- TENET USERS MANUAL




TENET BASIC STATEMENTS

Assignment & Sequence Control
INTEGER vy

REAL v

DOUBLE Vi

COMPLEX &

DOUBLE COMPLEX Vi

STRING vy

DIM ay

[LET] svy = e

DO In[:1n] [L,In[:1n1]...[,In[:1n]]
GOTO Tn

ON e GOTO 1n;

IF e THEN {51 | [ELsE] S2 17
1n] 1n2

_ TO
FOR sv = e]{ WHILE} e, [STEP e3]

NEXT \&

DATA <

READ Svi

RESTORE [1n]

REM text

PAUSE

END

Function & Subroutine
DEF [dt] FNname [(vi)][=e]
RETURN [e]

GOSUB 1n

ON e GOSUB 1In,

Terminal Input/Output
PRINT vy

INPUT SV

PRINT IN FORM x$:sv.

Matrix

MAT a = a,

MAT ay = a, + a3
MAT ay = ay - ag
MAT a, = a, * ag

4-2
4-3

4-3
4-4
4-5

4-10
4-12
4-13

5-2,4
5-4

5-6

6-2

6-7

7-2

7-4
7-5

MAT a, = (e) * a,
MAT ay = INV(aZ)
MAT ay = TRN(a2)
MAT a = e

MAT a = IDN

MAT READ a,

MAT INPUT a
MAT PRINT [IN FORM x$]:ai

File

open Lo U Lsvmoure | [OITEYT
“SCR"[ *71 ) ,BINARY '10

JSEQUENTIAL) f e
JRANDOM(e,) 1
,RANDOM ,0LD

CLOSE e,

RESTORE FILE e

APPEND FILE e;

ERASE FILE e FROM e, TO ey
ON ENDFILE (e) GOTO 1n

ON ENDREC (e) GOTO 1n

[MAT] INPUT FROM e1[AT ez][IN FORM X$]:Vi
[MAT] PRINT ON e][AT ez][IN FORM X$]:Vi
Edit

ENTER 1n [STEP n]

LIST [In[:In][,...In[:1n]]1]

RENUMBER [1n1,1n2,n]

ALL
DEL[ETE] {1n[:1n][,...[:1n]]
ALTER 1n
TABS [pysPysP3sPy]

Program Control

RUN

CONTINUE

SAVE "fp" ,SYNBOLIC ,NEW Jn.
»BINARY ,OLD i

LOAD "fn"

LINK "fn" [,1n]
TAPE
QUIT

7-6
7-7
7-8

7-10
7-11
7-12
7-14

8-4

8-6

8-7

8-8

8-9

8-10
8-11
8-12,4
8-15;6-9

9-3
9-4

9-5

9-7
9-9

10-3
10-3

10-4

10-5
10-6
10-7

10-8



Pub. No. 2001

TENET BASIC
Users Manual

JULY 1970

TENET
927 Thompson Place
Sunnyvale, California 94086

Price: $4.50



Copyright © 1970 TENET, Inc.



PREFACE

This document is a user's guide which explains in detail the features, vocabulary, and
usage of TENET BASIC. It presents the timesharing user with the information necessary
for him to fully utilize the capabilities of the TENET 210 Timesharing System. Although
it is possible for the inexperienced user to learn the BASIC language from this text, it is
recommended that he first refer to the TENET 210 TIMESHARING PRIMER for an intro-
ductory discussion of the BASIC language.

FIRST EDITION:

Spect fications contained herein are subject to changes which will be reported in
subsequent revisions. C(opies of this and other TENET publications can be
obtained through TENET branch offices. A form is provided at the back of this
vublication for veaders' comments. If the form has been detached, please direct
your comments to ITENET, 927 Thompson Place, Sunnyvale, California 94086
(Attention: Software Publications Dept.).

iii






CONTENTS

PREFACE iii Variable Declaration Statements ( continued )

DIM 4-5
1 INTRODUCTION 1-1 Variable Type Declaration Rules 4-5
LET or Assignment Statement 4-7
gENE’I;.BASIS d in this Manual i:i Mixed Data Type Assignments 4-7

onventions Used in this Manual DO Statement 4-10

GOTO Statement 4-12

2 USING TENET BASIC - ON ... GOTO Statement 4-13

Mode of i _ IF Statement 4-14

ode of Oparation } FOR and NEXT Statements 4-15

III’III'JSIElp to Ig;:;l;-;g?:rs B DATA Statement 4-19

: READ Statement 4-20

EntePrmg thedTENET 210 System : RESTORE Statement 4-21

L?)s(;‘?l‘;loxl;/[:ss ages B REM Statement 4-22

PAUSE Statement 4-23

The TENET BASIC Subsystem END Statement 4-94

Command Modes
Line Numbers
Syntax Errors

5 FUNCTION AND SUBROUTINE

Line Length - STATEMENTS -
Character Set - Single Line Function — DEF Statement 5-
Blanks -

GOSUB Statement
ON ... GOSUB Statement

Statement Types
The Interactive Environment

5-1
5-2
Multi-line Function — DEF Statement 5-4
5-6
5-7

NNMNNNNNII\?NNNNNN [
IO NNUT U H DWW =

3 ELEMENTS OF BASIC

6 TERMINAL INPUT/OULTPUT

STATEMENTS 6-1

Constants -
Numeric Constants - Standard Format Statements 6-2
String Constants - PRINT 6-2
Reserved Constant Names - TAB Function 6-5
Variables - INPUT 6-7

User Controlled Format Statement
-PRINT IN FORM 6-9

Scalar Variables

Subscripted Variables

Data Types and Variables
Expressions

wwwwwwwwﬁowwwwww v\
= OO O R WWWR = -

Unary Arithmetic Operators - 7 MATRIX STATEMENTS -1
Binary Arithmetic Operators - MAT Assignment Statement 7-2
Relational Operators - MAT Addition Statement 7-3
Logical Operators - MAT Subtraction Statement 7-4
Hierarchy of Operations - MAT Multiplication Statement 7-5
String Concatenation -10 MAT Scalar Multiplication Statement 7-6
MAT Inversion Statement 7-7
MAT Transposition Statement 7-8
4 ASSIGNMENT AND SEQUENCE pOSH
MAT Initialization Statement 7-9
CONTROL STATEMENTS 4-1 MAT Identity Statement 7-10
Variable Declaration Statements 4-1 MAT READ Statement 7-11
INTEGER 4-2 MAT INPUT Statement 7-12
REAL 4-2 MAT PRINT Statement 7-14
DOUBLE 4-3 MAT PRINT IN FORM Statement 7-16
COMPLEX 4-3
DOUBLE COMPLEX 4-4
STRING 4-4



8 FILE STATEMENTS 8-1 10 PROGRAM CONTROL STATEMENTS 10-1
Introduction 8-1 RUN Statement 10-2
File Content 8-1 CONTINUE Statement 10-3
File Structure 8-2 SAVE Statement 10-4

Sequential Access Files 8-2 LOAD Statement 10-5
Random Access Files 8-2 LINK Statement 10-6
OPEN Statement 8-4 TAPE Statement 10-7
CLOSE Statement 8-6 QUIT Statement 10-8
RESTORE FILE Statement 8-7 Leaving the System - LOGOUT 10-9
APPEND FILE Statement 8-8
ERASE FILE Statement 8-9 GLOSSARY Glossary-1
ON ENDFILE Statement 8-10
ON ENDREC Statement 8-11 APPENDIXES
INPUT ( Sequential File ) Statement 8-12 _
INPUT ( Random File ) Statement 8-13 B rnesinRACTER SET ol
INPUT IN FORM Statement 814 ¢ DIRECTORY OF BASIC STATEMENTS  C-]
PRINT ( Sequential File ) Statement 8-15 D FUNCTIONS D-1
F MODEL33 TELETYPEWRITER
9 EDIT STATEMENTS 9-1 TERMINAL F-1
i Control Unit F-1
Elementary Ed1.t1{1g Features 9-1 The Keyboard F-2
Standa_rd Editing 9-1 Paper Tape Punch Fo3
Insertlpg Statements 9-2 Preparing Paper Tape Off-Line F-3
Replacing Statements 9-2 Paper Tape Reader F-3
ENTER Statement 9-3
LIST Statement 9-4
RENUMBER Statement 9-5 INDEX Index-1
DELETE Statement 9-6
ALTER Statem »nt 9-7
TABS Statement 9-9



1. INTRODUCTION

TENET BASIC

TENET BASIC is a subsystem of the TENET 210 Timesharing System. It
was designed and implemented to enable a wide variety of users to commu-
nicate with a powerful timesharing computer. The TENET BASIC system
is a greatly extended version of the original Dartmouth BASIC. From the
user's viewpoint, the BASIC language itself has not changed, but its flexi-
bility and power have increased. TENET BASIC is not only a language to
describe a program, but a system which has an interactive capability nec-

essary for dynamic problem solution.

The TENET 210 Timesharing System was developed specifically for inter-
active timesharing operations. It consists of the TENET 210 computer
system connected to a set of interactive terminals. The user views this
system in two levels. The first is the small resident command processor,
EXECUTIVE. A user's first and last contact with the TENET 210 System
is at the EXECUTIVE level. EXECUTIVE provides the initiation and ter-
mination procedures for sessions at a terminal, performs accounting tasks,
file management, and enables the user to access the second level containing
the TENET BASIC subsystem. Only the EXECUTIVE commands necessary
to the TENET BASIC user are discussed. For more information about
EXECUTIVE and other subsystems available to the user, refer to the
TENET EXECUTIVE USER'S MANUAL.

CONVENTIONS USED IN THIS MANUAL

The following conventions are used throughout this manual:

® Upper case letters, digits, and special characters must appear

exactly as shown in the format representation for all statements.

® Information in lower case letters in the format representations is

to be supplied by the user.

® Braces { } indicate that one of the items enclosed must be used.

1-1



1-2

Brackets [ ] indicate that the item ( or items ) is optional.

An ellipsis ( a series of three periods, ... ) indicates that a vari-
able number of items may be included in the list. Variable-length

lists are indicated by the subscript i
Control characters are followed by the superscript €.

The example preceding the discussion of each statement is a syn-

tactic example only.

Examples following the discussion of each statement are for the pur-
pose of demonstrating the usage of the statements and are not neces-

sarily examples of good programming practice.

The word ' type ' indicates user input from the teletypewriter;

" print "' indicates computer output.

Underlined text in the examples indicates computer output or

computer requests.

Although a ' prompt " character precedes each BASIC statement
during an actual programming session, it is omitted throughout this
text.



2. USING TENET BASIC

Before the user can access the TENET BASIC subsystem, he must first

The Model 33 Teletypewriter
Terminal is discussed in
ceives and transmits information through an interactive terminal such as Appendix F.

establish a connection with the TENET 210 computer. The computer re-

the Model 33 Teletypewriter Terminal. For this type of terminal the tele-
typewriter LINE/OFF/LOCAL knob must be turned to the LINE position to
establish a communication link. The connection is then confirmed by the

system when it prints out a message such as:
The header message may
TENET TIME SHARING 6/30/70 vary according to individu-
al installations.

MODE OF OPERATION

The TENET 210 system receives information from the terminal in full

duplex mode only. Characters typed into the terminal are transmitted to

the computer without simultaneous printing. Once the computer receives a
character, it transmits a character back to the terminal for printing. This

is a full duplex operation whereby the listing documents exactly what the
computer receives, thus minimizing undetected transmission errors.
Therefore, a character printed at the terminal is an echo of what the computer
received. Certain control characters are not echoed. As a security pre-

caution, words denoting special permissions are never echoed.

INPUT CONVENTIONS

The following keys are used to transmit and modify information entered

from the terminal:

Carriage Return Key. This key designates an end of state-
ment. Each time this key is pressed the system echoes a
Carriage Return and Line Feed, thereby positioning the tele-

typewriter print head at the beginning of the next line.



2-2

or

®

ALT
MODE

BELL

Line Feed Key. This key designates a continuation of state-
ment. Each time this key is pressed the system echoes a
Carriage Return and Line Feed, thereby positioning the tele-
typewriter print head at the beginning of the next line. Since
the Carriage Return echoed by the system does not act as an
end of record, another Carriage Return must be issued by the

user to terminate multi-line statements.

A Control Key. This key deletes the previous character
entered by the user. It causes a backspace arrow to be
printed ( echoed ) and may be used repeatedly, deleting a

character each time the key is pressed. For example:

TENT ET 222 10 will be printed at the

terminal as:

TENT «— ET 222 <= 10

The system will interpret it as:
TENET 210

Q Control Key. This key completely deletes the line currently
being typed ( i.e., before the Carriage Return key is
pressed ). A Line Feed and Carriage Return are echoed when

this key is pressed. Example:

" WHATISIT " will be printed at the terminal as:
" WHAT IS IT " ¢

The Break Key causes a transmission interrupt and effectively
disconnects the terminal from the computer. Pressing this

key could cause a loss of the program and its data.

Escape Key or ALT MODE. This key has the same effect as
the when correcting program statements. However, as
this key has another significance in other situations (for ex-

ample, during the LOGIN sequence), it should not be used in

place of a key.

The bell sounds when the user has typed at character position
61 to warn that he is approaching the 72-character line capac-

ity limit.



PROMPT CHARACTERS

Before any information can be entered from the terminal, it must be pre-
ceded by a signal, or prompt, from the system. This prompt signifies
that the system is ready to accept input. For example, after the user

logs into the system, the prompt character issued is "' - "', indicating that
he is at the EXECUTIVE level and that only EXECUTIVE level commands
may be entered. Once the user has entered the TENET BASIC subsystem,
the prompt character '" > " is printed by the system before the user enters
each program statement. Requests for additional or corrected information

are signalledby a' ? ".

ENTERING THE TENET 210 SYSTEM

Once the terminal is connected to the computer and the header message
issued, the system is automatically placed in the LOGIN mode, and the
user is requested to identify himself. In the following LOGIN sequences,

the underlined text indicates what the system prints.

-LOGIN account; name

where:

account = user's account number, a numeric value from 0 through 511.

name = user's name, from 1 through 8 characters.

If either or both of the items requested by the LOGIN prompt are omitted
or invalid, the user is reprompted by ACCOUNT ? and/or NAME ?. The
user must respond to these prompts with the appropriate entries followed

by a Carriage Return. Examples:

-LOGIN 210
NAME ? SMITH

_LOGIN SMITH
ACCOUNT ? 210

The user must successfully sign in within three minutes of connect time,

or

or else the terminal is automatically disconnected.



Passwords

If the user has designated a password to be associated with an account
number, the LOGIN sequence will include a request for a password. The
password prompt ( PASSWORD ? ) appears after the user has entered his
account and name. As a security precaution, password entries are not

echoed at the teletypewriter.

LOGIN Messages

The following messages and diagnostics may appear during the LOGIN se-

quence:

ERROR
The account number, name,or password has been entered incorrectly. The

appropriate item will be requested.

NAME IN USE
Another user is using the same account number and name specified in the
LOGIN attempt.

USER LIMIT EXCEEDED
The user has exceeded the maximum CPU time, disc space, or terminal

time allocated to him. The user is disconnected.

THE TENET BASIC SUBSYSTEM

Once the user is at the EXECUTIVE level, he can enter the TENET BASIC
subsystem by the EXECUTIVE command ' BASIC ''. TENET BASIC then

issues its own prompt character, >.

-BASIC

>



Command Modes

The computer accepts commands in two modes: Immediate Execution

and Program Execution. Immediate Execution commands are executed
upon receipt. They are not actually a part of the program but control its

disposition. Program Execution commands constitute programs, and thus
are not executed immediately, but are deferred until program execution

time ( run time ).

Line Numbers

All Program Execution commands begin with line numbers that indicate
their position within a program. Thus, program statements need not be
entered in numeric sequence as they are ultimately sorted by the computer.
If duplicate line numbers are used, the later version of the statement will

replace the earlier.

Line numbers must be positive integer values ranging from 1 to 99999 with
no embedded blanks,

Syntax Errors

Program statements entered from the keyboard ( as opposed to paper tape
input ) are checked for syntactic errors. If an error is found, the system
prints out an appropriate message. The line in error is not deleted by the
system; it must be reentered correctly or the same error message will be
issued when program execution is attempted. Thus, even though incorrect
statements may be entered into a program, a program with any errors

( including syntax ) will not be executed.

Syntax checking after each statement is optional and controlled at indi-
vidual terminals. However, programs are always checked for all errors
at execution time and the appropriate error messages are printed at the

terminal.

2-5



Line Length

Teletype input must consist of no more than 72 characters per line, and a

maximum of 256 characters per statement when the Line Feed is used.

Character Set

BASIC programs may be written using the following character set:

® Alphabet: ABCDEFGHIJKLMNOPQRSTUV
WXYZ
® Digits: 1234567890
® Special characters:
! single quote
" double quote

< less than

equal to
greater than

not equal to

+ N v

plus

minus

*

asterisk

right oblique

up arrow

left parenthesis

right parenthesis

- =~ N

exclamation mark
, comma
period
; semicolon
colon

blank
at

dollar

per cent

3R B/ D@

Any valid teletypewriter terminal character not listed above is not a BASIC

character, but may be used where specifically noted.



Blanks

Since TENET BASIC allows variable names of up to four characters, it is
necessary to separate reserved words, constants, and variable names with
one or more blanks. A blank is necessary after any item which could have
the first character of the next item as a potentially valid character. Blanks

between other elements of the language are optional.

Statement Types

The BASIC subsystem accepts three types of statements or commands: pro-
gram statements, edit commands, and control commands. All three types

are normally used during a session at the terminal.

® Program statementsdescribe (to the TENET BASIC system ) opera-
tions tobe performed on program data. A program statement pre-
ceded by aline number is used and executedas part of aprogram. A
program statement not preceded by a line numberis executed imme-
diately, whereby it is used for instant calculations or program

debugging.

® EDITcommands modify and/or correct program statements. The pro-
gram statements themselves are the data upon which EDIT statements

operate. These commands are always executed immediately.

® Control commands specify actions which alter the status of the user
and/or his program. For example, they direct the execution, saving,
and retrieval of programs. These commands are always executed

immediately.

THE INTERACTIVE ENVIRONMENT

TENET BASIC allows the user to execute a program and based on the results
examine and or alter data, execute selected portions of the program, and

create independent variables to be used on a temporary basis.

Immediate Execution program commands may create variables that exist at
the Immediate Execution level only and are not saved inthe original program.
An Immediate Execution data type declaration statement ( REAL,

INTEGER, ctc. ) creates an explicitly defined variable existing at the

Blank spaces may not be
embedded in any variable
name, number, or operator.



2-8

Immediate Execution level; if a variable of the same name exists at the
Program level, it will not be affected or referenced by the Immediate

Execution level statement.

A variable explicitly defined at the Immediate Execution level is an Imme-
diate variable. If it is not explicitly defined at the Immediate Execution
level but a variable of the same name is defined ( explicitly or implicitly )
at the Program level, the Program level definition is used for the variable.
Finally, if no variable of the same name exists at the Program level, the
system creates an Immediate Execution level variable of an implicit data

type ( real or string ).
Example:

10 REAL BOY

20 INTEGER GIRL

30 BOY = 30

40 GIRL = 25

50 SONS = BOY

60 CHIL = BOY + GIRL

70 SING = ABS ( BOY-GIRL)
80 PRINT BOY, CHIL, SING
RUN

30 55 5

> GIRL = 30

> GOTO 60

30 60 0

> PRINT SONS

30

> BABY =5

> PRINT BABY

5

VVVVVVVYVYV

In the above program, statements 10 through 80 constitute the Pro-
gram level. After the program is executed and the results are output,
the Immediate Execution statements GIRL = 30 followed by the GOTO
60 ( a return to statement 60 in the program ) cause a reevaluation

of the program using the new value for GIRL. After the result of this
operation is printed, the Immediate Execution command PRINT SONS
is evaluated. Since SONS is not defined on the Immediate Execution
level but exists at the Program level, the program variable's value is
used in this operation. The last Immediate Execution command spec-
ifies a variable which does not exist at the Program level. Thus,

BABY is an Immediate Execution level variable.



If the program included a statement explicitly defining BABY as INTEGER,

and the last two Immediate Execution statements were

BABY =5.5
PRINT BABY

the result would be
5

In this case BABY would be a Program level variable.



3. ELEMENTS OF BASIC

Constants, variables, and expressions are the fundamental elements of the
TENET BASIC language. Used in conjunction with BASIC reserved words,

they constitute the means by which all program data is manipulated.

CONSTANTS

Constants are program elements whose values remain unchanged through

the programming process. They may be numbers or literal text ( strings).

Numeric Constants

A numeric constant is a number which may be expressed in several
formats: integer, real ( single-precision floating-point ), double ( double-

precision floating-point ), complex and double complex.

INTEGER
An integer constant is expressed as a string of 1 to 9 significant digits

with no exponent and no decimal point.
Examples:

234
234983943
4

SINGLE-PRECISION REAL

A single-precision real constant is expressed as a string of 1 to 7sig-
nificant decimal digits with a decimal point. An exponent ( E format )
may also be used. Single-precision real constants may be expressed

in any of the following forms:

Form Example
i. .3

.f . 09845
i.f 888.234
i. Exe 4. E-5

TENET BASIC reserved words
are listed in Appendix E.

Numeric constants may not
contain embedded blanks.

Integer values are stored
internally as one word,

Single precision real val-
ues are stored internally
as one word.



Double precision real val-
ues are stored internally
as two words.

Comlex values are gtored
internally as two words;

double complex values are
stored internally as four
words.

3-2

Form Example

.fExe . 454E+3
i.fE+e 23.4E4
where i = integer part

f = fractional part

e = exponent

The range allowed for a single-precision real constant ( x) is
| x | =1.584 x 10"

DOUBLE-PRECISION REAL
A double-precision real constant is expressed as a string of decimal

digits with any of the following characteristics:

® More than 9 significant digits with no decimal point
® More than 7 significant digits with a decimal point
® A value greater than 1.584 x 1019

® Double precision ( D) exponentiation

Double-precision real constants may be expressed in any of the fol-

lowing forms:

Form Example
i. 2098234234
.f . 00000005
i.f 4, 2343434
i. Dxe 6.D-11
.fD+e .005D-6
i. fD+e 5.44D13

The range allowed for double-precision real constant ( X ) is
| x |=6.296 x 1076

COMPLEX AND DOUBLE COMPLEX
Complex constants must be generated within a program using the
complex number functions CMPLX ( single-precision ) and DCMPLX
( double-precision ). Any type of numeric constants may be used as
arguments to these functions.

CMPLX (r, i) or DCMPLX(r, i)

where r = real part

i = imaginary part

Examples:

CMPLX ( 5.6, 1) creates a single precision complex constant

using a single-precision argument for the real part and an integer

argument for the imaginary part. The integer constant is con-

verted to single-precision.



DCMPILX ( .3E - 4, .5D - 9 ) creates a double-precision complex
constant using a single-precision argument for the real part and a
double-precision argument for the imaginary part. The single-

precision constant is converted to double-precision.

String Constants

A string constant is any series of characters enclosed by a set of single (')
or double (" ) quotation marks. A single quote is a valid character within
a string enclosed in double quotes; a double quote is a valid character within
a string enclosed by single quotes. However; both a single and double quote

cannot appear as part of the same string constant.

® A Line Feed ( ) used in the generation of strings is not consid-

ered part of the string constant.

® A Carriage Return ( appearing as part of the string causes an
error.

® The length of a string is limited to 255 characters ( i.e., total line
length allowed ).
Examples:

" ABCDEFGHIJK "
"TICIS (') "
' THE DOUBLE QUOTE (" ) IS VALID IN THIS STRING '

Reserved Constant Names

For convenience, the following commonly used numeric constants may be
referenced by name. These values are initially set by the system but may

be redefined by the user to represent other values.

Name Value
-10
EPS 10
Pl 3.14159265358979324
VARIABLES

A variable is a quantity whose value was previously defined, is not yet de- Variable names may not con-

fined, or may change through the course of a program. There are two types tain embedded blanks or be-
gin with the reserved

of BASIC variables: scalar and subscripted. Totter combination Fl.

3-3



Operations which treat
arrays as single values
are discussed in section 7.

Scalar Variables

A scalar variable represents a single quantity, numeric, or string. Its
symbolic name can consist of up to four characters. The first character
mustbe a letter, but the remaining characters can be digits, letters, or
dollar signs. Blank spaces cannot be part of a variable name.
Examples:

AB$D

SUM

RATA

COSTA

X$X$

X

IVAL

B2
TENET BASIC maintains a set of variable names that are reserved words
and, as such, may not be used as variable identifiers. These are listed in

Appendix E . All numeric variables are initially assigned a value of zero.

Subscripted Variables

A subscripted variable name designates an element of an array ( matrix ).
Arrays are multi-element structures whose components can be treated as
single values. The content of an array is arranged according to both the
size and the dimensioning defined for the array. For example, the numbers

1, 2, 3, 4, 5, 6 could be arranged as follows:

6by1 3by 2 lby 6 2 by 3
1 12 123456 123
2 34 456
3 56
4
5
6

The user can reference individual items in an array by specifying the posi-
tion of the item within the array. For example, COST ( 2, 2 ) references
the item in row 2, column 2 of the array named COST. RATE ( 6 ) refer-
ences the sixth element of the array named RATE.

The subscripted variable name consists of the name of the array followed by
subscripts in parentheses. Multiple subscripts must be separated by
commas. Each subscript consists of an arithmetic expression. ( In
TENET BASIC, an arithmetic expression is defined as any constant or

variable, or combination of these joined by operators. )



The same name cannot be used for both a scalar and a subscripted variable
in the same program.
Examples:

BAR ( 1,2*X)

GOOD ( 1,4,5)

CAGS$ (45)
FI1(9,8)

Data Types and Variables

Program variables are assigned a data type ( integer, real, string, etc. )
either implicitly or explicitly. The data typé of a variable name is ascer-
tained implicitly by the content of the name itself. Conventionally, all

names containing a dollar sign ( $ ) are implicitly string variables and all

others are data type real. This implicit data type convention may be Explicit data type decla-
overidden by explicit type declaration. ration statements are de-

seribed on p.4-1.

