •• B ••• Q. 

000710 FFFC. 13CO OOFO 0007 4E71 4E71 1AOO 0000 •••••••• NqNq •••• 

The object code is loaded in two different blocks: 

• The 68000 machine instructions are loaded at address 700 (specified 
by the first ORG directive). 

• Information for the Exit SVC is loaded at address CO (specified by 
the second ORG directive). 

The contents of the table at address 500 are still undefined, but you will 
put some values into the table in just a few minutes. 

Turn Symbolic Debug On. Enter the following command to turn on symbolic 
debug. This causes symbols from your code to be displayed when disassembly 
is performed. (The -S and -L options are already set by default.) 

> SYMD ON <CR> 

Disassemble the Object Code. The 01 (DIsassemble) command displays memory 
contents both in hexadecimal notation and in assembly language mnemonics. 
You can use the 01 command to verify that the object code in memory 
corresponds to your source code. Enter the following command to disassemble 
the area of memory occupied by the executable part of your program: 

7L-83 



68000 Demo -- Run Program 68000 Emulator Specifics Users 
----------------------------------------------------------------------------

> di 700 71a <CR> 

ADDRESS DATA MNEMONIC 

START 
000700 207C MOVE.L 11500H,AO 

DEMO+000706 
000706 323C MOVE.W 114H, D1 

DEMO+00070A 
00070A 4280 CLR.L DO 

LOOP 
00070C D018 ADD.B (AO)+,DO 

DEMO+00070E 
00070E 51C9 DBRA D1 ,70CH 

DEMO+000712 
000712 13CO MOVE.B DO,FOOO07H 

DEMO+000718 
000718 4E71 Nap 

DEMO+00071A 
00071A 4E71 Nap 

Compare the DI display with the assembler listing you generated earlier, or 
refer back to Fig. 7L-15. 

The DI display contains two lines for each disassembled instruction. The 
second line contains the absolute location of the instruction (ADDRESS), the 
machine language instruction itself (DATA), the instruction mnemonic 
(MNEMONIC), and the instruction operands. The first line contains symbolic 
representations for the location. The symbolic location enables you to 
correlate the display with your assembler listing. The symbols START and 
LOOP correspond to the labels START and LOOP in the source code. 

For those lines of the display where the location does not correspond to a 
label in the symbol table, D1 substitutes the section name plus the address 
of the instruction relative to the beginning of the section as shown in the 
location counter field of your assembler listing. (Since section DEMO 
begins at address 0, the offset is 0, and the relative address is the same 
as the absolute address in this display. This offset feature is much more 
useful for sections that don't start at address 0.) 

If you didn't load the pertinent symbols and related information into the 
symbol table (using a command such as SYMLO), the DI command cannot supply 
this symbolic information. 

7L-84 



68000 Emulator Specifics Users 68000 Demo -- Run Program 

Now, you've seen that your system can use the symbol table to translate 
numbers into symbols, to make a display easier to read. Your system can 
also translate a symbol in a command line into an address. For example, 
since your system knows that the symbol START is equivalent to the address 
700, you could have entered the DI command in any of the following ways: 

di 700 71A 
di START 71A 
di start start+1a 
di 700 START+1a 

Notice that a symbol can be entered in either lowercase or uppercase. 

The feature that enables DOS/50 and OS/40 to correlate symbols from your 
program with the numbers they represent is termed symbolic debug. 

Put Values into the Table in Memory. The demonstration program sums five 
numbers from a table in memory. Use the P (Patch) command to store the 
numbers 1, 2, 3, 4, and 5 in the table. Do you remember what the address of 
the table is? It doesn't matter, as long as you remember that the symbol 
TABLE represents that address. 

> P -b table 0102030405 <CR) 

address of 
table: 500 

--------------------
I 
I 

string of bytes to be stored 
at addresses 500--504 

Check the Contents of the Table. Use the D command with 
(byte-oriented) parameter to display the contents of the table. 
don't specify an upper boundary for the area to be dumped, the 
dumps 16 bytes.) 

+------ lower address: 500 

+-- upper address: omitted 
(defaults to lower address + OF) 

----- = 
) d -b table <CR) 

o 1 2 3 4 5 6 7 8 9 ABC D E F 
000500 01 02 03 04 05 00 00 00 00 00 00 00 00 00 00 00 

the -B 
(When you 

D command 

Notice that bytes 500--504 (the table) contain the values you patched in. 
Bytes 505--50F were zeroed earlier by the F command. 

The following command dumps only the contents of the table: 

@ 

) d -b table table+tsize-1 <CR) 
o 1 2 3 4 5 6 7 8 9 ABC D E F 

000500 01 02 03 04 05 

7L-85 



68000 Demo -- Run Program 68000 Emulator Specifics Users 

Start Program Execution 

Enter the G (Go) command to start program execution at location 700, the 
transfer address specified by the END directive in the source code. 

> ~ <CR> 

The program executes, and when the Exit SVC occurs, the program breaks 
(stops). Register DO contains the sum of the numbers in the memory table: 
1+2+3+4+5=OF. You can use the DS command to examine the register contents: 

> ds <CR> 
PC=00071C 
DO=OOOOOOOF 
D4=00000000 
AO=00000505 
A4=00000000 

D1=0000FFFF 
D5=00000000 
A1=00FOOOOO 
A5=00000000 

D2=00000000 D3=00000000 
D6=00000000 D7=00000000 
A2=00000000 A3=00000000 
A6=00000000 SSP=OOOOOOOO USP=OOOOOOOO 

T.S •• 111 ••• X NZVC 
SR=OOOO ---> 0.0 •• 000 ••• 0 0000 

7L-86 @ 



68000 Emulator Specifics Users 68000 Oemo -- Monl r,or rTo~r·dll1 

MONITOR PROGRAM EXECUTION 

You have assembled, loaded, and executed the demonstration program. The 
rest of this demonstration shows you some commands for monitoring program 
execution. You can watch the changes in the emulator's registers and 
observe the effect of each instruction as the program proceeds. 

Trace All Instructions. The TRA (TRAce) command lets you observe the changes 
in the 68000 registers as the program proceeds. When you enter a TRA 
command and then start execution with the G command, display lines are sent 
to the system terminal. As each instruction executes, the display line 
shows the instruction (as in the 01 display) and the contents of the 
registers after that instruction has executed. Enter the following command 
to trace all of the program's instructions: 

) tra all <CR) 

Enter the command G START (or G 700) to resume program execution back at the 
beginning of the program: 

) g start <CR) 

As the program executes, the following trace is displayed. Remember that 
you can type CTRL-S to suspend the display and CTRL-Q to resume the display. 

START 
UP:000700 207C MOVE.L 11500H,AO 

PC=000706 
OO=OOOOOOOF 01=0000FFFF 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000500 A1=00000000 A2=00000000 A3=00000000 
A4=00000OQO A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+000706 
UP:000706 323C MOVE.W 114H,01 

PC=00070A 
OO=OOOOOOOF 01=00000004 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000500 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+00070A 
UP:00070A 4280 CLR.L 00 

PC=00070C 
DO=OOOOOOOO 01=00000004 D2=00000000 D3=00000000 
D4=00000000 05=00000000 D6= 00000000 07=00000000 
AO=00000500 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=0004 

@ 7L-87 



b~OOO Oemo -- Monitor Program "68000 Emulator Specifics Users 

LOOP 
UP:00070C 0018 AOO.B (AO)+,OO 

PC=00070E 
00=00000001 01=00000004 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000501 Al=OOOOOOOO A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+00070E 
UP:00070E 51C9 OBRA 01,70CH 

PC=00070C 
00=00000001 01=00000003 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000501 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

LOOP 
UP:00070C 0018 AOO.B (AO)+,OO 

PC=00070E 
00=00000003 01=00000003 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000502 Al=OOOOOOOO A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6= 00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+00070E " 
UP:00070E 51Cg OBRA 01,70CH 

PC=00070C 
00=00000003 01=00000002 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000502 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

LOOP 
UP:00070C 0018 AOO.B (AO)+,OO 

PC=00070E 
00=00000006 01=00000002 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000503 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+00070E 
UP:00070E 51C9 OBRA 01,70CH 

PC=00070C 
00=00000006 01=00000001 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000503 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

7L-88 



68000 Emulator Specifics Users 68000 Oemo -- Monitor Program 
----------------------------------------------------------------------------

LOOP 
UP:00070C 0018 AOO.B (AO)+,OO 

PC=00070E 
OO=OOOOOOOA 01=00000001 02=00000000. 
04=00000000 05=00000000 06=00000000 
AO=00000504 A1=00000000 A2=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+00070E 
UP:00070E 51C9 OBRA 01 ,70CH 

PC=00070C 
OO=OOOOOOOA 01=00000000 02=00000000 
04=00000000 05=00000000 06= 00000000 
AO=00000504 A1=00000000 A2=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

LOOP 
UP:00070C 0018 AOO.B (AO)+,OO 

PC=00070E 
OO=OOOOOOOF 01=00000000 02=00000000 
04=00000000 05=00000000 06=00000000 
AO=00000505 A1=00000000 A2=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+00070E 
UP:00070E 51C9 OBRA 01,70CH 

PC=000712 
OO=OOOOOOOF 01=0000FFFF 02=00000000 
04=00000000 05=00000000 06= 00000000 
AO=00000505 A1=00000000 A2=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+000712 
UP:000712 13CO MOVE.B 00,F00007H 

PC=000718 
OO=OOOOOOOF 01=0000FFFF 
04=00000000 05=00000000 
AO=00000505 A1=00000000 
A4=00000000 A5=00000000 
SSP=OOOOOOOO USP=OOOOOOOO 

<BREAK TRACE, SVC> 

02=00000000 
06=00000000 
A2=00000000 
A6=00000000 
SR=OOOO 

03=00000000 
07=00000000 
A3=00000000 

03=00000000 
07=00000000 
A3=00000000 

03=00000000 
07=00000000 
A3=00000000 

03=00000000 
07=00000000 
A3=00000000 

03=00000000 
07=00000000 
A3=00000000 

After register 00 is cleared, it begins to store the sum of the numbers 
being added. The AOO.B instruction adds a number from the table into 00. 
At the end of the program, 00 contains the sum of the numbers you put into 
the table. 

Register 01, the pass counter, is set to contain 
beginning of the program. It decreases by one 
instruction) each time a number is added to 00. The 
register 01 reaches minus one (FFFF). 

4 (TSIZE-1) at the 
(because of the OBRA 
program ends after 

7L-89 



68000 Demo -- Monitor Program 68000 Emulator Specifics Users 

Register AO, set to contain 500 (TABLE) at the start of the program, 
increases by one each time a number is added to the accumulator. At the end 
of the program, register AO has been incremented five times and contains 
505. 

Trace to the Line Printer. By adding the parameter >LPT to a command, you 
------~----------------can direct that command's output to the line printer instead of to the 
system terminal. First verify that your line printer is properly connected 
and powered up. Then enter the following command to execute the program 
with trace output directed to the line printer: 

> g start >LPT <CR> 

NOTE 

If you're operating in TERM mode with an 8560, use one of the 
following commands in place of the command shown: 

• g start I lp1r sends the display to the 8560 line I 

printer. 

• g start \>LPT sends the display to the line printer on 
the 8540 or 8550. 

Trace Jump Instructions Only. Another way to monitor the program's execution 
is to look only at the jump instructions. By tracing the jump instructions, 
you can still observe the changes in the registers, but you save time and 
space by not tracing the instructions within the loop. Enter the following 
command to trace only the jump instructions when the loop is being executed: 

> tra jmp 100E 70E <CR> 
---- ---

+-- upper address } Within this range, 
} only jump instructions 

+------ lower address } are traced. 
(70C) 

Check the Status of the Trace. The TRA command without any parameters 
displays the trace conditions that are currently set. Because you can have 
up to three trace selections in effect at the same time, it is useful to be 
able to see which selections are active. Check your trace status with the 
following command line: 

> tra <CR> 
TRACE ALL,DEMO+OOOOOO,FFFFFF 
TRACE JMP, LOOP , DEMO+00070E 

As you've specified, TRA ALL is in effect for addresses 0--70B, TRA JMP is 
in effect for addresses 70C--70E, and TRA ALL is again in effect for 
addresses 70F--FFFFFF. 

