MAGNOLTIA
A
Single User System

Design and Implementation Plan

[
| T
EREERERREELLLLL]
IH AHLL;B CRERRERTLILEITT I | (| JL_\
. '\\’—\«—\—‘;\]

G wsss o D

TEK PRIVATE

a

MNAGNOLTIA
A
Single User System

Design and Implementation Plan

Roger D, Bates

Computer Research
Applied Research Group
Tektronix Laboratories

September 16, 1980

This information is confidential and no further disclosure thereof can
be made to other than Tektronix personnel without written authorization
from the Director of Tek Labs, Tektronix, Inc., Beaverton, Oregon.

MAGNOLTIA
A
Single User System

Design and Implementation Plan

ARSTRACT

This report describes a Single User System which I am
calling Magnolia. It addresses many of the requirements for
a high performance work station capable of supporting vari-
ous hardware/software development activities.

Table of

Introduction
Design Philosophy

Overall Hardware Description
Overall Software Description

Alternative Systems

Possible Applications

Detailed Description .
Processor
Object Bus
Memory . . . « .
Memory Management
Input/Qutput . .
Display . « « « &»
Pointing Device . .

* . L]

e @ e v e e o

Programmable micro-processor

nc" Compiler . . .
Linker/Loader . . .

UNIX Operating System

Cost Estimate
Component Cost

»

* L] Ld L]

System Cost . + ¢« ¢« .« &

Labor for Implementation

L]
*
L
[]
[}

References . v ¢« v ¢« o o o o »

Contents

"« e e e ® e ¢ o . e ¢ e e
e @ o ®© o e e e @ « e o e ®

. . [] [] L) [. [] . - [] . [] . - L) . o e [] [] .
e ® ® ® @ e e e e e e e e ¢ e °© @ e ¢ O ¢ e o
e e @ e ® ®w ® e e @& e ® @ ®w e € @ e ¢ O o ¢ o

e e e e o e e e
e e o e e ¢ @ .

® ® e e ° e ® o e @ ® o ®© e o e e @ *® e e e @

@ ®© o @ ©®© ¢ e e o © @ e * e ® O ° ¢ € 9 ¢ o ¢

e ® ® e e ® °® e ®w e e o ®© ° @ e e o e e e o -

NN
W\ =

—d —ad b wbh -
OOV EWOVOO~TIOEN = -

NN
N = =2 220

N N
w

1.

2.

MAGNOLTIA
A
Single User System

Design and Implementation Plan

Roger D. Bates

Computer Research
Applied Research Group
Tektronix Laboratories

Introduction

The current trend of supplying "smart" terminals for use as access to
central computers is an interim solution to the economic balance of
computer system design. As more and more compute power is placed in
the "terminal™, it will be able to take over virtually all of the
computational needs, and will become the computer system that the
user interacts with. At this point, the display functions will
become an integral part of the computing environment.

Low performance systems of this type are currently called "personal
computers."” In order to maintain a distinction between this type of
system and higher performance systems being developed, we are calling
the latter "Single User Systems."

For Tektronix to be able to move into single user systems, we need to
learn how to design, build, and program this type of computer. A
product that is suitable for selling to a customer will have to have
not just the hardware and operating system, but a great deal of
application software in order to deliver the full "capability™ of the
system. Tektronix will not only have to be competitive in the
hardware, but in the software to be able to compete with systems of
the future,

The best way to learn what to put in such a system is to provide a
Single User System tool. With this we can program and use experimen-
tal tools and thereby learn what the strengths and weaknesses of this
technology are. Magnolia is a tool that we can use and learn from in
order to better prepare to compete in this market.

Design Philosophy

The motivation for this study is to present a high performance system
that, if implemented, would provide a single user computing tool
which would extend the resources available over that which is avail-
able on our current 11/70, or even a VAX class multi-user system. I
believe that it is important that we address this class of system in
order to provide for the needs of computer research in CAD, VLSI,

interactive graphics ete.

It is proposed here that we can not only design a system in this per-
formance range, but that if the architecture is right, the system
implementation cost can compete with the selling price of the 4025,
I believe that it is important to make the right performance/cost
tradeoffs in order to make it cost effective to provide more than
Just a single demonstration unit within CRG.

The major approaches that were considered in this design are summar-
ized below:

® Use an available 16 bit microprocessor in order to avoid design-
ing a new processor and assembly language.

® Allow for performance improvements by developing a system archi-
tecture which will allow for multiple/mixed processors.

e Provide a software environment which minimizes the start-up
effort required.

® Provide for a maximum performance user interface in order to
encourage uses and experiments in this area.

® Provide for a system with maximum flexibility and potential in
the program areas that CRG is currently involved or 1likely to
investigate.

The primary result that comes out of the above list is a design to
provide a valuable tool within Tektronix. This does not rule out
the secondary goal of demonstrating an architecture that could prove
valuable to future IDD or MDP products.

Overall Hardware Description

The hardware architecture of Magnolia can best be seen by looking at
Fig. 1. This drawing shows a system consisting of three microproces-
sors. Each one has a local "Bus" on which program and local data
transfers take place. In addition, there is a common "Object™ bus
which is used for communication between processors. The protocol of
the object bus is tailored to "high level language" designs, and is
described in full detail later on.

The top processor shown in Fig. 1 can be thought of as the "system
processor,." This would initially be a very conventional processor
with controllers for all the Input/Output devices, 1 or more boards
of local memory, and some form of memory management. The "operating
system™ program would run in this processor, along with most of the
application programs.

