
•

DBC/I012 MODEL 4
PERFORMANCE COMPARISON

•

•

DBC/I012 MODEL 4
PERFORMANCE COMPARISON

•

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

TABLE OF CONTENTS

1.0 Executive Overview 4

2.0 Technical Overview 7

2.1 Test Configuration 7

2.2 Databases 8

2.3 Measurements and Testing Method 8

2.4 Record Sizes 8

2.5 Calculation of Estimates 9

2.6 The SQL Used in the Tests 9

3.0 CPU Intensive Tests 10

3.1 Floats & Dates 10

3.2 Rollup Reporting - Sums & Strings 11

4.0 Disk Intensive Scans 12

4.1 High Utilization - Both Disk & CPU 12

4.2 High Disk - Low CPU Utilization 13

4.3 1.2 and 2.5 GB Disks 13

4.3.1 Disk Drives and Decision Support Queries 14

4.3.2 Multiple Drive Testing with Debit/Credit 15

4.4 Non-Volatile Disk Cache - DSS 18

5.0 General Queries 19

5.1 Aggregate/Sort 3 Groups, 1,000 Categories 19

5.2 Aggregate/Sort 4 Groups, 10,000 Categories 20

5.3 Prime Index Merge Joins 21

5.4 Prime to Foreign Key join 22

5.5 Both Tables Redistributed - 50% selected 23

5.6 Both Tables Redistributed - 100% selected 24

5.7 Both Tables Redistributed - 10 Million rows version 25

5.8 Scan Table - 10 Million rows 26

5.9 Aggregate/sort - 10 Million rows version 27

6.0 Fastload 28

7.0 On-line Transaction Processing 29

8.0 System Support Activities 31

8.1 Insert/Select 31

8.2 Create Index 31

8.3 Collect Statistics 32

9.0 Configuring Model 4 Systems 34

Appendix: SQL used in the Tests 36

2

ACKNOWLEDGEMENTS

The results published in this document are the fruit of many people's labor.
The benchmark team came into being more from magnetism than planning
yet the resulting cooperation and productivity was phenomenal.

Special thanks are in order to Vince Jones who, as product launch manager,
conceived this project back in 1990. If you like this type of information,
call Vince and tell him.

Next we owe a large debt of gratitude to the guys in manufacturing who
in the midst of several metaphorical hurricanes supplied several million
dollars worth of hardware to the benchmark team.

The folks who really burned up the pavement were, as usual, the data center
engineers. Though the systems were remarkably stable, our needs were
such that they had to reconfigure the systems every other day, swap boards
between machines every week, and search for odds and ends of channels
and systems every third day. In every case, these people caught fiery
bullets in their teeth and remarked "I'm just doing my job."

There could be no success in this project without the guidance of several
people in the Performance Group and Sales Support. Their depth of
knowledge and "can do" willingness to help were the catalysts for success.
Like the engineers in the data center, through it all their trademark was
talent, long hours, and great attitudes.

Last, a very special mention is in order for Ms. Carrie Ballinger. As the
principal worker and brains of the benchmark team, Ms. Ballinger's
contribution to this project exceed what should ever be asked of an
employee. Somewhere at the end of the fourth consecutive 16 hour day
following many 10 and 12 hour days, the first results of Carrie's carefully
planned tests came in and we knew we had struck a gusher. Thank you
Carrie.

Many thanks to the following people. They don't come any better than
this:

Russ Gilman, Chris Stradford, Mark McFadden, Armen Khatchatourian,
Anees Narsinh, Al DiCanzio, Cindy Akiyama, Anita Richards, Bill
Robertson, Ron Hu, Larry Higa, Kathleen Webber, Ken Plummer, Owen
Tucker, Terry Patterson, Craig Hayes, and the entire second shift in the
data center.

Dan Graham
Sr. Product Marketing Manager

3

DBC/I012 MODEL 4 PERFORMANCE COlMPARISON

INDUSTRY EXPECTATION FOR
PERFORMANCE IMPROVEMENTS

3090S
MIPS

IBM HARDWARE VS. MODEL 4

3090J ESA/9000 Model 4 Model 4
MIPS MIPS Benchmarks MIPS

AVERAGE PERFORMANCE
IMPROVEMENT

MODEL 4 OVER MODEL 3

Model 3 Plus Model 3

1.0 EXECUTIVE OVERVIEW

In order to determine the performance characteristics of the Model 4 D BCI
1012 prior to announcement, Teradata' s Marketing staff organized a series
of benchmark tests which were completed in February 1991. The purpose
of the testing is to provide the Teradata field organizations with general
comparisons of Moop.l '3 Rnd Model 4 performE!nce to E!ssist them irr their
sales efforts. This document is intended to be a high level overview of the
DBC/1012 Model 4 in real world simulations. Those individuals inter­
ested in the very detailed performance characteristics should refer to the
results published internally by the Product Development Performance
Analysis Group.

The results presented in this study should be reviewed in the context of the
large scale relational database marketplace. When IBM and other vendors
release new models, they provide MIPS ratings rather than actual bench­
marks as performance guidelines. For example, when comparing MIPS,
the 3090-S series is 1.3 times faster than the E series (30%) and the J series
is 1.1 times faster than the S series (10%). While details are still
incomplete, it appears the ESAl9000 might be as much as 1.8 times faster
than its predecessor J series (80%). In contrast, the DBC/l012 Model 4
MIPS rating is 3.0 times faster than it's,predecessor (200%), a testimony
to Teradata's off-the-shelf merchant chip strategy. MIPS ratings are,
however, only crude estimates of performance and do not reflect the actual
improvements delivered to the end user's desktop. Consequently, Teradata
is very pleased to provide the following real-world proof of Model 4
performance, especially since these results are measured at the desktop
and greatly exceed the mysterious MIPS ratings offered by other vendors.

In general, the Model 4 system is 2.0 times faster than the Model 3 Plus (a
Model 3 enhanced with 256K cache & 8 megabytes of memory) and 2.4
times faster than the basic Model 3 system. These factors are applicable
across a wide range of decision support queries, batch, and on-line
activities. Decision support activities ranged from 1.8 times faster through
3.5 times faster than the Model 3 Plus. Batch oriented sorting, "joins", and
Fastload ranged from 1.8 times faster to 2.3 times faster than the Model 3
Plus. On-line transaction processing improved by factors ranging from 1.3
to 2.0 over the Model 3 systems, depending on the OLTP activity tested.
(This is within expectatio~s since OL TP uses so little CPU and so much
disk I/O.) These improvements extend the DBC/l 0 12' s already enormous
lead in DSS, address the batch processing needs of our larger customers,
and allows the DBC/l012 to participate in medium sized OLTP applica­
tions. Leading in two categories and competing in the last, the Model 4 is
an excellent choice for nearly all large production applications.

Two customized benchmark tests were designed in order to highlight the
Model 4 AMP processing speed, conservatively rated at nine MIPS, versus

4

the Model 3 CPU, rated at three MIPS. These tests involved complex SQL
functions which are common in banking, retail, and financial applications.
These tests included SQL activities such as integer conversions, date
computations, and roll-up summary reporting. The test results showed a
staggering 3.57 and 2.7 times improvement over the Model 3 Plus system.
(estimated at 4.4 and 3.3 times improvement over the basic Model 3). This
leads to the obvious question that if the Model 4 CPU is rated at three times
faster than a Model 3, how could it outperform the Model 3 Plus by this
margin? The answer lies in the changes to the block-size management
software of Release 4.1.2 which affects data blocks, spool files, and sort
files. As predicted by our developers, the Model 4 can and will consume
disk data at rates much higher than the Model 3 necessitating a change in
the software used with the Model 4.

In attempting to determine differences between the 2.5 GB and 1.2 GB disk
drives, several disk intensive queries and numerous on-line transaction
simulations were run. It turned out to be quite difficult to create a disk
bottle-necked DSS query without simulating dozens of users. Decision
support queries often process many rows per I/O and are more compute
intensive than might be apparent. Hence the effects of one disk drive
versus another is negligible. Consequently, with only five users simulated
there was little difference between 1.2 GB and 2.5 GB disks in elapsed
times. With many, many users issuing concurrent DSS requests, custom­
ers can expect to see higher throughput with mUltiple disk units per AMP
similar to the results of in the on-line transaction tests.

Numerous debit/credit OL TP Tests were conducted in order to determine
the usefulness of multiple drive configurations as well as the Intelligent
Peripheral Interface (IPI) mode emulation. When there are multiple Disk
Storage Units (DSU s) per AMP, the IPI emulation compares the outstand­
ing requests for disk I/O to the current sector number passing under the disk
heads. IPI emulation then chooses the best transfer strategy to insure
maximum throughput rather than simply handling disk I/O on a first­
come-first-served basis.

