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DBC/I012 MODEL 4 PERFORMANCE COlMPARISON 

INDUSTRY EXPECTATION FOR 
PERFORMANCE IMPROVEMENTS 

3090S 
MIPS 

IBM HARDWARE VS. MODEL 4 

3090J ESA/9000 Model 4 Model 4 
MIPS MIPS Benchmarks MIPS 

AVERAGE PERFORMANCE 
IMPROVEMENT 

MODEL 4 OVER MODEL 3 

Model 3 Plus Model 3 

1.0 EXECUTIVE OVERVIEW 

In order to determine the performance characteristics of the Model 4 D BCI 
1012 prior to announcement, Teradata' s Marketing staff organized a series 
of benchmark tests which were completed in February 1991. The purpose 
of the testing is to provide the Teradata field organizations with general 
comparisons of Moop.l '3 Rnd Model 4 performE!nce to E!ssist them irr their 
sales efforts. This document is intended to be a high level overview of the 
DBC/1012 Model 4 in real world simulations. Those individuals inter­
ested in the very detailed performance characteristics should refer to the 
results published internally by the Product Development Performance 
Analysis Group. 

The results presented in this study should be reviewed in the context of the 
large scale relational database marketplace. When IBM and other vendors 
release new models, they provide MIPS ratings rather than actual bench­
marks as performance guidelines. For example, when comparing MIPS, 
the 3090-S series is 1.3 times faster than the E series (30%) and the J series 
is 1.1 times faster than the S series (10%). While details are still 
incomplete, it appears the ESAl9000 might be as much as 1.8 times faster 
than its predecessor J series (80%). In contrast, the DBC/l012 Model 4 
MIPS rating is 3.0 times faster than it's,predecessor (200%), a testimony 
to Teradata's off-the-shelf merchant chip strategy. MIPS ratings are, 
however, only crude estimates of performance and do not reflect the actual 
improvements delivered to the end user's desktop. Consequently, Teradata 
is very pleased to provide the following real-world proof of Model 4 
performance, especially since these results are measured at the desktop 
and greatly exceed the mysterious MIPS ratings offered by other vendors. 

In general, the Model 4 system is 2.0 times faster than the Model 3 Plus (a 
Model 3 enhanced with 256K cache & 8 megabytes of memory) and 2.4 
times faster than the basic Model 3 system. These factors are applicable 
across a wide range of decision support queries, batch, and on-line 
activities. Decision support activities ranged from 1.8 times faster through 
3.5 times faster than the Model 3 Plus. Batch oriented sorting, "joins", and 
Fastload ranged from 1.8 times faster to 2.3 times faster than the Model 3 
Plus. On-line transaction processing improved by factors ranging from 1.3 
to 2.0 over the Model 3 systems, depending on the OLTP activity tested. 
(This is within expectatio~s since OL TP uses so little CPU and so much 
disk I/O.) These improvements extend the DBC/l 0 12' s already enormous 
lead in DSS, address the batch processing needs of our larger customers, 
and allows the DBC/l012 to participate in medium sized OLTP applica­
tions. Leading in two categories and competing in the last, the Model 4 is 
an excellent choice for nearly all large production applications. 

Two customized benchmark tests were designed in order to highlight the 
Model 4 AMP processing speed, conservatively rated at nine MIPS, versus 
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the Model 3 CPU, rated at three MIPS. These tests involved complex SQL 
functions which are common in banking, retail, and financial applications. 
These tests included SQL activities such as integer conversions, date 
computations, and roll-up summary reporting. The test results showed a 
staggering 3.57 and 2.7 times improvement over the Model 3 Plus system. 
(estimated at 4.4 and 3.3 times improvement over the basic Model 3 ). This 
leads to the obvious question that if the Model 4 CPU is rated at three times 
faster than a Model 3, how could it outperform the Model 3 Plus by this 
margin? The answer lies in the changes to the block-size management 
software of Release 4.1.2 which affects data blocks, spool files, and sort 
files. As predicted by our developers, the Model 4 can and will consume 
disk data at rates much higher than the Model 3 necessitating a change in 
the software used with the Model 4. 

In attempting to determine differences between the 2.5 GB and 1.2 GB disk 
drives, several disk intensive queries and numerous on-line transaction 
simulations were run. It turned out to be quite difficult to create a disk 
bottle-necked DSS query without simulating dozens of users. Decision 
support queries often process many rows per I/O and are more compute 
intensive than might be apparent. Hence the effects of one disk drive 
versus another is negligible. Consequently, with only five users simulated 
there was little difference between 1.2 GB and 2.5 GB disks in elapsed 
times. With many, many users issuing concurrent DSS requests, custom­
ers can expect to see higher throughput with mUltiple disk units per AMP 
similar to the results of in the on-line transaction tests. 

Numerous debit/credit OL TP Tests were conducted in order to determine 
the usefulness of multiple drive configurations as well as the Intelligent 
Peripheral Interface (IPI) mode emulation. When there are multiple Disk 
Storage Units (DSU s) per AMP, the IPI emulation compares the outstand­
ing requests for disk I/O to the current sector number passing under the disk 
heads. IPI emulation then chooses the best transfer strategy to insure 
maximum throughput rather than simply handling disk I/O on a first­
come-first-served basis. 

In row-at-a-time functions, dual DSUs per AMP provide approximately 
7.5% more throughput than a single DSU, triple DSUs provide 22% more, 
and quad DSUs deliver 27% more throughput. These factors held true for 
both 1.2 GB and 2.5 GB disks with a slight advantage in the larger 2.5 GB 
disks. Non-Volatile Disk Cache running with one DSU per AMP clearly 
wins as the price/performer in applications which update a row-at-a-time, 
yielding a 55% boost in throughput. It is our observation that Non-Volatile 
Disk Cache has the same performance characteristics on the Model 4 as on 
the Model 3 and should be installed wherever the application is update 
intensive. The above multiple-DSU factors did not occur in complex 
decision support since we were unable to simulate a large volume of 
concurrent users. Had we been able to simulate large numbers of DSS 
users, similar throughput improvements for multiple DSUs would prob-' 
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ably occur over the system as a whole although no one user would see the 
benefit; ie more users would be getting work done but execution times 
would remain constant. In testing which simulated three concurrent user 
requests, dual 1.2 GB disks out performed a single 2.5 GB disk by 1 %, a 
noise level result. 

Fastload Phase 2 performance leaped to 2.22 times faster than the Model 
3 system. Phi:l~~ 1 r~~ulls showed a 1.7 times improvement over Model 3. 
The Phase 1 results are not considered meaningful since they are heavily 
weighted by the speed of the particular mainframe the Fastload test is run 
on. 

For our current DBC/l012 Model 2 customers, upgrades to a Model 4 
system will be extremely rewarding. In previously published results, the 
Model 3 system was shown to run 2.5 to 3 times faster than the Model 2. 
Applying a 2.0 factor to this, conservative estimates suggest that Model 2 
customers who upgrade their Model 2 AMPs to Model 4 will see perfor­
mance gains of 4 to 6 times, depending 'on the current CPU utilization of 
their system. "Extremely rewarding" is clearly an understatement of the 
facts. 

Lastly, we must not ignore the fact that many current customers who move 
to the Model 4 will also be upgrading from Release 3.2.2 to Release 4.1.2. 
Imbedded in the software upgrade are numerous performance enhance­
ments, some of which are improvements of several magnitudes. For 
example, many of our current Release 4.1.0 users report enormous jumps 
in sort performance and in the DELETE ALL function. These software 
boosts which are accelerating existing production systems (in particular 
the nightly batch cycles) will be boosted even further with the addition of 
a Model 4 system. Hence, the Release 3.2.2 customer will get a double­
dose performance boost when moving to the DBC/I012 Model 4. 

Overall, the DBC/l012 Model 4 is an excellent performer with tremen­
dous potential for customer satisfaction. Clearly, the best use of the DBCI 
1012 Model 4 will be in handling large volumes of data with increasingly 
more complex SQL and relational functions. The more complex the user 
request, the better. Applause is in order for the hardware designers and 
software developers who made this product possible. The DBC/I012 
Model 4 will be a winner for Teradata but more importantly, it will make 
our customers winners too. 
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2.0 TECHNICAL OVERVlEW 
OF THE BENCHMARK TESTS 

A primary objective of this benchmark is to provide the Teradata field 
organization information that will aid in configuring Model 4 systems. 
The enclosed results provide a strong foundation towards solving this 
need. Nevertheless, such information can never be more than a partial 
answer. This is because there are so many DBC/I012 customers and 
prospects and each of them uses the system differently. With that in mind, 
Teradata Systems Engineers are advised to refer to the DOC system 
Design Notes that are being developed in parallel with this document. 

