
TEKTRDNIX®
_ excellence in

information display

TERMINAL CONTROL SYSTEM - 4010
USER'S MANUAL

INFORMATION DISPLAY PRODUCTS

Tektronix, Inc. • P.O. Box 500 • Beaverton, Oregon 97005 • Phone 644·0161

Document No. 062 -1474-00

CUSTOMER AGREEMENT

The Tektronix PLOT-10 Terminal Control System is the
sale property of Tektronix, Inc. The System, or any
part thereof, may not be reproduced or used outside
the Buyer's organization in any manner without the
express written consent of Tektronix, Inc.

REFERENCE MATERIAL

Additional copies of this reference material may be
ordered using the Document number 062-1474-00.

This program is available in the following machine­
entry forms:

User's Manual and
Paper Source Tape:

User's Manual and
Source Card Deck:

062-1474-01

062-1474-02

Please place all orders through your Tektronix
Application Engineer.

Copyri ght @ 1972 by Tektroni x, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights
reserved. Contents of this publication may not be re­
produced in any form without permission of the copyright
owner.

U.S.A. and foreign Tektronix products covered by U.S.
and foreign patents and/or patents pending.

Date: 4/15/72

This manual refers to Release 2 of the Terminal Control System
manual.

TERMINAL CONTROL SYSTEM USER'S MANUAL

CONTENTS
PAGE

1.0 INTRODUCTION 1

1.1 Software, Standards, and the User 1
1.2 The Tektronix Terminal 2
1.3 Terminal Control System Overview 2

2.0 FUNCTION CONTROL ROUTINES 5

2.1 Initialization 5
2.2 Termination 5
2.3 Erasing the Screen 6
2.4 Bell or Audible Output 6
2.5 Hard Copy Generation 6

3.0 VIRTUAL GRAPHICS 9

3. 1 The Virtual Displ ay 9
3.2 Windowing 9

3.2.1 Setting: the Virtual Window 11
3.2.2 Setting the Screen Window 16

3.3 Absolute Vectors 16
3.3.1 Draw 16
3.3.2 Move 17
3.3.3 Point Plot 17
3.3.4 Dash 17

3.4 Relative Vectors 18
3.4. 1 Draw 18
3.4.2 Move 20
3.4.3 Point Plot 20
3.4.4 Dash 20

3.5 Scaling and Rotating 22'
3.5.1 Setting the Scale 22
3.5.2 Setting the Rotation 22.1

3.6 Virtual Cursor 22.1

4.0 DIRECT GRAPHICS 25

4.1 The Screen 25
4.2 Absolute Vectors 25

4.2.1 Draw 25
4.2.2 Move 26
4.2.3 Point Plot 26
4.2.4 Dash 26

i

PAGE

4.3 Relative Vectors 26
4.3.1 Draw 28
4.3.2 Move 28
4.3.3 Point Plot 29.1
4.3.4 Dash 30

4.4 Units of Length 30
4.4.1 Inches 30
4.4.2 Centimeters 30.1

4.5 Direct Cursor Input 30.1
4.6 Incremental Plotting 30.1

5.0 A/N OUTPUT "33

5.1 Entering A/N Mode 33
5.2 A/N Character Output 33
5.3 New Line 33
5.4 Carriage Return 35
5.5 Line Feed 35
5.6 Backspace 35
5.7 Home 35
5.8 New Page 35
5.9 Italic Mode 35.1
5.10 Italic Mode Reset 35.1
5.11 Double Size Mode 35.1
5.12 Normal Size Mode 35.1
5.13 Character Size 35.1

6.0 TABS AND MARGINS 37

6.1 Tab Setting 37
6.1.1 Set Tab Routine 37
6.1. 2 Setting Through COMMON 37

6.2 Tab Resetting 38
6.2.1 Reset Single Tab 38
6.2.2 Reset All Tabs 38

6.3 Horizontal Tab 38
6.4 Vertical Tab 39
6.5 Margins 39

6.5.1 Left Margin 39
6.5.2 Right Margin 39

7.0 A/N INPUT 42

8.0 TERMINAL STATUS 44

8.1 Save Status 44
8.2 Restore Status 44

9.0 SCRATCHPAD SUPPORT 46

9. 1 Enter Scratchpad Mode 46
9.2 Clear Scratchpad 46
9.3 Enter Local Compose Mode 46
9.4 Enter Local Edit Mode 47

ii

Appendix A: Terminal Control System Common
(Global) Variables

A.1 Terminal Status Area
A.2 COMMON Layout
A.3 General Variable
A.4 A/N Variables
A.S Direct Graphic Variables
A.6 Virtual Graphic Variables
A.7 Variable Names in Alphabetical Order

A1

Al
Al
A2
A3
A4
AS
A7

Appendix B: Other Terminal Control System Routines B1

B.1 General
B.2 Basic I/O Routines
B.3 Mode Control Routines
B.4 Graphic Transform Routines

Appendix C: Terminal Control System Glossary

Appendix 0: ASCII Chart

Appendix E: Terminal Control System Index

iii

Bl
Bl
B1
B2

Cl

01

El

1.0 INTRODUCTION

TERMINAL CONTROL SYSTEM

USER'S MANUAL

1.1 Software, Standards, and the User

One of the major difficulties in the development of Computer
Graphics has been the lack of standard basic graphic soft­
ware. As a result there has been a tendency to re-develop
the basic software for each installation and, in some cases,
for each application. In the past this software has often
been oriented towards one system, applicable to only one
type of terminal, and frequently had peculiar features
facilitating a particular application and precluding others.

The software thus developed was often too complex for the
occasional user to use conveniently and frequently too
inflexible for the needs of the sophisticated programmer.
As a result, graphic application software using such a
base tended to have limited use and life.

To meet the need of the different users and the multiplicity
of systems, Tektronix has developed the Terminal Control
System. The Terminal Control System is a comprehensive set
of functionally modular subroutines which allows essentially
terminal-independent programming. The user needs only to
select the proper modules at 'oad time. The design is
basically system and computer independent and allows the
experienced programmer to work at the basic terminal level
and also provides the facilities for the occasional user to
operate easily at the conceptual level. The PLOT-10 version
of the Terminal Control System consists of those modules
which support the Tektronix 4010 Computer Display Terminal.
Properly written programs using the PLOT-10/Terminal Control
System should function with little or no modification on
another model terminal (e.g. the Tektronix 4002A Graphic
Computer Terminal) when loaded with the modules supporting
that .device.' -

The Terminal Control System will be used as a base for the
future development of Tektronix Application Software and
it is hoped that it will serve as an industry-wide standard
for basic software for interactive graphic terminals.

- 1 -

1.2 The Tektronix 4@1@ Terminal

The Tektronix 4@1@ Computer Display Terminal is capable of
displaying both alphanumeric characters and vectors. The
display remains visible once written and until erased. It
is not necessary to continually regenerate the output data
or refresh the screen.

The 4@1@ Terminal has a display area of 7.5 inches by 5.6
inches (19.0 centimeters by 14.3 centimeters) and contains
1@24 by 1@24 addressable points, of which 1@24 by 781 are
in the viewable area* of the screen. In the alphanumeric
mode, the 4@1@ can display 35 lines of 72 characters each.
There are 63 printable characters plus the space character.
Graphic data may be displayed using the vector mode.
Positional data may be input with a thumbwheel-controlled
graphic cursor.

The Terminal Control System expands upon these basic hard­
ware functions to provide more sophisticated means of
handling the interactive capabilities of the terminal and
frees the user from a number of basic IIhousekeepingll chores.

1.3 Terminal Control System Overview

The ideal that the Terminal Control System strives for is
to make the terminal as easy to. use as a penci land a piece
of paper. The detailed programming and general 1/0 handling
are contained within the Terminal Control System. The basic
terminal capabilities are expanded upon and made available
to the user in a natural and practical manner.

The Terminal Control System modules communicate with each
other primarily through the Terminal Status Area, a set of
common variables which continuously represent the current
state of the terminal and maintain the data and flags ne­
cessary to generate output according to the user's current
level of usage. Terminal status will be lost whenever out­
put to the terminal is generated other than through the
appropriate Terminal Control System routine, or whenever
the user changes status locally (e.g. uses the Page or
Reset key). Terminal status should be saved before allowing
these events to occur and should be restored afterwards
(see Section 8.0).

*Vectors just above 78@ on the V-axis may be visible but marginal in
quality. For the purposes of this manual such vectors are considered
part of the unviewable area.

- 2 -

1.3 Terminal Control System Overview (continued)

As most users conceive of their graphic data as existing on
a sheet of paper of arbitrary size, the Terminal Control
System allows them to maintain this concept within their
program through the use of a Virtual Display. The Virtual
Display is a two-dimensional surface of indeterminable size,
limited only by the numeric processing capability of the
computer. Allor a portion of the Virtual Display may be
viewed at any time. The user is only responsible for de­
fining what portion he wishes to have displayed. This is
done by establishing a window which specifies the portion
of the Vi rtua 1 Di sp 1 ay to be vi ewed and where .on the termi na 1
screen it is to be placed. The Terminal Control System will
handle the conversions and details.

The Virtual Display is in contrast to the terminal screen
(Figure 1.0). The user may address the terminal screen
directly in Screen Coordinates or he may use the inch and
centimeter conversion functions. By referring directly to
the screen, the user can easily and naturally control the
layout of his display.

The operations which are applied to the screen are called
Direct Graphics while the operations which are applied to
the Virtual Display are known as Virtual Graphics. The
user is able to switch freely between Virtual Graphics
and Direct Graphics according to his requirements.

Along with graphical data handling, the Terminal Control
System also aids in the output of alphanumeric data. The
user is able to set and reset both horizontal and vertical
tabs and may dynamically define left and right margins. The
Terminal Control System automatically monitors alphanumeric
output and the alphanumeric control commands.

- 3 -

-x

+y

(0.,0.)

-y

VI RTUAL DISPLAY

Bounded only by the single
precision floating point range.

(a)

+X

Fig. 1.0.

~ (1023, 1023)

r----------------~ I I
I UNVIEWABLE AREA I (1023, 780)
I I

(0,0)

VIEWABLE
AREA

TERMINAL SCREEN

Bounded by 0 and 1023 on the X-Axis
and by 0 and 1023 on the Y-Axis,
but only 0 thru 780 on the Y-Axis
is in the viewable area.

(b)

2.0 FUNCTION CONTROL ROUTINES

2.1 Initialization

Initialization of the terminal and the Terminal Status Area
must be accomplished as the initial step in using the Terminal
Control System. This may be done quickly and easily by calling
the initialization routine, INITT. When INITT is called, the
following events occur:

a. The screen is erased and the cursor moves to the HOME
position (upper left hand corner).

b. Alphanumeric mode is entered.

c. The margin variables are set to the left and right screen
extremes.

d. The window is defined so that the portion ~f the Virtual
Display which is equivalent in coordinates with the screen
will be displayed [i.e. (275.,763.) in Virtual Coordinates
is equivalent to (275,763) in screen coordinates].

e. The relative vector scaling is set to unity and the rela­
tive vector rotation to zero.

INITT requires the rate of character transmission from the
computer to the terminal as an input argument in order that
appropriate delays may be produced during screen erasure and
hard copy generation. This will prevent loss of data on re­
motely connected terminals during these periods.

CALLING SEQUENCE:

CALL INITT (I CPS):

where: ICPS - the transmission rate in characters per seconds.
ICPS' = 0 implies the terminal is directly con­
nected and no delays are required.

NOTE: For certain systems, additional in-line initialization
may be required. Please check the Terminal Control
System Implementation Notes for your computer and
system.

2.2 Termination

When terminating a program which uses the Terminal Control
System, it is necessary that the terminal be returned to
alphanumeric mode and that the beam position be moved to a
point that will not interfere with any previous output.

- 5 -

2.2 Termination (continued)

The Terminal Control System provides the routine FINITT, which
will automatically perform these functions and then terminate
the program. FINITT should be always used in place of the
HALT command or the FORTRAN STOP statement. (NOTE: If FINITT
places the beam above the Screen V-Coordinate of the Home
position (KHOMEY), the terminal will automatically lower the
cursor to that V-position on entry to alphanumeric mode.)

