
The
ConnectiQQ Machine
System

eM User's Guide
If; ;; n mimn I ; IFf lUll! rTT ;; 11 r ; rrrrrq:ri 1 irK; q;;q rn 1 11 Pl l11rmr:m

Version 6.1
October 1991

Thinking Machines Corporation
Cambridge, Massachusetts

Reprinted, with corrections, December 1992

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and is
believed to be reliable, Thinking Machines Corporation does not assume responsibility or
liability for any errors that may appear in this document. Thinking Machines Corporation
does not assume any liability arising from the application or use of any information or product
described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM-2, CM-2a, CM, and DataVault are trademarks of Thinking Machines Corporation.
C* ® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Sym.bolics, Inc.
Sun and Sun-4 are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
The X Wmdow System is a trademark of the Massachusetts Institute of Technology.
UltraNet is a trademark of UltraNetwork Technologies, Inc.

Copyright © 1990-1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

The
Connection Machine
System

eM User's Guide
.... [.... ··iHTlll·l··m·Ur . In··· iT rr .. ;

Version 6.1
October 1991

Thinking Machines Corporation
Cambridge, Massachusetts

Reprinted, with corrections, December 1992

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and is
believed to be reliable, ThjnJdng Machines Corporation does not assume responsibility or
liability for any errors that may appear in this document. Thinking Machines Corporation
does not assume any liability arising from the application or use of any information or product
described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM-2, CM-2a, eM, and DataVault are trademarks of Thinking Machines Corporation.
C* ® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/paris, Lisp/Paris, and FortraD/Paris are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
The X Wmdow System is a trademark of the Massachusetts Institute of Technology.
UltraNet is a trademark of UltraNetwork Technologies, Inc.

Copyright © 1990-1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents
... . BrUilU tIIllmlli .. !.I 11I1J!!LIMI1 .. 1lI111111 .. .IUI .. .t I .. 11 ... LH! .1 . nIH

About This Manual. .. xiii

Customer Support. .. xvii

Part I Introduction to the Connection Machine System

Chapter 1 The Connection Machine System. 3
1.1 Data Parallel Computing. 3

1.2 The Hardware of the Connection Machine System. 4

1.2.1 The Parallel Processing Unit. 5
The Sequencer. 5
VJrtual Processors . 5

Floating-Point Accelerator . 6
Communication. 6
I/O Controllers and Framebuffer Modules. 7

Sections.. 7
The,Nexus...................................... 7

1.2.2 The Front End . 7

1.2.3 The I/O System. 8

1.2.4 Graphic Display System. 10

1.3 Programming in the Connection Machine System..... 10

1.3.2 Programming Tools. 12

1.3.3 Programming Libraries. 12

1.4 Using the Connection Machine System :.. 13

1.4.1 CMFS Commands. 13

Part n Using the CM Operating System

Chapter 2 Executing a Program on a CM System.. 17
2.1 A Simple Program... 17

2.2 Overview of Program Execution on a CM. 18

Version 6.1, October 1991 iii

iv eM User~ Guide

2.3 Obtaining Direct Access to the CM. . • .. 20

2.3.1 Overview.. 20

2.3.2 Executing the Program. 21

2.3.3 Issuing cmattach with the Name of a Program 22

2.3.4 Using cmattach to Obtain an Interactive Subshell. 23

2.3.5 Options for cmattach .. 24

Waiting for Resources: The -w Option. 25

Specifying a Sequencer: The -8 Option. 25

Specifying the Kind of Access You Want

The -e and -t Options. .. 26

Specifying an Interface: The - i Option•......... , 26

Specifying a CM: The -c Option • 26

Specifying the eM Model: The - em Option. 27

Specifying a Geometry: The -g Option , 27

Specifying the Microcode Version: The -u Option 28

2.3.6 Obtaining Direct Access under Timesharing • 28

Performance under Tunesharing 29
Maximum Number of Processes 29
Timesharing and Memory Size 30

Timesharing and Microcode Version. 30

Timesharing and the Framebuffer 31

Timesharing and the Data Vault 31

Timesharing Signals. .. 31

2.3.7 Direct Access and Batch Queues. 32

2.4 Obtaining Batch Access to the CM .. 32

2.4.1 Overview of the CMBatch System 32

2.4.2 Submitting a Batch Request: The qsub Command. 33

The Basics • 34

Specifying the Queue. .. 35

Specifying a Request from a Script File 36

Specifying a Request from Standard Input. 37

The Output from a Request. .. 37.

Setting Limits on a Request. • . . • 39

Choosing a Shell. .. 40

Setting a Priority for a Batch Request. 40

Receiving Mail about a Batch Request 41

Wall-clock Limits for Queues • 41

Timesharing and Batch Requests. 41

2.4.3 Deleting a Batch Request: The qdel Command. 42

2.4.4 Obtaining Information: The qstat Command. 42

Options to qstat 44

~rsion 6.1. October 1991

Contents v

Chapter 3 Miscellaneous CM Operating System Commands " 47
3.1 Obtaining Status Information: The cmfinger Command............. 48

3.1.1 Options. 50

3.2 Listing CMs: The emlist Command " 50

3.3 Listing Tuneshared Processes: The cmps Command................. 51

3.4 Detaching Users: The cmdetach Command....................... 53
3.4.1 Under TImesharing.... 54

3.5 Resetting the CM: The cmcoldboot Command. 55
3.5.1 Under TlID.esharing .. 56

3.6 Timing a CM Program: The cmtime Command . 56

3.7 Obtaining Information about the cmattach Subshell: The em Command 58

3.8 Changing the Priority of Tunesharing Jobs...... 58

3.9 Displaying CM Manual Pages: The cmman Command 59
3.9.1 If You Don't Wantto Use cmman......... 61

Part m Programming with the Connection Machine System

Chapter 4 Programming: The Basics.. 65
4.1 Choosing a Language. • .. 65

4.1.1 Paris.................... 65
4.1.2 CM Fortran . 66

4.1.3 C*... 66
4.1.4 *Lisp. 66

4.2 Overview of the Programming Process 67

4.3 Developing a Program . 67
4.3.1 Libraries and Include Files. 67

4.4 Compiling a Program .. " 68

4.5 Executing a Program. 69

4.6 Debugging a Program. .. 70

4.7 UNIX Utilities. .. 70

Chapter 5 Attaching and Detaching from within a Program 71
5.1 Overview.. 71

5.2 Attaching to a CM. .. 72
5.2.1 Attaching to Any CM Resource. .. 73

Version 6.1, October 1991

vi eM User s Guide

5.2.2 Attaching to a Specific CM Resource 73

Specifying the CM Resource. .. 74

Examples. .. 78

RetuIn Values. .. 79

5.2.3 Preempting Another User. 79

Example .. 80

5.3 Detaching.. 80

5.3.1 Detaching the Calling Process. .. 80

5.3.2 Detaching All Users from a CM. .. 81

RetuIn Values. .. 82

5.3.3 Detaching Users from a Specific Interface. 82

RetuIn Values. .. 83

5.3.4 Detaching Users from a Specific Sequencer Set 83

RetuIn Values. .. 84

5.3.5 Detaching a Specific User 84

RetuIn Values. .. 85

5.4 Cold Booting and Powering Up a CM 85

5.4.1 Cold Booting a CM Resource 85

5.4.2 Powering Up a CM. .. 86

RetuIn Values. .. 86

5.5 Obtaining cmfinger Data 87

5.5.1 C-Only cmfinger Routines 87

Example .. 89

The 0Cfinger_data Structure. 89

5.6 C-Only Routines for Sequencer Information......................... 91

5.7 C-Only Methods for Error Handling..................... 92

5.8 C-Only Methods for Attaching via Command-Line Arguments.......... 92

Chapter 6 Programming Tools ... 97

6.1 Run-Time Safety Checking .. 97

6.1.1 From within a Program. 98

6.1.2 From a cmattach Subshell.. 98

6.1.3 Changing the Default Safety Behavior. 99

6.2 Tuning a Program. .. 99

6.2.1 Interpreting the Results 102

6.2.2 An Example , 103

6.3 Profiling.. .. 105

6.3.1 Effects of Using the Profiling Libraries 105

~rsion 6.1. October 1991

Contents vii

6.3.2 Using the Profiling Libraries. .. 105

From C* and CM Fortran. .. 106

Issuing the gprof Command 106

6.4 Checkpointing a Program , 107

6.4.1 Features of CM Checkpointing. .. 107

Limitations , 107

6.4.2 Overview ofCM Checkpointing 108

The Checkpoint Files .. 108

Compiling a Program Containing Checkpoints 109

Restarting a Checkpoint 109

6.4.3 Include Files for the Checkpointing Package. 109

6.4.4 Initializing the Checkpointing Package , 110

What ckpt_init Does 110

6.4.5 Putting a Checkpoint in a Program. .. 111

In C ... 111

In Fortran , 112

Return Values 112

6.4.6 Calling Routines to Execute as Part of a Checkpoint. 113

The Checkpoint Hook Mechanism. , 113

6.4.7 Setting Up Periodic Checkpoints. .. 115

Setting the Period. .. 115

Performing the Checkpoint , 116

6.4.8 Checkpointing in Response to a Signal. 117

6.4.9 Displaying Progress Reports.. 118

6.4.10 Errors..... .. 119

If There Is a Tuning Problem with Core Files 119

6.4.11 Debugging .. , 120

6.4.12 Programming Hints. .. 120

6.4.13 Running a Checkpointed Program .. 121

In a Debugger. 123

6.4.14 Sample Program .•.................................. 124

6.5 VlSUalizing Data .. 125

Version 6.1, October 1991

viii eM User:S Guide

Part IV I/O on the Connection Machine System

Chapter 7 Using the CM File System , 129
7.1 Overview of the CM File System 129

7.1.1 Similarities to the UNIX File System 129

7.1.2 Differences ... 130

More Than One Directory Tree .. 130

Parallel and Serial Formats 131

7.2 Overview of CMFS User Commands 131

7.2.1 CMFS Commands and UNIX Commands 131

7.2.2 Where You Can Issue the Commands 132

7.3 Copying Files and Data '" 133

7.3.1 Copying Files between the Front-End File System

and the CM File System:

The copytodv and copyfromdv Commands 133

IT the UNIX File System Isn't on the Front End 134

7.3.2 Copying Files to and from a Tape Archive:

The cmd.ump, cmrestore, and cmtar Commands 134

7.3.3 Copying Unarchived Data from Tape: The cmdd Command .. 135

7.3.4 Copying Files within the CM File System:

The cmcp and dvcp Commands 136

7.3.5 Transferring Files between a Data Vault and a Remote

System via UltraNet: The cmftpCommand 136

7.4 Other CMFS User Commands .•.................................. 136

7.5 Environment Variables .. 137

Part V In the Lisp Environment

Chapter 8 In the Lisp Environment. .. 141
8.1 The *Lisp Language .. 141

8.2 UspJParis. .. 142

8.3 Loading *Lisp and LispJParis 142

8.3.1 From the UNIX Prompt. .. 143

8.3.2 From Gma.cs. .. 143

8.3.3 From a Lisp Machine. .. 144

8.4 Using *Lisp - An Overview•........ 144

8.5 Entering the *Usp Package 146

8.6 Attaching to a CM ... 146

~rsion 6.1. October 1991

Contents ix

8.7 Finding Out about CM Use 148

8.7.1 On Symbolics Lisp Machines 149

8.8 Initializing and Resetting the CM. .. 150
8.8.1 *cold-boot 150
8.8.2 *warm-boot 151

8.9 Developing and Executing *Lisp and Lisptparis Code. 152

8.10 Using the *Lisp Compiler 152

8.11 Debugging ... 153

8.12 Timing *Lisp Code .. ISS
8.12.1 TimingYourCOdewithCH:'l'IME ISS
8.12.2 Using Timers in *Lisp Code. .. 157

Starting, Stopping, and Printing the Values of a Tuner. .. 158

Clearing Tuners and Initializing the Timer System. 159

Other Timer Operations .. 159
8.12.3 Interpreting the Results. .. 159

8.12.4 An Example. .. 160

8.13 Detaching from the CM .. 162

8.14 Exiting *Lisp. .. 162

8.15 Using the CM Batch System from *Lisp. .. 163

8.15.1 Submitting the Name of a *Lisp Executable Band. 163

8.15.2 Attaching to the Correct Sequencer and Interface. 164

8.15.3 Sample Program .. 164

8.16 Running *Lisp Programs under Tunesharing 168

8.16.1 Restrictions. 169

The cm:attach Command 169

Paris Floating-Point Instructions. 169

Undocumented CHI : : Functions. 169

Undocumented CHI : : Variables. 170

Undocumented CHI : : Macros • .. 170

Field Decoding Macros. .. 170

Error Messages .. 170

Being Detached. .. 172

8.16.2 Conditionalizing Code 172

8.17 Using the *Lisp Simulator 172

8.18 Lisptparis Programming .. 174

8.19 Paris Run-Tune Safety Checking 175

8.20 The *Lisp Library. .. 176

8.21 VJSUali.zation of Data in *Lisp .. 177

Version 6.1, October 1991

x eM User !so Guide

8.22 CM I/O Programming from *Lisp. 178

8.23 CM Scientific Software . 178

8.24 Managing Large File Sets . 179

Appendixes

Appendix A Back-CompatibiJity Mode 183

A.l Executing in Back-Compatibility Mode. 183

A.2 Memory Allocation in Back-Compatibility Mode 184

A.3 Back-Compatibility Mode and Timesharing. .. 186

Appendix B DFS: Defining File Sets " 187
B.l DFS - Defining File Sets 187

B.2 Defining File Sets .. 188
B.2.1 Argumentstodfs:def-file-set 188

B.3 File Set Definition Files 190

B.4 Defining File Set Directories 191

B.5 File Set Directory Definition Files 191

B.6 Finding Your Site Directory 192

B.7 How DFS Handles File Sets 192

B.8 Loading and Compiling File Sets , 192

B.8.1 Loading File Sets 193
Keyword Arguments to dfs: load-file-set 193

B.8.2 Compiling/Loading File Sets . 193
Keyword Arguments to dfs: compile-load-
file-set 194

B.10 Loading Individual Files 195
B.IO.1 Keyword Arguments to dfs: load-n 19S

Appendix C Paris Functions Affecting Timesharing Performance. 197

Appendix D The UNIX System for eM Users. .. 203

Appendix E Glossary......... .. 209

Appendix F Man Pages. .. 215

Index .. 255

~rsion 6.1, October 1991

About This Manual

Objectives of This Manual

This manual is an introduction to the CM-2 or CM-200 series Connection
Machine system. Read this manual to learn the basics of how to develop and
execute data parallel programs using the CM system.

Intended Audience

Anyone who uses a CM should read this manual. It is applicable to all front­
end computers that connect to the CM; specifically:

• Front-end computers running a version of the UNIX operating system.
(Unless otherwise noted. in this manual "UNIX" refers to both the
SunOS and ULTRIX operating systems.) We don't assume that you
know anything about the CM; we do assume that you are familiar with
UNIX.

• Front-end computers from the Symbolics 3600 series of Lisp machines.
We don't assume that you know anything about the CM; we do assume
that you are familiar with the operation of the Lisp machine.

Revision Information

This manual has been revised to reflect CM System Software. Version 6.1. In
particular. Chapter 5 is entirely new. For information on features new to Ver­
sion 6.1. see the CMSS Y6.1 System Software Summary.

Organization of This Manual

This manual is written for users who wish to program the CM from either a
UNIX front end or a Symbolics 3600-series computer.

Version 6.1, October 1991 xi

xii eM User:S Guide

UNIX front end users should read Part I of this document for a general intro­
duction to the Connection Machine, then Parts n through Iv, which discuss
programming the CM from UNIX. They should read Part V only if they
intend to program in *Lisp or LispfParis.

Symbolics front end users should read Part I, and then skip to Part V, which
discusses programming the CM in the Lisp environment (see Figure 1).

CM Fortran, C*
Fortran/Paris, C/paris

READ PARTS

*Lisp
Lisp/paris

READ PARTS

Figure 1. Suggested reading paths, depending on
the language in which you intend to program

Part I Introduction to the Connection Machine System
Part I gives an overview of the hardware and software components
of the Connection Machine system.

Part n Using the CM Operating System
Part IT describes some basic commands in the CM operating system

for UNIX users. Chapter 2 describes how to run programs on the
CM; Chapter 3 describes other useful commands.

Part m Programming with the Connection Machine System
Part m discusses how to program using your UNIX front end and
the CM. Chapter 4 gives the basics of the programming process.
Chapter S describes how to attach to and detach from a CM from
within a program. Chapter 6 describes programming tools like the
CM timing utility, its checkpointing package, and its run-time safe­
ty checker.

Part IV I/O on the Connection Machine System
Part IV provides an overview of I/O on the CM, focusing especially
on the commands for using the CM file system.

*rsion 6.1. October 1991

About This Manual xiii

Part V In the Lisp Environment
Part V describes how to use the CM system when in a Lisp envi­
ronment running on your UNIX or Symbolics front end.

There are six appendixes:

• Appendix A describes back-compatibility mode on the CM.

• Appendix B describes the DFS system, unsupported software that can
be used to manage large file sets.

• Appendix C lists Paris functions that may affect the performance of a
program running under timesharing using a VAX front end.

• Appendix D is an overview of UNIX features that are important to CM
users.

• Appendix E is a glossary.

• Appendix F provides UNIX man pages for CMost user commands.

Related Documents

Some of the material in this manual is covered in a different way in this
Thinking Machines Corporation publication:

• Connection Machine CM-200 Series Technical Summary

You need not be familiar with the technical summary before reading this
manual, however.

If you are involved in configuring or managing a Connection Machine sys­
tem, you should also read this manual:

• CM System Administrator ~ Guide

Consult the documentation for your front-end computer to learn about its ver­
sion of UNIX. In addition, there are many books you can choose from to
obtain further information about UNIX. For example:

• The UNIX Programming Environment, Brian W. Kernighan and Rob
Pike. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.

Finally, consult the other volumes of the Connection Machine documentation
set to learn more about many of the topics discussed in this manual.

Version 6.1, October 1991

xiv eM User:V Guide

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention

boldface

UPPERCASE

Ctrl-D

italics

typewriter

% boldface
typewriter

Meaning

UNIX and CM System Software commands, command
options, and file names. Also, Paris, C, and Lisp language
elements, such as keywords, operators, and function
names, when they appear embedded in text.

Fortran language elements, when they appear embedded in
text.

Combinations of keystrokes are shown with a connecting
hyphen. To type the Ctrl-D combination, for example,
press the D key while holding down the Control key.

Parameter names and placeholders in function and
command formats.

Code examples and code fragments.

In interactive examples, user input is shown inboldface
and system output is shown in typewr iter font.

~rsion 6.1, October 1991

Part I

Introduction to the
Connection Machine System

;n :::::J;I] :. i: . [Hi: I [: : Ii ·1:::::. . i UmUtTJill .. i..::· DUM·• ..•. I. In .. : ·1#

Chapterl

The Connection Machine System

The Connection Machine system is an integrated combination of hardware and
software designed for high-speed data parallel computing. This chapter
introduces data parallel computing and the Connection Machine system; it also
provides an overview of how to use the CM to write and execute data parallel
programs.

1.1 Data Parallel Computing

In conventional computing, a computer has a single central processor, which
operates on data sequentially. If the same operation is to be performed on many
data elements, the computer must still perform the operation separately on each
element, one after another.

In data parallel computing, there are many processors, and each data element is
associated with a processor. All processors can then perform the same
operation on all data elements at the same time. This kind of computing takes
advantage of the natural computational parallelism inherent in problems with
large data sets. For example:

• A graphics program might store pixels one per processor and then have
each processor calculate the color value for its pixel, all at the same
time.

• A text retrieval program might store articles one per processor and then
have each processor search its article for a keyword.

• A modeling program (for example, one that simulates fluid flow) might
create a large number of individual cells, stored one per processor. Each
cell might have a small number of possible states, which are

Version 6.1, October 1991 3

4 eM .User:S Guide

simultaneously updated at each "tick" of a clock according to a set of
rules that are applied to each cell.

The result can be a dramatic decrease in the amount of time it takes to nm such
programs.

Programming can also become simpler using the data parallel model, since it
avoids the complexity of trying to solve a naturally parallel problem in a serial
manner.

1.2 The Hardware of the
Connection Machine System

The Connection Machine system provides hardware and software to support
the data parallel model of computing. Using the CM, you can write and execute
data parallel programs to solve the largest computational problems. This
section describes the hardware components of the system; Sections 1.3 and 1.4
describe the software components.

A fully configured Connection Machine system contains these hardware
components:

• A parallel processing unit, containing thousands of individual processors

• One or more front-end computers

• An I/O system, which can contain:

• Data Vault mass storage systems

• A CM-HIPPI system for connecting the CM to an UltraNet net­
work or to other devices that support the high-performance
parallel interface (HIPPI) standard

• General-purpose I/O computers with a VMEbus

• Other I/O devices such as magnetic tape drives

• A graphic display system

All Connection Machine systems contain a parallel processing unit and at least
one front-end computer; other parts of the system are optional. Check with
your system administrator for the exact configuration of your system.

~rsion 6.1. October 1991

Chapter 1. The Connection Machine System 5

1.2.1 The Parallel Processing Unit

The parallel processing unit is the heart of the Connection Machine system (so
much so that the term "CM" is often used to refer only to it, and not to the
entire system).

Figure 1. The CM parallel processing unit

The Sequencer

The individual processors within a parallel processing unit are controlled by a
device called a sequencer. The sequencer's job is to decode commands and to
broadcast them to the processors for parallel execution. CMs have up to four
sequencers.

Virtual Processors

If there are more data elements than there are processors (which is generally
the case), the system creates virtual processors by dividing up the memory
associated with each physical processor. Thus, the same program can run
without change on different parallel processing units with different numbers of
physical processors-but the more physical processors, the faster it runs.

Version 6.1, October 1991

6 eM User:S Guide

Floating-Point Accelerator

The CM-2 parallel processing unit may contain either a single-precision (32-
bit) or double-precision (64-bit) floating-point accelerator. Both options
support IEEE standard floating-point formats and operations. They each
increase the rate of floating-point operations by more than a factor of 20.

Nexus

TO/From
Front·End
Computers

Framebuffer and
CMIOC boards

Figure 2. Architecture of the eM parallel processing unit ,

Communication

The processors are interconnected by a high-speed communication device
called a router. The router allows processors to send data to or receive data
from other processors, in parallel. The parallel processing unit also supports a
faster form of communication called grid communication (also called NEWS

~rsion 6.1, October 1991

Chapter 1. The Connection Machine System 7

communication}. which allows processors to communicate with their neighbors
in a multidimensional grid.

I/O Controllers and Framebuffer Modules

The parallel processing unit also contains I/O channels. Either a CM I/O
controller (CMIOC) or a framebuffer module can be connected to each I/O
channel. The CMIOC connects the parallel processing unit to the CMIO bus.
and the framebuffer module connects it to a high-resolution color monitor; see
Section 1.2.3 and Section 1.2.4.

Sections

Processors are divided into sections. For example. a 64K parallel processing
unit can be divided into four sections of 16K processors each. Each of these
sections can be treated as a separate parallel processing unit. or they can be
grouped together so that more physical processors are available to the user.
Separate sections have their own sequencers. routers. and I/O channels.

The Nexus

The nexus is a switch that allows multiple front-end computers to be connected
to a single parallel processing unit. It can connect any front end to any section.
or valid group of sections. in the parallel processing unit.

1.2.2 The Front End

To the user. the parallel processing unit appears as an extension of the normal
environment of a standard serial computer. This serial computer is referred to
as a front end; it can be a Sun-4 Workstation or one of several models of the
VAX minicomputer; on the CM-2 it can also be a Symbolics 3600-series Lisp
machine. The front end is the user's gateway to the Connection Machine
system. It has three main functions:

• To provide an environment for developing and debugging applications.

• To run applications. transmitting instructions and data to the parallel
processing unit.

Version 6.1, October 1991

8 eM User 3' Guide

• To provide maintenance and operations utilities for controlling the CM
and diagnosing problems.

The front end communicates with the eM parallel processing unit via a board
called the front-end bus interface (FEBI). A VAX or Sun front end can have up
to four FEBIs, allowing four separate connections to the CM at the same time.
In addition, up to four front ends can be attached to a single CM-2 or CM-200
parallel processing unit; up to two front ends can be attached to a CM-2a.

Front Ends

eM

Figure 3. Front ends connected to a CM

1.2.3 The 1/0 System

The eM I/O system provides a means for moving large amounts of data into
and out of the parallel processing unit at high speeds. The 110 hardware
consists of the following:

• The I/O channels within the parallel processing qnit. There are up to two
I/O channels for every group of 8K processors.

~rsion 6.1, October 1991

Chapter 1. The Connection Machine System 9

• The Connection Machine I/O bus. Each I/O channel can connect to this
bus via a CM I/O controller (CMIOC). The bus provides high-speed data
transfer (up to 50 Mbytes/sec) among the components of the eM I/O
system. Each I/O bus can support up to 16 devices, and there can be
multiple buses in the Connection Machine system;

eM
CMIOC

CMIOBu8

TapeOrive

OVFile

Ethemet

Figure 4. The CM I/O system

• The Data Vault mass storage system, which provides storage for up to
20 Gbytes of data on up to 78 disk drives. Each Data Vault can be
connected to up to two I/O buses.

Version 6.1, October 1991

10 eM User~. Guide

• A VMEIO· interface, which provides a high-speed data path between a
CMIO bus and computers having a VMEbus. The VMEIO computer
makes it possible to connect a variety of other devices, such as magnetic
tape drives, to the CM I/O system.

• A CM-HlPPI system. which connects the CM to an UltraNet network, or
directly to another supercomputer or device that supports the HIPPI
standard.

• An Ethernet local area network that links the VME computer, the CM­
HlPPI system, the Data Vault, and the front end. The CM I/O system uses
the Ethernet to carry I/O requests from the front end, responses to these
requests from the VMEIO computer and the Data Vault, and data to and
from the front end.

1.2.4 Graphic Display System

The Connection Machine system provides hardware and software for quickly
visualizing the huge data sets that are typically used in data parallel
applications. The graphics hardware consists of the framebuffer module and a
high-resolution color monitor. The framebuffer, as described earlier, is a board
connected to the I/O channel of a parallel processing unit. It can transfer
graphical information from the processors to the monitor at up to 40 Mbytes
per second. This lets you examine data graphically in real time. The software
supporting this and other forms of visualization is described in Chapter 6.

1.3 Programming in the Connection Machine
System

~e Connection Machine system provides several high-level languages for data
parallel programming. They are:

• C* (pronounced "see-star"), a data parallel extension of the C
programming language.

• CM Fortran, an implementation of the Fortran 77 programming
language, extended with array-handling facilities from Fortran 90.

• *Lisp (pronounced "star-lisp"), a data parallel extension of Common
Lisp.

~rsion 6.1, October 1991

Chapter 1. The Connection Machine System 11

In addition, it provides a lower-level parallel instruction set called Paris. User
interfaces to the Paris instructions are provided for Fortran, C, and Lisp. The
instructions can also be called from any of the high-level data parallel
languages. Paris calls can sometimes provide programming efficiencies beyond
those available in the high-level language.

Note that the high-level data parallel languages are extensions of standard
serial languages. Data parallel programs are generally similar to conventional
serial programs. Both use a single sequence of instructions; however, in the
data parallel case, some of these instructions cause operations to be performed
on many data elements at once. CM Fortran, as an implementation of existing
standards. adds no new syntax to these standards. C* and *Lisp add a small
amount of new syntax to their serial counterparts.

1.3.1 Developing, Compiling, Executing, and Debugging
Data Parallel Programs

Your front end has a compiler or interpreter for one or more of the high-level
data parallel languages. The programming process is straightforward:

• Write a program as you normally would for the language's serial
counterpart. using the front end's development environment.

• Compile the program using the Connection Machine compiler for the
language (*Lisp programs can be either compiled or interpreted).

• Execute the program by first "attaching" to one or more sequencers of a
parallel processing unit, then running the program as you normally
would. You can also execute your program from a UNIX front end by
submitting it to a queue in the CM batch system. In both cases, your
program may have exclusive use of the sequencers. or it may run under
timesharing with other programs. Program execution is described for all
languages except *Lisp and Lisp/Paris in Chapter 2; *Lisp and
Lisp/paris are described in Chapter 8.

• Debug the program using a standard debugger for your front end, such
as dbx on UNIX front ends. (Debugging functions for dbx are provided
for each high-level language; these functions let you, for example, print
out individual data elements for processors.) In addition. a cmdbx
debugger is available for CM Fortran programs.

This process is described in more detail in Chapter 4 for all languages except
*Lisp and Lisp/paris; *Lisp and Lisp/paris are discussed in Chapter 8.

Version 6.1. October 1991

12 CM User's Guide

1.3.2 Programming Tools

You can use standard programming tools available on your front end. In
addition, the Connection Machine system provides other tools designed
specifically for CM programming:

• Safety checking. The CM system provides a run-time safety utility that
checks for Paris-level errors and inconsistencies in data parallel
programs.

• Timing. The CM system's timing utility lets you insert instructions into
a program to calculate the amount of time the program (or sections of it)
uses the CM.

• Profiling. The CM system has special libraries that allow you to use
UNIX's gprof profiling utility with data parallel programs. The
gprof utility produces a summary of the amount of time spent in each
routine and a list of which routines call, and are called by, other
routines. (These libraries are not available for *Lisp.)

• Checkpointing. The CM system's checkpointing package lets you save a
program's state at specified points during its execution. You can
subsequently restart execution of the program. from the point at which it
was saved. (Checkpointing is not available for *Lisp.)

These tools are described in more detail for UNIX front ends in Chapter 6, and
for Symbolics front ends in Chapter 8.

1.3.3 Programming Libraries

The Connection Machine system provides programming libraries in the
following areas:

• vo. A ~gram can include calls to library routines that perform various
I/O functions-for example, reading data into the parallel processing
unit from an I/O device.

• Graphics and Visualization. There are graphics libraries available that,
among other things, let programs perform basic graphics operations like
point and line drawing, and display images on the CM graphic display
system or on a workstation running the X Wmdow System.

• Scientific Software. The Connection Machine Scientific Software
Library (CMSSL) provides routines for performing data parallel versions

~rsion 6.1, October 1991

Chapter 1. The Connection Machine System 13

of standard mathematical operations such as matrix multiply and Fast
Fourier Transform.

These libraries, and others, are listed in Chapter 4 of this manual for UNIX
front ends and in Chapter 8 for Symbolics front ends; they are also described
in detail in separate volumes of Connection Machine documentation.

1.4 Using the Connection Machine System

The Connection Machine system provides a number of user-level commands
on UNIX front ends that let you perform various useful functions. You execute
these commands from the front end, just as you would any operating system
command. (Versions of some of these commands are available as Lisp
functions for execution within a Lisp environment.) For example, these
commands let you:

• Attach to one or more sections of a parallel processing unit (the
cmattach command) to execute a data parallel program.

• Submit a program to a batch queue for execution on the CM (qsub).

• Find out the status of the CM (cmfinger).

• Reset the CM hardware and clear processors' memory (cmcoldboot).

Chapter 2 and Chapter 3 discuss these and other CM commands. Chapter 8
discusses the Lisp function equivalents available in the Lisp environment.

1.4.1 CMFS Commands

Files in the CM I/O system exist in a Connection Machine file system (CMFS),
which is similar to a UNIX file system. Separate Connection MachiD.e file
systems can exist on Data Vaults, on VME computers, and even on a front end,
where the system is logically independent of the front end's own file system.
There are user-level commands available to perform various functions on the
files; most of these commands are analogous to standard UNIX commands.

For example, these commands let you:

• Copy a file within the CM file system (cmcp or dvcp).

• Copy a file from a UNIX file system to a CM file system (copytodv).

Version 6.1, October 1991

14 eM User ~ Guide

• Remove a file (cmrm).

• List the contents of a directory (cmls).

Chapter 7 describes the CM file system and related user-level commands.

There are also Lisp function equivalents of most CMFS operations available for
execution within a Lisp environment; see Chapter 8.

~rsion 6.1, October 1991

Part II

Using the eM Operating System
urn

Chapter 2

Executing a Program on a
CMSystem

This chapter describes how to execute a data parallel program on a Connection
Machine system. In addition to the methods described here, you can also
include routines in your program that cause it to run on the CM automatically
when you execute it; these routines are discussed in Chapter 5.

For information on executing a Lisp/paris or *Lisp program, see Part v.

Of course, we haven't yet explained how to write a data parallel program. For
basic information on this topic, see Part III of this guide. For complete
information, see the Connection Machine documentation for the individual
languages. Your CM system also contains numerous sample programs, which
you can compile and execute; see your system administrator for the location of
these programs.

If you simply can't wait to learn data parallel programming before using the
CM system, we provide a trivial sample program in the first section of this
chapter, followed by instructions on how to compile it. You can use this
program to get a taste for how the CM system works.

NOTE: This program is written in CM Fortran, which may not be available at
your site. Check with your system administrator.

2.1 A Simple Program

The program shown below is written in CM Fortran.

The program sets up three arrays of five elements each. The elements of array
A are assigned the values I, 2, 3, 4, 5; the elements of array B are each

Version 6.1. October 1991 17

18 eM User:V Guide

assigned the value 2. The program then squares each of these values, adds each
element of A to the corresponding element of B, and puts the results in array
C. It then prints the results. (This, of course, is not a typical data parallel
program.)

PROGRAM

Type this program in a file on the front end as you normally would; call the file
simple. fcm. (Remember that in Fortran each program statement must begin
in column 7.)

To compile the program, issue the following command at your UNIX prompt
(which is represented as a percent sign in this guide):

C .•. % ····mn£Simple .fcm-~.simple . .••...)
You now have a CM Fortran program called s 1mple that is ready for
execution on the CM.

2.2 Overview of Program Execution on a eM
To execute a program on a CM, you must gain access to some of its processors.
We call this attaching to the CM. As we described in Chapter 1, a front end
connects to a CM parallel processing unit via a FEBI (front-end bus interface).
A FEBI can be logically attached to one or more sequencers on the CM; a
sequencer controls groups of processors within the CM.

~TSion 6.1, October 1991

Chapter 2. Executing a Program on a CM System 19

There are two basic methods you can use to attach to a CM: direct access and
batch access.

• For direct access, simply execute the program as you normally would; if
a FEBI and a sequencer are available, the program attaches and runs. Or,
you can issue the cmattach command to explicitly attach to the CM.
Depending on how you issue the command, your program is executed
immediately (if a FEBI and a sequencer are available) and you are then
detached from the eM, or you enter an interactive subshell from which
you can execute the program and other commands.

• For batch access, issue the qsub command to submit your program to a
batch queue, which is associated with a CM, or to a pipe queue, which
is associated with a group of batch queues; the pipe queue then sends it
to one of the batch queues. Your program attaches to the eM and is
executed when it reaches the head of the batch queue.

In both cases, access to the eM can be either exclusive or timeshared,
depending on how your system administrator has configured the system. With
exclusive access, only one user can be attached to a FEBI and a sequencer at a
time; with timeshared access, multiple users can be attached at a time, and
multiple jobs can be running on the same processors. Exclusive access lets
your program run faster once you are attached to a CM, but timeshared access
makes it easier to attach. Neither affects the way you compile or execute your
program.

The choice between direct access and batch access depends once again on how
your system administrator has configured the eM system. The system
administrator determines whether batch access is available and, if so, how
many queues there are and when the jobs in these queues are submitted for
execution. There may be restrictions as to when you can obtain direct access to
the eM. Thus, while direct access appears to be a faster way to execute your
program, batch access may in fact be easier and surer.

In general, direct access (especially from a subshell) is preferable when you are
developing your program, since it lets you debug your program interactively on
the eM.

NOTE: Your system administrator may have restricted access to the eM to
certain users or groups of users. If you are unable to run a program on the CM,
check with your system administrator to make sure you are on the access list

Version 6.1, October 1991

20 eM User's Guide

2.3 Obtaining Direct Access to the eM
2.3.1 Overview

The most straightforward method of attaching to a CM is simply to execute
your data parallel program from a front end connected to a eM. If resources
are available, the program attaches, runs, and then detaches. This is referred to
as auto-attaching. NOTE: Your system administrator can disable auto­
attaching; check to make sure that it is enabled before trying to use it.

You can also obtain direct access to a FEBI and one or more sequencers of a
CM by issuing the cma ttach command from your UNIX prompt on a front
end that is connected to a eM.

There are two ways of issuing cma t tach:

• If you issue cmattach with the name of an executable program as an
argument, you are attached to the eM (if a FEBI and a sequencer are
available) and the program is executed. You are then automatically
detached from the eM. The advantage of this method over simply
executing the program is that you can include options to cma t tach
that specify the kind of CM resources you want.

• If you issue cma ttach without specifying the name of a program as an
argument, you are attached to the eM (if a FEBI and a sequencer are
available) and placed in an interactive subshell, from which you can
execute the program and issue other UNIX commands. The eM
processors remain attached until you specifically detach them. This
allows you to debug and recompile your program, for example, without
having to reattach to the eM.

Both versions of cmattach have options that let you specify such things as:

• How many physical processors you want

• Whether cmattach is to wait if no processors are currently available

• The CM to which you want to attach (if your front end is connected to
more than one CM)

In addition, you can issue cma t tach in the UNIX background or from a
remote machine (via the rsh command) just as you would any other UNIX
command.

Finally, you can include a routine in your program to do the attaching. See
Chapter 5 for a discussion of attaching and detaching from within a program.

NOTE: See Section 2.3.6 on page 28 for a discussion of cmattach and
timesharing.

~rsion 6.1, October 1991

Chapter 2. Executing a Program on a CM System 21

2.3.2 Executing the Program

If you simply specify the name of the executable program at the UNIX prompt
of a front end connected to a CM, the program runs on the CM, provided that
resources are available (and that your system administrator has not disabled the
auto-attaching feature). If a FEB! and a sequencer are available, the program
attaches to them and executes. If multiple resources are available, it attaches to
the highest-numbered sequencer that is free on the CM connected to the
lowest-numbered FEBI that is also free.

The output would look like this for the program simple:

Attaching.toNAME, a CM20n
coldbooting~. . done. .. .
Attached to 8192 processors
microcode version 6104
Paris safety lsoff.

··ArrayCcontains:
·5··· 8

FORTRAN STOP •.

Detaching... done.

NOTE: The output when the sequencer is running under timesharing is slightly
different. See Section 2.3.6 on page 28.

Let's look in detail at this output.

(.. AttachingtoNAME~aCM~2cminte:rfaceo

tells you the name and type (CM-2 or CM-2(0) of the CM system to which you
are attaching, and the front-end bus interface from which you are attaching .

...... J
tells you that the processors to which you are attaching have cold booted. A
cold boot resets the portion of the CM to which you are attaching by clearing
the memory of the processors and performing other tasks. A cold boot is
automatically performed when a program attaches to a CM.

~ti:ached to .8192p:rocessor~>ons~quencer

tells you the number of the sequencer to which you are attached, and how
many processors are associated with this sequencer.

Version 6.1, October 1991

22 eM User !so Guide

c. ~~~ro~6de;~x~ion6I04<i ... ·.· ······i.<)

specifies which version of the eM microcode is running on this sequencer.
Knowing which version of the microcode is running is important if your
program is going to run under timesharing, since your program must be
compiled with the same microcode that timesharing uses.

. »

tells you that Paris-level safety checking is not being performed on your
program. See Chapter 6 for a description of safety checking.

The next lines of the output come from the program simple. The final line:

..............•... J
tells you that you are being detached from the CM. You are returned to your
UNIX prompt.

As we mentioned above, this method of executing a program on the eM is
simple and convenient, but it lacks flexibility; you have no choice as to the
eM, sequencer, or interface on which your program is to run. To gain this
flexibility, you must:

• Use the cmattach command, as described below; or

• Include the routine ClCattach_to in your program, as discussed in
Chapter 5.

2.3.3 Issuing cmattach with the Name of a Program

A second method of executing a program on a eM system is to issue the
cma t tach command with the name of the executable program as an
argument. If the program itself takes arguments, you can specify them on the
command line as well.

This command line executes the program simple:

This obtains exactly the same result as simply typing the name of the program,
as described in Section 2.3.2, provided that resources are available.

~rsion 6.1, October 1991

Chapter 2 Executing a Program on a CM System 23

The advantage of using cma t tach is that it provides options that let you
specify the CM resource to which you want to attach; see Section 2.3.5.

2.3.4 Using cmattach to Obtain an Interactive Subshell

If you issue cma t tach without the name of an executable program, the
following happens:

• If a FEBI and a sequencer are available, you are attached to them, and
the processors controlled by the sequencer are cold booted.

• You are placed in a UNIX subshell, from which you can execute your
program, and issue other CM commands, or issue any standard UNIX
command

To leave the subshell and detach from the CM, type ex! t or the Ctrl-D key
combination at the UNIX prompt.

The example below shows how you would execute the program simple in
this way. (Text in bold shows what you type; text in normal typeface shows
output from the system.

%cmattach
Attachingto.NAME,aCM-2 on interface 0

.. cold booting... dorie.
Attached tci 8192 processors onsequence:r Q.,

microcode version 6104 .

Paris safety. is off.

· En te:ring~TTACH <~llbshe 1L 'J;'ype. ';~,cit'l .or
contxol-D .to detach the CM.

% simPle
Array C c(mtains·

5>

This method of issuing cmattach is most useful when you are developing a
program. You can run the program on the CM, debug it, recompile it, and run
it again; the CM stays attached until you explicitly detach it or exit from the
subshell.

Version 6.1, October 1991

24 CM User ~ Guide

Your system administrator can specify the amount of time users can be idle in
a cma ttach subshell. If you exceed this limit, you are automatically detached
from theCM.

If your program contains a call to eM_attach or a related routine, you can
still run it in a cma t tach subshell; the program is executed on the
sequencer(s) to which you are attached in the subshell. See Chapter 5.

If you forget that you are in a cmattach subshell and you issue cmattach
with a program name, you are subsequently detached from the CM, but you
stay in the subshell.

See Section 2.3.5 for the options you can specify when issuing cmattach.

2.3.5 Options for cmattach

The cmattach command provides numerous options that let you control how
you attach to a CM; see Table 1. This section describes the most commonly
used options. See the cma t tach man page in Appendix F for complete
information on all options. See Section 2.3.6 on page 28 for a discussion of
these options when timesharing is in effect.

Option

-c CMname
-cmn
-8

Table 1. Options for the ema t tach command

Meaning

Attach to the specified CM.
Attach to the specified CM model.
Obtain exclusive access only.

-g length, length ... Create a virtual processor geometry with the specified
dimensions upon attaching.

-h
- i inter/ace
-n
-p nprocs
-q
-8 sequencer
-t
-unnnn
-w

Print a help message.
Attach to the specified FEBI.
Do not cold boot.
Attach to the specified number of processors.
Do not display informational messages.
Attach to the specified sequencer(s).
Obtain timeshared access only.
Load the specified version of the microcode.
Wait for resources.

NOTE: See Appendix A for options used in back-compatibUity mode.

~rsion 6.1, October 1991

Chapter 2. Executing a Program on a CM System 25

The options are the same whether or not you specify a program name on the
command line.

Waiting for Resources: The -w Option

As we mentioned above, you must gain access to both a FEBI and a sequencer
to execute a program on the CM. If one or the other is not available. you cannot
attach to the CM. Specify the -w option if you are willing to wait for the
required resources to become available. For example:

(.... , cmattach ··wsimple .

Access to CM resources via the - w option is granted to the oldest request that
fits the available resource. The more general your request, the more likely it is
to be satisfied quickly. If you request a specific resource (for example, an
individual sequencer or individual interface) you may not get it until after more
general requests are satisfied. If no resources are available, you receive this
message:

cmattach:Waitingfor eM resources to become
available.

You can use this option to execute a program in the UNIX background. For
example, if you are using the C shell, you could execute simple as follows:

C %cmattach-wsimple >& output &)
In this example, program output and any error messages are redirected to the
file output. It is important to redirect both standard output and standard
error; if both streams are not redirected, the program could be suspended
waiting to write to the terminal. A useful addition to this command line is the
-q option, which suppresses screen display of informational messages from
cma t tach. In addition, if your program requires input, you should redirect
the standard input.

Specifying a Sequencer: The -S Option

With no options specified, cmattach attaches to the highest-numbered
sequencer that is free on the CM connected to the lowest-numbered interface
that is also free. Use the -8 option to specify that you want to attach to a
particular sequencer, or to more than one sequencer. You might ask for a
particular sequencer if, for example, it has a framebuffer connected to it, and

Version 6.1, October 1991

26 eM User !so Guide

you want to use the eM's graphic display system. You might ask for more than
one sequencer if your program has a large data set, and you want it to run on
more processors than are provided by a single sequencer.

To specify that you want to attach only to sequencer 1 and execute the program
simple, your command line would look like this:

To specify that you want to attach to sequencers 0 and 1, your command line
would look like this:

(.. %~ttl1ch~So~1simple •.•.•.. J
You can specify an individual sequencer, or one of the following combinations
of sequencers: 0-1,2-3, or 0-3.

Specifying the Kind of Access You Want:
The -e and -t Options

Use the -e option to specify that you require exclusive access to the CM (or
part of it). If you use this option, the system will not attach you to a timeshared
sequencer.

Use the -t option to specify that you require timeshared access to the eM, as
opposed to exclusive access.

Specifying an Interface: The -I Option

Use the -1 option to specify the number of the FEBI to which you want to
attach. This option has an effect only if your front end has more than one FEBI
from which you can reach the eM. Use the cmf1nger command to obtain
information about interface numbers; see Chapter 3.

Specifying a eM: The -C Option

If you are lucky enough to have more than one eM available from your front
end, you can use the -c option, followed by the name of a CM, to choose the
eM to which you want to attach. For example,

........... J
.. .• ··.·· •. ··i·<

~rsion 6.1, October 1991

Chapter 2. Executing a Program on a CM System 27

attaches you to the first available sequencer on the eM named Ruby; the
command is to wait if no resources are available. (Note that case does not
matter.)

