
User's Guide .

C09-000 1-07

Release 3.0

DBCjl012 Data Base Computer

User's Guide·

C09-000 1-07

Release 3.0

Copyright, 1987, Teradata Corporation

All rights reserved. No part of this document may be copied or
reproduced in any form or by any means without the prior written
consent of Teradata. Teradata Corporation, 12945 Jefferson
Boulevard, Los Angeles, CA 90066.

ii C09-OOOI-07

EFFECTIVE PAGES

This is the -07 version of the DBC/1012(R) Data Base Computer
User's Guide. Revision levels of individual pages are given
below.

Page Revision

Title Page -07
Effective Pages -07
Preface (v through xx) -07
Contents -07

1- 1 through 1- 8 -07

2- 1 through 2- 2 -07

3- 1 through 3-30 -07

4- 1 through 4- 8 -07

5- 1 through 5-20 -07

6- 1 through 6-38 -07

7- 1 through 7-20 -07

8- 1 through 8-6 -07

9- 1 through 9- 10 -07

10-1 through 10-12 -07

11-1 through 11-14 -07

Appendix A-1 -07

Appendix B-1 through B-22 -07

Appendix C-1 through C-2 -07

Appendix D-1 through D-4 -07

Index X-1 through X-13 -07

DBC/1012 is a registered trademark of Teradata Corporation.

C09-0001-07 iii

Design Change Requests (DCRs) Reflected in this Revision:

DCR 3101 DCR 2214 DCR 3167 DCR 2507 DCR 3785
DCR 2775 DCR 3578 DCR 2515

Discrepancy Reports (DRs) Reflected in this Revision:

DR 7729 DR 7789 DR 8202 DR 7811 DR 8202

iv C09-0001-07

PREFACE

This preface describes the structure of the DBC/1012 Data Base
Computer User's Guide and tells you what we expect you to know
before you begin to read the guide.

ABOUT YOU

If you are not familiar with the DBC/1012 Data Base Computer, you
will find it useful to read DBC/1012 Data Base Computer Concepts
and Facilities before using this guide.

Except for Chapter 4, which requires some knowledge of MVS/TSO
and VM/CMS, you needn't have a background in data processing to
use this guide. However, you will benefit from some familiarity
with computers and data base management systems.

Because a large portion of this guide is devoted to communicating
with the DBC/1012 Data Base Computer from an interactive
terminal, you should be familiar with the operation of your
3270-type keyboard terminal. Read the user's guide for that
terminal before you read this guide.

ABOUT THIS DOCUMENT

This document is the DBC/1012 Data Base Computer User's Guide.
Its purpose is to describe how to communicate with the DBC/1012
in order to work with data stored in the DBC/1012.

This document has 11 chapters:

• Chapter 1 gives you an overview of the relational data
base concept and describes the facilities for
communicating with the DBC/1012.

• Chapter 2 shows you how to get established as a
DBC/1012 user and log on to your organization's host
computer in order to communicate with the DBC/1012.

• Chapter 3 shows you how to enter, edit, and view the
results of DBC/SQL statements during a session with
ITEQ, the interactive facility for communicating with
the DBC/1012.

• Chapter 4 shows you how to enter jobs that consist of a
number of DBC/SQL statements using BTEQ, the batch
facility for communicating with the DBC/I012.

• Chapter 5 shows you how to use DBC/SQL features with
ITEQ or BTEQ commands to create attractive, informative

-reports.

C09-OOOl-07 v

• Chapter 6 shows you how to enter DBC/SQL SELECT
statements, which are used to query data stored on the
DBC/1012.

• Chapter 7 shows you how to create data structures
(tables and views) on the DBC/1012.

• Chapter 8 shows you how to insert, update, and remove
data from a table.

• Chapter 9 shows you how to create a macro (a sequence
of DBC/SQL statements that may be stored and used
repeatedly to operate on DBC/1012 data).

• Chapter 10 shows you how to create data bases and
users, and give users privileges for working with your
data.

• Chapter 11 shows you how to obtain information about
data that is stored on the DBC/1012.

Chapters 1 through 5 describe the facilities -- ITEQ and BTEQ -
that enable you to communicate with the DBC/1012 using DBC/SQL
statements. Chapters 6 through 11 describe the use of the
DBC/SQL statements themselves.

Appendixes provide supplemental information. This guide contains
four appendixes:

• Appendix A is a fold-out copy of the Personnel data
base, which is used to illustrate examples throughout
this guide.

• Appendix B provides a syntax summary of the various
language components that are used to communicate with
the DBC/I012.

• Appendix C lists the functions that the system
automatically assigns to PF keys on your terminal,
keyboard, and that are used regularly when
communicating with the DBC/1012 through ITEQ.

• Appendix D shows you how to define output files that
are used for storing and printing results during an
interactive session with the DBC/I012.

This document also contains an index.

From time to time, the material in this document is revised. To
help you keep track of the various revisions, we will provide you
with the following information for each revision:

vi C09-0001-07

• The date of the revision

• The software release of the revision

• Change bars in the margin to indicate what information
has changed.

ABOUT DBC/IOI2 DOCUMENTS

The DBC/IOI2 User's Guide is one of a set of manuals that
describe the DBC/IOI2 Data Base Computer. The complete set
includes:

• DBC/IOI2 Data Base Computer Concepts and Facilities
(document number C02-0001)

The concepts document is written for senior executives,
managers, and technical personnel. The document
presents an overview of the DBC/IOI2 Data Base Computer
System, addressing such topics as architecture, user
facilities, system facilities, hardware and software
structure, operating characteristics, and configuration
specifications.

• DBC/IOI2 Data Base Computer User's Guide
(document number C09-OOOI)

The user's guide is written for the non-DP user. The
guide presents a basic introduction to ITEQ, addressing
such topics as ITEQ sessions, on-line edits, queries,
print formats, and table creation and modification. It
also explains macros, privileges, and the Data
Dictionary/Directory.

• DBC/IOI2 Data Base Primer
(document number C09-0002)

The Primer is written for new computer users. It
teaches basic DBC/IOI2 query statements, offering
hands-on examples for users to try at their own pace.

• DBC/IOI2 ITEQ Keypad Template
(document number Cg9-0002)

The template, which fits over the terminal keyboard's
PF-key keypad, shows the assignment of PF keys to ITEQ
commands.

C09-OOOI-07 vii

viii

• DBC/IOI2 Data Base Computer Reference Manual
(document number C03-0001)

The reference manual is written for technical
personnel. The manual presents the details of language
syntax, DBC/SQL statements, ITEQ commands, BTEQ
commands, and the Data Dictionary/Directory.

• DBC/IOI2 Data Base Computer Messages Reference Manual
(document number C03-0002)

The messages manual is written for all users. It lists
and explains all error messages and return codes
generated by the by DBC/IOI2 Data Base Computer.

• DBC/IOI2 Data Base Computer Reference Cards
(document numbers C04-0001, C04-0002, C04-0003)

The reference cards are written for all users. There
are three cards to a set. Each card is a multi-panel,
fan-folded summary of language notation, syntax, and
acceptable abbreviations. The first card lists DBC/SQL
statements and Data Dictionary/Directory views, the
second card lists ITEQ and BTEQ commands, and the third
card lists COBOL and PL/I Preprocessor statements.

• DBC/IOI2 Data Base Computer Operator's Guide
(document number CIS-OOOI)

The operator's guide is written for DBC/IOI2 operators.
The guide presents features of the DBC/lOI2 and its
console, as well as their operating procedures,
programs, and status indicators.

• DBC/lOI2 Data Base Computer Utilities Reference Manual
(document number Cll-OOOI)

The utilities manual is written for DBC/IOI2 operators
and technical personnel. The manual presents the
utilities that are used to load, dump, and restore
data, initialize and configure a DBC/IOI2 system, and
perform system maintenance.

• DBC/IOI2 Data Base Computer Support Utilities Manual
(document number B07-0031)

The support utilities manual describes the utilities
used by Teradata support personnel to format disks, add
and delete AMPs, copy data from one AMP to another,
initially load software, and rebuild user tables.

C09-DOOI-D7

• DBC/IOI2 Data Base Computer System Manual
(document number CIO-OOOI)

The system manual is written for system programmers,
application programmers, and data base administrators.
The manual presents the many considerations and trade
offs for designing and querying DBC/IOI2 data bases and
tables, as well as the details of performance,
productivity, startup and shutdown, and software
maintenance.

• DBC/IOI2 Data Base Computer Host Interface Manual
(document number CI2-0001)

The host interface manual is written for programmers
who use the Call-Level Interface Version I (CLIvI)
rather than a language preprocessor to communicate with
the DBC/IOI2 system. The manual presents the details
of information flow, data structures, and the interface
routines. The manual covers CLIvI for hosts.

• DBC/IOI2 Data Base Computer Call-Level Interface Manual
(document number C12-0006)

The Call-Level Interface manual is written for
programmers who use the Call-Level Interface Version 2
(CLIv2) rather than a language preprocessor to
communicate with the DBC/I012 system. The manual
presents the details of information flow, data
structures, and the interface routines. The manual
covers CLIv2 for workstations.

• DBC/I012 Data Base Computer COP Interface Manual
(document number CI2-000S)

The COP interface manual is written for system
programmers. The manual presents the details of
information flow, data structures, and interface
routines in the COP Interface software.

C09-OOOI-07 ix

x

• DBC/1012 Data Base Computer Network Reference Manual
(document number C03-0003)

The network reference manual is written for network
administrators. The manual gives an overview of the
COP interface and the components involved. It also
describes how to change the configuration of a DBC/1012
to add COPs and LANS and how to install and configure
Teradata's workstation-resident software. The steps
and an example are provided for IBM PCs and compatibles
using TCP/IP, IBM PCs and compatibles using ISO/OSI,
and AT&T 3B2s using TCP/IP.

• DBC/1012 Data Base Computer Workstation User's Guide
(document number C09-0003)

The user's guide covers the use of BTEQ, showing
examples of using BTEQ on-line, debugging and
submitting BTEQ scripts, converting from screen
displays to reports sent to a print file, and using
DBC/SQL macros. For each set of BTEQ commands, it
describes when and how to use them and how the commands
are related. It also describes each command in detail.

• DBC/lOl2 Data Base Computer CICS Interface Manual
(document number C12-0002)

The CICS interface manual is written for programmers
who access the resources of the DBC/lOl2 system through
CICS.

• DBC/1012 Data Base Computer MVS and VM Host Software
Manual
(document number C13-000l)

The MVS/VM host software manual is written for
programmers who must understand the Teradata software
that resides on the MVS or VM host. The manual
describes SVC mode and cross memory services mode under
MVS, and corresponding operation under VM.

• DBC/1012 Data Base Computer Planning Guide
(document number C07-000l)

The planning guide is written for personnel who are
responsible for the hardware, software, and facility
preparation for the DBC/1012. The guide presents
physical planning issues and environmental
characteristics, as well as software planning and
installation considerations.

C09-DOOl-07

• DBC/1012 Data Base Computer MVS Software
Installation Guide
(document number C16-000l)

The MVS software installation guide is written for
technical personnel. The guide provides procedures for
installing Teradata MVS interface software.

• DBC/1012 Data Base Computer Preprocessor Reference Manual
(document number C03-000S)

The Preprocessor manual is written for the COBOL and
PL/I application programmer. This manual presents
details of preprocessor use and includes examples in
COBOL and PL/I.

• DBC/1012 Data Base Computer Glossary
(document number GOI-OOOI)

S. Leamy
July 1987

This Glossary is intended for anyone who uses the
Teradata DBC/IOI2 data base computer. This Glossary is
a comprehensive document of terms, phrases, accronyms,
etc., that apply to any hardware, software, or firmware
matter that pertains to the Teradata DBC/lOl2 data base
computer.

Los Angeles, California

C09-0001-07 xi

xii C09-OOOl-07

CONTENTS

Chapter Page

CHAPTER 1

1.1
1.2
1.3
1.4

CHAPTER 2

2.1
2.2
2.3

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.2
3.2.1
3.2.1.1
3.2.1.1.1
3.2.1.1.2
3.2.1.1.3
3.2.1.1.4
3.2.1.2
3.2.1.3
3.2.1.4
3.2.1.5
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.4
3.3.5

C09-0001-07

WHAT IS THE DBC/1012 DATA BASE COMPUTER? •• 1- 1

HOW A DBC/1012 DATA BASE IS ORGANIZED
HOW YOU COMMUNICATE THROUGH ITEQ • •
HOW YOU COMMUNICATE THROUGH BTEQ
SUMMARY AND PREVIEW • • • • • • • •

1- 3
1- 6
1- 7
1- 7

GETTING ESTABLISHED AS A DBC/1012 USER • 2- 1

GETTING ESTABLISHED AS A USER • • • • • 2- 1
LOGGING ON TO THE HOST COMPUTER 2- 2
SUMMARY AND PREVIEW • • • • • • • • • • 2- 2

COMMUNICATING WITH THE DBC/1012 USING ITEQ •

COMMUNICATING IN AN ITEQ SESSION • . . •
Starting ITEQ • • • • • • • • • • • •
Logging on to the DBC/1012 • • . • •
Understanding System Status Messages
Interpreting the ITEQ Display Screen
Entering Commands and Statements
Ending an ITEQ Session • • • • • • •

EDITING DBC/SQL STATEMENTS • • • • • • • • •
Entering a Statement from the Input Area

Using PF Keys to Execute Commands
Using Default Assignments •••••
Assigning PF Keys During a Session
Assigning PF Keys During Startup
Displaying PF Key Assignments • • •

Changing the Size of the Input Area
Entering a Statement • • • • • • • . •
Editing a Statement •••••••••
Entering a New Statement • • • • • • •

Editing a Statement in the Display Area •
Aborting a Statement • • • • • •

Aborting a Statement Under TSO
Aborting a Statement Under VM • •

VIEWING STATEMENT RESULTS • • •
Using Display Commands • • • • • • •
Choosing a Formatting Mode • • •
Paging Through a Result • • • • • • •

Paging Forward • • • • • • • •
Paging Backward ••• • • • • • • • •
Redisplaying the Current Result Page •

Viewing a Wide Result • •• •• • • •
. Changing Formatting Mode During Display.

3- 1

3- 1
3- 1
3- 3
3- 5
3- 6
3- 7
3- 8
3- 9
3-11
3-11
3-11
3-12
3-13
3-13
3-14
3-14
3-15
3-17
3-17
3-18
3-19
3-20
3-22
3-22
3-24
3-24
3-25
3-26
3-27
3-27
3-29

xiii

3.3.6
3.4

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.3
4.4

CHAPTER 5

5.1
5.1.1
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.1.2.4
5.1.2.5
5.1.3
5.1.3.1
5.1.3.2
5.1.3.3
5.1.4
5.2
5.3

CHAPTER 6

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11
6.4.11.1
6.4.11.2
6.4.11.3
6.5
6.5.1

xiv

Filing a Result for Later Use
SUMMARY AND PREVIEW • • • • • • • •

· . . . · . . .
USING BTEQ • •
BTEQ COMMANDS • • • • • • • • •
RUNNING A BTEQ JOB • • • • • • • • • • • • •

Running BTEQ Under TSO •
RUNNING BTEQ UNDER VM/CMS . .

EXTRACTING DBC/1012 DATA TO A HOST DATA SET
SUMMARY AND PREVIEW • • • • • • • • • • • •

CREATING REPORTS USING ITEQ AND BTEQ •

CREATING A REPORT USING ITEQ • • • • • • • •
Using Format Defaults • • • • • • • • • •
Setting Format Specifications • • • • • •

Displaying Format Specifications • • •
Viewing the Effect of Format Commands
Def ining a Report Ti tIe • • • • • • •
Specifying a Null Character • • •
Suppressing Repeating Values • • •

Using DBC/SQL Report Writing Aids ••••
Defining Summaries (WITH Clause) •••
Specifying Column Format • • • • • • •
Defining Headings and Summary Titles •

printing a Report • • •• ••••••
CREATING A REPORT USING BTEQ •• ••••
SUMMARY AND PREVIEW • • • • • • • •

QUERYING TABLE DATA · . . .
STRUCTURING A DBC/SQL STATEMENT • • • •
ESTABLISHING A DEFAULT DATA BASE •• ••
SELECTING COLUMNS • • • • • •• ••••
SELECTING ROWS • • . • • • • • •• •••

Specifying Order (ORDER BY) • • • • •
Eliminating Duplicate Rows (DISTINCT) • •
Satisfying Several Conditions (AND) •••
Satisfying One of Many Conditions (OR)
Narrowing a Search Condition (NOT) •••
Obtaining Matching Values (IN, NOT IN)
Specifying a Range (BETWEEN ••• AND) •••
Matching Characters (LIKE) •••••••
Satisfying a Calculated Condition • • • •
Searching For NULL Values • • • • • • • •
Combining SELECT statements • • • • • • •

UNION Operator • • • • • • • • • • • •
INTERSECT Operator • • •• ••••
MINUS • • • • • • • • • • • • • • • •

OBTAINING RESULTS ARITHMETICALLY • • • • • •
Using Arithmetic Expressions ••••

3-29
3-29

4- 1

4- 2
4- 4
4- 4
4- 5
4- 6
4- 8

5- 1

5- 1
5- 1
5- 3
5- 4
5- 4
5- 5
5- 5
5- 5
5- 6
5- 7
5- 8
5-11
5-12
5-14
5-20

6- 1

6- 1
6- 2
6- 3
6- 5
6- 6
6- 7
6- 8
6- 9
6- 9
6-11
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-21
6-21
6-21

C09-000l-07

6.5.2
6.6
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
6.7.2.1
6.7.2.2
6.8
6.8.1
6.8.2
6.9
6.10
6.11
6.12
6.13

CHAPTER 7

7.1
7.1.1
7.1.1.1
7.1.1.2
7.1.1.3
7.1.1.4
7.1.1.5
7.1.2
7.1.2.1
7.1.2.2
7.1.3
7.1.4
7.1.4.1
7.1.4.2
7.1.4.3
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.4
7.4.1
7.4.2
7.4.3
7.5
7.6
7.7
7.8

C09-0001-07

Using Aggregate Operations • • • • • • •
OPERATING ON DATES • • • • • • • • • • • • •

Using Arithmetic Operations •••
Using Comparison Operations • • • • • • •
Converting to Another Format or Notation

CHARACTER STRING EXPRESSIONS • • • • • • • •
Concatenation Operator • • • • . • • • •
String Functions • • • • • • • •

SUBSTR • • • • • • • • • • • • • • • •
INDEX • • • • • • • • • • • •

SUMMARIZING INFORMATION BY GROUPS .••••
Selecting Specific Groups ••••••.•
Selecting Specific Rows • • • • • • • • •

SELECTING RELATED DATA FROM SEVERAL TABLES •
SELECTING RELATED DATA FROM THE SAME TABLE •
BUILDING SEARCH CONDITIONS • • • • • • • • •
LOCKING A TABLE FOR ACCESS • ••••••
SUMMARY AND PREVIEW • • • • •• ••••

DEFINING AND MANAGING DATA . . .
CREATING TABLES • • • • • • •• ••••

Specifying Column Attributes • • • •
Specifying Data Type • •• .••.
Specifying Default Control • • • • • •
Specifying Case • • • •• ••••
Specifying Format •••••• • • • •
Specifying a Title ••••••••••

Specifying Data Protection • • • • • • •
Providing for Fallback Data • • • • •
Providing for Journal Tables • • • • •

COMPRESSing Field Entries • • • • • • • •
Establishing Indexes ••••••••••

Defining a primary Index • • • • • • •
Defining a Secondary Index • • • • • •
Defining Unique Indexes • • •

LOADING A NEW TABLE WITH EXISTING DATA • • •
ALTERING A TABLE DEFINITION • • • .

Adding and Dropping Columns • • • • • • •
Changing Attributes • • • • • • • • • • •
Changing the Fallback Option •• • • • •
Changing the JOURNAL Option • • • • • • •
Changing the Data Type Attribute • • • •
Redefining a Primary Index • • • • • • •

USING VIEWS • • • • • • • • • • • •
Creating a View • • • • • • • • • • • • •
Creating a View with a Locking Clause
Replacing a View • • • • • • • • • • • •

DOCUMENTING TABLES, COLUMNS, VIEWS •••••
RENAMING TABLES AND VIEWS • • • • • • • • •
REMOVING TABLES AND VIEWS • • •
SUMMARY AND PREVIEW • • • . • • ••••

6-22
.6-26
6-26
6-27
6-27
6-28
6-28
6-30
6-30
6-31
6-31
6-32
6-33
6-33
6-34
6-35
6-37
6-38

7- 1

7- 2
7- 2
7- 4
7- 6
7- 6
7- 6
7- 6
7- 6
7- 7
7- 7
7- 8
7- 8
7- 9
7- 9
7-10
7-10
7-11
7-12
7-12
7-13
7-13
7-13
7-14
7-15
7-16
7-17
7-17
7-18
7-19
7-20
7-20

xv

CHAPTER 8 ADDING AND CHANGING TABLE DATA • · · • · · • 8- 1

8.1 INSERTING ROWS • · · · · • · · · · · • · · · 8- 1
8.1.1 Specifying Insert Data · · · · · • · 8- 2
8.1.2 Inserting Data by Query · • • · • · · 8- 2
8.2 UPDATING ROW DATA · · · · · · · · · · · · · 8- 3
8.2.1 Specifying New Data •••••••• · 8- 3
8.2.2 Specifying an Arithmetic Expression · • · 8- 3
8.3 DELETING ROW DATA · · · · · · · · · 8- 4
8.4 USING A VIEW TO ADD OR CHANGE DATA · • · 8- 4
8.5 SUMMARY AND PREVIEW · · · • • · · · · · 8- 6

CHAPTER 9 USING MACROS . · · · · · · · · · · · · · 9- 1

9.1 CREATING A MACRO · · · · · · • • • · · · 9- 2
9.1.1 Identifying Parameters · · · · · · · · · 9- 3
9.1.2 Defining the Macro · · · · · · · · · 9- 3
9.1.3 Documenting a Macro · · · · · · · 9- 3
9.1.4 Aborting a Macro · · · · · · · · 9- 4
9.2 EXECUTING A MACRO · · · · · · · · · · · 9- 5
9.3 DEBUGGING A MACRO · · · · · 9- 6
9.4 REPLACING A MACRO · · · · · · · · · · · 9- 7
9.5 RENAMING A MACRO · · · · · · · · · · · · 9- 8
9.6 FORMATTING MACRO RESULTS · · · · · · · · 9- a
9.7 DISPLAYING A FORMATTED MACRO RESULT 9- 9
9.8 REMOVING A MACRO · · · · · · · · 9-10
9.9 SUMMARY AND PREVIEW · · · · · · · · 9-10

CHAPTER 10 SHARING DBC/I012 FACILITIES · · · · · · · · 10- 1

10.1 WHAT ARE PRIVILEGES? · · · · · · · · · · 10- 1
10.2 GRANTING PRIVILEGES · · · · · · · · · · 10- 4
10.2.1 Granting Privileges to a User · · · · · · 10- 6
10.2.2 Granting All privileges to a User · · 10- 7
10.2.3 Granting Privileges to a Group of Users · 10- 7
10.2.4 Revoking Privileges · · · · · · · · · 10- 7
10.3 CREATING USERS · · · · · · · · · · · · · lO- a
10.4 CREATING DATA BASES · · · · · · · · 10- 9
10.5 MODIFYING USERS AND DATA BASES · · · · · 10-10
10.6 REMOVING USERS AND DATA BASES · · · · · 10-11
10.7 TRANSFERRING DATA BASE OWNERSHIP • · · · 10-12
10.8 SUMMARY AND PREVIEW · · · · · · · · · · 10-12

CHAPTER 11 VIEWING DATA BASE INFORMATION · · • · · Il- l

11.1 QUERYING DATA DICTIONARY/DIRECTORY VIEWS · · Il- l
11.1.1 Querying The Databases View · · · · • · · 11- 2
11.1.2 Querying The Tables View • · · · · · • · 11- 4
11.1.3 Querying The Columns View · · · · · · · · lI- S
11.1.4 Qu~rying The UserGrantedRights View · · · 11- 7
11.1.5 Querying The UserRights View · · · · • · 11- 9
11.1.6 Querying The SessionInfo View · · · · · · 11- 9

xvi C09-0001-07

11.2
11.2.1
11.2.2

Appendix

APPENDIX A

APPENDIX B

B.1
B.2
B.3
B.4
B.5

APPENDIX C

APPENDIX D

D.1
D.2

INDEX

Figure

1-1
1-2
1-3
3-1
3-2
3-3
4-1
10-1

C09-0001-07

· . . · USING THE HELP STATEMENT •
Usage Notes • • • • • •
Examples • • • • • • •

· . . · . . . ·
APPENDIXES

PERSONNEL DATA BASE ·

SYNTAX SUMMARY . . · · · · · · · ·
DBC/SQL STATEMENTS · · · · · · · · · · DBC/SQL MODIFIERS · · · · · · ITEQ COMMANDS . . · · · · · · · · · · BTEQ COMMANDS · · · · · · · · · · DATA DICTIONARY/DIRECTORY VIEW FORMATS

DEFAULT PF KEYS FOR ITEQ COMMANDS · ·

DEFINING ITEQ OUTPUT FILES · . .
DEFINING A PRINT OUTPUT FILE • • • • •
DEFINING A RESULT OUTPUT FILE • • • •

· · ·
· · · · · · · · · · · · ·

· · ·

· . .

.

ILLUSTRATIONS

Communicating with the DBC/1012 (MVS)
Table in a Data Base • • • • • • •
Example Tables in a Personnel Data Base
ITEQ Startup Screen ••• • • • • • •
ITEQ Display Screen •••••• • • •
Result of a SELECT Statement • • • • •
Selecting and Storing Data Using BTEQ
Creating Data Bases and Users • • • •

· ·
· · · · ·

· · · ·
• · · · · · · · · ·

11-10
11-11
11-12

A- 1

B- 1

B- 2
B-10
B-11
B-15
B-20

C- 1

D- 1

D- 1
D- 3

X- 1

Page

I- I
1- 3
1- 4
3- 1
3- 6
3- 7
4- 7

10- 3

xvii

Table

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
5-1
5-2
5-3
6-1
6-2
6-3
6-4
6-5
7-1
7-2
10-1
10-2
11-1
11-2
C-l
C-2

xviii

ITEQ Status and System Messages • • • • • • 3- 5
Edit Commands Used for Input, Display Areas 3- 9
Edit Commands Only For Display Area •• • • 3-10
Default PF Key Assignments, Edit Commands 3-11
Aborting a Statement Under TSO • • • • • 3-19
Aborting a Statement Under VM • • • • • • • 3-21
Display Commands • • • • • • • • • • • • • • 3-22
Default PF Assignments, Display Commands • • 3-23
BTEQ Commands (2 parts) •••.•••• 4- 2
ITEQ Format Commands • • • • • • • • • • 5- 3
Format Characters • • • • • • • • • • • • • 5- 9
BTEQ Formatting Commands (2 parts) • • • •• 5-15
Comparison Operations ••• •• •••• 6- 5
Logical Operations • • • • • • • •• •• 6- 8
Expressions Using Set Operators • • 6-11
Ari thmetic Operators . • • • • • • • 6-15
Aggregate Operators . . • • • • • •.• • 6-22
Data Type Phrases (2 parts) ••• ••• 7- 4
Default Control Phrases • . • •• ••• 7- 6
Privileges Needed for Statement (2 parts) • 10- 4
Privileges Implicitly Granted to Creator • 10- 5
End User Dictionary/Directory Views ••.• 11- 1
Privilege Codes ••.• • • • • • • • • . • 11- 7
Default PF Keys for Edit, PRINT Commands C- 1
Default PF Keys for Display Commands • • c- 1

C09-000l-07

CHAPTER I WHAT IS THE DBC/IOI2 DATA BASE COMPUTER?

The DBC/IOI2 Data Base Computer is a processing system that lets
you manage and use data stored in the data base computer. The
DBC/IOI2 Data Base Computer is connected to and operated through
your organization's main computer.

You may get at the data stored in the DBC/I012 Data Base Computer
through one of the following means:

• Interactive TEradata Query (ITEQ) Facility

ITEQ (pronounced "eye-teek") enables you to use an
interactive CRT (display) terminal with a typewriter
keyboard. On the keyboard, you key (enter) requests
(queries) for the data you need and instru~tions for
changing the data.

• Batch TEradata Query (BTEQ) Facility

BTEQ (pronounced "bee-teek") enables you to submit
requests and instructions for the DBC/I012 data base
computer in batch mode.

• Application Program

Using the COBOL Preprocessor or the PL/l Preprocessor,
you may write a COBOL or PL/I application program that
contains requests and instructions for the DBC/I012
Data Base Computer embedded directly in the source
code. The preprocessors are described in the DBC/I012
Data Base Computer Preprocessor Reference Manual.
Using the Call-Level Interface (CLI), you may write
applications containing requests and instructions in
high-level languages that have a CALL statement
(including COBOL and PL/l). The CLI is described in
the DBC/I012 Data Base Computer Host Interface Manual.

Through ITEQ, BTEQ, or an application program, you tell the
DBC/I012 Data Base Computer what to do using a simple language
called DBC/SQL. Based on English words, DBC/SQL is easily used
by people with little or no knowledge of computers. DBC/SQL
(Structured Query Language) syntax is broadly compatible with
SQL, the emerging industry standard.

As shown in Figure 1-1, which illustrates three concurrent
DBC/lOI2 sessions under an MVS system, a DBC/SQL request is
communicated to the Teradata Director Program (TDP). The TDP
creates a request message and sends it over a block multiplexer
channel to the DBC/lOl2.

C09-OOOl-07 1-1

SCHEDULED COMPILED
ENVIRONMENT

HOST /
HOST OPERATING SYSTEM

ON-LINE BATCH
TRANSACTION APPLICATION
SYSTEM PROGRAM

..:::::::::::::
/,Teradata

"'=-

1

TOP INTERACTIVE
SUBSYSTEM

r---,
~-r---_

I I
I ITEQ I
L. __ -1

1 t BLOCK MULTIPLEXER I CHANNEL

- ,B /, Teradata

~

V --OBC/1012

DIRECT INTERACTIVE
ENVIRONMENT

Figure 1-1. Communicating with the DBC/1012 (MVS)

1-2 C09-000l-07

DBC/SQL requests are called "statements." DBC/SQL statements may
be used to:

• Define data: create and modify data structures.

• Select data: query a data base.

• Manipulate data: insert, delete, and update data.

• Create macros: store and execute sequences of DBC/SQL
statements as a single operation.

• Control data: define data bases and users, establish
access rights, and secure data.

General use of DBC/SQL statements is described in Chapters 6
through 10 of this guide. For more detailed information on all
DBC/SQL statements, refer to the DBC/1012 Data Base Computer
Reference Manual.

1.1 HOW A DBC/1012 DATA BASE IS ORGANIZED

Data on the DBC/1012 Data Base Computer is organized into
relational data bases. Think of a relational data base as a
collection of related data organized into a number of tables.

A table represents data in two dimensions, as vertical columns
and horizontal rows. When you create a table, you give it a
name. For example, the table shown in Figure 1-2 is named
Mobile_Homes.

C09-OOOl-07 1-3

columns

MOBILE_HOMES I I I v v v

MODEL NAME I SQ_FEET I COLOR

--> Biscayne I 1,400 I pink
--------------~----------------

--> El Dorado I 1,600 I yellow

rows --> Seaview 1,400 I blue

--> Del Fuego 1,700 I rust

--> Knol1woode I 1,100 I green

Figure 1-2. Table in a Data Base

You also give each column a name, which you then use when you
refer to specific table data. Column names in the Mobile_Homes
table are Model_Name, Sq_Feet, and Color.

Each row represents an entry in the table. The intersection of a
column and a row is called a "field". For example, the fourth
row of the Mobile Homes table has three fields. The data in its
Model_Name field Is "Del Fuego".

Figure 1-3 shows two example tables that are part of a data base
named "Personnel" in a fictitious company. While not intended to
represent the complex needs of an actual company, these tables
are used throughout this guide to illustrate the principles of
DBC/SQL usage. (A foldout copy of the example tables is provided
in Appendix A at the back of this guide for easy reference when
studying the DBC/SQL examples in this guide.)

1-4 C09-000l-07

n
0
\D
I

0
0

Table: Employee
tzj 0
~.

\Q I
c:: 0

Emp No Name .£eE~~ Job Title _~~~r! !.r! !X.P DOB Sex Race HStat EdLev ~~£
-10001- ----- ----- 4i/oj/27 Peterson J 100 Payroll Ck 25,000.00 5 H C H 12 0

10002 Moffit H 100 Recruiter 35,000.00 3 45/11/16 F B W 18 0
1'1 " fD

1000) Leidner P 300 secretary 2),000.00 13 48/07/12 F C M 16 0

10004 Smith T 500 Engineer 42,000.00 10 51/01/31 H C H 18 0
....
I

w
10005 Jones M 100 Vice Pres 50,000.00 13 40/02/13 F B D 16 0

10006 Kemper R 600 Assembler 29,000.00 7 47/09/12 H C M 12 1

10007 AgullarJ 600 Manager 45,000.00 11 49/07/09 H S H 16 0

10008 Phan A 300 Vice Pres 55,000.00 12 47/05/07 F A M 18 0

tzJ
~
PI

10009 Marston A 500 Secretary 22,000.00 8 53/07/03 H c H 14 0

10010 Reed C 500 Technician 30,000.00 4 49/04/08 M C D 16 0

a 10011 Chin M 100 Controller 38,000.00 11 55/11/27 F A H 16 0
'0
t1)

10012 Watson L 500 Vice Pres 56,000.00 8 43/10/03 H c S 20 0
1001) Regan R 600 Purchaser 44,000.00 10 48/10/20 F C H 16 0

to3
PI

10014 Inglls C 500 Tech Writer 34,000.00 5 38/03/07 M C S 16 0

10015 Omura H 500 Programmer 40,000.00 8 54/04/24 M A S 16 0
0-....
fD

10016 Carter J 500 Engineer 44,000.00 20 35/03/12 H C M 20 0
10017 Greene" 100 PayroU"Ck 32,500.00 15 55/11/27 M N M 16 0

(I) 10018 Russell S 300 President 65,000.00 25 32/06/05 M B [) 16 0

~.
10019 Newman P 600 Test Tech 28,600.0p 6 56/08/29 F C M 12 0

::s 10020 Brangel B 700 Salesperson 30,000.00 5 47/10/15 F C S 16 0

PI 10021 Smith T 700 Manager 45,000.00 10 46/07/29 F B S 16 0
10022 Clements D 700 Salesperson 38,000.00 9 44/08/23 M c M 16 0

~ ----------

(I)

tot
(I)

0
::s Table: Department
::s
(I)

Dept No "£.e£.t~~~ ___ !",£~~n~ Lac ~'E'~~
..... 100 Administration 5 NYC 10005

0
PI

300 Exec Office 3 NYC 10018

r1"
PI 500 Engineering 7 ATL 10012

tl:I
600 Manufacturing 4 CHI 10007

PI
(I)

700 Marketing 3 NYC 10021
(I)

....
I

U1

fames and contents of the example tables are as follows:

• 2

• Employee

For each employee, the Employee table lists the
employee number (EmpNo), name (Name), department number
(DeptNo), job title (JobTitle), salary (Salary), years
of experience (YrsExp), date of birth (DOB), sex (Sex),
race (Race), marital status (MStat), education level
(EdLev), and handicap status (HCap).

• Department

For each company department, the Department table lists
the department number (DeptNo), department name .
(DeptName), employee count (EmpCount), location (Loc),
and employee number of the department manager (MgrNo) •

HOW YOU COMMUNICATE THROUGH ITEQ

sing ITEQ, you enter a DBC/SQL statement at your interactive
erminal. The DBC/I012 processes the statement and ITEQ displays
he result on the terminal screen. ITEQ allows you to:

-6

• Enter, Edit, and Execute DBC/SQL Statements

You can enter and execute DBC/SQL statements from the
terminal. If the result of a DBC/SQL query does not
satisfy your needs, yo~ can progressively modify the
statement without re-keying it after each execution.

• Control the Display

When the result of a DBC/SQL statement is too long or
too wide to fit on one screen, you can scroll up and
down or move the terminal screen right or left to view
the entire result.

• Format Output and Write Reports

You can format the result of a query for display on
your terminal screen or for printing on a printer.

• Store and Execute a Sequence of DBC/SQL Statements

You can define, store, and later execute sequentially a
group of DBC/SQL statements and ITEQ format commands.
This group is called a "macro".