The middle processor is shown to represent the possible inclusion of
1 or more additional processors. These would be added when the
application required enhanced performance. A "kernel" program would
be required in this processor to interact with the Object Bus, handle

¥ a4 w-<nn

v-.:‘-vo

~ R 3 O

R~ P U O

4 @ W " p O O YD

® 0O o ¥ U

(V] (2]

A

S0V uwMmPO OTF D

MA GN OLIRA

Object
Loea! €8000 ;::‘
RO SOR
8vs P Css Obyect
Map
M Oby. Rey.
PEARIPNERAL
N CONT ROLLER
2 R$232 Disc
MEMORY /D, O/A NETWORK
MANAGEMENT
N MeMORY
G4 K ov 256 K bytes
‘_____’:_ MEMORY -:
Ot om 2T6x byt
{ 68000
hoca PROCE SSOR :
Buvs B Object
Map
» Oby. Regs.
- —————- - hd
- - - = PROGRAMMAGLE
-Pa [
L Ta TRocRSSR
MEMORY
N G¥K ov 256 K byteg
68000
[
Loca PROCESSSOR
Bus Obyect
Map |
Oby Rag.
PROGRAMMARLE
- PRoeEssoR
DISPLAY Syme r._-—/zgo_—-‘
CONTAROWLER T
MEMORY Video 950
B 256Kk byteg
- -
it tiyiiuiing !
MEMODRY Video 1023 }img Mon.tor
=TT acex bytes ST
L----_-.Z--_I(P—w-d.. rey.

smals ov LSior)

5/24/80
R. 854G

procedure calls, and manage memory allocation, ete. This code would
be quite minimal, leaving the bulk of the processor for application
programs. In this particular example, an additional custom processor
has been included which could provide enhanced performance for data
manipulation or floating-point calculations etc.

The processor at the bottom of the drawing is the "display proces-
sor.” The display system will consist of a high resolution image and
a raster scan display processor that creates its image using a 990
pixel high by 1280 pixel wide "bit-map" image. The processor will
implement display capabilities such as insert or delete objects such
as lines or characters on the display. An additional microprogramm-
able processor is shown in this processor in order to enhance the
performance of doing bit manipulation of the display memory. If this
co-processor is not initially implemented, then the microprocessor
could perform this function with degraded performance. The Display
Controller is included as a minimal circuit to provide addresses to
eycle through memory for refresh of the display. If the microcoded
processor is present, this function could be done there.

A possible "packaging" implementation of the hardware system Jjust
described is given in Fig. 2. This shows a system where the monitor
and movable keyboard sit on the user's table. The electronics (and
optional disk) are placed in a separate enclosure that can be placed
out of the way such as under the desk. This implementation minimizes
the table surface that is occupied by the system.

Overall Software Description

The initial Magnolia system will be brought up with a version of the
UNIX operating system. The two initial programming languages will be
"C" with a minimal reliance on the microprocessor's assembly
language. This has a number of significant advantages summarized
below.

® Less risk is accepted when avoiding the simultaneous development
of both new hardware and new software. The currently predominant
software environment within CRG is UNIX and the "C" language. In
this case, the current software environment should be brought up
on a new hardware environment, and if desired in the future, a
new software environment can be experimented with on what will
then be an established hardware base.

o There is a large user community which exists around the UNIX
operating system, and it is in ARG's best interest to remain a
part of that community.

o There are a number of programs already written which would be
useful in this environment. Screen text editors are available
which we could use., It is also likely that VLSI and CAD programs
for VLSI and other areas would be available for running under a
UNIX environment.

W

i 3

- 107>

. Cable 1o Levammel

?6' o Caﬂp‘a"-l— Electromics
3 12 fC. Cavdg
e PWQ? S.."-.l.u
Dise

Fie. 2

5.

-6 -

e The "C" language is well suited for implementing operating sys-
tems. This language provides most of the High Level Language
(HLL) constructs that are needed, while still providing the low
level operations that allow the system to minimize the amount of
code written in assembly language.

The C compiler and loader can enable a program to be written as a
group of well organized modules. The loader will need to have
knowledge of the multiple processors, and implement commands to load
code segments into various processors.

The UNIX operating system will need to be tailored to the Magnolia
environment. The portions of code associated with multi-users can be
eliminated, while multi-tasking will remain. The operating system
will need to manipulate "windows"™ on the bit-map display where dif-
ferent tasks will get assigned different "window" areas. UNIX com~
mands will have to be added to control the size and location of these
areas.

Alternative Systeams

It is important that we look at alternatives to building this com-
puter, and recognize the appropriate advantages and disadvantages.
The following list represents several of the alternatives that have
been considered:

5.1. 8061 - TINA

This is a an obvious candidate in the class of a Single User
System. As a product of Tek, it would be desirable to use this
system. The draw backs become obvious as soon as one looks at
performing experiments with it. The bit map display capability
is built in to a dedicated display processor, and contemplating
adding to or modifying display capabilities is not practical.
While it does have a microcoded processor underneath, the con-
trol store is not writable, and it is not feasible to make it
writable. Finally, it does not have its own local high speed
hard disk, and is not software compatible with the work already
done in 'C' on UNIX.

5.2. PERQ

This is a personal computer that has been "about to be released"
from Three Rivers for some time now. It looks like they still
have a lot of work to do. It is a microcoded processor designed
to run Pascal code in a UNIX like environment. It does have a
flexible bit map display and writable control store. The pri-
mary draw backs are availability and cost (around $20K each).
It is also inherently a uniprocessor and doesn't lend itself to
experiments in multiprocessor systems.