Specifying the eM Model: The -em Option

If you have more than one eM available, you may also have more than one
model of eM. Use the - em option to specify the model to which you want to
attach. The choices are 2 and 200. Use - cm2 if you want to attach to a CM-2
series machine; use - cm2 0 0 if you want to attach to a eM-200 series machine.

Specifying a Geometry: The -g Option

Virtual processors (VPs) on the eM are arranged in VP sets, which have a
geometry. The geometry specifies the "shape" of a VP set. This shape affects
the way the processors communicate when a program is running. Choosing an
appropriate geometry can increase the efficiency of a program. You can specify
the geometry of a VP set in Paris programs; in programs written in high-level
languages, the compiler does this for you. You can also specify an initial
geometry (and the size of the initial VP set) for a program by using the -g

option to cma t tach. Specify the values for each axis of the geometry,
separated by commas, with no spaces in between. Each value must be a power
of 2, and the total number of processors must be an integer multiple of the
number of physical processors to which you are attached. For example,

(,-,'_. '. _%_cma_t_t_a_c~h_. _-_g_.6_"_,2_S_6_. -,-••. _ •. _____ ~~ __ ~ ______ ~)
creates a VP set of 16,384 processors, arranged in a 64-by-256 geometry.

If you do not use the -g option to specify a geometry, you get a default two­
dimensional geometry that depends on the number of processors to which you
are attached. These default geometries are listed in Table 2.

Version 6.1, October 1991

Table 2. Default geometries

Number of Processors

4K
8K

16K
32K
64K

Geometry

64-by-64
64-by-128
128-by-128
128-by-256
128-by-512

28 CM User:SO Guide

This option is not useful for running C* or CM Fortran programs.

For more information on VP sets and geometries, consult the Paris Reference
Manual and Introduction to Programming in CjParis.

Specifying the Microcode Version: The -u Option

Use the -u option, followed by a four-digit number, to specify which version
of the CM microcode you want the CM to use. If you omit this option, you get
the latest version of the microcode. 'IYPica11y, you would use this option if you
had compiled and linked your program using an older version of the
microcode, and you dido't want to bother recompiling. If you attempted to run
your program without recompiling, you would receive a warning about
incompatible microcode versions.

NOTE: Do not use this option if the sequencer to which you are attaching is
running under timesharing. In that case, your program must use the current
version of the microcode. See "TlID.esharing and Microcode Version" on page
30. If you do use this this option, and timesharing is running a different version
of microcode from the one you specified, ema ttach exits without attaching
you, and it prints an error message.

2.3.6 Obtaining Direct Access under Timesharing

Your CM system may be set up so that one or more sequencers allow
timeshared access, under which multiple processes can run on a sequencer at
the same time. To find out if timesharing is operational on a sequencer before
you attach to it, issue the cmfinger command, as described in Chapter 3; if
timesharing is operational, emf inger will display" {CM} *" in the
"COMMAND" field for that sequencer.

You can attach to a timeshared sequencer just as you would to a sequencer that
is not running under timesharing. If you attach to a timeshared sequencer, you
receive a response that looks like this:

~rsion 6.1, October 1991

Chapter 2. Executing a Program on a CM System 29

There are a few restrictions in running processes under timesharing. They are
discussed in the sections below. See Appendix A for a discussion of
timesharing and back-compatibility mode.

Performance under TImesharing

With a Sun front end, you can in general expect your program to execute at the
same speed under both timesharing and exclusive mode (except, of course, for
the slowdown related to being swapped out while other processes execute).
With a VAX front end, execution can be significantly slower under timesharing.
One way to reduce the penalty is to minimize the number of times your
program requires the CM to synchronize with the front end, since the
mechanism that timesharing uses for this with a VAX is much slower than the
mechanism used when a program has exclusive access to the CM. Appendix C
lists Paris instructions that cause the CM to synchronize with the front end.

If performance is unacceptable under timesharing, use the - e option to
cmattach to obtain exclusive access to the CM, or submit the program for
execution in a batch queue running in exclusive mode. See Section 2.4.4 on
page 42 to learn how to determine if a batch queue is running in exclusive
mode.

Maximum Number of Processes

There is a maximum number of processes that can use timesharing at the same
time; the system administrator sets this number. If you have obtained a
cmattach subshell, and you receive a message with this format when you try
to execute your program:

~I~g-n~~lwa.iting ·sl.bt:...·>}

the limit has been reached, and your program cannot run until a process exits.
A period is printed every thirty seconds until a slot becomes available and the
program runs.

If you don't want this behavior, set the environment variable CM_WAIT to
false. If you do this, you simply receive the message saying that no process­
slots are available. You can then try running the program later, or on another
CM resource.

Version 6.1, October 1991

30 eM User:S Guide

It is possible that you will not even be able to obtain a cma ttach subshell
when trying to nm a program under timesharing. If this happens, you receive
the following message after issuing cmattach:

·.~:r~6~aC:dessingli/d~~/6nI!passeci in CMDEVICE·
.......••. ·····~ri.,;.ir orunent:.· •• ·. N~m6r eproc(;!sses .• ·....••.•.••....•.••..........•.....•.......

,~!:::~ ~:t{~:~~~:~;i.Ilt()rllIl this program . •.. ..

In this case, you can use the -w option to cmattach to wait for a cmattach
subshell. It is likely, however, that the sequencer is extremely busy under these
circumstances, and you may be better off trying a different sequencer.

Timesharing and Memory Size

Your system administrator may have restricted the size of processes that can
run under timesharing. Even if there is no restriction, timesharing requires
about 6 Kbits of overhead in memory; the result is that programs with large
memory requirements that ran under exclusive access to the eM may be unable
to nm under timesharing.

If you receive an error message like this after executing your program:

.•... · .. E£i6i:~~tihave.run6utof CMmemory
•. ····toalioc:at~j2768bits>of·s tack.> .

your program required too much memory to execute under timesharing. 'Iiy
executing it under exclusive access. Or, ask your system administrator to
change the timesharing configuration so that programs with larger memory
requirements are accepted. (As mentioned above, this may not solve the
problem, if it is the timesharing overhead that is preventing your program from
running.)

Timesharing and Microcode Version

As mentioned above, you cannot use the -u option when attaching to a
timesbared sequencer. Your program must be compiled with the same version
of the microcode that timesharing itself uses-the microcode version reported
when you attach to the sequencer without using the -u option. In the example
shown at the beginning of this section, this is microcode version 6104.

~rsion 6.1. October 1991

Chapter 2. Executing a Program on a CM System 31

Timesharing and the Framebuffer

Although timesharing allows multiple programs to use a sequencer at the same
time, only one program. can have access to the framebuffer module and high­
resolution color monitor that may be connected to the sequencer. If your
program. tries to use the framebuffer when it is already in use, you will receive
an error message.

Timesharing and the DataVault

Unlike the framebuffer, the Data Vault allows multiple processes to gain access
to it. Therefore, there are no restrictions on using the Data Vault under
timesharing.

Timesharing Signals

Your process can receive one of the following signals when running under
timesharing:

• When the timesharing daemon exits because of an administrative request,
your process will be detached from the CM and it will receive a SIGURG
signal, as happens whenever a process is detached from the CM.

• The timesharing daemon sends out a 20-second warning in the form of
a SIGTERM signal when it has been asked to shut down, allowing your
process to shut itself down. The timesharing daemon also sends out a
SIGTERM signal when it exits-including when it crashes (in this case,
there is little you can do to recover your process later).

• When the timesharing daemon detects that your process has corrupted
the memory of another process, it will send your process a SIGILL
signal (a message is also printed on the controlling terminal of the
process).

SIGILL will also sometimes be sent when your process sends bad data
to the sequencer, effectively crashing the sequencer microcode (the
timesharing system can't recover your process in this case, but other
usetS won't be affected).

• When the timesharing daemon detects that another process has
corrupted the memory of your process, it sends a SIGLOST signal to
your process, as well as sending a message to your controlling terminal.

• If the timesharing daemon encounters a swap error when swapping your
process in, it sends the process a SIGKnL signal.

Version 6.1, October 1991

32 eM User:S Guide

2.3.7 Direct Access and Batch Queues

Your CM may provide one or more batch queues to allow batch execution of
data parallel programs. When the queue has a job to run. it may automatically
detach the process currently attached to the sequencer with which the queue is
associated; this depends on how the queue is configured. Therefore. it is a good
idea to become familiar with the batch queues on your system, so that you can
avoid running your programs on a sequencer where one of these queues is
active. To do this. issue the qstat command. as described in Section 2.4.4 on
page 42. In particular. see the description of the -z option and enforce mode.

2.4 Obtaining Batch Access to the eM
2.4.1 Overview of the eM Batch System

In a batch system. you submit one or more programs as a request to a queue.
The batch system in turn submits the requests in the queue for execution. Your
request is generally executed when it reaches the head of its queue.

The CM batch system is based on NQS (Network Queueing System). a
standard batch system. NQS can also be used for batch submissions to
computers other than the CM. In this guide. however. we focus only on using
NQS to submit requests for execution on the Connection Machine system.

The CM system administrator is in charge of configuring queues to meet the
needs of your site. You may not have any queues. or you may have several.
You may have only batch queues. which submit requests directly for execution.
or you may in addition have pipe queues. which pass requests along to batch
queues. Pipe queues are useful because they can be associated with several
different batch queues; if one is unavailable. the pipe queue can try the next.
until it finds one that will accept the request. You don't have to worry about
finding the available queue yourself.

Here are some of the characteristics of batch queues that a system administrator
can configure:

• What resources the queue uses. A batch queue can attach to a particular
sequencer. for example. leaving the rest of the CM available for direct
access.

• When the queue submits its requests for execution. A batch queue can
operate continuously. or it can operate only at specified times-for
example. from midnight to six in the morning.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 33

• How the queue interacts with direct-access users. For example. requests
submitted to the queue can have exclusive access to a sequencer. or they
can compete with other users for access to the sequencer.

To submit a request for execution via either a batch queue or a pipe queue, you
either:

• Issue the qsub command. using as an argument the name of a script file
that contains the name of the program or programs to be run; or

• Submit the program or programs to qsub from the standard input.

See Section 2.4.2, below.

To obtain information about a queue, or about the status of a request in a
queue, issue the qstat argument. See Section 2.4.4 on page 42.

Table 3 lists the user commands for the NQS batch system.

Command

qdel
qlimit
qstat
qsub

Table 3. User commands for the NQS batch system

Meaning

Delete or signal one or more batch requests.
Display the supported limits on batch queues.
Display the status of queues and batch requests.
Submit a batch request.

2.4.2 Submitting a Batch Request: The qsub Command

Use the qsub command to submit a program for execution on the eM via
either a batch queue or a pipe queue.

NOTE: The qsub command has many options associated with it; in this guide.
we discuss only some of the more important. See the man page for qsub in
Appendix F for a complete discussion of all its options. Table 4 summarizes the
qsub flags.

Version 6.1, October 1991

34

Option

-a time
-e filename
-eo
-ke
-ko
-lc size
-ld size
-1£ size
-In value
-ls size
-It time
-lwsize
-mb
-me
-mu username
-nr
-0 filename
-p priority
-q queue
-r name
-re
-ro
-s shell
-x
-z

The Basics

eM User:S Guide

Table 4. Options for the qsub command

Meaning

Do not nm the request before the specified time and/or date.
Direct the standard error output to the specified file.
Direct the standard error output to the batch request output file.
Keep the standard error output on the execution machine.
Keep the standard output on the execution machine.
Set the per-process corefile size limit.
Set the per-process data-segment size limits.
Set the per-process permanent-file size limits.
Set the per-process nice execution value limit.
Set the per-process stack-segment size limits.
Set the per-process CPU time limits.
Set the per-process working set limit.
Send mail when the request begins execution.
Send mail when the request ends execution.
Send mail about the request to the specified user.
Declare that the request is not restartable.
Send the output of the request to the specified file.
Set the priority for the request in the batch queue.
Send the request to the specified batch queue.
Assign the specified request name to the request.
Remotely access the standard error output file.
Remotely access the standard output file.
Use the specified shell to interpret the request.
Export all environment variables with the request.
Submit the request silently.

To execute the program simple Via the queue cmql, put the program's name
in a script file. A script file is simply a UNIX file that contains commands to be
executed. For example, you could create a file called simple_script that
contains just the word simple. You could then submit this to cmql as
follows:

The -q flag specifies the name of the queue to which you are submitting the
request.

~T.fion 6.1, October 1991

Chapter 2. Executing a Program on a CM System 35

The system displays a response like this:

(Request276. barney. acme. com submitted ·to queue:

The number 276 is a sequence number assigned to this request by NQS.
276 • barney. acme. com is the request-id for this request.

When simple is finally executed, its output is placed in a file; error messages
are placed in another file.

Submitting a batch request has these basic elements:

• Specifying the queue to which the request is being submitted

• Specifying the request to be run

• Specifying options that affect the way the request is to be run

You can embed qsub options at the beginning of the script file, along with the
name of the executable program and other commands. See "Specifying the
Queue," below, for an example. NQS looks at options in the script file only if
they are not specified on the qsub command line; this lets you override a
script file option by specifying a different setting for the option on the qsub
command line.

Specifying the Queue

There are several different methods of specifying the queue to which you want
to submit your request. You can find out the names and characteristics of
available queues by issuing the qstat command; see Section 2.4.4 on
page 42.

You can use the following methods to specify a batch queue:

• Use the -q option on the qsub command line, as shown in the example
above. NQS submits the request to the queue you specify.

• Embed the -q option in a script file that you name on the qsub
command line. All qsub options must appear at the beginning of the
script file, and must begin with a pound sign (#) followed by an "at"
sign (@) and a dollar sign ($). The option must begin immediately after
the dollar sign-no white space is allowed. Comments must begin with
a pound sign. For example, the following script file sends the program
simple to queue cmql for execution:

Version 6.1, October 1991

36 eM User! Guide

If you named this script file simple_script, you could execute the
program by issuing the following command:

··········.···.·0
• Set the environment variable OStlB_QUEtJE to the name of the queue to

which you want the request submitted. You would typically do this to
set up a default queue for all requests, which you could override for a
specific request by using the -q option. If you use the C shell, you could
put the following command in your • csmc file to set the default queue
to cmq2:

C ~~ten'; OSHa _QUEUECmQ2 J
~~~~~--~~~~------~--------~--~~~--~~ 

If you don't use any of these methods for specifying a queue, the request is 
submitted to the default batch queue for the system, if your system 
administrator has defined one. 

Specifying a Request from a Script File 

As we have already shown, you can execute a program by including its name 
in a script file. A script file is the batch equivalent of a cma t tach subshell 
(see Section 2.3.4 on page 23). For example, you might want to execute the 
program s,imple twice, once with run-time safety off (the default), and once 
with safety on. You use the CM operating system command cmsetsafety to 
turn safety on; see Chapter 6. A script file could then contain the following 
commands: 

.J 
When the request is run, the first execution of simple is with safety off; the 
second is with safety on. 

Ji1rsion 6.1, October 1991 



Chapter 2. Executing a Program on a CM System 37 

You can use UNIX commands and other CM operating system commands as 
well. You shouldn't, however, explicitly attach to or detach from the CM, since 
typically the queue takes care of that for you. Note that this means you can't 
specify options to cmattach-for example, the -b option to execute in back­
compatibility mode; see Appendix A. If this is a problem, your system 
administrator can set up a queue that does not automatically attach to a CM; in 
that case, you must explicitly attach to and detach from the CM. Check with 
your system administrator to find out if such a queue exists. 

Typically, NQS interprets the commands in a script file exactly as if you had 
typed them at your UNIX prompt. It may, however, use a different shell to 
interpret the commands, depending on how your system administrator has 
configured NQS. See "Choosing a Shell" on page 40. 

Specifying a Request from Standard Input 

Instead of using a script file, you can simply enter the request from standard 
input-that is, directly after the qsub command line. Put each command or 
program name on a separate line, and type the Ctrl-D key combination at the 
end to signal that there is no more input. For example: 

% qsub -qcmql 
simple 
cmsetsafetyon 
simple 

If you are executing a shell under Emacs or Gmacs, type Ctrl-C Ctrl-D. 

The Output from a Request 

NQS places the output from a batch request in a file, which is by default placed 
in your current working directory. You can control the name and location of 
this file. The default filename consists of the first seven characters of the script 
name, followed by .0, followed by the sequence number of the request. Thus, 
in our example in "The Basics" on page 34, NQS would put the output in the 
file simple_" 0276 in your current working directory. Messages to standard 
error go into a file with • e in the name instead of • o. 

If you submit the request from standard input, the default output and error files 
would begin with STDJ:R • 0 and STDIR. e, followed by the sequence number. 

Version 6.1, October 1991 



38 eM User ~ Guide 

To specify a different output filename, use the -0 option, followed by a 
pathname, on the qsub command line or in a script file. NQS writes output to 
the patbname you specify. For example, 

( .•• : .••••....•.•.••.•...•.... a. ...••.•..••. ·.·.···q···S·· .. ·ub·.· ...........• _ •. ·0· ... /. ·.·.r· e· qu··.·e· s···.·.·t··s···.··l·· .s· .imp. ··.·1· e··· .• ·o·u· . t·.····. .... .. .. .. ~ ..silnPi~/ . .....•... /) 
causes the output of simple to be written to /requests/simple. out. 

Similarly, use the -e option to specify a different pathname for standard error 
output 

Another way to change the name of the output file is to use the -r option, 
followed by a request-name of up to 15 characters. This request-name 
identifies the request when you issue the qsta t command to check the status 
of the batch queue; if you don't specify a request-name, NQS uses the name of 
the script file (or S'l'DIN) instead. If you do specify a request-name, NQS 
substitutes it for the name of the script file (or S'l'DIN) in the name of the 
output file. 

Here is sample output for our simple_script batch request: 

In running the batch job, NQS runs a script as if logged in as you; start-up files 
like • cshrc and • login are executed. This means that you may see various 
messages along with the output. In particular, you will probably see the 
following message: 

...•.•.• . Warning ~ ... ·noaccess 
• this shelL ... 

This comes from the shell, warning you that there is no terminal associated 
with this job. You can ignore this message. 

Here is the standard error output: 

Ji!rsion 6.1, October 1991 



Chapter 2. Executing a Program on a CM System 39 

Note that while the job is running, NQS considers your home directory to be 
your current working directory (because it runs the job as a newly logged-in 
process). Thus, if the process dumps core, the corefile is placed in your home 
directory, rather than the directory from which you submitted the job. 

Setting Limits on a Request 

The qsub command has many options you can specify to set the limits on the 
amount of front-end resources a batch request can use. The batch queue has its 
own set of limits. You can find them out by issuing the qstat command; see 
Section 2.4.4 on page 42. You may want to set lower limits to obtain more 
favorable scheduling for your request, or to avoid running up accounting 
charges if, for example, your program goes into an infinite loop. 

For example, use the -1 t option to set a limit on the amount of front-end CPU 
time an individual program within a batch request can use. The following 
command sets a limit of 120 seconds of CPU time for the program simple: 

....... ) 
SunOS and ULTRIX do not support all of the limit options that qsub lets you 
specify. If you specify an unsupported option, NQS ignores it. To find out 
which options your front end supports, issue the ql imi t command. For 
example, if your front end is named Barney, issue qlimit as follows: 

(%qlimit barney 

The response might look like this: 

Coz:efilesizelimit (-'Ie) 
.. Data segment size limi t( .,.;ld) 
.··.Per~proeess permanent file size 

Nice value (':'In) 

J 

These are the limits you can set for this front end. The "shell strategy" in this 
response refers to the default way in which NQS chooses a shell to interpret 
commands in a script file. See "Choosing a Shell," below. 

Version 6.1, October 1991 



40 eM User 3' Guide 

Choosing a Shell 

As we mentioned above, your system administrator can specify how NQS is to 
interpret commands in batch script files. This is called the shell strategy; you 
can find out the default shell strategy via the ql 1m1 t command. The possible 
shell strategies are: 

• Free. Your login shell determines the appropriate shell to be used to 
execute the commands in your script file, and executes that shell. This 
typically means that NQS uses the shell that would have been used if 
you had issued the commands in the script file interactively. For 
example, if your script file begins with the line 

( .•.. 1ft /bih,!csh ..... . ........... J .. . .... 

:.":.': 

your login shell would execute a C shell for the script file. 

• Login. NQS uses your login shell to execute the commands in your 
script file, regardless of the contents of your file. 

• Fixed. NQS uses a specified shell to execute the commands, regardless 
of the contents of your script file. Use qlim1t to find out the name of 
this shell. 

You can override this strategy by using the -s option of the qsub command. 
For example, 

specifies that the C shell is to be used to interpret the commands in the script 
file simple_script. 

Setting a Priority for a Batch Request 

To set a priority for your batch request in its queue, use the qsub option -p, 
followed by an integer from 0 to 63, inclusive; 63 is the highest priority, and 0 
is the lowest priority. This priority determines the request's position in the 
queue. The request is placed in front of all requests with lower priority, and 
behind all requests with higher or the same priority. 

If you don't specify a priority, the request is assigned a default priority, as set 
by the system administrator. Use the qstat command to determine the default 
priority for a queue; see Section 2.4.4 on page 42. 

~rsion 6.1. October 1991 



Chapter 2. Executing a Program on a CM System 41 

NOTE: NQS does not necessarily run requests in the order in which they appear 
in a batch queue. It can take requests out of order to use resources efficiently. 
Generally. however. requests at the beginning of the queue are run before 
requests that appear later in the queue. 

Receiving Mail about a Batch Request 

Use the qsub options -mb and -me to specify that NQS is to send you mail 
about your batch request. Specify -!Db to get mail when the request begins 
execution; specify -me to get mail when the request ends execution. 

To obtain more information about the status of a batch request. use the qs ta t 
command; see Section 2.4.4 on page 42. 

Wall-clock limits for Queues 

Your system administrator can set a wall-clock limit for a queue. No request can 
run longer than this limit; once the limit is reached for a request. NQS sends a 
SIGKILL signal to all processes that are part of the request. (The limit does not 
include time spent waiting in the queue. but it does include time spent swapped 
out under timesharing.) Use the qstat command with the -x option to 
determine the wall-clock limit, if any, for a queue; see Section 2.4.4. You cannot 
change this wall-clock limit for an individual batch request in the queue. 

When a process is killed, its output (. 0) file will probably be empty; NQS will 
send mail to the submitter indicating that the request was aborted. 

A queue can also have a warning limit. which is less than the wall-clock limit; 
if a request reaches the warning limit, NQS sends its processes a SIGXCPU 
signal. If the request's shell script and all its processes contains handlers for 
SIGXCPU, the request can catch this signal and carry out an orderly shutdown 
before the wall-clock limit is reached and it is killed. (NOTE: Currently a 
request has only 60 seconds after the warning limit is reached before it is 
killed, no matter what the wall-clock limit is.) 

Timesharing and Batch Requests 

The sequencer (or sequencers) with which a batch queue is associated may 
operate under timesharing, depending on how the system is configured. To find 
out if a sequencer is operating under timesharing. use the emf inge:r 
command, as discussed in Chapter 3. If a batch queue is associated with a 
timeshared sequencer, more than one request can run at the same time. 

Version 6.1, October 1991 



42 eM User:S Guide 

In general, you don't have to be aware of whether a batch queue is associated 
with a timeshared sequencer. However, see Section 2.3.6 on page 28 for some 
restrictions on processes running under timesharing. 

2.4.3 Deleting a Batch Request: The qdel Command 

Issue the qdel command to delete a request from a queue. As an argument, 
specify the request-id that was displayed when you submitted the request. (You 
can also obtain the request-id by issuing the qstat command; see Section 
2.4.4, below.) For example, 

.•.• <%~~Ub-q cmq~· •• ·s~le_script) . 
··Request276 .;bar:Il.ey • acme • com 
cmq:i~/ •. « ..•. 

%qde1276 •.•. ·· ... ···· 

submits a request, then deletes it. (You don't need to specify the hostname if 
you are issuing the command from the local host.) 

This form of the qdel command does not delete a request that is actually 
running. To do this, use the -k option. This option sends a SIGKllL signal to 
the specified request, causing it to exit and be deleted from the queue. If the 
request contains more than one process, all are signalled. 

To send a signal other than SIGKILL to a running request, specify its number 
instead of k (see the discussion of sigvec in your UNIX documentation for 
signal numbers). For example, to send a SIGTERM signal to a running request 
with request-id 276, issue this command: 

......... » 

2.4.4 Obtaining Information: The qstat Command 

Use the qstat command to obtain information about a queue and the batch 
requests in the queue. 

For example, to find out the status of all your requests on any queue, simply 
issue this command: 

.......•..•....••• J 

l1!rsion 6.1, October 1991 



Chapter 2. Executing a Program on a CM System 

The response might look like this: 

cmq1@barney.acme.bonli. type=CM_BATCH; .CM"(carvel:O); 
[ENABLED, RUNNING} iP:ri=16 

o exit; 0 runiO .stage; i queued; 0 wait; 0 hold; 0 arrive; 

REQUEST NAME REQUEST ID USERPRI 
l:simple...,;script 276.barney smith 31 

STATE 
QUEUED 

Let's take a closer look at the information in this response. 

cmql@barney • acme. com identifies the queue. 

type=CM_BATCH specifies the kind of queue. 

PGRP . 

2085 

43 

CM- (carvel: 0) identifies the eM and sequencer with which this queue is 
associated. 

[ENABLED, RUNNING] shows the state of the queue. A queue can be 
enabled, closed, or disabled. 

• If a queue is enabled, requests can be submitted to it. 

• If a queue is closed, NQS is not running on the front end. No requests 
can be submitted to it. 

• If a queue is disabled, the system administrator has prevented any more 
requests from being placed in the queue. 

A queue can also be running, inactive, stopped, stopping, or shutdown. 

• If it is running, one or more requests are currently being executed, and 
other requests are prevented from running only because they haven't 
been scheduled. 

• If it is inactive, no requests are being executed, and requests in the 
queue are prevented from running only because they haven't been 
scheduled. 

• If it is stopped, queued requests are blocked from running, and no 
requests are currently running. The system administrator can stop a 
queue. If a queue is stopped, you can still submit requests to it (if it is 
enabled), but they are just added to the queue until it starts again. 

• If it is stopping, the queue will be stopped once the current request has 
run. 

• If it is shutdown, NQS is not running on the front end. 

Version 6.1, October 1991 



44 eM User:SO Guide 

pr i-16 specifies the interqueue priority, set by the system administrator. If 
more than one queue is attempting to run a request at the same time, the one 
with the higher priority goes first. 

o ezit; 0 run; 0 stage; 0 queued; 0 wait; 0 hold; 0 
arrive indicates the number of requests at each stage of the batch cycle. A 
request can be arriving, holding, waiting, queued, staging, routing, running, 
departing, or exiting. 

• A request is arriving if it is being placed on the queue from a remote 
host. 

• A request is holding if it is currently prevented from entering any other 
state because a hold has been placed on it; holds are currently not 
implemented by NQS. 

• A request is waiting if it was submitted with the constraint that it not be 
run before a certain date or time, and that date or time hasn't arrived yet. 
You submit a request in this way by using the qsub option -a. 

• When a request is queued, it is eligible to run. 

• If the queue is a pipe queue, a request can be routing or departing as it 
passes through the queue. 

• A request is staging when its input files are being brought on to the front 
end on which it is to execute. 

• A request is running when it is actually executing. It is exiting when it 
has completed execution and the required output files are being returned. 

For each request in the queue, qstat displays the request name, the request­
id, the name of the user who submitted the request, its priority, its state, and its 
process group. If the request name began with a digit, an R is added to the 
beginning of it. The priority in this case is the request's priority within this 
queue. You specify this priority for a request by using the qsub option -po All 
processes that are part of the same batch request are assigned to the same 
process group. 

Options to qstat 

By default, qstat displays the status of all your batch requests on all queues. 
Specify a particular queue if you want to see only the requests on that queue. 
Use the -a (all) option to see the status of all batch requests, not just your own. 
For example, 

version 6.1, October 1991 



Chapter 2. Executing a Program on a CM System 4S 

........................... \ ....•.•.•......••.•..•..•....••..• J 
displays the status of all batch requests on the queue cmq1. Use the -1 (long) 
or -m (medium) option to obtain more information about individual requests. 
Use the -x (extended) option to obtain more information about the queue; 
information like that shown below is displayed: 

CumulatiV'euser spacetime 
Unrestr.icted access< 
per-:processcorefiiesbe 
per..,.processdatasizelimit"lmegabytes<DEFA~T> 
Per",processper~entfne size limit.-UNLIMITED 
Per7'process .. executionnicevallle .. ~ .... O.<DEFAULT) .... 
pei-process.stackslzeliznft:·"l.·megabytes<DEFAULT> 
Per-processCPUtimeliinit .. UNLIMITED .. 

. ·Per-:process • work±:ngsetiimit';l.megabytes . <DEFAUI..T> . 
... peJ:-reqtiest::<"'ahLclock .t:iriie .limit;' .100 okeconds·· ·(mcbC;) • 
. Connecticm···Mach1ne .··assigned···· ... ·.RUBY 
sequenceir~sourceassigIlec:\~o .... 
connection Machihe\lsag~ description···..; 
ConnectionMachin~~xclusivemode-ON 
Connection Machihe enforc~ riiode··OFF 
Restriction Window .starttime-wedAug ... 
RestrlctionWindowstop time-WedAug3L.22: 00: 00 
RestrictionWindowMODE-Tn~EDATE .•• .•.... . 

Comments about some of these items: 

• RUD_limit refers to the maximum number of requests in the queue 
that are allowed to run at any given time. This should be 1 unless the 
CM is operating under timesharing. 

• unrestricted access means that anyone can use the queue. The 
system administrator can restrict access to specified users and groups. 

• The wall-clock time limit for this queue is 1000 seconds; there is no 
warning limit. 

• connection Machine assigned and Sequencer resource 
assigned specify the sequencer and CM that this queue uses. 
Connection Machine usage description gives information 

Version 6.1, October 1991 



46 eM User's Guide 

about this sequencer and CM. These fields are applicable to batch 
queues only. 

• The setting of connection Machine ezclusive mode 
(applicable to batch queues only) indicates whether this queue allows 
other users to attach to its resource while a request is running. If the 
setting is ON, no other users can attach while a request is running; if 
timesharing was previously in effect, the queue turns it off while the 
request is running. If the setting of exclusive mode is OFF, batch queue 
requests compete with other users for the CM resource. 

• The setting of Connection Machine enforce mode (batch queues 
only) indicates whether this queue forcibly detaches users attached to its 
resource when a request in the queue is ready to run. It is typically set 
to ON ooly if exclusive mode is also set to ON. 

If the setting is ON, and timesharing is not in effect, the queue detaches 
the user currently attached when it receives a request. If timesharing is 
in effect, it detaches all users from the resource and turns off 
timesharing. 

If the setting of enforce mode is OFF, the queue does not forcibly detach 
users from the resource. The queue waits-perhaps indefinitely-for 
currently running processes to finish and for the resource to become 
available. 

• The Restriction Window indicates the time during which the 
queue is available to run requests. 

Version 6.1, October 1991 



Chapter 3 

Miscellaneous CM Operating System 
Commands 

This chapter describes several useful CM operating system commands. Issue 
CM commands from the UNIX prompt on a front end, just as you would any 
standard UNIX command. You can also execute the command from any other 
computer in the CM system that has the CM System Software loaded. For 
example, if your system has a VME I/O host computer, you can issue CM 
commands from that computer as well. See the man pages on-line or in 
Appendix F for reference descriptions of these commands. 

Versions of some commands are available as routines you can call from within 
C or Fortran programs; see Chapter 5. 

Versions of some commands are also available as Lisp functions for execution 
from within a Lisp environment. See Part V of this guide. 

Table 5 lists the commands discussed in this chapter. 

Table s. Miscellaneous eM operating system commands 

Command 

em 
cmcoldboot 
emd.etach 
emfinger 
emliat 
cmman 
cmnice 
cmps 
cmrenice 
emtime 

Version 6.1, October 1991 

Use 

Displays information about a cmattach subshell. 
Resets a CM. 
Detaches a user from a CM. 
Displays eM interfaces. 
Lists available CMs. 
Displays CM and UNIX manual pages. 
Runs a program with low timesharing priority. 
Lists processes running under timesharing. 
Changes the time<;baring priority of a running process. 
Times a eM program. 

47 



48 eM User:SO Guide 

3.1 Obtaining Status Information: 
The cmfinger Command 

Use the emfinger command to find out the current status of CMs connected 
to your front end. This command prints out a table that shows which front ends 
are connected to which sequencers of a CM system, who is using the 
sequencers (and who is waiting for them), what command is being executed, 
and configuration information about the system. 

To find out the status of an individual CM, specify its name on the emf inger 
command line. To find out the status of all CMs in your system, use 
cmfinger with the emlist command; see Section 3.2 on page SO. 

The emf inger coriunand displays information like this: 

In this case, the CM-2 called Foo has two front-end interfaces: interface (IfF) 0 
on Wotan and interface 0 on Epicurus. The user named Karen is attached to 
sequencer 1 of Foo via Wotan's FEBI; this sequencer has 8K processors. (Note 
that the number of the front-end interface does not have to correspond to the 
number of the sequencer to which it attaches.) Karen is running a cmattach 
subshell; she has been idle for six minutes. No one is using the FEBI on 
Epicurus. 

li!rsion 6.1. October 1991 



Chapter 3. Miscellaneous CM Operating System Commands 49 

The information below the list of users provides more data about the CM 
system: 

• The memory size of the processors in this CM is 1 megabyte; it has 32-
bit floating point chips. . 

• Faa has a framebuffer and a CMIOC on both sequencer 0 and 
sequencer 1. 

• Sequencer 0 of Foo is free for use. 

• There are three users waiting for the CM. User Patrick will accept any 
sequencer but wants interface 0; user Sam wants interface 0 and 
sequencer 1; user Sophie will accept any interface but wants both 
sequencer 0 and sequencer 1. 

Now let's look at another configuration: 

Idle Command 

. ·.,.b·~S·t~·lfi •••.....•....•••..... · ...•.. 

................... ~ .............. ......... ~.~g.~ .......... i ..... . 

··FOO 
'F60> .... 

FOO·.····· 

lcyH~i ..... . simple" 
karen'·· oho6m',c~~ttachll . 
kiill'" ·FOO ... 

l024K memory, 32-~iffloating··p~i~~i<.··.····· ..•.... 
. ·····framebufferson seQ1lencf:lrso.:f ..... .. ' ." ......... . 

.. ·:>r~:~to~~~~i~~r~::~::~~~~~f~[~~~~~:iJ['~!1 
In this case: 

• User Kathy is attached to two sequencers on CM Clouseau and is 
running a program called tests. 

Version 6.1. October 1991 



50 eM User:S Guide 

• Sequencer 1 of Foo is operating under timesharing; the entry {CM} * 
under Command indicates this. Users Karen and Kyle are running 
timesbared programs on sequencer 1. 

• User Krill is attached to sequencer 0 of CM Foo. emf inger doesn't 
know what command Krill is running, or how long Krill has been idle. 
This·suggests that Krill's front end is a Lisp machine; Lisp machines do 
not provide idle time or command information (because the concept of a 
command is meaningless on a Lisp machine). 

• emf inger reports that the front end Thorlac has no sequencers. It 
doesn't know if anyone is using interface I on Thorlac. This can happen 
if you issue emf inger from one front end (for example. Wotan) to 
obtain information from other front ends. emfinger prints the 
information it can obtain over the network; if the remote front end sends 
error or informational messages (for example. "Connection Refused"). 
cmfinger prints them as well. It also prints error messages received 
fromtheCM. 

• There are no sequencers free. 

3.1.1 Options 

To obtain information about the CM attached to a particular front-end interface. 
use the -1 option, followed by the number of the interface. 

To obtain information about CMs to which your front end does not have an 
interface. list their names on the emf inger command line; case does not 
matter. Similarly. you can list the names of front ends on the emf inger 
command line to obtain information about the CMs attached to them; if a front· 
end and a CM have the same name. emf 1nger interprets the name as that of 
theCM. 

3.2 Listing CMs: The emlist Command 

Use the emlist command to list CMs in your system. The command has 
several options that make it especially helpful in locating a CM that has a 
particular resource: 

• Use the -d option to list the CMs that have Data Vaults. 

• Use the -f option to list CMs with framebuffers. 

~rsion 6.1, October 1991 



Chapter 3. Miscellaneous CM Operating System Commands 51 

• Use the -v option to list CMs connected to VME 110 computers. 

• Use the -h option, along with one or more hostnames, to list the names 
of eMs connected to the front ends with these hostnames. 

• Use the -p option to restrict the list of eMs to those having the 
specified number of processors or more. The number can be specified as 
an integer, or as an integer followed by k or Ie to specify thousands of 
processors. 

• Use the - 0, - 32, or - 64 option to restrict the list of eMs to those 
having no floating-point accelerator, a 32-bit floating-point accelerator, 
or a 64-bit floating-point accelerator, respectively. 

The options combine. Thus, to list the names of eMs with both a Data Vault 
and a framebuffer, issue this command: 

Another use of the cmliat command is with cmfinge:r. This cmfinge:r 
command: 

prints the status of all eMs in your configuration. This is useful at sites with 
many eMs attached to many front ends. 

3.3 Listing Timeshared Processes: 
The cmps Command 

Use the cmpa command to obtain information about processes currently 
running under timesharing. If you are attached to a sequencer running 
timesharing, cmpa lists the processes running on that sequencer. If you are not 
attached, use this syntax: 

where cmname is the name of a CM, and seqset is the number or numbers of 
the sequencers for which a timesharing daemon is running on that eM. You 
must issue the command from the front end where the timesharing daemon is 
running. 

Version 6.1, October 1991 



52 eM User ~ Guide 

An example of the command's output is shown below: 

where: 

NAME 

PID 

OWNER 

PGS 

PRI 

%-RT 

AC 

is the name of the program. 

is the UNIX process ID of the process. 

is the name of the user who owns the process. 

is the number of 1024-bit pages that the process takes up on 
theCM. 

is the current priority at which the process is running. In the 
current release, this is always 1. The asterisk indicates that the 
process wants to use the eM (that is, it has a CM operation 
pending or in progress). 

is the percent of real time that the process has received over 
its lifetime. Since processes start at different times, these per­
centages can add up to more than 100%. 

is the activation cost: a statistic that the scheduler uses in 
choosing the next process to run. 

~rsion 6.1, October 1991 



Chapter 3. Miscellaneous CM Operating System Commands 53 

TSR specifies how long it has been since the process has nUl on the 
eM (in minutes:seconds). 

AGE is the age of the process in minutes:seconds. 

The remaining statistics are overall data gathered by the memory managers 
since the timesharing daemon was started. 

3.4 Detaching Users: The cmdetach Command 

Use the emdetaeh command to detach a FEBI (and its user) from a 
sequencer, thus making the sequencer available. If you are issuing the 
command from the front end in which the FEBI is located, specify either its 
interface number or the login 10 of the user who is attached via this interface. 
(You can obtain this information by issuing the emfinger command.) For 
example, to detach user Karen from the sequencer she is using in the sample 
emf inger output on page 48, type: 

or 

(% cmdetach ~ 11 ........ . ...................•.... ~ ... . .................... J 
if you are on the same front end. Both the interface and the sequencer become 
available. Any process running on the sequencer is aborted. 

If you are on a different front end, you must specify the front end's hostname 
in addition to the interface number; you cannot simply specify a user's login 
10. For example: 

c.· .... ~·.omdetach ··.·~1······Wt;tan;1 ••• · .. ·····•··•·.·.·.····•·••··••···· 

After you issue cmdetaeh, the command shows you the status of the system 
by displaying the cmfinger output, and then asks if you're sure you want to 
proceed with the operation. If you're sure, cmdetaeh detaches the interface 
from the sequencer and makes the sequencer available. 

The user being detached receives a message like this one: 

Version 6.1. October 1991 



54 eM User:S Guide 

(This message is not printed if you detach yourself.) A running process is sent 
a SIGURO signal when it is being detached. 

Note that detaching a user isn't a particularly friendly thing to do if the user has 
an important program running on the eM. The cmdetach command is 
helpful if, for example, a user simply forgets to exit from a cmattach 
subshell before going home for the night. Detaching the forgetful user reclaims 
the eM processors. Your system administrator can configure the system so that 
users are automatically detached if they are idle for a specified period of time; 
this is a better way of handling the problem of forgetful or selfish users. 

You can issue cmdetach without any arguments from within a cmattach 
subshell; this detaches your interface from the eM but leaves you in the 
subshell. This lets you preserve the UNIX environment of the subshell. 

3.4.1 Under Timesharing 

NOTE: Do not detach an interface or user attached to a sequencer under 
timesharing. If you do so, you abort all processes running on that sequencer 
and shut down timesharing. 

If you try to do this, cmdetach notes that timesharing is running, and queries 
you an extra time to make sure this is what you want to do, as in the example 
below. 

Note that the message displayed in response to the cmdetach specifies the 
owner of the timesharing daemon, even if you issue the cmdetach command 
to detach some other user. 

If you wish to stop timesharing from running on a sequencer, talk to your 
system administrator, who can issue the cmts - shutdown command; this 
command shuts down timesharing in an orderly fashion. 

J.i!rsion 6.1, October 1991 



Chapter 3. Miscellaneous CM Operating System Commands 55 

. %CDKi.t~ch-l0 .......... . 
... ··.·seqssIze 

enld 

8K wotan. 1 kathy 

cm2with 2.S6K memory, 64~bit floating 
no free .sequencers on JACQUES 

cmdetach: You are about 

3.5 Resetting the CM: The cmcoldboot Command 

Use cmcoldboot to reset the state of the CM hardware to which you are 
attached. Issuing the command loads microcode into the control store of the 
sequencer, initializes system tables, and clears processor memory. You can 
issue cmcoldboot only from a cmattach subsheIl, or as part of a script file 
being submitted as an NQS batch request; see Chapter 2. 

By default, the CM hardware is automatically cold booted when you first attach 
to it. Depending on the application, you might want to reset the eM between 
program. runs. A warm boot is performed every time a program is executed; 
this warm boot does everything the cold boot does except clear processor 
memory and reload microcode into the sequencer. For some applications, not 
cold booting saves the time of reloading data into the CM processors for every 

Version 6.1. October 1991 



56 eM User ~ Guide . 

single program nm. If, however, you want to make sure that the current run of 
a program is not affected by the state left from a previous one, issue 
cmcoldboot between the runs. Also, if a computation is interrupted at some 
point and not continued, you should issue cmcoldboot and start the program 
over from the beginning. 

As arguments to cmcoldboot, you can specify the geometry of a VP set in 
Paris programs; in programs written in high-level1anguages, the compiler does 
this for you. You do not need to specify -g, as you do for cmattach. For 
example, 

········\.i.·· •• ·•·.·•· •••• ··•· ... · .•• ii) 
creates a VP set of 16,384 processors, arranged in a 64-by-256 geometry. 

Another option cmcoldboot has in common with cmattach is -U, which 
you can use to specify which version of the CM microcode you want the CM 
to use. See page 28 for a discussion of this option. 

3.5.1 Under Timesharing 

Issuing cmcoldboot has an effect only if you have exclusive access to the 
CM. It is unnecessary if your program is executing under timesharing, since the 
system automatically performs a cold boot every time a program runs. 

3.6 Timing a CM Program: The cmtime Command 

Use the cmtime command to print information about the execution time of a 
program that uses the Connection Machine system. The results are displayed 
on the standard output. For example, to execute the program myp:rog and 
obtain timing information, issue this command: 

The output is slightly different depending on whether the program runs in 
exclusive mode or in timesharing mode. In exclusive mode, the output looks 
like this: 

Yer.rion 6.1. October 1991 



Chapter 3. Miscellaneous CM Operating System Commands 57 

Elapsed time: 115. 38sec.;CM.hmel1L7 2 sec. . 
Front end.virtualtime (seconds): 10 .39user,1 .. 26 system 
CM Utilization: 97%; Front end utilization: 10% 

Under timesharing, the output looks like this: 

Elapsed time: 14.25 sec.; CM time 7.53 (out of 13.63} sec. 
Front end virtual time (seconds): 2.04 user, 4.40 system 
CM Utilization: 55%; {CM*} share: 96% 

The fields have these meanings: 

• Elapsed time is the total elapsed wallclock time that the program took 
tomn. 

• eM time is the amount of time that the program used the CM. For 
timesharing, the amount of time during which the program had the eM 
available for use is also listed. 

• Front end virtual time gives the amount of time the program used the 
front end. User time is the amount of front-end time spent in the 
program itself. System time is the time spent by the front-end operating 
system kernel on behalf of the program. 

• eM Utilization, for exclusive mode, is the percentage of elapsed time 
represented by CM time. For timesharing, it is the percentage of time 
that the program used the CM out of the total time the CM was available 
to it. 

• Front end utilization (exclusive mode only) is the percentage of 
elapsed time represented by front-end user and system time. 

• {eM*} share (timesharing mode only) is the percentage of elapsed time 
during which the CM was available to the program. 

Note these points in using cmtime: 

• cmtime obtains its data from the CM's accounting system. If the 
accounting daemon is not running, cmt ime can only display 
information about the use of the front end. Ask your system 
administrator if the accounting daemon is running on your system. 

Version 6.1, October 1991 



S8 eM User:S Guide 

• The cmtime data is an estimate, obtained from polling the sequencer 
every .01 second. If you need more accurate information, use the timing 
routines discussed in Section 6.2 on page 99. 

• As discussed in that section, to increase the accuracy of your timing, we 
recommend using a front end that is as unloaded as possible, and 
running the program several times; the minimum elapsed time reported 
will be the most accurate. 

3.7 Obtaining Information about the emattaeh 
Subshell: The em Command 

Use the em command to obtain information about the CM to which you are 
attached via a ema ttaeh subshell. The syntax is: 

c···· ..... ~.. .[. -c ... ] .....•....••......... [ ... ~ ....• ~ .•. ] ..•.•. < ..•.•••..• [ •. :. !l.· • .....•..........•.•.... [ .... ~ S J ..•...•....•..••.. i.·..> i .. ..... . 
; ......................•.. 

where: 

- C prints the name of the CM to which this subshell is attached. 

- d prints the name of the eM device driver. This is always 
/dev/em. 

- i prints the number of the interface to which this subshell is 
attached. 

-s prints the sequencer set to which this subshell is attached. 

One way to use this command is to change your prompt while in the subshell. 
For example, issue this command (in the C shell) to set your prompt to the 
name of the CM to which you are attached: 

3.8 Changing the Priority of Timesharing Jobs 

Use the emniee and emreniee commands to change the priority of a 
process running under eM timesharing; the higher the priority, the more often 

~rsion 6.1, October 1991 



Chapter 3. Miscellaneous CM Operating System Commands 59 

the process is scheduled to run on the CM. Use cmnice to set the priority of 
the process when you first run it. Use CD11:enice to change the priority of a 
process that is already running under timesharing. 

The cmnice command takes as its argument a number from 0 to 5 (0 to 9 if 
you are the superuser), followed by the name of the program and any 
arguments to the program. The lower the number, the lower the priority; the 
default is 5. Note that therefore only the superuser can increase the priority of 
a process beyond this standard timesharing priority. Users can only lower their 
priority. lPor e~ple, 

(.% cmnice -0 simple 

executes the program simple with a cmnice value of 0; this means that the 
process will run only when no other process in the system wants to. 

The cmrenice command takes as its arguments the process ID of the process 
whose priority you want to change, and, optionally, - p n, where n is a number 
from 0 to 5 (0 to 9 if you are the superuser). If you omit the -p argument, the 
process's priority is reduced by 1. You can change the priority only of a process 
you own. (The superuser can change the priority of any process.) 

You can obtain the process's process ID by issuing the cmps command; see 
Section 3.3 on page 51. 

Note that you can use cmrenice to increase the priority of a process, but only 
if you originally ran the program with a lower-than-average priority, and only 
up to the standard timesharing priority of 5. 

lPore~ple, 

C%·cmrenice -p326 ...... 0 

changes to 3 the cmnice priority of the process with process ID 26440. 

3.9 Displaying CM Manual Pages: 
The emman Command 

CM System Software contains a large number of on-line manual pages. 
Included in the 6.1 release are manual pages for: 

Version 6.1, October 1991 



60 eM User's Guide 

• all CMost user and system administrator commands 

• all CM Fortran utilities and intrinsics 

• all CMFS commands and calls 

• all Paris instructions 

More manual pages will be added in the future. 

Use the CIIIlIl8ll command to display one of these pages. For example, issue 
this command to display the man page for the CM Fortran utility 
CMF_ALLOCA'l'E_ARRAY: 

You can use any of the options accepted by the UNIX command man. You can 
also issue cmman to display standard UNIX man pages; use it in the same way 
you would use man. 

Note these points in specifying the names of CM functions and commands: 

• If a function or command name has a prefix (such as eM or CMFS), 
make this prefix uppercase. Make the rest of the name lowercase, using 
underscores (not hyphens) as word-separators (except for the cases 
noted below). For example, CKFs_read_file is correct; 
cmfs_read_file is incorrect. 

• Fortran names can also be specified using all uppercase. For example, 
CKF_ALLOCA'l'E_ARRAY and CKF_allocate_array are both 
correct. 

• Use Lisp syntax to specify a function used only in Lisp: for example, 
CKFS :make-stat. 

• For Paris functions, you can omit the _lL, _2L, etc. suffixes, as well 
as the _always, _constant, and _const qualifiers. You can also 
specify a general name that matches the heading in the Paris Reference 
Manual. For example, to display the man page for CM_c_add_2_1L 
you can simply refer to it as CK_c_add. 

• For CMFS functions, in general specify exact names when they end 
with _always; however, if a non-always version of the function exists, 
leave off the _always. For example, specify the function 
CMFS_read_file_always as CllPS_read_file (because there 
is a CKFS_read_f ile). However, you would specify 
CKFS_transpose_always as CMFS_transpose_always 
(because there is no function ClIPS_transpose). 

Version 6.1, October 1991 



Chapter 3. Miscellaneous CM Operating System Commands 61 

3.9.1 If You Don't Want to Use em man 

You can use the man command instead of cmman to display eM manual 
pages; you can also use :xman to display these man pages under X. To do this, 
however, you have to add the eM man page directories to the path set by your 
MANPATH environment variable. One advantage of this approach is that it 
gives you somewhat more flexibility in how the search for a man page is 
carried out. 

By default, the eM man-page directories are in the path /usr/local/man, 
with each subject area in its own directory. Note, however, that your system 
administrator may have put them somewhere else; check with your system 
administrator if you can't find them. These directories are currently available: 

CMF eM Fortran intrinsics and utilities 

CMFS eM file system calls and I/O commands 

aroST User-level eM commands 

PARIS All Paris functiOns 

Add these directories anywhere in your KANPATH. For example, 

% setenv KANPATH /usx/manl/usx/local/manl/usx/local/man/CMFI \ 
/usx/local/man/CMFsl/usx/local/man/CMOSTI/usx/local/man/PARXS 

.. 

If you add these directories before the standard directories (lusr /man, 
/usr/local/man), they are searched first; this may give you a slightly 
faster response time for eM man pages. You can also omit directories you 
aren't interested in. For example, if you don't use Fortran, you can omit the 
CMF directory; once again, this can speed up a search slightly. 

Version 6.1. October 1991 





Part III 

Programming with the 
Connection Machine System 

illl : ; rl!: IUII!;;· Ii . .. .. ::: Ii :1: flU:: . II Wi:;i Ii .. ]';; I rem I 





Chapter 4 

Programming: The Basics 

This chapter describes the basic process of programming for the Connection 
Machine system. In it. we assume that you are familiar with programming in a 
UNIX environment. See Chapter 6 for a discussion of tools you can use in 
programming. 

Users of *Lisp and Lisp/Paris should read Part V of this manual for an 
introduction to programming in the Lisp environment. 

4.1 Choosing a Language 

The Connection Machine system offers several data parallel programming 
languages. which are discussed in this section. Complete information on these 
languages is available in separate manuals in the Connection Machine 
documentation set. 

NOTE: Your Connection Machine system may not contain all the high-level 
programming languages discussed here; check with your system administrator. 

4.1.1 Paris 

Paris is the PARallel Instruction Set for programming the Connection Machine 
system. It is roughly similar to the machine-level instruction set of an ordinary 
computer. Interfaces to Paris are available from C. Lisp. and Fortran; the 
resulting "languages" are referred to as CfParis, LispfParis. and Fortran/Paris. 
These interfaces all call exactly the same Paris instructions; the only difference 
is that each interface conforms to the syntax and data types of its higher-level 
language. 

Version 6.1, October 1991 6S 



66 eM User's Guide 

The compilers for the data parallel languages described below (except for 
slicewise CM Fortran) generate code that makes direct calls to Paris. You can 
also include calls to Paris in programs written in these languages. You may be 
able to write faster code using Paris calls; the trade-off, of course, is that using 
Paris calls requires a deeper understanding of the Connection Machine 
architecture. 

4.1.2 CM Fortran 

CM Fortran implements the Fortran 77 programming language, extended with 
array-handling facilities from the Fortran 90 standard. CM Fortran supports all 
features of Fortran 77 that control allocation of or access to data residing on the 
front end; some restrictions are placed on the use of Fortran 77 features that 
would cause a program to depend on the storage order of data residing in CM 
memory. Most array data in CM Fortran is allocated in CM memory, one 
element per processor, and array operations on such data are performed by the 
CM processors in parallel. 

A slicewise version of the CM Fortran compiler is available; this version 
generates special optimizations for programs running on systems with a 64-bit 
floating point accelerator. 

4.1.3 C* 

C* is a data parallel extension of the C programming language. C* programs 
are a mixture of familiar C code, which operates on data on the front end, and 
new C* code. C* provides new syntax for describing the size and shape of 
parallel data and for creating parallel variables. It also provides methods for 
choosing the parallel variables, and the specific data points within parallel 
variables, upon which C* code is to act. 

4.1.4 *Lisp 

*Lisp is an extension of the Common Lisp language. It allows you to write data 
parallel programs in Lisp that map simply onto Connection Machine hardware 
features. Most *Lisp functionality corresponds directly to underlying Paris 
instructions, making the execution speed of a *Lisp program predictable. 

The CM system provides both a *Lisp interpreter and a *Lisp compiler; the 
*Lisp compiler executes as part of the Common Lisp compiler. Compiled 

Version 6.1. October 1991 



Chapter 4. Programming: The Basics 67 

*Lisp runs more efficiently than interpreted *Lisp. There is also a *Lisp 
simulator that you can use to test and debug *Lisp code without using a CM. 
The simulator runs entirely on the front end and simulates the operations of an 
exclusive-access CM. 

If you are going to program in *Lisp or LispJParis. you can omit the remainder 
of this chapter and go instead to Part V. "In the Lisp Environment." 

4.2 Overview of the Programming Process 

The entire process of CM programming takes place on the front end. You need 
to be attached to a CM only to run the program and to debug it. 

The remaining sections of this chapter discuss the basics of the programming 
process. 

4.3 Developing a Program 

You write source code for a data parallel program on the front end as you 
normally would for a serial program. The only difference is that C* and CM 
Fortran have new suffixes for the names of files containing source code: C* 
files must end in • CSt and CM Fortran files must end in • fcm. C/paris and 
Fortran/Paris programs are standard C and Fortran programs that include the 
library of Paris operations and make calls to these operations. 

4.3.1 Libraries and Include Flies 

This section lists CM libraries and include files that you are likely to use in 
your data parallel programs; check with your system administrator for the 
location of these files. You can also use standard libraries and include files-for 
example. <stdio. h> for C/Paris and C* programs. Consult the CM 
documentation for the relevant language for complete information-for 
example. you must explicitly link some libraries to your program. while other 
libraries are linked automatically. Also note that some languages and libraries 
may not be available at your site. 

Version 6.1, October 1991 



68 

Library 

libekpt.a 
libekpt-pg.a 
libcmfs.a 
libcmfs-pg.a 
libcmsr.a 
libcmsr-pg.a 
libcmssl.a 
libparis.a 
libparis-pg.a 
libparisfort.a 

eM User:r Guide 

Table 6. CM software libraries 

Contents 

Checkpointing library 
Checkpointing library for use when profiling 
CM file system routines 
CM file system routines to use when profiling 
*Render and Generic Display Interface graphics routines 
*Render and Generic Display routines to use when profiling 
CM Scientific Software Ubrary routines 
Paris instructions for C 
Paris instructions to use when profiling 
Paris instructions for Fortran 

4.4 Compiling a Program 

You compile and link data parallel programs on the front end as you nonnally 
do. 

Use the command es to invoke the C* compiler, which works in conjunCtion 
with the standard C compiler. 

Use the command emf to invoke the CM Fortran compiler; it can also invoke 
the standard Fortran and C compilers, as appropriate. 

These commands and their options are discussed in detail in the user's guides 
for C* and CM Fortran. 

Use the standard Fortran and C compilers to compile Fortran/Paris and CfParis 
programs, respectively. 

~rsion 6.1, October 1991 



Chapter 4. Programming: The Basics 

File 

XCDl.h 
attach.h 
attach-fort.h 
ckpt.h 
ckpt-fort.h 
CDl_conf.h 
CDl_dir.h 
CDl_errno.h 
em_file.h 
CDl_mount.h 
CDl_ioctl.h 
CDl"'param.h 
em_stat.h 
emfh.h 
emsr.h 
emsr-fort.h 
cmssl-cmf.h 

Table 7. CM include files 

Include with: 

X Wmdows graphics routines 
Attaching routines for C 
Attaching routines for Fortran 
Checkpointing routines for C/paris 
Checkpointing routines for Fortran 
CM character-special device drivers 
Certain CMFS directory routines 
CMFS routines 
Certain CMFS file routines 
CllPS_statfs routine 
CMFS ioctl routines 
Certain CMFS routines 
Certain CMFS statistics routines 
Framebuffer graphics routines 
*Render routines for C* and C/paris 
*Render routines for CM Fortran and Fortran/Paris 
CMSSL routines for CM Fortran 

emssl-paris.h CMSSL routines for C/paris 
cmssl-fort-constants.h 

Symbolic CMSSL constants for CM Fortran 
cmssl-fort-paris.h 

cmssltypes.h 
cmtypes.h 
display-fort.h 

CMSSL routines for FortranJParis 
CMSSL routines for C* and C/paris 
CM data types, when par is • h is not included 
Generic Display Interface routines for CM Fortran and 
Fortran/Paris 

display. h Generic Display Interface routines for C* and c/paris 
paris-configuration-fort.h 

paris.h 
Paris instructions in CM Fortran and Fortran/Paris 
Paris instructions in C* and c/paris 

4.5 Executing a Program 

69 

Chapter 2 discusses in detail the process of attaching to a CM and executing a 
program, using either batch or direct access. See also Chapter 5, which 
discusses how to attach to a CM from within a program, and Chapter 6, which 

Version 6.1, October 1991 



70 eM User's Guide 

discusses how to restart a program that has been checkpointed during 
execution. 

4.6 Debugging a Program 

We recommend that you use Prism. the CM's programming environment. to 
debug and analyze the performance of your program. For complete information 
on Prism. see the Prism User's Guide. 

4.7 UNIX Utilities 

You can use other standard UNIX utilities like make and gprof with a data 
parallel program. See Chapter 6 for information about how to use gprof to 
profile a data parallel program. 

li?rsion 6.1, October 1991 



ChapterS 

Attaching and Detaching 
from within a Program 

In their programs, users can include calls to a variety of functions that 
correspond to many of the commands discussed in Part IT of this guide. Using 
these calls, a program can: 

• Attach to a CM resource, specifying the interface, the sequencer(s), the 
memory size, and other characteristics of the resource. 

• Detach from the CM. 

• Detach other users from the CM. 

• Power up and cold boot the CM. 

• Obtain emf inger-style information about who is using the CM. 

The routines discussed in this chapter are available for C*, CM Fortran, 
CfParis, and Fortran/Paris programs. For information on *Lisp and LispfParis 
versions, see Part V. 

5.1 Overview 

Table 8 lists the routines discussed in this chapter. See the individual sections 
of the chapter for the specific C and Fortran versions of the routines, and for 
their arguments. 

Version 6.1, October 1991 71 



72 eM User !so Guide 

Table 8. Routines for attaching, detaching, and obtaining emfinger data 

Routine 

CM_attach 
CM_attach_to 
CM..,preempt 
CM_detach 
CM_detach_em 
CM_detach_interface 
CM_detach_user 
CM_detach_em_by_seq 

CM_coldboot 
CM..,powerup 
CM_finger 

Use 

Attach to any CM resource. 
Attach to the specified CM resource. 
Detach anyone else, then attach. 
Detach from the CM. 
Detach users from the specified CM. 
Detach users from the specified FEB!. 
Detach the specified user. 
Detach users from the specified sequencer(s) 
on the specified CM 
Cold boot the CM. 
Power up the specified CM. 
Print a complete emf inger output. 

There are also a number of C-only routines that provide more flexibility in 
obtaining cmfinger data; these routines are described in Section 5.5.1. 
Section 5.6 describes C routines for obtaining information about sequencers. 

Section 5.8 describes a C-only mechanism for obtaining a user's command line 
arguments to determine the configuration of the desired CM resource. 

To use the routines discussed in this chapter, include the file 
<em/attach. h> (for C programs); for Fortran programs, include the file 
/usr/include/cm/attach-fort.h. Link. with the Paris library, 
1 ibpar is • a, if your program does not do so automatically. 

5.2 Attaching to a eM 
Three routines are available for attaching to a CM: 

• Call CM_attach to attach to any available CM resource. 

• Call CM_attach_to to attach to a specific CM resource; the 
arguments to the routine specify the resource. 

• Call CM..,preempt to detach a process from the CM, then attach in its 
place. 

~rsion 6.1. October 1991 



Chapter 5. Attaching and Detaching from within a Program 73 

In addition, the routine ai_attached is available to let you determine if the 
program is attached to a CM. ai_attached takes no arguments; it returns 
non-zero if the program is attached, and 0 if it isn't attached. 

5.2.1 Attaching to Any CM Resource 

Call the ai_attach routine to attach to any available CM resource. 

The routine has this definition in C: 

Cint CM~attach () .•.... . . ) 
~~----~----~~~~~~~---=~~~~~----~~ 

Call the routine from Fortran as follows: 

(call CM_attach () . 

OLat tach takes no arguments, and settles for any free CM resource it can 
get. If resources are available, by default it receives the highest-numbered 
sequencer that is free on the CM connected to the lowest-numbered interface 
that is also free. 

If the process is already attached when it issues CM_attach (for example, 
because the program was executed from a cmattach subshell), CM_attach 
inherits the existing attachment. 

CM_attach has these return values: 

• 0 - There are no free CM resources available from this front end. The 
error message "No CM resources available" appears on your stderr. 

• -1 - The request couldn't be satisfied for some other reason. An 
explanation of the failure is displayed on your stderr. 

• >0 - If the return value is greater than 0, the process successfully 
attached, and the value represents the number of processors to which it 
attached. 

5.2.2 Attaching to a Specific CM Resource 

Call the CM_attach_to routine to attach to a specific CM resource. 

The routine has this definition in c: 

Version 6.1, October 1991 



74 eM User ~ Guide 

Call the routine from Fortran as follows: 

······•·····.·· .. ·· ...• ·.· •.•. i?J 
where: 

em_name is the name of the CM to which you want the program to at­
tach. Specify 0 to indicate that you will accept any CM. 

bits is a bit-mask that specifies the configuration of the CM re­
source to which you want to attach (see below). Specify 0 to 
indicate that any configuration is acceptable. The defaults are 
the same as those for the cma t tach command: you are at­
tached to the highest-numbered sequencer that is free on the 
lowest-numbered available interface. 

Thus, 

in C, is equivalent to CH_attachO. 

Specifying the eM Resource 

The bit-mask in CM_attach_to is also used in other routines. You can use 
this bit-mask to specify: 

• Whether the process is to wait for the resource to become available. 

• What memory size you want. 

• The type of floating-point accelerator you want. 

• Whether you want the resource to have a framebuffer. 

• Whether you want to run in exclusive mode only, under timesharing 
only, or you don't care. 

• Whether you want the resource to have a Data Vault. 

• The number of sequencers you want. 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 7S 

• The precise set of sequencers you want. 

• The number of processors you want. 

Table 9 lists the arguments and their meaning. Note that Fortran versions of the 
arguments all begin with 1 (so that Fortran implicitly assumes that the values 
are integral). 

Table 9. Arguments to CM_attach_to* 

Argument 

CMA_WAIT 
CMA_CMn 
CMA_Mmemsize 
CMA_KEXAC'l' 
CMA_FPUJputype 
CMA_FRAMEBUFFER 
CMA_DATAVAULT 
CMA_TlKESHARED 
CMA_EXCLUSlVE 
CMA_UCCS_n 
CMA_UCCnLand_n] 
CMA_Pn 
CMA_PEXACT 
CMA_In 

Meaning 

Wait for the resource. 
Get a resource on the specified CM model. 
Get a resource with at least memsize memory size. 
Get a resource with exactly CMA_lImemsize. 
Get a resource withfputype floating-point accelerator. 
Get a resource with a framebuffer. 
Get a resource with a Data Vault. 
Get a resource running under timesharing. 
Get a resource running in exclusive mode. 
Get a resource with n sequencers. 
Get a resource with the specified sequencer set. 
Get a resource with at least n processors. 
Get a resource with exactly CMA_Pn processors. 
Attach to the CM via the specified interface. 

*Fortran versions have an I added to the beginning. 

You can specify any combination of requirements, as long as they are 
consistent. For example, 

...... ," 

.CMA __ WAIT+CMA..;;EXCLUSlVE) ; 

(in C) specifies that the process is to attach to Frodo in exclusive mode, and 
will wait for resources. But 

incorrectly asks for both a timeshared resource and an exclusive resource. 

Waiting for the resource. To specify that the process is to wait for the 
required CM resource to become available, include the argument CMA_WAIT 

Version 6.1, October 1991 



76 eM User s Guide 

(ICMA_WAIT in Fortran). If you don't include this argument, 
CH_attach_to returns 0 if it can't obtain the specified resource. 

Specifying the eM model. If you have more than one model of the CM 
available at your site, use the CIIA_CIIn argument (ICIIA_CIIn in Fortran) to 
specify the model to which you want to attach. Possible values are 2 and 200. 
Use 2 if you want to attach to a CM-2 series machine; use 200 if you want to 
attach to a CM-200 series machine. 

If you omit this argument, you are attached to whatever is available, using the 
standard algorithm.. 

Specifying memory size. To request a memory size for the CM resource, use 
one of the argwnents listed below: 

CIIA_M64lC or CIIA_M64 64K memory size 
CIIA_N256lC or CIIA_N256 256K memory size 
CIIA_IUM or CIIA_M1 '1M memory size 
CIIA_M4M or CIIA_M4 4M memory size 

(Fortran versions have an 1 added to the beginning.) These arguments indicate 
that you will accept at least the specified memory size, unless you also specify 
CIIA_IlEXACT (ICIIA_IlEXACT in Fortran); this indicates that you will accept 
only the specified memory size. Omit these arguments if you will accept any 
memory size. 

Macros are available that let you convert a memory size constant into an actual 
memory size, and vice versa. These may be useful, for example, in converting 
between human input and the format required by CH_attach_to. 

Use CIIA_HSIZE (ICIIA_HSIZE in Fortran) to convert a size constant into an 
actual memory size. For example, CHA_HSIZE (CIIA_M1M) returns 1048576. 

Use CIIA_IIBITS (ICHA_IIBITS in Fortran) to convert an actual memory size 
to a constant that can be used in CM_attach_to. For example, 
CHA_IIBITS (1048576) returns CHA_1U1I. 

Specifying the tloating-point accelerator. To request a specific type of 
floating-point accelerator (or no floating-point accelerator at all), use one of 
these arguments: 

CHA_FPU_32 32-bit floating-point accelerator 
CHA_FPU_64 64-bit floating-point accelerator 
CHA_FPU_NONE No floating-point accelerator 

(Fortran versions have an 1 added to the beginning.) Omit these argwnents if 
you will accept any kind of floating-point accelerator. Note that this is different 

~rsion 6.1. October 1991 



Chapter 5. Attaching and Detaching from within a Program 77 

from specifying CKA_FPU_NONE, which specifically requests a resource with 
no floating-point accelerator. 

Specifying attached devices. Include the argument CIIA_DA'l'AVAUL'l' 

(:ICMA_DA'l'AVAUL'l' in Fortran) to request a resource that has access to a 
DataVault. 

Include the argument CKA_FRAMEBUFFER (:ICMA_DA'l'AVAUL'l' in Fortran) 
to request a resource that has access to a framebuffer. 

Specifying timeshared vs. exclusive access. Include the argument 
CIIA_EXCLUS:IVE (:ICIIA_EXCLUS:IVE) if you want only a resource 
operating in exclusive mode. 

Include the argument CHA_'l':IMESBARED (:ICMA_T:IMESBARED in Fortran) 
if you want only a resource operating under timesharing. 

Omit these arguments if you will accept a resource operating either under 
timesharing or in exclusive mode. 

Specifying the number of sequencers. Use one of these arguments to request 
a specific number of sequencers: 

CHA_UCCS_l 

CHA_UCCS_2 

CHA_UCCS_' 

1 sequencer 
2 sequencers 
4 sequencers 

(Fortran versions have an I added to the beginning.) Omit these arguments if 
you will accept any number of sequencers. 

Specifying the sequencer set. Use one of these arguments to request a specific 
sequencer or set of sequencers: 

CHA_UCCO 

CHA_UCCl 

CHA_UCC2 

aIA_UCC3 

alA UCCO_and_l 

CHA_UCC2_and_3 

CMA_UCCO_to_3 

sequencer 0 
sequencer 1 
sequencer 2 
sequencer 3 
sequencers 0 and 1 
sequencers 2 and 3 
sequencers 0 through 3 

(Fortran versions have an I added to the beginning.) Omit these arguments if 
you will accept any sequencer or set of sequencers. 

Specifying the number of processors. Use one of these arguments to request 
a specified number of processors: 

Version 6.1, October 1991 



78 

CIIA_P4IC 

CIIA_PBIC 
CIIA_P16IC 
CIIA_P32IC 
CIIA_P64IC 

4096 processors 
8192 processors 
16384 processors 
32768 processors 
65536 processors 

eM User:S Guide 

(Fortran versions have an I added to the beginning.) These arguments indicate 
that you will accept at least the specified number of processors. unless you also 
specify CIIA_PEXACT; this indicates that you will accept only the specified 
number of processors. Omit these arguments if you will accept any number of 
processors. 

Macros are available that let you convert a processor-number constant into an 
actual number of processors, and vice versa: 

Use CKA_PCOtJN'l' (ICKA_PCOtJN'l' in Fortran) to convert a processor­
number constant into an actual number of processors. For example, 
CIIA_PCOUN'l' (CIIA_P4IC) returns 4096. 

Use CIIIA_PBI'l'S (ICIIA_PBI'l'S in Fortran) to convert an actual number of 
processors to a constant that can be used in ClCattach_to. For example. 
CIIA_PBI'l'S (4096) returns CIIA_P4IC. 

Specifying the interface. In C only. use the CIlIA_In argument to specify the 
number of the front-end bus interface by which you want to attach to the CM. 
For example. specify CIIA_IO to attach via interface O. Omit this argument if 
you will accept any interface. 

To convert an interface number into a bit mask that can be passed to 
CM_attach_to, use the macro CKA_interface_to_bits or CIlIA_I 
(ICMA_interface_to_bits or ICMA_I in Fortran); its single argument 
is the interface number. For example. this Fortran code fragment asks for 
interface 0 in exclusive mode: 

.... <±~I6MA_:i (0) . . ..... ·••·•·•· •. ·i.· ...... . ..... . ..... . 
/····.ca.iibM· .attadh~b(i~~kciK~~Je 

'~., .... -"'!' ....... : .. - ..... . 

To convert the bits to an interface number. use the macro 
CMA_bits_to_interface (ICMA-.bits_to_interface in Fortran). 

Examples 

This Fortran call requests a resource on CM Top with 8192 processors and a 
framebuffer: 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 79 

This C call requests a resource on CM Frodo with one sequencer and a 64-bit 
floating-point accelerator, running in exclusive mode; the process is willing to 
wait: 

+ CMA FPU 64 - -
+ CMA_ EXCLUSIVE) ; 

Return Values 

CM_attach_to has the following return values: 

o There are no free resources on this front end that match the re­
quested configuration. 

-1 The requested configuration is contradictory (for example, the 
CM you specified doesn't have the kind of floating-point ac­
celerator you requested). 

>0 The process is attached to this number of processors. 

5.2.3 Preempting Another User 

Call the CM...,preempt routine to detach whoever is using the specified CM 
resource, and then attach to the resource in its place. 

NOTE: Only the superuser or the owner of the timesharing daemon can detach 
timesharing from a CM resource. 

The routine has this definition in C: 

Call the routine from Fortran as follows: 

Version 6.1, October 1991 



80 eM User ~ Guide 

where em_name and bits are the name .of the CM and the bit-mask that 
specifies the resource, as discussed in the previous section. 

The return. values are the same as those for OI_attach_to; see the previous 
section. 

Example 

This C call preempts the user of sequencer 0 on CM Frodo: 

(.·.cM-#¥.~~~!).~ •• ·.( .• tI.~i.?~P."·'· •••.•. C~}uc:cO·) •. ··.~··· ............ . 

5.3 Detaching 

These routines are available for detaching from. a CM: 

• Call OI_detach to detach the calling process from. the CM resource to 
which it is attached. 

• Call OI_detach_CDl to detach anyone attached to a specified CM. 

• Call OI_detacb_interface to detach anyone attached to a CM on 
a specified interface. 

• Call OI_detacb_CDl_by_seq to detach anyone attached to a CM on 
a specified sequencer set. 

• Call CM_detacb_user to detach a specified user from the CM 
resource to which he or she is attached. 

NOTE: Only the superuser or the owner of the timesharing daemon can detach 
timesharing from a CM resource. 

5.3.1 Detaching the Calling Process 

Call the routine eN_detach to detach the calling process from its CM 
resource. 

The routine has this definition in C: 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 81 

...........................J 

Call the routine from Fortran as follows: 

<J 
There are no return values. The process is detached from the CM resource it is 
using. 

5.3.2 Detaching All Users from a eM 
Call the routine CM_detach_CDl to detach all users who are attached to the 
CM you specify via a single FEB! from the front end on which your process is 
running. 

The routine has this definition in C: 

Call the routine from Fortran as follows: 

where: 

em_name is the name of the CM from which you want to detach users. 

eonfirm is either TRUE or FALSE. If it is TRUE, the routine asks for 
confirmation of the detach by printing a message on the stan­
dard error device. If it is FALSE, the routine proceeds with 
the detach without waiting for confirmation. 

Note: 

• Only the superuser or the owner of the timesharing daemon can detach 
timesharing from a CM resource. 

• The routine works only if the CM is connected to the front end via one 
front-end bus interface; if there are multiple interfaces, use 
CM_detach_1nterface to choose which interface you want to 
detach; see below. 

• If the calling process is attached to the specified CM, it too is detached. 

Version 6.1, October 1991 



82 eM User:V Guide 

• Users attached to the specified CM via an interface on another front end 
are not detached. 

Return Values 

CK_detach_cm has these return values: 

o The detach was successful. 

-1 The detach failed. An explanation of the failme is printed on 
your stderr. 

-2 The CM is attached to this front end on more than one inter­
face. Use the CK_detach_1nterface routine to detach it 
from each interface individually. 

5.3.3 Detaching Users from a Specific Interface 

Call the routine CK_detach_1nterface to detach all users attached to a 
CM via the front-end bus interface that you specify. 

The routine has this definition in C: 

'. .. 

int ... CM _detach_intetface{inf 

Call the routine from Fortran as follows: 

where: 

iface 

confirm 

Note: 

is the number of the interface from which users are to be 
detached. 

is either TRUE or FALSE. If it is '!'RUE, the routine asks for 
confirmation of the detach by printing a message on the stan­
dard error device. If it is FALSE, the routine proceeds with 
the detach without waiting for confirmation. 

• Only the superuser or the owner of the timesharing daemon can detach 
timesharing from a CM resource. 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 83 

• If the calling process is attached via the specified interface, it too is 
detached. 

• Users attached to the specified CM via any other interface are not 
detached. 

Return Values 

CM_detach_interface has these return values: 

o The detach was successful. 

-1 The detach failed. An explanation of the failure is printed on 
your stderr. 

5.3.4 Detaching Users from a Specific Sequencer Set 

Use the routine CM_detach_cm_by_seq to detach all users from the 
specified sequencer(s) on the specified CM. 

The routine has this definition in C: 

intCM detach cm byseq(char*cm name, int seqs, 
- - - -boolean confirm) 

Call the routine from Fortran as follows: 

seqs, eo1Jftrm) 

where: 

em_name is the name of the CM. 

seqs specifies the sequencer(s) from which users are to be de­
tached. Possible values are CMA_UCCO, CMA_UCC1, 

CMA_UCC2, and CMA_UCC3 for individual sequencers; 
CMA_UCCO_and_l, CMA_UCC2_and_3, and 
CMA_UCCO_to_3 for sequencer sets. (Fortran versions have 
an 1 added to the beginning.) 

confirm is either 'l'RUE or FALSE. If it is 'l'RUE, the routine asks for 
confirmation of the detach by printing a emf inger listing on 

Version 6.1, October 1991 



84 

Note: 

eM User ~ Guide 

its standard error device and asking if you are sure you want 
to disrupt the listed users. If it is FALSE, the routine proceeds 
with the detach without waiting for confirmation. 

• Only the superuser or the owner of the timesharing daemon can detach 
timesharing from a CM resource. 

• If the calling process is attached via one of the specified sequencers, it 
too is detached. 

• Users on other front ends attached to this sequencer are also detached. 

• Users attached to the specified CM via any other sequencers are not 
detached. 

Return Values 

o The detach was successful. 

-1 The detach failed. An explanation of the failure is printed on 
your stderr. 

5.3.5 Detaching a Specific User 

Use the routine CII_detach_user to detach the user you specify. 

The routine has this definition in C: 

Call the routine from Fortran as follows: 

..•... J 
where: 

uname is the name of the user whom you want to detach. 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 85 

confirm is either 'l'RUE or FALSE. If it is TRUE, the routine asks for 
confirmation of the detach by printing a message on the stan­
dard error device. If it is FALSE, the routine proceeds with 
the detach without waiting for confirmation. 

Return Values 

CK_detach_user has these return. values: 

o The detach was successful. 

-1 The detach failed. An explanation of the failure is printed on 
your stderr. 

-2 The request was ambiguous (for example, because the user is 
attached to more than one CM resource). 

5.4 Cold Booting and Powering Up a CM 

Call the CK_cold_boot routine to cold boot a CM resource. 

Call the CK-powerup routine to power up a CM. 

5.4.1 Cold Booting a CM Resource 

Call the CK_cold_boot routine to cold boot the CM resource to which you 
are attached. For information on cold booting, see Chapter 3. 

The routine has this definition in C: 

Call the routine from Fortran as follows: 

NOTE: CK_cold_boot has no effect if you are attached to a sequencer that 
is running under timesharing. 

Version 6.1, October 1991 



86 eM User !so Guide 

5.4.2 Powering Up a eM 

Call the CII-powerup routine to initialize the CM you specify. It is equivalent 
to the cmpowerup command, which is discussed in the eM System 
Administrator!so Guide. CII-powerup initializes the nexus of the CM and 
detaches any users who are currently attached. 

The routine has this definition in C: 

Call the routine from Fortran as follows: 

where: 

em_name is the name of the CM you want to power up. If you specify a 
o for this argument, CK-powerup powers up the CM to 
which you are currently attached. 

eonfirm is either 'l'RUE or FALSE. If it is 'l'RUE, the routine requests 
confirmation of the powerup by printing the cmfinger out­
put for the CM to the standard error device and asking if you 
really want to detach these users. If it is FALSE, the routine 
proceeds with the powerup without waiting for confirmation. 

NOTE: CII-powerup will not power up a CM on which timesharing is 
running. You must first take down the timesharing daemon; see the eM System 
Administrator !so Guide for information on how to do this. 

Return Values 

CII-powerup has these return values: 

o The powerup was successful. 