C09-OOOI-07

• Display Reference Information

You can display statements that define tables, macros,
and other data base objects, as well as ITEQ format
controls currently in effect. Using a DBC/SQL HELP
statement (Chapter 11), you may obtain information
about data bases and their objects.

• Save or Discard the Result of a Query

You can save or discard the result of the last executed
DBC/SQL statement.

• Control the Operation of the Terminal

You can use program function keys on the terminal
keyboard to enter frequently used ITEQ commands.

Chapters 3 and 5 of this guide show you how to use the DBC/1012
Data Base Computer from your terminal via ITEQ.

1.3 HOW YOU COMMUNICATE THROUGH BTEQ

BTEQ allows you to submit one or more DBC/SQL statements to the
DBC/1012 for processing in batch mode. BTEQ commands included
with the DBC/SQL statements provide for session control,
formatting of DBC/SQL results, and handling of· output data.

BTEQ enables you to load data to or extract data from DBC/1012
data bases. BTEQ also provides comprehensive report formatting
features.

Chapter 4 shows you how to create and submit a BTEQ job, and how
to use BTEQ to select data using values stored in a host input
file and then store the result in a host file. Chapter 5 shows
you how to create a report through BTEQ.

1.4 SUMMARY AND PREVIEW

This chapter briefly described a DBC/1012 data base and discussed
the ways in which you may access and use data in DBC/1012 data
bases. The following chapter discusses how you get established
as a DBC/1012 user and log on to your organization's host
computer to begin a session with the DBC/1012.

C09-OOOI-07 1-7

1-8 C09-OOOl-07

CHAPTER 2 GETTING ESTABLISHED AS A DBC/1012 USER

This chapter discusses the prerequisites for using data stored in
a DBC/lOl2 data base:

• Establishing yourself as a DBC/lOl2 user

• Logging on to your organization's host computer in
order to begin a DBC/IOl2 session

2.1 GETTING ESTABLISHED AS A USER

Before logging on to the DBC/lOl2 Data Base Computer, you will
normally need to obtain:

• A username

Your username is a unique identification (often your
own name) that enables the DBC/I012 to recognize you as
a user.

• A password

Your password is used to authenticate your username.
It should be kept secret to prevent another from
accessing data under your username.

In some cases, you may also need to obtain:

• An account number

This identifier is associated with your username and is
used for accounting purposes.

• A tdpid

If your organization has a number of DBC/I012 Data Base
Computers that are used through the host computer to
which your terminal is attached, a tdpid identifies
which of the DBC/I012 Data Base Computers you wish to
use for your session. If there is a single DBC/I012
attached to the host computer, a tdpid is not needed.

Chapter 3 describes how to use these components in the ITEQ LOGON
command in order to communicate with the DBC/1012 using ITEQ.
Chapter 4 describes how to use the same components to communicate
with the DBC/I012 through BTEQ.

C09-OOOl-07 2-1

2.2 LOGGING ON TO THE HOST COMPUTER

Before logging on to the DBC/IOI2, you must log on to one of the
following interactive subsystems at a 3270-type keyboard terminal
attached to your organization's host computer:

• MVS Time Sharing Option (TSO)

• VM Conversational Monitor System (CMS)

The interactive subsystem allows you to use the computer with a
number of other users in a conversational manner.

If you are using the DBC/I012 through ITEQ, after logging on to
the interactive subsystem you may opt to define ddnames (TSO) or
file names (CMS) for output files that you will need for your
ITEQ session. These files may be saved for later use by an
application program, or printed on a system printer. Defining
output files is described in Appendix D.

If you do not define output files, they are set by default, as
follows:

• When you issue the ITEQ FILE command during an ITEQ
session to save the result of the current SELECT or
EXECUTE MACRO statement, a host flat file is created
with a logical record length of 30004 bytes. Under
TSO, a data set with ddname ITEQDSKI is created to
store the result; under CMS, a file named ITEQDSKl is
cre.ated.

• When you issue the ITEQ PRINT command during an ITEQ
session to print a result, a file (ddname ITEQPRTI/file
name ITEQPRTI DATA) containing the result of the
current statement is sent to a printer. System output
class (wide paper or narrow paper) is determined by
your organization's installation.

If you are using the DBC/IOl2 through BTEQ, you define output
files using the facilities of the subsystem under which BTEQ is
running (refer to Chapter 4).

2.3 SUMMARY AND PREVIEW

This chapter discussed getting established as a user and logging
on to your organization's host computer in order to begin a
session with the DBC/IOl2. The following chapter shows you how
to communicate with the DBC/lOl2 through ITEQ.

2-2 C09-OOOI-07

CHAPTER 3 COMMUNICATING WITH THE DBC/1012 USING ITEQ

This chapter shows you how to use a 3270-type keyboard terminal
to:

• Communicate with the DBC/1012 during an ITEQ session

• Edit DBC/SQL statements

• View statement results

Use of ITEQ report formatting features is discussed in Chapter 5.

3.1 COMMUNICATING IN AN ITEQ SESSION

After you have logged on to your organization's host computer,
you may start ITEQ, log on to the DBC/I012, and begin entering
DBC/SQL statements and ITEQ commands.

3.1.1 Starting ITEQ

If the output files needed for your ITEQ session are determined
by default, as described in Chapter 2, you may start ITEQ without
any preliminaries by keying the command,

ITEQ

where the cursor is positioned and pressing ENTER. The cursor is
the small underline or box character, blinking or nonblinking,
that moves as you key.

ITEQ displays the screen shown in Figure 3-1.

C09-000l-07 3-1

r TERADATA !NTERACT!VE TEQUEL FAC!LlTY (lTEQ)

= =)

***READY FOR COMMAND. ***

Figure 3-1. ITEQ Startup Screen

After this screen is displayed, you may enter any ITEQ command.
However, if you enter a DBC/SQL statement before executing the
ITEQ LOGON command (described in the next section), ITEQ will
display a request to "please logon".

Warning: while the ITEQ screen is displayed, do not press the
following keys on your 3270 keyboard:

3-2

• SYS REQ

Pressing this key causes the ITEQ session to be stopped
until the reset key is pressed.

• TEST

Pressing this key causes the session to be
disconnected.

C09-000l-07

3.1.2 Logging on to the DBC/1012

To log on to the host computer, do the following:

1. Key in the LOGON command (abbreviated LOG), your
username, your password, and any account identifier
required by your organization. For example, if your
username is Omura, your password H, and the account
number deptSOO, you would key the words,

LOGON Omura, H, 'deptSOO';

opposite the arrow (==» where the cursor is
positioned. Note that, although there must be a space
between the LOGON keyword and username, there need not
be spaces between the identifiers in the command.
Terminate the LOGON command by a semicolon.

2. Press ENTER.

After you have completed these two steps, and the DBC/1012
recognizes your username and password, ITEQ responds with the
message,

LOGON COMPLETED.

at the top of the screen. If a STARTUP string is defined for you
using a STARTUP clause in the CREATE USER or MODIFY USER
statements (Chapter 10), the processing result is displayed
following this mes.age.

The status message,

*** READY FOR COMMAND.***

appears at the bottom of the screen.

If you have entered your username, password or account identifier
incorrectly, ITEQ displays an error message.

If a tdpid is included in your logon sequence, enter the tdpid
before your username, for example,

LOGON 4/0mura, H, 'deptSOO';

Note the space between LOGON and the tdpid, 4, and the slash
character (I) separating the tdpid from the username.

If the security of your password is critical and you are located
where someone might be able to see it as you log on to ITEQ,
press the RETURN key on your keyboard after keying your username,
then key your password and other information on the line below
the arrow. During logon, this second line does not display what
you enter.

C09-OOOl-07 3-3

It may be possible for you to log on to the DBC/1012 by simply
specifying the LOGON command with your username and no password,
for example,

LOGON Omura ;

However, some users are not able to log on in this manner. You
may want to check with your System Administrator to see if this
logon option is available.

You may start ITEQ and log on to the DBC/1012 by keying only one
command, for example:

• Under TSO:

ITEQ LOG{'4/0mura, H, "dept500"');

• Under CMS:

ITEQ 4/Omura,H, 'dept500';

By including this command in your TSO STARTUP CLIST or CMS
PROFILE EXEC, you may automatically start ITEQ and log on to the
DBC/I012 when you log on to TSO or CMS.

3-4 C09-0001-07

3.1.3 Understanding System Status Messages

The message READY FOR COMMAND is one of a number of messages that
give you information about system status during you~ ITEQ
terminal session. The most common messages that appear are
listed in Table 3-1.

Table 3-1. ITEQ Status and System Messages

Message Meaning

READY FOR COMMAND ITEQ is ready to accept a new command
or a DBC/SQL statement.

COMMAND IN PROCESS ITEQ is processing a command or has
sent a statement to the DBC/1012 system
and is waiting for a response.

DATA AVAILABLE. More data from the last data-generating
READY FOR COMMAND command or statement (for example,

SELECT) is available for viewing or
printing.

END OF DATA. The display area currently holds the last
READY FOR COMMAND page of results from a data-generating

command or statement.

INCOMPLETE
STATEMENT. READY
FOR COMMAND

The current statement is incomplete, and
must be corrected before it can be
processed.

You are now ready to enter DBC/SQL statements and ITEQ commands.

C09-0001-07 3-5

3.1.4 Interpreting the ITEQ Display Screen

Figure 3-2 shows the general format of the ITEQ display screen.

==>

Display Area (20 lines in this example)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

- - - - - - - - - - - - -21-

Input Area (3 lines) 22
________________ 23_

Status Area (1 line) 24

Figure 3-2. ITEQ Display Screen

The display area normally is used to display responses to ITEQ
commands and DBC/SQL statements. However, you can also use this
area to compose a lengthy DBC/SQL statement, to modify views or
macros, or to correct a previously entered DBC/SQL statement.

The input area is normally used to enter ITEQ commands and
DBC/SQL statements.

The status area is used to display ITEQ status and system
messages.

3-6 C09-000l-07

3.1.5 Entering Commands and Statements

When the READY FOR COMMAND message appears in the status area,
you may enter a DBC/SQL statement or execute an ITEQ command. If
the statement or command is incomplete (for example, not
terminated by a semicolon), the message INCOMPLETE STATEMENT.
READY FOR COMMAND appears on the status area.

When a DBC/SQL statement is entered, it is sent to the DBC/1012
for processing. The statement remains displayed in the input
area during processing and display of the response. Thus, if the
statement you enter is in error or its result is not
satisfactory, you may modify the statement with a minimum of
rekeying. You modify the statement using the edit commands
discussed below, and then re-enter the statement for processing.

An ITEQ command is executed in the host computer. When executed,
the command is erased from the input area. Depending on the
command, there may also be some visible change on the terminal
screen to indicate execution.

To enter a DBC/SQL statement or to execute an ITEQ command,
position the cursor opposite the arrow at the beginning of the
input area and key the statement or command, terminating it by a
semicolon (i). To enter the statement or execute the command,
press ENTER.

In Figure 3-3, a user has keyed a SELECT statement in the input
area and pressed ENTER. In response, the result (three columns
of data) has been displayed in the display area. Note that the
original statement remains displayed in the input area.

A processing message appearing above the result indicates the
type of processing that was performed and gives processing
statistics. The status area indicates that the response is
complete and that you may enter a new DBC/SQL statement or
execute an ITEQ command.

C09-OOOI-07 3-7

QUERY COMPLETED. 12 RECORDS FOUND. 3 COLUMNS RETURNED.
MAX LINE WIDTH IS 33 CHARACTERS.

DeptNo Name

100 Chin M
100 Greene W
100 Jones M
100 Moffit H
100 Peterson J
500 Carter J
500 Inglis C
500 Marston A
500 Omura H
500 Reed C
500 Smith T
500 Watson L

Salary

38,000.00
32,500.00
50,000.00
35,000.00
25,000.00
44,000.00
34,000.00
22,000.00
40,000.00
30,000.00
42,000.00
56,000.00

==> SELECT DeptNo, Name, Salary FROM Personnel.Employee
- WHERE DeptNo IN (100, 500)

ORDER BY DeptNo, Name;
*** END OF DATA. READY FOR COMMAND.***

Figure 3-3. Result of a SELECT Statement

3.1.6 Ending an ITEQ Session

To end an ITEQ session, key the command,

LOGOFF;

and press ENTER. ITEQ ends your session with the DBC/1012 Data
Base Computer.

You may now enter the LOGON command to begin another session.
You may simultaneously end the current session and begin a new
session by entering a new LOGON command within the current
session.

To exit an ITEQ session and return control to the interactive
system without executing the LOGOFF command, execute the command,

QUIT;

and then press ENTER during an ITEQ session.

3-8 C09-000l-07

3.2 EDITING DBC/SQL STATEMENTS

During an interactive session with the DBC/I012 Data Base
Computer, you may key a statement for entry in either the input
area or the display area of the screen.

Normally, you execute commands and enter statements from the
input area. When you enter a new statement from the input area,
you may simultaneously view the result of the statement
previously processed in the display area.

However, because the display area is usually larger than the
input area (see Figure 3-2), entering and editing a long DBC/SQL
statement or macro from the display area may be more convenient
because it enables you to view the statement in its entirety.
Also, a ,statement or macro that is entered in the display area
(or that is displayed there using the SHOW command) may be
printed by executing the PRINT command.

You use ITEQ edit commands to help you key and edit DBC/SQL
statements in the input area or the display area. Table 3-2
summarizes the ITEQ edit commands that apply to both the input
area and the display area. Table 3-3 summarizes the commands
that affect only the display area. (Any abbreviation allowed in
keying a command is indicated in parentheses following the
command syntax.)

C09-0001-07 3-9

3-10

Table 3-2. Edit Commands Used for Input, Display Areas

Command Function

ADD: Adds one blank line following the line on which
the cursor is positioned. (The cursor is the
small underline or box character, blinking or
nonblinking, that moves as you key.)

CLEAR Removes the current contents of the input area
or the display area so that a new statement or

INPUT: command may be keyed there.

DOWN [n]: Moves the display down three lines or n number
of lines. ([] is used to indicate an optional
parameter.)

JOIN: Appends the next line of characters to the
cursor position on the current line, overlaying
the cursor and erasing any characters to the
right of the cursor. (You must assign a PF key
to this command, as described below.)

REMOVE: Removes the line on which the cursor is
positioned.

SPLIT: Creates a new line following the current line
and moves characters right of (and including)
the cursor to the new line. (You must assign a
PF key to this command, as described below.)

UP [n]: Moves the display up three lines or n number
of lines. ([] is used to indicate an optional
parameter.)

Table 3-3. Edit Commands Only For Display Area

Command

INPUT:

SHOW:
(SHO:)

SUBMIT:
(SUB:)

Function

Sets the display area for input.

Re-displays the current statement in the
display area so that it may be edited or
printed.

Executes a statement keyed or edited in the
display area.

C09-0001-07

You may execute an edit command by keying it in the input area
and pressing ENTER to execute it. However, you may find it more
convenient to press a PF key assigned to the command, as
discussed below.

In general, successful execution of an edit command is indicated
by an appropriate movement on the terminal screen. If
successfully executed from the input area, a command is erased
from that area upon execution. If the command fails, the cursor
moves to the beginning of the input area and the unsuccessful
command, if executed from that area, remains displayed.

3.2.1 Entering a Statement from the Input Area

As discussed above, when you enter a DBC/SQL statement from the
input area, the statement remains there during processing and
display of its processing message and its result. If an error
message or the result tells you that the statement is in error,
you may edit the command or statement without rekeying the entire
input string and re-enter it.

3.2.1.1 Using PF Keys to Execute Commands

To use ITEQ edit commands to edit a statement in the input area,
you use program function (PF) keys that have been assigned to
these commands. A command is then executed by pressing the
appropriate PF key.

3.2.1.1.1 Using Default Assignments

When you log on to (start to use) ITEQ, certain PF keys are
automatically assigned to ITEQ commands. This automatic
assignment is called a "default." Default PF key assignments for
edit commands are listed in Table 3-4. (The heading "87-key"
designates the settings for a 3270-type terminal with an 87-key
keyboard; "75-key" designates settings for the 75-key 3270
keyboard.)

C09-OOOI-07 3-11

Table 3-4. Default PF Key Assignments, Edit Commands

87-Key 75-Key Command
------ ------ ------------
PFl3 PF1 SHOW;

PF14 PF2 SUBMIT;

PF15 PF3 ADD;

PF17 PF5 CLEAR INPUT;

PF18 PF6 REMOVE;

PF21 PF9 UP;

PF24 PF12 DOWN;

PF keys 16, 19, 20, 22, and 23 (or PF keys 4, 7, 8, 10, and 11)
automatically default to other ITEQ commands, discussed later in
this guide. For a complete listing of PF keys assigned to ITEQ
commands, refer to Appendix C.

3.2.1.1.2 Assigning PF Keys During a Session

If these default assignments are not convenient for you, you may
make your own PF key assignments. To assign a PF key to an ITEQ
command, use the SET PFn ITEQ command. For example, to assign
the PF23 key to the UP edit command, key,

SET PF23 'UP 1;';

in the input area and press ENTER.

You may assign PF keys to ITEQ commands anytime during a session.
However, because you execute the SET PFn command from the input
area, it is more convenient to assign PF keys before you begin
entering and editing DBC/SQL statements in the input area. If
you are not using the default assignments, before editing
statements in the input area you must first assign PF keys to the
edit commands ADD, REMOVE, UP, and DOWN, as well as to JOIN and
SPLIT, which are not assigned PF keys by default.

3-12 C09-0001-07

3.2.1.1.3 Assigning PF Keys During Startup

Your own PF key assignments may be made automatically when you
log on to the DBC/1012. You may provide for this in an earlier
session by entering a DBC/SQL MODIFY USER statement for yourself
that specifies the assignments in a STARTUP string that is
executed when you log on to the DBC/1012~ (The MODIFY USER
statement is described in Chapter 10.)

For example, to assign PF keys to SPLIT and JOIN commands during
subsequent logons if your username were Inglis, you would key:

MODIFY USER Inglis AS
STARTUP = 'ECHO "SET PFI ""SPLIT;"";";

ECHO "SET PF2 ""JOIN;"";";';

In the STARTUP string, each ITEQ edit command is enclosed within
a SET PFn command and each PFn command is enclosed within a
DBC/SQL ECHO statement. The ECHO statement (discussed in Chapter
9), is needed to convey the command to ITEQ.

The entire STARTUP string is enclosed by apostrophes. Each SET
PFn command is identified within the string by double
apostrophes, each edit command by quadruple apostrophes. (Use of
apostrophes in DBC/SQL is described in Chapter 6.) Each ECHO
statement and edit command, as well as the MODIFY USER statement
itself, is terminated by a semicolon.

Note that, when PF keys 1 through 12 are assigned to ITEQ
commands, the ALT key must be pressed along with the PF key to
execute the command.

3.2.1.1.4 Displaying PF Key Assignments

To display currentPF key assignments during an ITEQ session,
execute the SHOW CONTROL command, as follows:

SHOW CONTROL;

This command also displays the current setting of ITEQ display
and format commands.

The editing example presented in the section "Editing a
Statement," below, assumes that you are using the default PF key
assignments.

C09-0001-07 3-13

3.2.1.2 Changing the Size of the Input Area

The original size of the input area is three lines. If you
expect normally to be entering DBC/SQL statements that are longer
than three lines, you can increase the size of the input area.

The size of the input area is changed using the SET INPUTAREA
SIZE command. For example, to increase the size of the input
area to five lines, key the following command in the input area
and press ENTER:

SET INPUTAREA SIZE 5;

3.2.1.3 Entering a Statement

You may enter as long a statement as you like in the input area
without increasing the size of the area. For example, given an
input area size of three lines, assume that you wish to enter the
following DBC/SQL statement in the input area:

SELECT DeptNo, Name, Salary FROM Employee
WHERE DeptNo IN (100, 500, 600)
WITH SUM (Salary) (TITLE 'TOTAL') BY DeptNo
ORDER BY Name;

Use the ~ollowing procedure to enter this statement:

1. Erase the input area by pressing the PF17 key
(assigned to the CLEAR INPUT edit command). The
cursor is positioned opposite the arrow at the
beginning of the input area.

2. Key the first three lines of the statement, pressing
the return key on the terminal keyboard to position
the cursor at the beginning of the next line. (There
are now no blank lines remaining in the input area.)

3. Press ENTER to cause the first three lines of the
statement to be recorded by ITEQ. ITEQ re-displays
the last line that you keyed on the first line of the
input area.

4. Key the rest of your multi-line statement and
terminate it with a semicolon (;).

5. Press ENTER to send this last line to ITEQ. When ITEQ
recognizes the semicolon as ending the statement, it
submits the entire statement for processing and
displays the first three lines in the input area.

3-14 C09-OOOl-07

If you correctly key a DBC/SQL statement and terminate it by a
semicolon, ITEQ has no concern for the format in which you enter
the statement. The statement above could be keyed in three
lines, as follows:

==> SELECT DeptNo, Name, Salary FROM Employee WHERE DeptNo
IN (100, SOO, 600) WITH SUM (Salary) (TITLE 'TOTAL') BY Dep
tNo ORDER BY Name; _

Note that, even when you continue to key beyond the end of a
line, ITEQ is able to interpret interruptions in the statement
(Dep-tNo, in the example) accurately as long as the statement is
keyed correctly.

3.2.1.4 Editing a Statement

Assume that, after keying the first seven lines of a lengthy
statement, you realize that you have misspelled a word in the
second line. To correct the word, use the following procedure:

1. Press the PF2l key (assigned to the UP edit command)
until the second line appears.

2. Move the cursor to the incorrect word.

3. Key the correct spelling over it.

4. Press the PF24 key (assigned to the DOWN edit command)
to return to the line that you were keying so that you
may complete the statement.

S. Press ENTER to submit the statement for processing.

Note that, while you are executing the UP and DOWN edit commands,
different statement lines are being moved into the first line of
the input area opposite the arrow. If one of these lines is too
long to fit on that line, the line is wrapped around into the
second line of the input area, and the next line of the statement
is positioned in the third line of the input area.

You may add a line to a statement by pressing the PFlS key
(assigned to the ADD edit command). For example, to add a clause
between lines 2 and 3 of the SELECT statement above,

1. position the cursor at line 2

2. Press PFlS

3. Key the new clause on the blank line created after
line 2

C09-OOOl-07 3-15

To delete a line from a statement,

1. Position the cursor anywhere on the line to be deleted

2. Press the PF18 key (assigned to the REMOVE edit
command)

To delete part of a line from any position in the line to the end
of the line,

1. position the cursor on the first character to be
deleted

2. Press the ERASE EOF key on the terminal keyboard

To insert characters within a statement line,

1. Position the cursor at the point where the characters
are to be added

2. Press the INSERT key on the terminal keyboard

3. Key the characters

4. Press the RESET key to cancel insert mode

To de1ete characters in a statement line,

1. position the cursor on the first character to be
deleted

2. Press the DELETE key repeatedly until the characters
are deleted

To insert new material (for example, a clause) within a statement
line that already extends across the screen,

1. position the cursor at the point in the line where the
insertion is to occur

2. Press the PF key that you have assigned to· the SPLIT
command

3. Insert the material on the split line

To move the material on the next line to the current line,

1. Position the cursor at the point on the line where the
material is to be moved

3-16 C09-OOOl-O?

2. Press the PF key that you have assigned to the JOIN
command

3. The material is moved to the current line, overwriting
the cursor and any characters between the cursor and
the end of the line.

When editing a complete statement (that is, one terminated by a
semicolon) in the input area, be careful not to press ENTER by
accident, thereby inadvertently entering the statement before it
is ready to be processed.

3.2.1.5 Entering a New Statement

After ITEQ has displayed the result of a DBC/SQL statement in the
display area, you may enter a new statement. To do this, either
key over the previous statement in the input area or first erase
the statement from the input area by pressing the PF17 key (CLEAR
INPUT) •

If you key the new statement over the previous one, use the ERASE
EOF (End Of Field) key to erase the remains of the present line.
ERASE EOF erases a line from the cursor position to the end of
the line.

When you enter a new statement, the display area is cleared.

3.2.2 Editing a Statement in the Display Area

The display area is used in two ways: to display the result of
processing a DBC/SQL statement, or to enter a statement. To
enter a statement in the display area, use the following
procedure:

1. Execute the INPUT edit command to tell the system that
the display area will now be used for statement input.
This action positions the cursor at the beginning of
the display area.

2. Key the DBC/SQL statement, using the edit commands
listed in Tables 3-2 and 3-3. (When the display area
is set for input, only ITEQ edit commands may be
executed.)

3. Press the PF14 key (assigned to the SUBMIT edit
command) to enter the statement for processing. ITEQ
displays the first three lines of the statement in the
input area and resets the display area for display of
the result. Note that, if the ~irst line of the
statement is too long to fit opposite the arrow in the

C09-OOOl-07 3-17

input area, the line is wrapped around into the second
line of the input area, and the second line of the
statement is positioned in the third line of the input
area.

If the result of the statement is not what you wanted, you may do
one of two things. You may:

1. Edit the statement displayed in the input area and
press ENTER to re-enter the statement for processing.
The new result is displayed in the display area.

2. Edit the statement in the display area by pressing the
PF13 key (assigned to the SHOW command). The display
area is converted for statement entry and the
statement is displayed there, overwriting the
unsatisfactory result. Re-enter the corrected
statement for processing by executing the SUBMIT
command (PF14).

If you execute an edit command incorrectly from the input area
while you are editing a statement in the display area, the
statement is erased and an error message is displayed. To
redisplay the statement that you were editing, press the PA2 key.

A statement that appears in the display area may be printed using
the PRINT command, described in Chapter 5 and Appendix D.

3.2.3 Aborting a Statement

If you want to terminate processing of a DBC/SQL statement after
the statement is entered but before processing is completed,
execute the ITEQ ABORT command. This is the only command that
may be executed when the status area message reads "COMMAND IN
PROCESS".

Executing the ABORT command has much the same effect as entering
the DBC/SQL ABORT statement, described in Chapter 9. That is, it
aborts the current transaction. However, the DBC/SQL ABORT
statement is used within a macro or a transaction that is
processed by a language preprocessor to abort a transaction
unconditionally in response to an error condition. The ABORT
command, by contrast, is used interactively -- and may not be
executed in time to stop a transaction. (Refer to item 3 in the
dialogue described in Tables 3-5 and 3-6, below.)

If the statement aborted by the ABORT command is a data
definition or data manipulation statement, any change made to the
data base is backed out. For a SELECT statement, any result is
deleted. Locks on the data base that were initiated by the

3-18 C09-000l-07

aborted statement are released. (For a discussion of locks,
refer to "Concurrency Control" in DBC/1012 Data Base Computer
Concepts and Facilities.)

The simplest way to execute the ABORT command is to press a PF
key assigned to the command via a startup string, as described
above.

3.2.3.1 Aborting a Statement Under TSO

You may abort processing of the current DBC/SQL statement as
described in Table 3-5:

• Interrupt ITEQ (1)

• Enter the ABORT command (2)

• (The statement is aborted (3a) or the statement
completes (3b»

Following the attempt (successful or unsuccessful) to perform the
abort, you may:

• Continue the ITEQ session (4a)

• Exit ITEQ and return to TSO normally (4b)

• Interrupt and exit ITEQ (4c)

C09-000l-07 3-19

3.2.3.2

Table 3-5. Aborting a Statement Under TSO

Action

(Statement to
be aborted is
entered)

1. Press RESET/
(alt) PAl

2. Enter ABORT;

3a. (Statement
is aborted)

3b. (Statement
completes)

4a. Enter new
statement or
command

4b. Enter QUIT;

4c. Press (alt)
PAI/(alt)
PAl

System Response

Begins processing
statement

Interrupts ITEQ, dis
plays "ITEQ ATTENTION
HANDLING"

Attempts to abort
processing of
current statement

Displays "3110 The
transaction was
aborted by the user"

Returns normal
processing result

Processes new statement
or command

Exits ITEQ normally,
displays "READY"

Interrupts/terminates
ITEQ

Aborting a Statement Under VM

Status Message

"COMMAND IN
PROCESS"

"READY FOR
COMMAND"

"ABORT COMMAND
IN PROCESS"

"READY FOR
COMMAND"

"ABORT COMMAND
IS IGNORED.
READY FOR
COMMAND"

"COMMAND IN
PROCESS"

You may abort processing of the current DBC/SQL statement by
performing the following actions (described in Table 3-6):

• Interrupt ITEQ (1)

• Enter the ABORT command (2)

• (The statement is aborted (3a) or the statement
completes (3b»

3-20 C09-000l-07

After performing the abort, you may:

• Continue the ITEQ session (4a)

• Exit ITEQ and return to eMS (4b)

• Enter the CP system (4c)

• Return to ITEQ from CP (4d)

Table 3-6. Aborting a Statement Under VM

Action

(Statement to
be aborted is
entered)

1. Press RESET/
ENTER

2. Enter ABORT;

3a. (Statement
is aborted)

3b. (Statement
completes)

4a. Enter new
statement
or command

4b. Enter QUIT;

4c. Press (alt)
PAl

System Response

Begins processing
statement

Interrupts ITEQ, dis
plays "ITEQ ATTENTION
HANDLING"

Attempts to abort
processing of
current statement

Displays "3110 The
transaction was
aborted by the user"

Returns normal
processing result

Processes new statement
or command

Exits ITEQ normally,
displays "RUNNING"

Enters CP system, dis
plays "CP READ".

4d. Press (alt) Returns to ITEQ from
PA1/(alt) CP
PA2

C09-0001-07

Status Message

"COMMAND IN
PROCESS"

"READY FOR
COMMAND"

"ABORT COMMAND
IN PROCESS"

"READY FOR
COMMAND"

"ABORT COMMAND
IS IGNORED.
READY FOR
COMMAND"

"COMMAND IN
PROCESS"

"READY FOR
COMMAND"

3-21

3.3 VIEWING STATEMENT RESULTS

Normally, the result of a SELECT statement does not exceed the
size of the display area of your terminal screen. Sometimes,
however, the displayed result of a statement or macro exceeds the
length or width of the display area. When this happens, ITEQ
formats the lengthy result into pages corresponding to the size
of the display area.

Until you discard a result, you may view it at your terminal or
file it for later use. The result also may be formatted and
printed as a report, as discussed in Chapter 5.

When you enter a new SELECT statement or a macro containing a
SELECT statement, the result of any previous statement is
automatically discarded. Executing a CANCEL command also deletes
the result of the present query.

3.3.1 Using Display Commands

ITEQ provides display commands that let you view result pages.
These commands are listed in Table 3-7. (Any abbreviation
allowed in keying a command is indicated in parentheses following
the command syntax.)

Table 3-7. Display Commands

Command

BACKWARD [n];
(BWD;)

FORWARD [n];
(FWD;)

LEFT [n];

RECALL;

RIGHT [n];

Function

Moves screen backward one page or n number
of pages

Moves screen forward one page or n number
of pages

Shifts screen to the left 52 positions or
n number of positions

Causes the result that was previously
displayed to be re-displayed after being
erased by execution of an ITEQ command

Shifts screen to the right 52 positions or
n number of positions

PF keys are automatically assigned to display commands when you
log on to ITEQ. PF keys assigned to display commands are listed
in Table 3-8. (The heading "87-key" designates the settings for
a 3270-type terminal with an 87-key keyboard; "75-key" designates
settings for the 75-key 3270 keyboard.)

3-22 C09-000l-07

Table 3-8. Default PF Assignments, Display Commands

87-Key 75-Key Command
------ ------ ---------
PF19 PF7 BACKWARD;

PF20 PF8 FORWARD;

PF22 PFIO LEFT;

PF23 PFll RIGHT:

You may also make your own PF key assignments, as described
above. After a PF key is assigned, you may execute an ITEQ
display command by pressing the PF key assigned to the command.

As an alternative to using PF keys, you may key a display command
and press ENTER. Warning: in order to key a display command in
the input area while viewing the result of a SELECT statement,
you must erase the SELECT statement that produced the result.
You then cannot compare the statement against the result.
(However, if you want to modify the statement, you can do so
without re-entering the statement completely by executing the
SHOW command, assigned to the PF13 key. The statement is
redisplayed in the display area, where it can be modified and
entered using the SUBMIT command.)

In general, successful execution of a display command is
indicated by an appropriate movement on the terminal screen. If
a command is successfully executed from the input area, it is
erased from that area upon execution. If the command fails, the
cursor moves to the beginning of the input area and the
unsuccessful command, if executed from that area, remains
displayed.

You may display the current setting of display commands by
executing the SHOW CONTROL command, as follows:

SHOW CONTROL;

This command also displays the current setting of ITEQ format
commands and PF key assignments.

The examples below assume that you are using PF keys with their
default assignments to execute display commands.

C09-OOOl-O? 3-23

3.3.2 Choosing a Formatting Mode

The format in which the result of a SELECT statement is displayed
depends on the formatting mode that is in effect when the result
is returned. ITEQ formatting modes are Format or Unformat.

You use Format mode to tailor a result into. report (Chapter 5),
which may be viewed or printed for later reference. When a
result is displayed in Format mode, the processing message that
contains the statistics for the result is displayed by itself as
the first result "page". Selected data is formatted into
consecutive pages, each containing date, page number, report
title, and column headings.

You use Unformat mode for viewing data on the terminal screen
(although an unformatted result may also be filed or printed).
When a result is displayed in Unformat mode, the processing
message, along with selected data and column headings, are
displayed as a single entity. If the result exceeds the size of
the display area, you may view the result as consecutive screen
pages without column headings or other embellishment~

Unformat mode is used here to show you how to use display control
commands. Nevertheless, display control commands are likewise
used to display a formatted result.

When you log on to ITEQ and begin a session, Unformat mode is
automatically set and remains in effect until changed. To change
to Format mode, execute the command,

SET FORMAT; (or SET FORMAT ON;)

Any subsequent SELECT result is then formatted according to any
format commands executed earlier in the session.

To reinstate Unformat mode, execute,

SET FORMAT OFF;

Subsequent results are then unformatted, as described above.
Certain format commands, discussed in Chapter 5, may also be
applied to an unformatted result.

3.3.3 Paging Through a Result

Assume that the formatting mode is set to Unformat and you have
entered the statement,

3-24

SELECT * FROM Employee
ORDER BY EmpNo;

C09-OOOl-07

The following screen is displayed:

QUERY COMPLETED. 22 RECORDS FOUND. 12 COLUMNS RETURNED.
MAXIMUM LINE WIDTH IS 100 CHARACTERS (EXCEEDS PRINT LINEWIDTH).

EmpNo Name DeptNo JobTitle Salary YrsExp
----- ------------ ------ ---------- ---------- -------

10001 Peterson J 100 Bookkeeper 25,000.00 5 42/0
10002 Moffit H 100 Recruiter 35,000.00 3 45/1
10003 Leidner P 300 Secretary 23,000.00 13 48/0
10004 Smith T 500 Engineer 42,000.00 10 51/0
10005 Jones M 100 Vice Pres 50,000.00 13 40/0
10006 Kemper R 600 Assembler 29,000.00 7 47/0
10007 Aguilar J 600 Manager 45,000.00 11 49/0
10008 Phan A 300 Vice Pres 55,000.00 12 47/0
10009 Marston A 500 Secretary 22,000.00 8 53/0
10010 Reed C 500 Technician 30,000.00 4 49/0
10011 Chin M 100 Accountant 38,000.00 11 55/1
10012 Watson L 500 Vice Pres 56,000.00 8 43/1
10013 Regan R 600 Purchaser 44,000.00 10 48/1
10014 Inglis C 500 Tech Writer 34,000.00 5 38/0
10015 Omura H 500 Programmer 40,000.00 8 54/0

==>_SELECT * FROM Employee
ORDER BY EmpNo;

*** DATA AVAILABLE. READY FOR COMMAND.***

The status message ***DATA AVAILABLE. READY FOR COMMAND.***
(displayed in the status area) indicates that the statement has
returned more data than can be displayed in a single screen. To
see the next page of the result, page forward.

3.3.3.1 Paging Forward

To page forward, press the PF20 key (assigned to the FORWARD
display command). The next page of data is displayed:

C09-000l-07 3-25

10016 Carter J 500
10017 Greene W 100
10018 Russell S 300
10019 Newman P 600
10020 Brangel B 700
10021 Smith T 700
10022 Clements D 700

==> SELECT * FROM Employee
ORDER BY EmpNo;

Engineer 44,000.00 20 35/0
Payroll Ck 32,500.00 15 55/1
President 65,000.00 25 32/0
Test Tech 28,600.00 6 56/0
Salesperson 30,000.00 5 47/1
Manager 45,000.00 10 46/0
Salesperson 38,000.00 9 44/0

*** END OF DATA. READY FOR COMMAND.***

The status message ***END OF DATA. READY FOR COMMAND.***
. indicates that this is the last page of the statement result.