5.3.

5.4,

HP System 35, 45B, 300

Hewlett Packard 1is probably the closest product that is
currently available, The systems emphasize the user interaction
through the display, however the processor and display are not
integrated as tightly as they should be, and the display resolu-
tion is quite low (less that 512 X 512 pixels). The low end
systems provide BASIC as the programming language, while the
high end systems are too much for a single user system - HP
intends for them to be used in a multi-terminal installation.

ALTO

This is essentially the model with which all Single User Systems
are currently compared. It is an internal product of XEROX,
built for its own use. A number of ALTOs are now being given to
selected universities, but they are not for sale,

6. Possible Applications

The uses for a single user system that come immediately to mind are
listed below. The range of tasks appropriate are quite diverse
because of the flexibility inherent in the hardware/software confi-
guration.

6.1.

6.2.

6.3.

Minimal Cost Personal Computer

This 1s the configuration that will first be implemented in
bringing up Magnolia. It consists of a single processor board,
local memory, and an interface board. The interface board con-
tains two serial interfaces, one to connect with a local termi-
nal and the other to connect with a host computer.

This configuration can be optionally enhanced with a floppy disk
or Winchester hard disk. The next upgrade would be a second
processor to implement the bite-map display.

In all of these hardware configurations, the UNIX operating sys-
tem and user programs would run in a single microprocessor,

Multi-processor Applications

Investigations in the areas of data base and data driven systems
could easily gain from the presence of multiple processors. The
basic architecture and physical implementation of Magnolia will
make it practical to build up a system consisting of say 8 or
more processors if some project would warrant such an approach.

Processor Architecture
A project involved in implementing an experimental processor

architecture needs a way to implement the basic¢ hardware without
having to provide the full operating system and I/0. Placing a

-8 -

new capability on the Object bus, loading in code and running it
from the existing system provides a practical solution.

6.8, User Interface

The mode of communication with a user from a high performance
Single User System needs to be qualitatively different from that
of a time-shared system, or low performance personal computer.
There is a strong need to investigate this area carefully, both
in the area of display management as well as input pointing dev-
ices.

6.5. Interactive Editing

One of the most powerful advantages of a high performance Single
User System comes from the possibility of providing high qual-
ity, fast response, easy to use interactions with the user in
areas such as text editing and graphics editing. An example of
a system used for graphics editing is the Tek 4081. Its mode of
editing however is directed towards input of a "stable" drawing
which will require only small updates. Systems like Magnolia
have the potential for allowing a user to draw his conceptual
design on a system, updating it as quickly and easily as he does
with paper and pencil. This approach is not appreciated by many
people, and its practicality needs to be demonstrated.

6.6. Advanced CAD programs

Many of the CAD programs which are currently available are suf-
ficiently compute intensive that only a relatively small number
of users can be supported on a time-shared system. Magnolia is
aimed at equaling or exceeding the capacity of a system such as
our 11/70 in order to efficiently run powerful and large design
programs.,

7. Detailed Description

This section will fill in as much detail of the Magnolia system as I
can at this point. Some areas are filled in more than others, but
the details presented here will give a clear idea of the direction
the design would follow.

7.1. Processor

The introduction of 16 bit microprocessors makes possible build-
ing a high performance Single User System without basing the
design on MSI components. The three processors considered were
Intel 8086, Zilog 28001, and the Motorola 68000, The three pro-
cessors were compared based on criterias such as quality of
instruction set, ease of electrical interface, and speed.

e The 8086 has a poorly ordered instruction set, and too small
an address space. On the plus side is the chip support that
Intel provides around it in terms of interfaces and addition

7.2.

-9 -

of extended instructions set(s).

e The Z8001, which is not currently available, has an "almost"
good instruction set - but many of the addressing modes are
missing on most of the instructions. Even though the
address space is large, you have to contend with a segmented
address scheme which is annoying.

e The 68000 has the best instruction set, it is complete, sym-
metric, and coincidentally most similar to the DEC PDP 11
series computers. The address space is large and contiguous
which should lead to cleaner programs. In addition, the
internal architecture is entirely 32 bits wide, and is the
most likely of the three to expand that capability to its
I/0 interface in the future.

Based on the above comparison, the Motorola 68000 will be the
microprocessor used for each of the processors in Magnolia.
Note that with the use of the Object Bus interface different
processor chips could be used., I an very concerned with ease of
software development, and therefore want identical processors so
that program modules can easily be moved around within the sys-
tem.

Besides the basic processor, there are a number of other capa-
bilities to be implemented on the processor board. The most
significant is the Object Bus interface described below. A pro-
grammable time chip will make timed interrupts available to all
processors, A program PROM will be provided which contains
enough code to "boot" the processor after power up as well as
provide some basic debugging aids. This PROM will be initially
mapped into address 0 of the 68000, but will later be mapped to
a very high address location where it will be available for exe-
cution at any other time. Finally, there will be a simple
mapped memory register supplied so that unforeseen slow and
medium speed I/0 devices can be easily added to any one of the
processors,

Object Bus

The Object Bus represents the mechanism through which the vari-
ous processors communicate with each other. This is probably
the most unique feature of Magnolia, and has evolved through
numerous conversations with Tom Cook. The primary objective is
to provide access to data structures (Objects) which reside at
unknown locations of unknown processors - knowing only the
unique ID (Object number) for that data structure.

There are essentially two processor communication approaches
currently in use.