-1 The powerup failed. An explanation of the failure is printed 
on your stderr. 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 87 

5.5 Obtaining cmfinger Data 

Call eM_finger to print the standard emfinger display on the standard 
output; see Chapter 3 for examples of this display. 

eM_finger has this definition in C: 

(~~V_O_i~d_ .• _CM_.·. ___ f_in_. g_e_r_.···.~()_· •. ~·· __ ~ ________ ~ __________ ~ ______ ~J 
Call the routine from Fortran as follows: 

( ~allCM_fing~r (). ... J 
~~------------~----~------~----------------~ 

eM_finger prints on the standard output the emfinger display for all front 
ends connected to the same CMs as the front end from which the routine was 
called. 

5.5.1 C·Only cmflnger Routines 

The routines discussed in this section are provided in C only. They give more 
flexibility in the use of the emf inger data. 

• cM_finger_d returns a list of cM_finger_data structures 
describing all the interfaces to all the CMs attached to this front end. 
The eM_finger_data structure is described below. 

(~.~ .• CM...:.. .•• ·."-_'-f_i...:..n_g...:..e_r_~.:...d_a_ta...:...·_*"'-CM'-.• ___ f_i_n_g_er-,",-__ d_. _0_··_.· .. -,->~ __ --,-~ ________ ~J 
• eM_finger_delete deletes the memory allocated to hold the list of 

eM_finger_data structures in f. Its definition is: 

( .•. ~C>i~ .•.••.• fM __ ~·i~~er ~de.~e.~~ ..• (.~_~f~~~r· .•• ··.4#t~ •... ·.·*.f ).......... J 
~~-'"'-'---~~--~~"'-"'-~~"'-"'-~'-'-~~~~~------~~ 

• eM_finger"print prints the eM_finger_data structure on the 
process's I/O stream. Its definition is: 

• Call CM_finger_banner to display the standard cM_finger 
banner on the process's I/O stream. Its definition is: 

Version 6.1, October 1991 



88 eM User's Guide 

(.0~f#c;2¥i~~~~~~~~~¥l~±L~~~~~/(i ..... ··<ii\··i)\.iJ 

• aI_fingex_cmretums a linked list of aI_fingex_data structures 
that describe the state of each sequencer of the specified CM. Its 
definition is: 

• aI_fingex_host_cm returns a linked list of aI_fingex_data 
structures that describe the state of each sequencer of the specified CM 
that is attached to the specified host. Its definition is: 

• CM_fingex_host_intexface returns a CH_fingex_data 
structure that describes the CM that is attached to the specified interface 
of the specified host Its definition is: 

• aI_fingex_intexface returns a CH_fingex_data structure 
that describes only this front end's_.connection to the CM on the 
specified interface. Its definition is: 

• CH_f ingex_all_intexfaces returns a list of 
aI_fingex_data structures that describe all the interfaces on this 
front end (but does not query other hosts attached to this front end). It 
takes no arguments. 

• aI_wai texs returns the number of users waiting for a CM resomce, 
and prints the list to the file structure you specify. Its definition is: 

...... ) 

~~ion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 89 

Example 

The code below uses some of these routines to print a complete finger output 
onto the standard output: 

CM_ finger _banner (s tdout); 
CM_Unger_delete (CM_fingerJ>rint (stdout, .. 

CM_finger_d (NULL, 0 »); 

The CM_fingecdata Structure 

The ClCfinger_data structure is defined in <cm/cm-interface.h> 
and looks like this: 

typedef structCM...,:finger_data{ 
structCM.-;finger_data*next; 
struct ~finger_data*prev; 
char*cm_name; /*thename ·ofthe eM*! 
char*host; /* the front end *1 
int interface. 1* the iIJ.terface (on host) 

1* 
* iff")udata is set, then f->user, f->last_event, andf->cmd can 
* .be ignored (f->usermay besetto"unknown" 
* the others have undefined values) . 

or " nobody' , , 

*1 
CM_UDATA_LIST data about the users .onthe CM. 

This is a list because the *1 
inter face maybe timeshared .*/ 

/* 
* Iff->user is • 'nobody"; 
* fieldsare.undefined. :.*, ·0. ...... .. 

*user;·. .. / * thenam~of the user .on.th~ .. <:M .. *./ ... .. . ... 
*cmd; ·I*user'scommand*/i •. · ••• · •...••.••.•••.. i ..... ··> ........•.•...................•..•.•. > .. 
last;.. event;. / * time t.tvsecoflastsignificant~~e~ (*/\ 

. ... 1* set. to Ofol: remotetllachirieS*./ .•..................• • 
J.thesequencersettheus~f~att'dto*l/. . ..•..• 
I * according to theusirl.gcmJie:rver*/ .. 
/*.thesequence:r-set the user's a tt'dte>:..j 

char·msg; 
longnprocs; 
CM_finger...,:data; ... 

Version 6.1, October 1991 

1* according • to the nexus regs ( this'" /) ..... 
/* value is o when this front:end 1s*! 
1* not attached totheCM iriq\l:estion)*l 
/*.amessage (generall.y .. ,aner.r.o:r;message) 
1* count ofproces.sorsinUJ3~*L . 



90 eM User:SO Guide 

ClCTlDA'l'A_LIS'l' is also defined in <cm/cm-interface.h>, and looks 
like this: 

<c:r:ft6~j·~;AT~·····LfsT •• ···•·•··· 
'.-

.... s1:;ruct·.CM_UDATA .... LIST 
.' structCM..,;;UDAT1LLIST 
char *user;ii/ .•.•••.• 

'. CM_ UDATA 'uCi/> 

ClCTlDA'l'A is defined in <cm/cmioctl.h>. and looks like this: 

~,:t~::t:;('~~:·i~~~lg.fo't~i. inditI':~~lo.i'li 
sho:i:t ud ... intf; J"Assodatedinterface(o:i:~:l.ifnone)*I •.... 

··shortud....uid/)i .. · .•... / .. UIDofdeVice"owner" .(eirstQP~ne:d*li 
short····.ud . .;.detach.,.:.uid;· / .. UIDOfWhoever. detached us (:l.t··we were)" 
long\ ud .... erl;oI.,.:.cs:r:;>V .. savedCsR .. in case.()fhatd~~tor~/ •.. 

..•.. ... ~ .. lon,gud mar.k; ....•• . ./* Tinleofdayoflast sighific!iUlt.event * / .. ' 
chaIudc-;nunandICMMAX .CMl)LENGTH+l1; / .. useIcommand,~dnUl.l OCUDATi;-- - '. .... .' . .. . '. 

ud_state can have these flag values: 

I~AplocessiSconnected to thiSS1()~.·*1 
#defineuSWAITING 1* 'Aconnectedplocess is wei tiilg to attach 
#define US=:CONNECTEO .. OX0004.· 1* We are attachedtoa hardWareinte:tface*/" 

. #def1netis EXCLUSlVEOXO.oos/* ~o .furtheropens of this device allo"'ed"'/ 
#defiileUS::::DISCONNECTEDOX0010 . /*Weonce.wereatt;ached,but nomOre .. t 
#define Us~HARD_ERROROX0020 '.' i*Fatal hardwareerroroccurl:ed*/< 

. #defineUS~ATTACHING OX0040 /* . Process is tl:yingtoattach"'/ •. ' ." . 
.. ··.#defineUS ... BO()TING .••.. .oxooeo I* Process is txjing t:ocoid-J:'loot::"{ . 

.. ' ········:::~t~:~:=:=~:~~~~ ~:~~~:::~::!:~::~~i~~d:$i~~~)T 
'#def ineUS_BEOUEATHEDOX04 00 1* pro~.eSShas~asSOI1exC:llisivElrights 

#defineUS.;;.DIRECTOX0800 1* Procesivhasopeneddiie~tdeVic~* I . 
#def1neUS_READINGOX1000 ... A proces~.isinTea<i·/>· ........ . 

'#defineUS_WRITIlm .Ox2()00 . Process isl.nwdt~.~/. '.' ..... > . 

El:.r6l:detectedon.s~'pe~* I 

In all cases the linked lists are terminated by a NOLL- >nezt pointer. 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 91 

5.6 C-Only Routines for Sequencer Information 

The routines discussed in this section provide ways of converting sequencer-set 
bit information to printable strings and vice versa. 

Use CK_sequencer_set to convert a printable string to a bit mask that 
represents the sequencer set. Its definition is: 

Ci~t.cM~sequencer_set (char *str). 

Legal strings for sequencer sets are 0, 1,2,3,0-1,2-3, and 0-3. The error value 
is O. 

Use CK_sequencer_striDg to convert the bit mask to a printable string. 
Its definition is: 

(~;C_h_.a_r_.·~<*~.CM_··~~_s_equ~._e_n_c~e~r~~~s_t_r_in_. g __ (~_·n_t_·_s_)~ ____ ~ __________ ~J 
If successful, the routine returns a string constant, so that you don't have to 
save the result before calling it again. If a bad sequencer set is specified, the 
routine returns a string that reports the error, using this format: 

(~:B_a_d_. · •. _8_. ~_qu_ .. ·_e_n_ce_I_·. · •. -,"m_a-,S_k_:~ ••. '-O_xh_e_xst_._n_·n_g __ -'---_____ --'"'-'--____ ~J 
This string is a static and needs to be saved. 

Two macros are provided that convert between the sequencer set retmned by 
CK_sequencer_set and the format required by CK_attach_to (see 
Section 5.2.2): 

Use CMA_BI:TS_TO_OCCS (I:CMA_BI:TS_TO_OCCS in Fortran) to convert 
the CK_attach_to format to the CM_sequencer_set format. 

Use CMA_OCCS_TO_BI:TS (I:CMA_OCCS_TOJUTS in Fortran) to convert 
the CM_sequencer_set format to the CII_attach_to format. 

Thus, to convert a string typed by the user to the CM_attach_to format, you 
could use this idiom: 

Version 6.1, October 1991 



92 eM User ~ Guide 

5.7 C-Only Methods for Error Handling 

Error messages from the CM subsystem are sent to the file pointer 
Clcerror_stream. By default, this is bound to stdetT; you can change this 
default if, for example, you want error messages to be sent to a file. 

CM errors are handled by cN.J)anic, which calls the function pointer 
eN_abort_function as the last thing it does. By default, this generates a 
core dump, but you may want to define your own abort function (for example, 
a longjmp to a top-level handler). 

eN_abort_function has this definition: 

It can take an argument (eNJ)anic calls it with an argument 0). It must not 
return; if it returns, a core dump is generated. 

1. Declare your error-handling subroutine. For example: 

2. Tell Paris about the error handler: 

(<lM~()~.t:f~~t+~rl i"foo; •...•................. 

5.8 C-Only Methods for Attaching via 
Command-Line Arguments 

You can use the C routines CNJJetopt and ClcattachJJetopt to parse 
command-line arguments and use them to deteDD.ine the characteristics of the 
CM resource to which the user wants to attach. To use these routines, you 
should be familiar with the C routine getopt, on which they are based. 

CN_getopt and cN_attach_getopt take the standard getopt 
arguments: argc, argv, and an option string. In addition, they take a pointer 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 93 

to a string pointer, which is where the routine stores the name of a eM (if the 
user supplies one via the - C option), and an integer pointer, which is where the 
routine stores the bit-mask that represents the characteristics of the eM 
resource. (The routines ignore the values of these last two arguments-they are 
used to only return values.) In every case, the syntax of the option is identical 
to the syntax used by cma t tach. 

The definition of CIIJetopt is: 

int CM_getopt(int argc, char **argv, char *optstring, 
char *cmnamestore, .int *cmbitstore) 

The definition of CII_attach_getopt is identical. 

CII_getopt understands these command-line options: 

-C name Selects a eM by name. 

- i number Selects a CM by interface. 

- S seq-set Selects a sequencer set. 

In addition to these options, CII_attach_getopt understands these options: 

-64, -32, -0 

Selects eM by floating-point type. 

- cm name Selects eM architecture. ' 

- D The CM resource must have a Data Vault. 

- e User wants exclusive access only. 

- F The CM resource must have a framebuffer. 

-p n Selects the number of processors to attach to. 

- t User wants timeshared access only. 

-w User will wait for resource to become available. 

All other options are passed on to the application program. 

Here is a sample program that uses CII_attach_getopt. It accepts the 
additional option - P, which causes the program to call CIIJ)reempt to obtain 
the requested resource. 

Version 6.1, October 1991 



94 eM User:SO Guide 

~rsion 6.1, October 1991 



Chapter 5. Attaching and Detaching from within a Program 95 

Version 6.1. October 1991 





Chapter 6 

Programming Tools 

This chapter describes tools you can use in programming the Connection 
Machine system. Using these tools, you can: 

• Perform safety checking of a program. See Section 6.1, below. 

• Time a program, or parts of it. See Section 6.2 on page 99. 

• Profile a program. See Section 6.3 on page 105. 

• Checkpoint a program, so that it can restart from a specified point in its 
execution. See Section 6.4 on page 107. 

• Visualize your data, using CM graphics display software. See Section 
6.5 on page 125. 

The discussions in this chapter apply to C*, CM Fortran, C/Paris, and 
Fortran/Paris programs. (Checkpointing is not available for C*.) For 
information on *Lisp and Lisp/paris, see Part V of this guide. 

6.1 Run-Time Safety Checking 

The CM system provides a safety utility that checks for Paris-level errors and 
inconsistencies in programs. This utility can be used both for Paris programs 
and for programs written in high-level languages; see the user's guides for the 
high-level languages for information on additional safety checking available 
for these languages. Safety checking reduces execution speed, of course, but it 
can be useful in developing and debugging programs. 

When tlimed on, the safety utility checks: 

Version 6.1, October 1991 97 



98 eM User's Guide 

• Whether field IDs passed as arguments to Paris instructioris refer to 
fields in the current VP set 

• Whether field IDs passed as arguments to Paris instructions are valid 
field IDs (although not all invalid field IDs are caught) 

• Whether the lengths passed to Paris instructions exceed the lengths of 
the respective field operands 

(For information on field IDs and VP sets, see the Paris Reference Manual.) 
When the utility detects an error, it aborts the execution of the program and 
prints information about the error to your standard error device. 

There are two ways of using this utility: 

• By using the Paris instruction aI_set_safety _mode from within a 
program 

• By issuing the command cmsetsafety from within a cmattach 
subshell 

6.1.1 From within a Program 

The safety utility is available as aI_set_safetY-lD0de, a Paris instruction 
you can include in your program. To turn on safety, specify any non-zero 
integer as an argument to the instruction. To turn it off, specify zero as the 
argument. 

If you call this routine in a C* or CM Fortran program, you must include the 
Paris header file. For C*, the file is <em/par is • h>. For CM Fortran, the file 
is /usr/include/cm/paris-configuration-fort.h (you may 
need to specify a different path for this file; check with your system 
administrator). 

6.1.2 From a cmattach Subshell 

The CM command cmsetsafety performs the same function as the Paris 
instruction CK_set_safety _mode. Using the command rather than the 
instruction lets you turn safety checking on and off for a program without 
changing the source file. However, cmsetsafety does not let you limit 
safety checldngto selected parts of a program. 

~rsion 6.1, October 1991 



Chapter 6. Programming Tools 99 

To tum on Paris-level safety checking, issue this command from a cma t tach 
subshell: 

c% ·.·~~et~afetY on .•..... 

You can also put the command into a script file to be executed as an NQS batch 
request. See Chapter 2 for a discussion of the cma t tach subshell and batch 
requests. 

To tum off safety checking, use the argument off instead of on. Safety 
checking is initially off in a cma t tach subshell. Turning it on causes it to stay 
on until you tum it off or exit the subshell. See below for a way to change the 
default behavior of safety checking. 

6.1.3 Changing the Default Safety Behavior 

As mentioned above, safety checking is initially tumed off for a cma t tach 
subshell. To enable safety checking by default for all CM program execution 
(including batch requests), set the environment variable 
0CDEFAOLT_SAFE'l'Y to on. For example, if you are running the C shell, 
put this line in your • login or • cslu=c file: 

(~s_e_t_e_n~v~··._CM_·· .. ___ DE~F~A~UL~ ... _T __ ~S_~~F_.~~~_ ..• ~.o~n~ .. ···.~~~ ____________ ~ ____ J 
If the variable is not set, or if it is set to any other value, safety is off for 
background execution and initially off in a cmattach subshell. 

It is often convenient to set the defaults such that safety is off for background 
execution (that is, when you specify the name of your program on the 
cmattach command line) but on in a cmattach subshell. To accomplish 
this in the C shell, add this line to your. cslu=c file: 

6.2 Timing a Program 

The CM system provides a timing utility that lets you determine how much 
time any part of a program takes to execute on the CM. The timer consists of 

Version 6.1, October 1991 



100 CM User ~ Guide 

a set of Paris instructions that you insert at the appropriate places in your 
program. 

NOTE: C* bas its own versions of these routines, which C* users may prefer to 
use. See the C* User:S- Guide for information. 

The timing utility bas the following featmes: 

• A timer calculates total elapsed (wall clock) front-end process run time 
and the total amount of time the CM is active. It provides times of up to 
43 hours, with microsecond precision. 

• Multiple timers can be active at the same time. 

• Tuners can be nested. This allows you, for example, to start one timer 
that will time the entire program. while using other timers to determine 
how different parts of the program contribute to the overall time. 

You can have up to 64 timers running in a program. An individual timer is 
referenced by an unsigned integer (from 0 to 63 inclusive) that is used as an 
argument to the Paris timing instructions. Instructions with the same number as 
an argument affect only the timer with that number. 

To start timer 0, for example, put a call to the CII_timer_start routine in 
your program, using 0 as an argument. 

In C, the call would be: 

(~ __ ~i~T~ __ s~ar~·(~)i; •.••••.•... · •• · •.•• i.· .. > ..... 

In Fortran, the call would be: 

C.~p.U.ci;~~¥~~":st~rt(~l •.••.. · ....•..••. ·•· •.••.•• · •...........• · •.... ·· .. ·.····i 
You can subsequently stop timer 0 by calling the CII_timer_stop routine 
later in your program. For example: 

C~~~iIll~i~~Fo~\O)j;i{i .•.•. ••. ii·.·.i ···ii· •• ·.··> . ... > ·.·/(i iii\!{) 

This function stops the timer and updates the values for total elapsed time and 
total CM idle time being held by the timer. You can subsequently call 
CII_timer_start again to restart timer 0; the timing starts at the values 
currently held in the timer. This is useful for measuring how much time is spent 
in a frequently called subroutine. The timer keeps track of the number of times 
it bas been restarted. 

~rsion 6.1, October 1991 



Chapter 6. Programming Tools 101 

You can start or stop other timers while timer 0 is running; each timer runs 
independently. 

To get the results from timer 0, call the following routine after you have called 
OCt ime r_s top: 

( CM_timeryrint (0); 

0Ctimer"print prints information like the following to your standard 
output: 

Starts: 1 
CM Elapsed time: 27.7166 seconds 
CM busy Time: 23 .. 1833 seconds 

The following routines return specific information from the timer for use in a 
program: 

• CM_timer_read_starts returns an integer that represents the 
number of times the specified timer has been started. 

• CM_timer_read_elapsed returns a double-precision value that 
represents the total elapsed time (in seconds) for the specified timer. 

• CM_timer_read_cm_idle returns a double-precision value that 
represents the total CM idle time (in seconds) for the specified timer. 

• CM_timer_read_cm_busy returns a double-precision value that 
represents the total time (in seconds) the CM was busy for the specified 
timer. CM busy time is the total elapsed time minus the CM idle time. 

• CM_timer_read_run_state returns TRUE (1 in C) if and only if 
the specified timer is running. 

H you call any of these timing routines in a C* or CM Fortran program, include 
the Paris header file. For C*, this file is <em/par is . h>. For CM Fortran, the 
file is /usr/include/cm/paris-configuration-fort .h. (You 
may need to specify a different path for this file; check with you system 
administrator). 

In addition, CM_timer_set_starts takes a timer number and an integer 
value as arguments. It sets the number of starts for the specified timer to the 
specified value. This is useful if you want to write a function that can query a 
running timer without changing the number of starts. Not changing the number 

Version 6.1, October 1991 



102 eM User:S- Guide 

of starts is important if you want to know how many times a large chunk of 
code was called, but you also want to get sub-timings within that block. 

To clear the values maintained by timer 0, call CM_timer_clear: 

.. ) 
This zeroes the total elapsed time, the total CM idle time, and the number of 
starts for this timer. 

When you run a program that contains timer routines, the timer first prints the 
CM's clock speed to your standard output device before displaying any 
timings. For example: 

( CMspeed=6.99714 MHz .... 

As mentioned above, you can have up to 64 timers active. The maximum 
number of timers may change in future releases. You can check the maximum 
number of timers as follows: 

• In C, check the eztern unsigned variable CM_number_of_timers 
in (cm/paris. h> • 

• In CM Fortran, use the external function CM_number_of_timers 0 
in/usr/include/cm/paris-configuration-fort.h. 

6.2.1 Interpreting the Results 

In interpreting the results of a timer, it is important to understand something of 
how the timing utility works. 

The elapsed time reported by a timer includes time when the process is 
swapped out on the front end. The more processes that are running on the front 
end, the more distorted this figure will be. Therefore, we recommend the 
following: 

• Use a front end that is as unloaded as possible. 

• Run the process several times; the minimum elapsed time reported will 
be the most accurate. 

Similar considerations apply when the process is running on a CM under 
timesharing. To obtain the best results, run the process on a sequencer that is 
not timeshared. If that isn't possible, try to run the process when no other 

Ve1:fion 6.1, October 1991 



Chapter 6. Programming Tools 103 

processes are using the same sequencer. Under timesharing, elapsed time is the 
amount of time your process used the CM (not elapsed wall clock time). 

CM idle time includes only those cycles during which the CM is waiting for an 
instruction from the &ont end. Consequently, CM active time includes not only 
those cycles during which the CM is performing computations, but also those 
during which the CM is waiting for arguments to an instruction it has received. 
Therefore: 

• Expect slightly different CM active times on different front-end models 
for code segments that do not keep the CM 100 percent active. The time 
the CM spends waiting for data to appear is counted as active, but front­
end models differ in the speed with which they can move data over the 
FEBI to the sequencer. 

• Avoid stopping a process that is being timed. 

In addition, make sure that Paris safety checking is turned off, since safety 
checking slows down execution of a program; see Section 6.1 on page 97. 

6.2.2 An Example 

The following CM Fortran program uses several features of the timing utility: 

t>:r6g~arn timing •.•••. 
<integer A(lOO), .. 
parameter· > (N=20 ·000) ..•.. 

incIUde'/us'tlin~{~~e/cm/Paris-configuration-fort.h' .. 
}.: :":'" .... 

b~ll cm.,.2set_safety_mode (0) 
. call cm_time;_startlO) 

.· ..... 1:~i~·~··.···· .. ·. 
A ···;"·A~.l.i·· 

. call cm __ tinl~i_stop 
pr int*, ...•. ' CMlnteger .arrayaddi don:' 
cal1ClTLtimerY:t.int(1) . 
can <cmtirner clear(i) . 

".:: .. - ........ : ... -... . 

Version 6.1, October 1991 



104 eM User s Guide 

The program's output is shown below: 

Note the following about this program: 

• It explicitly calls ClCset_safetY.JD0de to tum off run-time safety 
checking. 

• It uses one timer (timer 0) to time the entire program, and another timer 
(1) to time the two DO loops within the program. The first DO loop uses 
the eM; the second doesn"t. 

~rsion 6.1, October 1991 



Chapter 6. Programming Tools 105 

6.3 Profiling 

You can use the UNIX gprof command to generate a "call graph" profile of a 
data parallel program. This profile displays a summary of the amount of time 
spent in each routine, as well as a list of which routines call, and are called by, 
other routines. For complete information about gprof, consult your UNIX 
documentation. 

The CM system provides special Paris and CM file system libraries that you 
can link with your data parallel program; by linking with these libraries and 
using gprof, you can see which routines are getting called most frequently, 
and which are using the most time during program execution. 

NOTE: The profiling utility does not provide information about usage of the 
eM. To obtain that information, use the timing utility described in Section 6.2. 

6.3.1 Effects of Using the Profiling Libraries 

In the profiling libraries, all eM calls operate synchronously; this is not the 
case in the normal libraries. By synchronizing the CM and the front end, the 
profiling libraries enable gprof to obtain accurate information about both the 
front end and eM time for eM operations. This causes some loss of efficiency 
in the program as a whole, however. 

6.3.2 Using the Profiling Libraries 

From C/Paris and Fortran/parls 

To use the profiling libraries, do this when compiling the program: 

• Use the -pg option with the compiler command. 

• Use the -1 option to link with the Paris library 1ibparis-pg.a 
(using the syntax -lparis-pg). 

• If the program uses the CM I/O system, also link with the CM I/O library 
1ibcmfs-pg. a (-lcmfs-pg). 

• If the program uses *Render or Generic Display Interface graphics rou­
tines, also link with the *Render library 1ibcmsr-pg. a (-lcmsr­
pg). 

Version 6.1, October 1991 



106 eM User:S Guide 

Do not link with the standard versions of these libraries. 

You can then run the program on the eM as you normally would. When the 
program has run, you can use the gprof command to profile it, as described 
below. 

From C* and CM Fortran 

To use the profiling libraries, use the -pg option to the es or emf command 
when compiling the program. The compiler automatically links with the 
profiling libraries. You can then run the program on the CM as you normally 
would. When the program has run, you can use the gprof command as 
described below. 

Issuing the gprof Command 

Issue gprof with the name of the program as its argument. If you are profiling 
a program called simple, for example, issue the command as follows: 

The gprof command produces a huge amount of output, so you might want 
to redirect the output to a file. For example: 

( ••. ·~· ....••• 5IP~.~~ •.• · ... ·~·i~l~ .•. · ••• ~.· ••• ·.·S.~l~ ..• ·.~7~.~tf~ •.. ··•·•··· •••••••• · .••• ·· .••.•.• ······ ••.•..•.. ) ... 
To help in interpretation, the output from gprof contains explanations of the 
various parts of the profile. Note, however, that the high-level languages are 
compiled into Paris, and the Paris calls are included in the profile. Thus, 
interpretation of these profiles is difficult without an understanding of Paris. 

Note in particular that you may see many routines of the type 
_CMI_read_rfifo_xx_xx in your output. These are calls inserted by the' 
profiling libraries to synchronize the CM and the front end. You can therefore 
ignore the information about these routines. 

For more information on gprof and its options, type 

to read the on-line manual page for gprof. 

Version 6.1, October 1991 



Chapter 6. Programming Tools 107 

6.4 Checkpointing a Program 

The Connection Machine system's checkpointing package lets you save an 
executable copy of a program's state; you can subsequently issue a command 
to restart execution of the program from this state. This package is especially 
useful for programs with long execution times, where it is important that 
execution does not have to start over from the beginning because of a problem 
with the system. You can insert any number of checkpoints in a program, and 
you can restart a program from a particular checkpoint any number of times. 

There are three basic methods of checkpointing: 

• You can insert checkpoints at particular points in a program. 

• You can have checkpoints occur periodically within a program. 

• With some restrictions, you can have a checkpoint occur when a program 
is sent a particular signal (for example, during a planned shutdown of the 
system). 

6.4.1 Features of CM Checkpointing 

The CM checkpointing mechanism has the following features: 

• It is callable from Ctparis, CM Fortran, and Fortran/Paris. (Note that it is 
not callable from C*.) 

• It can be used from within a debugger like dbx. 

• It does not require extensive modification of a program. 

• It can be used on programs that execute only on the front end, as well as 
on programs that use the CM. 

Limitations 

You cannot use the checkpointing mechanism to restore communication links 
and pipes unless the program includes the code to do this itself. See Section 
6.4.6 on page 113 for a further discussion of this issue. 

If you initially run a program under timesharing, you must restart the 
checkpointed version under timesharing. Likewise, if you run the program in 
exclusive mode, you must restart it in exclusive mode. 

Version 6.1, October 1991 



108 eM User's Guide 

6.4.2 Overview of eM Checkpolntlng 

Programming a Checkpoint 

You checkpoint a program by inserting calls to checkpointing routines in your 
program. These routines are listed in Table 10 and are described in detail in 
later sections. 

Table 10. Checkpointing routines 

Routine 

ckpt_init 
ckpt"periodic 
ckpt"periodic __ start 

Use 

Checkpoints a program. 
Adds a routine to the list of routines to be executed 
during checkpointing. 
Deletes a routine from the list to be executed 
during checkpointing. 
Initializes the checkpointing package. 
Calls ckpt if the checkpoint bit is set. 
Starts the timer for periodic checkpointing; sets the 
checkpoint bit at the end of the period. 

ckpt"periodic_stop Stops the timer for periodic checkpointing. 
ckpt"per iodic_wi th_r e turn_ value (C only) 

ckpt-print_error 
ckpt_restart 

The Checkpoint Flies 

Calls ckpt if the checkpoint bit is set; otherwise 
returns. 
Prints an error message. (Fortran only) 
Restarts a checkpointed program; for use with a 
debugger. 

When a checkpoint occurs, the checkpointing package saves the state of the 
program in the following files: 

• -core - This is a standard core file, containing the state of the 
program on the front end. 

• -em-core - This file contains the state of the program on the CM. 
This file is not created if the program is not using the CM. 

• -file-list - This is a list of the files that the program had open 
when it was checkpointed. 

• -program - This is a stored copy of the checkpointed program. 

Ji!rsion 6.1. October 1991 



Chapter 6. Programming Tools 109 

These files have prefixes added to them to create complete pathnames. The 
prefixes are specified by the routine that executes the checkpoint The - core, 
-file-list, and -program files all share the same prefix, which specifies 
a path in the front-end file system; this is referred to as thejront-end prefix. For 
example, if the routine specifies the prefix /jones/myprog, then the front­
end core file is stored in /j ones/myprog-core, and the list of I/O files is 
stored in /jones/myprog-file-list. 

The -em-core file is stored in the CM file system. Typically, its prefix would 
specify a pathname for a DataVault: for example, dva: /jones/myprog; 
this is referred to as the eM prefix. (See Chapter 7 for information on how to 
specify a DataVault pathname.) 

Compiling a Program Containing Checkpoints 

When compiling a program that contains checkpoints, link with the ckpt and 
emf s libraries, in that order. For example: 

.............. ) 

Restarting a Checkpoint 

To run a checkpointed version of a program, use the CM command restart. 
For example, 

c% restart /jon~~/myprog •.. · .. ....• J 
This restarts execution of the checkpointed version of the program myprog, 
using the front-end prefix /j ones/myprog to identify the files that contain 
the checkpoint. (It obtains the CM prefix, if any, from the program being 
restarted.) For more details, see Section 6.4.13 on page 121. 

6.4.3 Include Files for the Checkpolntlng Package 

C Programmers: To use the CM checkpointing package in a C/paris program, 
include the file (cm/ ckpt • h> in your program. If your program does not 
contain code executed on the CM, include the following #define before 
including the checkpointing file: 

Version 6.1, October 1991 



110 CM User's Guide 

This loads a front-end-only version of the package, thereby avoiding the 
overhead of linking in the entire Paris library. 

Fortran Programmers: To use checkpointing in a Fortran/Paris or eM 
Fortran program, include the file /usr/include/cm/ckpt-fort .h. 

6.4.4 Initializing the Checkpointlng Package 

To initialize the checkpointing package, call the routine ckpt_init; you 
must do this before calling any other checkpointing routine, and before any 
parallel operation or CM junction. Its only argument is the name of the 
program being run. 

C Programmers: You can generally specify the name of the program in the 
ckpt_init call as follows: 

Fortran Programmers: You must include the name of the program as it is to 
be invoked by the user. For example, if the program is to be invoked as 
follows: 

......... ) 
then you would call ckpt_init in the program as follows: 

NOTE: It is the responsibility of the Fortran programmer to ensure that all 
strings passed to the checkpointing package are null-terminated. 

What ckpClnlt Does 

When the program first runs, this routine initializes the checkpointing package; 
the routine's arguments are examined, but nothing is done with them. If the 
environment variables CICP'l'_ENV'_FEPREFIX and CICP'l'_ENV'_CNPREFIX 

~rsion 6.1, October 1991 



Chapter 6. Programming Tools 111 

exist, however, ckpt_ini t restarts a checkpoint instead of initializing the 
package. These environment variables are created by the restart command. 
ckpt_ini t uses the prefixes stored in these environment variables to 
determine the pathnames of the files to use in restarting the checkpoint. 

When ckpt_init successfully restarts a checkpoint, it does not return; 
instead, the program restarts at the return from the invocation of the ckpt 
routine that generated the checkpoint; see the next section. When restarting the 
checkpoint, ckpt_init prints a warning on the standard error device for any 
file that was open read-only, but that has changed since the checkpoint was 
created. Other errors and warnings are also printed on the standard error device. 

6.4.5 Putting a Checkpoint In a Program 

Use the ckpt routine to insert a checkpoint at a particular point in a program. 

This routine creates a checkpointed version of the program in files with 
prefixes specified by the arguments to the routine. See below for the syntax in 
C and Fortran. See Section 6.4.2 on page 108 for more information on the files 
created by a checkpoint. 

If the program checkpoints repeatedly using the same prefixes, ckpt ensures 
that all checkpoint data is safely stored to disk before removing the old 
checkpoint. 

The call to ckpt must appear after the Paris call CM_init that initializes the 
CM hardware. In CfParis and Fortran/Paris, this call is made explicitly in the 
program. In CM Fortran, the call appears in the object file produced by the 
compiler. In this language, it should be safe to insert the ckpt call after the first 
parallel operation in the program. If you're in doubt, however, check the object 
file. 

In C 

The ckpt routine has the following definition in C: 

where: 

jeprejix 

Version 6.1, October 1991 

is the front-end prefix, which is added to the front-end core 
file, the file list, and the checkpointed program created by this 
checkpoint. 



112 eM User:S Guide 

cmprejix is the CM prefix to add to the CM core file so that it is stored 
in the CM file system. If you omit a hostoame, the default 
host is used; see Chapter 7 for a discussion of the default host. 
If the CM is not used, specify NULL for this argument. 

See "Return Values," below, for a description of return values from ckpt. 

In Fortran 

You can use the syntax shown in this code fragment when calling the ckpt 
routine from CM Fortran or Fortran/Paris: 

··•· .• ·in~lUdEfi/u~r/:iiidl.Ud~;cm/ckP1:~fOr t~.h;·· 

ii~~g!~.· •• ·.~~t.:l:1~hl.~·· •••. •·•••·• •• · •• ······•··•·• ..•.•........ 

okpt r~~~~':;i~~~~.:~JJ/Lrt~t',...··., ""'T •• T. 

i~(~:~i-f~;~~ri!~2~k1o~irr/> . . . . 
endifi .. . .. .. 

In this code fragment, ckpt"'print_error prints an error message on 
standard error; see Section 6.4.10 on page 119. 

In the call to ckpt,/epre/is the front-end prefix to be add to the front-end core 
file, the file list, and the program created by this checkpoint, and cmpre/ is a 
prefix to add to the CM core file so that it is stored on a Data Vault. If the CM 
is not used, specify NULL for this argument. 

Return Values 

The return values from the ckpt routine are: 

-1 The checkpoint failed. The routine stores a detailed explanation of 
the failure in the string pointer ckpt_errormsg; see Section 
6.4.10 on page 119. 

o The checkpoint succeeded. 

1 The routine is returning from a restarted checkpoint. 

~rsion 6.1. October 1991 



Chapter 6. Programming Tools 113 

6.4.6 Calling Routines to Execute as Part of a Checkpoint 

In the process of creating or restarting a checkpoint, it may be necessary to call 
other routines to perform such tasks as 

• reinitializing output windows or network connections (for example, X 
Window System connections) 

• reattaching to databases or shared-memory segments (note, however, 
that reattaching to shared memory segments is done automatically on 
the Sun-4) 

• updating environment variables 

If such routines are to be used in creating a checkpoint, you can call them 
explicitly before the call to ckpt. If they are to be used in restarting a 
checkpoint, you can call them explicitly if ckpt returns 1. 

The CM checkpointing package provides another mechanism for calling these 
routines, however. This "hook" mechanism, described below, is especially 
useful for library packages that have to take special measmes to save or restart 
their state when checkpointed. By using it, library authors can avoid burdening 
library users with the need to know about these routines. 

The Checkpoint Hook Mechanism 

To call a routine to be executed as part of checkpointing, make it an argument 
to the ckpt_hook_set routine. 

This routine has the following definition for C: 

: . . . . . 

ckpt_ho6k...;;set (int C*hook ..... fn)0, 
int order hint,*chararg) 
. .- .. . 

In Fortran, call the function as follows: 

where: 

hookJn 

iLl 

Version 6.1, October 1991 

is the name of the function to call. 

is either CICPT_SAVE_HOOX (0 in Fortran) or CICPT_RE­

START_HOOX (1 in Fortran). If you choose CICPT_SAVE_ 

HOOK, the function is called as part of the checkpointing pro-



114 eM User!s Guide 

cess. If you choose the argument CXP'l'_RES'l'AR'l'_HOOlC, it 
is called as part of restarting a checkpoint 

order _hint is an integer that the checkpointing package uses in determin­
ing the relative order of execution of hook functions. "Save 
hooks" are executed in decreasing order of order _hint values; 
"restart hooks" are executed in increasing order of order_hint 
values. If more than one function has the same order _hint val­
ue, no guarantee is made about the order of execution. 

arg is an argument passed to the hook function when it is called. 
This lets you call the same hook function repeatedly with dif­
ferent arguments. In C, this argument is passed as a pointer. 

Order hints are used to determine the relative order of execution between 
library packages. For example, one library that depends on another can require 
that the other library's restart hook be executed before its own restart hook. 

The routine returns 0 if it successfully added the function to the list of 
checkpoint hooks, and -1 if an error occurred. A description of the error is 
stored in the string pointer ckpt_errormsg; see Section 6.4.10 on page 119. 

To delete a function from the list of checkpoint hooks to be called as part of 
checkpointing, use the routine ckpt_hook_delete. This routine has the 
following definition for C: 

Call it from Fortran as follows: 

where hookJn is the hook function, as described above; id is either 
CICP'l'_SAVE .... HOOIC or CICP'l'_RESTART_HOOIC (0 or 1 in Fortran); and 
argument is the argument that was passed to the hook function when it was 
invoked. In C, argument is a pointer. 

The function returns 0 if it deleted the specified function from the list of 
checkpoint hooks, and -1 if an error occurred. A description of the error is 
stored in the string pointer ckpt_errormsg; see Section 6.4.10. The most 
probable error is that the function wasn't found in the list of functions. 

~rsion 6.1, October 1991 



Chapter 6. Programming Tools 115 

6.4.7 Setting Up Periodic Checkpoints 

The CM checkpointing package provides routines that let you essentially 
automate the checkpointing of a program. You can also use these routines to 
save a checkpoint in response to a signal; see Section 6.4.8 on page 117. 

Setting the Period 

After initializing the checkpointing package, you can set up a checkpointing 
period by issuing a call to ckptJ»eriodic_start. This routine requests a 
SIGALRM signal at specified intervals. When the signal arrives, a bit is set 
indicating that it is time to do a checkpoint. 

The routine has this definition in C: 

CintckPtJ'eriOdic __ ~tart(int. H,·····int.···M) •........... 

Call it from Fortran as follows: 

Ccal~ckPtJ'eriOdic:~~tart(H, M) •.... 
......•.•.......•.... ) 

where H and M specify houtS and minutes. A SIGALRM is to be sent after H 
houtS and M minutes. The timer will then be reset, and another period of the 
same length will begin. 

Note that a checkpoint does not occur automatically at the end of the period; 
instead, a bit is set, which signals that it is time for a checkpoint. You can then 
check this bit as described in "Performing the Checkpoint," below. The 
checkpoint can't occur automatically because a Paris instruction may consist of 
several messages from the front end to the CM. A signal can arrive during these 
messages. If a checkpoint occurs in response to the signal, the new Paris 
instructions that it generates can end up being inserted as data to the Paris 
instruction that was interrupted by the signal. The mechanism of setting and 
checking a checkpoint bit ensures that the checkpoint occurs between Paris 
instructions. 

Note that currently there is no way to change the period-that is, to have one 
time period between checkpoints in one part of the program, and another time 
period in another part of the program. 

The routine returns the value of the old SIGALRM handler, or -1 if an error 
occurred. 

Version 6.1, October 1991 



116 eM User:S Guide 

Call ckpt...,periodic_eDd (with no arguments) to turn off the SIGALRM 
signal and discontinue its use for triggering a checkpoint. 

Performing the Checkpoint 

There are two routines you can use to check the bit set by the 
ckpt...,periodic_start routine: ckpt...,periodic (a C preprocessor 
macro) and ckpt...,periodic_with_returD_value (a subroutine-not 
supported in CM Fortran and Fortran/Paris). 

The definition of ckpt...,periodic in C is: 

where the arguments and the return value are the same as for the ckpt routine. 

H the checkpoint bit is set, ckpt...,per iodic calls ckpt to checkpoint the 
program, then clears the bit. The ckpt routine creates a checkpointed version 
of the program in files with prefixes specified by jeprejix and cmprejix; ckpt 
always returns with the bit cleared, either from a restart or from a checkpoint. 
H the bit is not set, nothing happens. 

ckpt""periodic_with_returD_value also checks the bit and calls 
ckpt if it is set. In addition, it returns the return value from ckpt, or -2 if no 
call to ckpt was made. 

ckpt...,periodic is preferable if you don't care about the return value from 
the ckpt routine, since it requires fewer instructions than the 
ckpt""periodic_with_returD_value routine. 

Fortran Programmers: ckpt...,periodic is a subroutine call in Fortran. To 
avoid the overhead of a subroutine call, use code like this (the variable must be 
declared as CODON): 

ifLckptyex:iodic_request;,.;:.,bit.Ile. 0) then .i.. . 

.return...;.value-ckpt("fepi:efii/lC:har (OJ, "cmp:r:ef" /!chlir {Ol) ..• 

end if 

~rsion 6.1, October 1991 



Chapter 6. Programming Tools 117 

ckpt"'periodic_with_:retu:rn_value is not supported in Fortran. If 
you want a return value from a periodic checkpoint, use the call to ckpt 
shown above, since ckpt returns a value. 

Here is a code fragment that sets up a periodic checkpoint in Fortran; the 
period is one hour. 

include '/usr/include/cm/ckpt-fort.h' 
integer return value 

[ ... ] 
call ckpt ini t ("prog name" / /char(O) ) 
call ckptyeriodic_startll,O) . 

. [ ... ] 
if'.(ckptyeriodic_request_bit;ne. 0) then. 

return value=ckpt ("x" / /char (O),"Y" //char(O) ) .- .' . .. . 
if(return_value .eq. -i) then 

ckptyrint....:.error 0.... . 
stop'stopped on failed 

if {return value .;eq. 0) . '. . . 

stop '. stoppedonsuccessftilcheckpoi~t 
end if 

end if 

6.4.8 Checkpointing In Response to a Signal 

The ckpt.,.periodic and ckpt"'pe:riodic_with_retu:rD_value 
routines can also be used to respond to a SIGTERM or other signal from the 
kernel during an orderly shutdown of the eM. 

Use the routine ckpt"'pe:riodic_:request (without any arguments) in a 
signal handler to explicitly set the checkpoint bit. The next call to 
ckpt.,.periodic or ckpt"'periodic_with_retu:rn_value then sees 
that this bit is set and checkpoints the program. 

For this checkpointing mechanism to work during a shutdown of the CM, you 
must include frequent calls to either ckpt-pe:r iodic or ckpt_ 
pe:riodic_with_returD_value, so that the program has enough time to 
checkpoint before the system comes down. We recommend that these routines 
be called at least once a minute if you are using them for this purpose. 

Version 6.1, October 1991 



118 eM User ~ Guide 

C Programmers: The following code fragment is a signal handler in C that 
uses the ckpt'-periodic_request mechanism: 

(Note that you can't call the ckpt routine in this signal handler, for the reason 
discussed in "Setting the Period" on page 115.) 

Somewhere early in your program include the following code to specify which 
signals this routine handles (this example calls it to handle SIGTERM and 
SIGINT): 

At the top of your program include this line: 

..........•..•.•......... J 

6.4.9 Displaying Progress Reports 

It can take several minutes to checkpoint a program or to restart a checkpoint. 
The checkpointing package provides a user-visible flag, ckpt_ verbose; 
setting this flag to any non-zero value causes the checkpointing package to 
print progress reports while it is checkpointing or restarting. The flag is turned 
off by default. To turn it on, put lines like those shown below anywhere in your 
program. 

In C/paris: 

......... ·.·...........i· ...................... · .......... ·.iJ 

In FortraD/Paris or CM Fortran: 

.) 

Version 6.1, October 1991 



Chapter 6. Programming Tools 119 

When checkpointing the program, the checkpointing package then prints 
messages like these on the program's standard error: 

myprogram(ckpt/saving a checkpoint): copying 
executable to/jones/myprogram:-"program. 
myprogram(ckpt/saving a checkpoint) : writing 
CM state to dvvax:/jories/myprogram-cm-core. 

When restarting the program, the checkpointing package prints a message like 
this: 

myprogram (.ckpt/restartinga checkpoint): restoring 
CMstate from dvvax: /jones/myprog:r.am-cm-core 

6.4.10 Errors 

In C, the string pointer ckpt_errormsg contains a printable explanation of 
any error encountered by routines in the checkpointing package. The pointer is 
initialized to NULL. 

For Fortran programs. call the routine ckpt-pr int_error to print the error 
message on your stderr. 

If There Is a nming Problem with Core Files 

It is possible that the checkpoint will fail to create the front-end or CM core 
file; when you restart the program, you might then inadvertently use a core file 
that is older than the one you expected. The checkpointing package can detect 
this problem. When the package is finished with a checkpoint, in addition to 
checking the results of the write and file creation operations, it checks the 
Creation time of the core files against the time the checkpoint began. If there is 
a discrepancy, it prints a message on stderr. The message points out, however, 
that a discrepancy of only a few seconds may be caused by the clock on the 
DataVault (for the CM core file) or an NFS file server (for a front-end core file) 
being slightly slower than the clock on the front end on which the program is 
running. 

Version 6.1, October 1991 



120 eM User ~ Guide 

6.4.11 Debugging 

You can do checkpointing from any object-code debugger, such as dbz. Call 
ckpt to generate a checkpoint; use as arguments a front-end prefix and a CM 
prefix, just as you do for ckpt. For example, 

checkpoints the program you are debugging, using the specified prefixes for the 
checkpoint files. Specify NULL for the CM prefix if the CM is not used. 

Call the routine ckpt_restart to restart an earlier checkpoint. 
ckpt_restart requires only a front-end prefix as an argument; the CM 
prefix is restored with the rest of the program data when the program is 
restarted. For example, 

...•... ) 
restarts execution of the checkpointed version of the program, using the 
specified prefix to identify the checkpoint files to be used. 

Breakpoints are preserved around these calls within a single dbx session, but a 
ckpt_restart executed in one dbx session does not restore the breakpoints 
from an earlier dbx session. 

Note that you should not use this syntax to restart the checkpoint: 

l· .•. ·.(~~·) •. ·· •••• prini •• · .•••• ~lcp~-;7~.~;-i~ •• ·(fe~f.~:.i.?(.~· ............... · .... · .. · .... i ..•.••.. · •.•. ·· .•....•.••...•.•.•...... ................ J 
dbx notices the process exiting in the former case. In the latter case, the 
process does not return as dbx expects, and it doesn't leave a return value for 
dbz to examine; this may cause a memory fault in dbz. 

6.4.12 Programming Hints 

When writing a program that uses the CM checlcpointing package, keep the 
following points in mind. in addition to suggestions made in previous sections: 

• Be careful when using shared memory. Either simultaneously checkpoint 
all programs sharing the memory, or ensure that any changes to the data 
contained in shared memory will not be important. 

~r.\'ion 6.1, October 1991 



ClUlpter 6. Programming Tools 121 

• Checkpointing requires that two files be open at the same time. Therefore, 
make sure your program bas at least two unused file descriptors to use the 
checkpointing package. (The program needs more if it uses the CM file 
system.) 

• The checkpointing package knows the names of files that the program ex­
plicitly opens. It does not know the names of redirected standard input or 
output, nor the names of sockets and pipes. 

• The entire contents of a program's memory is saved-including, for ex­
ample, the random number seed. 

6.4.13 Running a Checkpolnted Program 

Use the restart command to run a checkpointed version of a program. The 
syntax is: 

(restartf~PIefiX .....•. ....... ] 
where feprefix is the front-end prefix used for naming the front-end core 
file and the list of I/O files. (restart obtains the eM prefix, if any, from the 
checkpointed program.) The front-end prefix is program-dependent; it can be 
hard-coded in the program or, in e, specified by a command-line argument 
when the program is first executed. 

As mentioned earlier, if you initially run a program under timesharing, you 
must restart the checkpointed version under timesharing. If you initially run the 
program in exclusive mode, you must restart it in exclusive mode. 

If you attached using a cmattach command, or if your program contains a 
CII_attach_to routine to specify the eM resource to which it is to attach, 
you must use the cma t tach command to attach to the proper eM 
configuration before restarting the program. The number of processor, the 
memory size, and the type of floating-point unit (if any) must all be the same; 
in addition, if your program needs access to a Data Vault or framebuffer, attach 
to a resource that is connected to one. 

If you do not issue a cmattach command before restarting, restart will 
do an attach for you. Use this option only if all the eM resources to which you 
could be attached are identical to the one on which the program was initially 
run (for example, different sequencers on the same CM). 

When you issue the restart command, the program begins execution from 
the point at which the files specified by feprefix were saved. 

Version 6.1, October 1991 



122 eM User:r Guide 

Note the following in using restart: 

• It can take up to several minutes to restart a checkpointed progr~ de­
pending on the size of the files. If a flag is set in the program, progress re­
ports like this are displayed: 

/jones!'Itiyprc>g(C:~Pt/rest:artingaCheC~~8i~t): 
iid::;·~~;~:/:~~:d=~~~core··············· ....•....•... . .... 

For information on this flag, see Section 6.4.9 on page 118. 

• Changing I/O files. Checkpointing does not preserve the contents of I/O 
files; it is up to you to make sure these files haven't changed. If the files 
do change between the time the file is checkpointed and the time you re­
start the checkpoint, the results are unpredictable. 

The checkpointing package cannot detect changes to files that the 
program has open for writing. It does detect changes to files that are 
being read, and it reports such changes on the standard error device; it 
may, however, report a change when none has occurred. 

• Overwriting an I/O file. If a file is open for writing, the restarted program. 
continues output to that file at the point at which the checkpoint took 
place. This overwrites changes to the file that may have been made sub­
sequently. 

• Output redirection. Be careful when using output redirection with 
restart. You must append the output to the output file, not just redirect 
it; otherwise, restart overwrites what is already in the file. For exam­
ple, a program that you originally executed as follows: 

.......................•. J 
must be restarted as follows: 

Ci~~es~llrtfeprefix··· [.;: •. ]··· .... ».··DlYO~t~~t............ .................. .../\) 

• Input redirection. You can restart a checkpoint using the same input file 
used when the program was originally executed. However, the check­
pointing package does not keep track of the name of this file (the string 
#std1n appears in the file-list file to specify this file). You can, if you 
like, substitute the real name of the file in the file-list file, since the check­
pointing package does not read the file-list file. 

*r.sion 6.1, October 1991 



Chapter 6. Programming Tools 123 

• UNIX pipelines. You cannot put programs containing checkpoints in a 
UNIX pipeline. The UNIX kernel buffers data in the pipest and this data is 
not saved by the checkpoints. 

• Restarting 8 cbeckpoint more than once. You can restart a checkpoint 
more than once simply by renaming the checkpoint files and issuing the 
restart command with different prefixes as its arguments. If you move 
the checkpoint files to another directoryt make sure that files used by the 
program are accessible from this directory with the same names they had 
when opened by the original invocation of the program. 

• Re-running the original program. You can change a pro~ compile 
the new versi~ and execute it without affecting a checkpointed version 
of the program. Once again, howevert files used by the program must not 
have been changed. 

In a Debugger 

To restart a previously checkpointed program in a debugger like db~ follow 
these steps: 

• Set the environment variable CICP'l'_EN'V_CHPREFIX to the CM prefixt 
and set the environment variable CICP'l'_EN'V_FEPREFIX to the front­
end prefix. For example, if you are using the C shellt issue commands 
like these: 

%setenv CICP'l'_ENV_CNPREFIXdvvax:/cmtest 
CICP'l'_ENV_FEPREFIX./fetest 

• Invoke the debugger for the program as you normally woul~ then run 
the program within the debugger as you normally would. For example: 

J 
If the environment variables are set, the debugger will run the 
cbeckpointed version of myprog. 

• After you are finished in the debugger, be sure to "unset" these 
environment variables; in the C shellt you do this with the unsetenv 
command. If you don't unset themt and you try to run a program with a 
ckpt_init call in it, the program won't run; instead, ckpt_init 
will try to restart a checkpointed version of the program. 

Version 6.1, October 1991 



124 eM User ~ Guide 

6.4.14 Sample Program 

The simple CM Fortran program ftest. fcm .shown below includes 
checkpointing routines. The program creates mays on the front end and the 
CM, fills them, checkpoints, and then makes sure that the checkpointing and 
subsequent restarting didn't affect the contents of the arrays. 

Remember that you must compile the program using the options -lckpt and 
-lcmf s (in that order), so that the program is linked with the checkpointing 
and CM file system libraries. 

(" 

A test program for 

(~~PLresult ... 1 t . 
. print· ,·ckptfailed; 

. 2~nti;-:Itt::::~'~kiJW~ta. 
~rsion 6.1, October 1991 



Chapter 6. Programming Tools 

doi.,>i, .ncm!. Check .that array~~scouect 
H(a....;cm(i).ne.i)then 

p:t:int *,'a_cm{', i;') is " ,a_cm(i) 
cm~eIIoIs ·cm~eIIors + 1 

endif 
enddo 
print*., cm_errors, 'CMerrors; checking FE data ..• ' 

doi-l, nfe 
if(a_fe(i} .ne. i) then 

'lis I a_fe(i) 
1 '. 

*"fe_errors,'errorsonthe front end' 

6.5 Visualizing Data 

125 

The CM system provides software tools you can use to graphically display 
results of data parallel programs. There are two basic ways of displaying eM 
data: 

• On a color monitor attached to a CM via a framebuffer I/O module-the 
combination of the monitor and the framebuffer I/O module is usually re­
ferred to simply as the framebuffer 

• On a workstation that supports the X Wmdow System, Version 11 inter­
face (referred to as an Xll window), either locally or over a network 

The framebuffer provides higher resolution and faster display, but you must be 
attached to a CM sequencer that contains a framebuffer module in order to use 
it. With the X Wmdow System interface, you can display your output on any 
standard graphics workstation, either local or remote. You can also use the X 
interface to develop software on your local workstation that you can later 
display on a framebuffer. 

Version 6.1, October 1991 



126 CM User:S Guide 

The following software is available for visualization and graphic display: 

• Generic Display Interface. The Generic Display Interface provides a 
single user interface to all CM framebuffers and X Window System serv­
ers available from your workstation. It allows an application to present a 
menu of the available displays. Its routines support the creation, initializa­
tion, and selection of a display, writing to and reading from the display, 
and the control of display offset parameters and color maps. With the ap­
propriate image data, these routines let you visualize data through an X 
window when a framebuffer is not available, or to preview an image lo­
cally during development and then easily switch to the framebuffer for fi­
nal revisions and viewing. 

The Generic Display also provides routines to support interactive 
applications through mouse support and text display. The mouse 
routines let you use your workstation's mouse to control and respond to 
a cursor on either the CM framebuffer or an X window. With the text 
routines you can label your image or prompt the user by displaying text 
strings on either generic display. 

• *Render. *Render (pronounced "star-render") is a CM library containing 
routines that support graphics processing on the CM. Using these routines, 
you can draw simple graphics primitives that are placed in a buffer field 
in CM memory. You can then transfer this image to a framebuffer or X 
window for display. *Render is intended as a building block for more ad­
vanced visualization tools. 

*Render graphics math utilities help you create, manipulate, and 
transform coordinate vectors and matrices and to convert color vectors 
between different color spaces (for example, HSV or CMY to ROB). 

*Render dithering routines make it possible to move your image to 
displays with different color capabilities. These routines convert color 
(ROB) images to grayscale images and grayscale images to black and 
white images. 

• Image File Interface. The Image File Interface lets you store images cre­
ated on the CM in image files for later processing or display. These files 
are created in the TIFF format, a standard image file format that is widely 
supported by other display systems and software. You can move CM im­
ages in TIFF files into other graphics environments and read TIFF images 
created elsewhere into the CM system. 

For complete information on CM visualization tools, see the volume 
Connection Machine Visualization Programming in the Connection MaclPne 
documentation set. 

~rsion 6.1, October 1991 



Part ill 

1/0 on the Connection Machine 
System 

iJ . .... .. Ti:·· : . . • . EiT I . .. . .. .. : Eli ::: : !if: . LEl! 





Chapter 7 

Using the eM File System 

The Connection Machine system has a file system associated with it. This file 
system is separate from the front end's file system, although it is similar to a 
UNIX file system. You can use the CM file system (CMFS) to store data for the 
CM. 

There are user commands associated with the CM file system. These 
commands let you perfonn typical tasks such as copying, moving, and deleting 
files, and making, deleting, and listing the contents of a directory. This chapter 
describes the CM file system and how to use these commands. 

You create files in the CM file system either by using one of these commands 
to copy in data or a file from another file system, or by issuing library calls 
from within a program. 

For information on I/O library calls that use the CM file system, consult the 
eM 1/0 System Programming Guide. 

7.1 Overview of the eM File System 

It is easiest to understand the CM file system by comparing it with the UNIX 
file system. 

7.1.1 Similarities to the UNIX File System 

Here are some of the similarities between the CM file system and the UNIX file 
system: 

Version 6.1, October 1991 129 



130 eM User:SO Guide 

• The CM file system has a hierarchical directory structure, in which 
directories contain subdirectories and files, and directories and files are 
identified by unique pathnames. A directory has an owner, a group, and 
a mode. A user has a current working directory. 

• Many of the user commands have counterparts in UNIX; the CMFS 
commands are similar in name and function to their UNIX counterparts. 
For example, the CMFS command cm1s is comparable to the UNIX 
command ls. 

• As in UNIX, an I/O device in the CM I/O system (except for CM-lDPPI) 
is simply a file in the CM file system, as far as the user interface is 
concerned. For example, you write data from the CM to a file in the 
same way, whether the "file" is really a file stored on disk or is in fact a 
tape drive. 

7.1.2 Differences 

This section lists the differences between. the CM file system and the UNIX file 
system. 

More Than One Directory Tree 

Unlike a UNIX file system, a CM file system can contain more than one 
. directory tree, each with its own root directory. Different components of the 
CM I/O system have their own directory trees. You distinguish among them by 
beginning a pathname with the component's hostname, followed by a colon; 
for example: 

Obtain the hostnames for the components of your CM I/O system from your 
system administrator. 

Thus, two CMFS files could have the same pathname, except for different 
hostnames: dva: /project/data could exist on one DataVault, for 
example, and dvb: /project/data could exist on another. You can use an 
environment variable to set a default hostname; see Section 7.5 on page 137. 

As mentioned above, you have a current working directory in the CM file 
system; you do not have one per directory tree. You can use an environment 
variable to set the current working directory; see Section 7.5. 

~rsion 6.1, October 1991 



Chapter 7. Using the CM File System 131 

Since the colon {:} is required as part of the hostname, you cannot use a colon 
as part of a filename. 

As a component of the CM I/O system, the front end can have its own directory 
tree within the eM file system; check with your system administrator to see if 
your front end does. The CM file system is logically separate from the UNIX 
file system in this case. For example, you have separate working directories 
within each file system. 

Parallel and Serial Formats 

There are two formats for files in the CM file system: parallel and serial. A 
parallel file consists of many streams of data, one per eM virtual processor; the 
file also reflects the size and shape of the data set. A serial file is a single 
stream of data. In general, a file must be parallel to be used by the parallel 
processing unit; a file must be serial to be used on a front end or other serial 
machine. 

The basic way of creating a parallel file is by including a library call in a 
program to write data from the parallel processing unit to a file; the resulting 
file is automatically in parallel format. 

7.2 Overview of CMFS User Commands 

The rest of this chapter discusses user commands that operate on files and 
directories of the eM file system. See the eM .vO System Programming Guide 
for reference descriptions of these commands. Table 11 lists the commands. 

7.2.1 CMFS Commands and UNIX Commands 

As the table shows, many of the CMFS commands are simply UNIX commands 
with "em" in front of them. In general, a CMFS command performs the same 
function as its corresponding UNIX command. 

CMFS commands and UNIX commands are not interchangeable, however. 
CMFS commands operate only on files in the eM file system (except when 
copying a UNIX file into the eM file system); they have no effect on files in the 
UNIX system. Likewise, UNIX commands have no effect on files in the CM 
file system. 

Version 6.1, October 1991 



132 

Command 

emehgrp 
cmehmod 
cmehown 
emcp 

cmdd 
cmdf 
emdu 
emdump 
cmfind 
cmftp 
emln 
emls 
emmkdir 
cmmknod 
cmmv 
cmrestore 
cmrm 
cmrmciir 
ems tat 
cmtar 
cmtruneate 
eopyfromdv 
eopytodv 
dvcp 

Table 11. CMFS user commands 

Use 

Change a file's group ownership. 
Change a file's permissions mode. 
Change a file's owner. 

eM User's Guide 

Copy files within the CM file system using serial I/O to a 
file server computer. 
Copy and convert data. 
Display free and used disk space. 
Summarize disk usage. 
Back up files to tape. 
Find files. 
'D:ansfer files between Data Vaults and remote systems. 
Make links to files or directories. 
List contents of a directory. 
Make a directory. 
Make a CM character-special file. 
Move (rename) files or directories. 
Extract files from a tape archive. 
Remove (unlink) files or directories. 
Remove (unlink) an empty directory. 
Print status information about a file. 
Archive tape (or other media) file. 
1hmcate or extend a CM file. 
Copy files in the CM file system to the front-end file system. 
Copy files in the front-end file system to the CM file system. 
Copy files within the CM file system using the CM. 

7.2.2 Where You Can Issue the Commands 

You can execute all CMFS commands (except cmftp) on a front end, just as 
you would execute UNIX commands. One of the commands, emls, can also 
be executed from a Lisp environment. Also, you must be attached to the eM to 
issue the dvep command. The commands can also be executed from a 
Data Vault file server computer; typically, only the system administrator would 
use this computer. 

If your CM system. has a VMEIO host computer as part of the I/O system, you 
can also issue commands from it. This is particularly useful when the 
command deals with an I/O device attached to this computer. You must have an 

~rsion 6.1, October 1991 



Chapter 7. Using the CM File System 133 

account on the computer to issue commands from it; check with your system 
administrator if your commands don't work. 

The easiest way to issue commands on the VMEIO host is to use the UNIX 
command rsh from the front end to open a remote shell on the VMEIO host; 
then issue the CMFS command on the r sh command line. For example, 

(_._··._%_r_S~h_·_vme __ ·_l_._cml~~S~i~."~ •. ··_.·.·._· __ ~~~ ______ ~ ____ ~~~~_J 
issues the command emls on the remote computer with hostname vmel. 

There may be other machines available on your system, not front ends or 
Data Vault file server computers, from which CMFS commands can be 
executed. Check with your system administrator. 

7.3 Copying Files and Data 

Often users have data that they need to bring into the CM file system for 
processing. The data may or may not be in a standard UNIX file. This section 
describes CMFS commands you can use to transfer data between the outside 
world and the CM file system. It also describes how to copy files within the 
CM file system. 

7.3.1 Copying Files between the Front-End File System 
and the CM File System: 
The copytodv and copyfromdv Commands 

In the most straightforward situation, you have a file in your front end's UNIX 
file system, and you want to copy it into the CM file system. To do this, use the 
eopytodv command. For example, to copy the UNIX file myda ta (in your 
working directory on the front end) to the file myda talon the Data Vault with 
hostname dva, issue the following command: 

The copying takes place via the Ethernet connection between the front end and 
the Data Vault. This means you do not have to be attached to the CM to issue 
the command; it also means that execution may be relatively slow. 

Version 6.1, October 1991 



134 eM User ~ Guide 

The UNIX file that you copy may be in either parallel or serial fannat (it could 
be in parallel format if it had been previously copied into the UNIX file system 
from the CM file system). If it is in serial fannat, it is copied in serial format, 
and it must be transposed to parallel fannat before it can be processed by the 
eM; see "Parallel and Serial Fannats" on page 131. 

Use the copyfromdv command to copy a file from the CM file system to a 
UNIX file system. For example, 

c·· •. % .eopyfromdVdVa :mydata1.mydata2 

copies the file myda tal on the device named dva back to your working 
directory in UNIX, and names the file myda ta2. 

NOTE: If the file was in parallel fonnat in the eM file system, it will be 
unusable in the UNIX file system. If you want to use the file, you must 
transpose it to serial format before copying; see "Parallel and Serial Fannats." 

If the UNIX File System Isn't on the Front End 

If the UNIX file you want to copy isn't on your front end, but is reachable by 
network, you have a couple of choices: 

• Use the UNIX command rep to copy the file to your front end, then use 
eopytodv to copy it into the CM file system from there. 

• If the eM I/O system software has been loaded on the networked 
computer and you have an account on the computer, you can use the 
UNIX rsh command, followed by copytodv, to copy the file directly; 
see Section 7.2.2 on page 132. 

7.3.2 Copying Files to and from a Tape Archive: 
The cmdump, cmrestore, and cmtar Commands 

The cmtar command corresponds to the UNIX tar command. You can use it 
to write files to or read files from an archive of files stored on magnetic tape. 

Most users, however, will find it easier to use cmdump and cmrestore, 
which provide interactive user interfaces to emtar. Use cmdump to back up 
CMFS files to tape. Use cmrestore to extract files from the tape archive and 
place them into the current CM file system. 

Version 6.1. October 1991 



Chapter 7. Using the CM File System 135 

For complete information on cmtar, cmdump, and cmrestore, see their 
reference descriptions in the CM 1/0 System Programming Guide. 

As with copytodv and copyfromdv, note the following: 

• cmtar does not change the format of the files it copies; if necessary, 
you must explicitly transpose a file's format from parallel to serial or 
vice versa while it is in the eM file system. See "Parallel and Serial 
Formats" on page 131. 

• The copying does not involve the CM, so you do not need to be attached 
to the eM to execute cmtar. 

• If your CM system has a VMEIO host computer, it is faster to use a tape 
drive attached to it than one attached to a front end. Issue cmtar on the 
VMEIO host to write to or read from a tape drive attached to it; see 
Section 7.2.2 on page 132. 

If you want to keep a copy of files from a tape archive in your UNIX file 
system, you can issue the standard UNIX tar command to copy the files to 
UNIX, then use copytodv to copy them from the UNIX file system to the CM 
file system. 

7.3.3 Copying Unarchlved Data from Tape: 
The cmdd Command 

Scientific data collected in the field is often placed on tape just as a series of 
numbers, not in files. You can copy such data into the CM file system using the 
cmdd command, which corresponds to the UNIX dd command. For example, 
the following command copies data from the tape drive /dev/rmtO to the file 
dva: /datafile in the CM file system: 

C %cmdd;"todVif:(d..) /rmtOof-clva: /datafile ) 
~~~~~~~~~~~--~~~~--~--~~~~--~ 