In row-at-a-time functions, dual DSUs per AMP provide approximately
7.5% more throughput than a single DSU, triple DSUs provide 22% more,
and quad DSUs deliver 27% more throughput. These factors held true for
both 1.2 GB and 2.5 GB disks with a slight advantage in the larger 2.5 GB
disks. Non-Volatile Disk Cache running with one DSU per AMP clearly
wins as the price/performer in applications which update a row-at-a-time,
yielding a 55% boost in throughput. It is our observation that Non-Volatile
Disk Cache has the same performance characteristics on the Model 4 as on
the Model 3 and should be installed wherever the application is update
intensive. The above multiple-DSU factors did not occur in complex
decision support since we were unable to simulate a large volume of
concurrent users. Had we been able to simulate large numbers of DSS
users, similar throughput improvements for multiple DSUs would prob-'

5

IMPROVEMENT RANGE
MODEL 4 OVER MODEL 3 SYSTEMS

Trans Batch DSS

CPU INTENSIVE TESTS
MODEL 4 OVER MODEL 3 PLUS

Rollup Reports Floats & Dates

TRANSACTIONS PER SECOND
INCREASE OF MULTIPLE DISKS

1.2 GB & 2.5 GB DSU'S

2 DSUs 3 DSUs 4 DSUs NVRAM

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

FASTLOAD IMPROVEMENT
MODEL 4 OVER MODEL 3

2.5~---"""'~-----'

2--+----+-

1.5

Model 3 Plus
(est)

Model 3

IMPROVEMENT RANGE
MODEL 4 OVER MODEL 2

6~---"""'~-----'

5

4--+----+-

3

2

Low estimate High estimate

ably occur over the system as a whole although no one user would see the
benefit; ie more users would be getting work done but execution times
would remain constant. In testing which simulated three concurrent user
requests, dual 1.2 GB disks out performed a single 2.5 GB disk by 1 %, a
noise level result.

Fastload Phase 2 performance leaped to 2.22 times faster than the Model
3 system. Phi:l~~ 1 r~~ulls showed a 1.7 times improvement over Model 3.
The Phase 1 results are not considered meaningful since they are heavily
weighted by the speed of the particular mainframe the Fastload test is run
on.

For our current DBC/l012 Model 2 customers, upgrades to a Model 4
system will be extremely rewarding. In previously published results, the
Model 3 system was shown to run 2.5 to 3 times faster than the Model 2.
Applying a 2.0 factor to this, conservative estimates suggest that Model 2
customers who upgrade their Model 2 AMPs to Model 4 will see perfor­
mance gains of 4 to 6 times, depending 'on the current CPU utilization of
their system. "Extremely rewarding" is clearly an understatement of the
facts.

Lastly, we must not ignore the fact that many current customers who move
to the Model 4 will also be upgrading from Release 3.2.2 to Release 4.1.2.
Imbedded in the software upgrade are numerous performance enhance­
ments, some of which are improvements of several magnitudes. For
example, many of our current Release 4.1.0 users report enormous jumps
in sort performance and in the DELETE ALL function. These software
boosts which are accelerating existing production systems (in particular
the nightly batch cycles) will be boosted even further with the addition of
a Model 4 system. Hence, the Release 3.2.2 customer will get a double­
dose performance boost when moving to the DBC/I012 Model 4.

Overall, the DBC/l012 Model 4 is an excellent performer with tremen­
dous potential for customer satisfaction. Clearly, the best use of the DBCI
1012 Model 4 will be in handling large volumes of data with increasingly
more complex SQL and relational functions. The more complex the user
request, the better. Applause is in order for the hardware designers and
software developers who made this product possible. The DBC/I012
Model 4 will be a winner for Teradata but more importantly, it will make
our customers winners too.

6

2.0 TECHNICAL OVERVlEW
OF THE BENCHMARK TESTS

A primary objective of this benchmark is to provide the Teradata field
organization information that will aid in configuring Model 4 systems.
The enclosed results provide a strong foundation towards solving this
need. Nevertheless, such information can never be more than a partial
answer. This is because there are so many DBC/I012 customers and
prospects and each of them uses the system differently. With that in mind,
Teradata Systems Engineers are advised to refer to the DOC system
Design Notes that are being developed in parallel with this document.

Nearly half the tests conducted were taken from the test suite used to
produce the Release 3.2.2 versus 4.1.0 comparisons published at the end
of 1990.

2.1 Test Configurations

Rei 4.1.1 Framer 60.11.120 base, 60.11.951 actual
14x24x24 Model 4 2.5 GB disks
14x24x48 Model 4 2.5 GB disks
14x24x72 Model 4 2.5 GB disks
14x24x96 Model 4 2.5 GB disks
7x24x24 Model 3 Plus 1.2 GB disks, 256k cache,

8Mb Ram
8x8x16 Model 4 1.2 GB disks
8x8x8 Model 4 2.5 GB disks

The primary test system was a 14x24x96 Model 4 machine with two VM
IFPs and 12 MVS IFPs. The testing was run on pre-release 4. 1'.1 software,
framer 60.11.120 base. All disks used were 2.5 GB disks. The mainframe
in use at the time was an Amdahl 5890-300 partitioned 50/45 for VM and
MVS. The high ratio of IFPs to AMPs was needed for the OLTP testing
in order to isolate disk performance from IFP and host performance.

The primary Model 3 tests were conducted on a 7x24x24 machine using
1.2 GB disks, 256K cache, and 8 megabytes of memory per processor. Pre­
release 4.1.1 (60.11.120) was also usedon the Model 3 tests. Throughout
this document, this system is referred to as the Model 3 Plus. It was not
necessary to have a large number of IFPs on the Model 3 systems since it
was used to test decision support queries not OL TP and disk utilization.

Two additional configurations were built in order to test the 1.2 GB disks
and 2.5 GB disks. These tests were run on two Model 4 systems, one running .
8x8x8 with 2.5 GB disks, the other running 8x8x16 and 1.2 GB disks.

7

•

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

N on-Volatile Disk Cache was used only on the 24 AMP Model 4 system.
When a given benchmark test used the disk cache, the test description
explains the effects.

2.2 Databases

Most of the testing was performed on database CAB which contained
approximately four gigabytes of data (or 15 tape cartridges for perspec­
tive).

Easy to identify naming conventions were used in the database. For
example, table T13M means there were 13 million rows and table T50K
means there are 50,000 rows in the table. Column names are similarly
named such that IN100 means an integer field of 100 disttnct values and
IN1M means one million distinct values in the column. Columns named
DAB are a date-of-birth value; DAY is a randomly selected day in 1989.
In nearly every case, the data rows are randomly distributed on an integer
field called INSEQ which contains the row number if viewed from a sorted
list. D08SEQ indicates a decimal field which also contains the consecutive
row sequence number. This information is useful when reviewing the SQL
in the appendix.

2.3 Measurements and Testing Method

All tests were run an average of three times in order to normalize the
resulting service rates. In each case, the elapsed time reported by BTEQ
following the SQL statement is used to define the system performance
since this is roughly what the end user would also perceive. "Select Time"
statements preceded and followed nearly every SQL statement. The
BTEQ service speed matched the "select time" time in every test with
consideration given for slight rounding differences. In the case of the
debit/credit testing, RESUSE reports were used to cull transactions per
AMP per second, pathlengths, response times, and IIOs per second per
AMP.

During decision support testing, the AMP memory was emptied between
each query by scanning a large table. This essentially purges all idle blocks
of data from AMP memory and insured that the query response times were
not affected by residual data leftover from previous tests.

2.4 Record Sizes Used in Testing

Record sizes are not included in this document for reasons of confidenti­
ality. Consequently, these tests cannot be reproduced without contacting
the Teradata Marketing organization, who will be glad to assist you in
reproducing these results or in supplying table layouts.

8

2.5 Calculation of Estimates

Since most of the relative performance factors given compare a Model 3
Plus to a Model 4 system, mental adjustment is necessary if you are
considering an upgrade from the basic Model 3 system to a Model 4.
Generally, adding 256K cache and 8 megabytes of memory to the Model
3 processors results in a 15 to 25% performance increase. Hence, if a
Model 4 factor is shown as two times faster than the Model 3 Plus, you
should mentally convert this to 2.5 times faster than the basic Model 3.
This roughly compares to tests done by Teradata's Performance Group
organization showing the Model 4 running 2.6 times faster than the basic
Model 3 in their GrandMix DSS tests.

In many tests, an estimated performance figure is given for the DBC/l012
model not tested. When the basic Model 3 system is being estimated, we
used a multiplier of 1.25 to arrive at the estimate. When an estimate for the
Model 3 Plus is being calculated, we used a multiplier of 0.8 to reduce the
improvement factor. Keep in mind that additional cache memory provides
differing levels of performance increase in different types of tests, hence
the broad application of these estimate factors are not the most accurate
method of estimating. For example, OL TP uses cache memory differently
from DSS activities. When considering estimates, the Model 3 customer
will never get less performance than the Model 3 Plus measurement and
will occasionally receive better performance than the Model 3 estimate
suggests. In general, the typical performance increase will be between the
measured amount and the estimated amount. Please use the estimates as
guidelines only.

2.6 The SQL Used in the Tests

In appendix A you will find the SQL used for the important queries. The
SQL is sometimes useful in matching queries used by DBC/l012 users
with test results found in this document. To aid in matching the SQL with
the tests, most of the queries have a random sequence number attached to
the SQL and the test title. For example, the Floats & Dates section
immediately following contains the number 901 in parenthesis following
the paragraph title to direct you to SQL item number 901 in the appendix.

Also, the actual CREATE INDEX statements have been included for those
inclined to examine the primary index and foreign keys in the tables.

9

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

FLOATING POINT & DATES
MODEL 4 OVER MODEL 3

Model 3 Plus Model 3 Plus Model 3 (est)
1 Session 5 Sessions 5 Sessions

FIVE SESSIONS FLOATS & DATES
EXECUTION SPEEDS - MINUTES

Model 4 Model 3 Plus

3.0 CPU INTENSIVE TESTS

Two test queries were specifically designed to reveal the improved CPU
speed of the DBC/l 012 Model 4. The results of these queries turned out
to be the biggest surprise of the entire testing process. The SQL for the tests
can be referenced using the number in parenthesis following the paragraph
title.