Regardless of the length of a result, you may press PF20 to
display each consecutive page until you reach the last page,
indicated by ***END OF DATA. READY FOR COMMAND.***. At this
point, pressing PF20 has no effect.

3.3.3.2 Paging Backward

With the second page of the result displayed, press the PF19 key
(assigned to the BACKWARD display command). The first result
page is again displayed.

Unless you are viewing the first page of a result, you may press
PF19 to display each preceding page until you reach the first
page, on which the processing message for the result is
displayed. At this point, pressing PF19 has no effect.

If you are viewing any page of a result, -executing the command,

BACKWARD *;

3-26 C09-0001-07

displays the first result page.

3.3.3.3 Redisplaying the Current Result Page

After a result page is erased from the display area, executing
the command,

RECALL;

causes the page to be re-displayed. For example, when you enter
an erroneous ITEQ command while viewing a result page, the page
may be erased in order to display an appropriate error message.
Executing RECALL re-displays the erased page.

3.3.4 Viewing a Wide Result

On the first page of the example result above, the processing
message informs you that the maximum print line width is 100
characters. This message warns you that a report based on this
result will not fit on B.5- by II-inch paper (which has an
BO-character maximum line width).

Note that the message also alerts you to the fact that more data
is available to the right of the current display, because the
width of a terminal display is BO characters. Also, the display
is obviously split at the YrsExp column.

Imagine the terminal screen as a magnifying glass through which
you are viewing the result. To view the portion of the result
that is not visible, you move the magnifying glass (that is,
shift the screen) to the right. You shift the screen to the
right by pressing the PF23 key (assigned to the RIGHT display
command). The screen shifts to the right 52 character positions
to display the following:

C09-000l-07 3-27

QUERY COMPLETED. 22 RECORDS FOUND. 12 COLUMNS RETURNED.
MAXIMUM LINE WIDTH IS 100 CHARACTERS (EXCEEDS PRINT LINEWIDTH).

ry YrsExp DOB Sex Race MStat EdLev HCap -- ------ -------- --- ---- ----- ------ ----

00 5 42/03/27 M C M 12 0
00 3 45/11/16 F B W 18 0
00 13 48/07/12 F C M 16 0
00 10 51/01/31 M C M 18 0
00 13 40/02/13 F B D 16 0
00 7 47/09/12 M C M 12 1
00 11 49/07/09 M S M 16 0
00 12 47/05/07 F A M 18 0
00 8 53/07/03 M C M 14 0
00 4 49/04/08 M C D 16 0
00 11 55/11/27 F A M 16 0
00 8 43/10/03 M C S 20 0
00 10 48/10/20 F C M 16 0
00 5 38/03/07 M C S 16 0
00 8 54/04/24 M A S 16 0

==> SELECT * FROM Employee
ORDER BY EmpNo;

*** DATA AVAILABLE. READY FOR COMMAND.***

Note that the processing message remains displayed because it is
formatted to the size of the display area.

Press PF23 once more: the screen shifts right until only the
HCap column is visible. Pressing the key a third time has no
effect, because the rightmost position has been reached and the
display cannot go beyond this point.

Executing the RIGHT command with a numeric parameter causes the
screen to shift to the right that many positions. For example,
"RIGHT 7;" causes the screen to move seven positions to the
right.

Pressing the PF22 key (assigned to the LEFT display command),
shifts the screen to the ~eft 52 positions over displayed data.
"LEFT 23;" moves the screen left 23 positions. The LEFT command
has no effect when the leftmost position is reached.

3-28 C09-0001-07

3.3.5 Changing Formatting Mode During Display

While you are viewing an unformatted result, you may decide to
format the result as a report. To set Format mode, do the
following:

1. Execute the "SET FORMAT ON;" command

2. Execute the "BACKWARD *;" command

The unformatted result disappears and the processing message
appears by itself as the first result page. Executing a FORWARD
command displays the first page of the formatted result. Use the
same procedure, using the "SET FORMAT OFF;" command, to change a
result from formatted to unformatted.

3.3.6 Filing a Result for Later Use

Before entering a subsequent query, you may execute the command,

FILE;

to store the spooled result of the current SELECT statement or
macro. When control is returned to the interactive system, this
file is stored in a flat file that is allocated to a system data
set with the name ITEQDSKl (under TSO) or to a system file with
the name ITEQDSKl DATA (under CMS). The file is created in TEXT
form so that it may be used later by an application program.

The maximum logical record length for a result file is 32,000
bytes.

3.4 SUMMARY AND PREVIEW

This chapter showed you how to begin and end an interactive ITEQ
session, enter and edit DBC/SQL statements, and view statement
results. The next chapter shows you how to communicate with the
DBC/lOl2 using BTEQ.

C09-000l-07 3-29

3-30 C09-0001-07

CHAPTER 4 USING BTEQ

BTEQ is a batch-oriented tool used to submit a job to the
DBC/I012 for processing_ The job consists of a "script"
containing one or more DBC/SQL statements, plus BTEQ commands
that are used for session control, formatting of DBC/SQL results,
and handling of output data. In addition, BTEQ may used as an
on-line interface.

BTEQ features include:

• Use of more than one DBC/SQL statement per request

• Display of response time for each request

• Ability to read data from and write data to files
maintained on the host computer

• Ability to repeat a request

• Use of more than one session for improved performance

• Ability to perform conditional tests and branching

In addition, BTEQ provides sophisticated report-writing commands
that allow you to:

• Create report headings and footings that allow for
automatic substitution of current values for date,
time, and page number

• Specify page breaks or skipped lines on a specified
column change

• Compress long lines to match a specified column width.

• Reposition summary line titles on specified columns.

This chapter lists the BTEQ commands and shows you how to:

• Invoke BTEQ under the MVS/TSO or VM/CMS interactive
subsystem

• Submit a BTEQ script for processing

• Define a BTEQ script to select data using an input file
that contains key values

C09-OOOl-07 4-1

Using BTEQ to select and format data into a report for display or
printing is described in Chapter 5.

4.1 BTEQ COMMANDS

A BTEQ command consists of command keyword prefixed by a period
character (.). The command keyword may be followed by
parameters, including special characters and other keywords. As
an option, a BTEQ command may end with a semicolon (;).

Table 4-1 lists BTEQ session control and data handling commands.
Format specification commands are discussed in Chapter 5. For a
complete discussion of any of these commands, refer to the
DBC/1012 Data Base Computer Reference Manual.

Table 4-1. BTEQ Commands (1 of 2)

Activity Command Function

Session • LOGOFF Terminates a DBC/1012
Control session without exiting BTEQ.

• LOGON

.QUIT/EXIT

.SESSIONS

Establishes a DBC/1012
session.

Terminates a DBC/1012 session
(if necessary), and exits BTEQ.

Specifies the number-of DBC/1012
sessions that BTEQ is to use.

Data Handling .CMS Executes a CMS command (VM/CMS
only) •

= [n]

• EXPORT

• GOTO

• HANG

4-2

Causes BTEQ to repeat the
preceding DBC/SQL request a
specified number of times.

Sends the result of a SELECT
statement to an output file
other than SYSPRINT.

Transfers control forward to a
LABEL statement that matches a
specified label.

Causes BTEQ to pause •

C09-0001-07

Table 4-1. BTEQ Commands (2 of 2)

Activity Command Function

Data'Handling .HELP BTEQ Returns a list of syntaxes of
BTEQ commands.

.IF

. IMPORT

• LABEL

.QUIET

• REMARK

• REPEAT

. RUN

.SHOW CONTROL

.SHOW VERSION

.TDP

.TSO

C09-OOOI-07

Tests an error code or an
activity count to determine
whether a conditional action is
performed.
Specifies a file other than DATA
from which BTEQ reads data when
a USING clause is specified.

Identifies a statement as a
label that can be used by the
GOTO statement.

Limits BTEQ output to reporting
only errors and request
processing statistics.

Enables the user to include up
to three lines of commentary.

Causes BTEQ to repeat the next
DBC/SQL request a specified
number of times, or until the
input file is out of data.

Reads BTEQ commands or DBC/SQL
requests from a specified file.
When EOF is reached, control
transfers to the SYSIN data set
while in batch mode, or to the
user's terminal while in on-line
mode.

Reports settings of most or all
of the formatting controls.

Reports the current level of
BTEQ software modules

Sets the default TDP to be used
for future logons.

Executes a TSO command (MVS/TSO
only) while "BTEQ is running.

4-3

4.2 RUNNING A BTEQ JOB

BTEQ may be run in the following host operating system
environments:

• MVS

BTEQ is normally used in batch mode under MVS.
However, BTEQ also may be run interactively under TSO,
or from the DBC/1012 system console •

• VM

BTEQ may be used in batch mode under VM/CMSBATCH. BTEQ
also may be used interactively under CMS.

The following sections show how to run BTEQ under the interactive
TSO or CMS subsystems.

4.2.1 Running BTEQ Under TSO

You may invoke BTEQ on-line by entering,

BTEQ

You also may invoke BTEQ directly by entering,

CALL 'datasetname(ITBMAIN),

where "datasetname" is the name of the load library that contains
the BTEQ program (ITBMAIN).

You may pass a parameter to BTEQ by entering,

CALL 'datasetname(ITBMAIN), '.TDP TDPO'

(In this example, the BTEQ TDP command is used to specify the
default DBC/1012 system that is to be used for subsequent
logons.)

Any data set that is to be used with the BTEQ commands RUN,
EXPORT, or IMPORT must be preallocated unless the user intends to
use the BTEQ TSO command to allocate files during BTEQ
processing.

Because BTEQ normally does not use DD streams to communicate with
the terminal, DD streams need not be allocated.

When BTEQ is used in an MVS environment, standard MVS job control
l~nguage (JCL) cards are used to submit a BTEQ job to the
DBC/1012. The following is an example of BTEQ JCL:

4-4 C09-0001-07

4.2.2

/ICTIBTQ
II

JOB 1,'C.Inglis',CLASS=B,NOTIFY=CTI,
MSGCLASS=A,MSGLEVEL=(l,l)

(Identifies the job to the MVS system.)

/IBTEQ EXEC PGM=ITBMAIN

(Names and executes the ITBMAIN (BTEQ) program.)

//STEPLIB DD DSN=TERADATA.APPLOAD,DISP=SHR

(Identifies the host library where the executing program
resides.)

//SYSPRINT DD SYSOUT=*,DCB=(LRECL=137)

(Defines an output file to contain any data resulting from
program execution and automatically prints the result.)

//SYSABEND DD SYSOUT=*

(Defines a file to which output is dumped if the host
system fails.)

//SYSIN DD DATA,DLM=##

(Defines the beginning and the end of the data set that
contains the script of DBC/sQL statements and
BTEQ commands that defines the job.)

RUNNING BTEQ UNDER VM/CMS

You may invoke BTEQ on-line by entering,

BTEQ

You may pass a parameter to BTEQ by entering,

BTEQ .TDP TDPO

Any data set that is to be used with the BTEQ commands RUN,
EXPORT, or IMPORT must be preallocated unless the user intends to
use the CMS command to allocate files during BTEQ processing.

Because BTEQ does not use input streams for its usual
communications with the terminal, no FILEDEF commands are needed
before invoking 'BTEQ.

When BTEQ is used in a VM environment, a standard VM EXEC is used
to submit a BTEQ job to the DBC/I012. The following is an
example of an EXEC:

C09-OOOI-07 4-5

4.3

"FILEDEF SYSPRINT TERMINAL (LRECL 137 RECFM VA)"

(Defines an output file to contain any data resulting from
program execution and automatically prints the result.)

"FILEDEF SYSABEND TERMINAL"

(Defines a file to which output is dumped if the host
system fails.)

"FILEDEF SYSIN DISK" filename filetype filemode

(Identifies the input file that contains the BTEQ input
stream: the script of DBC/SQL statements and
BTEQ commands.)

EXTRACTING DBC/IOI2 DATA TO A HOST DATA SET

The example in Figure 4-1 shows how BTEQ maybe used under TSO to
select data from the Employee table and save it in a host data
set (SAVEDATA). Rows are selected according to values of EmpNo
(the prime key for the Employee table) contained in an input data
set (DATA).

4-6 C09-OOOI-O?

IlcTIINPUT JOB 1,'C.INGLIS',CLASS=B,NOTIFY=CTI,
II MSGCLASS=A,MSGLEVEL=(l,l)
IIBTEQ EXEC PGM=ITBMAIN
IlsTEPLIB DD DSN=TERADATA.APPLOAD,DISP=SHR
IIINFILE DD DSN=CTI.BTEQ.CNTL(DATA),DISP=SHR
IISYSPRINT DD SYSOUT=*
IISYSABEND DD SYSOUT=*
IlsAVEDATA DD DSN=CTI.SAVEDATA.TEXT,DISP=(NEW,CATLG),
II UNIT=SYSDA,SPACE=(TRK,(l,l),RLSE),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)
IISYSIN DD DATA,DLM=##
.IMPORT DATA DDNAME=INFILE
.EXPORT DATA DDNAME=SAVEDATA
.SESSIONS 2
.LOGON someuser,password
.REPEAT 10
USING EMPNO (CHAR(S»,

FILLER (CHAR(75»
SELECT *
FROM PERSONNEL. EMPLOYEE
WHERE EMPNO = :EMPNO;

.EXPORT RESET 1* optional, since the next line is QUIT *1;

.QUIT

II

Figure 4-1. Selecting and Storing Data Using BTEQ

C09-000l-07 4-7

The DBC/SQL script consists of a single SELECT statement preceded
by a a USING modifier. The modifier describes the data that is
used to qualify rows selected from Employee. Note that the USING
modifier must precede the DBC/SQL statement that it modifies.

BTEQ commands used for this job and their functions are:

4.4

• IMPORT

Causes BTEQ to read data from the DATA data set.

• EXPORT

Sends the data selected to the SAVEDATA data set.

• SESSIONS

Causes BTEQ to open" two sessions to process the job.

• LOGON

Logs the user on to the number of DBC/1012 sessions
specified by SESSIONS.

• REPEAT

Causes BTEQ to repeat the SELECT request 10 times.

• EXPORT RESET

Cancels the EXPORT function following the select
operation. Any processing results are now directed to
SYSPRINT. (In this example, this command is optional
because the next command is QUIT.)

• QUIT

Terminates the DBC/1012 session and exits BTEQ.

SUMMARY AND PREVIEW

This chapter described the capabilities of BTEQ and showed you
how to submit a simple BTEQ job. The following chapter describes
the report writing capabilities of ITEQ and BTEQ.

4-8 C09-000l-07

CHAPTER 5 CREATINt REPORTS USING ITEQ AND BTEQ

Both ITEQ and BTEQ provide commands that enable you to format a
DBC/SQL result into a report. In addition, DBC/SQL has
formatting features that you may use with either ITEQ or BTEQ
formatting features to produce an informative, attractive report.

This chapter shows you how to produce a report using the DBC/SQL
features with ITEQ or BTEQ commands.

5.1 CREATING A REPORT USING ITEQ

In Chapter 3 you set a formatting mode (Forma~ or Unformat) and
used display commands to view an unformatted result, that is, a
result displayed in Unformat mode. As you recall, the
unformatted result was contained on one or more screen pages,
with the processing message displayed at the top of the first
page preceding the result.

For a result displayed in Format mode, the processing message is
displayed by itself as the first page of a result. Result data
is formatted on consecutive pages, each containing date, page
number, report title, and column headings. Formatted pages are
displayed according to the format specifications that have been
set during the session.

5.1.1 Using Format Defaults

You set Format mode by executing the SET FORMAT command while in
Unformat mode. If you have not set any format specifications
during a session, a query result in Format mode is displayed
according to ITEQ-defined ("default") format specifications.

Let's assume that you have entered the following statement in
Format mode:

SELECT DeptNo, Name, Salary FROM Employee
WHERE DeptNo IN (100, 700)
ORDER BY Name;

The processing message for the statement result,

RETRIEVE COMPLETED. 7 RECORDS FOUND. 3 COLUMNS RETURNED.
MAXIMUM LINE WIDTH IS 32 CHARACTERS.

appears by itself as the first result page.

Execute the FORWARD command and the first page of the result is
displayed:

C09-000l-07 5-1

85/05/20 SELECT DeptNo, Name, Salary FROM Emp (••• PAGE 1

DeptNo Name Salary

700 Brangel B 30,000.00
100 Chin M 38,000.00
700 Clements D 38,000.00
100 Greene W
100 Jones M 50,000.00
100 Moffit H 35,000.00
100 Peterson J 25,000.00
700 Smith T 45,000.00

Because you have not yet set your own format specifications, this
formatted result is displayed according to default format
specifications. These format default settings are given below.

• A report title line that consists of the current date,
the initial characters of the first statement line, and
the page number.

• Blanks in place of null values. For the sake of
illustration in this example, we have shown a null
value (see Table 7-2) in the salary column for Greene.

• Non-suppressed repeating values (for example, in the
DeptNo column).

• A page len.gth of 55 lines for a printed page.
Displayed pages are formatted to the size of the
display area.

• A maximum print line width of 132 characters.

When displayed, a formatted result appears left-justified, that
is, aligned at the left-hand side of the screen. The result
heading conforms to the size of the screen, with the date left
justified, the title centered, and the page number right
justified. A result that is wider than the display screen is
viewed using the LEFT and RIGHT display commands (see Chapter 3).

5-2 C09-QOOl-07

5.1.2 Setting Format Specifications

If you want to print the result as a report, you will probably
want to set your own format specifications rather than use the
defaults. You set format specifications by executing the ITEQ
format commands listed in Table 5-1. (Any abbreviation allowed
in keying a command is indicated in parentheses following the
command syntax.)

Table 5-1. ITEQ Format Commands

Command Function

REMARK 'charstring'; Used with the DBC/SQL ECHO state
ment: displays a descriptive com
ment during execution of a macro.

[SET] DEFAULTS; Resets all format controls to
their default values.

[SET] FORMAT [ON]; Sets Format mode.
(SFO;)

[SET] FORMAT OFF; Sets Unforrnat mode.
(SFF;)

[SET] NULL AS 'string';
(SNA;)

[SET] PAGELENGTH n;

[SET] RTITLE 'string';

[SET] SUPPRESS [OFF]
[ALL/n/,n •••];

[SET] SUPPRESS [ON]
[ALL/n/,n •••];

[SET] WIDTH n;

C09-OOOl-07

Defines a string to be used for a
null field. Default is blank.

Defines the maximum number of
lines (n) for a printed page.

Defines the title ('string') to
appear in the heading of each page
of a display or printed report.

Resets the suppress feature to
allow repeating values in all
columns, a specified column (n),
or a number of columns (,n •••).

Resets the suppress feature to
replace any repeating value with
blanks following its initial
occurrence in all columns, a
specified column (n), or a number
of columns (,n •••).

Defines the number of characters
[n] for a printed line. The
maximum allowed is 254 characters.

5-3

Format commands may be executed in Format or Unformat mode. Once
set, a format specification remains in effect during a session
unless changed by a subsequent format command, or by the SET
DEFAULTS command. Note that, in all format commands, the word
"SET" is optional and may be omitted.

5.1.2.1 Displaying Format Specifications

To determine what format specifications are in effect at any
given time, execute the SHOW CONTROL command (abbreviated SC;),
as follows:

SHOW CONTROL;

This command displays the current setting of ITEQ format
commands, display commands, and PF key assignments. If this
listing exceeds the length of the terminal screen, press ENTER to
view the remainder.

5.1.2.2 Viewing the Effect of Format Commands

You normally apply ITEQ format commands only to a result
displayed in Format mode. However, you may apply the following
format commands to a result displayed in Unformat mode:

• NULL AS

• PAGE LENGTH

• SUPPRESS OFF

• SUPPRESS ON

• WIDTH

When a format command is successfully executed, an appropriate
message is displayed in the display area; if a command is
unsuccessful, an error message is displayed. If a successful
command is executed from the input area, the command is erased
upon execution. An unsuccessful command remains displayed and
the cursor moves to the beginning of the input area.

If you are viewing a result while executing format commands to
tailor it, the effect of these commands does not automatically
appear in the result as viewed. In order to view the effect of
format commands, execute,

BACKWARD *;

5-4 C09-OOOl-07

The screen goes blank, then the processing message is displayed
as part of the first page of the result in Unformat mode.

In Format mode, the processing message for the result is
displayed on a page by itself. To display the first page of the
newly formatted result, execute,

FORWARD;

5.1.2.3 Defining a Report Title

To define a report title for a result, execute the RTITLE
command. For example, the following command,

RTITLE 'SALARY REPORTIIDEPARTMENTS 100 and 700';

defines the title,

SALARY REPORT
DEPARTMENTS 100 and 700

for the example result above. Note the use of the double-slash
<II) character to break the title string into two lines. A title
may be broken into up to three lines.

A report title may be up to 254 characters long. A title longer
than 254 characters is truncated.

5.1.2.4 Specifying a Null Character

Because the Salary field in Greene's row is null, you may specify
a character to appear there in place of the default blank. For
example, to place a hyphen in the field, execute,

5.1.2.5

NULL AS '-' . ,

Suppressing Repeating Values

To suppress the repeating column ~alues in column 1 (the DeptNo
column), execute the command,

SUPPRESS ON 1;

Because there are no repeating values in other columns of the
result, you could execute,

C09-000l-07 5-5

SUPPRESS;

or

SUPPRESS ALL;

to suppress repeating values in all columns of the result.

After executing these format commands and executing the
BACKWARD/FORWARD command sequence described above, the result now
looks like this:

85/05/20 SALARY REPORT PAGE 1
DEPARTMENTS 100 AND 700

DeptNo Name Salary
------ ------------ ----------

700 Brangel B 30,000.00

100 Chin M 38,000.00

700 Clements D 38,000.00

100 Greene W
Jones M 50,000.00
Moffit H 35,000.00
Peterson J 25,000.00

700 Smith T 45,000.00

Note that a blank line is inserted before a value change in a
column under SUPPRESS control. This feature may be overriden by
entering the BTEQ command: .SET SKIPLINE OFF.

5.1.3 Using DBC/SQL Report Writing Aids

Certain DBC/SQL features let you customize your reports during an
ITEQ (or BTEQ) session. These aids allow you to:

• Define summary results within a report

• Specify a different format for the results in any
column

• Change column headings and specify summary titles

5-6 C09-000l-07

5.1.3.1 Defining Summaries (WITH Clause)

To specify summaries of values within a numeric result, you use
aggregate operators in a DBC/SQL WITH clause. For example,
adding a WITH clause to the original SELECT statement for your
report, as follows:

SELECT DeptNo, Name, Salary FROM Employee
WHERE DeptNo IN (100, 700)
WITH SUM(Sa1ary)
ORDER BY Name;

provides a grand total of employee salaries for the two
departments.

Including a BY keyword in a WITH clause allows you to specify
group subtotals. For example, to display salary subtotals for
each department, add another WITH clause to the statement, as
follows:

SELECT DeptNo, Name, Salary FROM Employee
WHERE DeptNo IN (100, 700)
WITH SUM(Salary) BY DeptNo
WITH SUM(Salary)
ORDER BY Name;

The result of these WITH clauses is shown below.

85/05/20 SALARY REPORT
DEPARTMENTS 100 AND 700

DeptNo Name Salary

100 Chin M 38,000.00
Greene W
Jones M 50,000.00
Moffit H 35,000.00
Peterson J 25,000.00

Sum(Salary) 148,000.00

700 Brangel B 30,000.00
Clements D 38,000.00
Smith T 45,000.00

Sum(Salary) 113,000.00

Sum(Salary) 261,100.00

C09-000l-07

PAGE 1

5-7

Note that SUM provides the title "SUM(Salary)" for each subtotal
and the grand total. A dotted line separates the figures being
summed from the subtotal, and the last subtotal from the grand
total. Note also that the clause "WITH SUM(SALARY) BY DEPTNO"
has the effect of ordering the result by department number.

You could reorganize this report in descending order of
department number using the DESC keyword, for example:

5.1.3.2

SELECT DeptNo, Name, Salary FROM Employee
WHERE DeptNo IN (100, 700)
WITH SUM(Salary) BY DeptNo DESC
WITH SUM(Salary)
ORDER BY Name;

Specifying Column Format

You may change the format, defined in the CREATE TABLE statement,
of data displayed in a result using the FORMAT phrase. For
example, to prefix each salary summary with a dollar sign, change
your report ~tatement as follows:

SELECT DeptNo, Name, Salary FROM Employee
WHERE DeptNo IN (100, 700)
WITH SUM(Salary) (FORMAT '$$$$,$$9.99') BY DeptNo
WITH SUM(Salary) (FORMAT '$$$$,$$9.99')
ORDER BY Name;

The FORMAT phrase, enclosed by parentheses, immediately follows
the summary definition. The format string itself is enclosed by
apostrophes. .

Your result now looks like this:

5-8 C09-000l-07

85/05/20 SALARY REPORT
DEPARTMENTS 100 AND 700

DeptNo Name Salary

100 Chin M 38,000.00
Greene W
Jones M 50,000.00
Moffit H 35,000.00
Peterson J 25,000.00

Sum(Sa1ary) $148,000.00

700 Brange1 B 30,000.00
Clements D 38,000.00
Smith T 45,000.00

Sum(Sa1ary) $113,000.00

Sum(Sa1ary) $261,100.00

PAGE

Placed immediately following a column name, a FORMAT phrase
changes the format of all data in the column. For example, in
the statement,

SELECT Name, Salary (FORMAT '$$$$$9') FROM Employee
WHERE DeptNo = 600 AND Sa1ary/12 < 2500;

1

the phrase FORMAT '$$$$$9' eliminates the comma and decimal
places defined for the Salary column (refer to the CREATE TABLE
statement in Chapter 7) and specifies an initial dollar sign for
each value in the Salary column.

Name Salary

Kemper R $29000
Newman P $28600

Table 5-2 lists the characters that you may use in a FORMAT
phrase and explains their use. A FORMAT phrase cannot exceed 18
digit positions (17 if the phrase contains the E character).

C09-OOOI-07 5-9

Character

• - / : %

+

$

v

z

9

E

Char(n)

5-10

Table 5-2. Format Characters

Meaning

Characters that are inserted in a result
according to where they are specified in the
FORMAT phrase.

A character that is inserted in a result
only if a digit appears to the left of the
position specified for it in the FORMAT
phrase.

Sign characters that are used to denote a
positive or negative result. A single
character used in a FORMAT phrase places the
character in a fixed position in a result.
Two or more characters in a phrase cause the
character to "float." The character may
either immediately precede or follow the
format string. A + character translates to
+ or -, depending on whether a result is
positive or negative. A - character
translates to a blank for a positive result
or to a - for a negative result.

A dollar sign character. A single character
used in a FORMAT phrase places the character
in a fixed position in a result. Two or
more characters in a phrase cause the
character to float. Any sign character in
a result precedes a $.

A character that implies a decimal point
while suppressing the decimal point in a
result.

A character denoting a nonzero digit in a
decimal result. The digit may appear as a
zero if it is located to the right of a
nonzero digit; otherwise, it is a blank.

A character denoting a zero or nonzero digit
in a decimal result. .

A character that delimits fraction and
exponent in an exponential result.

A shorthand notation that specifies multiple
(n) occurrences in a phrase of one of the
following characters: +, -, $, Z, or 9.

C09-000l-07

If a FORMAT phrase specifies a format that is inappropriate to a
result, a number of asterisks (*) (corresponding to the number of
characters specified by the phrase) is returned in place of the
result to indicate an error.

The following table shows results specified by various example
FORMAT phrases:

FORMAT Phrase Data Result
-------------------- ------- --------
(FORMAT '$$9.99') .069 $0.07
(FORMAT '$$9.99') 1095 ******
(FORMAT 'ZZ,ZZ9.99') 1095 1,095.00
(FORMAT '9.99E99') 1095 1.09E03
(FORMAT '999V99') 123.456 12346
(FORMAT '$(5).9(2)') 1 $1.00
(FORMAT '999-9999') 8278777 827-8777
(FORMAT 'ZZ,ZZ9.99-') 1095 1,095.00-

Note that the DBC/1012 truncates integers and rounds other kinds
of numbers.

5.1.3.3 Defining Headings and Summary Titles

You may change the column headings of a result (originally
defined when the table was created), as well as the titles of
summary results, using the DBC/SQL TITLE phrase.

Use TITLE in your report statement to provide more meaningful
headings for the Name and DeptNo columns and more descriptive
titles for the department subtotals and the grand total:

SELECT DeptNo (TITLE 'DeptIINumber'),
Name (TITLE 'EmployeeIIName'), Salary
FROM Employee
WHERE DeptNo IN (100, 700)
WITH SUM(Salary) (TITLE 'Dept TOTAL', FORMAT '$$$$,$$9.99')
BY DeptNo
WITH SUM(Salary) (TITLE 'TOTAL***', FORMAT '$$$$,$$9.99')
ORDER BY Name;

The TITLE phrase is enclosed by parentheses. If a FORMAT phrase
is also used for column or summary data, TITLE may share the same
set of parentheses.

Apostrophes are used to delimit the title string. Also, note the
use of a double slash (II) to break a title into separate lines.

Your result now looks like this:

C09-0001-07 5-11

85/05/20 SALARY REPORT
DEPARTMENTS 100 AND 700

Dept Employee
Number Name Salary

5.1.4

100 Chin M 38,000.00
Greene W
Jones M
Moffit H
Peterson J

Dept TOTAL

700 Brangel B
Clements D
Smith T

Dept TOTAL

TOTAL***

Printing a Report

50,000.00
35,000.00
25,000.00

$148,000.00

30,000.00
38,000.00
45,000.00

$113,000.00

$261,100.00

PAGE 1

When you are satisfied with your formatted result, you may print
it as a report. To print the report on narrow printer paper (80
characters by 55 lines), set the line width and page length
specifications by executing the following format commands:

WIDTH 80;

PAGELENGTH 55;

The WIDTH command specifies 80 characters as the maximum width
for a printed line. This command has the following effect on
your printed report:

• The report is centered on a page width of 80
characters.

• Lines wider than 80 characters are truncated.

If your report is to be printed on wide printer paper (132
characters by 55 lines), no WIDTH specification is necessary
because, by default, the report is centered on 132 characters.

5-12 C09-0001-07

If a WIDTH 80 specification is used for printing a report on wide
paper, the report is printed off-center on 80 columns. Note that
a WIDTH command may specify no fewer than 20 characters.

The PAGELENGTH command specifies up to 55 lines to a printed
page. This causes the printed report to be centered vertically
on a 55-line page of wide or narrow paper. Note that a
PAGE LENGTH 55 specification is optional because the default for
the PAGE LENGTH command is 55 lines.

The maximum line width that you may specify using WIDTH is 254
characters. Both WIDTH and PAGELENGTH commands remain in effect
until the end of the session or until changed by subsequent WIDTH
and PAGE LENGTH commands.

To cause your report to be printed when control is returned to
the interactive system, execute the PRINT command,

PRINT;

The report is printed according to system defaults determined by
your DBC/1012 installation. That is, a report file with ddname
ITEQPRTl {under TSO} or file name ITEQPRTI DATA {under CMS} is
sent to a specific printing device and its contents printed on
wide or narrow printer paper. You may override these defaults
using the TSO Allocate command or the CMS Filedef command, as
shown in Appendix D.

Note that you may execute the PRINT command by pressing the PF16
key (larger keyboard) or the PF4 key (smaller keyboard). PF
keys, discussed in Chapter 3 and Appendix C, are automatically
assigned at logon. (For complete information about the PRINT
command, refer to DBC/1012 Data Base Computer Reference Manual.)

The printed report, centered on narrow paper, looks like this:

C09-OOOl-07 5-13

85/05/20

5.2

SALARY REPORT
DEPARTMENTS 100 AND 700

Dept Employee
Number Name Salary

100 Chin M 38,000.00
Greene W
Jones M
Moffit H
Peterson J

Dept TOTAL

700 Brange1 B
Clements D
Smith T

Dept TOTAL

TOTAL***

CREATING A REPORT USING BTEQ

50,000.00
35,000.00
25,000.00

·$148,000.00

30,000.00
38,000.00
45,000.00

$113,000.00

$261,100.00

PAGE 1

BTEQ provides more comprehensive formatting capabilities than
does ITEQ. These include:

• Flexibility in defining report titles and headings

• Ability to print a footing at the bottom of each report
page

• Ability to specify a page break when data changes in a
given column

• Ability to skip one or more lines when data changes in
a given column

• Ability to fold long lines in order to compress report
width

• Flexibility in positioning summary titles

• Ability to specify column spacing, or to print a
character (such as a vertical line) between column
values

5-14 C09-0001-07

Table 5-3 lists the BTEQ commands that are used for format
specification.

Table 5-3. BTEQ Formatting Commands (1 of 2)

Command Function

.SET DEFAULTS Resets all format controls to the
default values of the BTEQ formatting
commands •

• SET ECHOREQ Specifies whether BTEQ echoes its input
to the terminal or to SYSPRINT •

• SET FOLDLINE Specifies that each line of a report be
folded (split into two or more lines) at
a specified column, to compress the
report to a smaller width •

• SET FOOTING Sets a footing for a report at the
bottom of each page •

• SET FORMAT Establishes the formatting mode for
displaying and printing selected
results •

• SET HEADING Sets a heading for a report that appears
at the top of each page •

• SET NULL Specifies a character or string that is
used to represent a null field •

• SET OMIT Specifies that a column of data returned
by the DBC/1012 not appear in a report •

• SET PAGEBREAK Begins a new page when the value of one
or more columns changes •

• SET PAGELENGTH Defines the maximum number of lines on a
printed output page •

• SET RECORDMODE Returns data as it is selected in host
computer format (usually as a
hexadecimal dump) •

• SET RETLIMIT Limits the amount of a selected result
that is printed •

• SET RTITLE Specifies a title that appears in the
heading of each page of a displayed or
printed report.

C09-OOOl-07 5-15

Table 5-3. BTEQ Formatting Commands (2 of 2)

Command Function

.SET SEPARATOR Specifies the number of spaces between
the columns of a report •

• SET SIDETITLES positions column headings and summary
titles to the left of the data that
they represent •

• SET SKIPDOUBLE Prints two blank lines when the value in
one or more columns changes •

• SET SKIPLINE Prints one blank line when the value in
one or more columns changes •

• SET SUPPRESS Specifies whether consecutive repeating
values in a selected result are printed
(or displayed) •

• SET TITLEDASHES Specifies whether a line of dash
characters is printed immediately
preceding a summary title (as shown in
the example report •

• SET TRANSLATE Specifies whether data is trans-lated
from ASCII to EBCDIC before it is
printed •

• SET UNDERLINE Prints a dashed line across the page
when the value of one or more specified
columns changes •

• SET WIDTH Sets the page width.

The complete set of BTEQ format specification commands is
described in the DBC/1012 Data Base Computer Reference Manual.
Here, BTEQ report-writing capabilities are illustrated using a
subset of BTEQ commands.

