
Research Institute for Advanced Computer Science
NASA Ames Research Center

An Assessment of the Connection Machine_ /_"

Robert Schreiber

(NASA-C_-ISg87o) AN ASSESSMENT OF THE
CONNECTION _ACHINE (_ese_rch Inst. for

Advanced Computer Science) 18 p CSCL 09B

c, 31oo

N91-$260i

Uncles

00_307o

RIACS Technical Report 90.40 June, 1990

https://ntrs.nasa.gov/search.jsp?R=19910023487 2019-06-09T01:21:19+00:00Z

An Assessment of the Connection Machine

Robert Schreiber

The Research Institute of Advanced Computer Science is operated by Universities Space Research

Association, The American City Building, Suite 311, Columbia, MD 244, (301)730-2656

Work reported herein was supported by the NAS Systems Division of NASA and DARPA via Cooperative

Agreement NCC 2-387 between NASA and the University Space Research Association (USRA). Work was

performed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center,

Moffett Field, CA 94035.

An Assessment of the Connection Machine

Robert Schreiber"

Research Institute for Advanced Computer Science

Mail Stop 230-5, NASA Ames Research Center

Mountain View, CA 94035

e-mail: schreiber_riacs.edu

April 13, 1990

Abstract

The CM-2 is an example of a connection machine. The strengths and prob-

lems of this implementation are considered. Then important issues in the

architecture and programming environment of connection machines in gen-

eral are considered. These are contrasted with the same issues in MD

multiprocessors and multicomputers.

1 Introduction

VLSI technology continues to evolve. In today's submicron CMOS tech-

nologies, million transistor chips with 50 Mhz docks capable of two 64-hit

floating point operations per clock have been built. In the coming decade,

a further four-fold reduction in feature size and 16 fold increase in density

is likely: thus, the 1600 Megaflop processor chlp is coming. These develop-

ments will lead to parallel teraflop systems in the late 90s. There are going

to be strong MIMD shared memory contenders as well as multicomputers; I

also expect that the DARPA sponsored development at Thinking Machines

will lead to SIMD massively parallel systems that get there as well.

This paper is meant to be a critical assessment of the connection machine

project. The conclusions expressed here are entirely mine. They have been

"This work was supported by the NAS Systems Division and/or DARPA via Cooper-
ative Agreement NCC 2-387 between NASA and the Universities Space Research Associ-
ation (USP,.A).

developed with the attention, criticism, and help of my coneagues, especially

Creon Levit and John Gilbert, but I am solely responsible for these views.

My conclusion is that the connection machine is a breakthrough in ma-

chine architecture. It clearly shows the possibility of achieving a major gain

in sustained performance through the use of simple but highly replicated

hardware. It is also a breakthrough in that the fundamental programming

model, data parallelism, is much easier to use and think about than MIMD

programming systems. TMC has made several nice extensions to the sim-

plest SIMD programming model: parallel remote reference (called prs_),

parallel remote store (called pact) with combining operators, segmented

parallel prefix operations (called scan), and nearest-neighbor grid commu-

nication (called news). These add significant power to the languages.

Nevertheless, there are a number of serious weaknesses in the current

TMC implementation (the CM-2) of the idea] connection machine. After

discussing these, I will give my view of the unsolved and dLfllcult problems of
software and hardware that will need to be addressed over the next decade in

order for the supercomputer user community to Ucash in" on the connection

machine breakthrough.

1.1 Outline

The contents of the report are these.