7L-90 



68000 Emulator Specifics Users 68000 Demo -- Monltor rrogram 

Again, start your program with the G command. The following trace is 
displayed: 

) g start (CR) 

START 
UP:000700 207C 

PC=000706 
DO=OOOOOOOF 
D4=00000000 
AO=00000500 
A4=00000000 
SSP=OOOOOOOO 

DEMO+000706 
UP: 000706 323C 

PC=00070A 
DO=OOOOOOOF 
D4=00000000 
AO=00000500 
A4=00000000 
SSP=OOOOOOOO 

DEMO+00070A 
UP:00070A 4280 

PC=00070C 
DO=OOOOOOOO 
D4=00000000 
AO=00000500 
A4=00000000 
SSP=OOOOOOOO 

DEHO+00070E 
UP:00070E 51C9 

PC=00070C 
DO=00000001 
D4=00000000 
AO=00000501 
A4=00000000 
SSP=OOOOOOOO 

DEMO+00070E 
UP:00070E 51C9 

PC=00070C 
DO=00000003 
D4=00000000 
AO=00000502 
A4=00000000 
SSP=OOOOOOOO 

DEMO+00070E 
UP:00070E 51C9 

PC=00070C 
DO=00000006 
D4=00000000 
AO=00000503 
A4=00000000 
SSP=OOOOOOOO 

MOVE.L #500H,AO 

D1=0000FFFF 
D5=000QOOOO 
A1=00000000 
A5=00000000 
USP=OOOOOOOO 

MO VE • W # 4 H , D 1 

D1=00000004 
D5=00000000 
A1=00000000 
A5=00000000 
USP=OOOOOOOO 

CLR.L DO 

D1=00000004 
D5=00000000 
A1=00000000 
A5=00000000 
USP=OOOOOOOO 

D2=00000000 
D6=00000000 
A2=00000000 
A6=00000000 
SR=OOOO 

D2=00000000 
D6=00000000 
A2=00000000 
A6=00000000 
SR=OOOO 

D2=00000000 
D6= 00000000 
A2=00000000 
A6=00000000 
SR=0004 

DBRA D1,70CH 

D1=00000003 
D5=00000000 
A1=00000000 
A5=00000000 
USP=OOOOOOOO 

DBRA D1,70CH 

D2=00000000 
D6= 00000000 
A2=00000000 
A6=00000000 
SR=OOOO 

D1=00000002 D2=00000000 
D5=00000000 D6=00000000 
A1=00000000 A2=00000000 
A5=00000000 A6=00000000 
USP=OOOOOOOO SR=OOOO 

DBRA D1,70CH 

D1=00000001 
D5=00000000 
A1=OOOOOOOO 
A5=OOOOOOOO 
USP=OOOOOOOO 

D2=00000000 
D6=OOOOOOOO 
A2=OOOOOOOO 
A6=OOOOOOOO 
SR=OOOO 

D3=OOOOOOOO 
D7=OOOOOOOO 
A3=00000000 

. D3=00000000 
D7=00000000 
A3=OOOOOOOO 

D3=OOOOOOOO 
D7=00000000 
A3=OOOOOOOO 

D3=00000000 
D7=00000000 
A3=00000000 

D3=00000000 
D7=00000000 
A3=00000000 

D3=OOOOOOOO 
D7=OOOOOOOO 
A3=OOOOOOOO 

7L-91 



68000' Oemo -- Monitor Program 

OEMO+00070E 
UP:00070E 51C9 

PC=00070C 
OO=OOOOOOOA 
04=00000000 
AO=00000504 
A4=00000000 
SSP=OOOOOOOO 

OEMO+000712 

OBRA 01,70CH 

01=00000000 
05=00000000 
A1=00000000 
A5=00000000 
USP=OOOOOOOO 

68000 Emulator Specifics Users 

02=00000000 
06=00000000 
A2=00000000 
A6= 000 00000 
SR=OOOO 

03=00000000 
07=00000000 
A3=00000000 

UP:000712 13CO MOVE.B 00,F00007H 
PC=000718 
OO=OOOOOOOF 01=0000FFFF 
04=00000000 05=00000000 
AO=00000505 A1=00000000 
A4=00000000 A5=00000000 
SSP=OOOOOOOO USP=OOOOOOOO 

<BREAK TRACE, SVC) 

02=00000000 
06=00000000 
A2=OOOOOOOO 
A6=OOOOOOOO 
SR=OOOO 

03=00000000 
07=00000000 
A3=OOOOOOOO 

As with the TRA ALL display, observe that register 01 (the pass counter) is 
decremented; register AO (the table pointer) is incremented; and 00 stores 
the sum of the numbers from the table. With the TRA JMP selection in 
effect, the instructions within the loop are not displayed. 

Set a Breakpoint after a Specific Instruction. Now that you've seen how the 
program adds the numbers together, here's a new task: add only the third 
and fourth numbers from the table. To perform this task, you want the pass 
counter to contain 1, and the table pointer to contain 502 (the address of 
the third number in the table). You can accomplish these changes without 
altering the object code in memory. First, stop program execution after the 
pass counter and the table pointer have been set. Next, while the program 
is stopped, enter new values for the pass counter and table pointer. When 
execution resumes, the program will treat the new values as if they were the 
original programmed values. 

Enter the following command line to trace all of the instructions as the 
program executes: 

) tra all <CR) 

Check the status of the trace with the following command line: 

) tra <CR) 
TRACE ALL,OEMO+OOOOOO,FFFFFF 

The TRA ALL command just entered makes the previous trace selections 
obsolete. 

Now, set a breakpoint so that the program stops after the table pointer and 
pass counter have been set. The next command causes the program to stop 
after the address of the MOVE.W instruction (706) has been seen on the bus. 
This happens first when the address is prefetched. You may have to use the 
G command several times to actually execute the instruction where the 
breakpoint has been set. Be sure to check the last disassembled instruction 
line to see which instruction was last executed. 

7L-92 



68000 Emulator Specifics Users 68000 Oemo -- Monitor Program 

> bk 706 <CR> 
= ----

I 
I 

+-- breakpoint address 

+----- breakpoint number 
(can be 1, 2, or 3) 

Check the breakpoint setting with the BK command: 

> bk <CR> 
BK--1 OEMO+000706 
BK 2 CLR 
BK 3 CLR 

Use the G command to start program execution: 

> g start <CR> 

START 
UP:000700 207C MOVE.L #500H,AO 

PC=000706 
OO=OOOOOOOF 01=0000FFFF 
04=00000000 05=00000000 
AO=00000500 A1=00000000 
A4=00000000 A5=00000000 
sSP=OOOOOOOO USP=OOOOOOOO 

<BREAK TRACE, BKPT1> 

02=00000000 
06=00000000 
A2=00000000 
A6=00000000 
SR=OOOO 

03=00000000 
07=00000000 
A3=00000000 

All instructions up to and including the instruction last executed are 
displayed. The break occurred when the emulator detected the breakpoint 
address going into the 68000 prefetch pipeline. However, by eXamining the 
trace, you can see that the instruction on which you want to break has not 
yet executed. So, enter the G command again. 

> ~ <CR> 

OEMO+000706 
UP:000706 323C MOVE.W #4H,01 

PC=00070A 
OO=OOOOOOOF 01=00000004 
04=00000000 05=00000000 
AO=00000500 A1=00000000 
A4=00000000 A5=00000000 
SSP=OOOOOOOO USP=OOOOOOOO 

<BREAK TRACE, BKPT1> 

02=00000000 
06=00000000 
A2=00000000 
A6=00000000 
SR=OOOO 

03=00000000 
07=00000000 
A3=OOOOOOOO 

This time, the trace shows that the MOVE.W instruction was executed. The 
number of times you must enter the G command before the instruction at the 
breakpoint address is executed depends on the number of words in the 
instructions and the TRA mode settings. 

7L-93 



68000 Demo -- Monitor Program 68000 Emulator Specifics Users 

Set New Values in Pass Counter and Table Pointer; Check Results. Now that 
you've reached the breakpoint, you can change the contents of the registers 
while execution is stopped. The break display shows that register D1 (the 
pass counter) contains 4, and register AO (the table pointer) contains the 
address 500. Use the S (Set) command to set the number of passes to two and 
set the table pointer to 502: 

) s d1=1 aO=502 <CR) 

The S command does not produce a display, but you can use the DS (Display 
Status) command to check the values in the registers you changed. DS 
displays the contents of each emulator and status register. Check the 
result of the previous S command with the following command line: 

) ds <CR) 
PC=00070A 
DO=OOOOOOOF 
D4=00000000 
AO=00000502 
A4=00000000 

D1=00000001 D2=00000000 D3=00000000 
D5=00000000 06=00000000 D7=00000000 
Al=OOFOOOOO A2=00000000 A3=00000000 
A5=00000000 A6=00000000 SSP=OOOOOOOO USP=OOOOOOOO 

T .S •• 111 ••• X NZVC 
SR=OOOO ---) 0.0 •• 000 ••• 0 0000 

The DS display shows that the pass counter and table pointer now contain the 
new values. 

Resume Program Execution. If you enter the G 
program execution starts where it left off. 
the breakpoint with the following command: 

command with no parameters, 
Resume program execution after 

) .8. <CR) 
DEMO+00070A 
UP:00070A 4280 

7L-94 

LOOP 

PC=00070C 
DO=OOOOOOOO 
D4=00000000 
AO=00000502 
A4=00000000 
SSP=OOOOOOOO 

UP:00070C D018 
PC=00070E 
DO=00000003 
D4=00000000 
AO=00000503 
A4=00000000 
SSP=OOOOOOOO 

CLR.L DO 

D1=00000001 
D5=00000000 
A1=00000000 
A5=00000000 
USP=OOOOOOOO 

D2=00000000 
D6=00000000 
A2=00000000 
A6=00000000 
SR=0004 

ADD.B (AO)+,DO 

Dl=OOOOOOOl 
D5=00000000 
Al=OOOOOOOO 
A5=00000000 
USP=OOOOOOOO 

D2=00000000 
D6=00000000 
A2=00000000 
A6= 000 00000 
SR=OOOO 

D3=00000000 
D7=00000000 
A3=00000000 

D3=00000000 
D7=00000000 
A3=00000000 

@ 



68000 Emulator Specifics Users OljUUU uemo -- '"lUIl.L I"UI C 1 VOl CUll 

OEMO+00070E 
UP:00070E 51C9 OBRA 01,70CH 

PC=00070C 
00=00000003 01=00000000 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00OO0503 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

LOOP 
UP:00070C 0018 AOO.B (AO)+,OO 

PC=00070E 
00=00000007 01=00000000 02=00000000 03=00000000 
04=00000000 05=00000000 06= 00000000 07=00000000 
AO=00000504 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+00070E 
UP:00070E 51C9 OBRA 01,70CH 

PC=000712 
00=00000007 01=0000FFFF 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000504 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

OEMO+000712 
UP:000712 13CO MOVE.B 00,FOOO07H 

PC=000718 
00=00000007 01=0000FFFF 02=00000000 03=00000000 
04=00000000 05=00000000 06=00000000 07=00000000 
AO=00000504 A1=00000000 A2=00000000 A3=00000000 
A4=00000000 A5=00000000 A6=00000000 
SSP=OOOOOOOO USP=OOOOOOOO SR=OOOO 

<BREAK TRACE, SVC> 

Notice that the program performed two passes through the loop, and that the 
.program added the third and fourth numbers in the table: 3+4=7. 

7L-95 



o~uuu Vemo -- Monitor Program 68000 Emulator Specifi cs Users 

SUMMARY OF 68000 EMULATOR DEMONSTRATION RUN 

You have assembled, loaded, executed, and monitored the demonstration run 
program. You have used the following commands: 

• SEL-~-selects the 68000 emulator 

• ASM---creates object code from an assembly language program 

• LINK---links object code into a load module 

• AL---allocates memory when the MAC option is used 

• F---fills an area of memory with a specified value 

• D---displays memory contents in ASCII and hexadecimal format 

• LO---Ioads object code into memory 

• SYMLO---Ioads program symbols for use in symbolic debug 

• DI---disassembles memory contents into assembly language mnemonics 

• P---patches a string of bytes into memory 

• G---begins or resumes program execution 

• TRA---selects instructions to be traced during program execution 

• BK---sets a breakpoint 

• S---modifies emulator registers 

• DS---displays emulator registers 

Delete the Demonstration Run Files 

Now that you've finished the demonstration run, you can delete the source, 
object, listing, and load files. If you're using an 8550, the source and 
load files are still available to you on the 68000 emulator installation 
disk. If you're using an 8560, remember that once you delete the source 
file (asm), there is no way of recovering it. 

,Delete 8550 Files. If your files are on the 8550, use the following 
procedure to delete them. First use the USER command to move from the DEMO 
directory back into the directory you were in at the start of the 
demonstration. Recall that you marked that directory with the brief name 
IROOT. 

