
A Multiple-User Software
Development Unit
Microcomputer software development is
becoming, more and more, a team effort.
And, as with any team-oriented project,
there are problems of communication,
keeping current on the status of each ele­
ment in the project, and efficiently inte­
grating the individual elements into a
finished product.

The new Tektronix 8560 Multi-User Soft­
ware Development Unit is a team-oriented
design tool. Accommodating up to eight
workstations simultaneously, the 8560 pro­
vides a powerful, flexible solution to soft­
ware development problems. The 8560,
teamed up with the Tektronix 8540 Integra­
tion Unit or the 8550 Microcomputer De­
velopment Lab1, lets you accomplish every

Figure 1. The Tektronix 8560 Multi-User Software Development Unit (lower left) accomodates
up to eight workstations, including multiple 8540 Integration Units and line printers.

6

phase of software development, from in­
itial design to hardware/software integra­
tion, effectively and efficiently. (The 8540
Integration Unit is discussed in an article
commencing on page 9 of this issue.)

Hardware overview
The 8560 uses a multiple-processor ar­
chitecture (see figure 2). The LSI 11/23
main processor executes the operating
system, assemblers, compilers, editors,
and utility programs. A Z80-based disk
controller handles both flexible and hard
disk drives. The main processor makes
high-level requests and the disk controller
handles the details, such as seek optimiza­
tion, locating the current track and sector,
reading and writing blocks of data, and
checking for errors.

To relieve the main processor of the
burden of handling all of the 1/0 traffic, an
8088-based processor is provided for each
group of four 1/0 ports. Over 90 percent of
terminal 1/0 is off-loaded from the main
processor. The 1/0 ports are configurable
for RS-232 operation up to 9600 baud and
RS-422 at 153.6 kilobaud.

Memory in the standard system con­
sists of 128 kilobytes of random access
memory (RAM), 35.6 megabytes of hard
disk storage, and one megabyte of flexible
disk storage for transportable memory.
Options expand RAM to 256 kilobytes,
with additional hard disk capacity to be
available at a later date.

An advanced operating system
The 8560 uses a powerful multitasking
operating system called TNIX* . TNIX is a
customized version of the popular UNIX**
Version 7 operating system, optimized for
microprocessor software development.
UNIX is a well-established system and in­
cludes all of the tools essential for increas­
ing programmer productivity-file manage­
ment, program development, module build
control, interuser communication, system
maintenance, and text processing.

The command language chosen for a
software development system can be a
major contributing factor to software pro­
ductivity. A well-designed command

1 "A Microprocessor Development Lab with
an Expandable Future," Tekscope Volume
13, Number 1, March 1981 .

• TNIX is a trademark of Tektronix, Inc.
**UNIX is a trademark of Bell Laboratories,

Inc.

Z80A
PMS

CONTROLLER

8560 SYSTEM BUS

RS 232 (TO 9600 BAUD)
OR

RS 422 (153.6 K BAUD)

LINE
PRINTER

LINE
PRINTER

Figure 2. Block diagram of the 8560 Multi-User Software Development Unit. The multi­
processor architecture optimizes performance of the various functions and permits tasks
to be carried out in background mode.

language should: be easy to learn, be flex­
ible enough to be customized for individual
needs, support powerful command files,
and allow unambiguous task processing
and information flow.

Learning time can be minimized through
the use of a menu-driven command lan­
guage. However, once the language is
mastered, the requirement to use menus
can impede productivity (see figure 3).

The TNIX menu-driven program (GUIDE)
overcomes the necessity for users to re­
spond to menu-driven queries. As a task
proceeds, GUIDE prints out the com­
mands being used, which helps to shorten
learning time. However, one doesn't have
to use GUIDE for entering commands.
Once the system is learned, the user can
enter commands directly. Command
menus on the 8560 also can be changed,
allowing the user to customize the system.

Command files allow multiple com­
mands to be executed quickly and without
typographical errors. Most systems allow
parameters to be passed to a command
file, thereby increasing their flexibility and
ease of use. The 8560's command lan­
guage also allows variables to be defined
by the user, and supports structured pro­
gramming commands like "if ... then ...
else", "for" loops, "while" , "until" , and
"case" statements. As an example, see
figure 4. When these concepts are com­
bined and used in a command file, users

Figure 3. This graph depicts the relative
productivity achievable with a system that
employs menu-driven commands, with a
system that does not, and with one that
uses a combination of menu and com·
mand language. The 8560 uses the latter
approach.

set 'Is ; grep '.out''
do

lptr $i
done

Figure 4. The above command file checks
the current directory for all files with the
extension ".out" and outputs them to the
lineprinter.

can define or combine commands to per­
form tasks that would normally require
large, complex programs to accomplish.

