The
Connection Machine
System

M User’s Guide

Version 6.1
October 1991

Thinking Machines Corporation
Cambridge, Massachusetts

Reprinted, with corrections, December 1992

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and is
believed to be reliable, Thinking Machines Corporation does not assume responsibility or
liability for any errors that may appear in this document. Thinking Machines Corporation
does not assume any liability arising from the application or use of any information or product
described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM-2, CM-2a, CM, and DataVault are trademarks of Thinking Machines Corporation.
C* ® is a registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun and Sun-4 are registered trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

The X Window System is a trademark of the Massachusetts Institute of Technology.
UltraNet is a trademark of UltraNetwork Technologies, Inc.

Copyright © 1990-1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

The
Connection Machine
System

(M User’s Guide

55

Version 6.1
October 1991

Thinking Machines Corporation
Cambridge, Massachusetts

Reprinted, with corrections, December 1992

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and is
believed to be reliable, Thinking Machines Corporation does not assume responsibility or
liability for any errors that may appear in this document. Thinking Machines Corporation
does not assume any liability arising from the application or use of any information or product
described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM-2, CM-2a, CM, and DataVault are trademarks of Thinking Machines Corporation.
C* ® is a registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

Sun and Sun-4 are registered trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

The X Window System is a trademark of the Massachusetts Institute of Technology.
UltraNet is a trademark of UltraNetwork Technologies, Inc.

Copyright © 1990-1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

Part I Introduction to the Connection Machine System

Chapter 1 The Connection Machine System.............................. 3
1.1 Data Parallel Computing.c.coiitniiireiniinnennnenn.. 3
1.2 The Hardware of the Connection Machine System................... 4

1.2.1 The Parallel Processing Unit.cooovun... 5

The SeqUencer.covvviiiiieeennininennnnenn. 5

Virtual Processorscoviiveeinenns s, 5

Floating-Point Accelerator 6

Commumnication.ccovviiiini i ineennn. 6

I/O Controllers and Framebuffer Modules............. 7

SeCtONS . . oot e e e 7

The NeXUSoiitiiiiii it enes 7

122 TheFrontEnd.......o i, 7

123 Thel/OSystem.......covvriumieinernennnnnneennnnn, 8

12.4 GraphicDisplay Systemc.cciiiiiniennnnn. 10

1.3 Programming in the Connection Machine System.................... 10
1.3.2 Programming Tools.............coviiiiiiiiiinn, 12

1.3.3 Programming Libraries.............cccciiiiieiennnn.. 12

1.4 Using the Connection Machine Systemoueunereunen.s 13
141 CMFSCommands........coovvviiivinennnnnnnennnnn, 13

Part II Using the CM Operating System

Chapter 2 Executing a Programona CM System. 17
2.1 ASIMPIEProgram.c.c.oeuiuiiiiniineereerneneneeeennnnoens 17
2.2 Overview of Program Executionona CM..............cooenunnnn.. 18

Version 6.1, October 1991 iii

iv CM Users Guide

2.3 Obtaining Direct Accesstothe CM.............c.ooiiiiiiiiinnnnn. 20
231 OVEIVIEWoiiiiieiiernnnrenenoenroseasseesnenns 20
232 ExecutingtheProgram................cccovievinienenns 21
2.3.3 Issuing cmattach with the Name of a Program 22
2.3.4 Using cmattach to Obtain an Interactive Subshell. 23
235 Optionsforcmattach.................covtiviinnn... 24

Waiting for Resources: The =w Option................ 25
Specifying a Sequencer: The -S Option............... 25
Specifying the Kind of Access You Want:
The ~eand -t Options.............covvevinneennnn 26
Specifying an Interface: The =1 Option 26
Specifyinga CM: The -CcOption 26
Specifying the CM Model: The -cm Option. 27
Specifying a Geometry: The -gOption 27
Specifying the Microcode Version: The —u Option 28
2.3.6 Obtaining Direct Access under Timesharing 28
Performance under Timesharing 29
Maximum Number of Processes 29
Timesharing and Memory Sizecoovut. 30
Timesharing and Microcode Version.................. 30
Timesharing and the Framebuffer 31
Timesharing and the DataVault 31
Timesharing Signals................c.oooiiiiit, 31
2.3.7 Direct Accessand BatchQueues...................o..., 32

2.4 Obtaining Batch Accesstothe CM..........coiiiiiiiiieiiiennennn 32
24.1 Overview ofthe CMBatch System 32
2.4.2 Submitting a Batch Request: The gsub Command. 33

TheBasicscovviiiiiiiiiiiiiiiiiiiii e 34
SpecifyingtheQueue...............covvviiieea... 35
Specifying a Request from a Script File 36
Specifying a Request from Standard Input 37
The Output froma Requestcoovvviven. 37.
Setting Limitsona Request.covvnnnnn. 39
Choosinga Shell.c.oiiiiiiiiiiennnn, 40
Setting a Priority for a Batch Request................. 40
Receiving Mail about a Batch Request 41
Wall-clock Limits for Queues 41
Timesharing and Batch Requests..................... 41
24.3 Deleting a Batch Request: The gdel Command. 42
2.4.4 Obtaining Information: The gstat Command............. 42
Optionstogstatcoovivivvronnnennnsenns 44

Version 6.1, October 1991

Contents v

Chapter 3 Miscellaneous CM Operating System Commands 47
3.1 Obtaining Status Information: The cmfinger Command............. 48
311 OpHODS ...vvitt it 50

3.2 Listing CMs: The cmlist Command................ccvvvevnnn..n. 50
3.3 Listing Timeshared Processes: The cmps Command 51
3.4 Detaching Users: The cmdetach Command....................... 53
34.1 UnderTimesharingccoviiuniinieiinnnnnnnn. 54

3.5 Resetting the CM: The ecmcoldboot Command. 55
3.5.1 UnderTimesharingcoviiiuiiniininnnnnnn. 56

3.6 Timing a CM Program: The cmtime Command 56
3.7 Obtaining Information about the cmattach Subshell: The cm Command 58
3.8 Changing the Priority of Timesharing Jobs 58
3.9 Displaying CM Manual Pages: The cmman Command 59
39.1 I YouDon’tWanttoUsecmman...............oounnnn. 61

Part IIl Programming with the Connection Machine System

Chapter 4 Programming: The Basicst 65
41 Choosingalanguage........ottt 65

411 Pams. i e 65

412 CMPFortranooiiit ittt 66

L0 U5 T 66

T30 B 0 T 66

42 Overview of the Programming Processccoveiiievnnnenn. 67

43 DevelopingaProgramcviiiiiiiiiiiiiiiiiiiiiiann., 67

4.3.1 LibrariesandIncludeFiles.....................oootn. 67

44 Compiling aProgramcoviteeiirenernrinererenennnans 68

45 ExecutingaProgram................ciiiiiiiiiiiiiiiiiiiiien 69

46 DebuggingaProgram..............cuuiiiiironnnnnreereneninnnn 70

47 UNIX UHHHES. ... oottt eee it eineseiiateensranneens 70
Chapter 5 Attaching and Detaching from within a Program 71
5.1 OVeIVIEW . .ottt ittt it i e i e e 71

52 AttachingtoaCM.vuuriiiniiinirirrrnennnenreeenennnnen 72

5.2.1 Attachingto AnyCMResourcecoovvvvnnnen. 73

Version 6.1, October 1991

CM Users Guide

5.2.2 Attaching to a Specific CMResource 73

Specifying the CM Resourceovvvnnnnnnn. 74

Examples.ccoiiiiiiiiiiiii e 78

Return Valuesccoiviiniiiinininenennnn. 79

5.2.3 Preempting Another User..........ccoovvvieeennnennnnn. 79

Example ..ottt 80

53 Detaching ...ttt e e 80

‘ 5.3.1 Detaching the Calling Processccovinunnn.. 80

5.3.2 Detaching All UsersfromaCM......................... 81

Return Values............cooiiiiiiiiiiiinin., 82

5.3.3 Detaching Users from a Specific Interface................. 82

Return Valuescoiiiiiiiniinnnnnn.. 83

5.3.4 Detaching Users from a Specific Sequencer Set 83

Reurn Values............coiiiiiiiiiiiiiiinens, 84

5.3.5 Detachinga SpecificUsercevivveeen.. 84

Return Values.............ooiiiiiiiiiinnnnn.. 85

54 Cold Booting and Powering UpaCMoiviiiiinnnn.. 85
54.1 ColdBootinga CMResSOUICeocvvvveeenennnnn. 8

542 PoweringUpaCM........cciiiiniiiiiiinnnnnnnnnenns 86

Return Values............cooiiiiiiiiiiienene. 86

5.5 Obtaining cmfinger Data...............coiiiiiiininiinnnnnenn. 87

55.1 C-Only cmfinger Routines..................coiuunn.. 87

Examplecoviiiiiiiiiiiiiiiiiii it 89

The CM_finger_data Structure................... 89

5.6 C-Only Routines for Sequencer Information. 91

5.7 C-Only Methods for Error Handlingcooiviiinnnn.. 92

5.8 C-Only Methods for Attaching via Command-Line Arguments.......... 92

Chapter 6 Programming Toolscciiiiiiiinnn... 97

6.1 Run-Time Safety Checkingcooiiiiiiiii i, 97

6.1.1 FromwithinaProgram.................cciininnninnnnn, 98

6.12 FromacmattachSubshell........................... 98

6.1.3 Changing the Default Safety Behavior. 99

62 TimingaProgram...............ciiiiiuiiiiiiitiiiieniiiininnnnn. 99

6.2.1 InterpretingtheResults...................cooiiiinna.. 102

622 AnExamplec.ciiiiiiiiiiiiiiiiiiiiiiaaaea 103

63 Profilingcoiiiiiii e s 105

6.3.1 Effects of Using the Profiling Libraries 105

Version 6.1, October 1991

6.3.2 Using the Profiling Libraries........................... 105

FromC*andCMPFortran.............ccovvunnnnnn.. 106

Issuing the gprof Command 106

6.4 Checkpointinga Program..........ccoviiiniinninnerennnennnnnns 107
6.4.1 Features of CM Checkpointing...........c.cccovennn... 107
Limitations.vvvviiiii ittt 107

6.4.2 Overview of CM Checkpointing. 108
The Checkpoint Filesccovvivinnienn. 108

Compiling a Program Containing Checkpoints 109

Restarting a Checkpointoonntn. 109

6.4.3 Include Files for the Checkpointing Package 109
6.4.4 Initializing the Checkpointing Package................... 110
What ckpt_idnitDoescoiiiit 110

6.4.5 Putting a CheckpointinaProgram...................... 111
InC . e 1

InFortran.ooiiuinii i, 112

Return Valuesccoiiiininnnninininiinnnnns 112

6.4.6 Calling Routines to Execute as Part of a Checkpoint 113
The Checkpoint Hook Mechanism................... 113

6.4.7 Setting Up Periodic Checkpoints 115
Settingthe Periodcooviiiiiiiiiann, 115

Performing the Checkpoint.................oounen.. 116

6.4.8 Checkpointing in Responsetoa Signal................... 117
6.4.9 Displaying ProgressReports...............oviiveiinn, 118
6410 EITOTS.cviiiniiiiii it s 119
If There Is a Timing Problem with Core Files. 119

6.4.11 Debugging..........cccviiiiiiiiiiiiiiiiii i 120
6.4.12 Programming Hints.oooiiiiiiinnnn., 120
6.4.13 Running a Checkpointed Program 121
InaDebugger.........coovviiiiiiiiiiiiiiienenn. 123

