Terak/UCSD Pascal Version II.O
Monochrome Graphics Computer System
Graphics Release Guide

This document describes the graphics capabilities provided by
Terak, including SIGGRAPH graphics and the low-level graphics
intrinsics for all major languages used on the Terak 8510.

Terak Corporation

Scottsdale, Arizona

60-0060-001B

Terak Corporation believes that the information contained herein
is accurate. In no event will Terak be liable for any losses or
damages whether direct or indirect resulting from the use of such
information, including, without limitation, losses arising from
claims of patent, copyright, and trademark infringement. No
license is granted hereby for the use of any patent or patent
rights of Terak. Terak reserves the right to update the
information contained herein at any time without further notice.

The information contained herein is proprietary to Terak
Corporation and must be treated as confidential. It may not be
disclosed to others or be used for any purpose without the
written consent of Terak Corporation.

Terak/UCSD Pascal Version II.O
Monochrome Graphics Computer System
Graphics Release Guide

Document No. 60-0060-001B

Copyright 1980 (c) Terak Corporation
All Rights Reserved

Terak is a registered trademark of Terak Corporation. DEC,
pPDP-11, RT-11, and LSI-11 are trademarks of Digital Equipment
Corporation. UCSD Pascal is a trademark of the Regents of the
University of California. BASIC is a registered trademark of the
Trustees of Dartmouth College.

60-0060-001B

TABLE OF CONTENTS

TOPICS
1. INTRODUCTION . o o o o o
1.1. Computer Graphics . . .

1.2 Terak Graphics Software

2. SOME GRAFHICS FUNDAMENTALS
2.1 Graphics Space
2.1.1 General Concepts .
2.1.2 World Coordinates .
2.1.2.1 The Window . .

2.1.3 The View Surface .

2.1.3.1 Normalized Device

2. l. 3.2 Viewmrts L] L] L]

2.2 Graphics Display Concepts

2.2.2 The Pen or Cursor .
2.2.,2 Moving the Cursor .
2.2.2.1 Absolute Moves
2.2.2.2 Relative Moves
2.2.3 Markers

2.2.4 Line Style . . .

2.2.5 Character Precision

3. SIGGRAFH GRAFHICS ROUTINES
3.1 Initialization Commands
3.1.1 INIT GRARHICS . . .

3.1.2 USE SURFACE

Coordinates

—-i-

PAGE

. 2-4

60-0060-001B

TOPICS

TABLE OF CONTENTS

3.1.3 TRAW ON_VIEW SURFACE

3.1.4 DISPIAY VIEW SURFACE

3.2 Commands to Set and Map the World Coordinate Space

L] L J L) L] L] L] L) L] L] L) L) o L)

L] L] L] L) L] L] Ld L) . . L] L) L]

3. 2.1 SEI‘-WINW L) L] L) L) L] L] L] L] L] L) L] L] L]

3.2.2 SET_VIEWPORT

3.3 Commands to Move and Locate the Cursor . .

3.3.1 MOVE ABS

3. 3.2 MOW_RH’ L) L] L] L] o L) L) * [] L] L] L] L] L]

3.3.3 INQUIRE_CURRENT POSITION .

3.4 Commands to Set Background/Line

3.4.1 SET LINESTYLE . . . « « « &

3. 4.2 Nm_FRM L) * L]) L] L]

3.5 Commands to Draw Lines .

3.5.1 LINE_ABS
3.5.2 LINE REL . . .
3.5.3 POLYLINE ABS .
3.5.4 POLYLINE REL .

3.6 Marker Commands . .

3.6.1 SET_MARKER SYMBOL

3.6.2 MARKER ABS . .

3.6.3 MARKER REL . .

3.6.4 POLYMARKER ABS

3.6.5 POLYMARKER REL

60-0060-001B

-ii-

Contrast

PAGE

3-2
3-3

3-3
3-3
3-3
3-3

3-4
3-4
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-6

3-6

TOPICS

4.

5.

6.

7.

TABLE (F

3.7 Text CommandS « « o o o o &

3.7.1 SET_CHARACTER PRECISION

3.7.2 SET_CHARACTER SIZE .

3.7.3 SET CHARACTER SPACE . .

3.7.4 TEXP L) L] L] Ld L) L] L] o L4

TERAK PASCAL IMPLEMENTATION CF

CONTENTS

PAGE

e ® e o o o o o o o o o o 3-6
e © 6 o e o o o o e o o o 3—7
e e o e o o o o o o o o o 3-7

SIGGRAPH GRAH‘IICS e o o o o 4-1

4 L] l Proca ure Nmes L] L) L] L) L] L] L] L) L] L4 L] L J L] L] . L] L) L] . L] 4—1

4 L] 2 Arg unmts L] L] L] L] L] L) L] L] L) L] . L] L) L] * L L] L] L] L) L] L[] L 4-1

4.3 Using SIGGRAPH Graphics on the Terak/UCSD Pascal System 4-1

4.4 Terak Pascal SIGGRAFH Graphics Routines . ¢« o« v ¢« o o «» 4-1

4,5 1Initial Values

EXAMPLES . . .

5.1 Example 1

5.2 Example 2 .
5.3 Example 3 .
5.4 Example 4 .
5.5 Example 5 .
5.6 Example 6 .

o

5.7 Complete Examples

FOTO FILES . . «. . &

TERAK EXTENSIONS

7.1 Introductory Information

e e e o o e s e o e s e e e e e e s . 44
e o o s o s o o s e s e s e e e e e e 51
. e o e o o s s o o o e s e e e e 51
e o o o o o e o s s o o s s e s e e e e 51
. -
. e o o o o o e s e e e e s s e e 53
. e o o e o s s e e s e e s e e e s 54
. e ¢ o o s o s s s s e e e e e e e 55
e e o s o s s e s s e s e e s e e 56
T e
Y
e e e e o o 0o o s e e e e e I-1
Y A

7.2 Graphics Procedure Calls

-iii- 60-0060-001B

TABLE CF CONTENTS

TOPICS PAGE

7.3 DRAWLINE, DRAWBLOCK, and DRWBIK Conventions . « « « « o 7-3
7.4 TRAWLINE o ¢ ¢ o o ¢ o o o o o o o o o o o
7.5 DRAWBLOCK ¢ o ¢ o o o ¢ o o o o o s s s s 6 06 06 s 06 s s 1-5
7.6 DRWBLK & ¢ ¢ ¢ o o o o o o o o o o e s o s 6 6 06004 1-6
7.7 GCHAR & GMARK ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o o o o o o o 1-7
78 GMARK ¢ ¢ ¢ o ¢ o o o o o o o o o s s o o o o o o0 0. 1-8

70 9 TmmE e L) e L) L] L] . L] L] L] L] L] L] L) L] L] L] L] . L) . L] . 7-8

APPENDIX A

Al. SIGGRAPH CORE-79 COMPATABILITY &« ¢ o ¢ o o « o o« o o o o A-l
Al.l OCutput Primitives . « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o ¢ ¢ ¢« o« « A-2
Al.2 Picture Segmentation and Naming . ¢« « ¢« ¢ ¢« ¢ ¢ o « « A-2
Al,3 AttributeS « ¢ o o ¢ ¢ ¢ ¢ e o e o o e o o o o o o e . A2
Al.4 Viewing Operations and Coordinate Transformations. . . A-2
Al.5 ConNtrol =« « o o o o o o o o o o o o o o o o s o o o o A3

Al.6 Fllture @nSiderationS e o o o o e e o o o o o o o o o A-3

APPENDIX B

Bl. TERAK 8510 GRAFHICS DISPLAY PROCESSOR ¢ ¢ o o o o o &« B-1

APPENDIX C

Cl. TERAK SIGGRAFH GRAPHICS LANGUAGE CROSS-REFERENCE C-1

APPENDIX D

Dl. ANALOGY CQF THE GRAFPHICS PROCESS « « ¢ ¢ ¢ ¢ s o« s ¢ ¢ ¢ o D-1

60-0060-001B -iv-

TABLE OF CONTENTS

FIGURES
Figure 2.1 Sales vs. Time Graphics Example . « « « o« o o o & 2-2
Figurez.zzones'oooooooooooooooo.oooo 2-3
Figure 2.3 Normalized Device Coordinate Orientation 2-4
Figure D-1 Analogy of the Graphics Process . ¢ « ¢ « o « « & D-2
Figure D-2 Extended Analogy of the Graphics Process D-3

—y- : 60-0060-001B

60-0060-001B

1. INTRODUCTION

1.1 Computer Graphics

Computer graphics represents a medium for communications between
man and computer, that allows the expression of large quantities
of information in a format that is easily assimilated with the
"mind's eye." For the user who has waded through volumes of line
printer output searching for answers, a few appropriate pictures
are a welcame relief. For both the novice and experienced users,
today's computer graphics resources are providing new and
challenging techniques for harnessing the power of the computer
and making it available to all.