3.1 Floats & Dates (901)

SQL is rarely confined to the reading and writing of data rows. Many
Teradata customers invoke its 4GL like manipulation features and incur
heavy CPU utilization which they interpret as disk utilization. Two of the
more CPU intense functions commonly in use are integer conversion­
comparisons and date calculations. These types of functions are common,
everyday activities for most DBC/l012 users. For example, financial and
insurance applications rely heaviJy on differencing two dates in payment­
due calculations, amortizations, and actuarial analysis. The integer to
floating point conversion is an activity frequently needed by the scientific
community in applications such as weather monitoring and chemical
compound analysis.

This query caused the system to scan one million rows, applying complex
"where" selections. For each row selected, a comparison of an integer field
to nine floating point values caused a conversion of the integer value to
floating point notation. Additionally, several date fields in the row were
converted in order to compute date plus or minus values for comparison.

This test was run as a single session (one user doing one query) and also
as five concurrent sessions. The five concurrent sessions illustrates the
performance improvement possible when multiple concurrent users are
rumiing similar requests against the same tables. In such cases, there is
some benefit from User-B asking for rows that User-A has recently
brought into memory.

The staggering result is that the tests show a 3.57 and 3.18 times
improvement over the Model 3 Plus system. How is it possible that a CPU
that is three times faster can deliver 3.18 times improvement including disk
I/O? Part of the answer lies in the changes to the internal block-size
algorithm of Model 4 Release 4.xx software. Here we see revealed the­
obvious fact that the CPU is being fed more data per I/O, requiring fewer
l/Os overall. This confirms the developer's choice of changing the Model
4 system to the new block-size management logic.

10

3.2 Roll-up Reporting - Sums & Strings (900)

Common to financial, manufacturing, and retail applications is the use of
SQL to create the "roll-up" report. This seemingly innocuous SQL process
usually replaces dozens of lines of COBOL code and produces a middle­
manager level report. As such, it represents a highly CPU intensive
activity involving scans, sorting, and aggregations. For most organizations
which manage budgets or sales history, this type of SQL query is a daily
or weekly interaction with the DBC/1012. This query is a production
report used by an existing DBC/1012 customer.

Review of the SQL of this query shows approximately 18 sum aggrega­
tions (roll-up totals), one count result, two string manipulations, seven
arithmetic steps, and numerous column datatype conversions. Addition­
ally, the sort key used contains eight fields, some of which are calculated.
Overall, this is a very realistic end-user request for the DBC/1012 that
would probably demolish the garden variety RDBMS software.

Like the Floats & Dates query, this test was run as a single session and five
session query. Again, we encountered that rare excitement so much like
discovering a hidden treasure. Running at 2.7 (5 sessions) and 2.45 (1
session) times faster than the Model 3 Plus, again the Model 4 CPU
coupled with the changes in block-size management produced impressive
response times. This type of performance in real world situations is
evidence of a job well done by Teradata's development staff.

11

SUMS & STRINGS TEST
MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3 Plus Model 3 (est)

5 Sessions 1 Sessions 5 Sessions

EXECUTION SPEEDS - MINUTES

Model 4 Model 3 Plus

DBC/IOI2 MODEL 4 PERFORMANCE COlVlPARISON

HIGH DISK & CPU UTILIZATION
MODLEL 4 OVER MODEL 3

Model 3 Plus Model 3 (est)

MODEL 4 & MODEL 3 UTILIZATIONS

Average Disk CPU Peak Disk

EXECUTION SPEEDS - MINUTES

Model. 4 Model 3 Plus

4.0 DISK INTENSIVE SCANS

The intent of the disk intensive tests was to reproduce the types of activity
common to production environments. Foremost, we wanted to address the
obvious question "How many disk drives of which type should we use?"
In particular, new prospects require help selecting between two 1.2 GB
disks or one 2.5 GB disk drive since they provide similar capacity. This
invites the next disk related question "Which applications benefit most
from having more disks per AMP?". This goal proved to be a more
daunting task than one would expect.

As the benchmark proceeded, the team shifted away from queries we
expected to generate high levels of disk activity such as mUltiple joins and
row redistributions. Surprisingly, the Model 4 showed lower disk utiliza­
tion in these tests than would normally be expected. We quickly devised
new tests which utilized larger row sizes and 3-part multi-statement SQL
requests. The multi-statement SQL approach was able to simulate mul­
tiple requesters running concurrently against different tables. The results
were significantly more disk intensive.

4.1 High Utilization - Both Disk & CPU (902)

In this first multi-statement SQL disk-test, the three queries join 1 million
rows to 100 rows, five million rows to fifty rows, and 13 million rows to
50,000 rows. In each of the overlapped parallel steps, the queries produce
several spool files, the smaller of which are duplicated'on all AMPs, sorted,
and merge-joined on non-indexed columns. These types of queries are
typical of a variety of production batch applications (retail, airline,
banking, utilities, etc.) where the user matches customer to household,
seats to airfare, product to vendors, etc.

Moving several millions of rows during these queries would have implied
to the casual observer a severely high disk utilization. However, the disk
utilization tended to hover between 18% and 26% utilization while CPU
utilization remained steady in the mid 80' s on both the Model 3 and 4. For
a short three minute period, the disk utilization climbed to over 90%
utilization. Still, it is surprising that the CPU and disk utilization figures
for the Model 4 were almost the same as the Model 3 Plus figures.
However, the disk IIOs per Amp per second on the Model 4 averaged 50%
higher than on the Model 3 (for example 12 I/Os versus 7, and 33 versus
21).

Clearly, the very large blocksize used for the spool files and sort activity
kept the Model 4 AMP busy such that it did not become 1/0 bound. Notice
that the SQL join function is significantly CPU intense though we often
visualize it as simply the reading and combining of disk records. The

12

overall result showed the Model 4 system to be 2.41 times faster than the
Model 3 Plus configuration. This is an excellent improvement in a
supposedly disk bound activity. Clearly, the increased blocksize in the
Model 4 spool-files was necessary to minimize disk 1/0 bottlenecks and
increase throughput.

4.2 ffigh Disk - Low CPU Utilization (903)

In the second disk intensive query, we simulated three concurrent decision
support users accessing large data rows. Using a multi-statement SQL
query, we invoked full-table scans of 10,5, and 1 million rows respectively,
each from different tables. By specifying a return limit of one row, the
queries were forced to go through the entire process of accessing every
row, then returning only the first row of each spool to the mainframe. Each
query contained a simple "less-than" comparison for selecting rows.

On both the Model 3 Plus and the Model 4, disk utilization ran up to 97 to
100% and stayed there throughout the test. For the Model 3, this ran to 47
IIOs per second per AMP where the Model 4 was able to consistently
exceed 52 IIOs per second per AMP. CPU Utilization on the Model 3 Plus
was a consistent 35 to 38% saturation whereas the Model 4 consumed 23
to 24% of the available MIPS.

This test showed the effect of the new block-size algorithm on the Model
4 system. Having nearly eliminated the CPU as a factor, this truly disk
intensive process might be expected to be as little as 1.3 to 1.5 times faster
on the Model 4. But the effect of the new block-size logic on the data row,
sort, and spool areas results in a performance increase of 2.13 times over
the Model 3 Plus, roughly halving the response time. One conclusion we
may draw from this is that similar disk constrained table scans will
maintain roughly similar proportions of CPU and disk utilization across
the Model 3 Plus and Model 4 DBC/I012.

4.3 1.2 GB disks & 2.5 GB disks

The purpose of these tests was to determine when a system should be
configured with a single 2.5 GB disk versus two 1.2 GB disks. Addition­
ally, we wanted to learn the value of having multiple spindles per AMP
processor under various tests and configurations. This last requirement
was all the more important now that the Intelligent Peripheral Interface
(IPI) mode disk controller functions are being simulated on the Model 4
via firmware and SMD disk drives. This smarter use of the disk channel
permitted by the Rotational Position Sensing (RPS) is a valuable feature
in disk intensive activities that we hoped to measure. Hence, testing with
one, 'two, three, and four 2.5 GB disk drives per AMP was done to

13

HIGH DISK, LOW CPU UTILIZATION
MODEL 4 IMPROVEMENTS OVER MODEL 3

Model 3 Plus Model 3 (est)

AVERAGE CPU & DISK UTILIZATION

Model 4 CPU Model 3 CPU Disk (both)

EXECUTION SPEEDS - MINUTES

10~------~~==

Model 4 Model 3 Plus

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

1.2 GB & 2.5 GB DISKS
COMPARISON

CPU INTENSIVE TESTS - REVISITED

5% --r-----r----,

Sums Test Dates Test

Single 2.5 GB Dual 1.2 GB

determine how decision support activities are affected by the multiple
spindles.

After consulting with performance experts, the OLTP debit/credit test was
selected as the most likely to reveal differences in disk bound activity. The
debit/credit transaction contains three updates and an insert, all of which
invoke significant parallel disk activity particularly in the fallback and
journalling arcas. (Note that this deuiileft;uil is nol modeled after the
Transaction Processing Council benchmarks A or B.) The short row-at­
a-time activity in the debit/credit tests are known for consuming copious
amounts of disk service with the most primitive of SQL statements.