CALLING SEQUENCE:

CALL FINITT (IX, IY)

where: IX - The Screen X-Coordinate of the position to which
the beam is moved before program termination.

IY - The Screen V-Coordinate of the beam termination
posit,ion.

2.3 Erasing the Screen

The terminal screen may be erased without changing the mode
or beam position. The Terminal Control System will prevent
generation of additional output until the erase is completed.

CALLING SEQUENCE:

CALL ERASE

2.4 Bell or Audible Output

An audible tone may be output at any time to call the user's
attention to a particular event. Often a continued audible
output, which may be generated by a series of calls to the
bell routine, is used for an alarm. The "bell" may be sounded
while in any mode and has no affect on terminal status.

CALLING SEQUENCE:

CALL BELL

2.5 Hard Copy Generation

A permanent copy of the current display may be obtained any
time the optional hard copy unit is attached by having the
computer initiate hard copy generation. This may be done

- 6 -

2.5. Hard Copy Generation (continued)

while in any mode and does not affect the Terminal Control
System status. The Terminal Control System will prevent
generation of additional output until the hard copy is com­
pleted.

CALLING SEQUENCE:

CALL HDCOPY

- 7 -

C*** INITIALIZE TERMINAL CONTROL SYSTEM ***
C*** BAUD RATE IS 3~ CHARS/SEC(3~~ BAUD) ***

CALL INITT(3~) .
.

C*** ERASE SCREEN ***
CALL ERASE · · C*** SOUND BELL ***
CALL BELL ·

· C*** GENERATE A HARD COpy FASCIMILE OF CURRENT DISPLAY ***
CALL HDCOPY

· C*** MOVE BEAM TO CENTER SCREEN AND ***
C*** TERMINATE PROGRAM ***

CALL FINITT(511 ,125)
END

Using the Basic Routines

Example 2.0

- 8 -

3.0 VIRTUAL GRAPHICS

3.1 The Virtual Display

The Virtual Display is an imaginary two-dimensional surface
with a range in both the X and V directions equal to the
range of a single precision floating point number. Using
the Virtual Display the user may construct drawings, pictures,
and graphs of extreme complexity and detail.

Since the unit of measurement of the Virtual Display is arbi­
trary, it may be assumed to be representative of any measure­
ment unit from microns to light-years, with all measurements
translated to the assumed unit for the given drawing. For
example, the user decides that the basic unit of the Virtual
Display will represent inches. Then the Virtual Coordinate
(2., ~.5) represents a point two inches to the right of the
origin on the X-axis and one half· inch up on the V-axis. To
indicate the point one mile (63,360 inches) to the left of
the origin along the X-axis, the Virtual Coordinate (-6336~.~,
0.0) would be used.

The Virtual Display is similar to normal displays and plotting
devices in that there is a movable pOint which may be thought
of as the writing cursor on the Virtual Display. This point
is called the Imaginary Beam, and its position is the Virtual
Coordinate which represents the location of the writing cursor
as if the Virtual Display were an actual device.

Since only the portions of vectors and the points which lie
within the current window are displayed, the Imaginary Beam
pos i ti on do·es not always represent the actual storage beam
position. The actual beam is represented on the Virtual
Display by the Real Beam, which is updated to reflect the
actual output to the terminal. Figure 3.1 illustrates the
differences between the Imaginary Beam and the Real Beam.
When entering Virtual Graphics or whenever the window is
redefined, both the Imaginary Beam and the Real Beam are
set at the Virtual Coordinate representation (according to
the latest window definition) of the actual beam position.

3.2 Windowing

Allor any portion of the Virtual Display may be viewed at any
time through the technique of windowing. The portion of the
Virtual Display to be shown is defined by rectangular boundaries.
This rectangle is called the Virtual Window, and only those
vectors which pass through the Virtual Window will be displayed.

It is not necessary to use all of the screen for display of the
Virtual Window. The user may define a rectangular section of

- 9 -

C>

INVISIBLE PORTION
OF VECTORS

C

A
~

~/ \
/ \

-----,

A VISIBLE PORTION
OF VECTORS

I

I
I
I
I
!.~ WINDOW
~ BOUNDARY

E I
I
I
I
I
I L ___ , _________ ..J

ACTION

1) Vector drawn from A to C.

2) Vector drawn from C to E.

IMAGINARY BEAM

Moved from vector
start point, A~ to
vector end point, C.

Moved from vector
start point, C, to
vector end point, E.

Fig. 3.1. Imaginary and Real Beams.

REAL BEAM

Moved from vector
start point, A, to
vector intercept with
window boundary, B.

Moved from B to
vector intercept,
D, then move with
drawing of vector·
to end point, E.

3.2 Windowing (continued)

any size and location on the screen as the area in which the
window will appear. This rectangle is called the Screen Window
and toaether with the Virtual Window defines the transformation
between the Virtual Display and the screen (Figure 3.2).

Elimination of vectors and portions of vectors which lie out­
side of the window will be done automatically by the Virtual
Graphic routines as well as the scaling and conversion of these
vectors that are contained in or pass through the window.

It should be noted here that the scaling is not related to the
size of the Virtual Display or the screen, but is determined
solely by the window definition. Also, since the X and Y ex­
tents of the window may be separately defined (see 3.2.1, 3.2.2
below), the X and Y scaling are independent. This allows for
the emphasis of either X or Y data values, (Figure 3.3). Care
must be taken that unwanted distortion is not introduced by
erroneous window definitions. The initial window definition
is set so that the portion of the Virtual Display with coordi­
nates equivalent to the screen will be displayed:

Virtual Window Initial Values:

X minimum - 0., X extent - 1023.
Y minimum - 0., Y extent - 780.

Screen Window Initial Values:

X minimum - 0, X extent ~ 1023
Y minimum - 0, Y extent - 780

The user utilizes the Virtual Display by first defining his
window and then constructinq his drawing, picture, or graph
with the use of the Virtual Graphic routines. ,The user may
display several portions of the Virtual Display at one time
by redefining the window and reprocessing the Virtual Display
for each (Figure 3.4) or may superimpose data from "several"
Virtual Displays by using a common Screen Window (Figure 3.5).
All transformations between the Virtual Display and the Screen
will be based upon the latest window definitions.

3.2.1 Setting the Virtual Window

The portion of the Virtual Display to be viewed is
determined by the Virtual Window. The Virtual Window
is defined by a point which represents its lower left
corner and the extent of the window in the X and Y
directions. '

- 11 -

VIRTUAL DISPLAY

VIRTUAL
WINDOW

Fig. 3.2. Windowing.

--

THE SCREEN

SCREEN
WINDOW*

*Lines outlining the Screen Window position
are not automatically drawn. They are used
here for illustrative purposes only.

w

VI RTUAL DISPLAY

DATA FEATURES EMPHASIZED
BY DISTORTING THE Y VALUES

THROUGH INDEPENDENT SCALING

"­-- --

Fig. 3.3. Independent X, Y Window Scaling.

THE SCREEN

~---:.-:---- -IJ k-:::-l-- _ - - _ ---- __ -- -....---- ------ -----
-~--~-.;;;- ...::=:::---- --~~ -- -- ----

~~---------------------~-~-~-~--~-~+---~~-~~~---~--;;~~~--~~----~----~ --- ---- ---

-------+-_-----J~fJ ~
-------- -- -------- ---

THE SCREEN

VI RTUAL DISPLAY

Fig. 3.4. Use of Several Windows.

VIRTUAL
DISPLAY

#1

VIRTUAL
DISPLAY

#2

/-

/ " \
\
\ ,_/

------- --- --- ---- --- ---

-;:::::::---- :.---
, ---/-"

/ \
\
\

THE SCREEN

Fig. 3.5. Common Screen Window with several Virtual Displays.

3.2.1 Setting the Virtual Window (continued)

CALLING SEQUENCE:

CALL VWINDO (X, XL, V, VL)

where: X - Minimum X-Coordinate of the Virtual Window.
XL - Extent of the Virtual Window in the X­

direction.
V - Minimum V-Coordinate of the Virtual Window.

VL - Extent of the Virtual Window in the V­
direction.

3.2.2 Setting the Screen Window

The Screen Window defines the section of the screen into
which the Virtual Window will be transformed. Its de­
finition is similar to that of the Virtual Window.

CALLING SEQUENCE:

CALL SWINDO (IX, LX, IV, LV)

where: IX - Minimum Screen X-Coordinate of the Screen
Window.

LX - Extent of the Screen Window in the X­
direction.

IV - Minimum Screen V-Coordinate of the Screen
Window.

LV - Extent of the Screen Window in the V­
direction.

3.3 Absolute Vectors

Virtual Graphics allow the ussr to draw~ move, or point "J?lot,,·to
any particular point on the Virtual Display with an absolute
vector. An absolute vector extends from the current Imaginary
Beam position to the location specified by the given Virtual
Coordinates, (X,Y). Mode entry and transformation to screen
vectors, including windowing and clipping, is automatic.

3.3.1 Draw

A vector may be drawn from the last point on the Virtual
Display at which the Imaginary Beam was positioned to a
specified point with DRAWA. Only that portion, if any,
of the vector which passes through the Virtual Window
will be visible. On return from this routine, the
Imaginary Beam will be positioned at the given Virtual
Coordinates.

- 16 -

3.3.1 Draw (continued)

CALLING SEQUENCE:

CALL DRAWA (X,Y)

where: X - Virtual X-Coordinate of the point.
Y - Virtual V-Coordinate of the point.

3.3.2 Move

A move (an invisible vector) to any particular point on
the Virtual Display may be made by calling MOVEA. On
return from this routine, the Imaginary Beam will be
positioned at the given Virtual Coordinates.

CALLING SEQUENCE:

CALL MOVEA (X,Y)

where: X - Virtual X-Coordinate of the point.
Y - Virtual V-Coordinate of the point.

3.3.3 Point Plot

A point may be plotted at any location on the Virtual
Display with POINTA. Only if the given Virtual Co­
ordinates are within the Virtual Window will a point
actually be displayed. On return from this routine,
the Imaginary Beam will be positioned at the given
Virtual Coordinates.

CALLING SEQUENCE:

CALL POINTA (X,Y)

where: X - Virtual X-Coordinate of the point.

3.3.4 Dash

Y - Virtual V-Coordinate of the point.
Y - Virtual V-Coordinate of the

A dashed line may be drawn from the last point at which
the Imaginary Beam was positioned to a specified point

.with DASHA. Only that portion, if any, which passes
through the Virtual Window will be visible. On return
from this routine, the Imaginary Beam will be positioned
at the given Virtual Coordinate.

~ 1].

3.3.4 Dash (continued)

CALLING SEQUENCE:

CALL DASHA (X,Y,L)

where: X - Virtual X-Coordinate of the point.
Y - Virtual V-Coordinate of the point.
L - Dashed line specification.

A dashed line is specified by con­
catenating integers describing the
line segment length and visibility.
All codes except 9 should have 2 or
more integers.
1 5 raster units, vlsib1e.
2 5 raster units, invisible.
3 10 raster units, visible.
4 10 raster units, invisible.
5 25 raster units, visible.
6 25 raster units, invisible.
7 50 raster units, visible.
8 50 raster units, invisible.
9 alternate bright and dark

between points.

NOTE: Screen definition does not affect
dash size.

3.4 Relative Vectors

Virtual Graphics also allow the user to define a displacement
of given length and direction on the Virtual Display through
the use of relative vectors. Relative vectors offer the
ability to create similar structures at different positions
on the Virtual Display with one set of display commands. Con-·
version of the relative vector to an absolute vector, mode
entry, and transformation to screen vectors, including
windowing and clipping, is automatic. On return from a re­
lative vector routine, the Imaginary Beam win be located at
the point defined by its initial position plus the displace­
ment value.