The 8560 also allows the output of one
command to be passed as input to an­
other command, without the use of tempo­
rary " holding" files. This "pipe" construct
allows information to be easily passed
through the system while being processed
by a series of commands. Large amounts
of. data can be quickly reduced to a man­
ageable amount and output in a format
allowing quick analysis by the user. All 1/0
devices are handled as ordinary files,
thereby eliminating the special program­
ming usually required to handle external
devices.

Multitasking increases productivity
A multitasking system increases a soft­
ware designer's productivity by performing
two or more tasks at the same time. With
the 8560, time-consuming tasks, such as
assemblies or compilation, can be execut­
ed in "background" mode while the user
is free to perform simpler tasks, such as
editing or file manipulation, in normal (fore­
ground) mode. The 8560 supports two line­
printer ports, allowing listings to be printed
in background mode (otherwise known as
lineprinter spooling) while users proceed to
perform other tasks. By having two line­
printer ports, users can access either high­
speed/medium-quality, or low-speed/high­
quality printers on the same system. Short
printout jobs don't have to await comple­
tion of a lengthy printout, and printout
quality does not have to be sacrificed.
Background tasks also can be prioritized
to minimize the impact of multitasking on
other 8560 users.

File management
In a multi-user system, with source code
or documentation shared by several users,
file management is a critical element. The
8560 uses a hierarchical file structure that
permits multilevel directories and con­
trolled access to files. Directories allow
a user to quickly locate files of interest
without having to peruse the entire list of
files on the disk.

Access to files is controlled by assign­
ing each user a unique password. Three
groups of users may access each file on
the 8560. These include the owners of the
file, members of the owner's group, and
all others. Each of these groups may be

7

assigned read, write, and execute
permission.

Another important 8560 file manage­
ment feature is the ability to link to files in
other directories. The same information
can be found under multiple directories,
without requiring duplicate files. When a
file is updated, the same information is
available to someone accessing the file
through a different directory. The need to
recopy modified files is eliminated.

The capability to directly execute, copy,
or link to another's file, with appropriate
access control, contributes greatly to pro­
ductivity in a multi-user environment.

Automated build control
In any major software development task,
program management is critical. The large
number of interdependent modules gener­
ated by the design team must be com­
bined without build errors. Build errors
usually result from combining wrong mod­
ules or wrong versions of the correct
modules.

The 8560 uses an automated approach
to the build problem. Using a command
called "make", programs can be auto­
matically generated from only the most up­
to-date source code. "Make" utilizes a de­
scription file, which defines all intermodule
dependencies, and associated commands
to generate each module. Upon execution,
"make" compares the modification date
of an output module (i.e. an output file)
with the appropriate input module (i.e.
source code file). If the modification date
of the input module is later than that of the
output module, then the output file is re­
created. This procedure greatly reduces
the time needed to produce an executable
program because it is no longer necessary
to reassemble or recompile every module.

lnteruser communication
Effective comunication between team
members is essential for software develop­
ment to proceed smoothly and with a mini­
mum of problems. The 8560 takes an in­
novative approach to interuser communi­
cation. A command called "mail" allows a
user to send a message to another user
and store it in a private mailbox for that
user. If a user has mail, the system auto­
matically notifies the user when he or she
logs into the system. The mail can be
quickly viewed and then either deleted or
retained for future reference. A user can
also use the mail system to receive notifi-

8

cation when a spooled printer output is
completed.

Each user can determine who else is
logged into the system and send a mes­
sage directly to a user by executing the
"write" command and referencing the
user-identification. To avoid interruption of
a critical task, each user can decide
whether or not to allow direct communica­
tion. If necessary, a command requiring
special authorization is provided to send a
system message to all users regardless of
messages being turned off.

Users can also use the 8560's docu­
mentation tools with the mail system, to
generate memos and so forth.