6.4.14 SampleProgramcciiiiiiiiiiiiiiiiiiaa., 124
6.5 VisualizingDatac.c.iiiiiiiiii i ittt e 125

Version 6.1, October 1991

Chapter 7
7.1

72

73

7.4
75

Chapter 8
8.1

82
83

8.4
85
8.6

CM User’s Guide

Part IV 1/O on the Connection Machine System

Usingthe CM File System.coceiiivnnnn... 129
Overview of the CM File Systemcoiiiiiiiiinnt, 129
7.1.1 Similarities to the UNIX File System. 129
7.12 Differences........ccvviiiiiiiiinnrenenenneannnns 130
More Than One Directory Tree..........oovvvunnn... 130
Parallel and Serial Formatsco.cu... 131
Overview of CMFS User Commandscccvveenienennnnn. 131
7.2.1 CMFS Commands and UNIX Commands................. 131
7.2.2 Where You Can Issue the Commands 132
Copying Filesand Datacoiviiiiiiiiiiiiinennnennenns 133
7.3.1 Copying Files between the Front-End File System
and the CM File System:
The copytodv and copyfromdv Commands............ 133
If the UNIX File System Isn’t on the Front End. 134
7.3.2 Copying Files to and from a Tape Archive: ,
The cmdump, cmrestore, and cmtar Commands. 134
7.3.3 Copying Unarchived Data from Tape: The cmdd Command .. 135
7.3.4 Copying Files within the CM File System:
The cmep and dvep Commandscccnntn.. 136
7.3.5 Transferring Files between a DataVault and a Remote
System via UltraNet: The cmftp Command 136
Other CMFS User Commands.cccovieniinnnnerneeneeecnons 136
Environment Variables.oviiiiniiiiiiiiienereennennnn 137
Part V In the Lisp Environment
IntheLispEnvironment........................c0iiivinnne. 141
The *LispLanguage.ooviii it iiiiiiiieieiiinnennnns 141
5T oY o TP 142
Loading *Lispand Lisp/Pariscocvvivirninenerernennneenns 142
83.1 Fromthe UNIX Prompt.........ovvveivnennenenennnns 143
832 FromGmacsS.......ovvuvenrenneneonnnenneneanecnenns 143
833 FromalLispMachine...............coiiiiiiiiiniiinn, 144
Using *LiSp — ANOVEIVIEWvvuivrrinrinneererennnnssennns 144
Entering the *LispPackagecooitiiiiiiiiiininnnnnn. 146
Attachingto aCMttt it iei e i 146

Version 6.1, October 1991

Contents

8.7

8.8

89
8.10
8.11
8.12

8.13
8.14
8.15

8.16

8.17
8.18
8.19
8.20
8.21

Finding Out about CM USEoovviiiiiieiinnnnnrannnennss 148
8.7.1 On Symbolics Lisp Machines.......................... 149
Initializing and Resettingthe CM.............. ..., 150
8.8.1 *cold-boot...............c.iiiiii, 150
882 *warm-boot.............. ..l 151
Developing and Executing *Lisp and Lisp/Paris Code 152
Using the *Lisp Compiler.ccoiiiiriiieiinnnnnnnnnn. 152
Debuggingoviiiii i e e 153
Timing *LispCode ...ttt 155
8.12.1 Timing Your Code with CM:TIME...................... 155
8.12.2 Using Timersin*LispCode..................ooeinn.. 157
Starting, Stopping, and Printing the Values of a Timer... 158

Clearing Timers and Initializing the Timer System. 159

Other Timer Operationsccvvveeenn.. 159

8.12.3 InterpretingtheResults...................coovnnnL.. 159
8124 AnExample..........c.oiiiiiiiiiiiiiiiiiiiiiaa 160
Detaching fromthe CMoiiiiiiiiiiiiiiiiiininnannns 162
Exiting *Lisp. oo v vttt e e e 162
Using the CM Batch System from *Lisp........................... 163
8.15.1 Submitting the Name of a *Lisp Executable Band. 163
8.15.2 Attaching to the Correct Sequencer and Interface 164
8.153 SampleProgramcooiiiiiiiiiiiiiiiaa.. 164
Running *Lisp Programs under Timesharing. 168
8.16.1 ReSHHCHONScivtiiiiiieiteeierarnieanneann 169
The cm:attachCommand 169

Paris Floating-Point Instructions. 169

Undocumented CMI :: Functions 169

Undocumented CMI :: Variables..................... 170

Undocumented CMI:: Macros.........coevvvenenn. 170

Field Decoding Macros.ccovviiiinnnieneen.. 170

Error Messagesovviinineiiiin i, 170

Being Detached............ccoiiiiiiiinnienenn.. 172

8.16.2 ConditionalizingCode.cooiiiiiiiiie. 172
Using the *Lisp Simulator ..., 172
Lisp/Paris Programmingoiviiiiiiiiiiiiireiinneenn, 174
Paris Run-Time Safety Checkingcoooiiiiiiiii.t, 175
The *LispLibrary 176
Visualization of Datain *Lispccvvviiiniiiiiiiiiinnann, 177

Version 6.1, October 1991

X CM Users Guide

822 CM JJO Programming from *Lisp..........covviiiiiiiiiienene, 178
8.23 CM Scientific Softwareottt 178
8.24 ManagingLarge File Setsccoiiiiiiiniiiiiiiiiinenn 179
Appendixes
Appendix A Back-Compatibility Modeccoiieaet. 183
A.1 Executing in Back-Compatibility Mode........................ .t 183
A.2 Memory Allocation in Back-Compatibility Mode 184
A.3 Back-Compatibility Mode and Timesharing........................ 186
Appendix B DFS: Defining File Sets.......................cciiiiiiia.... 187
B.1 DFS — DefiningFile Setsccciiviiiiiiiiiiiiienennn. 187
B2 DefiningFile Setscoiiiiiiiiiiiiiiiiiiinreeanneennnnns 188
B.2.1 Argumentsto dfs:def-file-set................... 188
B.3 File SetDefinition Filesccciiiiiiiiiiiiiiinnnn, 190
B.4 Defining File Set Directories.ottt 191
B.5 File Set Directory Definition Filesot 191
B.6 Finding Your Site Directoryccciiiiiiiiininiiiinnn, 192
B.7 HowDFSHandlesFile Sets...........cooiiiiiiieiininennnennn. 192
B.8 Loading and CompilingFile Sets.............ooviiiiiiieiiennn.. 192
B8.1 LoadingFileSetscccciiiiiriininennnnenn, 193
Keyword Arguments to dfs:load-file-set...... 193
B.8.2 Compiling/LoadingFileSetscoovtnn. 193
Keyword Arguments to dfs:compile-load-
flle-set ...ttt 194
B.10 Loading Individual Files...............ccciiiiiiiiiiineinnnnn. 195
B.10.1 Keyword Argumentsto dfs:load-n.................. 195
Appendix C Paris Functions Affecting Timesharing Performance. 197
Appendix D The UNIX System for CM Userscccvvennnen. 203
Appendix E Glossary..............coiiiiiiiiiiiii i i e 209
Appendix F Man Pages.............ccooiiiiiiiiiiiiniiiinainnenennnnns 215
Index. ... et e e e 255

Version 6.1, October 1991

About This Manual

Objectives of This Manual

This manual is an introduction to the CM-2 or CM-200 series Connection
Machine system. Read this manual to learn the basics of how to develop and
execute data parallel programs using the CM system.

Intended Audience

Anyone who uses a CM should read this manual. It is applicable to all front-
end computers that connect to the CM; specifically:

» Front-end computers running a version of the UNIX operating system.
(Unless otherwise noted, in this manual “UNIX” refers to both the
SunOS and ULTRIX operating systems.) We don’t assume that you
know anything about the CM; we do assume that you are familiar with
UNIX.

» Front-end computers from the Symbolics 3600 series of Lisp machines.

We don’t assume that you know anything about the CM; we do assume
that you are familiar with the operation of the Lisp machine.

Revision Information
This manual has been revised to reflect CM System Software, Version 6.1. In

particular, Chapter 5 is entirely new. For information on features new to Ver-
sion 6.1, see the CMSS V6.1 System Software Summary.

Organization of This Manual

This manual is written for users who wish to program the CM from either a
UNIX front end or a Symbolics 3600-series computer.

Version 6.1, October 1991 xi

CM User’s Guide

UNIX front end users should read Part I of this document for a general intro-
duction to the Connection Machine, then Parts II through IV, which discuss
programming the CM from UNIX. They should read Part V only if they
intend to program in *Lisp or Lisp/Paris.

Symbolics front end users should read Part I, and then skip to Part V, which
discusses programming the CM in the Lisp environment (see Figure 1).

CM Fortran, C* *Lisp
Fortran/Paris, C/Paris Lisp/Paris
READ PARTS READ PARTS

Figure 1. Suggested reading paths, depending on
the language in which you intend to program

Part I Introduction to the Connection Machine System
Part I gives an overview of the hardware and software components
of the Connection Machine system.

Part I Using the CM Operating System
Part IT describes some basic commands in the CM operating system
for UNIX users. Chapter 2 describes how to run programs on the
CM; Chapter 3 describes other useful commands.

Part Il Programming with the Connection Machine System
Part III discusses how to program using your UNIX front end and
the CM. Chapter 4 gives the basics of the programming process.
Chapter 5 describes how to attach to and detach from a CM from
within a program. Chapter 6 describes programming tools like the
CM timing utility, its checkpointing package, and its run-time safe-
ty checker.

Part IV IO on the Connection Machine System

Part IV provides an overview of I/O on the CM, focusing especially
on the commands for using the CM file system.

Version 6.1, October 1991

About This Manual

Part V In the Lisp Environment
Part V describes how to use the CM system when in a Lisp envi-
ronment running on your UNIX or Symbolics front end.
There are six appendixes:
» Appendix A describes back-compatibility mode on the CM.

= Appendix B describes the DFS system, unsupported software that can
be used to manage large file sets.

= Appendix C lists Paris functions that may affect the performance of a
program running under timesharing using a VAX front end.

» Appendix D is an overview of UNIX features that are important to CM
users.

= Appendix E is a glossary.
= Appendix F provides UNIX man pages for CMost user commands.

Related Documents
Some of the material in this manual is covered in a different way in this
Thinking Machines Corporation publication:

n Connection Machine CM-200 Series Technical Summary

You need not be familiar with the technical summary before reading this
manual, however.

If you are involved in configuring or managing a Connection Machine sys-
tem, you should also read this manual:

a CM System Administrator’s Guide
Consult the documentation for your front-end computer to learn about its ver-

sion of UNIX. In addition, there are many books you can choose from to
obtain further information about UNIX. For example:

a The UNIX Programming Environment, Brian W. Kemnighan and Rob
Pike. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.

Finally, consult the other volumes of the Connection Machine documentation
set to learn more about many of the topics discussed in this manual.

Version 6.1, October 1991

CM Users Guide

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention Meaning

boldface UNIX and CM System Software commands, command
options, and file names. Also, Paris, C, and Lisp language
elements, such as keywords, operators, and function
names, when they appear embedded in text.

UPPERCASE Fortran language elements, when they appear embedded in
text.

Cul-D Combinations of keystrokes are shown with a connecting
hyphen. To type the Ctrl-D combination, for example,
press the D key while holding down the Control key.

italics Parameter names and placeholders in function and
command formats.

typewriter Code examples and code fragments.