1.2 Terak Graphics Software

The graphics capability provided by Terak is a general purpose
package that is compatible with the ACM SIGGRAPH GSPC Document
1979. (See Appendix A for additional details.) The SIGGRAPH
document proposes same guidelines that give the user the ability
to write graphics applications and then transport them between
systems that also support the SIGGRAPH definitions. The SIGGRAPH
definitions provide a bridge between the user's application and
the specialized hardware characteristics of the device being
used, giving him a sense of hardware independence for his
applications. The Terak SIGGRAPH graphics provides the
capability of drawing lines and printing characters, while a
variety of "projection routines" allow him to rapidly develop any
form of graphics application with a minimum of effort.

The Terak 8510 Graphics Processor provides a number of useful
intrinsic procedures in addition to the SIGGRAPH capabilities,
(See Section 7 for more hardware details.) These routines
present the display processor as an array of dots, allowing the
user to develop his own specialized algorithms without utilizing

assembly language programming.

1-1 60-0060-001B

Reserved

60-0060-001B 1-2

2. SOME GRAPHICS FUNDAMENTALS
2.1 The Graphics Space

2.1.1 General Concepts

A graph is used when a person wishes to represent relationships
of data pictorially. For example, one such relationship would be
SALES vs. TIME for a particular product history. The graph of
such a relationship would typically consist of two axes and
special markers connected by lines. Such a graph is presented in
Figure 2-1.

To produce this type of graph, the points are described in terms
of positions in a Cartesian coordinate system. A two-dimensional
Cartesian coordinate system consists of two straight line axes
such that any point on the plane may be described in relation to
its distance from each axis. In Figure 2-1, SALES are measured
in the vertical direction, in thousands of dollars, and TIME is
measured in the horizontal direction, in months.

Appendix D contains two figures that represent an analogy of the
graphics process. It may be useful to reference these figures
while reading the following sections.

2.1.2 World Coordinates

Parameters are passed to the SIGGRAPH graphics procedures using
coordinates such as those described above. In other words, the
user program defines an area by means of ranges of coordinate
values in the vertical and horizontal directions. Lines and
points within (or even outside) this area are then described by

. using these coordinates.

2.1.2.1 The Window

The region defined by the ranges of World Coordinates is known as
a Window. When objects (such as lines or markers) are defined
either partially or entirely outside of the edges of the Window,
clipping automatically takes place at the Window edge (i.e.,
anything outside the Window "disappears" from the picture).

If a line is drawn such that one endpoint is inside the Window
and the other endpoint is outside the Window, the line will be
drawn with a slope natural to the connecting points with only
that portion of the line inside the Window being visible.

2-1 60-0060-001B

SALES

SALES ($ K) VS TIME (MONTHS)

0210-001

Figure 2.1 Sales vs. Time Graphics Example

60-0060-001B

2-2

2.1.3 The View Surface

To produce a display, the graphics procedure must convert the
World Coordinate specifications to the absolute physical screen
coordinates of the Terak 8510. To this end, the Window is mapped
onto a Viewport, which is a rectangular portion of the View
Surface. First, let us define the View Surface.

The physical display of the Terak 8510 is divided into three
"zones", each of which is the width of the screen and one third
of its height (see Figure 2-2).

UPPER {

80 PIXELS
MIDDLE PER ZONE

LOWER T

0211-001

Figure 2.2 Zones

The View Surface is defined by the user program in relation to
these zones. The width of the View Surface is the width of a
zone (and therefore, the width of the screen). The height of the
View Surface may be any multiple of the height of a zone. It may
therefore be less than, equal to, or even greater than the height
of the screen.

2.1.3.1 Normalized Device Coordinates

Normalized Device Coordinates are used to describe the View
surface. These coordinates range from 0 to 1 in both the
vertical and horizontal directions, with (0,0) at the lower left
of the View Surface, and (1,1) at the upper right, as shown in

Figure 2-3.

2-3 | 60-0060-001B

0,1 1,1

VIEW SURFACE

0,0 1,0
0212-001

Figure 2.3 Normalized Device Coordinate Orientation
2.1.3.2 Viewports

As we said, the Viewport is a rectangular portion of the View
Surface onto which the Window is mapped. Most often, the
Viewport will occupy the entire View Surface. However, this is
not always desired. For example, consider dividing the View
Surface into four quadrants and mapping a different display
(Window) onto each quadrant. To do this, it would be necessary
to locate Viewports at different locations within the View
Surface.

The area of the View Surface in which a particular Viewport is
located is defined by the user program with reference to ranges
of Normalized Device Coordinates. For example, the ranges .5 to
1.0 in the horizontal directionand 0 to .5 in the vertical
direction would map the Window onto a Viewport occupying the
lower right quarter of the View Surface.

2.2 Graphics Display Concepts
22.1 The Pen or Cursor

Complete displays on the Terak 8510 are generated by output
primitives, which create lines, markers, and text on the display.
Intrinsic to this graphics support is the concept of a cursor, or
pen, which is always present at some position in the World
Coordinate Space. 2An analogy to this concept is the position of
the tip of a pen on a piece of paper.

2.2.2 Moving the Cursor

Using the graphics procedures, it is possible to move the cursor
from its current position to a new position in the World
Coordinate Space. The user may choose to move the cursor without
drawing a line (as if the tip of the pen were lifted off the
paper and set down again in a different place), or a straight
line may be drawn as the cursor is moved, connecting its starting
point with its ending point (just as if a line were drawn by the

pen on the paper).

60-0060-001B 2-4

2.2.2.1 Absolute Moves

when moving the cursor as described above, its new position is
"passed to the graphics procedures in temms of World Coordinates.
The cursor may be moved to an absolute position in the World
Coordinate Space by specifying the particular vertical and
horizontal coordinates desired. For example, suppose that a
World Coordinate Space is defined with a range of 0 to 10 in the
horizontal direction, and -10 to 10 in the vertical direction.
Then moving the cursor to the absolute position of 5,0 would
place it in the center of the World Coordinate Space.

2.2.2.2 Relative Moves

The cursor may also be moved to a new position relative to its
current position, again using the World Coordinate units. For
example, given the World Coordinate Space just described, and
given that the cursor's current position is in the center of that
space (at the absolute coordinates 5,0), then specifying a
relative move of the cursor with the coordinates -5,10 will move
it 5 units to the left and 10 units upward, placing it in the top
left corner of the World Coordinate Space.

2.2.3 Markers

Procedures are provided to draw predefined markers centered at a
point. The size of any marker will be a maximum of 7 dots high
by 7 dots wide. Markers are useful to distinguish certain points
in the display (they are used in Figure 2-1). The marker
procedures move the current position (without drawing a line) to
the point where the marker is to be centered and then draw the
current marker symbol there.

The position at which the marker is to be centered can be
specified in either absolute or relative temms, just as can be
done when moving the cursor or drawing a line. The marker symbol
to be used is set with a separate procedure. A table of available
marker patterns is provided in Section 3.6.1 of this document.

2-5 60-0060-001B

2.2.4 Line Style

Lines, markers and text can be drawn into the display as white,
black, or (for lines only) as the complement of the display being
overlayed.

2.2.5 Character Precision

A procedure is provided to draw character text into the display.
Two variations of text may be displayed: either low precision or
medium precision. low precision text is placed into the
Character Page buffer overlaying the graphics display, while
medium precision text is placed directly into the graphics
display.

When low precision text is chosen, it will be placed into the
character display beginning at the row and column closest to the
current position of the cursor. Medium precision text is output
into the graphics display, with the lower left corner of the
first character at the current cursor position. Medium precision
text also has the attributes of size and spacing. Size is
specified in multiples of the standard 10 dot height and 8 dot
width. Spacing is specified in termms of relative World
Coordinates. For example, a spacing of .1,-.05 would cause each
character to be placed .l unit to the right and .05 units lower
than the previous character.

