
8560
MULTI-USER SOFTWARE

DEVELOPMENT UNIT

AUXILIARY UTILITIES
PACKAGE

USERS MANUAL

This Manual supports the
following TEKTRONIX products:

8560
Option Product

4C 8560U03

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-4270-00
Product Group 61

COMMITTED TO EXCELLENCE

These modules are
compatible with:

TNIX Version 1 (8560)

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8560
MULTI-USER SOFTWARE

DEVELOPMENT UNIT

AUXILIARY UTILITIES
PACKAGE

USERS MANUAL

Serial Number - ______ _

First Printing FEB 1982

ABOUT WARRANTY AND SUPPORT FOR THIS
PRODUCT

This product is provided by Tektronix as Category C software.

NOTE

Licensed Software for which the software support is specified as Category C is fur­
nished without warranty of any kind, and without any representation regarding quality,
performance, or suitability.

TEKTRONIX SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MER­
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Tektronix' liability for damages, if any, whether based upon contract, negligence, strict
liability in tort, warranty, or any other basis, shall not exceed the fee paid by the
Customer for the Licensed Software.

Category C software is provided on an "as is" basis. Any software services, if available, will be
provided at the then current charges.

Copyright © 1982 Tektronix, Inc. All rights reserved. Contents ofthis publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

The TNIX Operating System is derived in part from the UNIXTM Operating
System. Portions of this document are reproduced from UNIX documentation,
copyright © Bell Laboratories, 1 979.

Holders of a UNIXTM software license are permitted to copy UNIX documentation,
or any portion of it, as necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8560 MUSDU Auxiliary Utilities Package Users

@

LIMITED RIGHTS LEGEND

Software License No. _____________ _

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or(c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or f<?r
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer ifthe
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

8560 MUSDU Auxiliary Utilities Package Users

CONTENTS
Page

SECTION 1 INTRODUCTION

About This Product .. 1-1
About This Manual .. 1-1
Source of Documents .. 1-1
List of Commands ... 1-1

SECTION 2 INSTALLATION

Introduction .. 2-1
Installation Procedures ... 2-1
Dependency Files ... 2-2

SECTION 3 TECHNICAL NOTES

SECTION 4 BC-AN ARBITRARY PRECISION DESK-CALCULATOR LANGUAGE

SECTION 5 DC-AN INTERACTIVE DESK-CALCULATOR

SECTION 6 LEARN-COMPUTER-AIDED INSTRUCTION ON UNIXT.M.

SECTION 7 THE M4 MACRO PROCESSOR

SECTION 8 SED-A NON-INTERACTIVE TEXT EDITOR

SECTION 9 AWK-A PATTERN SCANNING AND PROCESSING LANGUAGE

@ iii

8560 MUSDU Auxiliary Utilities Package Users

Section 1
INTRODUCTION

Page

About This Product ... 1-1
About This Manual 1-1
Source of Documents ... 1-1
List of Commands .. 1-1

Table
No.

TABLES

1-1 8560 Auxiliary Utilities Package Commands 1-2

@ 1-i

8560 MUSDU Auxiliary Utilities Package Users

@

Section 1

INTRODUCTION

ABOUT THIS PRODUCT

The 8560 MUSDU Auxiliary Utilities Package is a set of miscellaneous software utilities. The
Auxiliary Utilities Package includes: pattern scanning, "computer-aided instruction" on TNIX, cal­
culators, macro processing, simple graphics, backup media transfer, and various file manipulation
utilities.

ABOUT THIS MANUAL

This users manual provides tutorial and reference material for use with the 8560 Auxiliary Utilities
Package. The following sections are included:

Installation. Tells you how to install the Auxiliary Utilities Package.

Technical Notes. Describes any limitations or special instructions for the programs, and any
changes made to the programs by Tektronix.

BC-An Arbitrary Precision Desk-Calculator Language. Explains the usage of the BC calcula­
tor program.

DC-An Interactive Desk-Calculator. Explains the usage of the DC calculator program.

LEARN-Computer-Aided Instruction on UNIX TM. Describes the program for interpreting
Computer-Aided Instruction scripts on the TNIX operating system. This package also includes a
set of scripts that provide a computerized introduction to the system.

The M4 Macro Processor. Explains the usage of the M4 macro processor.

SED-A Non-Interactive Text Editor. Explains the usage of the SED stream-oriented editor.

AWK-A Pattern Scanning and Processing Language. Descri~s the usage of the AWK pro­
gramming language.

SOURCE OF DOCUMENTS

The tutorial and reference documents contained in Sections 4 through 9 of this manual are
reprinted by permission of Bell Laboratories.

LIST OF COMMANDS

Table 1-1 contains a list of the commands included in this package, a brief description of the
command's function, and a reference to more detailed information about the command.

1-1

Command

at

awk

basename

bc

cal

calendar

crypt

dc

dd

diff3

enroll

factor

file

graph

join

learn

1-2

8560 MUSDU Auxiliary Utilities Package Users

Table 1-1
8560 Auxiliary Utilities Package Commands

Description

Executes a command at a later time.

Pattern scanning and processing
language

Strips filename prefixes and suffixes.

Arbitrary-precision binary calculator.

Print a calendar.

Maintains a reminder service.

Encode/decode files.

Desk calculator.

File conversion utility.

Perform 3-way differential file
comparison.

Establish secret mail password.

Factor a number.

Identify a file type.

Draw a graph (works with plot).

Relational data-base operator.

Computer -aided instruction.

Reference

8560 MUSDU Reference Man­
ual Section 6.

See section 9 of this manual;
also see 8560 MUSDU Refer­
ence Manual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

See section 4 of this manual;
also see 8560 MUSDU Refer­
ence Manual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

See section 5 of this manual;
also see 8560 MUSDU Refer­
ence Manual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Man­
ual Section 6.

8560 MUSDU Reference Sec­
tion 6.

See section 6 of this manual;
also see 8560 MUSDU Refer­
ence Manual Section 6.

@

8560 MUSDU Auxiliary Utilities Package Users Introduction

Table 1-1 (cont)

Command Description Reference

m4 Macro processor. See section 7 of this manual;
also see 8560 MUSDU Refer-
ence Manual Section 6.

plot Graphics filter. 8560 MUSDU Reference Man-
ual Section 6.

prep Prepare text for statistical processing. 8560 MUSDU Reference Man-
ual Section 6.

primes Generate large primes. 8560 MUSDU Reference Man-
ual Section 6.

pstat Print system status. 8560 MUSDU Reference Man-
ual Section 6.

quot Summarize file system ownership. 8560 MUSDU Reference Man-
ual Section 6.

rev Reverse the character sequence of each 8560 MUSDU Reference Man-
line ual Section 6.

sed Stream-oriented editor. See section 8 of this manual;
also see 8560 MUSDU Refer-
ence Manual Section 6.

spline Interpolate smooth curve. 8560 MUSDU Reference Man-
ual Section 6.

split Split a file into pieces. 8560 MUSDU Reference Man-
ual Section 6.

sum Count and sum blocks in a file. 8560 MUSDU Reference Man-
ual Section 6.

tabs Set terminal tabs. .8560 MUSDU Reference Man-
ual Section 6.

tar Save and restore files on magnetic tape 8560 MUSDU Reference Man-
or flexible disks. ual Section 6.

tk Paginator for TEKTRONIX 4014 8560 MUSDU Reference Man-
terminal ual Section 6.

tsort Topological sort. 8560 MUSDU Reference Man-
ual Section 6.

units Metric/English conversion program. 8560 MUSDU Reference Man-
ual Section 6.

xget Receive secret mail. 8560 MUSDU Reference Man-
ual Section 6.

xsend Send secret mail. 8560 MUSDU Reference Man-
ual Section 6.

@ 1-3

8560 MUSDU Auxiliary Utilities Package Users

Section 2
INSTALLATION

Page
Introduction ... 2-1

Installation Procedures .. 2-1
Installing the Auxiliary Utilities Package .. 2-1
Installing an Individual Program .. 2-2

Dependency Files .. 2-2

Table
No.

TABLES

2-1 Files Required for Auxiliary Utilities Package Commands 2-3

@ 2-i

8560 MUSDU Auxiliary Utilities Package Users

@

INTRODUCTION

Section 2

INSTALLATION

This section explains the procedure for installing the 8560 Auxiliary Utilities Package on your
8560 system. The following information is included: an explanation of the format of the installation
disks, installation procedures, and a list of the files needed by each of the Auxiliary Utilities
Package commands.

INSTALLATION PROCEDURES

The Auxiliary Utilities Package software resides on two flexible disks. The information on the
disks consists of executable binary files in fbr format. You can load these programs onto your
8560 system disk as a group, or you can install individual programs. To load the whole package,
use the 8560 command install. The install command takes all of the information from a fbr
format disk and loads it to the system disk. If you want to install a single program from the disk,
the command install -f -x program loads the specified file from the fbr disk to the system disk.

For each of the Auxiliary Utilities Package programs to execute properly, certain files must be on
the system disk. Refer to the "Dependency Files" discussion later in this section for a complete
list of these files. In order for these programs to be installed as system commands, they must be
loaded while you are logged in as root.

Installing th~ Auxiliary Utilities Package

The general procedure for installing the Auxiliary Utilities Package is:

1. Log in to the 8560 as root. You must have superuser status to perform the installation.

2. Load the first software installation disk into the disk drive.

3. Enter the following command to install the software:

install

4. When the system returns a prompt (#), Remove the first disk and load the second software
installation disk into the disk drive.

5. Enter the following command to install the software:

install

2-1

Installation 8560 MUSDU Auxiliary Utilities Package Users

2-2

Installing an Individual Program

The general procedure for installing a particular program from the installation disks is:

1. Log in to the 8560 as root. You must have superuser status to perform the installation.

2. If you know which disk contains the program that you want to load, place that disk in the
disk drive.

3. Enter the following command to install the particular program:

install -f -x program

4. If the first disk did not contain the desired program, the system will display the following
error message:

fbr: (warning) program not in archive.

5. Remove the first disk and place the second disk in the disk drive.

6. Enter the following command to install the particular program:

install -f -x program

For example, to install learn you would enter:

install -f -x learn

DEPENDENCY FILES

Table 2-1 lists each command and the files that it needs for execution. These files may be
installed separately to rebuild a command. .

Command

at

awk

basename

bc

cal

Table 2-1
Files Required for Auxiliary Utilities Package Commands

Files Required

/bin/at
/bin/sh
/etc/cron

/bin/awk

/bin/basename

/bin/bc
/usr/lib/lib.b

/bin/cal

/bin/pwd
/usr/lib/atrun
/dev/null

/bin/dc

@

8560 MUSDU Auxiliary Utilities Package Users Installation

Table 2-1 (cont)

Command Files Required

calendar /bin/calendar /usr/lib/calendar
/etc/cron /bin/egrep
/bin/sed /bin/mail

crypt /bin/crypt /user/lib/makekey
/dev/tty

de /bin/dc /bin/sh

dd /bin/dd

diff3 /bin/diff3 /usr/lib/diff3
/bin/test /bin/echo
/bin/diff /bin/rm

enroll /bin/enroll /usr /Iib/makekey
/dev/tty /etc/passwd
/etc/utmp /etc/ttys
/dev /usr/spool/secretmail/notice

factor /bin/factor

file /bin/file

graph /bin/graph

join /bin/join

learn /bin/learn /usr /lib/learn/lcount
/usr/lib/learn/tee /usr/lib/learn/C
/usr/lib/learn/editor /usr/lib/learn/eqn
/usr/lib/learn/Linfo /usr/lib/learn/Xinfo
/usr /lib/learn/play /usr/lib/learn/files
/usr/lib/learn/macros. /usr/lib/learn/morefiles
/bin/sh /bin/rm

m4 /bin/m4

plot /bin/plot /bin/t300
/bin/t300s /bin/t450
/bin/tek

prep /bin/prep /usr/lib/eign

primes /bin/primes

pstat /bin/pstat /dev/mem

quot /bin/quot /etc/passwd

rev /bin/rev

sed /bin/sed

@ 2-3

Installation 8560 MUSDU Auxiliary Utilities Package Users

Table 2-1 (cont)

Command Files Required

spline /bin/spline

split /bin/split

sum /bin/sum

tabs /bin/tabs

tar /bin/tar /bin/~ort
/tmp /bin/mkdir
/bin/pwd /bin/sh

tk /bin/tk /bin/sh
/dev/null /dev/tty

tsort /bin/tsort

units /bin/units /usr/lib/units

xget /bin/xget /usr /Iib/makekey
/dev/tty /usr/spool/secretmail/notice

xsend /bin/xsend /usr /spool/secretmail/notice

2-4 @

8560 MUSDU Auxiliary Utilities Package Users

@

Section 3

TECHNICAL NOTES
This section is reserved for technical information about the 8560 MUSeU Auxiliary Utilities Pack­
age. At the time of this writing, no technical notes are included. Technical notes will be incorporat­
ed into later versions of this manual, as needed.