The following BTEQ job illustrates the use of BTEQ format
specification commands combined with the DBC/SQL formatting
features discussed above to create a report:

5-16 C09-000l-07

.LOGON someuser,somepassword;
DATABASE PERSONNEL;
.SET FORMAT ON;
.SET WIDTH 80;
.SET HEADING 'Total Salaries by Location, Department';
.SET FOOTING '&DATE &TIMEIIConfidentia11 IPage&PAGE';
.SET SUPPRESS ON 1,2;

SELECT Loc (TITLE 'Location'),
Department.DeptNo (TITLE 'Dept.IINo.'),
Name (TITLE 'Emp1oyeel/Name'),
JobTit1e (TITLE 'Position'),
Salary,
YrsExp (TITLE 'Yearsl/Experience')

FROM Department,
Employee

WHERE Loc IN ('NYC', 'ATL') AND
Salary > 15000 AND
Department.DeptNo=Emp1oyee.DeptNo

ORDER BY Loc, Department.DeptNo, Name
WITH SUM{Sa1ary){TITLE 'Total for Department &2'),

SUM{YrsExp){TITLE ' " FORMAT 'zz9')
BY Loc, Department.DeptNo

WITH SUM{Sa1ary){TITLE 'Total for Location &1'),
SUM{YrsExp){TITLE ' " FORMAT 'zz9')

BY Loc
WITH SUM{Sa1ary){TITLE 'GRAND TOTAL'),

SUM{YrsExp){TITLE ' " FORMAT 'zz9');

• LOGOFF;

The job is processed to produce the following report:

C09-0001-07 5-17

Total Salary by Location, Department

Dept. Employee Years
Location No. Name Position Salary Experience
-------- ----- ---------- ------------ ---------- ----------
ATL 500 Carter J Engineer 44,000.00 20

Inglis C Tech Writer 34,000.00 5
Marston A Secretary 22,000.00 8
Omura H Programmer 40,000.00 8
Reed C Technician 30,000.00 4
Smith T Engineer 42,000.00 10
Watson L Vice Pres 56,000.00 8

---------- ----------
Total for Department 500 268,000.00 63

---------- ----------
Total for Location ATL 268,000.00 63

NYC 100 Chin M Controller 38,000.00 11
Greene W Payroll Ck 32,000.00 15
Jones M Vice Pres 50,000.00 13
Moffit H Recruiter 35,000.00 3
Peterson J Payroll Ck 25,000.00

-------_ ... - ----------
Total for Department 100 180,500.00 47

300 Leidner P Secretary 23,000.00 13
Phan A Vice Pres 55,000.00 12
Russell S President 65,000.00 25

---------- ----------
Total for Department 300 143,000.00 50

700 Brangel B Salesperson 30,000.00 5
Clements D Salesperson 38,000.00 9
Smith T Manager 45,000.00 10

---------- ----------
Total for Department 700 113,000.00 24

---------- ----------
Total for Location NYC 436,500.00 121

---------- ----------
GRAND TOTAL 704,500.00 184

85/05/29 11:41 Confidential Page 1

5-18 C09-0001-07

In this example, the DBC/sQL script consists of a SELECT
statement. BTEQ commands and their functions are:

• LOGON

Logs the user on to a BTEQ session.

• SET FORMAT

Activates BTEQ format commands.

• SET WIDTH

Specifies that the report be centered on 80 characters
(narrow printer paper).

• SET HEADING

Causes the specified heading to be centered on the
report page. (Use the II character to divide the
heading into up to three separate, centered lines. Use
the !! character to separate each line into up to three
separate sections, the first left-justified, the second
centered, and the third right-justified.) A BTEQ SET
RTITLEcommand (similar to the ITEQ SET RTITLE command)
is also available for report headings.

• SET FOOTING

Prints a report title at the bottom of each report
page, flanked on the left by current date and time and
on the right by page number.

• SET SUPPRESS

Suppresses repeating values in column 1 (entitled
"Location") and column 2 (entitled Dept. No.).

• LOGOFF

Terminates the DBC/l012 session without exiting BTEQ.

The BTEQ substitution feature (&) is used to insert the column 2
value in the first subtotal line, the column 1 value in the
second subtotal line.

C09-000l-07 5-19

5.3 SUMMARY AND PREVIEW

This chapter showed you how to format a report using ITEQ or BTEQ
commands and DBC/SQL features. The next chapter shows you how to
compose a DBC/SQL SELECT statement so that you can query data
stored on the DBC/IOl2.

5-20 C09-OOOl-0?

CHAPTER 6 QUERYING TABLE DATA

The DBC/SQL SELECT statement lets you query (request data from)
tables and views in a DBC/lOl2 data base. (A view, described in
Chapter 7, is a pseudo-table that lets you see portions of
tables, or combined tables and views.) SELECT is used in the
same way for tables or views.

The examples in this and subsequent chapters are based on the
Personnel data base introduced in Chapter 1. An example
statement is followed immediately by the result. An ellipsis (•
• •) means that a series of elements could be continued or
repeated.

For your convenience, a foldout copy of the entire sample
Personnel data base is provided in Appendix A.

6.1 STRUCTURING A DBC/SQL STATEMENT

A DBC/SQL statement normally consists of a statement keyword,
column names, data base name, table name, and optional clauses
introduced by keywords. A statement is terminated by a
semicolon. For example, in

SELECT DeptNo, Name, Salary FROM Personnel.Employee
WHERE DeptNo IN (100, 500)
ORDER BY DeptNo, Name;

SELECT is the statement keyword. "DeptNo" , "Name", and "Salary"
are column names. "Personnel" is the data base name, "Employee"
the table name. These names constitute the "select list" for the
statement. "WHERE DeptNo IN (100, 500)" and "ORDER BY DeptNo,
Name" are optional clauses that are introduced by the keywords
"WHERE" and "ORDER BY".

A DBC/SQL statement may be punctuated as follows: a period (.)
separating the data base name from the table name, and the table
name from the first column name (except for SELECT); a comma (,)
separating subsequent column names in the select list, or column
names or parameters in an optional clause.

You may enter any of these statement components in any
combination of uppercase and lowercase letters, for example,

employee EMPLOYEE eMpLoYeE

DBC/SQL recognizes all combinations as long as they are spelled
correctly. For emphasis in this guide, keywords appear in
uppercase letters, user-defined names in initial capitals and
lowercase letters.

C09-OOOl-07 6-1

Sets of single, double, quadruple (and so on) apostrophes are
used in DBC/SQL statements to enclose character strings and
constants. For example, in the statement,

MODIFY USER Inglis AS
STARTUP = 'ECHO' 'SET PFl ""SPLIT:"":":

ECHO "SET PF2 ""JOIN:"":";';

sets of apostrophes are used to denote, for example, that the
SPLIT command is nested within the SET PFI command, the SET PFI
command nested within the ECHO statement, and ECHO within the
MODIFY USER statement.

Thus, the SPLIT command is set off by quadruple apostrophes
("") to distinguish it from the SET PFI command, which is set
off by double apostrophes (") to distinguish it from the ECHO
statement, which is set off by single apostrophes (') to
distinguish it from the MODIFY USER statement.

Other examples of the use of apostrophes in a string are:

'Tab "A'" , 'Tab 'A'" 'Smi th' 's'

6.2 ESTABLISHING A DEFAULT DATA BASE

During a session with the DBC/I012, you may repeatedly query,
define, or manipulate data from the same data base. To avoid
keying the data base name every time you enter a DBC/SQL
statement, define a default data base by specifying its name in a
DATABASE statement. Once defined, a default data base remains in
effect until the end of a session or until it is replaced by a
subsequent DATABASE statement.

After you establish a default data base, DBC/SQL automatically
supplies the name of the data base every time you enter a
statement without specifying a data base name. For example,
after entering the following statement,

DATABASE Personnel;

you may enter the SELECT statement above in the following form:

SELECT DeptNo, Name, Salary FROM Employee
WHERE DeptNo IN (100, 500)
ORDER BY DeptNo, Name;

To establish a default data base, you must have some privilege on
a data base, macro, table, user, or view in that data base.
(Privileges are discussed in Chapter 10.)

6-2 C09-0001-07

During an ITEQ session, you may define a default data base for
subsequent ITEQ sessions. Enter a MODIFY USER statement with a
DEFAULT DATA BASE clause that specifies the name of a data base
that will be invoked each time you log on. For example, the
following statement automatically establishes Personnel as
Peterson's default data base at the next logon:

MODIFY USER Peterson AS
DEFAULT DATABASE = Personnel ;

(The MODIFY USER statement is described in Chapter 10.)

Henceforth, the statement examples in this guide assume that you
have established Personnel as your default data base.

6.3 SELECTING COLUMNS

To get data from a data base, you use the SELECT statement. In
the SELECT statement, you specify the table columns from which to
get the data, the data base that you want (if you have not
already established a default data base), and the table (or
tables) that you need within that data base.

For example, to request all the data in the Name, Salary, and
JobTitle columns of the Employee table, enter:

SELECT Name, Salary, JobTitle FROM Employee;

C09-0001-07 6-3

Name Salary JobTitle
------------ ---------- ----------
Newman P 28,600.00 Test Tech
Chin M 38,000.00 Controller
Aguilar J 45,000.00 Manager
Russell S 65,000.00 President
Clements D 38,000.00 Salesperson
Kemper R 29,000.00 Assembler
Inglis C 34,000.00 Tech writer
Leidner P 23,000.00 Secretary
Smith T 45,000.00 Manager
Watson L 56,000.00 Vice Pres
Smith T 42,000.00 Engineer
Carter J 44,000.00 Engineer
Phan A 55,000.00 Vice Pres
Regan R 44,000.00 Purchaser
Greene W 32,500.00 Payroll Ck
Marston A 22,000.00 Secretary
Moffit H 35,000.00 Recruiter
Reed C 30,000.00 Technician
Omura H 40,000.00 Programmer
Brangle B 30,000.00 Salesperson
Peterson J 25,000.00 Payroll Ck

Note that the left-to-right order of the columns in a result is
determined by the order in which the column names are entered in
the statement. Note also that, as long as a statement contains
the correct separators (. , i), the spacing between statement
components may vary. For example, the statement above could be
entered as:

SELECT Name, Salary,JobTitle FROM Employee;

To request all the data in the Employee table, enter:

SELECT * FROM Employee;

The asterisk character (*) specifies that the data in all columns
of the table be returned. The result is the Employee table shown
in Appendix A.

When you are entering a SELECT statement, you may abbreviate
SELECT to SEL. For example, to SELECT all the data in the Name
and EdLev columns in the Employee table, you may enter the
statement as:

SEL Name, EdLev FROM Employee;

6-4 C09-000l-07

6.4 SELECTING ROWS

To get data from specific rows of a table, you use the WHERE
clause of the SELECT statement. That portion of the clause
following the keyword WHERE causes DBC/SQL to search for rows
that satisfy the specified condition. For example, to get the
name, salary, and title of each employee in Department 100, the
WHERE clause is used as follows:

SELECT Name, Salary, JobTitle FROM Employee
WHERE DeptNo = 100;

Name Salary JobTit1e
------------ ---------- ----------
Chin M 38,000.00 Controller
Greene W 32,500.00 Payroll Ck
Moffit H 35,000.00 Recruiter
Peterson J 25,000.00 Payroll Ck

Note the use of the = comparison operator to specify the search
condition in this WHERE clause. The comparison operators listed
in Table 6-1 are routinely used to specify WHERE search
conditions.

Form

Table 6-1. Comparison Operations

Meaning

value1 = va1ue2
value1 > value2
va1uel < va1ue2
valuel <> va1ue2
valuel -,= va1ue2
value1 <= value2
valuel >= value2
valuel [NOT]

BETWEEN va1ue2
AND value3

valuel is equal to value2
valuel is greater than value2
valuel is less than value2
valuel and va1ue2 are not equal
valuel and value2 are not equal
valuel is less than or equal to value2
valuel is greater than or equal to value2
valuel is greater than or equal to value2

and less than or equal to value3

The following sections tell you how to use DBC/SQL features in a
SELECT statement to:

• Specify the order in which a result is to be returned

• Eliminate duplicate rows in a result

C09-000l-0? 6-5

• Return data that satisfies several search conditions

• Return data that satisfies one of several search
conditions

• Narrow a search condition

• Return data that matches certain values and character
combinations

• Return values within a specified range

• Return values that contain specific combinations of
characters

• Return data that satisfies a calculated condition

6.4.1 Specifying Order (ORDER BY)

You can specify the sequence of returned data by using the ORDER
BY clause of the SELECT statement. For example, to list the name
and years of experience of each employee in Department 600 in
ascending order of seniority, enter:

SELECT Name, YrsExp FROM Employee
WHERE DeptNo = 600
ORDER BY YrsExp;

Name YrsExp

Newman P 6
Kemper R 7
Regan R 10
Aguilar J 11

You may reference more than one column in an ORDER BY clause and
specify an ascending (ASC) or descending (DESC) order. Ascending
order is the default.

For example, to list the department numbers, names, and years of
experience of all employees in ascending order of department
number (the default) and descending order of seniority, enter the
statement,

6-6 C09-0001-07

SELECT DeptNo, Name, YrsExp FROM Employee
ORDER BY DeptNo, YrsExp DESC:

DeptNo Name YrsExp
------ ------------ ------

100 Greene W 15
100 Jones M 13
100 Chin M 11
100 Peterson J 5
100 Moffit H 3
300 Russell S 25
300 Leidner P 13
300 Phan A 12

6.4.2 Eliminating Duplicate Rows (DISTINCT)

The DISTINCT keyword allows you to specify that no two entries in
a result be alike. For example, if you wanted a listing of
employee titles for Department 500, the following statement,

SELECT JobTitle FROM Employee
WHERE DeptNo = 500:

would provide it. However, because there are two engineers in
Department 500, there would be two "Engineer" entries.

To eliminate the duplicate row, enter the statement as follows:

SELECT DISTINCT JobTitle FROM Employee
WHERE DeptNo = 500 :

C09-0001-07 6-7

JobTitle

Engineer
Programmer
Secretary
Tech Writer
Technician
Vice Pres

6.4.3 Satisfying Several Conditions (AND)

You may specify several search conditions by using the logical
operations listed in Table 6-2 in the WHERE clause of the SELECT
statement.

Table 6-2. Logical Operations

Operation Function

WHERE (condition) AND
(condition) AND.

WHERE (condition) OR
(condition) OR •••

WHERE (condition) AND NOT
(condi tion). • •

Specifies a number of conditions
that must be satisfied

Specifies a number of conditions,
one of which must be satisfied

Specifies a condition that must,
and one that must not, be
satisfied

The AND operator can be used to link several search conditions in
a WHERE clause. For example, to list the names and salaries of
employees in Department 100 who earn more than $30,000 per year,
enter:

6-8

SELECT Name, Salary FROM Employee
WHERE DeptNo = 100 AND Salary> 30000;

C09-000I-07

Name

Chin M
Greene W
Moffit H

6.4.4

Salary

38,000.00
32,500.00
35,000.00

Satisfying One of Many Conditions (OR)

Use the logical operator OR in a WHERE clause to specify one of
two search conditions for selecting table rows. For example, to
list the names, salaries, marital status, and sex of employees
who are either women (F) or single (S), enter:

SELECT Name, Salary, MStat, Sex FROM Employee
WHERE Sex = 'F' OR MStat = 's' :

Name Salary MStat Sex
------------ ---------- -----

Newman P 28,600.00 M F
Chin M 38,000.00 M F
Watson L 56,000.00 S M
Marston A 22,000.00 M F
Moffit H 35,000.00 W F
Inglis C 34,000.00 S M
Leidner P 23,000.00 M F
Smith T 45,000.00 S F
Brangle B 30,000.00 S F
Phan A 55,000.00 M F
Regan R 44,000.00 M F
Omura H 40,000.00 S M

6.4.5 Narrowing a Search Condition (NOT)

Because it is sometimes easier to specify search conditions that
you don't want used in selecting rows, use the NOT logical
operator to narrow the search. For example, to get the name,
salary, department number, and marital status of each employee in
Departments 100 or 500 who is not married, enter the following
query:

C09-0001-07 6-9

SELECT Name, Salary, DeptNo, MStat FROM Employee
WHERE (DeptNo = 100 OR DeptNo = 500) AND MStat NOT = 'M';

Name Salary DeptNo MStat
-------------- ---------- ------ -----
Watson L 56,000.00 500 S
Moffit H 35,000.00 100 W
Inglis C 34,000.00 500 S
Omura H 40,000.00 500 S
Reed C 30,000.00 500 D

The NOT keyword narrows the selection to employees who are
single, widowed, or divorced.

In the clauses above, there are actually three search conditions:

1. DeptNo = 100

2. DeptNo = 500

3. MStat NOT = 'M'

The parentheses cause the first two search conditions, "DeptNo =
100" and "DeptNo = 500," to be considered together. The
composite result of these two conditions is then evaluated in
terms of the third condition.

Because, by default, the NOT operator is evaluated first in a
statement, then AND, then OR, the statement above would have the
same result without the parentheses. However, this is not always
true. Parentheses are often needed to group search conditions in
order to override this default precedence.

Consider the following statement, containing the same three
search conditions:

SELECT Name, Salary, DeptNo, MStat FROM Employee
WHERE DeptNo = 100 OR (DeptNo = 500 AND MStat NOT = 'M');

without parentheses, the result of this statement is the same as
that of the first. However, with parentheses to group them, the
conditions "DeptNo = 500" and "NOT MStat = 'M'" are considered
together. The result of this composite condition -- unmarried
employees in Department 500 -- is merged with the result of the
first condition: all employees in Department 100, married and
unmarried.

6-10 C09-000l-07

Name Salary DeptNo MStat
------------ ---------- ------ -----
Chin M 38,000.00 100 M
Watson L 56,000.00 500 S
Moffit H 35,000.00 100 W
Inglis C 34,000.00 500 S
Omura H 40,000.00 500 S
Greene W 32,500.00 100 M
Reed C 30,000.00 500 D
Peterson J 25,000.00 100 M

6.4.6 Obtaining Matching Values (IN, NOT IN)

Use the [NOT] IN set operators in a WHERE clause to test
membership in a conditional expression. The IN operator matches
row data:

• Against each member of a directly specified set of
values or character combinations.

• Against a set of values or character combinations
specified as the result of a SELECT statement.

The NOT IN operator selects row data that does not match the
values or character combinations in a set.

You may substitute ~= ALL or <> ALL for the NOT IN operator
in all DBC/SQL statements. You may substitute IN ANY or = ANY
for the IN operator in all DBC/SQL statements.

Within a WHERE clause, [NOT] IN may be used in one of the three
types of express~ons shown in Table 6-3.

C09-000l-0? 6-11

Table 6-3. Expressions Using Set Operators

Expression Meaning

1. value [NOT] IN (constant,
constant, •••)

2. value [NOT] IN (SELECT
statement)

3. (valuel,value2, •••)
[NOT] IN (SELECT
statement)

The value is [is not]
included in the set
specified

The value is [is not]
included in the result
of a SELECT statement

The values are [are not]
included in the result of
a SELECT statement

The first type of expression is illustrated using the following
statement:

SELECT Name, Salary, DeptNo FROM Employee
WHERE DeptNo IN (100, 500) AND MStat NOT = 'M';

In the WHERE clause of this statement, IN selects rows of the
Employee table in which department number corresponds to (is IN)
100 or 500.

Note that the result of this statement is identical to that of
the statement above:

SELECT Name, Salary, DeptNo FROM Employee
WHERE (DeptNo = 100 OR DeptNo = 500) AND MStat NOT = 'M';

To select rows of the Employee table in which department number
does not correspond to (is NOT IN) 100 or 500, enter:

SELECT Name, Salary, DeptNo FROM Employee
WHERE DeptNo NOT IN (100, 500);

In the second type of expression, a set is defined as the result
of a SELECT statement. For example, if you wanted a list of
company employees who work in New York, you could enter the
following statement:

SELECT Name FROM Employee
WHERE DeptNo IN

(SELECT DeptNo FROM Department
WHERE Loc='NYC');

The expression in the WHERE clause of this statement asks the
DBC/1012 to locate employee names whose department numbers match
(are IN) the set of department numbers that result from entering
the SELECT statement in parentheses.

6-12 C09-0001-07

To illustrate the third type of expression using set operators,
we imagine that the identifier for Department is contained in two
columns, DeptNoA and DeptNoB. To select the names of employees
whose row data for DeptNoA and DeptNoB matches the identifiers of
departments located in New York, enter:

SELECT Name FROM Employee
WHERE (DeptNoA,DeptNoB) IN

(SELECT DeptNoA, DeptNoB FROM Department
WHERE Loc='NYC');

Note that when the values in two or more columns are matched
against members of a specified set, the column names are enclosed
in parentheses.

6.4.7 Specifying a Range (BETWEEN ••• AND)

To select values that fall within a certain range, use the
BETWEEN ••• AND comparison operator in the WHERE clause of the
SELECT statement. For example, to get a list of names, salaries,
and titles for employees in Department 500 who earn between
$30,000 and $40,000 per year, enter the following statement:

SELECT Name, Salary, JobTitle FROM Employee
WHERE DeptNo = 500 AND Salary BETWEEN 30000 AND 40000;

Name Salary JobTitle
------------ -------~-- ----------
Inglis C 34,000.00 Tech Writer
Omura H 40,000.00 Programmer
Reed C 30,000.00 Technician

Note that BETWEEN ••• AND includes the range values themselves.

The logical operator NOT may be used with BETWEEN ••• AND. For
example, the clause,

WHERE DeptNo = 500 AND Salary NOT BETWEEN 30000 AND 40000;

would list the names of employees who earn less than (and not
including) 30,000 and more than (and not including) 40,000.

C09-000l-07 6-13

6.4.8 Matching Characters (LIKE)

At times, you may want to search for a specific character
"string", or a combination of characters that partially match a
given string. To obtain data that contains specific combinations
of characters, use the LIKE partial-string operator.

The form for using the LIKE partial-string operator is:

expr [NOT] LIKE 'pattern-string'

where pattern-string may contain any character string. You may
use the characters "%" and "_" anywhere in "pattern-string". The
"%" character represents any string of zero or more characters.
The "_" character represents any single character. The following
examples illustrate uses of the LIKE partial-string operator.

For example, to get a listing of all employees whose last names
begin with "P", enter the following query:

Name

SELECT Name FROM Employee
WHERE Name LIKE 'P%';

Phan A
Peterson J

To select a list of all employees with the letter "a" as the
second letter in their last name, enter the following query:

Name

SELECT Name FROM Employee
WHERE Name LIKE '_a%' ;

Marston A
Watson ·L
Carter J

In the preceding statement, both the "%" character and the" "
character are used. If the partial-string is changed to " a-",
for example,

6-14 C09-OOOI-07

SELECT Name FROM Employee
WHERE Name LIKE '_a_' ;

only three-character last names, with "A" as the second letter,
would be returned. Because none of the employee names contained
in the Employee table fit this description, no rows are returned.

The NOT operator also may be used with LIKE. The following
clause,

WHERE Name NOT LIKE 'P%';

would give you the names of all employees except Peterson and
Phan.

6.4.9 Satisfying a Calculated Condition

You may select rows that satisfy a calculated condition by
including arithmetic operators in the WHERE clause of the SELECT
statement. Arithmetic operators are listed in Table 6-4.

Table 6-4.

Operator

+

*
/
MOD
**

Arithmetic Operators

Meaning

add
subtract
multiply
divide
modulus (remainder)
exponentiation

(The MOD operator calculates the remainder in a division
operation. For example, 60 MOD 7 = 4: 60 divided by 7 equals 8,
with a remainder of 4.)

For example, to list the names and salaries of employees in
Department 600 who earn less than $2500 per month, enter the
following:

SELECT Name, Salary FROM Employee
WHERE DeptNo = 600 AND Salary/12 < 2500;

C09-000l-07 6-15

Name

Newman P
Kemper R

Salary

28,600.00
29,000.00

In the statement above, "Salary/12" is an arithmetic expression.
A WHERE clause may contain any number of arithmetic expressions.
Expressions may be grouped in parentheses to specify precedence,
as described in the following section.

6.4.10 Searching For NULL Values

At times, you may want to search for, or possibly exclude, null
values in your search condition. To determine whether or not
null values are contained in row data, use the IS [NOT] NULL
operator.

The IS NULL operator tests row data for the presence of null
values. For example ~ to search for, the names of all employees
who have a null value in the DeptNo column, you could enter the
following statement:

SELECT Name FROM Employee WHERE DeptNo IS NULL;

The result of this query is the names of all employees with a
null value in the DeptNo field. Because all employees contained
in the Employee table have been assigned to a department, no rows
will be returned.

NOw, if you wished to exclude null values from the results of a
query, you would use the NOT NULL Operator. For example, to
search for the names of all employees with a value other than
null in the JobTitle column, you would enter the following
statement:

SELECT Name FROM Employee WHERE JobTitle IS NOT NULL;

The result of this query is the names of all employees with a
value other than null in the JobTitle column. When you enter
this stat$ment, the names of all employees are returned because
every employee has been given a jobtitle.

If you wish to search for null and non-null values in the same
statement, the search condition for null values must be included
separately from any other search conditions. For example, if you

6-16 C09-000l-07

wanted to select the names of all employees with the jobtitle of
vice pres, manager, or null, you would enter the following
statement:

6.4.11

SELECT Name, JobTitle FROM Employee
WHERE JobTitle IN ('Manager' or 'Vice Pres')
OR (Jobtitle IS NULL);

Combining SELECT statements

Set operators allow you to manipulate the answers to two or more
SELECT statement by combining the statements into a single query.
That is, each SELECT statement is executed separately to produce
a result (answer set), which consists of a set of rows. The
specified set operator is then applied to the answer sets and a
final result is returned.

The set operators and their functions are listed in the following
table.

Operator

UNION

INTERSECT

MINUS

Function

Combines the results of two or more
SELECT statements

Returns result rows that are in all of
answer sets generated by individual SELECT
statements

Subtracts the result rows generated by the
second SELECT statement from the result rows
generated by the first SELECT statement

In order for a group of SELECT statements to be connected by set
operators, the statements must follow these rules:

• All SELECT statements in the query must have the same
number of expressions. For example, if the first
SELECT statement contains 3 expressions, all succeeding
SELECT statement must contain 3 expressions.

• The data types of corresponding items in each SELECT
statement must be compatible. That is, if the first
column in the first SELECT statement is character data
type, then each succeeding SELECT statement must be
character data type.

• Each SELECT statement must identify the table that data
is to come from, even if all SELECT statements
reference the same table.

C09-OOOl-07 6-17

• An ORDER BY clause (as described above) may only be
used on the 1ast SELECT statement and specify the order
of the final result.

• An ORDER BY clause may only contain numeric constants.
For example, to order by the first column in your
result set, ORDER BY 1. A GROUP BY clause (as
described below) is only allowed in an individual
SELECT statement and applies only to that SELECT
statement and not to the result.

• A set operator cannot be used in a subquery.

• A set operator cannot be used in a view definition.

6.4.11.1 UNION Operator

You may use the UNION operator to combine the results of two or
more SELECT statements.· That is, the "answers" to all SELECT
statement are combined into a single result and any duplicate
rows are eliminated from the result.

For example, to determine the department number and names of all
employees in departments 500 and 600, you could enter the
following statement:

6-18

SELECT DeptNo, Name FROM Employee
WHERE DeptNo = 500

UNION

SELECT DeptNo, Name FROM Employee
WHERE DeptNo = 600 ;

C09-000l-07

DeptNo Name

500 Carter J
500 Inglis C
500 Marston A
500 Omura H
500 Reed C
500 Smith T
500 Watson L
600 Aquilar J
600 Kemper R
600 Newman P
600 Regan R

The UNION operator is particularly useful if you need to merge
lists of values taken from two or more tables. For example,
suppose departments 500 and 600 had their own Employee tables.
The following query could be used to select data from two
different tables and merge that data into a single list:

SELECT Name, DeptNo, FROM Employee_Dept_500

UNION

SELECT Name, DeptNo FROM Employee_Dept_600 ;

6.4.11.2 INTERSECT Operator

The INTERSECT operator returns only those rows that are in all of
the answer sets generated by the individual SELECT statements.

For example, if you needed to know the names of employees in
department 500 who are engineers, you could enter following
statement:

SELECT Name, DeptNo FROM Employee WHERE DeptNo = 500

INTERSECT

SELECT Name, DeptNo FROM Employee WHERE JobTitle = 'Engineer

C09-000l-07 6-19

EmpNo Name

10004 Smith T
10016 Carter J

In this statement, the two answer sets are compared and only
those rows which are contained in both answer sets are
returned.

You may also use the INTERSECT operator to compare lists of
values derived from two or more tables to determine those values
common to each of the tables. For example, if the following two
tables are used,

Table: SPart Table: SLocation

Column: SuppNo PartNo Column: SuppNo SuppLoc
------ ------ ------ -------

Row: 100 P2 Row: 100 London
101 PI 101 London
102 PI 102 Toronto
103 P2 103 Tokyo

then you may use the following query to select supplier
number (SuppNo) for suppliers located in London (SuppLoc)
who supply part number 'PI' (PartNo).

6-20

SELECT SuppNo FROM SLocation WHERE SuppLoc = 'London'

INTERSECT

SELECT Spart.SuppNo FROM SPart SLocation
WHERE Spart.PartNo = 'PI' AND
SLocation.SuppNO = SPart.SuppNo :

SuppNO

101

C09-0001-07

Note that, because this statement references two tables, each
column name is qualified.by its corresponding table name.

6.4.11.3 MINUS

You may use the MINUS operator to determine which of the rows
returned by the first SELECT are not contained in the second
SELECT statement. That is, the rows returned by the second
SELECT statement are subtracted from the rows returned by the
first SELECT statement.

For example, you could use the following query (reference the
SLocation and SPart tables, above) to determine the suppliers in
London who do not supply part 'PI'.

6.5

SELECT SuppNo FROM SLocation WHERE SuppLoc = 'London'

MINUS

SELECT SPart.SuppNo FROM SPart SLocation
WHERE SPart.PartNo = 'PI' AND
SPart.SuppNo = SLocation.SuppNo;

SuppNo

100

OBTAINING RESULTS ARITHMETICALLY

Using arithmetic expressions or aggregate operations,
you may enter a query that calls for
data to be operated upon mathematically.

6.5.1 Using Arithmetic Expressions

Suppose that you desire to raise the monthly salary level for each
employee in the preceding example to at least $2500 by giving each
an annual merit increase of $200 for
each year spent with the company. To determine how this would work,
enter the following statement:

C09-000l-07 6-21

SELECT Name, (Salary + (YrsExp * 200»/12
(NAMED Projection) FROM Employee
WHERE DeptNo = 600 AND Projection < 2500 ;

Name Projection

Newman P 2483.33

In this statement, parentheses are used to cause the operation
YrsExp * 200 to be performed first, its result added to Salary,
and the total to be divided by 12.

By default, DBC/SQL:

• Performs arithmetic expressions from left to right

• Performs exponentiation, multiplication and division
before addition and subtraction in any expression

Therefore, the parentheses enclosing the dividend are not
strictly necessary. However, if parentheses were not used at all
to group operations in this expression, the operation YrsExp *
200 would be divided by 200 and the result added to Salary,
producing an erroneous result.

Note the use of the NAMED phrase in this statement to associate
the arithmetic expression (Salary + (YrsExp * 200)/12) with the
name "Projection". This enables you to refer to the expression
by this name in the WHERE clause, rather than to type the entire
expression again.

Note that the Projection result is formatted without a comma
. separating thousands from hundreds. To specify a comma (or other

format character) in such a result, a FORMAT phrase must be
included in the SELECT statement, as illustrated in Chapter 5.

6.5.2 Using Aggregate Operations

DBC/SQL has several built-in functions to provide standard
aggregate operations. The aggregate operators that are used to
specify these operations are listed in Table 6-5.

6-22 C09-0001-07

Table 6-5. Aggregate Operators

Operator Function

AVG Provides the average of the values

COUNT Provides the count of the values

MAX Provides the maximum value

MIN Provides the minimum value

SUM Provides the sum of the values

For example, the following statement requests the total annual
payroll, the minimum salary, and the maximum salary for all
employees.

SELECT SUM(Salary), MIN(Salary), MAX(Salary) FROM Employee;

Sum(Salary) Minimum(Salary) Maximum(Salary)

SOl,lOO.OO 22,000.00 65,000.00

In this statement, SUM totals all values in the salary column,
MIN locates the minimum salary, and MAX locates the maximum
salary.

You may perform an arithmetic operation on the result of an
aggregate operation within the same statement. For example,

SELECT SUM(Salary*l.OS) FROM Employee;

However, you may not perform an aggregate operation on the result
of another. For example, the expression,

AVG(MAX Salary)

is not allowed.

Although the other aggregate operators are used only with numeric
data, the COUNT operator may be used with any data type. You use
the COUNT operator in a SELECT statement in one of three forms:

C09-000l-0? 6-23

1. COUNT(expression)

As a prefix operator, COUNT totals the non-null
occurrences of an expression.

2. COUNT(*)

As a standalone operator, COUNT(*) totals the number
of rows in each group of a GROUP BY clause. If the
statement contains no GROUP BY clause, the system
assumes a single group, which consists of all rows
that meet the qualifications of the WHERE clause.

3. COUNT(DISTINCT expression)

As a prefix operator, COUNT DISTINCT allows aggregate
calculations that are based on the unique occurrences
of an expression.

For example, as a prefix operator in the following statement:

SELECT COUNT{Sex) FROM Employee
WHERE Sex = 'F';

COUNT provides a total of women Employees.

Count{Sex)

9

In the following examples, assume that in addition to the 21
employees in the Employee table, there are two new employees who
have not yet been assigned to departments (that is, the row for
each new employee has a null department number). As a prefix
operator in the following statement,

SELECT COUNT(DeptNo) FROM Employee;

COUNT returns a total of the non-null occurrences of department
number. Thus, the two new employees are not reflected in the
figure.

6-24 C09-000l-07

Count (DeptNo)

21

As a prefix operator in the statement,

SELECT DeptNo, COUNT (DeptNo) FROM Employee
GROUP BY DeptNo
ORDER BY DeptNo;

COUNT provides for each department a total of rows that have non
null department numbers. Again, the two new employees are not
included in the count.

DeptNo Count(DeptNo)

100 4
300 3
500 7
600 4
700 3

To include the new employees in a count by department, use
COUNT(*) as a standalone operator in the following statement:

SELECT DeptNo, cOUNT(*) FROM Employee
GROUP BY DeptNo
ORDER BY DeptNo;

DeptNo Count

2
100 4
300 3
500 7
600 4
700 3

C09-000l-07 6-25

To find out how many departments exist in the Employee table, use
COUNT (DISTINCT) as a prefix operator in the following statement:

SELECT COUNT (DISTINCT DeptNo) FROM Employee;

Count(Distinct(DeptNo»

5

6.6 OPERATING ON DATES

In the CREATE TABLE statement for the Employee table in Chapter
7, the data type for the DOB (Date of Birth) column is defined as
DATE. The following kinds of operations may be performed on data
that has the DATE data type:

• Arithmetic (addition, subtraction, and division)

• Comparison

• Conversion

6.6.1 Using Arithmetic Operations

To list women employees who are currently over 40 years old, the
following statement might be entered:

SELECT Name, DOB FROM Employee
WHERE DATE - DOB > 40*365
AND Sex = 'F';

Name DOB

Smith T Jul 29 1946
Moffit H Nov 16 1945

6-26 C09-000l-07

Note that the built-in value for DATE that is used in the
expression is the current date.

To project a date 93 days from Moffit's date of birth, enter:

SELECT Name, DOB + 93 FROM Employee
WHERE Name = 'Moffit H';

Name (DOB+93)

Moffit H 46/02/17

6.6.2 Using Comparison Operations

To list employees who were born between March 7, 1938, and August
25, 1942, the following query could be entered:

SELECT Name, DOB FROM Employee
WHERE DOB BETWEEN 380307(DATE) AND 420825(DATE)
ORDER BY DOB;

Name DOB

Inglis C Mar 07 1938
Peterson J Mar 27 1942

6.6.3 converting to Another Format or Notation

To change the date format displayed in the preceding example to
an alternate date format (refer to Table 7-1) modify the
statement as follows.

SELECT Name, DOB (FORMAT '99/99/99') FROM EmploY'ee
WHERE DOB BETWEEN 380307{DATE) AND 420825{DATE)
ORDER BY DOB;

C09-000l-07 6-27

Entering the modified statement changes the display as follows:

Name DaB

Inglis C 38/03/07
Peterson J 42/03/27

To change the display from date format to integer, modify the
statement as follows:

SELECT Name, DaB (INTEGER) FROM Employee
WHERE DOB BETWEEN 380307(DATE) AND 420825(DATE)
ORDER BY DaB;

The display is changed as follows:

Name DOB

Inglis C 380307
Peterson J 420327

6.7 CHARACTER STRING EXPRESSIONS

You can perform operations on character strings by using either
of these DBC/SQL features:

• Concatenation Operator

• String Functions

6-28 C09-000l-07

6.7.1 concatenation Operator

Concatenation considers a string containing left and right
expressions separated by II. It then forms a separate string by
concatenating the arguments.

'JobTitle' II 'Assembler'

the concatenated string is:

'JobTitle Assembler'

Concatenation operators are used to combine different
expressions. The following example illustrates usage of the
concatenation operator.