You can also use cmdd to copy a file from the CM file system to a UNIX file
system; it performs the conversions you specify in the options. Like
copytodvand copyfromdv, cmdd does not affect the parallel or serial
format of a file, and it does not involve the CM, so you do not have to be
attached to the CM to execute it

It is also possible to write a front-end program to read data into the eM file
system; see the eM 1/0 System Programming Guide.

Version 6.1, October 1991

136 eM User's Guide

7.3.4 Copying Files within the CM File System:
The cmcp and dvcp Commands

There are two commands available for copying files within the CM file system:
cmcp and dVcp. They differ as follows:

• dvcp uses the CM and the CMIO bus to perform the copy; cmcp uses
the Ethernet. Therefore, dvcp is much faster than cmcp. (However,
cmcp, when issued on a VMEIO host, will use the CMIO bus.

• Because dvcp uses the CM, it can be issued only from a UNIX front
end when you are attached to a CM. cmcp can be issued from any
UNIX computer on the CM system.

• dvcp can copy only one file at a time; cmcp can copy multiple files
into a directory. For example,

copies dva: /myda ta to dvb: /myda ta.

(%~~p.civa :lmydatad~:lmyda.1:aldvb~). J
copies the files dva: /mydata and dva: /mydatal to the root
directory of dvb. The files keep their original names.

7.3.5 Transferring Files between a DataVault and a Remote
System via UltraNet: The cmftp Command

Use the cmftp command from a CM-HIPPI system to transfer files between
one or more Data Vaults and a remote system via an UltraNet network. You
must either be logged into the CM-lDPPI or use an rsh command from another
system that can reach it by network.

7.4 Other CMFS User Commands

Other CMFS user commands have corresponding UNIX versions and perform
the same functions as their UNIX counterparts. See the reference descriptions
for complete discussions of these commands. Note the following:

Yersion 6.1, October 1991

Chopter 7. Using the CM File System
III

137

• The cmls command can be executed in a Lisp environment. There are,
however, certain restrictions; see its reference description in the CM I/O
System Programming Guide.

• The cmmv command cannot be used to move a file between CM file
systems (that is, from one directory tree to another). To do this, use
cmcp (or dvcp) to copy the file, then use cmrm to remove the original
file.

• The cmln command creates only hard links; unlike ln, it does not
create symbolic links.

7.5 Environment Variables

CMFS provides four new environment variables: CMFS_DEBOG, DVWD, and
DVHOSTNAME, and CMFS_VERIFY_AFTER_WlUTE.

If you are using the C shell, add the following entry to your • cshrc file to
activate the printing of CMFS debugging messages on your screen:

(setenvCMFS DEBUG .~.

When debugging is activated and a program is executing, useful information is
printed. For example, turning on debugging lets you know if a call is receiving
an invalid argument or producing an unexpected return value.

The environment variable DVWD stores your working directory in the CM file
system. For example, if you are using the C shell,

(setenvDVWDdva: /myproj ect/mydata•.......... J
makes dva: /myproj ect/mydata the working directory.

If the setting of the DVWD environment variable includes a hostname, that is the
default hostname. If it doesn't, you can set a default hostname with the
DVHOSTNAME environment variable. For example,

(setenv .. DVHOSTNAME dvb

sets the default hostname to dvb. You can omit dvb: from the pathname of
files in this file system.

Version 6.1. October 1991

138 eM User:S Guide

The setting of the CKPS_ VER.IPY_AFTER._WRITE enviromilent variable
determines whether data that was written is to be compared with the original
data. If the setting is ON, this comparison takes place~ If the data is not
identical, up to 10 rewrites are attempted. If the setting is OFF, no verification
is attempted; this is the default, since setting this environment variable to on
makes writes take twice as long.

*rsion 6.1, October 1991

... 11. [111 I.

Part IV

In the Lisp Environment
If·:: L i

ChapterS

In the Lisp Environment

This chapter describes how to develop and execute data parallel programs
written in *Lisp and Lisp/paris on either UNIX or Symbolics Lisp machine
front ends. *Lisp is a parallel extension of Common Lisp; we assume that
readers are familiar with Common Lisp. In this chapter, Lucid refers both to
Lucid Common Lisp (for VAXes) and Sun Common Lisp (for Sun
Workstations).

For complete information on *Lisp, see the volume Programming in *Lisp and
the *Lisp Dictionary in the CM documentation set; see also Getting Started in
*Lisp. For complete information on Lisp/Paris, see the volume Parallel
Instruction Set.

8.1 The *Lisp Language

*Lisp is a parallel extension of the Common Lisp language, and has the same
syntax and style as Common Lisp.

*Lisp adds one major data type to Common Lisp: the parallel variable, or pvar.
This is an abstract data object that represents the concept of a value stored in
the memory of each processor on the CM. *Lisp also adds a large number of
functions and macros that operate exclusively on pvars. Among these operators
are parallel equivalents for many of the operators available in Common Lisp,
as well as special-purpose operators that perform such CM-specific tasks as
processor selection, interprocessor communication, and scanning.

*Lisp is available in two versions: as an interpreter/compiler combination for
the CM hardware, and as a stand-alone simulator.

Version 6.1, October 1991 141

142 eM User:S Guide

The *Lisp interpreter and compiler are extensions of the existing interpreter
and compiler in Common Lisp, and *Lisp programs are written and compiled
no differently from Common Lisp programs.

The *Usp simulator runs entirely on the front-end computer and simulates the
operations of an attached CM. Code developed using the *Lisp simulator can
be ported directly to the *Lisp interpreter/compiler on the CM hardware with
few modifications. However, code compiled using the simulator must be
recompiled to run on the hardware.

8.2 Lisp/Paris

Lisp/paris is implemented as a language interface between Lisp and Paris. All
the operations of Paris are available directly as function calls from Lisp. See
Section 8.18 on page 174 for more information about programming in
Lisp/paris.

It is not necessary to use the *Lisp language to program in Lisp/Paris.
However, *Lisp provides a useful level of abstraction and handles most of the
details of Paris programming in a clean, readable manner. It is possible to write
programs consisting mostly of *Lisp code that call Paris directly only for
important, time-critical operations.

It is also possible to write code in *Lisp, compile it, and then examine the
resulting Paris code to see how a given program can be written using Lisp/paris
alone. Section 8.10 on page 152 describes the process of compiling *Lisp code
in more detail.

8.3 Loading *Lisp and Lisp/Paris

Before using either *Lisp or Lisp/Paris, it is necessary to load in the
appropriate software. *Lisp users will want to load in either the *Lisp
interpreter/compiler or the *Lisp simulator.

Lisp/paris users will want to load in the *Lisp interpreter/compiler software,
because this includes the Lisp/paris language interface.

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 143

8.3.1 From the UNIX Prompt

NOTE: At some sites, *Lisp bands configured differently from the ones
mentioned here may be in use, each with its own initialization command. If this
is the case at your site, ask your system administrator what commands you can
use instead of those described here.

The following examples also assume that your UNIX PATH variable includes
the directory in which these bands have been stored. Check with your system
administrator to make sure that your PATH variable includes the right directory.

On UNIX front ends, you can load the *Lisp interpreter/compiler by typing this
command at the UNIX prompt:

···············D

This starts up Lucid Lisp and loads in a saved world that includes *Lisp. From.
within this environment, you can attach to the eM, cold or warm boot the CM,
compile, execute, and debug code on the eM, and detach from the CM.

If you want to be able to run programs under timesharing on a eM, type:

This allows you to run programs on either a sequencer running under
timesharing, or a non-timeshared sequencer.

To load the *Lisp simulator software, type:

This starts up Lucid Lisp and loads in a saved world that includes the *Lisp
simulator. From within this environment, you can compile, execute, and debug
code just as you would from the interpreter/compiler, without having to attach
to areal eM.

8.3.2 From Gmacs

You can also invoke *Lisp from within a Gmacs editor, using a set of Gmacs
enhancements that Thinking Machines Corporation provides free of charge but
does not support. These enhancements are known as the "TMe Gmacs Hacks."
They are available from your applications engineer or from Thinking Machines
Customer Support.

Version 6.1, October 1991

144 eM User's Guide

Once the Gmacs hacks have been loaded into your Gmacs session, type:

(where M- is the Gmacs "Meta" key). You are then prompted:

(.•••••• ·• ••• • •.• ~~.e·· .• ·.~~s· •.•• Of .• · ••.• ·F~.~.~.· to •.•... ~url •. :.· ..•...•..••..••....
At this point, type the name of the *Lisp software you wish to load. For
example:

will load in the *Lisp software and begin a Lisp session in a buffer named
lisp.

There are many advantages to running Lisp under Gmacs. For example, the full
power of the Gmacs editor is available, as well as many features common to
the Symbolics Genera environment, such as source finding, display of
argument lists, macroexpansion, and incremental compilation and completion.
Once the Gmacs hacks have been loaded, issue the command

for a list and short description of the available features.

8.3.3 From a Lisp Machine

On Symbolics Lisp machine front ends, the *Lisp software is typically pre­
loaded as part of the world load file used to boot the machine. To use *Lisp, the
*Lisp simulator, or Lisp/paris alone, it is necessary to boot the machine using
the appropriate world. Ask your system administrator for assistance in finding
the right world to use in booting your Lisp machine.

8.4 Using *Lisp - An Overview

Once you have *Lisp loaded on your system, the process of developing and
executing *Lisp and Lisp/paris code is the same for UNIX and Lisp machine
front ends.

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 145

Here, in brief, are the steps involved in developing and executing *Lisp and
Lisp/paris programs:

(1) Make *Lisp the current package by typing the following at the Lisp
prompt:

(....). (*lispt) J
or:

C><in-package • '*lisp) J
These forms change the current package to *lisp, making the
functions and macros of the *Lisp language available.

(2) Attach to a CM by using the Lisp/paris function em: attach, as follows:

You can also use the em: finger function to find out if there is a
sequencer available to which you can attach.

(3) Initialize the CM hardware and the *Lisp software as follows:

(.. > . {*cold";boot}

At this point, you can perform any Common Lisp, *Lisp, or Lisp/parls
operation.

(4) Load, edit, compile, execute, and debug your data parallel programs.

(5) Detach from the CM when you are finished using it. 1YPe:

.J
(6) Exitfrom the *Lisp environment (on UNIX front ends only) by typing:

C>(lCl:quit) J
(!fyou are running Lucid Common Lisp 2.1 or 2.5, type (sys :quit)
instead.} You are returned to your UNIX prompt.

Because the *Lisp software is part of the booted world file on a Lisp
machine, it is not necessary to "quit" from *Lisp as on a UNIX front
end. You can exit from the *Lisp package, however, by typing either

Version 6.1, October 1991

146 eM User:V Guide

or

Both of these forms change the current package to user.

The following sections go into more detail about each of these steps. They also
discuss some of the things you can do in the Lisp environment

8.5 Entering the *Lisp Package

All the functions and macros of *Lisp reside in the * 1 isp package. To select
the * 1 isp package, first make sure that the *Lisp software is loaded, as
described in Section 8.3 on page 142. Next, at the top level, type the following
form:

c)· (*lillJpt)

This form displays a message that tells you that the *lisp package has been
made current

You can also type:

Once in the *Lisp package, you can invoke any Common Lisp or *Lisp
function or macro and any LispjParis instruction; Lisp/paris instructions called
from within the *Lisp package begin with em:. The time during which front­
end code is executed with the *lisp package selected is called a *Lisp
session, and code executed with the * 1 i sp package selected is said to be
running in the *Lisp environment.

8.6 Attaching to a eM
To execute a *Lisp program on a CM, you must first attach to the eM. As
described in Chapter 1, a front end connects to a CM parallel processing unit

Version 6.1. October 1991

Chapter 8. In the Lisp Environment 147

via a FEB! (front-end bus interface). A FEBI can be logically attached to one or
more sequencers on the CM; a sequencer controls groups of processors within
the eM.

To attach to a eM from within the *Lisp package, use the LispjParis command
em: attach. By default, you are attached to the smallest number of physical
processors associated with one sequencer, and to the highest-numbered FEBI
and sequencer available. You can specify more processors with an argument to
em: attach. For example, to attach to 16,384 processors, type:

(> (cm:attach163S4)

or

(> (cm:attach : 16kp)

Valid values for the latter argument include: 4kp, : Skp, : 16kp, : 32kp, and
: 64kp.

You can also specify a specifi~ sequencer, or group of sequencers. For example,

(.

l> (cmlattachluc~2)·

specifies that you want to attach to sequencer 2. Valid values include : uccO,
:uccl, :ucc2, :ucc3, :uccO-l, :ucc2-3, and :uccO-3. You might
specify a particular sequencer, for example, if it is connected to a framebuffer.

If successful, cm: attach returns the number of physical processors that were
attached by the call, and either : TIMESHARING or : SINGLE - USER,
depending on whether the sequencer(s) are running under timesharing. (You
can run *Lisp programs on a timeshared sequencer only if you issued the
starlisp- ts command to load *Lisp.) It signals an error if the requested
number of processors was not available. The error message includes two
especially helpful options: attaching to the number of available processors
(instead of requesting a larger number), and waiting for the requested number
of processors to become available.

!fyou have more than one eM connected to a Sun or VAX front end, you will
want to select the interface that is connected to the eM you wish to use. You
can directly specify which interface you want to use by the keyword argument
: interface. For example,

(><cm:attach : 64kp : interface3).

Version 6.1, October 1991

148 eM User's Guide

specifies that you want to attach to 64K processors on the CM connected to
interface 3.

Use the keyword argument : wai t-p to specify that you want to wait for the
processors to become available. For example,

•..••..•...•..... >?~

asks for 16,384 processors and specifies that the front end is to wait until they
become available. To quit waiting, type Ctrl-C. (If you are running under
Gmacs, type Ctd-C Ctd-C. From a Lisp machine front end, type Ctd-ABORT.)

For a complete discussion of the em: attach command and its options, see
the dictionary portion of the Paris Reference Manual.

8.7 Finding Out about eM Use

Use the Lisp/paris command em: finger to find out the current status of
CMs in your system. This command prints out a table that shows which front
ends are connected to sections of a CM system, who is using that section, what
command or program is being executed, and whether the CM has any free
sequencers.

This last piece of information is typically the most important. Many people
routinely issue em: finger before em: attach to see if any CM resomces
are available. Alternatively, you can try em: attach first; if no resources are
available, you can issue em: finger to find out what's happening.

At the top level within a *Lisp environment, type:

A table is displayed; an example is shown below.

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 149

.epiCUIUS

Idle Command·

karenOh06m "cmattach"
nobody

l024KIIlemor:y,32--bitfloating point
framebuffers onsequencers.Ol (seq Dis free)
CMIOCsonsequencersOl (seq D is free) .
1 .free seqonFOO..,-O -- totalling8Kprocs

In this case, the CM called Foo has two front-end interfaces: interface (l/F) 0
on Wotan and interface 0 on Epicurus. The user named Karen is attached to
sequencer 1 of Foo via Wotan's FEB!; this sequencer has 8K processors. (Note
that the number of the front-end interface does not have to correspond to the
number of the sequencer to which it attaches.) Karen is running a cmattach
subshell; she has been idle for six minutes. No one is using the FEB! on
Epicurus.

The information below the list of users provides more data about the CM
system:

• The memory size of the processors in this CM is 1 megabyte; it has 32-
bit floating-point chips.

• Foo has a framebuffer and a CMIOC on both sequencer 0 and
sequencer 1.

• Sequencer 0 of Foo is free for use.

For more discussion of this kind of output, see Section 3.1 on page 48.

em: finger takes an optional argument, which must be the name of a CM,
the name of a front end, or a list of CM or front end names. This is useful at
sites with more than one CM or with a front end that has more than one FEB!.

If the user is shown as "{CM*}", the attached sequencer (or sequencers) is
operating under timesharing.

8.7.1 On Symbollcs Lisp Machines

On Lisp machines, the eM usage information is displayed differently. For
example:

Version 6.1, October 1991

150 eM User:S Guide

i~crin~if~: .·iSpicer~d~(~h~;j.8~i/ size ·C~g~&.ci'··.····.····· .. ··········iiii> · .• =~.:· .. o· •• ··········:~~~~~~:~h::;.·~~ •• •• c: •. ·• ;<i·2·.····!:~;i~~d .. ··.··~.~· ·;I~.~··i··.··· .. ·······.················
GARLIC:O Not
GARLIC.: 1

The eM named Spicerack has 32,768 (32K) physical processors and four front
ends: Curry, ,Fennel, Garlic, and Morrel. Betty is logged on to Cuny. Boop is
logged on to Fennel. Nobody is logged on to either Garlic or Morrel. Only one
front end is currently attached: Fennel has a FEB! that resides in its expansion
board slot 0 and it is attached to 8,192 processors through sequencer 1. This
leaves three free sequencers. Given this situation, it is possible to attach to one
or two of the free sequencers. (You can only attach to 1, 2, or 4 sequencers at
a time-never 3.)

8.8 Initializing and Resetting the eM
8.8.1 *cold-boot

Immediately after attaching to a eM, use the *Lisp macro *cold-boot to
initialize *Lisp and reset the eM hardware. You can also use arguments to
*cold-boot to specify the default geometry of the virtual processors you are
going to use and the safety level of the interpreter. If you are not already
attached, *cold-boot will automatically issue a (cm:attach) command
for you.

Use the : initial-dimensions keyword argument to specify the default
geometry of the virtual processors. Each dimension must be a power of two,
and the total number of virtual processors must be the same as, or a multiple
of, the number of physical processors. For example, if you have attached to
8192 processors:

you could call *cold-boot as follows:

Version 6.1, October 1991

Chapter 8. In the Lisp Environment 151

The system responds:

You have specified a default 3-dimensional geometry of 16 by 32 by 32, and
allocated the 8192 physical processors as 8192 virtual processors (a virtual
processor ratio of 1). For more information on the virtual processor
mechanism, see Chapter 5 of the Supplement to the *Lisp Reference Manual,
and the Paris Reference Manual. The dimensions that you specify are bound to
a global variable called *defaul t-vp-set*.

If you don't specify a value for : ini tial-dimens ions, the system returns
a default VP set that has a 2-dimensional geometry with a VP ratio of 1.

Use the : safety keyword argument to set the safety level of the interpreter.
Specify a safety level of 3 to enable all interpreter error checking. For example:

> ("cold-boot tinitial-dimenaiona '(128 256) .1 safety .3)

We highly recommend this setting when you are debugging *Lisp code.
Specify a safety level of 0 to turn off most of the run-time error checking that
the *Lisp interpreter would otherwise do.

NOTE: The : safety argument does not affect compiler safety. See Section
8.10 on page 152 for a discussion of the *Lisp compiler.

Another useful argument to "cold-boot is :undefine-all, which
causes *Lisp to deallocate all VP sets and pvars.

For complete information on *cold-boot, consult the *Lisp Dictionary.

8.8.2 *warm-boot

Use "warm-boot whenever a *Lisp program has an error and you abort back
to top level. *warm-boot clears all CM error conditions and clears eM stack
memory, but does not alter the contents of eM heap memory. We also
recommend calling *warm-boot at the beginning of stand-alone *Lisp
programs, in case previously run and aborted code has left the eM hardware in
an inconsistent state.

Version 6.1. October 1991

152 eM User's Guide

8.9 Developing and Executing
*Lisp and Lisp/Paris Code

You can develop and execute *Lisp and Lisp/paris code in a file on the front
end, in the same way you would nonnally develop and execute Lisp code. The
simplest method is to type code directly at the Lisp prompt. For example, the
following code defines a function called hypotenuse I I, which calculates
the hypotenuse of a right triangle in each processor on the CM:

To call the hypotenuse I I function, you must supply pvars as arguments.
For example:

..............•.)
You can also use the editor on your front end to edit and save files of *Lisp
code. For example, if a file called /user/lisp/my-file contains *Lisp
code, you can load it for interpreted execution by typing

If the main function in my-file is called start-here, for example, you
can then execute the program by typing

8.10 Using the *Lisp Compiler

The *Lisp compiler is an extension to the Common Lisp compiler as
implemented on your front end. Invoking the Common Lisp compiler on any
*Lisp file or function definition automatically invokes the *Lisp compiler. The
*Lisp compiler translates *Lisp code into Common Lisp code with calls to
Paris. Then the Common Lisp compiler translates the code into native machine
instructions.

Compiled *Lisp runs more efficiently than interpreted *Lisp, but in order for
*Lisp code to compile completely, it must be properly declared. For a

JJersion 6.1, October 1991

Chapter 8. In the Lisp Environment 153

discussion and examples of type declarations in *Lisp, see Chapter 4, "*Lisp
Type Declaration," of the *Lisp Dictionary in the Connection Machine
documentation set

To compile a *Lisp function, use the Common Lisp compile function. For
example, the following compiles the hypotenuse I I function shown in
Section 8.9:

c.> .. · .(Compile lb. yp ... o.teD.Us~ ..)
... HYPOTENUSE· •• .

:', '. :... "\", ' .. '". ", ." .. :", ".>:;: .. ": ,".: ' ...

To compile all definitions within a file containing *Lisp code, use the Common
Lisp compile-file function. For example, to compile the file
/user/lisp/my-file from Section 8.9, type

Some front-end editors include special keystrokes that incrementally compile
code. For example, in the Lisp machine Zmacs editor, the keystroke Ctrl-Shift­
C compiles the function definition surrounding the cursor.

For further information on using the *Lisp compiler, consult the *Lisp
Compiler Guide, in the Connection Machine documentation set.

8.11 Debugging

*Lisp and Lisp/paris code can be debugged using your Lisp system's debugger,
just as with Common Lisp code. There are also, however, a number of *Lisp
functions that you may find useful in debugging the programs you create.

The basic debugging tool for *Lisp is ppp ("pretty-print pvar"). It allows you
to print out the values of a pvar in all processors or in any subset of processors,
and to control the format with which these values are displayed.

For example, the call to ppp in the following code prints out the results of
hypotenuse I I for all processors whose send addresses are less than S.

Version 6.1, October 1991

154 eM User! Guide

.••. /Jf i(~~i/;< .. ··.i···· .

.... ····(hypotenuse.1 <J(~iJ~~. ;1<··t~~i~2~~~~;~;lfS) .··· •• •· •• • •• ·· •• ·...i
<.;I~n~~)<.. ······(floa1:11 (self~addreBsl H»)
>0.0 1.4i42134

The function self-address' , returns a pvar whose value in each
processor is the send address of that processor. The values calculated by the
above call to hypotenuse' , are therefore the hypotenuse lengths for
triangles with sides x=O, y=O; x=l, y=l; and so on.

(Note that because the arguments to the hypotenuse' , function have been
declared to contain floating-point numbers, it is necessary to use the *Lisp
operation float' , to convert the integer pvars returned by the two calls to
self-address" to the floating-point pvars expected by
hypotenuse' '.)

The ppp function has a large number of arguments that control which values
are displayed and the format in which they are printed. There are also a number
of specialized functions similar to ppp that you can use to display the values
of pvars. For more information about ppp, its arguments, and other related
functions, refer to the *Lisp Dictionary in the Connection Machine
documentation set.

Another useful function is *room. This function displays the amount of CM
memory remaining, as well as the amount currently being used in the pvars you
have created. A sample call to *room looks like:

..• ······lieapmemo:(y<us1:l.g~ ..

.......•• •• ·"oef\l'arlllemory llsa,ge :0
ov~rhead<······· .. <).: 3213

> <Tbtai

You can call the Common Lisp function describe with a pvar argument, but
the information it displays is not very useful. There is a *Lisp equivalent,
describe-pvar, which accepts only pvar arguments and provides a more
detailed and informative display.

~nion 6.1, October 1991

Chapter 8. In the Lisp Environment

For example:

Location:
Fieldld:65536
Length: 2
Type::FIELD
Vp Set Name: *DEFAULT.,..VP"';SET*
Vp Dimensions: (32 16)
Constant value: 2

155

For more information about *room, display-pvar, and other functions
available in *Lisp, refer to the *Lisp Dictionary in the Connection Machine
documentation set.

8.12 Timing *Lisp Code

The CM system provides a timing utility that lets you determine how much
time any part of a program takes to execute on the CM. The timer consists of
a set of Paris instructions that you insert at the appropriate places in your
program. These functions allow you to:

• Calculate total elapsed front-end process run time and the total amount
of time the CM is active.

• Run multiple timeIS-up to 64-at the same time.

• Nest timel'S. This allows you, for example, to start one timer that will
time the entire program, while using other timers to determine how
different parts of the program contribute to the overall time.

8.12.1 Timing Your Code with CM:TIME

The simplest way to time a piece of *Lisp or LispjParis code is to wrap the
macro CK: TIllE around it. For example,

Version 6.1, October 1991

156 eM User~ Guide

..(d.efiirii~~~~f~{i~~~s}/<> .·.·...i ··.·· .. · ... i>•...•.•.....•. < ..

y~!{,I!~~Zi1~~~~~IT·tf~i~"~~~!c*i~:I~[~
·.···· .. ·i\/.·. ··· <i\ •.•.. · .• ·· .•.• · •. i ••. •· •• ••••...•.•••...••.•.. / ...••••••.•.•••.••..•.•.•••••••••.•• ·.;;evet}rproc .. · ...•..•.•

.. •. (declaie .. (type(f ield-pvar ·32) .temp:-pvar)) .

. <. .. • (<i6tim~s(ii6ops)J:ioopunt.:l..lpvar
...... <. ···(':decftemp~pvar) »)) ..

·•·······•··•······•· •• (c:~·f{~ .··;i1~t~t2l
(~:.ti:e(te~~.~~160000»

. E'v~lua.ti6nof(TEsT::F\JN:LOOOOO)
< di1le'dt1l:iJlg~b.ichtheOf was active
... ·loo.O()%o~thetotlll elapsed time ..

The arguments to eM: TIllE are:

C .·.·(~:tii.m FORM&kEYRETURN- S+ATISTICS ~ONLYcP))

where:

FORM is a single Lisp or *Lisp fmm, which is timed using the CM
timer mechanism.

RETORN-STATISTICS-ONLY-P
is an optional keyword argument that controls whether eM: -

TIllE prints its statistics or simply returns them as multiple
values. Refer to the Paris Reference Manual for an explana­
tion of what the numbers mean. By default, CM: TIME
displays its results on the standard output.

Note that the FORM argument must be a single Lisp expression. If you wish to
time more than one form. enclose them in a PROGN, as in:

«(d.!aI~ · .. (PROON(~!J23) (~l! 32»)
· .• ·••.• ••. i .•.. ······\iii··<··. ·:rE!t\l~n -stati s tics -only cp
·P;O{)14554~156SS703174·· .

Calls to eM: TIllE can be nested, as in the following example:

~rsion 6.1. October 1991

Chapter 8. In the Lisp Environment

Evaluation Of(~EST·FUN 500~)tOOkO.47 3473 seconds of elapsed.
time,dw:ing which theCMwas active for 0.473473 seconds or
100 .. 00% of the. total elapsed time ..

Evaluation of (TEST-FUN 5000) took 0 .. 480044 seconds of elapsed
time, during. which theCMwas active forO .. 480044 seconds or
100.00% of the .total elapsed time.

Evaluation of (PROGN (CM:TIME(TEST-FUN 5000» . (CM:TIME (TEST-··
FUNSOOO») took 1.036253 seconds of elapsed time,du:r::ingwhich
.the CMwas active for 1.036253 seconds or 100;00% of the total
elapsed time.

8.12.2 Using Timers In *Llsp Code

157

It is also possible to gain access to the timing mechanism of the CM directly.
You can have up to 64 timers running in a program. (The actual limit on the
number of active timers is given by the value of em: *number - of -
timers*.)

Each timer is referenced by a unique unsigned integer (from 0 to 63) that is
used as an argument to the Paris timing instructions. Instructions with a given
timer number as an argument affect only the timer with that number.

Each timer maintains its own copy of the following values:

• Total Elapsed Time. This is the total time the timer has been running
since it was last cleared. .

• Total eM Idle Time. This is the total time the CM has been idle while
the timer was active.

• Number of Starts. This is the number of times the timer has been
started since it was last cleared.

Version 6.1, October 1991

158 eM User's Guide

Starting, Stopping, and Printing the Values of a Timer

To start timer 0, put a call to the following function in your program:

The first time you start a timer, the timing mechanism is initialized, and a
message like this is displayed:

You can subsequently stop timer 0 by calling the following function later in
your program:

(••••.• ·(cl'll:t:imer·~.stoP. O)i}>··

This function increments the total elapsed time and total eM busy time for this
timer. You can subsequently call (em: timer-start 0) again to restart
timer 0; the timing starts at the values currently held in the timer. This is useful
for measuring how much time is spent in a frequently called subroutine. The
timer keeps track of the number of times it has been restarted.

You can start or stop other timers while timer 0 is running; each timer runs
independently.

To get the results from timer 0, call the following function after you have
called em: timer-stop:

em: timer-pr int prints infOrmation like that shown below to your standard
output:

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 159

Clearing Timers and Initializing the Timer System

To clear the values maintained by timer O. call the following function:

C (cm~tiIner--cleal:O)
The em: timer-clear function zeroes the total elapsed time, the total CM
idle time, and the number of starts for the specified timer.

Other Timer Operations

The following functions return specific information from the timer for use in a
program. (Note that the timer argument for any of these functions must be the
number of a timer for which you have previously called em: timer-start.)

• (em: timer-read-starts timer) returns an integer that represents
the number of times the specified timer has been started.

• (em: timer-read-elapsed timer) returns a double-precision
value that represents the total elapsed time (in seconds) for the specified
timer.

• (em: timer-read-em-busy timer) returns a double-precision
value that represents the total time (in seconds) the CM was busy for the
specified timer.

• (em: timer-read-cm-idle timer) returns a double-precision
value that represents the total CM idle time (in seconds) for the specified
timer. (CM idle time is the total elapsed time minus the CM busy time).

• (em: timer-read-run-state timer) returns t if and only if the
specified timer is running.

• (em: timer-set-starts timer value> takes a timer number and an
integer value as arguments. It sets the number of starts for the specified
timer to the specified value.

8.12.3 Interpreting the Results

In interpreting the results of a timer. it is important to understand something of
how the timing utility works.

Version 6.1, October 1991

160 eM User:S Guide

The elapsed time reported by a timer includes time when the process running
the program is swapped out on the front end. The more processes that are
running on the front end, the more distorted this figure will be. Therefore, we
recommend the following:

• Use a front end that is as unloaded as possible.

• Run the program several times; the minimum elapsed time reported will
be the most accurate.

eM idle time includes only those cycles during which the CM is waiting for an
instruction from the front end. Consequently. eM active time includes not only
those cycles during which the CM is performing computations, but also those
during which the eM is waiting for arguments to an instruction it has received.
Therefore:

• Expect slightly different eM active times on different front-end models
for code segments that do not keep the eM 100 percent active. The time
the CM spends waiting for data to appear is counted as active, but front­
end models differ in the speed with which they can move data over the
FEB! to the sequencer.

• Avoid stopping a process that is being timed.

In addition, note that the timer turns Paris safety checking off; see Section 8.19
on page 175.

8.12.4 An Example

The following *Usp program uses several features of the timing utility:

.(fOr~tFt.~~nt~g3 .• ~~. '~'~~[~_~,I',*;Fi~~~3
...................• «>(em:fime~;..st:arto)

·ilem:timeI:.;.st~:rt·.·l.) .• /(>·······>········ ..
(d6times.· (l C16(,pi3{·>x

f~seta(+ll.ai»);··········· .
(em: tiltler;..stopi)·
(fol:matt"TimeI: .1

(em: time~-,p:riritlj>· .
·.(c~ftlmer;"clea:r i»>

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment

(format<t "-2%Scalar .. integeraddi tion-t")
(cm:tiIlleI:-sta:i:tl)
(dotimes(1loops)
(setq .b(+<.bl»))
(em: tiIlleI: - s.topl)
(formatt II Timer 1 results:")
(cm:.tiIller-printl) •..
(formatt """2%Total process time: _til)

(format til (Timer 0 results) If)
(cm : timer- stop 0)

A sample call to this function is shown below.

161

Note that the program uses one timer (0) to time the entire program, and
another timer (1) to time the two dotimes loops within the program. The first
dotimes loop uses the eM; the second executes on the front end alone.

) (timing-example)

.lntegerpvar addition
Calibrating CM idle timer ... Calculated CMClock speed··
6;99866 MHz
Timerlresillts:
Starts: 1
CMElapsedtime:2.32033 seconds.
cMbusyTime:o.177360seconds.

Scalar integer addition
Timer 1· results:
.St:arts :.1
CMElapsedt.iIlle:O.409085

6.904490E--6

CM Elapsed time: 3.0465.9 seconds.
CM . busy Time: 0 .177455 seconds.

Version 6.1, October 1991

162 eM User's Guide

8.13 Detaching from the eM
When you are finished using the CM, you must explicitly release the
sequencers to which you are attached. To do this, use the Lisp/paris command
em: detach:

C > (cm:detach) J
All your attached sequencers are detached.

You can call cm: detach to release one set of sequencers, and then
immediately call em: attach to attach to the same set of sequencers or to a
different set. You can call em: detach and em: attach in this way as many
times as you like during your *Lisp session. However, you must always call
em: detach at the end of each session if you still have sequencers attached,
so that those sequencers can be made available to other users.

8.14 Exiting *Lisp

On UNIX front ends, to exit *Lisp you must quit your Lucid Lisp session. To
exit from Lucid, type:

(.... >. (lcl.:quit) .·.· · ... ii)
(On VAX front ends, if you are using Lucid Common Lisp 2.1 or 2.S, you must
type (sys: quit) instead)

This command ends the Lisp session.

Users on Lisp machine front ends do not need to explicitly exit from *Lisp.
Detaching from the CM is sufficient. You may, however, wish to use either the
*lisp command or in-package to make some other package current
instead of the *lisp package. For example, either

C ····>C*l.lspnil)

or

c· > · •. Cin~package'user)····•..)
will make the user package the current package.

W!rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 163

8.15 Using the eM Batch System from *Lisp

Using the CM batch system (NQS) from *Lisp is similar to using it from
UNIX; see Chapter 2 for a complete discussion of how to submit a batch
request from UNIX. Note the following similarities:

• From *Lisp, as from UNIX, you use the qsub command to submit a
batch request to a queue; the queue can be either a batch queue or a pipe
queue.

• You can specify the name of a script file that contains the program to run
as an argument to qsub, or you can submit the program to qsub from
the standard input.

• You can include options to qsub that, for example, specify the queue to
which the request is to be submitted, and whether you want mail sent to
you when the request starts IUllOing. For example,

. :

% ·qsub-q cml';ost-.rlisp.outstarlisp;seript

submits the script file starlisp. script to queue cml; the output is
to go to the file starlisp. out.

• You can use other NQS commands such as qstat (to check on the
status of your request) and qdel (to delete a request).

Note the following important differences, however:

• The request you submit (either from the standard input or a shell script)
must be the name of a *Lisp executable band (generally
/usr/local/starlisp).

• You must ensure that the *Lisp system attaches to the same sequencer(s)
and interface that the batch queue is using.

These differences are discussed in more detail below. Following the
discussions is a sample *Lisp program you can use as a template for your own
batch requests.

8.15.1 . Submitting the Name of a *Lisp Executable Band

As mentioned above, the request you submit.must be the name of a *Lisp
executable band. As options, use the following:

Version 6.1, October 1991

164 eM User's Guide

• -1 Use this option to specify the *Lisp file you want the band to
load.

• -n This option tells Lucid Common Lisp not to load your lisp­
ini t • 1 isp file after it has loaded the specified file.

• - q This option tells Lucid Common Lisp to terminate execution
instead of entering an interactive session, once it has done all its
initializations.

For example:

!usr/local/starlisp -lrun-main.lisp-n -q

executes a *Lisp band and loads the file run-main. lisp.

For complete information on options to a Lisp executable band, see the Lucid
3.0 Advanced User's Guide.

8.15.2 Attaching to the Correct Sequencer and Interface

Your *Lisp program must attach to the same CM, sequencer, and front-end bus
interface as the batch queue in which it runs. Rather than hardcoding this
information in your program, we recommend obtaining the information from
the environment. The batch queue sets the UNIX environment variables
CHSEQUEN'CERS, CMINTERFACE, and CHNAME when it runs a request. The
sample program shown below demonstrates how to use these values to attach
correctly.

8.15.3 Sample Program

The file run-main. lisp is shown below. As discussed above, it uses the
environment variables CHSEQUERCERS, CMIR'l'ERFACE, "and CHNAIIE in
attaching to the correct sequencer and interface.

Once the CM has been successfully attached and cold-booted, user code (in
this case, a sample program included with the 6.0 release) is loaded, and then
a user-defined program is executed. Various informative messages are printed
out as execution proceeds.

This is just an example of a file used to control the Lisp batch system. You can
adapt it to suit your needs.

H!rsion 6.1, October 1991

Chapter 8. In the Lisp Environment

".:. ' ":

{l.n~p~Cka,ge'*liSP;i.