Optional software expands capability
TNIX includes several optional software
packages that allow a user to add capabili­
ty as needed. An auxiliary utilities pack­
age, containing over 30 programs, en­
hances operating flexibility. An "awk"
command allows the user to search a file
for a selected pattern and then execute a
command upon its occurrence. This is a
powerful tool for reducing data from the
optional Trigger Trace Analyzer. Another
command, "be", provides a binary calcu­
lator that lets the user enter arithmetic
operations into the system and get results
back with unlimited precision. This com­
mand also performs base number conver­
sions, such as binary to octal, hexadeci­
mal, etc. Other programs in this package
provide batch editing, general preproces­
sing, and useful file manipulation.

The documentation package is an­
other extremely useful option. This pack­
age greatly simplifies the many tasks in­
volved with producing quality documenta­
tion. For example, when text is entered in­
to a file, formatting commands are includ­
ed to generate the page layout desired.
The resulting file is then passed to a for­
matting utility that produces the document.
To change the page layout, only the lines
containing format commands need be
changed. The formatting utility will auto­
matically generate the revised layout. If
the text is to be typeset, as for manuals
production, the 8560 can generate output
suitable for commercial phototypesetters.

Other time-consuming tasks, such as
table generation and typesetting of mathe­
matical equations are efficiently handled
by special commands. There are com­
mands to look for spelling errors, generate
a permuted index, and so forth. In addi-

tion, special reports, manuals, business
letters, specifications, and·other docu­
ments can easily be created on the 8560.
Users have complete control over para­
graph justification, indentation, underlining,
bold-facing, page headers and trailers,
footnotes, and character fonts. These "ac­
tive" documentation tools improve produc­
tivity substantially.

The optional native programming
package contains 23 programs which pro­
vide high level and assembly language
support for the 8560. A C compiler can be
used to develop utilities that will enhance
8560 operation. Several supporting pro­
grams simplify and extend the use of C.

A "program beautifier" command will
clarify program structure by indenting
nested loops, procedures, and so forth.

Programs to perform syntax checking
and program linking are also provided. In
addition, an assembler is included for de­
veloping special purpose routines which
can execute faster.

BASIC, another high level language, is
also provided for development of a variety
of applications.

The auxiliary utilities, text processing,
and native programming packages are
provided to allow the user to tailor the op­
erating system to a particular need. As
category C software, they carry a low
priority for updating; however, these pack­
ages have been under development for
several years and typically are error-free.

Summary
A software development system should
enhance individual and team efforts in pro­
ducing a reliable, quality product. It should
eliminate many of the tedious program- ·
ming, documenting, and manual software
management tasks that design teams
encounter.

The 8560 Multi-User Software Develop­
ment Unit meets all of these requirements,
and more. The innovative interuser com­
munications system facilitates sharing of
design information. A hierarchical file sys­
tem with controlled access allows files to
be organized and accessed in a manner
that maximizes team productivity. Auto­
matic build control and user-program­
mable command files save hours of pro­
cessing time and keyboard entry. And the
companion 8540 Integration Unit allows
software and hardware to be integrated
in a controlled manner, with effective tools

for rapidly isolating and resolving any
problem that may exist.

The TNIX operating system includes
several commands designed to maximize
efficiency when using the 8540 Integration
Unit with the 8560. For example, the oper­
ating system recognizes those commands
that are uniquely 8540 and passes them
directly to the 8540. The system also can
selectively access up to eight 8540s con­
nected to a single 8560. The following arti­
cle discusses the 8540 Integration Unit.

Acknowledgements
The following people were instrumental in
the development of the 8560: Tom Clark
was the 8560 project manager, with Al
Baker as hardware manager, and Bob
Wood as software project leader. Errol
Crary was the program manager. Bob
Tice, mainframes manager for the 8500
Series, also made valuable contributions
to the project. Mechanical design was co­
ordinated by Phil Sheeley. Our thanks to
these and the many others who made the
8560 project a success. •

Chuck Smith, Market­
ing Product Line
Manager for the 8560,
has been with Tek six
years- most of the
time as a part of the
Information Display
Division. He was as­
sociated with 4050
Series Marketing and
was Advanced Prod­

ucts Manager for the Graphic Computing Sys-
tems group. Chuck received his BSCS from
Michigan State University in 1973 and currently
is working on his MBA at the University of
Portland. In his leisure time Chuck enjoys black
and white photography, softball, volleyball, and

. personal computer projects.