® The first is to give each processor a two port memory, one
port for local references, and another for remote refer-
ences. All memories would be addressable via a sufficiently

-10-

large address space. This is a very unstructured approach
and requires a processor to know the exact state of every
other processor's memory. This gives no memory protection
from errant writes from any of the other processors. This
is simplest to implement in hardware, simplest to start in
software, hardest to maintain reliably, and is probably the
most common approach used.

e The second approach is to provide a "mini network" between
the processors through which messages are passed. This is a
very structured approach, but can result in a lot of data
passing and protocol requirements. While this approach pro-
vides the necessary memory protection, I feel it will be too
slow and inflexible for the fast low level interactions
appropriate within a multiprocessor computer.

The approach described here will allow for random read/write
operations into data structures referenced by an ID (Object
Number). The location (which processor and where in its memory)
will not be known by the requesting processor. Finally read/
write protection will be provided to maximize memory integrity.

A block diagram of a processor tied to an Object Bus is shown in
Fig. 3. The hardware is broken down into 2 sections. The first
is used to initiate a transfer onto the Object Bus. The proces-
sor which is initiating a transfer is referred to as the "Bus
Master", The second section responds to transfer requests on the
Object Bus, and is referred to as the "Bus Slave." The two sec-
tions will be implemented to run simultaneously (full duplex) so
that an Object reference by one processor may get a response
from that same processor if the data structure resides in that
processors memory space.

7.2.1. Bus Master

The Bus Master hardware consists of two Object registers,
bus request logic, address drivers, and data transceivers.
The Object Registers are used to hold the Object Numbers
that will be used should an Object Reference be executed by
the 68000 program. An Object Reference is sensed by moni-
toring the address range specified by a 68000 memory refer-
ence. The 16 megabytes of 68000 address space are divided
up as follows:

Mbyte 15: Object reference (use Object Reg. 1)
Mbyte 14: Object reference (use Object Reg. 2)
Mbyte 13: Hardware registers and memories etec.
Mbyte 12,,

Mbyte 00: Local memory address space

Each Object reference has one megabyte of address range
reserved. This portion of the address space is used to
specify an address within the object being accessed. This
means that for some purposes (ie debugging), an entire

]

/\
h
Loenmt
PROCESSOR
ta Rddr.
:7 Bus Raequest N -
N Comtrol -
logic < Bus Gvamnt
Cau‘tro‘ [4
(11}
e 16 h <
3 T
-]
. -
" v L\ Oby. Reg- 2 J 3
u 7
° g 1T C ?
-] i
< ° i
< . Ad ?
= (=1 1
< \ ol fdde 5
o 3 / i
v
< [~) ‘
< ~ :
9 |—>~| on. Ote | . ¢
p l ﬁ I I 72g A
3
//16 //e*
- . . ul
Real Oby. Object S
Addvess + N " z
Map 4
1024 224 “
Oy, . y "
Matel (Rdd ress) -
et Bus Reg. ®
. pMR R;'ucsé Comtrol [miateh |
- DMR Gwawt Lo,.c, Dome > !
” Y/ <
Data Addrass y 22 GJJ;/J:; “
LocAL A| 8 Comtre
MEMORY
\/
OBTECT
8Bus
08FccT Bus INTERFRACE
Flre. 3
5/29/80

7.2.2.

- 12 -

local memory could be addressed as an object.

To use the Object Bus, a program must first load the
appropriate Object Register with the Object Number that it
wants to access. The program then makes a memory reference
within the megabyte range of the Object Register. When
this happens, local memory reference is inhibited, the Bus
Master logic places a request for Object Bus control, and
waits until it has control of the Bus. It then places the
Object Number (from the register) on the Object Bus and
waits for a response from some (unspecified) Bus Slave that
has the indicated Object Number. The Bus Master then sends
the 22 bits of address information onto the address bus.
This represents the address WITHIN the object, which may be
up to 1 megabyte. Finally, the data is sent or received as
appropriate and the Object Bus is released.

Bus Slave

The Bus Slave hardware consists of a "map" memory, DMA
(Direct Memory Access) logic, and timing & control logic.
The Map memory is 1K words long by 24 bits wide, and con-
tains 4 words of information for each of 256 possible
object entries. The format of a 4 word entry is given
below.

Wd 0: 23,,16 not defined; 15,,00: Object Number

Wd 1: 23,,00: starting address of object in local memory
Wd 2: 23: Interrupt; 22,,00: number of readable bytes
Wd 3: 23: Interrupt; 22,,00: number of writable bytes

Words 2 and 3 are used during a read or write operation
respectively to check that the object address received is
valid (less than the maximum specified), and to see whether
the local processor should be interrupted as a result of
the object reference. Notice that by defining the data
structure of an Object correctly, the object could provide
the first few words as "read/write", while making the rest
of the object read only.

The Bus Slave logic is always looking for requests on the
Object Bus. When it sees a request, it first compares the
Object Number on the bus with the last two object numbers
it processed. If neither of these compare then the control
logic begins a scan of the Map, stopping if it finds a
match or reaches the end of the map. If a match is found
by any of the three tests deseribed above then a response
is sent back over the Object Bus requesting the address
portion of the Object Reference. The slave logic next
reads the object base address out of the map, adds the
object address then present on the Object Bus and saves the
result in an address register. Next, a DMA cycle is
requested from the local processor. While waiting for a
DMA acknowledgement, the logic looks up the size of the

(]

- 13 -

object in the Map and compares that value with the address

sent

on the Bus. If the address is outside the range

allowed for the reference then the access is aborted and an
error flag is returned to the Bus Master,

7.2.3. Object Bus Performance

Since the Object Bus is the one resource that is shared,
the performance of the bus is critical (especially if addi-
tional processors are added for performance). In order to
make the bus as powerful as possible, the following
features should be implemented:

1

2)

3)

4)

5)

Minimize the Map search time. First off, the Bus Slave
will keep track of the last two object numbers
accessed, and match immediately if they are used again.
After that, the logic will begin a search of a 256
entry map. Running on a 125 ns c¢lock, this would
require 32 us max to scan the map. In order to cut
this down, the map will be segmented into U4 64 object
entries., The segment is chosen based on the two least
significant bits of the Object Number. This will cut
the maximum search time down to 8 us max or Y4 us typi-
cal.

