i

Xerox Corporation

3333 Coyote Hill

Palo Alto. California 94304
415 494-4000

March 19, 1982

Paul McCullourh
Tektronix

{0 Mail Stop 92-805
P. 0. Box 500
Beaverton, Oregon 97077

Dear Paul:

Here we go again, for the last time. Thank you for your patience
ana help through this experience.

Enciosea youwili fina another tape. It is different from the last

one we sent, both in terms of the image itself and small changes
(you requested) in the virtual machine. Barring major

catastrophe, it will be the same as the tape we want Xerox to
jicense. Changes in this image are described beiow.

User Guiage

e e

Included in this package is a draft of part 1 of The Smalltalk-80
System: a user guide and reference manual. You have already
FEEEIVEE‘3EE_VE?ETBﬁ_ET—EEIET'EEE'SKE—EEEIEsed should match the .
image on the tape. We would appreciate comments on this manual,

especially on omitted user interface information.

Piease do not make copies of this guide; it is only a draft. Our
publisher has agreead to make many copies availabie when it is in

jts final form. Let us know if you need copies of the publishea
version.

License Status

ettt

You may be interested in the status of the Smalltalk-80 licenses.
So are wve.

With respect to your license, we are at the point where we would
like to finish that process. The only thing that is left is to
satisfy the "laying of hands" condition; that Dan see ana approve
your implementation. We would like to set the date of June 1, 1982
as the aeaaline for this. Please arrange with us for an
appropriate time to have Dan come. If you have any questions
regaraing your continued use of the system, please do not hesitate
to ask. The primary principle is that you cannot gistribute the

te

virtual image incepenaent of its implementation on your companv’'s
haraware, ana inaependent of the sale of that haraoware. Your

implementation of the virtual machine can be freely distributea,

First Book Status

You may not recognize the "book". The system changea so much that

{OX Adele ana Dave startea over again, keepinsg well in mind all of your
hearty criticisms. Fourteen chapters have been distributea
within Xerox for review, and the rest will be distributea next
week. We will send a draft to the publishers, Adaison-Wesley, in

April for design work. You will be given a pre-publication
version, when it is availabie.

Impiementors’ Book

As we discussed at the implementors convention, many of us are
still interestea in compilinmg a collection of papers basea on your
experiences implementing the Smalltalk-80 system(s) into a book

for publication. Because others will soon be implementing the
system, the book oueht to happen soon as well. How about the

foiiowing deaalines:

May 1 == we should have the titles, outiines and page estimates
of your articles,

June { == we should have a draft of your completed articles.
We have a technical editor available to assist in editing drafts.
Let us know the extent of your interest and whether you can neet
the above schedule.

Chanzes to the System

The current image is aifferent from the last one, otherwise why
wouia we have bothered? There are three minor Virtual Machine

changes, ana some minor changes in the user interface.

The Virtual Machine changes are by popular demand. The first is
optional and the other two were ae facto in the last release.

Since they are so small, they will be documented here, rather than

us sending you another draft of the implementation chapters now.
They are the.addition of

primitive 1065 <String>
replaceFrom:to:with:startingAt:, whieh allows faster string
copying and replacement;

primitive 115: <SystemDictionary> oopsLeft, which
returns the number of unallocated object pointers in the system;
and

primitive : 116: <SystemDictionary>

signal:atOopsLeft:uorasLeft:. which sets the threshhola for
memory, below which a semaphore is to be signallea.

Note that these primitives actually were in the last image, but
had different numbers.

We should also mention that the imare contains oniy one primitive

{OX with number greater than 127, whieh is the Alto file primitive, to
enable the sampie Aito file system to incluae everything.

Changes to the user interface include further commenting of
methoas and classes, an ‘explain’ feature, ana various
improvements to make the system and user guiae match. Enjoy.

Again, thank you for all the help you have proviaed us in making
the Smalltalk-80 systema reality. We look forward to seeing your

implementations, reading your papers, and working with you in the
future.

Sincerely,

Ay

All of us at SCG,
Glenn Krasner, scribe

Inter-Mittent Memorandum

To Smalltatk-80 Implementors Date March 19, 1982
From Glenn Krasner ' Location XEROX PARC
Subjet Trademark of "Smalltalk-80" Organization SCG

PS. You may be interested in a little clarification about our trademark for the term "Smalltalk-80".
Xerox has applied for federal trademark registration for that term, and intends to protect it as a
trademark.