3-1

8560 MUSDU Auxiliary Utilities Package Users

Section 4

BC-AN ARBITRARY PRECISION
DESK-CALCULATOR

LANGUAGE

INTRODUCTION
be, an arbitrary precision desk-calculator language, was developed at Bell Laboratories and is
licensed by Western Electric for use on the 8560. The remainder of this section is a reprint of an
article describing be. The Technical Notes section ofthis manual describes the limitations of this
program and any changes made to this program by Tektronix.

4-1

4-2

BC-8560 MUSDU Auxiliary Utilities Package Users

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Be is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-II under the UNlxt time-sharing system. The output of the compiler
is interpreted and ·executed by a collection of routines which can input, output,
and do arithmetic on indefinitely· large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are

to do computation with large integers,

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

November 12,1978

tUNIX is a Trademark of Bell Laboratories.

Be-8560 MUSDU Auxiliary Utilities Package Users

BC - An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precIsion arithmetic on the UNIXt
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount' of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators -, *, /, %, and A can also be used~ they indicate subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the 'unary' minus sign). The expression

7+-3

is interpreted to mean that - 3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with A having the greatest binding power, then * and % and /, and finally + and
-. Contents of parentheses are evaluated before material outside the parentheses. Exponen­
tiations are performed from right to left and the other operators from left to right. The two
expressions

tUNIX is a Trademark of Bell Laboratories.

4-3

4-4

are equivalent, as are the two expressions

a*b*c and (a*b)*c

BC shares with Fortran and C the undesirable convention that

a/b*c is equivalent to (a/b)*c

BC-8560 MUSDU Auxiliary Utilities Package Users

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x = x + 3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt(]9I)
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase',
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines .

ibase = 8
11

will produce the output line

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number lOis interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A - F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10-15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of 'obase', initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line

BC-8560 MUSDU Auxiliary Utilities Package Users

3E8

which is to he interpreted as a)--digit hexadecimal number. Very large output bases are permit­
ted_. and tht:y arc sometimes usei'uL For example, large numbers call bl' output in groups of
live liigits by .,eHing 'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are han-
dled appropriately. .

Very large numbers are split across lines with 70 characters per line. Lines which are con­
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max­
imum of the two scales of the operand~, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity 'scale'. The scale of a quotient is the contents of the internal quantity 'scale'.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu­
ment and the contents of 'scale'.

All of the· internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed_

The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to
O. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like
other variables. The line

scale = scale + 1

increases the value of "scale' by one, and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are not equal to 10. The internal computa­
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col­
lide with simple variable names. Twenty-six different defined functions are permitted in addi­
tion to the twenty-six variable names. The line

4-5

4-6

BC-8560 MUSDU Auxiliary Utilities Package Users

define a(x)(

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace I. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return (x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variable~
at each level of call are protected. The parameters named in a function definition are treated IJ1

the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a (x,y)l
auto z
z = x*y
return (z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b O.

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),S)

would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

BC-8560 MUSDU Auxiliary Utilities Package Users

f(a [])
define f(a [])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The 4if', the 4while', and the 'for' statements may be used to alter the flow within pro­
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

or

if(relation) statement
while (relation) statement
for (expression 1 ~ relation~ expression2) statement

if (relation) {statements}
while (relation) {statements}
for (expression 1 ~ relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

where two expressions are related by one of the six relational operators <, >, < =, > =,
= =, or !=. The relation = = stands for 4equal to' and != stands for 4not equal to'. The
meaning of the remaining relational operators is clear.

SEW ARE of using = instead of = = in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a comparison.

The 4if' statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution' of its range and if the relation is false, con­
trol passes to the next statement beyond the range of the while.

The 'for' statement begins by executing 4expression 1'. Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 4expression2' is executed.
The relation is tested, and so on. The typical use of the 'for' statement is for a controlled itera­
tion, as in the statement

for (j = 1 ~ i < = 1 O~ i = i + 1) i

which will print the integers from to 10. Here are some examples of the use of the control
statements.

define fen) {
auto i, x
x=l
for(j=l~ i< =n~ i=i+l) x=x*j
return (x)
}

The line

f(a)

4-7

4-8

BC-8560 MUSDU Auxiliary Utilities Package Users

will print a factorial if a is a posItIve integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b (n,m) (
auto x, j
x=l
for(j=I;j<=m;j=j+l) x=x*(n-j+I)/j
return (x)
}

The following function computes values of the exponential function by summing the appropri­
ate series without regard for possible truncation errors:

scale = 20
define e(x){

auto a, b, c, d, n
a=l
b=l
c=1
d = 0
n = 1
while(1 = =}) (

Some Details

a = a*x
b = b*n
c = c + alb
n = n + 1
ir(c = =d) return (c)
d = c

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state­
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any­
where that an expression can. For example, the line

(x =y+ 17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a(j=i+l]

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

BC-8560 MUSDU Auxiliary Utilities Package Users

x.=y =z is the same as
x=+y
x =- y
x =* y
x =/ y
x =01<) Y
x =~ Y
x++
x--
++x
--x

x=(y=z)
x = x+y
x = x-y
x = x*y
x = x/y
x = x%y
x = x~y

(x=x+ 1)-1
(x=x-l)+1
x = x+l
x = x-I

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x = -y and x = ~y. The first replaces x by x -y and the second by -yo

Three Important Things

1. To exit a BC program, type "quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with "/*' and end with '*/'.

3. There is a library of math functions which may be obtained by typing at command level

bc -I

This command will load a set of library functions which, at the time of writing, consists of sine
(named "s'). cosine ("c'), arctangent ("a'), natural logarithm ("1'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere [3].

If you type

bc file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in Y ACC [4}~ its original version was written by S. C. Johnson.

References

[1} K. Thompson and D. M. Ritchie, UNIX Programmer's Manual. Bell Laboratories, 1978.

[2} B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice-Hall, 1978.

[3] R. Morris, A Library of Re.teref1ce Standard MathematIcal Subroutines. Bell Laboratories
internal memorandum, 1975.

[4} S. C. Johnson, YA CC - Yet Another Compiler-Compiler. Bell Laboratories Computing Sci­
ence Technical Report #32, 1978.

[5] R. Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

4-9

4-10

Be-8S60 MUSDU Auxiliary Utilities Package Users

Appendix

1. Notation

In the following pages syntactic categories are in italics~ literals are in bold~ material in
brackets [] is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state­
ments.

2.1. Comments

Comments are introduced by the characters 1* and terminated by *1.

2.2. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conf1ict~ a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade­
cimal digits A- F are also recognized as digits with values 10-15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre­
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

Be-8560 MUSDU Auxiliary Utilities Package Users

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. ide nt ~/iers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. arraY-flarne (expression)

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression [, expression . ..]])

A function call consists of a function name followed by parentheses containing a comma­
separated list of expressions, which are the funct,ion arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
or' the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expressiun)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

4-11

Be-8560 MUSDU Auxiliary Utilities Package Users

3.2. Unary operators

The unary operators bind right to left.

3.2 . .1. - expression

The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. - - named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +
The named expression is incremented by one. The result is the value of the named

expression before incrementing.

3.2.5. named-expressioll - -

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression" expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso­
lute value of the right expression, then the scale of the result is:

min (axb, max (scale, a))

4-12

3.4. Multiplicative operators

The operators *, /, % bind left to right.

3.4.1. expression * expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a +b, max (scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expressioll % expression

The % operator produces the remainder of the division of the two expressions. More pre­
cisely, a%b is a-alb*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

BC-8560 MUSDU Auxiliary Utilities Package Users

3.5. Additive operators

The additive operators bind left to right. .

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max­
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression = + expression

3.6.3. named-expression = - expression

3.6.4. named-expression = * expression

3.6.5. flamed-expression = / expression

3.6.6. named-expression = % expression

3.6.7. named-expression = A expression

The result of the above expressions is equivalent to ~~named expression
sion OP expression", where OP is the operator after the = sign.

4. Relations

named expres-

~ Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression < = expression

4.4. expression> = expression

4.5. expression = = expression

4.6. expression! = expression

4-13

4-14

Be-8560 MUSDU Auxiliary Utilities Package Users

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I.
On entry to a function, the old' values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur­
rounding them with { }.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execu­
tion of the statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
.!irst-expression
while (relation) {

sfatemenf
last-expression

All three expressions must be present.

Be-8S60 MUSDU Auxiliary Utilities Package Users

6.7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto idenNfier [,ident(fier]

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol­
lowing the array name by empty square brackets. The auto statement must be the first state­
ment in a function definition.

6.9. Define statements

define{ [parameter [,parameter . ..]]) {
statements}

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return (expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return (0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a Be program and returns control to UNIX when it
is first encoun teredo Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

4-15

8560 MUSDU Auxiliary Utilities Package Users

Section 5

DC-AN INTERACTIVE DESK-CALCULATOR

INTRODUCTION
de, an interactive desk-calculator, was developed at Bell Laboratories and is licensed by Western
Electric for use on the 8560. The remainder of this section is a reprint of an article describing de.
The Technical Notes section of this manual describes the limitations of this program and any
changes made to this program by Tektronix.

5-1

5-2

DC-8560 MUSDU Auxiliary Utilities Package Users

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNlxt

time-sharing system to do arbitrary-precision integer arithmetic. It has provi­
sion for manipulafing scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that can
be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

November 15, 1978

tUNIX is a Trademark of Bell Laboratories.

DC-8560 MUSDU Auxiliary Utilities Package Users

DC - An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

DC is an arbitrary precision arithmetic package implemented on the UNlxt time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the fami­
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A - F which are treated as digits with values 10-15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+-*Ofo"

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(/), remaindered (%), or exponentiated ("). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun­
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

tUNIX is a Trademark of Bell Laboratories.

5-3

5-4

sx

Ix

DC-8560 MUSDU Auxiliary Utilities Package Users

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L.

d

p

f

x

I ... I

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and.
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi­
talized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >x =x !<x !>x !=x

v

c

The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

All values on the stack are popped~ the stack becomes empty.

DC-8S60 MUSDU Auxiliary Utilities Package Users

o

k

z

?

The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than 1 or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value i~ used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

I nternal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base 100 stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57,1. After any arithmetic operation on a number, care is taken that all
digits are in the range 0-99 and that the number has no leading zeros. The number zero is
represented by the empty string ..

Negative numbers are represented,in the 100's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always -1 and all other digits are in the range 0 - 99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98, -1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need. only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi­
tion can be carried out and the handling of carries done later when that is convenient, as it
sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string~ the end of the
string, the next place to write, and the next place to read. Communication between the alloca­
tor and DC is done via pointers to these headers.

5-5

5-6

DC-8560 MUSDU Auxiliary Utilities Package Users

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca­
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward­
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write· calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block. .

I nternal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou­
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99, -1 by ·the digit -1. In any case, digits which are not in the range
0-99 must be brought into that range, propagating any carries or borrows that result.

DC-85S0 MUSDU Auxiliary Utilities Package Users

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of !he lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, bu t if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi­
dend is smaller than the divisor. A t the end, the digits of the quotient are put into the canoni­
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun­
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.

5-7

5-8

DC-8560 MUSDU Auxiliary Utilities Package Users

I nput Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A - F correspond to the
numbers 10-15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The 0

command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command 0 pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output~
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line~ a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal­
hexadecimal conversions.