60-0060-001B 2-6

3. SIGGRAPH GRAPHICS ROUTINES

Terak supports SIGGRAFH-compatible graphics routines for three
languages: BASIC, FORTRAN, and Pascal. This section lists all
the SIGGRAPH graphics routines supported by Terak in any of those
three languages. Each procedure is identified by its complete
SIGGRAFH—compatible name, and is described in general terms,
common to all three of the languages. Language-specific names
and argument lists for the Terak UCSD Pascal Version II.O
Installation are provided in Section 4 of this document. See
Appendix A for a discussion of SIGGRAPH compatibility, and
Appendix C for a language cross-reference.

3.1 Initialization Commands

The four routines described in this Section on initialization and
control of the graphics display space are not a part of the
SIGGRAFH Core-79 standard. Implementation using the Terak 8510
graphics hardware necessitated an approach to these control
procedures different from SIGGRAFH's, however, the functional
intent of the related SIGGRAPH procedures has been maintained.
It should be noted that all of the procedures in the Terak
implementation, other than the four in this Section, are a part
of the SIGGRAPH Core-79 standard.

3.1.1 INIT GRAPHICS

This procedure initializes the graphics control environment,
including marker symbol, Viewport, Window, cursor position,
linestyle, and character precision, spacing, and size. For the
initial default wvalues of these attributes, see Section 4.5.
INIT GRAPHICS must be called once before calling any of the other
graphics procedures, and may be called again if a return to the
initial values is desired.

3.1.2 USE_SURFACE

This procedure provides the facility to the user of explicitly
defining memory to be used as the graphics display page. This is
useful when the user intends to perform I/O to and from memory
allocated to graphics (i.e., reading and writing FOTO files), or
if he requires dynamic display context switching between
different view surfaces. See Section 6 for a discussion of FOTO
files.

3.1.3 DRAW ON VIEW SURFACE

This procedure defines the size of the View Surface, where the
size allocated is the number of zones specified multiplied by
1600. This is due to the fact that each graphics blanking zone
is 1600 16-bit words in size, and the View Surface can be any
number of zones in height. :

3-1 60-0060-001B

3.1.4 DISPIAY VIEW SURFACE

This procedure defines which area of the View Surface is to be
mapped into the screen display. Since the View Surface may be
any number of zones in height, and only three zones may be
displayed on the screen at any one time, the offset or
displacement (specified as some number of zones) on the View
Surface at which the actual display is to start is included as an
argument passed to the DISPLAY VIEW SURFACE procedure. A
displacement of zero will map to the screen display beginning
with the first zone of the View Surface. A displacement of -1
begins with the second zone of the View Surface, and so on. The
displacement may be positive, but in the normal case it will be
zero or negative.

The three zones on the physical display may each independently be
blanked for either graphics or characters. Character blanking
and graphics blanking parameters are also specified as arguments
to the DISPIAY VIEW SURFACE procedure. Each parameter is
computed by assigning the values 4, 2, and 1 respectively, to the
upper , middle, and lower physical display zones, and then adding
up the values of the zones to be displayed. The following table
sumarizes the eight combinations.

PARAMETER VALUE EFFECT ON GRAPHICS CR CHARACTER BLANKING

Blank all three zones

Display lower, blank middle and upper 2zones
Display middle, blank lower and upper zones
Display lower and middle, blank upper zone
Display upper, blank lower and middle zone
Display upper and lower, blank middle zone
Display upper and middle, blank lower zone
Display all zones

NSoubswhhEO

Note that a positive displacement may cause the display of memory
outside the View Surface. Any such superfluous memory in the
physical display may be blanked by setting the graphics blanking
zZone pararmeter appropriately.

Also note that once a call to DISPLAY VIEW SURFACE has been made,
the areas specified will be displayed on the screen at that time,
and subsequent lines, markers and text drawn into those areas
will appear on the screen as they are drawn.
DISPLAY VIEW SURFACE may be called at any time, any number of

times, and need not be called at all until the entire display is
complete.

60-0060-001B 3-2

3.2 Commands to Set and Map the World Coordinate Space

3.2.1 SET WINDOW

This procedure defines the World Coordinate Space, specified in
terms of a minimum and maximum in the horizontal (x) direction,
and a minimum and maximum in the vertical (y) direction. Any
lines, markers, or text lying outside the Window defined by these
parameters are clipped at the Window edge and will not be
displayed.

3.2.2 SET VIEWPORT

This procedure defines which portion of the View Surface (defined
by DRAW VS) is to receive the Window to Viewport mapping. A
left, a right, a lower, and an upper bound is specified, all in
terms of Normalized Device Coordinates (defined in Section 2.1.5
of this document). The left bound must be less than the right,
the lower bound must be less than upper, and all must be between
(or may include) the values of 0 and 1.

3.3 Commands to Move and Locate the Cursor
3.3.1 MOVE ABS

This procedure moves the cursor, without drawing a line, to the
absolute World Coordinates specified.

3.3.2 MOVE REL
This procedure moves the cursor, without drawing a line, from the
current position to a new position specified in relative World
Coordinates. 1In other words, the new position is determined by
adding the relative World Coordinates specified to the current
absolute position.

3.3.3 INQUIRE CURRENT POSITION

On calling this procedure, the current position of the cursor is
returned, in absolute World Coordinates.

3-3 60-0060-001B

3.4 Commards to Set Background/Line Contrast

3.4.1 SET LINESTYLE

This procedure defines how lines, text and markers are to be
drawn. The following linestyles are available:

PARAMETER VALUE LINESTYLE
1 White
2 White (same as 1)
3 Black
4 Complement (valid only for lines)

3.4.2 NEW FRAME

This procedure resets the View Surface defined by
DRAW ON VIEW SURFACE according to the current linestyle. If
linestyle is equal to 1 or 2, the background will become black.
If linestyle is equal to 3 or 4, the background will become
white.

3.5 Commands to Draw Lines

3.5.1 LINE_ABS

This procedure draws a line, according to the current linestyle,
from the current position to the absolute World Coordinates
specified. These coordinates become the new current cursor

position.
3.5.2 LINE REL

This procedure draws a line, according to the current linestyle,
from the current position to a new position detemined by adding
the relative World Coordinates specified to the current position.
This new position becomes the current cursor position.

3.5.3 POLYLINE ABS

This procedure will draw a connected sequence of lines, according
to the current linestyle. 2An array of x-coordinates, an array of
y—coordinates (both in absolute World Coordinates), and a number
n (less than or equal to the dimensions of the arrays) are
specified. The first line is drawn from the current position to
the position specified by the first elements of the x-coordinate
and y-coordinate arrays. The second line (if n is greater than
1) is drawn from the ending position of the first line to the
position specified by the second elements of the coordinate
arrays, and so on, until n lines have been drawn.

60-0060-001B " 3-4

3.5.4 POLYLINE REL

This procedure is identical to POLYLINE ABS, except that the two
coordinate arrays contain relative (rather than absolute) World
Coordinates, so that the first 1line is drawn from the current
position to the position determined by adding the coordinates
from the first element of the x-coordinate and the first element
of the y-coordinate arrays to the coordinates of the current
position. The second line (if n is greater than 1) is drawn from
the ending position of the first line to the position determined
by adding the coordinates from the second elements of the
coordinate arrays to the coordinates of the ending position of
the first line, and so on, until n lines have been drawn.

3.6 Marker Commands

3.6.1 SET MARKER SYMBOL

This procedure sets the current marker symbol to one of the
patterns provided. This marker symbol will be used on subsequent
calls to the marker procedures. The following marker symbols are
available:

PARAMETER VALUE MARKER SYMBOL

single dot (.)

plus sign (+), 7 by 7 dots
asterisk (*), 7 by 7 dots
circle 7 dots in diameter

cross (X), 7 by 7 dots

vertical bar (|), 5 dots high
horizontal bar (=), 5 dots wide
diamond, 7 by 7 dots

square, 7 by 7 dots

square, 5 by 5 dots

block (filled square), 7 by 7 dots

voJoaounmbdwNkE

—
)

3.6.2 MARKER ABS

This procedure moves the cursor from the current position to the
absolute World Coordinates specified (without drawing a 1line),
and the current marker symbol is drawn centered at that position
(which then becomes the new current cursor position).

3.6.3 MARKER REL

This procedure 1is identical to MARKER ABS except that the
position at which the marker is to be drawn is determined by
adding the relative World Coordinates specified to the
coordinates of the current position.