4.3.1 New Disk Drives and Decision Support Queries

Even though decision support queries may be disk intensive, they tend not
to utilize more than one disk at a time per AMP. Only when multiple
sessions and parallel steps are running can the single decision support
request begin to exercise multiple disk drives per AMP. Hence, such
requests do not generate the flurry of random disk I/O invoked by the debit/
credit testing.

Earlier in this document you will find a discussion of two multi-statement
SQL queries that were developed to create a disk intensive decision
support process. These tests drove the disks up towards 100% use while
CPU consumption was relatively low. These two tests were repeated using
two Model 4 systems, both of which were running the full IPI mode
emulation. The tests were conducted on an 8x8x8 with 2.5 GB disks and
an 8x8x16 running 1.2 GB disks.

Since the queries simulated three users running full-table scans concur­
rently, we expected a high rate of disk I/O to favor the two spindle 1.2 GB
disk configuration. This was not the case. Comparisons in the two tests
showed a difference of less than one percent in the elapsed times.
Generally, in decision support test of this nature, anything less than three
percentage points of difference is considered noise level results. Conse­
quently, there was no measurable difference between the dual 1.2 GB disks
and single 2.5 GB disk configuration in these tests.

Two other decision support tests were run in the above configurations.
These were the CPU intensive queries - Floats & Dates, Sums & Strings
-discussed earlier. In the SUMs roll-up report, the 2.5 GB disk configuration
out performed the 1.2 GB disks by 2.3%, still a noise level result. In the
Floats & Dates test, the 2.5 GB disk out performed the dual 1.2 GB disks
by 4.9%. In the latter case, it appears that the faster seek time of the 2.5
GB disk would account for a slight performance boost over the 1.2 GB
disks. In each case, these tests simulated five concurrent users via the
"BTEQ .repeat 5" feature.

14

4.3.2 Multiple Drive Testing with On-line Transactions

The first thing to consider is that these tests provide insight on random 1/
0, disk intensive, high concurrency processes only. Activities in this genre
include OL TP, BulkLoad, some Insert-Select processing, on-line complex
queries of short duration, and a few (very few) decision support functions.
The common denominator of these activities is the high volume, row-at­
a-time processing which is not the dominating factor in such things as
Fastload or SQL joins.

The OL TP tests were run on the same Model 4 system on average three
times in each configuration. Testing was conducted on a system with 12
IFPs and 24 AMPs. The large ratio of IFPs to AMPs permitted the tests
to avoid any IFP and channel saturation, thereby focusing the testing more
towards disk activity. The IFPs were split across two host channels to
achieve a reasonable balance of activity. Tests were run on single, dual,
triple, and quad DSU s per AMP. In all cases, 2.5 GB disk drives were used.
The database used fallback as well as dual before and dual after journals,
clearly the most disk intensive testing possible. Extra effort was needed
in the case of the two spindle configuration to level the amount of data
placed on each drive. This was accomplished by repeatedly loading
useless data rows into the system until the second disk filled to the same
capacity as the first drive. Once this was accomplished, the real database
was loaded via a restore from tape which caused the data rows to be evenly
balanced across the two spindles.

The tests were heavily dependent on the number of sessions per AMP
chosen during the testing. Clearly, a single session per AMP does not drive .
the Model 4 AMP very hard. Consequently, the tests had to be run at five
sessions per AMP in order to truly illuminate the effects of IPI emulation
and multiple spindles. Even at five sessions per AMP, the CPU utilization
never exceeded 60%.

When one session per AMP is driven with debitlcredit transactions, the
following performance improvements were revealed:

OLTP Improvements via Multiple DSUs per AMP
One Session per AMP

Compared to Txn Response I10s
AMP/sec Time per sec

Single DSU baseline baseline baseline
Dual vs. Single +4.82% 4.20% +5.96%
Triple vs. Single +19.28% +16.81 % +20.59%
Quad vs. Single +25.30% +20.17% +24.88%

Triple vs. Dual +13.79% +13.16% +13.81 %
Quad vs. Triple +5.05% +4.04% +3.56%

15

ON-LINE TRANSACTION TEST -
SINGLE SESSION PER AMP VERSION

TRANSACTION PER SECOND IMPROVEMENT
OVER SINGLE DSU

Dual DSUs Triple DSUs Quad DSUs

RESPONSE TIME IMPROVEMENT OVER SINGLE DSU

Dual DSUs Triple DSUs Quad DSUs

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

ON-LINE TRANSACTION TEST -
FIVE SESSIONS PER AMP VERSION

TRANSACTION PER SECOND IMPROVEMENT

OVER SINGLE DSU

2 DSUs 3 DSUs 4 DSUs NVRAM

RESPONSE TIME IMPROVEMENT OVER SINGLE DSU

2 DSUs 3 DSUs 4 DSUs NVRAM

Using the single DSU per AMP configuration as the baseline, the triple
DSU configuration yields 19% more transactions per second, a 17% faster
response time, and a 20% improvement in IIOs per second. Comparing the
gains ofthe triple DSU configuration over the dual configuration, the gains
are 14% more transactions, 13% faster response times, and 14%moreIlOs
per second.

A:s yuu can see, ihe rare of throughput improvement is not as hIgh going
from one to two drives as it is going from two to three drives in these tests.
This is probably caused by three or four really "hot" cylinders - those
containing the transient or permanent journals or possibly one of the data
tables themselves. It is likely that a mote linear performance leap (higher
dual DSU numbers) would have occurred with more disk saturation and a
higher number of sessions running.

OLTP Improvements via Multiple DSUs per AMP
Five Sessions per AMP

Compared to Txn Response I10s
AMPlsec Time per sec

Single DSU baseline baseline baseline
Dual vs. Single +7.50% +6.08% +6.20%
Triple vs. Single +22.50% +18.25% +22.18%
Quad vs. Single +27.50% +21.90% +25.84%

Triple vs. Dual +13.95% +12.95% +15.05%
Quad vs. Triple +4.08% +4.46% +3.00%

One DSU & NVRAM +55.00% +35.77% -49.25%

The ability of the NVRAM to improve update performance is obvious
from the five session throughput rates shown above. In these tests, the
NVRAM dramatically reduces write activity by more than four to one in
the fallback, dual after, dual before journal configuration. This is partially
revealed in the 49% drop in IIOs per second. This produces a 55%
improvement in the transaction rate which is almost twice what the four
DSUs per AMP can achieve. Clearly, the NVRAM is an excellent on-line
transaction and BulkLoad accelerator for applications that rely heavily on
row-at-a-time database updates. On the other hand, the NVRAM option
will affect only the updating side of an on-line or batch transaction. While
it may seem that the NVRAM eliminates the need for multiple disk
spindles, there is still a significant need to have the additional disk drives
in order to overlap many read requests.

16

What lessons do these tests reveal concerning multiple disks per AMP?
Clearly the AMPs-to-spindles ratio favored by these tests is the triple DSU
per AMP configuration. This configuration provides the best use of the
high CPU speed of the Model 4 while taking advantage of the overlapping
seeks and rotational position sensing (RPS). This does not imply that
adding a fourth DSU per AMP is of no value, only that the gain is not nearly
as dramatic as the dual to triple DSU improvements. Were the Model 4
user focusing on OLTP to the exclusion of all else, the triple DSU per AMP
configuration is one choice a DBC/1012 user should seriously consider.
This is especially true ifthere is demand for additional disk storage but the
number of users on the system is not increasing rapidly. Depending on the
size of the DBC/1012 and budget constraints, the customer may instead
choose to add additional AMPs rather than expand the number ofDSU s per
AMP. In some cases this is a cheaper alternative and produces the same
performance results.

For example, let us assume an order entry application that has been
measured running five transactions per second per AMP with two DSUs
per AMP running on a 30 AMP Model 4 with 2.5 GB disks. If the customer
wants to achieve a maximum throughput of 170 transactions per second,
he has two choices: more DSU s or more AMPs. If an additional DSU (30)
is added to each AMP, the corresponding 14% (triple vs dual) improve­
ment will yield 0.7 additional transactions per second per AMP or 171
transactions per second. To raise the TP/s rate by adding AMPs, the
customer would add four AMPs and eight DSU s. This adds four times five
transactions per second yielding an overall rate of 170 transactions per
second. In this example, the cost calculation shows the four AMP solution
to be almost 20% cheaper. In such cases, the Systems Engineer must
carefully analyze the RESUSE reports. If there is excess CPU capacity
already in the system, additional spindles may be a more appropriate
choice. Conversely, if the transactions use complex SQL and are compute
bound, additional spindles may not help but additional AMPs will.

Considering that there was little difference between 1.2 GB and 2.5 GB
disks in overall performance, this would tend towards selecting the proper
number of spindles from a data volume and pricing standpoint. Budget
permitting, the 2.5 GB disks are clearly the best choice in terms of price
per megabyte, performance, and MTBF ratings. Nevertheless, favoring
the correct number of spindles per AMP should be a primary consideration
for DBC/l 0 12 customers who expect large numbers of concurrent users on
the system.

17

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

During the testing, RES USE figures revealed that in the triple and quad
configurations, there were seven to eight disk accesses queued at any given
time. This means that the rotational position sensing capability of the
firmware had the opportunity, on average, to select between two queued
requests per DSU or between anyone of the DSU s. This enabled the
firmware to choose the optimum transfer strategy based which sector
happened to be under the disk heads at the moment. Since we could not
turn off the RPS capabilit)T, ',:ve \'lere unn.ble to measure the actual benefit
derived.