3.4.1 Draw

A relative vector may be drawn on the Virtual Display
from the current Imaginary Beam location with DRAWR.
The X and Y displacement values which define the length
and direction of the relative vector are input arguments
to DRAWR. Only that portion, if any, of the resultant
vector which passes through the Virtual Window will be
displayed.

- 18 -

.
C*** THIS PROGRAMMING EXAMPLE DEFINES AND ***
C*** OUTLINES THE WINDOW ***
C***
C***
C*** DEFINE VIRTUAL WINDOW ***

CALL VWINDO(l~0., 2~~., -50., 1~0.)
C*** DEFINE SCREEN WINDOW ***

CALL SWINDO(60~, 400, 40~, 200)
C*** MOVE TO LOWER LEFT OF WINDOW ***

CALL MOVEA(100., -50.)
C*** OUTLINE WINDOW ***

CALL DRAWA(3~0., -50.)
CALL DRAWA(300., 50.)
CALL DRAWA(100., 50.)
CALL DRAWA(10~., -50.)

C*** PLOT A POINT IN CENTER OF WINDOW ***
CALL POINTA(200., 0.)

C*** MOVE TO LOWER LEFT OF WINDOW ***
CALL MOVEA(100., -50.)

C*** DRAW A DASHED LINE TO THE CENTER OF WINDOW ***
CALL DASHA(200., 0.,12)

C*** CONTINUE DASHED LINE TO LOWER RIGHT
CALL DASHA(l00., 50., 12) .

Window Definition and Virtual Absolute Vectors

Example 3.1

- 19 - ,

3.4.1 Draw (continued)

CALLING SEQUENCE:,

CALL DRAWR (X,V)

where: X - X-value of the displacement.
V - V-value of the displacement.

3.4.2 Move

A relative move on the Virtual Display may be generated
by calling MOVER with the X and V displacements as argu-
ments. .

CALLING SEQUENCE:

CALL MOVER (X,V)

where: X - X-value of the displacement.
V - V-value of the displacement.

3.4.3 Point Plot

Points may also be plotted relative to the current
Imaginary Beam location on the Virtual Display. If
the resultant point is not within the Virtual Window
it will not be displayed.

CALLING SEQUENCE:

CALL POINTR (X,V)

where: X - X-value of the displacement.
V - V-value of the displacement.

3.4.4 Dash

A dashed line may be drawn on the Virtual Display
from the current Imaginary Beam location to a point
displaced by X and V with DASHR. Only that portion,
if any, of the line which passes through the Virtual
Window will be displayed.

CALLING SEQUENCE:

CALL DASHR (X,V,L)

where: X - X-value of the displacement.
V - V-value of the displacement •.
L - Dashed line specification.

- 20 -

· C*** THIS EXAMPLE DRAWS TWO TRIANGLES OF ***
C*** DIFFERENT SIZE AND ORIENTATION WITH ***
C*** THE SAME RELATIVE VECTORS ***

·
· C*** SCALE AND ROTATION FACTORS STILL AT INITIAL VALUE ***

CALL TRIANG(2~0., 200.) ·
C*** DOUBLE SCALE SIZE ***

TRSCAL = 2.
C*** ROTATE 90 DEGREES ***

TRCOSF = COSD(90.)
TRSINF = SIND(90.)

C*** REDRAW TRIANGLE ***
CALL TRIANG(700., 400.) · · · SUBROUTINE TRIANG(X,Y)

C*** INPUT IS CENTER OF TRIANGLE, MUST MOVE ABSOLUTE ***
CALL MOVEA(X,Y)

C*** MOVE TO LOWER LEFT VERTEX ***
CALL MOVER(-100., -100.)

C*** DRAW TRIANGLE ***
CALL DRAWR(200., 0.)
CALL DRAWR(-100., 20~.)
CALL DRAWR(-1~0., -200.)

C*** RETURN TO CENTER AND PLOT POINT ***
CALL PO I NTR (100 ., 100.)
RETURN

Virtual Graphics Relative Vectors, Scaling and Rotating

Example 3.2

- 21 -

3.4.4 Dash (continued)

A dashed line is specified by con­
catenating integers describing the
line segment length and visibility.
All codes except 9 should have 2 or
more integers.
1 5 raster units, visible.
2 5 raster units, invisible.
3 10 raster units, visible.
4 10 raster units, invisible.
5 25 raster units, visible.
6 25 raster units, invisible.
7 50 raster units, visible.
8 50 raster units, invisible.
9 alternate bright and dark be­

tween points.

NOTE: Screen definition does not affect dash
size.

3.5 Scaling and Rotating

Relative vectors are used primarily to construct objects or
entities which must be displayed at a number of different
locations, on the Virtual Display. However, the size and
orientation of these objects is not always the same. For
this reason, relative vectors are automatically scaled and
rotated by the relative vector routines according to the
scaling factor, TRSCAL, and the rotation factors, TRCOSF and
TRSINF. TRSCAL, TRCOSF, and TRSINF are all Terminal Status
Area variables. All input arguments to the relative vector
routines are unsca1ed and unrotated. The input arguments
define the normal size and orientation for a relative vector.
Scaling and rotation will not effect absolute vectors.

3.5.1 Setting the Scale

The relative vector scale factor, TRSCAL, can be used
to alter the length of a relative vector. All rela­
tive vectors are scaled according to the current value.
For example, if a section of relative vector coding
will construct a given object and you require the
object to be constructed again at twice the normal
size, then set TRSCAL to 2.0 and re-execute the code
which will construct the object.

- 22 -

3.5.1 Setting the Scale (continued)

The relative scale factor may be set in the same
fashion that any variable is set. It is necessary
however that the Terminal Status Area be defined as
a set of COMMON variables for reference (see Appendix A).
If no scaling is desired, TRSCAL should be assigned the
value l.~ which is the initial value of TRSCAL set by
INITT.

3.5.2 Setting the Rotation

Relative vectors may also have their direction altered
through the relative vector rotation fa·ctors, TRCOSF
and TRSINF. TRCOSF represents the cosine value of the
rotation and TRSINF represents the sine value. It
should be noted that·if the sum of the squares of the
cosine and sine values do not equal l.~, then there
will be a distortion in length.

All relative factors are rotated according to the
values of the current rotation factors. If the user
wishes to construct an object defined by relative
vectors at an angle different from the normal orienta­
tion, he sets the rotation factors to the cosine and
sine values of the angle and executes the code for
the object.

The relative vector scale factors may be set in the
same fashion that any variable is set, as long as the
Terminal Status Area be defined as a set of COMMON
variables for reference (see Appendix A). If no rota­
tion from the normal orientation of the relative vector
is desired, the rotation factors should be set to:
TRCOSF = l.~; TRSINF = ~.~. These are also the
initial values set by INITT.

3.6 Virtual Cursor

It is often useful to be able to indicate a point on the Virtual
Display with the graphic cursor. The routine VCURSR allows the
user to do this by enabling the graphic cursor. After the graphic
cursor has been positioned, its Screen Coordinates may be trans­
mitted to the computer by striking a keyboard character. VCURSR
constructs the Virtual Cursor by transforming the input data into
Virtual Coordinates according to the current window definition
(Figure 3.6). The Virtual Cursor does not affect the Imaginary
or Real Beam position.

- 22.1 -

3.6 Virtual Cursor (continued)

The transformation assumes that all of the screen is a continu­
ation of the Virtual Display with t~e scale implied by the
current window. This allows the user to receive valid Virtual
Coordinate data even if the graphic cursor is positioned out­
side the current window. However, in such a case, the general
error flag KERROR is set to one as an aid to the user. If the
graphic cursor is inside the window, KERROR is zero. KERROR
is a Terminal Status Area variable.

The keyboa rd character whi ch tri g.gers input of the graphi c
cursor's position, is also returned as an argument. This
character may be used for command purposes, data identifi­
cation, or ignored.

CALLING SEQUENCE:

CALL VCURSR (IC,X,Y)

where: IC - Keyboard character, 7-bit ASCII, right adjusted.
X - Virtual X-Coordinate of graphic cursor.
Y - Virtual Y-Coordinate of graphic cursor.

Note: Cursor control requires an accessory for 4002A.

-22.2-

WINDOW*

--- ----------
~----=;:::;t-----------1-- - __

VIRTUAL
CURSOR

VI RTUAL DISPLAY

Fig. 3.6. The Virtual Cursor

THE SCREEN

GRAPHIC
CURSOR

*Window definition provides the parameters
with which the Graphic Cursor is transformed
into the Virtual Cursor.

· C*** THIS EXAMPLE DRAWS, MOVES, OR POINT PLOTS ***
C*** TO THE INPUT VIRTUAL CURSOR POSITION ***
l~~ CALL VCURSR(ICHAR,X,Y)
C*** "0" IMPLIES DRAW ***

IF(ICHAR.NE.68) GO TO 2~~
CALL DRAWA(X,Y)
GO TO 4~~

C*** "W IMPLI ES MOVE ***
2~~ IF(ICHAR.NE.77) GO TO 3~~

CALL MOVEA(X,Y)
GO TO 4~0

C*** IIp ll IMPLIES POINT PLOT, RE-INPUT FOR ANY OTHER CHAR ***
3~~ IF(ICHAR.NE.8~) GO TO l~~

CALL POINTA(X,Y)
4~~

Virtual Cursor

Example 3.3

- 24 -

4.0 DIRECT GRAPHICS

4.1 The Screen

The terminal screen is a two-dimensional surface consisting
of a discrete 1024 x 1024 matrix of addressable points, of
which 1024 x 781 of these points lie in the viewable area*
of the terminal screen (Figure 1.0). The origin of the
screen lies at the extreme lower left corner.

Operations on the screen are called Direct Graphics, and
allow the user to relate directly with the visible sur­
face of the terminal. Direct Graphics allow the user to
work at a basic graphic level and avoid the overhead of
the Virtual clipping and transformation: routines. The user
has the responsibility of remaining on screen as all co­
ordinate input to Direct Graphic routines are interpreted
as MOD 1024.

Direct Graphics are primarily used with alphanumeric output
and for display layout. The user may freely alternate be­
tween Direct and Virtual graphics. (NOTE: When using a
Virtual Graphic routine after use of Direct Graphics or
alphanumeric output, the Imaginary Beam is considered to
be positioned at the Virtual Coordinate that is equivalent
to the Screen Coordinate of the beam position under the
current window transformation.)

4.2 Absolute Vectors

An absolute vector in Direct Graphics is a draw, move, or
point plot from the current beam position to a specified
Screen Coordinate. No windowing or clipping is performed.
Mode entry and appropriate output handling is automatic.

4.2.1 Draw

A line may be drawn from the current beam position
to any point on the screen with DRWABS. On return
from this routine, the beam position is at the
given Screen Coordinate.

CALLING SEQUENCE:

CALL DRWABS (IX,IV)

*Vectors just above 780 on the V-axis may be visible but marginal in
quality. For the purposes of this manual such vectors are considered
part of the unviewable area.

-25-

4.2.1 Draw (continued)

where: IX - Screen X-Coordinate of the given point.
IV - Screen V-Coordinate of the given point.

4.2.2 Move

The beam may be moved to any point on the Screen with
MOVABS.

CALLING SEQUENCE:

CALL MOVABS (IX,IV)

where: IX - Screen X-Coordinate of the given point.
IV - Screen V-Coordinate of the given point.

4.2.3 Point Plot

A point may be plotted at any location on the screen
with PNTABS. On return, the beam position is at the
given Screen Coordinates.

CALLING SEQUENCE:

CALL PNTABS (IX,IV)

where: IX - Screen X-Coordinate of the given point.
IV - Screen V-Coordinate of the given point.

4.2.4 Dash

A dashed line may be drawn from the current beam position
to any point on the screen with DSHABS. On return from
this routine, the beam position is at the given Screen
Coordinate.

CALLING SEQUENCE:

CALL DSHABS (IX,IV,L)

where: IX - Screen X-Coordinate of the given point.
IV - Screen V-Coordinate of the given point.
L - Dashed line specification.