I. Introduction.

2. Connection machines: what are they?

3. Uses of the CM-2 at RIAC$ and NASA Ames.

4. Abstract CM architecture.

5. The hardware implementation.

6. The programming model.

7. The programming tools.

8. In contrast: The MIMI) parallel computers.

9. The futureofTMC.

2

2 Connection machines: what are they?

The connection machines are implementations of the abstract CM model

proposed by HiUis in his 1985 PhD thesis [6]. The idea is massively parallel

computing. There are so many processors that one thinks in terms of an

unlimited number. The memory is purely distributed and local so that by

the replication of local access the overall memory bandwidth is huge. (Hillis

rightly starts from the thesis that limited bandwidth to memory is the crux

of the problem of speed in highly parallel computing. His solution is memory

parallelism to go along with the processor parallelism.) These ideas were not
new to H_illis. The MPP and the DAP had these features and came earlier.

But in Hillis' connection machine, there is a communications network so

that the programmer may access remotely stored data through the network

just as if it were locally stored (the connections). The programming style
is based on the idea of one virtual processor per element of the chosen data

structure. Programs freely use the connection system through the primitive

mechanisms of parallel remote references and parallel remote store with

combining operators to resolve multiple stores to the same memory cell.

They also use it through the parallel prefix, or scan pseudo-operator.

HUlis minimizes the importance of the SIMD -- MIMD dichotomy in his

thesis. The initial CM implementation was SIM'D as a matter of convenience,

not principle. But the users of the CMs have become accustomed to the

SI]_I"Dstyle. And they have found it far easier to program a single threaded

SIMD machine than have users of the MIMD alternatives. It seems very

probable that connection machines wK] continue to be SIMD, at some level.

(The chief problem with the SIMD implementation of the CM-2 is that at

most four simultaneous users can be on the machine at one time.)

3 Uses of the CM-2 at tLI.kCS and NASA Ames

At RIACS and NASA Ames we have had a lot of experience in implementa-

tion of complex numerical methods on the CM. The NAS Systems Division

has ported the flow code ARC3D [7]. RIACS personnel have implemented a

particle simulation of hypersonic flow [I], [2]; ei_cient matrix multiplication

codes [8]; some multl]evel iterative methods for elliptic differential equa-

tions [3], [4]; and a sparse Cholesky factorization [5]. RIACS and NASA

scientists are developing codes for geophysical fluid dynamics (Lewis and

Frederickson) and for preconditioned conjugate gradient iterations and ex-

3

plicit finite volume flow codes using unstructured grids (Hammond, Barthes,

and Schreiber). This work has been done in *lisp and c* with some code in

Paris; we have now begun to use CM Fortran as well.

4 Abstract CM architecture

The CM and other highly parallel machines derive much of their power form

the simplicity and scalability of their hardware. The hardware consists of

ICs of a very smal] number of types, all VLSI, that are laid out in replicated

patches over a number of PC boards. The ideal system uses only one or a

few VLSI parts per processor with a few DRAM memory chips along side.

Machines with any other hardware strategy are invariable too expensive,

too power hungry, and too unreliable. Architectures that discourage this

approach are likely to fail in the long run.

The router is the most important, innovative, and difficult to build fea-

ture of CM architectures. It is vital, however, in that it provides the hard-

ware support needed to implement the very general communication mech-

anism that programs for complex problems require. (The corresponding

feature in vector machines, hardware scatter/gather, is equatly important in

that domain.) Because arbitrarily complex communication is implemented

entirely by router hardware, no layer of software intervenes between applica-

tion code and message passing. This reduces the latency for communication

to levels where it is possible to use it every few operations, not every few

thousand as on current MIMD mtdticomputers.

Concerning the processor architecture, the issue of whether 1-bit, 8-bit,

or 64-bit processors should be used is important for these reasons:

i) 1-hit architectures are most efficient in that all processor hardware is

employed all of the time;

A corollary of point (i) is that narrow processors are extremely efficient

at logical operations (I bit data), pixel operations (8-16 bit data), and

integer operations (16 or 32 bit data);

For a given total gate count, one has more 1-bit processors than, say,

8-bit processors. Thus, more algorithm parallelism is needed to use a
1-bit machine than an 8-bit machine of the same cost;

iv) Local indirect addressing is very dii_cttlt in 1-bit architectures, since

a multiple bit address (16 - 24 bits, typically) must be read from

4

memoryto supporta 1-bit read;this maybea fatal problem;

v) In l-bitarchitecturesit isnot usefulto integratea fastscalarunit

tightlywith the parallelarray,sincethe time to extract data from

memory over a 1-bitdata path isprohibitive.Given wider paths to

memory, therecan be considerablevalueinthiskind ofhybridsystem.