Two priorities of Bus access. The bus will normally be
accessed in low priority mode, but programs may set a
high priority flag for faster response.

Continuous Mode. If this flag is set, then the Bus
Master will not release the bus after an access. A low
priority access of this type will lose the bus to a
HIGH priority access. The low priority continuous mode
is provided to minimize the time spent searching maps
for long bus transfers. In high priority mode, the bus
will be entirely 1locked up. This will provide for
autonomous operations of reading (multiple) word(s)
within an Object, and setting some word(s). This is
necessary for reliable hand shake operations in a mul-
tiprocessor environment.

Broadcast Mode. There may be some applications where
separate copies of an object are maintained in more
than one processor. In this case, one would like to
wait for all Bus Slaves to find a match, and thus allow
data to be written into the same object address of ALL
copies of the object within the system. This mode does
not make sense for reading.

Interrupt if accessed. The Map will have two bits
which, if set, will cause an interrupt to be generated
to the local processor if the object is written or read
as appropriate,

1'2.*.

- 14 -

How to use It

The Object Bus as described above allows for random access
of remote (or 1local) data structures with appropriate
memory protection., What one does with this capability
essentially falls into 2 categories: data structures and
message passing. A data structure could reside in one pro-
cessor, but be accessible to all processors. Procedure
calls can be implemented across the Object Bus., This is
done by defining an Object in which one can indicate a
request for a code segment to be executed, the parameters

to be used, and the Object Number where the results may be
returned.

In the case of the bit map display, a request to display a
new line of text may be done by calling an object procedure
with the appropriate parameters including a pointer back to
the source text Object within the calling processor. At
the same time, the bit-map display, which will reside in
the display processors local memory will also have an
Object Number assigned to it so that any processor can
directly read and write the display bit-map.

7.3. Memory

The basic memory board for Magnolia will contain one row of 32
memory chips which will be accessible in byte, word, or double

word

modes. Configuring the memory this way will allow for full

32 bit microprocessors in the future. The 68000 microprocessor
currently only uses byte and word accesses to the memory
(double-word instructions cause 2 word accesses to be executed).

7.3.1. Choice of Memory Chip

1.3.2.

There are currently a variety of chips available, and it is
indeed tempting to want to provide for more than one type.

The standard memory part will be the 64K dynamic RAM chip.
This will provide for 256K bytes of memory per board.
These chips are currently available, although at a rather
high price - $75 each. I would expect the price to come
down substancially within 6 months to a year, and to $20
within 2 years.

The other option is to provide for current 16K memory
chips., This would provide for 64K bytes of memory per
board. This will probably be too small for most applica-
tions, but would make a good cost saving option until the
price of 64K chips comes down.

Error Detection/Correction

There are two possible approaches in this area; byte parity
with no correction, or error correction on the 32 bit

([

7.3.3.

- 15 =

words., The choice of implementation will depend on speed
and complexity.

e Byte parity will require 4 extra bits per word, or 36
memory chips per board. This will simply provide error
detection at a minimum cost, and will not require addi-
tional memory cycle time,

® Error correction requires more bits than simple parity.
ECC on bytes requires 5 extra bits, words require 6,
and double words require 7. Because of the byte opera-
tions of the 68000, the straight forward solution would
require error correction on bytes. This is too costly,
so the solution is to provide ECC on double words and
turn all writes into Read/modify/write operations.

The required steps for writing a byte would be as fol-
lows:

® Read all 32 bits from the memory

® Correct the data read if the ECC code indicates an
error

e Compute the new ECC with the new byte inserted

@ Write the entire 32 bits (or just the byte plus the
ECC bits)

We will have to look carefully at memory timings, but I
believe that the 65K RAM parts will have enough speed to
allow us to do this.

Display Refresh Option

The basic memory board will also contain some optional
additional 1logic intended to minimize the overhead of
transferring bits from memory to the display. This will
be implemented in the form of a second port to the memory
whose address is on the standard local bus, but whose out-
put is a FIFO and video shift register.

A memory access from a "display controller" will indicate a
special video refresh mode access. In this case, the full
32 bits of data accessed will be loaded into a dedicated
FIFO. The output of the FIFO will load a shift register
whose output is a continuous bit stream of video.

If multiple memory boards are present, then the board
select logic will always enable the board. Thus a single
memory cycle will cause 32 bits from multiple boards to be
read, This is done so that multiple memory boards can
easily implement multiple bit-map planes (one plane per
board) for color or grey scale displays.

The requirements for screen refresh (see section 7.6) will
be 20 ns per bit, or a memory cycle every 640ns. The

- 16 -

display controller driving this memory will have to be
carefully designed so as to take only 3 (or 4 at the most)
cycles per access so that the 68000 has sufficient access
to the memory to make responsive changes to the memory.