What this means is that you do not have the right to use this term. However, your license (which
goes into effect after Dan blesses your system) does allow you to use the term when referring to the
system or implementation (e.g. "Smalltalk-80 System") as long as you indicate that "“Smalltalk-80" is
a trademark of Xerox Corporation. In addition, as a trademark “Smalltalk-80" must be used as a
adjective.

Now you understand and will not unintentionally misuse the term "Smalltalk-80", right?

If you have any questions about this, just ask. We almost understand.

Cmurinht @ Yaray Carnneatinn 102 A o ciehig reserved.

V&

Inter-Mittent Memorandum

To Smalitalk-80 Implementors Date March 17, 1982
1)

From Glenn Krasner ' Location XEROX PARC

Subjet Smalltalk-80 Specifics not Organization SCG

covered in the book

Scope

The Smalltalk book contains information necessary to implement Smalltalk, including the list of
bytccodes and their implementations, the list of primitives and their implementations, and a
description of storage management. The book, however, does not contain specifics for any given
Smalltalk-80 virtual memory image, and in particular the image accompanying this memo. This
memo is intended to supply those specifics.

Contained below are a description of the file formats for the tape, plus a list of those objects and
classes known to the interpreters.

What is on the Tape 52
The Smalltalk-80 Virtual Memory Image, and associated files, are written on a 9-track, 1Jaod bpi

pirase-encoded magnetic tape. The tape consists of binary files in ’continuous stream’ mode, with
512 byte records, and an eof mark after each file. The files (in order of appearance) are:

1) Virtual Memory Image (copy 1) 1011 records,
2) Virtual Memory Image (copy 2) 1011 records,
3) Sources file (in the image, called Smalltalk80.sources’) 2425 records,
4) Changes file (in the image, called Smalltalk80.changes’) 1 record,

5) Trace file 1 of simulator 58 records,
6) Trace file 2 of simulator 39 records,
7) Trace file 3 of simulator 43 records,
8) List of object pointers for classes 27 records,
9) List of object pointers for methods 332 records,

Order of Bytes

All bytes are considered 8-bits, all words are 16-bits. Words in the file are stored in the order of
more significant byte followed by less significant byte. We realize that some implementations would
prefer to have words stored low byte followed by high byte. We think that the transformation of
the image that would work for most such machines is to swap the bytes of all fields accessed as
words, and to not swap the fields accessed as bytes.

For word-type objects: swap every field.
For CompiledMethods: swap Length, Class, Header and Literal fields only.
For all other .byte-type objects: swap Length and Class fields only.

Oamsrrinht @ Yornvy Carmaration 1029 AN riehte reserved.

THE FILES
Virtual Memory Image File

There are two copies of the Virtual Memory Image file. The Virtual Memory Image consists of
length information, followed by the data representing objects (object space), followed by the data
representing the object table. The first word (stored as most significant byte first) contains the high-
order 16 bits of the length of the object space, and the second contains the low-order 16 bits of this
length. The third word of the file is the high-order 16 bits of the length of the object table,
followed by the low-order 16 bits. The next 252 words are set to 0. By convention, an image file is
defined to be in interchange format if the fifth word (ninth and tenth byte) is zero.

For this image, the first ten bytes are:
0, 3, 1708, 307s, 0, 0, 1708, 2728, 0, O.

Following this (starting at the 257th word) is the object space. The first word encountered is the
first word of the object whose object pointer (oop) is 2 and whose object space address is 0 (20 bit
address). The next words are the fields of the other objects, stored consecutively, up to the length
of the object space. Following the object space are enough 0's to start the object table at a page
(256-word) boundary.

The next word is the first word of the object table entry for the object with oop (object pointer) =
0. (Which, of course is an invalid oop, but the object table entry exists anyway.) This is followed by the rest of
the words of the object table. The last word of the object table is the last word of the file.

Note:

--The length and object space portions of the file are padded with 0's to the end of a page,
but the object table is not

--The object table may contain unused entries. These have the "freeEntry’ bit set, but all other
bits in, both words are 0. Implementors will have to link these themselves, if desired.
--The object table entries either point to objects in the object space or are free entries, and the
object space contains only objects; there is no free memory in the object space and no entry
in the object table for free memory blocks.

--The object table assumes that objects are stored contiguously starting at address 0 in a 20-bit
address space. There is no distinction for "segment” boundaries. Suitable address translation
as necessary is up to the implmentors.

Sources and Changes Files

The third file of the tape is a copy of the system sources. Print it. ‘This file consists of the
definition of each class in the system, followed by the code for that class’s methods. (There is a form
feed character between each class, ASCII 12). The format of this file may be understood by reading the
source code for the nextChunk method in class ReadWriteStream and the getSource method in class
CompiledMethod; it is the same format as that used in fileIn/fileOut.