SELECT Name I I " , I I EmpNo FROM Employee;

«Name " ') EmpNo)

Newman P, 10019
Chin M, 10011
Aguilar J, 10007
Russell S, 10018-
Clements D, 10022
Kemper R, 10006
Inglis C, 10014
Leidner P, 10003
Smith T, 10021
Carter J, 10016
Phan A, 10018
Regan R, 10013
Greene W, 10017
Marston A, 10009
Moffit H, 10002
Reed C, 10010
Omura H, 10015
Brangle B, 10020
Peterson J, 10001

When a column is defined as CHAR(n) (a fixed-length data type),
some of the values stored in the column might contain trailing
blanks. To prevent trailing blanks from appearing in a
concatenated string, you may append the concatenation operator
with an optional TRIM function. The TRIM function causes
trailing blanks to be suppressed in the concatenated string. For
example, if a Names table is created that includes a First Name
and a Last_Name column containing the following information:

C09-000l-07 6-29

First Name CHAR(12) has the value of 'Mary
Last_Name CHAR(12) has the value of 'Jones

the operation,

SELECT TRIM (Last_Name) I I' 'II TRIM(First_Name)
FROM Names;

results in the string:

Jones, Mary

In this example, the seven trailing blanks at the end of the
string 'Jones ' and the eight trailing blanks at the end of
the string 'Mary , have been suppressed.

Now, when the TRIM function is removed, the statement,

SELECT Last Name I I' 'I I First Name FROM Names;

returns in the string,

Jones ,Mary

In this example, the trailing blanks are not suppressed.

6.7.2 String Functions

There are two string functions:

• SUBSTR

• INDEX

6.7.2.1 SUBSTR

The SUBSTR function returns a substring of a given string,
starting at position nl, lasting for the character length of n2:

SUBSTR (string, nl [, n2])

thus, the following SUBSTR operation:

SUBSTR ('Engineering', 1, 3)

would result in:

'Eng'

6-30 C09-000l-07

See the DBC/1012 Data Base Computer Reference Manual for the
list of rules governing the use of the SUBSTR string function.

6.7.2.2 INDEX

The INDEX function examines an initial string and a substring (a
subportion of the initial string). INDEX returns the position
number in the initial string where the substring begins. If the
substring is not found, the result is o.
For example, if the INDEX function is

INDEX('Engineer' ,'ineer')

the result would be:

4

The example below illustrates use of the INDEX string function:

SELECT Name FROM Employee WHERE INDEX(Name, , ') > 6;

The DBC/1012 returns all employee names in which the last name is
6 characters or longer:

6.8

Name

Newman P
Aguilar J
Russell S
Clements D
Kemper R
Inglis C
Leidner P
Watson L
Marston A
Carter J
Peterson J
Greene·W
Moffit H
Brang1e B

SUMMARIZING INFORMATION BY GROUPS

To refine data that is selected from a data base, you may wish to
summarize data for one or more groups. Such a summary is
accomplished by applying an aggregate operator to groups using
the GROUP BY clause of the SELECT statement to define the groups.

C09-0001-07 6-31

For example, the following statement could be used to determine
average, minimum, and maximum salaries for each department in the
company:

SELECT DeptNo, AVG(Salary), MIN(Salary), MAX(Salary)
FROM Employee
GROUP BY DeptNo
ORDER BY DeptNo;

DeptNo Average (Salary) Minimum(Sa1ary) Maximum(Sa1ary)
------ --------------- --------------- ---------------

100 32,625.00 25,000.00 38,000.00
300 47,666.67 23,000.00 65,000.00
500 38,285.71 22,000.00 56,000.00
600 36,650.00 28,600.00 45,000.00
700 37,666.67 30,000.00 45,000.00

In this example, the GROUP BY clause groups values in the Salary
column by department number. The aggregate operators AVG, MIN,
and MAX are then applied to each group.

6.8.1 Selecting Specific Groups

To further refine selected data, you may specify that 'each group
defined by GROUP BY have a certain characteristic. You specify
the characteristic 'using the HAVING clause of the SELECT
statement.

For example, to return salary statistics for only those
departments whose total salaries exceed $170,000, modify the
preceding statement as follows:

SELECT DeptNo, AVG(Salary), MIN(Sa1ary), MAX(Sa1ary)
FROM Employee
GROUP BY DeptNo
HAVING SUM(Salary) > 170000
ORDER BY DeptNo;

DeptNo Average(Salary) Minimum(Sa1ary) Maximum(Salary)

500 38,285.71 22,000.00 56,000.00

6-32 C09-0001-07

6.8.2 Selecting Specific Rows

A WHERE clause also may be used with GROUP BY and HAVING to
select rows to be included in a group result. In this case,
WHERE is evaluated before GROUP BY, which is evaluated before
HAVING.

For example, to exclude the salaries of the company president,
vice presidents, and managers in the summation above, you could
modify the statement in the following way:

SELECT DeptNo, SUM(Sa1ary), AVG(Salary),
MIN(Salary), MAX(Salary) FROM Employee
WHERE JobTit1e NOT IN ('President', 'Vice Pres',
'Manager')
GROUP BY DeptNo
HAVING SUM(Salary) > 170000
ORDER BY 1;

In this statement, the number 1 refers to the first expression
(DeptNo) in the select list. As a convenience, numbers referring
to the position of expressions in the select list may be used in
the following DBC/SQL clauses:

• ORDER BY

• WITH. • • BY

Note that when non-aggregate groups (for example, DeptNo in the
previous example) are selected along with aggregate groups, the
non-aggregate groups are always included in the GROUP BY clause.
If they are not, an error message is returned by the DBC/IOl2.

6.9 SELECTING RELATED DATA FROM SEVERAL TABLES

You may want to select data from the rows of more than one table
or view, or a combination of tables and views. The result of
such a query is called a "join". In order for different tables
and views to be joined, the tables and views must have one column
in common.

The join operation joins the tables or views on their common
column. Because more than one table or view is specified in the
statement that defines the join, the names of the columns must be
fully qualified by the names of their tables.

In the following example, the Employee and Department tables are
joined on the DeptNo column in order to find the location of a
writer.

C09-000l-07 6-33

Name

SELECT Name, JobTitle, Loc FROM Employee, Department
WHERE Employee.JobTitle LIKE '%writer%'
AND Employee.DeptNo = Department.DeptNo;

JobTitle Loc

Inglis C Tech Writer ATL

Because two tables are involved, column names are qualified by
the names of their tables. The WHERE clause is used to specify
the condition for joining the two tables:

Employee.DeptNo = Department.DeptNo

Generally, a WHERE clause should always be used.to specify a join
condition. If a join condition is not specified, an
"unrestricted join" will occur. This could result in a very long
execution time, large intermediate file generation, and an answer
set equal in size to the product of the tables involved.

6.10 SELECTING RELATED DATA FROM THE SAME TABLE

A normal join operation establishes a relationship between rows
in different tables or views. You may also want to establish a
relationship between different rows in the same table or view.
To do this, you treat the table or view as two separate tables or
views and join one to the other. This operation is called a
"self-join".

You give each pseudo-table or -view into which a self-joined
table or view is separated a temporary name. These temporary
names then allow you to distinguish between different references
to the same column.

For example, to obtain a listing of employees who have more
experience than their department managers or vice presidents, you
might treat the Employee table as two separate tables, one with
the temporary name "Workers," the other with the tempora~y name
"Managers." To return the worker's name and years of experience,
the manager's or vice president's name and years of experience,
and the department number, you would enter the following query:

6-34 C09-OOOl-07

SELECT Workers.Name, Workers.YrsExp, Workers.DeptNo,
Managers.Name, Managers.YrsExp

FROM Employee Workers, Employee Managers
WHERE Managers.DeptNo = Workers.DeptNo
AND Managers.JobTitle IN ('Manager', 'Vice Pres')
AND Workers.YrsExp > Managers.YrsExp ~
ORDER BY Workers.DeptNo;

Name YrsExp DeptNo Name YrsExp
----------- ------ ------ ------------ ------

Russell S 25 300 Phan A 12
Phan A 12 300 Phan A 12
Leidner P 13 300 Phan A 12
Reed C 4 500 Watson L 8
Smith T 10 500 Watson L 8
Inglis 5 500 Watson L 8
Watson L 8 500 Watson L 8
Marston A 12 500 Watson L 8
Omura H 8 500 Watson L 8
Carter J 20 500 Watson L 8
Newman P 6 600 Aguilar J 11
Aguilar J 11 600 Aguilar J 11
Regan R 10 600 Aguilar J 11
Kemper R 7 600 Aguilar J 11
Clements D 9 700 Smith T 10
Smith T 10 700 Smith T 10
Brangle B 5 700 Smith T 10

The "Workers" table (Greene, Carter) is listed first, followed by
the "Managers" table (Jones, Watson), as specified after the
SELECT keyword. As in the join, the WHERE clause is used to
specify the join condition.

6.11 BUILDING SEARCH CONDITIONS

Suppose you wanted the name of employee Marston's department
manager. You could obtain it by entering three separate queries:

SELECT DeptNo FROM Employee
WHERE Name = 'Marston A';

C09-0001-07 6-35

DeptNo

500

The answer to the first query, 500, provides the critical
parameter for the WHERE clause of the second query:

SELECT MgrNo FROM Department
WHERE DeptNo = 500 ;

MgrNo

10012

The answer to the second query, 10012, provides the critical
parameter for the WHERE clause of the third query:

Name

SELECT Name FROM Employee
WHERE EmpNo = 10012;

Watson L

Using the subquery feature of DBC/SQL, you may obtain the final
result of these three queries by entering a single query composed
of three subqueries. The first query above is referenced
(nested) in the WHERE clause of the second query, and the second
query is referenced in the WHERE clause of the third, as follows:

6-36 C09-0001-07

SELECT Name FROM Employee
WHERE EmpNo IN

(SELECT MgrNo FROM Department
WHERE DeptNo IN

(SELECT DeptNo FROM Employee
WHERE Name = 'Marston A'»;

The IN operator is used to reference each level of subquery.
Parentheses indicate the boundary of each subquery.

The same result could be obtained using one level, as follows:

SELECT Name FROM Employee
WHERE EmpNo IN

(SELECT MgrNo FROM Department
WHERE Employee.Name = 'Marston A'
AND Department.DeptNo = Employee.DeptNo) ;

In this case, the subquery joins the Employee and Departmertt
tables.

6.12 LOCKING A TABLE FOR ACCESS

To ensure that data is consistent (that is, that pending
transactions against the data are completed or fully backed out),
a SELECT statement places a read lock on the table or tables (or,
for a prime-key query, on one or more rows of these tables) that
contain the data that it is querying. If the SELECT statement
places a read lock on a table, the table cannot be updated while
the query is being processed.

Conversely, while table data is being updated, a write lock
causes requests for read locks to be queued. Thus, query users
may often be locked out, or cause other users to be locked out,
even if these users are not concerned with consistency.

If you are not concerned about data consistency, place an ACCESS
lock on a table before entering your SELECT statement. For
example:

LOCK TABLE Employee IN ACCESS MODE
SELECT Name,Salary,JobTitle FROM Employee
WHERE DeptNo=100;

In this example, the SELECT statement is processed concurrently
with any UPDATE statements for the Employee table.

C09-0001-07 6-37

6.13 SUMMARY AND PREVIEW

This chapter showed you how to structure a DBC/SQL SELECT
statement to obtain data from DBC/1012 data bases. The next
chapter shows you how to use DBC/SQL data definition statements
to:

• Create, modify, rename, and drop tables.

• Create and drop indexes.

• Create, rename, and drop views.

• Document tables, columns, and views.

,

6-38 C09-QOOI-07

CHAPTER 7 DEFINING AND MANAGING DATA

A DBC/1012 data base is a collection of related tables used to
organize data. All of an organization's data may be organized
into a number of data bases.

When you are established as a user of your organization's
DBC/1012 Data Base Computer, you are allocated space for your own
data base. As an owner, you may define and manage your own data.
As a DBC/I012 user, you may also be granted data definition
privileges on other data bases.

Data is defined using the following DBC/SQL data definition
statements:

• CREATE/ALTER/DROP/RENAME TABLE

• CREATE/DROP/RENAME/REPLACE VIEW

• CREATE/DROP/RENAME/REPLACE MACRO

• CREATE/DROP INDEX

• CREATE/MOD I FY/DROP/USER/DATABASE

• GRANT

• REVOKE

• GIVE

• COMMENT

• DATABASE

This chapter shows you how to use data definition statements to:

• Create, modify, rename, and drop tables

• Create and drop indexes

• Create, rename, and drop views

.' Document tables, columns, and views

The GRANT, REVOKE, and GIVE statements are discussed in Chapter
10.

Note that any data definition statement must be entered as a
single-statement request. It may not be entered as part of a
multi-statement transaction or defined as a macro. A data

C09-0001-07 7-1

definition statement may be bracketed between BEGIN TRANS~CTION
and END TRANSACTION statements as long as it is the only
statement in the transaction.

The examples in this chapter assume that you have all privileges
on the Personnel data base.

7.1 CREATING TABLES

You may define a table in a data base using the CREATE TABLE
statement. For example, enter the following statement to create
the example Employee table used in this guide:

CREATE TABLE Employee, FALLBACK
(EmpNo SMALLINT FORMAT '9(5)' BETWEEN 10001 AND 32001

NOT NULL,
Name VARCHAR(12) NOT NULL,
DeptNo SMALLINT FORMAT '999' BETWEEN 100 AND 900,
JobTit1e VARCHAR(12),
Salary DECIMAL(8,2) FORMAT 'ZZZ,ZZ9.99'

BETWEEN 1.00 AND 999000.00,
YrsExp BYTEINT FORMAT 'Z9' BETWEEN -99 AND 99,
DOB DATE FORMAT 'MMMBDDbYYYY' NOT NULL,
Sex CHAR(l) UPPERCASE NOT NULL,
Race CHAR(l) UPPERCASE,
MStat CHAR(l) UPPERCASE,
EdLev BYTEINT FORMAT 'Z9' BETWEEN 0 AND 22 NOT NULL,
HCap BYTEINT FORMAT 'Z9' BETWEEN -99 AND 99)

UNIQUE PRIMARY INDEX (EmpNQ)
INDEX(Name);

In the above CREATE TABLE statement, you specify the name of the
new table .. the field names of its columns, the attributes of its
columns, and any index and fallback options.

7.1.1 Specifying Column Attributes

You specify each column name after the table has been named and
the optional FALLBACK option has been specified. Following each
column name, you specify the attributes of the data to be
included in the column, enclosed by parentheses. Attributes
include:

7-2

• Data Type

A specification of the kind of data to be included in
the column.

C09-0001-07

• Default Control

A value to be included in the column if no value is
explicitly entered, or a control for null values.

• Case

A specification of how character data is to be stored
and displayed.

• Range

An upper and lower limit on numeric data that is
stored.

• Format

A specification of how numeric data is to be stored and
displayed.

• Title

A title that is displayed instead of the column name.

C09-OOOI-07 7-3

7.1.1.1 Specifying Data Type

Data type 'is the only attribute that is required for a column.
Data type is specified using the phrases listed in Table 7-1.

Table 7-1. Data Type Phrases (1 of 2)

Phrase Description

DECIMAL(n,m) A decimal number of n digits, with
m of these digits to the right of
the decimal point. If n,m is not
specified, "DECIMAL(S,O)" is
assumed. The accuracy of a
decimal expression that involves
division (for example, averaging)
is not guaranteed.

FLOAT A floating-point value represented
in sign/magnitude form (for example,
3.25ElO).

INTEGER A 32-bit signed, binary whole number.

BYTE(n) A fixed-length binary string of n
bytes. (A byte is an a-bit element
of data that is stored on the
DBC/lOl2 without being translated
into an internal representation.)

SMALLINT A l6-bit signed, binary whole number.

BYTEINT An a-bit signed, binary whole number.

CHAR(n) A fixed-length character string of
n characters. (A character is an
a-bit element of data that is
stored on the DBC/1012 after being
translated into an internal
representation.)

BETWEEN numeric AND A range of values. If a DECIMAL,
numeric INTEGER, SMALLINT, BYTEINT, or

FLOAT keyword is specified, that
data type declaration is used.
If there is no explicit
declaration, data type is inferred
from the numerics. For example,
1 TO 10 (BYTEINT), 1.0 TO 9.9
(DECIMAL(2,0).

7-4 C09-000l-07

Table 7-1. Data Type Phrases (2 of 2)

Phrase Description

VARBYTE(n) A variable-length binary string
with maximum length n.

VARCHAR(n) A variable-length character string
of maximum length n.

DATE A combination of characters (D=day,
M=month, Y=year, B=blank) and
special characters (/,'-.:) that
represent a date notation, for
example:

Format Display
------------- -----------
'DDBMMMBYYYY' 03 Jul 1984

'YY/MM/DD' 84/07/03

'MM/DD/YY' 07/03/84

, MMMBDD, ' 'YY' Ju103,'84

'DD/MM/YYYY' 03/07/1984

In addition, a day-within-year
format using DDD (for day) with any
combination of year and blanks or
separator characters. For example,
the following may be used to
represent July 3, 1984:

Format

'YYYYBDDD'
'YYYY.DDD'
'YY.DDD'

Display

1984 185
1984.185
84.185

If a data type attribute is violated during a table insert or
update, an error occurs.

C09-000l-07 7-5

7.1.1.2 Specifying Default Control

Default control may be specified using one of the phrases in
Table 7-2.

Table 7-2. Default Control Phrases

PhraSe Function

DEFAULT (value) Defines a constant value that is
supplied automatically when you
don't supply it.

NOT NULL Specifies that a column field must
be supplied when a row is inserted.
If it is not, an error occurs.

NULL Specifies that a column field need
not contain a value. If you don't
specify NULL, NOT NULL, or DEFAULT,
NULL is assumed.

If a default control attribute is violated during table insert or
update, an error occurs. If a null, or an expression that
evaluates to null, is inserted in a numeric field for which a
DEFAULT value has been specified, a null is inserted instead of
the value unless NOT NULL has been specified for the field.

7.1.1.3 Specifying Case

To control the way in which character data is stored, you may
specify one of the following options with a CHAR(n) or VARCHAR(n)
data type phrase:

7-6

• CASESPECIFIC

Abbreviated CS, this option specifies that character
data is stored and returned by the DBC/IOI2 in the same
form as it is entered. If UPPERCASE is not specified,
CASESPECIFIC is the default.

• UPPERCASE

Abbreviated UC, this option specifies that no matter
how character data is entered, it is stored and
returned by the DBC/IOI2 in capital letters.

C09-0001-07

For example, in the CREATE TABLE statement above, values in the
Sex column are stored and returned in capitals. Therefore, even
if Sex data is entered as in the following statement,

INSERT INTO Employee (Name, EmpNo, DOB, Sex, EdLev)
VALUES ('Trexler K', 10023, 'Jul 12 1948', 'm', 12);

the data is stored and displayed as:

Sex

M

7.1.1.4 Specifying Format

You may specify the way in which numeric data is displayed using
the format characters listed in Table 5-2.

7.1.1.5 Specifying a Title

You may define a display title for a column other than the column
name using a TITLE phrase, discussed in Chapter 5. For example,
the specification for the Name column in the CREATE TABLE
statement above might be entered as:

Name CHAR(12) NOT NULL TITLE 'EmployeeIIName',

The phrase "TITLE 'EmployeeIIName'" causes the heading,

Employee
Name

to be displayed or printed in a result rather than:

Name

As described in Chapter 5, a double-slash character (II) in a
TITLE phrase causes a title to be broken into separate lines.

7.1.2 Specifying Data Protection

Protection for data is provided by FALLBACK and JOURNAL options.
The FALLBACK option specifies that, in addition to the primary
copy of a table, a secondary copy (referred to as the fallback
copy) is also maintained. The fallback copy is accessed whenever
the primary copy is unavailable.

C09-0001-07 7-7

The JOURNAL option provides data protection through system
generated before and after journals of changed data. These
journals may be used to either restore or reverse changes made to
table data. (For more information on the JOURNAL option, refer
to chapter 10, "Creating Users" and "Creating Data Bases.")

When a data base is created, the default FALLBACK and JOURNAL
options are typically specified for all tables created under the
user or data base. You may, however, override these options in a
CREATE TABLE statement.

7.1.2.1 Providing for Fallback Data

Unless you have specified NO FALLBACK in creating a data base or
user, the DBC/1012 system automatically maintains a secondary, or
"fallback," copy of the data in any table created in the data
base. This fallback copy is accessed whenever the primary copy
is unavailable.

If you wish to create a fallback copy of a new table in a data
base for which NO FALLBACK is specified, you must specify the
FALLBACK option in your CREATE TABLE statement. Conversely, if
you do not want to create a fallback copy of a new table in a
data base or user space for which FALLBACK is in effect, you must
specify the NO FALLBACK option in the CREATE TABLE statement for
the new table.

7.1.2.2 Providing for Journal Tables

If you do not specify a JOURNAL option in a CREATE TABLE
statement, then the DBC/1012 automatically uses the journal
option as specified for the data base or user in which the table
is being created.

If you wish to override the default journal setting, you must
specify the new JOURNAL option in your CREATE TABLE statement.
When you specify a new JOURNAL option, you must indicate the
level of journaling to be maintained. That is, you specify the
type (before and/or after) and the number (single or dual) of
change image journal maintained for the table. In addition, you
may specify the name of the journal table to which the change
images are written. Note that if define a new journal table,
then that the specified journal table must already exist.

7-8 C09-0001-07

7.1.3 COMPRESSing Field Entries

The COMPRESS option allows you to suppress a common value in a
statement, thereby saving storage space on the DBC/1012. A field
in a table column can be compressed to a null space if its value
is:

• NULL

• the value given in parentheses after the COMPRESS
keyword

For example, you can compress specific data in a CREATE TABLE
statement by entering the following:

CREATE TABLE Employee, FALLBACK
(EmpNo INTEGER NOT NULL COMPRESS 0,
MStat CHAR(l) NULL COMPRESS 'M',

COMPRESS has two limitations:

1. It cannot be used on a variable length character or
byte field.

2. Although COMPRESS saves disk space, it uses more data
access time. COMPRESS is not recommended unless the
column will include a high percentage of compressed
values, or if the column is type BYTEINT, SMALLINT, or
CHAR(n) if n is a small number.

7.1.4 Establishing Indexes

The CREATE TABLE statement lets you establish indexes during
table creation. An index is a key defined on the values in one
or'more columns of a table. Because the DBC/1012 uses these
values as a key for locating rows on the AMPs, the index makes
query processing more efficient.

You may create a table without defining a primary index.
However, if a primary index is not specified in the CREATE TABLE
statement, the DBC/I012 will automatically establish the first
column of a table as the primary index. If a table contains more
than one column, a NON-UNIQUE primary index is defined. If a
table contains only one column, a UNIQUE primary index is
defined. In the CREATE TABLE statement for the Employee table,
EmpNo is established as the primary index.

C09-000l-07 7-9

In addition to the primary index, you may also establish a number
of secondary indexes for a table. In the CREATE TABLE statement
above, Name is defined as a secondary index.

7.1.4.1 Defining a Primary Index

You may define a primary index on one or more columns of a table.
For example, because the EmpNo column in the Employee table
contains a unique value for each employee, it is chosen as the
primary index and made the first column of the table.

After defining a primary index, documentation of the index may be
easier if the primary index column is made the first column of
the table.

After the table is created, you may redefine a primary index only
by entering a new CREATE TABLE statement, as described below.

7.1.4.2 Defining a Secondary Index

Creating secondary indexes for a table speeds processing of
multi-row queries and complex operations, such as joins.
However, such an advantage is not achieved without a tradeoff.

Every secondary index defined for a table requires a secondary
index subtable. Secondary index subtables take up extra space on
disk, and must be changed every time the table is changed. If
FALLBACK is specified for the table, the processing load is
doubled for an insert, update, or delete operation because the
operation must be performed on both primary and secondary copies
of the table and secondary index subtables.

Secondary indexes may be created or changed as desired after
table creation. To establish additional secondary indexes after
a table is created, use the CREATE INDEX statement. For example,
the statement,

CREATE INDEX (DeptNo) ON Employee;

defines another secondary index on the DeptNo column of the
Employee table.

A secondary index may be removed by entering the DROP INDEX
statement,for example,

DROP INDEX (DeptNo) ON Employee;

To define or remove a secondary index on a table, you must have
th~ privilege of dropping the table from the data base.

7-10 C09-000l-07

7.1.4.3 Defining Unique Indexes

In a definition of a primary or secondary index, you may use the
UNIQUE keyword to prohibit the use of the same index value for
more than one row. Referencing a unique index in a SELECT
statement makes processing more efficient and improves response
time.

7.2 LOADING A NEW TABLE WITH EXISTING DATA

You may create a new table and load it with data from an existing
table, view, or combination of views and tables using the
following procedure:

1. Enter a CREATE TABLE statement for the new table.

2. Insert data from the existing table, view, or
combination using an INSERT statement with an embedded
query, as described in Chapter 8.

This procedure requires that you have the SELECT privilege on all
referenced views and tables.

For example, to create a Manager table using Department Number
and Employee Number information from the Employee table, enter
the following two statements in sequence:

CREATE TABLE Manager, NO FALLBACK
(EmpNo INTEGER FORMAT 'ZZZZ9',
Name VARCHAR(12) NOT NULL)

UNIQUE PRIMARY INDEX (EmpNo);

INSERT INTO Manager
SELECT EmpNo, Name FROM Employee
WHERE JobTitle IN ('Manager', 'Vice Pres');

If the column attributes defined for a new table differ from
those of the columns whose data is being inserted via the INSERT
statement, the data takes on the attributes of the new table.

Even if the names of the columns whose data is to be inserted
into corresponding columns of the new table differ from the
column names of the new table, the data is correctly ins,erted as
long as the SELECT statement lists the column names of the data
to be inserted in the order that the corresponding columns are
listed in the CREATE TABLE statement that was used to create the
new table. This is true even if the new table has a column that
is to contain data derived, either arithmetically or by aggregate
operation, from the column data in the existing table.

C09-000l-07 7-11

In the following example, a new table of employee names and
monthly salaries is loaded with data from the Employee table.

CREATE TABLE EmpMonthSal, NO FALLBACK
(EmpNo SMALLINT NOT NULL FORMAT '9(5)',
Name CHAR (12) ,
Salary DECIMAL(8,2))

PRIMARY INDEX (EmpNo);

INSERT INTO EmpMonthSal
SELECT EmpNo, Name, Salary/12
FROM Employee;

Again, the data selected from Employee.EmpNo and Employee.Name
and that derived from Employee.Salary maps positionally to
EmployeeMonthSal.EmpNo, EmpMonthSal.Name,and EmpMonthSal.Salary,
as defined in the CREATE TABLE statement for EmpMonthSal.

7.3 ALTERING A TABLE DEFINITION

After a table is created, you may change its definition in the
following ways:

1. Add or drop one or more columns from the table

2. Change the default control, format, and title
attributes for a column

3. Change the fallback option for the table

4. Change the data type attribute for one or more columns

5. Redefine the table's primary index

The first three kinds of definition changes are made using the
ALTER TABLE statement, as described below. Note that all three
kinds of changes can be made using the same ALTER TABLE
statement.

To change a column's data type attribute or redefine a table's
primary index, you must enter a new CREATE TABLE statement using
the procedure discussed below.

7-12 C09-OOOl-07

7.3.1 Adding and Dropping Columns

Use the ALTER TABLE statement to add or drop columns from a
table. For example, to add a column called EmpCount to the
Department table, enter the following statement:

ALTER TABLE Department ADD EmpCount INTEGER;

The Department table now looks like this:

DeptNo Name Loc MgrNo EmpCount
------ -------------- ----- ---------------

100 Administration NYC 10015
300 Exec Office NYC 10018
500 Engineering ATL 10012
600 Manufacturing CHI 10007
700 Marketing NYC 10021

Note that the all rows initially contain a NULL value
for the column.

The following statement,

ALTER TABLE Employee DROP HCap;

removes the HCap column from the Employee table.

To enter an ALTER TABLE statement for a table, you must have the
drop privilege for the table.

7.3.2 Changing Attributes

Use the ALTER TABLE statement to change existing default control,
format, and title attributes for a column. For example, given
the example specification for the JobTitle column,

JobTitle VARCHAR(12), TITLE 'Employee//Jobtitle'

the default control and title attributes could be changed using
the following ALTER TABLE statement:

ALTER TABLE Employee ADD
JobTitle NULL, TITLE ('Jobtitle for Employee');

You coul~ change the default control and format attributes for
the DeptNo column by entering the following statement:

C09-000l-07 7-13

7.3.3

ALTER TABLE Employee ADD
DeptNo (NULL, FORMAT 'ZZZ9');

Changing the Fallback Option

Use the ALTER TABLE statement to create or remove the fallback
copy of a table. For example, to eliminate the fallback copy of
the Employee table, enter:

ALTER TABLE Employee, NO FALLBACK;

To reinstate fallback for Employee, enter:

ALTER TABLE Employee, FALLBACK;

7.3.4 Changing the JOURNAL Option

Use the ALTER TABLE statement to modify or create the journaling
setting for a table. For example, suppose a NewEmployee table
currently specified just a single before-image journal. To add a
single copy of an after-image journal, enter:

ALTER TABLE NewEmployee, AFTER JOURNAL;

7.3.5 Changing the Data Type Attribute

To change the data type attribute for one or more columns of a
table, use the following procedure:

1. Using a different name, create a new table that
contains the changed data type attributes.

2. Insert column data from the old table into the new
table using an INSERT statement with an embedded
query, as shown in Chapter 8.

3. Drop the old table, as described later in this
chapter.

4. Rename the new table with the name of the old table,
as described later in this chapter.

For example, you could use the following sequence of statements
to expand the data type attribute for the Name column from 12 to
14 characters:

7-14 C09-000l-07

CREATE TABLE Temp, FALLBACK
(EmpNo INTEGER NOT NULL FORMAT 'ZZZZ9',
Name CHAR(14) NOT NULL,

HCap BYTEINT FORMAT 'Z9')
UNIQUE PRIMARY INDEX (Name);

INSERT INTO Temp SELECT * FROM Employee;
DROP TABLE Employee;
RENAME TABLE Temp to Employee;

A different name (Temp) is used in re-creating the Employee table
because the Employee table already exists. Entering a CREATE
TABLE statement for an existing table causes an error.

To facilitate re-creating a table according to step 1 above, you
may display the CREATE TABLE statement for the table by executing
an ITEQ SHOW TABLE command (abbreviated. ST;). For example, the
following command,

SHOW TABLE Employee;

sets the display area for input and displays a synthesized CREATE
TABLE statement for the Employee table.

When the CREATE TABLE statement is displayed, you may change the
statement as described in step 1 (that is, change the table name
and index) using ITEQ edit commands and enter the new table
definition by executing the ITEQ SUBMIT command, as described in
Chapter 3. You may then continue with steps 2, 3, and 4.

7.3.6 Redefining a Primary Index

To redefine a primary index for a table, use a procedure similar
to that for changing the data type attribute:

1. Using a different name, create a new table that
contains the changed index.

2. Insert column data from the old table into the new
table.

3. Drop the old table.

4. Change the temporary name of the new table to that of
the old table.

C09-000l-07 7-15

7.4 USING VIEWS

A view is a device through which you may change data in, or
select data from, selected portions of a data base. A view may
consist of portions of one or more tables, or a combination of
tables and views. Views look like stored tables. They have rows
and columns and, in general, may be used as if they were tables.

Views have a number of important advantages. You may use a view
to:

• Simplify queries of a large table or several tables.

• Protect the security of your data by allowing other
users access only to non-sensitive columns and rows in
any table.

• Constrain the values that are inserted or updated in
the underlying table.

• Enable other users to insert, update, or delete
specified data in a table, as described in Chapter 8.

Though it may display the same data, a view need not resemble its
underlying table or tables. A view may:

• Have its own unique name and arbitrary names for its
columns.

• Order columns differently from its underlying tables.

• Contain only selected table columns to which users of
the view have access.

• Include only certain rows selected from the underlying
tables.

• Include columns from more than one table.

• Include new columns by applying arithmetic expressions
to data from its underlying tables.

To create a view in a data base, you must have the create view
privilege for the data base.

7-16 C09-OOOI-07

7.4.1 Creating a View

You create a view by entering a CREATE VIEW statement. In that
statement, you name the view, identify its columns, and specify
its rows with a SELECT statement.

For example, suppose a Personnel clerk needs access to employee
numbers, names, job titles, and department names, but not to
confidential information such as salary. You might define for
the clerk a view containing this information using the following
statement:

CREATE VIEW Employee Info (Number, Name,
Position, Department) AS

SELECT EmpNo, Name, JobTitle,
DeptName (TITLE 'Department Name')

FROM Employee, Department
WHERE Employee.DeptNo = Department.DeptNo
AND JobTitle NOT IN ('Vice Pres', 'Manager') ;

The statement specifies a join between Employee and Department
tables. The WHERE clause specifies the condition for the join
(on DeptNo) and excludes information for vice presidents and
managers.

Different names are assigned to the EmpNo, JobTitle, and DeptName
columns. Also, the TITLE phrase for the DeptName column
specifies the title "Department Name" rather than "Department"
for output that is displayed or printed.

After creating the view, you grant the clerk retrieval privileges
to it, as described in Chapter 10. If the clerk subsequently
wants a list of all non-managerial employees in the
Administration department and their positions, he would enter the
statement,

SELECT Name, position
FROM Employee_Info
WHERE Department = 'Administration';

to produce the following list:

Name

Peterson J
Moffit H
Chin M
Greene W

COg-00001-07

position

Payroll Ck
Recruiter
Controller
Payroll Ck

7-17

7.4.2 Creating a View with a Locking Clause

You may include a locking clause, as described in chapter 7, in a
CREATE VIEW statement. The locking clause allows you to override
the default lock placed on the table or tables named in the view
definition whenever that view is referenced in a DBC/SQL
statement.

For example, when you reference the Employee Info view (defined
above) in a SELECT statement, a read lock is-automatically placed
on the Employee table. The read lock ensures that the data you
are selecting is up to date (that is, any pending changes to the
data are completed or fully backed out).

Conversely, if the Employee Info view is referenced in an UPDATE
statement (as described in chapter 8), a write lock is placed on
the Employee table. A write lock places any SELECT statements on
hold until the update operation has completed. Thus, query users
may often be locked out, or cause other users to be locked out.

Typically, a locking clause is included in a CREATE VIEW
statement to allow users to concurrently update and query the
same table. In this instance, an ACCESS lock, which allows users
to query a table that has been locked for write access, is
specified in a CREATE VIEW statement.

For example, to place an ACCESS lock on the Employee table each
time the Employee Info view is referenced in a DBC/SQL statement,
you may enter the-following statement:

CREATE VIEW Employee Info (Number, Name,
Position, Department) AS

LOCKING Employee FOR ACCESS
SELECT EmpNo, Name, JobTitle,

DeptName (TITLE 'Department Name')
FROM Employee, Department
WHERE Employee.DeptNo = Department.DeptNo
AND JobTitle NOT IN ('Vice Pres', 'Manager')

Note that the data selected when an ACCESS lock is in place may
not be up to date because the data is concurrently being
modified. Therefore, an access lock should only be used for a
casual inspection of data.

7.4.3 Replacing a View

You change a view using the REPLACE VIEW statement. This
statement is equivalent to entering a DROP VIEW statement
followed by a CREATE VIEW statement.

For example, to change the department name column in the
Employee_Info view to a department number column, enter the
following statement,

7-18 C09-QOOI-07

REPLACE VIEW Employee_Info (Number, Name, Position,
Department)

AS SELECT Employee.EmpNo, Name, JobTitle, DeptNo
WHERE JobTitieNOT IN ('Vice Pres', 'Manager');

You must have the drop privilege on a view to replace it.

If you enter a REPLACE VIEW statement for a view that does not
exist, the system will create the view using the specifications
of the REPLACE statement.

During an ITEQ session, you may display and change the current
definition of a view by employing the SHOW VIEW command, as
described earlier under "Modifying a Table Definition." For
example, the statement,

SHOW VIEW Employee_Info;

displays the most recent CREATE or REPLACE statement for the
Employee Info view in the display area, where you may change it
using ITEQ edit commands.

7.5 DOCUMENTING TABLES, COLUMNS, VIEWS

After creating a table or a view, you may define and store a
descriptive comment about the table or view, and about one or
more of the table's columns (or fields). That comment may then
be accessed by another user who wants information about the
table, view, or column.

You define a comment using the COMMENT statement:

[DATABASE]
[USER]
[TABLE]

COMMENT [ON] [VIEW] objref [IS] ['string'];
[COLUMN] [AS]
[FIELD]
[MACRO]

For example, to store a comment about the Name column of the
Employee table, enter,

COMMENT ON FIELD Employee.Name IS 'Emp name: last name
and first initial';

Note that the message is enclosed by apostrophes. FIELD is used
to qualify the column name absolutely, and is needed only if the
same name is applied to another object in the data base.