7.3, Memory Management

Memory management is used here to indicate hardware assistance
placed between the addresses generated by the 68000 and the
addresses that are presented to the local memory. The amount of
assistance needed is a function of the "type"™ of software being
run in the 68000. The three levels that will be supported on
Magnolia are discussed below.

T.4.1.

1.“.2.

7.“.3.

None

In this case, there is no additional hardware. The
addresses generated by the 68000 program are the addresses
presented to local memory. This is appropriate for single
task programs such as the display controller where all code
is resident and available on demand at all times.

Base and Limit Registers.

This is required for a multi-task environment such as UNIX.
It allows multiple "programs" to be dynamically relocated
in real memory. This mechanism requires that all code for
a given process be loaded in memory before running, so that
no "page faults"™ will occur. The hardware required is very
nominal, say 20 IC's.

Virtual Memory

Virtual memory is a capability that must, at some time, Dbe
addressed for Magnolia. The addressing capability of the
68000 makes very large programs possible. This large
address space will never be implemented in real memory,
hence some form of memory mapping must be provided.

Chosing the most appropriate implementation of virtual
memory is fairly difficult., The basic concept is that of
compromise - you can't have all the memory desired but with
degraded performance you can still run the program.
Further decisions of compromise must be made reguarding the
complexity of hardware support. All out support for max-
imum performance during paging can involve extensive
hardware. Keeping the implementation costs in balance with
the rest of the system requires careful consideration of
the overall design. Two possible approaches are discussed
below.

o Instruction Faulting and Restart
This is the "standard" approach. If the processor
makes a reference to an address not in memory, then the

1]

- 17 -

Virtuai Memory hardware aborts the access and flags an
error., Note that this is not necessarily between
instruetions, but at some intermediate point., The
68000 would then have to determine what new page is
needed, where to put it, and generate the disk com-
mands., When the needed page is brought into memory,
the 68000 would have to re-start the aborted instruc-
tion and continue normally. This approach is almost
impossible for the 68000 (as well as the 28000 and
8086) since the processor is not designed to save, or
report, internal state of an instruction.

o Hang during Fault

This is an approach proposed by Forest Baskett (Stan-
ford University) in which an 8 bit processor is
included as part of the Virtual Memory hardware. This
processor is used to service the page faults and gen-
erate the needed disk commands. The 68000 would be
totally "hung" until the needed page is loaded after
which the initial memory request is completed.

The first solution is a requirement in the multi-user large
scale processor enviromment - the processor can service
other users while one process page faults.

The second approach will work very effectively in the sin-
gle user environment. The VM processor can be programmed to
take care of low level page processing and maintenance of
page tables. In most cases, the VM processor will have
determined the next victim before a page fault occurs so
that the disk can be activated immediately. The disk
selected for use on Magnolia will allow typical page faults
to be completed in 25-30 milliseconds. The relatively
small number of tasks available for running means that it
would be hard to make good use of the 68000 during page
faults even if it were free to run.

The primary implication of a Virtual Memory that hangs the
main processor is that all real time operations (such as
timers and I/0) must be capable of running independently of
the 68000. At the least, this means that all I/0 must go
through a DMA chip. The worst would be that another 8 bit
processor would be required on the I/0 board to act as a
"smart"™ DMA controller for all the 1/0.

7.5. 1/0 Capabilities

One board will be designed to implement as many of the I/0 capa-
bilities as we can Jjustify for the system. A single board
should be sufficient, although cable connections may be a limit-
ing factor!.

Most requirements can be met through the use of 6800 peripheral
controller chips. A DMA chip will be provided (wired for word

- 18 -

transfers) to handle high speed I1/0. A second DMA chip (wired

for byte transfers), or an 8 bit processor, will be provided for
low speed I/0.

The following list of capabilities represents some of the things
that come to mind., They are ordered by decreasing importance.

T.5.1. Serial Interface

There will be two serial interfaces, one suitable for driv-
ing a local terminal, and the other suitable for connection
to a host computer. These could be used in lieu of a local
display processor, local disk, or network connections.

T.5.2. Hard Disk

A local high performanbe Winchester style disk is the most
appropriate for Magnolia. This class of disk come in a
small package (5" X 10" X 14"), is quiet, and holds around
20 - 30 megabytes of data. The chosen disk (from Micropo-
1is) contains a formating processor internally and only
requires a high speed parallel interface (8 bits wide).
This interface should convert the 8 bit bus to the disk to
a 16 bit 68000 interface.

T7.5.3. Floppy Disk

With the addition of a floppy disk controller chip, we can
have this option. There are a wide range of applications
where a hard disk is not necessary (basic text editing for
example) and there is a significant cost differential.

7.5.4. Network

Magnolia and the CRG network are made for each other! It
is the high performance communication between processors
that makes a community of personal machines work. It is the
placing of high performance processors onto a network that
make it really useful.

Initially, a parallel interface into the existing NIBB is
the most appropriate connection. In the future it might be
more convenient and cost effective to bring the NIBB
software into Magnolia and simply provide a connection to
the basic Network tap.

7.5.5. A/D converter

Four or more analog channels would be used for pointing
device input, audio, etec.

- 19 -

7.5.6. D/A Output

Audio feedback for user response, games, music etc, would
clearly be used,

7.6. Display

The display is the key ingredient which will permit the Magnolia
system to provide qualitatively and quantitatively better per-
formance over traditional time-shared systems. Magnolia will
not be able to equal a VAX or 2020 for computational problems.*
It will, however, be able to provide a user interface capability
and responsiveness exceeding any of the time-shared systems
currently in use.