EXPRESSIONS

An expression is any constant, variable or combination of these joined by

operators and parentheses, as necessary, tc denote the order in which

operations are to be performed. There are four types of operators: unary Operators may not contain

arithmetic, binary arithmetic, relational, and logical. embedaed blanks.

Unary Arithmetic ‘Operators

Unary arithmetic operators operate ononly one quantity ( constant, variable,

or the evaluated combination of these ).

Symbol Meanin Example
+ Positive value +4
- Negative value -16



3-6

Binary Arithmetic Operators

Binary arithmetic operators are used to form arithmetic expressions as in an

ordinary mathematical notation.

Symbol Meaning Example
+ Addition 2+3
- Subtraction CVAL - IVAL
* Multiplication RATE * TIME * PRIN
4 Exponentiation 4 t 4
/ Division 16/4
MOD Modulo 8 MOD 5

ARITHME TIC OPERATIONS ON COMPLEX VALUES

Arithmetic operations on complex values are performed on both the real and

imaginary parts. For example:

if A = CMPIX (3,1)
B = CMPLX(6,-2)
then A+B = CMPLX(9, -1)

MIXED DATA TYPE ARITHMETIC

When variables of different data types are used in the same expression with

arithmetic operators, data type of the result is determined as follows:

Result of Mixed Mode Operations Using *, - and+

Integer Real Complex Double Double
Complex

Integer Integer Real Complex Double Double
Complex

Real Real Real Complex Double Double
Complex Complex

Complex Complex Complex Complex Double Double
Complex Complex

Double Double Double Double Double Double
Complex Complex Complex Complex Complex Complex

Relational Operators

A relational operator is used to compare one quantity with another. They

are evaluated for logical value: if the expression is true, its value is 1;
if the expression is false, its value is 0.



Symbol Meaning Example

< Less than 6<8 =1 (true)

<= Less than or equal to 6< = 5= 0 ( false)

> Greater than 8>6 =1 (true)

>= Greater than or equalto 4> =6+1= 0 (false)

= Equal to 4+3 =6 +1=1 (true)

# Not equal to 6# 8=1 (true)

#= Approximately equal .23D-11# = .24D-11=1

( determined by the value (true)
of EPS, p.3-3.)

RELATIONAL OPERATIONS ON STRING VALUES

Any of the relational operators, except approximately equalA to ( #=) can be
used to compare string values. Each character of a string has an asso-
ciated numeric code. Two strings are compared character by character.
The first pair of non-matching characters encountered determines the
evaluation of the string. The character with the higher associated numeric
code is considered the greater. Thus, the string '" X " is considered
greater than "' AAAAAAAA ". If two strings of different lengths are iden-
tical up to the end of the shorter string, the longer string is considered

greater. Thus " AAA " is considered greater than " AA ".

Code Character Code Character
20 space 3A :
21 1 3B 3
22 " 3C <
23 # 3D =
24 $ 3E >
25 % 3F ?
26 & 40 @
27 ! 41 A
28 ( 42 B
29 ) 43 C
2A * 44 D
2B + 45 E
2C s 46 F
2D - 47 G
2E . 48 H
2F / 49 I
30 0 4A J
31 1 4B K
32 2 4C L
33 3 4D M
34 4 4E N
35 5 4F (0]
36 6 50 P
37 7 51 Q
38 8 52 R
39 9 53 S



Code Character Code Character

54 T 5A Z

55 U 5B [

56 v 5C N

57 W 5D ]

58 X 5E }

59 Y 5F -—
Examples:

The following are true (=1):

" SUN " =" SUNDAY "
" MATH " > " MANY "
" XXXX "< " XXXZ "

Strings may not be compared with numeric values.

RELATIONAL OPERATIONS ON COMPLEX VALUES

Relational operations on complex values are evaluated using the absolute

value of the complex values.

real part

where =
= imaginary part

e

Examples:

The following are true (=1 ):

CMPLX(3.4321, 5.45 CMPLX(4. 324, 0)
CMPLX(4, 3) CMPLX(4, -1)

Logical Operators

Every numeric value also has a logical value. A numeric value not equal to

zero has a logical value of true ( one ); a numeric value equal to zero has a

logical value of false (zero ).

NOT NOTX=0ifX#0
=1ifX=0
AND Aand B=0ifA=0orB=0

=1if A#0and B#0
EQV AEQVB=1ifA=0andB=0
1ifA#0and B#0
0 otherwise

IMP AIMPB=0ifA#0and B=0
= 1 otherwise

i



Il

1ifA=0and B#0
1ifA#0and B=0
0 otherwise

OR AORB=1ifA£200rB#0
=0ifA=0andB=0

XOR A XOR B

mn

Logical operations are not allowed on strings.

LOGICAL OPERATIONS ON COMPLEX VALUES

Logical operations on complex values are performed using the most signif-
icant real part of each complex value ( i.e., the first word of each complex

value ).
Examples:

Each of the following is equal to 1:

CMPLX(3,4) IMP CMPLX(5, 4)
CMPLX(3 234343, 0) EQV CMPLX(34534343, 5)
CMPLX(5, 6) XOR CMPLX(0, 0)

Hierarchy of Operations

The order of performing individual operations within an equation is deter-
mined by the hierarchy of operators and the use of parentheses.
Operations of the same precedence are performed from left to right in an
expression. Operations within parentheses are performed before opera-
tions not in parentheses. The hierarchy ( from highest to lowest ) of

operators is as follows:

unary +, unary-, NOT
t

MOD

* /

+ -

<, <=y >, >=, =, #, #=
AND

XOR, OR

IMP

EQV

Examples:

A/( -2.3 * IVAL) is evaluated:

1. -2.3
2. -2.3 *IVAL
3. A/( the result of step 2 )



4* ( B+ RATE ) t ( PRIN/TIME ) is evaluated:

1. PRIN/TIME

2. B+ RATE

3. ( The result of step 2 ) t+ ( the result of step 1)
4, 4* ( the result of step 3)

ALP*BETA-( X AND Y )/4.3*RATE +( TAG* ( 4.5 t X)) is evaluated:

1. 4.5+ X

2. TAG* ( the result of step 1)

3. XANDY

4. ALP*BETA

5. ( The result of step 3 )/4.3

6. ( The result of step 5 )*RATE

7. ( The result of step 4 ) - ( the result of step 6 )
8. ( The result of step 7 ) + ( the result of step 2 )

String Concatenation

The only arithmetic operation allowed on strings is concatenation -

specified by the operator +. For example:

if A$ = "ABCDEFG"
B$ = "GHLJKLMN"
then A$+B$ = ' ABCDEFGGHIJKLMN "

3-10



4. ASSIGNMENT AND SEQUENCE CONTROL STATEMENTS

VARIABLE DECLARATION STATEMENTS

Because a variable name may be used to represent a variety of data types,
variable names must be precisely declared as to the type of data they rep-
resent. If the user expects to perform complex data type operations and/or
matrix operations, he must declare variables according to the type of

values used in these operations.

In TENET BASIC all variables are considered to have two declarable
aspects — data type ( integer, single precision real, double-precision real,
complex, double complex, or string ) and structure ( scalar or array ).
In general, the variable name itself implicitly declares the type and struc-
ture of the variable unless the user specifically declares otherwise.
Unless a variable name is explicitly declared in a variable declaration

statement, the following rules for implicit variable declaration are followed:

® A variable name containing the character $ is considered data type
string.

® A variable name without the $ character is considered data type
single-precision real.

® A variable name immediately followed by a left parenthesis is con-
sidered a one-dimensional array of 10 elements

® A variable name not immediately followed by a left parenthesis is

considered scalar.

The user may override the implicit declaration conventions for variable
names by explicitly declaring the type and/or structure of selected vari-
ables prior to their first use in a program. The program statements
INTEGER, REAL, DOUBLE, COMPLEX, DOUBLE COMPLEX, STRING,
and DIM are variable declaration statements. All but the DIM statement
can be used to declare both the type and structure of program variables.

DIM may be used only to declare ( or redefine ) structure.



INTEGER may be used for
Immediate or Program Execu-
tion.

REAL may be used for Imme-
diate or Program Execution.

In the following format specifications for variable declaration statements
the element "var' designates a scalar or an array variable There is one

exception: only array variables may be declared in a DIM statement.

INTEGER

INTEGER va.r1 [, Var,, «.. varn]

2

INTEGER ISIN, ART$( 10 )}, IVAL( 6:10, IVOR:12)

The INTEGER statement declares that the variables listed represent integer
values and are to be stored as signed two's-complement integer values.

Each integer value requires one 32-bit computer word.

Integer values have precision for up to nine significant digits and the maxi-

mum size number allowed is 2147483647 ( 231 -1).

REAL

REAL var, [ , var . varn]

2

REAL LBS, MASS, DEN ( 100)

The REAL statement declares that the variables listed represent single-
precision real values and are to be stored as single precision floating point values

with a 25-bit signed mantissa and a 7-bit signed exponent. Each single-preci-
sion real value requires one 32-bit computer word.

Single-precision real values have precision up to seven significant digits,

and the maximum range allowed is I X ' =1.584 x 1019.



DOUBLE

DOUBLE var, [, ,varz, . varn ]

DOUBLE FPS ( -19:10, 2, 0:5)

The DOUBLE statement declares that the variables listed represent double—
precision real values and are to be stored as double-precision floating-point
values with a 55-bit signed mantissa and a 9-bit signed exponent. Each

double precision real value requires two 32-bit computer words.

Double-precision real values have precision up to 16 significant digits,

and the maximum range allowed is I X I =6.296 x 1076.

COMPLEX

COMPLEX va.r1 [,var,,e.. varn ]

2

COMPLEX A2, B2, C2, BETA

The COMPLEX statement declares that the variables listed represent com-
plex values and are to be stored as two single-precisionfloating point values.
The first value is the real part and the second is the imaginary part. Each

complex value to be stored requires two 32-bit computer words,

The range and precision for each part of a complex value is the same as for

single-precision real values.

DOUBLE may be used for
Immediate or Progran
Execution.

COMPIEX may be used for
Immediate or Program
Execution.

4-3



DOUBLE COMPLEX may be
used for Immediate or
Program Execution.

STRING may be used for
TImmediate or Program
Execution.

4-4

DOUBLE COMPLEX

DOUBLE COMPLEX var, [, vary, ... Varn]

DOUBLE COMPLEX AMPS ( 20, 30)

The DOUBLE COMPLEX statement declares that the variables listed repre-
sent double complex values and are to be stored as two double-precision
floating-point values. The first ( double-precision ) value is the real part;
the second is the imaginary part. Each double complex value requires four

32-bit computer words.

The range and precision for each part of a double complex value is the same

as for double-precision real values.

STRING

STRING var, l, var var ]

greee

STRING NAME ( 300 ), ADDR ( 300 ), ZIP ( 300 ):5

The STRING statement explicitly declares that the variables listed represent
string values. Array string variables may be of fixed or varying length;
scalar string variables must be of varying length. A varying length string
is one whose length is not specified in the declaration statement. For
example, STRING AB ( 30 ) declares a string array of 30 elements of
varying length. Space is assigned to varying length strings dynamically —
according to the length of the string values assigned to them in the course of

program execution.

A fixed-length string array is declared by appending to the array declara-
tion a ":" followed by an integer constant that designates the number of
characters for each element of the array. For example, STRING AS (30):12
specifies that each element of the 30-element array AB is 12 characters

long.

Space is reserved for a fixed-length string array based on the number of
elements and the number of characters in each element. All string values

supplied for the array must be compatible with the string length specified



by the user Strings that are shorter are left-justified with trailing
blank fill. Strings that are longer cause a warning message to be
issued when program execution is attempted and the string is truncated with

loss of the rightmost characters.

Maximum string length is 255 characters for both fixed and varying length

strings.

DIM

DIM Var(si)1 [, var(si)z, v Var(si)n]

DIM BETA (4, 6, 9), X$ (0:15), TEMP ( IVAL, 80)

The DIM statement may either declare new array variables according to
implicit type conventions, or for previously declared arrays, redefine the
total size, range of subscripts, and number of subscripts as long as the
total size of the area originally assigned to the array is not exceeded and
the total number of dimensions originally specified is not exceeded. When
used to redefine an explicitly declared array variable, the DIM statement

does not redefine data type.

When used to declare a new array variable, the DIM statement is essentially
a REAL statement for variable names without the $ character, and a STRING

statement for variable names with the $ character.

Variable Type Declaration Rules

® Any variable name without a subsecript list appearing in a declaration

statement is defined as a scalar variable. The name cannot appear in

any other declaration statement and can never be used in the same

program with subscripts .

DIM may be used for
Immediate or Program
Fxecution.



® Any variable name with a subscript list appearing in a declaration

statement is defined as an array The subscript list consists of the
numbers of dimensions and the range for each dimension. The amount

of space reserved for anarray is determined by the subscript values
during execution. The size and dimension range can change eachtime

a subsequent DIM or type declaration statement is executed. However,
the execution of the first type declaration statement determines the
maximum space allocated for the variable. Any subsequent alterations
in the range of the dimensions must not define an array whose total

size exceeds that of the initial declaration.

A dimension is declared by either a single expression indicating the
upper limit of the subscript range with an implicit lower value of 1,
or by a pair of expressions separated by a colon: For example:
AB (3:6*Q, 10) specifies a two-dimensional array whose second

subscript range is from 1 to 10.

The subscript range must be in increasing order, but may consist

of negative elements: For example: AB(-3:6) .

All arrays of more than one dimension must be declared in a
type declaration or DIM statement before they are used in a

program.



LET OR ASSIGNMENT STATEMENT

[ LET ] var, [, varg, ... varn] = exp

LET A = -2

LET VAL1, VAL2, VAL3 = 3%A/4
B = 3,454/VAL1

LET BETA (3, 4 ) =3

The LET, or assignment statement enables the user to assign the value of

an expression to the variable(s) on the left side of the equal sign,

e The assignment statement is the only BASIC statement that need LEP may be used for

not begin with a reserved word BASIC command. Immediate or Program
Execution.
e If the values on the left side of the assignment statement have dif-
ferent data types, the expression is evaluated and conversion is

performed relative to each of the values independently.

Mixed Data Type Assignments

Whenever 4 variable of a particular data type is assigned to the value of a
quantity of a different data type, the original variable is converted accord-

ing to Table 4-1, where if A = B, conversions will occur according to the

Variables may also be
data type of A and B. assigned byazihe READ
(p. 4-20), DATA (p. 4-19),
FOR (p. 4-15), and
INPUT (p. 6-7) statements.



4-8

Table 4-1.

Mixed Data Type Assignments

A B RESULT
INTEGER INTEGER B
REAL INT (B)
DOUBLE INT (B)
COMPLEX INT (REAL (B) )
DOUBLE COMPLEX | INT ( REAL (B))
REAL INTEGER FLOAT ( B)
REAL B
DOUBLE FLOAT ( B )
COMPLEX FLOAT ( REAL (B ))
DOUBLE COMPLEX | FLOAT ( REAL (B))
DOUBLE INTEGER DBL (B )
REAL DBL ( B )
DOUBLE B
COMPLEX DBL ( REAL (B ) )
DOUBLE COMPLEX | DBL ( REAL (B))
COMPLEX INTEGER CMPLX (B, 0)
REAL CMPLX ( B, 0)
DOUBLE CMPIX (B, 0)
COMPLEX B
DOUBLE COMPLEX | CMPLX ( REAL (B ),
IMAG (B))
DOUBLE INTEGER DCMPIX ( B, 0)
COMPLEX REAL DCMPILX ( B, 0)
DOUBLE DCMPLX ( B, 0)
COMPLEX DCMPLX ( REAL ( B),
IMAG (B ) )
DOUBLE COMPLEX | B
Examples:

10 DOUBLE IVAL, XVAL

20 INTEGER BETA
25 XVAL =1.25
30 IVAL =6

40 ALPH, BETA = IVAL/XVAL
50 PRINT ALPH, BETA, XVAL, IVAL

RUN
4.8

1.25 6




Since the variable ALPH is not explicitly declared in the foregoing
program, it is considered type real; the result of the operation in

line 40 causes data type conversion, and the value of ALPH is

printed out as a real value. However, as BETA was explicitly declared
type integer, the result of the operation at line 40 is converted

from type double-precision to integer.

10 INTEGER IVAL

20 REAL RVAL

30 RVAL, IVAL =1/2
40 PRINT RVAL, IVAL
50 END

RUN

.5 0

The expression in statement 30 is evaluated and converted appropriately

for each of the values on the left-hand side of the ( first ) equal sign.

4-9



DO may be used for Immedi-
ate or Program Executiom.

Other statements which
enable execution sequence
modification are GOTO
(p.4-12), ON (p.4-13), FOR
(p.4-15), IF (p.4-14), and
GOSUB (p.5-6).

4-10

DO STATEMENT

DO line no. [:line no. ] [, line no. | :line no. ]] ... [, line no. [:line no. ]]

DO 50: 100, 150, 200
DO 60: 100, 10, 50
DO 550

The DO statement enables a statement or a set of statements to be selec-
tively executed in its place. A single statement is specified by its line
number; a set of statements is indicated by a range of two line numbers
separated by a colon. Once the statements indicated by the DO statement
are executed, program execution continues at the next sequential statement
following the DO statement.

® Functions, GOSUB, and other DO statements may be executed within
the range of a DO statement. If a function or GOSUB contains DO
statements, these DO statements are terminated when the GOSUB or
function is returned. In other words, execution of a RETURN state-
ment causes premature termination of any DO statements in effect

at that subprogram level.

® An attempt to execute a statement outside the range specified in a
DO statement causes control to be returned to the DO statement.
For example: If within the range 20: 80,statement 30 is a GOTO, it
may branch only to a statement within the range 20: 80. Otherwise

control returns to the DO.

® When DO statements are nested, the last DO statement within the

set is the first completed.

Examples:

10...
20 ...
30 ...
40 ...
50 DO 20
60 END

The above statements are executed in the following sequence:
10, 20, 30, 40, 50, 20, 60.



10 ...

20 DO 40

30 ...

40 GOTO 100

100 ...

The above statements are executed in the following sequence: 10, 20, 40,
30, 40, 100. The statement at line 100 is outside the range of the DO state-
ment at line 20 and hence is not executed after the first execution of state-

ment 40.

10 ...
20 DO 60: 90
25 GOTO 100
30 ...
40...
50 ...
60 ...
70 ...
80 DO 30: 50
90 ...
100 ...

The most recently executed DO defines the current control range. These
statements would be executed in the sequence shown below as controlled by
normal execution and the two DO statements.

Normal

Sequence —=10, 20, , 25, 100

First DO =——— 60, 70, 80, , 90

Second DO =30, 40, 50

4-11



GOTO STATEMENT

GOTO line no.

GOTO 10
GOTO 45

The GOTO statement unconditionally transfers control from one point to

GOTO may be used for Imme- another in a program.
diate or Program Execution. .

o After the GOTO statement is executed, program execution continues

Other statements which en- from the line number specified.
able execution sequence

modi fication are DO (p.4-10),
GOSUB (p.5-6), ON (P.4-13), ® If the line number specified is a non-executable statement, control

1:034(?-4)4'15): and IF passes to the next executable statement.
p.4- .

Example:

20 GOTO 60

30 RATE = BETA +1
40 GOTO 80

50 ...

60 LET IVAL = RATE
70 GOTO 30

80 END

The above program statements would be executed in the following sequence:
20, 60, 70, 30, 40, 80.



ON...GOTO STATEMENT

ON exp GOTO line no. 1 [, line no. line no. ]

PR

ON Y GOTO 200, 400, 600, 800
ON BETA + RATE GOTO 20, 30, 40, 50, 60, 70, 80
ON A > BETA GOTO 25

The ON statement ( or multi-branch GOTO ) is a variation of the GOTO
statement. Whereas GOTO unconditionally transfers program control, the
ON statement presents a choice of line numbers to which control may be
transferred. The expression is the condition of transfer; its numeric value
determines which of the line numbers in the list is to be executed next.

( Line numbers are in the implicit sequence 1, 2, 3, ...) If the expres-
sion has a value not in the range 1 to n ( n being the number of line numbers
in the list ), program control is not transferred, and execution continues at

the statement following the ON statement.

® The expression is evaluated ( and truncated, if necessary ) to
derive an integer value. If the expression is logical, only a true

(i.e., non-zero ) value would cause a transfer of program control.

Examples:

40 LET A, B = 2,2

50 ON A + B GOTO 60, 80, 110, 150
60 LET VAL =X +1

70 GOTO 300

80 LET VAL =X +3

90 GOTO 300

110 LET VAL =X + 4

140 GOTO 300

150 LET VAL =X

160 GOTO 300

5
.

The value of the expression in statement 50 is 4 ( 4.4 truncated ) indicating
that program control will be transferred to the fourth item in the line
number list, statement 150.

90 LET BETA =6

100 LET A=3

110 ON A XOR B GOTO 140

130 ...

140 ...
As the value of the expression in statement 110 is false and therefore out-

side the range of the line number list, execution resumes at line 130.

ON...GOTO may be used for
Immediate or Program Exe-
cution.

Other statements which en-
able execution sequence
modi fication are GOTO
(p.4-12), DO (p.4-10),
GOSUB (p.5-6), FOR (p.4-15)
and IF (p.4-14).

3

4-13



IF...TdEN may be used for
Immediate or Program
Execution.

Other statements which
enable execution sequence
modification are GOTO
(p.4-12), DO (p.4-10),
GOSUB (p.5-6), ON (p.4-13),
and FOR (p.4-15).

4-14

IF STATEMENT

line no. line no.

IF exp THEN {statementl} ELSE {statementz‘
1 2

IF A =B THEN 50

IF A*BETA THEN LET RATE = IVAL

IF C>3.45 THEN BETA = A ELSE GO TO 80
IF RATE = IVAL THEN 40 ELSE 100

The IF statement is used to override the normal sequence of program exe-
cution. The logical value of the expression following the IF determines sub-
sequent operations. If the logical value is true ( non-zero ), the statement
or line number following the THEN is executed next followed by the next
sequential program statement ( not the statement following ELSE, if any ).
If the logical value is false ( zero ), the statement or line number following

either ELSE ( if present ), or the next sequential statement is executed.

® Specifying a line number after THEN or ELSE is equivalent to a
GOTO line number statement.

® The following types of statement may not appear in an IF statement:
DATA, DEF, DOUBLE, INTEGER, IF REAL, REM, STRING,
COMPLEX, FOR, ON, NEXT, DOUBLE COMPLEX, DIM,

Examples:

10A=6

15 BETA=0

30 IF A =6 THEN 50

40 ...

50 IF A*BETA THEN GOTO 70 ELSEB=B+ 1
60 GOTO 50

70 END

As the value of the expression in statement 30 is true, control is transferred
to statement 50. At this point A*BETA is zero (i.e., false ). The alter-
nate statement ( B =B + 1) is executed next and then statement 60 returns
control to statement 50. The value of the expression A * BETA is now true.
Control is then transferred to statement 70.



FOR AND NEXT STATEMENTS

_ TO
FOR var = expy ;WHILEs exp, [STEP exp3]

NEXT va.r1 [, Varg, «.. varn]

FOR BETA =1 TO 10

NEXT BETA

i“OR RATE = 5.5 * IVAL TO ADDR STEP .5/XVAL

NEXT RATE
FOR IVAL = 4 WHILE IVAL > = 143 STEP TAU
FOR XVAL = BYO WHILE AA STEP TAU * 3.34

NEXT XVAL, IVAL

The FOR statement used in conjunction with the NEXT statement causes the FOR and NEXT m
repeated execution of a set of program statements ( loop). The FOR state- for Program Execu
ment defines the beginning of a loop; the NEXT statement is the terminal

statement of the loop.

The FOR statement specifies the initial value (exp 1 )s the terminal value (expz)
and the incremental value(exp 3 ) of the loop variable (var). The loop variable
may be implicitly defined by its use as a loop variable. (It can be any
data type except string or complex.)

The computed value of the expression expy is the value to which the loop
variable is set before the loop is first executed. It must alwaysbe specified.

The value of exp, determines when the looping process will terminate.

Terminal conditions may be static or dynamic. A static terminator, indica-
ted by " TO exp2 "', is evaluated once— when the loop is initialized. When
the loop variable becomes greater (or less for negative increments) than
the terminal value, execution is terminated. Normal statement processing
resumes at the statement following the end of the loop ( after the loop's com-

panion NEXT statement).

4-15



FOR loops may be nested to
a level of 31.

4-16

A dynamic terminator, indicated by WHILE, is evaluated each time the loop
is executed. As long as exp, (following WHILE) is logically true ( # 0)

the looping process continues. Otherwise the loop is terminated.

The increment value exp, is a negative or positive value by which the loop
variable is incremented when the NEXT statement is executed upon comple-
tion of each pass through the loop. If un increment value is not specified it
is assumed to be 1. The loop increment is the value of

the expression at initialization.

FOR ... NEXT loops may be nested, but not overlapped. For example:

- FORX... or - FORX ...

FORY ... FOR Y ...
[l\'EXT Y NEXT Y, X
L NEXT X

The following is illegal:
FOR X

FOR Y

.

NEXT X

NEXT Y

The NEXT statement may terminate more than one loop. A NEXT statement
which terminates multiple loops must list loop variables in inverse order of

their appearance in nested FOR statements.

® Companion FOR and NEXT statements must specify the same loop
variable. There must be a one-to-one correspondence of FOR

statement loop variables and NEXT statement loop variables.



e A transfer may occur out of a FOR loop only if there is a compan-
ion transfer into the range of the same FOR loop and vice versa.