C09-QOOl-07 7-19

Once a message is stored, any user may display the message by
entering the COMMENT statement, for example,

COMMENT ON FIELD Employee.Name;

The message is returned as follows:

Emp name: last name and first initial

To comment on a table, column, or view, you must have the drop
privilege on the table. No privilege is needed to display a
message. However, if a view contains more than 70 columns, a
COMMENT may not be stored or selected from that view. The text
of a comment may not be longer than 255 characters and must be
enclosed by apostrophes.

Note that, if you enter a COMMENT statement for a table or view
that has the same name as a data base, any comment stored for the
data base is returned. To return a comment on the table or view,
you must qualify its name, for example,

COMMENT ON Personnel.Employee;

7.6 RENAMING TABLES AND VIEWS

You may rename an existing table or view using the RENAME
statement. For example, to change the name of the Temp table
to Employee, enter,

RENAME TABLE Temp TO Employee;

To rename the view Employee_Info as EmpList, enter the following
statement,

RENAME VIEW Employee_Info TO EmpList;

Note that if you wish to rename a table or view that is not
contained in the same data base as your current default data base
setting, you must qualify both the old and new table or view name
with the name of the data base in which the item is contained.
For example, to rename the view Employee_Info to EmpList if your
default data base setting is other than Personnel, enter the
following statement:

RENAME VIEW Personnel.Employee_Info to Personnel.EmpList;

You must have the drop privilege on the table or view to rename
it.

7-20 C09-OOOI-07

7.7 REMOVING TABLES AND VIEWS

You may remove a table or view from a data base using the DROP
TABLE or DROP VIEW statement. For example, to remove the
Employee table, enter,

DROP TABLE Employee;

To remove the Emplist view, enter,

DROP VIEW Emplist;

You must have the drop privilege on the table or view to remove
it.

7.8 SUMMARY AND PREVIEW

This chapter showed you how to work with tables and views. The
next chapter shows you how to:

• Insert rows in a table.

• Update data in existing rows.

• Remove rows from a table.

• Use a view to add or change data.

C09-OOOI-07 7-21

7-22 C09-OOOl-07

CHAPTER 8 ADDING AND CHANGING TABLE DATA

After creating a table, you need to insert the rows that contain
its data. Later, you may need to update or delete table data.
This chapter shows you how to:

• Insert rows in a table

• Update data in existing rows

• Remove rows from a table

• Use a view to add or change data

Inserting, updating, and deleting rows change the content of a
table, not its structure. Changing table structure involves
adding and deleting columns, as described in Chapter 7.

8.1 INSERTING ROWS

The INSERT statement adds a new row or a number of new rows to a
table. You may use this statement in the following ways:

• By directly specifying the row data to be inserted

• By retrieving from another table the row data to be
inserted

Data inserted in a table must conform to the following
constraints:

• In general, the data must conform to the data
attributes of the columns of the table, as specified in
its CREATE TABLE statement. (However, integer data may
be stored in a column defined as DECIMAL.)

• DATE data in character form must be entered according
to the format specified in the CREATE TABLE statement.

If these restrictions are not observed, an INSERT statement
produces an error and is not processed. For example, if a
statement does not supply a value for a column whose attributes
include NOT NULL, the statement fails.

To insert data in a table, you must have the insert privilege on
the table.

C09-000l-07 8-1

8.1.1 Specifying Insert Data

To add a row to the Employee table for new employee Robertson,
you may enter the following statement:

INSERT INTO Employee (Name, EmpNo, DeptNo, DOB, Sex, EdLev)
VALUES ('Robertson B', 10005, 300, 'Nov 17 1957, 'M', 18);

In this example, you list the columns that are to receive the
data, and then you specify the data to be inserted, in the same
order as the columns are listed. When you don't specify a field
value for a column, a null value is stored.

You could achieve the same result using the following statement:

INSERT INTO Employee VALUES
(10005, 'Robertson B', 300"" 'Nov 17 1957','M'",l8,);

In this example, you don't need to specify column names for
fields because you have entered field data in the same order as
the columns are defined in the Employee table. Nevertheless, a
comma is needed as a place marker for each field whose data is
not specified.

8.1.2 Inserting Data by Query

You may insert rows in a table by selecting rows from another
table or a view. For example, assume that you have created a
table named Promotion to identify employees who are eligible for
promotion on the basis of seniority. Promotion has three
columns: Name, Department, and Experience.

To insert data in Promotion, you may select row data from the
Employee table using the following statement:

INSERT INTO Promotion
SELECT Name, DeptNo, YrsExp
FROM Employee
WHERE YrsExp > 10;

As discussed in Chapter 7 (Loading a Table With Existing Data),
the data from the three columns of Employee map positionally into
the three columns of Promotion because their names are listed in
the SELECT statement in the same order as Promotion's columns are
defined in the CREATE TABLE statement. Note the use of the WHERE
clause to specify a condition for selecting the rows that are to
be included in the table.

To insert data by query, you must have the SELECT privilege on
the tables or views from which you are retrieving the data.

8-2 C09-0001-07

8.2 UPDATING ROW DATA

You use the UPDATE statement to add data to null entries in a
table column or to change the data in non-null entries. UPDATE
is used in the following ways:

• To directly specify the new data that is to replace the
old

• To specify an arithmetic expression for calculating new
values from old

Data specified in an UPDATE statement must conform to the
constraints listed above for the INSERT statement. In order to
update the data in a table, you must have the update privilege on
the table.

8.2.1 Specifying New Data

To complete the information for the row inserted above for new
employee Leidner, enter:

UPDATE Employee SET JobTitle='Secretary', Salary=23000,
YrsExp=13, Race='C',
MStat='M', EdLev=16, HCap=O

WHERE EmpNo=10003i

You use a WHERE clause to specify one or more rows to which data
is to be added. In this example, the WHERE clause specifies
EmpNo, the primary index for the Employee table, to speed
processing.

As in an INSERT statement, the data specified in an UPDATE
statement must match the constraints of the table columns that it
affects.

8.2.2 Specifying an Arithmetic Expression

You may use an arithmetic expression in an UPDATE statement to
calculate new values from existing column data. For example,
entering the following statement gives all employees in
Department 300 a 10 percent salary increase:

UPDATE Employee SET Salary=Salary * 1.1
WHERE DeptNo = 300;

C09-000l-07 8-3

8.3 DELETING ROW DATA

You may remove row data from a table using the DELETE statement.
For example, entering the statement,

DELETE FROM Employee
WHERE EmpNo=I0003;

removes employee Leidner from the Employee table.

In this statement, the WHERE clause determines which row (or
rows) are affected. As in the UPDATE statement example above,
use of the prime key for the Employee table in the WHERE clause
speeds processing.

'The statement,

DELETE FROM Employee ALL;

removes all rows from the Employee table. The Employee table
still exists, but as an empty table.

Data may also be deleted from a table by joining it with one or
more tables in order to specify the conditions for the delete.
For example, if a company reorganization caused employees in the
New York area to be removed to a separate data base, these
employees could be deleted from the Employee table as follows:

8.4

DELETE FROM Employee
WHERE Employee.DeptNo=Department.DeptNo
AND Department.Loc='NYC';

USING A VIEW TO ADD OR CHANGE DATA

Using a view name instead of a table name in an UPDATE, INSERT,
or DELETE statement adds, changes, or removes data in the table
(or tables) upon which the view is based. For example, updating
data via a view changes data in the underlying table. Inserting
or deleting rows via a view adds or removes rows from the
underlying table.

Consider the following view, Staff Info, which is designed to
give a personnel clerk retrieval access to employee numbers,
names, job titles, department numbers, sex, date of births, and
education levels for all employees accept vice presidents and
managers:

8-4

CREATE VIEW Staff Info
(Number, Name,- Position, Department, Sex, DOB, EdLev

AS SELECT Employee.EmpNo, Name, JobTitle, DeptNo, Sex,
DOB, EdLev

WHERE JobTitle NOT IN ('Vice Pres', 'Manager'):

C09-0001-07

If the owner of Staff Info has the insert privilege on the
Employee table and the clerk also has the insert privilege on
Staff Info, the clerk may use this view to add new rows to
Employee. For example, entering the statement,

INSERT INTO Staff Info (Number, Name, Position,
Department, Sex~ DOB, EdLev)

VALUES (10024, 'Crowell N', 'Secretary', 200,
'F', 'Jun 031960',16);

inserts a row in the underlying Employee table that contains only
the specified information.

Note that the constraint on Staff_Info,

WHERE JobTit1e NOT IN ('Vice Pres', 'Manager')

is applied to any insert using this view. Therefore, the
preceding INSERT statement would fail if the position entered for
Crowell were "Vice Pres" or "Manager".

Entering the statement,

UPDATE Staff_Info SET Department=300
WHERE Number = 10024;

changes the department number (from 200 to 300) entered for
Crowell in the preceding INSERT statement. To update a table via
a view, you must have the update privilege on the view and the
view owner must have the update privilege on the table.

Entering the statement,

DELETE FROM Staff Info
WHERE Number = 10024;

removes the entire row for Crowell from Employee. To delete rows
using a view, you must have the delete privilege on the view and
the view owner must have the delete privilege on the table.

To insert and change row data through a view, the view must be
defined with the following constraints:

• The view may reference only one table; it may not
define a join.

• No two columns in the view may reference the same table
column.

• Each column in the view must correspond to a column in
the underlying table. There may be no calculated
columns.

C09-000l-07 8-5

• Data for columns must be entered in the order the
columns appear in the view or be identified by column
name.

• The view must include any column in the underlying
table that is declared as NOT NULL.

• No two view columns may reference the same column in
the underlying table.

• View columns must not include declared attributes such
as data types.

• If the CREATE VIEW statement used to define a view
contains a WHERE clause, all values inserted or changed
through the view must satisfy any constraints specified
in the WHERE clause.

A view is a useful device for allowing other users to access
table data. However, as the preceding examples suggest, granting
another user insert, update, and delete privileges via a view
means relinquishing some control over your data. Consider
granting such privileges very carefully.

8.5 SUMMARY AND PREVIEW

This chapter showed you how to add new data to a table and change
existing table data. The next chapter shows you how to:

• Create, execute, debug (correct), replace, rename, and
remove a macro.

• Format and view macro results.

8-6 C09-OOOI-07

CHAPTER 9 USING MACROS

You may find yourself repeatedly. entering the same sequence of
DBC/SQL statements to perform a given operation. To save time
and reduce the possibility of keying errors, define and store
these statements as a "macro", a group of statements that are
defined and executed together. When you execute the macro, the
statements comprising it are processed in the proper sequence.
The result is displayed at your terminal as though you had
entered each statement individually.

You may create a macro and grant the privilege of executing it to
others. For example, you may create a macro to enable a novice
user to perform a complex operation on data within the DBC/1012
DataBase Computer. In executing the macro, the user need not be
aware of the data base being accessed, the tables affected, or
even the result.

A macro' may contain:

• DBC/SQL statements other than data definition
statements (refer to Chapter 7)

• Certain ITEQ commands

• Certain BTEQ commands

• Parameters that are specified each time the macro is
executed

Regardless of the number of DBC/SQL statements in a macro, the
DBC/1012 Data Base Computer treats the macro as a single
transaction. When you execute the macro, either all of its
statements are successfully processed or none are. If the macro
fails, it is aborted; any changes made to data are backed out and
the data base is returned to its condition before execution.

When you execute a macro, each statement acquires an appropriate
read or write lock to ensure the consistency of data that is used
by many users simultaneously. A read lock enables users to query
the same data at the same time, while disallowing any changes in
the data. A write lock prevents queries of data that is being
changed.

A multi-statement operation may be defined using BEGIN
TRANSACTION and END TRANSACTION statements (refer to the DBC/1012
Data Base Computer Reference Manual, chapter 6). In an ITEQ
session, it is preferable to define such an operation using a
macro.

This is because BEGIN TRANSACTION causes a data base to be locked
to other users until a statement sequence is completed with an

C09-000l-07 9-1

END TRANSACTION. If you were to enter such a sequence within
ITEQ, the data base could remain locked to other users for an
excessive period of time while you keyed and entered each DBC/SQL
statement and ended the sequence with an END TRANSACTION
statement.

This chapter shows you how to:

• Create, execute, debug (correct), replace, rename, and
remove a macro

• Format and view macro results

9.1 CREATING A MACRO

You create a macro using the CREATE MACRO statement. To create a
macro within a data base, you must either be the owner of the
data base or have been granted the privilege of creating a macro
within the data base.

For example, assume that you have entered the statement shown
below to create a macro named NewEmp in Personnel, the default
data base.

CREATE MACRO NewEmp (number (INTEGER),
name (VARCHAR(12»,
dept (INTEGER, 100 TO 900),
position (VARCHAR(12»,
birthdate (DATE, FORMAT 'MMMbDDbYYYY'),
sex (CHAR(l»,
education (BYTEINT»

AS (INSERT INTO Employee (EmpNo, Name, DeptNo,
JobTitle, DOB, Sex, EdLev)

VALUES (:number, :name, :dept,
:position, :birthdate, :sex, :education);

SELECT * FROM Employee
WHERE EmpNo=:number;);

When you execute NewEmp using the EXECUTE statement, you are
performing two operations:

1. Adding a new value for employee number, employee name,
department number, jobtitle, sex, data of birth, and
education level to the Employee table by means of the
INSERT statement

2. Verifying that the new information was correctly
entered by means of the SELECT statement

9-2 C09-000l-0?

The following sections describe how a CREATE MACRO statement is
used to create a macro.

9.1.1 Identifying Parameters

Parameters are constant values that are entered in the EXECUTE
statement for a macro. Parameters are optional, and may be
defined in a CREATE MACRO statement.

Following the macro name in your CREATE MACRO statement, specify
the names and attributes of any parameters. In the statement
above, "number", "name", and other parameters are defined. Note
that data type is a required attribute for a parameter. Other
attributes may include format and default. As described in
Chapter 7, a format is expressed by a format phrase and a default
by a default control phrase. Value ranges for parameters are not
checked when the macro is executed. They serve only to establish
an implicit data type.

When you execute a macro, if you supply a parameter value in the
EXECUTE statement that does not conform to specified formats,
data types, and defaults, an error message is displayed.

For more information about default controls, refer to Chapter 3
of the DBC/1012 Data Base Computer Reference Manual.

9.1.2 Defining the Macro

Following the AS keyword,. specify the statements that comprise
the macro, each terminated by a semicolon. The entire set of
statements is enclosed by parentheses.

The : character indicates that the field values to be inserted in
these columns (or expressions for deriving the field values, as
discussed in Chapter 8, "Specifying Insert Data") are identified
at execution time by the appropriate parameter name. For
example, in the EXECUTE MACRO statement shown below, "name='Chin
M'" supplies the parameter for "Name=:name" in the CREATE MACRO
statement above.

9.1.3 Documenting a Macro

After creating a macro, you may define and store a descriptive
comment about the macro. That comment may then be accessed by
another user who wants information about the macro.

C09-000l-07 9-3

You define a comment using the COMMENT statement:

COMMENT [ON] [MACRO] objref [AS] ['string'];
[IS]

For example, to store a comment about NewEmp, enter,

COMMENT ON MACRO NewEmp IS 'Executing this macro with the
required parameters adds a new empl.oyee number,
name, department number, job title, sex, date of
birth, and education level to the Employee table
and selects the new information';

Note that the comment is enclosed by apostrophes. MACRO is used
to qualify the macro name absolutely, and is needed only when the
same name is applied to another object in the data base.

To comment on a macro, you must have the drop privilege for the
macro. The text of a comment may be no longer than 255
characters.

Once the comment is stored, any user may display it using the
COMMENT statement. To display the stored comment on NewEmp,
enter,

COMMENT ON NewEmp;

Note that, if you enter a COMMENT statement for a macro, table,
or view that has the same name as a data base, any comment stored
for the data base is returned. To return a comment on the macro
or table, you must qualify its name, for example,

COMMENT ON Personnel.NewEmp;

9.1.4 Aborting a Macro

You may define a condition for stopping the execution of a macro
by including a DBC/SQL ABORT statement in the macro. If the
condition is encountered during execution, the macro is aborted.
That is, the transaction in process is concluded, locks on the
data base are released, any changes made to data are backed out,
and any spooled output is deleted.

For example, to restrict the NewEmp macro from being used to add
employees to the Executive Office department, add an ABORT
statement, as follows:

9-4 C09-000l-07

CREATE MACRO NewEmp (number (INTEGER),
name (VARCHAR(12»,
dept (INTEGER, 100 TO 900),
position (VARCHAR(12»,
birthdate (DATE, FORMAT "MMMbDDbYYYY'),
sex (CHAR(l»
education (BYTEINT»

AS (ABORT 'Department 300 not valid'
WHERE :dept = 300;

INSERT INTO Employee (EmpNo, Name,
DeptNo, JobTitle, DOB, Sex, EdLev)

VALUES (:number, :name, :dept, :position,
:birthdate, :sex, :education);

SELECT * FROM Employee
WHERE EmpNo=:number;);

You specify the abort condition ":dept = 300" in
Following the ABORT keyword, you may specify the
optional error message, enclosed in apostrophes.
displayed on the terminal screen if the macro is
specified condition.

a WHERE clause.
text of an
This message is

aborted for the

9.2 EXECUTING A MACRO

Once it is stored, you execute a macro by entering an EXECUTE
statement that supplies its name and required parameters. If you
have created the macro for another user, you must grant to that
user the privilege of executing it.

For example, entering the statement,

EXECUTE NewEmp (dept=700, name='C1ements D', number=10024,
position='Salesperson', birthdate='Aug 23 1944',
sex='M', education=16);

adds Clements D to the Employee table. The statement supplies
constant values (identified by parameter names) for the DeptNo,
Name, EmpNo, JobTitle, and Sex columns, and then selects the new
information. Note that the parameters don't have to be entered
in the same order as in the CREATE MACRO statement as long as
they are separated by commas and identified by parameter name.

You could also enter the following statement:

EXECUTE NewEmp (10024, 'Clements D', 700, 'Salesperson',
'Aug 23 1944', 'm', 16);

In this case, you do no specify parameter names because the
parameters are entered in the same order as in the CREATE MACRO
statement.

C09-000l-07 9-5

9.3 DEBUGGING A MACRO

You may debug (correct) a macro by executing it and viewing the
results. If execution fails because of a statement error or if a
statement result is unsatisfactory, you may modify and replace
the macro using the procedures described in the following
section.

The debugging process is easier if the macro is executed in
Unformat, rather than Format, mode. This is because in Unformat
mode, the processing message for each executed statement, along
with any accompanying result, is displayed in the order in which
each statement is processed in the macro.- Thus, you may quickly
judge the correctness of individual statements.

In contrast, when a macro is executed in Format mode, a
processing message is displayed only for macro execution itself,
and not for each statement. This makes it more difficult to
identify problems.

When a macro is executed in Unformat mode, column headings for
each statement result appear only once, at the beginning of the
result. Processing messages and results that exceed the size of
a single display screen are formatted into consecutive pages that
may be viewed using the ITEQ display commands described in
Chapter 3.

To help you page backward and forward through an output spool
file that contains a number of lengthy statement results, the
FORWARD and BACKWARD commands presented in Chapter 3 provide a
"skip" feature. When you execute the command,

FORWARD SKIP; (abbreviated FWDS;)

while viewing a statement result, the display "skips" to the
first page of the next statement result. If you are viewing the
result of the last statement in the macro, the final page of that
result (at the end of the spool file) is displayed.

Executing,

BACKWARD SKIP; (abbreviated BWDS;)

displays the last page of the previous result. If you are
viewing the first statement result, the first page of that result
(at the beginning of the spool file) is displayed.

9-6 C09-0001-07

9.4 REPLACING A MACRO

You might expand NewEmp to insert data in other columns of the
Employee table by adding parameters to the current definition.
To do this:

1. Display the current definition of the macro using the
SHOW MACRO command (abbreviated SM;)

2. Modify the definition using ITEQ edit commands

3. Re-enter the definition using the REPLACE MACRO
statement

To display NewEmp for modification, execute,

SHOW MACRO Employee.NewEmpi

This ITEQ command sets the display area of your terminal screen
for input and displays NewEmp.

Because NewEmp has never been replaced, its original CREATE MACRO
statement, shown above, is displayed. If the macro had been
modified, the most recent REPLACE MACRO statement used to modify
it would be displayed.

Using the edit commands described in Chapter 3, you now modify
the CREATE MACRO statement as follows so that NewEmp may be used
to insert Salary and YrsExp information for a new employee:

REPLACE MACRO NewEmp (number (INTEGER),
name (VARCHAR(12»,
dept (SMALL I NT) ,
position (VARCHAR(12»,
salary (BYTEINT),
experience (INTEGER),
birthdate (DATE, FORMAT "MMMbDDbYYYY'),
sex (CHAR(l»,
education (BYTEINT»

AS (ABORT 'Department 300 not valid'
WHERE :dept = 300;

INSERT INTO Employee (EmpNo, Name, Deptno, Jobtitle,
Salary, YrsExp, DOB, Sex, EdLev)

VALUES (:number, :name, :dept, :position, :salary,
:experience, :birthdate, :sex, :education);

SELECT * FROM Employee
WHERE EmpNo=:number;);

You change "CREATE MACRO" to "REPLACE MACRO." (Re-entering a
CREATE MACRO statement for an existing macro causes an error.)
New parameters and data type phrases are added.

C09-000l-07 9·-7

To replace the old definition of NewEmp with this new one, enter
the REPLACE MACRO statement from the display area using the
SUBMIT command, as described in Chapter 3 (Editing a Statement in
the Display Area).

If you enter a REPLACE MACRO statement for a macro that does not
exist (that is, for which a CREATE MACRO statement has not been
entered), the macro is created according to the specifications of
the REPLACE statement.

9.5 RENAMING A MACRO

You may rename an existing macro using the RENAME statement. For
example, to change the name of the macro above from NewEmp to
AddEmp, enter the following:

RENAME MACRO NewEmp TO AddEmp;

Note that if you wish to rename a macro that is not contained in
the same data base as your current default data base setting, you
must qualify both the old and new macro name with the name of the
data base in which the macro is contained. For example, to
rename the macro NewEmp to AddEmp (as in the previous example) if
your default data base setting is other than Personnel, enter the
following,

RENAME MACRO Personnel.NewEmp to Personnel.AddEmp;

Thereafter, statements that reference the macro must use the new
name. To change the name of a macro, you must have the drop
privilege on the macro.

9.6 FORMATTING MACRO RESULTS

By including ITEQ or BTEQ format commands (Chapter 5) in a macro,
you may generate reports based on the results of SELECT
statements contained in the macro. In a macro, you may use:

• ITEQ format commands and the SET PFn command

• Any BTEQ command

In a macro, you place ITEQ or BTEQ commands within DBC/SQL ECHO
statements. ECHO statements are used to convey the commands to
ITEQ or BTEQ for processing.

For example, the following statement uses ITEQ format commands
enclosed in ECHO stat~ments to create a macro that displays the
example salary report defined in Chapter 5:

9-8 CO,9-000l-07

CREATE MACRO Sal rep AS (
ECHO 'SET FORMAT ON;';
ECHO 'SET WIDTH 72;';
ECHO 'SET PAGE LENGTH 55;';
ECHO 'SET RTITLE "SALARY REPORT//DEPARTMENTS 100 and 700";'
ECHO 'SET SUPPRESS ON 2;';
ECHO 'SET NULL AS "-";';
ECHO 'REMARK' 'Departments 100 and 700 only";';
SELECT Name (TITLE 'Employee//Name'), DeptNo
(TITLE 'Dept//Number'), Salary
FROM Employee
WHERE DeptNo IN (100, 700)
WITH SUM(Salary) (TITLE 'Dept TOTAL') BY DeptNo
WITH SUM(Salary) (TITLE 'TOTAL***')
ORDER BY Name;);

The ECHO statement requires that ITEQ commands be enclosed by
sets of apostrophes, as described in Chapter 3.

The REMARK command is used to display a descriptive comment about
the macro at the terminal.

9.7 DISPLAYING A FORMATTED MACRO RESULT

When you execute a macro in Format mode, the system displays a
message concerning the success or failure of macro execution and
the text of any echoed remark before displaying the result.
processing messages for individual statements within the macro
are suppressed. (When a macro is executed in Unformat mode, the
system displays a processing message for each ITEQ command
executed, as well as the text of a remark.)

You may execute a macro in only one formatting mode. ITEQ does
not process format specification commands in a macro that occur
following a DBC/SQL statement. Thus, it is not possible to set
Format mode on and later set defaults within the same macro.

Query results are formatted into display pages according to
specifications in effect for individual statements. You may view
result pages using the display commands described in Chapter 3,
complemented by the "FORWARD SKIP" and "BACKWARD SKIP" options
discussed earlier in this chapter.

Macro results may be printed (refer to Chapter 5) or filed (refer
to Chapter 3).

C09-000l-07 9-9

9.8 REMOVING A MACRO

To remove a macro from a data base, enter the DROP statement, for
example,

DROP MACRO AddEmp;

To drop a macro, you must have the drop privilege for the macro
(refer to Chapter 10).

9.9 SUMMARY AND PREVIEW

This chapter showed you how to use macros. The next chapter
shows you how to use data definition statements to:

• Grant and revoke privileges.

• Create and drop users and data bases.

• Give ownership of a data base to another user.

9-10 C09-0001-07

CHAPTER 10 SHARING DBC/I012 FACILITIES

This chapter shows you how to use DBC/SQL data definition
statements to:

• Grant and revoke privileges

• Create and drop users and data bases

• Give ownership of a data base to another user

As noted in Chapter 7, any data definition statement must be
entered as a single-statement request. It may not be entered as
part of a multi-statement request or defined as a macro. If a
data definition statement is bracketed between BEGIN TRANSACTION
and END TRANSACTION statements, it must be the only statement in
the transaction.

10.1 WHAT ARE PRIVILEGES?

When first installed, the DBC/1012 Data Base Computer contains a
single data base called "DBC". DBC is usually managed by the
system administrator.

To protect the security of system tables within DBC that are used
by DBC/1012 software, the system administrator usually assigns
all DBC disk space not needed for system tables to a DBC/1012
administrator data base. The administrator then allocates disk
space from the administrator data base to other data bases and
users within your organization.

Think of the system administrator as the "owner" of DBC and,
therefore, of the data bases and users created from it. As
owner, the administrator may exercise all of the following
privileges:

• CREATE DATABASE

Create a new data base from the disk space of an
existing data base.

• CREATE USER

Define a username for a new user on the DBC/I012 system
and assign disk space from an existing data base for
the new user's data.

C09-000l-07 10-1

10-2

• MODIFY DATABASE, USER

Change any of the options specified for a data base or
user.

• CREATE TABLE, INDEX, VIEW, and MACRO

Create tables~ indexes, views, and macros within a data
base.

• DROP

Remove data bases and users from the DBC/I012 system
and return the freed disk space to the originating data
base; remove tables, indexes, views, and macros from a
data base.

• SELECT

Query data in a table or view.

• INSERT, UPDATE, and DELETE

Insert, modify, and remove rows from a table.

• EXECUTE

Execute a macro in a data base.

• GRANT

Grant any privilege to another user.

• REVOKE

Take back any privilege granted.

• CHECKPOINT

Create a synchronization entry in a journal table that
may be used to either restore or reverse changes made
to table data.

• DUMP

Rollback and/or rollforward data tables using a journal
table.

• RESTORE

Restore table data and journal tables from an archive
copy.

C09-000l-07

The system administrator may allocate portions of disk space from
the administrator data base for creating other data bases and
users for your organization. Within each portion of disk space,
the administrator may create a supervisory user (referred to in
some organizations as a "data base administrator" or "DEA") to
manage space usage.

For example, the administrator creates a data base named Finance
and Administration (Finance) and a user named Jones within the
new data base. The administrator grants Jones all privileges on
the new data base. Jones, in turn, allocates portions of the
Finance data base to create Personnel and other department data
bases, as well as users Chin and Greene, as shown in Figure 10-1.

Figure 10-1. Creating Data Bases and Users

Jones grants all privileges on the Personnel data base to Greene.
Greene creates user Peterson in the space allocated to him and
grants Peterson some of his privileges, including retrieval and
data manipulation privileges on Personnel. In addition, Peterson
automatically receives all privileges on whatever data or users
he creates in the disk space allotted to him by Greene. As
"owner" of Peterson's disk space, Greene may grant himself
privileges on data and users owned by Peterson.

C09-Q001-07 10-3

rhis hierarchical ownership structure gives the owner of a data
)ase or table complete control over the security of owned data.
rhe owner is free to grant or revoke privileges. The owner may
!lso permit restricted access to tables by granting select,
insert, update, or delete privileges on views of the tables.

~rivileges granted to a data base pertain to all current tables,
~iews and macros, as well as to any tables, views or macros added
to that data base while the privilege is still in effect. If a
table, view, or macro has a privilege because of a GRANT at the
iata base level, a REVOKE for the specific item is not effective.
Data base level GRANTs override specific grants.

rhis chapter shows you how to grant and revoke privileges on data
!nd users that you own, as well as how to create data bases and
lsers. Examples in the chapter assume that you have been granted
the necessary privileges.

10.2 GRANTING PRIVILEGES

~fter being granted one privilege, you may automatically have
)ther privileges that are associated implicitly with this
~rivilege. For example, if you have the CREATE TABLE privilege
in a data base, after creating a table you also receive select,
insert, update, and delete privileges on the table.

rable 10-1 lists the privileges that you need on data bases,
lsers, tables, views, and macros in order to use the DBC/SQL
statements discussed in this guide. Privileges implicitly
;ranted to the creator of a data base, user, table, view, or
nacro are listed in Table 10-2.

Table 10-1. Privileges Needed for Statement Entry (1 of 2)

Statement Required Privilege

COMMENT Drop Data Base, Table, View, Macr~, User

CREATE DATABASE Create Data Base

CREATE INDEX Drop Table

CREATE MACRO Create Macro

CREATE TABLE Create Table

CREATE USER Create User

CREATE VIEW Create View

10-4 C09-OOOl-07

Table 10-1. Privileges Needed for Statement Entry (2 of 2)

Statement Required Privilege

DATABASE Any privilege on the data base

DELETE Delete for table. (When a view is used
to delete table rows, Delete privilege
for view is needed.)

DROP DATABASE/ Ownership of Data Base, User
USER

DROP INDEX Drop Table

DROP MACRO/
TABLE/VIEW Drop Macro, Table, View

EXECUTE Execute Macro

GRANT Privilege to grant the privilege

INSERT Insert for table. (When a view is used
to insert table rows, Insert privilege
for view is needed.)

MODIFY
DATABASE Drop Data Base.

MODIFY TABLE Drop Table

MODIFY USER Drop User. (Exception: a user may enter
MODIFY USER to change the user's startup
string, password, and fallback option.)

RENAME MACRO/
TABLE/VIEW Drop Macro, Table, View

REPLACE MACRO/
VIEW Drop Macro, View

SELECT Select for table or view

REVOKE Privilege to grant the privilege

UPDATE Update for table. (When a view is used
to update table rows, Update privilege
for view is needed~)

C09-OOOl-07 10-5

10.2.1

Table-lO-2. Privileges Implicitly Granted to Creator

Statement Privileges Obtained

CREATE DATABASE, All privileges on data bases, users,
USER macros, tables, and views created in

the data base

CREATE MACRO Drop Macro, Execute, and Grant on the
created macro

CREATE TABLE, Delete, Drop, Grant, Insert, Select,
VIEW and Update on the created table or

view

Granting Privileges to a User

Use the GRANT statement to extend your privileges to others.
For example, the statement,

GRANT SELECT ON Employee_Info TO Peterson;

gives Peterson a limited select privilege on the Employee table
via the Employee_Info view created in Chapter 6.

To grant limited select, insert, and update privileges on
Employee to Peterson and Moffit, enter the following statement:

GRANT SELECT, INSERT, UPDATE ON Employee_Info
TO Peterson, Moffit;

Note that each of these statements specifies the privilege being
granted, the object on which the privilege is granted, and the
user or users receiving the privilege.

To allow Peterson to create tables in the Personnel data base,
enter:

GRANT CREATE TABLE ON Personnel TO Peterson;

To allow Peterson also to drop tables in Personnel, enter:

GRANT DROP TABLE ON Personnel TO Peterson;

To allow Peterson to create and drop tables in Personnel, enter:

GRANT TABLE ON Personnel TO Peterson;

To include the GRANT privilege, enter:

10-6

GRANT TABLE ON Personnel TO Peterson
WITH GRANT OPTION;

C09-000l-07

(Note that the GRANT DATABASE, GRANT TABLE, GRANT USER, GRANT
MACRO, and GRANT VIEW statements convey both create and drop
privileges.)

10.2.2 Granting All Privileges to a User

Use the ALL keyword to grant all privileges (except the GRANT
privilege) on an object. To grant all privileges on the
,Department table to Peterson, enter one of the following
statements:

GRANT ALL ON Department TO Peterson;

GRANT ALL RIGHTS ON Department TO Peterson;

To grant all privileges on user Greene's data base to Peterson,
enter:

GRANT ALL ON Greene TO Peterson;

To grant all privileges except CREATE TABLE on user Greene's data
base, enter:

GRANT ALL BUT CREATE TABLE ON Greene TO Peterson;

10.2.3 Granting privileges to a Group of Users

Use the ALL keyword to grant one or more privileges to a group of
users. For example, to enable all users created in the Finance
data base to query the Department table, enter:

GRANT SELECT ON Department TO ALL Finance;

If DBA Jones decided to extend this privilege to all DBC/1012
users in your organization, Jones would enter:

GRANT SELECT ON Personnel.Department TO PUBLIC;

10.2.4 Revoking Privileges

Use the REVOKE statement to take away any privilege you have
9ranted. With the exception of the keyword REVOKE, the REVOKE
statement is identical to the GRANT statement.

For example, to deprive Peterson of privileges on user Greene's
data base, enter:

REVOKE ALL ON Greene TO Peterson;

C09-000l-07 10-7

If Peterson later needs some of the privileges that were revoked,
they may specifically be re-granted.

10.3 CREATING USERS

Assume that the DBC/IOI2 Data Base Computer has just been
installed. Using the CREATE DATABASE statement, the system
administrator has created from DBC a DBC/IOI2 administrator data
base and data bases for each of the departments in your
organization -- Finance, Executive Office, Engineering,
Manufacturing, and Marketing.

The system administrator defines Jones as a user by entering the
CREATE USER statement, as follows:

CREATE USER Jones FROM Finance
AS PERMANENT = 100000 BYTES,
PASSWORD = Veep,
FALLBACK, SPOOL = 1000000 BYTES,
BEFORE JOURNAL, AFTER JOURNAL,
DEFAULT JOURNAL TABLE = FinCopy,
ACCOUNT = 'Administration',
STARTUP = 'ECHO "EXECUTE PresentTime;";'
DEFAULT DATABASE = Finance ;

This statement assigns the username and password that Jones needs
to log on to the DBC/1012 Data Base Computer. The optional FROM
clause permanently allocates to Jones 100,000 bytes of disk space
from that belonging to Finance. If FROM were not specified,
space would be allocated from space belonging to the system
administrator.

The FALLBACK option specifies that a secondary copy of any table
created in Jones' user space is maintained in addition to the
primary copy, for use in case the primary copy becomes
unavailable. If NO FALLBACK was specified, only the primary copy
would be maintained. Because FALLBACK is the default setting, if
Jones had not specified whether or not a FALLBACK copy should be
maintained, the DBC/1012 automatically keeps a secondary copy.
(For an explanation of the fallback concept, refer to DBC/IOI2
Data Base Computer Concepts and Facilities.)

The JOURNAL option specifies the default level of journaling
maintained for tables created in user Jones' disk space. BEFORE
JOURNAL indicates that a before-image journal is maintained and
AFTER JOURNAL indicates that an after-image journal is
maintained. The journal table to which the change images are
wri tten is specif.ied in the DEFAULT JOURNAL TABLE clause. In
this example, FinCopy is the name of the journal table. (Note
that a user may be created with many different combinations of
before- and/or after-image journals. For a complete description
of how you may specify the JOURNAL option, refer to the DBC/lOI2
Data Base Computer Reference Manual.)

10-8 C09-0001-07

The SPOOL option specifies the maximum space allocated to spool
files on the DBC/1012. A spool file holds the result of a
DBC/SQL statement for examination or printing. If SPOOL were not
specified, the amount of spool space allocated to Finance also
would be available to Jones.