% boldface
typewriter

In interactive examples, user input is shown inboldface
and system output is shown in typewriter font.

Version 6.1, October 1991

Part 1
Introduction to the
onnection Machine Syste

e

Chapter 1

The Connection Machine System

The Connection Machine system is an integrated combination of hardware and
software designed for high-speed data parallel computing. This chapter
introduces data parallel computing and the Connection Machine system,; it also
provides an overview of how to use the CM to write and execute data parallel

programs.

1.1 Data Parallel Computing

In conventional computing, a computer has a single central processor, which
operates on data sequentially. If the same operation is to be performed on many
data elements, the computer must still perform the operation separately on each
element, one after another.

In data parallel computing, there are many processors, and each data element is
associated with a processor. All processors can then perform the same
operation on all data elements at the same time. This kind of computing takes
advantage of the natural computational parallelism inherent in problems with
large data sets. For example:

= A graphics program might store pixels one per processor and then have
each processor calculate the color value for its pixel, all at the same
time.

» A text retrieval program might store articles one per processor and then
have each processor search its article for a keyword.

s A modeling program (for example, one that simulates fluid flow) might
create a large number of individual cells, stored one per processor. Each
cell might have a small number of possible states, which are

Version 6.1, October 1991 3

4 CM User’s Guid

simultaneously updated at each “tick” of a clock according to a set of
rules that are applied to each cell.

The result can be a dramatic decrease in the amount of time it takes to run such
programs.

Programming can also become simpler using the data parallel model, since it
avoids the complexity of trying to solve a naturally parallel problem in a serial
manner.

1.2 The Hardware of the
Connection Machine System

The Connection Machine system provides hardware and software to support
the data parallel model of computing. Using the CM, you can write and execute
data parallel programs to solve the largest computational problems. This
section describes the hardware components of the system; Sections 1.3 and 1.4
describe the software components.

A fully configured Connection Machine system contains these hardware
components:

= A parallel processing unit, containing thousands of individual processors
s One or more front-end computers
s AnJ/O system, which can contain:

s DataVault mass storage systems

s A CM-HIPPI system for connecting the CM to an UltraNet net-
work or to other devices that support the high-performance
parallel interface (HIPPI) standard

» General-purpose I/O computers with a VMEbus
a Other IJO devices such as magnetic tape drives
= A graphic display system

All Connection Machine systems contain a parallel processing unit and at least
one front-end computer; other parts of the system are optional. Check with
your system administrator for the exact configuration of your system.

Version 6.1, October 1991

Chapter 1. The Connection Machine System 5

1.2.1 The Parallel Processing Unit

The parallel processing unit is the heart of the Connection Machine system (so
much so that the term “CM?” is often used to refer only to it, and not to the
entire system). :

Figure 1. The CM parallel processing unit

The Sequencer

The individual processors within a parallel processing unit are controlled by a
device called a sequencer. The sequencer’s job is to decode commands and to
broadcast them to the processors for parallel execution. CMs have up to four
sequencers.

Virtual Processors

If there are more data elements than there are processors (which is generally
the case), the system creates virtual processors by dividing up the memory
associated with each physical processor. Thus, the same program can run
without change on different parallel processing units with different numbers of
physical processors—but the more physical processors, the faster it runs.

Version 6.1, October 1991

CM User's Guide

Floating-Point Accelerator

The CM-2 parallel processing unit may contain either a single-precision (32-
bit) or double-precision (64-bit) floating-point accelerator. Both options
support IEEE standard floating-point formats and operations. They each
increase the rate of floating-point operations by more than a factor of 20.

To/From
Front-End
Computers
Nexus
I l
Sequencer Sequencer Sequencer Sequencer
PIHP]..|P PIIP|.-| P PIIP]... P PiIIP].. P
[Router/Grid][Router/Grid [Router/Grid Router/Grid]
Communication Communication Communication Communication
[vo]|FB] (vo||FB] [vo|[FB]| [vo||FB|
Framebuffer and
CMIOC boards

Figure 2. Architecture of the CM parallel processing unit

Communication

The processors are interconnected by a high-speed communication device
called a router. The router allows processors to send data to or receive data
from other processors, in paralle]. The parallel processing unit also supports a
faster form of communication called grid communication (also called NEWS

Version 6.1, October 1991

Chapter 1. The Connection Machine System 7

1.2.2

communication), which allows processors to communicate with their neighbors
in a multidimensional grid.

I/O Controllers and Framebuffer Modules

The parallel processing unit also contains I/O channels. Either a CM I/O
controller (CMIOC) or a framebuffer module can be connected to each I/O
channel. The CMIOC connects the parallel processing unit to the CMIO bus,
and the framebuffer module connects it to a high-resolution color monitor; see
Section 1.2.3 and Section 1.2.4.

Sections

Processors are divided into sections. For example, a 64K paralle]l processing
unit can be divided into four sections of 16K processors each. Each of these
sections can be treated as a separate parallel processing unit, or they can be
grouped together so that more physical processors are available to the user.
Separate sections have their own sequencers, routers, and I/O channels.

The Nexus

The nexus is a switch that allows multiple front-end computers to be connected
to a single parallel processing unit. It can connect any front end to any section,
or valid group of sections, in the parallel processing unit.

The Front End

To the user, the paralle] processing unit appears as an extension of the normal
environment of a standard serial computer. This serial computer is referred to
as a front end; it can be a Sun-4 Workstation or one of several models of the
VAX minicomputer; on the CM-2 it can also be a Symbolics 3600-series Lisp
machine. The front end is the user’s gateway to the Connection Machine
system. It has three main functions:

s To provide an environment for developing and debugging applications.

s To run applications, transmitting instructions and data to the parallel
processing unit.

Version 6.1, October 1991

8 CM User's Guide

s To provide maintenance and operations utilities for controlling the CM
and diagnosing problems.

The front end communicates with the CM parallel processing unit via a board
called the front-end bus interface (FEBI). A VAX or Sun front end can have up
to four FEBISs, allowing four separate connections to the CM at the same time.
In addition, up to four front ends can be attached to a single CM-2 or CM-200
parallel processing unit; up to two front ends can be attached to a CM-2a.

Front Ends Nexus

Figure 3. Front ends connected to a CM

1.2.3 The I/O System

The CM /O system provides a means for moving large amounts of data into
and out of the parallel processing unit at high speeds. The 1/O hardware
consists of the following:

» The I/O channels within the parallel processing unit. There are up to two
I/O channels for every group of 8K processors.

Version 6.1, October 1991

Chapter 1. The Connection Machine System 9

s The Connection Machine I/O bus. Each I/O channel can connect to this
bus via a CM I/O controller (CMIOC). The bus provides high-speed data
transfer (up to 50 Mbytes/sec) among the components of the CM IO
system. Each I/O bus can support up to 16 devices, and there can be
multiple buses in the Connection Machine system.

CM

CMIOC

CMIO Bus

Tape Drive

DV File
Server

Figure 4. The CM J/O system

s The DataVault mass storage system, which provides storage for up to
20 Gbytes of data on up to 78 disk drives. Each DataVault can be
connected to up to two I/O buses.

Version 6.1, October 1991

10

CM User’s Guide

s A VMEIO interface, which provides a high-speed data path between a
CMIO bus and computers having a VMEbus. The VMEIO computer
makes it possible to connect a variety of other devices, such as magnetic
tape dnves, to the CM JJO system.

s A CM-HIPPI system, which connects the CM to an UltraNet network, or
directly to another supercomputer or device that supports the HIPPI
standard.

s An Ethernet local area network that links the VME computer, the CM-
HIPPI system, the DataVault, and the front end. The CM I/O system uses
the Ethernet to carry I/O requests from the front end, responses to these
requests from the VMEIO computer and the DataVault, and data to and
from the front end.

1.2.4 Graphic Display System

1.3

The Connection Machine system provides hardware and software for quickly
visualizing the huge data sets that are typically used in data parallel
applications. The graphics hardware consists of the framebuffer module and a
high-resolution color monitor. The framebuffer, as described earlier, is a board
connected to the I/O channel of a parallel processing unit. It can transfer
graphical information from the processors to the monitor at up to 40 Mbytes
per second. This lets you examine data graphically in real time. The software
supporting this and other forms of visualization is described in Chapter 6.

Programming in the Connection Machine
System

The Connection Machine system provides several high-level languages for data
parallel programming. They are:

s C* (pronounced “see-star”), a data parallel extension of the C
programming language.

s CM Fortran, an implementation of the Fortran 77 programming
language, extended with array-handling facilities from Fortran 90.

= *Lisp (pronounced “star-lisp”), a data parallel extension of Common

Lisp.

Version 6.1, October 1991

1.3.1

Chapter 1. The Connection Machine System 11

In addition, it provides a lower-level parallel instruction set called Paris. User
interfaces to the Paris instructions are provided for Fortran, C, and Lisp. The
instructions can also be called from any of the high-level data parallel
languages. Paris calls can sometimes provide programming efficiencies beyond
those available in the high-level language.

Note that the high-level data parallel languages are extensions of standard
serial languages. Data parallel programs are generally similar to conventional
serial programs. Both use a single sequence of instructions; however, in the
data parallel case, some of these instructions cause operations to be performed
on many data elements at once. CM Fortran, as an implementation of existing
standards, adds no new syntax to these standards. C* and *Lisp add a small
amount of new syntax to their serial counterparts.

Developing, Compiling, Executing, and Debugging
Data Parallel Programs

Your front end has a compiler or interpreter for one or more of the high-level
data parallel languages. The programming process is straightforward:

s Write a program as you normally would for the language’s serial
counterpart, using the front end’s development environment.

s Compile the program using the Connection Machine compiler for the
language (*Lisp programs can be either compiled or interpreted).

s Execute the program by first “attaching” to one or more sequencers of a
parallel processing unit, then running the program as you normally
would. You can also execute your program from a UNIX front end by
submitting it to a queue in the CM batch system. In both cases, your
program may have exclusive use of the sequencers, or it may run under
timesharing with other programs. Program execution is described for all
languages except *Lisp and Lisp/Paris in Chapter 2; *Lisp and
Lisp/Paris are described in Chapter 8.

s Debug the program using a standard debugger for your front end, such
as dbx on UNIX front ends. (Debugging functions for dbx are provided
for each high-level language; these functions let you, for example, print
out individual data elements for processors.) In addition, a cmdbx
debugger is available for CM Fortran programs.

This process is described in more detail in Chapter 4 for all languages except
*Lisp and Lisp/Paris; *Lisp and Lisp/Paris are discussed in Chapter 8.

Version 6.1, October 1991

12 CM User’s Guid

1.3.2 Programming Tools

You can use standard programming tools available on your front end. In
addition, the Connection Machine system provides other tools designed

specifically for CM programming:

s Safety checking. The CM system provides a run-time safety utility that
checks for Paris-level errors and inconsistencies in data parallel
programs.

s Timing. The CM system’s timing utility lets you insert instructions into
a program to calculate the amount of time the program (or sections of it)
uses the CM. :

» Profiling. The CM system has special libraries that allow you to use
UNIX’s gprof profiling utility with data parallel programs. The
gprof utility produces a summary of the amount of time spent in each
routine and a list of which routines call, and are called by, other
routines. (These libraries are not available for *Lisp.)

n Checkpointing. The CM system’s checkpointing package lets you save a
program’s state at specified points during its execution. You can
subsequently restart execution of the program from the point at which it
was saved. (Checkpointing is not available for *Lisp.)