The tensionbetween points (i)and (ii),which favor 1-blt,and (iii)-

(v),which favorwiderprocessors,makes the 4-16bitrange a very attractive

design point in today'stechnologies:thisallows 10 4 - 10 5 processorsin

machines with pricesin the $1 - $10 millionrange. In futuredesigns,the

capabilityforlocaladdressingof localmemory shouldbe provided,perhaps

at some reduced throughput.To do thison the currentCM requiresstorage

of data in a "slicewise"manner, in which a 32-bitword isspread over the

32 processorson 2 chipsthat shareone Sprint-Weitek combination. With

betterhardware implementation of floatingpoint and indirectaddressing,

thisdistinctionshoulddisappearin the future.

4.1 The instruction set

Recent researchintoinstructionset architectureslu_ shown that simple

instructionsetsthatprovide directcontrolof the hardware without an in-

terveninglayerofmlcrocode are the bestapproach. These architecturesare

calledRISCs (Reduced InstructionSet Computers).

The instructionset of the CM-2, Paris,implements a very high level

machine model. It isvirtualized.Itisa memory-memory architecture.It

has an enormous number ofinstructionsbecause itisaimed at too high a

levelofabstraction.Itisimplemented by microcode,which makes itslower.

Ithidesimportantmachines features,most notablythe Weitek chipregisters,

the latencyofthe paths to memory and the detailsof the router.It seems

to me that Pariswas designedbeforethe virtuesof the RISC approach to

instruction sets was well known and understood. At this point, Paris is a

significantliabilityforTMC. _uturecompilersshouldbypassParis.Itshould

be supported as a high-levellanguage only forcompatibilitypurposes.

The factthatParisisa memory - memory instructionsetisparticularly

unfortunate,sincethiswastes the most valuablemachine resource,mem-

ory bandwidth. In RISCs, memory is referencedonly by load and store

instructions;thisallowsmemory trafficto be scheduledto hide the latency

of memory and to avoid unnecessaryloads and stores,But in memory -

memory architectures,in which the processorregisters(and the CM-2 has

many of these) aren't visible to the programmer or compiler, every tempo-

rary vaiue is stored to and loaded from memory, and can't be loaded until

the processor already is waiting for it.

Because of its comp]exlty, Fortran probably won't use more than a frac-
tion of Paris.

Because of the deficiencies of Paris, it is common for programmers to

resort to even lower level coding, microcode in some form, to get the best

possible performance out of the CM hardware for their applications. There

are several well known examples: the 5Gflop matrix multiplier, the TMC

implementation of FFT, Vavasis' fast spreads for the QR factorization, the

LU decomposition codes in the new linear algebra library, for instance. This

is symptomatic of Paris failure as an instruction set for the CM-2 hardware.

I don't want to sound completely negative about Paris. It does have
terrific restaurants.

Virtualization in the instruction set, imp]emented by microcode, is a bad

idea. The alternative is for software to create "strip-m_nlng" loops around

non-virtuai instructions to implement virtuaIized operations. The advantage

of this approach is that these loops are exposed to compiler optimization.

For example, the compiler can detect that in the Fortran statement

fora11 (i = l:n)0 a(i,i) = 0.

that the number of virtual processors for which any activity is required is in

general less than the number of data dements per physlcai processor, and

can act accordingly. Not so the CM microcode.