3-5 60-0060-001B

3.6.4 POLYMARKER ABS

Given an x array and a y array of absolute World Coordinates,
this procedure will draw a specified number of markers (n), in
the following manner: The first marker is drawn centered at the
position determined by the first element of the x-coordinate
array and the first element of the y-coordinate array. The
second element (if n is greater than 1) is drawn at the
coordinates specified by the second elements of the arrays, and
so on, until n markers have been drawn.

3.6.5 POLYMARKER REL

This procedure is identical to POLYMARKER ABS, except that the
values of the x and y coordinate arrays are in temms of relative
(rather than absolute) World Coordinates. The position at which
to center any marker (n) is determined by adding the coordinates
from the nth elements of the x and y coordinate arrays to the
coordinates of the position of the previous marker.

3.7 Text Commands

3.7.1 SET_CHARACTER PRECISION

This procedure determines the type of text that will be output by
the TEXT procedure. Two types of text are available: Low
precision and medium precision. Medium precision text may be
output at two different speeds, depending on the visual impact
desired by the user. The following table summarizes the three
varieties:

PARAMETER VALUE TYPE OF TEXT
1 Low precision
2 Medium precision, fast
3 Medium precision, slow

3.7.2 SET CHARACTER SIZE

This procedure is applicable only when medium character precision
(a value of 2 or 3) is specified using the
SET CHARACTER PRECISION routine. The standard character size is
10 dots high by 8 dots wide. Width and height are specified to
SET CHARCTER SIZE in terms of multiples of these standard values.
For example, specifying a width of 2 and a height of 3 would
produce characters that were each 16 dots wide and 30 dots high,
or twice the width and three times the height of the standard

character.

60-0060-001B 3-6

3.7.3 SET CHARACTER SPACE

This procedure is applicable only when medium character precision
(a value of 2 or 3) is specified using the
SET_CHARACTER PRECISION routine. SET CHARACTER SPACE defines the
spacing between each character produced by TEXT, in terms of
relative World Coordinates. In other words, after each character
is drawn, the current position is updated by adding in the

coordinates specified.
3.7.4 TEXT

This procedure outputs the specified string of characters
according to the current values of Character Precision, and if

applicable, Character Size and Spacing.

3-7 60-0060-001B

Reserved

60-0060-001B 3-8

—

4. TERAK UCSD PASCAL VERSION II.0 IMPLEMENTATION OF SIGGRAPH
GRAPHICS .

4,1 Procedure Names

For the UCSD Pascal Version II.0 implementation of SIGGRAPH
graphics, the procedure names were chosen to not exceed eight
characters, because uniqueness is guaranteed only for the first
eight characters of UCSD Pascal identifers.

4.2 Arguments

Arguments may be passed to the procedures either as constants or
as variables that have been previously defined as the appropriate
type. In Section 4.4, the procedures available in the Pascal
implementation with their shortened names, argument lists, and
variable types are summarized.

4.3 Using SIGGRAFPH Graphics on the Terak/UCSD Pascal Version
IT.0 System

The SIGGRAPH graphics procedures are included as a wnit in the
system library (SYSTEM.LIBRARY). They are reached by including
the statement “USES GRAPHICS;" directly after the PROGRAM
<identifier> statement in the user program. When the program is
compiled, the Compiler indicates to the system that linking is
required before execution. The linker is automatically invoked
when the program is R(un. It will search SYSTEM.LIBRARY for the
GRAPHICS Unit, and will 1link it into the workfile. The Linker
may also be explicitly invoked, and in some cases must be. See
Section 1.6 of the UCSD Pascal Operating System Manual for
directions on using the Linker.

4.4 Terak UCSD Pascal Version II.0 SIGGRAPH Graphics Routines

NAME ARGUMENT LIST DESCRIPTION

INIT GRF INIT GRAPHICS initializes

graphics area with the default values

given in Section 4.5.

USE_SURF (surface) USE SURFACE explicitly defines

Type : PSCR memory, with the name surface, to be
used as the graphics display page.
See Example 4 in Section 5.4 for a

description of type PSCR.

DRAW VS (size) DRAW ON VIEW SURFACE defines the

consists of 1600 16-bit words).

4-1 60-0060-001B

Type:INTEGER size of the view surface, where size
equals the number of zones (a 2zone

DISP_VS

SET_WNDW

SET VPRT

MOVE_ABS

MOVE_REL

INQ CPOS

SET_LNST

NEW FRAM

LINE_ABS

60-0060-001B

(disp,graph _zones,char_zones)

Type : INTEGER DISPLAY VIEW SURFACE defines which
space is to be mapped into the screen
display. Disp defines mapping;
graph zones and char_zones define
displacement. See Section 3.1.4.

(xmin,xmax,ymin,ymax)

Type :REAL SET WINDOW defines the x,y World

Coordinate Space mapped onto the
Viewport.

(left,right ,bottom, top)

Type :REAL

(xpos ,ypos)
Type :REAL

(linestyle)
Type : INTEGER

(x,Y)
Type :REAL

SET VIEWPORT defines which portion of
the View Surface is to receive the
Window to Viewport mapping. All
arguments are in Normalized Device
Coordinates.

MOVE ABS moves the current position
to 2Absolute World Coordinates x,y,
without drawing a line.

MOVE REL moves the current position
to relative World Coordinates dx,dy,
without drawing a line. The new
current position is computed from the
old current position plus the
displacements dx and dy.

INQUIRE_CURRENT_POSITION returns the
current x and y positions in absolute
World Coordinates into the variables

Xpos and ypos.

SET LINESTYLE defines how lines, text
and markers are to be drawn. For
values oflinestyle, see Section
3.4.1.

NEW FRAME resets the View Surface
according to the current linestyle.
See Section 3.4.2.

LINE ABS draws a line, according to
the ~current 1linestyle, from the
current position to absolute World
Coordinates Xx,Y. The current
position becomes x,Yy.

4-2

LINE_REL

SET MKSM

MARK ABS

MARK_REL

SET CHPR

SET_CHSZ

SET_CHSP

TEXT

(x,Y)
Type :REAL

(n)
Type : INTEGER

(x,Y)
Type :REAL

(dx,dy)
Type :REAL

(charprecision)

Type : INTEGER

(width,height)

Type : INTEGER

(s)
Type : STRING

LINE REL draws a line, according to
the current linestyle, from the
current position to the relative
World Coordinates x,y. That is, the
new current position is computed from
the o0ld current position plus
displacement dx and dy.

SET MARKER SYMBOL sets the current
marker symbol to pattern n. See
Section 3.6.1 for values of n.

MARKER ABS moves the current position
to absolute World Coordinates x,y,

and draws the current marker symbol
centered there.

MARKER REL moves the current position
to relative World Coordinates dx,dy,
and draws the current marker symbol
centered there. That is, the new
current position is computed from the
old current position plus the
displacements dx and dy.

SET_CHARACTER PRECISION specifies the
type of text to be output by the TEXT
procedure. See Section 3.7.1 for
values of charprecision.

SET CHARACTER SIZE specifies the size
of characters to be output by the
TEXT procedure when precision is
Medium. Character width will be
width*8 dots, and the height will be
height*10 dots.

SET_CHARACTER SPACE defines the
movement of the current position
after each character is drawn by TEXT
when precision 1is Medium. The
spacing is in relative World
Coordinates; that 1is, after each
character, the new current position
is computed from the old current
position plus the displacements dx
and dy.

TEXT outputs the string specified by
s according to the current values of
character precision, and if
applicable, size and spacing.

4-3 60-0060-001B

4,5 Initial Values

When the procedure INIT GRF is called, the default values of the
control attributes are set as if the following calls had been made:

EQUIVALENT CALL EFFECT
SET MKSM(1); Marker is single dot

SET VPRT(0.,1.,0.,1.); Viewport = entire View Surface
SET WNDW(0.,1.,0.,1.); World Coordinates = Normalized
Device Coordinates

MOVE ABS (0.,0.); Cursor at lower left corner

SET INST(1); White lines

SET CHPR(1); Medium precision characters

SET CHSP(0.,0.); No spacing between characters

SET CHSZ(1,1); Standard size characters (8 dots x 10 dots)

60-0060-001B 4-4

5. EXAMPLES

5.1 Example 1
The following program fragment shows three zones for graphics.

PROGRAM EXAMPLE];
USES GRARHICS;

BEGIN
INIT GRF; {Must call first, for initialization}
DRAW VS (3) ; {Three zones, one full screen}
DISP Vs(0,7,7) {Normal displacement, no blanking}

{Calls to graphics procedures. Elements will be displayed
as they are drawn.}

END.
5.2 Example 2
The following program fragment uses one graphic zone.