These tools are described in more detail for UNIX front ends in Chapter 6, and
for Symbolics front ends in Chapter 8.

1.3.3 Programming Libraries

The Connection Machine system provides programming libraries in the
following areas:

= J/O. A program can include calls to library routines that perform various
I/O functions—for example, reading data into the parallel processing
unit from an I/O device.

s Graphics and Visualization. There are graphics libraries available that,
among other things, let programs perform basic graphics operations like
point and line drawing, and display images on the CM graphic display
system or on a workstation running the X Window System.

s Scientific Software. The Connection Machine Scientific Software
Library (CMSSL) provides routines for performing data parallel versions

Version 6.1, October 1991

14

1.4.1

of standard mathematical operations such as matrix multiply and Fast
Fourier Transform.

These libraries, and others, are listed in Chapter 4 of this manual for UNIX
front ends and in Chapter 8 for Symbolics front ends; they are also described
in detail in separate volumes of Connection Machine documentation.

Using the Connection Machine System

The Connection Machine system provides a number of user-level commands
on UNIX front ends that let you perform various useful functions. You execute
these commands from the front end, just as you would any operating system
command. (Versions of some of these commands are available as Lisp
functions for execution within a Lisp environment.) For example, these
commands let you:

= Attach to one or more sections of a parallel processing unit (the
cmattach command) to execute a data parallel program.

=« Submit a program to a batch queue for execution on the CM (gsub).
s Find out the status of the CM (cmf ingex).
» Reset the CM hardware and clear processors’ memory (cmcoldboot).

Chapter 2 and Chapter 3 discuss these and other CM commands. Chapter 8
discusses the Lisp function equivalents available in the Lisp environment.

CMFS Commands

Files in the CM J/O system exist in a Connection Machine file system (CMFS),
which is similar to a UNIX file system. Separate Connection Machine file
systems can exist on DataVaults, on VME computers, and even on a front end,
where the system is logically independent of the front end’s own file system.
There are user-level commands available to perform various functions on the
files; most of these commands are analogous to standard UNIX commands.

For example, these commands let you:
s Copy a file within the CM file system (cmcp or dvep).
s Copy a file from a UNIX file system to a CM file system (copytodv).

Version 6.1, October 1991

s Remove a file (cmrm).

= List the contents of a directory (cmls).
Chapter 7 describes the CM file system and related user-level commands.

There are also Lisp function equivalents of most CMFS operations available for
execution within a Lisp environment; see Chapter 8.

Version 6.1, October 1991

Part 11
Using the CM Operating System

Chapter 2

Executing a Program on a

2.1

CM System

PR

This chapter describes how to execute a data parallel program on a Connection
Machine system. In addition to the methods described here, you can also
include routines in your program that cause it to run on the CM automatically
when you execute it; these routines are discussed in Chapter 5.

For information on executing a Lisp/Paris or *Lisp program, see Part V.

Of course, we haven’t yet explained how to write a data parallel program. For
basic information on this topic, see Part III of this guide. For complete
information, see the Connection Machine documentation for the individual
languages. Your CM system also contains numerous sample programs, which
you can compile and execute; see your system administrator for the location of

these programs.

If you simply can’t wait to learn data parallel programming before using the
CM system, we provide a trivial sample program in the first section of this
chapter, followed by instructions on how to compile it. You can use this
program to get a taste for how the CM system works.

NOTE: This program is written in CM Fortran, which may not be available at
your site. Check with your system administrator.

A Simple Program
The program shown below is written in CM Fortran.

The program sets up three arrays of five elements each. The elements of array
A are assigned the values 1, 2, 3, 4, 5; the elements of array B are each

Version 6.1, October 1991 17

18

2.2

CM User’s Guide

assigned the value 2. The program then squares each of these values, adds each
element of A to the corresponding element of B, and puts the results in array
C. It then prints the results. (This, of course, is not a typical data parallel

program.)

(" PROGRAM SIMPLE o)
' INTEGER A, B, C, N

 PARAMETER (N=5) RO
- DIMENSION A(N), B(N), C(N)

DATA A / 1,2,3,4,5 /
: 'va:=.2‘

Q= A*s‘\viz + Br*Q i

_ PRINT *, 'Array C contains:’

~ PRINT *, .Co G :

N G e G e
Type this program in a file on the front end as you normally would; call the file

simple.fcm. (Remember that in Fortran each program statement must begin
in column 7.)

To compile the program, issue the following command at your UNIX prompt
(which is represented as a percent sign in this guide):

[%‘qgffsiﬁple.icm_—0'simple : : . _)

You now have a CM Fortran program called simple that is ready for
execution on the CM.

Overview of Program Execution on a CM

To execute a program on a CM, you must gain access to some of its processors.
We call this attaching to the CM. As we described in Chapter 1, a front end
connects to a CM parallel processing unit via a FEBI (front-end bus interface).
A FEBI can be logically attached to one or more sequencers on the CM; a
sequencer controls groups of processors within the CM.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 19

There are two basic methods you can use to attach to a CM: direct access and
batch access.

s For direct access, simply execute the program as you normally would; if
a FEBI and a sequencer are available, the program attaches and runs. Or,
you can issue the cmattach command to explicitly attach to the CM.
Depending on how you issue the command, your program is executed
immediately (if a FEBI and a sequencer are available) and you are then
detached from the CM, or you enter an interactive subshell from which
you can execute the program and other commands.

s For batch access, issue the gsub command to submit your program to a
batch queue, which is associated with a CM, or to a pipe queue, which
is associated with a group of batch queues; the pipe queue then sends it
to one of the batch queues. Your program attaches to the CM and is
executed when it reaches the head of the batch queue.

In both cases, access to the CM can be either exclusive or timeshared,
depending on how your system administrator has configured the system. With
exclusive access, only one user can be attached to a FEBI and a sequencer at a
time; with timeshared access, multiple users can be attached at a time, and
multiple jobs can be running on the same processors. Exclusive access lets
your program run faster once you are attached to a CM, but timeshared access
makes it easier to attach. Neither affects the way you compile or execute your

program.

The choice between direct access and batch access depends once again on how
your system administrator has configured the CM system. The system
administrator determines whether batch access is available and, if so, how
many queues there are and when the jobs in these queues are submitted for
execution. There may be restrictions as to when you can obtain direct access to
the CM. Thus, while direct access appears to be a faster way to execute your
program, batch access may in fact be easier and surer.

In general, direct access (especially from a subshell) is preferable when you are
developing your program, since it lets you debug your program interactively on
the CM.

NOTE: Your system administrator may have restricted access to the CM to
certain users or groups of users. If you are unable to run a program on the CM,
check with your system administrator to make sure you are on the access list.

Version 6.1, October 1991

20

CM Users Guide

2.3 Obtaining Direct Access to the CM

2.3.1

Overview

The most straightforward method of attaching to a CM is simply to execute
your data parallel program from a front end connected to a CM. If resources
are available, the program attaches, runs, and then detaches. This is referred to
as auto-attaching. NOTE: Your system administrator can disable auto-
attaching; check to make sure that it is enabled before trying to use it.

You can also obtain direct access to a FEBI and one or more sequencers of a
CM by issuing the cmattach command from your UNIX prompt on a front
end that is connected to a CM.

There are two ways of issuing cmattach:

» If you issue cmattach with the name of an executable program as an
argument, you are attached to the CM (if a FEBI and a sequencer are
available) and the program is executed. You are then automatically
detached from the CM. The advantage of this method over simply
executing the program is that you can include options to cmattach
that specify the kind of CM resources you want.

» If you issue cmattach without specifying the name of a program as an
argument, you are attached to the CM (if a FEBI and a sequencer are
available) and placed in an interactive subshell, from which you can
execute the program and issue other UNIX commands. The CM
processors remain attached until you specifically detach them. This
allows you to debug and recompile your program, for example, without
having to reattach to the CM.

Both versions of cmattach have options that let you specify such things as:
=« How many physical processors you want
s Whether cmattach is to wait if no processors are currently available

s The CM to which you want to attach (if your front end is connected to
more than one CM)

In addition, you can issue cmattach in the UNIX background or from a
remote machine (via the rsh command) just as you would any other UNIX
command.

Finally, you can include a routine in your program to do the attaching. See
Chapter 5 for a discussion of attaching and detaching from within a program.

NOTE: See Section 2.3.6 on page 28 for a discussion of cmattach and
timesharing.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 21

2.3.2 Executing the Program

If you simply specify the name of the executable program at the UNIX prompt
of a front end connected to a CM, the program runs on the CM, provided that
resources are available (and that your system administrator has not disabled the
auto-attaching feature). If a FEBI and a sequencer are available, the program
attaches to them and executes. If multiple resources are available, it attaches to
the highest-numbered sequencer that is free on the CM connected to the
lowest-numbered FEBI that is also free.

The output would look like this for the program simple:

4 Attachlng to NAME, a CM2 on 1nterface o)

cold booting... done. .

Attached to 8192 processors on sequencer 0,

microcode version 6104 '

Paris safety is off.

Array C contains: SRR RN ,
- DT SRR T T
FORTRAN STOP : T R TR e e
9 Detaching... done. | T A L)
NOTE: The output when the sequencer is running under timesharing is slightly
different. See Section 2.3.6 on page 28.

Let’s look in detail at this output.

[Attaching to NAME, a CM-2 on interface 0 j

tells you the name and type (CM-2 or CM-200) of the CM system to which you
are attaching, and the front-end bus interface from which you are attaching.

[‘ cold:booting.'.. doﬁe', ':':;_': ‘ SRR]

tells you that the processors to which you are attaching have cold booted. A
cold boot resets the portion of the CM to which you are attaching by clearing
the memory of the processors and performing other tasks. A cold boot is
automatically performed when a program attaches to a CM.

[Attached to 8192 processors on sequencer 0, = :]

tells you the number of the sequencer to which you are attached, and how
many processors are associated with this sequencer.

Version 6.1, October 1991

22

233

CM User’s Guide

[_ ‘microcode version 6104 .]

specifies which version of the CM microcode is running on this sequencer.
Knowing which version of the microcode is running is important if your
program is going to run under timesharing, since your program must be
compiled with the same microcode that timesharing uses.

["vPa‘ris safety is off. ‘ S 2]

tells you that Paris-level safety checking is not being performed on your
program. See Chapter 6 for a description of safety checking.

The next lines of the output come from the program simple. The final line:

[Detaching»Q..‘done.,'- o ; : j

tells you that you are being detached from the CM. You are returned to your
UNIX prompt.

As we mentioned above, this method of executing a program on the CM is
simple and convenient, but it lacks flexibility; you have no choice as to the
CM, sequencer, or interface on which your program is to run. To gain this
flexibility, you must:

s Use the cmattach command, as described below; or

s Include the routine CM_attach_to in your program, as discussed in
Chapter 5.

Issuing cmattach with the Name of a Program

A second method of executing a program on a CM system is to issue the
cmattach command with the name of the executable program as an
argument. If the program itself takes arguments, you can specify them on the
command line as well.

This command line executes the program simple:

[-% cmattach ‘simpive T :]

This obtains exactly the same result as simply typing the name of the program,
as described in Section 2.3.2, provided that resources are available.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 23

23.4

The advantage of using cmattach is that it provides options that let you
specify the CM resource to which you want to attach; see Section 2.3.5.

Using cmattach to Obtain an Interactive Subshell

If you issue cmattach without the name of an executable program, the
following happens:

» If a FEBI and a sequencer are available, you are attached to them, and
the processors controlled by the sequencer are cold booted.