) USER IROOT <CR) 

7L-96 



68000 Emulator Specifics Users 68000 Demo -- Summary 

Now enter the following command to delete the DEMO directory and the files 
it contains: 

) DEL DEMOI* DEMO <CR) 
Delete ASM ? Y <CR) 
Delete LOAD ? Y <CR) 
Delete OBJ ? Y <CR) 
Delete ASML ? Y <CR) 
Delete DEMO ? Y <CR) 

Before deleting each file, DOS/50 asks you whether you really want to delete 
it. You type "Y" for yes. 

Delete 8560 Files. If your files are on the 8560, use the following 
procedure to delete them. Enter the following command to remove all files 
in the working directory, including the source file: 

$ rm * <CR) 

Now move from the demo directory back into the parent directory and remove 
the demo directory itself: 

$ cd •• <CR) 
$ rmdir demo <CR) 

Turn Off Your System 

For instructions on turning off your 8540 or 8550, refer to the Learning 
Guide of your System Users Manual. 

7L-97 



Error Messages 68000 Emulator Specifics Users 

ERROR MESSAGES 

The following error messages are specific to the 68000 emulator and to the 
Memory Allocation Controller (MAC) board. 

3E--- Invalid memory space designator. A memory space designator, such as 
SC:, has been incorrectly entered. 

3F--- Illegal use of don't-care expression. A don't-care expression has been 
used ~here a unique value is required. 

40--- Memory space designator illegal in expr. A memory space designator has 
been used in a parameter that does not allow memory space designators. 
For example, in a pair of parameters that represent an address range, 
only the first may contain a memory space designator. 

42--- Invalid use of multiple memory spaces. Multiple memory spaces can only 
be used with the commands listed under MEMSP in the Command 
Dictionary. 

74--- Program memory jumpered incorrectly. 
SELect command cannot set up the MAC 
memory has been strapped so that 
location. 

Using the 68000 or Z8001, the 
board properly since program 
addresses do not have a unique 

88--- Signals cannot occur simultaneously. Using either the TTA; or a 
Z8001/Z8002, 8086, or 68000 emulator, an attempt has been made to set 
an event or breakpoint on bus signals that are mutually exclusive 
(such as a read and awri te on the same line). 

8F--- User memory declared non-existent. An attempt has been made to access 
memory which was declared nonexistent with the NOMEM command. Check 
memory declarations with the MEM and NOMEM commands. If the problem 
persists after checking your program, check your MAC board. 

90--- Invalid arming mode. The -A arming modifier of the BK command needs 
two programmed breakpoints, but only one is currently programmed. 
This error occurs only when using an emulator such as the Z8001/Z8002, 
8086, or 68000. 

E1--- Emulator double fault or odd stack pointer. On the 68000, the emulator 
has halted during a user job. Possible causes are a double address or 
bus error, or an odd system stack pointer. Reset the registers and 
check the program and prototype. 

E2--- Processor registers changed. Following a 
emulator had to reset the PC, SSP, and SR 
registers were saved. 

68000 processor halt, the 
registers before all the 

E6--- No MAC board in system. No Memory Allocation Controller board has been 
installed. 

E7--- System error on MAC board. Unknown system error. Reboot and reselect. 
If the problem persists, contact your Tektronix service 
representative. 

7L-98 



68000 Emulator Specifics Users 

REPRINTS 

The articles reprinted on the following pages contain detailed information 
about the operation of the 68000 microprocessor. Familiarity with this 
information will help your understanding of the 68000 emulator. 

The three articles are: 

• "Microprogrammed Implementation of a Single Chip Microprocessor," 
by Skip Stritter and Nick Tredennick, 

• "Design and Implementation of System Features of the MC68000," by 
John Zolnowsky and Nick Tredennick, and 

• "Instruction Prefetch on the MC68000," by John Zolnowsky. 

Further reading can be found in the booklet, MC68000 Article Reprints, by 
Motorola. 

@ 7L-99 



Reprints 68000 Emulator Speoifi os Users 

7L-100 @ 



68000 Emulator Specifics Users Reprints 
----------------------------------------------------------------------------

MICROPROGJWt.1ED IMPLEMENfATION OF A SINGLE OUP MICROPROCESSOR 

Skip Stritter 
Nick Tredennick 

Motorola Semiconductor Group 
Austin, Texas 

This paper considers microprogramming as a 
tool for implementing large scale integration, 
single-chip microprocess~rs. Design trade-offs 
for microprogrammed control are discussed in the 
context of semiconductor design constraints which 
limit the size, speed, complexity and pin-out of 
circuits. Aspects of the control unit of a new 
generation microprocessor, which has a two level 
microprogrammed structure, are presented. 

Introduction 

The field of single-chip, large scale 
integration (LSI) microprocessors is advancing 
at an incredible rate. Progress in the underlying 
semiconductor technology, MOS, is driving the 
advance. Every two years, circuit densities are 
improving by a factor of two, circuit speeds are 
increasing by a factor of two, and at the same 
time speed-power products are decreasing by a 
factor of four. Finally, yield enhancement 
techniques are driving down production costs and 
hence product prices, thereby increasing demand 
and opening up new applications and markets. 

One effect of this progress in semiconductor 
technology is advances in LSI microprocessors. 
The latest generation, currently being introduced 
by several companies, is an order of magnitude 
more powerful than the previous generation, the 
8-bit microprocessors of three or four years ago. 
The new microprocessors have 16-bit data paths· 
and arithmetic capability. They directly address 
multiple-megabyte memories. In terms of func­
tional capability and speed they will out-perform 
all but the high end models of current 16-bit 
minicomputers. 

As LSI microprocessor technology matures it 
becomes feasible to apply traditional implemen­
tation techniques, that have been proven in large 
computers, to the design of microcomputers. LSI 
microprocessor design is now at the stage where 
better implementation techniques are required in 
order to control complexity and meet tight design 
schedules. One such technique, microprogramming, 
is the subject of this paper. Most of the 
traditionally claimed benefits of microprogram­
ming, e.g. regularity (to decrease complexity), 

flexibility lto ease design changes) and reduced 
design cost, apply to the implementation problems 
facing today's LSI microprocessor designer. 

This paper describes the control structure 
of one of the new generation, single-chip micro­
processors, the MC68000 processor from Motorola, 
with special attention to the constraints which 
LSI technology imposes on processor implementa­
tion. There are four such constraints: circuit 
size, circuit speed, interconnection complexity 
and package pin count. The implications of 
these constraints on the structure of a micro­
processor control unit and its microcode are 
explored. 

LSI Semiconductor Technology 

Though progressing quickly, LSI technology 
still imposes strict constraints on the micro­
processor designer. 

Circuit Size and Density 

There is a fairly constant bound on the size 
of LSI chip that can be economically produced. 
Even though circuit densities are improving, at 
any given time there is a limit on the number 
of gates that can be put on a chip. The 
major constraint on an LSI designer is to fit 
his design into a fixed maximum number of gates. 

Circuit Speed 

As with circuit density, the LSI designer 
has a fixed maximum circuit speed with which to 
work. Speed is limited primarily by the power 
dissipation limits of the semiconductor package. 
The problem is compounded by the fact that the 
processor technology and main memory technology 
in microprocessor applications are the same. The 
speed gap between ECL logic and core memory 
enjoyed by the large computer designer is not 
available to single-chip microprocessor designers. 

Interconnect Complexity 

Internal interconnections on an LSI circuit 
often take as much chip area as the gates they 
connect. Furthermore, the designer does not have 
the option of running jumper wires across his 

© 1978 IEEE. Reprinted. with permission. from Proceedings of the 11th Microprogramming Workshop. Nov. 19-22. 1978/Pacific Grove. Calif. 

@ 1L-101 



Reprints 

circuit when he runs out of surface area. In 
some cases, it is cheaper to duplicat~ functions 
on various sections of the chip than to provide 
connection to a single centralized function. 
. Another implication of the interconnect problem 
is that regular structures, such as ROM arrays, 
can be packed much more tightly than random 
logic. 

Pin-Out 

Semiconductor packaging technology limits 
the number of connections an LSI chip may have 
to the outside world. Common packages today 
have 24 or 40 pins; 48 and 64 pin packages are 
considered large. The pin-out limitation can 
be overcome by time multiplexing pin use, but 
the resulting slowdo~n is usually not accepta­
ble. 

Another constraint on LSI designers, not 
inherent in the technology, is the intensely 
competitive climate of the semiconductor indus­
try. During the development of any new product 
it is likely that other companies are working on 
comparable products. Furthermore, the first 
product available, of a given type, usually gets 
the largest share of the market. This situation 
places LSI designers under tight schedules. Any 
techniques for reducing product design times can 
affect product success. 

Control Unit Design Tradeoffs 

Combinatorial Logic versus Microprogramming 

Although previous LSI microprocessor imple­
mentations at MOtorola have not been micro­
programmed, a microprogrammed implementation for 
MC68000 was considered early in the project. 
The benefits of microprogramming were convincing 
enough that once the feasibility of a microcoded 
implementation was established, the alternative 
of combinatorial logic implementation was not 
seriously considered. This is in spite of the 
fact that the implementers' proven expertise was 
in combinatorial implementations and they had no 
experience with microprogramming. 

Besides several non-technical reasons for 
microprogramming (very tight design schedule, 
limited staff, etc.) there are compelling 
technical advantages to microprogramming, 
especially regularity and flexibility. 

The design time constraint appears to be 
eased by microcoding. The regular structure of 
control store, in contrast with arbitrary control 
logic, decreases the complexity of the control 
unit. This in turn decreases the design time. 
A more complex controller can be implemented at 
a given design cost. Regularity of the structure 
simplifies the layout of the chip. Considerable 
time savings (possibly months) can be realized 
in the layout step and errors are less likely. 
~croprogramming allows the processor architects 
to delay binding some decisions. Once the basic 
control structure is determined, the circuit 
designers can go to work, even though the actual 

7L-102 

68000 Emulator Specifics Users 

microcode may not be written. This reduces the 
inherent sequentiality of the design process by 
allowing more overlap of the design efforts of 
microcoders and circuit designers, and therefore 
shortens design time . 

The-regular structure of control store in 
a microcoded implementation has several other 
benefits. The regularity decreases the inter­
connection complexity and therefore the size 
of the control circuitry. In other words, an 
array of read only memory cells may take less 
chip area than the equivalent combinatorial 
logic. Also, the regularity of structure 
facilitates detailed simulation and testing. 

The MC68000 processor is designed to be 
enhanced with new instructions in future 
versions. Microprogramming makes it more 
likely that such expansion will not involve 
a major redesign of the chip. The flexibility 
of microprogramming can also ease the problems 
of design changes and correction of design 
errors. Some such changes can be made merely 
by changing the control store contents with no 
redesign of the logical circuitry. 

Besides regularity and flexibility, 
microprogramming provides another benefit. 
The clocking functions in microprogrammed 
control are much cleaner than those randomly 
distributed throughout a combinatorial maze' 
with its associated delay, distribution and 
regeneration requirements. For instance, 
accurate delay elements are difficult to con­
struct on an integrated circuit, which causes 
increased tolerances in control signals and 
slower clocks for combinatorial circuits. 

On-Chip versus Off-Chip Control Store 

Given the size constraint for LSI chips it 
would be very attractive to consider off-chip 
control store for a microprogrammed LSI processor 
Other constraints make this impractical, however. 
The pin-out limitation severely limits the width 
of the control word from off-chip control store. 
This implies that the control unit microcode must 
be vertical. This in turn limits the overall 
speed of the processor since many micro cycles 
are required in vertical microcode to implement 
a single macro instruction. The technology speed 
constraint does not allow brute force solution 
to this problem by speeding up the internal cycle 
time. Time multiplexing pins to sequentially 
access horizontal micro instructions would also 
slow down the processor. 

The LSI-II from Digital Equipment Corpora­
tion uses off-chip control store. The result 
is a fairly narrow (22 bits) micro instruction. 
This structure causes a fundamental limitation 
to the potential speed of the LSI-II, as dis-

cussed by Snow and Siewiorek. 7 Because of the 
above considerations an on-chip control store 
implementation is preferable. 



68000 Emulator Specifics Users 
----------------------------------------------------------------------------

Horizontal versus Vertical ~crocode 

The decision to use horizontal or vertical 
ndcrocode involves conflicting sets of con­
straints. Horizontal microcode is indicated 
for several reasons. Vertical microcode is 
highly encoded and requires a significant 
amount of combinatorial logic to decode the 
micro instructions. Horizontal microcode 
provides fully decoded (or nearly so) fields 
which can directly drive the execution unit with 
little intervening logic. Vertical microcode 
also typically requires more micro cycles to 
emulate a given macro instruction. Because of 
the LSI technology circuit speed constraint 
these extra micro cycles cannot be hidden in 
each macro cycle by speeding up the internal 
circuitry. Thus both the interconnect constraint 
(elimination of random logic) and the speed con­
straint argue for horizontal microcode. 