Nearly half the tests conducted were taken from the test suite used to 
produce the Release 3.2.2 versus 4.1.0 comparisons published at the end 
of 1990. 

2.1 Test Configurations 

Rei 4.1.1 Framer 60.11.120 base, 60.11.951 actual 
14x24x24 Model 4 2.5 GB disks 
14x24x48 Model 4 2.5 GB disks 
14x24x72 Model 4 2.5 GB disks 
14x24x96 Model 4 2.5 GB disks 
7x24x24 Model 3 Plus 1.2 GB disks, 256k cache, 

8Mb Ram 
8x8x16 Model 4 1.2 GB disks 
8x8x8 Model 4 2.5 GB disks 

The primary test system was a 14x24x96 Model 4 machine with two VM 
IFPs and 12 MVS IFPs. The testing was run on pre-release 4. 1'.1 software, 
framer 60.11.120 base. All disks used were 2.5 GB disks. The mainframe 
in use at the time was an Amdahl 5890-300 partitioned 50/45 for VM and 
MVS. The high ratio of IFPs to AMPs was needed for the OLTP testing 
in order to isolate disk performance from IFP and host performance. 

The primary Model 3 tests were conducted on a 7x24x24 machine using 
1.2 GB disks, 256K cache, and 8 megabytes of memory per processor. Pre­
release 4.1.1 (60.11.120) was also usedon the Model 3 tests. Throughout 
this document, this system is referred to as the Model 3 Plus. It was not 
necessary to have a large number of IFPs on the Model 3 systems since it 
was used to test decision support queries not OL TP and disk utilization. 

Two additional configurations were built in order to test the 1.2 GB disks 
and 2.5 GB disks. These tests were run on two Model 4 systems, one running . 
8x8x8 with 2.5 GB disks, the other running 8x8x16 and 1.2 GB disks. 
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N on-Volatile Disk Cache was used only on the 24 AMP Model 4 system. 
When a given benchmark test used the disk cache, the test description 
explains the effects. 

2.2 Databases 

Most of the testing was performed on database CAB which contained 
approximately four gigabytes of data (or 15 tape cartridges for perspec­
tive). 

Easy to identify naming conventions were used in the database. For 
example, table T13M means there were 13 million rows and table T50K 
means there are 50,000 rows in the table. Column names are similarly 
named such that IN100 means an integer field of 100 disttnct values and 
IN1M means one million distinct values in the column. Columns named 
DAB are a date-of-birth value; DAY is a randomly selected day in 1989. 
In nearly every case, the data rows are randomly distributed on an integer 
field called INSEQ which contains the row number if viewed from a sorted 
list. D08SEQ indicates a decimal field which also contains the consecutive 
row sequence number. This information is useful when reviewing the SQL 
in the appendix. 

2.3 Measurements and Testing Method 

All tests were run an average of three times in order to normalize the 
resulting service rates. In each case, the elapsed time reported by BTEQ 
following the SQL statement is used to define the system performance 
since this is roughly what the end user would also perceive. "Select Time" 
statements preceded and followed nearly every SQL statement. The 
BTEQ service speed matched the "select time" time in every test with 
consideration given for slight rounding differences. In the case of the 
debit/credit testing, RESUSE reports were used to cull transactions per 
AMP per second, pathlengths, response times, and IIOs per second per 
AMP. 

During decision support testing, the AMP memory was emptied between 
each query by scanning a large table. This essentially purges all idle blocks 
of data from AMP memory and insured that the query response times were 
not affected by residual data leftover from previous tests. 

2.4 Record Sizes Used in Testing 

Record sizes are not included in this document for reasons of confidenti­
ality. Consequently, these tests cannot be reproduced without contacting 
the Teradata Marketing organization, who will be glad to assist you in 
reproducing these results or in supplying table layouts. 
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2.5 Calculation of Estimates 

Since most of the relative performance factors given compare a Model 3 
Plus to a Model 4 system, mental adjustment is necessary if you are 
considering an upgrade from the basic Model 3 system to a Model 4. 
Generally, adding 256K cache and 8 megabytes of memory to the Model 
3 processors results in a 15 to 25% performance increase. Hence, if a 
Model 4 factor is shown as two times faster than the Model 3 Plus, you 
should mentally convert this to 2.5 times faster than the basic Model 3. 
This roughly compares to tests done by Teradata's Performance Group 
organization showing the Model 4 running 2.6 times faster than the basic 
Model 3 in their GrandMix DSS tests. 

In many tests, an estimated performance figure is given for the DBC/l012 
model not tested. When the basic Model 3 system is being estimated, we 
used a multiplier of 1.25 to arrive at the estimate. When an estimate for the 
Model 3 Plus is being calculated, we used a multiplier of 0.8 to reduce the 
improvement factor. Keep in mind that additional cache memory provides 
differing levels of performance increase in different types of tests, hence 
the broad application of these estimate factors are not the most accurate 
method of estimating. For example, OL TP uses cache memory differently 
from DSS activities. When considering estimates, the Model 3 customer 
will never get less performance than the Model 3 Plus measurement and 
will occasionally receive better performance than the Model 3 estimate 
suggests. In general, the typical performance increase will be between the 
measured amount and the estimated amount. Please use the estimates as 
guidelines only. 

2.6 The SQL Used in the Tests 

In appendix A you will find the SQL used for the important queries. The 
SQL is sometimes useful in matching queries used by DBC/l012 users 
with test results found in this document. To aid in matching the SQL with 
the tests, most of the queries have a random sequence number attached to 
the SQL and the test title. For example, the Floats & Dates section 
immediately following contains the number 901 in parenthesis following 
the paragraph title to direct you to SQL item number 901 in the appendix. 

Also, the actual CREATE INDEX statements have been included for those 
inclined to examine the primary index and foreign keys in the tables. 
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FLOATING POINT & DATES 
MODEL 4 OVER MODEL 3 

Model 3 Plus Model 3 Plus Model 3 (est) 
1 Session 5 Sessions 5 Sessions 

FIVE SESSIONS FLOATS & DATES 
EXECUTION SPEEDS - MINUTES 

Model 4 Model 3 Plus 

3.0 CPU INTENSIVE TESTS 

Two test queries were specifically designed to reveal the improved CPU 
speed of the DBC/l 012 Model 4. The results of these queries turned out 
to be the biggest surprise of the entire testing process. The SQL for the tests 
can be referenced using the number in parenthesis following the paragraph 
title. 

3.1 Floats & Dates (901) 

SQL is rarely confined to the reading and writing of data rows. Many 
Teradata customers invoke its 4GL like manipulation features and incur 
heavy CPU utilization which they interpret as disk utilization. Two of the 
more CPU intense functions commonly in use are integer conversion­
comparisons and date calculations. These types of functions are common, 
everyday activities for most DBC/l012 users. For example, financial and 
insurance applications rely heaviJy on differencing two dates in payment­
due calculations, amortizations, and actuarial analysis. The integer to 
floating point conversion is an activity frequently needed by the scientific 
community in applications such as weather monitoring and chemical 
compound analysis. 

This query caused the system to scan one million rows, applying complex 
"where" selections. For each row selected, a comparison of an integer field 
to nine floating point values caused a conversion of the integer value to 
floating point notation. Additionally, several date fields in the row were 
converted in order to compute date plus or minus values for comparison. 

This test was run as a single session (one user doing one query) and also 
as five concurrent sessions. The five concurrent sessions illustrates the 
performance improvement possible when multiple concurrent users are 
rumiing similar requests against the same tables. In such cases, there is 
some benefit from User-B asking for rows that User-A has recently 
brought into memory. 

The staggering result is that the tests show a 3.57 and 3.18 times 
improvement over the Model 3 Plus system. How is it possible that a CPU 
that is three times faster can deliver 3.18 times improvement including disk 
I/O? Part of the answer lies in the changes to the internal block-size 
algorithm of Model 4 Release 4.xx software. Here we see revealed the­
obvious fact that the CPU is being fed more data per I/O, requiring fewer 
l/Os overall. This confirms the developer's choice of changing the Model 
4 system to the new block-size management logic. 
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3.2 Roll-up Reporting - Sums & Strings (900) 

Common to financial, manufacturing, and retail applications is the use of 
SQL to create the "roll-up" report. This seemingly innocuous SQL process 
usually replaces dozens of lines of COBOL code and produces a middle­
manager level report. As such, it represents a highly CPU intensive 
activity involving scans, sorting, and aggregations. For most organizations 
which manage budgets or sales history, this type of SQL query is a daily 
or weekly interaction with the DBC/1012. This query is a production 
report used by an existing DBC/1012 customer. 