= You are placed in a UNIX subshell, from which you can execute your
program, and issue other CM commands, or issue any standard UNIX
command

To leave the subshell and detach from the CM, type exit or the Ctrl-D key
combination at the UNIX prompt.

The example below shows how you would execute the program simple in
this way. (Text in bold shows what you type; text in normal typeface shows
output from the system.

K $ cmattach N

Attaching to NAME, a CM-2 on interface 0 .
cold booting .. done.

‘Attached to 8192 processors on sequencer 0,
microcode version 6104 '

Paris safety is off

Entering CMATTACH subshell Type "EXlt" or -
control—D to detach the CM. . . :

% --s:lmple o

Array C contains: £ e AR e
B8 13 200 .29
FORTRAN STOP o :
Detaching... done. L T T e
This method of issuing cmattach is most useful when you are developing a
program. You can run the program on the CM, debug it, recompile it, and run
it again; the CM stays attached until you explicitly detach it or exit from the
subshell.

Version 6.1, October 1991

24

23.5

CM User’s Guide

Your system administrator can specify the amount of time users can be idle in
a cmattach subshell. If you exceed this limit, you are automatically detached
from the CM.

If your program contains a call to CM_attach or a related routine, you can
still run it in a cmattach subshell; the program is executed on the
sequencer(s) to which you are attached in the subshell. See Chapter 5.

If you forget that you are in a cmattach subshell and you issue cmattach
with a program name, you are subsequently detached from the CM, but you
stay in the subshell.

See Section 2.3.5 for the options you can specify when issuing cmattach.

Options for cmattach

The cmattach command provides numerous options that let you control how
you attach to a CM; see Table 1. This section describes the most commonly
used options. See the cmattach man page in Appendix F for complete
information on all options. See Section 2.3.6 on page 28 for a discussion of
these options when timesharing is in effect.

Table 1. Options for the cmattach command

Option Meaning

-C CMname Attach to the specified CM.

-cmn Attach to the specified CM model.

-e Obtain exclusive access only.

—g length, length ... Create a virtual processor geometry with the specified
dimensions upon attaching.

-h Print a help message.

-1 interface Attach to the specified FEBI.

-n Do not cold boot.

-p nprocs Attach to the specified number of processors.

-q Do not display informational messages.

-8 sequencer Attach to the specified sequencer(s).

-t Obtain timeshared access only.

-u nnnn Load the specified version of the microcode.

-w ‘Wait for resources.

NOTE: See Appendix A for options used in back-compatibility mode.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 25

The options are the same whether or not you specify a program name on the
command line.

Waiting for Resources: The —w Option

As we mentioned above, you must gain access to both a FEBI and a sequencer
to execute a program on the CM. If one or the other is not available, you cannot
attach to the CM. Specify the —w option if you are willing to wait for the
required resources to become available. For example:

[% cmattach -w simple ' -]

Access to CM resources via the -w option is granted to the oldest request that
fits the available resource. The more general your request, the more likely it is
to be satisfied quickly. If you request a specific resource (for example, an
individual sequencer or individual interface) you may not get it until after more
general requests are satisfied. If no resources are available, you receive this
message:

cxﬁattach:"W,aiting for CM resources to become
available. :

You can use this option to execute a program in the UNIX background. For
example, if you are using the C shell, you could execute simple as follows:

[‘% cmattach -w simple >& output & R | : J

In this example, program output and any error messages are redirected to the
file output. It is important to redirect both standard output and standard
error; if both streams are not redirected, the program could be suspended
waiting to write to the terminal. A useful addition to this command line is the
~q option, which suppresses screen display of informational messages from
cmattach. In addition, if your program requires input, you should redirect
the standard input.

Specifying a Sequencer: The -S Option

With no options specified, cmattach attaches to the highest-numbered
sequencer that is free on the CM connected to the lowest-numbered interface
that is also free. Use the -8 option to specify that you want to attach to a
particular sequencer, or to more than one sequencer. You might ask for a
particular sequencer if, for example, it has a framebuffer connected to it, and

Version 6.1, October 1991

you want to use the CM’s graphic display system. You might ask for more than
one sequencer if your program has a large data set, and you want it to run on
more processors than are provided by a single sequencer.

To specify that you want to attach only to sequencer 1 and execute the program
simple, your command line would look like this:

[% cmattach -81 simple B E R]

To specify that you want to attach to sequencers 0 and 1, your command line
would look like this:

[% cmattach -80-1 simple T ') j

You can specify an individual sequencer, or one of the following combinations
of sequencers: 0-1, 2-3, or 0-3.

Specifying the Kind of Access You Want:
The —e and -t Options

Use the —e option to specify that you require exclusive access to the CM (or
part of it). If you use this option, the system will not attach you to a timeshared
sequencer.

Use the -t option to specify that you require timeshared access to the CM, as
opposed to exclusive access.

Specifying an Interface: The —i Option

Use the -1 option to specify the number of the FEBI to which you want to
attach. This option has an effect only if your front end has more than one FEBI
from which you can reach the CM. Use the cmfinger command to obtain
information about interface numbers; see Chapter 3.

Specifying a CM: The —C Option

If you are lucky enough to have more than one CM available from your front
end, you can use the ~C option, followed by the name of a CM, to choose the
CM to which you want to attach. For example,

[% cmattach -w -C ruby = s g v : , : .]

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 27

attaches you to the first available sequencer on the CM named Ruby; the
command is to wait if no resources are available. (Note that case does not
matter.)

Specifying the CM Model: The —cm Option

If you have more than one CM available, you may also have more than one
model of CM. Use the - cm option to specify the model to which you want to
attach. The choices are 2 and 200. Use -cm2 if you want to attach to a CM-2
series machine; use - cm200 if you want to attach to a CM-200 series machine.

Specifying a Geometry: The —g Option

Virtual processors (VPs) on the CM are arranged in VP sets, which have a
geometry. The geometry specifies the “shape” of a VP set. This shape affects
the way the processors communicate when a program is running. Choosing an
appropriate geometry can increase the efficiency of a program. You can specify
the geometry of a VP set in Paris programs; in programs written in high-level
languages, the compiler does this for you. You can also specify an initial
geometry (and the size of the initial VP set) for a program by using the -g
option to cmattach. Specify the values for each axis of the geometry,
separated by commas, with no spaces in between. Each value must be a power
of 2, and the total number of processors must be an integer multiple of the
number of physical processors to which you are attached. For example,

[% cmattach -g 64,256 SRR o]

creates a VP set of 16,384 processors, arranged in a 64-by-256 geometry.

If you do not use the ~g option to specify a geometry, you get a default two-
dimensional geometry that depends on the number of processors to which you
are attached. These default geometries are listed in Table 2.

Table 2. Default geometries

Number of Processors Geometry
4K 64-by-64
8K 64-by-128

16K 128-by-128
32K 128-by-256
64K 128-by-512

Version 6.1, October 1991

28

CM Users Guide

2.3.6

This option is not useful for running C* or CM Fortran programs.

For more information on VP sets and geometries, consult the Paris Reference
Manual and Introduction to Programming in C/Paris.

Specifying the Microcode Version: The —u Option

Use the —u option, followed by a four-digit number, to specify which version
of the CM microcode you want the CM to use. If you omit this option, you get
the latest version of the microcode. Typically, you would use this option if you
had compiled and linked your program using an older version of the
microcode, and you didn’t want to bother recompiling. If you attempted to run
your program without recompiling, you would receive a warning about
incompatible microcode versions.

NOTE: Do not use this option if the sequencer to which you are attaching is
running under timesharing. In that case, your program must use the current
version of the microcode. See “Timesharing and Microcode Version” on page
30. If you do use this this option, and timesharing is running a different version
of microcode from the one you specified, cmattach exits without attaching
you, and it prints an error message.

Obtaining Direct Access under Timesharing

Your CM system may be set up so that one or more sequencers allow
timeshared access, under which multiple processes can run on a sequencer at
the same time. To find out if timesharing is operational on a sequencer before
you attach to it, issue the cmf ingex command, as described in Chapter 3; if
timesharing is operational, cmfinger will display “ {CM} *” in the
“COMMAND” field for that sequencer.

You can attach to a timeshared sequencer just as you would to a sequencer that
is not running under timesharing. If you attach to a timeshared sequencer, you
receive a response that looks like this:

4

{cM}* Tlmeshanng on FOO . N
5 ‘Attached to 8192 processors on sequencer o
~microcode version 6104

 Paris safety is off.

Entering CMATTACH subshell. Type wexit" or -
control-D to detach the CM... =

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 29

There are a few restrictions in running processes under timesharing. They are
discussed in the sections below. See Appendix A for a discussion of
timesharing and back-compatibility mode.

Performance under Timesharing

With a Sun front end, you can in general expect your program to execute at the
same speed under both timesharing and exclusive mode (except, of course, for
the slowdown related to being swapped out while other processes execute).
With a VAX front end, execution can be significantly slower under timesharing.
One way to reduce the penalty is to minimize the number of times your
program requires the CM to synchronize with the front end, since the
mechanism that timesharing uses for this with a VAX is much slower than the
mechanism used when a program has exclusive access to the CM. Appendix C
lists Paris instructions that cause the CM to synchronize with the front end.

If performance is unacceptable under timesharing, use the -e option to
cmattach to obtain exclusive access to the CM, or submit the program for
execution in a batch queue running in exclusive mode. See Section 2.4.4 on
page 42 to learn how to determine if a batch queue is running in exclusive
mode.

Maximum Number of Processes

There is a maximum number of processes that can use timesharing at the same
time; the system administrator sets this number. If you have obtained a
cmattach subshell, and you receive a message with this format when you try
to execute your program:

v prog-:namvé:waitin'g for ts-daemon to 'have a process-

the limit has been reached, and your program cannot run until a process exits.
A period is printed every thirty seconds until a slot becomes available and the

program runs.

If you don’t want this behavior, set the environment variable CM_WAIT to
false. If you do this, you simply receive the message saying that no process-
slots are available. You can then try running the program later, or on another
CM resource.

Version 6.1, October 1991

30

CM User s Guide

It is possible that you will not even be able to obtain a cmattach subshell
when trying to run a program under timesharing. If this happens, you receive
the following message after issuing cmattach:

;Er::or accessing "/dev/cm" passed in CMDEVICE from i
: :»f»env1r0nment No more processes :
' Please cmattach again to run thls program
f.‘.;,ngttach febi falled i :

In this case, you can use the —w option to cmattach to wait for a cmattach
subshell. It is likely, however, that the sequencer is extremely busy under these
circumstances, and you may be better off trying a different sequencer.

Timesharing and Memory Size

Your system administrator may have restricted the size of processes that can
run under timesharing. Even if there is no restriction, timesharing requires
about 6 Kbits of overhead in memory; the result is that programs with large
memory requirements that ran under exclusive access to the CM may be unable
to run under timesharing.

If you receive an error message like this after executing your program:

: Error _You have run out of CM memory th.le trylng
to allocate 32768 blts of stack :

your program required too much memory to execute under timesharing. Try
executing it under exclusive access. Or, ask your system administrator to
change the timesharing configuration so that programs with larger memory
requirements are accepted. (As mentioned above, this may not solve the
problem, if it is the timesharing overhead that is preventing your program from
running.)