On the other hand, vertical microcode has 
advantages, the major one being reduction of the 
size of the control store. Horizontal micro 
instructions tend to be very wide and are often 
duplicated several times in control store. 

One solution is to use a two level control 
store, or hybrid vertical/horizontal structure. 
This is similar to the two level control proposed 
by Grasselli. 3,6 In the two level control struc­
ture each macro instruction is emulated by a 
sequence of micro instructions. The micro 
instructions are narrow, consisting primarily 
of pointers to nano instructions. CMicro 
instructions also contain information about 
branching in the micro sequence.) The nano 
instructions are wide, providing fairly direct, 
decoded control of the execution unit. Nano 
instructions can be placed randomly in the nano 
store since no sequential accesses to nano 
instructions are required. Also only one copy 
of each unique nano instruction need be stored, 
no matter how many times it is referred to by 
micro instructions. 

The Appendix contains an analytic treatment 
of two level control. A derivation of the 
potential savings in control store space, with 
examples, is given. 

An extension of the two level concept is 
made in the Nanodata ~-1. 5,6 In that machine a 
micro instruction can specify a sequence of nano 
instructions. This approach was not taken in the 
t.C68000 for two reasons. First, the initial 
microprograms showed that micro sequences tend 
to be very short (one, two, or three micro 
instructions), so sequential nano instructions 
camot be used to advantage. Secondly, unless 
some facility for nano branches is implemented 
mul tiple copies of sane nano instructions must be 
kept in nano store. 

The M:68000 Control Unit Implementation 

Actual implementation of the general struc­
ture derived above involves many other design 
problems. The remaining sections of the paper 
discuss the actual implementation chosen and the 
design considerations involved. Major problems 
to be solved were minimization of the size of 
control store, speed-up of the control unit, and 
reduction of interconnect between the control and 
execution units. Control store size was minimized 
by providing a suitable micro instruction branch­
ing capability to facilitate sharing subsequences. 
The control unit speed requirements made micro 
instruction prefetch necessary so that each nano 
store access and the subsequent micro store access 
are overlapped as much as possible. 2 Execution 
Unit interconnect is minimized by placing the 
nano store directly above the Execution Unit 
(with space for some decoding). Fields in the 
nano store are allocated such that control store 
output lines are close to the corresponding 
Execution Unit control points. 

The M:68000 control unit supports an instruc­
tion set ~ch consists of general single and 
dual operand instructions involving byte, word 
(16 bits), or double word operands. Operations 
are generally memory-to-register, register-to­
memory, or register-to-register with some notable 
excep.tions such as the general memory-to-memory 
move. In addition to standard instructions such 
as add, compare, and shift; the MC68000 processor 
is designed to support such instructions as load 
and store multiple registers, pack (ASCII), 
mul tiply and divide, and various foms of bit 
manipulation. ., 

The MC68000 processor provides eight 32-bit 
address manipulation registers and eight 32-bit 
data manipulation registers. Address registers 
allow 16- and 32-bit operations and data registers 
allow 8-, 16-, and 32-bit operations. All address 
and data registers are accessible to the pro­
grmmner. In addition, there is a program cotmter 
with limited user accessibility and there are 
several registers not available to the user 
which are used for temporary storage during 
instruction execution. 

The register file is divided into three 
sections as shown in Fig. 1. Two buses connect 
all of the words in the register file. The 
register file sections are either isolated or 
concatenated using the bi-directional bus 
switches. This permits general register trans­
fer operations across register sections. A 
limited arithmetic lDlit is located in each 
segment containing address register words and 
a general capability arithmetic and logical 
lDlit is located in the data low word section. 
This allows address and data calculations to 
occur s:iJll1l taneous 1 y. For example, it is 
possible to do a register-to-register word 
addition concurrently with a program cOlDlter 
increment (the program C01.D'lter is colocated 

7L-103 



Reprints 

with the address register words and carry out 
from the arithmetic unit low is provided as 
carry in to the arithmetic unit high). 
Special functional units for bit manipulation, 
packing and unpacking data are located in the 
data section. 

Two factors combined to suggest the desir­
ability of the configuration shown in Figure 1. 
The first was a very dense two-port static RAM 
cell which conveniently supported a two-bus 
structure. The second was the l6-bit data width 
which made l6-bit segmentation of the registers 
desirable. 

In addition to the configuration of the 
Execution Unit, other factors contributed to the 
design of the control unit. The instruction 
set was specified and considered frozen. The 
first version assumed that op codes and instruc­
tion formats would remain static as defined, 
though holes were left in the original op code 
space to allow planned orderly expansion of the 
available instruction set. 

Restriction to fixed instruction formats 
has several important consequences: 

1. Certain fields, such as register 
designators, can be extracted 
directly from known positions in 
the instruction. This tends to 
reduce control store size and sim­
plify instruction decoding. 

2. Register selection and ALU functions 
tend to remain unchanged for the dura­
tion of a single instruction execu­
tion. These register designators and 
ALU functiQps can be extracted from the 
instruction (decoded, if necessary) and 
routed directly to the execution unit, 
bypassing the control store. 

3. The control store need only contain 
information about when a register is 
read or written or when the ALU should 
operate. 

Taking advantage of these observations can lead 
to simplification of the control and reduction 
of the required micro control store size. 

68000 Emulator Specifics Users 

A simplified block diagram of the K:68000 
control structure, shown in Figure 2, illustrate 
an application of the above observations to the 
controller design. The basic idea is to extract 
from the macro instruction word all information 
which is macro instruction static; that is, 
information which does not depend on timing 
during the instruction execution for its use­
fulness. Signals which are not timing dependent 
bypass the control store and act directly on the 
Execution Uni t • 

In a typical microcontrol implementation, 
the Instruction Decode provides a starting 
address to the Control Store. The Control Store 
generates a sequence of control signals, for the 
Execution Unit, and its own next state informa­
tion. Branching is accomplished using feedback 
from the Execution Unit to alter the next state 
information into the Control Store. At the end 
of execution of the macro instruction, the Con­
trol Store causes loading of the next macro 
instruction into the Instruction Register and 
transfers next state control to the Instruction 
Decode uni t. 

Traditional implementation of the MC68000 
control section using a single Control Store 
with internal state sequencing information was 
investigated. It was fmmd to be impractical 
because the control store was too large for a 
single chip implementation. Methods for reduc­
tion of the total control store area required 
were considered. It was determined that 
necessary control store area could be sub­
stantially reduced through the use of a two­
level control store structure. The structure 
selected for the MC68000 control unit is shown 
in Figure 3. 

In a two-level structure, the first level 
(micro control store) contains sequences of 
control word addresses for the lower level 
(nano control store). Dynamic operation is 
illustrated in Figure 4 (bus activity for an 
indexed address, register to memory add). 
The Instruction Decode provides the starting 
address for a single macro instruction routine. 
The micro control store provides a sequence of 
addresses into the nano control store. The 
nano control store contains an arbitrarily 
ordered set of unduplicated machine state con-

ARIlH­
METIC 
UNIT 
HIGi 

ARIlH- ADDRESS REGIS DATA REGIS 
LOW WORD 
(16 BITS) 

METIC LOW \\URD 
UNIT (16 BITS) 
IJJW 

DATA BUS LOW 

FIGURE 1. 1«:68000 EXEMIOK tNIT GENERAL CONFIGJRATION 

7L-104 



68000 Emulator Specifics Users 

trol words. The practicality of this structure 
for space reduction rests on two mutually 
dependent assumptions. 

I NSTRUCf ION 
REGISTER 

INSTRUCfION CONI'ROL 

DECODE STORE 

I ! ALU RJNCTION & U TIMING & SWITDi 
REGISTER SELECfION CONTROL SIGNALS 

EXECtJTION UNIT 

FIGURE 2. SIMPLIFIED BLOCK DIAGRAM OF TIlE 

M:68000 CO~'TROL STRUCI'URE 

INSTRUC­
TION 

REGISTER 

REGISTER 
& RJNCTION 

INSTRUCTION 

DECODE 

Reprints 

First, the number of different control 
states actually implemented is a small fraction 
of the number of possible control states. For 
example, a reasonably horizontal control word 
for the MC68000 Execution Unit contains about 
70 bits, implying a possible 270 different 
control words. MOst of the possible control 
states are not meaningful for macro instruc­
tion execution. The implementation of the 
complete set of macro instruction sequences 
for the MC68000 processor requires only about 
200 to 300 « 29) unique nano words. This set 
of nano words is a very small fraction of the 
set of possible states. Nano words are uniquely 
specified by no more than nine bits of address. 
As a result, words in the micro control store 
address sequences need only allocate nine bits 
for each nano control store address. 

Second, there must be some redundant use 
of the necessary control words to realize a 
reduction in control store area. If there were 
a one-to-one correspondence between nano control 
store addresses in the micro control store and 
control words in the nano control store, then the 
nano address in the micro instruction could be 
replaced by the contents of the addressed nano 
instruction and the address bits eliminated. If, 
however, there are more addresses in the instruc­
tion sequences than there are unique control 
words, a reduction in total control store size 
may be possible. (For a heuristic derivation of 
these dependencies and possible advantages, see 
the appendix.) In the MC68000 control unit, for 

ADDRESS .... 

BRANDi SELECTION 

~ncRO CONfROL 

STORE 

ESTIMATED SIZE 

640 x 10 

J 
ADDRESS 

, 'I SELECfION , ~ 
\J CONDITIONALS V 

CONTROL 

EXECUTION UNIT 
.... 

FIGURE 3. K:68000 CONfROL STRUC11JRE 

NAND CO~1'fROL 

ESTIMA.TED SIZE 

280 x 70 

7L-105 



Heprints 68000 Emulator Specifics Users 
----------------------------------------------------------------------------

example, each different control word is used an 
average of between two and three times. There 
are about 650 nano addresses in a complete 
implementation of mdcro control store address 
sequences for the instruction set; yet there are 
only about 280 different control words used. A 
single level implementation would have required 
about 4SK control store bits, while the two level 
structure uses only a little more than half as 
much. 

Another parameter which can have a signifi­
cant effect on control store size is the extent 
to which the control word is encoded. In a two 
level control structure, each control word in 
the nano control store is uniquely represented 
by an address in the micro control store. The 
address in the micro control store could be 
considered to be a maximal encoding of the 
control word because there is a one-to-one 
correspondence between unique control words and 
unique addresses in the micro contro~ store 
address sequences. (The nano control store could 
be viewed as merely an orderly method for trans­
lating maximally encoded state information to a 
significantly more horizontal format.) At the 
other extreme, one bit could be allocated in the 
control word for each switch, or control point, 
that must be driven in the Execution Unit. If 
the control word is encoded, the decoding logic 
necessary between the control store output and 
the Execution Unit must be considered with 
respect to both timing and space constraints. 

In the MC68000 control unit, bits in the nano 
control store are assigned generally on a func­
tional basis with individual subfields assigned to 

INSTRUCTION 

INSTRUC- DECODE 
TION 

specific control subfunctions. For example, 
separate short control fields are assigned to 
program counter control and arithmetic and logic 
unit output control. 

Within a specific subfield the control bits 
are encoded into the minimum bits necessary to 
provide the required subfunction states subject 
to the constraint that the decode to individual 
control lines involve no more than approximately 
two logic levels. Some space is necessary 
between the nano control store output and the 
Execution Unit control points for alignment 
of the control store outputs with their respec­
tive control points and to combine certain 
timing information with appropriate control 
point variables. Within this space it is 
possible to provide minimal decoding at very 
little cost in additional area while the signal 
encoding in the nano control store saves 
considerable nano word width and, hence, 
total storage space required. In the MC68000 
control unit the nano word width is approxi­
mately 70 bits, while the Execution Unit con­
tains about 180 control points. 

The decision to implement the MC68000 
control unit using a two level storage struc­
ture was based on mdnimizing control store 
area. Although necessary control store area 
was significantly reduced, introduction of the 
two level concept created several problems. 