The ACCOUNT option identifies for accounting purposes the
department or budget responsible for disk space accumulated by
the new user. If ACCOUNT were not specified, disk space usage
would be charged to the owner data base. If Jones had more than
one account, the account names would be specified in parentheses,
for example:

ACCOUNT = ('Administration', 'Exec Office')

The optional STARTUP clause may contain one or more DBC/SQL
statements that will condition the session environment each time
Jones logs on. In this example, the STARTUP clause contains a
macro named PresentTime that will display the current date and
time whenever Jones logs on to the DBC/1012.

The DEFAULT DATABASE option identifies Finance as the default
data base for every DBC/SQL statement that Jones enters after
logging on. This eliminates the need for Jones to qualify with
"Finance." the names of tables, views, and other objects used in
statements. If after logging on, Jones wished to establish a
default data base other than Finance, she could enter a DATABASE
statement. Note that entering a DATABASE statement will change
the default data base setting for the current session only.

As a user, Jones has the following privileges in her user space:

• CREATE and DROP TABLE, VIEW, MACRO

• SELECT, INSERT, UPDATE, DELETE

• EXECUTE

10.4 CREATING DATA BASES

After creating Jones as a user, the system administrator grants
Jones all privileges on' the Finance data base, including those
for creating and dropping data bases and users. One of the first
data bases Jones creates is Personnel.

To create this data base, Jones enters the following CREATE
DATABASE statement:

CREATE DATABASE Personnel FROM Finance
AS PERMANENT = 1000000 BYTES, SPOOL = 10000000 BYTES,
FALLBACK, ACCOUNT = 'Administration'
BEFORE JOURNAL, AFTER JOURNAL,

C09-000l-07 10-9

DEFAULT JOURNAL TABLE = FinCopy ;

Except for omission of the PASSWORD, STARTUP clause, and DEFAULT
DATABASE options, the CREATE DATABASE statement is identical in
syntax to the CREATE USER statement.

10.5 MODIFYING USERS AND DATA BASES

You may change the definition'of a user or data base using the
MODIFY USER or MODIFY DATABASE statements. Again, except for
omission of the PASSWORD, STARTUP clause, and DEFAULT DATABASE
options, the MODIFY DATABASE statement is identical in syntax to
the MODIFY USER statement.

In order to modify a user or data base, you must have the drop
privilege on the user or data base. An exception is the MODIFY
USER statement, which allows you to change your own PASSWORD,
STARTUP, FALLBACK, DEFAULT JOURNAL, and DEFAULT DATABASE options
in your user definition.

For example, to change her password from "Veep" to "VP", Jones
may enter the following statement:

MODIFY USER Jones
AS PASSWORD = VP:

Except for the new password, Jones' user definition remains as
specified in th~ CREATE USER statement above.

If Jones wishes to increase the disk space as well as the space
allocated to spool files for the Personnel data base, Jones may
enter the following statement:

MODIFY DATABASE Personnel
AS PERMANENT = 10000000 BYTES, SPOOL = 100000000 BYTES;

Except for PERMANENT and SPOOL, the specifications defined
in the CREATE DATABASE statement above remain in effect.

You may use modify statements to change the default journal
specified for a data base or user, but certain restrictions do
apply. For example, suppose the journal table "FinCopy" resides
under Jones. If she wants to change the default journal from
"FinCopy" to "Jrnl1," then she must first drop the current
default by entering the following statement. This statement
removes "FinCopy" as the default and drops it from the system.
If there are any existing tables that use "FinCopy" as their
journal table, then the statement will return an error message.

MODIFY USER Jones
AS DROP DEFAULT JOURNAL TABLE = FinCopy ;

10-10 C09-0001-07

Now that the present default has been dropped, Jones may specify the
new default by entering:

MODIFY USER Jones
AS DEFAULT JOURNAL TABLE = Jrnll ;

(Because a data base or user name was not specified for "Jrnll" the
table is created under Jones' user space.)

Conversely, if the default journal resides in a data base or user
other than the one being modified, then you need only enter one
modify statement. For example, if Jones wants to change the
default journal for the Personnel data base from "FinCopy" to
"Jrnll," where Jrnll resides in Jones' user space, she would
enter:

MODIFY DATABASE Personnel
AS DEFAULT JOURNAL TABLE = Jones.Jrnll ;

(Note that, when a modify statement changes the default journal
setting for a user or data base, existing tables that use the
original default journal option will retain the original journal
setting. To change the journal option for an existing table, you
must explicitly change it in an ALTER TABLE statement.)

10.6 REMOVING USERS AND DATA BASES

To remove users and data bases, use the DROP statement. For
example, to drop user Peterson, enter:

DROP USER Peterson;

To drop the Personnel data base, enter:

DROP DATABASE Personnel;

To minlmlze the possibility of a user or data base being dropped
unintentionally, all tables, users, views, and macros within a
data base or user space must be dropped before a DROP statement
can be entered for the user or data base. You may drop these
objects using the DELETE DATABASE statement.

For example, entering the statement,

DELETE DATABASE Personnel;

drops all objects in the Personnel data base while retaining
Personnel as a named data base.

The statement,

DELETE USER Peterson;

C09-0001-07 10-11

Note that, if a data base or user contains a journal table in
their disk space, then the data base or user cannot be dropped
until the journal table is removed from the system. To drop the
journal table, you must use a modify statement as described in
the previous section. A DELETE statement will not cause a
journal table to be dropped.

To enter a DELETE DATABASE statement for a data base or user, you
must have the DROP privilege for the data base or user.

10.7 TRANSFERRING DATA BASE OWNERSHIP

To delegate responsibility for all Personnel matters to
controller Chin, Jones transfers ownership of the Personnel data
base to Chin using the following GIVE statement:

GIVE Personnel to Chin;

Jones is able to transfer ownership of the Personnel data base to
Chin because Jones owns this data base.

10.8 SUMMARY AND PREVIEW

This chapter showed you how to grant and revoke privileges on a
data base or user space, how to create, modify, and remove data
bases and users, and how to transfer ownership of a data base.
The next chapter shows you how to query Data Dictionary/Director
tables or use the HELP statement to obtain information about data
stored in DBC/1012 data bases.

10-12 C09-000l-07

CHAPTER 11 VIEWING DATA BASE INFORMATION

From time to time, you will need to know what data is available
to you on your organization's DBC/1012 Data Base Computer, what
form it is in, how to query it, what privileges you have granted
to other users, and what privileges have been granted to you.
Up-to-date information about all the data bases and users
maintained on your DBC/1012 is available from the Data
Dictionary/Directory, a collection of system tables.

You may obtain Data Dictionary/Directory information in two ways:

1. By querying system-defined views of Data
Dictionary/Directory tables

2. By entering the DBC/SQL HELP statement for a data
object

This chapter shows you how to query Data Dictionary/Directory
views and how to use the HELP statement.

11.1 QUERYING DATA DICTIONARY/DIRECTORY VIEWS

As described in Chapter 7, a view is a virtual table that serves
as a "window" through which you may see a portion of one of more
tables or views or a combination of tables and views. Data
Dictionary/Directory views may be queried as though they were
actual tables.

Data Dictionary/Directory views and their contents are summarized
in Table 11-1.

C09-0001-07 11-1

Table 11-1.

View Name

DataBases

Tables

Columns

Journals

UserGranted
Rights

UserRights

SessionInfo

End User Dictionary/Directory Views

Contents

Information about any of your organization's
data bases

Information about any table, view, or macro
in a data base

Information about table or view columns, or
macro parameters

Information about the journal table for each
data table a you have access to

Information about privileges that you have
granted to other users

Information about privileges that you have
on data bases, tables, views, and macros

Information about sessions that are currently
logged on

Using the COMMENT statement or the HELP statement (described
below), you may obtain a description of any of these views. For
example, entering:

COMMENT ON DBC.UserGrantedRights;

displays the following description:

The DBC.UserGrantedRights view provides information on
access rights that the current user has granted to other
users. The column names are: DataBaseName, TableName,
AccessRight, Grantee, and Allnessf1ag.

As with all DBC/SQL names, the names of system views and their
columns may be entered in any combination of uppercase or '
lowercase letters as long as they are spelled correctly.

11.1.1 Querying The Databases View

The name of the DataBases view is "DBC.DataBases". Each row of
this view provides information about one of your organization's
data bases. The following columns are defined:

• DataBaseName

Gives the name of a data base.

11-2 C09-0001-07

• CreatorName

Names the creator of the data base.

• OwnerName

Names the owner of the data base.

• ProtectionType

Identifies the default fallback option for tables
created in the data base, as follows: Y (yes),
fallback is the default; N (no), no fallback is the
default.

• JournalFlag

Specifies the default for the type of journal table
maintained for tables created in a data base.

• PermSpace

Specifies the total space in bytes allocated to the
data base.

• CommentString

Contains the text of any user-supplied description of
the data base.

To display information for the user space allotted to Greene,
enter,

SELECT DataBaseName, CreatorName, OwnerName, PermSpace
FROM DBC.DataBases
WHERE DataBaseName = 'Greene';

The result is shown below.

DataBaseName CreatorName OwnerName PermSpace

Greene JONES JONES 100,000

C09-000l-07 11-3

11.1.2 Querying The Tables View

The name of the Tables view is "DBC.Tables". Each row of this
view provides information about a table, view, or macro in one of
your organization's data bases. The following columns are
defined:

• DataBaseName

Identifies the data base in which the table, view, or
macro resides.

• TableName

Gives the name of the table, view, or macro.

• TableKind

Identifies the type, as follows: T (table), V (view),
M (macro).

• ProtectionType

Specifies whether the fallback option is in effect for
the table, as follows: Y (yes), fallback is the
default; N (no), no fallback is the default.

• JournalFlag

Specifies the default for the type of journal table
maintained for the table.

• CreatorName

Names the creator of the table, view, or macro.

• RequestText

Contains the most recent data definition statement for
the table, view, or macro.

• CommentString

Contains the text of any user-supplied description of
the table, view, or macro.

To display information for all tables, views, and macros in the
Personnel data base, enter,

SELECT TableName, CreatorName, TableKind, ProtectionType
FROM DBC.Tables
WHERE DataBaseName = 'Petsonnel';

The result is shown below.

11-4 C09-OOOl-07

TableName CreatorName TableKind ProtectionType
-------------- ----------- --------- --------------
Employee Jones T y
Department Jones T Y
Charges Jones T Y
Project Jones T Y
Employee Info Jones V y

11.1.3 Querying The Columns View

The name of the Columns view is "DBC.Columns". This view
provides information about table and view columns and macro
parameters in your organization's data bases. The following
columns are defined:

• DataBaseName

Identifies the data base in which the table, view, or
macro resides.

• TableName

Identifies the table, view, or macro.

• ColumnName

Names the column or parameter.

• ColumnFormat

Specifies the format of column or parameter data.

• ColumnTitle

Specifies the heading for a column.

• ColumnType

Specifies the type of data for the column or parameter,
as follows: I (integer), F (floating), D (decimal), CF
(fixed character), CV (variable character), BF (fixed
binary), BV (variable binary), DA (DATE).

• ColumnLength

Specifies the length of a column.

C09-OOOl-07 11-5

• DefaultValue

Specifies any default value assigned to the column or
parameter.

• RangeLow

If a range is specified, defines the lowest value that
the column or parameter may contain.

• RangeHi

If a range is specified, defines the highes·t value that
the column or parameter may contain.

• Nu11ab1e

Specifies whether the column or parameter may contain a
null value, as follows: Y (yes), N (no).

• CommentString

Contains the text of any user-supplied description of
the column or parameter.

• DecimalTota1Digits

Specifies the total number of digits (left and right of
the decimal point) for a decimal field.

• DecimalFractiona1Digits

Specifies the number of fractional digits (right of the
decimal point) for a decimal field.

• Columnid

Specifies a 2-byte identifier used for ordering
columns.

• UppercaseF1ag

Specifies whether a character field is uppercase (UC),
lowercase (LC)i or casespecific (CS).

To display information about the columns in the Employee table,
enter,

SELECT ColumnName, ColumnFormat, RangeLow, RangeHi
FROM DBC.Columns
WHERE DataBaseName = 'Personnel'
AND TableName = 'Employee';

The result is shown below.

11-6 C09-OOOI-07

ColumnName ColumnFormat RangeLow RaogeHi
---------- ------------ ----------- -----------
EmpNo 9(5) 1.00010E 04 9.99990E 04
Name X(12)
DeptNo 999 1.OaOOOE 02 9.00000E 02
JobTitle X(12)
Salary zzz,zz9.99 1.00000E 00 9.99000E 05
YrsExp z9 -9.90000E 01 9.90000E 01

11.1.4 Querying The UserGrantedRights View

The name of the UserGrantedRights view is
"DBC.UserGrantedRights". Each row of this view provides
information about a privilege that you have granted to another
user on a data base, table, view, or macro. The following
columns are defined:

• DataBaseName

Gives the name of the data base on which the privilege
was granted.

• TableName

Gives the name of the table, view, or macro on which
the privilege was granted.

• Grantee

Identifies the user who was granted the privilege.

• AccessRight

Identifies the privilege by a code, listed in Table
11-2.

• AllnessFlag

Specifies whether the privilege was granted to all
users owned by the grantee.

C09-000l-07 11-7

Table 11-2. Privilege Codes

Code Privilege

CD Create Data Base
CM Create Macro
CP Checkpoint
CT Create Table
CV Create View
D Delete
DD Drop Data Base
DD Drop User
DM Drop Macro
DP Dump
DT Drop Table
DV Drop View
RS Restore
E Execute
G Grant
I Insert
R Retrieve
U Update

To display information about all privileges that you (assuming
that you are Jones) have granted to other users, enter,

SELECT DataBaseName, TableName, Grantee, AccessRight
FROM DBC.UserGrantedRights
ORDER BY 1,2,3,4;

The result is shown below.

DataBaseName TableName Grantee AccessRight
-----_ _---- ------------- -------- -----------
Personnel Employee Greene CD
Personnel Department Greene CT
Personnel Charges Greene CV
Personnel Project Greene I
Personnel Employee Peterson I
Personnel Department Peterson I
Personnel Charges Peterson I
Personnel Project Peterson I
Personnel Project Peterson R
Personnel Project Peterson U

11-8 C09-0001-07

11.1.5 Querying The UserRights View

The name of the UserRights view is "DBC.UserRights". Each row of
this view provides information about a privilege granted to you
on a data base, table, view, or macro. The following columns are
defined:

• DataBaseName

Gives the name of the data base.

• TableName

Gives the name of the table, view, or macro.

• AccessRight

Identifies the privilege by a code, listed in Table
11-2.

To display information about privileges that you have been
granted on the Personnel data base, enter, table that have been
granted to you, enter:

SELECT DataBaseName, TableName, AccessRight
FROM DBC.UserRights
WHERE DataBaseName = 'Personnel';

The result is shown below.

DataBaseName TableName AccessRight

Personnel All R

11.1.6 Querying The SessionInfo View

The name of the Sessionlnfo view is "DBC.SessionInfo". Each row
of this view provides information about a user session that is
currently logged on to the DBC/lOI2 Data Base Computer. The
following columns are defined:

• UserName

Gives the username associated with the session.

C09-0001-07 11-9

• AccountName

Gives the name of the account that is responsible for
disk space usage for username.

• SessionNo

Gives the number of the session.

• DefaultDataBase

Gives the name of the default data base for username.

• Partition

Gives the name of the DBC/I012 program to which the
session is attached (for example, DBC/SQL).

To display information about sessions that are currently logged
on to the DBC/I012, enter:

SELECT * FROM DBC.SessionInfo
WHERE UserName = 'Greene';

The result is shown below.

UserName AccountName SessionNo DefaultDataBase Partition

Greene F&A OOOOEE03 Personnel DBC/SQL

11.2 USING THE HELP STATEMENT

Use the DBC/SQL HELP statement to obtain information from the
Data Dictionary/Directory about a system view or a data base,
table, view, macro, or field (a column in a table or view). The
HELP statement allows you to get information quickly and
conveniently without having to construct and enter a query of the
Data Dictionary/Directory.

The syntax of the HELP statement is:

11-10 C09-OOOl-07

{ USER username }
{ DATABASE databasename }
{ TABLE tablename }
{ VIEW viewname }
{ MACRO macroname }
{ COLUMN columnname [.•• ,columnname] FROM tablename }
{ [••. ,tablename] }

HELP {COLUMN * FROM tname }
{ COLUMN tname.cname [••• ,cname] }
{ COLUMN tablename.* }
{ FIELD columnname [••• ,columnname] FROM tablename }
{ [••• ,tablename] }
{ FIELD * FROM tablename }
{ FIELD tname.cname [•.• ,cname] }
{ FIELD tablename.* }
{ INDEX tablename [(.columnname [••• ,columnname])]}

where objref specifies the name of the data base, table, view,
macro, or field (column).

11.2.1 Usage Notes

To use HELP to get information about an object, you must be the
owner of the object or have any privilege on it.

When HELP DATABASE is entered, the DBC/1012 lists all tables,
views, and macros in the specified data base and the following
information about each:

• Name

• Type: T (table), V (view), M (macro)

• Comment, if available

• Other attributes: Protection Type and Creator Name

The list is displayed alphabetically by object name.

When HELP TABLE, HELP VIEW, or HELP MACRO is entered, the
DBC/1012 lists the columns in the specified table or view, or the
parameters in a specified macro, with the following information:

• Name

• Data type: I (integer), F (float), D (decimal), II
(ByteInt), 12 (SmallInt), CF (fixed character), CV
(variable character), BF (fixed binary), BV (variable
binary), DA (DATE)

• Comment, if available

C09-OOOl-07 11-11

• Other attributes: Format, Title, Max Length, Decimal
Digits, Range Constraints, Uppercase, Default

The list is displayed in the order in which the objects were
defined.

HELP TABLE and HELP VIEW are useful for recalling the name of a
column and the kind of data that it contains. HELP MACRO can be
used in conjunction with the COMMENT statement to obtain
information about using the macro.

When HELP COLUMN or HELP FIELD is entered, the DBC/1012 lists the
attributes of the specified column(s). In addition to items
displayed for HELP TABLE or VIEW, the display indicates whether
the column is in an index, and if so, what kind of index.

The HELP INDEX statement is used to provide information about all
the indexes or a selected index of a table. The response to the
HELP INDEX statement includes the following information about
each index:

• Unique: N (no), Y (yes)

• Primary or Secondary: P (primary), S (secondary)

• Name(s) of the column{s) that comprise the index

11.2.2 Examples

The following examples illustrate use of the HELP statement.

Entering the statement,

HELP TABLE Personnel.Department;

causes the DBC/1012 to display the following information about
the Department table:

Column Name Type Comment

DeptNo
DeptName
EmpCount
Loc
MgrNo

I
CV
I
CF
I

Department number
Department name
Number of employees in department
Department location
Employee number of department manager

(The display is truncated; other fields occur to the right.)

The statement,

HELP MACRO Personnel.NewEmp;

11-12 C09-OOOl-O?

returns:

Parameter Name Type Comment

Name
Number
Dept
position
Sal
Years

CV
I
I
CV
D
I

Employee name, last name first; require l

Employee number; required
Department number; required
Title or position
Annual base salary
Years of experience

(The display is truncated; other fields occur to the right.)

The statement,

HELP COLUMN Name, DeptNo FROM Employee

returns:

Name

Name
DeptNo

C09-0001-07

Type Nullable Format

CV
12

N
Y

X(12)
999

11-13

11-14 C09-OOOI-07

APPENDIX A PERSONNEL DATA BASE

CREATE TABLE Charge., FALLBACK Tab1 .. Charges CREATE TABLE Project, FALLBACK

(EmpNo SMALlINT FORMAT '9(5)' (ProUd CHAR(8) TITLE 'Projectll Id' NOT NULL,

TITLE 'Employeelild' BETWEEN 10001 AND 32001 NOT NULl,
Project

Descriplion VARCHAR(25) TITLE' Projeci Description',

ProUd CHAR (8) TITLE 'Projectll Id' NOT NULl, Employee Week RecDale DATE FORMAT 'YY/MM/DD' TITLE 'Received/IDale',

WkEnd DATE TITLE 'WeekllEnding', Id Id Ending Hours Due Dale DATE FORMAT 'YY/MMIOD' TITLE 'Due IIDale',

Hours DECIMAl(4,1) FORMAT 'ZZ9.9' BETWEEN 0.5 AND 999.5)
-------- -------- -------- --- -- ComDale DATE FORMAT 'YY/MMIDD' TITLE 'Compll/Oale')

PRIMARY INDEX (EmpNo, ProUd) 10015 API-000l 83,02 18 30,5
UNIQUE PRIMARY INDEX (ProUd);

INDEX (ProUd); 10010 AR1-0002 83102 18 12.5
10001 PAY-OOOI 83; 11 18 4.5 Tablet ProJ.ct
10019 ARI-0003 83/02 04 28.0
10004 ENG-0003 83;1118 40.0
100io EOI-0001 83110, 07 10.0 Project Received Due Comp1
10003 OEI-OOOI 83:03 18 23.0 Id -Project Description Date Date Date

CREATE TABLE Employee, FALLBACK 10015 AR1-0002 83,02,25 24.0 -------- ------------------------- -------- -------- --------
10001 PAY-OOOI 83:09,30 5.0

(EmpNo SMALlINT FORMAT '9(5)' BETWEEN 10001 AND 32001 NOT NULl, 10011 PAY-OOOI 83/04/15 31.0 OEI-0003 OlE Batch System 82/11/21 83/10,'27 83/10/27
Name VARCHAR (12) NOT NULl, 10016 ENG-0003 83'02,25 2.5 AP2-0002 AlP Payable Online System 82/08/09 83:04:10 83 /04110
DeplNo SMALlINT FORMAT '999' BETWEEN 100 AND 900, 10014 OE1-0001 83 l 01,21 30.5 AR1-0002 A'R RECV Onlln. System 82/08/09 83/04/10 83/04t10 _
JobTIlle VARCHAR (12), 10003 OE1-0001 83/02,25 10.5 OE2-0001 OlE Data Base Design 82/11/21 83/10/27 83/10,21
Salary DECIMAL (8,2) FORMAT 'ZZZ,ZZ9.99· BETWEEN 1.00 AND 999000.00, 10019 API-0003 83/02/11 20.5 AR1-0003 AIR RECV Batch System 82:08/09 83/04/10 83,04/20
YrsExp BYTEINT FORMAT 'Z9' BETWEEN -99 AND 99, 10016 ENG-0002 83/01/14 32.0 AR2-0001 AIR RECV Data Base Design 82/08/09 83/04/10 83/04110
OOB DATE FORMAT 'MMMbDDbYYYY' NOT NULl, 10017 PAY-OOOI 83/08 / 26 33.0 AR2-0002 A;R RECV 00110. Systell 82/08/09 83/04/10 83:04' 10
Sex CHAR(1) UPPERCASE NOT NULL, 10014 OEI-000l 83/01128 30.0 AP2-0001 AiP Payable DB Design 82/08/09 83/04/10 83/04/10

Race CHAR(l) UPPERCASE, 10010 API-0002 83/02.'18 10.0 AP2-0003 AlP Payabl. Batch System 82/08/09 83/04/10 83/04/10

MSlat CHAR(1) UPPERCASE, 10016 ENG-0002 83/0520 32.0 PAY-0002 Payroll .ile laint.oanc. 83/01/01 83/12/31 84/01/31

Edlev BYTEINT FORMAT 'Z9' BETWEEN 0 AND 22 NOT NUll, 10001 PAY-0002 83/10 21 34.5 OE2-0003 O'E Batch System 82111/21 83110/21 83'11115

HCap BYTEINT FORMAT 'Z9' BETWEEN -99 AND 99) 10004 ENG-0002 83/07 29 53.0 ENG-0002 Design 'idg.t Pwr Supply 78/01/02 79/07/19 78/08/08

UNIQUE PRIMARY INDEX (EmpNo) 10014 OEI-0002 83:01 'H 20.0 AP1-0001 A'P Payab1. DB Deslgn 82/08/09 83/04/10 83/04/10

INDEX (Name);
10002 OEI-0001 83/04'15 33.5 ENG-0003 Deslgo 'idg.t 'rame 18/01/02 80/10/21 81:05/05
10002 OEI-OOOI 83/03 11 12.0 API-0003 A'P Payable Batch System 82108/09 83/04/10 83/04/21

OEI-0001 OlE Data Bas. D.sigo 82/11/21 83/10/21 83110121
OEI-0002 OlE Onlln. System 82/11/21 83/10/21 83/10/21
API-0002 AlP Payable 0011n. System 82/08/09 83/04/10 83 /04/21
ARI-0001 AIR RECV Data Bas. D.slgo 82/08/09 83/04/10 83/04/21
PAY-OOOI Payroll Syst •• Data Eotry 83/01101 83112/31 84/01/10

Tabl •• Employ .. AR2-0003 AIR RECV Batch SYlt •• 82/08/09 83/04/10 83/04/10
OE2-0002 OlE Online System 82/11/21 83/10/21 83/11110
ENG-0004 Assemble Aod T.st .idget 81/04/10 81110/21 81/10/26

EmpNo Name DeptNo JobTltle Salary YrsExp DOB Sex Race IIStat EdLev HCap ENG-OOOI Deslgo Widg.t Boards 18/01/02 18/12/31 18/12/06

----- ------------ ------ ------------ ---------- ------ ----------- --- ---- ----- ----- ----

10019 Newman P 600 Test Tech 28,600.00 6 Aug 29 1956 .r C II 12 0
10011 Chin II 100 Controller 38,000.00 11 Nov 29 1955 r A II 16 0

CREATE TABLE Department, FALLBACK

10007 A~ul1ar J 600 lIanager 45,000.00 11 Jul 09 1949 II S II 16 0
(DeplNo SMAlUNT FORMAT '999' BETWEEN 100 AND 900 NOT NULl,

10018 Russell S 300 President 65,000.00 25 Juo 05 1932 II B D 16 0 DeptName VARCHAR(14),

10022 Clements 0 700 Salesperson 38,000.00 9 Aug 23 1944 II C II 16 0 Loc CHAR(3),

10006 Kemper R 600 AsselDbler 29,000.00 1 Sep 12 1947 II C II 12 0 MgrNo SMALLINT FORMAT '9(5)' BETWEEN 10001 AND 32001 NOT NULL)
10014 Ing11s C 500 Tech Wrl ter 34,000.00 5 liar 07 1938 II C S 16 0 UNIQUE PRIMARY INDEX (DepINo);
10003 Leidner P 300 Secretary 23,000.00 13 Jul 12 1948 r C II 16 0
10021 Smi th T 700 lIanager 45,000.00 10 Jul 29 1946 r B S 16 0
10012 Watson L 500 Vlce Pres 56,000.00 8 Oct 03 1943 II C S 20 0
10004 Smith T 500 Engineer 42,000.00 10 Oct 31 1951 II C II 18 0 Tabl .. D.partm.ot
10016 Carter J 500 Engineer 44,000.00 20 liar 12 1935 II C II 20 0
10008 Phan A 300 Vice Pres .55,000.00 12 Jun 07 1947 r A II 18 0
10013 Regan R 600 Purchaser 44,000.00 '0 Oct 20 1948 F C II 16 0 DeptNo Department Loc IIgrNo

I

10011 Greene W 100 Payroll Ck 32,500.00 15 Nov 27 1955 II N II 16 0 ----- -------------- --- -----
10009 lIarston A 500 Secretary 22,000.00 12 Jun 01 1947 r A II 18 0
10002 lIottit H 100 Recrui ter 35,000.00 3 Nov 16 1945 F B W 18 0 100 Administration NYC 10011
10010 Reed C 500 Technician 30,000,00 4 Apr 08 1949 II C D 16 0 600 lIanutactur ing CHI 10001
10015 Omura H 500 Programmer 40,000.00 8 Apr 24 1954 II A S 16 0 500 Engineering ArL 10012
10020 Brange 1 B 700 Salesperson 30,000.00 5 Oct 15 1947 P C S 16 0 300 Exec Ottic. NYC 10018
10001 Peterson J 100 Payroll Ck 25,000.00 5 liar 27 1942 II C II 12 0 700 lIarketlng NYC 10021

ft ____ L. __ 41ft8 ..

APPENDIX B SYNTAX SUMMARY

This appendix summarizes the syntax of:

• DBC/SQL statements

• DBC/SQL statement modifiers

• ITEQ commands

• BTEQ commands

• Data Dictionary/Directory views

The notation here is as elsewhere:

• Uppercase characters indicate keywords.

• Italic characters indicate that a value or name is to
be substituted' in their place.

• Underscores indicate the default value.

• Special characters, including blanks, are required as
shown unless specifi~d otherwise.

• Braces indicate a choice; one of the options within
the braces must be entered.

• Brackets indicate an optional entry.

• Horizontal ellipses indicate a phrase that can be
repeated.

• Vertical ellipses indicate omitted portions in the
statement or command.

C09-OOOl-07 B-1

B.l DBC/SQL STATEMENTS

DBC/SQL statements are listed alphabetically. Defaults are
underscored.

ABORT ['msgtext'] [WHERE cond] :

ALTER TABLE tname [,option [••• ,option]]

[{ ADD cname datadesc } [. . . ,ADD cname datadesc]]
[{ } []] . ,
[{ DROP cname } [. . . ,DROP cname]]

Any of the following options may be listed in any order:

[,[NO] FALLBACK [PROTECTION]]

[NO] [AFTER]
[, [] [] JOURNAL]

[DUAL] [BEFORE]

[,WITH JOURNAL TABLE = tname]

{ BEGIN TRANSACTION }
{ }
{ BT }

statement;
[••• statement;]

{ END TRANSACTION }
{ }
{ ET }

CHECKPOINT tname [,NAMED chkptname] :

[COLUMN cname]
COLLECT STATISTICS [ON] tname [] :

[INDEX (cname [• •• , cname])]

B-2 C09-OOOl-07

[DATABASE]
[USER]
[TABLE] [AS]

COMMENT [ON] [VIEW] objname [] ['string']
[MACRO] [IS]
[COLUMN]
[FIELD]

{ CREATE DATABASE }
{ } dbname [FROM ownerdb]
{ CD }

AS PERM[ANENT] = n [BYTES]
[[,] option [••• [,] option]] ;

Any of the following options may be listed in any order

[,SPOOL = n [BYTES]]

[,ACCOUNT = 'aeetid']

[,[NO] FALLBACK [PROTECTION]]

[NO] [AFTER]
[,[] [] JOURNAL]

[DUAL] [BEFORE]

[,DEFAULT JOURNAL TABLE = tname]

CREATE [UNIQUE] INDEX (ename [••• ,ename]) ON tname

{ CREATE MACRO }
{ } maeroname
{ CM }

[(pname(datadese) [••• ,pname(datadese)])]

AS (statement; [••• statement;]) ;

C09-000l-07 B-3

} { CREATE TABLE
{
{ CT

} tname [,option [••• ,option]]
}

(ename datadese [••• ,ename datadese])

[UNIQUE] PRIMARY INDEX (cname [••• ,enamel)
[••• , [UNIQUE] INDEX (cname [... , ename])] ;

Any of the following options may be listed in any order

[,[NO] FALLBACK [PROTECTION]]

[NO] [AFTER]
[, [] [] JOURNAL]

[DUAL] [BEFORE]

[,WITH JOURNAL TABLE = tname]

CREATE USER username [FROM ownerdb]
AS PERM[ANENT] = n [BYTES]
[,] PASSWORD = name
[[,] opt i on [... [,] opt i on]] ;

Any of the following options may be listed

[,SPOOL = n [BYTES]]

[,STARTUP = 'string; [. . . string;] ,]

{ 'acctid'
[,ACCOUNT = {

{ ('acetid' [... , 'acctid']

[,DEFAULT DATABASE = dbname]

[,[NO] FALLBACK [PROTECTION]]

[NO] [AFTER]
[, [] [] JOURNAL]

[DUAL] [BEFORE]

[,DEFAULT JOURNAL TABLE = tname]

in any order

}
}]

) }

. .

B-4 C09-OOOl-07

{ CREATE VIEW }
{ } viewname [(ename [••• ,enamel)] AS
{ cv }

{ ACCESS }
{ [DATABASE] dbname} [FOR] { EXCL[USIVE] }

[LOCK[ING] { [TABLE] tname } [] { SHARE } [MODE]] [••
{ [VIEW] vname } [IN] { READ }

{ WRITE }

SELECT expr[•.• ,expr]

FROM tname [aname] [••• ,tname [aname]]

[WHERE eond] ;

DATABASE dbname ;

[WHERE eond]
DEL[ETE] FROM tname [aname] []

[ALL]

{ DATABASE }
DEL[ETE] { } dbname

{ USER }

{ DATABASE }
DROP { } name

{ USER }

DROP INDEX (ename [••• ,ename]) ON tname

{ MACRO }
DROP { TABLE } name ;

{VIEW }

[COLUMN enarne]
DROP STATISTICS [ON] tname [] ;

[INDEX (en arne [•. 0 , en ame])]

C09-0001-07 B-5

{
ECHO {

{

'string' }
}

'command ;' }

EXEC[UTE] macroname

[(const [••• ,eonst])]
[]
[(pname=eonst [••• ,pname=eonst])]

GIVE name TO reeipientname

{ ALL [PRIVILEGES]
GRANT { privilege [. . . ,privilege]

{ ALL BUT privilege [. . . ,privilege]

{ dbname } { username }
ON { } TO { PUBLIC }

{ dbname.tname } { ALL username }

[WITH GRANT OPTION] . ,

{ DATABASE dbname
{ USER username
{ TABLE tname
{ VIEW viewname
{ MACRO maeroname

. ,

}
}
}

{ COLUMN ename [••• ,enamel FROM tname
{ [... ,tname]
{ COLUMN * FROM tname

HELP { COLUMN tname.cname [. . . ,ename]
{ COLUMN tname.*
{ FIELD ename [. . . ,enamel FROM tname
{ [... ,tname]
{ FIELD * FROM tname
{ FIELD tname.cname [. . . ,ename]
{ FIELD tname.*

. { INDEX tname [(ename [. . . ,enamel)]
{ STATISTICS tname

INS[ERT] [INTO) tname [(cname [.•• ,enamel)]

{ VALUES (expr [... , expr)) }
{ } ;
{ select-statement }

B-6

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

C09-OOOl-07

MODIFY DATABASE dbname
AS option [••• [,] option] ;

Any of the following options may be listed in any order

[,PERM[ANENT] = n [BYTES]]

[,SPOOL = n [BYTES]]

[,ACCOUNT = 'acctid']

[,[NO] FALLBACK. [PROTECTION]]

[NO] [AFTER]
[, [] [] JOURNAL]

[DUAL] [BEFORE]

[DEFAULT JOURNAL TABLE = tname]
[, []]

[DROP DEFAULT JOURNAL TABLE [= tname]]

MODIFY USER username
AS option [••. [,] option] ;

Any of the following options may be listed in any order :

[,PERM[ANENT] = n [BYTES]]

[,PASSWORD = name]

[,SPOOL = n [BYTES]]

[,STARTUP = 'string; [••• string;]']

{ 'acctid'
[, ACCOUNT = {

}
}]

{ (' acct id' [••• , , acct id ']) }

[,DEFAULT DATABASE = dbname]

[,[NO] FALLBACK [PROTECTION]]

[NO] [AFTER]
[, [] [] JOURNAL]

[DUAL] [BEFORE]

[DEFAULT JOURNAL TABLE = tname]
[, []]

[DROP DEFAULT JOURNAL TABLE [= tname]]

C09-OOOI-07 B-7

{ MACRO }
RENAME { TABLE } oldname TO newname ;

{VIEW }

REPLACE MACRO macroname

[(pname{datadesc) [••• ,pname(datadese)])]

AS (statement; [••• statement;]) ;

REPLACE VIEW viewname [(cname [••• ,enamel)] AS

{ ACCESS }
{ [DATABASE] dbname} [FOR] { EXCL[USIVE] }

[LOCK[ING] { [TABLE] tname } [] { SHARE } [MODE]] [•••]
{ [VIEW] vname } [IN] { READ }

{ WRITE }

SEL [ECT] expr [• •• , expr]

FROM tname [aname] [.•• ,tname [aname]]

[WHERE cond] ;

{ ALL [PRIVILEGES] }
REVOKE { privilege [••• ,privilege] }

{ ALL BUT privilege [••• ,privilege] }

{ dbname } {FROM} { name }
ON { } { } { PUBLIC } ;

{ dbname.tname } { TO } { ALL name }

ROLLBACK [WORK] ['msgtext'] [WHERE cond] ;

B-8 C09-OOOl-O?