Each CompiledMethod in the image contains a pointer to its source code, encoded in the last three
bytes of that method. The two msb's of the first of these bytes determine the file on which the
source is stored (00=Smalltalk80.sources’, 01=Smalltalk80.changes’, 10=unused, 11=unused). The six Isb’s of this
byte with the two following bytes make up a 22-bit pointer specifying where in that file the source
code begins. The source code for that method is terminated by $! (imbedded $!s are doubled).

Note:
The sources file on this tape is quite long, about 350 pages when printed; and the changes file

has only one expression on it

Trace Files

Crnuroht @ Yorny Carnoration 1982 Al richts reserved.

The fifth, sixth, and seventh files on the tape contain three traces of the Smalltalk-80 interpreter
executing the first bytecodes in this Smalltalk-80 virtual image. These were made by running the
formal specification of the interpreter written in Smalltalk-80 itself. The three traces show
decreasing levels of detail over increasing durations.

- The first trace shows all memory references, allocations, bytecodes, message transmissions,
returns and primitive invocations for the first 100 bytecodes executed.

- The second trace shows only the bytecodes, message transmissions, returns and primitives
for the first 424 bytecodes.

- The third trace shows message transmissions, primitives and returns for the first 1985
bytecodes. The lines of this trace are indented according to the level of method invocation
(ie., the depth of the context stack).
The format of each type of entry is given below. All numbers are shown in decimal.
Memory Reference (only in first trace)
Pointer Fetch

object-pointer pointer: fieldIndex = field contents
(e.g., 20656 pointer: 20 = 1617)

Byte Fetch

object-pointer byte: bytelndex = byle contenls
(e.g., 3872 byte: 46 = 208)

Word Fetch

object-pointer word: fieldIndex = field contents
(e.g., 18168 word: 0 = 5)

Pointer Store

object-pointer pointer: fieldIndex € field contents
(e.g., 20654 pointer: 1 « 15)

Allocation

allocating oop: object-pointer
(e.g., allocating oop: 20654)

Bytecedes (in first and second traces)

Bytecode <bytecode-index> bytecode-description
(e.g.; Bytecode <16> Push Temporary Variable 0)

Message Transmission (in all traces)

[cycle=bytecode cycle] receiver-description selector-string argument-descriptions
The bytecode cycle is the number of bytecodes that have been executed. The receiver
and argument descriptions will show the class of the appropriate object except in the case of
Smallintegers, Strings, true, false and nil which print more nicely.
(eg., [cycle=408] al.argePositivelnteger digitAt: 3
[cycle=75] 40 digitMultiply:neg: 808 false)

mmcrminte A Varav Carmnnratinn 1982 A richts re<erved.

Primitive Invocations (in all traces)

Primitive # primitive-index -
(e.g., Primitive #70)
Returns (in all traces)
+ (method / block) of returned value description
(e.8., * (method) of alargePositivelnteger
+ (block) of 64)

Object Pointers Lists

As an aid to debugging, the eighth and ninth files are a list of the oops of all classes and methods
in the system.

V2l t A Vavaw CAarmaratinn 1099 A1l richte roacarved

Objects Known to Interpreters

There is a set of objects that must be known by a Smalltalk-80 interpreter. The oops of these objects are
usually used as constants to interpreters, but could be located in special tables. These special
oops/objects are (those marked * are not necessarily needed by interpreters, but are included in this table as debugging aids):

2 - the object nil

4 - the object false

6 - the object true

010 08h - an Association whose value field is Processor

012 0Ah - *Symbol classVariable USTable, the table of Symbols

014 OCh - class Smalllnteger

016 OEh - class String

020 10h - class Array

022 12h - *an Association whose value field is the SystemDictionary, Smalltalk

024 14h - class Float

026 16h - class MethodContext

030 18h - class BlockContext

032 1Ah - class Point

034 1Ch - class LargePositivelnteger

036 1Eh - *class DisplayBitmap

040 20h - class Message

042 22h - class CompiledMethod

044 24h - * #unusedOop18

046 26h - class Semaphore

050 28h - class Character

052 2Ah - symbol # doesNotUnderstand:

054 2Ch - symbol # cannotReturn:

056 2Eh - *symbol # monitor:

83(1] 30h - SystemDictionary classVariable SpecialSelectors, the array of selectors for bytecodes 0260-
7

062 32h - Character classVariable CharacterTable, table of Characters

064 34h - symbol # mustBeBoolean

7~ 0 NN L mmnbime TN A1l minhhte racarvad