I nternal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis­
ters with the commands sand l. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the contents of register x on the top of the
stack. The I command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on
the top of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

Subroutine Definitions and Calls

Enclosing a string in II pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers - Programming DC

The load and store commands together with II to store strings, x to execute and the test­
ing commands '<', ':>', '=', '!<', '!>', '!=' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com­
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

lIipl+ si lilO>a]sa
Osi lax

DC-8560 MUSDU Auxiliary Utilities Package Users

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands Sand L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands sand
I also work on registers but not as push-down stacks. I doesn't effect the top of the register
stack, and s destroys what was there before.

The commands to work on arrays are: and;. :x pops the stack and uses this value as an
index into the array x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com­

mand uses the top of the stack as the number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro­
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (j.e. the bracket L .. 1 commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan­
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much' faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi­
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com­
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input 'and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith­
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user

5-9

DC-8560 MUSDU Auxiliary Utilities Package Users

asked for them by specifying a value for scale. Squar~ root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

References

[1] L. L. Cherry, R. Morris, Be - A n Arbitrary Precision Desk-Calculator Language.

[2] K. C. Knowlton, A Fast Storage A /locator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

5-10

8560 MUSDU Auxiliary Utilities Package Users

Section 6

LEARN-COMPUTER-AIDED INSTRUCTION
ON UNIXTM

INTRODUCTION
learn, a program for computer-aided instruction on UNIX, was developed at Bell Laboratories
and is licensed by Western Electric for use on the 8560. The remainder of this section is a reprint
of an article describing learn. The Technical Notes section of this manual describes the
limitations of this program and any changes made to this program by Tektronix.

TMUNIX is a Trademark of Bell Laboratories.

6-1

6-2

LEARN-8560 MUSDU Auxiliary Utilities Package Users

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the second version of the learn program for interpret­
ing CAl scripts on the UNIXt operating system, and a set of scripts that provide
a computerized introduction to the system.

Six current scripts cover basic commands and file handling, the editor,
additional file handling commands, the eqn program for mathematical typing,
the" -ms" package of formatting macros, and an introduction to the C pro­
gramming language. These scripts now include a total of about 530 lessons.

Many users from a wide variety of backgrounds have used learn to
acquire basic UNIX skills. Most usage involves the first two scripts, an introduc­
tion to files and commands, and the text editor.

The second version of learn is about four times faster than the previous
one in CPU utilization, and much faster in perceived time because of better
overlap of computing and printing. It also requires less file space than the first
version. Many of the lessons have been revised~ new material has been added
to reflect changes and enhancements in the UNIX system itself. Script-writing is
also easier because of revisions to the script language.

January 30, 1979

tUNIX is a Trademark of Bell Laboratories.

LEARN-8560 MUSDU Auxiliary Utilities Package Users

LEARN - Computer-Aided Instruction on UNIX
(Second Edition)

Brian W. Kernighan

Michael E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Learn is a driver for CAl scripts. It is intended to permit the easy composition of lessons
and lesson fragments to teach people computer skills. Since it is teaching the same system on
which it is implemented, it makes direct use of UNIxt facilities to create a controlled UNIX

environment. The system includes two main parts: (1) a driver that interprets the lesson
scripts~ and (2) the lesson scripts themselves. At present there are six scripts:

ing:

basic file handling commands

the UNIX text editor ed

advanced file handling

the eqn language for typing mathematics

the" -ms" macro package for document formatting

the C programming language

The purported advantages of CAl scripts for training in computer skills include the follow-

(a) students are forced to perform the ~xercises that ~re in fact the basis of training in
any case~

(b) students receive immediate feedback and confirmation of progress~

(c) students may progress at their own rate~

(d) no schedule requirements are imposed~ students may study at any time convenient
for them~

(e) the lessons may be improved individually and the improvements are immediately
available to new users;

(f) since the student has access to a computer for the CAl script there is a place to do
exercises~

(g) the use of high technology will improve student motivation and the interest of their
management.

Opposed to this, of course, is the absence of anyone to whom the student may direct questions.
If CAl is used without a "counselor" or other assistance, it should properly be compared to a
textbook, lecture series, or taped course, rather than to a seminar. CAl has been used for
many years in a variety of educational areas. i , 2, 3 The use of a computer to teach itself, how­
ever, offers unique advantages. The skills develop,ed to get through the script are exactly those
needed to use the computer~ there is no waste effort.

The scripts written so far are based on some familiar assumptions about education~ these

tUNIX is a Trademark of Bell Laboratories.

6-3

6-4

LEARN-8560 MUSDU Auxiliary Utilities Package Users

assumptions are outlined in the next section. The remaining sections describe the operation of
the script driver and the particular scripts now available. The driver puts few restrictions on the
script writer, but the current scripts are of a rather rigid and stereotyped form in accordance
with the theory in the next section and practical limitations.

2. Educational Assumptions and Design.

First. the way to teach people how to do something is to have them do it. Scripts should
not contain long pieces of explanation~ they should instead frequently ask the student to do
some task. So teaching is always by example: the typical script fragment shows a small example
of some technique and then asks the user to either repeat that example or produce a variation
on it. All are intended to be easy enough that most students will get most questions right, rein­
forcing the desired behavior.

Most lessons fall into one of three types. The simplest presents a lesson and asks for a
yes or no answer to a question. The student is given a chance to experiment before replying.
The script checks for the correct reply. Problems of this form are sparingly used.

The second type asks for a word or number as an answer. For example a lesson on files
might say

How many files are there in the current directory? Type "answer N ", where N is the number
of.files.

The student is expected to respond (perhaps after experimenting) with

answer J 7

or whatever. Surprisingly often, however, the idea of a substitutable argument (i.e., replacing
N by 17) is difficult for non-programmer students, so the first few such lessons need real care.

The third type of lesson is open-ended - a task is set for the student, appropriate parts of
the input or output are monitored, and the student types ready when the task is done. Figure 1
shows a sample dialog that illustrates the last of these, using two lessons about the cat (con­
catenate, i.e., print) command taken from early in the script that teaches file handling. Most
learn lessons are of this form.

After each correct response the computer congratulates the student and indicates the les­
son number that has just been completed, permitting the student to restart the script after that
lesson. If the answer is wrong, the student is offered a· chance to repeat the lesson. The
"speed" rating of the student (explained in section 5) is given after the lesson number when
the lesson is completed successfully~ it is printed only for the aid of script authors checking out
possible errors in the lessons.

It is assumed that there is no foolproof way to determine if the student truly "under­
stands" what he or she is doing~ accordingly, the current learn scripts only measure perfor­
mance, not comprehension. If the student can perform a given task, that is deemed to be
"learning. "4

The main point of using the computer is that what the student does is checked for
correctness immediately. Unlike many CAl scripts, however, these scripts provide few facilities
for dealing with wrong answers. In practice, if most of the answers are not right the script is a
failure~ the universal solution to student error is to provide anew, easier script. Anticipating
possible wrong answers is an endless job, and it is really easier as well as better to provide a
simpler script.

Along with this goes the assumption that anything can be taught to anybody if it can be
broken into sufficiently small pieces. Anything not absorbed in a single chunk is just subdi­
vided.

To avoid boring the faster students, however, an effort is made in the files and editor
scripts to provide three tracks of different difficulty. The fastest sequence of lessons is aimed at
roughly the bulk and speed of a typical tutorial manual and should be adequate for review and
for well-prepared students. The next track is intended for most users and is roughly twice as

LEARN--8560 MUSDU Auxiliary Utilities Package Users

Figure 1: Sample dialog from basic files script

(Student responses in italics~ ~$' is the prompt)

A file can be printed on your terminal
by using the "cat" command. Just say
"cat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food"~ then type "ready".
S cat food

this is the file
named food.

S ready

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat". '
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the file,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
$ cat President
cat: can't open President
S ready

Sorry, that's not right. Do you want to try again? yes
Try the problem again.
$ Is
.ocopy
Xl
roosevelt
S cat roosevelt

this file is named roosevelt
and contains three lines of
text.

S ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate"

long. Typically, for example, the fast track might present an idea and ask for a variation on the
example shown~ the normal track will first ask the student to repeat the example that was
shown before attempting a variation. The third and slowest track, which is often three or four
times the length of the fast track, is intended to be adequate for anyone. (The lessons of Fig­
ure 1 are from the third track.) The multiple tracks also mean that a student repeating a course
is unlikely to hit the same series of lessons~ this makes it profitable for a shaky user to back up

6-5

6-6

LEARN-8560 MUSDU Auxiliary Utilities Package Users

and try again, and many students have done so.

The tracks are not completely distinct, however. Depending on the number of correct
answers the student has given for the last few lessons, the program may switch tracks. The
driver is actually capable of following an arbitrary directed graph of lesson sequences, as dis­
cussed in section 5. Some more structured arrangement, however, is used in all current scripts
to aid the script writer in organizing the material into lessons. It is sufficiently difficult to write
lessons that the three-track theory is not followed very closely except in the files and editor
scripts. Accordingly, in some cases, the fast track is produced merely by skipping lessons from
the slower track. In others, there is essentially only one track.

The main reason for using the learn program rather than simply writing the same material
as a workbook is not the selection of tracks, but actual hands-on experience. Learning by doing
is much more effective than pencil and paper exercises.

Learn also provides a mechanical check on performance. The first version in fact would
not let the student proceed unless it received correct answers to the questions it set and it
would not tell a student the right answer. This somewhat Draconian approach has been
moderated in version 2. Lessons are sometimes badly worded or even just plain wrong; in such
cases, the student has no recourse. But if a student is simply unable to complete one lesson,
that should not prevent access to the rest. Accordingly, the current version of learn allows the
student to skip a lesson that he cannot pass; a "no" answer to the "Do you want to try again?"
question in Figure 1 will pass to the next lesson. It is still true that learn will not tell the stu­
dent the right answer.

Of course, there are valid objections to the assumptions above. In particular, some stu­
dents may object to not understanding what they are doing; and the procedure of smashing
everything into small pieces may provoke the retort "you can't cross a ditch in two jumps."
Since writing CAl scripts is considerably more tedious than ordinary manuals, however, it is
safe to assume that there will always be alternatives to the scripts as a way of learning. In fact,
for a reference manual of 3 or 4 pages it would not be surprising to have a tutorial manual of
20 pages and a (multi-track) script of 100 pages. Thus the reference manual will exist long
before the scripts.

3. Scripts.

As mentioned above, the present scripts try at most to· follow a three-track theory. Thus
little of the potential complexity of the possible directed graph is employed, since care must be
taken in lesson construction to see that every necessary fact is presented in every possible path
through the units. In addition, it is desirable that every unit have alternate successors to deal
with student errors.

In most existing courses, the first few lessons are devoted to checking prerequisites. For
example, before the student is allowed to proceed through the editor script the script verifies
that the student understands files and is able to type. It is felt that the sooner lack of student
preparation is detected, the easier it will be on the student. Anyone proceeding through the
scripts should be getting mostly correct answers; otherwise, the system will be unsatisfactory
both because the wrong habits are being learned and because the scripts make little effort to
deal with wrong answers. Unprepared students should not be encouraged to continue with
scripts.

There are some preliminary items which the student must know before any scripts can be
tried. In particular, the student must know how to connect to a UNIX system, set the terminal
properly, log in, and execute simple commands (e.g., learn itself). In addition, the character
erase and line kill conventions (# and @) should be known. It is hard to see how this much
could be taught by computer-aided instruction, since a student who does not know these basic
skills will not be able to run the learning program. A brief description on paper is provided
(see Appendix A), although assistance will be needed for the first few minutes. This assis­
tance, however, need not be highly skilled.

LEARN-8560 MUSDU Auxiliary Utilities Package Users

The first script in the current set deals with files. It assumes the basic knowledge above
and teaches the student about the Is, cat, mv, rm, ep and diff commands. It also deals with
the abbreviation characters *, ?, and [] in file names. It does not cover pipes or I/O redirec­
tion, nor does it present the many options on the Is command.

This script contains 31 lessons in the fast track~ two are intended as prerequisite checks,
seven are review exercises. There are a total of 75 lessons in all three tracks, and the instruc­
tional passages typed at the student to begin each lesson total 4,476 words. The average lesson
thus begins with a 60-word message. In general, the fast track lessons have somewhat longer
introductions, and the slow tracks somewhat shorter ones. The longest message is 144 words
and the shortest 14.