The implementation of news communication in Paris with virtualization

is illustrative of the way memory bandwidth is wasted. Paris virtualizes by

placing a group of contiguous virtual processors in a single physical proces-

sor. Consider the *lisp code

(*se_ a!! (+!! (news!! b!! -I) (novs!! b!! i)))

which replaces a(i) by b(i-1)+ b(i+ 1). Let there be V virtual processors for

every physical processor. Processor P1, for example, stores a(V),..., a(2V-

1) and b(V),..., b(2V - 1). A good implementation would move only two

values into each processor, regardless of the VP ratio. In the case of P1,

only b(2V) from processor P2 and b(V - 1) from processor Po. But Paris
has to move 2V values! Only two move into a processor from its neighbors.

The other 2(V - 1) are moved from one memory cell to another within

the processor. Why? Because the microcode that implements Paris only

Jt

sees two news! ! instructions, which move every element of b to the two

neighboring virtual processors.

In summary, a lower-level instruction set that is not virtual and in which

machine registers are visible would allow the user or the compiler to make
better use of the hardware's resources. It would make the CM-2 far more ef-

fective. Paris also uses the router wires inefficiently. Better communications

software that implements important communication patterns, such as news,

power-of-tvo-nevs, and spreads would be another significant improvement

to the CM-2.

5 The hardware implementation

The CM-2 is implemented with gate arrays. Without a full custom imple-

mentation, future CMs will not keep pace with the microprocessor based

machines. Today, chips with 2 - 3 times the clock rate and 2 times the data

path to memory are easy, low-risk designs. No architecture is so good that

it can be implemented in routine technology and stUl survive in this very

competitive market.

How should floating point be handled? The CM-2 does it by strapping

a Weitek chip onto the board as a coprocessor for each pair of processor

chips. A glue chip (the "Sprint" chip of the CM-2) is needed for serial -

paralJel conversion. The latency of floating point operations is quite high

due to this long pipeline, so only highly virtualized operations are efficient.

Finally, the memory of 32 processors is not fast enough to keep the Weitek

fully supplied with data; but Paris does not provide visibility of the Weltek

registers, so there is little software can do to alleviate the memory bottleneck.

The moral of the story: design the floating-point in, don't strap it on. The

floating point should run at memory speed (one operation to one memory

reference). And the floating point pipe stages and registers need to be visible
in the instruction set, RISC style.

The CM uses a front-end for two distinct jobs: running the operating

system and controUing the parallel array. This makes the front-end a bot-

tleneck. In the future these roles should be separated, and a fast control

processor that is tightly integrated with the paratlel array should be devel-

oped. It should he capable of fast scalar operations.

The current CM avoids the complication of a memory hierarchy entirely.

This likely wKl continue to be viable and is a major advantage. On the other

hand, with the increase in CMOS VLSI density and the resulting speed of

the processorchip that will comeduring the 90's, a system in which alJ

memory references are off-chip may become untenable: some cache on the

processor chip may be required in a future generation of the machine. (New

packaging and mounting techniques may make this unnecessary by allowing

for much wider data paths between processor chips and memory chips.)

The C/vl uses no virtual addressing. For computations on large data

arrays, which is what the C/vl is supposed to do, virtual addressing can

be quite problematic due to highly nonlocal addressing of data. Moreover,

local indirect addressing would be impossible if it required that every such

address undergo a virtual to physical translation in the processor: there is

no room for a TLB and other such mechanisms at each CM processor.

The router is the key to the CM. The current machine has a router

that runs at roughly 1% of floating point speed. This make router-intensive

algorithms unattractive in terms of their performance. But many such al-

gorithms are important in many areas, for everything from graph theory to

geometry to AI. So a true C/vl needs a faster router. This is _e di_calt

hardware problem for this type of machine and the one into which research

money should flow fastest.
The CM does not do particularly well on problems for which the un-

derlying communication scheme is grid oriented. A better hardware grid

may be the answer for some applications, but a faster router should have

the top priority. Part of the problem may well be fixed by simplifying and

devirtualizing the instruction set, as was indicated earlier.