-26-

· · C*** DRAW BOX USING DIRECT GRAPHICS ***
C*** MOVE TO LOWER LEFT OF BOX ***

CALL MOVABS(2~0, 100)
C*** DRAW SIDES ***

CALL DRWABS(8~0, 100)
CALL DRWABS(800, 650)
CALL DRWABS(20~, 650)
CALL DRWABS(2~0, 10~)

C*** MOVE TO CENTER
MOVABS(5~~,375)

C*** DRAW DASHED TRIANGLE ***
CALL DSHABS(500,15~,2325)
CALL DSHABS(300,150,2325)
CALL DSHABS(500,375,2325)

·

Direct Absolute Vectors

Exampl e 4.1

- 27 -

4.2.4 Dash (continued)

A dashed line ss specified by con­
catenating integers describing the
line segment length and visibility.
All codes except 9 should have 2 or
more integers.
1 5 raster units, visible.
2 5 raster units, invisible.
3 10 raster units, visible.
4 10 raster units, invisible.
5 25 raster units, visible.
6 25 raster units, invisible.
7 50 raster units, visible.
8 50 raster units, invisible.
9 alternate bright and dark between

points. ,

4.3 Relative Vectors

Relative vectors may also be drawn on the screen. However, no
scaling or rotational transformations are applied to these. Mode
entry and appropriate output handling is automatic. Direct
Graphi c re 1 at i ve vectors will cause the beam to move from its
present position to the point specified by the direct displacement.

The user again has the responsibility of remaining on the screen.
All resultant vectors will have their coordinates interpreted as
MOD 1.024.
4.3.1 Draw

A relative line may be drawn on the screen from the current
beam position according to a given X and Y displacement
with DRWREL.

CALLING SEQUENCE:

CALL DRWREL (IX,IY)

where: IX - X-Displacement in Screen Coordinates.
IY - V-Displacement in Screen Coordinates.

4.3.2 Move

A relative move may be generated by MOVREL.

CALLING SEQUENCE:

CALL MOVREL (IX,IY)

where: IX - X-Displacement in Screen Coordinates.
IY - V-Displacement in Screen Coordinates.

-28-

· C*** THIS EXAMPLE FILLS SCREEN WITH TREES ***
DO l~~ IX = ~, 9~~, l~~
DO l~~ IY = ~, 78~, l5~

C*** POSITION TREE START ***
CALL MOVABS(IX+2~,IY+4~)
CALL TREE

1~0 CONTINUE
· · · SUBROUTINE TREE

C*** DRAW TREE BODY ***
CALL DRWREL(60,~)
CALL DRWREL(-3~,6~)
CALL DRWREL(-3~,-6~)

C*** DRAW FRUIT ***
CALL PNTREL(3~,4~)
CALL PNTREL(-1~,-2~)
CALL PNTREL(20,~)

C*** DRAW TRUNK ***
CALL MOVREL(-1~,-20)
CALL DRWREL(0,-4~)
RETURN
END

Direct Relative Vectors

Example 4.2

- 29 -

4.3.3 Point Plot

A point may be plotted relative to the current beam
position with PNTREL.

CALLING SEQUENCE:

CALL PNTREL(IXtIV)

where: IX - X-Displacement in Screen Coordinates.
IV - V-Displacement in Screen Coordinates.

- 29.1 -

4.3.4 Dash

A dashed line may be drawn on the Screen relative to
the current beam position according to a given X and
Y displacement with a DSHREL.

CALLING SEQUENCE:

CALL DSHREL (IX,IY,L)

where: IX - X-Displacement in Screen Coordinates.

4.4 Units of Length

IY - V-Displacement in Screen Coordinates.
L Dashed line specification.

A dashed line is specified by con­
catenating integers describing the
line segment length and visibility.
All codes except 9 should have 2 or
more integers.
1 5 raster units, visible.
2 5 raster units, invisible.
3 10 raster units, visible.
4 10 raster units, invisible.
5 25 raster units, visible.
6 25 raster units, invisible.
7 50 raster units, visible.
8 50 raster units, invisible.
9 alternate bright and dark between

points.

Direct Graphics allow the specification of points in inches
and centimeters as well as Screen Coordinates through the use
of conversion functions. This allows the user to specify out­
put with reference to a familiar length.

4.4.1 Inches

The functional routine KIN is used to transform inches
to Screen Coordinates. The input argument is the number
of inches specified as a single precision real variable.
The function then has the integer value of the appropriate
number of Screen Coordinates.

Example:

IX = KIN(3.5)

where: IX would be assigned the number of Screen Co­
ordinates equal to 3.5 inches.

- 30 -

4.4.2 Centimeters

The functional routine KCM similarly transforms centi­
meters to Screen Coordinates.

Example:

IX = KCM(3.5)

where: IX would be assigned the number of Screen Co­
ordinates equal to 3.5 centimeters.

4.5 Direct Cursor Input

The graphic cursor may be used to specify Screen Coordinates
directly. Calling DCURSR will activate the graphic cursor,
allowing the user to position it. The cursor position ;s
transmitted to the computer when a'keyboard character is
struck. This character along with the position input is
returned as arguments by DCURSR. The graphics cursor position
does not affect the beam position.

CALLING SEQUENCE:

CALL DCURSR (IC,IX,IV)

where: IC - Keyboard character, 7-bit ASCII, right-adjusted.
IX - Screen X-Coordinate of graphic cursor.
IV - Screen V-Coordinate of graphic cursor.

4.6 Incremental Plotting (Restricted to 4002A Terminals)

This routine is used to perform incremental plotting. The
user specifies the direction, whether it is to be visible
or invisible, and the number of times he wishes this plot
character to be output.

CALLING SEQUENCE:

where:

CALL INCPLT (IONOFF,IDIR,NO)

IONOFF = 0; Beam off (invisible).
= 1; Beam on (visible).

IDIR = Direction code (0-7; see below).

NO = Number of times plot character
is to be repeated.

- 30.1 -

4.6 Incremental Plotting (continued)

Direction codes: o

6 ~~,,1(1 2

~
4

Each incremental plot character will move the beam one
raster unit in the given direction.

- 30.2 -

· C*** THIS EXAMPLE DRAWS A 5" X 4" BOX ***
C*** CENTERED ON SCREEN ***
C*** MOVE TO LOWER LEFT OF BOX ***

CALL MOVABS(KIN(1.25), KIN(0.8))
C*** DRAW BOX ***

C***

CALL DRWREL(KIN(5.),0)
CALL DRWREL(0,KIN(4.1))
CALL DRWREL(KIN(-5.),0)
CALL DRWREL(0,KIN(-4.))

C*** NOW DRAW 5 CM. by 4 CM. BOX, CENTERED ***
C*** MOVE TO LOWER LEFT OF BOX ***

CALL MOVABS(KCM(7.), KCM(5.15))
C*** DRAW BOX ***

CALL DRWREL(KCM(5.),0)
CALL DRWREL(0,KCM(4.))
CALL DRWREL(KCM(-5.),0)
CALL DRWREL(0,KCM(-4.))

Units of Length

Example 4.3

- 31 -

· C*** THIS EXAMPLE DRAWS, MOVES, OR POINT PLOTS ***
C*** TO THE DIRECT CURSOR INPUT POSITION ***
100 CALL DCURSR(ICHAR,IX,IY)
C*** "0" IMPLIES DRAW ***

IF(ICHAR.NE.68) GO TO 200
CALL DRWABS(IX,IY)
GO TO 4910

C*** "M" IMPLIES MOVE ***
200 IF(ICHAR.NE.77) GO TO 3910

CALL MOVABS(IX,IY)
GO TO 49191

C*** "P" IMPLIES POINT PLOT, RE-INPUT FOR ANY OTHER CHAR ***
3910 IF(ICHAR.NE.80) GO TO 19191

CALL PNTABS(X,Y)

Direct Cursor Input

Example 4.4

- 32 -

5.0 A/N OUTPUT

By allowing the Terminal Control System to monitor alphanumeric
output, it is possible to maintain terminal status especially the
tracking of the beam position, which is required for tab and margin
control as well as facilitating the mixture of A/N and vector output.

5.1 Entering A/N Mode

At times the user may wish to output A/N data other than
through the Terminal Control System. In such cases it is
the user's responsibility to insure that the terminal is in
A/N mode. This can be done without the output of extraneous
data by using ANMODE. It is not necessary to call ANMODE when
using the Terminal Control System routines as they will auto­
matically enter A/N mode whenever necessary.

CALLING SEQUENCE:

CALL ANMODE

5.2 A/N Character Output

Non-control alphanumeric characters are monitored when output
through ANCHO. A/N mode will be entered if necessary and the
Terminal Status Area representation of the beam position is up­
dated as characters are output. If the outputting of the
character advances the beam beyond the right margin setting,
a new line is automatically generated. This routine does NOT
check the input variable which is assumed to be a 7-bit ASCII
non-control character right-adjusted within an integer word.
Any other input will result in erroneous beam status information.

CALLING SEQUENCE:

CALL ANCHO(ICHAR)

where: ICHAR - 7-bit ASCII non-control character, right­
adjusted.

5.3 New Line

A new line may be generated with NEWLIN. The alphanumeric mode
will be entered if necessary and the A/N cursor wi 11 be moved
to the left margin and down one line.

CALLING SEQUENCE:

CALL NEWLIN

- 33 -

· C*** MOVE TO CLEAN AREA FOR FORMATTED INPUT ***
CALL MOVABS(6~~, l~~)

C*** ENTER A/N MODE ***
CALL ANMODE

C*** REQUEST USER INPUT ***
TYPE l~~

l~~ FORMAT(' INPUT:')
ACCEPT 2~~, IVAR

2~~ FORMAT (I 5)
C*** GO TO DRAWING AREA ***

CALL MOVABS(IX,IY)

Using A/N Mode for Formatted Input

Exampl e 5.1

- 34 -

5.4 Carriage R~turn

The A/N cursor can be moved directly to the left margin with­
out moving down a line with CARTN. A/N mode is entered auto­
matically if necessary.

CALLING SEQUENCE:

CALL CARTN

5.5 Line Feed

Similarly the A/N cursor may be moved down a line without re­
turning to the left margin with LINEF.

CALLING SEQUENCE:

CALL LINEF

5.6 Backspace

The A/N cursor may be moved back one character location with
the backspace routine. The backspace routine may be used to
move the A/N cursor to the left of a non-zero left margin, but
will cause the cursor to "wrap-around" if the cursor is backed
up beyond the zero X-axis location.

CALLING SEQUENCE:

CALL BAKSP

5.7 Home

The HOME routine will move the A/N cursor to the left margin at
the home V-position without erasing the current display.

CALLING SEQUENCE:

CALL HOME

5.8 New Pa.9"e

The routine NEWPAG will cause the screen to be erased and wiTl
move the A/N cursor to the left margin at the home V-location.

CALLING SEQUENCE:

CALL NEWPAG

- 35 -

5.9 Italic Mode (Restricted to 4002A Terminals)

This routine will output the proper control character to
enter italic mode. This routine does not enter alphanumeric
mode automatically.

CALLING SEQUENCE:

CALL ITALIC

5.10 Italic Mode Reset (Restricted to 4002A Terminals)

Resets to non-italic mode and enters alphanumeric mode.
Double size mode is not affected by this routine.

CALLING SEQUENCE:

CALL ITALIR

5.11 Double Size Mode (Restricted to 4002A Terminals)

This routine will output the proper control character to
enter double size mode. This routine does NOT enter alpha­
numeric mode automatically.

CALLING SEQUENCE:

CALL DBLSIZ

5.12 Normal Size Mode (Restricted to 4002A Terminals)

Resets to normal size characters and enters alphanumeric mode.
Italic mode is not affected by this routine.

CALLING SEQUENCE:

CALL NRMSIZ

NOTE: Italic and double size modes are set and reset only
by the above routines. Entering graphic, point plot,
or incremental plot modes will not affect these
settings.

5.13 Character Size

The subroutine returns the size of the character for use in
label positioning and other operations dependent on character
size. When used, it enables applications and software using
TeS to maintain terminal independence.