[DISTINCT] { expr [••• ,expr] }
SEL[ECT] [] { }

[ALL] { * }

FROM tname [aname] [••• ,tname [aname]]

[WHERE cond]

[GROUP BY expr [••. ,expr] [HAVING cond]]

[[DESC] [[DESC]]]
[ORDER BY expr [] [... ,expr []]]
[[ASC] [[ASC]]]

[WITH summarylist [BY breaklist] J ;

{ MACRO macroname }
SHOW { TABLE tname }

{VIEW viewname }

UPD[ATE] tname [aname] SET cname = expr [••• ,cname=expr]

[WHERE cond]
[]
[ALL]

C09-0001-07 B-9

B.2 DBC/SQL MODIFIERS

DBC/SQL modifiers are listed alphabetically. These modifiers
can be used with any DBC/SQL statement.

EXPLAIN statement ;

{ ACCESS }
{ [DATABASE] dbname } [FOR] { EXCL[USIVE] }

LOCK[ING] { [TABLE] tname } [] { SHARE } [MODE]
{ [VIEW] vname } [IN] { READ }

{ WRITE }
[statement] ;

USING name (datadesc) [.•. ,name (datadesc)]

statement ;

B-lO C09-000l-07

B.3 ITEQ COMMANDS

ITEQ commands are listed alphabetically. Defaults are
underscored.

ABORT ;

ADD ;

{ { BACKWARD [*]}}
{ { [SKIP] } }
{{ [n]}};
{ { BWD [1] } }
{ BWDS }

CAN[CEL]

CLEAR INPUT

[n]
DO [·WN] [];

[3]

FILE [name] ;

{ {FORWARD [SKIP] } }
{{ [n]}};
{ {FWD [1] } }
{ FWDS }

INPUT ;

JOIN ;

C09-0001-07 B-11

[n]
LE[FT] [];

[52]

LOGOFF ;

LOG[ON] [tdpid/] username [,password [,'acctid'] ;

PRINT [name]

QUIT ;

RECALL

{ REMARK }
{ } 'string'
{RMK }

REM[OVE] ;

[n]
RI [GHT] []

[52]

{ [SET] DEFAULTS }
{ } ;
{ SD }

{ [ON]}
{ [SET] FORMAT [] }
{ [OFF] } ;
{ SFO }
{ SFF }

B-12 C09-0001-07

{ [SET] INPUTAREA SIZE [n] }
{ []};
{ SIS [3] }

{ [SET] NULL [AS] }
{ } 'string'
{ SNA }

{ [SET] PAGE LENGTH [n]}
{ []};
{ SPL [55] }

[SET] PFn 'command;'

{ [SET] RTITLE }
{ } 'string'
{ SRT }

{ [ON]}
{ [SET] SUPPRESS [] }
{ [OFF] } [n [,
{ SSF } [
{ SSO } [ALL

{ [SET] WIDTH [n] }
{ []}
{ SW [132] }

SHO[W]

{ SHOW CONTROL J
{ }
{ SC }

C09-OOOl-07

n, n, .•••]]
]
]

B-13

{ {
{ SHOW {
{ {
{
{ SM
{ SV
{ 'ST

SPLIT ;

SUB [MIT]

[n]
UP []

[3]

B-14

MACRO } }
VIEW } }
TABLE } }

} objname . ,
}
}
}

C09-000l-07

B.4 BTEQ COMMANDS

BTEQ commands are listed alphabetically. Defaults are underscored.

[ems-command]
.eMS []

[SUBSET]

{ DATA DDNAME=ddname [,LIMIT=n] }
{ INDICDATA DDNAME=ddname [,LIMIT=n] }

.EXPORT { REPORT DDNAME=ddname [,LIMIT=n] }
{ DIF [DATALABELS] DDNAME=ddname }
{ RESET }

= [n]

.GOTO 1abe1name

.HANG n

.HELP BTEQ

{ ERROR CODE }
.IF { } operator n THEN command

{ ACTIVITYCOUNT }

{ DATA }
.IMPORT { } DDNAME=ddname [,SKIP=n]

{ INDICDATA }

.LABEL labelname

• LOGOFF

C09-000l-07 B-15

·LOGON [tdpid/] username [,password [,'acctid']]

{ .QUIT } [n]
{ .EXIT } [ERRORCODE]

.REMARK 'string [//string//string],

[n]
.REPEAT [*]

.RUN DDNAME=ddname [,SKIP=n]

.[SET] DEFAULTS

[OFF]
.[SET] ECHOREQ []

[ON]

[OFF] [n [, n ,
.[SET] FOLDLINE [] [

[ON] [ALL

.[SET] FOOTING 'string'

[OFF]
• [SET] FORMAT []

[ON]

.[SET] HEADING 'string'

[OFF]
.[SET] INDICDATA []

[ON]

B-16

n, •••]]
]
]

C09-OOOl-07

·[SET] NULL [AS] 'string'

[OFF] [n [, n
• [SET] OMI T [] [

[ON] [ALL

,n •••]]
]
]

[OFF] [n [, n
.[SET] PAGEBREAK [] [

[ON] [ALL

.[SET] PAGELENGTH n

[OFF]
.[SET] QUIET []

[ON]

[OFF]
.[SET] RECORDMORE []

[ON]

.[SET] RETLIMIT n

[OFF]
.[SET] RETRY []

[ON]

.[SET] RTITLE 'string'

[
.[SET] SEPARATOR [

[

'string']
]

n]

.[SET] SESSIONS n

C09-OOOl-O?

,n •••]]
]
]

B-1?

[OFF]
.[SET] SIDETITLES [] [withnumber]

[ON]

[OFF] [n [, n , n •••]]
]
]

.[SET] SKIPDOUBLE [] [
[ON] [ALL

[OFF] [n [, n
.[SET] SKIPLINE [] [

[ON] [ALL

[OFF] [n [, n
.[SET] SUPPRESS [] [

[ON] [ALL

[OFF]

, n •••]]
]
]

, n •••]]
]
]

.[SET] TITLEDASHES [] [n[,n ,n •••]]
[~]

[OFF]
.[SET] TRANSLATE []

[ON]

[OFF] [n [, n
.[SET] UNDERLINE [] [

[ON] [ALL

.[SET] WIDTH n

.SHOW CONTROL[S]

.SHOW VERSION

.TDP TDPn

B-18

, n •••]]
]
]

C09-0001-07

.TDP nn[nnnnnn] (optional form for VM users only)

.TSO string

C09-0001-07 B-19

B.5 DATA DICTIONARY/DIRECTORY VIEW FORMATS

Data Dictionary/Directory view formats are listed alphabetically.

DBC.AccountInfo {[UserName, AccountName] } ;

{ [UserName, DataBaseName, TableName,] }
DBC.AllRights {[] }

{ [AccessRight, GrantorName] }

{ [AMP, DataBaseName, AccountName,] }
DBC.AllSpace {[TableName, MaxPerm, MaxSpool,]};

{ [CurrentPerm, CurrentSpool,] }
{ [PeakPerm, PeakSpool] }

DBC.AMPusage { [AccountName, UserName, CPUTime, DiskIO] } ;

DBC.Children {[Child, Parent]}

{ [DataBaseName, TableName, ColumnName,
{ [ColumnFormat, ColumnTitle, ColumnType,

DBC.Columns { [ColumnLength, DefaultValue, RangeLow,
{ [RangeHi, Nullable, Commentstring, .
{ [DecimalTotalDigits, DecimalFractionalDigits,
{ [ColumnId, UppercaseFlag

{ [DataBaseName, CreatorName, OwnerName,] }
DBC.DataBases {[ProtectionType, JournalFlag,] } ;

{ [PermSpace, CommentString] }

DBC.DeleteSecurityLog {[LogDate, LogTime] } ;

{ [AMP, DataBaseName, AccountName,]}
DBC.DiskSpace {[MaxPerm, MaxSpool, CurrentPerm,]};

{ [CurrentSpool, PeakPerm, PeakSpool] }

] }
] }
] }
] }
] }
] }

B-20 C09-000l-0?

. ,

{ [ErrDate, ErrTime, Processor,
DBC.ErrorLog { [

{ [Event, LineNumber, Text, Message

] }
] } ;
] }

DBC.ErrorMsgs {[Errorcode, ErrorText] }

{ [CreateDate, CreateTime, EventNum,]
{ [EventType, UserName,]
{ [DataBaseName, ObjectType,]
{ [AllAMPsFlag, RestartSeqNum,]

DBC.Events { [OperationlnProcess, TableName,]
{ [CheckpointName, LinkingEventNum,]
{ [DataSetName, LockMode,]
{ [JournalUsed, JournalSaved,]
{ [IndexPresent, DupeDumpSet]

{ [CreateDate, CreateTime,
{ [EventNum, EventType,

DBC.Events_Configuration { [UserName, LogProcessor,
{ [

DBC.Events_Media

PhyProcessor,
{ [ProcessorState,
{ [RestartSeqNum

{ [CreateDate, CreateTime,
{ [EventNum, EventType,
{ [UserName, DataSetName,
{ [VolSerialNo, DupeDumpSet,
{ [VolSequenceNum

] }
] }
] } ;
] }
] }

}
}
}
}
}
}
}
}
}

] }
] }
] }
] }
] }
] }

DBC.lndices
{ [DataBaseName, TableName, IndexNumber,
{ [IndexType, UniqueFlag, ColumnName,

] }
] } ;
] } { [ColumnPosition

{ [Tables_DB, TableName,]}
DBC.Journals { [] } ;

DBC.LogOn9ff

C09-000l-07

{ [Journals_DB, JournalName] }

{ [LogDate, LogTime, UserName,
{ [
{ [AccountName, Event, LogicalHostld

] }
] } ;
] }

B-2l

] }
DBC.ResUseview

{ [TheDate, TheTime, Number, Proc,
{ [
{ [Secs, Hits, Cpu, Disk, Host, Chan

] } ;
] }

{ [LogDate, LogTime, LogType,]}
DBC.SecurityLog { [UserName, AccountName,] } ;

{ [ObjectName, TableName, Text] }

{ [UserName, AccountName, SessionNo,] }
DBC.Sessionlnfo {[] }

{ [DefaultDataBase, Partition] }

{ [DataBaseName, TableName, TableKind,] }
DBC.Tables {[ProtectionType, JournalFlag, CreatorName,] }

{ [RequestText, CommentString] }

{ [AMP, DataBaseName, AccountName,]}
DBC.TableSize {[] } ;

{ [TableName, CurrentPerm, PeakPerm] }

{ [DataBaseName, TableName,] }
DBC.UserGrantedRights {[Grantee, AccessRight,]};

{ [AllnessFlag] }

{ [DataBaseName, TableName,] }
DBC.UserRights {[] }

{ [AccessRight, GrantorName] }

{ [UserName, CreatorName,] }
{ [PasswordLastModDate,] }
{ [PasswordLastModTime, Ownername,] }

DBC.Users { [PermSpace, SpoolSpace, protectionType,] } . ,
{ [JournalFlag, StartUpString,] }
{ [DefaultAccount, DefaultDataBase, .] }
{ [CommentString] }

B-22 C09-OOOI-07

APPENDIX C DEFAULT PF KEYS FOR ITEQ COMMANDS

After you log on to the DBC/1012 Data Base Computer and begin an
ITEQ session, you may assign PF keys to the ITEQ edit and display
commands that you will be using during the session, as described
in Chapter 3. I f you do not make your own PF key assignments ,.
certain PF keys are assigned to these commands by default.

PF keys assigned to ITEQ edit commands are listed in Table 3-4.
PF keys assigned to display commands are listed in Table 3-8. As
a convenience, this appendix lists all default PF key assignments
in one place, so that you need not refer back and forth between
tables in different chapters. In the tables below, the heading
"87-key" designates the settings for a 3270-type terminal with an
87-key keyboard~ "75-key" designates settings for the 75-key 3270
keyboard.

Default PF key assignments for ITEQ edit commands and the PRINT
command are listed in Table D-l. Assignments for display
commands are listed in Table D-2.

Table C-l. Default PF Keys for Edit, PRINT Commands

87-Key 75-Key Command
------ ------ ------~------

PF13 PFI SHOW~

PFl4 PF2 SUBMIT~

PFl5 PF3 ADD;

PFl6 PF4 PRINT~

PFl7 PF5 CLEAR INPUT~

PF18 PF6 REMOVE~

PF21 PF9 UP~

PF24 PF12 DOWN;

C09-000l-07 C-l

Table C-2. Default PF Keys for Display Commands

87-Key 75-Key Command
------- ------ --_ _----

PFl9 PF7 BACKWARD;

PF20 PF8 FORWARD;

PF22 PFIO LEFT;

PF23 PFll RIGHT;

C-2 C09-OOOI-07

APPENDIX D DEFINING ITEQ OUTPUT FILES

This appendix shows you how to define output files for storing or
printing a result during an ITEQ session. If you do not
explicitly define output files, these are defined automatically
by your organization's DBC/IOI2 installation.

Under TSO or VM, you may use any or all of the following ddnames
or file names for your ITEQ session:

Ddname File Name
-------- -------------
ITEQPRTI ITEQPRTI DATA
ITEQPRT2 ITEQPRT2 DATA
ITEQPRT3 ITEQPRT3 DATA
ITEQDSKI ITEQDSKI DATA
ITEQDSK2 ITEQDSK2 DATA
ITEQDSK3 ITEQDSK3 DATA
ITEQDSK4 ITEQDSK4 DATA
ITEQDSKS ITEQDSKS DATA
ITEQDSK6 ITEQDSK6 DATA
ITEQDSK7 ITEQDSK7 DATA
ITEQDSK8 ITEQDSK8 DATA

Use ddnames ITEQPRTI through ITEQPRT3/file names ITEQPRTI DATA
through ITEQPRT3 DATA to define print output files. Use ITEQDSKI
through ITEQDSK8/ITEQDSKI DATA through ITEQDSK8 DATA to define
output files for storing session results.

If output files are not defined by name, ITEQPRTI/ITEQPRTI DATA
is used by default for the print output file, ITEQDSKI/ITEQDSKI
DATA for the result output file.

D.I DEFINING A PRINT OUTPUT FILE

Before starting ITEQ from TSO or VM, or during your ITEQ session,
you may define a print output file using the following commands:

• Under TSO:

tso attrib printatt Irecl(8S) recfm(v)

tso allocate ddname(iteqprt2) sysout(b) using(printatt)

C09-OOOI-07 D-I

• Under VM:

CMS;

filedef iteqprt2 printer (recfm vba lrecl 85

cp spool printer cont class b

return

This sequence of commands:

• Enters TSO/CMS

• Defines the following file attributes:

A logical record length of 85 bytes for a print line
width of 80 characters (one extra byte for printer
control character and four extra bytes for a record
descriptor word for each record)

A variable record format

• Assigns the file to output class B

After defining a print output file, during your ITEQ session you
may send the current result to be printed on 8.5- by II-inch
paper by executing the following ITEQ PRINT command:

PRINT iteqprt2;

A print output file is deallocated/cleared and made available for
printing when you log off TSO/CMS. To deallocate/clear a print
output file during your iteq session to make it immediately
available for printing, execute:

D-2

• Under TSO:

tso free iteqprt2

• Under CMS:

CMS;

filedef iteqprt2 clear

cp spool printer nocont

cp close print

return

C09-0001-07

For complete information about the ITEQ PRINT command, refer to
the DBC/lOl2 Data Base Computer Reference Manual. For more
information about TSO Allocate, Free, and Output commands, refer
to OS/VS2 TSO Command Language Reference (IBM). For more
information about CMS and CP commands, refer to VM/SP CMS Command
and Macro Reference and VM/SP CP Command Reference (IBM).

D.2 DEFINING A RESULT OUTPUT FILE

You use the TSO Allocate/CMS Filedef commands to define output
files for storing spooled results during your DBC/IOI2 session.
These output files may then be kept and cataloged for later use.

For example, you may establish file attributes and define an
output file during your ITEQ session using the following
commands:

• Under TSO:

tso attrib dbcparms lrecl(200) blksize(3600) recfm(vb)
dsorg(ps)

tso allocate ddname(iteqdsk2) new dsname('iteqdsk2')
using(dbcparms) catalog

• Under VM:

CMS;

filedef iteqdsk2 disk iteqdsk2 data a5 (lrecl 200
blksize 3600 recfm v dsorg ps)

return

This sequence of commands:

• Enters TSO/CMS

• Defines the following file attributes:

A logical record length of 20,000 bytes (the maximum
allowed in ITEQ is 32,'160 .bytes)

A block size of 3600 bytes

A variable record format

A physical sequential format

• Defines an output file named ITEQDSK2 with the
attributes specified above.

C09-0001-07 D-3

After defining' a result output file, during your ITEQ session you
may cause the current result to be stored by executing the ITEQ
FILE command:

FILE iteqdsk2;

When you log off ITEQ (or explicitly deallocate/clear the output
file during your ITEQ session, as discussed above), the result is
stored and catalogued in your directory as "ITEQDSK2"/"ITEQDSK2
DATA AS".

For complete information about the ITEQ FILE command, refer to
the DBC/10I2 Data Base Computer Reference Manual. For more
information about TSO Attribute, Allocate, and Free commands,
refer to OS/VS2 TSO Command Language Reference (IBM). For more
information about the CMS Filedef command, refer to VM/SP CMS
Command and Macro Reference.

D-4 C09-OOOI-07

INDEX

D
= ALL operator ••• 6-ll

<> ALL operator ••• 6-ll

'% character
used with LIKE operator ••• 6-14

character
used with LIKE operator ••• 6-14

= ANY operator ••• 6-ll

ABORT command ••• 3-18, 3-21
ABORT statement ••• 3-l8, 9-4, 9-5
access lock ••• 6-37
account identifier ••• 2-1, 3-3, 11-10
ACCOUNT option ••• lO-9
ADD command ••• 3-l0, 3-12, 3-15

C09-000l-07 X-I

administrator data base ••• lO-l, 10-3
AFTER JOURNAL option'.'see JOURNAL option ••• lO-8
aggregate operators ••• 5-7, 6-22, 6-26

use with non-aggregate values ••• 6-32
ALL keyword ••• lO-7
ALTER TABLE statement ••• 7-11

adding and dropping columns ••• 7-12
changing column attributes ••• 7-12
changing the FALLBACK option ••• 7-13

AND operator ••• 6-8
apostrophe

ABORT statement ••• 9-5
character string ••• 6-2
COMMENT statement ••• 7-18, 9-4
constant ••• 6-2
ECHO statement ••• 9-9
format string ••. 5-8
startup string ••• 3-13
title string ••• 5-11

application prog~am ••• l-l
see also COBOL Preprocessor ••• l-l

arithmetic expressions ••• 6-l5, 6-21
date ••• 6-26, 6-27
in UPDATE statement ••• 8-3
views ••• 7-15
with aggregate result ••• 6-23

arithmetic operators •.• see arithmetic expressions
AS keyword

CREATE MACRO statement ••• 9-2
CREATE TABLE statement ••• 7-2

ASC keyword ••• 6-6
asterisk

all co1umns ••• 6-4
COUNT operation ••. 6-24
format error ••• 5-1l
paging ••• 3-29

AVG operator ••• 6-23

BACKWARD command ••• 3-22, 3-26, 5-4, 5-6, 9-6
skip feature ••• 9-6, 9-9

batch environment ••• l-l, 1-7, 4-4
Batch Teradata Query ••• see BTEQ
BEFORE JOURNAL option'.'see JOURNAL option ••• 10-8
BEGIN/END TRANSACTION statements ••• 9-l
BETWEEN numeric AND numeric range constraint ••• 7-4
BETWEEN ••• AND operator ••• 6-13
BTEQ ••• l-1, 2-2, 4-1

commands ••• 4-2, 4-3

X-2 C09-000l-07

extracting data ••• 4-6
format commands ••• 5-l5, 5-17
formatting report data ••• 5-l9
functions ••• 1-7
report writing ••• 5-l4
TSO ••• 4-4, 4-6
VM/CMS ••• 4-5

built-in functions ••• see aggregate operators
BY keyword ••• 5-7
BYTE(n) data type ••• 7-4
BYTEINT data type ••• 7-4

Call-Level Interface ••• see CLI
CANCEL command ••• 3-22
CASESPECIFIC option ••• 7-6
character string expressions ••• see string expressions
CLEAR INPUT command ••• 3-10
CLI ••• l-l
CMS ••• see VM/CMS
colon ••• 5-l0, 9-3
columns ••• see also relational data base

adding and dropping ••• 7-l2
attributes ••• 7-2, 7-5, 7-10
changing attributes ••• 7-l2, 7-13
default control ••• 7-6
format ••• 7-6
title ••• 7-6

Columns view ••• 11-2, 11-5
comma ••• 6-l, 8-2

format character ••• 5-9
COMMENT statement ••• 7-l, 7-18, 7-19

macro ••• 9-4
system view ••• 11-2
table, column, view ••• 7-l8, 7-19

comparison operators ••• 6-5
COMPRESS option ••• 7-8
compressing field entries ••• see COMPRESS option
concatenation operator ••• 6-28
COUNT operator ••• 6-23

COUNT(*) ••• 6-25
COUNT(DISTINCT) ••• 6-26
COUNT(expression) ••• 6-24, 6-25

CREATE statement
DATABASE ••• lO-9
INDEX ••• 7-9
MACRO ••• 9-2
TABLE ••• 7-2, 7-3, 7-8, 7-11, 7-13, 7-14
USER ••• lO-8

C09-000l-07 X-3

VIEW ••• 7-16, 8-4
locking table ••• 7-l7

cursor ••• 3-l

dash character ••• 5-10, 5-16
data base administrator ••• see supervisory user
data definition statement ••• 7-1, 10-1, 11-4
Data Dictionary/Directory ••• 1l-l, 11-10, 11-12

end user views ••• 1l-2
data manipulation statement ••• 3-1S
data protection

FALLBACT option ••• 7-6
JOURNAL option ••• 7-6

data type phrases ••• 7-4, 7-5
DATABASE statement ••• 6-2, 6-3, 7-1
DataBases view ••• 1l-2
DATE ••• 6-26, 6-27
DATE data type ••• 7-5
DBC/SQL ••• 1-1
DBC/1012 Data Base Computer ••• 1-l, 7-1
DECIMAL (n,m) data type ••• 7-4
default control phrases ••• 7-6
default data base ••• see CREATE USER and DATABASE statements
default database

MODIFY USER statement ••• 6-3
DEFAULT DATABASE option ••• lO-9

CREATE USER statement ••• lO-8
DEFAULT phrase ••• 7-6
DELETE statement ••• 8-4

DATABASE ••• 10-11
Department table ••• 1-6
DESC keyword ••• 5-8, 6-6
discarding a result ••• 3-22
display area ••• 3-2, 3-5
display commands ••• 3-22, 3-23
DISTINCT keyword ••• 6-7, 6-8
DOWN command ••• 3-l0, 3-15
DROP statement

X-4

DATABASE ••• 10-ll
INDEX ••• 7-9
MACRO ••• 9-10
TABLE ••• 7-l4, 7-20
USER ••• lO-l1
VIEW ••• 7-l7, 7-20

C09-QOOl-07

ECHO statement
BTEQ ••• 5-15
ITEQ ••• 5-3
macro ••• 9-8
SET PFn command ••• 3-l3, 6-2

edit commands ••• 3-7, 3-9, 3-13, 3-15, 3-17, 3-18
see also ITEQ ••• 3-7

embedded query ••• see INSERT statement
Employee tab1e ••• 1-6
EXECUTE statement ••• 9-3, 9-5

fallback copy ••• see FALLBACK option
FALLBACK option .•• lO-8

changing ••• 7-l3
CREATE DATABASE statement ••• lO-lO
CREATE TABLE statement ••• 7-6, 7-7
CREATE USER statement ••• lO-8

fie1d ••• see relational data base
FILE command ••• 2-2, 3-29
FLOAT data type ••• 7-4
format characters ••• 5-l0
format commands

BTEQ ••• 5-l5, 5-17, 5-19
ITEQ ••• 5-3, 5-4

.macro ••• 9-3, 9-8, 9-9
Format mode ••• 3-24, 5-1, 5-3, 5-5

display commands ••• 5-l
macro resu1t ••• 9-6, 9-9

FORMAT phrase ••• 5-8, 5-9
character list ••• 5-9
examp1es ••• 5-ll

FORWARD command ••• 3-22, 3-29, 5-1, 5-5, 9-6
skip feature ••• 9-6, 9-9

GIVE statement ••• 7-l, 10-12
GRANT statement ••• 10-6, 10-7
GROUP BY c1ause ••• 6-32, 6-33
grouping data ••• 6-10, _6-16, 6-22

C09-000l-07 X-5

HAVING clause ••• 6-32, 6-33
HELP statement ••• ll-l0, 11-12

COLUMN ••• 11-12
FIELD ••• 11-12
INDEX ••• ll-12
MACRO ••• 11-13
TABLE ••• ll-12
VIEW ••• 11-12

IN ANY operator ••• 6-11
IN operator ••• 6-11

selecting values in a set ••• 6-12
specifying subqueries ••• 6-37

index ••• 7-8
primary ••• 7-9, 7-14
secondary ••• 7-9
unique ••• 7-10

INDEX string function ••• 6-31
input area ••• 3-14
INPUT command ••• 3-10
INSERT statement ••• 8-2, 8-5

embedded query ••• 7-10
in a view ••• 8-4, 8-5
macro ••• 9-2
restrictions ••• 8-1

INTEGER data type ••• 7-4
Interactive Teradata Query ••• see ITEQ
INTERSECT operator ••• 6-17, 6-19
IS NULL operator ••• 6-16
ITEQ ••• l-l, 2-2, 3-1, 3-4, 3-7, 3-8, 3-12, 3-14, 3-18

X-6

commands ••• 3-7, 3-8, 3-12
display ••• 3-22
displayarea ••• 3-10
PF keys ••• C-l
summary ••• 3-9

defining output files ••• D-l
print file ••• D-l
result file ••• D-3

format commands ••• 5-3, 5-4
functions ••• 1-6, 1-7
interrupt ••• 3-l9
PF keys ••• see PF keys
report writing ••• 5-1, 5-5, 5-6
screen ••• 3-2

C09-000l-07

starting ••• 3-l
statement ••• 3-l8

aborting ••• 3-l8
editing ••• 3-l5, 3-17
entering ••• 3-l7
results ••• 3-22

JOIN command ••• 3-l0, 3-12, 3-13, 3-17, 6-2
joins ••• 6-33, 6-34

deleting data ••• 8-4
self-join ••• 6-34
subqueries ••• 6-36

JOURNAL option ••• lO-8
CREATE DATABASE statement ••• lO-lO
CREATE TABLE statement ••• 7-6, 7-7
CREATE USER statement ••• lO-8
MODIFY USER statement ••• lO-lO

Journals view ••• 11-2

language preprocessors ••• see COBOL Prepocessor
LEFT command ••• 3-22, 3-28, 5-2
LIKE operator ••• 6-l4, 6-15, 6-34
locking table ••• 6-37

CREATE VIEW statement ••• 7-17
logging on ••• 3-3
logical operators ••• 6-8, 6-9
LOGOFF command ••• 3-8
LOGON command ••• 3-3, 3-8

macro ••• 1-6, 9-1
debugging ••• 9-6
Format mode ••• 9-6, 9-9
Unformat mode ••• 9-6, 9-9

MAX operator ••• 6-23
MIN operator ••• 6-23
MINUS operator ••• 6-l7, 6-21
MOD operator ••• 6-l5

C09-0001-07 X-7

MODIFY statement
DATABASE ••• 10-10
USER ••• 6-2, 6-3, 10-10

modulus ••• see MOD operator
MVS Time Sharing Option ••• see TSO

name qualification ••• 6-33, 6-34, 7-18, 9-3, 10-9
NO FALLBACK option ••• see FALLBACK option
NOT IN operator .•• 6-11, 6-12
NOT NULL operator ••• 6-16
NOT NULL phrase ••• 7-2, 7-6
NOT operator ••• 6-9, 6-11, 6-15

used with LIKE operator ••• 6-15
NULL phrase ••• 7-6
null values

default ••• 7-3, 8-2
default blank in report ••. 5-2
search criteria .•• 6-16
specifying character for report ••• 5-5

OR operator ••• 6-9
ORDER BY clause ••• 6-6, 6-7, 6-32, 6-33
ownership, data base ••• 10-1, 10-3, 10-10

page length ••• 5-2
PAGELENGTH command ••• 5-12
paging backward ••• 3-26
paging forward ••• 3-25
parameters ••• 9-1
parentheses ••• 3-22, 6-13, 6-22

arithmetic operators ••• 6-16
FORMAT phrase ••• 5-8
macro ••• 9-3
search conditions ••• 6-10
subquery levels ••• 6-37
TITLE phrase ••• 5-11

password ••• 2-1, 3-3
CREATE USER statement ••• 10-8

X-8 C09-0001-07

MODIFY USER statement ••• lO-lO
period ••.• 4-2, 6-1

format character ••• 5-l0
PERMANENT keyword

CREATE DATABASE statement ••• lO-lO
CREATE USER statement ••• l0-8

Personnel data base ••• 1-4, A-I
PF keys ••• 3-ll, 3-13, 3-23

assigning ••• 3-l2, 3-13
defaults ••• 3-ll
display commands ••• 3-23

position identifier ••• 6-33
primary copy ••• 7-7, 10-8
primary index ••• 7-9, 7-14
PRINT command .•• 2-2, 3-9, 3-18, 5-13, C-l
print file ••• see TSO
printing a report ••• 5-l2, 5-13
privilege codes ••• ll-8
privileges ••• lO-l, 10-3

for statement entry ... 10-4, 10-5
granting ••• 10-4
implicit ••• 10-5

processing message ••• 3-7, 3-11, 3-24, 3-26, 5-1, 9-9
Format mode •.. 5-1, 9-6
Unformat mode ••. S-S, 9-6

QUIT command ••• 3-8, 3-20, 3-21
quotation marks ••• 3-13

RECALL command ••• 3-22, 3-27
redisplaying input entry ••• 3-18
relational data base ••• 1-3
remainder operator ••• see MOD operator
REMARK command ••• 4-3, 5-3, 9-9
REMOVE command ••• 3-l0
RENAME statement

MACRO ••• 9-8
TABLE ••• 7-19
VIEW ••• 7-19

REPEAT command ••• 4-3
repeating values ••• 5-2, 5-3, 5-5, 5-19
REPLACE statement

MACRO ••• 9-7

C09-000l-07 X-9

VIEW ••• 7-17, 7-18
report heading ••• 5-14, 5-19
report title ••• 5-1, 5-2, 5-5, 5-14, 5-19
REVOKE statement ••• lO-7
RIGHT command ••• 3-22, 3-28, 5-2
row ••• see relational data base
RTITLE command ••• 5-5
RUN command ••• 4-3

sample table ••• 1-4
screen ••• 1-6

display area ••• 3-6, 3-9, 3-10, 3-17
input area ••• 3-6, 3-9, 3-14

commands ••• 3-ll
ITEQ display screen ••• 3-6
processing message ••• 3-7
status area ••• 3-6, 3-25

secondary copy ••• 7-7, 10-8
secondary index ••• 7-9
security ••• lO-l
SEL, abbreviation for SELECT ••• 6-4
SELECT statement ••• 3-S, 3-22, 6-3, 6-9, 6-12, 6-21, 6-23, 6-32,

6-33
BTEQ ••• 4-7
embedded query ••• 8-2

self-join ••• 6-34, 6-35
semicolon ••• 3-3, 4-2, 6-1, 9-3
SessionInfo view ••• ll-2, 11-9
SET DEFAULTS command ••• 5-4
SET FORMAT command

BTEQ ••• 5-l5, 5-19
ITEQ ••• 3-24, 5-1

SET FORMAT OFF command ••• 3-24, 3-29, 5-3
SET HEADING command ••• 5-19
SET INPUTAREA SIZE command ••• 3-14
SET NULL AS command ••• 5-3, 9-9
set operators ••• 6-l2

combining SELECT statements ••• 6-17
SET PAGE LENGTH command

BTEQ ••• 5-l5
ITEQ ••• 5-3

SET PFn command ••• 3-12, 3-13, 6-2, 9-8
SET RTITLE·command

BTEQ ••• 5-l5
ITEQ ••• 5-3

SET SUPPRESS command ••• 5-5
BTEQ ••• 5-l6, 5-19
ITEQ ••• 5-3

X-IO C09-000l-07

SET WIDTH command ••• 5-3, 5-19
SHOW command ••• 3-10
SHOW CONTROL command

BTEQ ••• 4-3
ITEQ ••• 3-23, 5-4

SHOW statement
MACRO ••• 9-7
VIEW ••• 7-18

slash character
BTEQ ••• 5-19
ITEQ ••• 5-10, 6-15
logon string ••• 3-3

SMALLINT data type ••• 7-4
SPLIT command ••• 3-10, 3-12, 3-13, 3-16, 6-2
SPOOL option ••• 10-9
STARTUP clause ••• 10-9
STARTUP string

apostrophes in ••• 6-2
CREATE USER statement ••• 10-8

statements, DBC/SQL .•. 1-3
status area ••. 3-6, 3-7, 3-18, 3-25
status messages ••• 3-5, 3-19, 3-25, 3-26
storing a result ••• 2-2, D-1
string expressions .•. 6-28

concatenation operator ••• 6-28
string functions ••. 6-28

string functions •.• 6-28
INDEX ••• 6-30, 6-31
SUBSTR ••. 6-30

SUBMIT command ••• 3-10, 3-17, 3-18, 3-23
subqueries ••• 6-36, 6-37
SUBSTR string function .•• 6-30
SUM operator ••• 5-7, 5-8, 6-23
summarizing information by groups ••• 6-32, 6-33
summary results ••• 5-6, 5-11
supervisory user ••• 10-3
SUPPRESS command ••• 5-5
system administrator ••. 10-1, 10-3, 10-8, 10-9

table ••• see relational data base
how to load a new table with existing data ••• 7-10

Tables view ••• 11-2, 11-4
TDP ••• 1-1
tdpid ••• 2-1, 3-3
Teradata Director Program ••• see TDP
TITLE phrase

column headings ••• 5-11, 7-6
summary titles S-11

C09-0001-07 X-II

views ••• 7-16
transaction

aborting ••• 3-lB, 3-19, 3-21
BEGIN/END TRANSACTION statements ••• 7-2, 9-1
data definition statements ••• lO-l
macro ••• 9-1
multi-statement •• ·.7-2

TRIM function
concatenation operator ••• 6-29

TSO ••• 2-2, 3-29
aborting a statement ••• 3-19
Allocate command ••• 5-13, D-l, D-3, D-4
BTEQ ••• 4-1, 4-3, 4-4, 4-6
CLIST ••• 3-4
logging on ••• 3-4
print file ••• 2-2, D-l, D-2
storing results ••• 2-2, D-3, D-4

Unformat mode ••• 3-24, 5-3, 5-5
display commands ••• 5-l
macro result ••• 9-6, 9-9

UNION operator ••• 6-l7, 6-lB
unique index ••• 7-l0
UP command .•• 3-l0, 3-12, 3-15
UPDATE statement ••• 8-3

constraints ••• B-3
view ••• B-5

UPPERCASE option ••• 7-6
user identification ••• see username
UserGrantedRights view ••• 11-2, 11-7
username ••• 2-1, 3-3, 3-13

CREATE USER statement ••• lO-l, 10-B
SessionInfo view ••• 11-9

UserRights view .•• 11-2, 11-9
USING modifier ••• 4-B

VARBYTE(n) data type ••• 7-5
VARCHAR(n) data type ••• 7-S
views ••• 7-l5, 7-16, 11-1

adding, changing data ••• B-4, B-6
creating a view ••• 7-15
replacing a view ••• 7-17
system-defined ••• see Data Dictionary/Directory

X-12 C09-QOOl-07

VM/CMS ••• 2-2
aborting a statement ••• 3-20, 3-21
BTEQ ••• 4-1, 4-2, 4-4, 4-5
logging on ••• 2-2, 3-4
print file ••• 5-13, D-l, D-2
PROFILE EXEC ••• 3-4
storing results ••• 3-29, D-3

WHERE clause ••• 6-5, 6-12
in a join ••• 6-34
in a self-join ••• 6-35
in UPDATE statement ••• 8-3

WIDTH command ••• 5-12
WITH clause ••• 5-7, 5-8, 5-11

specifying report subtotals ••• 5-7
WITH GRANT OPTION ••• see GRANT statement

C09-0001-07 X-13