The I/O structures of the CM-2, the data vault and frame buffer, are ex-

cellent. They illustrate wen that with respect to I/O, data parallel machines

have an advantage: paralieIism in the processors is matched to paral]eIism

in the memory is matched to parallel I/O in a balanced, simple, high band-

width system.

6 The programming model

6.1 The connection machine programming model

The programming style for the connection machine is called "data paral-

lelism _. In essence, whole arrays are scted upon, elementwise, in parallel.

Three levels of abstraction are possible:

i) All operations are done on arrays of one element per physical processor.

This is the programmer's view at the assembly language (miczocode

8

on the CM) level.

Operationsaredoneon arraysof oneeleme.ntper virtual processor.
Eachvirtual processorsimulatesV virtual processors.Thus, array
sizesarea multiple of the machine size. The CM 'assembly" language

Paris works at this level. (With the restriction that V is a power of

two.)

iii) Arbitrary arrays and subarrays may be used as operands. Fortran 90
works at this level.

The third of these levels is the most appropriate for serious scientific com-

puting and is, fortunately, soon to be available.

The introduction of the virtual processor model by TMC was a very

important step in the direction of useful programmability in SIMD parallel

machines; even today, it is not available on the MIMI) multicomputers.

A very important advantage of the SIMD programming models is repro-

ducibility of results. Because there is a single thread of control, a program

produces the same results every time it is run (assuming the same input

data). This greatly eases the problem of debugging. MIMD models on the

other hand are nondeterministic. Thus, known bugs are hard to track down

since they may be ephemeral.

The problem with writing applications programs on the CM are three-

fold. First, Amdald's law plays a role: you need to keep most of the hundreds

of thousands of virtual processors busy almost all the time. Only extremely

parallel algorithms work well. Second, irregular communication through the

router is very expensive and should be sparingly used. On later instances

of the CM this should be made less so. This will allow the applications

programmers greater freedom in their choice of algorithms and data struc-

tures and will make it possible to solve problems with irregular topological

structures more easily. Finally, the peculiar characteristics of the CM-2 in-

struction set often require that the programmer get involved with coding at

an unnecessarily low level. This ought not be true in the future.

Let me summarize my thoughts on the programming environment.

• Connection machine programming is essentially no more difllcult than

sequential machine programming.

• Very innovative algorithms are needed on connection maddnes because

of parallelism (Amdahl) and because the data are distributed so no

processor sees more than a small part of the problem.

• Fortran 90 isa verypromising approach to the programming ofmany

but not allparallelsupercomputing situations.

7 The programming tools

For numericalcomputation,*lisphas littleto offer.The Fortrannow under

development isbetterin theseways:

• It is quite close to the standard Fortran 90; it is divorced from Paris

entirely;

• ItallowsmultipleVP setsand arraysofany sizewithout any fuss;

• It provides the most natural syntax for arrays and iteration, Fortran's

traditional strengths;

• It provides dynamic storage allocation, correcting one of Fortran's tra-
ditional weaknesses.

• Itsintrinsicsare useful.

The currentCM Fortranneeds some additionalextensions.

• There is no provision for pse_ with combining operators;

• There are no scans,segmented or otherwise;

• There isli_ted controloverthe layoutofarraysin the CM;

• Nested where constructs should be allowed.

Unfortunately, the birth of CM Fortran has been slow and very painful.

As of today, the implementation fails to support the full language. Array

valued functions, a key feature, are not implemented. There is no interactive

debugger, a feature that I don't find really important, but others would

like. More important, very little is known about what optimisations the

compiler w_ do and how it will do them. A very interesting question is

the implementation of fora11. This construct 8ires the language a lot of

additional expressive power. Whether it can be compiled into good code,

and how, remains to be seen. How the compiler will manage memory and

how it will map data to the machine are also open issues.