4.4 Non-Volatile Disk Cache (NVRAM) - DSS

Nearly all tests in this document were run two more times with NVRAM
attached to the 24 AMP Model 4 system. This was done to determine what
performance improvements or regressions might occur. This was an
especially critical test series because of the redesign of the AMP disk
controllers to enable the IPI mode emulation and other special hardware
improvements.

In the decision support tests, the NVRAM had almost no effect. Since
these were not update tests, the NVRAM should not have affected a read
only process. However, the AMP operating software maintains lists of
data blocks currently in the NVRAM. Prior to reading the disk, these lists
are searched in case the data block is in NVRAM and a disk read can be
avoided. In our testing, this revealed a one or two percent deviation (above
noise levels) from non-NVRAM testing. Some tests ran a little faster,
some a little slower. Considering the benefits ofNVRAM, these variations
are insignificant.

18

5.0 GENERAL QUERIES

The general query suite consists of nine requests that are representative of
SQL functions commonly used by Teradata customers. These involve
everyday needs such as aggregations, prime index joins, table redistri­
butions, and sorts. In the aggregation queries, the number of distinct values
found in the selected columns are used as the sort key that controls the
number of "roll-up" levels. In each case where aggregation (sum, max,
average) occurs, the query returns a small number of summary rows called
"buckets". The SQL for the tests can be referenced using the number in
parenthesis following the paragraph title.

Overall, there were few surprises in these queries. They tended to contain
a fairly even mix of CPU and disk utilization such that neither one is a
dominating factor in response time. Performance improvements ranged
from 1.8 to 2.1 times improvement averaging around 1.98 times better on
the Model 4 versus the Model 3 Plus. When compared to the basic Model
3 system (64K cache & 4 megabytes of memory), the overall performance
improvements average around 2.4 times faster on the Model 4 system.

5.1 Aggregate/Sort 3 Groups, 1000 Categories (100)

This query is similar to retail applications that summarize units sold and
dollars received based on store or departments within the store. Another
common use would be in banking where accounts are summarized by
categories of account-types. In a broad sense, this query is a category­
totals report.

This query does an all-AMP scan of 50,000 rows, sorting them into three
groups and summing the distinct variations. This may be considered a
simple version of a roll-up report that users will commonly execute.
Running 60% disk use to approximately 30% CPU utilization, this query
is somewhat limited by disk. This resulted in a performance improvement
on the Model 4 of 1.8 time faster than Model 3 Plus. One thousand rows
are returned to the requester in this test.

19

AVERAGE SPEEDUP
OF GENERAL QUERIES

MODEL 4 OVER MODEL 3

Model 3 Plus Model 3

AGGREGATE & SORT-
3 GROUPS, 1000 CATEGORIES

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3 (est)

EXECUTION SPEEDS - SECONDS

Model 4 Model 3 Plus

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

AGGREGATE & SORT-
4 GROUP, 10,000 CATEGORIES

MODEL 4 IMPROVEMENT OVER MODEL 3

3~------~------~

2.5 -+-------+------1

Model 3 Plus
(est)

Model 3

EXECUTION SPEED - MINUTES

Model 4 Model 3 Plus

5.2 Aggregate/Sort with 4 groups, 10,000 lJuckets (125)

Like the previous query, this test is appropriate for any sorting of details
into categories and reporting the totals. Because of the large number of
category "buckets", this type of query is probably found more frequently
in month-end or week-ending batch runs where a more detailed report is
required. An example might be a summary of insurance claims by office
::.m.d policy type, sales by product coue, ur perhaps service charges by rate
and service location.

This query does an all-AMP scan of the same 50,000 rows as the previous
query. It also sorts and aggregates all columns selected, which in this case
produces four groups of roll-up results (like the prior query, the roll-up
answer is the maximum value of a column). By adding the additional CPU
intensive load (the additional selection & aggregate column), performance
of the 10,000 row result was 1.87 times faster on the Model 4 versus the
Model 3 Plus. The transfer of 9,700 rows to the host took two seconds
longer than in the previous query which transferred only 1,000 rows to the
host. 9,789 rows are returned to the requester in this test.

20

5.3 Prime Index Merge Joins (200)

An efficient and commonly used relational feature, this type of join finds
a broad range of uses where a large table is matched to a medium sized table
on primary indexes. One obvious use is the combining of history records
to the account or product. Some examples include: Insurance - claim and
account status tables; Manufacturing - product and shipping history;
Communications - customer and call history.

This query invokes an all-AMP scan and merge join of a one million row
table. In each case, the unique primary index (UPI) is used in an equality
test for the join. CPU utilization on the Model 3 Plus runs around 66%
while disk utilization remains at 40%. On the Model 4 system, CPU and
disk utilization runs at 53% and 37% respectively. With the higher
utilization of the CPU caused by the "where" clause and the join process­
ing, overall performance of the Model 4 system improved 2.16 times over
the Model 3 Plus. 95 rows are returned to the requester.

21

PRIMARY INDEX MERGE JOINS -
1 MILLION ROWS

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3

(est)

EXECUTION SPEEDS - MINUTES

Model 4 Model 3 Plus

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

PRIMARY INDEX TO FOREIGN KEY JOIN
- 1 MILLION ROWS

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3

(est)

EXECUTIONS SPEED - MINUTES

Model 4 Model 3 Plus

5.4 Prime Index to Foreign Key, redistribution of 1
million row table (202)

One of most commonly used relational joins is the foreign key variation.
In this case, the rows do not share a common identifier but rather are
"related" through an imbedded foreign key. This type of join connects two
"peers" in the database. Hence it is used to match flights and passengers,
p3.tient 3.nd medical service, products aIld suppllcis, Or empluyees and
departments.

This query invokes an all-AMPs scan and merge join of one million rows
to the primary index of a 50,000 row table. The constraints in the "where"
clause causes a row redistribution of all one million rows. This is done to
place the rows on the same AMP where the primary index for the "joined­
to" row exists. During this period, Model 4 Y net utilization runs fairly high
at approximately 650 lias per second, CPU utilization at 76%, and disk
utilization at 23%. The Model 3 Plus runs the same disk use but the CPU
runs over 90% and cannot drive the Y net nearly as fast, averaging 400 II
as per second. This query ran 1.86 times faster on the Model 4 than on the
Model 3 Plus.

22

5.5 Both tables redistributed - 50 % of each table
Selected (214)

The following three queries represent a "join" that does not use the primary
index of either table. This causes a disk and Ynet intensive redistribution
of rows. Common uses of this relational capability would be matching last
names across differing account types (customer information systems) or
matching subscribers by household address (mail order or publishing
lists).

This query scans two tables, both having one million rows. Approximately
50% of each table is selected and redistributed via the Y net. The
redistribution drives the Y net at 700 lias per second on the Model 4, 390
lias per second on the Model 3 Plus. Once redistribution completes, a
merge join with constraints is performed. Owing to the higher throughput,
Model 4 CPU utilization is 30% lower and disk use 12% higher than the
Model 3 Plus. This results in an elapsed time 1.97 times faster than the
Model 3 Plus. 299 rows are returned to the requestor in this test.

23

50% REDISTRIBUTION JOIN -
1 MILLION ROWS EACH TABLE
MODEL 4 IMPROVEMENT OVER MODEL 3

3

Model 3 Plus Model 3
(est)

EXECUTION SPEED - MINUTES

Model 4 Model 3 Plus

DBC/I012 MODEL 4 PERFORMANCE COl\tlPARISON

BOTH TABLES REDISTRIBUTED -
100% OF EACH TABLE SELECTED

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3 (est)

EXECUTION SPEED - MINUTES

Model 4 Model 3 Plus

5.6 Both tables redistributed -
100% of each table Selected (214B)

This query is identical to the previous query (214) excepting that some
selection constraints have been removed. The selection criteria requires an
equal join between two fields which are not the primary indexes, a fairly
common use of the SQL join. The result is that both tables are 100%
redistributed via the Y net. Because of the CPU saturation, the Model 3
Plus is unable to drive the Ynet beyond 420 II0s per second whereas the
Model 4 system achieves a whopping 772 1I0s per second. This results in
a Model 4 elapsed time which is 1.99 times faster than the Model 3 Plus.
1,071 rows are returned to the requestor in this test.

24

5.7 Both Tables Redistributed -
1 Million and 10 Million Rows (304)

This query turns up the heat on the system. This query is identical to the
prior test (214 B) excepting that one of the tables contains ten million rows.
This high throughput join ran about 80% CPU and 21 % disk utilization,
hitting the Y net at an average of 700 II0s per second on the Model 4. The
Model 3 Plus was again limited to 400 II0s per second on the Y net. Disk
use on the Model 3 Plus matched the Model 4 disk usage but CPU
utilization stayed between 87 and 90%. This resulted in a 1.95 times
improvement in elapsed time for the Model 4 system over the Model 3
Plus. 1,071 rows were returned to the requestor.

25

BOTH TABLES REDISTRIBUTION -
1 AND 10 MILLION ROWS (304)

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3
(est)

EXECUTION SPEED - MINUTES

Model 4 Model 3 Plus

•

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

SCAN 10 MILLION ROWS
MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3

(est)

EXECUTION SPEED - MINUTES

Model 4 Model 3 Plus

5.8 Scan-table test - 10 Million rows (310A)

A large percentage of truly adhoc queries involve scanning large tables for
any occurrence of the target data. Often, this is a spontaneous business
need that demands examining tens of millions of records. Because of the
infrequency of the specific request, it is often inappropriate to maintain
indexes on the field with the selection constraints. Examples of this type
of query might be "list the number of widgets revision H that were returned
defective in January" or "what was the average age of the customers who
responded to our product promotion last quarter".