Review of the SQL of this query shows approximately 18 sum aggrega­
tions (roll-up totals), one count result, two string manipulations, seven 
arithmetic steps, and numerous column datatype conversions. Addition­
ally, the sort key used contains eight fields, some of which are calculated. 
Overall, this is a very realistic end-user request for the DBC/1012 that 
would probably demolish the garden variety RDBMS software. 

Like the Floats & Dates query, this test was run as a single session and five 
session query. Again, we encountered that rare excitement so much like 
discovering a hidden treasure. Running at 2.7 (5 sessions) and 2.45 (1 
session) times faster than the Model 3 Plus, again the Model 4 CPU 
coupled with the changes in block-size management produced impressive 
response times. This type of performance in real world situations is 
evidence of a job well done by Teradata's development staff. 

11 

SUMS & STRINGS TEST 
MODEL 4 IMPROVEMENT OVER MODEL 3 

Model 3 Plus Model 3 Plus Model 3 (est) 

5 Sessions 1 Sessions 5 Sessions 

EXECUTION SPEEDS - MINUTES 

Model 4 Model 3 Plus 



DBC/IOI2 MODEL 4 PERFORMANCE COlVlPARISON 

HIGH DISK & CPU UTILIZATION 
MODLEL 4 OVER MODEL 3 

Model 3 Plus Model 3 (est) 

MODEL 4 & MODEL 3 UTILIZATIONS 

Average Disk CPU Peak Disk 

EXECUTION SPEEDS - MINUTES 

Model. 4 Model 3 Plus 

4.0 DISK INTENSIVE SCANS 

The intent of the disk intensive tests was to reproduce the types of activity 
common to production environments. Foremost, we wanted to address the 
obvious question "How many disk drives of which type should we use?" 
In particular, new prospects require help selecting between two 1.2 GB 
disks or one 2.5 GB disk drive since they provide similar capacity. This 
invites the next disk related question "Which applications benefit most 
from having more disks per AMP?". This goal proved to be a more 
daunting task than one would expect. 

As the benchmark proceeded, the team shifted away from queries we 
expected to generate high levels of disk activity such as mUltiple joins and 
row redistributions. Surprisingly, the Model 4 showed lower disk utiliza­
tion in these tests than would normally be expected. We quickly devised 
new tests which utilized larger row sizes and 3-part multi-statement SQL 
requests. The multi-statement SQL approach was able to simulate mul­
tiple requesters running concurrently against different tables. The results 
were significantly more disk intensive. 

4.1 High Utilization - Both Disk & CPU (902) 

In this first multi-statement SQL disk-test, the three queries join 1 million 
rows to 100 rows, five million rows to fifty rows, and 13 million rows to 
50,000 rows. In each of the overlapped parallel steps, the queries produce 
several spool files, the smaller of which are duplicated'on all AMPs, sorted, 
and merge-joined on non-indexed columns. These types of queries are 
typical of a variety of production batch applications (retail, airline, 
banking, utilities, etc.) where the user matches customer to household, 
seats to airfare, product to vendors, etc. 

Moving several millions of rows during these queries would have implied 
to the casual observer a severely high disk utilization. However, the disk 
utilization tended to hover between 18% and 26% utilization while CPU 
utilization remained steady in the mid 80' s on both the Model 3 and 4. For 
a short three minute period, the disk utilization climbed to over 90% 
utilization. Still, it is surprising that the CPU and disk utilization figures 
for the Model 4 were almost the same as the Model 3 Plus figures. 
However, the disk IIOs per Amp per second on the Model 4 averaged 50% 
higher than on the Model 3 (for example 12 I/Os versus 7, and 33 versus 
21). 

Clearly, the very large blocksize used for the spool files and sort activity 
kept the Model 4 AMP busy such that it did not become 1/0 bound. Notice 
that the SQL join function is significantly CPU intense though we often 
visualize it as simply the reading and combining of disk records. The 
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overall result showed the Model 4 system to be 2.41 times faster than the 
Model 3 Plus configuration. This is an excellent improvement in a 
supposedly disk bound activity. Clearly, the increased blocksize in the 
Model 4 spool-files was necessary to minimize disk 1/0 bottlenecks and 
increase throughput. 

4.2 ffigh Disk - Low CPU Utilization (903) 

In the second disk intensive query, we simulated three concurrent decision 
support users accessing large data rows. Using a multi-statement SQL 
query, we invoked full-table scans of 10,5, and 1 million rows respectively, 
each from different tables. By specifying a return limit of one row, the 
queries were forced to go through the entire process of accessing every 
row, then returning only the first row of each spool to the mainframe. Each 
query contained a simple "less-than" comparison for selecting rows. 

On both the Model 3 Plus and the Model 4, disk utilization ran up to 97 to 
100% and stayed there throughout the test. For the Model 3, this ran to 47 
IIOs per second per AMP where the Model 4 was able to consistently 
exceed 52 IIOs per second per AMP. CPU Utilization on the Model 3 Plus 
was a consistent 35 to 38% saturation whereas the Model 4 consumed 23 
to 24% of the available MIPS. 

This test showed the effect of the new block-size algorithm on the Model 
4 system. Having nearly eliminated the CPU as a factor, this truly disk 
intensive process might be expected to be as little as 1.3 to 1.5 times faster 
on the Model 4. But the effect of the new block-size logic on the data row, 
sort, and spool areas results in a performance increase of 2.13 times over 
the Model 3 Plus, roughly halving the response time. One conclusion we 
may draw from this is that similar disk constrained table scans will 
maintain roughly similar proportions of CPU and disk utilization across 
the Model 3 Plus and Model 4 DBC/I012. 

4.3 1.2 GB disks & 2.5 GB disks 

The purpose of these tests was to determine when a system should be 
configured with a single 2.5 GB disk versus two 1.2 GB disks. Addition­
ally, we wanted to learn the value of having multiple spindles per AMP 
processor under various tests and configurations. This last requirement 
was all the more important now that the Intelligent Peripheral Interface 
(IPI) mode disk controller functions are being simulated on the Model 4 
via firmware and SMD disk drives. This smarter use of the disk channel 
permitted by the Rotational Position Sensing (RPS) is a valuable feature 
in disk intensive activities that we hoped to measure. Hence, testing with 
one, 'two, three, and four 2.5 GB disk drives per AMP was done to 
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1.2 GB & 2.5 GB DISKS 
COMPARISON 

CPU INTENSIVE TESTS - REVISITED 

5% --r-----r----, 

Sums Test Dates Test 

Single 2.5 GB Dual 1.2 GB 

determine how decision support activities are affected by the multiple 
spindles. 

After consulting with performance experts, the OLTP debit/credit test was 
selected as the most likely to reveal differences in disk bound activity. The 
debit/credit transaction contains three updates and an insert, all of which 
invoke significant parallel disk activity particularly in the fallback and 
journalling arcas. (Note that this deuiileft;uil is nol modeled after the 
Transaction Processing Council benchmarks A or B.) The short row-at­
a-time activity in the debit/credit tests are known for consuming copious 
amounts of disk service with the most primitive of SQL statements. 

4.3.1 New Disk Drives and Decision Support Queries 

Even though decision support queries may be disk intensive, they tend not 
to utilize more than one disk at a time per AMP. Only when multiple 
sessions and parallel steps are running can the single decision support 
request begin to exercise multiple disk drives per AMP. Hence, such 
requests do not generate the flurry of random disk I/O invoked by the debit/ 
credit testing. 

Earlier in this document you will find a discussion of two multi-statement 
SQL queries that were developed to create a disk intensive decision 
support process. These tests drove the disks up towards 100% use while 
CPU consumption was relatively low. These two tests were repeated using 
two Model 4 systems, both of which were running the full IPI mode 
emulation. The tests were conducted on an 8x8x8 with 2.5 GB disks and 
an 8x8x16 running 1.2 GB disks. 

Since the queries simulated three users running full-table scans concur­
rently, we expected a high rate of disk I/O to favor the two spindle 1.2 GB 
disk configuration. This was not the case. Comparisons in the two tests 
showed a difference of less than one percent in the elapsed times. 
Generally, in decision support test of this nature, anything less than three 
percentage points of difference is considered noise level results. Conse­
quently, there was no measurable difference between the dual 1.2 GB disks 
and single 2.5 GB disk configuration in these tests. 

Two other decision support tests were run in the above configurations. 
These were the CPU intensive queries - Floats & Dates, Sums & Strings 
-discussed earlier. In the SUMs roll-up report, the 2.5 GB disk configuration 
out performed the 1.2 GB disks by 2.3%, still a noise level result. In the 
Floats & Dates test, the 2.5 GB disk out performed the dual 1.2 GB disks 
by 4.9%. In the latter case, it appears that the faster seek time of the 2.5 
GB disk would account for a slight performance boost over the 1.2 GB 
disks. In each case, these tests simulated five concurrent users via the 
"BTEQ .repeat 5" feature. 
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4.3.2 Multiple Drive Testing with On-line Transactions 

The first thing to consider is that these tests provide insight on random 1/ 
0, disk intensive, high concurrency processes only. Activities in this genre 
include OL TP, BulkLoad, some Insert-Select processing, on-line complex 
queries of short duration, and a few (very few) decision support functions. 
The common denominator of these activities is the high volume, row-at­
a-time processing which is not the dominating factor in such things as 
Fastload or SQL joins. 