Thus the following is permissible:
10 FOR X TO Y STEP IVAL

30 GOTO 180
40 BETA =X * ALPH

70 NEXT X

180 ...

200 GOTO 40

Caution should be exercised when branching from and to FOR loops,
especially between two FOR loops with the same loop variable name.
When a NEXT statement is executed a return occurs to the most recently

executed FOR statement with the same loop variable.

For example:

10 FORXTO Y

40 GOTO 500

60 NEXT X
480 FOR X TO BETA
500 ...

550 NEXT X

Inthe above, statement 40 causes a transfer out of the FOR loop be-
ginning at line 10. Control is transferred to statement 500, within
another FOR loop with the same loop variable name X. As state-

ment 10 is the most recently executed FOR statement, control will
be transferred from the NEXT statement at line 550 to the loop be-

ginning at line 10.

e The value of a loop variable may be modified within the range of a
FOR loop or by any program statements accessed from within the

range of a FOR loop.

4-17



4-18

® The loop variable is assigned the initial value even if the terminal

condition ( static or dynamic ) is not met on the first pass and the

loop itself is not executed.

Example:

The following program prints the value and square root of BETA,
where BETA takes on 100 values from 1 to 100.

10 FOR BETA =1 TO 100
15 PRINT BETA, SQRT ( BETA )
30 NEXT BETA

The above program is equivalent to:

10 BETA =0

15 BETA = BETA +1

30 PRINT BETA, SQRT ( BETA )
40 IF BETA<=100 GOTO 15

50 END

Both of the above programs are equivalent to:

10 PRINT 1, SQRT ( 1)
15 PRINT 2, SQRT ( 2 )
30 PRINT 3, SQRT ( 3 )

990 PRINT 99, SQRT ( 99 )
1000 PRINT 100, SQRT ( 100 )



DATA STATEMENT

DATA const, [, consl:2 cee constn]

1

DATA 4, 0.05, -6.3, 0, 0
DATA " THIS IS A STRING "', 6.374E-3, -3.14159E3
DATA 100

The DATA statement supplies internal data to be used in a program. Before DATA may be used for
a program is executed, all constants appearing in all of the program's Program Execution only.
DATA statements are organized into an internal data list according to their

order of appearance in the program. Whenever a ( non-file ) READ state-

ment is executed, data is obtained from this list. There is a one-to-one

relation of constant to variable — the first constant is assigned to the first

variable, and so forth. A data list pointer moves through the list sequen- The normal sequence of
tially as values are assigned by READ statements. obtaining items from the
data list can be altered
. . . . using the RESTORE state-
® Constants in the data list may be numeric or string. ment (p.4-21).
® Complex or double complex constants are read from the internal The rules of mixed data
. . . . type assignments apply to
data list as two words. The first word is the real part; the second READ and DATA s tatements.

is thc imaginary part.

® String values in DATA statements may be continued onto the next
line by enclosing the string within quotes and using the Line Feed
key to continue typing on the next line. @will not appear as

part of the string.

® Since the function of DATA statements is to create an internal data
list prior to program execution, DATA statements are ignored when

a program is actually executed.

Examples:

Since DATA statements are used only in conjunction with READ
statements, examples of their usage are found under the dis-
cussion of the READ statement.

4-19



READ may be used for
Immediate or Program
Execution.

Whole arrays can be read
using the MAT READ state-
ment (p. 7-11).

The rules of mized data
type assignments apply

to READ and DATA state-
ments.

Part or all of the data
list may be reaccessed by
using the RESTORE state-
ment (p. 4-21).

Another form of the FEAD

statement may be used for
reading files (p. 8-12).

4-20

READ STATEMENT

READ var, [, var . varn]

9"

READ I, J, ALL (I, J)
READ VAL1, VAL6, ANS$
READ A$, B3, C$, DS, E$ (4)

The READ statement specifies a list of variables to be assigned values when
the program is executed; these values are obtained from the internal data

list generated by the program's DATA statements.

® Variables specified in READ statements may be simple or sub-

scripted.

® Complex or double-complex values are read as two numeric constants.
The first numeric constant is considered the real part; the second is

considered the imaginary part.

® As data list items are read the data list pointer is advanced to the

next item in the list.

® When the end of the data list is reached, an attempt to read a value
for a variable causes an error message to be issued. The user

should then take appropriate remedial action.

Examples:

10 READ I, J

20 DATA 4, 6,13.3

30 READ X (I, J), Z$
40 DATA " END "

Values are assigned as follows:

3

9 *

) = 13,
END

N K
& _ |
I o OO W



RESTORE STATEMENT

RESTORE [ line no. ]

RESTORE
RESTORE 35

The RESTORE statement enables the user to change the position of the data
RESTORE may be used for
list pointer of the internal data file created by DATA statements, thereby Immediate or Program
allowing repeated access to items within the list. Exeoution.
® If the RESTORE statement does not specify a line number, the data
list pointer moves to the first item in the list. The next READ is

performed at this point.

DATA statements are

® If a line number is specified, the data listpointer is reset tothe first discussed on p. 4-19.
constant appearing in the specified statement. ( Line numbers
specified in RESTORE statements must reference DATA state-

ments. )

Examples:

10 DATA 1, 2, 3
20 READ A, BETA, CAT
30 RESTORE

40 READ X, Y, Z

Values are assigned as follows:

A =1 X=1
BETA = 2 Y=2
CAT =3 Z=3

10 DATA 10, 20, 30

20 DATA "HELLO", "BYE", "SOLONG"

30 READ VAL1, VAL2, VAL3, V$1, V$2, V$3
40 RESTORE 20

50 READ A$1, A$2, A$3

Values are assigned as follows:

VAL1 = 10 A$1 = HELLO
VAL2 = 20 A$2 = BYE
VAL3 = 30 A$3 = SOLONG
V$1 = HELLO

V$2 = BYE

V$3 = SOLONG

4-21



REM may be used for
Immediate or Program
Execution.

4-22

REM STATEMENT

REM any string of characters

or statement !| any string of characters

REM THIS PROGRAM COMPUTES YEARLY INTEREST RATES
X =W * 5,25! THE VALUE OF X IS COMPUTED HERE

The REM statement acts as a comment with which the user can annotate the
listing of hisprogram. It may be inserted at any point in the program with-
out affecting execution. The REM statement may not be used as part of
another statement. Individual statements can be annotated by adding ! fol-
lowed by the comment. All characters between the ! and are consid-
ered to be the comment.

Examples:
10 REM THESE FIGURES ARE BASED ON FY'70

20 LET NET1 = GROS-BETA ! COMPUTE NET PROFIT
30 NEW = NET1/NET0 ! COMPUTE GROWTH RATE



PAUSE STATEMENT

PAUSE

PAUSE

The PAUSE statement causes a suspension of program execution. When
this statement is executed, the following message is issued:
PAUSE AT line no.

The status of program variables may be interrogated and/or altered during

PAUSE may be used for
suspension of program execution. When the user enters the Immediate Program Execution only.
Execution command CONTINUE, program execution will resume at the

statement following the PAUSE. STOP may be used in place
of the word PAUSE.

4-23



END may be used for
Program Execution only.

Multi-line user-defined
functions are discussed
on p. 6-4.

4-24

END STATEMENT

END

END

The END statement is used to terminate a multi-line function and return
control to the main program. It is also optionally used to terminate a main

program and return control to the BASIC subsystem,

When an END statement is executed in a multi-line function, it is equivalent
to a RETURN with a zero value resulf. When an END is encountered in the
main program, control returns to the BASIC subsystem. The END state-
ment for the main program is optional since control will automatically
return to the BASIC subsystem after the highest numbered statement is exe-
cuted.



5. FUNCTION AND SUBROUTINE STATEMENTS

INTRODUCTION

In addition to using the built-in functions provided by TENET BASIC,one can
write a set of statements that can serve as a user-defined function. Once
defined as a function, it may be used throughout a program.

Unique functions may be defined either as a single line function or as a
multi-line function using the DEF statement. Both single and multi-line
functions return a value as do the standard functions, and they must be de-
fined before they are referenced in a program. At execution time function
definitions are skipped and are not executed until they are referenced by
name in an expression. The appearance of a function name in an expression
is considered a function call which specifies the input arguments ( values to
be used when the function is executed ). After a function is executed, the
value of the result is returned to the expression, and evaluation of the ex-

pression continues.

Up to 30 functions may be
defined by the user in
each progran.

Buillt-in functions are
described in Appendix D.

A call to an undefined
function causes an error
message to be issued
when Program Execution is
attempted.

91}
1
—



DEF may be used for
Program Execution only.

Restricted function names
are tnceluded in the TENET
BASIC reserved word list
(Appendix E).

The non-local variable is
the variable with the
same name outside the
funetion (at the main
program level).

SINGLE-LINE FUNCTION — DEF STATEMENT

DEF [ data type] FNname [ ( arg., arg,, ... arg_)] =exp
1 2 n

DEF FNBETA = ( 3.14159 * D12 )/4
DEF FNAB (A, B)=(A +B) t2/( A-X ) 4 2
DEF DOUBLE COMPLEX FNNAME = ( 7874 * X t 3 )

The single-line function, when referenced in a program, uses the expression
after the first equal sign to determine a value to be returned to the function

call statement.

When a function call is made, arguments ( if any ) are checked for type com-~
patibility. The arguments are known as argument dummies, local to the

function and have no relationship to any variablesof the same name outside
the function. Each argument of a single-line function has the same data type
as the function itself. Argument dummies have a one-to-one correspondence

with the calling arguments in a function call.

® DEF statement arguments are optional and must be simple variables

( non-subscripted ).

® Each function is identified by the letters FN followed by a name of

one to four characters.

® The expression in the DEF statement follows the standard rules for
mixed mode operations. Any variable in the expression which is not

an argument dummy refers to the non-local variable.

® The data type of the function result may optionally be specified in
the DETF statement.

® The expression itself may contain calls to previously defined func-

tions but cannot directly or indirectly call itself.

® The input arguments to a function call must be type compatible.



Examples:
20 DEF FNCIRC (D) = (3.14159 * D+ 2 )/4

Statement 20 defines a function to compute the area of a circle.

10 DEF FNAB (A, B) = (A +B) t2/(A-X) 2
20X =3 :
30 Y = FNAB (6, 3 )

Statement 30 is a call to the function defined in statement 10. Y isassigned
the value returned by the function, which in this case is 9.



DEF may be used for Pro-
gram Execution only.

Restricted function names
are included in the TENET
BASIC reserved word list
(Appendix E).

Up to 30 dummy arguments
may be.specified for each
multi-1line user-defined
function.

Non-local arrays, except
for dummy arguments, may
not be redimensioned
within a function.

Multi-line fimetions may
not include GOSUB state-
ments.

The data type and number
of dimensions of the
calling array and its
corresponding dummy (array)
argument must be consis-
tent.

The non-local variable is
the variable with the same
name outside the function

(at the main program level).

5-4

MULTI-LINE FUNCTION — DEF STATEMENT

DEF [ data type ] FNname | arg,, arg,, ... arg, )]

RETURN exp
END FNname

DEF INTEGER FNRATE (A, B, C, D)

RETURN
END

The multi-line function is defined by a set of statements independent of the
main program beginning with a DEF statement and terminated by an END
statement. The RETURN statement specifies the value to be returned to the
main program. Statements that are part of the multi-line function definition
cannot reference, or be referenced by statements outside the range of the

function definition.

® The function argument dummies are optional. If specified, they
must be explicitly declared in a type statement within the function

before their use.

® All variables used within a function are non-local to the function
except those that are dummy arguments and those that are explicitly
declared in a data type of DIM declaration statement within the function.

® The value of a scalar variable appearing in a function call statement
is not changed by a function, even though the equivalent function

argument dummy has been changed by the function.

® A dummy argument may be an array. An array dummy must appear
in a DIM or type statement with dimension information in the function
even though the variable has been declared in the main program. Its
declaration in the function must precede its use in the function.
Arrays may be redimensioned local to the function. The dimensions
of the calling array remain unchanged outside the function although

values in the calling array may be changed by the function.



e When a dummy array is redimensioned, a reference to an element of

the array by a subscripted variable does not necessarily address The rules for dynamically
redimensioning arrays are

the same data as an equivalent reference by the same subscript described on p. 4-5

outside the function.

® When the RETURN statement is executed, the value of the expres-
sion in the RETURN statement is returned to the main program,and
execution continues from the point at which the function was called.
When a value is not specified, the resultant value returned by the

function is 0.
® A function cannot be defined within another function.
® There can be a maximum of 30 user-defined functions in a program.

® A data type declaration may precede the function name in the DEF

statement. Otherwise the implicit type rule is used.

Example:

200 DEF DOUBLE FNDERR ( VAL1, VAL2 )
210 DOUBLE VAL1, VAL2, TEM1, TEM2
220 TEM1 = SQRT ( VAL1 t 2)

230 TEM2 = SQRT ( VAL2 ¢t 2 )

240 IF TEM1>TEM2 THEN RETURN TEM1
250 RETURN TEM2

260 END
270 Y=16
280X =17

400 PRINT FNDERR (X, Y)
Statement 400 is a call to the function defined at line 200. The values of X

and Y are used as input to FNDERR. ( Their values are not affected in the
main program., )

5-5



GOSUB may be used for
Immediate or Program
Execution.

RETURN may be used for
Program Execution only.

The RETURI] statement 1s
discussed on p.5-4,

GOSUB STATEMENT

GOSUB line no.

GOSUB 200

The GOSUB statement is used to direct program control to a subset of the
main program. The line number specified in this statement is the first line
of the subset. Execution continues from this point until a RETURN state-
ment is encountered. Control is then returned to the statement following
the GOSUB call.

® GOSUB statements may not appear within the range of multi-line

functions.

® GOSUB's may be nested to any level,

® All subroutines ( beginning with a GOSUB statement ) must end with
the execution of a RETURN statement. Unlike the RETURN state-
ment that terminates user-defined functions, the RETURN that
terminates GOSUB statement sets does not specify an expression

since a value is not returned to the main program.

® An error occurs whenever a RETURN is executed without an asso-
ciated GOSUB.

Examples:
190 X = 3.4
195 Y =2.3
200 IF X>Y THEN GOSUB 400
210 A = X+Y

400 Y = SQRT (Y )
500X =X * Y
600 RE TURN

As the expression in statement 200 is true, the statements beginning at line
number 400 are executed. This routine changes the value of the variables
X and Y. When statement 600 turns control to line number 210, the new
values of X and Y are used to determine the value of A.




ON ... GOSUB STATEMENT

ON exp GOSUB line no. 1,[Iine no.z, .+ line no.n]

ON A + B GOSUB 400, 500, 600, 700
ON Y GOSUB 60, 100

The multi-branch GOSUB statement is comparable to the multi-branch
GOTO statement. Both specify a condition that determines a portion of the
program to which control will be transferred. However, the ON ...
GOSUB statement transfers control to a subset of the program, which after

execution, returns control to the statement following the ON ... GOSUB.

The expression in the ON ... GOSUB statement is the condition of transfer;
its numeric value determines which of the line numbers in the list ( each
the beginning of a subset ) is to be executed next. Line numbers are im-
plicitly numbered sequentially starting with a value of 1. If the expression
has a value not in the range 1 to n ( n is the total number of line numbers in
the list ), program control is not transferred and execution continues at the
statement following the ON ..., GOSUB.

® The expression is evaluated ( and truncated, if necessary ) to
derive an integer value. If the expression is logical, only a true

(i.e., non-zero ) value would cause a transfer of program control.

® ON... GOSUB statements may not appear within the range of
multi-line functions.
Example:

50 ON Y GOSUB 100, 200, 300
60...

Value of Y Execution Sequence after ON ... GOSUB

0 or less Statement 60
1 Statement 100
2 Statement 200
3 Statement 300
4 or more Statement 60

ON,.,GOSUB may be used
for Immediate or Program
Execution.

ALl subroutines
(beginning with a GOSUB
statement) must end with
the execution of a
RETURN statement.

5-7






6. TERMINAL INPUT/OUTPUT STATEMENTS

This section discusses the input/output ( I/O ) statements applicable to the
transmission of data between a program and a terminal. I/0O operations
associated with matrices and disc files are discussed in sections 7 and 8,
respectively. As a rule, most of the options available for terminal I/O may

be used for matrix and file 1/0.

All information input from or output to the terminal is in symbolic form.
Information may be input or output at the terminal in standard ( default )
format, whereby the user has minimal control over format, or in a user-

defined format which allows the user considerable format control.



STANDARD FORMAT STATEMENTS — PRINT

PRINTexpl[ {:} exp, {:} expn[{;} 1]

PRINT " ANSWER ="; A * BETA
PRINT 5
PRINT X +A/BETA:

. . .
PRINT statements may be The PRINT statement prints output data at the user's terminal. Each of the

used for Immediate or expressions ( exp; ) in the PRINT statement is evaluated,and the resultant

Program Fzecutton. value(s) is output at the terminal. The user may control the spacing of

Each print line consists information printed by the separating delimiters.
of 6 fields of 12

7. .
characters eao Delimiter Meaning

s Positions the next item of information at the next field
on the print line.

The TAB function is
deseribed on p. 6-5.

H Positions the next item of information three characters
from the present position.

Positions the next item of information at the next char-
Negative numbers and
strings are truly con-
catenated, but a blank
space is reserved before
positive numbers.

acter position. ( Output is concatenated. )

® When the position for the next item exceeds the line width ( position
72 on a teletypewriter ), a Carriage Return and Line Feed is issued;

and the item is printed at the beginning of the next line.

e Delimiters may appear in direct sequence (e. g. , PRINT A::B).

, . ® A delimiter appearing as the last element of a PRINT statement
Terminal output spacing

i8 approximated owing to specifies the print position of the first item of information in the
tne space limitations

A next PRINT statement executed. When a final delimiter is not
of tnis page.

specified, the next PRINT statement's output will be positioned at

the beginning of the next line.

® Numeric values are left-justified within each field, and a maximum
of six significant digits are printed. Values greater than 10 x 1066
and less than 0.1 are printed in E format. Integer values appear

without a decimal point ( e.g., 8.00 is printed as 8 ).

® The first position of a numeric field is reserved for the sign of the

value; positive values are preceded by a blank space.



® String values are left-justified and may cross field boundaries.
String values that exceed remaining line length are always printed
at the beginning of a new line. Thus, if a string is encountered in
an output list that will exceed the remaining width of the current
print line, a Carriage Return/Line Feed is automatically generated
and the string is printed at the beginning of the next line. String
values greater than 72 characters are printed on successive lines

in segments no greater than 72 characters each.

® Complex values are always printed out such that both the real and
imaginary parts are on the same print line. Thus, if a print line
cannot accommodate the imaginary as well as real part of a com-
plex value, a Carriage Return/Line Feed is automatically gener-

ated and both parts are printed at the beginning of the next line.

® A PRINT statement without an output list is executable and gener-

ates a blank line ( regardless of the terminating delimiter, if any,
of the most recently executed PRINT statement ).

® The TAB function may be used as an expression in the PRINT state-
ment list. ( The TAB function positions the teletypewriter print

head at an exact position specified by the user. )

Examples:
100 READ A, BETA, C, D, E$
200 DATA 8, 4,300, -8.000, 0.0000000001
300 DATA " THIS STRING EXCEEDS AN OUTPUT FIELD "

400X =A+C
500 PRINT A, BETA, C, D, E$

When the above is executed, the results are
8 4.3 -8 1. E-09

THIS STRING EXCEEDS AN OUTPUT FIELD

If statement 500 were written as

500 PRINT A ;BETA ;C ;D ;E$

the results would be

8 4.3 -8 1.E-09 THIS STRING EXCEEDS AN OUTPUT FIELD



6-4

If statement 500 were written as

500 PRINT A :BETA :C :D :E$

the results would be:

8 4.3-8 1.E-09THIS STRING EXCEEDS AN OUTPUT FIELD

If the statements shown below were used instead of statement 500,

500 PRINT A

600 PRINT BETA
700 PRINT C

800 PRINT D

900 PRINT E$

the results would be

8

4,3

-8

1.E-09

THIS STRING EXCEEDS AN OUTPUT FIELD



TAB Function

TAB ( exp )

PRINT A:TAB(30) : BETA
PRINT TAB(10), "THERE IS NO WAY"

The TAB function may be used only in a PRINT statement. The expression

specifies the exact position at which an item of information will be printed.

Blank spaces are output up to the desired print location. The expression

(‘exp) is evaluated and truncated if necessary to an integer value. It must

be within the range 1-72.

The output delimiters described for the PRINT statement precede and follow
the TAB function with the following effects:

Preceding
Delimiter

Effect

Following
Delimiter

Advances carriage to the next field, then fills in blanks
up to tab position specified. If the next field is past the
tab position specified, the TAB function is ignored.
Advances the carriage forward three character positions,
then fills in bianks up to the specified tab position. If
the three-character forward move passes the location
specified, the TAB function is ignored.

Advances the carriage to the specified tab position. If
the carriage is past the specified tab position, the TAB

function is ignored.

Effect

The next output item is printed at the firstfield following
the tab position specified.

The next output item is printed three characters after
the tab position specified.

The next output item is printed at the tab position
specified.

The TAB function is
analogous to the TAB
key on a standard
typewriter.

The TAB function 1s con-
ventionally preceded by a
colon delimiter.

The TAB function is con-
ventionally followed by a
colon delimiter.



Examples:

100 B, A =6.324

Terminal output spacing 200 PRINT A: TAB(20): B

18 approximated owing to
the space limitations

of this page. The results are
6.324 6. 324
TAB 20 —
If statement 200 were written
200 PRINT A: TAB(20); B
the results would be:
6.324 6.324
TAB 20 + 3 —
If statement 200 were written
200 PRINT A: TAB(20), B
the results would be
6.324 6.324
TAB 20 +4 —

If statement 200 were written

200 PRINT A, TAB(6): B

the results would be

6.324 6. 324
TAB 127

Tab 6 is ignored since the sixth position is passed when the preceding

comma causes the carriage to be moved to the next field.



INPUT

INPUT var, [, vary, ... var, ]

INPUT A, B$, CVAL, IVAL, F$
INPUT RATE

The INPUT statement allows the user to supply data to a program directly
from the terminal at execution time instead of reading from a previously

created data list.

When the INPUT statement is executed,the system prints out the character
? at the terminal. The user should then respond by typing in appropriate

values corresponding to the appearance of variable names in the program's
INPUT statement. As with the READ and DATA statements, there is a se-

quential one-to-one correspondence between variable names and values.

If the user does not respond with a sufficient number of values from the
terminal to satisfy the INPUT statement's list of variables, the system
prints out the characters ?? requesting more data for subsequent items

in the variable list.

The user may selectively supply data by responding to the ? request
with the special character \. This causes the current unsatisfied
variable to be skipped in the variable list, The value of the variable does

not change if the \ option is used,

® Data input from the terminal may be numeric or string. Values are
checked for type compatibility and converted if necessary according
to the rules specified in Section 3. If a variable in the input list is
type string, all input for that variable is accepted as type string.
However, if a variable is type numeric and a string constant is

supplied, an error condition is generated,

INPUT statements may be
used for Immediate or
Program Execution.

To supply data for complex
variables, input two
numeric constants. The
first is considered the
real part; the second is
considered the imaginary
part.

6-7



6-8

INPUT - DATA TRANSFER CONVENTIONS

An input ( non-formatted ) request from a symbolic file or the teletype-

writer is terminated as follows:

® Numeric data is terminated by a blank, comma, or Carriage Return.

® String data with a leading single or double quote is terminated by a
quote of the same type.

® String data without a leading quote is terminated by a comma or

Carriage Return.

When the end of an item of data is reached, the input pointer is positioned to
the next character that is not a blank, comma, or Carriage Return. Line
Feed characters used for editing and writing multi-line statements are ig~-

nored and do not appear in the resultant data item.

® Data supplied from the terminal should be separated by commas or
blanks and should be in the same sequence as their corresponding

variable names in the INPUT statement. Since a Carriage Return
signals the end of input of a single item, the Line Feed is used to

continue the input of an item on the next line.

® Quotation marks are not necessary when supplying string input
unless the string contains commas or blank spaces ( trailing or

leading ).

Example:

05 STRING FOM

10 INPUT A, B, C

20 A=A *B+C

30B=B-C

40C=C+A-B

50 INPUT XYZ$, FOM, NUMS
100 END

? "STRING1"
2 110#, 34

STRING1
10%#, 3#5123



USER-CONTROLLED FORMAT STATEMENT — PRINT IN FORM

PRINT IN FORM string: exp, [, EXP,y e expn]

PRINT IN FORM "%%. %%'":IVAL,QVAL, JVAL
PRINT IN FORM A$: AVAL,BVAL, CVAL
PRINT IN FORM '"***+ BBBB $3$$.$$ BBBB %%.%%'": IVAL, AMT, RATE

By defining output fields,the PRINT IN FORM statement enables the user to
specify the exact format of program output. An output field is defined by a
form definition string which serves as a model for the items in the PRINT
IN FORM statement list. An output field may be defined at any point in a
program and its ( string ) variable name used in the PRINT IN FORM state-
ment, or the form definition string may be directly specified in the statement

enclosed in quotation marks.

The special format characters described below are used to define the type
and format of output fields. Field length is determined by the number of
contiguous characters that constitute the field definition ( including
decimal points ). Multiple fields can be defined within the form definition
string by delimiting each field with one or more blanks. These blanks do
not appear as part of the output image.

Format

Character Output Field Format

multiple or Data is right-justified with leading blank fill within
single %'s

a field of the length specified by the number of
characters in the field definition string. If a
decimal point is embedded in the field definition
string, data is rounded to the specified number of
fractional digits. At least one % is required before
the decimal point, if any, and one additional % is
required for negative values. Up to 16 significant

digits may be output.