PROGRAM EXAMPLE?2;
USES GRAPHICS;

BEGIN
INIT GRF;
DRAW VS(1); {one zone}
DISP Vs(1,2,5) {Display graphics in middle zone,

characters in upper and lower zones}

iCalls to graphics procedures.}

END.

5-1 60-0060-001B

5.3 Example 3

The following program fragment uses four zones for graphics.

PROGRAM EXAMPLE3;
USES GRAPHICS;
BEGIN
INIT GRF;
DRAW VS (4) ;
DISP VS (1,3,4)

END.

60-0060-001B

{four zones: full screen + 1}

{Display first two zones of view surface
in lower two zones of physical display,
with graphics blanked in upper display
zone, and characters blanked in lower two.}

{Now display second, third and fourth zones.}

5-2

5.4 Example 4

The following program fragment shows how to employ the USE SURF
procedure to explicitly define a View Surface. The argument passed
to the USE_SURF procedure must be a pointer to a packed array
[0..319,0..79] of BOOLEAN (one zone). Therefore, unless a one-zone
View surface is desired, TYPE statements similar to those shown must
be included. The type PSCR allows a three zone array to be allocated
(with the NEW statement) that same array to be allocated reference as
if it were a one-zone array (for the USE SURF procedure). The fact
that the array type passed to USE SURF “is only one zone does not
effect the size of the View Surface. That size is specified to the
graphics procedure in the call to DRAW VS, which should follow
directly after the USE SURF call. -

PROGRAM EXAMPLE4;
USES GRAPHICS;

TYPE SCR3 = PACKED ARRAY[0..319,0..239] OF BOOLEAN
SCR1 = PACKED ARRAY[0.319,0..79] OF BOOLEAN
PSCR = RECORD CASE CF BOOLEAN

TRUE: (ONE_ZONE."SCR1);
FALSE: (THREE ZONE."SCR3);
END; -

VAR SURFACE:PSCR;

BEGIN
INIT GRF;
{explicitly allocate memory for three zones}
NEW (SURFACE. THREE ZONE);
{tell graphics to use this array; but this time reference it as
SURFACE.ONE ZONE so that the argument is passed to
USE SURF is to the correct type}
USE_SURF (SURFACE.ONE_ZONE) ;
{Now tell graphics to make the View Surface three Zzones (the actual
size of the array}
DRAW VS (3):
DISP VS(0,7,7);

icalls to graphics procedures}

END.

5-3 60-0060-001B

5.5 Example 5

The following program fragment shows how to employ the USE SURF
procedure to define more than one View surface.

PROGRAM EXAMPLES;
USES GRAPHICS;

TYPE SCR3 = PACKED ARRAY[0..319,0..239] OF BOOLEAN
SCR1 = PACKED ARRAY[0.319,0..79] OF BOOLEAN
PSCR = RECORD CASE OF BOOLEAN

TRUE: (ONE _ZONE."SCR1);
FALSE: (THREE ZONE."SCR3);
END;

VAR SURFACE1,SURFACE2:PSCR;

BEGIN
INIT GRF;

NEW (SURFACE1.THREE ZQNE) ;

USE_SURF (SURFACE1.ONE_ZONE)

DRAW VS (3):

DISP VS(0,7,7); {begin displaying Surface 1.}

{graphics calls to draw on Surface 1.}

{now allocate memory for Surface 2.}
NEW(SURFACEZ.THREE__ZONE) :

{tell graphics to use Surface 2 as View Surface}
NEW (SURFACE2.ONE_ZONE) ;

{and make it three zones also}

DRAW VS (3) ;

{now calls made to the graphics procedure will draw on Surface 2,
but Surface 1 continues to be displayed unchanged}

DISP Vs(0,7,7);
{now Surface 2 is being displayed, showing the graphics drawn on it
while Surface 1 is being displayed. More calls to the graphics
procedures now will continue to draw graphics elements on the
Surface 2 and they will be displayed as they are drawn. The
following three statements will switch the display back to Surface
1 again.:}

USE SURF (SURFACEl. ONE ZONE);

DRAW VS (3) ; -

DISP Vs(0,7,7);
E.ND.

60-0060-001B 5-4

5.6 Example 6

The following program shows how to employ the USE SURF procedure so
that file I/O can be done. The file I/0 procedures expect to read
and write character data, so the type SCR3 is expanded so that the
three-zone array can also be referenced as a packed array [0.4863] of
CHAR, which is equivalent to 19 blocks of disk space (at 256 words
per block). The actual three-zone array consists of only 4800 words
or eighteen and three quarters blocks, but since the I/O procedures
BLOCKREAD and BLOCKWRITE operate in increments of one block, the
amount of data read or written must be increased to the nearest block
boundary (in this case, 19 blocks).

PROGRAM EXAMPLEG;

USES GRAPHICS;

TYPE SCR3 = RECORD CASE BOOLEAN CF
TRUE: (A: PACKED ARRAY[0..319,0..239] OF BOOLEAN)
FALSE: (B: PACKED ARRAY[0.4863] OF CHAR
END;

SCR1 = PACKED ARRAY[0..319,0..79] OF BOOLEAN;
PSCR = RECORD CASE OF BOOLEAN
TRUE: (ONE ZONE."SCR1);
FALSE: (THREE ZONE."SCR3);
END;
VAR SCREIN; PSCR;
PHYLE: FILE;
S STRING;
PROCEDURE INPUT; {load input file}
BEGIN

RESET (PHYLE, 'FILE1.FOTO');
IF BLOCKREAD (PHYLE,SCREEN.THREE ZONE".B,19)<>19 THEN
WRITELN ("*FILE READ ERROR*');
CLOSE (PHYLE) :
END;

PROCEDURE QUTPUT; {write out screen to file}
BEGIN
REWRITE (PHYLE, 'FILE2,FOTO');
IF BLOCKWRITE (PHYLE,SCREEN.THREE_ZONE" .B,19)=19 THEN
CLOSE (PHYLE) :
ELSE BEGIN WRITELN ('*FILE WRITE ERROR*');
CLOSE (PHYLE, PURGE) ;
END;
END;

5-5 60-0060-001B

The following program uses the above procedures and the graphics
procures to read FILE1.FOTO, add a frame to the data read in, and
write the result to FILE2.FOTO.

BEGIN
INIT GRF;
NEW (SCREEN. THREE ZONE) ;
USE_SURF (SCREEN.CNE_ZONE) ;
DRAW.VS(3);
DISP Vs(0,7,7);
INPUT;
LINE ABS(0,1);
LINE ABS(1,1);
LINE ABS(1,0);
LINE ABS(0,0);
READIN;
OUTPUT';
END;

5.7 Complete Examples

Included in the Pascal Software Release Kit are four demonstration
programs that use SIGGRAPH graphics. These are OIL and SALES, STARS
and STR.DISP. FIGID2 produces the graph shown in Figure 2-1 of this
document. STARS will draw a start with a specified number of points
and will write is to a file STARS.FOTO. STR.DISP will display the
file STARS.FOTO once it has been created with STARS. :

60-0060-001B 5-6

6. FOTO FILES

Example 6 in Section 5.6 demonstrates the use of file I/0. The
filenames in that example have the extension ".FOTO". This does not
imply compatability with the FOTO files produced by the Terak utility
"GREDIT" although there is scame correspondence between the two.

FOTO files created by GREDIT are always nineteen blocks in length,
with the first eighteen and three quarters blocks containing the
graphics image, and the last quarter block containing information
about the state of GREDIT at the time the file was created (cursor
location, heading, penstate, etc.).

A file created by writing out an array being used by SIGGRAPH
graphics routines: 1) need not have the .FOTO extension; 2) need not
be nineteen blocks in length(if more or fewer that 3 zones were
written), and 3) .does not have any information on the state of the
SIGGRAPH attributes at the time the file was created.

A file created by GREDIT can be read and used by the SIGGRAPH
graphcis routines provided that nineteen blocks are read into a
4864-word character array. For example, the program in Section 5.6
would work equally well if FILE1.FOTO had been created using GREDIT
as it would if the file had been created by writing out a SIGGRAPH
graphics array.

The reverse, however, is not true. Although the grphics image
contained in the first 18 and 3/4 blocks of the file created by
either method is identical in format, GREDIT expects to find
information in the final 1/4 block that will not be present in a file
created through SIGGRAPH graphics. For this reason, the attempted
use of such a file as input to GREDIT is not recommended. The results

are at best unpredictable.