This query was simply an all rows scan of ten million records. Again, we
have a high disk utilization test wherein the CPU use is quite low. On the
Model 4, this ran a 22/80 percent ratio of CPU to disk whereas on the Model
3 Plus a 39/63 percent ratio existed. This resulted in a 1.84 times
performance improvement in elapsed time in the Model 4 versus the
Model 3 Plus. 49 rows were returned to the requestor.

26

5.9 Aggregate/Sort, 3 groups, 1000 buckets -
Ten million rows (313)

Like the queries discussed earlier, this request has numerous uses in pro­
duction environments as well as in adhoc summaries. This type of query
is used to group information from very large tables for easy analysis. It
answers such questions as "provide a revenue summary by region, state,
and city" or "summarize cargo weight by date, destination hub, and
carrier".

This test is a repeat of the first test in the query suite. The key difference
is that it sums ten million rows instead of 50,000. Like the first test, an all­
AMPs scan is done to summarize the column INSEQ grouping the results
on the first three column's values. This produces a saturation of the Model
3 Plus AMP while running a low 14% use of the disk. On the Model 4, disk
use is approximately the same while CPU utilization settles at 80%. The
elapsed time results show the Model 4 is 1.97 times faster than the Model
3 Plus. 1,000 rows are returned to the requestor.

u
27

AGGREGATE & SORT - 10 MILLION
ROWS, 3 GROUPS, 1000 CATEGORIES

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3

(est)

EXECUTION SPEED - MINUTES

Model 4 Model 3 Plus

DBC/IOI2 MODEL 4 PERFORMANCE COMPARISON

FASTLOAD PHASE 1 -
200 CHARACTER ROWS

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus
(est)

Model 3

FASTLOAD PHASE 2-
200 CHARACTER ROWS

MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus
(est)

Model 3

6.0 FASTLOAD

This section relies entirely on work done by the Teradata's Performance
Group within the development organization. Further details can be
obtained from the R&D Performance Group.

Testing was done comparing a Model 4 system to a Model 3 with 64K
cache and 4 megabytes of memory per processor. The tests were con­
ducted using 500,000 rows as input. One series of tests were run at 100
byte row size, the other series at a 200 byte row size.

Fastload phase 1 is heavily dependent on exclusive use of mainframe
MIPS since this is the phase which reads the tape c~ridge and passes rows
to the Teradata Director Program (TDP). Since Teradata customers do not
usually have the same host, Phase 1 performance is considered less
meaningful. Also note that the host time spent in Phase 1 tends to dilute
the improvements gained by the Model 4. In simpler terms, we did not
expect nor did we get performance improvements in Phase 1 processing
that matched other results. Consequently, Phase 1 processing improved
1.56 times for 100 byte rows and 1.96 times for 200 byte rows as measured
in transactions per second per AMP.

On the other hand, Phase 2 processing is the sorting and building phase of
Fastload which is purely a DBC/I012 event. Performance improvements
in Phase 2 processing should, and did, roughly approximate improvements
measured in other tests. For 100 byte rows, the Model 4 ran 2.08 more
transactions per second per AMP than the Model 3. In the case of the 200
byte rows, Model 4 performance climbed to 2.22 times that of the Model
3.

Current customers running Level 3 software will experience even more
dramatic performance boosts when moving to a Model 4 system. Because
of the upgrade to Level 4 software, the customer will receive the added
benefit of changes to the sort logic which affects Phase 2 of Fastload.
While the two performance gains are not additive, the result for the Release
3.xx customer will still be significantly higher than the figures reported
above.

Fastload performance improvements are most useful to customers who
collect large volumes of data from other computers, often from outside the
company. This is particularly true of point-of-sale operations, satellite
weather mapping, stocks and bonds trading, and money wire transfers to
name a few. The Fastload performance improvements are an enabling
technology for DBC/l012 users attempting to control the ever increasing
quantities of transaction data accumulated daily.

28

7.0 ON-LINE TRANSACTION PROCESSING

The benchmark resu]ts described in this section are primarily derived from
testing done by the Product Development Performance Group and are
called P-TXNs (Test 1) in this section. Testing done by the Marketing
team are called M-TXNs (Test 2) in this section.

These tests are based on the old debit/credit transaction model used
internally at Teradata for relative performance comparisons. These tests
are not comparable to any industry standard benchmark because we use
different SQL requests, database sizes, and performance constraints.
These tests are not optimized to drive the mainframe nor the DBC/1 0 12 to
peak performance transaction rates. Instead, the tests are designed to show
relative performance rates, a wholly different benchmark target. Conse­
quently, any extrapolation of these numbers done to compare to industry
benchmarks would be misleading and incorrect.

Testing done by the Product Development Performance Group (P-TXN s)
used a 2x4x8 Model 3 system with 64K cache, 8 Mb memory, and two 1.2
GB disks per AMP. The Model 4 system used was a 3x4x8 with two 1.2
GB disks per AMP. Testing was performed on both configuratioris with
and without Non-Volatile Disk cache using single after image journalling
and no fallback (NNS tests). The Marketing team (M-TXNs) used an
8x8x 16 Model 4 with two 1.2 GB disks per AMP and a 2x 4x8 Model 3 with
64K cache, 8 Mb memory, and two 1.2 GB disks per AMP. The M-TXN s
were run with fallback and no journalling excepting transient journals
(FNN tests). In each case, the Model 4 system uses a higher ratio of IFPs
to AMPs which is necessary to maintain a similar MIPS-to-MIPS ratio on
the Model 4 system. In all cases, five session per AMP were used to drive
the AMPs. While the differing configurations might suggest an unfair
comparison, results are measured on a "per AMP" basis which has proven
to be an accurate metric in tests of this nature.

In the P-TXNs tests, the transactions per second per AMP improved 1.61
times on the Model 4 versus the Model 3 system (61 % improvement). At
the same time, the response time of the Model 4 was 63% of the response
time of the Model 3 transactions (37% improvement). In these tests, the
Model 3 ran a 68/52% ratio of CPU -to-disk utilization whereas the Model
4 ran nearly the reverse at 53173% CPU-to-disk utilizations. Considering
the results of the mUltiple disk drive testing earlier in this document, the
Model 4 in this test has excess capacity that could be utilized by adding
additional disk drives.

Using the P-TXN configurations, Non-Volatile Disk Cache was added to
both systems This produced a 73% reduction in disk 1I0s on both the
Model 3 and Model 4 systems. In this configuration, the Model 4 system
ran 1.77 more transactions per second per AMP while the response time

u
29

MODEL 4 IMPROVEMENT OVER
MODEL 3

IMPROVEMENT FACTOR

2~----~---r--~

Test 1 Test 1/NVR Test 2

RESPONSE TIME IMPROVEMENT

Test 1 Test 1/NVR Test 2

CPU Be DISK UTILIZATION - TEST 1 (P-TXN)

80%-r------~------~

60% -------+-

40%

20%

Model 3

CPU Disk

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

MODEL 4 IMPROVEMENT
OVER MODEL 3

CPU & DISK UTILIZATION WITH NVRAM - TEST 1 (P-TXN)

1 00% --r---~r----~

80% -+-----f--

60% -+-----1--

Model 3

Disk CPU

CPU & DISK UTILIZATION WITH NVRAM - TEST 2 (M-TXN)

100% --r------r----......
80%

Disk CPU

of the Model 4 was 55% of the Model 3 response times (45% improve­
ment). As expected, the CPU-to-disk utilizations changed dramatically
with the Model 3 operating at a 75/21 % ratio and the Model 4 at 82/45%
ratio. Clearly, the Non-Volatile Disk Cache option reduces the time spent
waiting for disk I/O and delivers more of the Model 4 AMP speed to the
end user.

In the M-TXNs tests, the Model 4 system produced 1.3 times more
transactions per second per AMP (30% improvement) and produced a
response time 76% of the Model 3 response time (24% improvement).
CPU-to-disk utilizations ran 75/90% on the Model 3 and 541100% on the
Model4. In the M-TXN configurations, the additional I/Os generated by
fallback versus the single after image journalling drives up the disk I/Os
dramatically. Since disk 1/0 becomes the major component of the
transaction, the benefits of the Model 4 CPU speed are diluted. Conse­
quently, it is necessary to add either additional disk drives or Non-Volatile
Disk Cache to the system in order to optimize the Model 4 system in this
testing configuration.

One other way to view these tests is to compare the P-TXNs Model 4 with
Non-Volatile Disk Cache (maximum throughput) to the P-TXNs Model 3
without the disk caching (baseline throughput). Although this is a
somewhat unequal comparison, it is a potential upgrade path for many
DBCI1012 customers.' This comparison results in the Model 4 running 2
times the number of transactions per second per AMP (l00% improve­
ment) at a response time 49% of the Model 3 baseline (51 % improvement).
Clearly, OLTP applications find their "best fit" configuration with the
Model 4 and Non-Volatile Disk Cache.