Examples:
Output
Data Field Definition Image
387647 "%%%%% %% %% 387647
39847 "%. %% %" 3.985
-9.3 "%%%. %%%%"" - 9.3000
DATA "% %% % %" DATA

PRINT statements may be

used for Immediate or
Program Execution.

Blank spaces may not be

embedded within field

definitions.

6-9



6-10

multiple #'s

single #

multiple $'s

multiple *'s

Data is expressed in scientific ( E ) notation within
a field of the length specified by the number of char-
acters in the field definition string. This format
requires at least seven characters in the field defi-
nition string including a # for the sign of the value,
if negative, a # for the decimal point, a # for E,

a # for the sign of the exponent, and two #'s for the
two-digit exponent. Seven or more #'s without a
decimal point imply a decimal point preceding the
first significant digit. An embedded decimal point
specifies the position of the decimal point when the
item is printed. The exponent value is altered ac-
cordingly. Numbers are rounded to the specified
number of decimal digits. Up to 16 significant digits
may be output.

Examples:
Output
Data Field Definition Image
-3.E06 VR -.3E+06
4234320 ", R 4, 234E+ 06
600 R .6E+03
800 "R, HEEEE 80.E+01

If a single # is specified as the output field definition,
data is output according to standard PRINT state-

ment conventions,

Data is output as for a % field except that a $ is

printed as the first significant character.

Examples:
Output
Data Field Definition Image
23493 1353865, 33" $ 234.93
23493 8355, P $234.93

Data is output as for a % field except that leading
blanks are filled with * characters. The field defi-
nition must include an extra * character for at least

one preceding *.

Examples:
Output
Data Field Definition Image
234 115k ok sk ok Sk ok ok ok k1 L EE DRV
23.454 THRdok gk koK **%23,45



multiple or Blanks in the output image may be specified by in-

single B's serting the letter B for each space between field
definition strings.
Examples:
Output
Data Field Definition Image
23.4,6  "$$$.$$ BB *kxrkn §33 40 *krkg A blank space must precede
45, 23, 4 "%% BB %% BB %' 45 23 4 and follow B fields and
Prx specifications within
Pxx Positions the carriage at print position xx a field definition string.

(1to 72) of the print line. If the print position
is already past location xx of the teletypewriter

print line, Pxx is ignored.

Example:
- Output
Data Field Definition Image
2,3 "%.%% P6 %. %% 2.00 3.00
Ps

® For each of the above field format types, allowance in field length

must be made for the minus sign of negative numbers.

® Variables in the output list are associated with the field definitions

in the string on a one-to-one basis in order of appearance.

® Any of the special characters %, *, $, # can be used to output a
string. The string is printed left-justified. If the string exceeds
the number of characters defined for the field, an error message is
issued. Blanks are extended to the end of the field if the string is
smaller than the field specified.

® Literal text may be included in the field definition by inserting a
string enclosed by single quotes within a field definition bounded by

double quotes, and vice versa.

® Standard PRINT statement output list delimiters do not apply when
using the PRINT IN FORM statement, as the field definition speci-

fies variable positioning.

® If there are more output items than field definitions, the form defi-
nition strings will be used repeatedly ( from the beginning ) until the

output list is exhausted.

® When the variable list is completed, a Carriage Return and Line

Feed are generated.

6-11



6-12

e A Carriage Return and Line Feed can be generated between output
items by inserting a /. Consecutive /'s generate blank lines between

output items.

Examples:

5 A,B =632

10 A1$ = "%%% BBB %%%"

20 A2$ = "%%% %%%"

30 PRINT IN FORM A1$: A,B
40 PRINT IN FORM A2$: A,B
50 RUN

632 632

632632

100 COST = 36.30

110 PRINT IN FORM " 'COST =' $$$.$3$": COST
120 END

RUN

COST = $36. 30

FORMAT REPLICATION

Field definition characters and entire field definitions can be repeated by
prefacing the item to be repeated by a numeric quantity ( repeat count ).
Parentheses are necessary for clarification when multiple fields are to be
repeated.
® Parentheses can be nested only to a level of 5.
e Repeat counts may be used with all of the field definition characters
except P.

Examples:

10 A$ = n%%% BB %%n
20 B$ ="3% 2B 2%"

Statements 10 and 20 are equivalent field definitions,

30 X3$ = "$$$.$$ B $35.$3 B"
40 Y$ = "2(3$.2$ B)"

X$ and Y$ are equivalent field definitions.



7 MATRIX STATEMENTS

TENET BASIC provides a special set of statements to facilitate matrixoper-
ations. All statements which control matrix operations begin with the word
MAT and allow entire arrays as arguments. ( Throughout this manual the

terms matrix and array have identical meanings. )

All array variables must be explicitly declared in either a data type or DIM
statement before they appear in a matrix statement. There are two excep-
tions: both the MAT READ and MAT INPUT statements allow subscript
specification which either explicitly declares an array for the first time in
a program, or dynamically redimeqsions the array at execution time, The Limitations on dy-
namically redimensioning

matrices are described on

When an array is dynamically redimensioned, the contents of the area as- g
p. 4-6.

signed to the array are neither destroyed or altered. Redimensioning
affects only the arrangement of the space assigned to the array when it is

used. For example:

DIM A(10, 10)
MAT READ A

This combination of statements assigns the same information to A as
MAT READ A(20,5)

In the first version, A is a 10 x 10 matrix; in the second, Aisa20 x5 matrix,

Most matrix statements can be used with arrays of any number of dimensions.
However, operations involving more than one matrix require compatibility
as to number of dimensions and subscript range for each dimension for

each of the arrays used in the statement.

7-1



MAT statements may be used
for Immediate or Program
Execution.

The rules for mized data
type assignments are
described on p.4-7.

MAT ASSIGNMENT STATEMENT

MAT array, = array2

MAT A =BETA
MAT IVAL = JVAL

The matrix assignment statement copies the contents of the array variable
on the right-hand side of the equal sign into the array variable on the left.
Both matrices must currently have the same number of dimensions and sub-
script range for each dimension. If the arrays are not of the same type,

data type conversion is performed.

Examples:

10 REAL AAA(5,5)
20 DOUBLE BBB(5, 5)
30 MAT AAA = BBB

Statement 30 copies the contents of the two-dimensional array BBB into AAA.
Since AAA is type REAL, the contents of BBB are converted from double
precision to single precision and then placed in AAA.,



MAT ADDITION STATEMENT

MAT array, = array2+ array3

MATA=B+C
MAT MATI1 = MAT2 + MAT3

The matrix addition statement calculates, element by element, the sum of MAT statements may be used
two arrays and stores the result in the array on the left-hand side of the for Immediate or Program

Execution.
equal sign. All arrays must be the same data type and have the same num-

ber of dimensions and subscript range for each dimension.

® Only one arithmetic operation is allowed in a MAT statement.

® The same array name may appear on both sides of the equal sign.

Examples:

10 COMPLEX VAR1(4,4), VAR2(4,4), ANS1(4,4),
ANS2(4, 4)

60 MAT VAR1= VAR1 + VAR2
70 MAT ANS1 = VAR1 + ANS2



MAT statements may be used
for Immediate or Program
Execution.

7-4

MAT SUBTRACTION STATEMENT

MAT array, = array, - array,

MAT A =A - BETA
MAT IVAL = ANS - RATE

The matrix subtraction statement calculates, element by element, the dif-
ference of two arrays and stores the result in the array on the left-hand side
of the equal sign. All arrays must be the same data type and have the same

number of dimensions and subscript range for each dimension,

® Only one arithmetic operation is allowed in a MAT statement.

® The same array name may appear on both sides of the equal sign.

Example:

10 DIM SAM(5,6), BETA(5,6), LOT(5,6)
20 MAT BETA = SAM - LOT



MAT MULTIPLICATION STATEMENT

= *
MAT array1 a]rray2 array3

MAT A=A * BETA
MAT RATE = INS * I[IVAL

The matrix multiplication statement calculates the matrix product of two MAT statements may be used
arrays and stores the result in the array on the left-hand side of the equal for Immediate or Program
Execution.

sign. All arrays must be the same data type and currently have two dimen-

sions. The subscript range for each dimension must correspond as follows:

var, (i, j) = varz(i,k) * varg(k,j)

1¢
where identical subscripts indicate identical subscript ranges.

® Only two-dimensional, numeric arrays may be used in this state-
ment,
® Only one arithmetic operation is allowed in a MAT statement.
® The same array name may not appear on both sides of the equal
sign.
Example:

20 INTEGER MAT1(10,10), LOST(10,1), TOTE(1, 10)
30 MAT MAT1 = LOST * TOTE

7-5



MAT statements may be used
for Immediate or Program
Execution.

The rules for mixed data
type conversion are des-
eribed on p. 4-7.

MAT SCALAR MULTIPLICATION STATEMENT

MAT array, = (exp) * array,

MAT A = (3) * BETA
MAT XVAL = (SQRT(BETA)) * YVAL

The scalar multiplication MAT statement multiplies each element of an array
by the value of the expression and stores the result into the array on the

left-hand side of the equal sign. Both arrays must have the same number of
dimensions and subscript range for each dimension. If the arrays are not of

the same type, data-type conversion is performed.
® The expression must be enclosed in parentheses.

® Only one matrix operation is allowed in the statement.

® The same array name may appear on both sides of the equal sign.

Example:

5 DIM A(5,5), B(5,5)

10 MATA=(1) *B

15 COMPLEX IVAL (5,5), JVAL(5,5), KVAL(5, 5)
20 MAT IVAL = (2) * IVAL

30 MAT IVAL = (1/4) *JVAL

40 MAT KVAL = (SQR(2. 35)) * IVAL

Statement 10 is equivalent to

MAT A =B



MAT INVERSION STATEMENT

MAT array1 = INV (arrayz)

MAT A = INV(BETA)

The matrix inversion statement stores the ( matrix ) inverse of an array on
the left-hand side of the equal sign. Both arrays must have the same num-

ber of elements and dimensions and identical structures.

® The same array name may appear on both sides of the equal sign.

® The matrix or array to be inverted is considered ill-conditioned,
i.e., difficult to invert accurately, if the pivot element exceeds the
smallest element by more than the value of EPS ( 1 x 10_6) during

the inversion process. This condition produces the message
NEARLY SINGULAR MATRIX

® Mixed data type assignments are not allowed with this statement.

MAT statements may be used
for Immediate or Program
Execution.

Matrices are inverted using
the Gauss-Jordan method
with matrixz pivoting.

EPS ic a predefined value
which may be redefined by
the user.



MAT statements may be used
for Immediate or Program
Execution.

7-8

MAT TRANSPOSITION STATEMENT

MAT array, = TRN (arrayz)

MAT BETA = TRN (PHI)

The matrix transposition statement stores the transpose of an array into the
array on the left-hand side of the equal sign. Both arrays must be of the
same data type and have the same number of dimensions and subscript range
for each dimension. However, the subscript range for each dimension of one
array must be in reverse order of the ranges for the other array, i.e.,

array, (i,j) vs. array, d,1).

e Only two-dimensional, numeric arrays may be usedin this statement.

® The same array name may not appear on both sides of the equal sign.

Example:

10 DIM IVAL (5,2), JVAL (2, 5)
20 MAT IVAL = TRN(JVAL)
IVAL JVAL

2 3 4
7

1 5
6 890

G WD
[=J{oRe JREN Q2]



MAT INITIALIZATION STATEMENT

MAT array = (exp)

MAT BETA = (4*IVAL)
MAT ZYG = (0)

The matrix initialization statement sets all elements of the array specified

to the value of the expression onthe right-hand side of the equal sign.
® The array must have been previously declared in the program
before its appearance in this statement.

® The data type of the evaluated expression is converted, if necessary,

to that of the array.
Example:
40 INTEGER BYO(2, 2)

80 XVAL =4 * 1,3

100 MAT BYO = (XVAL)

When statement 100 is executed each element of the array BYO is set to the
value of XVAL. Although the computed value of XVAL is 5.2, each element
of the array is given a value of 5 since the array was explicitly declared
data type integer.

MAT statements may be used
for Immediate or Program
Execution.

The rules for mixed data
type assignments are
described on p.4-7.

7-9



MAT statements may be used
for Immediate or Program
Execution.

7-10

MAT IDENTITY STATEMENT

MAT var = IDN

MAT SAM = IDN
MAT RAGE = IDN
MAT X = IDN

If the IDN function is used in a MAT statement, an identity matrix is created
(containing zero values with a diagonal of 1's). The array specified in this

statement must be a square, two-dimentional array.

o Only two-dimensional, numeric arrays may be used in this state-

ment,

Examples:

10 DIM VAT(7,7)
0 MAT VAT = IDN produces VAT as follows:

2
1
0
0
0
0
0
0

[=NeNeReoNo)
OO OOMROO
QOO HODOO
SO OO OO
O OOODOOC
HOOOOOO



MAT READ STATEMENT

MAT READ array, [, array,, ... array_|
1 2 n

MAT READ IVAL, JVAL, KVAL
MAT READ S$M(8), BETA(5,6), RATE(2, 2, 2)

The MAT READ statement enables the user to assign values for entire
arrays from the data list generated by the program's DATA statements. The
user may redimension an array when the MAT READ statement is executed
by specifying subscript values in parentheses following the name of the
array. If no subscripts are specified, the array must have beenpreviously

declared, and its most recent declared dimensions are used.

® Arrays are supplied values with the most rapidly changing
( rightmost ) subscript supplied first; e.g., the nine-element array
X(3,3) would be supplied values as follows: X(1,1), X(1,2), X(1,3),
X(2,1), X(2,2), X(2,3), X(3,1), X(3,2), X(3,3).

® As data list items are read, the data list point is advanced to the

next item in the list.

e When the end of the data list is rcached, an attempt to read a

value for a variable causes an error message to be issued.

e Complex or double complex values are read from the internal
data list in two parts: first the real part, then the imaginary

part,

Example:

10 DIM A(5), B(20), C(3,3)
20 DATA 1,2,3,4,5,6,7,8,9
30 MAT READ A, B(3)

40 RESTORE

50 MAT READ C

The array A is filled with the values 1,2,3,4,5. The array B, after being
redimensioned to three elements, is filled with the values 6,7,8. The two-

dimensional array C is read by rows, resulting in the following matrix:

PO
@ U1
© o w

MAT statements may be used
for Immediate or Program
Execution.

DATA statements are describ-
ed on p.4-19.

The limitations on dy-
namieally redimensioning
arrays are described on
p.4-8.

7-11



MAT statements may be used
for Immediate or Program
Execution.

The INPUT statement 18
discussed on p.6-

7-12

MAT INPUT STATEMENT

MAT INPUT array, [, array,,. . . arrayn]

MAT INPUT BETA, PHU, ZOO
MAT INPUT A(4,5), B(7,8), F$(21), SAM(J, 4, 5)

The MAT INPUT statement is identical to the MAT READ statement except
that data is supplied for the elements of an array by the user from the termi-

nal at execution time ( just as for the terminal INPUT statement ).

When the MAT INPUT statement is executed, the system prints out the char-
acter ? at the terminal. The user should respond by typing in appropriate
values for array elements in an order corresponding to their position in the
array, and corresponding to the appearance of array names in the MAT
INPUT statement.

If the user does not respond with a sufficient number of values from the
terminal to satisfy the MAT INPUT statement's list of arrays, the system
prints out ?? requesting more data for subsequent items in the variable
list,

The user may selectively supply data by responding to the ? request with the
special character \ This causes the current unsatisfied subscripted
variable to be skipped in the variable list. The value of the variable does

not change if the \ option is used.

® Data input from the terminal may be numeric or string. Values
are checked for data type compatibility and converted if necessary
according to the rules specified in section 3. If a variable in the
input list is type string, all input to that array is accepted as type
string. However, if an array is type numeric and a string constant

is supplied, an error condition is generated.

® The Input-Data Transfer Conventions specified in section 6 apply to
supplying values in response to the request generated by a MAT
INPUT statement.



Example:

10 DIM X(2), Y(2,3), ZED(1, 4)

.

80 MAT INPUT X, Y, ZED (1,2)

190 END

When statement 80 is executed, the system requests that the user type in
the appropriate values for the MAT INPUT array list:

?1,2,4,5,6,7,8,9,3.456,5.678

Internally, the arrays are filled as follows:

X =12
Y =456

789
ZED = 3.456 5.678

7-13



MAT statements may be used
for Immediate or Program
Execution.

The PRINT statement i&
described on p.6-2.

7-14

MAT PRINT STATEMENT

MAT PRINT arrayl[ [;,}arrayziz}. .. arrayn[ {;’}]]

MAT PRINT BETA, RATE, YEAR,
MATPRINT Z:Y; X
MAT PRINT ALPH

The MAT PRINT statement is similar to the PRINT statement for terminal
output except it prints out entire arrays at the terminal. MAT PRINT state-

ment delimiters affect preceding array variables as follows:

Delimiter Format

The elements of each row are printed in fields

b
of 12, allowing 6 elements per print line.

The elements of each row are printed with
three spaces between each element.

The elements of each row are concatenated.

( Negative numbers and strings are truly con-
catenated, but a blank space is reserved
before each positive number. )

The final delimiter is optional. If the delimiter is omitted, a comma is
assumed.

e The rightmost subscript is the most rapidly changing subscript and
it determines the number of items of data to be printed across each
print line. Each row of an array is printed separately, with double
spacing between array rows. Each row of the array will begin at a
new line. Thus, a one-dimensional array is printed across one or

more lines, and the subscript notation ( x ) is equivalent to (1, x ).



Examples:

5 DIM A (2, 3)
10 DIM BETA (9)

20 DIM ZOO (4)

30 DIM IVAL (8)

35 MAT A = (4)

40 DATA 1,2,3,4,5,6,7,8,9

50 DATA 11,22, 33,44

60 DATA 21, 22, 23, 24,25, 26, 27, 28

80 MAT READ BETA, ZOO, IVAL

90 MAT PRINT A, BETA, Z0OO, IVAL
RUN
4 4
4 4
1 2
7 8
11 22 33 44

2122 23 24 25 26
27 28

4 5 6

© W

The array BETA was printed as a 9-element row, ZOO as a 4-element row,
and IVAL is an 8-element row. As BETA and IVAL contained more elements
than would fit on a print line using the comma delimiter their row output is
continued onto another line. However, if statement 90 specified concatenated
output, the following would be printed:

3

4
4
3
3
23

4
4
4 5 6 7 8 9
2 33 44
2 23 24

DD = o=
N DN N B

1
1 25 26 27 28

If statement 30 declared IVAL as IVAL(4,2,1), IVAL would be printed as

21
22
23
24
25
26
27
28

10 DIM ACE(3,7)

20 MAT ACE = (5)
30 MAT PRINT ACE
RUN

5 5 5 5 5

5 5 5 5 5

[91 I IV IN) s |

5 5 5 5 5

The occurrence of a single item of data at the beginning of alternate output
lines is caused by the seventh element of each row which will not fit on the
print line when the comma delimiter is used,

7-15



MAT statements may be used
for Immediate or Program
Execution.

The PRINT IN FORM statement
18 discussed on p. 6-9.

MAT PRINT IN FORM STATEMENT

MAT PRINT IN FORM string: array, [, array,, . . . arrayn]

MAT PRINT IN FORM A$: IVAL, JVAL
MAT PRINT IN FORM '"***+* BBB $$3$.$$" : ANS, AMNT

The MAT PRINT IN FORM statement specifies the exact format in which
elements of an array are to be printed at the terminal. This statement is
identical to the PRINT IN FORM statement for standard terminal output,

except that entire arrays are specified in the statement's variable list.

The special charactersused to define output fields for arrays are the same
as for the PRINT IN FORM statement. However, since the MAT PRINT IN
FORM statement prints multiple items for each variable name, it is recom-
mended that the slash character ( /) is inserted within the field definition

string to generate a Carriage Return/Line Feed at the end of each row.

Example:

10 DATA 6,34.56,4, 34.95,5,67.45, 12, 23. 54

20 DATAZ2,4,5,6,7,8,4,5,6,9

30 MAT READ A(2,4), B(5,2)

40 MAT PRINT IN FORM ""***** BB $$$.$$ /" : A, B

RUN

*rkx6  $34.56
rkxrq  $34.95
*Kkx*5  $67.45
**12  $23.45
*A*¥k2 8 4.00
kE**5  $ 6.00
KREAT _$ 8.00
¥rxx4  $ 6.00
*EEr¥6  $ 9.00




8. FILE STATEMENTS

INTRODUCTION

A file is a structured set of data maintained on a mass storage device exter-
nal to the central computer memory. The structure and content of files vary

to facilitate file usage under different circumstances.

A file is addressed by a unique file name. A directory of all files belonging
to a particular user is maintained by the TENET 210 System. Though the
total number of files belonging to a particular user is essentially unlimited,
the BASIC user may access ( read and/or write ) up to eight files at one

time. Each active file may contain up to eight million characters.

FILE CONTENT

Data stored in a file may be symbolic or binary. The contents of a symbolic
file appear identical to teletype input and output ( including the Carriage
Return and Line Feed characters ). Symbolic input is always comparedwith
input variable requests for type compatibility. Unformatted symbolic files

have the same input conventions as standard teletype input.

Data stored in binary files appears in internal machine format. Binaryfiles
are more compact and efficiently stored than symbolic files. They must be
read in the same manner as they are written and any output to a binary file

will have the following data type/number of words correspondence:

Data _Type Number of Words
Integer 1
Real 1
Double 2
Complex 2
Double Complex 4 n .3
String ( n characters ) 1+ INT [%]

String values in binary files use an extra word to specify string length ( in

characters ).



Input variable requests from binary files cannot be checked for type compat-
ibility. The data type/number of words correspondence as listed above is
used to determine the amount of information transferred relative to the data

type requested in binary files.

Binary files, as such, cannot be listed on the teletype.

FILE STRUCTURE

A file has an internal organization specified by the user according to the way
the file will be used. The structure of a file is fixed when it is first created

and cannot be changed.

Sequential Access Files

A sequential file is a single, continuous set of symbolic or binary infor-
mation. Information is arranged on the file sequentially starting at the be-
ginning of the file. A write-to or read-from operation on a binary file uses
n number of words where n is based on the variable type to be written or
read. For a symbolic file, a read or write operation reads or writes the
data exactly as it would appear on the teletype using the PRINT or INPUT
positioning conventions. A sequential file can only be read or written se-
quentially from beginning to end; thus individual items in a sequential file
cannot be accessed randomly. File breakdown by records is meaningless

for sequential files.

Random Access Files

A random file is a set of independently addressable subsets of data called
records. By specifying the number of a record, the user can access an
arbitrary location in a large file. A record may be accessed and/or altered
without affecting the rest of the random file. Either fixed or variable-length
records may be used in a random file. Fixed-length records allow quicker
access to any part of the file, whereas variable-length records are more
flexible to use though slower to access. On random files with fixed-length
records, the length of the record is specified by the user ( in number of
characters for symbolic files and in number of words for binary files ). A
read or write operation on a fixed-length record always starts at the begin-
ning of a record. If the operation does not reference all the data available

in the record, the remainder of the record is ignored. Attempting to write



a record longer than the length specified in an OPEN statement is illegal.
Random fixed-length records can be read or written in any order, Writing
random fixed-length records causes the allocation of disc space for all
records from one through the record number specified. Reading a record
which has been allocated disc space but not explicitly written will not neces-

sarily result in an error message.

Avariable-length random record can be any length. Its size is the total
length of the data specified in the WRITE statement that created the record.
A write of a variable-length record, followed by another write of the same

record, destroys the previous data.

When writing ( i.e., replacing ) a record which already exists, whether
fixed or variable~length, the new record size must not exceed that of the old.
Variable-length records must originally be written in sequence. However,
once the file has been created, variable-length records may be rewritten in

any order.

8-3



OPEN may be used for Imme-
diate or Program Execution.

For information about
shared files and passwords
see the EXEC'UTIVE Users
Manual.

OPEN STATEMENT

"fname'' , BINARY ,INPUT |, RANDOM(exp,) || nEw
OPEN| "t exp, |’ symmoric| |» OUTPUT|| s RANDOM 'OLD
, ‘10 ) SEQUENTIAL

OPEN "MYFILE", 7

OPEN "XFILE", 4, INPUT, RANDOM(100), OLD
OPEN "ADFILE'",6, SYMBOLIC, IO ,0LD, RANDOM
OPEN "BIFILE", 8, BINARY, I0, RANDOM, NEW
OPEN "SCR", 3, SYMBOLIC, OUTPUT, SEQUENTIAL

Before a file can be used in a program, it must be activated by the OPEN
statement. Opening a file tells the system that the user is about to perform
some operations on the file and automatically positions the file at its begin-
ning-of-information ready to be read or written. The required parameters
for the OPEN statement are the file name and the file number. The default
values for the other, optional parameters are SYMBOLIC, OUTPUT,
SEQUENTIAL, and NEW,

Files designated INPUT have read-only permission; i.e., the user may only

. read information from the file. A file remains read-only until the file is

closed and reopened with another permission. A file opened for OUTPUT is
a write-only file, i.e., the user may only write information onto the file. If
a file opened for OUTPUT does not exist in the user's directory, a new file
is created. A file designated IO can be read or written. INPUT or OUTPUT
permission is generally more efficient than IO. Since a random IO file

allows writing on any place in the file, it must be used cautiously.

The user may access files in other users' directories if the files have been
designated as sharable and the user has the correct file name, account

number, and user name.

o If the file to be opened is owned by the user, the name consists of
a string of 1 to 8 alphanumeric characters, including the symbols
% and $, enclosed in quotation marks. The first character must

be alphabetic, %, or $.



® If the file to be opened is not owned by the user but shared, the

name of the file must be of the form:

file name ="' a; un; fn "
where
a = account number ( 0-511 ) of file's creator,

un = name of file's creator ( 1-8 alphanumeric characters, in-
cluding % and $; the first character must be alphabetic, %,
or $.)

fn = name of file ( 1-8 alphanumeric characters, including % and
$; the first character must be alphabetic, %, or $.)