A Powerful New Tool for
Integrating Microcomputer
Hardware and Software

Figure 1. The 8540 Integrat ion Uni t, pictu red with the CT8500 CRT Terminal and prototype
control probe, provides complete coverage of the hardware/software integration process
du ring microcomputer des ign .

Integrating newly-written software and
prototype hardware can easily consume
as much time as writing the software
itself. The new Tektronix 8540 Integration
Unit turns this difficult task into an orderly,
efficient process.

The 8540, with an 8560 Multi-User Soft­
ware Development Unit (or other host
computer) and a system terminal, forms
a complete microcomputer development
system. The system provides a powerful
set of tools for testing microcomputer pro­
grams and prototype hardware, with full­
einulation and PROM programming
capabilities.

Software is developed on the 8560
(which also provides mass storage and file
management) and then is downloaded to
the 8540 via the built-in high-speed (153.6
kilobaud) interface.

For host computers other than the
8560, an optional communication interface
is available. The major interface parame­
ters of this interface are software select­
able through the 8540's operating system,
so the communications package can be
tailored to individual host situations.

Using commonly available RS-232-C
ports and the optional communications in­
terface package, the 8540 can be inter­
faced to most host computers in a matter
of minutes. All communications parame­
ters, such as parity, echo, and turnaround
delay, can be set directly from the
keyboard.

Three basic operating modes are avail­
able. The object code transfer mode per­
mits transferring object code modules be­
tween the host and the 8540's program

memory, with full error checking and re­
covery during the process.

Terminal mode allows the user's termi­
nal to communicate directly with the host
computer. The terminal is physically con­
nected to the 8540; however, a single
command routes the terminal directly to
the host, making the 8540 transparent to
the user.

Local mode provides direct communica­
tion between the terminal and the 8540,
for controlling the emulation and debug­
ging process.

Emulator support
The 8540 uses interchangeable emulator
modules to allow you to configure the
8540 to your application. The 8540 sup­
ports both 8-bit and 16-bit microprocessors
including those listed in Table I.

Table 1
Chips The 8540 l.U. Supports

16-bit
Z8001
Z8002
8086
68000
TMS9900
SBP9900
SBP9989

6809
6800
6808
6802
Z80A
8080A
8085A
8049

8-bit
8088
8048
8039
8039-A
8035
8021
8022
8041A

Using an emulator processor identical
to that targeted for the prototype, the 8540
provides real-time emulation. This means
that the prototype code can be executed
at the specified operating speed of the
target processor, while under control of
the 8540's debug system.

9

Three modes of real-time emulation
Emulation takes place in three progressive
modes that allow gradual introduction of
hardware and software. In mode O (system
mode), the software is executed on the
8540's emulator processor. Program input
and output can be simulated using system
resources in the console display, key­
board, or 8560 file system. Thus, you can
begin debugging your program before the
prototype hardware is available, or con­
tinue debugging should the hardware be­
come inoperable.

In the next phase, Mode 1, the 8540
emulator connects directly to the proto­
type hardware via the prototype control
probe. In this mode, the program resides
in 8540 memory and can be transferred to
prototype memory in sections as small as
128 bytes. This techn ique, called mapping,
allows the program to be gradually trans­
ferred into the prototype on a step-by-step
basis. The program can interact with pro­
totype 1/0, development system 1/0, or
both.

In Mode 2, all of the code resides in the
prototype memory. This mode is used to
make a final check with the actual proto­
type memory devices (such as ROM or
PROM) in place. The control probe re­
mains in the microprocessor socket on the
prototype to provide continual debugging
control during program execution.

During all three modes of emulation,
prototype code execution is under control
of the 8540's powerful debug software.
For easy reference, key breakpoints may
be entered using mnemonic labels (sym-'
bols) instead of numeric addresses. At
each breakpoint, the status of all of the
processor's key registers, flags, and status
bits is displayed. You can also display the

OPTIONAL

J,
PROM

PROGRAMMER

SYSTEM
ROM

EEPROM

processor's register status and associated
code execution on a cycle-by-cycle basis.
Any register or memory location can be
modified right from the keyboard.

The 8540 debug commands are inte­
grated into TNIX, the 8560 Software Devel­
opment Unit's operating system, so the
user can control both 8540 and 8560 re­
sources with a unified, compatible syntax.
This capability also allows the 8540 to use
8560 resources, such as file 1/0 and data
reduction, to enhance the debugging
operation.