6-1 60-0060-001B

Reserved

| gsa\
i

60-0060-001B 6-2

7. TERAK EXTENSIONS

The information that follows concerns the direct driven pixel

graphics intrinsics provided by Terak/UCSD Pascal. The
intrinsics provided by UCSD are described in Section 2.1.4 of the
UCSD Pascal Operating System Manual, and are described in more
detail in the following paragraphs. Also following are
descriptions of intrinsics provided only by Terak. All of these
graphics intrinsics can be used in conjunction with, or
separately from the SIGGRAPH graphics procedures, and are
especially useful to support animation, direct image manipulation

and user-defined graphics.
7.1 Introductory Information

The Terak 8510 supports bit mapped, raster scan graphics,
refreshed directly from main memory. The display presented is a
composite of the 240 by 320 dot graphics display with the 24 by
80 character display. Two 8510 registers, in the I/0 memory page,
control the display of graphics: the Graphics Address Register
(GAR) contains the starting address of the memory to be displayed
as graphics. The Video Control Register (VCR) controls the
blanking/unblanking of the graphics and characters on the video
monitor. Detailed descriptions of the operatons of these
registers are contained in the 8510 System Installation & Users
Guide, Terak Document Number 50-0010-001.

The GAR and VCR may be set from high level Pascal code by the
UNITWRITE intrinsic operating on Unit #3 (GRAPHIC:). Before
issuing a call to UNITWRITE, the Pascal program should have
allocated memory for graphics by declaring a variable. For
example, any one of the cases in the following Pascal fragment
will allocate one picture space:

TYPE
TERAKSCREEN = RECORD

CASE INTEGER OF

1:(BITS:PACKED ARRAY[0..239] OF PACKED ARRAY[0..319]
OF BOOLEAN) ;
(CHRS:PACKED ARRAY[0..9599] OF CHAR);
(INTS:ARRAY[0..4799] OF INTEGER;);
(SETS:ARRAY[0..4799] OF SET CF [0..15]);
(BLKS:ARRAY[0..18] OF ARRAY[0..255] OF INTEGER)
END; (*CASE*)

!mwWwN

o o0 oo o0 oo

VAR SCREEN :TERAKSCREEN;

7-1 ‘ 60-0060-001B

These allocate one picture-full of memory to the variable SCREEN.
The screen contents can be manipulated either by direct

assignment:
SCREEN.BITS[10,100]:= TRUE

(which lights the dot at row 10, column 100), by I/O intrinsics:
RESET (PIX, 'PIX.FOTO'); PIXOK:=BLOCKREAD (PIX,SCREEN,19)=19;

(which loads a binary file into the picture), by high level
operations:

FOR I:=0 TO 4799 DO SCREEN.SETS[I]:=[0..15] - SCREEN.SETS[I];

(which reverses the entire picture), or by intrinsic graphic
procedures.

The graphic procedures supplied with the Terak release of the
UCSD Pascal system are documented here. Note that a picture
memory space need not be a full screen, and need not necessarily
be displayed while being manipulated. Typically, the picture
memory space must be initialized to all blanks or all dots lit.
This can be accomplished, respectively, by either of these two
statements:

FILLCHAR (SCREEN,9600,CHR (0)) for blanks, or
FILLCHAR (SCREEN, 9600,CHR (255)) for all dots 1lit.

The generic call of UNITWRITE to wolume #3, connects the graphics
display hardware of the 8510 with the allocated picture memory:

UNITWRITE (3,GARVAL,VCRVAL) ;

<starting address of picture memory>,
<integer zone blanking variable>.

where GARVAL
and VCRVAL

The GARVAL parameter locates the graphics display memory, and the
VCRVAL parameter directs which of the character and graphics
zones of the 8510 are to be visible. When using UNITWRITE to
volume #3 the address of the second parameter is loaded into the
GAR, and the third parameter is loaded directly into the VCR.
Thus, any of the bits in the VCR can be changed by placing the
decimal representation of the bits into the third parameter of a
UNITWRITE call to volume #3. VCR values from 0 to 63 cover all
combinations of graphics and character zone blanking. Addresses
loaded into the GAR must always be on even (integer) boundaries,
and may be indexed from the array base. The following illustrate
different effects of the UNITWRITE parameters:

UNITWRITE (3, SCREEN,63) ;

Display 3 (all) zones of graphics from picture memory in SCREEN,
and display 3 (all) zones of the character display.

60-0060-001B 7-2

UNITWRITE (3, SCREEN,56) ;

Display 3 (all) zones of graphics from picture memory in SCREEN,
and blank all zones of the character display.

UNITWRITE (3,SCREEN, 49) ;

Display upper two zones of graphics from picture memory in
SCREEN, and lower one zone of the character display.

UNITWRITE (3,SCREEN. INTS [1600],19) ;

Display middle one zone of graphics from picture memory in
SCREEN, starting at SCREEN[3200] thru SCREEN([4799], and lower one
zone of the character display. The upper display zone is blanked.
Note that the GAR must be directed to the virtual starting
address of the upper 2zone, although it and other zones may be
blanked.

UNITWRITE (3,I,263); UNITWRITE(3,I,63);

Blank all graphic display zones, unblank all character display
zones, and sound a 'click' at the display by toggling the state
of the Audio bit in the VCR. In this case, 'I' is a dummy second
parameter.

7.2 Graphics Procedure Calls

The Procedures DRAWLINE and DRAWBLOCK are provided by UCSD. The
Procedures DRABLK, GCHAR, GMARK, and THROTTLE are provide by
Terak. All procedures are contained in SYSTEM.LIBRARY and must
be declared EXTERNAL before use.

Jedodededododedodededode ke ko deddedkede WARNING dedededodedodededode dododk gk dede ek ke kkdkkkk

** These graphics procedures do no range checking on. **
** parameters. If parameters passed to the procedures **
** are 'out of bounds' the procedures will produce *%

** unexpected results -- most likely, destruction of Fk

** the user program, or operating system. *%
**

7.3 DRAWLINE, DRAWBLOCK, and DRWBLK Conventions

The Coordinate System used by DRAWLINE, DRAWBLOCK, and DRWBIK
fixes the point (0,0) in the upper left portion of the display. X
and Y locations of the screen should be addressed using the
following scheme.

7-3 60-0060-001B

(0,0) (319,0)
I

0

I

| positive X direction RIGHT. |

II positive Y direction DOWN. |
|

I I

|

0

I
(0,239) , (319,239)

7.4 DRAWLINE

This procedure draws lines in one of five modes, into memory.
Note that the ROWWIDTH parameter indicates the width of the
picture space, and is not necessarily restricted to the standard
screen width. Picture space widths must be on integer
boundaries; thus the parameter indicates the multiples of 16 bits
of width required. Drawing into reduced width pictures is useful
to prepare a subpicture for transfer by DRAWBIK, which also has a
width parameter. In all DRAWLINE calls, the starting bit is not
affected by the line. RADAR mode will return the number of steps
from the starting point to the nearest obstacle (bits set) along
the line, into RANGE.

PROCEDURE DRAWLINE (
VAR RANGE : INTEGER; {returns result of radar scan
when PENSTATE=4}
VAR SCREEN: TERAKSCREEN; {graphics memory}
ROWNIDTH, {# of 16 bit words per row,
typically 20 }

XSTART, {beginning X point of line}
YSTART, {beginning Y point of line}
DELTAX, {distance to move in X}
DELTAY, {distance to move in Y}
PENSTATE : INTEGER
); EXTERNAL;
PENSTATE ACTION

0 PENUP no change in picture

1 PENDONN force bits on

2 ERASE force bits off

3 COMPLEMENT reverse bits

4 RADAR scan for obstacle, no change in

picture

60-0060-001B 7-4

7.5 DRAWBLOCK

This procedure will do a two-dimension oriented transfer of bits,
from a source block into a target block. The source and
destination block must be of the same width and height, but may
be located at any bit location within the same or different
picture memory spaces. Different picture memory spaces are
allowed to have different widths. The effect which the source
block has upon the target block is controlled by the mode
parameter. Complement mode is useful to overlay a picture with a
block image, and then erase it while restoring the original
picture contents. Graphics animation typically makes use of
Complement mode. NOTE: DRAWBIK calls which overlap the source and
target blocks should be approached with caution. Note also that
row widths are given in bits, not words (as in DRAWLINE), and
must be a multiple of 8.