Example: "63;JOEDOE;$ FUND$"

® If SCR is used as a file name, a temporary ( scratch ) file is

created which will cease to exist after the file number is closed or SCK files are NEW only.
the user leaves the BASIC subsystem. SCR can be used with more
than one file number simultaneously, each being a different tempo-

rary file.

] exp1 is a value from 0 to 8 identifying one of the active files avail- Only eight disc files may

able to the user. File 0 is permanently assigned as the terminal. be active (accessed) at
one time.

® OLD indicates that the file to be opened already exists in the user's

directory. NEW indicates that the file is being created. NEW can be used with OUT-
PUT or I0 files only.

® INPUT permission is allowed on OLD files only; OUTPUT and IO
are permitted on both OLD and NEW.

® SYMBOLIC and BINARY indicate the type of information contained
in the file,

® RANDOM and SEQUENTIAL indicate the structure of the file.
( exp, ) is required if a file of fixed-length records is desired and
indicates record length ( in characters for symbolic files, and in

words for binary files ).

® SEQUENTIAL files cannot be opened for both read and write per-

mission ( 1I0).

8-5



CLOSE may be used for Imme-
diate or Program Execution.

CLOSE STATEMENT

CLOSE expll 2€XPys - .. XD ]

CLOSE 1,2,3,4,5,6,7,8
CLOSE 5
CLOSE 2,4,5

After the user has completed work on a file, he may deactivate it by using
the CLOSE command. Once a file is closed the number of the file may be

assigned to another file. The CLOSE statement does not destroy or delete
the information in the deactivated file unless it is a temporary ( SCR) file.

( CLOSE requests on file 0 ( terminal ) are ignored.)

A file opened for output may be closed and reopened as an input file and vice
versa. A symbolic file, however, cannot be reopened as a binary file.
Random fixed, random variable, and sequential files must always be refer-

enced in the manner specified when the file was originally created.
] exp; indicate file numbers currently active, which are to be closed.

Example:

10 OPEN "MYFILE", 3, INPUT, RANDOM, OLD
60 OPEN "ADFILE", 5, OUTPUT, SEQUENTIAL, NEW

.

100 CLOSE 3, 5
200 OPEN "ADFILE", 5, INPUT, OLD



RESTORE FILE STATEMENT

RESTORE FILE exp, [ s€XPys wee expn]

RESTORE FILE 6

The RESTORE FILE statement enables the user to position a sequential file
at its beginning-of-information. If the file is opened with read~only permis-
sion, the file may be reread only. If the file is opened with write-only per-
mission, it may be rewritten only. 1/0 files may either be written, restored,

and read, or read, restored, and written ( rewritten ).
. exp; are currently active file numbers

Example:

10 OPEN "MYFILE", 5, SYMBOLIC, INPUT, SEQUENTIAL, OLD

20 INPUT FROM 5: A,B,C,D,E,F
25 A,C,D,F=A*D+C+D/E+F
30 RESTORE FILE

40 INPUT FROM 5: A,B,C,D,E,F

RESTORE FILE may be used
for Immediate or Program
Execution.

8-7



APPEND FILE may be used
for Immediate or Program
Execution.

APPEND FILE STATEMENT

APPEND FILE exp, [ XDy oe expn]

APPEND FILE 7

The APPEND FILE statement enables the user to write additional informa-
tion onto a sequential file, The file is positioned past its end-of-information

ready for the next set of information.

¢ The APPEND FILE statement may be used only on sequential output
files.

L exp, are currently active file numbers.

Example:

10 OPEN "MYFILE", 4, SYMBOLIC, OUTPUT, SEQUENTIAL, OLD
20 APPEND FILE 4
30 WRITE ON 4:A,B
After MYFILE is opened with write-only permission, it is positioned past
the information already existing on the file. The next statement appends

information to the end of the file.



ERASE FILE STATEMENT

ERASE FILE eXp1 FROM exp, TO exp,

ERASE FILE 6 FROM 4 TO 6

The user may selectively delete records from a random access file by using
the ERASE statement. The actual number of records in the random access
file is not altered unless the exp, is the last record in the file. Deleted
records are filled with null characters regardless of the original data type

of the file contents.

L exp, is a currently active file number,

] exp,, and exp, are record numbers.

Example:

10 OPEN "AFILE", 3, SYMBOLIC, OUTPUT, SEQUENTIAL, OLD
20 OPEN "BFILE", 4, SYMBOLIC, INPUT, RANDOM, OLD

30 INPUT FROM 4 AT 3 : IVAL, KVAL, JVAL

40 INPUT FROM 4 AT 4 : LVAL, MVAL, NVAL

50 INPUTFROM 4 AT 5 : OVAL, QVAL, RVAL

60 APPEND FILE 3

70 WRITE ON 3 : IVAL, KVAL, JVAL, LVAL, MVAL, NVAL, @
OVAL, QVAL, RVAL '

80 ERASE FILE 4 FROM 3 TO 5

The random access file BFILE is opened for read access only. After values
are read from records 3, 4 and 5 of BFILE, they are written onto AFILE,
Records 3, 4 and 5 are then deleted from BFILE.

ERASE FILE may be used for

Immediate or Program
Execution.



ON ENDFILE may be used for
Immediate or Program
Execution.

8-10

ON ENDFILE STATEMENT

ON ENDFILE (exp) GOTO line no.

ON ENDFILE (4) GOTO 300
ON ENDFILE (J) GOTO 150

The ON ENDFILE statement specifies a line number to which program con-
trol will be transferred when the end of information on the file specified is

reached by any subsequent read of the file.

The ON ENDFILE étatement must be executed after the file is opened, but
before it is used. Closing a file number and reopening it requires another
ON ENDFILE statement. If multiple ON ENDFILE statements appear for the

same file number, the most recent is used.

® (exp) is a currently active file number.

® An error message is issued if an end of file is encountered and there
is no ON ENDFILE statement for the file number.

® The ON ENDFILE statement is executable and thus, to be effective,
must be executed each time the file number it references is opened.
Example:
50 OPEN "MY FILE", 3, INPUT, NEW

60 ON ENDFILE (3) GOTO 100
70 INPUT FROM 3 : A

100 CLOSE 3



ON ENDREC STATEMENT

ON ENDREC (exp) GOTO line no.

ON ENDREC(3)GOTO 100
ON ENDREC(1) GOTO 40

The ON ENDREC statement is identical to the ON ENDFILE statement
except that it applies to the end of record condition for random access files. Imediglte or Program
If an attempt is made to read past the end of a record, or write past the end Ewecution.
of a fixed-length record, the ON ENDREC statement causes program control

to be transferred to the line number specified.

® (exp) is a currently active file number.

® An error message is issued if an end of record is encountered pre-

maturely and there is no ON ENDREC statement for the file number.

® The ON ENDREC statement is executable and thus, to be effective,

must be executed each time the file it references is opened,

ON ENDREC may be used for



INPUT statements may be
used for Immediate or Pro-
gram Execution.

The IN FORM option may be
used for symbolic file
input/output.

The MAT READ statement is
discussed on p. 7-11.

8-12

INPUT (SEQUENTIAL FILE) STATEMENT

[ MAT] INPUT FROM exp : var, [ s VATys oo varn]

MAT INPUT FROM 6: A3, 3), B, C, D$, E$
INPUT FROM 6: IVAL, JVAL, KVAL(3,3), KVAL(3, 4)

The INPUT FROM file statement is used for sequential files and causes
information from the specified file to be supplied for the variables in the list.
This statement may be used for symbolic or binary files. Reading values
from a file is comparable to reading values from the internal data set created
by a program's DATA statements. The variable list follows the same con-

ventions as terminal input/output.

® exp is a currently active file number.

® Entire arrays may be read from a file by specifying MAT at the be-
ginning of the statement and specifying array names in the variable
list as for the MAT READ statement.

Example:

10 OPEN "MY FILE", 2, SEQUENTIAL, INPUT, OLD

70 READ FROM 2: RATE, TIME, IVAL, KVAL

80 PRINT RATE, TIME, IVAL, KVAL



INPUT (RANDOM FILE) STATEMENT

[ MAT] INPUT FROM exp, AT exp, : var; [, var - vary ]

PR

INPUT FROM 6 AT 2: A,B,C,D,E$, T(2,3),X
MAT INPUT FROM 8 AT 3: IVAL, KVAL, LVAL (9)

The INPUT FROM ...AT statement is used for random files and causes
information from the file number specified to be supplied for the variables

in the list. A record number must always be specified following the AT.

Reading values from a file is comparable to reading values from the internal
data set created by the program's DATA statements. The variable list
follows the same conventions as terminal input/output .

® This statement may be used for symbolic or binary files.

® exp, is a currently active file number; exp, is a record number of

of the random access file.

® Entire arrays may be read from a file by specifying MAT at the
beginning of the statement and specifying array names in the
variable list, as is done for the MAT READ statement.

Example:
10 OPEN "MY FILE", 2, RANDOM, INPUT, OLD

70 INPUT FROM 2 AT 6: RATE, TIME, IVAL, KVAL

140 PRINT RATE, TIME, IVAL, KVAL

.

INPUT statements may be
used for Immediate or Pro-
gram Execution,

The IN FORM option may be
used for symbolic file
input/output.

The MAT READ statement is
discussed on p.7-11.

8-13



INPUT statements may be
used for Immediate or Pro-
gram Execution.

The PRINT IN FORM statement
is discussed on p.6-9.

8-14

INPUT IN FORM STATEMENT

EVIAT]INPUT FROM exp, [AT expz]IN FORM string : var [, vary, ... varn]

INPUT FROM 6 IN FORM FF$: IVAL, KVAL, JVAL, S$E$
MAT INPUT IN FORM "######, ## BB" FROM 2 AT 5: A,B,C,D
INPUT IN FORM H$ FROM 6 AT 1: FATS$

The INPUT IN FORM statement must be used to read data from a file pre-
viously written using the PRINT IN FORM statement. The field definition
strings specified in this statement should be identical to those used when the
items in the variable lists were originally written onto the file. Thus the
values for the variables may be read accurately by skipping over information

such as fieldsof *'s and $'s which may occur between items of data on thefile.

e The special field definition characters for the INPUT IN FORM state-
ment are identical to those of the PRINT IN FORM statement.

Example:

10 OPEN "XFILE", 4, OLD, INPUT
20 OPEN "YFILE", 7, NEW

80 INPUT FROM 4 IN FORM "%%%%% BB": A,B,C,D,E,F,G

100 PRINT IN FORM "***** BB" ON 7: A, B,C,D,E,F,G

Statement 80 inputs a set of variables from XFILE in the format in which they
were written onto the file. The same variables are written onto the file
YFILE in a different format. Any subsequent reads of YFILE will require
the same field definition as specified in line 100.



PRINT (SEQUENTIAL FILE) STATEMENT

[ MAT ] PRINTONexp:varl[ ;;’svarzg;’g oovar | H 11

PRINT ON 8: E$
PRINT ON 6: A:B:C:D:E;F,
PRINT ON 7: IVAL: JVAL; FVAL, MVAL:

The PRINT ON statement is used with symbolic or binary sequential files
and causes information specified by the variable list to be written on the
file named. This statement is identical to terminal PRINT statements
except that values are written on a file and not printed at the terminal. The

variable list follows the same conventions as terminal input/output.

® The delimiters for an output command to a binary sequential file do
not have meaning since the binary data has a specified word size/

data type association.

® The delimiters for a symbolic Sequential file introduce spacing and
a Carriage Return as with normal terminal output. A sequential
file may be written without any Carriage Returns, but it would be
impossible to list such a file since the line would be too wide for

the terminal print line.
® Sequential files are always written starting at their current location.

® A special non-printing delimiter follows all string output to a se-
quential file. When such data is read, this character acts as an

input delimiter as does a comma.

® Entire arrays may be written onto a file by beginning the statement
with the word MAT and specifying array names in the variable list,
as is done for the MAT PRINT statement,

PRINT statements may be

used for Immediate or Pro-

gram Execution.

The IN FORM option for
input and output may be
used for symbolic file
input/output.

The MAT PRINT statement
discussed on p.7-14,

s



Example:

5 OPEN "MY FILE'", 24, SEQUENTIAL
10 DATA 4.56, 7.89

20 READ IVAL, KVAL

30 FOR X =1 TO 100

40 MVAL =IVAL * KVAL

60 PRINT ON 4: IVAL, KVAL, MVAL;
65 IVAL = IVAL + 2.31

70 KVAL = KVAL + 4. 32

80 NEXT X

The values generated by the program loop in statements 30 through 80 are
written onto the file MYFILE.



PRINT (RANDOM FILE) STATEMENT

[ MAT] PRINT ON exp, AT exp, : var, [, var . varn]

IR

PRINT ON 5 AT 4:F$
PRINT ON 6 AT X-1: A: D: C, B;
PRINT ON 1 AT 12:IVAL, JVAL, KVAL;

The PRINT ON ... AT statement is used with random files and writes infor-
mation specified by the variable list on the record number named. This
statement is identical to terminal print statements except that values are
written on a file and not printed at the terminal. The variable list conven-

tions are the same as terminal input/output.
® Random files are written beginning at the record specified by exp,.

® Entire arrays may be written onto a record by beginning the state-

ment with the word MAT and specifying array names in the variable
list, as is done for the MAT PRINT statement,

Example:

5 OPEN "MY FILE", 5, RANDOM, OLD
10 DATA 3.24, 7.89

20 READ IVAL, KVAL

30 FOR X =1 TO 100

40 MVAL = IVAL * KVAL

50 PRINT ON 5 AT X: IVAL, KVAL, MVAL
60 IVAL = IVAL + 2,34

70 KVAL = KVAL + 4, 32

80 NEXT X

.

The values generated by the program loop in statements 30 through 80 are
written onto the file MYFILE in records 1 to 100,

PRINT statements may be
used for Immediate or Pro-
gram Execution.

The IN FORM option for in-
put and output may be used
for symbolic file input/
output.

The MAT PRINT statement
18 discussed on p.7-14.

8-17






9. EDIT STATEMENTS

ELEMENTARY EDITING FEATURES

Standard Editing

The special teletype keyboard characters given below are recognized by the

system as editing commands. While each line of a program is input to the

computer, alterations and corrections can be made using these keys.

This key deletes the previous character input. Thekey may
be used repeatedly and erases a character each time the
key is repeated. A backward arrow (=) is echoed for each

. For example, BATH«—«SC<IC is interpreted as
BASIC,

This key completely deletes the line being input ( i.e.,
before the Carriage Return key is pressed ). An upward
arrow (t) is echoed for each @ . The prompt character

is not reissued.

For example:

>30 FORI=1 TO causes the entire line to be

erased,



9-2

Inserting Statements

A statement can be inserted between two existing statements by typing the

new statement with a line number within the bounds of the existing statements.

For example:

>10 A =4.56
>20 C = A+B
>30 D=6

>40 E = C+D
>15 B =2.34

Statement 15 will automatically be inserted in sequence

10, 15, 20, 30, 40.

Replacing Statements

Any statement may be replaced or changed from any point in the program by

entering its line number and retyping the entire statement.

For example:

>10 LET A=3
>10 LET B=5

‘The first line 10 is replaced by the second.



ENTER STATEMENT

ENTER line no. [ STEP exp ]

ENTER 10
ENTER 10 STEP 5

Normally the user must type in a line number for each statement when
creating a program. However, the ENTER command can be used to direct
the system to generate line numbers automatically as the user creates a
program. The ENTER command specifies the initial line number and the

increment value desired between generated line numbers.

® If an increment value ( line no. ) is not specified, a value of 10 is

assumed.

® The initial line number must be higher than any of the current
program statements. If while in the ENTER mode, a syntactically
incorrect statement is typed in, automatic line number generation

is terminated.

® Automatic line number generation can be terminated by pressing

immediately after a line number.

Example:

ENTER 5 STEP 10
5 READ A, B,C,D
15 DATA 1,2,3,4

25 A = B+C*A
35 PRINT A
15

[%)]

END
(29

ENTER may be used for
Immediate Execution only.



LIST may be used for
Immediate Execution only.

LIST STATEMENT

LIST [ line no, [ : lineno. ][, ... lineno. [ : lineno. ]] ]

LIST 40
LIST 40:70, 100, 160:200
LIST

The LIST statement enables the user to specify that an entire program, a
portion of a program, or a single statement be printed out at the terminal.
If no line numbers are specified, the entire program is listed. Commas
separate individual statements or statement groups. A colon designates a

range of statements.

® A line number may also be expressed as FIRST or LAST, specifying

the first or last line of the program.

Example:

10 BETA 3,4,5,9 @ 6
20 READ A, B,C,D

30 LET A = B*D

30 LET A = B*C

40 B =B/C
50 PRINT A
60 A = A*B

70 PRINT A, B
LIST 10:30, LAST

10 DATA 3,4,5,6
20 READ A, B,C,D
30 LET A = B*C

70 PRINT A,B




RENUMBER STATEMENT

RENUMBER [ line no. 1’ line no. 99 increment ]

RENUMBER
RENUMBER 50, 100, 10

The RENUMBER command enables the user to assign new line numbers to
all or part of a program. All of the program's statements which reference
line numbers ( GOTO, GOSUB, IF, etc. ) are similarly modified according

to the new line numbers.

® The part of the program to be renumbered begins at line no., and
ends with the last program statement. The first statement to be
renumbered is assigned line no. 9° Subsequent line numbers are

incremented by the increment value specified.

® The RENUMBER command cannot generate line numbers which

cause intermixing of the new line numbers and lines not renum-
bered.

e If not specified, the following values are assumed for the
RENUMBER statement parameters:

line no. |~ hew line numbers start at 100.
line no. 9~ renumbering begins at the first line of the program.

increment ~ the increment value is 10.

RENUMBER may be used for
Immediate Execution only.

9-5



DELETE may be used for
Immediate Execution only.

9-6

DELETE STATEMENT

DEL line no. [ :lineno. }1[, ... line no.[ : line no. ] ]

{ DELETE} {ALL

DELETE ALL
DELETE FIRST : 100
DELETE 10:50, 80
DEL 25, 10:18, 41

The DELETE statement deletes a single statement, a range of statements, or
a whole program. Commas separate individual statements or statement

groups; a colon designates a range of statements.

e If several lines are to be deleted, the numbers must be in ascending

order.

® FIRST and LAST may also be used to indicate the first and last
statements of the program to be deleted.

® A DELETE statement specifying a non-existent line causes an error.

Example:

10 READ A,B,C,D
20 DATA 2,3,4,5
30 LET A = B*C
40 LET D = A*B
50 C = C*D

60 PRINT A,B

70 PRINT C,D,E
DELETE 30:50, 70
LIST

10 READ A,B,C,D
20 DATA 2,3,4,5
30 PRINT 4,




ALTER STATEMENT

ALTER line no.

ALTER 10
ALTER FIRST
ALTER LAST

The ALTER statement prints out any specified statement at the terminal and
. . . ALTER may be used for
enables the user to change its content by means of a set of special editing Irmediate Execution only.

control characters.

The following control characters may be used in conjunction with the ALTER

command in addition to the standard editing characters discussed in the Elementary editing
beginning of this section. techniques are discussed
on p. 9-1.
Control
Character Function
@ Copies the next character from the old line and echoes to the
new line.
@ Skips the next character in the old line and echoes a % inthe
new line.
Copies and echoes the remainder of the old line to the new
line and stops editing the old line.
@ Enter/Exit insert mode. Echoes '<' and '>', respectively.
The text typed in this mode is inserted into the new line and
does not affect the old line.
Other Other characters typed in replace corresponding characters

in the old line.

® Multi-line statements are edited on a segment basis, i.e., between
Line Feeds to a terminating Carriage Return. The control, " copy
remainder of edited line," will copy only up to the next or .



9-8

e FIRST or LAST may also be used to indicate the first or last state-

ment of the program to be edited.

Example:

10 VDOT=FNX(YPOS +PI-2)*FNDELT (YPOS)
ALTER 10
10 VDOT=FNX(YPOS +PI-2)*FNDELT (Y POS)

cccfcgccgccg e cfeejes e e ey clssqsyspc (as echoed)

1lo| viplolrl=lrinix|clvlplols ke lp ko ks |)* FNDELT (v POS)
ALTER 10
10 VDOT=FNX(Y POS)*FNDE LT (YPOS)

Ce|Ce|Cq €T €| CCJE|SQRT (Y POS + 2)+[E|D¢ (as echoed)

1 lol Iviploltl= l«|sqrTvPosy 2) 4>|FNX(YPOS)*FNDELT(YPOS)
LIST 10
10 VDOT=SQRT(YPOS 2) +FNX(YPOS)*FNDELT(YPOS)




TABS STATEMENT

TABS [posl, posz, poss, p0s4]

TABS 10, 30, 50, 60
TABS
TABS 23, 45

The TABS statement enables the user to establish tab positions on the termi-
nal analogous to setting tabs on a standard typewriter. By specifying tab
positions for the terminal using this statement, the user can easily indent
portions of his program to improve its readability. The tabs have no effect
on the execution of the program. The control character is equivalent to
the tab key on a conventional typewriter and advances the print position of
the terminal to the next tab position. The appropriate number of blanks is

inserted into the data buffer.

e Up to four tab positions may be specified in the TABS statement.

o The TABS statement removes previous tabs and establishes new

tab positions as specified.

e A TARS statement with no tab positions specified removes any

previous tabs.

TABS may be used for
Immediate Execution only.

The TABS statement also
affects the function of
the and control
characters used with the
ALTER command.

9-9



10. PROGRAM CONTROL STATEMENTS

INTRODUCTION

Once the BASIC system is in control, the user may direct the disposition of
a BASIC program by using the control commands discussed in this section.
These commands differ from BASIC language commands in that they arenot
a part of the program, but control the program's activities.

10-1



RUN may be used for
Immediate Execution only.

10-2

RUN STATEMENT

RUN

RUN

The RUN command causes the initialization and execution of the program

currently in the program source area.

® Information regarding previous program execution is lost.

® All previously opened files are automatically closed when the RUN

command is executed.

Example:

10 READ A, B, C

20 DATA 2, 3,4

30 PRINT A*B; B/A; C/A+B
40 END

RUN




CONTINUE STATEMENT

CONTINUE
CONTINUE
If the user has suspended program execution by pressing the ki
P prog yP 8 ey or CONTINUE may be used for
by executing the PAUSE statement, and intermediate activities have not Immediate Execution only.

destroyed the original program and data, execution can be resumed by
using the CONTINUE statement.

Execution continues at the statement following the line where execution was

suspended.

Example:

10 LET A = 5.67
20 B, C = 3.45

30 ANS = A*SQRT(A/B)

40 PAUSE

50 IVAL = C*SQRT(C/ANS)

220 END
RUN

PAUSE AT 40
PRINT ANS
7.2688389
CONTINUE

10-3



SAVE STATEMENT

. SYMBOLIC ||, NEW . .
SAVE '"file name" [: BINARY OLD ][lme no. , line no. g9 oo line no. n]

SAVE "FILEA", SYMBOLIC, NEW
SAVE "BIN1", BINARY, OLD, 100, 400
SAVE "MYFILE"

SAVE may be used for The SAVE command stores the current program (symbolic form) or the

Immediate Execution only. compiled equivalent (binary form) on the file specified. The file specified
will be created if designated as NEW, or a previously generated file will be
used if designated‘as OLD. The only required parameter for this statement
is the file name. The default values for the other optional parameters are
SYMBOLIC and NEW,

LOAD is discussed om ® The file created may be used later with the LOAD ( symbolic file

p. 10-5; LINK is only ) and LINK ( binary file only ) commands.
discussed on p. 10-6.

® An error message is printed if the parameter NEW is used with a
file already in the user's directory, or if OLD is specified with a

file name that does not exist in the directory.

e If a binary file is saved which will subsequently be used in a LINK
statement requiring entry to the file at a point other than its first
statement, the SAVE ... BINARY command must specify a line
number or set of line numbers which may be specified as an entry
point to the file in the LINK statement.

10-4



LOAD STATEMENT

LOAD '"file name"

LOAD "MYFILE"

The LOAD statement enables the user to retrieve a saved file from storage
for use in the program source area, Loading a saved file updates ( by re-

placement ) any source statements already in the program source area.

e Statements in the source area are replaced by statements from
the file that are loaded with the same line numbers. Other

statements are inserted according to line number sequence.
e The LOAD statement may specify a symbolic file only.

Example:

LOAD "FILEA"
LOAD "FILEB"
LIST

SAVE "MYFILE", NEW

FILEB is loaded into the program source area to edit FILEA by replacing
duplicate statements. The LIST command causes the entire contents of the
source area ( i.e., FILEA as modified by FILEB ) to be printed at the ter-
minal. The SAVE command causes entire content of source to be stored
as the new file MYFILE. The files FILEA, FILEB remain unchanged in
the user's directory.

LOAD may be used for
Immediate Execution only.

10-5



LINK may be used for
Immediate or Program
Execution.

10-6

LINK STATEMENT

LINK 'file name" [ , line no. ]

LINK "BIFILE"
LINK "BF%%%"' , 300

The LINK statement enables the user to retrieve and execute a previously
saved binary file. When the LINK statement is executed, any current pro-
gram execution is terminated and execution of the contents of the file speci-
fied is initiated. If a line number is specified in the LINK statement, execu-
tion will begin at that line numbgr, otherwise, program execution will begin

at the first statement of the file.

Since the file activated by the LINK statement is not available in symbolic
form, no interactive processing is allowed during execution caused by the
LINK statement. If errors occur during execution, the user can only attempt
to issue the CONTINUE statement.

Once program execution is completed ( or abnormally terminated ) the BASIC

prompt character will be issued.