The second script trains students in the use of the context editor ed, a sophisticated editor
using regular expressions for searching. S All editor features except encryption, mark names and
4~' in addressing are covered. The fast track contains 2 prerequisite checks, 93 lessons, and a
review lesson. It is supplemented by 146 additional lessons in other tracks.

A comparison of sizes may be of interest. The ed description in the reference manual is
2,572 words long. The ed tutorial6 is 6,138 words long. The fast track through the ed script is
7,407 words of explanatory messages, and the total ed script, 242 lessons, has 15,615 words.
The average ed lesson is thus also about 60 words~ the largest is 171 words and the smallest 10.
The original ed script represents about three man-weeks of effort.

The advanced file handling script deals with Is options, I/O diversion, pipes, and support­
ing programs like pr, we, tail, spell and grep. (The basic file handling script is a prerequisite.)
It is not as refined as the first two scripts~ this is reflected at least partly in the fact that it pro­
vides much less of a full three-track sequence than they do. On the other hand, since it is per­
ceived as "advanced," it is hoped that the student will have somewhat more sophistication and
be better able to cope with it at a reasonably high level of performance.

A fourth script covers the eqn language for typing mathematics. This script must be run
on a terminal capable of printing mathematics, for instance the DASI 300 and similar Diablo­
based terminals, or the nearly extinct Model 37 teletype. Again, this script is relatively short of
tracks: of 76 lessons, only 17 are in the second track and 2 in the third track. Most of these
provide additional practice for students who are having trouble in the first track.

The -ms script for formatting macros is a short one-track only script. The macro pack­
age it describes is no longer the standard, so this script will undoubtedly be superseded in the
future. Furthermore, the linear style of a single learn script is somewhat inappropriate for the
macros, since the macro package is composed of many independent features, and few users
need all of them. It would be better to have a selection of short lesson sequences dealing with
the features independently.

The script on C is in a state of transition. It was originally designed to follow a tutorial on
C, but that document has since become obsolete. The current script has been partially con­
verted to follow the order of presentation in The C Programming Language, 7 but this job is not
complete. The C script was never intended to teach C~ rather it is supposed to be a series of
exercises for which the computer provides checking and (upon success) a suggested solution.

This combination of scripts covers much of the material which any user will need to know
to make effective use of the UNIX system. With enlargement of the advanced files cour5e to
include more on the command interpreter, there will be a relatively complete introductil)n to
UNIX available via learn. Although we make no pretense that learn will replace other ins:ruc­
tional materials, it should provide a useful supplement to existing tutorials and reference rlanu­
also

6-7

6-8

LEARN-8560 MUSDU Auxiliary Utilities Package Users

4. Experience with Students.

Learn has been installed on many different UNIX systems. Most of the usage is on the
first two scripts, so these are more thoroughly debugged and polished. As a (random) sample
of user experience, the learn program has been used at Bell Labs at Indian Hill for 10,500 les-·
sons in a four month period. About 3600 of these are in the files script, 4100 in the editor, and.
1400 in advanced files. The passing rate is about 80%, that is, about 4 lessons are passed for
everyone failed. There have been 86 distinct users of the files script, and 58 of the editor. On
our system at Murray Hill, there have been nearly 4000 lessons over four weeks that include
Christmas and New Year. Users have ranged in age from six up.

It is difficult to characterize typical sessions with the scripts~ many instances exist of some­
one doing one or two lessons and then logging out, as do instances of someone pausing in a
script for twenty minutes or more. In the earlier version of learn, the average session in the
files course took 32 minutes and covered 23 lessons. The distribution is quite broad and
skewed, however; the longest session was 130 minutes and there were five sessions shorter
than five minutes. The average lesson took about 80 seconds. These numbers are roughly typ­
ical for non-programmers; a UNIX expert can do the scripts at approximately 30 seconds per les­
son, most of which is the system printing.

At present working through a section of the middle of the files script took about 1.4
seconds of processor time per lesson, and a system expert typing quickly took 15 seconds of
real time per lesson. A novice would probably take at least a minute. Thus, as a rough approx­
imation, a UNIX system could support ten students working simultaneously with some spare
capacity.

5. The Script Interpreter.

The learn program itself merely interprets scripts. It provides facilities for the script writer
to capture student responses and their effects, and simplifies the job of passing control to and
recovering control from the student. This section describes the operation and usage of the
driver program, and indicates what is required to produce a new script. Readers only interested
in the existing scripts may skip this section.

The file structure used by learn is shown in Figure 2. There is one parent directory
(named lib) containing the script data. Within this directory are subdirectories, one for each
subject in which a course is available, one for logging (named log), and one in which user sub­
directories are created (named play). The subject directory contains master copies of all les­
sons, plus any supporting material for that subject. In a given subdirectory, each lesson is a
single text file. Lessons are usually named systematically; the file that contains lesson n is
called Ln.

When learn is executed, it makes a private directory for the user to work in, within the
learn portion of the file system. A fresh copy of all the files used in each lesson (mostly data
for the student to operate upon) is made each time a student starts a lesson, so the script writer
may assume that everything is reinitialized each time a lesson is entered. The student directory
is deleted after each session; any permanent records must be kept elsewhere.

The script writer must provide certain basic items in each lesson:

(I) the text of the lesson;

(2) the set-up commands to be executed before the user gets control;

(3) the data, if any, which the user is supposed to edit, transform, or otherwise process;

(4) the evaluating commands to be executed after the user has finished the lesson, to decide
whether the answer is right~ and

(5) a list of possible successor lessons.

Learn tries to minimize the work of bookkeeping and installation, so that most of the effort
involved in script production is in planning lessons, writing tutorial paragraphs, and coding tests
of student performance.

LEARN-8560 MUSDU Auxiliary Utilities Package Users

Figure 2: Directory structure for learn

lib

play

files

editor

(other .courses)

log

student 1

student2

LO.la
LO.lb

files for student 1 ...

files for student2 ...

lessons for files course

The basic sequence of events is as follows. First, learn creates the working directory.
Then, for each lesson, learn reads the script for the lesson and processes it a line at a time.
The lines in the script are: (I) commands to the script interpreter to print something, to create
a files, to test something, etc.~ (2) text to be printed or put in a file~ (3) other lines, which are
sent to the shell to be executed. One line in each lesson turns control over to the user~ the
user can run any UNIX commands. The user mode terminates when the user types yes, no,
ready, or answer. At this point, the user's work is tested~ if the lesson is passed, a new lesson
is selected, and if not the old one is repeated.

Let us illustrate this with the script for the second lesson of Figure 1 ~ this is shown in
Figure 3.

Lines which begin with # are commands to the learn script interpreter. For example,

#print

causes printing of any text that follows, up to the next line that begins with a sharp.

#print .file

prints the contents of .file ~ it is the same as cat .file but has less overhead. Both forms of #print
have the added property that if a lesson is failed, the #print will not be executed the second
time through~ this avoids annoying the student by repeating the preamble to a lesson.

#create filename

creates a file of the specified name, and copies any subsequent text up to a # to the file. This
is used for creating and initializing working files and reference data for the lessons.

#user

gives control to the student~ each line he or she types is passed to the shell for execution. The
#user mode is terminated when the student types one of yes, no, ready or answer. At that
time, the driver resumes interpretation of the script.

#copyin
#uncopyin

Anything the student types between these commands is copied onto a file called . copy. This lets
the script writer interrogate the student's responses upon regaining control.

6-9

6-10

#copyout
#uncopyout

LEARN-8560 MUSDU Auxiliary Utilities Package Users

Figure 3: Sample Lesson

#print
Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between
"Is", which tells you the name of the files,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
#create roosevelt

this file is named roosevelt
and contains three lines of
text.

#copyout
#user
#uncopyout
tail - 3 .ocopy > X I
#cmp Xl roosevelt
#log
#next
3.2b 2

Between these commands, any material typed at the student by any program is copied to the file
.ocopy. This lets the script writer interrogate the effect of what the student typed, which true
believers in the performance theory of learning usually prefer to the student's actual input.

#pipe
#unpipe

Normally the student input and the script commands are fed to the UNIX command interpreter
(the "shell") one line at a time. This won't do if, for example, a sequence of editor commands
is provided, since the input to the editor must be handed to the editor, not to the shell.
Accordingly, the material between #pipe and #unpipe commands is fed continuously through a
pipe so that such sequences work. If copyoUl is also desired the copyoUl brackets must include
the pipe brackets.

There are several commands for setting status after the student has attempted the lesson.

#cmpfilelfile2

is an in-line implementation of cmp, which compares two files for identity.

#match slu.ff

The last line of the student's input is compared to Slid,., and the success or fail status is set
according to it. Extraneous things like the word answer are stripped before the comparison is
made. There may be several #match lines~ this provides a convenient mechanism for handling
multiple "right" answers. Any text up to a # on subsequent lines after a successful #malch is
printed~ this is illustrated in Figure 4, another sample lesson.

#bad stld,.
This is similar to #march, except that it corresponds to specific failure answers~ this can be
used to produce hints for particular wrong answers that have been anticipated by the script

LEARN-8560 MUSDU Auxiliary Utilities Package Users

writer.

#succeed
#fail

Figure 4: Another Sample Lesson

#print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
#copyin
#user
#uncopyin
#match mS
#match .mS
"mS" is easier.
#log
#next
63.1d 10

print a message upon success or failure (as determined by some previous mechanism).

When the student types one of the "commands" yes, no, ready, or answer, the driver
terminates the #user command, and evaluation of the student's work can begin. This can be
done either by the built-in commands above, such as #match and #cmp, or by status returned
by normal UNIX commands, typically grep and test. The last command should return status true
(0) if the task was done successfully and false (non-zero) otherwise~ this status return tells the
driver whether or not the student has successfully passed the lesson.

Performance can be logged:

log file

writes the date, lesson, user name and speed rating, and a success/failure indication on file.
The command

log

by itself writes the logging information in the logging directory within the learn hierarchy, and
is the normal form.

next

is followed by a few lines, each with a successor lesson name and an optional speed rating on it.
A typical set might read

25.la 10
25.2a 5
25.3a 2

indicating that unit 25.1a is a suitable follow-on lesson for students with a speed rating of 10
units, 25.2a for student with speed near 5, and 25.3a for speed near 2. Speed ratings are main­
tained for each session with a student~ the rating is increased by one each time the student gets
a lesson right and decreased by four each time the student gets a lesson wrong. Thus the driver
tries to maintain a level such that the users get 80010 right answers. The maximum rating is lim­
ited to 10 and ,the minimum to O. The initial rating is zero unless the student specifies a
different rating when starting a session.

If the student passes a lesson, a new lesson is selected and the process repeats. If the stu­
dent fails, a false status is returned and the program reverts to the previous lesson and tries

6-11

6-12

LEARN-8S60 MUSDU Auxiliary Utilities Package Users

another alternative. If it can not find another alternative, it skips forward a lesson. The stu­
dent can terminate a session at any time by typing bye, which causes a graceful exit from learn.
Hanging up is the usual novice's way out.

The lessons may form an arbitrary directed graph, although the present program imposes
a limitation on cycles in that it will not present a lesson twice in the same session. If the stu­
dent is unable to answer one of the exercises correctly, the driver searches for a previous lesson
with a set of alternatives as successors (following the # next line). From the previous lesson
with alternatives one route was taken earlier; the program simply tries a different one.

It is perfectly possible to write sophisticated scripts that evaluate the student's speed of
response, or try to estimate the elegance of the answer, or provide detailed analysis of wrong
answers. Lesson writing is so tedious already, however, that most of these abilities are likely to
go unused.

The driver program depends heavily on features of the UNIX system that are not available
on many other operating systems. These include the ease of manipulating files and directories,
file redirection, the ability to use the command interpreter as just another program (even in a
pipeline), command status testing and branching, the ability to catch signals like interrupts, and
of course the pipeline mechanism itself. Although some parts of learn might be transferable to
other systems, some generality will probably be lost.