CALLING SEQUENCE:

CALL CSIZE (IHORZ,IVERT)

- 35.1 -

5.13 Character Size (continued)

where: IHORZ - Height of the character in screen coordinates.

IVERT - Width of the character in screen coordinates.

- 35.2 -

C*** FILL HEADER(8)
DATA HEADER/68,88,65,77,80,76,69,32/
CALL CSIZE(KHORSZ,KVERSZ)

C*** GET NEW PAGE ***
CALL NEWPAG

C*** GO TO HEADER POSITION ***
CALL MOVREL (KIN(3.)~0)

C*** OUTPUT HEADER
DO 100 I = 1,8

100 CALL ANCHO(HEADER(I))
C*** DRAW BOX AROUND HEADER ***

CALL DRWREL(0,KVERSZ)
CALL DRWREL(-9*KHORSZ,0)
CALL DRWREL(0,-KVERSZ-3)
CALL DRWREL(9*KHORSZ,0)

C*** RETURN TO LEFT MARGIN AND GO DOWN 2 LINES ***
CALL NEWLIN
CALL LINEF

· C*** OVERPRINT "0" WITH "X" ***
CALL ANCHO(79)
CALL BAKSP
CALL ANCHO(88)

· C*** RETURN TO LEFT MARGIN, DO NOT GO DOWN A LINE ***
CALL CARTN

· C*** RETURN TO HOME POSITION
CALL HOME

NOTE: KHORSZ and KVERSZ are variables containing horizontal
and vertical character size, respectively, in Screen
Coordinates.

A/N Output (mixed with Graphics)

Example 5.2

- 36 -

6.0 TABS AND MARGINS

The Terminal Control System allows the user to set and reset tabs
and margins to facilitate format layout. The tabs and margin
settings are softWare generated and as such are only useful for
A/N data output through Terminal Control System routines. All
tab and margin values are in Screen Coordinates.

Both horizontal and vertical tabs and left and right margins are
available. Horizontal and vertical tabs are limited to ten po­
sitions each.

6.1 Tab Setting

Tab settings for both horizontal and vertical tabs are kept
in two ten-word integer arrays. The settings are ordered
with ascending Screen X-Coordinates with the first zero
value indicating the end of the settings.

6.1.1 Set Tab Routine

The routine SETTAB takes a given tab setting in Screen
Coordinates and inserts it "into the given tab table.
If the tab table is full, the maximum setting will be
lost in order that a lesser tab setting may be in­
serted. When this occurs, the general error flag,
KERROR, is set. Although duplicate tab settings are
not inserted, SETTAB does not generally check the" tab
setting for validity and does not check if the given
tab table is KHORZT or KVERTT, the horizontal and
vertical tab tables respectively.

CALLING SEQUENCE:

CAll SETTAB(ITAB,ITABlE)

where: ITAB - Tab setting in either X or Y Screen
Coordinates.

ITABlE - Horizontal or vertical tab table (i.e.
KHORZT, KVERTT).

6.1.2 Setting Through COMMON

Both the horizontal and vertical tab table (KHORZT(10)
and KVERTT(10) respectively) can be set directly if the
Terminal Status Area is available as a set of common
variables (see Appendix A). If set directly, the user
must insure that the tabs are in increasing order with
the first zero value following the valid tab settings.
Negative values should never be used.

- 37 -

6.2 Tab Resettirs

6.2.1 Reset Single Tab

To selectively reset a tab. its position in Screen Co­
ordinates must be input to the tab resetting routine
with the given tab table. Non-zero values which do
not correspond to a current tab setting are ignored.

CALLING SEQUENCE:

CALL RSTTAB(ITAB,ITABLE)

where: ITAB - X or V Screen Coordinate of tab to be
reset.

ITABLE - Horizontal or vertical tab table. (i.e.
KHORZT.KVERTT).

6.2.2 Reset All Tabs

An entire tab table may be reset by using a zero for
the tab position to be reset.

CALLING SEQUENCE:

CALL RSTTAB(~.ITABLE)

where: ITABLE - Horizontal or vertical tab table.(i.e.
KHORZT,KVERTT)

6.3 Horizontal Tab

Calling the horizontal tab routine will cause the alphanumeric
cursor to be moved with a constant V-value to the position
specified by the first non-zero entry in the horizontal tab
table, KHORZT, which is greater than the current Screen X-Co­
ordinate of "the cursor or beam position. If the horizontal
tab table is empty, no action will occur. If the tab table
is not empty and no entry exists which is greater than the
current Screen X-Coordinate of the cursor or beam position,
or if the first non-zero entry greater than the Screen X­
Coordinate is also greater than the right margin setting, a
new line will be generated.

CALLING SEQUENCE:

CALL TABHOR

- 38 -

6.4 Vertical Tab

Vertical tabbing will cause the alphanumeric cursor to be moved
with a constant X-value to the position specified by the last
non-zero entry in the vertical tab table, KVERTT, which is less
than the current V-Coordinate of the cursor or beam position.
If no entry in the vertical tab table exists which is non-zero
and yet less than the current V-Coordinate, then no action
occurs.

CALLING SEQUENCE:

CALL TABVER

6.5 Margins

6.5.1 Left Margin

The left margin is the Screen X-Coordinate at which a
line of A/N output starts. The Carriage Return, Home,
and New Page routines cause the A/N cursor to move to
the current left margin.

The left margin setting is contained in the Terminal
Status Area variable, KLMRGN (see Appendix A). KLMRGN
may be set in the same manner as any other variable.
However, its value should always be greater than 0
and less than the right margin value. The initial
value of the left margin as set by INITT is 0.

6.5.2 Right Margin

The right margin is the rightmost position at which
A/N output may be output. Any attempt to output beyond
the right margin using the A/N output routine will cause
a new line to be generated.

The right margin value is a Screen X-Coordinate and is
contained in the Terminal Status Area variable, KRMRGN.
KRMRGN may be set in the same manner as any other vari­
able.

However, its value should always be less than 1023 and
greater than the left margin variable. The initial value
as set by INITT is 1010.

- 39 -

C*** THIS EXAMPLE ILLUSTRATES TABBING CAPABILITY ***
C*** SET HORIZONTAL TABS USING TAB SETTING ROUTINE ***

DO 1 ~~ I = 19)(a, 6~~, 1 ~(a
1~~ CALL SETTAB(I,KHORZT)
C*** SET VERTICAL TABS DIRECTLY THROUGH COMMON

DO 2~~ I = 1,4
29)~ KVERTT(I) = KHOMEY-(4-I)*1~~
C*** INSURE UNUSED PORTION OF VERTICAL TAB TABLE IS ZERO ***

DO 39)91 I = 5,19)
39)9) KVERTT(I) = 9)
C*** OUTPUT CHAR'S ***

DO 429) I = 1,4
DO 41 (a J = 1, 1 9)

C*** OUTPUT 'ABCDE ' ***
DO 49)(a K = 1, 5

4~91 CALL ANCHO(K+64)
41~ CALL TABHOR

CALL TABVER
C*** RETURN TO LEFT MARGIN AT VERTICAL TAB POSITION ***
42(a CALL CARTN
C*** RESET EVERY OTHER HORIZONTAL TAB ***

DO 59)(a I = 1(a9), 6(a9), 2(a9)
5~~ CALL RSTTAB(I,KHORZT)

DO 51(a 1=1,3
51~ CALL NEWLIN
C*** OUTPUT CHAR'S ***

DO 629) I = 1,2
DO 61(a J = 1,19)

C*** OUTPUT 'ABCDE ' ***
DO 600 K = 1,5

6(a~ CALL ANCHO(K+64)
610 CALL TABHOR

CALL NEWLIN
CALL LINEF

. .
C*** RESET ALL TABS ***

CALL RSTTAB((a,KHORZT)
CALL RSTTAB(0,KVERTT)

Using the Tab Routines

Example 6.1

- 40 -

C*** THIS EXAMPLE OUTPUTS CHAR'S IN 3 COLUMNS ***
C*** EACH COLUMN IS 1~ CHARACTERS WIDE ***

DO 2~~ r = 1,3
C*** SET MARGINS ***

KLMRGN = 1~~+2~~*(I-l)
KRMRGN = KLMRGN+l~*KHORSZ

C*** RETURN TO CURRENT HOME POSITION
CALL HOME
DO 2~~ J = 1,5
DO 1 ~~ K = 1,1 5

1~~ CALL ANCHO(K+64)
2~~ CALL NEWLIN

Using Margins

Example 6.2

- 41 -

7.0 A/N INPUT

A/N characters may be input one at a time through the general input
routine, TINPUT. Characters input will be in 7-bit ASCII and right
adjusted. TINPUT will not cause an echo* to be generated and no
beam movement will occur. This allows the user to interact with
his program while in vector mode.

CALLING SEQUENCE:

CALL TINPUT(ICHAR)

where: ICHAR - 7-bit ASCII character right adjusted.

NOTE: If the user wishes to input data other than through the
Terminal Control System routines, he should position the
beam at an appropriate position, and enter A/N mode be­
fore requesting his input. Also he should expect a non­
monitored echo of his input data to occur.

*Check the Terminal Control System I~lementation Notes for more infor-
mation regarding this matter. -

- 42 -

.
C*** THIS EXAMPLE INPUTS AN UNPACKED STRING ***

DO l~~ I = 5
C*** INPUT CHARACTER ***

CALL TINPUT(ISTRNG(I)
C*** ECHO INPUT CHARACTER ***
100 CALL ANCHO(ISTRNG(I» .

A/N Input

Example 7.0

- 43 -

8.0 TERMINAL STATUS

The Terminal Status Area is a set of variables which are kept in a
common block (see Appendix A) and represent the current state of the
terminal. The Terminal Control System allows the user to save the
current terminal status and return to it at a later time.

Although it does not save the displayed data, this facility does
allow the user to interrupt his processing, move to another lo­
cation, do other processing there or interact with the user, and
then return to his original processing.

Since the user allocates the save areas, he may easily save more
than one level of status and may restore any of his saved states
at any time.

8.1 Save Status

The current state of the terminal may be saved by providing the
status saving routine with a 6~-word real array in which the
current Terminal Status Area may be stored ..

CALLING SEQUENCE:

CALL SVSTAT(ARRAY)

where: ARRAY - 6~-word real array.

8.2 Restore Status

The terminal may be restored to any previously saved state at
any time by providing the status restoring routine with the
6~-word real array in which the previous Terminal Status Area
was stored.

CALLING SEQUENCE:

CALL RESTAnARRAY)

where: ARRAY - 6~-word real array containing previously stored
terminal state.

- 44 -

· C*** THIS EXAMPLE SAVES STATUS DURING FORMATTED 1/0 ***
C*** AND THEN RESTORES STATUS ***

· · · DIMENSION SAVE1(6~)
· · · C*** SAVE CURRENT TERMINAL STATUS ***

CALL SVSTAT(SAVE1)
C*** MOVE TO UNUSED AREA OF SCREEN ***

CALL MOVABS(IX,IY)
CALL ANMODE
TYPE 1~0

100 FORMAT('INPUT DATA:')
ACCEPT 200, IVAR1, IVAR2

200 FORMAT(2I5)
· : (Interpret Input)
·

C*** RESTORE STATUS
CALL RESTAT(SAVE1)

· · : (Continue Graphic Processing)

Use of Status Routines

Example 8.0'

- 45 -

9.0 SCRATCHPAD SUPPORT (Restricted to 4002A Terminals)

One of the major features of the 4002A terminal is the computer­
addressable scratchpad. Some basic routines are included in the
4002A version of the Terminal Control System to assist in the
use of the scratchpad. These are described below.

NOTE: It is firmly recommended that status be saved before using
the scratchpad and restored after use.

9.1 Enter Scratchpad Mode

This routine enters scratchpad mode. Future output will be
directed to the scratchpad until this mode is left. Display
of data output to the scratchpad will not occur until scratch­
pad mode is exited (see ENLCM and EDITSP below).