Example:

10 PRINT "ORDER INVENTORY SYSTEM"
20 PRINT "TO INPUT AN ORDER, TYPE 'ORDER'"
30 PRINT "TO INPUT A SHIPPING INVOICE, TYPE 'SHIPPED'""

40 INPUT A$
50 IF A$ = "ORDER" THEN LINK "ORDFILE'" ELSE LINK "SHPFILE"
60 END



TAPE STATEMENT

TAPE

TAPE

Instead of entering BASIC program statements directly from the terminal,
TAPE may be used for
the user may prepare his program on paper tape. The TAPE command Immediate Execution only.

enables BASIC to accept paper tape input.

e The TAPE command must be used prior to paper tape input. Infor-

mation on the tape must be terminated by the control character Paper tape preparation
@ 18 discussed in
on the tape or a must be entered from the keyboard after the Appendix F for the Model

tape has been read in, 33 Teletype Terminal.

e The syntax of statements on paper tape is not checked when the tape
is input. Syntax errors are detected following paper tape input.

The incorrect line and the error message are then printed.

e Statements already in the source area are replaced by those from
paper tape input with the same line numbers. Other statements are

inserted according to line number sequence.

Example:

TAPE
@ead in paper tape program )

IST
RUN

Once the paper tape program is entered, the LIST command may be used to
display the contents of the program source area on the terminal.

10-7



QUIT STATEMENT

QUIT

QUIT

The QUIT statement is the only statement which enables the user to leave
the BASIC subsystem and return to EXECUTIVE, When the program is re-

turned to EXECUTIVE, the contents of the current source area ( unless

QUIT may be used for
Immediate Execution only.

SAVE is used ) and data area are lost, and all open files are closed.

10-8




LEAVING THE SYSTEM — LOGOUT

Once the user has left the BASIC subsystem, he can issue the EXECUTIVE
level LOGOUT command to terminate a terminal session. At this time, ac-
counting statistics pertaining to computer time and storage are recorded by

the system and a permanent record maintained for each account and user

name,
-LOGOUT @
tttt mm/d! !yy
CPU MINS- xX,XX
TERMINAL MINS- xx,xX
FILE MODULES- zzzz
where:

titt = time of day in 24-hour clock units

mm = month

dd = day

yy = year

XX, xx = time total in minutes

zzzz = disc space units associated with the user

After the system prints the above information, the terminal is returned to
LOGIN command mode. If there is no response within three minutes, the
terminal is disconnected,

10-9



APPENDIX A. ANSI CHARACTER SET

Teletype/ Teletype/
ANSI Teletype Printer Hollerith ANSI Teletype Printer Hollerith
Hex Code  Character Key Graphic Card Code Hex Code Character Key Graphic Card Code
00 NUL pes 12-0-9-8-1 © 25 % 58 % 0-8-4
01 SOHor DEL A€ 12-9-1 26 & 65 & 12
02 STX B¢ 12-9-2 27 ! 78 ! 8-5
03 ETX ce 12-9-3 28 ( 8s ( 12-8-5
04 EOT DC 9-7 29 ) 9s ) 11-8-5
05 ENQ EC 0-9-8-5 2A * :8 * 11-8-4
06 ACK FC 0-9-8-6 2B + ;8 + 12-8-6
07 BEL G¢ 0-9-8-7 2C s , . 0-8-3
08 BS HC 11-9-6 2D - - - 11
09 HT I 12-9-5 2E . . . 12-8-3
0A LF Line Feed 0-9-5 2F / / / 0-1
0B vT K¢ 12-9-8-3 30 0 0 0 0
0C FF LC® 12-9-8-4 31 1 1 1 1
0D CR Return 12-9-8-5 32 2 2 2 2
OE SO N€ 12-9-8-6 33 3 3 3 3
OF SI o¢ 12-9-8-7 34 4 4 4 4
<10 DLE 2 12-11-9-8-1 35 5 5 5 5
11 DC1 Q¢ 11-9-1 36 6 6 6 6
12 DC2 RC 11-9-2 37 7 7 7 7
13 DC3 s¢ 11-9-3 38 8 8 8 8
14 DC4 TC 9-8-4 39 9 9 9 9
15 NAK u® 9-8-5 3A 8-2
16 SYN Ve 9-2 3B ; ; ; 11-8-6
17 ETB we¢ 0-9-6 3C < ,S < 12-8-4
18 CAN x¢ 11-9-8 3D = -S = 8-6
19 EM Y°© 11-9-8-1 3E > .8 > 0-8-6
1A SUB z° 9-8-7 3F ? /3 ? 0-8-7
1B ESC Kes 0-9-7 40 @ ps @ 8-4
1C FS Les 11-9-8-4 41 A A A 12-1
1D GS MCS 11-9-8-5 42 B B B 12-2
1E RS NCS 11-9-8-6 43 C C C 12-3
1F Us Q¢S 11-9-8-7 44 D D D 12-4
20 Blank Space 45 E E E 12-5
Bar 46 F F F 12-6
z; '!' ; v" zj” 47 G G G 12-7
’s ) s ‘s 48 H H H 12-8
iy s 8 oses 49 I I I 12-9
4A J J J 11-1




Teletype/ Teletype/

ANSI Teletype Printer Hollerith ANSI Teletype Printer  Hollerith
Hex Code Character Key Graphic Card Code Hex Code Character Key Graphic Card Code
4B K K K 11-2 66 f F 12-0-6
4C L L L 11-3 67 g 12-0-7
4D M M M 11-4 68 h H 12-0-8
4E N N N 11-5 69 i I 12-0-9

4F o o o 11-6 6A i J 12-11-1
50 P P P 11-7 6B k K 12-11-2
51 Q Q Q 11-8 6C 1 L 12-11-3
52 R R R 11-9 6D m M 12-11-4
53 S S ] 0-2 6E n N 12-11-5
54 T T T 0-3 6F o (o} 12-11-6
55 U U U 0-4 70 p P 12-11-7
56 A \'4 \' 0-5 71 q Q 12-11-8
57 W A w 0-6 : 72 r R 12-11-9
58 X X X 0-7 73 s S 11-0-2
59 Y Y Y 0-8 74 t T 11-0-3
5A Z Z Z 0-9 75 u U 11-0-4
5B [ K8 [ 12-8-2 76 v v 11-0-5
5C N\ L® \ 0-8-2 77 w \ 11-0-6
5D ] M ] 11-8-2 78 X X 11-0-7
5E % NS 4 11-8-7 79 y Y 11-0-8
5F - (o - 0-8-5 7A z Z 11-0-9

60 Norg e 8-1 7B { 12-0

" 61 a A 12-0-1 7C | 12-11
62 b B 12-0-2 7D ) 11-0
63 c C 12-0-3 7E e e 11-0-1
64 d D 12-0-4 F RUBOUT 12-9-7
65 e E 12-0-5




APPENDIX B. MESSAGES

This appendix contains a complete list of all messages issued by the BASIC subsystem at the terminal. While
most of the messages are error notifications, a few are informative only and require no response from the
user. Each error message is discussed in terms of probable cause and remedial action. There are three

classes of error messages: syntax (S), compilation (C), and execution (E).

SYNTAX ERRORS

Syntax error messages are issued immediately following the input of a BASIC statement whose form is incorrect
( unless automatic syntax error checking is deactivated at the terminal ). These messages always pertain to the
most recent statement entered by the user. Likewise, they can be corrected immediately by typing in the cor-
rect statement with the same line number as the line in error. ( If desired, the error message may be ignored
at this time, and remedial action deferred until program execution is attempted and the message is issued

again. ) For example:

>100 DEF ABCI? (K,d, L)
FUNCTION IDENTIFIER MISSING
>100 DEF FNAB (K, J, L)

> e

COMPILATION ERRORS

Compilation error messagesare caused by syntax errors which were not corrected as the statement was input,
and errors caused by statements whose meaning is incorrect within the rules of the BASIC language. These
errors must be corrected within the current program before the program can be executed. Since these mes-
sages are issued after the user completes the program and enters the RUN command, the system prints out the
statement in error with an upwardarrow (4) indicating the probablepoint of the error. The user must enter the RUN

command after the statement is corrected. For example:

>RUN
60 GOTO 50?

LINE NUMBER DOES NOT EXIST
>60 GOTO 100
>RUN




EXECUTION ERRORS

Execution error messages are caused by errors in program content, whereby the computer cannot carry out the
instructions generated by the program. Execution error messages are generated as the program is executed.
When an error is encountered, the system prints out the line number of the statement with the appropriate mes-
sage. The user has two courses of action: correct the current program source and reattempt execution, or

correct the program interactively, whereby program execution will continue, but the current program source
is not corrected. For example:

>RUN
ERROR IN LINE 100
ILLEGAL SQRT ARGUMENT

>LIST 100

100 A = SQRT(B)
>PRINT B
=36

>100 A = SQRT(-B)
>RUN

The above corrects the statement in the current program. However, if the user is interested only in the results
of the program without correcting the source program immediately, he may do the following:

>RUN

ERROR IN LINE 100
ILLEGAL SQRT ARGUMENT
>LIST 100

100 A = SQRT(B)

>PRINT B

=36

>B = 36

> GOTO 100




ATTEMPT TO CHANGE FILE STRUCTURE
Cause: In an OPEN statement any of the following may have been specified ( possibly by
default ):

- binary file as SYMBOLIC

- symbolic file as BINARY

- random file as SEQUENTIAL

sequential file as RANDOM

- fixed-length for a variable length record file

Action: Correct the appropriate OPEN statement.

ATTEMPT TO INPUT FROM WRITE FILE
Cause: The user has attempted to read a file which is open for writing.

Action: Close the appropriate file and reopen for read access.

ATTEMPT TO WRITE ON INPUT FILE
Cause: The user has attempted to write on a file which is open for reading.

Action:  Close the appropriate file and reopen for write access.

BASIC ERROR
Cause: A BASIC system error was encountered in a BASIC program.

Action:  Attempt to rerun the program or call operator.

CONCATENATION STRING LENGTH ERROR
Cause:  String length has exceeded maximum of 255 characters as result of string
concatenation.

Action: Correct current program.

CORRECT SYNTAX IN FORM
Cause: An INPUT statement containing the IN FORM option was syntactically incorrect.

Action: Correct current program.

DATA COMPATIBILITY ERROR
Cause:  An attempt was made to use a string value in an operation using numeric data
or vice versa.
Example: A$ = B when A$ is string and B is real.

Action: Correct current program.

DIRECT MODE STATEMENT ONLY
Cause:  An attemptwas made to use an Immediate Execution command for Program
Execution. For example, the command RUN was preceded by a statement number.

Action: Delete Immediate Execution commands from program.




DUPLICATE DEFINITION

Cause:

Action:

1. A scalar variable appeared in two or more type-conflicting statements,
2. A scalar variable was used in a program according to implicit type conventions

and was subsequently explicitly declared in a type statement.

d
.

Delete appropriate explicit declarations from current program.
2. Renumber explicit type statement so that it is encountered before the variable

is used in the program.

DUPLICATE FILE NAME

Cause:

Action:

An OPEN attempt was made with the NEW option where a file of the same name
already exists in the user's file directory.

1. The old file of the same name must be deleted ( at the EXECUTIVE level ).
2. The new file must be given another name and the program's OPEN statement

corrected to reflect the new file name.

DUPLICATE FUNCTION PARAME TERS

Cause:

Action:

END OF DATA

Cause:

Action:

END OF FILE

Cause:

Action:

A variable name was used more than once as a dummy argument for a particular
function.

Change the duplicate dummy argument name in the DEF statement.

The internal data list produced by a program's DATA statements did not satisfy
the program's READ statement's variable list.

1. Correct the DATA statements to include more data items.

2. Insert a RESTORE statement at an appropriate line number to reset the data

list pointer.

An end of file was processed on a disc file without an ON ENDFILE statement
existing for that file.

Correct current program to include an ON ENDFILE statement for the appro-
priate file. The ON ENDFILE must be executed after each opening of the file

number to which it refers.

END OF RECORD

Cause:

Action:

An end of record was processed on a random file record without an ON ENDREC
statement existing for that record.
Correct current program to include an ON ENDREC statement for the appro-

priate file record.




EXPRESSION TOO LARGE
Cause: The internal memory requirements of an expression exceeded available space,
Action: Subdivide the appropriate statement in the current program containing the ex-
pression into statements which contain expressions which perform the same

operations as the larger expression.

FILE ALREADY CLOSED
Cause: An attempt was made to CLOSE a file which was already closed in the program.

Action: Delete the redundant CLOSE statement.

FILE ALREADY OPEN
Cause: An attempt was made to OPEN a file which was already open in the program.
Action: If the file was already OPEN for the desired access, remove redundant OPEN

statement. If not, CLOSE the file and reopen for the desired access -

FILE DOES NOT EXIST
Cause: 1. An operation was attempted on a file not open.
2. A file specified as OLD in an OPEN statement does not exist in the user's
directory.
Action: 1. Insert OPEN statement for appropriate file.
2. Check name of files in user's directory and correct OPEN statement if

appropriate to specify NEW file.

FILE NOT SHARABLE ,
Cause: An attempt was made to OPEN a private ( non-shared ) file.

Action: None.

FLOATING DIVIDE BY ZERO
Cause: An attempt was made to divide a floating-point number by zero.

Action: Correct the appropriate program statement to eliminate division by zero.

FLOATING OVERFLOW
Cause: An arithmetic operation caused a result too large to be represented in
single or double precision floating point format.

Action: Adjust the appropriate values in the current program.

FLOATING UNDERFLOW
Cause: An arithmetic operation caused a result too small to be represented in single or
double-precision floating point format.

Action: Adjust the appropriate values in the current program.




FOR LOOPS NESTED OVER 31
Cause: The number of loops in a FOR loop nested set has exceeded the limit of 31.
Action: Correct the current program to reduce the number of loops within the same

nesting to < 31.

FORM OPERATION ATTEMPT ON BINARY FILE
Cause: An attempt was made to use the IN FORM option in a READ or WRITE binary file
statement.
Action: Delete the IN FORM option from the appropriate READ or WRITE statement.

FORWARD REFERENCE UNSATISFIED
Cause: 1. A FOR statement does not have a corresponding NEXT statement.
2. There is no END statement for a user-defined multi-line function.

Action: Insert the NEXT or END statement into the current program.

FUNCTION DEFINED WITHIN FUNCTION
Cause: A DEF statement was encountered within the range of a DEF...END statement
group.
Action: Unless an attempt was deliberately made to nest ( illegally ) multi-line function
definitions, an END statement may be missing for a DEF encountered. Insert

an END statement into the current program if appropriate.

FUNCTION IDENTIFIER MISSING
Cause: An attempt was made to define a multi-line function whose name does not begin
with the letters FN.

Action: Prefix the function name with the letters FN in the current program.

FUNCTION NOT DEFINED
Cause: 1. A reference was made to a function name prior to the definition of the
function in the program.
2. A variable name begins ( illegally ) with the letters FN.
Action: 1. Rearrange current program contents so that the function definition precedes
any usage of the function.

2. Correct the variable name so that it does not begin with FN.

FUNCTION PREVIOUSLY DEFINED
Cause: The same function name was used more than once for different functions.

Action: Modify redundant function names.

GOSUB WITHIN FUNCTION
Cause: A GOSUB statement was used in a multi-line function definition.
Action: Correct current program to eliminate any GOSUB statements from

multi-line function definitions.

B-6




ILLEGAL ASIN/ACOS ARGUMENT
Cause: An argument greater than 1, 0 was used in either the ASIN or ACOS function.

Action: Adjust argument value in current program.

ILLEGAL ASSIGNMENT
Cause: A constant or function identifier appeared on the left side of the equal sign in an

assignment statement.

Action: Correct assignment statement in current program.

ILLEGAL ATAN ARGUMENT

Cause:  An attempt was made to use the ATAN function with the values x = 0, y = 0.

Action:  Adjust argument values in current program to be non-zero.

ILLEGAL CHARACTER FOR NUMERIC CONVERSION
Cause: A non-numeric character was used as a numeric value.

Action: Correct current program.

ILLEGAL CHARACTER INPUT
Cause: 1. An unrecognizable ( non-BASIC ) character was received as input.

Transmission error.

oo

Action: Enter correct characters.

1
2. Reenter input.

ILLEGAL EXP ARGUMENT
Cause:  An exponential argument was greater than the limit of 176, 752.

Action: Adjust argument value in current program to be = 176. 752.

ILLEGAL EXPRESSION
Cause: An expression is missing an operator or operand.

Action: Insert appropriate expression in current program.

ILLEGAL FILE DESIGNATOR
' Cause: A file number specified in an OPEN, CLOSE, READ, INPUT, or WRITE
statement specified a value not in the range 0 - 8.

Action: Correct the current program.

ILLEGAL FILE STRUCTURE
Cause: Anillegal file structure was specified in an OPEN statement. One of the
following illegal combinations has been specified:

NEW and INPUT
SCR and INPUT
SEQUENTIAL and IO

Action: Correct the OPEN statement to reflect a legal combination of parameters.




ILLEGAL FIXED RECORD LENGTH
Cause: The length of a fixed-length record specified in an OPEN statement was not in
the range 1 to 1024.
Action: Correct the record length specification.

ILLEGAL FOR LOOP NESTING
Cause: The ranges of the program's FOR loops overlap.

Action: Correct the FOR loop nesting structure in the current program.

ILLEGAL FOR STATEMENT
Cause: FOR statement syntactically incorrect.

Action: Correct FOR statement.

ILLEGAL FORM SPECIFICATION
Cause: A non-field definition character was found in an input/output statement using the
IN FORM option.

Action: Correct the field definition to include only the characters allowed.

ILLEGAL INPUT DELIMITER
Cause: A character other than a comma or blank was used to delimit items entered in
response to requests generated by INPUT statements.

Action: Reenter data using a comma or blank spaces to separate items.

ILLEGAL LINE NUMBER REFERENCE
Cause: A reference was made to a statement within a multi-line function from outside
the function or vice versa.

Action: Correct line number reference.

ILLEGAL LOG ARGUMENT
Cause: An argument of zero or less was used with a logarithmic function.

Action: Correct function argument to a positive, non-zero value.

ILLEGAL LOOP VARIABLE
Cause: A string, array, or complex value was used as a loop variable.

Action: Correct loop variable to be scalar ( integer, real, or double ) variable.

ILLEGAL MAT OPERATOR
Cause: An attempt was made to perform an operation other than the following:
addition, subtraction, scalar multiplication, multiplication by matrix.

Action: Correct current program.




ILLEGAL OPERATOR
Cause: An attempt was made to perform an operation using operators other than
those specified as valid operators in section 3 or this manual.

Action: Correct appropriate operator.

ILLEGAL RECORD IDENTIFIER
Cause: A number specified as a record identifier was not a positive integer value.

Action: Change record identifier to positive value.

ILLEGAL SIN/COS ARGUMENT
52
Cause: An argument in a SIN or COS function was greater than 2
Action: Adjust argument value in current program to be = 252.
ILLEGAL SQRT ARGUMENT
Cause: A SQRT argument was less than zero ( negative value ).

Action: Correct SQRT argument to a non-negative value.

ILLEGAL STRING FUNCTION ARGUMENT
Cause: The order and type of arguments to a string function were incorrect.

Action: Specify appropriate arguments in their proper order for a string function.

ILLEGAL SUBSCRIPT
Cause: A string value was used as a subscript identifier.

Action: Use only numeric values for subscript specification.

ILLEGAL TAN ARGUMENT

Cause: A TAN function argument was greater than 252.

Action: Adjust argument in current program to be = 252.
ILLEGAL USE OF 0
Cause: An attempt was made to do a binary operation on file 0, reserved as the
teletype file.

Action: Correct file number reference or delete from program.

ILLEGAL USE OF RANDOM FILE
Cause: A record number was not specified for a random file.

Action: Include record number specification in appropriate program statement.

ILLEGAL USE OF SEQUENTIAL FILE
Cause: A record number was specified for a sequential file in a file input/output

statement.

Action: Delete record number specification for a sequential file in the file input/output

statement.




INCOMPLETE FORM SPECIFICATION
Cause: An I/0 statement with the IN FORM option did not specify format of input/output
data.

Action: Correct the appropriate statement.

INCORRECT STATEMENT FORM
Cause: The statement is syntactically incorrect.

Action: Correct statement.

INDIRECT MODE STATEMENT ONLY
Cause: A statement that may be used for Program Execution was entered for
Immediate Execution, i.e., without a statement number.

Action: Prefix the statement with an appropriate statement number.

INPUT RECORD LENGTH OVERFLOW
Cause: Input to a fixed-length record exceeded the length specified by the user in an
OPEN statement for the appropriate file.
Action: Reduce input or increase the length of the record in the OPEN statement.

INPUT STRING LENGTH ERROR
Cause: A string exceeded the 255 character string limit.
Action: Shorten string or create multiple strings.

INTEGER OVERFLOW
Cause: An integer variable was assigned a floating point value which cannot be expressed
as an integer without losing meaning; i.e., the floating point number is too large
to be represented as an integer value.
Action: 1. Adjust value in current program.
2. Redefine integer variable to a real or doubleprecision type.
INVALID VARIABLE NAME
Cause: An attempt was made to use a BASIC reserved word as a variable name to begin
a variable name of more than two characters with the letters FN, or to use a
variable name with more than four characters. ( The latter may be caused by
missing blanks after a variable name. )

Action: Change the appropriate variable name.

I/0 WITHIN I/0
Cause: A function call during an output operation caused an additional input or output
request.
Action: 1. Delete input/output operation from function definition.

2. Remove function call from input/output statement.

LAST LINE IS

Cause: Informative message caused by operation of LOAD or TAPE command
informing user of last line input.
Action: None.

B-10




INTERRUPT AFTER COMPLETION LINE xxxx
Cause: This is issued in response to the user pressing the @ or ALT MODE key
during program execution. xxxx is the line number at which execution was
interrupted.
Action: 1. Interrogate variable values in current program and/or alter them.
2. Reenter program at an alternate line using a GOTO, DO, etc.
3. Enter a CONTINUE command to resume execution at the line following the

line number specified in the message.

INTERRUPT DURING LINE xxxx

Cause: The user has pressed the @ or ALT MODE key while output or a matrix

inversion operation was in process. xxxx is the line number at which execution

was interrupted. »

Action: 1. If interrupt occurred during an output operation, output may not be continued
unless the user reenters the program at a point prior to the output operation,
whereby the output operation will be repeated. A CONTINUE command
causes execution to be resumed at the line following the line number
specified.

2. [If interrupt occurred during a matrix inversion, the user is notified of the
inversion; he may continue the inversion by entering the CONTINUE command
immediately after the message is printed. Otherwise the matrix inversion
is terminated and a subsequent CONTINUE command causes execution to be
resumed at the line following the line number specified in the message.

3. Interrogate variable values in current program and/or alter them.

4. Reenter program at an alternate line using a GOTO, DO, etc.

INVALID ACCOUNT NUMBER
Cause: An attempt was made to open a shared file with an incorrect account number.

Action: Correct account number in the OPEN statement.

INVALID DATA TYPE
Cause: A value was used whose data type is not allowed with the operator used.

Example: B$ - B$the minus operator cannot be used with strings.
At CMPLX (6, -3) — The t operator cannot have a complex exponent.

Action: Correct current program.

INVALID RESTORE
Cause: A RESTORE statement did not reference a DATA statement.
Action: Modify RESTORE statement to reference a DATA statement.

B-11



LINE NUMBER MISSING
Cause: 1. A program statement was entered from paper tape without a line number.
Statement cannot be issued from paper tape for Inmediate Execution.
2. A non-existent line. number was referenced in a program.
Action: 1. Correct paper tape input.
2. Check if reference is in error and correct if necessary, or else insert a

dummy statement such as REM with line number desired.

LOOP TERMINATION NOT SPECIFIED
Cause: A terminal expression was not specified in a FOR statement which includes
a step or increment value.

Action: Delete increment value phrase or add terminal condition.

LOOP VARIABLE ALREADY ACTIVE
Cause: The same loop variable name appears in two FOR statements without a
separating NEXT statement.
Action: Insert a NEXT statement at end of the first FOR loop.

MATRICES NOT CONFORMABLE .
Cause: Two matrices with non-compatible subscript ranges were used in the same
matrix operation.
Action: Redimension matrices prior to use in matrix operation to make them

conform to meet the requirements of the particular matrix operation.

MATRIX NEARLY SINGULAR
Cause: Inversion was attempted on an ill-conditioned matrix.
Action: 1. Change values in matrix.
2. Change value of EPS.

MATRIX NOT SQUARE
Cause: A non-square matrix was used in a matrix inversion operation.

Action: Redimension the matrix prior to use in the identity operation.

MATRIX NOT TWO DIMENSIONAL
Cause: A non two-dimensional matrix was used in a matrix inversion operation.

Action: Redimension the matrix prior to use in the inversion operation.

MATRIX TOO SMALL
Cause: The result of a matrix operation was too large to be contained in the resultant
matrix.

Action: Change data type declaration of resultant matrix to double precision.

B-12




MEMORY EXCEEDED
Cause: An array as dimensioned exceeded memory capacity.

Action: Reduce the size of the array.

MISSING GOTO OR GOSUB
Cause: A statement beginning with the word ON did not contain a GOTO or GOSUB
specification.

Action: Imsert GOTO or GOSUB in appropriate ON statement.

MISSING THEN
Cause: A statement beginning with the word IF did not contain THEN.

Action: Insert THEN into the appropriate IF statement.

MISSING QUOTE
Cause: 1. A string value beginning with a single quote did not terminate with a single
quote.
2. A string beginning with a double quote did not end with a double quote.

Action: Insert appropriate quotation mark.

NO CONTINUE
Cause: Operations were performed which alter the way in which a program is stored
in memory.

Action: Issue the RUN command.