The OL TP tests were run on the same Model 4 system on average three 
times in each configuration. Testing was conducted on a system with 12 
IFPs and 24 AMPs. The large ratio of IFPs to AMPs permitted the tests 
to avoid any IFP and channel saturation, thereby focusing the testing more 
towards disk activity. The IFPs were split across two host channels to 
achieve a reasonable balance of activity. Tests were run on single, dual, 
triple, and quad DSU s per AMP. In all cases, 2.5 GB disk drives were used. 
The database used fallback as well as dual before and dual after journals, 
clearly the most disk intensive testing possible. Extra effort was needed 
in the case of the two spindle configuration to level the amount of data 
placed on each drive. This was accomplished by repeatedly loading 
useless data rows into the system until the second disk filled to the same 
capacity as the first drive. Once this was accomplished, the real database 
was loaded via a restore from tape which caused the data rows to be evenly 
balanced across the two spindles. 

The tests were heavily dependent on the number of sessions per AMP 
chosen during the testing. Clearly, a single session per AMP does not drive . 
the Model 4 AMP very hard. Consequently, the tests had to be run at five 
sessions per AMP in order to truly illuminate the effects of IPI emulation 
and multiple spindles. Even at five sessions per AMP, the CPU utilization 
never exceeded 60%. 

When one session per AMP is driven with debitlcredit transactions, the 
following performance improvements were revealed: 

OLTP Improvements via Multiple DSUs per AMP 
One Session per AMP 

Compared to Txn Response I10s 
AMP/sec Time per sec 

Single DSU baseline baseline baseline 
Dual vs. Single +4.82% 4.20% +5.96% 
Triple vs. Single +19.28% +16.81 % +20.59% 
Quad vs. Single +25.30% +20.17% +24.88% 

Triple vs. Dual +13.79% +13.16% +13.81 % 
Quad vs. Triple +5.05% +4.04% +3.56% 
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ON-LINE TRANSACTION TEST -
FIVE SESSIONS PER AMP VERSION 

TRANSACTION PER SECOND IMPROVEMENT 

OVER SINGLE DSU 

2 DSUs 3 DSUs 4 DSUs NVRAM 

RESPONSE TIME IMPROVEMENT OVER SINGLE DSU 

2 DSUs 3 DSUs 4 DSUs NVRAM 

Using the single DSU per AMP configuration as the baseline, the triple 
DSU configuration yields 19% more transactions per second, a 17% faster 
response time, and a 20% improvement in IIOs per second. Comparing the 
gains ofthe triple DSU configuration over the dual configuration, the gains 
are 14% more transactions, 13% faster response times, and 14%moreIlOs 
per second. 

A:s yuu can see, ihe rare of throughput improvement is not as hIgh going 
from one to two drives as it is going from two to three drives in these tests. 
This is probably caused by three or four really "hot" cylinders - those 
containing the transient or permanent journals or possibly one of the data 
tables themselves. It is likely that a mote linear performance leap (higher 
dual DSU numbers) would have occurred with more disk saturation and a 
higher number of sessions running. 

OLTP Improvements via Multiple DSUs per AMP 
Five Sessions per AMP 

Compared to Txn Response I10s 
AMPlsec Time per sec 

Single DSU baseline baseline baseline 
Dual vs. Single +7.50% +6.08% +6.20% 
Triple vs. Single +22.50% +18.25% +22.18% 
Quad vs. Single +27.50% +21.90% +25.84% 

Triple vs. Dual +13.95% +12.95% +15.05% 
Quad vs. Triple +4.08% +4.46% +3.00% 

One DSU & NVRAM +55.00% +35.77% -49.25% 

The ability of the NVRAM to improve update performance is obvious 
from the five session throughput rates shown above. In these tests, the 
NVRAM dramatically reduces write activity by more than four to one in 
the fallback, dual after, dual before journal configuration. This is partially 
revealed in the 49% drop in IIOs per second. This produces a 55% 
improvement in the transaction rate which is almost twice what the four 
DSUs per AMP can achieve. Clearly, the NVRAM is an excellent on-line 
transaction and BulkLoad accelerator for applications that rely heavily on 
row-at-a-time database updates. On the other hand, the NVRAM option 
will affect only the updating side of an on-line or batch transaction. While 
it may seem that the NVRAM eliminates the need for multiple disk 
spindles, there is still a significant need to have the additional disk drives 
in order to overlap many read requests. 
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What lessons do these tests reveal concerning multiple disks per AMP? 
Clearly the AMPs-to-spindles ratio favored by these tests is the triple DSU 
per AMP configuration. This configuration provides the best use of the 
high CPU speed of the Model 4 while taking advantage of the overlapping 
seeks and rotational position sensing (RPS). This does not imply that 
adding a fourth DSU per AMP is of no value, only that the gain is not nearly 
as dramatic as the dual to triple DSU improvements. Were the Model 4 
user focusing on OLTP to the exclusion of all else, the triple DSU per AMP 
configuration is one choice a DBC/1012 user should seriously consider. 
This is especially true ifthere is demand for additional disk storage but the 
number of users on the system is not increasing rapidly. Depending on the 
size of the DBC/1012 and budget constraints, the customer may instead 
choose to add additional AMPs rather than expand the number ofDSU s per 
AMP. In some cases this is a cheaper alternative and produces the same 
performance results. 

For example, let us assume an order entry application that has been 
measured running five transactions per second per AMP with two DSUs 
per AMP running on a 30 AMP Model 4 with 2.5 GB disks. If the customer 
wants to achieve a maximum throughput of 170 transactions per second, 
he has two choices: more DSU s or more AMPs. If an additional DSU (30) 
is added to each AMP, the corresponding 14% (triple vs dual) improve­
ment will yield 0.7 additional transactions per second per AMP or 171 
transactions per second. To raise the TP/s rate by adding AMPs, the 
customer would add four AMPs and eight DSU s. This adds four times five 
transactions per second yielding an overall rate of 170 transactions per 
second. In this example, the cost calculation shows the four AMP solution 
to be almost 20% cheaper. In such cases, the Systems Engineer must 
carefully analyze the RESUSE reports. If there is excess CPU capacity 
already in the system, additional spindles may be a more appropriate 
choice. Conversely, if the transactions use complex SQL and are compute 
bound, additional spindles may not help but additional AMPs will. 

Considering that there was little difference between 1.2 GB and 2.5 GB 
disks in overall performance, this would tend towards selecting the proper 
number of spindles from a data volume and pricing standpoint. Budget 
permitting, the 2.5 GB disks are clearly the best choice in terms of price 
per megabyte, performance, and MTBF ratings. Nevertheless, favoring 
the correct number of spindles per AMP should be a primary consideration 
for DBC/l 0 12 customers who expect large numbers of concurrent users on 
the system. 
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During the testing, RES USE figures revealed that in the triple and quad 
configurations, there were seven to eight disk accesses queued at any given 
time. This means that the rotational position sensing capability of the 
firmware had the opportunity, on average, to select between two queued 
requests per DSU or between anyone of the DSU s. This enabled the 
firmware to choose the optimum transfer strategy based which sector 
happened to be under the disk heads at the moment. Since we could not 
turn off the RPS capabilit)T, ',:ve \'lere unn.ble to measure the actual benefit 
derived. 

4.4 Non-Volatile Disk Cache (NVRAM) - DSS 

Nearly all tests in this document were run two more times with NVRAM 
attached to the 24 AMP Model 4 system. This was done to determine what 
performance improvements or regressions might occur. This was an 
especially critical test series because of the redesign of the AMP disk 
controllers to enable the IPI mode emulation and other special hardware 
improvements. 

In the decision support tests, the NVRAM had almost no effect. Since 
these were not update tests, the NVRAM should not have affected a read 
only process. However, the AMP operating software maintains lists of 
data blocks currently in the NVRAM. Prior to reading the disk, these lists 
are searched in case the data block is in NVRAM and a disk read can be 
avoided. In our testing, this revealed a one or two percent deviation (above 
noise levels) from non-NVRAM testing. Some tests ran a little faster, 
some a little slower. Considering the benefits ofNVRAM, these variations 
are insignificant. 
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5.0 GENERAL QUERIES 

The general query suite consists of nine requests that are representative of 
SQL functions commonly used by Teradata customers. These involve 
everyday needs such as aggregations, prime index joins, table redistri­
butions, and sorts. In the aggregation queries, the number of distinct values 
found in the selected columns are used as the sort key that controls the 
number of "roll-up" levels. In each case where aggregation (sum, max, 
average) occurs, the query returns a small number of summary rows called 
"buckets". The SQL for the tests can be referenced using the number in 
parenthesis following the paragraph title. 