CALLING SEQUENCE:

CALL ENSPM

9.2 Clear Scratchpad

The scratchpad is cleared and the scratchpad cursor is set to
the beginning of the buffer.

CALLING SEQUENCE:

CALL CLRSP

9.3 Enter Local Compose Mode

Scratchpad mode is exited, the scratchpad data is displayed,
and local compose mode is entered. The user may now modify
the output or clear and enter his own data. When he presses
the SEND button while still in local compose mode, the entire
buffer will be sent to the computer. After calling this
routine, the program should be set for input as all output
will be ignored until a reply from the user has been received.

CALLING SEQUENCE:

CALL ENCLM

- 46 -

9.4 Enter Local Edit Mode

The scratchpad mode is exited, the output data is displayed,
(with a terminating question mark), and local edit mode is
entered. The user may now enter his own data. If he remains
in local edit mode and presses the SEND button, only the d~ta
entered after the computer output will be returned to the

.. computer. After calling this routine, the program should
be set for input as all output will be ignored until a reply
has been received.

CALLING SEQUENCE:

CALL EDITSP

- 47 -

APPENDIX A

Terminal Control System Common (Global) Variables

A.l TERMINAL STATUS AREA

The Terminal Control System maintains a representation of the
current state of the terminal and the user's output mode and
level with a set of common (or global) variables referred to
as the Terminal Status Area. The Terminal Status Area should
be set up in each implementation of the Terminal Control System
as a block of common storage, easily accessible to all user
routines.

Some of the information contained within the Terminal Status
Area, such as character width (KHORSZ) and height (KVERSZ),
provide a significant aid for all and increase the ability to
program in a terminal independent fashion. Other variables,
such as the relative vector scale (TRSCAL) and rotation factors
(TRCOSF, TRSINF), and the margin variables (KLMRGN, KRMRGN), must
be available to the routines which require use of these facilities.
The sophisticated user of the Terminal Control System will also
find that the information in, and the appropriate use of, the
other variables will significantly increase his programming
capabil i ty.

All of the Terminal Status Area variables are not used in all
implementations. However, in order to retain consistency and
increase the ease of transference of application software from
one system to another, it is required that the standard Terminal
System Area layout indicated below be used by all.

Two names have been assigned to each Terminal Status Area vari­
able and appear in the upper left of the description paragraph.
The first is the normal 6-character name. The second is a 4-
character name to be used for those implementations which do
not permit a full 6-character name. In all Terminal Control
System documentation, the Terminal Status Area variables will
be referenced by the 6-character name.

A.2 COMMON LAYOUT

The Terminal Status Area is defined below as a labeled COMMON
block as used in FORTRAN IV implementations. The name of the
COMMON block is TKTRNX for all such implementations. The order
of the variables in the COMMON block for all implemehtations is
the same as that described in the Floating Point COMMON below,
with the only difference being that which exists for Fixed Point
COMMON, also described below.

- A 1 -

A.2 COMMON LAYOUT (continued)

All Terminal Status Area variables for implementation which
utilize floating point will be integer or real according to the
implicit FORTRAN definition associated with their names .. Al­
though, the same names will be retained (with the exception of
TRSCAL), all Terminal Status Area variables will be integers
for those implementations with processing restricted to integer
arithmetic.

Floating Point COMMON:

COMMON /TKTRNX/ KBAUDR, KERROR, KGRAFL ,KHOMEY ,KKMODE ,
1 KHORSZ,KVERSZ,KITALC,KSIZEF,KLMRGN,KRMRGN,
2 KTBLSZ,KHORZT(10),KVERTT(10),
3 KBEAMX,KBEAMY,KMOVEF,KPCHAR(4),KDASHT,
4 KMINSX,KMINSY,KMAXSX,KMAXSY,TMINVX,TMINVY,TMAXVX,TMAXVY,
5 TREALX,TREALY,TIMAGX,TIMAGY,TRCOSF,TRSINF,TRSCAL

Fixed Point COMMON:

Same as Floating Point COMMON (with all variables defined
as integers) except for line 5:

5 TREALX,TREALY,TIMAGX,TIMAGY,TRCOSF,TRSINF,KUPSCA,KDWNSC

where the two-variable i'nteger scale factor replaces the real single
variable scale factor.

A.3 GENERAL VARIABLES

The following variables are generally used throughout the Terminal
Control System.

A.3.l Baud Rate KBAUDR, KBDR

The number of characters per second which can be trans­
mitted to the terminal. For directly connected terminals,
this variable will have a zero value.

A.3.2 General Error Flag

The flag set or reset by various Terminal Control System
routines to indicate whether or not certain anomalistic
conditions occurred.

.. A2 -

A.3.3 Graphic Level Flag KGRAFL, KGFL

Flag which indicates the user is currently in Virtual Graphics
mode when set. When reset, user is assumed to be at Direct
Graphic Level.

A.3.4 Home V-Value KHOMEY, KHMV

Screen V-Coordinate of the terminal home position.

A.3.5 Mode KKMODE, KMOD

Status variable indicating current terminal mode:

o - Alphanumeric

A.4 A/N VARIABLES

1 - Vector
2 - Point Plot
3 - Incremental Plot*
4Dash

The following variables are used primarily in the processing of
A/N data of the Terminal Control System.

A.4.l Character Horizontal Size KHORSZ, KHSZ

Number of Screen Coordinates that the beam is horizontally
displaced when a hardware-generated character is output.

A.4.2 Character Vertical Size KVERSZ, KVSZ

Number of Screen Coordinates that the beam is vertically
displaced when a hardware-generated line feed is output.

A.4.3 Italic Flag* KITALC, KITL

Flag set to indicate the enabling of italic output.

A.4.4 Size Flag* KSIZEF, KSIZ

Flag set to indicate the enabling of double size alpha­
numeric output.

*Used with implementations supporting the Tektronix 4002A Graphic
Computer Terminal.

- A3 -

A.4.5

A.4.6

A.4.7

A.4.8

Left Margin KLMRGN, KLMG

Left margin setting as a Screen X-Coordinate.

Ri.sht Margin KRMRGN, KRMG

Right margin setting as a Screen X-Coordinate.

Tab Table Size KTBLSZ, KTBS

The number of words in each of the tab tabl es.

Horizontal Tab Table KHORZT, KHOT

Ten word integer array containing the current horizontal
tab settings. The entries must be Screen X-Coordinate
values in ascending order. The first zero value is used
to indicate the end of the tab settings.

A.4.9 Vertical Tab Table KVERTT, KVET

Ten word integer array containing current vertical tab
settings. The entries must be Screen V-Coordinate values
in ascending order. The first zero value is used to in­
dicate the end of the tab settings.

A.5 DIRECT GRAPHIC VARIABLES

The following variables are used at the basic graphic output level.

A.5.l Beam X-Coordinate KBEAMX, KBMX

The Screen X-Coordinate of the current storage beam position.
Updated whenever beam is moved through output to the terminal.

A.5.2 Beam V-Coordinate KBEAMY, KBMY

The Screen X-Coordinate of the current storage beam position.
Updated whenever beam is moved through output to the terminal.

A. 5.3 Move Flag KMOVEF, KMVF

Flag set to indicate terminal is primed for a blank vector
when in vector mode.

- A4 -

A.5.4 Previous Plot Characters KPCHAR, KPCH

Four word integer array containing the plot characters which
define the last vector or point plot output.

A.5.5 Dashed Line Specification KDASHT, KDST

Defines the lengths of the visible and invisible portions
of a dashed line.

A.6 VIRTUAL GRAPHIC VARIABLES

The following variables are used in conjunction with Basic Graphic
output.

A.6.l Screen Window Minimum X KMINSX, KSXl

Minimum Screen X-Coordinate of the current Screen Window.

A.6.2 Screen Window Minimum Y KMINSY, KSYl

Minimum Screen V-Coordinate of the current Screen Window.

A.6.3 Screen Window Maximum X KMAXSX, KSX2

Maximum Screen X-Coordinate of the current Screen Window.

A.6.4 Screen Window Maximum Y KMAXSY, KSY2

Maximum Screen V-Coordinate of the current Screen Window.

A.6.S Virtual Window Maximum X TMINVX, TVXl

Minimum Virtual X-Coordinate of the current Virtual Window.

A.6.6 Virtual Window Minimum Y TMINVY, TVYl

Minimum Virtual V-Coordinate of the current Virtual Window.

A.6.7 Virtual Window Maximum X TMAXVX, TVX2

Maximum Virtual X-Coordinate of the current Virtual Window.

A.6.8 Virtual Window Maximum Y TMAXVY, TVY2

Maximum Virtual V-Coordinate of the Virtual Window.

- A5 -

A.6.9 Real Beam X TREALX, TRLX

Virtual X-Coordinate of the current Real Beam position.

A.6.10 Real Beam Y TREALY, TRLY

Virtual V-Coordinate of the current Real Beam position.

A.6.11 Imaginary Beam X TI MAGX, TI MX

Virtual X-Coordinate of the current Imaginary Beam position.

A.6.12 Imaginary Beam Y TIMAGY, TIMY

Virtual V-Coordinate of the current Imaginary Beam position.

A.6.l3 Relative Vector Cosine Factor TRCOSF, TRCF

Cosine value used for rotation of relative vectors on the
Virtual Display.

A.6.l4 Relative Vector Sine Factor TRSINF, TRSF

Sine value used for rotation of relative vectors on the
Virtual Display.

A.6.l5 Relative Vector Scale Factor TRSCAL, TRSC

Value used for the scaling of relative vectors on the
Virtual Display. (For implementations utilizing floating
point.)

A.6.l5a Relative Vector Up Scale Factor KUPSCA, KUPS

Numerator value of scaling factor for relative vectors on
The Virtual Display. (For implementations where only inte­
ger arithmetic is available.

A.6.15b Relative Vector Down Scale Factor KDWNSC, KDWN

Denominator value of scaling factor for relative vectors
on the Virtual Display. (For implementations where only
integer arithmetic is available.)

- A6 -

A.7 VARIABLE NAMES IN ALPHABETICAL ORDER

Name Use DescriEtion

KBAUDR General Characters per Second
KBEAMX Direct Graphics Beam X-Coordinate
KBEAMY Direct Graphics Beam V-Coordinate
KDASHT Virtual Graphics Dash Specification
KDWNSC* Virtual Graphics Relative Vector Down Scale Factor
KERROR General General Error Flag
KGRAFL General Graphic Level Flag
KHOMEY General Home V-Value
KHORSZ A/N Character Horizontal Size
KHORZT A/N Horizontal Tab Table
KITALC** A/N Italic Flag
KKMODE General Mode
KLMRGN A/N Left Margin
KMAXSX Virtual Graphics Screen Window Maximum X
KMAXSY Virtual Graphics Screen Window Maximum Y
KMINSX Vi rtaul Graphics Screen Window Minimum X
KMINSY Virtual Graphics Screen Window' Minimum Y
KMOVEF Direct Graphics Move Flag
KPCHAR Direct Graphics Previous Plot Characters
KRMRGN A/N Right Margin
KSIZEF** A/N Size Flag
KTBLSZ A/N Tab Table Size
KUPSCA* Virtual Graphics Relative Vector Up Scale Factor
KVERSZ A/N Character Vertical Size
KVERTT A/N Vertical Tab Table
TIMAGX Virtual Graphi cs Imaginary Beam X
TIMAGY Virtual Graphics Imaginary Beam Y
TMAXVX Vi rtual Graphics Virtual Window Maximum X
TMAXVY Virtual Graphi cs Virtual Window Maximum Y
TMINVX Virtual Graphics Virtual Window Minimum X
TMINVY Virtual Graphics Virtual Window Minimum Y
TRCOSF Virtual Graphics Relative Vector Cosine Factor
TREALX Virtual Graphics Real Beam X
TREALY Virtual Graphics Real Beam Y
TRSCAL Virtual Graphics Relative Vector Scale Factor
TRSINF Virtual Graphics Relative Vector Sine Factor

*Used only for implementation where only integer arithmetic is available.