A bit of history: The first version of learn had fewer built-in commands in the driver pro­
gram, and made more use of the facilities of the UNIX system itself. For example, file com­
parison was done by creating a cmp process, rather than comparing the two files within learn.
Lessons were not stored as text files, but as archives. There was no concept of the in-line
document; even #pr;nl had to be followed by a file name. Thus the initialization for each les­
son was to extract the archive into the working directory (typically 4-8 files), then #pr;nl the
lesson text.

The combination of such things made learn rather slow and demanding of system
resources. The new version is about 4 or 5 times faster, because fewer files and processes are
created. Furthermore, it appears even faster to the user because in a typical lesson, the printing
of the message comes first, and file setup with #creale can be overlapped with printing, so that
when the program finishes printing, it is really ready for the user to type at it.

It is also a great advantage to the script maintainer that lessons are now just ordinary text
files, rather than archives. They can be edited without any difficulty, and UNIX text manipula­
tion tools can be applied to them. The result has been that there is much less resistance to
going in and fixing substandard lessons.

6. Conclusions

The following observations can be made about secretaries, typists, and other non­
programmers who have used learn:

(a) A novice must have assistance with the mechanics of communicating with the computer
to get through to the first lesson or two; once the first few lessons are passed people can
proceed on their own.

(b) The terminology used in the first few lessons is obscure to those inexperienced with com­
puters. It would help if there were a low level reference card for UNIX to supplement the
existing programmer oriented bulky manual and bulky reference card.

(c) The concept of "substitutable argument" is hard to grasp, and requires help.

(d) They enjoy the system for the most part. Motivation matters a great deal, however.

It takes an hour or two for a novice to get through the script on file handling. The total time
for a reasonably intelligent and motivated novice to proceed from ignorance to a reasonable
ability to create new files and manipulate old ones seems to be a few days, with perhaps half of
each day spent on the machine.

LEARN-8560 MUSDU Auxiliary Utilities Package Users

The normal way of proceeding has been to have students in the same room with someone
who knows the UNIX system and the' scripts. Thus the student is not brought to a halt by
difficult questions. The burden on the counselor, however, is much lower than that on a
teacher of a course. Ideally, the students should be encouraged to proceed with instruction
immediately prior to their actual use of the computer. They should exercise the scripts on the
same computer and the same kind of terminal that they will later use for their real work, and
their first few jobs for the computer should be relatively easy ones. Also, both training and ini­
tial work should take place on days when the hardware and software are working reliably.
Rarely is all of this possible, but the closer one comes the better the result. For example, if it
is known that the hardware is shaky one day, it is better to attempt to reschedule training for
another one. Students are very frustrated by machine downtime~ when nothing is happening, it
takes some sophistication and experience to distinguish an infinite loop, a slow but functioning
program, a program waiting for the user, and a broken machine.·

One disadvantage of training with learn is that students come to depend completely on the
CAl system, and do not try to read manuals or use other learning aids. This is unfortunate, not
only because of the increased demands for completeness and accuracy of the scripts, but
because the scripts do not cover all of the UNIX system. New users should have manuals
(appropriate for their level) and read them~ the scripts ought to be altered to recommend suit­
able documents and urge students to read them.

There are several other difficulties which are clearly evident. From the student's
viewpoint, the most serious is that lessons still crop up which simply can't be passed. Some­
times this is due to poor explanations, but just as often it is some error in the lesson itself - a
botched setup, a missing file, an invalid test for correctness, or some system facility that
doesn't work on the local system in the same way it did on the development system. It takes
knowledge and a certain healthy arrogance on the part of the user to recognize that the fault is
not his' or hers, but the script writer's. Permitting the student to get on with the next lesson
regardless does alleviate this somewhat, and the logging facilities make it easy to watch for les­
sons that no one can pass, but it is still a problem.

The biggest problem with the previous learn was speed (or lack thereof) - it was often
excruciatingly slow and a significant drain on the system. The current version so far does not
seem to have that difficulty, although some scripts, notably eqn, are intrinsically slow. eqn, for
example, must do a lot of work even to print its introductions, let alone check the student
responses, but delay is perceptible in all scripts from time to time.

Another potential problem is that it is possible to break learn inadvertently, by pushing
interrupt at the wrong time, or by removing critical files, or any number of similar slips. The
defenses against such problems have steadily been improved, to the point where most students
should not notice difficulties. Of course, it will always be possible to break learn maliciously,
but this is not likely to be a problem.

One area is more fundamental - some commands are sufficiently global in their effect
that learn currently does not allow them to be executed at all. The most obvious is cd, which
changes to another directory. The prospect of a studer, io is learning about directories inad­
vertently moving to some random directory and removing nles has deterred us from even writ­
ing lessons on cd, but ultimately lessons or. such topics probably should be added.

7. Acknowledgments

We are grateful to all those who have tried learn, for we have benefited greatly from their
suggestions and criticisms. In particular, M. E. Bittrich, 1. L. Blue, S. I. Feldman, P. A. Fox,
and M. 1. McAlpin have provided substantial feedback. Conversations with E. Z. Rothkopf also
provided many of the ideas in the system. We are also indebted to Don lackowski for serving

• We have even known an expert programmer to decide the computer was broken when he had simply left
his terminal in local mode. Novices have great difficulties with such problems.

6-13

6-14

LEARN-8560 MUSDU Auxiliary Utilities Package Users

as a guinea pig for the second version, and to Tom Plum for his efforts to improve the C script.

References

1. D. L. Bitzer and D. Skaperdas, "The Economics of a Large Scale Computer Based Educa­
tion System: Plato IV," pp. 17-29 in Computer Assisted Instruction, Testing and Guidance,
ed. Wayne Holtzman, Harper and Row, New York (1970).

2. D. C. Gray, J. P. Hulskamp, J. H. Kumm, S. Lichtenstein, and N. E. Nimmervoll,
"COALA - A Minicomputer CAl System," IEEE Trans. Education E-200), pp.73-77
(Feb. 1977).

3. P. Suppes, "On Using Computers to Individualize Instruction," pp. 11-24 in The Com­
puter in American Education, ed. D. D. Bushnell and D. W. Allen, John Wiley, New York
(967).

4. B. F. Skinner, "Why We Need Teaching Machines," Harv. Educ. Review 31, pp.377-398,
Reprinted in Educational Technology, ed. 1. P. DeCecco, Holt, Rinehart & Winston (New
York, 1964). (1961).

5. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual, Bell Laboratories (978).
See section ed (I).

6. B. W. Kernighan, A tutorial introduction to the UNIX text editor, Bell Laboratories internal
memorandum (974).

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­
wood Cliffs, New Jersey (1978).

LEARN-8560 MUSDU Auxiliary Utilities Package Users

APPENDIX A - Page given to new users

How to Get Started

Absolutely basic information for using the UNIX system
from DASI, Terminet, or HP terminals

First time. BRING A FRIEND. Anyone who has used UNIX before, however briefly, will be of
enormous help for the first fifteen minutes to show you where all the switches are and supply
information missing from this page.

Terminals. Turn the power on. There are many kinds of terminals. Look at the telephone
used with the terminal to distinguish them. Terminals may have

- old style datasets (if the phone set is a small gray box with "talk" and "data" buttons
at the right above the handset)
- new style datasets (if the phone set is a black six button phone with a red "data" button
on the left, sitting on a rectangular box with a glass front)
- acoustic couplers (if an ordinary telephone is used to call and the terminal has rubber
receptacles that the handset fits into) or
- modems (if the phone used for calling has a white button for the left button of the pair
of buttons the handset usually rests on).
- none of the above (in which case there is probably a switch somewhere that should be
flipped to signal the computer).

Calling in. Foryour local UNIX call _____ _
- If the terminal doesn't use a phone, ignore this section, and proceed to Login ..
- On terminals with datasets you must push the "talk" button to get a dial tone.
- If the terminal has a separate coupler turn the coupler power on.
- If the line is busy UNIX is probably full.
- If there is no answer UNIX is broken.

Usually the phone rings only once; UNIX answers and whistles at you.

Connecting the terminal. Remember what kind of terminal you have. If it uses a
- dataset, push down the "data" button, let it spring back up, and then hang up the
handset (IN THAT ORDER).
- coupler, place the handset in the rubber receptacles. There will be an indication of
where the phone cord should be (it matters). You may get better results by placing the
handset in the receptacles as you dial.
- modem, pull up the white button on the telephone and put the handset down some­
where (but don't hang up the phone!).

Login. UNIX should type "login:". If it does not:
- Your terminal may be in "local" mode - check that the "local/line" switch is on
"line". Also, Terminets may have their "interrupt" light on - turn it off by pushing
"ready. "
- If the message is garbled, the speed is wrong. Somewhere on the terminal is a switch
labeled "rate" or "baud" with positions of either "10,15,30" or "110,150,300". Set it to
30 or 300. Push the break or interrupt button slowly a few times. If "login:" doesn't
appear, call for help.
- UNIX may be broken (call ext. __ to check on that).

Type your userid, followed by "return". Your userid is ___ _
- If each letter appears twice, find the switch labeled "full/half duplex" and set it to
"full" .
- If the computer typed back your userid in upper case, find the "all caps" switch or
"shift lock" and turn it off. Then dial in again.

Normally UNIX says "Password:" and you should enter your password; printing will be turned
off while you do.

If you misspell it, UNIX will say "Login incorrect. login:" and you can then retype your
userid and password correctly.

UNIX will say 44$". You have successfully logged in.
6-16

6-16

LEARN-8560 MUSDU Auxiliary Utilities Package Users

Commands. When UNIX has typed "$" you can type commands, one per line. For example,
you can type "date" to find out what day and time it is, or "who" to find out who is logged on.
Every command must end with a "return". After typing a command, wait for the next "$" to
see what happens. For example, your terminal paper might look like this (what the computer
typed is in italics):

login: myid
Password: < you can't see it>
$ date
ThuJan 15 10:58:21 EST 1979
$

There are a great many other commands you can type (see the guides below) and in particular
the learn command can help you learn some features of UNIX.

- If you make a mistake typing: the charact\!r # will erase the previous character, so that
typing

dax#te
is the same as typing

date
and the character @ will erase the entire line~ typing

xxxxx@
date

is the same as typing "date". UNIX supplies the carriage return after the @.
- You must hit return if you expect the computer to notice what you typed~ otherwise it
will wait patiently and silently for you to do so. When in doubt, type return and see what
happens.
- If you make a typing error and don't correct it with # or @ before hitting return, the
computer will typically say

datr: not found
where "datr" is the erroneous input line.
- Other messages that may arise from mistyping include "cannot execute" or "No match"
or just "?". Thl! cure is almost always to retype the offending line correctly.

Terminology. Everything stored on the computer is saved in .files. A file might contain, for
example, a memo or a chapter of a book or a letter. Every .file has a name, which is used
whenever you want to refer to it. Sample names might be "chap3" or "mem02". The files
are grouped into directories; each directory contains the names of several files. All users have
directories containing their own files.

Logging out. Just hang up. On a terminal with a data set, push the "talk" button. On other
terminals hang up the handset. Turn the terminal power off.

GUides. You should have copies of UNIX For Beginners and A Tutoriallnrroduction to the UNIX
Text Editor.

8560 MUSDU Auxiliary Utilities Package Users

Section 7

THE M4 MACRO PROCESSOR

INTRODUCTION
m4, a macro processor, was developed at Bell Laboratories and is licensed by Western Electric
for use on the 8560. The remainder of this section is a reprint of an article describing m4. The
Technical Notes section of this manual describes the limitations of this program and any
changes made to this program by Tektronix.

7-1

7-2

M4-8560 MUSDU Auxiliary Utilities Package Users

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIxt and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-
sors, including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This paper is a user"s manual for M4.

July 1, 1977

tUNIX is a Trademark of Bell Laboratories.

M4-8560 MUSDU Auxiliary Utilities Package Us.ers

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten­
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

M4 is a suitable front end for Ratfor
and C. and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric "token" (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it
is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari­
ous useful operations; in addition, the user

can define new macros. Built-ins and user­
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

Usage

On UNIX, use

m4 (files)

Each argument file is processed in order; if
there are no arguments, or if an argument is
'- " the standard input is read at that point.
The processed text is written on the stan­
dard output, which may be captured for sub­
sequent processing with

m4 (files) > outputfile

On GCOS, usage is identical, but the pro­
gram is called ./m4.