10

It is quite inconvenient to have to rely on access to the machine in order

to debug. Ofl]ine development of CM Fortran programs, or time sharing of

the CM should be a high priority.

Further development of the parallel variants of C is of little value.

8 In Contrast: The MIMD Parallel Computers

8.1 Shared memory and distributed memory MIMD

The first question to be answered in determining the direction for supercom-

puting is one of architecture. The Von Neumaun line of machines, the clhnax

of which is the current vector multiheaded supercomputers (two evolution-

ary steps away from Von Neumann already) cannot continue to evolve to

meet NASA's needs. For the future, there are several alternative branches.

Today's (Cray, NEC, Fujitsu, Hitachi) supercomputers are MIMD mul-

tiprocessors that share a unified memory space. A number of highly parallel

derivatives of these machines are now under development. To build such
scaled up versions, a new memory ar_tecture that employs many mem-

ory modules and a processor - memory switching network is necessary. This

makes coherent caching at the processor difficult, so some software controlled

caching is becoming popular. Latency for access to non]oral memory is high

on these machines: 5psecs is typical (whereas floating point arithmetic takes

a few tens of nanoseconds, at most).

The one advantage of these systems is that they can attempt to support

the current programming model: simultaneous multiple users, many Unix

processes, the illusion of a fiat memory with equal access by all processes,

and automatic compiler extraction of parallelism from sequential code.

The muiticomputers are an alternative. (They have also been called

"message passing" machines, but I prefer the name muiticomputer.) In

these, each processor has its own memory and may not address the mem-

ory of another processor directly' Synchronization and communication are

accomplished by messages, sent_yone and received by one or several pro-

cessors. Peak perforce compares favorab]y with the shared memory

alternatives, but not by much: the difference, I feel, is due more to the use

of very high performance stock microprocessors. In both classes of machine,

hardware costs are roughly the same, with slightly less hardware devoted to

interconnect in the multicomputers.

In early multicomputers, memory per node was inadequate. Large pro-

grams or large shared data structures that had to be copied in every node

11

werethereforeruled out. The economics of hardware technology now make

it cheap to have several tens of megabytes per node (at the node per board

level) so that this is not a problem any longer.

Latency for communication and synchronization is due essentially to the

cost of the operating system call needed to send or receive a message. In
the current i386 based Intel machine, that latency is roughly 300 _ec_.

The vendors hope that new faster microprocessors and reimplementatlon of

the code will reduce this to as little as I0 psecs, but there is no certainty

that they will be able to do so. Unlike the original, and indeed the current

hypercubes, these new systems will use a message routing subsystem con-

nected as a grid in two dimensions and implemented by fun custom VLSI

devices. This has essentially eliminated hardware as a source of significant

message passing latency. Bandwidth, however, is still hardware limited by

the channel width (which is now 8 bits).
The fundamental difference between these two architectural species is

that the shared memory machines use hardware to generate messages on

program demand, and the messages (words or cache lines) are a few tens of

bytes long. The avoidance of a software layer to traffic with remote memory

greatly reduces the latency that can be achieved. On the mtdticomputers,

the programmer has the burden of explicitly decomposing the data into its

separate local data structures; this can enhance performance given the cur-

rent state of compiler technology. It results in fewer messages with more

information in each, thereby allowing for increased utilization of the net-

work. It also makes programming these machines hard, especially when a

computation is irregular or dynamic: as in a moving local mesh refinement

solver for unsteady transonic flow, for example.

8.2 MIMD programming models

For the tvffMD multicomputers, at the assembly language level, there is one

program per node with explicit use of messages to handle data sharing and

synchronization. This model is currently the only one supported by the

manufacturers. (This pill usually comes with a C or Fortran flavored sugar

coating). While an optimizing compiler shields the programmer from the

peculiarities of the node architecture (and allows for portability between ms-

chines with different nodes) the programmer sees the fact that the machine

has no unified memory space. Several alternatives currently under study by

university and commercial researchers include Linda, a progrAmrn;-_ system
that simulates in software an associative shared data space; virtmd shared

12

memory simulated using software; compiler optimization to partition the

data and the work of an unpartitioned program, inserting message passing
calls as needed.