Overall, there were few surprises in these queries. They tended to contain 
a fairly even mix of CPU and disk utilization such that neither one is a 
dominating factor in response time. Performance improvements ranged 
from 1.8 to 2.1 times improvement averaging around 1.98 times better on 
the Model 4 versus the Model 3 Plus. When compared to the basic Model 
3 system (64K cache & 4 megabytes of memory), the overall performance 
improvements average around 2.4 times faster on the Model 4 system. 

5.1 Aggregate/Sort 3 Groups, 1000 Categories (100) 

This query is similar to retail applications that summarize units sold and 
dollars received based on store or departments within the store. Another 
common use would be in banking where accounts are summarized by 
categories of account-types. In a broad sense, this query is a category­
totals report. 

This query does an all-AMP scan of 50,000 rows, sorting them into three 
groups and summing the distinct variations. This may be considered a 
simple version of a roll-up report that users will commonly execute. 
Running 60% disk use to approximately 30% CPU utilization, this query 
is somewhat limited by disk. This resulted in a performance improvement 
on the Model 4 of 1.8 time faster than Model 3 Plus. One thousand rows 
are returned to the requester in this test. 
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AGGREGATE & SORT-
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5.2 Aggregate/Sort with 4 groups, 10,000 lJuckets (125) 

Like the previous query, this test is appropriate for any sorting of details 
into categories and reporting the totals. Because of the large number of 
category "buckets", this type of query is probably found more frequently 
in month-end or week-ending batch runs where a more detailed report is 
required. An example might be a summary of insurance claims by office 
::.m.d policy type, sales by product coue, ur perhaps service charges by rate 
and service location. 

This query does an all-AMP scan of the same 50,000 rows as the previous 
query. It also sorts and aggregates all columns selected, which in this case 
produces four groups of roll-up results (like the prior query, the roll-up 
answer is the maximum value of a column). By adding the additional CPU 
intensive load (the additional selection & aggregate column), performance 
of the 10,000 row result was 1.87 times faster on the Model 4 versus the 
Model 3 Plus. The transfer of 9,700 rows to the host took two seconds 
longer than in the previous query which transferred only 1,000 rows to the 
host. 9,789 rows are returned to the requester in this test. 
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5.3 Prime Index Merge Joins (200) 

An efficient and commonly used relational feature, this type of join finds 
a broad range of uses where a large table is matched to a medium sized table 
on primary indexes. One obvious use is the combining of history records 
to the account or product. Some examples include: Insurance - claim and 
account status tables; Manufacturing - product and shipping history; 
Communications - customer and call history. 

This query invokes an all-AMP scan and merge join of a one million row 
table. In each case, the unique primary index (UPI) is used in an equality 
test for the join. CPU utilization on the Model 3 Plus runs around 66% 
while disk utilization remains at 40%. On the Model 4 system, CPU and 
disk utilization runs at 53% and 37% respectively. With the higher 
utilization of the CPU caused by the "where" clause and the join process­
ing, overall performance of the Model 4 system improved 2.16 times over 
the Model 3 Plus. 95 rows are returned to the requester. 
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PRIMARY INDEX TO FOREIGN KEY JOIN 
- 1 MILLION ROWS 

MODEL 4 IMPROVEMENT OVER MODEL 3 

Model 3 Plus Model 3 
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Model 4 Model 3 Plus 

5.4 Prime Index to Foreign Key, redistribution of 1 
million row table (202) 

One of most commonly used relational joins is the foreign key variation. 
In this case, the rows do not share a common identifier but rather are 
"related" through an imbedded foreign key. This type of join connects two 
"peers" in the database. Hence it is used to match flights and passengers, 
p3.tient 3.nd medical service, products aIld suppllcis, Or empluyees and 
departments. 

This query invokes an all-AMPs scan and merge join of one million rows 
to the primary index of a 50,000 row table. The constraints in the "where" 
clause causes a row redistribution of all one million rows. This is done to 
place the rows on the same AMP where the primary index for the "joined­
to" row exists. During this period, Model 4 Y net utilization runs fairly high 
at approximately 650 lias per second, CPU utilization at 76%, and disk 
utilization at 23%. The Model 3 Plus runs the same disk use but the CPU 
runs over 90% and cannot drive the Y net nearly as fast, averaging 400 II 
as per second. This query ran 1.86 times faster on the Model 4 than on the 
Model 3 Plus. 
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5.5 Both tables redistributed - 50 % of each table 
Selected (214) 

The following three queries represent a "join" that does not use the primary 
index of either table. This causes a disk and Ynet intensive redistribution 
of rows. Common uses of this relational capability would be matching last 
names across differing account types (customer information systems) or 
matching subscribers by household address (mail order or publishing 
lists). 

This query scans two tables, both having one million rows. Approximately 
50% of each table is selected and redistributed via the Y net. The 
redistribution drives the Y net at 700 lias per second on the Model 4, 390 
lias per second on the Model 3 Plus. Once redistribution completes, a 
merge join with constraints is performed. Owing to the higher throughput, 
Model 4 CPU utilization is 30% lower and disk use 12% higher than the 
Model 3 Plus. This results in an elapsed time 1.97 times faster than the 
Model 3 Plus. 299 rows are returned to the requestor in this test. 
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5.6 Both tables redistributed -
100% of each table Selected (214B) 

This query is identical to the previous query (214) excepting that some 
selection constraints have been removed. The selection criteria requires an 
equal join between two fields which are not the primary indexes, a fairly 
common use of the SQL join. The result is that both tables are 100% 
redistributed via the Y net. Because of the CPU saturation, the Model 3 
Plus is unable to drive the Ynet beyond 420 II0s per second whereas the 
Model 4 system achieves a whopping 772 1I0s per second. This results in 
a Model 4 elapsed time which is 1.99 times faster than the Model 3 Plus. 
1,071 rows are returned to the requestor in this test. 
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5.7 Both Tables Redistributed -
1 Million and 10 Million Rows (304) 

This query turns up the heat on the system. This query is identical to the 
prior test (214 B) excepting that one of the tables contains ten million rows. 
This high throughput join ran about 80% CPU and 21 % disk utilization, 
hitting the Y net at an average of 700 II0s per second on the Model 4. The 
Model 3 Plus was again limited to 400 II0s per second on the Y net. Disk 
use on the Model 3 Plus matched the Model 4 disk usage but CPU 
utilization stayed between 87 and 90%. This resulted in a 1.95 times 
improvement in elapsed time for the Model 4 system over the Model 3 
Plus. 1,071 rows were returned to the requestor. 
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MODEL 4 IMPROVEMENT OVER MODEL 3 
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5.8 Scan-table test - 10 Million rows (310A) 

A large percentage of truly adhoc queries involve scanning large tables for 
any occurrence of the target data. Often, this is a spontaneous business 
need that demands examining tens of millions of records. Because of the 
infrequency of the specific request, it is often inappropriate to maintain 
indexes on the field with the selection constraints. Examples of this type 
of query might be "list the number of widgets revision H that were returned 
defective in January" or "what was the average age of the customers who 
responded to our product promotion last quarter". 

This query was simply an all rows scan of ten million records. Again, we 
have a high disk utilization test wherein the CPU use is quite low. On the 
Model 4, this ran a 22/80 percent ratio of CPU to disk whereas on the Model 
3 Plus a 39/63 percent ratio existed. This resulted in a 1.84 times 
performance improvement in elapsed time in the Model 4 versus the 
Model 3 Plus. 49 rows were returned to the requestor. 
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5.9 Aggregate/Sort, 3 groups, 1000 buckets -
Ten million rows (313) 

Like the queries discussed earlier, this request has numerous uses in pro­
duction environments as well as in adhoc summaries. This type of query 
is used to group information from very large tables for easy analysis. It 
answers such questions as "provide a revenue summary by region, state, 
and city" or "summarize cargo weight by date, destination hub, and 
carrier". 

This test is a repeat of the first test in the query suite. The key difference 
is that it sums ten million rows instead of 50,000. Like the first test, an all­
AMPs scan is done to summarize the column INSEQ grouping the results 
on the first three column's values. This produces a saturation of the Model 
3 Plus AMP while running a low 14% use of the disk. On the Model 4, disk 
use is approximately the same while CPU utilization settles at 80%. The 
elapsed time results show the Model 4 is 1.97 times faster than the Model 
3 Plus. 1,000 rows are returned to the requestor. 

u 
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6.0 FASTLOAD 

This section relies entirely on work done by the Teradata's Performance 
Group within the development organization. Further details can be 
obtained from the R&D Performance Group. 