One problem with a two level control store 
is that access to a memory is not instantaneous 
and in a two level structure the accesses must 
be sequential. The alternative, combinatorial 

~ MICRO 
A CONTROL i---

---L STORE 

--L 
---L --------
~ REGISTER 

E 
"--

....-- SEQUENCE MODIFICATION 

j i 
REGISTER 
DESIGNATION 

NAM) CONfROL 
STORE 

I...-..-., REGISTER I AI addressing I 
SELECT 

OP com ALU I BI fetch I 
/ 

RJNCTION It' 

""" lEI store I 
EXECUTION UNIT 

I DI adds stor~ I 
I C ladd z fetch I 

FIGJRE 4. K:68000 CONfROL UNIT DYNAMIC OPERATION 

7L-106 @ 



68000 Emulator Specifics Users ."".t'& _ •• _-

----------------------------------------------------------------------------

decoding, does not proceed in zero time either, 
which partially compensates for the extra 
memory access. Further compensation for the 
extra access time requires complex control 
timing techniques such as instruction prefetch, 
access overlap, and multiple word accesses. 

Another problem associated with a two level 
structure is the delay associated with condition­
al branching. Viewed in a strictly sequential 
fashion, a condition set in the Execution Unit 
must affect the selected micro control store 
address sequence whic.h, in turn, affects the 
nano word selected. The nano word selected 
ultimately causes actions which can be dependent 
upon the value of the tested combination. 
Techniques used to minimize the sequential 
nature of this type of delay include physical 
organization of words within both control store 
levels and simultaneous access to more than a 
single control store word. For example, an 
access to a row of nano store (containing 
multiple nano words) can be initiated early 
in a cycle, with subsequent single-word 
selection based on conditional branch informa­
tion. Also, in many cases, probable outcome 
of a conditional branch favors one branch more 
than another. In such an instance, it may be 
possible or even desirable to prefetch instruc­
tion words associated with the most likely 
branch condition. The best example of the 
usefulness of this idea is its application to 
a decrement and branch-not-zero type instruc­
tion. Branching is heavily favored and a pre­
fetch at the destination location can greatly 
minimize execution delays associated with loop­
ing. 

If common micro instruction routines, 
such as the address calculation routines, are 
to be shared among several macro instructions, 
then mechanisms nrust be provided which facili­
tate ftmctional branches for both entering 
and leaving the cormnon routines. Care must 
be taken to avoid delays associated with func­
tional branches in a two level store, especially 
when the common routines are short (making it 
more difficult to overlap accesses to different 
routines in different control stores). 

The capability to perform direct branches 
in the micro control store allows various macro 
instruction sequences to share common ending 
routines. It also permits more flexibility in 
organi zing the micro routine sequences wi thin 
the control store address space. 

Branching mechanisms are mentioned here 
because they occur very cOJllllOn1y. In the 
MC68000 micro control store, the average micro 
instruction sequence encounters same type of 
branch at about one out of every two nano 
addresses. Implementation of efficient branch­
ing mechanisms is critical for providing fast 
execution times with a microprogranmed struc­
ture. The details of the branching mechanisms 
are, however, very specific to a particular 
implementation and are, therefore, not relevant 
beyond the general considerations already 
presented. 

Other Issues 

Minimization 

Special care has been taken during the 
microprogramming to detect duplicate nano 
instructions. Beyond that, in some cases it 
has been possible to rewrite micro sequences, 
delaying or anticipating some actions, so as to 
use previously created nano instructions. For 
instance, operands are moved into temporary 
registers early in instruction execution. This 
tends to make subsequent execution cycles more 
independent of operand sources and, hence, 
improves the chance for common nano instructions. 
Each unique nano instruction that can be eli.mi­
nated reduces nano store size. 

Micro store size is mdnimized by careful 
detection of subsequences of micro instructions; 
for instance, those for address calculations, or 
storing results. 

Simplicity of Structure 

Frieder and M[ller2 argue that simplicity 
of structure makes microprogranmdng easier. The 
MC68000 arithmetic and register unit (the 
Execution Unit) is quite simple: all resources 
(registers, temporaries and functional units) are 
tied to each of the two internal buses. This 
structure simplifies microprogramming, since all 
transfers of infonnation use the same mechanism. 

Generality of Structure 

Frieder and Miller2 also call for generality 
of structure. This is probably important for 
general purpose emulation. In the MC68000 pro­
cessor the architecture is known and fixed. 
Various non-general assumptions were made, for 
instance, about macro instruction decoding and 
the location of register fields in macro instruc­
tions. Because of the strict technology con­
straints, the control structure is optimized for 
emulation of a single architecture. 

User M[croprogramming 

Current technology requires that large 
on-chip control store be implemented in JO.f, 
which is uwch denser than alterable memory. 
Technology advances will certainly ease this 
requirement in the near fUture. Single-chip 
c:oq>Uters have already been built with small 
on-chip alterable memories. Clearly, custom 
microprograuming, user microprogranming and 
dynamically altered microprograms will be 
feasible on LSI microprocessors in the fUture. 

Sulmary 

MicroprograDJDing is a viable tool for 
implementation of LSI microprocessors. The 
current state of the art in semiconductor 
tecmology places certain constraints on the 
size, speed, intercomect cCII;>lexity and pin-out 

. of today's integrated circuits. These constraints 

7L-107 



Reprints 68000 Emulator Specifics Users 
----------------------------------------------------------------------------

affect the fonn of microprogramned control that 
can be used. The structure described here: two 
level, overlapped, hybrid vertical and horizontal 
microcontrol, implements a new generation micro­
processor within these constraints. 

Acknowledgements 

This paper and the MC68000 microprocessor 
would have been impossible without the creative 
guidance of T. Gunter, the administrative guidance 
of G. Daniels, and the inspirational guidance of 
C. Crook. 

References 

1. Do llho ff , T. L., ''The Negative Aspects of 
Microprogramning", Datamation (July, 1964), 
p. 64-66. 

2. Frieder, G. and J. M[ller, "An Analysis of 
Code Density for the Two Level Programmable 
Control of the Nanodata <14-1", Tenth Annual 
Workshop on Microprogramming (October, 1975) 
p. 26-32. 

3. Grasselli, A., ''The Design of Program­
~ifiable M[cro-PrograJll1led Control Units", 
IRE Transactions on Electronic Computers 
Ee-ll no. 6 (June, 1962). 

4. Rosin, R. F., ''Contenporary Concepts of 
Microprogrmmti.ng and Enulation", Computing 
Surveys 1 no. 4 (December, 1969) p. 197-212. 

5. Rosin, R. F., G. Frieder and R. Eckhouse, 
"An Enviromnent for Research in M[cro­
progranming and Enulation", CODIn. ACM 15 
no. 8 (August, 1972) p. 748-760. . 

6. Salisbury, A., M[creProgrammable Cmuter 
Archi tectures, Amerlcan ~lsevler , 6. 

7. Snow, E. A. and D. Siewiorek, "Inq>act of 
Implementation Design Tradeoffs on Perfor­
mance: The PDP-II, a Case Study", Dept. of 
EE and Canp. Sci., Carnegie-Mellon Uni versi ty 
(July, 1977). 

Appendix: 

Assume: 

Control store size reduction with a 
two-level control store. 

n • number of individually-controlled 
switches in an execution unit (width 
of the horizontal control word) 

k • total number of control states 
required to implement all instructions 

p • proportion of unique control states to 
total number of control states 

7L-108 

Single-Level Control Store 

In a simplified model of a single-level 
control store there are k micro instructions, 
each containing a control state (n bits) and 
a next micro instruction address (rlog2k1 bits) 
See Figure AI. 

Total size of single-level control store: 

SINGLE LEVEL 

CONTROL srORE 

n 

CONI'ROL BITS 

I 
k MICRO 

INSTRUCTION 

I 
•• og2 

NEXT MICRO INSTRUCTION 
ADDRESS 

FIQJRE AI. 1-DDEL OF A SINGLE 
LEVEL COmroL STORE 

MICROCONI'ROL 

STORE 

t 
k MICRO IKSTRUCTIONS 

1 

NANO INSTROCTIONS 

FIGURE A2. K>DEL OF A T\\U 
LEVEL CO~'TROL STORE 



68000 Emulator Specifics Users 

Two-Level Control Store 

A simplified model of a two-level control 
store has a micro control store of k micro 
instructions with a nano address (rlogzvlbits) 
and a next micro instruction address 
(rlogzkl bits). The nano control store has 
v (=pk) nano instructions, each containing a 
control state (n bits). 

Total size of two-level control store: 

where v = pk (3) 

Control Store Size Comparison 

Two-level store requires less control 
store bits than single control store when: 

using 
(1), (Z) and (3) gives: 

k(rlogzpkl+rlogzkl)+npk < k(n+rlogzkl) (4) 

Simplifying (4) gives: 

(5) 

Reprints 

Solving for n and k in (5) gives the result that 
two-level store is smaller than single-level 
control store if 

n > 

or 

[logzkl+rlogzp 1 
1-p 

k < 1 Zn(l-p) 
p 

Example 

(6) 

(7) 

In typical microprogrammed machines, n (the 
width of the horizontal control word) varies from 
ZO to 360. k varies from 50 to 4000. Typical 
values for p are not known. 

In the MC68000 microprocessor 

n ::: 70 

k ::: 650 

p ::: .4 

Sl = k (n+rlogzkl) 

= 5Z400 

S2 = k (f1ogzvl+r1ogzkl)+nv 

30550 

S2 = .58 
SI 

7L-109 



Reprints 68000 Emulator Specifics Users 
---------------------------------~------------------------------------------

John Zolnowsky and Nick Tredennick 

MOTOROLA Semiconductor 
Austin, Texas 

ABSTRACT 

The MC68000 combines state-of-the-art 
technology, advanced circuit design tech­
ni~ues, and computer science to achieve an 
architecturally advanced 16-bit micropro­
cessor. The processor is implemented by a 
microprogrammed control of an execution 
unit. The processor incorporates advanced 
system features, including multi-level 
vectored interrupts, privilege states. 
illegal instruction policing, and bus 
cycle abort. This paper discusses the 
implementation of the system features and 
the influence of the implementation method 
on the processor design. 

1. MC68000 Overview 

1. 1. Resources 

31 1615 e 7 0 , DO 
I I .01 , I 02 Eight , · 03 , : Data 
I 04 , • : 05 Registers , 
: · 06 

07 

31 1615 ~ , AD 
A1 · A2 Nine , , A3 Address/Stack , A4 Registers · A5 · A6 - - - - - Ii.::, ~la~r ~oTnie,- - - - - - - A7 

~ ____ ~~!~Il0!l'_::.!.a£.k_p~~'!r ______ ~A7' 

3' 0 

I I Program 
Counter 

15 e 7 D Status 
I !;&~~:,. ! W .. , I ,I' Register 

Figure 1 shows the register resources 
oft h e MC6S000 m i c r 0 pro c e s SOl'. Th e fir S t 
eight registers (DO-D7) are used as data 
registers for byte (S-bit), word (16-bit), 
and long (32-bit) data operations. The 
second set of nine registers (AO-A7, A7') 

are used as address registers, supporting 
both software stack operations and base 
addressing. There is a separate 32-bit 
program counter and a 16-bit status regis­
ter. 

Figure 2 shows the format of the 
status register. The trace control (T), 
supervi sor/user (S), ilnd I nterrup t Mas k 
(10-12) appear in the upper system byte. 
The condition codes appear in the lower 
user byte: extend (X), negative (N), zero 
(Z), overflow (V), and carry (C) 

Trace Mode 

SUperviSOry 

Interrupt 
Mask 

Extend 

Negallve 

Zero 

System Byte User Byte 
~~ 

1S 13 10 8 4 0 

IT~S~l21111Io~xINlzlvlcl 

~ 
----

} 

Overflow -----------------' 
Carry------------------' 

Figure 2: MC68000 status register format 

MC68000 memory is organized as 16-bit 
words, addressable to 8-bit bytes. All 
address computations are done to 32-bit 
resolution. but only the low order 24 bits 
are brought out due to pin count limita­
tions. 

1.2. Instructions 

The MC68000 supports five basic data 
types with six basic types of addressing 
and 56 instruction types. The supported 
data types are bits, BCD digits, bytes. 
words, and long words. The basic address 
types include register direct, register 
indirect, Absolute, immediate, program 
counter relative, and implied. The regis­
ter indirect addressing modes include the 

© 1979 IEEE. Reprinted. with permission. from Proceedings CompCon Fall 1979. 19th IEEE Computer Society Internal Conference. Sept. 4-7. 
1979lWashington. D.C. 

7L-110 @ 



68000 Emulator Specifics Users 

capability to do post-increm~nt# pr~-

decrement, displacem~nt# and indexed 
addressing. Instruction categories 
include data mov~ment, arithmetic op~ra­

tions (add, sub, multiply, divide), logi­
cal operations (and, or, exclusive-or, 
not), shift and rotate operations, bit 
manipulation instructions, program con­
trol. and system control instructions. 