Comparing these results to the decision support and batch results, it
becomes apparent that the OLTPtransactions in this test are limited by disk
speed. Since the SQL used is simple prime index updates, the DBCI1012
is not utilizing any reJational capabilities and behaves more like an access
method than a relational database manager. Similar studies show that as
more journalling activity is added to the test, the performance improve­
ments of the Model 4 are further diluted. This stands to reason since
transactions which are disproportionately weighted towards disk I/O
receive less benefit from the Model 4 CPU speed. In contrast, on-line
complex processing which uses more of the relational features of SQL
tends towards better use of the Model 4 CPU speed and larger improve­
ments in transaction rates.

30

u

8.0 SYSTEM SUPPORT ACTMTIES

These tests reveal important performance improvements that are of great
interest to the Database Administrator and application programmer. Each
of these individuals tends to repeat these types of functions many times
during the course of a month. Additionally, several of these functions are
part of daily production batch jobs in many DBC/l012 installations.
Consequently, the improved performance of the Model 4 system shown
here translates directly into staff productivity as well as faster batch
processing.

8.1 Insert Select (71)

Insert-Select is used for many database activities and is particularly useful
for creating copies or subsets of tables. Programmers often use this to
create test databases by copying selected portions of a production database
into a smaller version of production for quality testing of programs. This
test copies one million rows from a table with fallback to a table without
fallback. This function ran 2.15 times faster on the Model 4 than on the
Model 3 Plus.

8.2 Create Index

The Build Index process showed an overall improvement of 2.00 times
over the Model 3 Plus. Because additional processing is needed when
there are many unique values in an index column, the larger tables with
more distinct values showed slightly better throughput improvement than
the smaller tables with few distinct values. A quick review of the execution
times show that creating a non-unique secondary index on ten million rows
took under six minutes while in most tests the create index ran under one
minute. This would indicate that creating and dropping an index for the
purpose of aiding a single batch job is a viable method for speeding up
nightly processing in many instances.

In the following table the columns should be interpreted as follows:

u

• Test number is a randomly assigned value for tracking purposes.
• Types are UPI = unique primary index, NUSI is non-unique

secondary index.
• Row count is the number of rows in the table analyzed.
• Distinct values is the number of unique values in the column

analyzed.
• Model 3 Plus and Model 4 times are runtime in minutes, seconds,

and thousandths.
• Speed up factor is the improvement provided by the Model 4 over

Model 3 Plus.

31

INSERT SELECT (71)
MODEL 4 IMPROVEMENT OVER MODEL 3

Model 3 Plus Model 3
(est)

EXECUTION SPEED - MINUTES

Model 4 Model 3 Plus

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

Test Type

50 USI
52 NUSI
53 NUSI
54 NUSI
55 NUSI
57 NUSI*
500 NUSI
501 NUSI
502 NUSI
80 USI
82 NUSI
85 NUSI
87 NUSI
4 NUSI
5 NUSI*

Model 4 Improvement Over Model 3 Plus
Create Index

Row Count Distinct Fallback Model 3 Model 4
Values Plus Time Time

mm:ss.tt mm:ss.tt

1,000,000 1,000,000 Yes 03:38.00 02:04.41
1,000,000 10 Yes 01:04.82 00:30.72
1,000,000 50 Yes 00:59.23 00:29.72
1,000,000 1,000 Yes 00:58.35 00:29.26
1,000,000 100,000 Yes 01:09.06 00:32.94

. 1,000,000 1,000,000 Yes 01:29.42 00:40.90
10,000,000 50 No 09:51.20 05:01.04
10,000,000 100,000 No 12:50.01 05:54.65
10,000,000 1,000,000 No 13:23.28 05:52.2

1,000,000 1,000,000 No 03:32.26 02:21.18
1,000,000 10 No 01:05.32 00:30.35
1,000,000 100,000 No 01:08.69 00:34.20
1,000,000 ~OO,OOO No 01:25.04 00:38.34
5,000,000 100,000 No 06:22.94 03:43.37
5,000,000 500 No 05: 16.44 02:48.00

Speedup
Factor

1.75
2.11
1.99
1.99
2.10
2.19
1.96
2.17
2.28
1.50
2.15

\ 2.01
2.22
1.71
1.88

* Multiple Column Index

8.3 Collect Statistics

Collect statistics, like most supposedly disk bound activities, reaps enor­
mous benefits froqI. the Model 4 CPU speed. During statistics collection,
the system maintains internal lists of unique column values it has en­
countered. Each time a row is processed, the system matches the current
column value to the internal list. When there are few distinct values in a
column, the collect statistics becomes somewhat of a disk reading race, In
this case, the improvement of the Model 4 CPU is truly limited by the disk
speed. But in the cases where there are many unique values in a column,
the Model 4 CPU zooms through the internal lists, outrunning the Model
3 Plus by a wide margin. This is most obvious in the collection of unique
primary index statistics since every index value must be added to the
internal list. It is also apparent in large tables where there are thousands
or millions of valq.es. ThIS type of statistics collection is common in many
applications where a value frequently repeats throughout a column such as
account type, inventory location, or fare class.

32

In the following table the columns should be interpreted as follows:

• Test number is a randomly assigned value for tracking purposes.
• Types are UPI = unique primary index, NUSI is non-unique

secondary index.
• Row count is the number of rows in the table analyzed.
• Distinct values is the number of unique values in the column

analyzed.
• Model 3 Plus and Model 4 times are runtime in minutes, seconds,

and thousandths.
• Speedup factor is the improvement provided by the Model 4 over

Model 3 Plus.

Collect Statistics
Model 4 Improvement Over Model 3 Plus

Test Type Row Count Distinct Model 3 Model 4
Values Plus Time Time

mm:ss.tt mm:ss.tt

58 UPI 1,000,000 1,000,000 03:29.20 01:32.89
10 UPI 5,000,000 5,000,000 17:07.68 07:33.95
503 UPI 10,000,000 10,000,000 35:42.57 15:38.02
59 USI 1,000,000 1,000,000 03:04.95 -01:23.37
62 NUSI 1,000,000 1,000 00:13.32 00:09.31
63 NUSI 1,000,000 100,000 03:49.57 02:18.17
504 NUSI 10,000,000 50 00:10.00 00:08.02
505 NUSI 10,000,000 100,000 11:02.33 06:49.62
506 NUSI 10,000,000 1,000,000 39:42.41 22:48.32
11 NUSI 5,000,000 100,000 09:45.23 05:41.91
12 NUSI * 5,000,000 500 00:11.22 00:08.44

* Multiple Column Index

33

Speedup
Factor

2.25
2.26
2.28
2.22
1.43
1.66
1.25
1.62
1.74
1.71
1.33

DBC/IOI2 MODEL 4 PERFORMANCE COMPARISON

9.0 CONFIGURING MODEL 4 SYSTEMS

Let us first clearly state the ground rules for configuring Model 4 systems:

• Approach Model 4 sizing with the same diligence used with
Model 3.

• Most of what applies to Model 3 applies to Model 4.
• There are no simple guidelines that by themselves will lead to the

proper configuration.
• Always favor Model 4 systems for the more critical production

applications.

The first general guideline in configuring Model 4 systems is that you will
need approximately half as many AMPs as on a Model 3. Since the Model
4 is generally 2.4 times faster than the Model 3, this should provide
approximately 1.2 times as much throughput for approximately 20% less
cost (fewer AMPs and cabinets). The halved configuration will also
provide better response times than the Model 3 . If the customer's objective
is to achieve dramatically better response times, you will need more than
half the number of AMPs. Similarly, when upgrading from a Model 3 Plus
to a Model 4, start by configuring the system with somewhat more than half
as many AMPs. Of course, viewed another way, you can get more than
twice as much work done by replacing all Model 3 AMPs with Model 4
AMPs.

Model3
16 AMP's Throughput = X, Cost = Y

••••••••••••••••
~ / ••••••••

Model 4
8 AMP's, Throughput = 1.2 X, Cost = 0.8 Y

This halving of AMPs is an appropriate approach for large set processing
applications such as decision support and batch. It is inappropriate for
OLTP and BulkLoad processes which are row-at-a-time activities. Any
random I/O processing which is disk constrained, will need more than half
as many AMPs. This is because this type of processing is more dependent
on disks and channel time than on CPU time. The configured number of
AMPs should be calculated using the same techniques used for Model 3
systems. Realistically, you should also maintain a similar MIPS-to_MIPS
ratio between the IFPs and AMPs if your application is expected to be IFP
constrained on the Model 3 system.

By halving the number of AMPs we imply a doubling of the amount of
DASD space per AMP. Given that the Model 4 is typically greater than
twice the speed of the Model 3 Plus, this maintains an even balance of
MIPS to DASD.

34

With the extra CPU speed and the obvious ability to drive the Y net harder,
there appears to be no loss of parallelism resulting from halving a Model
3 Plus configuration. As with the Model 3 systems, configurations
containing less than four AMPs are not recommended because of the loss
of the effects of parallel processing.

As with the Model 3 systems, installations which demand high levels of
concurrent activity will benefit from additional AMPs. This reduces the
number of prime index SQL requests being serviced per AMP. While
response time is not changed in OLTP activities by adding AMPs, the
additional AMPs will be useful in sustaining a consistent response time as
the user population increases.