Testing was done comparing a Model 4 system to a Model 3 with 64K 
cache and 4 megabytes of memory per processor. The tests were con­
ducted using 500,000 rows as input. One series of tests were run at 100 
byte row size, the other series at a 200 byte row size. 

Fastload phase 1 is heavily dependent on exclusive use of mainframe 
MIPS since this is the phase which reads the tape c~ridge and passes rows 
to the Teradata Director Program (TDP). Since Teradata customers do not 
usually have the same host, Phase 1 performance is considered less 
meaningful. Also note that the host time spent in Phase 1 tends to dilute 
the improvements gained by the Model 4. In simpler terms, we did not 
expect nor did we get performance improvements in Phase 1 processing 
that matched other results. Consequently, Phase 1 processing improved 
1.56 times for 100 byte rows and 1.96 times for 200 byte rows as measured 
in transactions per second per AMP. 

On the other hand, Phase 2 processing is the sorting and building phase of 
Fastload which is purely a DBC/I012 event. Performance improvements 
in Phase 2 processing should, and did, roughly approximate improvements 
measured in other tests. For 100 byte rows, the Model 4 ran 2.08 more 
transactions per second per AMP than the Model 3. In the case of the 200 
byte rows, Model 4 performance climbed to 2.22 times that of the Model 
3. 

Current customers running Level 3 software will experience even more 
dramatic performance boosts when moving to a Model 4 system. Because 
of the upgrade to Level 4 software, the customer will receive the added 
benefit of changes to the sort logic which affects Phase 2 of Fastload. 
While the two performance gains are not additive, the result for the Release 
3.xx customer will still be significantly higher than the figures reported 
above. 

Fastload performance improvements are most useful to customers who 
collect large volumes of data from other computers, often from outside the 
company. This is particularly true of point-of-sale operations, satellite 
weather mapping, stocks and bonds trading, and money wire transfers to 
name a few. The Fastload performance improvements are an enabling 
technology for DBC/l012 users attempting to control the ever increasing 
quantities of transaction data accumulated daily. 
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7.0 ON-LINE TRANSACTION PROCESSING 

The benchmark resu]ts described in this section are primarily derived from 
testing done by the Product Development Performance Group and are 
called P-TXNs (Test 1) in this section. Testing done by the Marketing 
team are called M-TXNs (Test 2) in this section. 

These tests are based on the old debit/credit transaction model used 
internally at Teradata for relative performance comparisons. These tests 
are not comparable to any industry standard benchmark because we use 
different SQL requests, database sizes, and performance constraints. 
These tests are not optimized to drive the mainframe nor the DBC/1 0 12 to 
peak performance transaction rates. Instead, the tests are designed to show 
relative performance rates, a wholly different benchmark target. Conse­
quently, any extrapolation of these numbers done to compare to industry 
benchmarks would be misleading and incorrect. 

Testing done by the Product Development Performance Group (P-TXN s) 
used a 2x4x8 Model 3 system with 64K cache, 8 Mb memory, and two 1.2 
GB disks per AMP. The Model 4 system used was a 3x4x8 with two 1.2 
GB disks per AMP. Testing was performed on both configuratioris with 
and without Non-Volatile Disk cache using single after image journalling 
and no fallback (NNS tests). The Marketing team (M-TXNs) used an 
8x8x 16 Model 4 with two 1.2 GB disks per AMP and a 2x 4x8 Model 3 with 
64K cache, 8 Mb memory, and two 1.2 GB disks per AMP. The M-TXN s 
were run with fallback and no journalling excepting transient journals 
(FNN tests). In each case, the Model 4 system uses a higher ratio of IFPs 
to AMPs which is necessary to maintain a similar MIPS-to-MIPS ratio on 
the Model 4 system. In all cases, five session per AMP were used to drive 
the AMPs. While the differing configurations might suggest an unfair 
comparison, results are measured on a "per AMP" basis which has proven 
to be an accurate metric in tests of this nature. 

In the P-TXNs tests, the transactions per second per AMP improved 1.61 
times on the Model 4 versus the Model 3 system (61 % improvement). At 
the same time, the response time of the Model 4 was 63% of the response 
time of the Model 3 transactions (37% improvement). In these tests, the 
Model 3 ran a 68/52% ratio of CPU -to-disk utilization whereas the Model 
4 ran nearly the reverse at 53173% CPU-to-disk utilizations. Considering 
the results of the mUltiple disk drive testing earlier in this document, the 
Model 4 in this test has excess capacity that could be utilized by adding 
additional disk drives. 

Using the P-TXN configurations, Non-Volatile Disk Cache was added to 
both systems This produced a 73% reduction in disk 1I0s on both the 
Model 3 and Model 4 systems. In this configuration, the Model 4 system 
ran 1.77 more transactions per second per AMP while the response time 
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of the Model 4 was 55% of the Model 3 response times (45% improve­
ment). As expected, the CPU-to-disk utilizations changed dramatically 
with the Model 3 operating at a 75/21 % ratio and the Model 4 at 82/45% 
ratio. Clearly, the Non-Volatile Disk Cache option reduces the time spent 
waiting for disk I/O and delivers more of the Model 4 AMP speed to the 
end user. 

In the M-TXNs tests, the Model 4 system produced 1.3 times more 
transactions per second per AMP (30% improvement) and produced a 
response time 76% of the Model 3 response time (24% improvement). 
CPU-to-disk utilizations ran 75/90% on the Model 3 and 541100% on the 
Model4. In the M-TXN configurations, the additional I/Os generated by 
fallback versus the single after image journalling drives up the disk I/Os 
dramatically. Since disk 1/0 becomes the major component of the 
transaction, the benefits of the Model 4 CPU speed are diluted. Conse­
quently, it is necessary to add either additional disk drives or Non-Volatile 
Disk Cache to the system in order to optimize the Model 4 system in this 
testing configuration. 

One other way to view these tests is to compare the P-TXNs Model 4 with 
Non-Volatile Disk Cache (maximum throughput) to the P-TXNs Model 3 
without the disk caching (baseline throughput). Although this is a 
somewhat unequal comparison, it is a potential upgrade path for many 
DBCI1012 customers.' This comparison results in the Model 4 running 2 
times the number of transactions per second per AMP (l00% improve­
ment) at a response time 49% of the Model 3 baseline (51 % improvement). 
Clearly, OLTP applications find their "best fit" configuration with the 
Model 4 and Non-Volatile Disk Cache. 

Comparing these results to the decision support and batch results, it 
becomes apparent that the OLTPtransactions in this test are limited by disk 
speed. Since the SQL used is simple prime index updates, the DBCI1012 
is not utilizing any reJational capabilities and behaves more like an access 
method than a relational database manager. Similar studies show that as 
more journalling activity is added to the test, the performance improve­
ments of the Model 4 are further diluted. This stands to reason since 
transactions which are disproportionately weighted towards disk I/O 
receive less benefit from the Model 4 CPU speed. In contrast, on-line 
complex processing which uses more of the relational features of SQL 
tends towards better use of the Model 4 CPU speed and larger improve­
ments in transaction rates. 
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8.0 SYSTEM SUPPORT ACTMTIES 

These tests reveal important performance improvements that are of great 
interest to the Database Administrator and application programmer. Each 
of these individuals tends to repeat these types of functions many times 
during the course of a month. Additionally, several of these functions are 
part of daily production batch jobs in many DBC/l012 installations. 
Consequently, the improved performance of the Model 4 system shown 
here translates directly into staff productivity as well as faster batch 
processing. 

8.1 Insert Select (71) 

Insert-Select is used for many database activities and is particularly useful 
for creating copies or subsets of tables. Programmers often use this to 
create test databases by copying selected portions of a production database 
into a smaller version of production for quality testing of programs. This 
test copies one million rows from a table with fallback to a table without 
fallback. This function ran 2.15 times faster on the Model 4 than on the 
Model 3 Plus. 

8.2 Create Index 

The Build Index process showed an overall improvement of 2.00 times 
over the Model 3 Plus. Because additional processing is needed when 
there are many unique values in an index column, the larger tables with 
more distinct values showed slightly better throughput improvement than 
the smaller tables with few distinct values. A quick review of the execution 
times show that creating a non-unique secondary index on ten million rows 
took under six minutes while in most tests the create index ran under one 
minute. This would indicate that creating and dropping an index for the 
purpose of aiding a single batch job is a viable method for speeding up 
nightly processing in many instances. 