Defining Macros

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define (name, stum

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)

if (j > N)

defines N to be 100, and uses this "symbolic

7-3

7-4

constant" in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by '(" it is
assumed to have no arguments. This is the
situation for N above~ it is actually a macro
with no arguments, and thus when it is used
there need be no (...) following it.

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con­
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define (N, 100)
define (M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as IOO? In M4, the latter is true - M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it· possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100~ it's just as if
you had said

define(M, 100)

in the first place.

If this isn't what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you'll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

M4-8560 MUSDU Auxiliary Utilities Package Users

Quoting

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ' and ' is not expanded
immediately, but has the quotes stripped off.
If you say

define (N, 100)
define(M, 'N')

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out­
put, you have to quote it in the input, as in

'define' = 1;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen~
that is, it is replaced by 100, so it's as if you
had written

define(100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

defineCN', 200)

In M4, it is often wise to quote the first
argument of a macro.

If ' and' are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote(l,))

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

M4-8560 MUSDU Auxiliary Utilities Package Users

changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine C N')

removes the definition of N. (Why are the
quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefineCdefine')

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys­
tems, so you can tell which one you're
using:

ifdefCunix', 'define(wordsize,16)')
ifdefCgcos', 'define(wordsize,36),)

makes a definition appropriate for the partic­
ular machine. Don't forget the quotes!

ifdef actually permits three arguments~
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdefCunix', on UNIX, not on UNIX)

Arguments

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User­
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by
1 :

bump(x)

is

x = x + 1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro

name itself is $0, although that is less com­
monly used.) Arguments that are not sup­
plied are replaced by null strings, so we can
define a macro cat which simply concaten­
ates its arguments, like this:

define (cat, $1 $2$3$4$5$6$7$8$9)

Thus

cat (x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no correspond­
ing arguments were provided.

Leading unquoted blanks, tabs, or
newlines that occur during argument collec­
tion are discarded. All other white space is
retained. Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma "protected" by parentheses does not
terminate an argument. That is, in .

define(a, (b,c»

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

Arithmetic Built-ins

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as "one more
than N", write

define(N, 100)
define(Nl, 'incr(N)')

Then Nt is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

7-5

7-6

unary + and -
** or " (exponentiation)
* / % (modulus)
+ -
== ,= ,
& or &&
lor"

< <= > >=
(not)
(logical and)
(logical or)

Parentheses may be used to group opera­
tions where needed. All the operands of an
expression given to eval must ultimately be
numeric. The numeric value of a true rela­
tion (like 1> 0) is 1, and false is O. The
precision in eval is 32 bits on UNIX and 36
bits on Geos.

As a simple example, suppose we want
M to be 2**N + 1. Then

define(N, 3)
define(M, 'eval (2**N + 1)')

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number)~ it
usually gives the result you want, and is a
good habit to get into.

File Manipulation

You can include a new file in the input
at any time by the built-in function include:

include (filen arne)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file~ this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used~ sinclude ("silent
include") says nothing and continues if it
can't access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com­
mand. M4 maintains nine of these diver­
sions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this' file is stopped by another divert com-

M4-8560 MUSDU Auxiliary Utilities Package Users

mand~ in particular, divert or divert(O)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divnum returns the
number of the currently active diversion.
This is zero during normal processi~g.

System Command

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd (date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func­
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

Conditionals

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c~ oth­
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns "yes" or "no" if they
are the same or different.

M4-8560 MUSDU Auxiliary Utilities Package Users

define(compare, 'ifelse($I, $2, yes, no)')

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form
of multi-way decision capability. In the
input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

String Manipulation

The built-in len returns the length of
the string that makes up its argument. Thus

len (abcdef)

is 6, and len «a,b» is 5.

The built-in substr can be used to pro­
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
Ith position (origin zero), and is n charac­
ters long. If n is omitted, the rest of the
string is returned, so

substrCnow is the time', 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index (sl, s2) returns the index (posi­
tion) in sl where the string s2 occurs, or
-1 if it doesn't occur. As with substr, the
.origin for strings is O.

The built-in translit performs charac­
ter transliteration.

translit(s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don't have an entry in t are deleted~
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

traosHt (s, aelou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next newline~ it is use­
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dol to each of these lines, the newlines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert (-1)
definet ..)

divert

Printing

The built-in errprint writes its argu­
ments out on the standard error file. Thus
you can say

errprint ('fatal error)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

Summary of Built-ins

Each entry is preceded by the page
number where it is described.

7-7

7-8

3 changequote{L, R)
1 define {name, replacement}
4 divert{number)
4 divnum
5 dnl
5 dumpdefCname', 'name', .. J
5 errprint {s, s, .. J
4 eval (numeric expression)
3 ifdef('name', this if true, this if false}
5 ifelse{a, b, c, d)
4 include (file)
3 incr{number)
5 index (s 1, s2)
5 len (string)
4 maketemp (...XXXXX .. J
4 sinclude (file)
5 substr(string, position, number)
4 syscmd (s)
5 translit(str, from, to)
3 undefineCname')
4 undivert(number,number, .. J

Acknowledgements

We are indebted to Rick Becker, John
Chambers, Doug McIlroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve­
ments. We are also deeply grateful to
Weythman for several substantial contribu­
tions to the code.

References

[1] B. W. Kernighan and P. J. Plauger,
Sofrware Tools. Addison-Wesley, Inc.,
1976.

M4-8560 MUSDU Auxiliary Utilities Package Users

8560 MUSDU Auxiliary Utilities Package Users

Section 8

SED-A NON-INTERACTIVE TEXT EDITOR

INTRODUCTION
sed, a non-interactive text editor, was developed at Bell Laboratories and is licensed by Western
Electric for use on the 8560. The remainder of this section is a reprint of an article describing
sed. The Technical Notes section of this manual describes the limitations of this program and
any changes made to this program by Tektronix.

8-1

8-2

SEO-8560 MUSOU Auxiliary Utilities Package Users

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Sed is a non-interactive context editor that runs on the UNIXt operating
system. Sed is designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing~
2) To edit any size file when the sequence of editing commands is too

complicated to be comfortably typed in interactive mode.
3) To perform multiple 4global' editing functions efficiently in one pass

through the input.

This memorandum constitutes a manual for users of sed.

August 15, 1978

tUNIX is a Trademark of Bell Laboratories.

SEO-8560 MUSDU Auxiliary Utilities Package Users

Introduction

SED - A Non-interactive Text Editor

Lee E. McMahon

Bell Laboratories
Murray Hill, New Jersey 07974

Sed is a non-interactive context editor designed to be especially useful in three cases:

1) To edit files too large for comfortable interactive editing~
2) To edit any size file when the sequence of editing commands is too complicated to

be comfortably typed in interactive mode~
3) To perform multiple "global' editing functions efficiently in one pass through the

input.

Since only a few lines of the input reside in core at one time, and no temporary files are used,
the effective size of file that can be edited is limited only by the requirement that the input and
output fit simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to sed as a command file. For
complex edits, this saves considerable typing, and its attendant errors. Sed running from a
command file is much more efficient than any interactive editor known to the author, even if
that editor can be driven by a pre-written script.

The principal loss of functions compared to an interactive editor are lack of relative addressing
(because of the line-at-a-time operation), and lack of immediate verification that a command
has done what was intended.

Sed is a lineal descendant of the UNIX editor, ed. Because of the differences between interac­
tive and non-interactive operation, considerable changes have been made between ed and sed;
even confirmed users of ed will frequently be surprised (and probably chagrined), if they rashly
use sed without reading Sections 2 and 3 of this document. The most striking family resem­
blance between the two editors is in the class of patterns ('regular expressions') they recognize~
the code for matching patterns is copied almost verbatim from the code for ed, and the descrip­
tion of regular expressions in Section 2 is copied almost verbatim from the UNIX
Programmer's Manuall11. (Both code and description were written by Dennis M. Ritchie,)

1. Overall Operation

Sed by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be
modified by flags on the command line~ see Section 1.1 below.

The general format of an editing command is:

[address! ,address2] [function] [arguments]

One or both addresses may be omitted~ the format of addresses is given in Section 2. Any
number of blanks or tabs may separate the addresses from the function. The function must be
present~ the available commands are discussed in Section 3. The arguments may be required or
optional, according to which function is given~ again, they are discussed in Section 3 under each
individual function.

Tab characters and spaces at the beginning of lines are ignored.

8-3

8-4

SED-8560 MUSDU Auxiliary Utilities Package Users

1.1. Command-line Flags

Three flags are recognized on the command line:
-n: tells sed not to copy all lines, but only those specified by p functions or p flags after

s functions (see Section 3.3)~
-e: tells sed to take the next argument as an editing command~
-f: tells sed to take the next argument as a file name~ the file should contain editing

commands, one to a line.

1.2. Order of Application of Editing Commands

Before any editing is done (in fact, before any input file is even opened), all the editing com­
mands are compiled into a form which will be moderately efficient during the execution phase
(when the commands are actually applied to lines of the input file). The commands are com­
piled in the order in which they are encountered~ this is generally the order in which they will
be attempted at execution time. The commands are applied one at a time~ the input to each
command is the output of all preceding commands.

The default linear order of application of editing commands can be changed by the flow-of­
control commands, 1 and b (see Section 3). Even when the order of application is changed by
these commands, it is still true that the input line to any command is the output of any previ­
ously applied command.

1.3. Pattern-space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
command (Section 3.6,).

1.4. Examples

Examples are scattered throughout the text. Except where otherwise noted, the examples all
assume the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

(In no case is the output of the sed commands to be considered an improvement on Coleridge,)

Example:

The command

2q

will quit after copying the first two lines of the input. The output will be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

2. ADDRESSES: Selecting lines for editing

Lines in the input file(s) to which editing commands are to be applied can be selected by
addresses. Addresses may be either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address-pair) by
grouping the commands with curly braces (4 (}') (Sec. 3.6J.

SED-8560 MUSDU Auxiliary Utilities Package Users

2.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented~ a line-number address matches (selects) the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files~ it is not reset when a new input file is opened.

As a special case, the character $ matches the last line of the last input file.

2.2. Context Addresses

A context address is a pattern ('regular expression') enclosed in slashes (' /'). The regular
expressions recognized by sed are constructed as follows:

I) An ordinary character (not one of those discussed below) is a regular expression,
and matches that character.

2) A circumflex ,A, at the beginning of a regular expression matches the null character
at the beginning of a line.

3) A dollar-sign '$' at the end of a regular expression matches the null character at the
end of a line.

4) The characters '\n' match an imbedded newline character, but not the newline at the
end of the pattern space.

S) A period'.' matches any character except the terminal newline of the pattern space.
6) A regular expression followed by an asterisk ,*, matches any number (including 0)

of adjacent occurrences of the regular expression it follows.
7) A string of characters in square brackets ,[]' matches any character in the string,

and no others. If, however, the first character of the string is circumflex ,A"

the regular expression matches any character except t he characters in the string
and the terminal newline of the pattern space.

8) A concatenation of regular expressions is a regular expression which matches the
concatenation of strings matched by the components of the regular expression.

9) A regular expression between the sequences '\ (' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described under
the s command below and specification 10) immediately below.

10) The expression '\d' means the same string of characters matched by an expression
enclosed in '\ (' and '\)'. earlier in the same pattern. Here d is a single digit~ the
string specifIed is that beginning with the dth occurrence of '\ (' counting from
the left. For example, the expression ,A\ t *\)\ l' matches a line beginning with
t~o repeated occurrences of the same string.

II) The null regular expression standing alone (e.g., '/ /') is equivalent to the last reg-
ular expression compiled.

To use one of the special characters C $. * [] \ f) as a literal (to match an occurrence of itself
in the input), precede the special character by a backslash '\'.

For" context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

2.3. N umber of Addresses

The commands in the next section can have 0, 1, or 2 addresses. Under each command the
maximum number of allowed addresses is given. For a command to have more addr~sses than
the maximum allowed is considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to t he first line which matches the first address,
and to all subsequent lines until (and including) the first subsequent line which matches the
second address. Then an attempt is made on subsequent lines to again match the first address,

8-5

8-6

SED-8560 MUSDU Auxiliary Utilities Package Users

and the process is repeated.

Two addresses are separated by a comma.