In shared memory xnachines, access to shared variables is tricky. Sema-

phores are needed to insure proper synchronization of writes and reads.

A number of other synchronization mechanism, such as the barrier, are

available to the programmer. Access to these synchronization tools can be

expensive. So is access to nonlocal memory.

Some current research directions in simplifying the programming of these
machines are:

The development by the Parallel Computing Forum of a standard set

of extensions to Fortran 77 to allow the programmer various ways of

expIic]tly expressing paraJ]e]Jsm in a program.

The development by machine and compiler vendors of Fortran 77 and

Fortran 90 compilers that automatically find and exploit parallelism

at an outer loop level.

Operating systems that allow the amount of paral]elism used in a job

to vary as the characteristics of the computation vary.

Dynamic scheduling mechanisms that balance the load between pro-
cessors at run-time.

Compiler analysis of entire programs (interprocedura] analysis) to al.

low for better optimization.

Automatic decomposition of programs into tasks that require relatively

little communication (automatic blocking of algorithms).

9 The future of TMC

Here

I.

o

are my chief recommendations:

Redesign the processor chip in a full custom, high density CMOS tech-

nology. Increase the dock rate.

Design a new, simplified instruction set in which each processor is a

load/store architecture. This could be done for the CM-2 now.

13

3. Implementvirtualizatlonthroughappropriatecodegeneration by the

compilers. The instruction set should not be virtual.

4. Build support for floating point arithmetic into the processor chip.

5. Make the router faster in relation to the processors.

6. Provide local indirect addressing.

7. Develop a robust optimizing compiler for a full Fortran 90, with appro-

priate TMC extensions to support segmented scan, ps.t with com-

bining, and nested where.

Based on discussions between NASA and RJACS and the TMC staff', I

believe that TMC is aware of all of these issues and is working to correct

the problems and accentuate the strengths. I hope that this will result in

a mscl_e that realizes to an even greater extent the promise that data

parallel architectures have for very large scale scientific computing. Thus I

expect to see a healthy TMC delivering production supercomputer solutions

that, for the right applications, far surpass what is offered by the traditional

supercomputer houses.

References

[1]Leonardo Dagum. Implementation of a hypersonic rarefied flow par-

ticle simulation on the Connection Machine. Technical Report 88.46,

Research Institute for Advanced Computer Science, 1988.

[21 Leonardo Dagum. A fast sorting algorithm for a hypersonic rarefied flow

particle simulation on the Connection Machine. Technical Report 89.44,

Research Institute for Advanced Computer Science, 1989.

131 Paul O. Prederickson. Totally parallel multilevel algorithms. Technlcsl

P_port 88.34, Research Institute for Advanced Computer Science, 1988.

[4]Paul O. Frederickson. Totally parallel multilevel algorithms for sparse

elliptic systems. Technical Report 89.10, Research Institute for Ad-

vanced Computer Science, 1989.

[5] JohnR.i Gilbert and Robert Schr_ber. MaJsively parallel sparse

Cholesky factorization. Technical Report, ltes_ch Institute for Ad-

vanced Computer Science, 1990.

14

[6] W. Daniel Hillis. The Connection Machine. Cambridge, MA: MIT

Press, 1985.

[7] Dennis C. 3espersen and Creon Levit A computational fluid dynamics

algorithm on a massively parallel computer. International 3ouenal o.f

Supercomputer Applications 3:4 (1989) pp. 9-27.

[8] Walter F. Tichy. Parallel matrix multiplication on the Connection Ma-

chine. Technical Report 88.41, Research Institute for Advanced Com-

puter Science, 1988.

15