In the following table the columns should be interpreted as follows: 

u 

• Test number is a randomly assigned value for tracking purposes. 
• Types are UPI = unique primary index, NUSI is non-unique 

secondary index. 
• Row count is the number of rows in the table analyzed. 
• Distinct values is the number of unique values in the column 

analyzed. 
• Model 3 Plus and Model 4 times are runtime in minutes, seconds, 

and thousandths. 
• Speed up factor is the improvement provided by the Model 4 over 

Model 3 Plus. 
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MODEL 4 IMPROVEMENT OVER MODEL 3 

Model 3 Plus Model 3 
(est) 

EXECUTION SPEED - MINUTES 

Model 4 Model 3 Plus 
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Test Type 

50 USI 
52 NUSI 
53 NUSI 
54 NUSI 
55 NUSI 
57 NUSI* 
500 NUSI 
501 NUSI 
502 NUSI 
80 USI 
82 NUSI 
85 NUSI 
87 NUSI 
4 NUSI 
5 NUSI* 

Model 4 Improvement Over Model 3 Plus 
Create Index 

Row Count Distinct Fallback Model 3 Model 4 
Values Plus Time Time 

mm:ss.tt mm:ss.tt 

1,000,000 1,000,000 Yes 03:38.00 02:04.41 
1,000,000 10 Yes 01:04.82 00:30.72 
1,000,000 50 Yes 00:59.23 00:29.72 
1,000,000 1,000 Yes 00:58.35 00:29.26 
1,000,000 100,000 Yes 01:09.06 00:32.94 

. 1,000,000 1,000,000 Yes 01:29.42 00:40.90 
10,000,000 50 No 09:51.20 05:01.04 
10,000,000 100,000 No 12:50.01 05:54.65 
10,000,000 1,000,000 No 13:23.28 05:52.2 

1,000,000 1,000,000 No 03:32.26 02:21.18 
1,000,000 10 No 01:05.32 00:30.35 
1,000,000 100,000 No 01:08.69 00:34.20 
1,000,000 ~OO,OOO No 01:25.04 00:38.34 
5,000,000 100,000 No 06:22.94 03:43.37 
5,000,000 500 No 05: 16.44 02:48.00 

Speedup 
Factor 

1.75 
2.11 
1.99 
1.99 
2.10 
2.19 
1.96 
2.17 
2.28 
1.50 
2.15 

\ 2.01 
2.22 
1.71 
1.88 

* Multiple Column Index 

8.3 Collect Statistics 

Collect statistics, like most supposedly disk bound activities, reaps enor­
mous benefits froqI. the Model 4 CPU speed. During statistics collection, 
the system maintains internal lists of unique column values it has en­
countered. Each time a row is processed, the system matches the current 
column value to the internal list. When there are few distinct values in a 
column, the collect statistics becomes somewhat of a disk reading race, In 
this case, the improvement of the Model 4 CPU is truly limited by the disk 
speed. But in the cases where there are many unique values in a column, 
the Model 4 CPU zooms through the internal lists, outrunning the Model 
3 Plus by a wide margin. This is most obvious in the collection of unique 
primary index statistics since every index value must be added to the 
internal list. It is also apparent in large tables where there are thousands 
or millions of valq.es. ThIS type of statistics collection is common in many 
applications where a value frequently repeats throughout a column such as 
account type, inventory location, or fare class. 
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In the following table the columns should be interpreted as follows: 

• Test number is a randomly assigned value for tracking purposes. 
• Types are UPI = unique primary index, NUSI is non-unique 

secondary index. 
• Row count is the number of rows in the table analyzed. 
• Distinct values is the number of unique values in the column 

analyzed. 
• Model 3 Plus and Model 4 times are runtime in minutes, seconds, 

and thousandths. 
• Speedup factor is the improvement provided by the Model 4 over 

Model 3 Plus. 

Collect Statistics 
Model 4 Improvement Over Model 3 Plus 

Test Type Row Count Distinct Model 3 Model 4 
Values Plus Time Time 

mm:ss.tt mm:ss.tt 

58 UPI 1,000,000 1,000,000 03:29.20 01:32.89 
10 UPI 5,000,000 5,000,000 17:07.68 07:33.95 
503 UPI 10,000,000 10,000,000 35:42.57 15:38.02 
59 USI 1,000,000 1,000,000 03:04.95 -01:23.37 
62 NUSI 1,000,000 1,000 00:13.32 00:09.31 
63 NUSI 1,000,000 100,000 03:49.57 02:18.17 
504 NUSI 10,000,000 50 00:10.00 00:08.02 
505 NUSI 10,000,000 100,000 11:02.33 06:49.62 
506 NUSI 10,000,000 1,000,000 39:42.41 22:48.32 
11 NUSI 5,000,000 100,000 09:45.23 05:41.91 
12 NUSI * 5,000,000 500 00:11.22 00:08.44 

* Multiple Column Index 
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Speedup 
Factor 

2.25 
2.26 
2.28 
2.22 
1.43 
1.66 
1.25 
1.62 
1.74 
1.71 
1.33 
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9.0 CONFIGURING MODEL 4 SYSTEMS 

Let us first clearly state the ground rules for configuring Model 4 systems: 

• Approach Model 4 sizing with the same diligence used with 
Model 3. 

• Most of what applies to Model 3 applies to Model 4. 
• There are no simple guidelines that by themselves will lead to the 

proper configuration. 
• Always favor Model 4 systems for the more critical production 

applications. 

The first general guideline in configuring Model 4 systems is that you will 
need approximately half as many AMPs as on a Model 3. Since the Model 
4 is generally 2.4 times faster than the Model 3, this should provide 
approximately 1.2 times as much throughput for approximately 20% less 
cost (fewer AMPs and cabinets). The halved configuration will also 
provide better response times than the Model 3 . If the customer's objective 
is to achieve dramatically better response times, you will need more than 
half the number of AMPs. Similarly, when upgrading from a Model 3 Plus 
to a Model 4, start by configuring the system with somewhat more than half 
as many AMPs. Of course, viewed another way, you can get more than 
twice as much work done by replacing all Model 3 AMPs with Model 4 
AMPs. 

Model3 
16 AMP's Throughput = X, Cost = Y 

•••••••••••••••• 
~ / •••••••• 

Model 4 
8 AMP's, Throughput = 1.2 X, Cost = 0.8 Y 

This halving of AMPs is an appropriate approach for large set processing 
applications such as decision support and batch. It is inappropriate for 
OLTP and BulkLoad processes which are row-at-a-time activities. Any 
random I/O processing which is disk constrained, will need more than half 
as many AMPs. This is because this type of processing is more dependent 
on disks and channel time than on CPU time. The configured number of 
AMPs should be calculated using the same techniques used for Model 3 
systems. Realistically, you should also maintain a similar MIPS-to_MIPS 
ratio between the IFPs and AMPs if your application is expected to be IFP 
constrained on the Model 3 system. 

By halving the number of AMPs we imply a doubling of the amount of 
DASD space per AMP. Given that the Model 4 is typically greater than 
twice the speed of the Model 3 Plus, this maintains an even balance of 
MIPS to DASD. 
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With the extra CPU speed and the obvious ability to drive the Y net harder, 
there appears to be no loss of parallelism resulting from halving a Model 
3 Plus configuration. As with the Model 3 systems, configurations 
containing less than four AMPs are not recommended because of the loss 
of the effects of parallel processing. 

As with the Model 3 systems, installations which demand high levels of 
concurrent activity will benefit from additional AMPs. This reduces the 
number of prime index SQL requests being serviced per AMP. While 
response time is not changed in OLTP activities by adding AMPs, the 
additional AMPs will be useful in sustaining a consistent response time as 
the user population increases. 

Dual DSU s per AMP are suggested as a minimum configuration whenever 
possible regardless of the disk drive capacity (1.2 GB or 2.5 GB). Any 
installation which expects to have more than two concurrently running 
DSS requests will clearly benefit from the additional spindles. For those 
customers who perform many row-at-a-time activities such as BulkLoad 
and OLTP, additional DSU s per AMP allow the full benefit ofRPS as well 
as pushing the AMP CPU to capacity. Given the results of the various tests, 
the Model 4 AMP will surely become disk starved in many single DSU per 
AMP instances. Customers with heavy concurrency loads should consider 
running three DSUs per AMP. Those who simply require additional 
DASD without a corresponding increase in users logged on should 
consider the quad DSU per AMP arrangement. These choices must be 
carefully weighed against adding additional AMPs instead of increasing 
the DSUs per AMP ratio. In many cases, additional AMPs c.an achieve the 
same performance objective at a lower overall cost to the customer. 

Customers who expect to do large amounts of database updating should 
install the Non-Volatile Disk Cache (NVRAM) option. The effects of 
NVRAM in on-line and batch updates makes it an excellent price/ 
performance booster. The guidelines for choosing to use NVRAM have 
not changed between the Model 3 and Model 4 DBC/1012 systems. 