;;; The following sequence submfts a stariispbatch)ob
; uto the batch queue calledFOO 1. . Output is directed
; uto thefi1e~/starlisp-outPut:-text. Mail is sent to
.,, .user 'massa:i;'wherithe job beginsand·when the job
'". II' " ,

......
" I ... ,. " ,
,.t,

The starlisp executable /usr/local/sta:i;lisp
is invoked, and told to load the file ~lrun-main . lisp
when i tstar tsup viathe-L.f1ag . The-n flag

.;;; .say.s.notto load user massar's lisp-iniLlispfile.,
andthe-.q:file.says to terminate the .Lispprocess
oncethe-/run~main.liElpfile .hasbeen loaded;

The"D (CO~~L';DLtel1S Clsubto submit the job
and exit.··

massar%qsub'q fOO ... 1 .me.nib -o-!starlisp-output.text

i.it.... > i.·.····

outPut fromai~

; r; (LOAD YOUR OWN LISP~iNIT .. LISPFILEHEREIF YOU WISH)

;1.; . {load

(forma t~" ~~;{; Lisp ba tc~~tst~ beginnin~>~~ecution~')
{format .;; ... ,,-.% In Beginning<~tta~h/cold -bo~tsequence. ")

··· .. {defunatta~~-~:~~~eters-from~batch~environment .
·(flet

· i ... · ··.·.· · (.:.~:r{s.~.&~rf~i:~r.::~i~~:.).

(~rJ.· ••• · •••• ·;··(~·1~lt~r~.·-·~n~i~··~~e:t.~.str·:~~
i (sys::em'i~onment-;a:tiable"CMSEOUENCERS"))

(int~rfac~-e~vi~~nment -s tr ing .••

iJ~y~;;envirC:lllnient~variable· "CMINTERFACE")

Version 6.1, October 1991

165

166

.«(stri~g~e~l

: :" .

sequencer~en~ironment-string)
".1" .·.sequencer-environment-string)

H~" sequend~r-environment-st:ri~g)
".3" .seqUencei-enviI:onment -string)

eM User:V Guide

...«st~ing-e~ai ·112~3"St:lquencer- envir~ninent~ string) .. .
(s~ring~e~al" 0"3 "sequencer ~ environment -string).: uccq-3J

(t(oops "CMSEQUENCERS val.~~,-s ,isnotyalldll l~ »f ...
))

:'011 •. interface -environment-str ing)

«string-equal. "l"intel:£ace-environment~string)
«string-equalll2 u interface-envirpnment,;.string) 2)

.. < (s tring-equall13 "inter face ~ environment~sd:ing).3)
··(t(oqps

... »»)

(formatt""" ;;; ... Atba.ching
···sequencJr intei:face)

(.fiIiish" output) ..

(cm:attachsequencer
{format·t";;;'r; ;

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment

(progn . .
(formatt "~%;;';·.Beginn.irig exec~tion of user code II) .
(finish~output)

(dfs:load-n
"/cm/starlisp/inte;rpreter/f6100/text-processing-example")

(*lisp ::do~text-pIocessirig "This is some text to process")
)

(formatt n_%;;;
. (finish-output)
(terpH) '.

, '.1

'
1"'°'

Output from the batch request is shown below:

Sun Common Lisp, Developm~ntEnvironment 3. 0.5 (Rev 01) ,
I r, ··3 O.-.Aug-.9 0 ".
j, •• ".

".':"1

,., I.

,r, Copyright; (c) 1985, 1986.,.1987, 198Bby.Sun Microsystems,Inc.,
"

. . , ""'
•. 'IiI'. of ,.,

All .. Rights .. Reserved'
Copydght{c) 1985, 1986,.i9B7,1988 by Lucid, InC:., All Rights

:~r:~~e ,iroduct cOntalns <onfi<lenfialM>d trade secret
• info:r:ltiatic>rib~l.onging~osunMi.crOEl·ystems .. Itmay notbe.copied
for.anyreason othexthanforarchival·andbackuppurposes.

~~~ingsour~1ii1~ 1;/cm/pa~C~/init{:liza ti~n~"lisp:, 
*Lisp l'atchie~elO ....••..•.•....•• .•..•.• .... . .. 

Loading source file.;j~)p~~cti/tmc - ini tiali zations . lisp" 
": :· .. ·.i: :"." 

connect.ion.MachinesC>it:~~re ,.Release· '.6 .0 

Version 6.1, October 1991 

167 



168 eM User's Guide 

·..il.;·l.·~~©~·~ght ...• 

:'::'1~ji~.efid:Ju~;21s~~lr~=~;'lis:" 
.;;; Lispha tchsystemb~ginningexecution. . 

.. ;;;Beginriingattach/c()ld -boo\:seqUenc;:e .. 
Tn Attach.ing to sequencer (S)lUCC1,<interfClce 

···{I; .Loadingsourcefile·"/cm/configuratlon/configuiation.lisp;' 
. "':':': .. " 

":'.::):j.:.{ , ,: .. :, . 
. </'i~'< 
-', .:", ,., . 

.. : .. :} .. :::.; ..... :;.::.:::. ':::':".:: 

~~~c~~~o~ O.Length:4. 
pr()cessor 1.. Length: 2.woid: is
Processor 2: Length: 4 . Word: some
proce~sor3 •. Length: 4. ··Word:text>··

• Processor 4. Length: 2. ·Word: to··
processor· S;.Length:7.<word:process·
.;;;Li~:p<batchsystetl\eJtecutiontermina ting .

··.loQ'out\ •.

8.16 Running *Lisp Programs under Timesharing

As described in Section 8.3.1, you use the starlisp- ts command to load
the version of *Lisp that runs under timesharing. Programs can run either under
timesharing or in exclusive mode; use the em: finger command to determine
which sequencer(s) are running timesharing. Programs compiled under this
version of *Lisp can run under the non-timesharing version of *Lisp, and vice
versa. Some error messages are different under timesharing.

Generally, programs run somewhat more slowly under timesharing.

For the most part, code compiled under timesharing should be able to run
without recompilation under exclusive mode, and vice versa. Exceptions are
noted below.

version 6.1, October 1991

Chapter 8. In the Lisp Environment 169

8.16.1 Restrictions

This section describes existing problems, restrictions, and workarounds for
*Lisp timesharing. In general, the timesharing system is an interface to
documented Paris; the restrictions apply only to undocumented Paris and to
CMIS.

The cm:attach Command

As mentioned in Section 8.6 on page 146, the em: attach command now
returns as a second value either: TIMESHARING or : SINGLE-USER,
depending on whether the sequencer to which you have attached is running
timesharing or not.

Under timesharing, the syntax of em: attach has been augmented, as
follows:

.·(CM:ATTACH &KEYINTERFACESEQSPROCESSORS CM)

where IN'l'ERFACE, PROCESSORS, and SEQS have the values described in
Section 8.6. eN, if provided, must be a string.

The old syntax still works.

Paris Floating-Point Instructions

In Lisp, many Paris floating-point instructions allow the mantissa and exponent
arguments to be optional; they default to 23 and 8. (This is undocumented.)
The timesharing system requires that the mantissa and exponent arguements be
provided explicitly in all Paris instructions, as the documentation states. If your
code relies on the undocumented behavior, it must be changed to run under
timesharing.

Undocumented CMI:: Functions

Many undocumented CHI: : functions do exist and can be called under
timesharing. If your code uses one that does not exist under timesharing, you
should first see if it can be replaced by a call to a documented Paris function.
If not, contact Thinking Machines Customer Support to see if it can be
included in the next release of the software, or if a workaround or fix can be
provided.

Version 6.1, October 1991

170 eM User ~ Guide

Undocumented CM.:: Variables

Due to the nature of the timesharing interface, it is not possible to provide
access to most eMI: : variables. You should determine whether the accessing
of an internal eMI: : variable can be replaced by a documented Paris function
or variable.

If this is not possible, the function

", .

.. (*LISP - I:: PORTABLE-VARIABLE -ACCESSOR cmi: : symbol)

returns the value of the variable, accessed from the C world. NOTE: The value
returned for boolean variables is 0 or 1, instead of NIL or '1'.

This function exists in the regular *Lisp band, so it is a completely portable
construct.

Undocumented CM.:: Macros

In general, CIII: : macros do not work under timesharing, especially macros
that are used to access very low-level primitives, such as writing to the FIFO.
Also, the field decoding macros do not work, as discussed below.

Field Decoding Macros

Field decoding macros do not work under timesharing. However, in the
IMP: : package we have defined· a set of portable field decoding macros with
the same names. These include:

• IMP:: WITH - VP - F:IELDS

• IMP: :WI'1'H-AHY-VP-FIELDS

• :IMP:: W:I'1'B - TRANSLATED - FIELDS

If you replace uses of CIII: : field decoding macros with these macros, your
code should be portable.

Error Messages

The error messages generated by the *Lisp interpreter and *Lisp compiler at
safet;y level 1 (which uses the emi: : error -if -location mechanism)
look somewhat different under timesharing. Here is an example:

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment

#<FLOAT-Pvar .5·32 *DEFAULT-VP-SET* (32 16)>
> (.sum(11.1»

Delayed error from .ERROR-IF-LOCATION ..
***An erroroccur:r:ed in your code between the
*** .last . time a value was read out of the CM and now.

.. One of the following occurred:
The .result ofa (two .argument) float /!! over.flowed, or
Divide by zero in float (two argument) /11

*** Once you abort, . remeinber to cm:warm-boot or
··warmcboot***····

171

Messages that are generated by Paris also look different. Here is an example:

TrYingtoacceSsoffOf~~e endaf
passed··fieldha.s ..• a length.· Pi3?; .·andthe .. lengthpas sed
this ·instructionis33,···

*** OncejrQu
.....•.•. *waJ:tn-bQot**~

Version 6.1, October 1991

172 eM User's Guide

Being Detached

If you are detached or the timesharing daemon goes down, you should see this
message:

F~bi . interrupt: This probably means you were just
detached;

8.16.2 Condltlonalizlng Code

You can, if necessary, conditionalize your code for compile time as follows:

You can also, if necessary, conditionalize your code at run time as follows:

(if cmi::*timesharing* .
(code.for*Lisp timesharing)

for standard *Lisp}

8.17 Using the *Lisp Simulator

The *Lisp simulator runs entirely on the front-end computer, and simulates the
operations of a permanently attached CM. You can port code developed using
the *Lisp simulator directly to the *Lisp interpreter/compiler with few
modifications. However, code compiled using the *Lisp simulator must be
recompiled to run on the CM hardware.

The performance of the simulator is much slower than that of an actual CM,
but the simulator is a useful development tool when CM resources are scarce.
One important advantage of the simulator is that it can be run on any available
machine. It does not have to be run on the front end attached to your CM. The
*Lisp simulator will run on any of a number of platforms. Consult the *Lisp
Reference Manual for more information.

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 173

Another advantage of the simulator is that it allows you to define VP sets of
any size, so that you can test out your code on a small number of processors
and print out the results for all of the processors at once, before recompiling it
and running it on the thousands of processors available on a real CM.

To use the *Lisp simulator, load in the simulator software as described in
Section 8.3 on page 142. The simulator emulates a *Lisp interpreter with a CM
that is permanently attached, so it is unnecessary to call either em: attach or
em: detach when using the simulator. (In fact, functions whose names begin
with em: don't exist in the *Lisp simulator. Calling one of these functions will
signal an error.)

Operation of the simulator is identical to that of the *Lisp interpreter/compiler ..
Make *lisp the current package by typing

(> (*lisp) J
or

(> (in-package ... ' *lisp)

(Note that these operations will report that the package *sim has been made
current. This is the actual package in which the *Lisp simulator software
resides. However, no errors will result from referring to symbols in the *lisp
package; in the *Lisp simulator the * lisp package is defined as a nickname
for the package *sim.)

Initialize *Lisp by calling

(> (*cold-boot)·. J
-----..;..... -~-~~------'-~

The default VP set on the simulator consists of 32 processors in an 8 by 4 array,
but you can use *cold-boot to define VP sets of any size you wish. For
example,

:initial-diJDensions #(1616).)

initializes the *Lisp simulator with a VP set of 256 processors in a 16 by 16
array.

At this point you can edit, execute, and debug *Lisp code as you normally
would. When you are finished, there is no need to call em: detach. Simply
exit from *Lisp (or switch to another package) as described in Section 8.14 on
page 162.

Version 6.1, October 1991

174 eM User's Guide

8.18 Lisp/Paris Programming

Lisp/paris is implemented as a language interface between Lisp and Paris. All
the operations of Paris are available directly as function calls from Lisp. For
example, a call to the function em: latch-leds would look like:

(><cm:latch-ledSfield-id)

where f1eld-1d is a variable bound to the field ID of a one-bit field on the
CM. (For more information about fields and field IDs, refer to the "Concepts"
section of the Paris Reference Manual in the Connection Machine
documentation set)

It is not necessary to use the *Lisp language to program in Lisp/Paris.
However, *Lisp provides a useful level of abstraction and handles most of the
details of Paris programming in a clean, readable manner.

It is possible to write programs consisting mostly of *Lisp code that call Paris
directly only for important, time-critical operations. To call a Paris operation
from *Lisp, it is necessary to convert the pvar data structures created by *Lisp
code into the field IDs and field lengths required by Paris functions. It is also
necessary to convert VP set objects created in *Lisp to the geometry IDs and
VP-set IDs required by Paris functions.

*Lisp provides two utility functions to perform this conversion on pvars. The
function pva:r:-locat1on takes a single pvar argument, and returns the field
ID of that pvar. The function pva:r:-length takes a single pvar argument,
and returns the field length in bits of that pvar.

*Lisp also provides a utility function to perform this conversion on VP sets.
The function *lisp-i: :vp-set-inte:r:nal-1d takes a single VP set
argument and returns its Paris VP-set 10. You can then call the Paris operation
em:vp-set-geomet:r:y to obtain the Paris geometry-id associated with that
VPset

As an example, the following *Lisp code uses *defva:r: to create a pvar with
a negative value in every processor, calls the Paris operation em: s-negate-
1-11 to perform a signed negation on the pvar, and then calls the function
ppp to show that the pvar's value in every processor has been negated.

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment

(.defvarx (11-6»
(pppx : end 12)

-6 -6-6 -6. -6 -6 ~6 -6 -6 -6 -6 -6

(cm:s-negate-1-11 (pvar-loeationx) (pvar-length x»

(pppx: end 12)

6 6 6 66 66.6 6666

175

Of course, this example can be perfonned much more easily in *Lisp by the
expression (. set x (- J J x», but for some applications calling Paris
directly may be just what you need to increase the speed and efficiency of your
programs.

For more information about Paris and the Lisp/paris interface, consult the Paris
Reference Manual in the Connection Machine documentation set.

8.19 Paris Run-Time Safety Checking

The CM system provides a safety utility that checks for Paris-level errors and
inconsistencies in programs. Safety checking reduces execution speed, of
course, but it can be useful in developing and debugging programs.

When turned on, the safety utility checks the following:

• Whether field IDs passed as arguments to Paris instructions refer to
fields in the current VP set

• Whether field IDs passed as arguments to Paris instructions are valid
field IDs (although not all invalid field IDs are caught)

• Whether the lengths passed to Paris instructions exceed the lengths of
the respective field operands

(For information on field IDs and VP sets, see the Paris Reference Manual.)
When the utility detects an error, it aborts the execution of the program and
prints infonnation about the error to your standard error device.

To use this utility, call the Paris function em: set-safety-mode from
within your program. To tum on safety, specify any non-zero integer as an
argument to the instruction. For example,

Version 6.1, October 1991

176 eM User:S Guide

.. ···i) .

turns on complete Paris safety. To turn Paris safety off, specify zero as the
argument:

(.•.•. (em: set~safety-mc)deO)·

Note that you can also tum Paris safety on and off with the : safety keyword
argument to *cold-boot; see Section 8.8 on page 150.

8.20 The *Lisp Library

An additional set of useful *Lisp functions and macros is available in the form
of an on-line software library. Please note that all code included in the library
is experimental. Users are welcome to make use of the library code at their
own risk, with the understanding that some or all of these functions and macros
may not be supported in future releases.

The *Lisp library code is available in the directory

(~ •. _ .• _j_e_m~j~st_a_I~1_i~s_P~j~1_i_b_I_ar_y_j~f_6~O~O~O_j_*~··._. ____ ~ ____ ~~~ ____ J
on UNIX front ends, and in the directory

host:>**>e~oPtiona:l>starlisP>librarY>f6000>*.*.*

on Lisp machine front ends.

On-line documentation for the library functions and macros is available in the
file documentation. text in the *Lisp library directory. Ask your system
administrator to help you locate the library files at your site.

All functions in the library are defined to autoload on demand. When anyone
function in a given interface file is autoloaded, the rest of the functions in that
interface file are also autoloaded.

Consult the latest edition of the *Lisp Release Notes for information about the
current contents of the *Lisp library.

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 177

8.21 Visualization of Data in *Lisp

*Lisp also gives you access to software tools you can use to visually display
the results of data parallel programs. There are two basic ways of displaying
CMdata:

• On a color monitor attached to a CM via a framebuffer I/O module-the
combination of the monitor and the framebuffer I/O module is usually
referred to simply as the framebuffer

• On a workstation that supports the X Windows System, Version 11
interface (referred to as an Xli window), either locally or over a network

The framebuffer provides higher resolution and faster display, but you must be
attached to a CM sequencer that contains a framebuffer module in order to use
it. With the X Windows interface, you can display your output on any standard
graphics workstation, either local or remote. You can also use the X Windows
interface to develop software on your local workstation that you can later
display on a framebuffer.

The following software is available for visualization and graphic display:

• *Graphics. *Graphics (pronounced "star-graphics") is the *Lisp
interface to the Generic Display and *Render utilities described below.
It also includes display functions that take care of positioning, rescaling,
and dithering data automatically, as well as a symbolic interface for
defining color maps. The rendering functions provide *Lisp wrappers
for many of the Paris *Render functions.

• Generic Display Interface. The Generic Display Interface provides a
single user interface to all CM framebuffers and X Wmdows servers
available from your workstation. It allows an application to present a
menu of the available displays. Its routines support the creation,
initialization, and selection of a display, writing to and reading from the
display, and the control of display offset parameters and color maps.
With the appropriate image data, these routines let you visualize data
through an XU window when a framebuffer is not available, or to
preview an image locally during development and then easily switch to
the framebuffer for final revisions and viewing.

• *Render. *Render (pronounced "star-render") is a CM library
containing routines that support graphics processing on the Connection
Machine. Using these routines, you can draw simple graphics primitives
that are placed in a buffer field in CM memory. You can then transfer
this image to a framebuffer or XU window for display. *Render is
intended as a building block for more advanced visualization tools.

Version 6.1, October 1991

178 eM User!s Guide

• Graphics Display Library. The graphics display library contains
routines for using the framebuffer. It includes facilities for displaying
images, panning and zooming the screen, double buffering, and loading
the color maps.

• Xcm. Xcm provides routines that support the display of image data from
CM memory in an X11 window. Normally, you use these routines via
the Generic Display Interface, rather than calling them directly.

For complete information on CM visualization tools, see the volume
Connection Machine Graphic Display System in the Connection Machine
documentation set. Documentation for *Graphics is contained in the volume
Programming in *Lisp in the Connection Machine documentation set.

8.22 CM I/O Programming from *Lisp

The Connection Machine system has a file system associated with it. This file
system is separate from the front end's file system, although it shares many
similarities with a UNIX file system. You can use the CM file system (CMFS)
to store data for the CM.

You create files in the CM file system either by using one of these commands
to copy in data or a file from another file system, or by issuing library calls
from within a program. All the Data Vault I/O operations may be called directly
as functions from within *Lisp programs. For information on I/O library calls
that use the CM file system, consult the CM I/O System Programming Guide in
the Connection Machine documentation set.

8.23 CM Scientific Software

*Lisp also provides access to the Connection Machine Scientific Software
Library (CMSSL), a library of specialized scientific and mathematical routines.
For more information on the CMSSL, and for information on calling CMSSL
routines from *Lisp, refer to the CMSSL for *Lisp portion of the volume
Connection Machine Scientific Software Library in the Connection Machine
documentation set.

~rsion 6.1, October 1991

Chapter 8. In the Lisp Environment 179

8.24 Managing Large File Sets

An additional feature of Connection Machine System Software, accessible
through *Lisp, is DFS, the Def File Set system. This system allows you to
define groups of files as belonging to "file sets." All the files in a file set can
then be compiled and/or loaded together in a single operation. Individual files
can contain either Lisp code or plain text, and the order in which the files are
compiled and/or loaded can be determined by the user. DFS is portable among
Lisp machines, VAX Lucid, and Sun-4 Lucid.

DFS is described in detail in Appendix B. NOTE: DFS is unsupported software
and is subject to change at any time. Users are welcome to use DFS functions,
with the understanding that the functions may be changed without notice in
future releases.

Lisp machine users already have access to a more robust, supported system of
this kind in the Symbolics System Construction Tool system. We recommend
that Lisp machine users use SCT rather than DFS to manage large sets of files,
if portability is not an issue.

Version 6.1, October 1991

Appendixes
an:.. ! ... :11.... .11 IJJ! I .. Hi. : :. II

Appendix A

Back-Compatibility Mode

Starting with Version 5.0, eM System Software has allowed user programs to
control the number of virtual processors used and the geometry in which they
are laid out. Different sets of virtual processors, each with its own geometry,
can coexist in a program, and they can be created and destroyed as execution
proceeds.

Programs developed under previous eM System Software releases, as well as
programs written subsequently in certain languages, require that users
configure the number of virtual processors and their configuration when they
cold boot the eM. You must execute such programs in back-compatibility
mode. This appendix describes how to do this.

A.1 Executing in Back-Compatibility Mode

Your program executes in back-compatibility mode if you specify any of the
following options to the cma ttach command:

• -b

Use -b to specify the amount of memory to be allocated for back­
compatibility mode. A certain amount of memory must be always
reserved for the overhead needed to run in back-compatibility mode.
The value is a decimal fraction between.l and .9; the default is .75. See
Section A.2 on page 184 for more information.

• -v

Use the -v option to configure the eM to have a specified number of
virtual processors. The number can never be less than the number of
physical processors and must be a power of 2. You can specify this
number either as an integer (for example, 32768) or in the form 32k.

Version 6.1, October 1991 183

184 eM· User:V Guide

The processors are laid out in a 2-dimensional grid. H the number of
virtual processors is the same as the number of physical processors, the
processors have the following layout:

4K processors
8K
16K
32K
64K

• -x and-y

64x64
64x128
128x128
128x256
128x512

Use the -x and -y options instead of the -v option to configure the
virtual processors in a 2-dimensional grid. Each dimension must be a
power of 2 and must be at least as large as the number of physical
processors in that dimension, as shown above.

If you want to use back-compatibility mode from a batch request, you must use
a batch queue that does not automatically attach you to the eM. See your
system administrator if such a queue does not exist. If it does exist, you can put
the appropriate cma ttach command in your script file and submit the file to
this queue via the qsub command.

To change the number of virtual processors or their geometry, you can issue the
cmcoldboot command, using the same options as described above for
cmattach. You can, if you wish, omit the -v or the -x and -y, and simply
specify the number of virtual. processors as either a single integer or two
integers.

A.2 Memory Allocation in
Back-Compatibility Mode

Certain features of a program may affect the value that you should supply as
the -b option to cmattach or cmcoldboot when the program is executed.

This section assumes that you have some familiarity with the virtual processor
mechanism described in the Paris Reference Manual.

H!rsion 6.1. October 1991

Appendix A. Back-Compatibility Mode 185

Back-Compatibility and VP Sets

When cold booted in back-compatibility mode, the system creates a VP set
with the geometry implied by the command line options -x and -y or -v. It
then allocates the amount of memory specified by the -b value to a single field
in that VP set. The single VP set and the one allocated field that are created for
back-compatibility mode are called "VP set 0" and "field 0" for the purposes of
this discussion.

The user can, however, create additional VP sets-of any legal geometry-by
means of direct calls to the appropriate Paris instructions. For these VP sets,
storage is handled in the normal way: that is, a single stack is shared among all
user-created VP sets. Only VP set 0 has memory specifically allocated for it.

The Size of the Back-Compatibility Field

Creating new VP sets, or using certain Paris instructions from within VP set 0,
may require the user to adjust the fraction of memory allocated for back­
compatibility-that is, the relative size of field O. Some considerations in
deciding on the value of the -b option are:

• All automatic and scalar variables allocated by C* and CM Fortran
programs running in back-compatibility mode are allocated within field
O. A C* or CM Fortran program that contains no direct calls to Paris can
be executed with the -b value set relatively high.

• All Paris instructions called while a user-defined VP set is the current
VP set use storage outside field O. A C* or CM Fortran program that
creates additional VP sets may require that the -b value be lowered.

• Most Paris instructions called while VP set 0 is the current (or only) VP
set allocate variables within field O. A C* or CM Fortran program that
calls Paris instructions exclusively from within VP set 0 can be executed
with the -b value set relatively high.

• There are exceptions, however. The following instructions allocate
temporary storage outside field 0, regardless of which VP set is current
when they are called:

Version 6.1, October 1991

CII-.9'et_1L
CII_read_from_news_array
CII_write_to_news_array
Some CM_send_ instructions when the message sent exceeds
128 bits in length

186 , eM User ~ Guide

• A program that calls these instructions-either from within VP set 0 or
from within a user-defined VP set-may require that the -b value be
lowered.

Most Paris instructions have modest requirements, if any, for temporary
storage. However, a few instructions-CII_get_1L in particular-are
comparatively demanding of temporary storage. If at any time the available
temporary memory is exhausted, the system signals a run-time error and
program execution terminates. If this event occurs, you can make more
temporary space available by lowering the -b value.

A.3 Back-Compatibility Mode and Timesharing

Programs that must be executed under back-compatibility mode can execute
under timesharing. However, the overhead required for running back­
compatibility mode can cause a considerable decrease in performance.

~rsion 6.1, October 1991

AppendixB

DFS: Defining File Sets

NOTE: The system described in this document is not officially supported
and is subject to change at any time. Users are welcome to make use of the
functions described below, with the understanding that the features described
herein may be modified without notice in future releases.

B.1 DFS - Defining File Sets

This document describes DFS, the Def File Set system. This system allows you
to define groups of files as "file sets." All the files in a file set can then be
compiled and/or loaded together in a single operation. Individual files can
contain either Lisp code or plain text, and the order in which the files are
compiled and/or loaded can be determined by the user.

The basics of file sets and file set definition files are described in this
document. For more information, execute the function (dfs: dfs: help) , or
read through the file /cm/dfs/documentation.lisp, in the DFS system
file set.

The following DFS operations are documented:

dfs: def-file-set Define a file set.
dfs:def-file-set-directory

Define the directory in which a file set is stored.
dfs: load-file-set Loads all files in a file set.
dfs:compile-load-file-set

Compiles and loads all flIes in a flIe set.
df s : load-n Loads a single flIe from a flIe set.

The purpose and use of file set definition files is also described.

Version 6.1, October 1991 187

188 eM User's Guide

B.2 Defining File Sets

A "file set" is simply a group of files stored in the same directory that must be
loaded and/or compiled as a group in a specific order.

The dfs: def-file-set macro defines a file sel

dfSidef~file-:set·.l·name.(.:dir·E:!ctotydeJaitlt--pathita;:;,~) ... ·») .••..........
. ·&restjilespecs.<_.....

A sample call to dfs: def-file-set looks like:

This form defines a file set that contains four files: definitions, macros,
other-defs, and main-program. All of these files are located in the
directory -username/my-code/.

The dfs: def-file-set macro has many options to control file
compilation and loading, including options that allow simple conditional
compilation of files. These options are described in the next section.

B.2.1 Arguments to dfs:def-flle-set

The name argument must be a symbol. It specifies the name of the file set for
DFS. (The package of the symbol is ignored; only the name of the symbol is
seen by DFS.)

The default-pathname must be a string containing a directory pathname. This
pathname is used as the default path for the files specified by the filespecs
arguments. Note that DFS currently requires that all files in the file set must be
stored in this directory.

The filespecs arguments specify the files in the file set. The simplest way to
specify a file is by a string that contains just the name of the file without any
extension such as • lisp or .bin. (DFS automatically adds appropriate type
extensions where needed.)

Version 6.1. October 1991

Appendix B. DFS: Defining File Sets 189

Files that are to be compiled and/or loaded only in specific circumstances may
be specified as a list of the form (filename conditions). In this case, filename
is a string containing the name of a file as described above, and conditions is
any number of keywords that conditiona1ize the compilation and/or loading of
that file.

Files specified with no conditions are compiled and loaded in order. Files with
conditions mayor may not be compiled or loaded, as determined by the
conditions.

The permissible conditions are:

: compile Compile the file only if it has been modified since it
was last compiled. Note that: compile only
compiles the file; the : load option must be
specified as well to load the file.

: load Load the file only if it has been modified and/or
recompiled since it was last loaded.

: compile-load This option is the same as specifying both
: compile and: load, and is the default if no
conditions are specified.

(: compile filenames)
Compile the file if any of the files specified by the
filenames strings have been recompiled.

(: loadfilenames) Load the file if any of the files specified by the
filenames strings have been reloaded.

(: compile-load filenames)

: always

: read

: no-load

Version 6.1, October 1991

This option is a combination of the preceding two,
and specifies that the file is compiled and loaded
conditionally.

This keyword may replace filenames in the above
options, and specifies that the file is always loaded
or compiled.

Read only the source version of the file. (Useful for
files of code that are never compiled.)

Do not compile or load the file. (Useful for text files
and documentation files that are part of a file set but
contain no compilable code.)

190 eM User ~ Guide

(; external function-name)
Define a function with the specified function-name
that will return the full patbname of this file when
called. (Useful for files specified as : no-load that
may conditionally be loaded by other files in the file
set.)

For example, here is the above dfs ;def-file-set call modified to make
use of conditions:

(dfs: def-file~set .. (my:':f ile-set ·1: d.b:e~tory".us~~nam~;~~':'¢Odel·;)J
(1td$f:i.nitions~·:loadtalwaYsj

··("IJIClcros" .·:compi1 e-Toad).· •• · .. · · .•. ·.><ir· ·····« >C./i i .. .
• ·("othe:r-defs .. ·· ·uio-load{:external othe:r-defs~fileriatne))i··

. . (ttmain ... p:r ogr am .~(: cODl~i le'~matr os~;):1 oad) .•••..•..• • ..•...•..•..

This dfs: def-file-set call defines my-file-set with the following
conditions:

• The definitions file is never compiled, but is always loaded, even
if its source file has not been modified.

• The macros file is compiled and loaded only if it has been modified.

• The other-defs file is never loaded, but dfs; def-file-set
defines a function named other-def s-f ilename that, when called,
will return the pathname of this file. This function can be used elsewhere
to load the file (within main-program itself, for example).

• The main-program file is compiled and loaded whenever the
macros file has been compiled.

8.3 File Set Definition Files

The dfs : def-f ile-set macro is almost never called directly. Instead, it is
stored in a special file known as a definition file.

The definition file for a file set is typically stored in the same directory as the
files in the file set, and is typically named def-file-set . lisp. (This file
can be located elsewhere, however, and can have a different name. See Section
B.4 on page 191.)

~rsion 6.1, October 1991

Appendix B. DFS: Defining File Sets 191

The definition file is used by DFS to determine which files are part of the file
set, and also to determine the order in which those files are to be compiled
and/or loaded.

8.4 Defining File Set Directories

Another important macro is dfs: def-file-set-directory. This
macro defines the directory in which the definition file of a file set is located.

dis: def -,£ ile-set..,directoryjile-set-name def-jile~pathname

The jile-set-name argument is the name of the file set, and must be a symbol.

The def-file-pathname argument is a string containing the pathname of the
definition file. This may be a complete pathname that specifies the directory
and name of the file, or a partial pathname that specifies only the directory. In
the latter case, DFS assumes by default that the name of the file is def­
file-set . lisp.

A call to this macro for my-file-set might look like:

(dfs:def-,fHe-set-dixectorymy-file:..,set
"-username/my-code/")

This form informs DFS that the file set my-file-set is defined by a
definition file named def-file-set . lisp, located in the directory
"username/my-code/.

8.5 File Set Directory Definition Files

Like dfs: def-file-set, the dfs: def-file-set-directory
macro is almost never called directly. Instead, it is stored in your system's site
directory in a file that is named after the file set and that has the extension
.dfs.

For example, the dfs : def-file-set-directory call shown above
would be stored in a file named my-file-set.dfs in your system's site
directory.

Version 6.1, October 1991

192 eM User:S- Guide

B.6 Finding Your Site Directory

The variable dfs I I *site-file-directory* contains the pathname of
your local site directory, and can be either a single string or a list of strings.

For UNIX users the site directory is typically /cm/dfs/site.

For Lisp machine users, the site directory is typically >cm>dfs)site.

B.7 How DFS Handles File Sets

When a DFS function is called to load a particular file set, DFS first checks to
see whether that file set is known to it already. (This is the case, for example,
if a DFS function has previously been called to compile or load the file set.)

If the file set is known, DFS reads the definition file for the file set and uses the
information contained in it to load the files of the file set.

If the file set is not known to DFS (for example, if it has not been loaded
before), then DFS searches the site directory for a • dfs file named after the
requested file set. If there is more than one site directory (that is, if the value of
dfs I I *site-file-directory* is a list of strings), the directories are
searched in order.

If a • dfs file is found, DFS loads it, and uses the dfs I def-file-set­
directory form within to locate the definition file for the file set. DFS then
loads the file set as usual. If no • df s file is found, DFS cannot load the file set,
and will signal an error.

B.8 Loading and Compiling File Sets

The DFS functions used to compile and load file sets, and to compile and load
individual files of those file sets, are described in the following sections.

All files compiled by DFS are compiled using the Common Lisp compiler.

NOTE: When using DFS, never load or compile any of the files in a file set by
any other means than the DFS operators described here (for example by using
the Common Lisp load or compile-file functions). DFS maintains its
own information about whether the files in a file set have been compiled and/or

~rsion 6.1, October 1991

Appendix B. DFS: Defining File Sets 193

loaded. Compiling or loading files by other means can invalidate this
information, causing DFS to perform incorrectly.

If it is necessary to recompile or reload a single file, use the dfs: load-n
operator described in Section B.9 on page 195.

8.8.1 Loading File Sets

The DFS function to load a file set is dfs: load-file-set.

Cdfs:load-file-set.fite-:set ria~· &key·· :reload)

This function loads all of the files in a file set that are not currently loaded.

A sample call to dfs: load-file-set looks like:

...)

This example causes the three files in my-file-set to be loaded in order.

Keyword Arguments to dfs:load-flle-set

The : reload keyword argument controls whether files are loaded if they
have been loaded previously. It can have either of the following values:

: if-not-loaded Only load files if they have not been loaded
previously.

t Load all files unconditionally.

The default value for the : reload argument is : if-not-loaded.

8.8.2 Compiling/Loading File Sets

The DFS function to compile and/or load a file set is dfs: compile-load­
file-set.

dfs:co~ile"'load. ... fi1e';'set file-set-name.
.. ·····&kC?ylrecompile .:reload :soUr~e-;OIily:selectiye .•..

Version 6.1, October 1991

194 eM Users Guide

This function compiles and loads each of the files in a file set that have been
recently modified.

A sample call to this function looks like:

(i (dfs :~~Inphe~lOad"'fiie--set Imy--file"'set)··

This example causes any of the files in my-file-set that have been recently
modified to be compiled and loaded.

Keyword Arguments to dfs:complle-load-flle-set

The : recompile keyword argument controls whether files are compiled if
they have been compiled previously. It can have anyone of the following
values:

t
: if-changed

nil

Compile all files unconditionally.
Compile files only if they have not been compiled
previously.
Do not compile any files.

The default value for the : recompile argument is : if-changed.

The : reload keyword argument controls whether files are loaded if they
have been loaded previously. It can have either of the following values:

t Load all files unconditionally.
: if-not-loaded Load files only if they have not been loaded

previously.
nil Do not load any files.

The default value for the : reload argument is : if-not-loaded.

The : source-only keyword argument controls whether source. or object
files are loaded:

t Load only source versions of files.
:when-no-object Load compiled files if available, otherwise load

source files.
nil Load only compiled versions of files.

The default value for the : source-only argument is : when-no-obj ect.

The : selective keyword argument controls whether files are loaded
selectively.

~rsion 6.1, October 1991

Appendix B. DFS: Defining File Sets 195

t Query user whether to compile and/or load each
file.

nil Compile/load all files without querying.

The default value for the : selective argument is nil.

The : verbose keyword argument controls whether files are compiled/loaded
verbosely.

t
nil

Display messages as files are processed.
Process files silently.

The default value for the : verbose argument is t.

B.9 Loading Individual Files

The DFS function to compile and load a single file from a file set is
dfs:load-n.

(dfs :load~n jilename&key: recompl1e:ieload .J
This fuction compiles and loads a single file from a file set.

A sample call to dfs: load-n looks like:

(dfs :1oad-n "-username/my-code/main-:"program~l)

This example compiles the file main-program from my-file-set (if it
was recently modified), and then loads the file.

B.9.1 Keyword Arguments to dts:load-n

The : recompile keyword argument controls whether the file is compiled if
it has been compiled previously.

The : reload keyword argument controls whether the file is loaded if it has
been loaded previously.

The : verbose keyword argument controls whether files are loaded
verbosely.

Version 6.1, October 1991

196 eM Users Guide

The legal values and default for these arguments are the same as for the
corresponding arguments of dfs: compile-load-f ile-set.

Version 6.1, October 1991

AppendixC

Paris Functions Affecting
Timesharing Performance

The Paris functions listed in this appendix cause the eM and the front end to
resynchronize, potentiaIly causing slower performance when running under timesharing
from a VAX. front end. If your program will be running under timesharing from a VAX.,
you should minimize calls to these functions.

/*

* PARIS REL3 functions

*/

CM_complex_t CM_c_read_from-processor_1L _AP«CM_sendaddr_t
send_address_value,

CM_field_id_t source,

unsigned S,

unsigned e» ;

double CM_f_read_from-processor_1L _AP«CM_sendaddr_t
send_address_value,

CM field id t source,

unsigned s,

unsigned e»;

CM_complex_t CM_global_c_add_1L _AP«CM_field_id_t source,

unsigned S,

unsigned e» ;

Version 6.1, October 1991 197

198 eM User's Guide

unsigned CM_global_count_bit_always _AP«CM_field_id_t
source)) ;

unsigned CM_global_count_context _AP«void));

double CM_global_f_add_1L _AP«CM_field_id_t source,

unsigned s,

unsigned e»;

double CM_global_f_max_1L _AP«CM_field_id_t source,

unsigned s,

unsigned e»;

double CM_global_f_min_1L _AP«CM_field_id_t source,

unsigned s,

unsigned e» ;

int CM_global_logand_1L _AP«CM_field_id_t source,

unsigned len»;

unsigned CM_global_logand_bit_always _AP«CM_field_id_t
source»;

unsigned CM_global_logand_overflow _AP«void»;

~rsion 6.1, October 1991

Appendix C. Paris Functions Affecting TImesharing Performance

int CM_global_logior_1L _AP{{CM_field_id_t source,

unsigned len));

unsigned CM_global_logior_bit_always _AP{ (CM_field_id_t
source)) ;

unsigned CM_global_logior_context _AP{{void));

unsigned CM_global_logior_overflow _AP{{void))i

unsigned CM_global_logxor_1L _AP{{CM_field_id_t source,

unsigned len)) ;

int CM_global_s_add_1L _AP{{CM_field_id_t source,

unsigned len));

int CM_global_s_max_1L _AP«CM_field_id_t source,

unsigned len));

int CM_global_s_min_1L _AP({CM_field_id_t source,

unsigned len));

unsigned CM_global_u_add_1L _AP{{CM_field_id_t source,

unsigned len»);

unsigned CM_global_u_max_1L _AP {(CM_field_id_t source,

unsigned len));

199

unsigned CM_global_u_max_s_intlen_1L _AP ({CM_field_id_t source,

unsigned len));

Version 6.1, October 1991

200 eM User! Guide

unsigned len»;

unsigned CM_global_u_min_1L _AP«CM_field_id_t source,

unsigned len»;

int CM_s_read_from-processor_1L _AP«CM_sendaddr_t
send_address_value,

CM_field_id_t source,

unsigned len»;

double CM_timer_read_c~idle _AP«unsigned timer»;

double CM_timer_read_elapsed _AP«unsigned timer»;

int CM_timer_read_run state _Ap«unsigned timer»;

int CM_timer read_starts _AP«unsigned timer»;

unsigned CM_u_read_from-processor_1L _AP«CM_sendaddr_t
send_address_value,

CM_field_id_t source,

unsigned len»;

/*

* Back compatibility functions.

*/
unsigned CM_enumerate_and_count _AP«CM_memaddr_t, unsigned»;

double CM_f_read_from-processor _AP«CM_cubeaddr_t,
CM_memaddr_t, unsigned, unsigned»;

long CM_global_add _AP«CM_memaddr_t, unsigned»;

long CM_global_count _AP ((CM_memaddr_t» ;

long CM_global_count_always _AP«CM_memaddr_t»;

double CM_global_f_add _AP«CM_memaddr_t, unsigned, unsigned»;

~rsion 6.1, October 1991

Appendix C. Paris Functions Affecting TImesharing Performance 201

double CM_global_f_max _AP((CM_mernaddr_t, unsigned, unsigned));

double CM_global_f_rnin _AP((CM_rnernaddI_t, unsigned, unsigned));

unsigned CM_global_logand _AP((CM_rnernaddI_t, unsigned));

unsigned CM_global_logand_always _AP((CM_rnernaddI_t, unsigned));

unsigned CM_global_logioI _AP((CM_rnernaddI_t, unsigned));

unsigned CM_global_logior_always _AP((CM_mernaddI_t, unsigned));

long CM_global_rnax _AP((CM_mernaddI_t, unsigned));

long CM_global_rnin _AP((CM_rnernaddI_t, unsigned));

unsigned CM_global_u_add _AP((CM_rnernaddI_t, unsigned));

unsigned CM_global_u_rnax _AP((CM_rnemaddI_t, unsigned));

unsigned CM_global_u_min _AP((CM_mernaddI_t, unsigned));

long CM_Iead_frorn-PIocessor _AP((CM_cubeaddr_t, CM_rnernaddr_t,
unsigned)) ;

CM_tirneval_t * CM_stop_tirner _AP((int));

unsigned CM_u_read_fIorn_pIocessoI _AP((CM_cubeaddr t,
CM_rnemaddI_t, unsigned));

Version 6.1, October 1991

AppendixD

The UNIX System for eM Users

This appendix presents brief explanations of features of the UNIX operating
system that are important to users of the Connection Machine system. For a
more comprehensive discussion of the UNIX system, consult The UNIX
Programming Environment, by Brian W. Kernighan and Rob Pike (Prentice­
Hall, 1984), or one of the many other books written about UNIX.

absolute pathname See pathname.

background process A process that runs "in the background," allowing you
to issue other commands while it is executing .

. csmc In the C shell, a script file run after login to set up the
characteristics of the shell.

Bourne shell See shell.

C shell See shell.

current directory See directory.

directory A node in the UNIX file system. A directory can
contain files and other directories. The current or
working directory is the directory to which relative
pathnames refer.

environment variables Variables whose settings are available both to a shell
and to programs called from within the shell. You can
change the settings of these variables to provide
information about your environment to programs. CM

Version 6.1, October 1991 203

204

filename

group ID

hostname

kernel

Komshell

login ID

make utility

pathname

permissions

pipeline

eM User 3' Guide

system software provides various environment
variables for use with CM commands. For example, the
setting of the environment variable CMIN'l'ERFACE
specifies a default front-end bus interface for use with
the cmattach command. Compare shell variables.

The name of a UNIX file. See also pathname.

The name of a class of users to which a user is
assigned.

The name assigned to a computer running the UNIX
system.

The program that controls the resources of the
computer. A user interacts with the UNIX kernel by
means of a shell.

See shell.

The name by which a user is known to the system.

A utility that provides a mechanism for maintaining
programs by ensuring that the files constituting a
program all exist and are up-to-date.

A name that includes all the directories that have to be
traversed to reach a given file or directory. An absolute
pathname starts with root-that is, at the beginning of
the file system hierarchy: for example, lusr/bin. A
relative pathname starts with the working directory: for
example, mydirectory Imy _subdirectory.

Attributes associated with a file that determine who can
do what with the file.

A sequence of commands in which the output of one
command is the input of another.

~nion 6.1, October 1991

Appendix D. The UNIX System/or eM Users 205

process

prompt

rep

redirection

relative patbname

remote operations

rlogin

root

rsh

script file

setenv

Version 6.1, October 1991

An instance of a running program. Each process in a
system has a unique process-id. Multiple processes can
be assigned to the same process group, so that a single
signal can be sent to them all at the same time.

A symbol that indicates that the system is ready to
accept commands. You can use a shell variable to set
what your prompt will be. In this guide, the prompt is
displayed as a percent sign (%).

See remote operations.

A method of designating that the source (or
destination) of input to a command (or output from a
command) is to be a named file or device.

See pathname.

Commands that involve interaction with UNIX systems
other than the local system to which you are logged in.
The r log in command allows you to log in to a
remote UNIX system; the rsh command allows you to
execute a UNIX command on a remote system without
logging in; and the rep command allows you to copy
a file to or from a remote system.

See remote operations.

The beginning directory in the hierarchy of the UNIX
file system-specified as /.

See remote operations.

A file that contains commands or programs to be
executed. You can submit a script file for execution by
the CM batch system. Also called shell script.

The C shell command for setting an environment
variable.

206

shell

shell script

shell variables

signal

eM User ~ Guide

A command interpreter that lets you issue commands
to be executed by the kernel. There are different shells
that provide slightly different features. The C shell. the
Bourne shell. and the Kom shell are popular UNIX
shells. You can create subshells within a shell; for
example. the cma t tach subshell is created as a
subshell within the shell from which you issued the
cmattach command.

See script file.

A set of predefined variables whose values you can
change to customize your shell. For example. you can
set the prompt variable to change your UNIX prompt.
Compare environment variables.