CONST
SRCXSIZE = {# of bits in source x direction.
Use ((multiple of 8)-1)}
SRCYSIZE = {number of bits in source y direction}
TGTXSIZE = 319; {320 bits in x when target is TERAKSCREEN}
TGTYSIZE = 239; {240 bits in y when target is TERAKSCREEN}
TYPE :
TERAKSCREEN = PACKED ARRAY[0..TGTYSIZE] OF
PACKED ARRAY([0..TGTXSIZE] OF BOOLEAN;
SRC = ARRAY[0..SRCYSIZE] OF
PACKED ARRAY[0..SRCXSIZE] OF BOOLEAN;
PROCEDURE IRAWBLOCK (VAR SOURCE : SRC; {source block}
SRCROW, {#bits/row of block,multiple of 8}
SRCX, {x start location of source}

SRCY :INTEGER; {y start location of source}
VAR DEST :TERAKSCREEN; {Destination block}

DSTROW, {#bits/row of dst block,multple of 8}
STX, {x start location of destination}
DSTY, {y start location of destination}
CNTX, {number of bits to move x direction}
CNTY, {number of bits to move y direction}
MODE :INTEGER {see below}

); EXTERNAL;

7-5 60-0060-001B

DRAWBLOCK MODE ACTION
0 tgt := src {replace}
1 tgt := not (src){complement & overlay}
2 tgt := src XOR tgt{eraseable overlay}
3 tgt := src OR . tgt{overlay}

NOTEl: The call interface and modes are different from the I.4
implementation of DRAWBLOCK. If you are converting
programs from I.4 to II.0 either change mode parameters,
or use the DRWBLK procedure provided below.

NOTE2: When using DRAWBLOCK or DRWBIK for animation the
intrinsics UNITWAIT and UNITWRITE on volume #3 perform
syncronization with vertical retrace of the video display
(every 60th of a second). This is useful to pace the
changes to the screen, maintaining uniform intensity of
animated features.

7.6 DRWBLK

DRWBIK is provided for use in converting programs from I.4 to 1.5
or II.0. If you are beginning new development, use DRAWBLOCK
above, as it performs the same function as DRWBLK in a more
general fashion. In particular, note that DRWBLK requires that
the source block be on an even (integer) boundary, while DRAWBLK
is completely general. Also, the Mode parameter differs in
values from the two procedures.

To convert I.4 programs to I.5 or II.0 include the following
external declaration for DRWBLK then change every occurence of
DRAWBLOCK to DRWBLK in the program.

PROCEDURE DRWBLK(VAR SOURCE:SRC; {source block}
VAR SCREEN:TERAKSCREEN; {target block}
ROWSIZE, {always 20}

STARTX, {start x for target}
STARTY, {start y for target}
SIZEX, {number of bits to move in x}
SIZEY, {number of bits to move in y}
MODE : INTEGER {see below}
); EXTERMNAL;
DRWBLK MODES ACTICN

0 tgt := tgt OR src

1 tgt := src

2 tgt := not (src)

3 tgt := tgt XOR src

60-0060-001B 7-6

7.7 GCHAR & GMARK

The following routines GMARK & GCHAR support graphics on the
8510 by drawing characters and markers in the graphics space.

Bc?th routines address the screen in absolute screen coordinates
with (0,0) defined as the lower left corner of the screen. Note
that this is a different addressing convention from that of

DRAWLINE or DRAWBLK.

Both routines will support a picture memory height smaller, equal
to, or larger than the actual display height (as controlled by
the VCR zone blanking. The y dimension must, however, be a
multiple of 80 (i.e 1/3 screen or the equivalent of a single
screen zone. The parameter NZONE conveys the the picture memory
height to the procedures.

The screen dimension in the x direction is always 0..319.

(0, (nzone*80) (319, (nzone*80)-1)
| |

I I
| ABSOLUTE I
| screen coordinates for [
| GMARK AND GCHAR |

I

l
(0,0) (319,0)

Linestyle for both routines is 0 for white (set bits on), 1 for
black (clear bits out—erase). Neither routine supports XOR or
COMPLEMENT mode.

Character patterns for GCHAR are derived from an 8 dot wide by 10
dot high template, which is fetched from the 8510 writeable
character generator. The HEIGHT and WIDTH parameters to GCHAR
define how many templates high and wide the target character
block will be. Thus a call to GCHAR with the parmeter values h=3
and w=2 would create a character in the graphics space which is
30 dots high and 16 dots wide. The X, Y coordinates locate the
lower left corner of the target block.

PROCEDURE GCHAR (VAR:
SCREEN ARRAY: POINTER TO ARRAY USED AS SCREEN,

NZCONE : INTEGER, {NUMBER CF ZONES TO DRAW oN}
ORD (CHAR) : INTEGER, {Character to print}

X : INTEGER, {RANGE 0<=X<=319}

Y : INTEGER, {RANGE 0<=Y<= (NZONE*80-1) }
HEIGHT ; INTEGER,

WIDTH ; INTEGER,

LINESTYLE ¢+ INTEGER); EXTERNAL;

7-7 60-0060-001B

7.8 GMARK

This routine draws a 7 dot wide by 7 dot high marker, into the
graphics picture memory. The pattern of the marker is controlled
by the parameter MN. The marker will be centered on the screen
location X,Y. If the marker would lie outside the clipping
boundary defined by [XLEFT..XRIGHT] and [YBOT..YTOP] then the
marker will be trimmed to fit the boundary.

The following conditions are expected to be true. Violation of
these conditions will result in unpredictable results.

0<=X<=319
0<=Y<=NZONE*80-1
XLEFT <= X <= XRIGHT
YBOT <= Y <= YIOP

PROCEDURE GMARK(SCREEN: ARRAY FOR SCREEN DISPLAY

NZONE : INTEGER, # OF 1/3 ZONES OF SCREEN
X : INTEGER, X LOCATION COF MARKER
Y : INTEGER, Y LOCATION OF MARKER
MN : INTEGER, MARKER NUMBER O<=MN<=7
AXL : INTEGER, XLEFT OF WINDOW TO CLIP MARKER
AXR : INTEGER, XRIGHT QOF WINDOW TO CLIP MARKER
AYB : INTEGER, YBOTTOM TO CLIP MARKER
AYT : INTEGER, YTOP TO CLIP MARKER
LSTY : INTEGER, LINESTYLE FOR PEN: 0 IS WHITE, 1 BLACK);
EXTERNAL;
7.9 THROTTLE

This procedure provides rudimentary time control. Control will
return to the calling program when the indicated time, in ticks
of the line frequency clock, has passed.

PROCEDURE THROTTLE (TICKS:INTEGER); EXTERNAL;

60-0060-001B ' 7-8

APPENDIX A
A.1 SIGGRAPH CORE-79 COMPATIBILITY

The Graphics Extensions package provided by Terak for UCSD Pascal
Version II.0 is a derivative of the basic output, no input, 2D
proposed standard as developed by the ACM/SIGGRAPH Graphic
Standard Planning Committee. Not all features of the SIGGRAPH
CORE - 79 standard have been implemented. However, those features
which have been implemented comply with the functional and
semantic specifications for that feature. Even though all
features of the standard have not been implemented, the user is
still provided with a powerful, functional, integrated graphics
!.ibrary. The complete proposed graphics standard is contained
in:

Computer Graphics

A Quarterly Report of SIGGRAPH-ACM

Vol 13, Number 3, August 1979

Status Report of the Graphics Standards
Planning Committee

Copies may be purchased by contacting:

ACM

P.0. Box 12105

Church Street Station
New York, New York 10249

The proposed standard has been specifically designed to avoid the
limitations of computer language binding. Language binding
considerations have been left to the implementor. The approach
taken in the Terak implementation has been to apply generally
accepted Pascal programming techniques. All capabilities have
been implemented using the UCSD Pascal Version II.O subroutine
call with conventional subroutine argument sequences. The
routine names have been compressed to meet UCSD Pascal Version
II.0 limitations, while still maintaining a high degree of
readability.

The Terak implementation of the CORE-79 standard is compatible
with output level 1l: Basic Output, input level 1: no Input and
dimension level 1: 2D, as described below. It should be noted
that the only error checking that exists is that which is
provided by UCSD Pascal.

"A-1 60-0060-001B

Rha-¥

A.l.1 Output Primitives

The output primitives, as summarized in the CORE-79 standard,
Appendix A, except for:

POLYLINE ABS

POLYLINE REL
POLYMARKER ABS
POLYMARKER REL
INQUIRE TEXT EXTENT 2

are supported. The "POLY" routines are not supported because of
existing limitations in the UCSD Pascal compiler. They provide a
functional implementation of the features defined for each
procedure as defined in Section 2 of the standard.