**Used with implementations supporting the Tektronix 4002A Graphic Computer
Terminal.

- A7 -

APPENDIX B

Other Terminal Control System Routines

B.1 GENERAL

The Terminal Control System consists of a set of highly modular routines
in order that implementation and applicability would cover a number of
terminals, systems, and users. A number of support routines not des­
cribed in the main portion of this manual exist. These routines and
a brief explanation of their function are described below.

B.2 BASIC 1/0 ROUTINES

B.2.1 Output Character TOUTPT

Sets parity if necessary and outputs given character to
terminal.

B.2.2 X,Y Conversion XYCNVT

Screen X,Y Coordinates are translated to the minimum set
of plot characters required for vector or pOint plot output.
This routine performs the point plot simulation required
for 4~1~ implementations.

B.2.3 Forced I/O Delay IOWAIT

Timesharing and remote temrinals will lose any output sent
while a hard copy is being generated or the screen is being
erased. The IOWAIT routine forces an appropriate delay in
output to allow these events to occur without loss of infor·
mation.

B.2.4 Output Dashed Line TKDASH

Draws a dashed line as specified in KDASHT.

B.3 MODE CONTROL ROUTINES

B.3.1 . Enter Vector Mode VECMOD

Causes the terminal to enter the vector mode.

- B1 -

B.3.2 Enter Point Plot Mode PNTMOD

Signals the X,Y Conversion routine to simulate point plotting
for the 4010.

B.3.3 Enter Dash Mode DSHMOD

Sets the dash type specification and enters dash mode.

B.3.4 Mode Check MODCHK

Determines present system mode.

B.4 GRAPHIC TRANSFORM ROUTINES

B.4.1 Virtual Graphics to Screen Transformation V2ST

Transforms a Virtual Display vector or point. into output
according to the current window definition~ The General
Error Flag is set whenever the given vector or point is
outside the current window, and no output is generated.
This routine maintains the Real Beam and Imaginary Beam
positions in Virtual Graphics.

B.4.2 ~ CLIPT

Clips Virtual Display vectors according to the current
window definition. Returns start and end points of the
visible segment of the vector. If vector does not pass
through the window at all, the General Error Flag is
raised.

B.4.3 Parallel Clip PARCLT

Clips horizontal and vertical vectors on the Virtual Displ~
according to the current window definition. Assumes vector
passes through window and returns start and end pOints of
the visible segment of the vector.

B.4.4 Point Clip PCLIPT

Determines if given point is within the current window. Sets
the General Error Flag if point is not within the current
window.

B.4.5 Window Coordinate Transform WINCOT

Scales and outputs a given Virtual Space vector or point ac­
cording to the current window definition.

- B2 -

B.4.6 Reverse Window Coordinate Transform REVCOT

Transforms a given Screen Coordinate into a Virtual Coordinate
according to the current window definition.

B.4.7 Graphic Level Check LVLCHT

Checks the current graphic level. If in Direct Level on entry,
this routine resets the Real and Imaginary Beam and enters
Virtual Graphics.

B.4.8 Relative to Absolute Conversion REL2AB

Scales and rotates relative vectors on the Virtual Display
and converts them to absolute vectors.

- B3 -

APPENDIX C

Terminal Control System

Glossary

ABSOLUTE VECTOR

A directed line segment from a given start point to a given end
point. In DIRECT GRAPHICS, the start point is defined by the
beam position and the end point is an absolute SCREEN COORDINATE
as specified by a DISPLAY COMMAND. In VIRTUAL GRAPHICS, the
start point is defined by the IMAGINARY BEAM POSITION and the
end point ;s an absolute VIRTUAL COORDINATE as specified by a
DISPLAY COMMAND.

ALPHANUMERIC CURSOR

A rectangular non-stored movable marker which indicates the next
position at which a character will be displayed.

ALPHANUMERIC MODE

ASCII

The TERMINAL mode in which ASCII OUTPUT will be interpreted as
characters to be displayed.

Abbreviation for lIalphanumeric li •

American Standard Code for Informat'ion Interchange: A standard
code consisting of 7-bit elements for information interchange
among data processing communication systems. This code is
usually broken up into two groups: a control set referred to
as IICONTROL CHARACTERS II and a set whi ch defines the character
output when in ALPHANUMERIC MODE. Sometimes referred to as
ANSCII or USASCII.

CHARACTER GENERATOR

A hardware or software device which draws the appropriate charac­
ter when given a non-control ASCII character.

- Cl -

CLIPPING

The modification of VIRTUAL GRAPHICS Vectors so that the portion
of these vectors which lie outside the WINDOW will not be dis­
played on the screen. The end points of such vectors are re­
presented by the IMAGINARY BEAM POSITION so that sequential
vectors defined by a series of end points will not be errone­
ously displayed.

CONTROL CHARACTER

The group of ASCII elements used to change the state of the TERMINAL
or to perform functions other than the display of characters or the
generation of vectors. Control characters are often used as data
delimiters as well.

COORDINATE

CRT

An ordered pair (X,Y) of numbers which uniquely represent a point
on either the screen or the VIRTUAL DISPLAY. The"ordered pair of
numbers used in the normal coordinate system (Cartesian Coordinates)
represent the point according to its distance from the ORIGIN along
the X-axis and Y-axis respectively.

Cathode Ray Tube. A device in which an electron beam emitted by a
cathode strikes a phosphor screen to generate a visible image. The
display surface of the Tektronix terminals is the viewing surface
of a direct view bistable storage CRT.

CURSOR

A movable marker used as a reference.

DIRECT GRAPHICS

The set of DISPLAY COMMANDS which operate directly on the screen.
Direct Graphics do not undergo CLIPPING and WINDOWING transfor­
mations.

DISPLAY COMMAND

A command which affects the display of data. Often an output
command to the TERMINAL.

- C2 -

DRAW

The DISPLAY COMMAND which causes a visible vector to appear. In
DIRECT GRAPHICS, the vector is from the current beam position to
the given SCREEN COORDINATE. In VIRTUAL GRAPHICS, the vector is
from the current IMAGINARY BEAM POSITION to the given VIRTUAL CO­
ORDINATES. Note that in VIRTUAL GRAPHICS only the portion of the
vector which passes through the window will appear.

ERASE

The procedure of clearing the TERMINAL screen.

GRAPHICS

The operations used to display data. Often refers only to the
vector operations.

GRAPHIC CURSOR

A cross-hair CURSOR used to specify positional input.

GRAPHIC INPUT

Positional data consisting of an X- and Y-COORDINATE and specified
by the location of the GRAPHIC CURSOR.

GRAPHIC LEVEL

The level (DIRECT or VIRTUAL) at which a display is being generated.

GRAPHIC TRANSFORM ROUTINES

The routines which transform VIRTUAL GRAPHICS into DIRECT GRAPHICS.

HARD COpy

A permanent copy of a display image. Also the operation which pro­
duces a permanent copy.

HARDWARE CHARACTER

A character displayed by the hardware CHARACTER GENERATOR internal
to the TERMINAL.

- C3 -

HOME POSITION

The location on the screen in the upper-left hand corner at which
the first character of a page is normally printed.

IMAGINARY BEAM POSITION

INPUT

The VIRTUAL COORDINATE which corresponds to the position at which
the STORAGE BEAM would be located if the entire VIRTUAL DISPLAY
could be viewed.

Data sent from the TERMINAL to the computer. Also data provided
to a subroutine.

JOYSTICK

A device used to control the GRAPHIC CURSOR.

KEYBOARD

The portion of the TERMINAL which allows a user to enter A/N data
into the computer.

LEFT MARGIN

MOVE

The SCREEN X-COORDINATE which represents the starting posttion of
a line of alphanumeric output.

The DISPLAY COMMAND which causes an invisible vector to be generated.

NEW LINE

The operation which causes the ALPHANUMERIC CURSOR to go to the
LEFT MARGIN and down one line.

NEW PAGE

The operation which ERASES the screen and moves the ALPHANUMERIC
CURSOR to the HOME POSITION.

- C4 - I

ORIGIN

The COORDINATE represented by (O,O). The origin of the screen
is located at the lower left-hand corner. The VIRTUAL DISPLAY,
by definition, has its origin at its center.

OUTPUT

Data sent from the computer to the TERMINAL. Also data generated
by a subroutine.

PLOT CHARACTERS

A set of 1 to 4 non-control ASCII elements which represents a
SCREEN COORDINATE to the terminal vector drawing hardware.
Position data transmitted to and from the terminal must be in
Plot Characters.

POINT PLOT

A DISPLAY COMMAND which causes an invisible vector to be generated
and a point to be plotted at the end point of the vector. In BASIC
GRAPHICS, no point will be plotted if the end point is outside the
WINDOW.

POINT PLOT MODE

The TERMINAL mode which causes a set of PLOT CHARACTERS to be inter­
preted as a POINT PLOT vector.

RASTER UNIT

The distance between two adjacent points on the screen. The basic
resolution element of the TERMINAL.

REAL BEAM POSITION

The point which represents the beam position transformed into
VIRTUAL COORDINATES.

RELATIVE COSINE FACTOR

The cosine value used to rotate RELATIVE VECTORS.

RELATIVE ROTATION

The rotational transformation applied to RELATIVE VECTORS.

- C5· -

RELATIVE SCALE FACTOR

The value used to scale RELATIVE VECTORS.

RELATIVE SCALING

The linear transformation applied to RELATIVE VECTORS.

RELATIVE SINE FACTOR

The sine value used to rotate RELATIVE VECTORS.

RELATIVE VECTOR

A directed displacement used to construct an absolute vector ac­
cording to current beam status. In DIRECT GRAPHICS, the vector
constructed uses the beam position ~s the start point and the
beam position plus displacement for an end point. In VIRTUAL
GRAPHICS, the IMAGINARY BEAM POSITION provides the start point.
The given displacement is then scaled and rotated before being
added to the IMAGINARY BEAM POSITION to produce the end point.

RIGHT MARGIN

The SCREEN X-COORDINATE which represents the rightmost limit of
alphanumeric output. Any attempt to output beyond the right
margin using the A/N output routine will cause a NEW LINE to
be generated.

screen

The portion of the TERMINAL on which' output from the computer is
displayed. The screen has 1024 x 1024 addressable points, al­
though points with Y-COORDINATES greater than 780 will be off­
screen. The ORIGIN for the screen is the extreme lower left
point. Plotting on the screen without the use of the CLIPPING
and WINDOW functions may be accomplished through the use of
DIRECT GRAPHICS.

SCREEN COORDINATES

The set of points which constitutes the screen. These points
form a discrete two-dimensional space and range from (0,O) to
(1023,1023) inclusive. SCREEN COORDINATES MUST ALWAYS BE IN­
TEGERS.

SCREEN WINDOW

The section of the screen into which the VIRTUAL WINDOW is trans­
formed. No VIRTUAL GRAPHIC vectors may be displayed outside the
Screen Window.

- C6 -

SOFTWARE

The programs and routines used to operate a computer. Also, the
documentation, diagrams, and manuals for these routines, the
computer, and associated peripheral devices.

SOFTWARE CHARACTERS

A character displayed by a software CHARACTER GENERATOR. Software
Characters may be displayed in any size or rotation.

STORAGE BEAM

The electron beam which is directed by the output to draw characters
and vectors on the TERMINAL screen.

STORAGE TUBE

A CRT which will maintain a display, written once, for an indefinite
period until an erasure is made.

TERMINAL

A console which accepts data from or sends data to a computer. Used
here to refer to the Tektronix 4010 Computer Display Terminal which
consists of a screen to display data and a keyboard to send data.

TERMINAL STATUS

The current state of the TERMINAL.

TERMINAL STATUS AREA

The set of common variables which represent the current TERMINAL
STATUS.

TIMESHARING

The use of a computer to service a number of individuals in an
effectively simultaneous fashion. Communication with a time­
sharing computer is usually through an interactive TERMINAL.