The display that I propose to implement is based on a high reso-
lution 1023 line monitor., Using a 17 inch display, and mounting
the CRT horizontally, provides a useful screen resolution of 990
lines high by 1280 bits wide.

e The use of a bit-map display will allow the Magnolia proces-
sor to have a large measure of freedom over the images that
a user might want to have displayed.

e The high resolution image will allow two text pages to be
displayed side by side, plus some additional area above or
below for menu and status information.

® The high resolution will decrease the objections jaggie
lines raise in lower resolution systems.

® This screen resolution is well matched to the memory capa-
city that will be available through the use of 64K RAMs.
The bit-map will consume 150K bytes of memory, leaving 100K
bytes of additional memory for program code and data tables.

® The horizontal format will support graphic applications in
the format which is most commonly accepted.

The Magnolia architecture of multiple processors will allow us
to develop a system design where the functions necessary for
screen manipulation are well organized and separated in the
separate "display"™ processor. The system will, at the same
time, provide flexibility for application programs to load some
of their own "display routines" into the display processor, or
simply access the "raw" bit-map as an Object.

7.7. Pointing Device

Interactive editing with a computer is limited by the speed with
which the user can "point" to some place on the screen. By

* Unless augmented by special-purpose math processors.

1.8.

- 20 -

"interactive editing", I mean the process of making small
changes to a document that has already been entered. The ease
with which the user can point will greatly influence the way one
uses a system. For example, there are a great number of changes
that I would like to make to this document in order to clarify,
organize, or Jjust plain improve the quality of writing. The
point at which I quit making changes is determined by how hard

it is to specify the changes, i.e. how good (or bad) the point-
ing mechanism is.

Magnolia should be an ideal opportunity to experiment with a
variety of pointing devices. I would like people to be able to
use and compare U-function keys, track-balls, tablets, mice,
Joy-sticks, ete. In order to provide for these capabilities,
both the hardware and software must have the appropriate provi-
sions built in., The I/0 devices mentioned above should make it
easy for all the above devices. The operating system will need
to separate out the operation of tracking the pointing device
such that routines for any device can be easily substituted.

Programmable micro-processor

One of the most significant advancements in current computer
architecture is the micro-coded processor. The philosophy of
"programming" a machine's operation has lead to cleaner designs
as well as more powerful instruction sets., A significant pro-
gramming tool for achieving performance enhancement can be pro-
vided at a relatively small cost by making this micro-
programming available to a running program.

While the 68000 is a microcoded processor, its internal opera-

tion is fixed by the manufacturer, and the microcode program is
not alterable.

In order to extend the applications of Magnolia, some form of
micro-programmable processor should be implemented in addition
to the primary 68000 processor. The additional processor will
be implemented as a "co-processor" which will run in parallel to
the 68000 with interrupt and/or address flag communication.

This micro-programmable processor can be a reasonably simple
design using 2901 bit slice parts or the new AMD29116 micro-
processor. A minimal writable control store of 1K words would
provide a useful system, The control store would be a "hardware

memory" within the 68000 address space, and writable as an
Object.

This option has immediate application for bit-map manipulation
of the display, but would also be very useful for providing pro-
grammable microcode algorithms for LISP or High Level Language
execution - for example.

- 21 -

7.9. *C* Compiler

The C compiler will be written by utilizing a UNIX program
called PCC (for Portable C Compiler). This program provides the
language syntactic evaluation, and requires only that the code
generation for the specific end processor be implemented.
Because of the similarity of instruction sets between the PDP 11
and Magnolia's 68000, it should be possible to "eopy" much of
the code generation implemented for the PDP 11/70 processor.

Since the C language is somewhat "typed"™, It would be advanta-
geous to add the concept of an Object (accessed over the Object
Bus) to the language so that the code generated is correct
without explicit code being written by the programmer,

All code generated by the C compiler will be relocatable and
re-entrant. Relocatable means that all addresses needed will be
relative to either the program counter or some structure
pointer, The code may be placed at any location within memory
and be executed. Re-entrant means that all variables are stored
in some data structure outside of the code being run so that no
memory location within the code is ever modified during execu-
tion.

T7.10, Linker/Loader

This is a standard program which will be needed to cause multi-
ple "modules" (or files) from the C compiler to be combined and
made available for loading and running. A mechanism will have
to be provided to allow the linker to assign code modules to
different processors, and to have them loaded appropriately,

T.11, URIX Operating System

The purpose of implementing the UNIX operating system is to pro-
vide familiarity and compatibility with the time-shared system
currently in use. The principal advantage will be in the abil-
ity to compile and run existing programs such as XED (line edi-
tor), FRED (screen editor), NROFF (document formater), ete. The
continued use of Magnolia would result in new programs being
written that would demonstrate the true capabilities of single
user systems.

Most of the UNIX Shell commands, and a number of UNIX programs
will be implemented. Simplifications and reduction of system
tables will be made consistent with the elimination of multi=-
user capability. Despite its high performance, we must resist
the urge to make Magnolia support more than one user at a time.

The initial implementation must be kept as straight forward as
possible. One aspect of this is to keep the 1/0, operating sys-
tem, and user code in one processor. Only the display capabili-
ties will be implemented in a separate processor., Future imple-
mentations should provide for code running in nmultiple

8. Cost

8.1.

- 22 -

processors, and might even make code placement dynamic at run
time.