1.3. Structure 

To convey an understanding of the 
relationshlp between system features as 
desired (originally specified) and as 
ultimately supported, it is n~cessary to 
first describe the philosophy of the con­
trol structure which will provide the 
background for implementation tradeoffs. 
The MC68000 uses a microprogrammed control 
unit which is tightly coupled to the exe­
cution unit and the bus interface. (The 
control structure and execution unit are 
described in greater detail elsewhere 
[2) Tight coupling permits full overlap 
of fetch, decode, and execute cycles. 
Overlap of these processing phases has 
impact on implementation of system 
features in the MC68000 

~ MIC~OI 1/ __ AOOA<55 ----CONTROL 'y--_________ _ 

STORE 
__ BRANCH SELECT ____ 

OTHER ---- ------
INFORMATION ADDRESS-

INSTRUCTION 
DECODE 

CONDITIONALS 

r:CONTAOC EXECUTION 

UNIT 

_____ --l 

Figure 3: Block diagram of 
the MC68000 control unit 

A basic block diagram of the two 
level control structure used by the 
MC68000 is shown in Figure 3. Th~ micro 
control store contains a set of routin~s. 
Each routine is a se~u~nce of micro orders 
which implem~nts a macro instruction or a 
portion of a macro instruction (such as an 
addressing mode). Th~ macro instruction 
register d~cod~ (Instruction O~cod~) pro­
vides a starting address to the micro con­
trol stor~ which subse~uently provides its 
own n~xt address~s for a se~uence of micro 
ord~rs which p~rforms operations re~uired 
by a particular macro instruction. Each 
micro word contains an addr~ss which is 
us~d to r~ference a word in the nano con­
trol store. The nano control store con­
tains the set of uni~ue control words 
which is re~uired to support the entire 

@ 

_.-1"------

instruction set. Words in th~ nano con­
trol store are field-encod~d such that 
with two to three levels of d~coding th~y 
will dir~ctly driv~ control points in the 
execution unit. To aid in r~ducing the 
size of th~ control unit th~ MC68000 
employs a residual control techni~ue (1). 

Information which r~mains static for the 
duration of a macro instruction is held in 
a register (not translated through the 
control stores) so that space in the con­
trol stores is reserved for information 
which changes from micro cycle to micro 
cyc Ie. 

F3 
02 
E1 

F4 
03 
E2 

F5 
04 
E3 

F6 
05 

E4 E4 E4 

F7 
06 
E5 

Figure 4: Simplified instruction 
~xecution se~uence 

A simplified view, as illustrated by 
figure 4, assumes that instructions exhi-
bit only fetch, decode, and execute 
cycles. The boundary between macro 
instructions is controlled by the execute 
cycle (which may re~uire several machine 
cycles to complete). The basic philosophy 
of the control structure is that fetch, 
decode, and execute cycles will be over­
lapped across every macro instruction 
boundary. This implies that the micro 
routine for each macro instruction must 
insure that: 

1) The next macro instruction word is 
accessed with sufficient time to be 
fully decoded b~ the end of the current 
macro instruction. 

~) The word following the next macro 
instruction is fetched by the end of 
the current macro instruction. 

Sub 
Add 
Cmp 

Fi g ure 5: Simp Ie se~uence 
of instructions. 

As an example, assume a simple 
se~uence of single word instructions as 
shown in Figure 5. It is the responsibil­
ity of the micro routin~ for the subtract 
instruction to ensure that the add 
instruction is pl&ced into IR with .uffi­
cient time to decode and that a fetch is 
made to the word 'allowing the add 
instruction. Even if the subtract 
instruction consists of multiple words 
<additional words might contain an immedi­
ate value. displacement, or an address) 
the above stated constraints .till apply. 
The micro routine. will make as man~ 
accesses to the instruction stream as 
there are word. in the definition of the 
a.sociated macro instruction. The 

7L-111 



Reprints 

accesses will. 
b4 two words 
overlap 

however, be skewed forward 
to provide the necessary 

2 System Features 

The MC68000 includes features beyond 
efficient instruction execution. It also 
has system features for easier program and 
memory management, and for handling of 
exceptional conditions. 

2.1. Privilege States 

The MC68000 processor operates in one 
of two states of privilege: the "user" 
state or the "supervisor" state. The 
privilege state determines which opera­
tions are legal. It is used to choose 
between the supervisor stack pointer and 
the user stack pointer in instruction 
references. 

When the processor starts a bus 
cycle, it classifies the reference via an 
encoding on the three Function Code pins. 
This allows external translation of 
addresses, control of acc~ss, and dif­
ferentiation of special processor states, 
such as interrupt acknowledge. 

Table 1 : Classification of References 

Function Code Reference Class 

0 0 0 (Reserved) 
0 0 1 User Data 
0 1 0 User Program 
0 1 1 (Reserved) 
1 0 0 (Reserved) 
1 0 1 Supervisor Data 
1 1 0 Supervisor Program 
1 1 1 Interrupt Acknowledge 

2. 1. 1. Supervisor/~ ~ 

For instruction execution, the super­
visor state is determined by the S-bit of 
the status register; if the S-bit is on, 
the processor is in supervi sor state, oth­
erwise, it is in the user state. The 
supervisor state is the higher state of 
privilege. All instructions can be exe­
cuted in supervisor state. The bus cycles 
generated by instructions executed in 
supervisor gtate are classified as super­
visor references. While the processor is 
in the supervisor privilege state, those 
instructions which use either the s~stem 
stack pointer implicitly or address regis­
ter seven (A7) explicitly access the 
supervisor stack pointer. 

The user state is the lower state of 
privilege. Most instructions execute the 
same in user .tate as in .upervisor state. 
However, some instructions which have 
important system effects are made "ille-

7L-112 

68000 Emulator Specifics Users 

gal". For example, to insure that a user 
program cannot enter the privileged state 
except in a controlled manner, the 
instructions which modify the entire 
status register are privileged. The bus 
cycles generated by an instruction exe­
cuted in user state are classified as user 
state references. While the processor is 
in the user privilege state, those 
instructions which use either the system 
stack pointer implicitly, or address 
register seven (A7) explicitly access the 
user stack pOinter. 

2.1.2. Change 2£ Privilege State 

Once the processor is in the user 
state executing instructions, only excep­
tion processing Cdescribed below) can 
change the privilege state. During excep­
tion processing the current setting of the 
S-bit of the status register is saved, and 
the S-bit is forced on, putting the pro­
cessor in supervisor state Thus when 
instruction execution resumes at the 
address specified to process the excep­
tion, the processor is in the supervisor 
privi lege state. 

The transition from supervisor to 
user state can be accomplished by any of 
four i nstruc t ions: RTE, MOVE to Status 
Register, ANDI to Status Register, and 
EaRl '~o Status Register. The RTE instruc­
tion fetches the new status register and 
program counter from the supervisor stack, 
loads each into its respective register, 
and then begins the instruction fetch at 
the new program counter address in the 
privilege state determined by the S-bit of 
the new status register. The MOVE, ANOI, 
and EaRl to Status Register instructions 
each fetch all operands in the supervisor 
state, perform the appropriate update to 
the status register, and then fetch the 
next instruction at the next sequential 
program counter address in the privilege 
state determined by the new S-bit. 

2. 1. 3. Impl,mentation 

The creation of privilege states and 
the subsequent system features affected 
implementation cost of the processor. 
Inclusion of separate implicit stack 
pointers for the user and supervisor 
states caused increased complexity in the 
register decoders which had to distinguish 
between a user and supervisor register for 
all implicit and explicit re~erences to 
the system stack pointer (A7L Addition 
~f one 32-bit register to the execution 
unit was not a maJor cost factor, but did 
increase the width of the execution unit. 
Since the supervisor mode is used to 
create user environments, instructions 
were required which allowed manipulation 
of the user stack pointer while in super­
visor mode. This further complicated the 



68000 Emulator Specifics Users 

register decoders and forced introduction 
of an additional specialized decoder for 
explicit control of the user stack pointer 
while in supervisor mode. 

The function code pins are employed 
to classify processor bus cycles. Two 
bits in the micro control store classify 
an access as data space, program space, 
interrupt acknowledge, or unknown. The 
unknown state is combined with a v~lue 
from a special decoder to determine 
whether the associated access is to data 
or program space. Unknown states occur in 
micro routines which may be shared by data 
space access macro instructions and 
instruction space access macro instruc­
tions. For example, the base plus dis­
placement addressing mode (data space 
access) and the program counter plus dis­
placement addressing mode (program space 
access) share the same micro routine. 

The user/supervisor function code 
information 'is obtained from the status 
register. User/supervisor information is 
not provided by the micro control store 
due to micro control store word width con­
straints. Its exclusion from the micro 
control store implies that there must 
exist some means in the nano control store 
for direct manipulation of the 
user/supervisor bit in the status register 
during exception processing. In addition, 
there are several privileged instructions 
which can change the user/supervisor bit. 
Any prefetches done prior to manipulation 
of the status register must be discarded. 
Since the micro routines for manipulation 
of the user byte of the status register 
are shared with routines for manipulation 
of the entire status register, the delay 
associated with ignoring the prefetches is 
suffered by both instruction types. 

2.2. Exception Processing 

2.2.1. Proce,sing States 

The processor is always in one of 
three processing states: normal, excep­
t i on , or hal ted. The nor ma I pro c e s sin g 
state is that associated with instruction 
execution; the bus cycles are to fetch 
instructions and operands, and to store 
results. The STOP instruction is a spe­
cial case of the normal state in which no 
further bus cycles are started. 

The exception processing state is 
associated with interrupts, trap instruc­
tions, tracing and other exceptional con­
ditions. The excePtion may be internally 
generated, by an instruction or by an 
unusual condition arising during the exe-
cution of an instruction. Externally, 
exception processing can be forced by an 
interrupt, by a bus error, or by a reset. 
Exception processing is designed to pro-

@ 

Reprints 

vide an efficient context sWltch so that 
the processor may handle unusual condl­
t ions. 

Exceptions can be grouped accordlng 
to their generation. The Group 0 excep­
tions are Reset, Bus Error, and Address 
Error. These exceptions cause the 
instruction currently being executed to be 
aborted, and the exception processing to 
commence at the next minor cycle of the 
processor. The Group 1 exceptions are 
trace and interrupt, as well as the 
privilege violations and illegal instruc­
tions. These exceptions allow the current 
instruction to execute to completion, but 
preempt the execution of the next instruc­
tion by forcing exception processing to 
occur. The Group ~ exceptions occur as 
part of the normal processing of instruc­
tions. The TRAP, TRAPV, CHK, and Zero 
Divide exceptions are in this group. 

Table 2: Exception Groups 

Reset Exception proceSSing 
Group 0 Bus Error begins at 

Addr Error the next minor cycle 

Trace Exception processing 
Qroup 1 Interrupt begins before 

Illegal the next instruction 
Privilege 

TRAP, TRAPV, Exception processing 
Group 2 CHK, is started by normal 

Zero Divide instruction execution 

The h.lted processing state is an 
indication of catastrophic hardware 
failure. For example, if during the 
exception processing of a Bus Error 
.nother Bus Error occurs, the processor 
assumes that the s~stem is unusable and 
hal ts. 

2.2.2. Exception Processing Initiation 

The processor hardware recognizes 
three distinct types of exception condi­
tions: internal exceptions (Group 2), 
non-catastrophic exceptions (Group 1), and 
catastrophic exceptions (Group 0), Excep­
tion processing for Group 2 exceptions is 
initiated through normal instruction exe­
cution. Group ~ exceptions are detected 
and processed via micro routine. without 
the aid of specialized additional 
h.rdware. 

When a Group 1 exception arises, exe­
cution of the current macro instruction 
continues unaffected (including prefetch 
and decode of the next macro instruction). 
At the end of the current macro instruc­
tion, the micro routine specifies that the 
next micro control store address is to 
come from the macro instruction register 

1L-113 



Reprints 

d~cod~r. However, the .xistence of a 
Group 1 exception condition will force 
substitution of a micro control store 
address for the appropriate .xception pro­
cessing micro routin~. 

Occurr~nc~ of an~ Group 0 .xc.ption 
implies that the currentl~ .x.cuting micro 
routin~ cannot continu~; the exception 
micro routine address pr •• mpts the current 
micro routine at the next minor c~cl~. 