Examples:

lanl
lan.*anl
ranI

matches lines 1, 3, 4 in our sample text
matches line 1
matches no lines

1,/ matches all lines
1\,/ matches line 5
Ir*anl
1\(an\).*\11

matches lines 1,3, 4 (number = zero!)
matches line 1

3. FUNCTIONS

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is given enclosed in parentheses, then the single character func­
tion name, possible arguments enclosed in angles « », an expanded English translation of
the single-character name, and finally a description of what each function does. The angles
around the arguments are 110/ part of the argument, and should not be typed in actual editing
commands.

3.1. Whole-line Oriented Functions

(2)d -- delete lines

The d function deletes from the file (does not write to the output) all those
lines matched by its address(es).

It also has the side effect that no further commands are attempted on the
corpse of a deleted line~ as soon as the d function is executed, a new line is
read from the input, and the list of editing commands is re-started from the
beginning on the new line.

(2) n -- next line

O)a\

The n function reads the next line from the input, replacing the current line.
The current line is written to the output if it should be. The list of editing
commands is continued following the n command.

< text> -- append lines

(1)i\

The a function causes the argument < text> to be written to the output after
the line matched by its address. The a command is inherently multi-Iine~ a
must appear at the end of a line, and < text> may contain any number of
lines. To preserve the one-command-to-a-Iine fiction, the interior newlines
must be hidden by a backslash character ('\ ') immediately preceding the new­
line. The < text> argument is terminated by the first unhidden newline (the
first one not immediately preceded by backslash).

Once an a function is successfully executed, < text> will be written to the out­
put regardless of what later commands do to the line which triggered it. The
triggering line may be deleted entirely~ < text> will still be written to the out­
put.

The < text> is not scanned for address matches, and no editing commands are
attempted on it. It does not cause any change in the line-number counter.

< text> -- insert lines

SED-8560 MUSDU Auxiliary Utilities Package Users

(2)c\

The i function behaves identically to the a function, except that < text> is
written to the output before the matched line. All other comments about the a
function apply to the i function as well.

< text> -- change lines

The c function deletes the lines selected by its address(es), and replaces them
with the lines in < text>. Like a and i, c must be followed by a newline hid­
den by a backslash~ and interior new lines in < text> must be hidden by
backslashes.

The c command may have two addresses, and therefore select a range of lines.
If it does, all the lines in the range are deleted, but only one copy of < text> is
written to the output, not one copy per line deleted. As with a and i, < text>
is not scanned for address matches, and no editing commands are attempted on
it. It does not change the line-number counter.

After a line has been deleted by a c function, no further commands are
attempted on the corpse.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed bejore the text of the
a or r functions. (The r function is described in Section 3.4.)

Note: Within the text put in the output by these functions, leading blanks and tabs will disap­
pear, as always in sed commands. To get leading blanks and tabs into the output, precede the
first desired blank or tab by a backslash~ the backslash will not appear in the output.

Example:

The list of editing commands:

n
a\
XXXX
d

applied to our standard input, produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXXX
Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

n
i\
XXXX
d

n
c\
XXXX

3.2. Substitute Function
One very important function changes parts of lines selected by a context search within the line.

(2)s<pattern> <replacement> <flags> -- substitute

The s function replaces part of a line (selected by < pattern» with < replace­
ment>. It can best be read:

Substitute for < pattern>, < replacement>
8-7

8-8

SED-8560 MUSDU Auxiliary Utilities Package Users

The < pattern> argument contains a pattern, exactly like the patterns in
addresses (see 2.2 above). The only difference between < pattern> and a con­
text address is that the context address must be delimited by slash (' /') charac­
ters~ <pattern> may be delimited by any character other than space or new­
line.

By default, only the first string matched by < pattern> is replaced, but see the
g flag below.

The < replacement> argument begins immediately after the second delimiting
character of < pattern>, and must be followed immediately by another instance
of the delimiting character. (Thus there are exactly three instances of the
delimiting character.)

The <replacement> is not a pattern, and the characters which are special in
patterns do not have special meaning in <replacement>. Instead, other char­
acters are special:

& is replaced by the string matched by < pattern>

\d (where d is a single digit) is replaced by the ath substring matched
by parts of < pattern> enclosed in '\ (' and '\)'. If nested sub­
strings occur in < pattern>, the ath is determined by counting
opening delimiters ('\ (').

As in patterns, special characters may be made literal by
preceding them with backslash ('\').

The <flags> argument may contain the following flags:

g -- substitute < replacement> for all (non-overlapping) instances of
< pattern> in the line. After a successful substitution, the
scan for the next instance of < pattern> begins just after the
end of the inserted characters~ characters put into the line from
< replacement> are not rescanned.

p -- print the line if a successful replacement was done. The p flag
causes the line to be written to the output if and only if a sub­
stitution was actually made by the s function. Notice that if
several s functions, each followed by a p flag, successfully sub­
stitute in the same input line, multiple copies of the line will be
written to the output: one for.each successful substitution.

w < filename> -- write the line to a file if a successful replacement was
done. The w flag causes lines which are actually substituted by
the s function to be written to a file named by < filename>. If
< filename> exists before sed is run, it is overwritten~ if not, it
is created.

A single space must separate wand < filename>.

The possibilities of multiple, somewhat different copies of one
input line being written are the same as for p.

A maximum of 10 different file names may be mentioned after
w flags and w functions (see below), combined.

5ED-8560 MUSDU Auxiliary Utilities Package Users

Examples:

The following command, applied to our standard input,

s/to/by /w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file 4changes':

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/L,~ ?:]/*P&* /gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P, * the sacred river*P, * ran
Down to a sunless sea*P. *

Finally, to illustrate the effect of the g flag, the command:

/X/s/an/ AN/p

produces (assuming nocopy mode):

In XANadu did Kubhla Khan

and the command:

IXlslanl AN/gp

produces:

In XANadu did Kubhla KhAN

3.3. Input-output Functions

(2)p -- print

The print function writes the addressed lines to the standard output file. They
are written at the time the p function is encountered, regardless of what
succeeding editing commands may do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the file named by < filename>.
If the file previously existed, it is overwritten~ if not, it is created. The lines
are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them.

Exactly one space must separate the wand < filename>.

A maximum of ten different files may be mentioned in write functions and w
flags after s functions, combined.

Oh <filename> -- read the contents of a file

The read function reads the contents of < filename>, and appends them after
the line matched by the address. The file is read and appended regardless of
what subsequent editing commands do to the line which matched its address.
If r and a functions are executed on the same line, the text from the a

8-9

8-10

SED-8560 MUSDU Auxiliary Utilities Package Users

functions and the r functions is written to the output in the order that the func­
tions are executed.

Exactly one space must separate the rand < filename>. If a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no
diagnostic is given.

NOTE: Since there is a limit to the number of files that can be opened simultaneously, care
should be taken that no more than ten files be mentioned in w functions or flags~ that number
is reduced by one if any r functions are present. (Only one read file is open at one time.)

Examples

Assume that the file 'note I' has the following contents:

Note: Kubla Khan (more.properly Kublai Khan~ 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

Then the following command:

IK ubla/r note 1

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan~ 1216-1294) was the grandson
and most eminent successor of Genghiz (Chingiz) Khan, and founder of the
Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

3.4. Multiple Input-line Functions

Three functions, all spelled with capital letters, deal specially with pattern spaces containing
imbedded newlines~ they are intended principally to provide pattern matches across lines in the
input.

(2}N -- Next line

The next input line is appended to the current line in the pattern space~ the two
input lines are separated by an imbedded newline. Pattern matches may extend
across the imbedded newline(s).

(2) D -- Delete first part of the pattern space

Delete up to and including the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline was the terminal
newline), read another line from the input. In any case, begin the list of edit­
ing commands again from its beginning.

(2)P -- Print first part of the pattern space

Print up to and including the first newline in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no imbedded
newlines in the pattern space.

SED-8560 MUSDU Auxiliary Utilities Package Users

3.5. Hold and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2) h -- hold pattern space

Theh functions copies the contents of the pattern space into a hold area (des­
troying the previous contents of the hold area).

(2) H -- Hold pattern space

The H function appends the contents of the pattern space to the contents of the
hold area~ the former and new contents are separated by a newline.

(2)g -- get contents of hold area

The g function copies the contents of the hold area into the pattern space (des­
troying the previous contents of the pattern space).

(2)G -- Get contents of hold area

The G function appends the contents of the hold area to the contents of the
pattern space~ the former and new contents are separated by a newline.

(2) x -- exchange

The exchange command interchanges the contents of the pattern space and the
hold area.

Example

The commands

1h
lsI did. * II
Ix
G
s/\nl :1

applied to our standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

3.6. Flow-or-Control Functions

These functions do no editing on the input lines, but control the application of functions to the
lines selected by the address part.

(2)! -- Don't

The Don't command causes the next command (written on the same line), to
be applied to all and only those input lines not selected by the adress part.

(2) { -- Grouping

The grouping command ~{, causes the next set of commands to be applied (or
not applied) as a block to the input lines selected by the addresses of the group­
ing command. The first of the commands under control of the grouping may
appear on the same line as the ~ {' or on the next line.

8-11

8-12

SED-8560 MUSDU Auxiliary Utilities Package Users

The group of commands is terminated by a matching'}' standing on a line by
itself.

Groups can be nested.

(0): < label> -- place a label

The label function marks a place in the list of editing commands which may be
referred to by b and I functions. The < label> may be any sequence of eight
or fewer characters~ if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing commands being applied to
the current input line to be restarted immediately after the place where a colon
function with the same < label> was encountered. If no colon function with
the same label can be found after all the editing commands have been com­
piled,a compile time diagnostic is produced, and no execution is attempted.

A b function with no < label> is taken to be a branch to the end of the list of
editing commands~ whatever should be done with the current input line is
done, and another input line is read~ the list of editing commands is restarted
from the beginning on the new line.

(2h < label> -- test substitutions

The I function tests whether allY successful substitutions have been made on
the current input line~ if so, it branches to < label > ~ if not, it does nothing.
The flag which indicates that a successful substitution has been executed is
reset by:

1) reading a new input line,or
2) executing a 1 function.

3.7. Miscellaneous Functions

(1) = -- equals

The = function writes to the standard output the line number of the line
matched by its address.

(I}q -- quit

Reference

The q function causes the current line to be written to the output (if it should
be), any appended or read text to be written, and execution to be terminated.

[1] Ken Thompson and Dennis M. Ritchie, The UNIX Programmer's Manual. Bell Labora­
tories, 1978.

8560 MUSDU Auxiliary Utilities Package Users

Section 9

AWK-A PATTERN SCANNING AND
PROCESSING LANGUAGE

INTRODUCTION
awk, a pattern scanning and processing language, was developed at Bell Laboratories and is
licensed by Western Electric for use on the 8560. The remainder of this section is a reprint of an
article describing awk. The Technical Notes section of this manual describes the limitations of
this program and any changes made to this program by Tektronix.

9-1

9-2

AWK-8560 MUSDU Auxiliary Utilities Package Users

Awk - A Pattern Scanning and Processing Language
(Second Edition)

A ffred V. A ho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set
of files for patterns, and to perform specified actions upon lines or fields of
lines which contain instances of those patterns. A wk makes certain data selec­
tion and transformation operations easy to express; for example, the awk pro­
gram

length> 72

prints all input lines whose length exceeds 72 characters; the program

NF % 2 = = 0

prints all lines with an even number of fields~ and the program

{ $1 = 10g($1); print)

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean ~ombinations of regular
expressions and of relational operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc­
tions as in patterns, as well as arithmetic and string expressions and assign­
ments, if-else, while, for statements, and multiple output streams.

This report contains a user's guide, a discussion of the design and imple­
mentation of awk, and some timing statistics.