Trigger trace analyzer
Many debugging situations require detailed
analysis of real-time code execution and
the effect on other key points in the hard­
ware. The trigger trace analyzer (TTA), a
modular option to the 8540, provides a
complete facility to acquire real-time data
in both 8-bit and 16-bit processor-based
systems. Up to 255 bus transactions oc­
curring before, during, or after a specified
event can be captured. An 8-channel data
acquisition probe allows you to select and
monitor up to eight points in the prototype
hardware. For further details on the trigger
trace analyzer see the article commencing
on page 12.

System overview
The 8540 operating system (OS/40) is simi­
lar to DOS/50 Version 2, the operating sys­
tem developed for the 8550 Microcomput­
er Development Lab1• A few commands
are different, but the key difference is that
commands execute much faster in the
8540 as they are stored in PROM memory
rather than on disk.

' "A Microprocessor Development Lab with
an Expandable Future," Tekscope Volume
13, Number 1, March 1981 .

AS·232 COMMUNICATION
INTERFACE f-- OPTIONAL

(Opt.1)

HSI

PAINTER
INTERFACE

CONTROLLER
CONSOLE

SYSTEM
MEMORY SYSTEM EMULATOR

(RAM) PROCESSOR CONTROLLER

SYSTEM BUS

A functional block diagram of the 8540
is shown in figure 2. A dual-processor ar­
chitecture (in a master/slave arrangement)
enables the 8540 to support several differ­
ent microprocessors, using the same oper­
ating system. In this configuration, the sys­
tem processor serves as the master, and
the emulator processor as the slave. The
system processor and emulator processor
have completely separate memory space
so that system program and user (proto­
type) programs do not conflict.

The 8540 contains a 100-line system
bus structure that provides most of the
connections to the plug-in modules and
options housed in the mainframe. The em­
ulator controller board separates those
control and signal lines that are dedicated
to either the system section or the pro­
gram section. Both the system processor
and emulator processor share the basic
bus structure, with the emulator controller
serving as arbiter under the direction of
the system processor.

The system processor resides on the
system controller board and provides over­
all control of the 8540. It directs all 1/0 ac­
tivity for the system peripherals, performs
all system utility functions, and executes
the debug program-controlling the emu­
lator processor through separate debug
hardware.

To allow you to configure the 8540 for
your specific application, the emulator pro­
cessors are designed as plug-in modules
and assigned option status. An emulator
option lncludes both hardware and soft­
ware for the target microprocessor or
microcomputer. The emulator processor
interfaces with the prototype hardware via
a prototype control probe. Advanced probe
design makes the emulator processor

CONTROL

---=i PROBE

11111

EMULATOR EMULATOR
PROCESSOR MEMORY

EMULATOR BUS

Figure 2. Functional block diagram of the 8540. A wide selection of options allow you to configure the 8540 to your design needs.

10

Figure 3. Emulators and prototype control probes for the 8540 feature state-of-the-art
design that allows your programs to run at the full operating speed of the target
microprocessor.

practically transparent to the prototype
and allows prototype code to be executed
at the full operating speed of the target
processor, without adding wait states or
stretching clock pulses (see figure 3).

Versatile memory manipulation
Memory in the 8540 consists of two major
sections-system memory and program
memory. System memory includes 240K
bytes of ROM, which contain the operating
system and software for optional equip­
ment. Also resident on the ROM board are
4K bytes of EEPROM used for updating
the operating system and for storing
unique user-developed command strings.
The contents of the EEPROM can be
changed from the system terminal
keyboard.

The operating system is loaded from
system ROM and executed in the 64K-byte
system RAM. User symbol table informa­
tion employed in symbolic debugging is
also stored in system RAM.

Progr.am (emulator) memory consists of
32K bytes of static RAM, optionally ex­
pandable to 256K bytes. It is used for stor­
ing prototype code downloaded from the
8560 or the host computer.

The system processor has control of
both system memory and program memo­
ry. As previously mentioned, in emulation
mode 1, program memory can be mapped
into prototype memory in 128-byte blocks,

allowing orderly transfer of proven pro­
gram segments to the prototype.

When working with devices such as the
Z8001 /Z8002, 68000, and 8086, whose ad­
dressing capabilities exceed the 8540's
program memory, the Memory Allocation
Controller (optional with the Z8001/2 and
68000 emulators) can be used to allocate
program memory in 4K-byte blocks over
an address space of up to 64M bytes.