2.2.2.1. Exc.ption Vectors 

Exc.ption v~ctors ar. memory loca­
tions from which th~ processor fetch~s the 
addr~ss of a routin~ which will handl~ 
that ~xc~ption. All ~xc~ption vectors ar~ 
two words in l~ngth, .xc.pt for the res~t 

v~ctor, which is four words in length. A 
v~ctor number is an eight-bit number, 
which wh~n multipli.d b~ four giv~s th~ 

addr~ss of an .xception v~ctor. Vector 
numb~rs are generat~d internally or exter­
nally, depending on the cause of the 
~xc~ption. The exception vectors are 
assign~d to low address~s in th~ supervi­
sor data space. 

2.2.2.2. Exception Processing Seguenc~ 

All ~xception processing is don~ in 
sup~rvisor state, r~gardl~ss of th~ s~t­
ting of th~ S-bit in th~ status r~gister. 

Th~ bus cycles g~n~rat~d during exc~ption 
proc~ssing are classified as supervisor 
r~f~rences. All stacking op~rations dur­
ing ~xc~ption processing us~ th~ supervi­
sor stack pointer. 

Exception processing occurs in four 
identifiable steps. During the first 
step, an internal copy is made of the 
status reg i ster. After the copy is made, 
the special processor state bits in the 
status register are chang.d. The S-bit is 
forced on (1), putting the processor into 
5 up ervi sor pr i vi lege s tat.. Also, the T­
bit is forced to 0 (off), which will allow 
the exception handler to execute unhin­
dered by tracing. For the reset and 
interrupt exc.ptions, the interrupt prior­
ity mask is also updated. 

In the second step, the vector number 
of the exception is determined. For 
interrupts, the vector number is obtained 
b~ a proc.ssor fetch, classifi.d as an 
interrupt acknowl,dge. For all oth.r 
exceptions, internal logic provides the 
v.ctor number. This vector number is then 
us.d to generate the address of the excep­
tion v.ctor. 

The third step is to save the current 
proc.ssor status. Only for the Reset 
exc.ption is this not don.. The curr.nt 
program count.r value and the sav.d copy 
of the status r.gist.r are stack.d using 

7L-114 

68000 Emulator Specifics Users 

the supervisor stack pointer. Th~ program 
counter value stacked usually points to 
the next unexecuted instruction. Addi­
tional information defining the current 
context is stacked for th~ Bus Error and 
Address Error .xceptions. 

The last st.p is the same for all 
.xc~ptions. Th~ new program counter value 
is f.tched from the ~xception v~ctor. The 
processor then resum~s instruction ex~cu­
tion. Th. instruction at the address 
given in the exception v~ctor is fetched. 
and normal instruction d~cdding and ~xecu-
tion is started. t 

2.2.2.3. Reset 

2.2.2.3.1. Description 

The Reset pin provides the highest 
level exception. The processing of the 
Reset signal is design~d for system ini­
tiation, and recovery from catastrophic 
failure. Whatever processing was in pro­
gress at the time of the reset is aborted. 
The processor int.rrupt priorlty mask is 
set at level s~v~n. Th~ vector number is 
internally g~n~rat~d to reference the 
reset exception v~ctor at location 0 in 
the sup~rvisor program spac~. Because no 
assumptions can b. made about the validity 
of register cont~nts, in particular the 
sup~rvisor stack pointer, neither the pro­
gram counter nor th~ status r~gister is 
saved. The address contained in the first 
two words of th~ res~t ~xception vector is 
used to initialize th~ sup~rvisor stack 
point~r, and th~ addr~ss in the Mext two 
words is used to initializ~ the program 
count~r. Finally instruction ~x~cution is 
started at the address in the program 
counter. 

2.2.2.3.2. Hardware Support 

Hardwar~ support for res~t permeates 
the machine because r~set must provide 
machine initialization from any internal 
state. Activation of th~ reset pin 
preempts all oth~r pending conditions and 
current activities. Normal op~ration of 
the control unit is susp~nded and the con­
trol unit is forced to a stat~ from which 
it b~gins ex~cuting th~ reset micro 
routine. Bits in th~ nano control store 
are provided to allow the micro routine to 
obtain the reset vector addr~ss, force the 
machine into supervisor mode, and set the 
prioritv mask (to the level sp~cifi~d by a 
decoder - in this case, level sev~n). 
Additionally, since th~ r~gister d~signa­
tors for the pre.mpt~d instruction are 
unknown, the nano control store must pro­
vid~ bits which can dir~ctlv specify 
selection of the implicit stack pointer 
for its initialization. 



68000 Emulator Specifics Users 
-------------------------------------------------------------------~~-------

2.2.2.4. Int'rrupts 

2.2.2 4 1. Description 

The MC68000 provides ~even l,vels of 
interrupt priorities. Devices may be 
chained externally within interrupt prior­
ities. allowing an unlimit,d number of 
peripheral devices to interrupt the pro­
cessor. Interrupt priorit~ levels ar. 
numbered from one to ~even. level ~even 
being the highe~t priorit~. The ~tatus 
register contains a three-bit mask which 
indicates the current processor priorit~. 
and interrupts are inhibited for all 
priority levels less than or e~ual to the 
current processor priorit~. 

An interrupt re~uest is made to the 
processor by encoding the interrupt 
re~uest level on the interrupt re~ue~t 
pins; a zero indicates no interrupt 
re~uest. Interrupt r,~ue~ts arriving at 
the processor do not force immediate 
exception processing. but are made pend­
ing. Pending int'rrupts are detected 
between instruction executions. If the 
priority of the pending interrupt is lower 
than or equal to the current processor 
priority. execution continues with the 
next instruction and the interrupt excep­
tion processing is postponed. (The recog­
nition of level seven is slightly dif­
ferent. as explained below. ) 

If the priorit~ of the pending inter­
rupt is greater than the current processor 
priority. the exception processing 
sequence is started. First a copy of the 
status register is ~aved, and the 
privilege state is set to supervisor, 
tracing is suppressed, and the processor 
priority level is set to the level of the 
interrupt being acknowledged. The proces­
sor fetches the vector number from the 
interrupting device, classifying the 
access as an interrupt acknowledge and 
displaying the level number of the int.r­
rupt being acknowledg.d on the addr.ss 
bus. External logic can re~pond to the 
interrupt acknowledge read in one of three 
way s: put a vee tor numb,r on the dat. 
bus, re~uest automatic vectoring, or indi­
cate that no d,vice is responding (Bus 
Error). If extern.l logic re~uests an 
automat i c vee tor i n9' the proc essor i nter­
nally generate~ a vector numb.r ~hich i~ 
determined by the interrupt l.v,l number. 
If external logic indicates a Bus Error, 
the i nterrup t i ~ tak en to be sp ur i ous, and 
the generat.d v.ctor number r.fer.nee~ the 
spurious interrupt vector. The proc,ssor 
then proc,eds ~ith the usual .xc.ption 
proc.~sing. Normal instruction execution 
commences in the int.rrupt handling 
routine. 

Priorit~ l.v.l 
cas,. Lev.l ~.v.n 

@ 

s.v.n is a ~p,cial 
int.rrupt~ cannot.b. 

inhibit.d b~ the int,rrupt priorit~ mask, 
thu~ provi ding a "non-mas kab 1. i nt.rr up t I, 
capabilit~. An interrupt i~ generated 
each tim. the interrupt re~uest level 
changes from some low.r leve} to level 
~'Ven. 

2.2.2.4.2. Hardwar. Support 

On-chip logic provid.~ d.t.ction and 
compari~on of int.rrupt r.qu.~t~. Arrival 
of interrupt request~ does not affect exe­
cution of the curr.nt instruction. If an 
interrupt of ~uffici.nt priorit~ arrives, 
a point.r to the interrupt micro routine 
will b, ~ub~titut.d for the micro routine 
pointer from IR d.code at the next macro 
instruction boundary. An interrupt ack­
nowl.dg. is accomplished by the interrupt 
micro routine via an int.rnal path involv­
ing no l.s~ than ~ix separate registers. 
Support for tran~lation and ext.n~ion of 
interrupt vector addre~s.s and creation of 
interrupt auto v.ctor addr.ss.s is the 
r.~pon~ibility of the field translate 
hardware in the MCbBOOO. The micro 
routine us.~ the addre~~ from this special 
function unit a~ a pointer to the location 
of the program counter for the particular 
int.rrupt. V.ctor.d, auto v.ctor.d. and 
spurious int.rrupt~ are all handled by the 
~ame micro routine; th, differences occur 
in v,ctor g.n.ration by the field 
trans late un i t. 

2.2.2.5. Internally Oen'rat.d Exceptions 

2. 2. 2. 5. 1. Pe,cri ption 

Trap~ ar. .xc.ptions caused by 
instructions. Th.y ari~e either from pro­
cessor r.cognition of abnormal conditions 
during instruction .xecution, or from u •• 
of instructions ~hose normal b.havior is 
trapping. 

Some instructions are us.d specifi-
call~ to g.n.rate traps. The TRAP 
instruction al~a~s forces an exception, 
and is us.ful for impl.m.nting system 
call s for us.r programs. The TRAPV and 
CHK instructions force an exc.ption if the 
user program detects a runtime error, 
which m.y b. an arithm.tic ov.rflow or a 
subscTipt out of bounds. Th. divide 
instructions will force an .xception if a 
divi~ion op.ration is att.mpt.d with a 
d i vi ~or of l.ro. 

Ill.gal instruction i, the term used 
to r,fer to any of the ~ord bit patterns 
which is not the bit patt.rn of the first 
word of a l.gal MC68000 instruction. 
Thos. ~ord patterns ~ith bits [15: 12]=1010 
or 1111 are di~tingui~hed as unimpl.mented 
instruction~, and ~.parate .xc.ption v.c­
tors ar. giv.n to th.~. patt.rn~ to permit 
.fficient .mulation. If during instruc­
tion .x.cution ~uch an ill.gal in~truction 

7L-115 



Reprints 68000 Emulator Specifics Users 

----------------------------------------------------------------------------

15 fetched, an illegal instruction excep­
tion occurs. This facility allows the 
operating system to detect program errors. 
or to emulate unimplemented instructions 
in software. 

In order to provide system security, 
varIOUS instructions are privileged. An 
attempt to execute one of the privileged 
instructions while in the user privilege 
state will cause an exception. 

To aid in program development, the 
MC68000 includes a facility to allow 
lnstruction by instruction tracing. In 
trace state. after each instruction is 
executed an exception is forced, allowing 
a debugging program to monitor the execu­
tion of the program under test. 

The trace facility uses the T-bit in 
the supervisor portion of the status 
register. If the T-bit is off (0). trac­
ing is disabled. and instruction execution 
proceeds from instruction to instruction 
as nor ma l. 1ft h e T - bit i son (1), at the 
beginning of the execution of an instruc­
tion. a trace exception will be generated 
after the execution of that instruction is 
completed. If the instruction is not exe­
cuted. either because an interrupt is 
taken. or the instruction is illegal or 
privileged, the trace exception does not 
occur. If the instruction is executed and 
an interrupt is pending on completion, the 
trace exception is processed before the 
interrupt exception. If the instruction 
generates an exception, the generated 
exception is processed before the trace 
exception. 

As an extreme illustration of the 
above rules, consider the arrival of an 
interrupt during the execution of a TRAP 
instruction while tracing is enabled. 
First the trap exception is processed, 
then the trace exception, an~ finally the 
interrupt exception. Instruction execu­
tion resumes in the interrupt handler 
routine. 

2.2.2.5.2. Hardware Suppprt 

Trace, privilege violation, illegal 
instruction, and all instructions which 
cause. trap are handled in much the same 
fashion as an auto vectored interrupt by 
the hardware. They all share <except for 
some small initial differences) a single 
micro routine. Again, as with interrupts, 
the field translate unit provides the vec­
tor address for the program counter. The 
decode of an illegal instruction, or a 
privileged instruction in user mod. cause. 
the macro instruction decode logic to gen­
erate a pointer to a special micro routine 
which returns the machine to sup.rvisor 
mode and effects a trap. Considerable 
additional hardware is re~uir.d to detect 

7L-116 

these errors and to create the address of 
the exception vector; and increased con­
trol store space is necessary for the spe­
cial micro routine. 

2.2.2.6. i.Iu. ~/Address Error 

2.2.2.6.1. Description 

Bus Error exceptions occur when 
external logic re~uests that a Bus Error 
be processed by an exception. The current 
bus cycle which the processor is making is 
aborted. Whatever processing the proces­
so r wa s d 0 in g , ins t r u c t ion 0 rex c e p t ion, 
is terminated, and the processor immedi­
ately begins exception processing. 