September 1, 1978

AWK-8560 MUSDU Auxiliary Utilities Package Users

Awk - A Pattern Scanning and Proce sing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
Awk is a programming language designed

to make many common information retrieval and
text manipulation tasks easy to state and to per­
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

Readers familiar with the UNlxt program
grep I will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

(print $3, $2l

prints the third and second columns of a table in
that order. The program

$2 - /AISIC/

prints all input lines with an A, B, or C in the
second field. The program

$1 != prey {print; prey = $1 I
prints all lines in which the first field is different
from the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string pro­
gram on the set of named files, or on the stan­
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

tUNIX is a Trademark or Bell Laboratories.

awk - f pfile [files]

1.2. Program Structure

An awk program is a sequence of state­
ments of the form:

pattern
pattern

action
action

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat­
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat­
terns can be printed several times'> If there is no
pattern for an action, then the action is per­
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to

'distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into "records" ter­
minated by a record separator. The default
record separator is a newline, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into "fields." Fields are normally
separated by white space -- blanks or tabs - but
the input field separator may be changed, as
described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and
$0 is the whole input record itself. Fields may

9-3

9-4

be assigned to. The number of fields in the
current record is available in a variable named
NF.

The variables FS and RS refer to the input
field and record separators~ they may be changed
at any time to any single character. The optional
command-line argument - Fe may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and newlines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The mrk program

{ print I
prints each record, thus copying the input to the
output intact. More useful is to print a field or
fIelds from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the tlrst and second fields together.

The predefined variables NF and NR can
be used~ for example

{ print NR, NF, $0 I
prints each record preceded by the record
number and the number of fields.

Output may be diverted to multiple files~

the program

{ print $1 > "foo 1"; print $2 > "fo02" I
writes the first field, $1, on the tlIe fo01, and
the second Held on file fo02. The> > notation
can also be used:

print $1 > > "foo"

appends the output to the tlIe foo. (In each
case, the output HIes arc created if necessary.)
The file name can be a variable or a field as well
as a constant~ for example,

print $1 >$2

AWK-8560 MUSDU Auxiliary Utilities Package Users

uses the contents of field 2 as a file name.

Naturally there is a limit on the num ber of
output files; currently it is 10.

Similarly, output can be piped into another
process (on UNIX only)~ for instance,

print I "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

A wk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f % 1 Old\n", $1, $2

prints $1 as a floating point number 8 digits
wide, with two after the decimal point, and $2 as
a 10-digit long decimal number, followed by a
newline. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with c.2

2. Patterns

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con­
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN { FS = ":" I
... rest of program ...

Or the input lines may be counted by

END {print NR I

If BEGIN is present, it must be the first patlern~
END must be the last if used.

AWK-8560 MUSDU Auxiliary Utilities Package Users

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

Ismithl

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name "smith". If a line contains "smith"
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu­
lar expression forms found in the UNIX text edi­
tor edt and grep (without back-referencing). In
addition, awk allows parentheses for grouping, I
for alternatives, + for "one or more", and? for
"zero or one", all as in lex. Character classes
may be abbreviated: [a-zA-ZO-9] is the set
of all letters and digits. As an example, the awk
program

I[Aa]ho I [Ww]einberger I [Kk]ernighanl

will print all lines which contain any of the
names" Aho," "Weinberger" or "Kernighan,"
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari­
able matches a regular expression (or does not
match it) with the operators ~ and !~. The
program

$1 ~ IUJ]ohnl

prints all lines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "St. Johnsbury", and so on.
To restrict it to exactly UJ]ohn, use

$1 ~ rUJ]ohn$1

The caret . refers to the beginning of a line or
field; the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expres­
sion involving the usual relational operators <,
< =, = =, !=, > =, and >. An example is

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 = = 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 > = "s"

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2.4 . .combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators II (or), &&
(and), and! (not). For example,

$1 >= "s" && $1 < "t" && $1 != "smith"

selects lines where the first Held begins with "s",
but is not "smith". && and II guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 1 ... 1

In this case, the action is performed for each line
between an occurrence of pat1 and the next
occurrence of pat2 (inclusive>. For example,

Istartl, Istopl

prints all lines between start and stop, while

NR = = 100, NR = = 200 { ... 1

does the action for lines 100 through 200 of the
input.

3. Actions

An awk action is a sequence of action
statements terminated by newlines or semi­
colons. These action statements can be used to
do a variety of bookkeeping and string manipu­
lating tasks.

9-5

9-6

3.1. Built-in Functions

Awk provides a "length" function to com­
pute the length of a string of characters. This
program prints each record, preceded by its
length:

(print length, $01

length by itself is a "pseudo-variable" which
yields the length of the current record~

length (argument) is a function which yields the
length of its argument, as in the equivalent

(print length ($0), $01

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func­
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 II length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
1) and is at most n characters long. If n is omit­
ted, the substring goes to the end of s. The
function index(s1, s2) returns the position
where the string s2 occurs in s1, or zero if it
does not.

The function sprintf(f, e1, e2, .. .) produces
the value of the expressions e1, e2, etc., in the
printf format specified by f. Thus, for example,

x = sprintf("%8.2f %1 Old", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign­
ments

A ~rk variables take on numeric (floating
point) or string values according to context. For
example, in

x =1

x is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be inter-

AWK-8560 MUSDU Auxiliary Utilities Package Users

preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero~ this eliminates the need
for most BEGIN sections. For example, the
sums of the first two fields can be computed by

{ s1 + = $1; s2 + = $2 I
END { print s1, s2 I

Arithmetic is done internally in floating
point. The arithmetic operators are +, -, *, I,
and % (mod). The C increment + + and decre­
ment - - operators are also available, and so
are the assignment operators +=, -=, *=,
/=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables - they may be used in
arithmetic or string operations, and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print}

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 I
or assign a string to a field:

if ($3 > 1000)
$3= "too big"

print

which replaces the third Held by "too big" when
it is, and in any case prints the record.

Field references may be numerical expres­
sions, as in

{ print $i, $(i + 1), $(i + n) }

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 = = $2) ...

fields are treated as strings.

Each input line is split into fields automati­
cally as necessary. It is also possible to split any
variable or string into fields:

n = split(s, array, sep)

splits the the string s into array[1], ... , array[n].
The number of elements found is returned. If
the sep argument is provided, it is used as the
field separator; otherwise FS is used as the
separator.

AWK-8560 MUSDU Auxiliary Utilities Package Users

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 11 is II $2

prints the two fields separated by " is" Vari­
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub­
scripts may have allY non-null value, including
non-numeric strings. As an example of a con­
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele­
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro­
gram

{ x[NR] = $0 I
END (... program ... I

The first action merely records each input line in
the array x.

Array elements may be named by non­
numeric values, which gives a wk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro­
gram

/apple/ I x["apple"] + + I
/orange/ I x[ltorange"] + + I
END I print x[ltapple lt l, x[ltorange"]

increments counts for the named array elements,
and prints them at the end of the input.

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example. to print all input fields one per
line,

i = 1
while (j < = NF) (

print $i
++i

The for statement is also exactly that of C:

for (i = 1; i < = NF; i + +)
print $i

does the same job as the while statement above.

There is an alternate form of the for state­
ment which is suited for accessing the elements
of an associative array:

for (j in array)
sta ((,111 ell (

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur­
ing the loop.

The expression in the condition part of an
if. while or for can include relational operators
like <, <=, >, >=, == ("is equal to"}, and
!= ("not equal to"); regular expression matches
with the match operators -and !-; the logical
operators II, &&, and !; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con­
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan­
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

Comments may be placed in awk pro­
grams: they begin with the character # and end
with the end of the line, as in

print x, y # this is a comment

4. Design

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim­
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general­
ity; fgrepsearches for a set of keywords with a
particularly fast algorithm. Sed I provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

9-7

9-8

Lex 3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli­
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con­
venient numeric processing, variables, more gen­
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn't do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ­
ing or debugging the code. We have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa­
tions, while probably a bad idea for a general­
purpose programming language, is desirable in a
language that is meant to be used for tiny pro­
grams that may even be composed on the com­
mand line.

In practice, awk usage seems to fall into
two broad categories. One is what might be
called "report generation" - processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim­
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
tr~nsformer, converting data from the form pro­
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps, with rearrangements.

AWK-8560 MUSDU Auxiliary Utilities Package Users

5. Implementation

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc;4 the lexical analysis is done
by lex; the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP-I 1170 of the UNIX
programs we, xrep, exrep, fgrep, sed, lex, and
awk on the following simple tasks:

I. count the number of lines.

2. print all lines containing "doug".

3. print all lines containing "doug", "ken"
or "dmr".

4. print the third field of each line.

5. print the third and second fields of each
line, in that order.

6. append all lines containing "doug",
"ken", and "dmr" to files "jdoug",
"jken", and "jdmr", respectively.

7. print each line prefixed by "line­
number: ".

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input; we have already men­
tioned the others. In all cases the input was a
file containing 10,000 lines as created by the
command Is -I: each line has the form

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 charac-
ters. Times for lex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools we, sed, or the programs
in the grep family, but is faster than the more
general tool lex. In all cases, the tasks were
about as easy to express as awk programs as pro­
grams in these other languages; tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and lex.

AWK-8560 MUSDU Auxiliary Utilities Package Users

References

1. K. Thompson and D. M. Ritchie, UNIX

Programmer's Manual, Bell Laboratories
(May 1975). Sixth Edition

2. B. W. Kernighan and D. M. Ritchie, The C
Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (I 978).

3. M. E. Lesk, "Lex - A Lexical Analyzer
Generator," Compo Sci. Tech. Rep. No.
39, Bell Laboratories, Murray Hill, New
Jersey (October 1975).

4. S. C. Johnson, "Yacc - Yet Another
Compiler-Compiler," Compo Sci. Tech.
Rep. No. 32, Bell Laboratories, Murray
HilI, New Jersey (July 1975),

9-9

Program 2

we 8.6
grep 11.7 13.1
egrep 6.2 11.5
Igrep 7.7 13.8

sed to.2 11.6
lex 65.1 150.1

awk 15.0 25.6

3

11.6
16.1
15.8

144.2
29.9

Task
4

29.0
67.7
33.3

5

30.5
70.3
38.9

AWK-8560 MUSDU Auxiliary Utilities Package Users

6 7 8

16.1
104.0 81.7 92.8
46.4 71.4 31.1

Table 1. Execution Times of Programs. (Times are in sec.)

The programs for some of these jobs are
shown below. The lex programs are generally
too long to show.

AWK:

1 . END (print NRI

2. Idougl

3. Ikenldougldmrl

4. (print $31

5. (print $3, $21

6. Ikenl
Idougl
Idmrl

(print > "jken"l
(print >"jdoug"l
(print > "jdmr" I

7. (print NR ": " $01

8. (sum = sum + $41
END (print suml

SED:

9-10

1. $=

2. Idoug/p

3. /doug/p
Idoug/d
Iken/p
Iken/d
Idmr/p
Idmr/d

4. Ir]* []*[']* []*\(r]*\) .*/sll\ 1 /p

5. Ir]* []*\ ([']*\) []*\ (r]*\) .*/sll\2 \ 1 Ip

6. /ken/w jken
Idoug/w jdoug
Idmr/w jdmr

LEX:

1. %(
int i;
%1
%%
\n i++;

%%
yywrapO

printf("%d\n", i);

2. %%
'.*doug.*$

\n

printf("%s\n", yytext);

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments
by adding circuit and component improvements to our instruments as soon as they
are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these
changes immediately into printed manuals. Hence, your manual may contain new
change information on following pages.

A single change may affect several sections. Since the change information sheets
are carried in the manual until all changes are permanently entered, some
duptication may occur. If no such change pages appear following this page, your
manual is correct as printed.

MANUAL CHANGE INFORMATION
COMMITTED TO EXCELLENCE Date: __ 2_-_4_-_8_2 ____ Change Reference: __ C_l_I_2_8_2 __ _

Product: 8560 Auxiliary Utilities Package Users Manual Part No.: __ 0_7_0_-_4_2_7_0_-_0_0 __

Page 2-1

DESCRIPTION

TEXT CORRECTIONS

Line up the heading "Installing the Auxiliary
Utilities Package" with the left margin.
Immediately under that heading, insert the
following information:

NOTE

When you install this Auxiliary
Utilities Package, you may receive the
following message:

overwrite filename?

This message means that you are trying
to install a file that already exists
on your system.

If the Native Programming Package has
previously been installed on your
system, type no when you receive this
message for the commands join, sed,
and tsort.

If you receive this message for any
other command, type no. Change the
name of your previously existing file,
and try again.

Page 1 of 1