Magnolia's UNIX should make some use of the large display capa-
bility as soon as possible., The display driver should implement
commands that allow the screen area to be partitioned into rec-
tangular "windows." UNIX shell commands will be provided to
specify the size and location of the windows, such that dif-
ferent "processes"™ can communicate with the user through dif-
ferent windows. An example of this capability would be ini-
tially used for document creation. One window would present the
text editor, another window would present the formated output of

MS (alias NROFF), while a third could present interactions with
SPELL.

Modifications of the standard UNIX can also prove advantageous
in the implementation of file name look up and access by the
operating system. The UNIX file system implements a hierarchy
of directories for locating files. On Magnolia, this hierarchy
should extend beyond the local disk and automatically use the
Network lo locate remote file systems where the specified file
may reside. A high speed local Network with a high performance
file server™ could make a Magnolia system fully functional with
no disk at all.

Estimate
Component Cost

This cost estimate is based on the construction of one Magnolia
system, using current parts cost, and implementing the logic on
high quality commercial wire-wrap boards, chassis, and power
supplies.

A second set of numbers, in parentheses, are supplied as a cost
estimate for systems in the future. This set of numbers assumes
multiple systems, say 10 or more, to be build 1 1/2 to 2 years
from now on ECBs. This is obviously a rough estimate since it
encorporates a number of ICs that are very new in the market.

8.1.1. Processor Board

68000 processor chip $150 ($100)
Object Bus interface $100 ($75)
Misec ICs $50 ($50)
Totalz $300 ($225)

1.2. Input/Output Board
RS232 (2) $20 ($20)
Hard Disk ICs $40 ($40)
Floppy Disk $40 (340)
Network $40 ($40)
A/D, D/A $40 ($20)
Misc ICs $20 ($20)

Totals $200 ($180)

Ula

-23 -

8.1.3. Memory - 256K Board
RAMs U40 €$75 ea. $3000 ($800)
Support ICs $50 ($50)
Total=$3050 ($850)

8.1.4, Memory - 63K Board
RAMs 40 €$8 ea. $320 ($160)
Support ICs $50 ($50)
Total= $370 ($210)

8.1.5. Memory Management - Base/Limit registers
Registers $12 ($12)
Mise ICs $20 ($20)
Total= $32 ($32)

8.1.6. Memory Management - Virtual Memory

RAMs 8 6$30 ea. $240 ($120)
Processor (6502 +PROM) $30 ($20)
Mise ICs $40 ($30)

Total= $310 ($170)
8.1.7. Display Interface
Mise ICs $40 ($u0)
Total= $40 ($40)

8.1.8. Programmable Micro-Processor

29014 4 @ 37 ea. $28 ($20)
Memory 8 8 $7 ea $56 ($40)
Mise ICs $50 ($50)

Total= $134 ($110)
8.2. System Cost

Processor #1 (128K memory)

Processor $300 ($225)
I/0 board $180 ($160)
Memory Management $32 ($170)
Memory $370 ($210)
Memory $370 ($210)

Total=$1252 ($975)
Processor #2 (256K memory)

Processor $300 ($225)
Memory $3050 ($850)
Micro-Processor - ($110)
Display Controller $40 ($40)
Total=$3390 ($1225)
Wire-Wrap boards 8 € $300 ea. $2400 ($400)
Card cage $300 ($100)
Power Supplies $500 ($300)
Winchest Disk $3700 ($3000)
Display Monitor $680 ($500)
Keyboard $100 ($100)

TOTAL= $12,322 ($6600)

8.3. Labor for implementation

8.3.1.

8.3.2.

Hardware

Tasks necessary to implement the hardware are as follows:

Processor 2 months
Memory 3 months (4 with error correction)
1/0 5 months
Display 1 month
Construction 3 months (technician)
Checkout 4 months
Total 18 months

The most appropriate number of people to implement the
above pieces are 3. One for the processor and display, one
for the memory, and one for I/0 controllers. The hardware
could be implemented in 6-8 months with 3 engineers working
full time. The time to implementation would extend propor=-
tionally if people work on a partial schedule, The system
would take say 9-12 months working 1/2 time.

Software

Tasks necessary to implement the software are as follows:

C compiler 4 months
Linker/Loader 2 months
UNIX 8 months

Display routines 3 months
Total 17 months

The most appropriate number of people to implement the
above pieces are 2 or 3. One could implement the compiler
and linker, while 1 or 2 would work on UNIX., I do not
anticipate that the Jjob would be much quicker with two
working on UNIX, but the system implemented might be
noticeable improved. = The task of implementing UNIX is
large enough that a full time commitment is pretty much
necessary, so the software would take 8-10 months to imple-
ment.

Allowing 2 months for combined debugging of hardware/
software problems, a running system could be achieved in
the 12-18 months time frame. The resulting system would
have a high resolution bit-map display available to multi-
task UNIX system running already existing UNIX programs.

>3

-25 -

9. References

C.P. Thacker, E.M. McCreight, B.W. Lampson, R.F. Sproull, and D.R.
Boggs: "Alto: A personal computer” CSL-79-11, XEROX Palo Alto
Research Center, 1979,

Forest Baskett: MPascal and Virtual Memory in a 28000 or MC68000
based Design Station," COMPCON 80, Digest of Papers, pp 456-U459,
IEEE Computer Society, Feb. 25, 1980.

"Proposal for a Joint Effort in Personal Scientific Computing,"
Carnegie-Mellon University, Dept. of Computer Science, Aug 23, 1979

"Research in Integrated Distributed Computing,”" University of Wash-
ington, Dept. of Computer Science, Oct. 1979.

"PERQ," Three Rivers Computer Corp., 160 N. Craig St., Pittsburg,
Pa., 15213.