Exception processing for Bus Error 
follows the usual sequence of steps. The 
status register is copied, the supervisor 
state is entered, and the trace state is 
turned off. The vec tor number is gen­
erated to refer to the Bus Error vector. 
Since the processor was not between 
instructions when the Bus Error exception 
reque.t w •• made, the context of the pro­
cessor is more detailed. To save more of 
this context, additional information is 
saved on the supervisor stack. The pro­
gram counter and the copy of the status 
register are of course saved. Besides the 
usual inf~rmation, the processor saves the 
its internal copy of the first word of the 
instruction being processed, and the 
address which was being accessed by the 
aborted bus cycle. Also saved is specific 
information about the access: whether it 
was a read or a write, whether the proces­
sor was processing an instruction or not, 
and the classification displaved on the 
function code pins when the Bus Error 
occurred. Although this information is 
not sufficient in general to effect full 
recovery from the Bus Error, it does allow 
software d iagnos i s. Fi nail y, the proces­
sor commences instruction processing at 
the address contained in the Bus Error 
exception vector. 

If a Bus Error occurs during the 
exception processing for a Bus Error, 
Address Error, or Reset, the processor is 
halted, and .11 processing ceases. This 
simplifies the detection of catastrophic 
system failure, since the processor 
remov.s itself from the system rather than 
destroying all memory contents. Only the 
RESET pin can restart a halted processor. 

Address Error exceptions occur when 
the processor attempts to access a word or 
a long word operand at an odd address. 
Th. effect is much like an internally gen­
erated Bus Error, so that the bus cycle is 
aborted, and the processor begins excep­
tion proce.sing. After exception process­
ing commences, the se~uence is the same as 
that for Bu. Error, except that the vector 



68000 Emulator Specifics Users 

number refers to the Address Error vector. 
Likewise, if an Address Error occurs dur­
ing the exception processing for a Bus 
Error, Address Error, or Reset, the pro­
cessor is halted. 

2.2.2.6.2. Hardware Support 

During execution of a micro routine 
the program counter value is often moved 
to a temporary register where it is mani­
pulated. An updated value of the program 
counter is returned to the program counter 
register prior to the end of the micro 
routine. Macro instructions contain from 
one to five words and it is not convenient 
or efficient to attempt to maintain an 
updated value in the program counter 
throughout all micro routines. Since 
occurrence of a Group 0 exception trun­
cates execution of the current micro 
routine the internal .tate of the execu­
tion unit and, most importantly, the pro­
gram counter (which is stacked during 
exception processing) ar. not w.ll defined 
for the current implementation. Condi­
tions for processing a Group 1 or a Group 
2 exception are such that the program 
counter is always well-defined. 

2.2.3. Multiple Exceptions 

2.2.3.1. Description 

This section describes the processing 
which occurs when multiple exceptions 
arise simultaneously. Group 0 exc.ptions 
have highest priority; Group :2 exceptions 
have lowest prioritlJ. Within Group 0, 
Reset has highest priority, followed by 
Bus Error and Address Error. Within Group 
1, trace has priority over external inter­
rupts, which in turn takes priority over 
illegal instruction and privilege viola­
tion. Since only one in.truction can be 
executed at once, there is no priority 
relation within Group 2. 

The prioritlJ r.lation between two 
exceptions determines which is taken, or 
taken first, if the conditions fur both 
arise simultaneousllJ. The d.scription 
above of the tracing a TRAP instruction 
when a interrupt arriv •• i. an .xampl. of 
the application of the priority relation. 
In another examp Ie, if a Bus Error occ urs 
during a TRAP in.truction, the Bus Error 
takes prec.d.nc., and the TRAP in.truction 
processing is aborted. 

2.2.3.2. Hardw.r. Support 

It is possible for s.v.ral .xception 
cond it iOns to be pr ••• nt .t once. An 
.xception priority n.t~ork is used to pro­
vide hardware .rbitration among multiple 
exception condition. which c.n occur. The 
n.t~ork k •• p. tr.ck of the .rrival .nd 
st.tus of .xc.ption conditions, forms the 

Reprints 

micro control store starting address for 
the highest priority exception condition, 
and generates the address substitution 
signal at the appropriate time. 

3. Summaru I.!lJl Conclusions 

The MC68000 is a register oriented 
architecture with system features provided 
by carefully defined privilege states and 
exception processing. The privilege 
state, divide processing in to user end 
supervisor modes, with additional protec­
tion provided by functional separation of 
program and data space. Exception pro­
cessing is defin.d to divide exceptlon 
conditions into three logical priority 
groupings according to the manner in which 
they are handled by the hardware. In 
addition, a complete hierarchy is speci­
fied for hardware action in processing of 
multiple exceptions. 

The two level microprogrammed control 
unit which impl.ments the MC68000 archi­
tecture accommodates the priority group­
ings for exception conditions fairly 
.asily. Additional hardware is re~uired 
to provide support mech.nisms associated 
with privilege states and exception vector 
gener.tion. A priority .ncoder and extra 
logic are required to implement the 
hierarchical treatment of multiple excep­
tion conditions. Additional width in the 
nano control store words supports the 
implicit stack pointer references, 
privilege state changes, and vector 
address manipulation required for excep­
tion processing. Processing for the vari­
ous exception conditions tends to be 
f.irly homogeneous, so different exception 
conditions share complete or partial micro 
routine •• quences (via Join micro program 
flow>. In the MC68000, clear 1 y def i ned, 
well specified .ystem features and a 
clean, regul.r control .tructure minimize 
the cl.ssical conflict b.tween the archi­
tecture and the implementation. 

R,f,rences 

[1] Alan B. Salisbury, Microproqrammable 
Computer Archit.ctures, Americ.n Elsevier 
Publishing Company, Inc (1976), pp 47-48. 

[2] E. P. Stritter .nd H. L. Tredennick, 
"Microprogr.mm.d Implement.tion of a 
Single Chip Microprocessor", Proceedings 
at ~ l11h Annu.l Microprogramming 
Worksbop, Nov. 1978, pp 8-16. 

7L-117 



Reprints 

The 
mechanism 
described 

68000 Emulator Specifics Users 

Instruction Pre fetch on the MC68000 

John Zolnowsky 
Motorola MOS Microprocessor Design 

MC68000 uses a two-word tightly coupled prefetch 
to enhance perfo~mance. This mechanism is 

in terms of the microcode operations involved. 

DEFINITION: The execution of an instruction begins when the 
microroutine for that instruction is entered. 

Using this definition, some features of the prefetch 
mechanism can be described. 

1) When execution of an instruction begins, the operation 
word and the word following have already been fetched. 
The operation word is in the instruction decoder. 

2) In the case of multiword instructions, as each 
additional word of the instruction is used internally, 
a fetch is made to the instruction stream to replace 
it. 

3) The last fetch from the instruction stream is made when 
the operation word is discarded and decoding is started 
on the next instruction. 

4) If the instruction is a single word instruction causing 
a branch, the second word is not used. But because 
this word is fetched by the preceding instruction, it 
is impossible to avoid this superfluous fetch. In the 
case of an interrupt or trace exception, both words are 
not used. 

5) The program counter points to the last word fetched 
from the instruction stream. 

February 13, 1980 

Reprinted, Courtesy of Motorola, Inc. 

7L-118 



68000 Emulator Specifics Users Reprints 
-----------------------------------------------------------------~~--------

@ 

The following example illustrates many of the features 
of prefetch. The contents of memory are assumed to be as 
illustrated in Figure 1. 

BEGIN: 

LABEL: 

INTHANDLR: 

ORG 0; 
DATA.L INITIAL SSP; -DATA.L BEGIN; 

ORG INTVECTOR; 
DATA.L INTHANDLR; 

ORG PROGRAM; 
NOP 
BRA LABEL; 
ADD DO TO DO; 
SUB DISP(AO) FROM A 1 ; 
CMP D2 TO D3; 
SGE D7; 

MOVE.W xxx.L TO yyy.L; 
NOP 
SWAP; 

Figure 1: Contents of Memory 

The sequence we shall illustrate consists of the 
power-up reset, the execution of NOP, BRA, SUB, the taking 
of an interrupt, and the execution of the MOVE.W xxx.L to 
yyy.L. The order of operations described within each 
microroutine is not exact, but is intended for illustrative 
purposes only. 

February 13, 1980 

7L-119 



Reprints 68000 Emulator Specifics Users 

Microroutine Operation Location Operand 

Reset Read 0 SSP High 
Read 2 SSP Low 
Read 4 PC High 
Read 6 PC Low 
Read (PC) NOP 
Read +(PC) BRA 
<begin NOP> 

NOP Read +(PC) ADD 
<begin BRA> 

BRA PC=PC+d 
Read (PC) SUB 
Read +(PC) DISP 
<begin SUB> 

SUB Read +(PC) CMP 
Read DISP(AO) <src> 
Read +(PC) SGE 
<begin CMP> <take INT> 

INTERRUPT Write -(SSP) PC Low 
Write -(SSP) PC High 
Read <INT ACK> Vector II 
Write -(SSP) SR 
Read (VR) PC High 
Read +(VR) PC Low 
Read (PC) MOVE 
Read +(PC) xxx High 
<begin MOVE> 

MOVE Read +(PC) xxx Low 
Read +(PC) yyy High 
Read xxx <src> 
Read +(PC) yyy Low 
Read +(PC) NOP 
Write yyy <dest> 
Read +(PC) SWAP 
<begin NOP> 

Figure 2: Instruction Operation Sequence 

February 13,1980 

7L-120 



MANUAL CHANGE INFORMATION 

At Tektronix, we continually strive to keep up with latest electronic developments 
by adding circuit and component improvements to our instruments as soon as they 
are developed and tested. 

Sometimes, due to printing and shipping requirements, we can't get these 
changes immediately into printed manuals. Hence, your manual may contain new 
change information on following pages. 

A single change may affect several sections. Sincethe change information sheets 
are carried in the manual until all changes are permanently entered, some 
duplication may occur. If no such change pages appear following this page, your 
manual is correct as printed. 



MANUAL CHANGE INFORMATION Tektron~ 
COMMITTEDlOEXCElLENCE Date: _3_-_3_-_8_2 ____ Change Reference: Cl/382 

Product: 8500 MDL: 68000 Emulator Specifics Users Manual Part No.: 070-3970-00 

DESCRIPTION 

TEXT CORRECTIONS 

Page 7L-58 Change the second sentence under the heading 
Insert Your DOS/50 System Disk into Drive 0 to 
read as follows: 

Then enter the CO -A command again: 

Page 7L-58 In the first sentence of the NOTE change 

" NONAME" 

to 

"NO.NAME" 

Page 7L-98 Under error message 3E, change 

such as SC: 

to 

such as SP: 

Page 1 of 1 


	0001
	0002
	7L-0001
	7L-0002
	7L-0003
	7L-0004
	7L-001
	7L-002
	7L-003
	7L-004
	7L-005
	7L-006
	7L-007
	7L-008
	7L-009
	7L-010
	7L-011
	7L-012
	7L-013
	7L-014
	7L-015
	7L-016
	7L-017
	7L-018
	7L-019
	7L-020
	7L-021
	7L-022
	7L-023
	7L-024
	7L-025
	7L-026
	7L-027
	7L-028
	7L-029
	7L-030
	7L-031
	7L-032
	7L-033
	7L-034
	7L-035
	7L-036
	7L-037
	7L-038
	7L-039
	7L-040
	7L-041
	7L-042
	7L-043
	7L-044
	7L-045
	7L-046
	7L-047
	7L-048
	7L-049
	7L-050
	7L-051
	7L-052
	7L-053
	7L-054
	7L-055
	7L-056
	7L-057
	7L-058
	7L-059
	7L-060
	7L-061
	7L-062
	7L-063
	7L-064
	7L-065
	7L-066
	7L-067
	7L-068
	7L-069
	7L-070
	7L-071
	7L-072
	7L-073
	7L-074
	7L-075
	7L-076
	7L-077
	7L-078
	7L-079
	7L-080
	7L-081
	7L-082
	7L-083
	7L-084
	7L-085
	7L-086
	7L-087
	7L-088
	7L-089
	7L-090
	7L-091
	7L-092
	7L-093
	7L-094
	7L-095
	7L-096
	7L-097
	7L-098
	7L-099
	7L-100
	7L-101
	7L-102
	7L-103
	7L-104
	7L-105
	7L-106
	7L-107
	7L-108
	7L-109
	7L-110
	7L-111
	7L-112
	7L-113
	7L-114
	7L-115
	7L-116
	7L-117
	7L-118
	7L-119
	7L-120
	7L-121
	7L-122