NO EXECUTION POSSIBLE
Cause: An Immediate Execution command such as GOTO was issued before program
execution is attempted.
Action: Issue the RUN command before any Immediate Execution commands are executed

which reference line numbers of program to be executed.

NON ARITHMETIC IN MAT STATEMENT
Cause: An attempt was made to use string matrices in a matrix arithmetic operation.

Action: Correct current program according to operations allowed on numeric matrices.

NON ARRAY IN MAT STATEMENT
Cause: A scalar variable name was used in a matrix statement as an array name.

Action: Define the variable as an array.

PARAMETER INCOMPATIBILITY
Cause: The argument dummies of a multi-line function definition were not compatible as
to data type with their calling arguments.

Action: Explicitly declare either dummy or calling arguments for type compability.




PARAMETER NOT DEFINED
Cause: An argument to a multi-line function was not explicitly declared before its use in
the function.

Action: Declare the function parameter within the function definition before it is used.

PARENTHESIS NESTING OVERFLOW
Cause: The number of parenthetical setsofan expression in a FORM string exceeded the
limit of five levels.
Action: Redefine FORM string.

PAUSE AT LINE xxxx
Cause: This message is issued when a program's PAUSE statement is executed.
Action: Theusermay thenissue anInmediate Execution statement to interrogate the state
of the program. The CONTINUE command can be used to cause program

execution to resume if possible.

RECORD DOES NOT EXIST
Cause: The record number specified for a random file did not exist.
Action: Check for appropriate record number and modify OPEN or file I/O statement
appropriately.

RECORD TRUNCATED
Cause: Output record was too long to fit in fixed-length record.
Action: Modify PRINT statement field definition to accommodate actual output record

length.

RECURSIVE FUNCTION CALL
Cause: A multi-line function definition contained a call to itself.

Action: Alter the function call.

RETURN WITHOUT GOSUB
Cause: A RETURN statement appeared in a program without a companion GOSUB
statement.
Action: 1. Check to see if RETURN intended for multi-line function.

2. Insert a GOSUB statement at the appropriate location within the program.

STATEMENT DRIVER NOT FOUND
Cause: A BASIC reserved word command was spelled incorrectly or was not set off by a
leading and following blank space.

Action: Correct the statement.

B-14




STATEMENT NOT VALID WITH IF
Cause: Any of the following statements appeared within an IF statement: DATA, DEF,
DOUBLE, INTEGER, REAL, COMPLEX, STRING, DOUBLE COMPLEX, IF,
FOR, ON, or NEXT.

Action: Remove the appropriate illegal statement from the IF statement.

STRING CONSTANT OR VARIABLE ONLY
Cause: An expression was used where only a scalar variable or constant is ailowed.

Action: Declare variable name as string or enclose constant in quotation marks.

STRING TOO BIG FOR FORM
Cause: An attempt was made to input or output a string using the IN FORM option where
the field definition could not accommodate the size string specified for input or
output. »
Action: 1. Shorten string length.
2. Redefine field in the input/output statement.

SUBSCRIPT ON SIMPLE VARIABLE
Cause: A previously declared (implicitly or explicitly ) scalar variable name appeared
with subscript specification.
Action: 1. Declare the appropriate variable name as an array name prior to usage in
program.,

2. Remove subscript specification from variable name.

SUBSCRIPT OUT OF RANGE
Cause: One of the subscripts specified for an array points to a non-existent location
within the array.

Action: Correct subscript specification.

SYNTAX ERROR

Cause: A BASIC statement was syntactically incorrect. This is a general message
covering all types of syntax errors. In some cases of syntax error, the
message is more specific.

Action: Correct statement syntax.

TABS INPUT INCORRECT
Cause: 1. More than four tab positions were specified in a TAB statement.

2. The tab positions specified in a TAB statement were not in increasing order,
Action: Correct the TABS statement.

wn

B-15



TERMINATE TAPE MODE WITH CONTROL D
Cause: An attempt was made to follow paper tape input without the user inserting the
control character @ before subsequent operations.

Action: Press the key.

TOO MANY FUNCTION DEFINITIONS
Cause: More than 30 user-defined multi-line function definitions appeared in the same
program.
Action: Reduce the number of user-defined multi-line functions within the program to 30

or less.

TOO MANY FUNCTION PARAME TERS
Cause: 1. More than 30 argument dummies were used for the same function definition.
2. More calling arguments were specified than there were dummy arguments for
a multi-line function definition.
Action: Reduce the number of function parameters to 30 or less, or make the number of

calling arguments consistent with the number of dummy arguments.

TOO MANY SUBSCRIPTS
Cause: More subscripts than are currently dimensioned for an array variable were
specified in an array reference.
Action: Correct the program so that all subscript specifications for an array have the

same number of dimensions.

UNBALANCED PARENTHESES
Cause: 1. A right parenthesis exists for which there is no companion left parenthesis.

2. A left parenthesis exists for which there is no companion right parenthesis.
Action: Add the left or right parenthesis to the statement as appropriate.

USE OF UNINITIALIZED ARRAY
Cause: No information has been stored in the space reserved for an array.
Action: Insert MAT read or MAT initialization statement so that it occurs before use

of the array in the program.

USER FILE OVERFLOW
Cause: Attempted output operation caused more data to be written than the file could
hold.

Action: Reduce the amount of data for output or write multiple files.

USER NAME NOT DEFINED
Cause: An attempt was made to open shared file with an incorrect user name.

Action: Correct user name in OPEN statement.

B-16




APPENDIX C. DIRECTORY OF BASIC STATEMENTS

This appendix contains a complete list of all the TENET BASIC statements discussed in this manual. Statements
are described by format, function, execution mode ( Immediate ( I ) or Program ( P ) ) and the page on which

they appear in this manual.

Throughout this appendix the following abbreviations are used:

a array variable
c constant ( numeric or string )

dt data type

e expression

fn file name

In line number

n numeric constant

tab position

s BASIC statement
sv scalar variable
v variable ( scalar or array )

x$ string



ASSIGNMENT AND SEQUENCE CONTROL STATEMENTS

INTEGER v

Declares the variables named as type integer.

REAL vy

Declares the variables named as type real.

DOUBLE v

Declares the variables named as type double.

COMPLEX \A

Declares the variables named as type complex.

DOUBLE COMPLEX v

Declares the variables named as type double complex.

STRING vi

Declares the variables named as type string.

DIM a,
i

Declares the dimensions of an array variable.

[ LET] sv.=e

Assigns a value to a variable.

DOIn[:In] [, In[:In]] ... [,In{ :In]]

Specifies a statement and/or range of statements to be executed.

GOTO In

Unconditionally transfers control to a specified point in a program

thus overriding sequential statement processing,

Execution Page No.
I/P 4-2
/P 4-2
/P 4-3
I/p 4-3
/P 4-3
1/p 4-4
/P 4-5
I/p 4-7
/P 4-10
I/P 4-12



Execution Page No.
ON e GOTO In, /P 4 -13

Conditionally transfers program control to one of the specified

line numbers.

51 S2
IF e THEN 1n1 [ ELSE ln2 ] I/P 4- 14
Conditionally transfers program control or conditionally executes a

statement.

WHILE} e2[ STEP e3] P 4-15

Directs the repeated execution of a series of statements ( program loop )

FOR sv = e1 {TO

terminated by a NEXT statement.
NEXT Vi P 4-15

Terminates a program loop and increments the value tested in the companion
FOR statement.

DATA c; P 4-19

Creates internal to the BASIC program a data list to be read by the
READ statement.

READ sv; I/P 4 -20

Reads data specified by DATA statements.

RESTORE [ In] /P 4 -21
Resets DATA list pointer to a previous position.

REM text /P 4 -22

Inserts comments into a program listing.

T PAUSE P 4 - 23

Temporarily suspends program execution.

END P 4-24,5-4

Signals termination of a program or user defined multi-line function.

t STOP may be used instead of PAUSE.



FUNCTION AND SUBROUTINE STATEMENTS

Execution

DEF[ dt] FNnamel (Vi)] [ =el P
Defines a function in a single line if expression specified; otherwise,
begins a user defined multi-line function.

RETURN [ e] P
Returns the value produced by a multi-line function or subroutine
to the main program.

GOSUB In /P
Transfers program control to a set of statements constituting a
subroutine.

ON e GOSUB lni I/P
Conditionally transfers program contfol to one of a selection of
subroutines.

TERMINAL INPUT/OUTPUT STATEMENTS

INPUT sv;
Reads input data from the terminal.

PRINT sv, /P
Writes output data on the terminal.

PRINT IN FORM x$:svi /P
Writes output data on the terminal in the specified format.

MATRIX STATEMENTS

MAT a;=a, /P
Copies contents of one matrix into another matrix.

MATa, = a, + ag I/P
Copies result of matrix addition into a matrix.

MATa, = a, -2, /P

Copies result of matrix subtraction into a matrix.

Page No.
5-2,5-4
5-4,5-6
5-6
5-17
6 -2
6-9
7-2
7T-3
7-4



Execution Page No.

= *

MATa, =a, * ag /P 7-5
Copies result of matrix multiplication into a matrix.

MAT a, = (e)* a, 1/P 7-6

Copies the result of matrix multiplication by a scalar value into a matrix.

MATal=INV (az) /P T-7
Copies the result of a matrix inversion into a matrix.

MATal= TRN (az) 1/P 7-8
Copies the result of a matrix transposition into a matrix.

MAT a = (e) /P 7-9
Initializes all elements of a matrix.

MAT a = IDN /P 7-10
Creates an identity matrix.

MAT READ a, /P 7-11
Assigns values from a DATA statement to an entire array,

MAT INPUT a, /P 7-12
Reads input data for entire arrays from the terminal.

MAT PRINT a, I/P 7-14
Prints output of entire arrays at terminal.

MAT PRINT IN FORM x$:ai I/P 7-16
Writes array data on the terminal in the specified format.

FILE STATEMENTS

,OUTPUT , SEQUENTIAL
OPEN "fn" o , SYMBOLIC , INPUT ,RANDOM(ez) , NEW /P 8-4
"SCR'" |’ 71 |, BINARY , 10 » RANDOM , OLD

Creates or activates a file.

CLOSE e; /P 8-6
Terminates file usage.

RESTORE FILE €; /P 8§ -7

Positions a file at its beginning of information.



APPEND FILE €;

Positions a file beyond last data item, ready to write next information set.
ERASE FILE e FROM e, TO eq

Deletes specified records from a random file,

ON ENDFILE (e) GOTO In
Specifies a statement to receive control if an end-of-file for file e is sub-

sequently encountered.

ON ENDREC (e) GOTO In
Specifies a statement to receive control if a premature end-of-record for

file e is encountered.
f [MAT] INPUT FROM e:v,
Reads [array]information from a sequential file.

t [MAT] INPUT FROM e ATe vy

2

Reads [ array ] information from a random file.

f [MAT] INPUT FROM e [ AT e, ] IN FORM x$:vi
Reads [ array ] input data from the terminal in the format specified by the

string x$.
1t [MAT] PRINT ON e:v,
Writes [ array Joutput data onto a sequential file.
f1 [MATIPRINT ON e, AT e:v,
Writes [array Joutput data onto a random file.
Tt [IMAT]PRINT ON e [ AT e,y ] IN FORM X$:Vi
Writes [ array Joutput data onto a sequential (or random) file.

7 READ may be used instead of INPUT.
T T WRITE may be used instead of PRINT.

EDITING STATEMENTS

ENTER In [ BY n]
Causes automatic prompting of line numbers when creating or updating a

source program.

LIST[In [:In] [, ... In[:In] 1]
Prints a listing of the program, a statement, or set of statements at the

terminal.

Execution Page No.
/P 8§-8
I/P 8-9
/P 8 -10
1I/P 8 ~-11
/P 8 -12
/P 8 -13
/P 8~ 14
/P 8 - 15
/P 8 - 17
/P 6 -9
I 9-3
I 9-4



RENUMBER llnl, 1n2, n }

Renumbers program statements.

ALL
DEL [ ETE] In[:In] [, ... In[:In] ]

Deletes all statements, single statements, or sets of statements.

ALTER In
Enables modification of a statement using special control characters.

TABS [ py; Py, Pys Py |

Sets tab stops on terminal print line.

PROGRAM CONTROL STATEMENTS

RUN

Causes program compilation and execution.

CONTINUE

Resumes program execution at point of interruption.

,SYMBOLIC | |,NEW
SAVE "fn" |, BINARY ,OLD | ,In

Saves the program in the source area on a file for later use.

LOAD "fn"
Retrieves a saved program ( symbolic only ) from storage and

places it into the program source area.

LINK "fn" [ ,1n]
Retrieves a saved program in binary from storage, places it in the

program source area and begins executing it.

TAPE
Signals paper tape input.

QUIT
Causes an exit from the BASIC subsystem and return to EXECUTIVE

control.

Execution

I

I/P

Page No.
9-5

10 -2

10 -3

10-5

10 -5

10 -6

10 -7

10 - 8



APPENDIX D. FUNCTIONS

TENET BASIC provides several pre-defined functions which enable the user to specify complex mathematical
operations using simple expressions. A function is essentially a request for a routine or procedure to compute

a value. A function may appear as part of an expression within a program statement.

Each standard function has the same format: the name of the function followed by one or more arguments
(a number or arithmetic expression ) separated by commas and enclosed in parentheses. The following abbre-

viations are used to define data types permissible with the function parameters:

Parameter Data Type
1 Integer
R Real
D Double
C Complex
DC Double Complex
S String

In some functions, two algorithms are given for simple and complex numbers. Data type conversion is specified

by notation such as:

C I DC

If integer or rcal type arguments are used in the function call, the value returned will be type real. A type

1|r]p|
RIR|D]

double argument will return a type double value. A blank signifies that the function or individual function algorithm

does not use the particular data type.

Frequently used mathematical constants:

™ 3. 1415 92653 58979 324
Degrees per radian 57.295 77951 30823 209
Radians per degree 01745 32925 19943 2958
Ln2 . 69314 71805 59945 309
Inlo 2.3025 85092 99404 568
LOG2 - 30102 99956 63981 195
LOGe . 43429 44819 03251 828
c 2.7182 81828 15904 524
V2 1.4142 13562 37309 505
V1y 3.1622 77660 16837 933



GENERAL MATHEMATICAL

FUNCTION | VALUE RETURNED ALGORITHMS or EXAMPLES DC
ABS (x) Absolute value of x ABS (x) = |x
ABS (z) =Vx2 + y2 D
zZ = X+ iy
DEG (x) Number of degrees equi-| DEG (x) = (x * 180/7r)
valent to x ( in radians )
INT (x) Greatest whole number INT (-6.35) = -7.0
=x INT (5.9) = 5.0
INT (0) = 0.0
FIX (x) Truncates fractional FIX (-6.35) = -6.0
part of floating point x FIX (5.99) = 5
FIX (.8) = 0.0
FP (%) Fractional part of x FP (x) = x - FIX (x)
FP (-6.35) = -0.35
FP (5.99) = 0.99
FRACT (x) Absolute values of the FRACT (-x) = ABS (FP(x))
fractional part of x FRACT (-6.35) = 0.35
FRACT (5.99) = 0.99
SGN (x) Sign of x SGN (x) = 1ifx >0
=0ifx = 0
= -1lifx <0
SQRT (x) Square root of x SQRT (x) =Nx
SQRT (z) = u + iv DC
z = X+ iy
u = SQRT (z(r + x))
v =y/2u
r = ABS (z)
COMP (x,y) Comparison of x with y. | COMP (x,y) = 1if x>y I
(Complex values are = 0ifx =
compared on basis of = -lifx<y
vector magnitude as for
ABS.) String comparison
is discussed under string
functions.
ROUND (x) x rounded to nearest ROUND (x) = FIX (ABS(x) + 0.5) *SGN (x)
whole ROUND (-6.5) = -7.0
ROUND (-7.3) = =7.0
ROUND (3.2) = 3.0
MIN (xl, X,, | Minimum value of x, MIN (1,2 , .0) =
2 i =
X ) MIN ( 9 ’ ) =1
*n MIN (-1.1,2,3.01) = -1.1




FUNCTION | VALUE RETURNED ALGORITHM or EXAMPLES DC
MAX (xl, xz, Maximum value of X, MAX (1,2,3.0) = 3.0
) MAX(-4.0,2,3) = 3.0
- Xy
RAD (x) Radians equivalent to RAD (x) = (x *1r)/180
x ( in degrees )
DBL (x) Double precision equi- DBL(0.6E-06) = 0.6D - 06 D
valent of x
FLOAT (x) Real ( single precision FLOAT (6) = 6.0 R
floating point ) equivalent
of x
LOGARITHMIC AND EXPONENTIAL
LOG (x) Natural log of x LOG (x) = Lne (%)
x=0
IOG(z) = Ln_r + i@ DC
Z = X +ry
r = ABS (x)
6 = ATAN (iy,x)
LOG10 (x) LOG to the base 10 of x | LOG10(x) = LOG (x) * Lnloe DC
EXP (x) Natural exponential of EXP (x) = e~ where ' X|< 176,75
x; eX EXP (z) = EXP(x) * (COS(y) + SIN (y)) DC
z - X +iy
CIRCULAR — TRIGONOMETRIC
ASIN (x) Arcsine of x in radians | ASIN (x) T siN~t (x)
X|=1.0
ASIN (z) = r-ASIN B -i LOGVa + (a2-1) DC
Z = X4 1y
NOTE: See ACOS for Band @
ACOS (x) Arcosine of x in radians [ ACOS (x T cos-1(x)
X|= 1.0
ACOS(z) = 2T~ ACOS (B) + i LOG a+ (a2-1) DC
z =X + iy
a=90+¢
B=10-
0= 3 Vx+1)2 + y2
- IV 1z 42
ATAN (x) Arctangent of x in ATAN (x) = TAN"!(x)
radians ATAN (z) = r+ 5 ATAN(EZx /(1-x2 -y2)) DC
,  THLOG(8/9)
z” # -1
zZ =X+1y




FUNCTION | VALUE RETURNED ALGORITHM or EXAMPLES DC
ATAN (y, x) Arctangent of y/x in ATAN (v,x) = ATAN (y/x) if y>0, x>0
radians = /2 - ATAN (y/x) if y > 0, x<0
= -M/2 - ATAN(y/x) if y< 0, x<0
= ATAN (y/x)ify<0,x>0
= ERROR if y=x=0
ATAN (v,x) = ATAN (z) DC
Z = X +1iy
COS (x) Cosine of x in radians COS(x) = COS (x)
X Isl. 0 x 106
COS (x) = COS(x) 1
x| =1.1x 101°
COS (z) = COS (x) COSH (y) + iSIN (x) SINH (y) DC
z = X +1iy
SIN (x) Sine of x in radians SIN (x) = SIN (x)
x| =1.0x 106
SIN (x) = SIN(x)
|x| =1.1x 1015
SIN (z) = SIN (x) COSH (y) + iCOS (x) SINH (y) DC
z= X+ 1y
TAN (x) Tangent of x in radians TAN (x) = TAN (x)
TAN (z) =(sm (2x) + iSINH (2y) ) DC
OS (2x) + COSH (2y)
zZ = X +1iy
HYPERBOLIC
COSH (x) Hyperbolic cosine of x COSH (x) = 3(EXP(x) + EXP (-x))
COSH (z) = COS (iz) DC
z = X +1iy
ISINH (x) Hyperbolic sine of x SINH (x) = 3 (EXP (x) - EXP (-x))
SINH (z) = -iSIN (iz) DC
zZ = X + iy
TANH (x) Hyperbolic tangent of x | TANH (x) = %%‘ISHH (’; )
TANH (z) = -iTAN (iz) DC
zZ = X 41y
ACOSH (x) Hyperbolic arccosine ACOSH (x) = LOG (x+ (xz—l)%) when x = 1
of x ACOSH (z) = iACOS (z) DC
z = x +1iy
ASINH (x) Hyperbolic arcsine of x. | ASINH (x) = LOG (x + (x2 + 1)%)
ASINH (z) = iASIN (iz) DC
z = x +iy
COMPLEX
COMPLX(x,y) | Complex result formed COMPLX(x,y) = x Hy DC

from two real arguments

D4




FUNCTION VALUE RETURNED ALGORITHM or EXAMPLES DC
TMAG (x) Imaginary part of com- | IMAG (z) = y D
plex argument z = X +1iy
REAL (x) Real part of complex REAL (z) = x D
argument zZ = X+ 1y
CONJ (x) Complex conjugate of CONJ (z) = x - iy DC
complex argument zZ= X +1y
[PHASE (x) Angle between PHASE (z) = ATAN (y,x) D
+Tand -7r z=x+iy
POLAR (x) Polar form of complex POLAR (z) =60 + iR DC
argument z = X +1iy
6 = PHASE (z)
R = ABS (z)
Example: A= POLAR (B)
ALPH= REAL (A)
RADIUS = IMAG (A)
The type of A and B is complex.
STRING
FUNCTION VALUE RETURNED

INDEX (s, S,, ©)

Starting position of the string s, within s If not found, 0 is returned. The

1
expression e, if specified, gives the position at which to start the search.

LEFT (s, €) Substring of s starting from left and ( the value of the expression ) e characters in
length. If e specifies a length greater than s, s is returned.

RIGHT (s, €) Substring of s starting from the right and e characters in length.

LENGTH (s) Number of characters in the string s.

VAL (s) Numeric value of the string s. Any valid numeric form is acceptable.
|l VAL (6E2) is 600 ]

STR (e) String equivalent of the numeric expression e.

SUBSTR (s, s ez)

String composed of a substring of s starting at the character specified by the

numeric expression e_ and for the number of characters specified by e, If the

1
latter is omitted, a substring consisting of the remainder of s after the character.

specified by ey will be generated.

PACE (e)

String of blanks the length of the numeric expression e.

ASC (e)

Character equivalent of the expression e in ANSI code; generates the ANSI

code number of the input character.




FUNC TION VALUE RETURNED

CHAR (s) Hexadecimal equivalent of the string s (1 character).
COMP (sl, 52) Compares string1 with stringz; the following values are returned:
1if 81 > 8,
0 if 817 s2
-1if 8, <8,
MISCELLANEOUS
TREC ( file no. ) Number of records written for the file specified.
TCHAR ( file no.) Total number of characters assigned to the file specified.
DET Value of the determinant of the most recently inverted matrix.
[POS Current position of the téletype head.
TEL 0 if no input waiting at terminal.
1 if input waiting.

RANDOM NUMBER GENERATION (RND)

RND (e)

The RND function is a pseudo random number generator which produces a random number between 0 and 1

exclusive.

e The RND function requires a single argument that may be a positive, negative or zero value.

e If the argument is zero, the same number will be produced whenever the RND function is first executed

in any program. Subsequent uses in the same program produce the next sequential random numbers.
If the argument is a positive value, the same random number is generated each time the function is
called using the same positive value. Different positive values generate different random numbers.

A RND ( +e) followed by RND ( 0 ) will produce a series of random numbers starting with the
random number associated with the numeric value of + e.

If the argument is negative, a random number is generated from a value derived by combining the date
and the internal clock of the computer. As the value of the negative argument has no bearing on the
number it generates, all negative arguments are essentially equivalent. Whenever an RND function

call appears with a negative argument, a different number is generated.




® Random numbers are expressed as 7-digit floating point values between 0 and 1 exclusive. Other

ranges of random numbers may be generated by combining the RND statement in an arithmetic
expression.

Example:

10 FOR 1= 1TO 10
20 X = RND (0)

70 NEXT I

Ten random values are generated for X within the range 0 to 1. If the RND function had a positive

( non-zero ) argument, the same single value would be repeatedly generated by X.



APPENDIX E. RESERVED WORDS

The following words are reserved by the BASIC subsystem and cannot be used as variable names.

ABS
ACOS
ACOSH
ALL
AND
APPEND
AS

ASC
ASIN
ASINH
ATAN
ATANH
BINARY
CHAR
CLOSE
COMP
COMPLEX
CONJ
CONTINUE
COS
COSH
DATA
DEF
DEG
DEL
DELETE
DET
DIM

DO
DOUBLE
EDIT

ELSE
END
ENDFILE
ENDREC
ENTER
EPS
EQU
ERASE
EXP
FIRST
FIX
FLOAT
FOR
FORM
FP
FRACT
FROM
GOSUB
GOTO
IF
IMAG
IMP
INDEX
INPUT
INT
INTEGER
INV

IO
LAST
LEFT
LENGTH

LET
LINK
LIST
LOAD
LOG
LOG10
MAT
MAX
MIN
MOD
NEXT
NOT

ON
OPEN
OR
OUTPUT
PAUSE
PHASE
PI
POLAR
POS
PRINT
QUIT
RAD
RANDOM
READ
REAL
REM
RENUMBER
RESTORE
RETURN

RIGHT
ROUND
RUN
SAVE
SEQUENTIAL
SIGN
SIN
SINH
SPACE
SQRT
STEP
STOP
STR
STRING
SUBSTR
SYMBOLIC
TAB
TABS
TAN
TANH
TAPE
TCHAR
TEL
THEN
TO
TREC
TRN
VAL
WHILE
WRITE
XOR



APPENDIX F. MODEL 33 TELETYPEWRITER TERMINAL

The Model 33 Teletypewriter Terminal used by the TENET Timesharing System consists of a control unit, key-

board, paper tape punch, and paper tape reader mechanism.

CONTROL UNIT

The configuration of the control unit ( see Figure F-1 ) depends on whether the terminal is direct or acoustically
coupled to the computer. The control unit on a direct-coupled terminal consists of only a LINE/OFF/LOCAL
knob,

LINE If the control is in the LINE position, the terminal is on and connected to the computer,

i.e., on-line.
OFF The terminal is off and incapable of communicating with the computer.

LOCAL The terminal is on but not connected to the computer. When the terminal is in this mode

( off-line ), operations such as punching paper tape may be performed.