Timesharing and Microcode Version

As mentioned above, you cannot use the —u option when attaching to a
timeshared sequencer. Your program must be compiled with the same version
of the microcode that timesharing itself uses—the microcode version reported
when you attach to the sequencer without using the —u option. In the example
shown at the beginning of this section, this is microcode version 6104.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 31

Timesharing and the Framebuffer

Although timesharing allows multiple programs to use a sequencer at the same
time, only one program can have access to the framebuffer module and high-
resolution color monitor that may be connected to the sequencer. If your
program tries to use the framebuffer when it is already in use, you will receive
an error message.

Timesharing and the DataVault

Unlike the framebuffer, the DataVault allows multiple processes to gain access
to it. Therefore, there are no restrictions on using the DataVault under
timesharing.

Timesharing Signals

Your process can receive one of the following signals when running under
timesharing:

» When the timesharing daemon exits because of an administrative request,
your process will be detached from the CM and it will receive a SIGURG
signal, as happens whenever a process is detached from the CM.

s The timesharing daemon sends out a 20-second warning in the form of
a SIGTERM signal when it has been asked to shut down, allowing your
process to shut itself down. The timesharing daemon also sends out a
SIGTERM signal when it exits—including when it crashes (in this case,
there is little you can do to recover your process later).

» When the timesharing daemon detects that your process has corrupted
the memory of another process, it will send your process a SIGILL
signal (a message is also printed on the controlling terminal of the
process).

SIGILL will also sometimes be sent when your process sends bad data
to the sequencer, effectively crashing the sequencer microcode (the
timesharing system can’t recover your process in this case, but other
users won’t be affected).

s When the timesharing daemon detects that another process has
corrupted the memory of your process, it sends a SIGLOST signal to
your process, as well as sending a message to your controlling terminal.

s If the timesharing daemon encounters a swap error when swapping your
process in, it sends the process a SIGKILL signal.

Version 6.1, October 1991

32

2.3.7

2.4
24.1

CM User's Guide

Direct Access and Batch Queues

Your CM may provide one or more batch queues to allow batch execution of
data parallel programs. When the queue has a job to run, it may automatically
detach the process currently attached to the sequencer with which the queue is
associated; this depends on how the queue is configured. Therefore, it is a good
idea to become familiar with the batch queues on your system, so that you can
avoid running your programs on a sequencer where one of these queues is
active. To do this, issue the gstat command, as described in Section 2.4.4 on
page 42. In particular, see the description of the —x option and enforce mode.

Obtaining Batch Access to the CM
Overview of the CM Batch System

In a batch system, you submit one or more programs as a request to a queue.
The batch system in turn submits the requests in the queue for execution. Your
request is generally executed when it reaches the head of its queue.

The CM batch system is based on NQS (Network Queueing System), a
standard batch system. NQS can also be used for batch submissions to
computers other than the CM. In this guide, however, we focus only on using
NQS to submit requests for execution on the Connection Machine system.

The CM system administrator is in charge of configuring queues to meet the
needs of your site. You may not have any queues, or you may have several.
You may have only batch queues, which submit requests directly for execution,
or you may in addition have pipe queues, which pass requests along to batch
queues. Pipe queues are useful because they can be associated with several
different batch queues; if one is unavailable, the pipe queue can try the next,
until it finds one that will accept the request. You don’t have to worry about
finding the available queue yourself.

Here are some of the characteristics of batch queues that a system administrator
can configure:

» What resources the queue uses. A batch queue can attach to a particular
sequencer, for example, leaving the rest of the CM available for direct
access.

n When the queue submits its requests for execution. A batch queue can
operate continuously, or it can operate only at specified times—for
example, from midnight to six in the morning.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 33

24.2

n How the queue interacts with direct-access users. For example, requests
submitted to the queue can have exclusive access to a sequencer, or they
can compete with other users for access to the sequencer.

To submit a request for execution via either a batch queue or a pipe queue, you
either:

s Issue the gsub command, using as an argument the name of a script file
that contains the name of the program or programs to be run; or

= Submit the program or programs to gsub from the standard input.
See Section 2.4.2, below.

To obtain information about a queue, or about the status of a request in a
queue, issue the gstat argument. See Section 2.4.4 on page 42.

Table 3 lists the user commands for the NQS batch system.

Table 3. User commands for the NQS batch system

Command Meaning

qdel Delete or signal one or more batch requests.
qlimit Display the supported limits on batch queues.
gstat Display the status of queues and batch requests.
gsub Submit a batch request.

Submitting a Batch Request: The gsub Command

Use the gsub command to submit a program for execution on the CM via
either a batch queue or a pipe queue.

NOTE: The gsub command has many options associated with it; in this guide,
we discuss only some of the more important. See the man page for gsub in
Appendix F for a complete discussion of all its options. Table 4 summarizes the
gsub flags.

Version 6.1, October 1991

CM Users Guide

Table 4. Options for the gsub command

Option Meaning
-a time Do not run the request before the specified time and/or date.
-e filename Direct the standard error output to the specified file.
-eo Direct the standard error output to the batch request output file.
-ke Keep the standard error output on the execution machine.
-ko Keep the standard output on the execution machine.
-1c size Set the per-process corefile size limit.
-1d size Set the per-process data-segment size limits.
-1f size Set the per-process permanent-file size limits.
=1n value Set the per-process nice execution value limit.
-1s size Set the per-process stack-segment size limits.
-1t time Set the per-process CPU time limits.
-1w size Set the per-process working set limit.
-mb Send mail when the request begins execution.
-me Send mail when the request ends execution.

=mu username
-nr

Send mail about the request to the specified user.
Declare that the request is not restartable.

-o filename Send the output of the request to the specified file.
~p priority Set the priority for the request in the batch queue.
-q queue Send the request to the specified batch queue.

-r name Assign the specified request name to the request.
-re Remotely access the standard error output file.
-ro Remotely access the standard output file.

-8 shell Use the specified shell to interpret the request.

-xX Export all environment variables with the request.
-z Submit the request silently.

The Basics

To execute the program simple via the queue emq1, put the program’s name
in a script file. A script file is simply a UNIX file that contains commands to be
executed. For example, you could create a file called simple_script that
contains just the word simple. You could then submit this to cmgl as

follows:

(% amwb -q cnqr simple_seript

D

The ~q flag specifies the name of the queue to which you are submitting the

request.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 35

The system displays a response like this:

['Réquest;_276.barney.. acme.com submitted to queuei cmgl j

The number 276 is a sequence number assigned to this request by NQS.
276 .barney.acme.con is the request-id for this request.

When simple is finally executed, its output is placed in a file; error messages
are placed in another file.

Submitting a batch request has these basic elements:
= Specifying the queue to which the request is being submitted
» Specifying the request to be run
= Specifying options that affect the way the request is to be run

You can embed gsub options at the beginning of the script file, along with the
name of the executable program and other commands. See “Specifying the
Queue,” below, for an example. NQS looks at options in the script file only if
they are not specified on the gsub command line; this lets you override a
script file option by specifying a different setting for the option on the gsub
command line.

Specifying the Queue

There are several different methods of specifying the queue to which you want
to submit your request. You can find out the names and characteristics of
available queues by issuing the gstat command; see Section 2.4.4 on
page 42.

You can use the following methods to specify a batch queue:

» Use the —q option on the gsub command line, as shown in the example
above. NQS submits the request to the queue you specify.

» Embed the ~q option in a script file that you name on the gsub
command line. All gsub options must appear at the beginning of the
script file, and must begin with a pound sign (#) followed by an “at”
sign (@) and a dollar sign ($). The option must begin immediately after
the dollar sign—no white space is allowed. Comments must begin with
a pound sign. For example, the following script file sends the program
simple to queue cmql for execution:

Version 6.1, October 1991

36 CM User’s Guide

: # iEXamp'l’e 6f- :é vbatchv"fs:c':"r'.lp"t'.:file; Lt :
'f':.v'# ®$ q cmql # Send request to cmql unless
S overndden on command llne S
~simple L T L '
If you named this script file simple_script, you could execute the
program by issuing the following command:
[% q'sub: .simi:le_s‘c:ipt SR T S L :)

s Set the environment variable QSUB_QUEUE to the name of the queue to
which you want the request submitted. You would typically do this to
set up a default queue for all requests, which you could override for a
specific request by using the ~q option. If you use the C shell, you could
put the following command in your . cshxc file to set the default queue
to cmg2:

E”se’tem'r' QSUB_QUEUE cmg2 BRI J

If you don’t use any of these methods for specifying a queue, the request is
submitted to the default batch queue for the system, if your system
administrator has defined one.

Specifying a Request from a Script File

As we have already shown, you can execute a program by including its name
in a script file. A script file is the batch equivalent of a cmattach subshell
(see Section 2.3.4 on page 23). For example, you might want to execute the
program simple twice, once with run-time safety off (the default), and once
with safety on. You use the CM operating system command cmsetsafety to
turn safety on; see Chapter 6. A script file could then contain the following
commands:

s:.t'nple : ;
cmsetsafety on. .
31mp1e iy

When the request is run, the first execution of simple is with safety off; the
second is with safety on.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 37

You can use UNIX commands and other CM operating system commands as
well. You shouldn’t, however, explicitly attach to or detach from the CM, since
typically the queue takes care of that for you. Note that this means you can’t
specify options to cmattach—for example, the b option to execute in back-
compatibility mode; see Appendix A. If this is a problem, your system
administrator can set up a queue that does not automatically attach to a CM; in
that case, you must explicitly attach to and detach from the CM. Check with
your system administrator to find out if such a queue exists.

Typically, NQS interprets the commands in a script file exactly as if you had
typed them at your UNIX prompt. It may, however, use a different shell to
interpret the commands, depending on how your system administrator has
configured NQS. See “Choosing a Shell” on page 40.

Specifying a Request from Standard Input

Instead of using a script file, you can simply enter the request from standard
input—that is, directly after the gsub command line. Put each command or
program name on a separate line, and type the Ctrl-D key combination at the
end to signal that there is no more input. For example:

$ gsub —-q cmgl
simple
 cmsetsafety on
<~ 'simple
.. Ctrl-D

If you are executing a shell under Emacs or Gmacs, type Ctrl-C Ctrl-D.

The Output from a Request

NQS places the output from a batch request in a file, which is by default placed
in your current working directory. You can control the name and location of
this file. The default filename consists of the first seven characters of the script
name, followed by .o, followed by the sequence number of the request. Thus,
in our example in “The Basics” on page 34, NQS would put the output in the
file simple_.0276 in your current working directory. Messages to standard
error go into a file with . e in the name instead of . o.

If you submit the request from standard input, the default output and error files
would begin with STDIN. o and STDIN. e, followed by the sequence number.

Version 6.1, October 1991

38 CM Users Guide

To specify a different output filename, use the —o option, followed by a
pathname, on the gsub command line or in a script file. NQS writes output to
the pathname you specify. For example,

[% qsub -0 /réqu’es't‘:vs/simple_ﬂ.dut‘ sin;pié’ s .]

causes the output of simple to be written to /requests/simple.out.

Similarly, use the —e option to specify a different pathname for standard error
output.

Another way to change the name of the output file is to use the - option,
followed by a request-name of up to 15 characters. This request-name
identifies the request when you issue the gstat command to check the status
of the batch queue; if you don’t specify a request-name, NQS uses the name of
the script file (or STDIN) instead. If you do specify a request-name, NQS
substitutes it for the name of the script file (or STDIN) in the name of the
output file.

Here is sample output for our simple_script batch request:

- Cold boot...