Dual DSU s per AMP are suggested as a minimum configuration whenever
possible regardless of the disk drive capacity (1.2 GB or 2.5 GB). Any
installation which expects to have more than two concurrently running
DSS requests will clearly benefit from the additional spindles. For those
customers who perform many row-at-a-time activities such as BulkLoad
and OLTP, additional DSU s per AMP allow the full benefit ofRPS as well
as pushing the AMP CPU to capacity. Given the results of the various tests,
the Model 4 AMP will surely become disk starved in many single DSU per
AMP instances. Customers with heavy concurrency loads should consider
running three DSUs per AMP. Those who simply require additional
DASD without a corresponding increase in users logged on should
consider the quad DSU per AMP arrangement. These choices must be
carefully weighed against adding additional AMPs instead of increasing
the DSUs per AMP ratio. In many cases, additional AMPs c.an achieve the
same performance objective at a lower overall cost to the customer.

Customers who expect to do large amounts of database updating should
install the Non-Volatile Disk Cache (NVRAM) option. The effects of
NVRAM in on-line and batch updates makes it an excellent price/
performance booster. The guidelines for choosing to use NVRAM have
not changed between the Model 3 and Model 4 DBC/1012 systems.

In summary, to estimate a Model 4 size based on Model 3:

• Halve the number of AMPs in CPU bound or balanced applica­
tions

• Try to begin with two DSUs per AMP
• Always weigh the throughput of multiple DSUs against addi­

tional AMPs
• Use NVRAM in any OLTP or BulkLoad intensive application

35

•

DBC/I012 MODEL 4 PERFORMANCE COl\'lPARISON

APPENDIX A - SQL USED DURING TEsTING

Model 4 Tests

The answer set was exported to a dummied host file in order to suppress
the effects ofthe mainframe I/O. Answer sets were restricted by applying
cross-table Selection after the join often reducing the spool to less than 50
rows. CPU-intensive queries use a retlimit of 1. Select DATE TIME
statements were included before and after each query. Between queries
using the same tables, a: dummy Select of 1 million rows was inserted to
flush all rows from AMP memory to avoid residual rows being found in
the next query test.

71 Insert/Select

Insert into cab.tnf
select * from cab. tIm;

100 Aggregate/Sort, 3 groups, 1000 buckets

Select chlae,inlO,in20,max(inseq) from t50k
group by 1,2,3 order by 1,2,3 having max(inseq) gt 2490;

125Aggregate/Sort with 4 groups, 10,000 buckets

Select chlae,chlaj,inl0,in20,max(inseq) from t50k
group by 1,2,3,4 order by 1,2,3,4 having max(inseq) gt 2490;

200Prime Key Joins

Select tIm.chI5city, Tnf.chl5city from tIm,tnf
where tIm.inseq = tnf.inseq
and (tlm.in500k + tnf.in500K) gt 999900;

202Prime Key to Foreign Key, redistribution of 1 million row table

Select tlm.chI5city, t50k.chl5city from tlm,t50k
where tlm.in50k = t50k.inseq
and (tIm.in500k + t50k.inl0K) gt 505000;

214 Both tables redistributed - 50% of each table Selected

Select tlm.chI5city, tnf.chl5city from tIm,tnf
where tlm.chlsex = 'f'
and tnf.inl0 gt 4
and tnf.inlm = tlm.inlm
and (tlm.in500k + tnf.in500k) GT 999000;

36

214B Both tables redistributed -100% of each table Selected
Select t1m.ch15city, tnf.ch15city from t1m,tnf

where tnf.in 1 m = tl m.in 1 m
and (t1m.in500k + tnf.in500k) GT 999900;

304 Both Tables Redistributed -1 Million and.10 Million Rows
Select tlm.ch15city, tlOm.ch15city from tlm,t10m

where t10m.in1m = t1m.in1m
and (t10m.lN1m + t1M.lN500K) GT 1490000;

310A Scan~Table test -10 Million rows
Select inseq From t10M where d08seq It 50.00;

313AggregatelSort, 3 groups, 1000 buckets - Ten Million rows
Select ch1ae,in10,in20,max(inseq) from t10m

group by 1,2,3 order by 1,2,3 having max(inseq) GT 499995;

900 Rollup Report
Select SSS_JD (smallint) , DCD (char(l)),

sum(PPP _102_AM) (decimal(l1,0)) , sum(PPP _102_QY)
(integer) , sum(PURCH_102_AM) (decimal(l1,0)),
sum(PURCH_102_QY) (integer) , sum(CASH_102_AM)
decimal(l1,0)) , sum(CASH_102_QY) (integer),
(PPP _FULL_QY + PPP _N_DU_QY) (smallint),
(PPP _SKIP _QY + PPP _LESS_QY + PPP _MINM_QY +
PPP _PLUS_QY), (((FC_102_AM*100 - .5) mod 1) + .5)

(smallint),
AUTH_IN (char(l)) , BILL_IN (char(l)),
index(substr(CHGOFF _DT,3,4),'01')
(smallint) , sum(BAL_102_AM) (decimal(11,0)),
sum(ICA_102_AM) (decimal(11,0)) , sum(ICA_102_QY)
(integer) , sum(FC_102_AM) (decimal(l1,0)),
sum(CASH_AMT_102_AM) (decimal(l1,0)),
sum(ICA_AMT_102_AM) (decimal(11,0)) ,
sum(index(substr(AMF _BILL_DT,3,4),('01 ')) *
AMF _BILL_AM) (decimal(11,0)) ,
sum(LC_102_AM) (decimal(l1,0)),
sum(OLAMT _102_AM)
(decimal(l1,0)) , count(*) (integer),
sum(CC_BILL_102_AM)
(decimal(11,0)) , sum(CHGOFF _BAL_AM)
(decimal(l1,0))
From ACCT_TRANS
GROU BY 1,2,3,4,5,6,7,8;

37

DBC/I012 MODEL 4 PERFORMANCE COMPARISON

901 Floats & Dates

Select * From tIm
where
(in1m = 1.1E6
or in1m = 1.2E6
or in1m = 1.3E6
or in1m = 1.4E6
or in1m = l.SE6
or inlm = 1.6E6
or in1m = 1.7E6
or in1m = 1.8E6
or in1m = 1.9E6
or in1m = 999)
and (DATE - DAY) GT 100
and (DAB + IS) LT (DAY + 101)
and (DATE - DAB) GT 10;

902 Disk Intensive 1 - Multi-Statement SQL

Select * from tIm, tlOO
where t1m.lN100 = tlOO.inseq
and (tlm.inseq + t100.inseq) It 10 ;

Select * from tSm,tSO
where tSm.inSO = tSO.inseq
and (tSm.inseq + tSO.inseq) It 10 ;

Select * from t13m, tSOk
where tl3m.inSOk = tSOk.inSOk
and (tI3m.inseq + tSOk.inseq) It 20 ;

903 Disk Intensive 2 - Multi-Statement SQL

Select * from tlOm where d08seq It SO.OO;
Select * from tSm where d08seq It SO.OO;
Select * from tIm where d08seq It SO.OO;

* 4 Build a NUSI on 5 Million rows 100,000 Distinct Values

Create index(in100k) on TSm;

* 5 Two-part NUSI, 500 Distinct values

Create index(in10,inSO) on TSm;

* 50 Build a USI on a 1 million row table with fallback
Create unique index(D08seq) on TIm;

* 52 Build a NUSIon 1 million row table, fallback, 10 distinct values

Create index(ch1aj) on TIm;

38

* 53 Build a NUS] on 1 million row table, fallback, 50 distinct values

Create index(in50) on TIm;

* 54 Build a NUS] on 1 million row table, fallback, 1000 distinct values

Create index(inlk) on TIm;

* 55 Build a NUS] on 1 million rows fallback, 100,000 distinct values

Create index(inl00k) on TIm;

* 57 Three-part index, 100,000 distinct values

Create index(in20,in50,inl00) on TIm;

* 80 Build a US] on a 1 million no fallback

Create unique index(D08seq) on Tnf;

* 82 Build a NUS] on 1 million row table, no fallback, 10 distinct values

Create index(chlaj) on Tnf;

* 85 NUS] on 1 million row, no fallback, 100,000 distinct values

Create index(inl00k) on Tnf;

* 87 Three-part index, 100,000 distinct values

Create index(in20,in50,inl00) on Tnf;

* 500 NUS] on non fallback 10 million row table, 50 distinct values

Create index(in50) on tl0m;

* 501 NUS], nonfallback, 10 millions rows, 100,000 values

Create index(inlOOk) on TI0m;

* 502 US] on non fallback 10 million row table, 1 million values

Create index(inlm) on tl0m;

39

DBC/I012 MODEL 4 PERFORMANCE COlVlPARISON

Collect Statistics

* 10 Collect Statistics on T5m Index(Inseq);
* 11 Collect Statistics on T5m Index(INI00K);
* 12 Collect Statistics on T5m Index(INI0,IN50);
* 58 Collect statistics on tIm index(inseq);
* 59 Collect statistics on tIm index(d08seq);
* 61 Collect statistics on tIm index(chlaj);
* 62 Collect statistics on tIm index(inlk);
* 63 Collect statistics on tIm index(inl00k);
* 64 Collect statistics on tIm index(in50);
* 88 Collect statistics on tnJ index(inseq);
* 89 Collect statistics on tnJ index(d08seq);
* 91 Collect statistics on tnJindex(chlaj);
* 93 Collect statistics on tnJindex(inl00k);
* 503 Collect statistics on tIOm index(inseq);
* 504 Collect statistics on tl0m index(in50);
* 505 Collect statistics on tIOm index(inl00k);
* 506 Collect statistics on tIOm index(inlm);

40