VECTOR MODE

The TERMINAL mode which causes a set of PLOT CHARACTERS to be
interpreted as a MOVE or DRAW vector. The first set of PLOT
CHARACTERS output after entering Vector Mode will cause a MOVE
to occur; sequential sets of PLOT CHARACTERS output without
mode change will cause DRAW's to occur.

- C1 -

VIRTUAL COORDINATE

The set of points which constitute the VIRTUAL DISPLAY. These
points form an effectively continuous two-dimensional space with
a range equivalent to that'of single precision floating point.

VI RTUAL CURSOR

The representation of the GRAPHIC CURSOR transformed into VIRTUAL
COORDINATES according to the current WINDOW definition. The
Virtual Cursor is not required to be within the current window.

VIRTUAL DISPLAY

An extensive imaginary display area independent of TERMINAL size
restrictions. Displays may be constructed on the VIRTUAL DISPLAY
using VIRTUAL GRAPHICS and may be inspected in part or totally
through the definition of the WINDOW.

VIRTUAL GRAPHICS

The set of DISPLAY COMMANDS which operate on the VIRTUAL DISPLAY
and perfrom CLIPPING and WINDOWING.

VIRTUAL WINDOW

The portion of the VIRTUAl DISPLAY which is displayed in the area
defined by the SCREEN WINDOW. Only the portion of the VIRTUAL
GRAPHICS vectors on the VIRTUAL DISPLAY which are contained with­
in the Vi rtua 1 Wi ndow wi 11 be di sp 1 ayed.

WINDOW

A transformation defined by the VIRTUAL WINDOW and the SCREEN
WINDOW which allows a portion of the VIRTUAL DISPLAY to be
viewed on a section of the screen. The transform itself con­
sists of the elimination of vectors outside of the VIRTUAL
WINDOW and the scaling of those inside to fit the SCREEN WINDOW.

WRAP-AROUND

The effect where a cursor or vector is moved to one side of the
screen and reappears on the other slde.

X-COORDINATE

The first (abscissa) value of a COORDINATE.

Y -COORDINATE

The second (ordinate) value of a COORDINATE.
- C8 -

APPENDIX .D

4010

USA SCI I CODE fUNCTIONS

- -- - - -Bns - - -HIGH ORDER LOW ORDER LOW ORDER
14 13 12 X&Y X y

32
• "Dg

112

--- SP J{~ p J~g

33 81 97 113

- ! 1 A Q a q
34 66 82 98 114

-- II 2 B R b r
3S Sl 67 83 99 115

-- "" 3 C 5 c 5

36 52 68 84 HUJ 116

- - $ 4 D T d t

%
37 53 69 85 Hll 117

- - 5 E U e u
38 54 7_ 86 1f/J2 118

- & 6 F V f V

39 55 71 87 1f/J3 119

-
, 7 G W 9 W

56 72 88 1f/J4 12f/J

- - 8 70~ H 11°f X 130 g h ISO" X ' 7°8

41 57 73 89 1f/J5 121

--) 9 I Y • y I

42 58 74 If/J6 122

- *
• • • J ~ J Z

43 59 75 91 If/J7 123

- + • [{ , K k
44 6' 76 92 1f/J8 124

- , < L \ I I
4S 61 77 93 125

- -] - M m A LTMODE

46 62 78 94 11f/J 12 6
• > N A n rv

47 63 79 95 111 RUB 127
/ .,

0 0 • OUT

GRAPHIC PRINT IN
• CHAR IS PRECED ED BY ESC INPUT UPPER CA5E
CHA R TO PER FORM FUNCTI ON

:iI# TEKTRON IX, INC. INFORMATION DISPLA Y PRODUCTS

TEKTRONIX'" P.o. Box 500, Beaverton , Oregon 97005
_ excellence in

inlormation display (503) 644·0161

-Dl-

APPENDIX E

Index

CALL PAGE NO.

ANMODE 33
ANCHO (ICHAR) 33

BAKSP 35
BELL 6

CARTN 35
CLRSP 46
CSIZE (IHORZ, IVERT) 35.1

DASHA (X,Y,L) 17
DASHR (X,Y,L) 20
DBLSIZ 35.1
DCURSR (IC,IX,IY) 30
DRAWA (X,Y) 17
DRAWR (X,Y) 19
DRWABS (IX, IY) 25
DRWREL (IX,IY) 28
DSHABS (I X, I Y ,L) 26
DSHREL (IX,IY,L) 28

EDITSP 47
ENCLM 46
ENSPM 46
ERASE 6

FINITT (I X, IY) 6

HDCOPY 7
HOME 35

INCPLT (IONOFF,IDIR,NO) 30.1
INITT (ICPS) 5
ITALIC 35.1
ITALIR 35.1

LINEF 35

MOVABS (IX, IY) 26
MOVEA 17
MOVER (X,Y) 19
MOVREL (IX,IY) . 28

NEWLIN 33
NEWPAG 35
NRMSIZ ·35.1

PNTABS (IX,IY) 26
PNTREL (IX,IY) 28
POINTA (X,Y) 17
POINTR (X,Y) 19

- E1-

CALL PAGE NO.

RESTAT (ARRAY) 44
RSTTAB (ITAB,ITABLE) 38
RSTTAB (0,ITABLE) 38

SETTAB (ITAB,ITABLE) 37
SVSTAT (ARRAY) 44
SWINDO (IX,LX,IY,LY) 16

TABHOR 38
TABVER 39
TINPUT (ICHAR) 42

VCURSR (IC,X,Y) 22
VWINDO (X,XL,Y,YL) 16

- E2 -

READER'S COMMENT FORM

Your comments about this publication may be helpful to us.

If you wish to comment, please use the space provided below, giving
specific page and paragraph reference.

Please do not use this form to ask technical questions about the
equipment or to make requests for copies of publications. Instead,
make such inquiries to your Tektronix Application Engineer.

Reply requested Name ________________________ __

Yes D Job Titl:::.,e __________ __

No D . Address
.~-----------------------

Zip ____ _

DOCUMENT NO. 062-1474-00

YOUR COMMENTS PLEASE

If you have any comments on this publicltion, plel. write them on the reverse side of this sheet.

Your comments will help us produce better publications for your use. Each reply will be carefully
reviewed by the persons responsible for writing and publishing this material. All comments and
suggestions become the property of Tektronix.

Note: Please direct any requests for copies of publications, or for assistance in using your
Tektronix equipment to your Tektronix Application Engineer.

~ fuM
••• I ••

,

BUSINESS REPLY MAIL
No postage necessary if mailed in the United States

Postage will be paid by

TEKTRONIX, INC.
P.O. BOX 500
BEAVERTON, OREGON 97005
U.S.A.

ATTN: TEKTRONIX USER'S LIBRARY

FIRST CLASS

PERMIT NO. 61
BEAVERTON, OREGON

,

I

. , .
fd fold !

TEKTRONIX, INC.
P.O. BOX 500
BEAVERTON, OREGON 97005
U.S.A.

ATTN: TE KTRON IX USE R'S LIBRARY

'General

j
.'

TERMINAL CONTROL SYSTEM
4002A ADDENDA

4/25/ /C.

•

The Terminal Control System was originally released for the Tektronix
4010 Computer Display Terminal. All current documentation has been
oriented towards that version. Additional routines have been written

~ tn support features of the 4002A not available.on the 4010. These are
INCPLT, ITALIC, ITALIR,DBLSIZ, NRr~SIZ, ENSPM, CLRSP, ENCL~1, and EDITSP .

. -I fl.-a doi. ti.c rl.._the-fo.l1,o.w.iR-g - ·PQu·t-.'}..rtes- fl a ve-been-ineo r-pora ted-i·JTw t-he.
~r-e-:J-..£ys-t-em-·-b-ttt ... ha¥e-ft{)-t-:Y-e·t-,been-~fl eludeHn-t-he-'US-ey...!.s,.
~~~aflua-lo-:,'-DA5HA,~DASHR;-DSHAB&-~H-RE-L"")""and--eS·I.z·h-

INCPLT 

This routine hangles incrementa.l plotting mode entry and 'handling of 
, plot character~~is entirely contained within this routin~. The user 

specifies the direction, whethel~ it is to be visible or invisible, and 
. the number bf times he wishes this plot character to be output. 

. . ~ .' 

. '. 

CALLING SEQUENCE: 

where: 

CALL INCPLT (IONOFF,IDIR,NO) 

IONOFF =f;; Beam off (invisible): 
, - 1; Beam on (visible). 

IbIR = Direction code (0-7; see below). 

NO = Number of times plot chaaacter is to be 
repeated. 

Direction codes: ,0 

7 

6·-~ 

-3 

Each incremental plot character will move the beam one raster unit in the 
given direction. 

ITALIC .. 
This routine will ou~put the proper control character to enter italic mode.' 
Thts,routine does NOT enter alphanumeric mode automatically . 

. CALLING SEQUENCE: 

CALL ITALIC 

-" .. 

.. 



·,. '! -, 
f . 1=-_ I -

/ 

ITALIR ." 

Resets to non-italic mode and enters alphanumeric mode. Double size mode 
--is not affected by this routine. I 

CALLING SEQUENCE: 

CALL ITALIR 

. DBLSIZ 

This- routine will output the proper control character to enter double size 
mod-e. This routine does NOT enter alphanuemric mode aLtomat-ically. 

CALLING SEQUENCE: \ -

CALL D3LSIZ 
... .:'._ ... :. ... 

NRMSIZ I' 

, I 

Resets to normal size characters and enters alphanumeric m~de. Italic mode 
-is flot--affected by this routine: . 

CALLING SEQUENCE: 

CALL NRMSIZ 

NOTE: Italic and double Size modes are set and reset only by the above 
routine~, Entering graphic, point plot, or incremental pJot modes 
will not affect these settings~ 

SCRATCHPAD 

One of the major features of the 4002A terminal is the computer-addressable 
scratchpad. Some basic routines are included in the 4002A version of the 
Terminal Control System to assist in the use of the scratchpad.- These are 
described below. . ... -

NOTE: It is firmly recommended that status be saved before using the 
scr~tchpad and restored after use. 

ENSPM 

This routine enters scratchpad mOdJ. Future output will be directed to the 
scratchpad until this mode is left. Display of data output to the scratch­
pad will not occur until scratchpad mode is exitted (see ENLCM and EDITSP 
below) . 

CALLING SEQUENCE: 
i • . 

CALL ENSPt1 

-2-

( 

i 



1 . 

• 
CLRSP 

.. " 
The scratchpad is cleared and the scratchpa~ cursor i.s :set to the begin-
ning of the buffer. 

CALLING SEQUENCE: 

CALL CLRSP 
' . 

. ENCLM 

.Scratchpad mode is exited, the output data is displayed, and local compose 
mode is entered. The user may now modify the output or clear and enter 
his own data. When he presses the SEND button while still in local compose 
mode, the entire buffer will be sent to the com~uter. After calling this 
routi ne) the program shoul d be set' for input as all output wi 11 be locked 
o-ut.until a reply from the user·has been re.ceived.i:· i\ .... ' ... ' ' .. 

1 '''. . 
CALLING SEQUENCE: 

• . I ~ 

i 

'. .... . CALL ·ENCLM 

EDi"T$P ......... '._ ........... _... ".:' ........... ' .. . 
. ' .. .. . 

'" • I 

" 
~ .. ~. . 

.... ': .-.. 

i • 

•• .1 •• ". " .. ".". . .. ~'. ; e··. .'. ' .... '._ .' .... 
.... ~. ",.: . 

The'scratchpad mode is exitted, the out~ut data ~s displayed, (with a 
.. termj na ti ng.que$.ti 00. .. mark), .. 9,nd local. edi t. mode. .i sE;nterecl... ..The U.?e.l~ .. " ..... '. 
may now enter his own data. If he remains in'loca) edit mode and presses 
the SEND button, only the data entered after the computer output will be 
returned to the computer. 'After calling th'is rout'ine, the program should 
be set for input as all output will be locked out until a reply has been 
received. 

CALLING SEQUENCE: 
. .... . ' ' . ," .... 

.CALL. EDITSP . . . 

.. 3-