"Arrayvc contains: R N :

: 5 8 1320 29
~ FORTRAN' sTOP : : :

logout

In running the batch job, NQS runs a script as if logged in as you; start-up files
like .cshrc and . login are executed. This means that you may see various
messages along with the output. In particular, you will probably see the
following message:

3 Warnlng no access to tt.y, thus no jOb control 1n L
th:Ls shell ' L

This comes from the shell, warning you that there is no terminal associated
with this job. You can ignore this message.

Here is the standard error output:

! Attached to 8192 processors on sequencer 0.
' mlcrocode version 6104 .
’ ‘Parn.s safety is off.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 39

Note that while the job is running, NQS considers your home directory to be
your current working directory (because it runs the job as a newly logged-in
process). Thus, if the process dumps core, the corefile is placed in your home
directory, rather than the directory from which you submitted the job.

Setting Limits on a Request

The gsub command has many options you can specify to set the limits on the
amount of front-end resources a batch request can use. The batch queue has its
own set of limits. You can find them out by issuing the gstat command; see
Section 2.4.4 on page 42. You may want to set lower limits to obtain more
favorable scheduling for your request, or to avoid running up accounting
charges if, for example, your program goes into an infinite loop.

For example, use the —1t option to set a limit on the amount of front-end CPU
time an individual program within a batch request can use. The following
command sets a limit of 120 seconds of CPU time for the program simple:

[, % gsub -1t 120 simple : SOt j

SunOS and ULTRIX do not support all of the limit options that gsub lets you
specify. If you specify an unsupported option, NQS ignores it. To find out
which options your front end supports, issue the glimit command. For
example, if your front end is named Barney, issue glimit as follows:

[‘% glimit barney v o]

The response might look like this:

Core file size limit (-lec) ‘ﬂ\
Data segment size :limit (-1d)

Per-process permanent file size 11m1t (- lf)

Nice value (-1n) : -

Stack segment size limit (-1s)

Per-process cpu time limit (-1t)

Working set limit (-1w)

Shell strategy = FREE - ‘ o R
S : ; o : _)
These are the limits you can set for this front end. The “shell strategy” in this

response refers to the default way in which NQS chooses a shell to interpret
commands in a script file. See “Choosing a Shell,” below.

Version 6.1, October 1991

CM User’s Guide

Choosing a Shell

As we mentioned above, your system administrator can specify how NQS is to
interpret commands in batch script files. This is called the shell strategy; you
can find out the default shell strategy via the glimit command. The possible
shell strategies are:

u Free. Your login shell determines the appropriate shell to be used to
execute the commands in your script file, and executes that shell. This
typically means that NQS uses the shell that would have been used if
you had issued the commands in the script file interactively. For
example, if your script file begins with the line

[#,‘/bin'/v,;sh e ; T |]

your login shell would execute a C shell for the script file.

n Login. NQS uses your login shell to execute the commands in your
script file, regardless of the contents of your file.

n Fixed. NQS uses a specified shell to execute the commands, regardless
of the contents of your script file. Use glimit to find out the name of
this shell.

You can override this strategy by using the -8 option of the ggsub command.
For example,

[$ qgﬁh -8 /bin/csh“'sixﬁple_sci;ivpt L ; : j

specifies that the C shell is to be used to interpret the commands in the script
file simple_script.

Setting a Priority for a Batch Request

To set a priority for your batch request in its queue, use the gsub option -p,
followed by an integer from O to 63, inclusive; 63 is the highest priority, and 0
is the lowest priority. This priority determines the request’s position in the
queue. The request is placed in front of all requests with lower priority, and
behind all requests with higher or the same priority.

If you don’t specify a priority, the request is assigned a default priority, as set

by the system administrator. Use the gstat command to determine the default
priority for a queue; see Section 2.4.4 on page 42.

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 41

NOTE: NQS does not necessarily run requests in the order in which they appear
in a batch queue. It can take requests out of order to use resources efficiently.
Generally, however, requests at the beginning of the queue are run before
requests that appear later in the queue.

Receiving Mail about a Batch Request

Use the gsub options —=mb and -me to specify that NQS is to send you mail
about your batch request. Specify ~mb to get mail when the request begins
execution; specify —me to get mail when the request ends execution.

To obtain more information about the status of a batch request, use the gstat
command; see Section 2.4.4 on page 42.

Wall-clock Limits for Queues

Your system administrator can set a wall-clock limit for a queue. No request can
run longer than this limit; once the limit is reached for a request, NQS sends a
SIGKILL signal to all processes that are part of the request. (The limit does not
include time spent waiting in the queue, but it does include time spent swapped
out under timesharing.) Use the gstat command with the -x option to
determine the wall-clock limit, if any, for a queue; see Section 2.4.4. You cannot
change this wall-clock limit for an individual batch request in the queue.

When a process is killed, its output (. o) file will probably be empty; NQS will
send mail to the submitter indicating that the request was aborted.

A queue can also have a warning limit, which is less than the wall-clock limit;
if a request reaches the warning limit, NQS sends its processes a SIGXCPU
signal. If the request’s shell script and all its processes contains handlers for
SIGXCPU, the request can catch this signal and carry out an orderly shutdown
before the wall-clock limit is reached and it is killed. (NOTE: Currently a
request has only 60 seconds after the warning limit is reached before it is
killed, no matter what the wall-clock limit is.)

Timesharing and Batch Requests

The sequencer (or sequencers) with which a batch queue is associated may
operate under timesharing, depending on how the system is configured. To find
out if a sequencer is operating under timesharing, use the cmfinger
command, as discussed in Chapter 3. If a batch queue is associated with a
timeshared sequencer, more than one request can run at the same time.

Version 6.1, October 1991

42

CM User’s Gutde

24.3

244

In general, you don’t have to be aware of whether a batch queue is associated
with a timeshared sequencer. However, see Section 2.3.6 on page 28 for some
restrictions on processes running under timesharing.

Deleting a Batch Request: The qdel Command

Issue the gdel command to delete a request from a queue. As an argument,
specify the request-id that was displayed when you submitted the request. (You
can also obtain the request-id by issuing the gstat command; see Section
2.4.4, below.) For example,

3 gsub -q cmql simple_ script :
Request 276. barney acme com submltted to queue
. cmql S . : . o
% qdel 276

submits a request, then deletes it. (You don’t need to specify the hostname if
you are issuing the command from the local host.)

This form of the gdel command does not delete a request that is actually
running. To do this, use the —k option. This option sends a SIGKILL signal to
the specified request, causing it to exit and be deleted from the queue. If the
request contains more than one process, all are signalled.

To send a signal other than SIGKILL to a running request, specify its number
instead of k (see the discussion of sigvec in your UNIX documentation for
signal numbers). For example, to send a SIGTERM signal to a running request
with request-id 276, issue this command:

[f:%VQdel'fls.'z?G:E"_{ j

Obtaining Information: The gstat Command

Use the gstat command to obtain information about a queue and the batch
requests in the queue.

For example, to find out the status of all your requests on any queue, simply
issue this command:

(Cwasac o)

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 43

The response might look like this:
(cmql@barney.aéme.com; type=CM_BATCH; CM=(carvel:0);)
_ [ENABLED, - RUNNING}; pri=1i6 - : ’ :
0 exit; 0 run; O stage; 1 queued; 0 wait; 0 hold; 0 arrive;
REQUEST NAME = REQUEST ID USER PRI STATE = PGRP
\1:simp‘le__scxipt 276 .barney smith 31 QUEUED 2085 =)

Let’s take a closer look at the information in this response.
cmgl@barney.acme.com identifies the queue.
type=CM_BATCH specifies the kind of queue.

CM= (carvel:0) identifies the CM and sequencer with which this queue is
associated.

[ENABLED, RUNNING] shows the state of the queue. A queue can be
enabled, closed, or disabled.

s If a queue is enabled, requests can be submitted to it.

» If a queue is closed, NQS is not running on the front end. No requests
can be submitted to it.

» If a queue is disabled, the system administrator has prevented any more
requests from being placed in the queue.

A queue can also be running, inactive, stopped, stopping, or shutdown.

s If it is running, one or more requests are currently being executed, and
other requests are prevented from running only because they haven’t
been scheduled.

» If it is inactive, no requests are being executed, and requests in the
queue are prevented from running only because they haven’t been
scheduled.

s If it is stopped, queued requests are blocked from running, and no
requests are currently running. The system administrator can stop a
queue. If a queue is stopped, you can still submit requests to it (if it is
enabled), but they are just added to the queue until it starts again.

» If it is stopping, the queue will be stopped once the current request has
run.

s If it is shutdown, NQS is not running on the front end.

Version 6.1, October 1991

CM User's Guide

pri=16 specifies the interqueue priority, set by the system administrator. If
more than one queue is attempting to run a request at the same time, the one
with the higher priority goes first.

0 exit; 0 run; 0 stage; 0 queued; 0 wait; 0 hold; O
arrive indicates the number of requests at each stage of the batch cycle. A
request can be arriving, holding, waiting, queued, staging, routing, running,
departing, or exiting.

s A request is arriving if it is being placed on the queue from a remote
host.

= A request is holding if it is currently prevented from entering any other
state because a hold has been placed on it; holds are currently not
implemented by NQS.

s A request is waiting if it was submitted with the constraint that it not be
run before a certain date or time, and that date or time hasn’t arrived yet.
You submit a request in this way by using the gsub option -a.

s When a request is gueued, it is eligible to run.

= If the queue is a pipe queue, a request can be routing or departing as it
passes through the queue.

= A request is staging when its input files are being brought on to the front
end on which it is to execute.

s A request is running when it is actually executing. It is exiting when it
has completed execution and the required output files are being returned.

For each request in the queue, gstat displays the request name, the request-
id, the name of the user who submitted the request, its priority, its state, and its
process group. If the request name began with a digit, an R is added to the
beginning of it. The priority in this case is the request’s priority within this
queue. You specify this priority for a request by using the gsub option -p. All
processes that are part of the same batch request are assigned to the same
process group.

Options to gstat

By default, gstat displays the status of all your batch requests on all queues.
Specify a particular queue if you want to see only the requests on that queue.
Use the -a (all) option to see the status of all batch requests, not just your own.
For example,

Version 6.1, October 1991

Chapter 2. Executing a Program on a CM System 45

displays the status of all batch requests on the queue cmgl. Use the -1 (long)
or —m (medium) option to obtain more information about individual requests.
Use the -x (extended) option to obtain more information about the queue;
information like that shown below is displayed:

/

Run limit =1; n". :) Lo Vv ‘\
Cumulative ‘system space tlme =1585.21 seconds :

Cumulative user space time = 671.31 seconds

Unrestricted access)
Per~process core file size limit = 1 megabytes <DEFAULT>
Per~process data-size limit = 1 megabytes <DEFAULT>

Per~pro¢ess perménent file size-limit = UNLIMITED

Per—process execution nice-value = 0 <DEFAULT>

Per~process: stack size limiti="1 megabytes <DEFAULT>
Per—ptoéess CPU. time limit = UNLIMITED

Per~process,work1ng set dimit.o="21" megabytes <DEFAULT> g
Per- requestfwall -clock ‘time ‘1imit: =.1000 seconds (max). no warnlng
Connection Machlne‘a551gned = RUBY : :
Sequencer resourcefa551gned =0 e
Connection Machlne usage descr1ptlon = Queue for CM Ruby o
Connection Machine exclusive 'mode = ON

Connection Machine enforce mode = OFF T

Restriction Window start time = Wed Aug 31 14:00:00 EDT 1990
Restriction Window stop time = Wed Aug 31 22 00: 00 EDT 1990
Restriction Window MODE = TIMEDATE '
Restriction Window send TERMlnate 51gnal = ON

Comments about some of these items:

= Run_limit refers to the maximum number of requests in the queue
that are allowed to run at any given time. This should be 1 unless the
CM is operating under timesharing.