PROM programming
Once the prototype code is debugged, it
can be put into firmware using the optional
PROM programmer available for the 8540.
The PROM programmer consists of a con­
troller board, front-panel assembly, and a
characteristic module to adapt the pro­
grammer to whatever PROM family you re­
quire. The 8540 currently supports 2716,
2732, 8748, 8741A, and 8755 PROMS.

System diagnostics
When attempting to integrate software and
prototype hardware, it is essential to know
that your integration tools are working pro­
perly. The 8540 has two resident diagnos­
tic test programs for verifying system
operation.

The power-up diagnostic tests are run
automatically during power-up or restart
conditions. These tests verify the circuitry
within the 8540 that is required to boot
and transfer the operating system from
ROM into the 8540's system memory.

Should a fault occur that prevents the
operating system from booting or prohibits
ROM-resident diagnostics from running, a
program called Critical Function Monitor
(CFM) is automatically entered. The CFM
contains several test routines and a limited
set of user commands that are entered
from the system terminal. This program, in
conjunction with a series of LEDs located
on the system controller and system RAM
boards, will usually isolate the source of
trouble.

The ROM-resident diagnostics provide a
means of verifying system performance,
and a tool for troubleshooting in the event
that a failure is detected during the run­
ning of a test. The menu-driven diagnostics
are easy to use, and run automatically
after being initiated by the user.

Summary
The 8540 Integration Unit is designed to
help you accomplish the entire software/
hardware integration process in an orderly,
efficient manner. The 8540 can be easily
interfaced to most host computers or any
of the 8000 Series of Tektronix microcom­
puter development units, such as the
8560, 8550, and 8001. State-of-the-art
emulators allow your programs to run at
full speed, while the advanced trigger
trace analyzer captures up to 255 bus
transactions and select logic operations
for analysis. The 8540 supports most pop­
ular 8- and 16-bit microprocessors and
microcomputers.

Acknowledgments
The 8540 design team included Tom Clark
as engineering manager; Dennis Stolarski,
hardware project leader; Roger Crooks,
software manager; and Bruce Stofer, soft·
ware project leader. The hardware evalua·
tion manager and project leader were
Norm Dodge and Dave Marsh, respective­
ly, with Dave Loney and Ray Epperson
performing similar roles for software. •

Author:
William G. Bevan
Marketing Product Manager

11

A New Real-Time Debugging
Tool for the 8500 Series MDL
The Trigger Trace Analyzer (TTA) is a mod­
ular option for the 8540 and 8550 that al­
lows you to monitor the buses and select­
ed control signals in prototype hardware,
while your program executes at normal
speed. The TTA provides precise control
of the selection of data to be stored and
analyzed. Up to 255 bus transactions and
logic signals from various points on the
prototype can be captured and stored in
the TTA's acquisition memory and dis­
played for analysis.

The TTA monitors 64 bits of information
that you can select in any combination
(using software commands) to define a
trigger signal for acquiring data or for
other purposes. The 64 bits of informa­
tion monitored include:
• the address bus (up to 24 bits)
• the data bus (8 or 16 bits)
• the data acquisition probe (8 bits)
• the emulator-dependent bus signal

interface (up to 11 bits)
• the external event qualifier (1 bit)
• counter output signals (4 bits)

All of these signals are input to an event
comparator, which functions as a word

Figure 1. The Trigger Trace Analyzer option includes two plug-in modules, bus intercon­
nect ing cables, an 8-channel signal acquisition probe, and an interface panel that includes
the four trigger channel outputs.

12

recognizer (see figure 2). The output of the
event comparator is ANDed with the out­
put of a programmable general-purpose
counter, to generate a trigger signal. There
are four such trigger channels in the TTA.
These triggers can be used independently
or interactively to construct a powerful
data acquisition trigger. The outputs of the
four trigger channels also are available ex­
ternally (via BNC connectors on the TTA
interface panel) tor triggering external
equipment.