A communication device that informs a process of an
event. For example. NQS may send a SIGTERM signal
to processes that are executing when a queue is about
to detach from its CM resource. Processes may contain
signal handlers that determine what to do when a
particular signal is received.

standard input. output. and error

subshell

superuser

symbolic link

Standard input is the input device for commands.
Standard output is the device to which commands send
their results. Standard error is the device to which
commands send error messages. 'JYpically. all three are
defined to be your terminal. You can change this-for
example. by using redirection to send output to a file
instead of to your terminal.

See shell.

A special user on a UNIX system who can read or
modify any file in the system.

An entry in a directory that points to an already
existing file on a different file system. This allows a
user to gain access to a file without specifying an
absolute pathname.

~rsion 6.1, October 1991

Appendix D. The UNIX System for eM Users 207

user ID

working directory

Version 6.1, October 1991

A number associated by the system with a login ID.

See directory.

AppendixE

Glossary

This is a glossary of CM-specific terminology used in this manual.

batch access Access to the CM obtained by submitting a batch
request via the qsub command. Compare direct
access.

batch queue In NQS, a queue for batch requests.

batch request A job submitted via the qsub command to an NQS
batch queue.

C* A data parallel extension of the C programming
language.

CM Used loosely for the Connection Machine system. Also
refers specifically to the parallel processing unit.

cmattach subshell An interactive UNIX shell created when cmattach is
issued without the name of an executable program. A
user can issue CM and UNIX commands and run
programs from this shell.

CMFortran

CMFS

Version 6.1, October 1991

An implementation of the Fortran 77 programming
language, extended with array-handling facilities from
Fortran 90.

The Connection Machine file system.

209

210 eM User's Guide

CMIO bus An 1/0 bus that provides high-speed data transfer
among the components of the CM system.

CMIOC Connection Machine 1/0 Controller. A board that
connects a section of the parallel processing unit to the
CMIObus.

C/paris The C-language interface to the Paris instruction set.

CMSSL CM Scientific Software Library. A library of routines
that perform data parallel versions of standard
mathematical operations.

eM system An integrated combination of hardware and software
designed for high-speed data parallel computing.

Data Vault A mass storage system for data in the CM system.

direct access Access to the eM via the cmattach command.
Compare batch access.

exclusive access Access to the eM in which only one user can be
attached to a FEBI and a sequencer at a time.

FEBI Front-end bus interface. A board that provides an
interface between a front end and a eM parallel
processing unit.

FortranfParis The Fortran interface to the Paris instruction set.

framebuffer module A board that connects an 1/0 channel of a parallel
processing unit to a high-resolution graphic monitor.
Framebuffer is often used loosely to refer to the
graphic display system.

front end A standard serial computer that provides the user's link
to the CM system.

front-end bus interface
SeeFEBI.

J.i!rsion 6.1, October 1991

Appendix E. Glossary 211

Generic Display Interface

graphic display system

A CM software product that provides a single user
interface to all CM frame buffers and X Window
servers available on a system.

Part of the CM system that lets users quickly visualize
large data sets. It consists of the framebuffer module
and a high-resolution color monitor.

Graphics Display Library
A CM library that contains routines for using the
framebuffer.

grid communication Communication among CM processors in which
processors communicate with their neighbors in a
multidimensional grid.

interface See FEBL

*Lisp A data parallel extension of Common Lisp.

Lisp/paris The Lisp interface to the Paris instruction set.

NEWS communication

nexus

NQS

Paris

Version 6.1, October 1991

An alternative term for grid communication. "NEWS"
refers to the four directions-North, East, West, and
South-of a 2-dimensional grid.

A bidirectional switch that enables any front end to be
attached to any section, or valid combination of
sections, of a parallel processing unit.

Network Queueing System. The batch system on which
the CM batch system is based.

The CM parallel instruction set. Users can call Paris
instructions from Fortran, C, Lisp, or the high-level
data parallel languages.

212

parallel processing unit

pipe queue

pvar

*Render

request-id

router

section

sequence number

sequencer

VMEIO computer

virtual processors

CM User:S- Guide

The part of the Connection Machine system that
contains the parallel processors. Also referred to
loosely as the CM.

In NQS, a queue that sends batch requests to other
queues.

A Lisp object that represents a collection of values
stored one per processor in the eM.

A CM software library whose routines support graphics
processing on the CM.

In NQS, an identifier for a batch request, consisting of
a sequence number and a hostname (or STDIN).

A high-speed cOlllIliunication device that interconnects
processors in the CM.

Part of a eM that can be treated as a separate parallel
processing unit. Separate sections have their own
sequencers, routers, and I/O channels.

In NQS, a number assigned to a batch request

A device that controls the individual processors within
a parallel processing unit.

A VMEbus computer that contains a special interface
board that connects it to a CMIO bus. Other devices,
such as magnetic tape drives, can be connected to this
computer, and thereby to the CM system.

"Processors" created by dividing up the memory of
physical eM processors. The system automatically
creates virtual processors if a program requires more
processors than are actually available in the parallel
processing unit

J.i!rsion 6.1, October 1991

Appendix E. Glossary

Xcm

Version 6.1, October 1991

213

A CM software library containing routines that support
the display of image data from CM memory in an XII
window.

AppendixF

Man Pages

This appendix contains UNIX man pages for some of the user commands
discussed in this manual.

To obtain on-line documentation for a eM command or functional call, issue a
command with this format:

C%cmman name .J

Version 6.1, October 1991 215

CM(l) USER COMMANDS

NAME
em - obtain information about the CM to which you are attached via a cmattaeb subshell

SYNOPSIS
em [-C] [-d] [-i] [-5]

OPTIONS
-C prints the name of the CM to which this subshell is attached.

-d prints the name of the CM device driver. This is always Idev/em.

-I prints the number of the interface to which this subshell is attached.

-S prints the number(s) of the sequencer(s) to which this subshell is attached.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright @ 1991 by Thinking Machines Corporation. Cambridge MA.

SEE ALSO
Thinking Machines Corporation. eM User's Guide.

Thinking Machines Last change: 6/21/91

CM(1)

217

CMATTACH(I) USER COMMANDS CMATTACH(I)

NAME
cmattach - allocate Connection Machine processors

SYNOPSIS
cmattach [flags, eM options, and/ronl end options] [program [args •..]]

DESCRIPTION

218

cmaltach allocates a Connection Machine resource to a user. The various options are described below.
When cmattach is executed without options specifying the characteristics of the CM resource to which
you want to attach, it attaches to the highest-numbered sequencer that is free on the lowest-numbered
interface available. If the cmaUach succeeds, a cold boot (an industrial-strength reset of the allocated
portion of the system) is automatically performed.

If no program name appears on the cmattach command line, the requested processors are allocated and
configured, a cold boot is performed, and an interactive shell is spawned from which the user can run
programs that access the Connection Machine system. The processors are freed and made available to
other users when the subshell is exited (typically by typing control-D or "exit"). Note that if you are
already in a cmattach subshell when invoking cmattach without a program argument, no further sub­
shells are created; this lets you change the allocation of physical processors without relinquishing the
interface.

If you give a program name, and possibly arguments for the program, the requested processors are allo­
cated and configured, a cold boot is performed, and the progmm is run. The processors are deallocated
when the program exits.

Flags that affect cmattach's behavior are:

-e requires that the requested CM resource be opemting in exclusive mode--that is, not under
timesharing.

-h prints a help message. All other arguments provided are checked for legality, but otherwise
ignored.

-I<account-ID>
indicates the ID under which the program(s) are accounted. <account-ID> is a string of up to 8
chamcters. The value specified by -I overrides the setting of the CM_ACCOUNT_ID environ­
ment variable (which the autoattaching mechanism uses to obtain a job's account ID).

-0 means "don't cold boot" Normally the Connection Machine system is cold booted after being
attached; this switch causes the cold boot to be skipped.

-q is for "quiet" All informational (non-error) messages are suppressed. This is particularly useful
in conjunction with -w, when you run the progmm in the background and you don't really want
it writing all over your terminal.

-t requires that the requested CM resource be operating under timesharing.

-w means "wait for resources." Normally cmattach will return an error if either the front-end inter-
face to the Connection Machine system or the desired number of Connection Machine processors
is not available; this option causes the cmattach program to wait (possibly forever) for the
desired resources to be freed.

Options to cmanach affecting the choice of Connection Machine system are:

-p nprocs
Attach a particular number of Connection Machine processors. Legal values are 4096, 8192,
16384, 32768, and 65536 (which may be expressed as 4k, Sk, 16k, 32k, and 64k, respectively),
depending on your CM's physical configumtion. The -p option may not be used in conjunc­
tion with the -S option.

-S seqspec
Attach a particular sequencer set. seqspec must be one of the following: 0, I, 2, 3, 0-1, 2-3,

Last change: 7/20192 Thinking Machines

CMATIACH(1) USER COMMANDS CMATIACH(l)

0-3. The -S option may not be used in conjunction with the -p option.

. Options to cmattach affecting the initial configuration of the Connection Machine environment are:

-bfraction
Set up the Connection Machine system in baclc compatibility mode. The fraction of memory
allocated for back compatibility mode is specified by fraction, which must be a decimal frac­
tion less than I; if no value is specified, the default is 0.75.

-g axis-Iength[,axis-length ...]
Configure the Connection Machine system to have a NEWS-ordered geometry having the
number of axes specified, of the lengths specified. A VP set is created in this geometry and
made current. Each axis length must be a power of 2, and the total number of processors allo­
cated must be an integer multiple of the number of physical processors. If -g is not given, the
default depends on the number of physical processors, as follows: 4K processors, 64x64; 8K
processors, 64xl28; 16K processors, 128xl28; 32K processors, 128x256; 64K processors,
128x512.

-u ucode
Load the specified version of the CM microcode. If you omit this option, the latest version of
the microcode is loaded.

Options to cmattach to help select among multiple interfaces (when more than one hardware interface is
installed) are:

-C CM-name
Attach to the Connection Machine system named CM-name. Only useful if your front-end
machine is connected to more than one Connection Machine system. You need not specify the
full Connection Machine name; a leading subsuing is acceptable.

-cmn Attach to the specified model of Connection Machine system. Specify -cm2 to attach to a
CM-2 series Connection Machine system. Specify ~m200 to attach to a CM-200 series CM.

-i interface
Attach to the Connection Machine system via a particular front-end interface. Only useful if
you have more than one interface in your front end.

None of these selection options may be combined with one another.

The following arguments are valid only for back compatibility. They cause back compatibility mode to
be entered, and 75% of CM memory to be reserved for back compatibility mode.

-v nvprocs
Configure the Connection Machine system to have nvprocs virtual processors. The number of
virtual processors can never be less than the number of physical processors allocated. The -v
option may not be used in conjunction with the -xl-y option.

-x xdimension -y ydimension
Configure the Connection Machine to have (xdimension • ydimension) virtual processors
arranged in an xdimension by ydimension NEWS grid. Each dimension must be a power of 2
and must be no less than the number of physical processors in that dimension, as described
below. The -xl-y option may not be used in conjunction with the -v option.

Virtual processors in back-compatibility mode are always configured in a two-dimensional grid
called the NEWS grid. When the number of virtual processors is the same as the number of
physical processors (the default case), the grid dimensions are as follows: 4K processors,
64x64; 8K processors, 64xI28; 16K processors, 128xl28; 32K processors, 128x256; 64K pro­
cessors, 128x512.

Thinking Machines Last change: 7~2 219

CMAITACH(I) USER COMMANDS CMAITACH(I)

SAFETY
There is a mode where extra error and consistency checking is perfonned during the execution of Con­
nection Machine programs. This can be very useful for debugging, but reduces execution speed. cmat­
tach establishes a default safety mode for all Connection Machine programs executed in the cmattach
subshell. If the environment variable CM_DEFAULT_SAFETY has the value 'on' or 'ON', the default
safety mode will be to perform the extra checking. In all other cases the extra checking is disabled.
The default safety mode can be changed inside the anattach subshell using the cmsetsajety command.

EXAMPLES
The following are examples of cmattach usage:

cmattach -p16K -x256 -y256 life 1024
Attach 16,384 processors, configuring 65,536 virtual processors in back compatibility mode, in
a 256 by 256 grid, and run a program named life with one argument, 1024.

cmattach -C fig-newton -p 32k
Allocate 32,768 physical processors on a Connection Machine named fig-newton, using the
default configuration (128x256), and enter a cmattach subshell.

DIAGNOSTICS

FILES

All output from the cmattach program itself is directed to stde". If a program name is given, the exit
code from cmattach will be one of the following: 255 (or -I, if you prefer) if the cmattach itself failed,
100 if something was killed by a signal, or the actual exit code of the program that was run within the
cmattach. Note that the 255 and 100 exit codes, along with any incidental messages to stde", are
intended to be the only non-transparent aspects of running a program prefixed by cmattach.

/dev/em??
The Connection Machine interface devices.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
cmcoldboot (1), cmdetach (1), cmusers (I), cmfinger (1), cmsetsafety(1).
Thinking Machines Corporation, eM User's Guide.
eM System Administrator's Guide.

RESTRICTIONS

220

If you run a Connection Machine Lisp world (for example, starlisp) from within a cmattach subshell,
CM allocation and configuration information is not passed into the Usp world-you must execute the
em:attach and cm:eold-boot or .lisp:.cold-boot functions from within the Lisp world before attempt­
ing to access the Connection Machine system.

Last change: 7/20/92 Thinking Machines

CMCOLDBOOT (1) USER COMMANDS CMCOLDBOOT (1)

NAME
cmcoldboot - reset the Connection Machine system

SYNOPSIS
cmcoldboot [-h] [-g axis-length[,axis-length ...] [-b fraction] [-u "code] [[-v] nvproc I [-xl xdimen­
sion [-y] ydimension]

DESCRIPTION
cmcoldboot completely resets the state of the hardware allocated to the executing front end, loads
microcode, initializes system tables, and clears user memory. It can only be run from inside a cmattach
subshell (see cmattach(l) for details).

cmcoldboot has no effect when the allocated hardware is operating under timesharing. In that case, the
system automatically clears memory before allocating it to a process.

If a single number is provided as an argument, it specifies the total number of virtual processors that
will be configured in back compatibility mode. If two integers are provided, they specify the desired
dimensions of the virtual NEWS grid. Each of these dimensions must be a power of two and must be
no less than the number of physical processors in that dimension.

If no arguments are provided, the state of back compatibility mode and the number of virtual processors
remains unchanged (that is, whatever was configured by a previous cmattach or cmcoldboot remains in
effect).

When the number of virtual processors is the same as the number of physical processors (the default
case), the grid dimensions are as follows: 4K processors, 64x64; 8K processors, 64x128; 16K proces­
sors, 128xl28; 32K processors, 128x256; 64K processors, 128x512. Note that usable memory per vir­
tual processor decreases with the number of virtual processors configured.

Options are:

-h Print a help message. All other arguments are ignored.

-g axis-Iength,axis-length •••
Configure the CM system to have a NEWS-ordered geometry having the number of axes
specified, of the lengths specified. A VP set is created in this geometry and made current. Each
axis length must be a power of 2, and the total number of processors allocated must be an
integer multiple of the number of physical processors.

-bfraction
Set up the Connection Machine system in back compatibility mode. The fraction of memory
allocated for back compatibility mode is specified by fraction; if no value is specified, 0.75 is
the default.

-u ucode
Load the specified version of the microcode.

In addition, if only one dimension is provided it may be preceded by a -v, or if two dimensions are
provided they may be written as "-x xdim -y ydim" to be compatible with cmattach option format.
Note that this format is valid only for back compatibility.

IDENTIFICA nON
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
cmattach (1).
Thinking Machines Corporation, eM User's Guide.

Thinking Machines Last change: 9/5/91 221

CMDET ACH (1) USER COMMANDS CMDETACH (1)

NAME
cmdetach - detach a Connection Machine user

SYNOPSIS
cmdetach [[oil interface I user-ID l/ront-end[:interface]] [-c I-C CMname] [os I-S seqno]

DESCRIPTION
cmdetach detaches a user from the Connection Machine system.

If you invoke cmdetach in a cmattach subshell without arguments. you are detached from the Connec­
tion Machine system. but remain in the subshell. This is an alternative to exiting from the shell, and
may be useful to preserve environmental state. Re-executing cmattach will then reconnect you to the
Connection Machine system. An error results if you issue cmdetach with no arguments and you are not
currently in a cmattach subshell.

If you provide an integer as an argument. then the user who is attached to the Connection Machine sys­
tem via the local front end interface that corresponds to the given integer is detached. Use the cmjznger
command to determine the interface number. The interface number may be preceded by a -i for compa­
tibility with other Connection Machine commands.

If the argument provided is the login ID of a user on this front-end machine. that user will be detached
from the Connection Machine system. This only works for users attached from this front end; to detach
users on other front ends you must specify the name of that front-end system.

If the given argument is the name of another front end. and that host is connected to the same Connec­
tion Machine system as the local host. then that front end is logically and forcibly detached from the
Connection Machine system. possibly disrupting any ongoing interaction with the Connection Machine
system. By appending a colon and an interface number to the host name. you can specify a particular
interface on that front end to detach. For example: .

% cmdetach binky: 1

Use -c or -C to detach the specified CM from your front end. Use the -s or -S option in addition to
specify a particular sequencer or sequencer set within the CM; if only one CM is attached. -s or -S is
sufficient. If your front end has more than one interface to the specified CM. you are prompted to use
the -i option instead.

In all cases of detaching another user. you are asked to confirm the action. and are thereby given the
chance to abort the function. cmfinger output is displayed to let you know the status of the system. If
you are detaching a timesharing user. you are asked twice to confirm the action.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corpomtion, Cambridge MA

SEE ALSO
cmattach (1). cmfinger (1).
Thinking Machines Corpomtion. eM User's Guide.

RESTRICTIONS
When users on other Lisp machine front ends are detached they should be so notified. but they aren't.
Instead they learn the hard way. when their programs crash in flames.

222 Last change: 6/18191 Thinking Machines

CMFINGER (1) USER COMMANDS CMFINGER (1)

NAME
cmfinger - show Connection Machine users

SYNOPSIS
cmfinger [-h] [-in] [em-name [cm-name ...]] [hostname [hostname •..]]

DESCRIPTION
cmfinger prints a table that provides information about who is using a Connection Machine system. If
you do not specify any options. the information is reported for all front ends connected to the same
Connection Machine system as the front end from which you issue the command. For example:

% cmfinger

CM

GEMSTONE
GEMSTONE
GEMSTONE
GEMSTONE

Seqs Size Front end l/F User Idle Command

1
2
3

8K
8K
8K

clytemnestr.a ·1
christopher 0
alaska 0
alaska 1

fred· Oh 18m "cmattach"
barney Oh OOm "tests"
betty Oh 27m "matmul"
nobody

256K memory, 32-bit floating point
framebuffers on sequencers 0 1 (seq 0 is free)
CMIOCs on sequencers 0 1 (seq 0 is free)

1 free seq on GEMSTONE -- 0 -- totalling 8K procs

Here the Connection Machine system in question is named Gemstone. It has four sequencers. each with
8K processors. It is connected to three front ends named Clytemnestr.a. Christopher, and Alaska, which
are being used by users named Fred. Barney, and Betty. respectively. The second interface on Alaska
is unused. Fred is attached, via interface 1 on Clytemnestra, to sequencer 1 on Gemstone, and is run­
ning a cmaltach subshell; he has been idle for 18 minutes. Barney and Betty are running programs
called "tests" and "matmul" on sequencers 2 and 3 of Gemstone; sequencer 0 is available for use from
interface 1 on Alaska.

OPTIONS
The ..;.h option prints a help message.

Specify -i, followed by the number of a front-end interface, to obtain information about that interface.

To obtain information about CMs to which your front end does not have an interface, list their names
on the cmfinger command line.

To obtain information about CMs connected to hosts other than your front end, list their names on the
command line. If a hostname is the same as a CM name, cmjinger chooses the CM name.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
Thinking Machines Corporation, eM User's Guide.

Thinking Machines Last change: 4/2/91 223

CMLIST(1) USER COMMANDS

NAME
cmlist - list Connection Machine parallel processing units

SYNOPSIS
cmlist [-d] [-f] [-h hostname '"] [-p nproes] [-v] [-0 1-32 1-64]

DESCRIPTION

CMLIST(I)

emUst lists all CMs listed in the CM configuration file associated with the front-end computer from
which the command is issued.

OPTIONS
~ lists CMs that have DataVaults.

-f lists CMs that have framebuffers.

-h lists CMs connected to front ends with the specified hostnames.

-p lists CMs with the specified number of processors or more. Specify the number as an integer; to
indicate thousands of processors. follow the integer with k or K.

-v lists CMs connected to VME I/O computers.

-0 lists CMs with no floating-point accelerators.

-32 lists CMs with 32-bit floating-point accelerators.

-64 lists CMs with 64-bit floating-point accelerators.

The options combine. so that specifying ·d and ·r lists the names of CMs with both a DataVault and a
framebuffer.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corporation. Cambridge MA.

SEE ALSO
Thinking Machines Corporation, eM User's Guide.

224 ~tchange: 4/.U91 Thinking Machines

CMMAN(l) USER COMMANDS

NAME
cmman - display CMost and UNIX manual pages

SYNOPSIS
cmman [man-options]

DESCRIPTION

CMMAN(l)

cmman is a shell script that calls the UNIX man command, first temporarily adding to the user's MAN­
PATH the directories containing CMost on-line man pages. This allows users to display CMost man
pages without having to edit their MANPATH. cmman can also be used to display any UNIX man page
in the user's MANPATH.

OPTIONS
cmman passes to man any man option specified on the cmman command line.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
Thinking Machines Corporation, eM User's Guide.

Thinking Machines Last change: 10/1/91 225

CM{l) USER COMMANDS

NAME
cmoice - run a command with low CM timesharing priority

SYNOPSIS
em [-number] command [arguments]

DESCRIPTION

CM(I)

By default, the command is run with a CM scehduling priority of 4, one less than the default priority.

A priority may be specified in the mnge of 0 to 5 (0 to 10 for the superuser. Useful priorities are: 0 (the
affected processes will run only when nothing else in the system wants to), 5 (the "base" scheduling
priority) and values greater than 5 (to make things go very fast).

DIAGNOSTICS
cmoice returns the exit status of the subject command.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991-1992 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
cmps(1), cmrenice(l)
Thinking Machines Corporation, eM User's Guide.

226 Last change: 12/16~2 Thinking Machines

CMPS(l) USER COMMANDS CMPS(1)

NAME
cmps - list timeshared processes

SYNOPSIS
cmps [-C em-name -S seqset]

DESCRIPTION
cmps prints a table that provides information about processes running under Connection Machine
timesharing. IT you are attached to a sequencer running timesharing, cmps lists the processes running on
that sequencer. If you are not attached, use ·C and -S to specify the correct sequencer(s). However, you
must issue the command from the front end that is running the timesharing daemon to obtain informa­
tion about the processes running under that daemon.

OPTIONS
Use -C to specify the name of a CM.

Use ·S to specify the sequencers on the CM. seqset can be O. 1.2.3.0-1.2-3. or 0-3.

DISPLAY FORMAT
NAME is the name of the program

PID is the UNIX process ID of the process.

OWNER
is the name of the user who owns the process.

SIZE is the number of 1024-bit pages that the process takes up on the CM. Some of these may be
swapped out.

RSS is the number of 1024-bit memory pages that the process is occupying at the moment.

BASE is the page number in CM memory of the first page of this process when it is running.

PRI is the current priority at which the process is running. Priority values vary from 0 to 9. A pro­
cess with a priority of 0 will run only when no other processes want to use the CM. An aster­
isk indicates that the process is ready to use the CM.

%-RT is the percent of real time that the process has received over its lifetime. Since processes start
at different times, these percentages can add up to more than 100%.

Q is the current quantum of the process. For the currently scheduled process. this is the amount
of time left in this processes quantum. While this is generally a small number (0.25 - 1
second), if the timesharing system has to swap jobs to disk it will increase the scheduling
quantum in order to reduce the overhead involved in swapping.

TSR specifies how long it has been since the process has last run on the CM.

AGE is the age of the process in minutes:seconds.

The remaining statistics are overall data gathered by the memory managers since the timesharing dae­
mon was started.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
Thinking Machines Corporation, eM User's Guide.

Thinking Machines Last change: 4/2/91 227

CM(I) USER COMMANDS CM(1)

NAME
cmrenice - change the CM timesharing system priority of a running process.

SYNOPSIS
cmrenice [\-p priority] process-ID

DESCRIPTION
cmrenice changes the CM timesharing system priority of a process. Processes with higher priorities

will be scheduled more often than processes with low priorities.

OPTIONS
By default, the specified process-id has its priority reduced by one.

-p priority
Set the scheduling priority of the process to priority.

Users other than the superuser may alter only the priority of processes they own, and can only change
their "nice value" within a range of 0 to 5. (This prevents overriding administrative fiats.) The superuser
may alter the priority of any process and set the priority to any value in the range 0 - 9. Useful priori­
ties are: 0 (the affected processes will run only when nothing else in the system wants to), 5 (the "base"
scheduling priority) and values greater than 5 (to make things go very fast).

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991-1992 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
cmps(1). cmnice(l)
Thinking Machines Corporation. eM User's Guide.

228 Last change: 12/16/92 Thinking Machines

CMSETSAFETY (1) USER COMMANDS CMSETSAFETY (1)

NAME
cmsetsafety - set Paris safety mode

SYNOPSIS
cmsetsafety on/off

DESCRIPTION
cmsetsafety is used to set the Paris safety mode. It can only be run from inside a cmattach subshell
(see cmattach(l) for details).

This command sets the initial safety mode for all Connection Machine programs executed in the cmat­
tach subshell. If the safety mode is "on," various extta error and consistency checks are performed at
the Paris-level interface. The price of these error checks is substantially reduced execution speed at low
virtual processor ratios. If the safety mode is "off," minimal error checking is performed at the Paris­
level interface.

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright @ 1991 by Thinking Machines Corpomtion. Cambridge MA.

SEE ALSO
cmattach (1)

Thinking Machines Corporation, eM User's Guide.

Thinking Machines ~tchange: 4~1 229

CMTIME(I)

NAME
cmtime - time a command

SYNOPSIS
cmtime command

DESCRIPTION

USER COMMANDS CMTIME(I)

cmtime prints execution timing information about a program using the Connection Machine system.
Timing information is displayed on the diagnostic output Strt'mD.

cmtime displays information gathered by the CM accounting facility. If the CM accounting daemon is
not running, cmtime will report only on front-end timing information.

EXAMPLES
The output of cmtime is slightly different under timesharing and exclusive modes.

Exclusive mode:

% cmtime myprog
Elapsed time: 115.38 sec; CM time: 111.72 sec.
Front end virtual time (seconds): 10.39 user, 1.26 system.
CM utilization: 97%; Front end utilization: 10%

Timesharing mode:

% cmtime myprog
Elapsed time: 14.25 sec; CM time: 7.53 (out of 13.63) seconds.
Front end virtual time (seconds): 2.04 user, 4.40 system.
CM utilization: 55%; {eM}. share: 96%

IDENTIFICATION
Connection Machine System Software Release 6.1.
Copyright © 1991 by Thinking Machines Corporation, Cambridge MA.

SEE ALSO
cm-acctd (8)
Thinking Machines Corporation, eM User's Guide.

RESTRICfIONS
CM time is an estimate from the accounting system, obtained by polling the status of the CM sequencer
every l/100th of a second Users desiring really accurate timings should use the PARIS timing facility:
CM_timer_startO, CM_timer_stop(). and CM_timeryrint().

230 Last change: 6/21/91 Thinking Machines

QDEL(I) USER COMMANDS QDEL(I)

NAME
qdel - delete or signal NQS request(s).

SYNOPSIS
qdel [-k] [-signo] [-u username] request-id

DESCRIPTION
qdel deletes all queued NQS requests whose respective request-id is listed on the command line. Addi­
tionally, if the flag ·k is specified, then the default signal of SIGKILL (-9) is sent to any running request
whose request-id is listed on the command line. This will cause the receiving request to exit and be
deleted. If the flag -signo is present, then the specified signal is sent instead of the SIGKILL signal to
any running request whose request-id is listed on the command line. In the absence of the ·k and
-signo flags, qdel will Dot delete a running NQS request

To delete or signal an NQS request, the invoking user must be the owner--that is, the submitter of the
request. The only exception to this rule occurs when the invoking user is the superuser, or has NQS
operator privileges as defined in the NQS manager database. Under these conditions, the invoker may
specify the -u usemame flag, which allows the invoker to delete or signal requests owned by the user
whose account name is userTlQ1tU!. When this form of the command is used, aU request-ids listed on
the command line are presumed to refer to requests owned by the specified user.

An NQS request is always uniquely identified by its request-id, no matter where it is in the network of
the machines. A request-id is always of the form: seqno or seqno.hostname, where hostname identifies
the machine where the request was originally submitted. and seqno identifies the sequence number
assigned to the request on the originating host. If the hostname portion of a request-id is omitted, then
the local host is always assumed. .

The request-id of any NQS request is displayed when the request is first submitted (unless the silent
mode of operation for the given NQS command was specified). The user can also obtain the request-id
of any request through the use of the qstat(l) command.

CAVEATS
When an NQS request is signalled by the methods discussed above, the proper signal is sent to all
processes comprising the NQS request that are in the same process group. Whenever an NQS request
is spawned, a new process group is established for all processes in the request. However, should one
or more processes of the request successfully execute a setpgrp 0 system call, then such processes will
Dot receive any signals sent by the qdel (1) command. This can lead to "rogue" request processes,
which must be killed by other means--such as the kill (1) command. For the UNIX implementations that
support the ability to "lock" a process and all of its progeny into a process-group, NQS will exploit this
capability to prevent processes from "escaping" in this manner.

SEE ALSO
qdev(1), qlimit(l), qpr(1), qstat(I), qsub(l), kill(2), setpgrp(2), signal(2), qmgr(lM)

Thinking Machines Last change: 6/15/90 231

QLIMIT(I) USER COMMANDS QUMIT(I)

NAME
qIirnit - show supported batch limits and shell strategy for the named host(s).

SYNOPSIS
qlimit [Iwst-name ...]

DESCRIPTION

232

qlimit displays the set of batch request resource limit types that can be directly enforced on the implied
local host or named hosts, and also the balch request shell strategy defined for the implied local host or
named hosts.

If no host-names are given, then the information displayed is only relevant to the local host. Other­
wise, the supported batch request limits and batch request shell strategy for each of the named hosts is
displayed.

NQS supports many batch request resource limit types that can be applied to an NQS batch request.
However, not all UNIX implementations are capable of supporting the rather extensive set of limit types
that NQS provides.

The set of limits applied to a batch request is always restricted to the set of limits that can be directly
supported by the underlying UNIX implementation. If a batch request specifies a limit that cannot be
enforced by the underlying UNIX implementation, then the limit is simply ignored, and the batch
request will operate as though there were no limit (other than the obvious physical maximums), placed
upon that resource type.

When an attempt is made to queue a batch request, each limit-value specified by the request (that can
also be supported by the local UNIX implementation), is compared against the corresponding limit-value
as configured for the destination batch queue. If the corresponding batch queue limit-value for all batch
request limit-values is dejined as unlimited, or is greater than or equal to the corresponding batch
request limit-value, then the request can be successfully queued, provided that no other anomalous con­
ditions occur. For request infinity limit-values, the corresponding queue limit-value must also be
configured as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by
a direct use of the qsub(l) command, or by the indirect placement of a batch request into a batch queue
via a pipe queue. It is impossible for a batch request to be queued in an NQS batch queue if any of
these resource limit checks fail.

Finally, if a request fails to specify a limit-value for a resource limit type that is supported on the exe­
cution machine, then the corresponding limit-value as configured for the destination queue, becomes the
limit-value for the unspecified request limit.

Upon the successful queueing of a request in a batch queue, the set of limits under which the request
will execute is frozen, and will not be modified by subsequent qmgr(lM) commands that alter the lim­
its of the containing batch queue.

As mentioned above, this command also displays the shell strategy as configured for the implied local
host, or named hosts. In the absence of a shell specification for a batch request, NQS must choose
which shell should be used to execute that batch request. NQS supports three different algorithms, or
strategies to solve this problem that can be configured for each system by a system administrator,
depending on the needs of the user's involved, and upon system performance criterion.

The three possible shell strategies are called:

fixed,
free, and
login.

These shell strategies respectively cause the configured fixed shell to be exec'd to interpret all batch
requests, cause the user's login shell as defined in the password file to be exec'd, which in turn chooses
and spawns the appropriate shell for running the batch shell script, or cause only the user's login shell

Last change: 6128/90 Thinking Machines

QLIMIT(l} USER COMMANDS QLIMIT(l}

to be exec' d to interpret the script.

A shell strategy of fixed means that the same shell as chosen by the system administrator will be used
to execute aD batch requests.

A shell strategy of free will run the batch request script exactly as would an interactive invocation of
the script. and is the default NQS shell strategy.

The strategies of fixed and login exist for host systems that are short on available free processes. In
these two strategies. a single shell is exec'd, and that same shell is the shell that executes all of the
commands in the batch request shell script.

When a shell strategy of fixed has been configured for a particular NQS system. then the "fixed" shell
that will be used to run all batch requests at that host is displayed.

SEE ALSO

NAME

qdel(l}. qdev(l}. qpr(l}. qstat(l}. qsub(l}. qmgr(lM) n.TH QSTAT 1 July 1992 "Thinking Machines
Corporation"

qstat - display status of NQS queue(s)

SYNOPSIS
qstat [-a] [-I] [-m] [-u user-name] [-x]
[queue-name ...] [queue-natnI!@host-name ...]

DESCRIPTION
qstat displays the status of Network Queueing System (NQS) queues.

If no queues are specified. then the current state of each NQS queue on the local host is displayed. Oth­
erwise. information is displayed for the specified queues only. Queues may be specified either as
queue-name or queue-name@Mst-name. In the absence of a Mst-name specifier. the local host is
assumed.

For each selected queue. qstat displays a queue header (information about the queue itself) followed by
information about requests in the queue. Ordinarily. qstat shows only those requests belonging to the
invoker. The following flags are available:

-a Shows all requests.

-I Requests are shown in a long format.

-m Requests are shown in a medium-length format.

-u user-name
Shows only those requests belonging to user-name .

-x The queue header is shown in an extended format.

The queue header always includes the queue-name. queue type. queue status (see below). the number
of requests in the queue. and the CM resource (which sections of which CM the queue is associated
with). An extended queue header goes on to display the priority and run limit of a queue. as well as
the access restrictions. cumulative use statistics. wait time (when queue's window ends. number of
seconds between the SIGTERM and SIGKILL signals). and resource limits (if a batch queue).

By default. qstat displays the following information about a request: the request-name. the request-id.
the owner, the relative request priority, and the current request state (see below). For running requests,
the process group is also shown. as soon as this information becomes available to the local NQS dae­
mon.

qstat -m shows the following additional information: If the request was submitted with the constraint
that it not run before a certain time and date, then the constraining time and date will also be displayed.

Thinking Machines Last change: 6f»,/9O 233

QLIMIT(l) USER COMMANDS QLIMIT(1)

qstat -I shows the time at which the request was created. an indication of whether or not mail will be
sent, where mail will be sent, and the usemame on the originating machine. If a batch queue is being
examined, resource limits, planned disposition of stderr and stdout, any advice concerning the command
interpreter, and the umask value are shown.

It must be understood that the relative ordering of requests within a queue does not always determine
the order in which the requests will be run. The NQS request scheduler is allowed to make exceptions
to the request ordering for the sake of efficient machine resource usage. However, requests appearing
near the beginning of the queue have higher priority than requests appearing later, and will usually be
run before requests appearing later on in the queue.

QUEUE STATE
The general state of a queue is defined by two principal properties of the queue.

The first property detennines whether or not requests can be submitted to the queue. If they can, then
the queue is said to be enabled. Otherwise the queue is said to be disabled. One of the words
CLOSED, ENABLED, or DISABLED will appear in the queue status field to indicate the respective
queue states of: enabled (with no local NQS daemon), enabled (and local NQS daemon is present), and
disabled. Requests can only be submitted to the queue if the queue is enabled, and the local NQS dae­
mon is present

The second principal property of a queue determines if requests that are ready to run, but are not now
presently running, will be allowed to run upon the completion of any currently running requests, and
whether any requests are presently running in the queue.

If queued requests not already running are blocked from running, and no requests are presently execut­
ing in the queue, then the queue is said to be stopped. If the same situation exists with the difference
that at least one request is running, then the queue is said to be stopping, where the requests presently
executing will be allowed to complete execution, but no new requests will be spawned.

If queued requests ready to run are only prevented from doing so by the NQS request scheduler, and one
or more requests are presently running in the queue, then the queue is said to be running. If the same
circumstances prevail with the exception that no requests are presently running in the queue, then the
queue is said to be inactive. Finally, if the NQS daemon for the local host upon which the queue
resides is not running, but the queue would otherwise be in the state of running or inactive, then the
queue is said to be shutdown. The queue states describing the second principal property of a queue are
therefore respectively displayed as STOPPED, STOPPING, RUNNING, INACTIVE, and SHUTDOWN.

REQUEST STATE

234

The state of a request may be arriving, holding, waiting, queued, staging, routing, running, depart­
ing, or exiting. A request is said to be arriving if it is being enqueued from a remote host Holding
indicates that the request is presently prevented from entering any other state (including the running
state), because a hold has been placed on the request A request is said to be waiting if it was submit­
ted with the constraint that it not run before a certain date and time, and that date and time have not yet
arrived. Queued requests are eligible to proceed (by routing or running). When a request reaches the
head of a pipe queue and receives service there, it is routing. A request is departing from the time the
pipe queue turns to other work until the request has arrived intact at its destination. Staging denotes a
batch request that has not yet begun execution, but for which input files are being brought on to the
execution machine. A running request has reached its final destination queue, and is actually executing.
Finally, exiting describes a batch request that has completed execution, and will exit from the system
after the required output files have been returned (to possibly remote machines).

Imagine a batch request originating on a workstation, destined for the batch queue of a computation
engine, to be run immediately. That request would first go through the states queued, routing, and
departing in a local pipe queue. Then it would disappear from the pipe queue. From the point of view
of a queue on the computation engine, the request would first be arriving, then queued, staging (if
required by the batch request), running, and finally exiting. Upon completion of the exiting phase of
execution, the batch request would disappear from the batch queue.

Last change: 6128190 Thinking Machines

QLIMIT(I) USER COMMANDS QLIMIT(I)

IDENTIFICATION
Connection Machine System Software Release 6.0. Copyright © 1990 by Thinking Machines Corpora­
tion, Cambridge MA.

RESTRICTIONS
NQS is not finished, and continues to undergo development. Some of the request states shown above
may not be supported in YOlD' version of NQS.

SEE ALSO
qdel(1), qdev(I), qlimit(I), qpr(1), qsub(I), qmgr(lM)
Thinking Machines Corporation, The Connection Machine System User's Guide.

Thinking Machines Last change: 6/28/90 235

QSUB(1) USER COMMANDS QSUB(1)

NAME
qsub - submit an NQS batch request.

SYNOPSIS
qsub [flags] [script-file]

DESCRIPTION

236

qsub submits a batch request to the Network Queueing System (NQS).

If no script-file is specified, then the set of commands to be executed as a batch request is taken
directly from the standard input file (stdin). In all cases however, the script file is spooled, so that later
changes will not affect previously queued batch requests.

All of the flags that can be specified on the command line can also be specified within the first com­
ment block inside the batch request script file as embedded default flags. Such flags appearing in the
batch request script file set default characteristics for the batch requesL If the same flag is specified on
the command line, then the command line flag (and any associated value) takes precedence over the
embedded flag. See the section entitled LONG DESCRIPTION for more information on embedded
default flags.

What follows is a terse definition of the flags implemented by the qsub command (see the section
LONG DESCRIPTION for the complete definition and syntax used for each of these flags).

-a - run request after stated time
-e - direct stderr output to stated destination
-eo - direct stderr output to the stdout destination
-I - specify process's account ID
-ke - keep stderr output on the execution machine
-ko - keep stdout output on the execution machine
-Ie - establish per-process corefile size limit
-ld - establish per-process data-segment size limits
-If - establish per-process permanent-file size limits
-IF - establish per-request permanent-file space limits
-1m - establish per-process memory size limits
-1M - establish per-request memory space limits
-In - establish per-process nice execution value limit
-Is - establish per-process stack-segment size limits
-It - establish per-process CPU time limits
-IT - establish per-request CPU time limits
-Iv - establish per-process temporary-file size limits
-IV - establish per-request temporary-file space limits
-lw - establish per-process working set limit
-mb - send mail when the request begins execution
-me - send mail when the request ends execution
-IOU - send mail for the request to the stated user
-nr - declare that batch request is not restartable
-0 - direct stdout output to the stated destination
-p - specify intra-queue request priority
-q - queue request in the stated queue
-r - assign stated request name to the request
-re - remotely access the stderr output file
-ro - remotely access the stdout output file
-s - specify shell to interpret the batch request script
-x - export all environment variables with request
-z - submit the request silently

Last change: 7/13/92 Thinking Machines

QSUB(1) USER COMMANDS QSUB(I)

LONG DESCRIPTION
As described above, it is possible to specify default flags within the batch request script file that
configure the default behavior of the batch request The algorithm used to scan for such embedded
default flags within an NQS batch request script file is as follows:

1. Read the first line of the script file.

2. If the current line contains only whitespace characters, or the first non-whitespace charac­
ter of the line is ":", then goto step 7.

3. If the first non-whitespace chamcter of the current line is not a "I" character, then goto
step 8.

4. If the second non-whitespace character in the current line is not the "@" character, or the
character immediately following the second non-whitespace character in the current line
is not a "$", then goto step 7.

5. If no It_" is present as the character immediately following the "@$" sequence, then goto
step 8.

6. Process the embedded flag, stopping the parsing process upon reaching the end of the
line, or upon reaching the first unquoted "I" character.

7. Read the next script file line. Goto step 2.

8. End. No more embedded flags will be recognized.

Here is an example of the use of embedded flags within the script file.

Batch request script example:

@$-a "11:3Opm EDT" -It "21:10, 20:00"
Run request after 11:30 EDT by default.
I and set a maximum per-process CPU time
limit of 21 minutes and ten seconds.
Send a warning signal when any process
I of the running batch request consumes
more than 20 minutes of CPU time.
@$-IT 1:45:00
Set a maximum per-request CPU time limit
of one hour, and 45 minutes. (The
implementation of CPU time . limits is
completely dependent upon the UNIX
implementation at the execution
machine.)
@$-mb -me I Send mail at beginning and end of
request execution.
@$-q batchl # Queue request to queue: batchl by
default
@$ # No more embedded flags.

make all

The following paragraphs give the detailed descriptions of the flags supported by the Qsub command.

Thinking Machines Last change: 7/13/92 237

QSUB(I) USER COMMANDS QSUB(I)

238

-a date-time Do not run the batch request before the specified date and/or time. If a date-time
specification is comprised of two or more tokens separated by whitespace characters, then
the date-time specification must be placed within double quotes as in: -a "July. 4. 2026
12:31-EDT", or otherwise escaped such that qsub and the shell will interpret the entire
date-time specification as a single character string. This restriction also applies when an
embedded default -a flag with accompanying date-time specification appears within the
batch request script file .

The syntax accepted for the date-time parameter is relatively flexible. Unspecified date
and time values default to an appropriate value (e.g., if no date is specified, then the
current month, day, and year are assumed).

A date may be specified as a month and day (current year assumed), or the year can also
be explicitly specified. It is also possible to specify the date as a weekday name (e.g.,
"Tues"), or as one of the strings: "today", or "tomorrow". Weekday names and month
names can be abbreviated by any three character (or longer) prefix of the actual name.
An optional period can follow an abbreviated month or day name.

Time of day specifications can be given using a twenty-four hour clock, or "am" and
"pm" specifications may be used alternatively. In the absence of a meridian specification,
a twenty-four hour clock is assumed.

It should be noted that the time of day specification is interpreted using the precise meri­
dian definitions, whereby "12am" refers to the twenty-four hour clock time of 0:00:00,
"12m" refers to noon, and "12-pm" refers to 24:00:00. Alternatively, the phrases "mid­
night" and "noon" are accepted as time of day specifications, where "midnight" refers to
the time of 24:00:00.

qsub does not allow a timezone specification. Specifying a timezone, e.g. EST, results in
a syntax error. The local timezone is always used.

All alphabetic comparisons are performed in a case insensitive fashion such that both
"WeD" and "weD" refer to the day of Wednesday.

Some valid date-time examples are:

01-Jan-1986 12am, PDT
Tuesday, 23:00:00
Ilpm toes.
tomonow 23-MST

-e {machine:][[lJpath/} slikrr-fiie1lllme
Direct output generated by the batch request that is sent to the Slderr file to the named
[machine:J[[/JpathlJ stderr-filename.

The brackets "[" and ")" enclose optional portions of the stde" destination machine,
path, and stderr-file1lllme •

If no explicit machine destination is specified, then the destination machine defaults to
the machine that originated the batch request, or to the machine that will eventually run
the request, depending on the respective absence, or presence of the -ke flag.

If no machine destination is specified, and the path/filename does not begin with a "t',
then the current working directory is prepended to create a fully qualified path name, pro­
vided that the -ke (keep stderr) flag is also absent. In all other cases, any partial
path/filename is interpreted relative to the user's home directory on the stde" destination
machine.

This flag cannot be specified when the -eo flag option is also present.

If the -eo and -e [machine:J[[/]pathlJ stderr-filename flag options are not present, then
all sIde" output for the batch request is sent to the file whose name consists of the first

Last change: 7/13/92 Thinking Machines

QSUB(1) USER COMMANDS QSUB(l)

seven characters of the request-name followed by the characters: ".en • followed by the
request sequence number portion of the request-id discussed below. In the absence of
the -Ite flag. this default stde" output file will be placed on the machine that originated
the batch request in the current working directory. as defined when the batch request was
first submitted. Otherwise. the file will be placed in the user's home directory on the
execution machine.

-eo Direct all output that would normally be sent to the stde" file to the stdout file for the
batch requesL This flag cannot be specified when the -e /machine:lllllpath/] slderr­
filename flag option is also present

-I account-ID
Account the process under n account-ID n • a string of up to 8 characters. Note that qsub
does not recognize the CM_ACCOUNT_ID environment variable.