Al.2 Picture Segmentation and Naming

No support is provided for explicit temporary picture
segmentation and naming as described in Section 3 of the
standard.

Al.3 Attributes

ly a subset of the attributes, as specified in Section 4 of the
standard are supported. They are:

SET LINESTYLE (SET_LNST)
SET_CHARSIZE (SET_CHSZ)
SET_CHARSPACE (SET_CHSP)
SET_CHARPRECISION (SET_CHPR)
SET_MARKER SYMBOL (SET_MKSM)

Same additional attribute values have been provided which are
defined as implementation dependent and exceed the minimum
standard requirements. The user is referred to the appropriate
discussion in Section .4.4 of this document for additional

details.

Al.4 Viewing Operations and Coordinate Transformations

Two of the viewing and coordinate procedures, as defined in
Section 5 of the standard, are supported. These are:

SET WINDOW (SET_WNDW)
SET VIEWPORT ~ (SET_VPRT)

The SET VPRT procedure functions as if the default viewport
specification were the entire Normalized Device Coordinate space,
(as set by a nonsupported graphics procedure SET NDC SPACE 2).
All procedures in the Terak implementation function as if

SET WINDOW CLIPPING were ON.

60-0060-001B A-2

Al.5 Control

Currently, none of the graphics control procedures, as defined in
Section 7 of the standard, are supported by the Terak
implementation. The functional intent of that section has,
however, been provided in three procedures: INIT GRF (graphics
initialization), DRAW VS and DISP VS. These procedures provide
control of the graphics display space for the Terak
implementation. It should be noted that these procedures are not
a part of the CORE-79 standard. They do however, provide access
to the full power of the Terak 8510 graphics hardware. Support
of these specialized hardware features is not part of the
standard.

Al.6 Future Considerations
Future release of this graphics library will continue support of

the CORE-79 standard and will move towards a greater degree of
compliance and compatiblity.

A-3 60-0060-001B

Reserved

60-0060-001B A-4

APPENDIX B

B.1l TERAK 8510 GRAPHICS DISPLAY PROCESSOR

The graphics display is presented on the 8532 Video Monitor as a
320 dot wide by 240 dot high matrix. The graphics display, when
active, illuminates or blanks each dot according to the contents
of a memory buffer. Sixteen hundred words (16 bits per word) are
required for each third (zone) of the screen, or forty eight
hundred for an entire 320 by 240 dot display. This can be
reduced, with simultaneous reduction of the graphics area of the
monitor displayed, by the zone blanking feature. Each zone of
the graphics display may be blanked or displayed independently.

The character display is presented on the Video Monitor as a
matrix 80 characters wide by 24 characters high. Like the
graphics display, the character display is divided into three
zones, which can be selectively blanked.

The display presented to the user is a Video overlay of the
graphics and character displays. Except for the conventions
established by this and other system software, the two displays
are independent. Each graphics zone is 80 dots high by 320 dots
wide, and each character zone is 8 characters high by 80
characters wide. Blanking of any one character display zone is
mutually independent of the blanking of any one graphics display
zone.

B-1 60-0060-001B

Reserved

60-0060-001B B-2

Cl. TERAK SIGGRAPH GRAPHICS LANGUAGE CROSS-REFERENCE

FUNCTION
INIT GRAPHICS

USE SURFACE
DRAW ON VIEW SURFACE
DISPIAY VIEW SURFACE
SET WINDOW
SET_VIEWPORT

SET LINESTYLE

NEW_FRAME

INQUIRE CURRENT POSITION
MOVE_ABS B

MOVE REL

LINE_ABS

LINE REL

POLYLINE ABS

POLYLINE REL

SET MARKER SYMBOL
MARKER ABS™

MARKER REL

POLYMARKER ABS
POLYMARKER_REL

SET CHARACTER PRECISION
SET CHARACTER SIZE

SET CHARACTER SPACE
TEXT -

PR R E T E L E E E E T A TS

APPENDIX C

:

<<

X (DIM)

FORTRAN Pascal
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X

X

X X
X X
X X
X

X

X X
X X
X X
X X

"BASIC" above refers to both MUBASIC and BASIC-11.

w"pascal' above refers to UCSD Pascal Version II.O.

Cc-1

60-0060-001B

Reserved

60-0060-001B C-2

APPENDIX D

Dl1. ANALOGY OF THE GRAPHICS PROCESS

Figure D-1 illustrates each stage of the conversion process to a
star drawn by a user program to the resulting image displayed on
the screen. The window is set using World Coordinates. The top
point of the star is lost here because it lies outside the
Window. The Viewport is set in Normalized Device Coordinates.
In this example, the Viewport maps the Window onto the entire
View Surface, which has been defined to be three zones. The View
Surface is then displayed on the entire screen.

Figure D-2 gives a more complex example of the same process. The
top point of the star is again lost because it lies outside the
Window. The Viewport maps the Window onto a portion of the View
Surface, which has been defined to be five zones. 1In this
example, the physical memory for the graphics display has been
explicitly defined, and consists of seven zones. The View
Surface is contained in the first five of these seven. An offset
of -2 has been used in mapping the View Surface onto the physical
display, which results in the use of zones 3 throuch 5 of the
View Surface for this purpose. This process eliminates the
entire top section of the star. All three character zones are
displayed, but only the upper graphics zone, while the middle and
lower zones are blanked. This results in the loss of the bottom
two points of the star from the final display.

D-1 60-0060-001B

CHARACTER DISPLAY IS INDEPENDENT
OF GRAPHICS DISPLAY, IS VISUALLY
MIXED WITH GRAPHICS DISPLAY AND
IS NOT SHOWN FOR BREVITY.

PHYSICAL DISPLAY
POSITIVE Y SHOW ENTIRE

VIEW SURFACE
POSITIVE X DISP_vS (0,7,7)

USER PROGRAM
DRAWING STAR CLIPPED
BY WINDOW SCALED BY
VIEWPORT AND DISPLACED
ON THE FULL SCREEN

/ﬁ

(1, 1) IN NDC

WINDOW
SET USING WORLD ,
COORDINATES e.g. ~/ _
SET_WNDW (-5.0, 5.0, -2.0, 8.0) : d
VIEWPORT
SET USING NORMALIZED
DEVICE COORDINATES (NDC)
SET_VPRT (0.0, 1.0, 0.0, 1.0
' VIEW SURFACE
DEFINES NORMALIZED DEVICE 320 PIXELS
COORDINATES (NDC) e.q. 240 PIXELS'
DRAW_VS (3)
(0, 0) IN NDC
0213-001

Figure D-1 Analogy of the Graphics Process

60-0060-001B D-2

/ml CHARACTER DISPLAY IS INDEPENDENT
OF GRAPHICS DISPLAY, IS VISUALLY

MIXED WITH GRAPHICS DISPLAY AND
IS NOT SHOWN FOR BREVITY.

PHYSICAL DISPLAY
SHOWING ALL THREE GRAPHICS

POSITIVE Y BANK ZONES, WITH LOWER AND
MIDDLE ZONES BANKED
DISP_VS (-2, 4, 7)
POSITIVE X
{1,1) IN NDC
USER PROGRAM
DRAWING STAR CLIPPED BY -~
WINDOW, SCALED BY 20 INTEGER
VIEWPORT, AND CLIPPED BY ARRAY ELEMENTS
GRAPHICS BANKING ZONES /
ARRAY) VIEW SURFACE
ORIGIN DEFINES NORMALIZED
< DEVICE COORDINATES
& (NDC) e.g.
) DRAW_VS (5)
SET USING WORLD
COORDINATES, e.g. P
SET_WNDW (-5.0, 5.0, -2.0, 8.0) <
~
VIEWPORT 1 k <
SET USING NORMALIZED >
DEVIGE COORDINATES (NDC)
SET_VRPT (0.5, 0.9, 0.18, 0.75) Vi
_- 320 PIXELS
PHYSICAL MEMORY
ARRAY VARIABLE e.g. 240 PIXELS
NEW (SURFACE.SEVEN ZONES)
(0,0 IN NDC
0214-001

Ve Figure D-2 Extended Analogy of the Graphics Process

D-3

- 60-0060-001B

Reserved

60-0060-001B D-4

60-0060-001B

60-0060-001B