Defining an event
To better comprehend the flexibility the
TTA offers in defining a trigger point, let's
consider some of the event control com­
mands used to specify which input data
constitutes an event. There is a separate
command for each of the event compara­
tor input sources. There is also one com­
mand that you can use to specify all in­
puts-the "eve" command. The "ad"
command is used to define a specific ad­
dress or range of addresses as an event.
The commands

ad 1105E
ad 2 500 530

specify that event 1 occurs whenever the
program accesses address 105E, and that
event 2 occurs whenever the program ac­
cesses an address within the range 500 to
530, inclusive. The "ad" command can in­
clude a "-n" command modifier that de­
fines the event as anything other than the
value specified. For example,

ad -n 4 1000 10FF

defines' event 4 as any address outside the
range 1000 to 1 OFF.

Another event command, "ctr", defines
an event as a pattern of the outputs of the
four counters associated with the event
comparators. The pattern can include 1 's,
O's, or X's (don't cares). For example, the
command

ctr 1 10XO

causes event 1 to occur when counter 1
is high and counters 2 and 4 are low.

In addition to triggering on individual
events, it is possible to trigger on the oc­
currence of multiple events. By using the
"cons" command, events can be linked
together so that the occurrence of one
event arms the comparator of the follow­
ing event. All of the events within a se­
quence must occur on consecutive cycles
of the specified type. The "cons" com­
mand requires you to select one bus

ADDRESS(24) ---....ii~
DATA(18) ----~ ..
BUSSIGNALS(11) ---··
PROBE(&) ----~~·
EVENTQUALIFIER(1) __ ,..

COUNTEROUTPUTS(4) _ __.. ..

EVENT
COMPARATOR

TRIGGER
SIGNAL

SOURCE ---HI
GENERAL
PURPOSE
COUNTER

Figure 2. Each trigger channel has its own 64-input event comparator and programmable
general-purpose counter. You can select from several event control commands to specify
which Input data constitutes an event. The four trigger channels can be linked together to
provide almost unlimited trigger selections.

mode in which all of the events are con­
sidered. The bus modes are: eye-all bus
cycles are allowed; fet-only fetch cycles
are considered; and emu-only emulator­
dependent bus cycles are considered.

The general-purpose counters
We discussed, previously, the ability to
specify the output of the four general­
purpose counters as inputs to the event
counter, to construct an event. The
counters also can be used singly or
together for other purposes. Let's take
a look at their capability.

The "cou" command defines the
counter operation. This command selects
a value to be counted, a source that is
counted, a gate signal that will enable or
disable the counting process, and the kind
of signal that will be output when the
counting operation is completed. For
example,

cou 2 v=4 s=ev1 o=delay
programs counter 2 to be asserted after
the fourth occurrence of event 1.

The "v" or value parameter may be set
anywhere between 1 and 65,536, with the
value assumed to be decimal unless spec­
ified otherwise.

The source parameter, "s", options in­
clude counting of: clock intervals from
200 ns to 2 ms in decimal steps; occur­
rences of event signals for channel 1, 2, 3,
or 4; occurrences of trigger signals for
channel 1, 2, 3, or 4; the number of bus
transactions; the number of emulator
cycles; the emulator's clock signal; and
the event qualifier signal. Only one of the
latter three may be selected at one time.
However, each of the four counters may
operate on the selected signal.

A gate parameter, "g", places a restric­
tion on the indicated counter and specifies
those conditions during which the counter
may count. Most of the conditions involve
the output state of the next lower number
counter, so the "gate" parameter is only
valid for counters 2, 3, and 4.

The "restart" parameter allows you to
have the counter reloaded with its initial
"value" when the "gate" source is as­
serted. The options are ON and OFF.

The last counter parameter to be con­
sidered is " output". As the name implies,
this parameter controls the output of the
counter. There are five options: when
"arm" is specified, the counter output re­
mains high; "disarm"-the output re­
mains low. When "pulse" is specified, the
counter output is low, pulses high when
counting is complete, then goes low again.
In "delay", the output is initially low, and
goes high after counting is complete.
"timeout" produces the reverse of
"delay".

The breakpoint command
The breakpoint command controls the ef­
fects of an event's trigger signal. For each
trigger, this command can set a break­
point, clear a breakpoint, and enable or
disable the "continue" function.

The breakpoint, if enabled, causes a
program to halt execution when an event
and its associated trigger signal occur. A
trace line is displayed on the system ter­
minal and control is returned to the oper­
ating system. The "cont" function, if en­
abled, interrupts the program when the
event and its trigger signal occur, and a
trace is displayed. However, control is re­
turned to the program, which continues
execution at full speed.

The breakpoint parameters "stop" and
"cont" can be set as a parameter in most
of the event and counter commands.