-ke In the absence of an explicit machine destination for the stderr file produced by a batch
request, the machine destination chosen for the stde" output file is the machine that ori­
ginated the batch request In some cases however. this behavior may be undesirable. and
so the -ke flag can be specified which instructs NQS to leave any stde" output file pr0-
duced by the request on the machine that actually executed the batch request.

This flag is meaningless if the -eo flag is specified. and cannot be specified if an explicit
machine destination is given for the stderr parameter of the -e flag.

-ko In the absence of an explicit machine destination for the sldout file produced by a batch
request, the machine destination chosen for the stdout output file is the machine that ori­
ginated the batch request In some cases however. this behavior may be undesirable. and
so the -ko flag can be specified; this instructs NQS to leave any stdout output file pro­
duced by the request on the machine that actually executed the batch request.

This flag cannot be specified if an explicit machine destination is given for the sldout
parameter of the -0 flag.

-Ie per-process corefile size limit
Set a per-process maximum core file size limit for all processes that constitute the run­
ning batch request. If any process comprising the running request attempts to exit creat­
ing a core file whose size would exceed the maximum per-process core file size limit for
the request. then the core file image of the aborting process will be reduced to the neces­
sary size by an algorithm dependent upon the underlying UNIX implementation.

Not all UNIX implementations support per-process corefile size limits. If a batch request
specifies this limit. and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process corefile size
limit.

-ld per-process data-segment size limit / , warn-limit J

Thinking Machines

Set a per-process maximum and an optional warning data-segment size limit for all
processes that constitute the running batch request If any process comprising the run­
ning request exceeds the maximum per-process data-segment size-limit for the request.
then that process is terminated by a signal chosen by the underlying UNIX implementa­
tion.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process data-segment warning size limits. When a warning limit is
exceeded, a signal as determined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional warning limit) specification is composed of two or

I..8st change: 7/13/92 239

QSUB(1) USER COMMANDS QSUB(1)

240

more tokens separated by whitespace characters. then the specification must be enclosed
within double quotes. or otherwise escaped such that qsub and the shell will interpret the
entire specification as a single character siring token. This caveat also applies when an
embedded default -Id fiag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process data-segment sue limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits. and for a description of the precise syntax of a per-process data-segment
size limit.

-If per-process permanent-file sue limit I . warn-limit J
Set a per-process rnaximwn and an optional warning permanent-file sue limit for all
processes that constitute the running batch requesL If any process comprising the run­
ning request attempts to write to a permanent file such that the file size would increase
beyond the maximum per-process permanent-file size limit for the request, then that pro­
cess is terminated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process warning permanent-file size limits. When a warning limit is
exceeded. a signal as detennined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional warning limit) specification is composed of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes. or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character siring token. This caveat also applies when an
embedded default -If fiag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process permanent-file size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

At the tiine of this writing, the author was unaware of any UNIX implementation that
made a distinction at the kernel level between permanent and temporary files. While it
is certainly possible to construct a pseudo-temporary file by first creating it, and then
unlinking its pathname, the disk space allocated for such a file will be allocated from the
same pool of disk space that all other UNIX files are allocated from. Furthermore, such a
file will be subject to the same quota enforcement mechanisms. if any are provided by
the underlying UNIX implementation, that all other UNIX files are created under.

For all UNIX implementations that do not support a distinction between permanent and
temporary files at the kernel level, this limit is interpreted as a per-process file size
limit, with the word permanent removed from the definition.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process permanent-file
size limit.

-IF per-request permanent-file space limit [, warn-limit J
Set a per-request maximum and an optional warning cumulative permanent-file space
limit for all processes that constitute the running batch requesL If any process compris­
ing the running request attempts to write to a permanent file such that the file space con­
sumed by all pennanent files opened for writing by all of the processes in the batch
request, would increase beyond the rnaximwn per-request permanent-file space limit for
the request, then all of the processes in the request will be terminated by a signal chosen

Last change: 7/13/92 Thinking Machines

QSUB(1) USER COMMANDS QSUB(1)

by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-request warning permanent-file space limits. When such a warning limit
is exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character suing token. This caveat also applies when an
embedded default -IF flag with its associated limit value(s) appears within the batch
request script file .

Not all UNIX implementations support per-request permanent-file space limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

At the time of this writing, the author was unaware of any UNIX implementation that
made a distinction at the kernel level, between permanent and temporary files. While it
is certainly possible to construct a pseudo-temporary file by first creating it, and then
unlinking its pathname, the disk space allocated for such a file will be allocated from the
same pool of disk space that all other UNIX files are allocated from. Furthermore, such a
file will be subject to the same quota enforcement mechanisms, if any are provided by
the underlying UNIX implementation, that all other UNIX files are created under.

For all UNIX implementations that do not support a distinction between permanent and
temporary files at the kernel level, this limit is interpreted as a per-request file space
limit, with the word permanent removed from the definition.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-request permanent-file
space limit.

-1m per-process memory size limit I . warn-limit J
Set a per-process maximum and an optional warning memory size limit for all processes
that constitute the running batch request. If any process comprising the running request
exceeds the maximum per-process memory size limit for the request, then that process is
terminated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process warning memory size limits. When a warning limit is exceeded,
a signal (as detennined by the underlying UNIX implementation) is delivered to the
offending process.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -1m flag with its associated limit value(s) appears within the batch
request script file .

Not all UNIX implementations support per-process memory size limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process memory size
limit.

-1M per-request memory space limit I . warn-limit J

Thinking Machines Last change: 7/13~ 241

QSUB(1) USER COMMANDS QSUB(I)

Set a per-request maximum and an optional warning cumulative memory space limit for
all processes that constitute the running batch request If the sum of all memory con­
sumed by all of the processes comprising the running request exceeds the maximum per­
request memory space limit for the request. then all of the processes in the request will
be tenninated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-request warning memory size limits. When such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request. depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is composed of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -1M flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-request memory space limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually
run does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-request memory space
limit.

-In per-process nice value limit

242

Set a per-process nice value for all processes comprising the running batch request

At present. all UNIX implementations support the use of an integer called the nice value,
which detennines the execution-time priority of a process relative to all other processes
in the system. By letting the user set a limit on the nice value for all processes compris­
ing the running request, a user can cause a request to consume less (or more) of the CPU
resource presented by the execution machine.

This is particularly useful when a user wishes to execute a CPU intensive batch request
on a machine running intemctive processes. By setting a low execution-time priority, a
user can make a long running batch request give way to more intemctive processes dur­
ing the daytime, while the coming of the nighttime hours with typically smaller process
loads will allow such a request to gain more and more of the CPU resource. In this way,
long running batch requests can be polite to their more transient, interactive neighbor
processes.

The only quirk associated with this flag results from the peculiar choice of nice values,
implemented by the standard UNIX implementations. In general, increasingly negative
nice values cause the relative execution priority of a process to increase, while increas­
ingly positive nice values causes the relative priority to decrease! Thus, a nice value
limit specification of: "-In -10" is greedier than a nice value limit specification of: "-In
0".

Since varying UNIX implementations often support a different finite range of nice values,
NQS allows the specification of nice values that can eventually turn out to be outside the
limits for the UNIX implementation running at the execution machine. In such cases,
NQS will simply bind the specified nice value limit to within the necessary range as
appropriate.

Lastly, any nice value specified by the use of this flag must be acceptable to the batch
queue in which the request is ultimately placed (see the section entitled LIMITS for more
information).

Last change: 7/13/92 Thinking Machines

QSUB(1) USER COMMANDS QSUB(1)

-Is per-process stack-segmenl size limit [, warn-limit J
Set a per-process maximum and an optional warning stack-segment size limit for all
processes that constitute the running batch request If any process comprising the run­
ning request exceeds the maximum per-process stack-segment size limit for the request,
then that process is terminated by a signal chosen by the underlying UN1X implementa­
tion.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process warning stack-segment size limits. When a warning limit is
exceeded, a signal as detennined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional warning limit) specification is composed of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -Is flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process stack-segment size limits. If a batch
request specifies this limit, and the machine upon which the batch request is eventually

. run does not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and. for a description of the precise syntax of a per-process stack-segment
size limit.

-It per-process CPU time limit [, warn-limit J
Set a per-process maximum and an optional warning CPU time limit for all processes
that constitute the running batch request; If any process comprising the running request
exceeds the maxinium per-process CPU time limit for the request, then that process is ter­
minated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process CPU warning time limits. When a warning limit is exceeded, a
signal as detennined by the underlying UNIX implementation is delivered to the
offending process.

If a maximum limit (and optional warning limit) specification is composed of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -It flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-process CPU time limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
req~est limits, and for a description of the precise syntax of a per-process CPU time limit.

-IT per-request CPU time limit [• warn-limit J

Thinking Machines

Set a per-request maximum and an optional warning cumulative CPU time limit for all of
the processes that constitute the running batch request. If the sum of the CPU times con­
sumed by all of the processes in the batch request exceeds the maximum per-request CPU
time limit for the request, then all of the processes in the request will be terminated by a
signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems

Last change: 7/13/92 243

QSUB(1) USER COMMANDS QSUB(1)

244

that support per-request CPU warning time limits. When such a warning limit is
exceeded, a signal is delivered to one or more of the processes comprising the running
request, depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is composed of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -IT flag with its associated limit value(s) appears within the batch
request script file.

Not all UNIX implementations support per-request CPU time limits. If a batch request
specifies this limit, and the machine upon which the batch request is eventually run does
not support the enforcement of this limit, then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-request CPU time limit.

-Iv per-process temporary file size limit [, warn-limit J
Set a per-process maximum and an optional warning temporary (volatile) file size limit
for all processes that constitute the running batch request. If any process comprising the
running request attempts to write to a temporary file such that the file size would
increase beyond the maximum per-process temporary-file size limit for the request, then
that process is terminated by a signal chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-process warning temporary-file size limits. When a warning limit is
exceeded, a signal as determined by the underlying UNIX implementation is delivered to
the offending process.

If a maximum limit (and optional warning limit) specification is comprised of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes, or otherwise escaped such that Qsub and the shell will interpret the
entire specification as a single character string token. This caveat also applies when an
embedded default -Iv flag with its associated limit value(s) appears within the batch
request script file.

At the time of this writing, no UNIX operating system known to the author supported a
distinction at the kernel level between permanent and temporary files. Certainly, a
pseudo-temporary file can be constructed by creating it, and then unlinking its pathname.
However, the file space allocated for such a file will be allocated from the same pool of
disk space that all other UNIX files are allocated from.

Until a mechanism is implemented in the kernel that knows about permanent and tem­
porary files, this limit cannot be supported in the sense most useful for batch requests,
namely the strict enforcement of disk quotas for permanent versus temporary files.

Until such a time, this limit will simply be ignored.

See the section entitled UMITS for more information on the implementation of batch
request limits, and for a description of the precise syntax of a per-process temporary-file
size limit.

-IV per-request temporary file space limit [, warn-limit J
Set a per-request maximum and an optional warning cumulative temporary (volatile) file
space limit for all processes that constitute the running batch request. If any process
comprising the running request attempts to write to a temporary file such that the file
space consumed by all temporary files opened for writing by all of the processes in the
batch request would increase beyond the maximum per-request temporary-file space limit
for the request, then all of the processes in the request will be terminated by a signal

Last change: 7/13/92 Thinking Machines

QSUB(1) USER COMMANDS QSUB(1)

chosen by the underlying UNIX implementation.

The ability to specify an optional warning limit exists for those UNIX operating systems
that support per-request warning temporary-file space limits. When such a warning limit
is exceeded. a signal is delivered to one or more of the processes comprising the running
request. depending upon the underlying UNIX implementation.

If a maximum limit (and optional warning limit) specification is composed of two or
more tokens separated by whitespace characters, then the specification must be enclosed
within double quotes. or otherwise escaped such that qsub and the shell will interpret the
entire specification as a single character stting token. This caveat also applies when an
embedded default -IV flag with its associated limit value(s) appears within the batch
request script file .

At the time of this writing. no UNIX operating system known to the author supported a
distinction at the kernel level between permanent and temporary files. Certainly. a
pseudo-temporary file can be constructed by creating it. and then unlinking its pathname.
However. the file space allocated for such a file will be allocated from the same pool of
disk space that all other UNIX files are allocated from.

Until a mechanism is implemented in the kernel that knows about permanent and tem­
porary .files. this limit cannot be supported in the sense most useful for batch requests.
namely the strict enforcement of disk quotas for permanent versus temporary files.

Until such a time. this limit will simply be ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits. and for a description of the precise syntax of a ternporary-file space limit.

-Iw per-process working set size limit
Set a per-process maximum working set size limit "cor all processes that constitute the
running batch request.

Not all UNIX implementations support per-process working set size limits. and such a
limit only makes sense in the context of a paged virtual memory machine. If a batch
request specifies this limit. and the machine upon which the batch request is eventually
run does not support the enforcement of this limit. then the limit is simply ignored.

See the section entitled LIMITS for more information on the implementation of batch
request limits. and for a description of the precise syntax of a per-process working set
size limit.

-mb Send mail to the user on the originating machine when the request begins execution. If
the -mu flag is also present. then mail is sent to the user specified for the -mu flag
instead of to the invoking user.

-me Send mail to the user on the originating machine when the request has ended execution.
If the -mu flag is also present. then mail is sent to the user specified for the -mu flag
instead of to the invoking user.

-mu user-name
Specify that any mail concerning the request should be delivered to the user user-name •
User-name may be formatted either as user (containing no '@' characters). or as
user@machine . In the absence of this flag. any mail concerning the request will be sent
to the invoker on the originating machine.

-nr Declare that the request is non-restartable. If this flag is specified. then the request will
not be restarted by NQS upon system boot if the request was running at the time of an
NQS shutdown or system crash.

Thinking Machines

By default. NQS assumes that all requests are restartable. with the caveat that it is the
responsibility of the user to ensure that the request will execute correctly if restarted. by

Last change: 7/13/92 245

QSUB (1) USER COMMANDS QSUB(1)

246

the use of appropriate programming techniques.

Requests that are not running are always preserved across host crashes and NQS shut­
downs for later requeueing, with or without this flag.

When NQS is shutdown via an operator command to the qmgr(lM) NQS control program,
a SIGTERM signal is sent to all processes comprising all running NQS requests on the
local host, and all queued NQS requests are barred from beginning execution. After a
finite number of seconds have elapsed. (typically sixty, but this value can be overridden
by the operator), all remaining processes comprising all remaining running NQS requests
are killed by the signal: SIGKILL.

For an NQS request to be properly restarted after an NQS shutdown, the -Dr flag must not
be specified, and the spawned batch request shell must ignore SIGTERM signals (which
is done by default). The spawned batch request shell must also not exit before the final
SIGKlLL arrives. Since the batch request shell is simply spawning commands and pro­
grams, waiting for their completion, this implies that the commands and programs being
executed by the batch request shell must also be immune to SIGTERM signals, saving
state as appropriate before being killed by the final SIGKILL signal.

See the CAVEATS section below for more discussion concerning the restartability of NQS
batch requests.

-0 [machine:J[[/Jpath/j stdout-filename
Direct output generated by the batch request that is sent to the stdout file to the named
[machine:J[[/Jpath/j stdout-filename.

The brackets "[" and "]" enclose optional portions of the stdout destination machine,
path, and stdout-filename .

If no explicit machine destination is specified. then the destination machine defaults to
the machine that originated the batch request, or to the machine that will eventually run
the request, depending on the respective absence, or presence of the -ko flag.

H no machine destination is specified, and the path/filename does not begin with a "/",
then the current working directory is prepended to create a fully qualified path name, pro­
vided that the -ko (keep stdout) flag is also absent. In all other cases, any partial
path/filename is interpreted relative to the user's home directory on the stdout destination
machine.

H no -0 [machine:J[[/Jpath/j stdout-filename flag is specified, then all stdout output for
the batch request is sent to the file whose name consists of the first seven characters of
the request-name followed by the characters: ".0", followed by the request sequence
number portion of the request-id discussed below. In the absence of the -ko flag, this
default stdout output file will be placed on the machine that originated the batch request
in the current working directory, as defined when the batch request was first submitted.
Otherwise, the file will be placed in the user's home directory on the execution machine.

-p priority Explicitly assign an intraqueue priority to the request. The specified priority must be an
integer, and must be in the range [0 .. 63], inclusive. A value of 63 defines the highest
intraqueue request priority, while a value of 0 defines the lowest. This priority does Dot
determine the execution priority of the request. This priority is only used. to determine
the relative ordering of requests within a queue.

When a request is added to a queue, it is placed at a specific position within the queue
such that it appears ahead of all existing requests whose priority is less than the priority
of the new request. Similarly, all requests with a higher priority will remain ahead of the
new request when the queueing process is complete. When the priority of the new
request is equal to the priority of an existing request, the existing request takes pre­
cedence over the new request.

Last change: 7/13/92 Thinking Machines

QSUB(1) USER COMMANDS QSUB(l)

If no intTaqueue priority is chosen by the user, then NQS assigns a default value.

~ queue-name
Specify the queue to which the batch request is to be submitted. If no ~ queue-name
specification is given, then the user's environment variable set is searched for the vari­
able: QSUB _QUEUE. If this environment variable is found, then the character string
value for QSUB _QUEUE is presumed to name the queue to which the request should be
submitted. If the QSUB _QUEUE environment variable is not found, then the request will
be submitted to the default batch request queue, if defined by the local system adminis­
trator. Otherwise, the request cannot be queued, and an appropriate error message is
displayed to this effect.

-r request-name
Assign the specified request-name to the request. In the absence of an explict -r
request-name specification, the request-name defaults to the name of the script file (lead­
ing path name removed) given on the command line. If no script file was given, then the
default request-name assigned to the request is STDIN. .

In all cases, if the request-name is found to begin with a digit, then the character 'R' is
prepended to prevent a request-name from beginning with a digit. All request-names are
truncated to a maximum length of 15 characters.

-re By default, all output generated by a batch request sent to the stde" file is temporarily
into a file residing in a protected directory on the machine that executes the request.
When the batch request completes execution, this file is then spooled to its final destina­
tion, possibly on a remote machine.

This default spooling of the stderr output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request that is to return its stderr output to a
remote machine upon completion. In some cases, this behavior is not desired. If it is
necessary to override this behavior, then the -re flag can be specified which says that
stde" output produced by the request is to be immediately written to the final destination
file, as output is generated, no matter what the networking cost

Circumstances may not allow a given NQS implementation to support this flag, in which
case it will be ignored, and the stde" output file will simply be spooled as it ordinarily
would without this flag.

-ro By default, all output generated by a batch request sent to the stdout file is temporarily
spooled into a file residing in a protected directory on the machine that executes the
request When the batch request completes execution, this file is then spooled to its final
destination, possibly on a remote machine.

-s shell-name

Thinking Machines

This default spooling of the stdout output file is done to reduce the network traffic costs
incurred by the submitter (owner) of a batch request which is to return its stdout output
to a remote machine upon completion. In some cases, this behavior is not desired. If it
is necessary to override this behavior, then the -ro flag can be specified; this flag says
that stdout output produced by the request is to be immediately written to the final desti­
nation file, as output is generated, no matter what the networking cost.

Circumstances may not allow a given NQS implementation to support this flag, in which
case it will be ignored, and the stdout output file will simply be spooled as it ordinarily
would without this flag.

Specify the absolute pathname of the shell that will be used to interpret the batch request
script. This flag unconditionally overrides any shell strategy configured on the execution
machine for selecting which shell to spawn in order to interpret the batch request script

In the absence of this flag, the NQS system at the execution machine will use one of

Last change: 7/13192 247

QSUB(1) USER COMMANDS QSUB(1)

248

-x

-z

three (3) distinct shell choice strategies for the execution of the batch request. Anyone
of the three strategies can be configured by a system administrator for each NQS
machine.

The three shell strategies are called:

fixed,
free, and
login.

These shell strategies respectively cause the configured fixed shell to be exec'd to inter­
pret all batch requests, cause the user's login shell as defined in the password file to be
exec'd which in tum chooses and spawns the appropriate shell for interpreting the batch
request script, or cause only the user's login shell to be exec'd to interpret the script.

A shell strategy of fixed means that the same shell (as configured by the system adminis­
trator), will be used to execute aU batch requests.

A shell strategy of free will run the batch request script exactly as would an interactive
invocation of the script, and is the default NQS shell strategy.

The strategies of fixed and login exist for host systems that are short on available free
processes. In these two strategies, a single shell is exec' d, and that same shell is the
sheU that executes all of the commands in the batch request script.

The shell strategy configured for a particular NQS system can be determined by the
qlimit(l) command.

Export all environment variabl~. When a batch request is submitted, the current values
of the environment variables: HOME, SHELL, PATH, LOGNAME (not all systems), USER
(not all systems), MAIL, and TZ are saved for later re-creation when the batch request is
spawned, as the respective environment variables: QSUB_HOME, QSUB_SHELL,
QSUB_PATH, QSUB_LOGNAME, QSUB_USER, QSUB_MAll.., and QSUB_TZ. Unless the
-x flag is specified, no other environment variables will be exported from the originating
host for the batch request. If the -x flag option is specified, then all remaining environ­
ment variables whose names do not conflict with the automatically exported variables,
are also exported with the request. These additional environment variables will be
recreated under the same name when the batch request is spawned.

Submit the batch request silently. If the request is submitted successfully, then no mes­
sages are displayed indicating this fact. Error messages will, however, always be
displayed.

If the batch request is successfully submitted and the -z flag has not been specified, the request-id of
the request is displayed to the user. A request-id is always of the form: seqno.hostname , where seqno
refers to the sequence number assigned to the request by NQS, and hostname refers to the name of ori­
ginating local machine. This identifier is used throughout NQS to uniquely identify the request, no
matter where it is in the network.

The following events take place in the following order when an NQS batch request is spawned:

The process that will become the head of the process group for all processes comprising
the batch request is created by NQS.

Resource limits are enforced.

The real and effective group-id of the process is set to the group-id as defined in the
local password file for the request owner.

The real and effective user-id of the process is set to the real user-id of the batch request
owner.

The user file creation mask is set to the value that the user had on the originating

Last change: 7/13/92 Thinking Machines

QSUB(l) USER COMMANDS QSUB(1)

machine when the batch request was first submitted.

If the user explicitly specified a shell by use of the -6 flag (discussed above), then that
user-specified shell is chosen as the shell that will be used to execute the batch request
script Otherwise, a shell is chosen based upon the shell strategy as configured for the
local NQS system (see the earlier discussion of the -6 flag for a description of the possi­
ble shell strategies that can be configured for an NQS system).

The environment variables of HOME, SHELL, PATH, LOGNAME (not all systems),
USER (not all systems), and MAIL are set from the user's password file entry, as though
the user had logged directly into the execution machine.

The environment string: ENVIRONMENT=BATCH is added to the environment so that
shell scripts (and the user's .profile (Bourne shell) or .cshrc and Jogin (C-shell) scripts),
can test for batch request execution when appropriate, and not (for example) perform any
'setting of terminal characteristics, since a batch request is not connected to an input ter­
minal.

The environment variables of QSUB_WORKDlR, QSUB_HOST, QSUB_REQNAME, and
QSUB _ REQID are added to the environment These environment variables equate to the
obvious respective strings of the working directory at the time that the request was sub­
mitted, the name of the originating host, the name of the request, and the request
request-iii .

All of the remaining environment variables saved for re-creation when the batch request
is spawned are added at this point to the environment When a batch request is initially
submitted, the current values of the environment variables: HOME, SHELL, PATH, LOG­
NAME (not all systems), USER (not all systems), MAIL, and TZ are saved for later
recreation when the batch request is spawned. When recreated however, these variables
are added to the environment under the respective names: QSUB_HOME, QSUB_SHELL,
,QSUB_PATH, QSUB_LOGNAME, QSUB_USER, QSUB_MAIL, and QSUB_TZ, to avoid
the obvious conflict with the local version of these environment variables. Additionally,
all environment variables exported from the originating host by the -x option are added
to the environment at this time.

The current working directory is then set to the user's home directory on the execution
machine, and the chosen shell is exec'd to execute the batch request script with the
environment as constructed in the steps outlined above.

In all cases, the chosen shell is exec' d as though it were the login shell. If the Bourne shell is chosen
to execute the script, then the .profile file is read. If the C-shell is chosen, then the .cshrc and .login
scripts are read.

If the user did not specify a specific shell for the batch request, then NQS chooses which shell should be
used to execute the shell script, based on the shell strategy as configured by the system administrator
(see the earlier discussion of the -6 flag).

In such a case, a free shell strategy instructs NQS to execute the login shell for the user (as configured
in the password file). The login shell is in tum instructed to examine the shell script file, and fork
another shell of the appropriate type to interpret the shell script, behaving exactly as an interactive
invocation of the script

Otherwise no additional shell is spawned, and the chosen fixed or login shell sequentially executes the
commands contained in the shell script file until completion of the batch request

QUEUE ACCESS
NQS supports queue access restrictions. If access is unrestricted. any request may enter the queue. If
access is restricted, a request can only enter the queue if the requester or the requester's login group
has been given access to that queue (see qmgr(lM». Requests submitted by root are an exception; they
are always queued, even if root has not explicitly been given access.

Thinking Machines Last change: 7/13/92 249

QSUB(1) USER COMMANDS QSUB(1)

LIMITS

250

Use qstat(l) to detennine who has access to a particular queue.

NQS supports many batch request resource limit types that can be applied to an NQS batch request. The
existence of configurable resource limits allows an NQS user to set resource limits within which his or
her request must execute. In many instances, smaller limit values can result in a more favorable
scheduling policy for a batch request.

The syntax used to specify a limit-value for one of the limit-flags (-Uimit-letter-type), is quite flexible,
and describes values for two general limit categories. These two general categories respectively deal
with time related limits, and those limits are not time related.

For finite CPU time limits, the limit-value is expressed in the reasonably obvious fonnat:

[[hours :] minutes:] seconds [.milliseconds]

Whitespace can appear anywhere between the principal tokens, with the exception that no whitespace
can appear around the decimal point.

Example time limit-values are:

1234 : 58 : 21.29- 1234 hrs 58 mins 21.290 secs
12345 - 12345 seconds
121.1 - 121.100 seconds
59:01 - 59 minutes and 1 second

For all other finite limits (with the exclusion of the nice limit-value -In), the acceptable syntax is:

.fraction [units]

or

integer [.fraction] [units]

where the integer andfraction tokens represent strings of up to eight decimal digits, denoting the obvi­
ous values. In both cases, the units of allocation may also be specified as one of the case insensitive
strings:

b
w
kb
kw
mb
mw
gb
gw

-bytes
-words
- kilobytes (2A I0 bytes)
- kilowords (2A lO words)
- megabytes (2"20 bytes)
- megawords (2A 20 words)
- gigabytes (2A 30 bytes)
- gigawords (2A 30 words)

In the absence of any units specification, the units of bytes are assumed.

For all limit types with the exception of the nice limit-value (-In), it is possible to state that no limit
should be applied. This is done by specifying a limit-value of "unlimited", or any initial substring
thereof. Whenever an infinite limit-value is specified for a particular resource type, then the batch
request operates as though no explicit limits have been placed upon the corresponding resource, other
than by the limitations of the physical hardware involved.

The complications caused by batch request resource limits first show up when queueing a batch request
in a batch queue. This operation is described in the following paragraphs.

Last change: 7/13/92 Thinking Machines

QSUB(1) USER COMMANDS QSUB(I)

If a batch request specifies a limit that cannot be enforced by the underlying UNIX implementation, then
the limit is simply ignored. and the batch request will operate as though there were no limit (other than
the obvious physical maximums). placed upon that resource type. (See the qlimit (1) command to find
out what limits are supported by a given machine.)

For each remaining finite limit that can be supported by the underlying UNIX implementation that is not
a CPU time-limit or UNIX execution-time nice-value-limit, the limit-value is internally converted to the
units of bytes or words. whichever is more appropriate for the underlying machine architecture.

As an example, a per-process memory size limit value of 321 megabytes would be interpreted as 321 x
2A 20 bytes, provided that the underlying machine architecture was capable of directly addressing single
bytes. Thus the original limit coefficient of 321 would become 321 x 2A 20. On a machine that was
only capable of addressing words. the appropriate conversion of 321 x 2A 20 bytes I #o!-bytes-per-word
would be performed.

If the result of such a conversion would cause overflow when the coefficient was represented as a
signed-long integer on the supporting hardware. then the coefficient is replaced with the coefficient of:
of 2AN_l where N is equal to the number of bits of precision in a signed long integer. For typical 32-
bit machines. this default extreme limit would therefore be 2"31-1 bytes. For word addressable
machines in the supercomputer class supporting 64-bit long integers. the default extreme limit would be
2A 63-1 words.

Lastly. some implementations of UNIX reserve coefficients of the form: 2A N_l as synonymous with
infinity. meaning no limit is to be applied. For such UNIX implementations, NQS further decrements the
de/ault extreme limit so as not to imply infinity.

The identical internal conversion process as described in the preceding paragraphs is also performed for
each finite limit-value configured for a particular batch queue using the qmgr(lM) program.

After all of the applicable limit-values have been converted as described above, each such resulting
limit-value is then compared against the corresponding limit-value as configured for the destination
batch queue. If, for every type of limit, the batch queue limit-value is greater than or equal to the
corresponding batch request limit-value, then the request can be successfully queued, provided that no
other anomalous conditions occur. For request infinity limit-values, the corresponding queue limit-value
must also be configured as infinity.

These resource limit checks are performed irrespective of the batch request arrival mechanism, either by
a direct use of the qsub(1) command, or by the indirect placement of a batch request into a batch queue
via a pipe queue. It is impossible for a batch request to be queued in an NQS batch queue if any of
these resource limit checks fail.

Finally. if a request fails to specify a limit-value for a resource limit type that is supported on the exe­
cution machine. then the corresponding limit-value configured for the destination queue becomes the
limit-value for the unspecified request limit.

Upon the successful queueing of a request in a batch queue. the set of limits under which the request
will execute is frozen, and will not be modified by subsequent qmgr(lM) commands that alter the lim­
its of the containing batch queue.

CAVEATS
When an NQS batch request is spawned. a new process-group is established such that all processes of
the request exist in the same process-group. If the qdel(l) command is used to send a signal to an
NQS batch request, the signal is sent to all processes of the request in the created process-group. How­
ever. should one or more processes of the request choose to successfully execute a setpgrp (2) system
call. then such processes will not receive any signals sent by the qdel (1) command. This can lead to
"rogue" requests whose constituent processes must be killed by other means such as the kill (1) com­
mand. However, NQS takes advantage of any UNIX implementations that provide a mechanism of
"locking" a process. and all of its subsequent children in a particular process-group. For such UNIX
implementations. this problem does not occur.

Thinking Machines Last change: 7/13/92 251

QSUB(I) USER COMMANDS QSUB(1)

It is extremely wise for all processes of an NQS request to catch any SIGTERM signals. By default. the
receipt of a SIGTERM signal causes the receiving process to die. NQS sends a SIGTERM signal to all
processes in the established process-group for a batch request as a notification that the request should
be prepared to be killed. either because of an abort queue command issued by an operator using the
qmgr(lM) program, or because it is necessary to shutdown NQS and all running requests as part of a
general shutdown procedure of the local host.

It must be understood that the spawned shell ignores SIGTERM signals. If the current immediate child
of the shell does not ignore or catch SIGTERM signals, then it will be killed by the receipt of such, and
the shell will go on to execute the next command from the script (if there is one). In any case, the
shell will not be killed by the SIGTERM signal, though the executing command will have been killed.

After receiving a SIGTERM signal delivered from NQS, a process of a batch request typically has sixty
seconds to get its "house in order" before receiving a SIGKlLL signal (though the sixty second duration
can be changed by the operator).

All batch requests terminated because of an operator NQS shutdown request that did not specify the -or
flag are considered restartable by NQS, and are requeued (provided that the batch request shell process
is still present at the time of the SIGKILL signal broadcast as discussed above), so that when NQS is
rebooted, such batch requests will be respawned to continue execution. It is however, up to the user to
make the request restartable by the appropriate programming techniques. NQS simply spawns the
request again as though it were being spawned for the first time.

Upon completion of a batch request, a mail message can be sent to the submitter (see the discussion of
the -me flag above). In many instances, the completion code of the spawned Bourne or C-Shell will
be displayed. This is merely the value returned by the shell through the exit (2) system call.

Lastly, there is no good way to echo commands executed by unmodified versions of the Bourne and C
shells. While the C-shell can be spawned in such a fashion as to echo the commands it executes, it is
often very difficult to tell an echoed command from genuine output produced by the batch request,
because no "magic" character such as a '$' is displayed in front of the echoed command. The Bourne
shell does not support any echo option whatsoever.

Thus, one of the better ways to write the shell script for a batch request is to place appropriate lines in
the shell script of the form:

echo "explanatory-message"

where the echoed message should be a meaningful message chosen by the user.

LIMITATIONS AND IMPLEMENTATION NOTES
In the present implementation, it is not possible to see the sttierr or stdout files produced by the batch
request while the request is running, unless the -re and -ro flags have been respectively specified.

Lastly, the strange "@S" syntax used to introduce embedded argument flags was chosen because it
rarely conflicts with anything else present in a shell script file. NQS users with better minds will
(rightly) suggest improved alternatives to this convention.

SEE ALSO
mail(1), qdel(1), qdev(1), qlimit(1), qpr(I), qstat(I), kill(2), setpgrp(2), signal(2), qmgr(IM)'

CM User's Guide.
CM System Administrator's Guide.

252 Last change: 7/13/92 Thinking Machines

RESTART(l) USER COMMANDS RESTART(l)

NAME
restart - run a checkpointed version of a Connection Machine program

SYNOPSIS
restart jeprefix

DESCRIPTION

FILES

restart restarts a program that has been checkpointed using the CM checkpointing utility.

When a program is checkpointed, the checkpointing utility saves the state of the program in files that
have the prefix jeprefix and, optionally, cmprefir, these prefixes are specified by the routine that exe­
cutes the checkpoint. jeprefix is used for the front-end core file, a list of the files that the program had
open when it was checkpointed, and the stored copy of the checkpointed program. cmprefix is used as
the prefix for the CM core file, and specifies a pathname in the CM file system. The CM core file is not
created if the program does not use the CM.

restart takes as an argument the front-end prefix used for naming the checkpointed files. It obtains the
CM prefix, if any, from the program it is restarting. The program begins execution from the point at
which the jeprefix and cmprefix files were saved.

Be careful when using output redirection with restart. You must append the output to the output file.
not just redirect it; otherwise. restart overwrites what is already in the file.

It can take up to several minutes to restart a checkpointed program, depending on the size of the files.
If a flag is set in the program, progress reports are displayed while the program is being restarted.

To restart a checkpoint more than once, rename the checkpoint files and issue restart with different
prefixes as arguments. If you move the checkpoint files to another directory. make sure the files used by
the program are accessible from this directory with the same names they had when opened by the origi­
nal invocation of the program.

jeprefix-core
The standard core file, containing the state of the program on the front end.

jeprefix-file-list
List of files that the program had open when it was checkpointed.

jeprefix-program
The stored copy of the checkpointed program.

cr.nprefix-cm-core
The state of the program on the CM. This file is not created if the program is not using the
CM.

IDENTIFICATION
Connection Machine System Software Release 6.0.
Copyright © 1990 by Thinking Machines Corporation. Cambridge MA.

SEE ALSO
Thinking Machines Corporation, eM User's Guide.

Thinking Machines Last change: 9/25/90 253

Index
7 !III. r 1 "·r·

*cold-boot 150,176
*Graphics 177
*Lisp 10, 66, 141

debugging programs in 153
detaching from the CM from 162
developing and executing programs

in 152
exiting 162
I/O programming in 178
initializing and resetting the CM from 150
loading 142
managing large file sets with 179
overview of using 144-146
timing code in 155-161
using batch system from 163-168
visualizing data in 177

*Lisp compiler
using 152

*Lisp library 176
*Lisp package

entering 146
*Lisp simulator 142

using 172-173
*Render 126
*room 154
*warm-boot 151

A

access lists 19
attaching 11, 20

B

from *Lisp 146
from within a program 72
to a specific CM resource 73
to any CM resource 73

back-compatibility mode
and timesharing 186
executing in 183
memory allocation in 184

batch access 19

~rsion 6.1, October 1991 255

·fUl r" ···11 . ·rrnrm .

obtaining 32
batch queues 19, 32

and direct access 32
specifying 35
states of 43

batch request
and timesharing 41
deleting 42
obtaining information about 42-46
output from 37
receiving mail about 41
setting a priority for 40
setting limits on 39
specifying from a script file 36
specifying from standard input 37
submitting 33-42

batch requests 55
batch system

c

and back-compatibility mode 184
overview of 32
using from *Lisp 163-168

C* 10,66
Ctparis 65
checkpointed program

and pipelines 123
restarting 109, 123
running 121
running in a debugger 123

checkpointing 12, 107-124
and I/O files 122
and shared memory 120
displaying progress reports 118
during debugging 120
features of 107
file descriptors required for 121
files created in 108
hook mechanism of 113
in response to a signal 117
include files for 109
initializing 110

256

overview of 108
programming hints for 120
sample program 124.

checkpoints
calling routines to execute as part of 113
compiling programs containing 109
putting in a program 111,112
setting up periodic 115-117

c~t 111-112,116
in debugging 120

c~t library 109
CXPT_ENV _CKPREF:IX environment

variable 110, 123
CXPT_ENV _FEPREFIX environment

variable 110, 123
c~t_errormsg 112, 114, 119
c~t_hook_delete 114
c~t_hook_set 113
ckpt_init 110
c~tJ)eriodic 116
c~tJ)eriodic_end 116
c~tJ>8riodic_start 115,116
c~tJ)eriodic_with_

return_value 116
ckptJ)rint_error 119
ckpt_restart 120
CXPT_RESTART_HOOIC 113
CICPT_SAVE_HOOIC 113
CICPT_SICIP_CM_CODE 109
c~t_verbose 118
CM 8

attaching to a specific 26
resetting 55-56

em 58
CM file system, See CMFS
CM Fortran 10,66
CM I/O bus 7,9
CMmodel

specifying 27
<em/attach.h> 72
<em/ckpt .h> 109
<cm/em-interface.h> 89
<cm/emioctl.h> 90
em:*number-of-timers* 157
em: attach 145,147
em:detach 162
em: finger 145,148
em:set-safety-mode 175

eM User:SO Guide

CM : T:IIIE 155
cm:timer-clear 159
em:timer-print 158
em: timer-start 158
em:timer-stop 158
CM_attach 72, 73
CM_attach_to 22,72, 73

CM_OCCS_n argument 77
CMA_CMn argument 76
CMA_EXCLOS:IVE argument 77
CMA_FPO_size argument 76
CMA_FRAIIEBOFFER argument 77
CMA_In argument 78
CMA_MB:ITS macro 76
CMA_MEXACT argument 76
CMA_Hmemsize argument 76
CMA_IISIZE macro 76
CMA_PBITS macro 78
CMA_PCOONT macro 78
CMA_PEXACT argument 78
CMA_Pn argument 77
CMA_TlIlESHARED argument 77
CMA_OCcn argument 77
CMA_WAIT argument 76

CM_cold_boot 85
CM_DEFAOLT_SAFETY environment

variable 99
CM_detach 80
CM_detach_em 81
CM_detach_cm_by_seq 83
CM_detach_interface 82
CM_detach_user 84
ClCfinger 87
CM_finger_all_interfaces 88
CM_finger_banner 87
CM_finger_em 88
CM_finger_d 87
CM_finger_data structure 89
CM_finger_delete 87
CM_finger_host_em 88
CM_finger_host_interface 88
CM_finger_interface 88
CM_fingerJ)rint 87
CM_init 111
CMJ>Owerup 86
CMJ)reempt 72, 79
CM_sequencer_set 91
CM_sequencer_string 91

~rsion 6.1, October 1991

Index

CM_set_safety_mode 98
CM_timer_clear 102
CM_timer"'print 101
CM_timer_read_CDl_busy 101
CM_timer_read_CDl_idle 101
CM_timer_read_elapsed 101
CM_timer_read_run_state 101
CM_timer_read_starts 101
CM_timer_set_starts 101
CM_timer_start 100
CM_timer_stop 101
CM_WAIT environment variable 29
CH....waiters 88
CM-200 8
CM-2a 8
CMA. bits_to_interface 78
CMA._BITS_TO_UCCS 91
~interface_to_bits 78
CMA._UCCS_TO_BITS 91
cmattach 13, 19,20

-b option 37, 183
-Coption 26
- em option 27
-e option 26
-goption 27
-i option 26
issuing with the name of a program 22
-S option 25
-t option 26
-uoption 28
using to obtain an interactive subshell 23,

24
-v option 183
-x and -yoptions 184

cmattach subshell 23-24, 36, 73
obtaining information about 58
safety checking from 98

emcoldboot 13, 55, 56
and back-compatibility mode 184

emcp 13,136
emdbx 11,70
cmdd 135
cmdetach 53, 55
cmdump 134
emf command

- pg option 106
cmfinger 13,28,41,48

and cmlist 51

~rsion 6.1, October 1991

-i option 50
CMFS 13

257

copying files between the front-end file
system and 133

copying files within 136
differences from UNIX file system 130
overview of 129-131
similarities to UNIX file system 129

CMFS commands
and UNIX commands 131
overview of 131-133
when you can issue 132

emfs library 109
CMl"S JlEBUG environment variable 137
CMl"S_ VERIFY _AFTER._WRITE environ-

ment variable 137
emftp 132,136
CM-HlPPI 136
CHINTERFACE environment variable 164
CMIOC7,9
emlist 50-51
cmln 137
emls 14,137
cmmv 137
CMNAIIE environment variable 164
cmnice 58
cmps 51,53,59
cmrenice 58
cmrestore 134
cmrm 14,137
CHSEQUENCERS environment variable 164
cmsetsafety 36, 98
CMSSL 12, 178
CDltar 134
emtime 56
cold booting 21,55, 85

from within a program 85
Common Lisp 141
Connection Machine file system, See CMFS
Connection Machine system

hardware of 4-10
programming in 10-13

copyfromdv 133
copytodv 13,133,135
cscommand

-pg option 106

258

D

data parallel computing 3
DataVault 9,77

and timesharing 31
dbx 11,70

and checkpointing 120
defining file sets 188
descr ibe-pvar 154
detac~g 53-55,162

from wi~ a program. 80
DFS 179,187

defining file set directories 191
file set definition files 190
file set directory definition files 191
finding your site directory 192
how it handles file sets 192
loading and compiling file sets 192
loading individual files 195

dfs::*site-flle-directory* 192
dfs: compile-load-file-set 193
dfs:def-file-set 188,190
dfs:def-file-set-directory 191
dfs: load-file-set 193

. dfs: load-n 195
direct access

and batch queues 32
obtaining 20·

dvcp 13, 132, 136
DVBOSTHAME environment variable 137
DVWD environment variable 137

E

enforce mode 46
Ethernet 10
exclusive access 19

obtaining 26
exclusive mode 46

F

FEB! 8
attac~g to a specific 26
detaching from a sequencer S3

fieldIDs 98
floating-point accelerator 6, 76
Fortran/Paris 65
fnunetrodfer 7,10,125

and timesharing 31
frontend 7

eM User's Guide

front-end buS interface, see FEB!

G

Generic Display Interface 126
geometty

specifying 27
Gmacs

loading *Lisp from 143
gprof 12, 70, 105

issuing 106
graphic display system 10
grid communication 6

H

hostname
default 137

I/O system 8

L

Lisp Machine 7, 141
using *Lisp from 144

Lisp/paris 65,142

M

debugging programs in 153
developing and executing programs

in 152
loading 142
programming in 174

make 70
microcode version 22

and timesharing 30
specifying 28

N

NEWS communication 6
nexus 7
NQS 32

Version 6.1, October 1991

Index

p

parallel and serial formats 131
parallel processing unit 5
Paris 11,65
PATH variable 143
pipe queues 19, 32

specifying 35
pipelines

and cbeckpointed programs 123
powering up a eM 86
ppp 153
profiling 12, 105-106
profiling libraries

using 105
program execution

overview of 18-19
programming process

overview of 67-69
pvar 141
pvar-1ength 174
pvar-10catlon 174

Q

qde1 42,163
q11mlt 39
qstat 32,33,38,39,42,46,163

options 44
qsub 13, 19,33,42, 163

-aoption 44
-e option 38
-1 t option 39
-!Db option 41
-me option 41
-0 option 38
-poption 40
-qoption 35
-s option 40

QStm_QUEUE environment variable 36

R

rep 134
request-id 42
restart 109,121-123

and input redirection 122
and output redirection 122

restriction window 46

~rsion 6.1, October 1991

router 6
rsh 133,134
runlimit 45

s
safety checking 12, 22, 97-99

and the timing utility 103
changing the default behavior 99
in *Lisp 151,175

script file 34
specifying a batch request from 36

sections 7
sequence number 35, 37
sequencer 5

attaching to a specific 25
shell

choosing for a batch request 40
shell strategy 40
SIGALRM

and periodic checkpoints 115
SIGllL 31
SIGKILL 31,42
SIGLOST 31
SIGTERM 31,42, 117
SIGURG 31,54
standard input

specifying a batch request from 37
status information

obtaining 48
Sun-47
System Construction Tool system 179

T

tape
copying unarcbived data from 135

tape archive
copying files to and from 134

timesbared access
obtaining 26

timesharing
and back-compatibility mode 186
and batch requests 41
and cmc01dboot 56
and cmfinger 50
and memory size 30
and microcode version 30
and the Data Vault 31

259

260

and the framebuffer 31
and the timing utility 102
changing the priority of jobs running

under 58
listing processes running under 51-53
maximum number of processes under 29
obtaining direct access under 28-31
performance under 29
signals received under 31
under *Lisp 143, 168

timing command 56
timing utility 12,99-104

example 103-104
interpreting the results of 102-103

TMC Gmacs Hacks 143

U

UltraNet 136
/usr/include/cm/attach-

fort.h 72

eM User's Guide

/usr/include/cm/ckpt­
fort.h 110

V

VAX 7
virtual processors 5
visualization 125-126
VME I/O computer 47

issuing CMFS commands from 132
VME I/O interface 10
VP sets 27, 98

W

warmboot 55

x
X Wmdow System 12, 125

Version 6.1, October 1991