Acoustically coupled terminals require a headset mechanism which is used to hold a telephone receiver, The
LINE/OFF/LOCAL knob for acoustically coupled terminals is the same as for direct-coupled terminals except
that when the knob is in the LINE position, the terminal is not automatically connected to the computer, but is
capable of being connected to the computer. To establish a connection, the user must first turn the knob

to the LINE position, phone the computer site, wait for a high~pitched tone, and place the telephone

receiver into the headset mechanism,

PAPER TAPE PUNCH
OFF

©

6| COOOOOOOOOOO®
HOOO®EHOO®OO®E
P:TP::TTAPE READER @ @ @ @ @ Q OFF
- || ©0000000000 ()
TREE ( ) CONTROL UNIT

les

@
w
©

Figure F-1, Model 33 Teletypewriter Terminal Keyboard and Controls



THE KEYBOARD

The teletype keyboard ( see Figure F-1) is used as a standard typewriter keyboard with the exception of the

keys described below.

SHIFT

CTRL (Control)

ESC or ALT MODE

LINE FEED

RETURN or
CARRIAGE RETURN

RUBOUT

REPT (Repeat)

HERE IS

BREAK

Only those keys underlined in Figure F-1 have a shift position. The shift
key is non-locking and must be depressed when typing, Characters are
printed as they appear on the upper half of the key. However, on some

terminals:

K shift is not marked but appears as a [
L shift is not marked but appears as a \
M shift is not marked but appears as a |

The keyboard locks whenever an attempt is made to use the shift with a key

with no shift position.

Any alphabetic character may be pressed in conjunction with CTRL, ( CTRL
is non-locking. ) The resulting control character is not always printed at the
terminal. Characters used with the CTRL are discussed in section 9 of this
manual. They are designated by the subscript €, Control characters not
recognized by the system are ignored but cause the bell to ring once for each

ignored character.

This key terminates any input/output operation in progress and causes a pro-

gram interrupt,

Each time the Line Feed key is pressed, the paper is advanced one line.
( When the terminal is connected to the computer, the system automatically

generates a Carriage Return for each Line Feed. )

This key positions the print head at the beginning of a line, When the termi-
nal is connected to the computer ( on-line ), the system automatically gen-

erates a Line Feed for every Carriage Return,

This key is used to delete characters on paper tape, It is always ignored,
but does not ring the bell.

This key causes any character key pressed while the REPT is pressed to
be repeated for as long as the REPT key is pressed.

Transmits and prints whatever is on the answerback drum.

On a direct coupled terminal this key is ignored; on an acoustically coupled

terminal, pressing this key disconnects the terminal from the computer.



PAPER TAPE PUNCH

The paper tape punch is used to produce a perforated tape which can be used as input to the computer instead of

input from the teletypewriter terminal keyboard.

OFF and ON The ON button initiates and continues paper tape punching until the OFF
button is pressed. Information punched on paper tape is also printed at

the terminal.

REL The release button frees the paper tape so that the user can manually

pull blank tape through the punch mechanism.

BKSP The backspace button moves the paper tape backwards one frame each
time the button is pressed. It is used in conjunction with the RUBOUT

key to delete paper tape entries.

PREPARING PAPER TAPE OFF-LINE

The user can save information in paper tape form. The TAPE command, for example, is used by the BASIC
subsystem to access programs saved on paper tape, Similarly, the contents of data files may be punched on
paper tape and later read into a file by the EXECUTIVE. To prepare paper tape off-line, turn the terminal
control dial to LOCAL, depress the Punch ON button, and enter data from the keyboard. Since this is an off-
line operation, the user will find it convenient to follow a Line Feed with a Carriage Return and vice versa,
When paper tapes are read by the system, Line Feed / Carriage Return and Carriage Return /Line Feed combi-

nations are treated as Line Feed and Carriage Return respectively,

The control keys @ ( delete previous character ) and @ ( delete current line ) may be used to edit paper

tape entries,

PAPER TAPE READER
START This control initiates and continues paper tape reading.
STOP This key terminates paper tape reading.
FREE This control frees the reader mechanism so that the tape can be pulled

through the reader manually.



ALGORITHM

ALPHANUMERIC

ANSI
ARRAY

BINARY OPERATOR

CENTRAL PROCESSOR

COMPILE

CONCATENATION

CONSTANT

DATA

DEBUG

DOUBLE PRECISION

EXECUTE
EXPRESSION

FILE

FINXED-LENGTII RECORD

GLOSSARY

A set of prescribed rules or procedures for the solution of a problem.

Pertaining to the character set which includes the 26 alphabetic characters,
the 10 numeric characters, and any special characters (8, % and @ in

TENET BASIC ).
An abbreviation for the American National Standards Institute.
A multi-clement variable. Same as matrix.

An operator which operates on two quantitiecs ( constants, variables, or the

cevaluated combination of these ), e.g.,*, /.

The unit of a computer system which controls the interpretation and execu-
tion ol instructions, exclusive of peripheral devices such as teletype

terminals.

To translate a symbolic or source program such as BASIC into the binary

machine language for execution by the central processor,
Joining sets of information end-to-end.

A program clement whose vilue remains unchanged through the programming

process. A constant may he a numeric constant or literul text ( string ).

A general term pertaining to any numeric values or character strings which

constitute information which c¢an be processed or generated by a program.
To detect, locate, and correct program errors.

Pertaining to the usce of two computer words instead of one to represent areal

value. This vicelds increased precision ( 16 significant digits instead of 7

LT . ¢
digits ) and increased range (up to 10° /9 instead of 10 19 ).

To carry out an instruction or run a program.
Any variable, constant, or combination of these joined by operators.

A structured sct of information maintained on 1 mass storage device external

to computer memory,

A record whose length is prescribed by the user before the record is created.

Glossary-1



FULL DUPLEX

IMMEDIATE EXECUTION

INPUT

1/0
LEAST SIGNIFICANT DIGIT
LOGICAL OPERATOR

LOOP

MATRIX
MOST SIGNIFICANT DIGIT

OFF LINE

ON LINE

OuUTPUT

PRIVATE FILES

PROGRAM

PROGRAM EXECUTION

PROGRAM FILE

( PUNCHED ) PAPER TAPE
RANDOM ACCESS FILES

RECORD

Glossary-2

Pertaining to a method of transmitting information from a teletype terminal
whereby a character is entered from the teletype keyboard ( but not printed ),
transmitted to the computer, and transmitted back to the terminal from the
computer for printing. This mode of transmission ensures that the character

printed is that which the computer received.

Pertaining to statements which are not prefaced by line numbers and are

executed immediately upon input.

To transfer information from an external source ( such as the teletype, paper

tape, or disc file ) to the computer's memory.

An abbreviation for input/output.

The rightmost digit of a number.

An operator which operates on logical values ( AND, OR, EOR, NOT, etc).

A sequence of instructions that are executed repeatedly until some terminal

condition is met.
A multi-element variable. Same as an array.
The leftmost ( non-zero ) digit of a number.

Pertaining to peripheral devices not under direct control or connection to the

computer.

Pertaining to peripheral devices under direct control or connection to the

computer.

To transfer information from the computer's memory to an external source

( such as the teletype terminal, paper tape, or disc file ).

Files which are saved, but not accessible to any users other than the file's

creator.
A set of statements or instructions which direct the solution of a problem.

Pertaining to statements which are prefaced by line numbers and are executed

only within the context of a program.

A file containing a saved program used as input to a compiler or to the com-

puter for processing.
A paper tape on which a pattern of holes is used to represent data.
Files whose records may be accessed in any order.

Any unit of data; in TENET BASIC, information bounded by a prompt char-

acter and carriage return.



RELATIONAL OPERATOR

RUN

SAVED FILES

SCALAR VARIABLE

SEQUENTIAL ACCESS FILES

SHARED FILES

SOURCE LANGUAGE

STRING

SUBROUTINE

SUBSCRIPTED VARIABLE

SYNTAX

TIMESHARING SYSTEM

UNARY OPERATOR

VARIABLE

VARIABLE-LENGTH RECORD

An operator that compares one quantity with another, e.g., >, <, =. Eval-

uation is true ( =1) or false ( =0).
To execute a program.

Files which are stored on disc by explicit user command. They are main-

tained until explicitly removed by command of the file's creator.
Representing a single quantity, numeric value,or string.

Files which may be accessed only in the way in which they were written, i.e.,

sequentially.

Files which are saved and may be accessed by users other than the file's

creator.

A symbolic language input to a translation process, such as the BASIC sub-

system.

A constant consisting of any series of characters enclosed by a set of single

or double quotation marks.

A subset of the main program which may be called repeatedly from the main

program to perform a task.

Representing a single element of a multi-element structure ( array or

matrix ).
Pertaining to the structure of a language statement.

A system which supports multiple users, as though each user were the only

one using the computer.

An operator which operates on only one quantity ( constant, variable, or

evaluated combination of these ).

A quantity whose value was previously defined, is not yet defined, or may

change through the course of a program.

A record whose length is not prescribed by the user, but determined by its

actual content.

Glossary-3



INDEX

A control key  2-2; 9-1 Break key 2-2

ABS function D-2 Built-in functions 5-1
Accessing BASIC 2-3, 4

Account number 2-3

Accounting, facilities, LOGOUT 10-9
ACOS function D-3

C control key 9-1
Carriage return key 2-1
CHAR function D-6

. Characters
ACOSH function D-4 BASIC  2-6
Active file  8-1 ' deleting 2-2
prompt 2-3

ALT MODE key  2-2

ALTER statement  9-7 CLOSE statement  8-6

CMPLX function 3-2

AND 3-8
Commands
ANSI character set  A-1 control  2-7
APPEND FILE statement 8-8 EDIT 2-7
Argument dummies 5-2, 4 nh::)r(rll:sfhatz_sxecutmn 2-5
Arithmetic, mixed data type 3-6 program  2-7
Arithmetic operators fr(;iramziﬂécecutmn 2-5
binary 3-6 yp
unary  3-5 Comments, in program  4-22
Array 3-4 ' COMP function D-2, ¢
input  7-12 COMPLEX statement  4-3
operations 7-1
redimensioning  7-1 Complex values
variables 7-1 arithmetic operations on 3-6

A constants 3-2
ASC function  D-5 in data statements  4-19
ASIN function D-3 logical operations on  3-9
ASINH function  D-4 relational operations on 3-8

Assigning mixed data types  4-7 COMPLX function ~ D-4
CONJ function D-5
Concatenation, string 3-10

Connecting to the TENET system  2-1

Assigning values, DATA statement 4-19
Assignment statement  4-7

ATAN function D-3, 4
Constants
complex 3-2
double complex 3-2
double precision real 3-2
integer 3-1
numeric  3-1

BASIC 1-1
character set 2-6
elements 3-1
leaving the subsystem  10-8

Bell 2-2 reserved 3-3
- : . _ single precision real 3-1
Binary arithmetic operators 3-6 string  3-3

Binary files 8-1, 4
Blanks 2-7

CONTINUE statement 4-23;10-3

Control commands 2-7

Index-1



Control statements 2-7
COS function D-4
COSH function D-4

D control key 6-7; 7-12; 9-3,7; 10-7

D format notation 3-2

Data
entered from terminal 6-7
internal list 4-19
matrix 7-1
matrix input  7-11

Data list, matrix 7-11
Data list pointer 4-19, 21
DATA statement 4-19

Data types
implicit 3-5; 4-1
in binary files 8-1
in functions 5-1
mixed arithmetic 3-6
mixed assignments 4-7
variable names 3-5

DBL function D-3
DCMPLX function 3-2
DEG function D-2

DEL statement 9-6
DELETE statement 9-6

Deleting
by character 2-2; 9-1
by line 2-2, 9-2
records 8-9
statements 9~1

DEF
(multiline) statement 5-4
(single line) statement 5-2

DET function D-6

Diagnostics B-1

DIM statement 4-5

Dimension statement 4-5
Dimensions, array 3-4
Disconnecting the terminal 2-2
Disconnection, LOGOUT 10-9

DO statement  4-10

Double complex constants 3-2
DOUBLE COMPLEX statement 4-4
Double precision real constants 3-2
DOUBLE statement 4-4

Dummy arguments 5-2, 4

Index-2

Dynamic redimensioning 4-5

E control key 9-7
E format notation 3-1
Echoing 2-1

EDIT
commands 2-7
statements 2-7; 9-1
Editing

control characters 9-7
statements, ALTER 9-7

Elementary editing features
End of file 8-8, 10

End of record 8-11

END statement 4-24; 5-4
Enter/exit insert mode  9-7
ENTER statement 9-3
Entering the TENET system
EQV 3-8

ERASE FILE statement 8-9
Error messages B-1

ESC key 2-2; 10-3

Escape key  2-2; 10-3
EXECUTIVE 1-1; 2-3; 10-8,
EXP function D-3
Expressions 3-5

Field definitions 6-9

Files 8-1

active 8-1, 4
beginning-of-information
binary 8-1, 4
deactivation 8-6
definition 8-1
formatted input 8-14
input 8-4, 12, 13

/0 8-4

names 8-4, 5
NEW 8-4

OLD 8-4

output 8-4
positioning 8-7, 8
private 8-4

random access 8-2, 4
scratch 8-5
sequential 8-2, 4, 8
shared 8-4
statements 8-1
structure 8-2
symbolic 8-1, 4
temporary 8-5

type 8-1

0 8-5, 6

9-1

2-3

9

8-7



Field definition strings 6-9
FIRST 9-4, 6, 8

FIX function D-2

Fixed length strings 4-4
FLOAT function D-38

FOR
loops 4-15
statement 4-15

Format replication 6-12

Formatted input 8-13, 14
Formatted matrix input in files 8-14
Formatted output 6-9

FP function D-2

FRACT function D-2

Full duplex mode 2-1

Functions 5-1
ABS D-2
ACOS D-3
ACOSH D-4
ASC D-5
ASIN D-3
ASINH D
ATAN D-3
call to 5-1,
CHAR D-6
COMP D-2, 6
COMPLX -4
CONJ D-5
COS D-4
COSH D-4
DBL D-3
DEG D-2
DET D-6
END statement 5-4
EXP D-3
FIX D-2
FLOAT D-3
FP D-2
FRACT D-2
IDN 7-10
IMAG D-5
INDEX D-5
input arguments  5-1
INT D-2
INV  7-7
LEFT D-5
LENGTH D-5
LOG D-3
LOG10 D-3
MAX D-3
MIN D-2
Multi-line 5-4
names 5-2

PHASE D-5
POLAR D-5
POS D-6

RAD D-3

Random number generation D-6
REAL D-5 ’
RIGHT D-5

RND D-2

ROUND D-2

SGN D-2

SIN D-4

single line  5-2

SINH D-4

SPACE D-5

SQRT D-2

STR D-5

SUBSTR D-5

TAN D-4

TANH D-4

TCHAR D-6

TEL D-6

TREC D-6

VAL, D-6

GOSUB statement 5-6
GOTO statement 4-12

Header message 2-1
Hierarchy of operators  3-9

I control key  9-7

Identity matrix  7-10

IDN function 7-10

IF,.. THEN statement 4-14
IMAG function D-5

IMP 3-8

Implicit data types  3-5; 4-1
INDEX function D-5

Initialization, matrix 7-9

Input
conventions 2-1
files 8-4

formatted 8-14
formatted requests  6-8
requests 6-7

terminal 6-17

INPUT (files) statement 8-12, 13
INPUT statement 6-7

Inserting statements  9-2

INT function D-2

Integer
constants 3-1
variables, declaration of 4-2

INTEGER statement 4-2
Interactive 2-7

Internal data list  4-19, 20, 21
matrix 7-11

Index-3



Interrupt, transmission 2-2
INV function 7-7

Inversion function (matrix) 7-7
1/0 files 8-4

LAST 9-4, 6, 8
LET statement 4-7
Line
deletions 2-2
feed key 2-2
length 2-6
number generation 9-3
numbers 2-5

LINK statement 10-4, 6
LIST statement 9-4
LOAD statement 10-4, 5

Logical operations
on complex values 3-9
on strings  3-7

Logical operators 3-8

AND 3-8

EQV 3-8

mMP 3-8

NOT 3-8

OR 3-9

XOR 3-9
Logical values 3-6, 8
LOGIN 2-3

messages 2-4
LOGOUT 10-9
Loops, nested 4-15, 16

Matrix 3-4
addition statement 7-2, 3
data 7-11
file input 8-12, 13
identity statement 7-10
initialization statement 7-9
INPUT statement 7-11
inversion statement -7
multiplication statement 7-5
operations 7-1

PRINT ON (file) statement 8-15, 17

READ statement 7-11
scalar multiplication statement
subtraction statement 7-3
transposition statement 7-8

MAT INPUT statement 7-11
MAT PRINT IN FORM statement
MAT PRINT statement 7-14
MAT READ statement  7-10

Index-4

7-6

7-16

MAX function D-3

Messages
BASIC B-1
LOGIN 2~-4

MIN function D-3

Mixed Data Type
arithmetic 3-6
assignments  4-7

Mode, data transmission 2-1

Multi-line functions 5-1, 4
END statement 4-24

Multi-line statements 2-2

Nested loops  4-16
NEW files 8-4
NEXT statement 4-15
NOT 3-8

Numeric constants 3-1
complex 3-2
double complex  3-2
double precision real 3-2
integer 3-1
single precision real 3-1

OLD files 8-4

ON ENDFILE statement 8-10
ON ENDREC statement 8-11

ON ... GOSUB statement 5-7
ON ... GOTO statement 4-13
OPEN statement 8-4

Operators  3-5
binary arithmetic 3-5, 6
hierarchy of 3-9

logical 3-8
relational 3-6
OR 3-9
Output 6-2

concatenation 6-3
field definitions 6-
file 8-4, 15, 17
format replication 6-12
formatted 6-9

matrix 7-14

matrix (file) 8-15, 17
matrix formatted 7-16
standard format 6-2
TAB function 6-5

9

Paper tape input  10-7
preparation F-2, 3
reader F-3



Passwords 2-4

PAUSE statement  4-23; 10-3
PHASE function D-5

POLAR function D-5

POS function D-6

PRINT ON statement  8-15, 17
PRINT IN FORM statement 6-9
PRINT ON statement 8-15, 17
Private files 8-4

Program
control statements 10-1
execution, CONTINUE 10-3
execution, RUN 10-2
execution, suspending 4-23
loops  4-15, 16
statements  2-7
termination, END 4-24

Prompt characters 2-3

Q control key  2-2; 9-1
QUIT statement 10-8

RAD function D-3

Random access*files 8-2, 4
Random number generation D-6
READ statement 4-20

Real constants
double precision 3-2
single precision 3-1

REAL function D-5
REAL statement 4-2
Real variables, declaration of 4-2

Records 8-2
deleting 8-9
fixed length 8-2
replacing 8-3
variable length  8-2

Redimensioning 4-5
arrays 7-1

Relational operations on complex values 3-8
Relational operators 3-6

REM statement 4-22

RENUMBER statement 9-5

Replacing statements  9-2

Reserved names, constants  3-3

RESTORE statement  4-21

RESTORE FILE statement 8-7

Retrieving
binary files 10-6
saved files 10-5, 6

RETURN statement 5-6
RIGHT function D-5
RND function D-6

RUN statement 10-2

S control key  9-7

SAVE statement 10-4, 8

Saved files 10-5

Saving programs 10-4

Scalar variables 3-4

SCR 8-5

Scratch files 8-5

Security, account number 2-4
Sequential access files 8-2, 4
SGN function D-2

Shared files 8-5

SIN function D-4

SINH function D-4

Single line function definition 5-2
Single precision real constants  3-1
SINH function D-4

SPACE function D-5

Special characfers 2-6; 9-1
field definition 6-9

SQRT function D-2
Standard editing  9-1
Standard format, output 6-2

Standard functions 5-1; D-1
IDN 7-10
INV  7-7
TAB 6-5

Statements
ALTER 9-7
APPEND FILE 8-8
Assignment and sequence control 4-1
CLOSE 8-6
COMPLEX 4-3
CONTINUE 10-3
control 2-7
DATA 4-19
DEF (multi-line) 5-4
DEF (single line) 5-2
DELETE or DEL  9-6
DIM 4-5
DO 4-10
DOUBLE 4-3

Index-5



Statements (continued)
DOUBLE COMPLEX 4-1
EDIT 2-7
END 4-24
ENTER 9-3
ERASE FILE 8-9
FOR 4-15
GOSUB  5-6
GOTO 4-12
IF THEN 4-14
Immediate Execution  2-5
INPUT 6-7
INPUT FROM  8-12, 13
INPUT IN FORM (files) 8-14
INTEGER 4-2
LET or assignment 4-7
LINK 10-6
LIST 9-4
LOAD 10-5
matrix addition 7-3
matrix assignment 7-2
matrix identity 7-10
matrix initialization 9-9
matrix input  7-12
matrix inversion  7-7
matrix multiplication  7-5
matrix PRINT 7-14

matrix PRINT IN FORM  7-16

matrix READ 7-11
matrix-scalar multiplication
matrix subtraction 7-3
matrix transposition 7-8
modes 2-5

NEXT 4-15

ON ENDFILE 8-10

ON ENDREC 8-11
ON...GOSUB 5-7
ON,..GOTO 4-13

OPEN 8-4
PAUSE 4-23
PRINT  6-2

PRINT IN FORM  6-9
PRINT ON (file) 8-15, 17
program  2-7
program control  10-1
Program Execution 2-5
QUIT 10-8

READ 4-20

REAL 4-2

REM  4-22
RENUMBER 9-5
RESTORE 4-21
RESTORE FILE  8-7
RETURN 5-4

RUN 10-2
SAVE 104
STRING 4-4
TABS 9-9
TAPE 10-7

STOP statement  4-23
STR function D-5
STRING statement 4-4

Index-6

Strings
comparison of  3-7
concatenation 3-10
constants 3-3
field definition 6-7
fixed length 4-4
in DATA statements 4-19
length 3-3
logical operations on  3-7
numeric codes 3-7
varying length 4-4

Subroutines 5-6, 7
Subscript notation 3-4
Subscripted variables 3-4
SUBSTR function D-5

Symbolic files 8-1, 4
retrieval 10-5
SAVE 10-4

Syntax error checking 2-5
Syntax errors, paper tape 10-7

TAB function 6-3, 5

TABS statement  9-9

TAN function D-4

TANH function D-4

TAPE statement 10-7

TCHAR function D-6

TEL function D-6

Temporary files 8-5

TENET BASIC 1-1

TENET 210 Timesharing System

Terminal, disconnection of 2-3
file 0 8-5, 6
Model 33 F-1
output 6-2

Termination, terminal session
Transmission interrupt  2-2
Transposition, function (matrix)
TREC function D-6

TRN function 7-8

Type declaration rules 4-5

Unary arithmetic operators 3-5
User Name 2-3

VAL function D-6
Values, logical 3-6



Variables 3-3
array 7-1
complex 4-3
data type declaration rules 4-5
data type declaration statements 4-1
double  4-3
double complex 4-4
integer 4-2
loop 4-16
names  3-3
real 4-2
scalar 3-4
string 4-4
subscripted 3-4

Varying length strings 4-4

XOR 3-9

Index-17



DOCUMENT REVIEW FORM

Your comments concerning this document help us produce better documentation for you.

General Comments Yes No
Is the material easy to read ? O O

well organized ? ] ]

accurate ? ] O

complete ? a O

well illustrated ? a ]

suitable for your needs ? a (]

How do you use this document ?

O As an introduction to the subject
O For additional knowledge
d For continual reference
a Other
Specific Clarifications and/or Corrections
Reference Page No.

This form should not be used as an order blank. Requests for copies of publications
should be directed to the TENET sales office serving your locality.



FIRST CLASS
PERMIT NO. 480
SUNNYVALE, CA.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A

POSTAGE WILL BE PAID BY

TENET
927 THOMPSON PLACE
SUNNYVALE, CA. 94086

ATTENTION: SOFTWARE PUBLICATIONS

FROM: NAME

POSITION

ADDRESS




FUNCTIONS

General Mathematical

ABS(x)
DEG(x)
INT(x)
FIX(x)
FP(x)
FRACT(x)
SGN(x)
SQRT(x)

COMP(x,y)
ROUND( x)

MIN(x1,x2,...xn)
MAX(X] ,Xz,. . .Xn)

RAD(x)
DBL(x)
FLOAT(x)

Logarithmic
LOG(x)
L0G10(x)

Exponential

EXP(x)

D-2

D-2
D-2
D-2
D-2
D-2
D-2

D-2
D-2

D-3

D-3
D-3

D-3

Circular -Trigonometric

ASIN(x)
ACOS(x)
ATAN(x)
ATAN(x,y)
C0S(x)
SIN(x)
TAN(x)

Hyperbolic
COSH(x)
SINH(x)
TANH(x)
ACOSH(x)
ASINH(x)

Complex
COMPLX(x,y)
IMAG(x)
REAL{x)
CONJ(x)
PHASE(x)

D-3
D-3
D-3
D-4
D-4
D-4

D-4
D-4
D-4

D-4

D-4
D-5
D-5

D-5

POLAR(x)

String
INDEX(51,52,e)
LEFT(s,e)
RIGHT (s ,e)
LENGTH(s)
VAL(s)

STR(e)
SUBSTR(s,eq,e,)
SPACE(e)
ASC(e)

CHAR(s)
COMP(s1,5p)

Miscellaneous
TREC(file no.)
TCHAR(file no.)
DET

POS

TEL

RND{e)

D-5
D-5
D-5

D-5
D-5
D-5
D-5

D-6

D-6
D-6
D-6
D-6
D-6
D-6



TENET, Inc. / 927 Thompson Place / Sunnyvale, California 94086 / (408) 245-8751



	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	F-01
	F-02
	F-03
	Glossary-01
	Glossary-02
	Glossary-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-07
	Index-08
	replyA
	replyB
	xBack1
	xBack2