The acquisition memory
Now that we have discussed how thor­
oughly we can define when data will be
captured, let's look at what data can be
captured. The acquisition memory is a
255-by-62-bit buffer. The input data avail­
able for storage includes that monitored
by the event comparators with the excep­
tion of the counter outputs (see figure 3).

The "acq" command specifies what
data is to be stored when the trigger sig­
nal occurs. "acq all" stores all of the
most recent 255 bus transactions, which
can include the eight inputs from the
P6451 data acquisition probe. "acq ev4"
stores only those transactions defined as
event 4. A parameter called "for expres­
sion source" allows you to specify acqui­
sitions at some point other than the end of
a program. The expression must evaluate
to some number between 1 and 65536.
The source portion of this parameter iden­
tifies a specific kind of bus transaction,
with the options available identical to the
source parameters used with the "cou"
command. An " aftertrig 4" parameter
disables the counting of the source until
trigger 4 occurs.

A typical acquisition command may ap­
pear as this:

acq all for 10 eye aftertrig4
which would store all bus transactions un­
til the occurrence of the tenth cycle after
the occurrence of trigger 4.

The display command, "disp", allows
you to select the portion of acquisition
memory to be displayed on the system ter­
minal. You may display all of the bus tran­
sactions stored, or display only some
number of transactions you want to see.

The information displayed when you
enter the display command includes an
address, data, an opcode mnemonic, the
states of the eight data acquisition probe
signals, and symbols representing the type
of bus operations that occurred.

A typical application
Now let's consider a typical application
that involves using two channels of the
TTA.
Problem: Provide timing for an interrupt
routine located at 1000H to 1024H.
Solution: Trigger channel one is used to

13

OUTPUT
DATA

(samples MO lost)

SAMPLE264

SAMPLE265

ADDRESS BUS
(Up to 24,_b_lls_)_-. •. --

BUS OPERATION TYPE
(Up to 14 bits)

(newest sample) • _____ ... _111111!!1!!11-•"'•--ll!lm--rll--~--r

INPUT
DATA

Figure 3. The acquisition memory is similar to the buffer memory of a logic analyzer. This
figure shows the contents of the acquisition memory after 265 samples of input data have
been taken. Only the most recent 255 samples are retained.

detect the start of the interrupt routine and
activate channel two's counter. When the
interrupt routine is completed, channel
two's word recognizer is used to stop the
counter. The following command se­
quence is entered:

ad 11000
ad 2 1024
cou 2 V=O S=200NSEC O=ARM
g=SEQH-s

Where: ad 1000 enters the hexadecimal
value 1000 into the address portion of the
channel one word recognizer.
ad 1024 enters 1024H into the channel
two word recognizer

cou 2 selects the channel two counter
v = 0 puts the channel two counter 's initial
value at zero
s = 200NSEC selects 200 nanoseconds as
the counting unit

o =ARM sets up EVENT 2 to cause the
breakpoint
g = SEQH selects channel one's trigger
output as the source that will enable the
counter
-s indicates that a breakpoint will occur
when the channel two trigger goes active

This command sequence produces a
channel one trigger at the start of the in­
terrupt routine, 1000H. This trigger then
activates the channel two counter which
begins counting in 200 nanosecond incre­
ments. Channel two's word recognizer

14

produces a trigger when the interrupt
routine is completed at 1024H. This sec­
ond trigger causes a breakpoint to occur
that automatically stops the counter. The
resulting counter value is then read by
calling up the trigger status display, which
will show the counter's value at the time
of the breakpoint.

Conclusion
The trigger trace analyzer option for the
8540 and 8550 is a powerful real-time
debugging tool. You have almost unlimited
capability to specify the trigger conditions
for acquiring data while your program ex­
ecutes at full speed. Bus transactions, plus
logic states from eight selected points in
the prototype hardware, can be captured
and stored for analysis. The TTA is a valu­
able adjunct to the 8540 and 8550 in facili­
tating software and hardware prototype
integration. •

	Tekscope_1982_V14_N1006
	Tekscope_1982_V14_N1007
	Tekscope_1982_V14_N1008
	Tekscope_1982_V14_N1009
	Tekscope_1982_V14_N1010
	Tekscope_1982_V14_N1011
	Tekscope_1982_V14_N1012
	Tekscope_1982_V14_N1013
	Tekscope_1982_V14_N1014