In summary, to estimate a Model 4 size based on Model 3: 

• Halve the number of AMPs in CPU bound or balanced applica­
tions 

• Try to begin with two DSUs per AMP 
• Always weigh the throughput of multiple DSUs against addi­

tional AMPs 
• Use NVRAM in any OLTP or BulkLoad intensive application 
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APPENDIX A - SQL USED DURING TEsTING 

Model 4 Tests 

The answer set was exported to a dummied host file in order to suppress 
the effects ofthe mainframe I/O. Answer sets were restricted by applying 
cross-table Selection after the join often reducing the spool to less than 50 
rows. CPU-intensive queries use a retlimit of 1. Select DATE TIME 
statements were included before and after each query. Between queries 
using the same tables, a: dummy Select of 1 million rows was inserted to 
flush all rows from AMP memory to avoid residual rows being found in 
the next query test. 

71 Insert/Select 

Insert into cab.tnf 
select * from cab. tIm; 

100 Aggregate/Sort, 3 groups, 1000 buckets 

Select chlae,inlO,in20,max(inseq) from t50k 
group by 1,2,3 order by 1,2,3 having max(inseq) gt 2490; 

125Aggregate/Sort with 4 groups, 10,000 buckets 

Select chlae,chlaj,inl0,in20,max(inseq) from t50k 
group by 1,2,3,4 order by 1,2,3,4 having max(inseq) gt 2490; 

200Prime Key Joins 

Select tIm.chI5city, Tnf.chl5city from tIm,tnf 
where tIm.inseq = tnf.inseq 
and (tlm.in500k + tnf.in500K) gt 999900; 

202Prime Key to Foreign Key, redistribution of 1 million row table 

Select tlm.chI5city, t50k.chl5city from tlm,t50k 
where tlm.in50k = t50k.inseq 
and (tIm.in500k + t50k.inl0K) gt 505000; 

214 Both tables redistributed - 50% of each table Selected 

Select tlm.chI5city, tnf.chl5city from tIm,tnf 
where tlm.chlsex = 'f' 
and tnf.inl0 gt 4 
and tnf.inlm = tlm.inlm 
and (tlm.in500k + tnf.in500k) GT 999000; 
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214B Both tables redistributed -100% of each table Selected 
Select t1m.ch15city, tnf.ch15city from t1m,tnf 

where tnf.in 1 m = tl m.in 1 m 
and (t1m.in500k + tnf.in500k) GT 999900; 

304 Both Tables Redistributed -1 Million and.10 Million Rows 
Select tlm.ch15city, tlOm.ch15city from tlm,t10m 

where t10m.in1m = t1m.in1m 
and (t10m.lN1m + t1M.lN500K) GT 1490000; 

310A Scan~Table test -10 Million rows 
Select inseq From t10M where d08seq It 50.00; 

313AggregatelSort, 3 groups, 1000 buckets - Ten Million rows 
Select ch1ae,in10,in20,max(inseq) from t10m 

group by 1,2,3 order by 1,2,3 having max(inseq) GT 499995; 

900 Rollup Report 
Select SSS_JD (smallint) , DCD (char(l)), 

sum(PPP _102_AM) (decimal(l1,0)) , sum(PPP _102_QY) 
(integer) , sum(PURCH_102_AM) (decimal(l1,0)), 
sum(PURCH_102_QY) (integer) , sum(CASH_102_AM) 
decimal(l1,0)) , sum(CASH_102_QY) (integer), 
(PPP _FULL_QY + PPP _N_DU_QY) (smallint), 
(PPP _SKIP _QY + PPP _LESS_QY + PPP _MINM_QY + 
PPP _PLUS_QY), (((FC_102_AM*100 - .5) mod 1) + .5) 

(smallint), 
AUTH_IN (char(l)) , BILL_IN (char(l)), 
index(substr(CHGOFF _DT,3,4),'01') 
(smallint) , sum(BAL_102_AM) (decimal(11,0)), 
sum(ICA_102_AM) (decimal(11,0)) , sum(ICA_102_QY) 
(integer) , sum(FC_102_AM) (decimal(l1,0)), 
sum(CASH_AMT_102_AM) (decimal(l1,0)), 
sum(ICA_AMT_102_AM) (decimal(11,0)) , 
sum(index(substr(AMF _BILL_DT,3,4),('01 ')) * 
AMF _BILL_AM) (decimal(11,0)) , 
sum(LC_102_AM) (decimal(l1,0)), 
sum(OLAMT _102_AM) 
(decimal(l1,0)) , count(*) (integer), 
sum(CC_BILL_102_AM) 
(decimal(11,0)) , sum(CHGOFF _BAL_AM) 
(decimal(l1,0)) 
From ACCT_TRANS 
GROU BY 1,2,3,4,5,6,7,8; 
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901 Floats & Dates 

Select * From tIm 
where 
(in1m = 1.1E6 
or in1m = 1.2E6 
or in1m = 1.3E6 
or in1m = 1.4E6 
or in1m = l.SE6 
or inlm = 1.6E6 
or in1m = 1.7E6 
or in1m = 1.8E6 
or in1m = 1.9E6 
or in1m = 999) 
and (DATE - DAY) GT 100 
and (DAB + IS) LT (DAY + 101) 
and (DATE - DAB) GT 10; 

902 Disk Intensive 1 - Multi-Statement SQL 

Select * from tIm, tlOO 
where t1m.lN100 = tlOO.inseq 
and (tlm.inseq + t100.inseq) It 10 ; 

Select * from tSm,tSO 
where tSm.inSO = tSO.inseq 
and (tSm.inseq + tSO.inseq) It 10 ; 

Select * from t13m, tSOk 
where tl3m.inSOk = tSOk.inSOk 
and (tI3m.inseq + tSOk.inseq) It 20 ; 

903 Disk Intensive 2 - Multi-Statement SQL 

Select * from tlOm where d08seq It SO.OO; 
Select * from tSm where d08seq It SO.OO; 
Select * from tIm where d08seq It SO.OO; 

* 4 Build a NUSI on 5 Million rows 100,000 Distinct Values 

Create index(in100k) on TSm; 

* 5 Two-part NUSI, 500 Distinct values 

Create index(in10,inSO) on TSm; 

* 50 Build a USI on a 1 million row table with fallback 
Create unique index(D08seq) on TIm; 

* 52 Build a NUSIon 1 million row table, fallback, 10 distinct values 

Create index(ch1aj) on TIm; 
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* 53 Build a NUS] on 1 million row table, fallback, 50 distinct values 

Create index(in50) on TIm; 

* 54 Build a NUS] on 1 million row table, fallback, 1000 distinct values 

Create index(inlk) on TIm; 

* 55 Build a NUS] on 1 million rows fallback, 100,000 distinct values 

Create index(inl00k) on TIm; 

* 57 Three-part index, 100,000 distinct values 

Create index(in20,in50,inl00) on TIm; 

* 80 Build a US] on a 1 million no fallback 

Create unique index(D08seq) on Tnf; 

* 82 Build a NUS] on 1 million row table, no fallback, 10 distinct values 

Create index(chlaj) on Tnf; 

* 85 NUS] on 1 million row, no fallback, 100,000 distinct values 

Create index(inl00k) on Tnf; 

* 87 Three-part index, 100,000 distinct values 

Create index(in20,in50,inl00) on Tnf; 

* 500 NUS] on non fallback 10 million row table, 50 distinct values 

Create index(in50) on tl0m; 

* 501 NUS], nonfallback, 10 millions rows, 100,000 values 

Create index(inlOOk) on TI0m; 

* 502 US] on non fallback 10 million row table, 1 million values 

Create index(inlm) on tl0m; 
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Collect Statistics 

* 10 Collect Statistics on T5m Index(Inseq); 
* 11 Collect Statistics on T5m Index(INI00K); 
* 12 Collect Statistics on T5m Index(INI0,IN50); 
* 58 Collect statistics on tIm index(inseq); 
* 59 Collect statistics on tIm index(d08seq); 
* 61 Collect statistics on tIm index(chlaj); 
* 62 Collect statistics on tIm index(inlk); 
* 63 Collect statistics on tIm index(inl00k); 
* 64 Collect statistics on tIm index(in50); 
* 88 Collect statistics on tnJ index(inseq); 
* 89 Collect statistics on tnJ index( d08seq); 
* 91 Collect statistics on tnJindex(chlaj); 
* 93 Collect statistics on tnJindex(inl00k); 
* 503 Collect statistics on tIOm index(inseq); 
* 504 Collect statistics on tl0m index(in50); 
* 505 Collect statistics on tIOm index(inl00k); 
* 506 Collect statistics on tIOm index(inlm); 
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