= Unrestricted access means that anyone can use the queue. The
system administrator can restrict access to specified users and groups.

s The wall-clock time limit for this queue is 1000 seconds; there is no
warning limit.

s Connection Machine assigned and Sequencer resource
assigned specify the sequencer and CM that this queue uses.
Connection Machine usage description gives information

Version 6.1, October 1991

46 CM User’s Guide

about this sequencer and CM. These fields are applicable to batch
queues only.

s The setting of Connection Machine exclusive mode
(applicable to batch queues only) indicates whether this queue allows
other users to attach to its resource while a request is running. If the
setting is ON, no other users can attach while a request is running; if
timesharing was previously in effect, the queue turns it off while the
request is running. If the setting of exclusive mode is OFF, batch queue
requests compete with other users for the CM resource.

s The setting of Connection Machine enforce mode (batch queues
- only) indicates whether this queue forcibly detaches users attached to its
resource when a request in the queue is ready to run. It is typically set

to ON only if exclusive mode is also set to ON.

If the setting is ON, and timesharing is not in effect, the queue detaches
the user currently attached when it receives a request. If timesharing is
in effect, it detaches all users from the resource and turns off
timesharing.

If the setting of enforce mode is OFF, the queue does not forcibly detach
users from the resource. The queue waits—perhaps indefinitely—for

currently running processes to finish and for the resource to become
available.

= The Restriction Window indicates the time during which the
queue is available to run requests.

Version 6.1, October 1991

Chapter 3

Miscellaneous CM Operating System
Commands

This chapter describes several useful CM operating system commands. Issue
CM commands from the UNIX prompt on a front end, just as you would any
standard UNIX command. You can also execute the command from any other
computer in the CM system that has the CM System Software loaded. For
example, if your system has a VME I/O host computer, you can issue CM
commands from that computer as well. See the man pages on-line or in
Appendix F for reference descriptions of these commands.

Versions of some commands are available as routines you can call from within
C or Fortran programs; see Chapter 5.

Versions of some commands are also available as Lisp functions for execution
from within a Lisp environment. See Part V of this guide. ‘

Table 5 lists the commands discussed in this chapter.

Table 5. Miscellaneous CM operating system commands

Command Use

cm Displays information about a cmattach subshell.
cmcoldboot Resets a CM.

cmdetach Detaches a user from a CM.

cmfinger Displays CM interfaces.

cmlist Lists available CMs.

cmman Displays CM and UNIX manual pages.

cmnice Runs a program with low timesharing priority.
cmps Lists processes running under timesharing.
cmrenice Changes the timesharing priority of a running process.
cmtime Times a CM program.

Version 6.1, October 1991 47

48 CM Users Guzde

3.1 Obtaining Status Information:
The cmfinger Command

Use the cmfinger command to find out the current status of CMs connected
to your front end. This command prints out a table that shows which front ends
are connected to which sequencers of a CM system, who is using the
sequencers (and who is waiting for them), what command is being executed,
and configuration information about the system.

To find out the status of an individual CM, specify its name on the cmfinger
command line. To find out the status of all CMs in your system, use
cmfinger with the cmlist command; see Section 3.2 on page 50.

The cmfinger command displays information like this:

(e Seqs Size Front end I/F User 1Idle Command)
FOO »karen oh 06mv"cmattach“‘:"

i FOO ::“‘ :

. cm2 w1th 1024K memory, 32-b1 ;_floatmg pomt

i : framebuffers on -sequencers 0 1 (seq 0 is. free)

3 ;f;-CMIOCs on. sequencers 0 1 (seq 0 is fxee) """
1‘ free seq ‘on FOO —- 0 - !totalllng 8K procs

3 processes waltlng-

tsam[4147} waltlng s;mce 8 23 36 PM, wants 1/f 0 ucc(s),.l'”@»E .
soph1e[4148} waltlng s:mce 9'»: 09 39 PM, ‘wants_ ;1/f 0 ucc(s)

In this case, the CM-2 called Foo has two front-end interfaces: interface (I/F) 0
on Wotan and interface 0 on Epicurus. The user named Karen is attached to
sequencer 1 of Foo via Wotan’s FEBI; this sequencer has 8K processors. (Note
that the number of the front-end interface does not have to correspond to the
number of the sequencer to which it attaches.) Karen is running a cmattach
subshell; she has been idle for six minutes. No one is using the FEBI on
Epicurus.

Version 6.1, October 1991

Chapter 3. Miscellaneous CM Operating System Commands 49

The information below the list of users provides more data about the CM
- system:

» The memory size of the processors in this CM is 1 megabyte; it has 32-
bit floating point chips.

» Foo has a framebuffer and a CMIOC on both sequencer 0 and
sequencer 1.

» Sequencer 0 of Foo is free for use.

n There are three users waiting for the CM. User Patrick will accept any
sequencer but wants interface 0; user Sam wants interface 0 and
sequencer 1; user Sophie will accept any interface but wants both
sequencer 0 and sequencer 1.

Now let’s look at another configuration:

CM =~ Segs Size Front end I/F User Idle Command \

[N -

CLOUSEAU 0-'1v 8K wotan o0 kathy o "tests"
cm2 with 256K memory, 32-~bit floatihg po.invt
_No free:sequencers on CLOUSEAU

No process waiting for an interface or sequencer (s)

FOO 1 4K wotan 1 root . "{CM}*v

FOO o : - v : = i - ‘;kyle i : o "simple" :
FOO , _ . karen OhoO6m "cmattach"
~ FOO 0 4K epicurus: - 0 krill :

FOO =« - S thorlac - 1 unknown""

~cm2 with 1024K memory, 32-—b1t floatlng polnt
© framebuffers on sequencers 0 1
 CMIOCs on sequencers 0 1
i ~No free sequencers on FOO_
iNo process waltlng for an 1nterface or sequence:(s)'

In this case:

s User Kathy is attached to two sequencers on CM Clouseau and is
running a program called tests.

Version 6.1, October 1991

50

CM User’s Guid

3.1.1

32

» Sequencer 1 of Foo is operating under timesharing; the entry {CM}*
under Command indicates this. Users Karen and Kyle are running
timeshared programs on sequencer 1.

» User Krill is attached to sequencer 0 of CM Foo. cmfinger doesn’t
know what command Krill is running, or how long Krill has been idle.
This suggests that Krill’s front end is a Lisp machine; Lisp machines do
not provide idle time or command information (because the concept of a
command is meaningless on a Lisp machine).

s cmfinger reports that the front end Thorlac has no sequencers. It
doesn’t know if anyone is using interface 1 on Thorlac. This can happen
if you issue cmfinger from one front end (for example, Wotan) to
obtain information from other front ends. cmfinger prints the
information it can obtain over the network; if the remote front end sends
error or informational messages (for example, “Connection Refused”),
cmfinger prints them as well. It also prints error messages received
from the CM.

» There are no sequencers free.

Options

To obtain information about the CM attached to a particular front-end interface,
use the -1 option, followed by the number of the interface.

To obtain information about CMs to which your front end does not have an
interface, list their names on the cmfinger command line; case does not
matter. Similarly, you can list the names of front ends on the cmfinger
command line to obtain information about the CMs attached to them,; if a front
end and a CM have the same name, cmf inger interprets the name as that of
the CM.

Listing CMs: The cmlist Command

Use the emlist command to list CMs in your system. The command has
several options that make it especially helpful in locating a CM that has a
particular resource:

s Use the —d option to list the CMs that have DataVaults.
n Use the - £ option to list CMs with framebuffers.

Version 6.1, October 1991

3.3

Chapter 3. Miscellaneous CM Operating System Commands 51

s Use the —v option to list CMs connected to VME I/O computers.

= Use the -h option, along with one or more hostnames, to list the names
of CMs connected to the front ends with these hostnames.

» Use the -p option to restrict the list of CMs to those having the
specified number of processors or more. The number can be specified as
an integer, or as an integer followed by k or K to specify thousands of
Processors.

s Use the -0, -32, or -64 option to restrict the list of CMs to those
having no floating-point accelerator, a 32-bit floating-point accelerator,
or a 64-bit floating-point accelerator, respectively.

The options combine. Thus, to list the names of CMs with both a DataVault
and a framebuffer, issue this command:

[”%cmliat:'—d%ff S L J

Another use of the ecmlist command is with cmfingex. This cmfingexr
command:

[$ ‘cn'u‘.i‘n‘g'e: semlist S i [T J

prints the status of all CMs in your configuration. This is useful at sites with
many CMs attached to many front ends.

Listing Timeshared Processes:
The cmps Command

Use the cmps command to obtain information about processes currently
running under timesharing. If you are attached to a sequencer running
timesharing, cmps lists the processes running on that sequencer. If you are not
attached, use this syntax:

where cmname is the name of a CM, and segset is the number or numbers of
the sequencers for which a timesharing daemon is running on that CM. You
must issue the command from the front end where the timesharing daemon is
running.

Version 6.1, October 1991

52 CM Users Guide

An example of the command’s output is shown below:

- 187:45
. 67:00
.,».:0:21 o
100 0:00

_",hzlbert 26440 dave
‘5f /dvtest 26866 f

S {CM}* has been upi 1 03
i_ﬁ)102/2>49 ..phys:s.cal pages used,

pages swapped out 46 pgs i

' _.',ipages shuffled 5 _
_pages freed 1456 pgs,;

" ,.f;pages allocated

700
where

NAME is the name of the program.

PID is the UNIX process ID of the process.

OWNER is the name of the user who owns the process.

PGS is the number of 1024-bit pages that the process takes up on
theCM.

PRI is the current priority at which the process is running. In the
current release, this is always 1. The asterisk indicates that the
process wants to use the CM (that is, it has a CM operation
pending or in progress).

$-RT is the percent of real time that the process has received over
its lifetime. Since processes start at different times, these per-
centages can add up to more than 100%.

AC is the activation cost: a statistic that the scheduler uses in

choosing the next process to run.

Version 6.1, October 1991

3.4

Chapter 3. Miscellaneous CM Operating System Commands 53

TSR specifies how long it has been since the process has run on the
CM (in minutes:seconds).

AGE is the age of the process in minutes:seconds.

The remaining statistics are overall data gathered by the memory managers
since the timesharing daemon was started.

Detaching Users: The cmdetach Command

Use the cmdetach command to detach a FEBI (and its user) from a
sequencer, thus making the sequencer available. If you are issuing the
command from the front end in which the FEBI is located, specify either its
interface number or the login ID of the user who is attached via this interface.
(You can obtain this information by issuing the cmf inger command.) For
example, to detach user Karen from the sequencer she is using in the sample
cmf ingexr output on page 48, type:

[% cmdetach _karéhzé..‘ e ' ' N]

or

(%cmdetachv-il ey]

if you are on the same front end. Both the interface and the sequencer become
available. Any process running on the sequencer is aborted.

If you are on a different front end, you must specify the front end’s hostname
in addition to the interface number; you cannot simply specify a user’s login
ID. For example:

After you issue cmdetach, the command shows you the status of the system
by displaying the cmf inger output, and then asks if you’re sure you want to
proceed with the operation. If you’re sure, cmdetach detaches the interface
from the sequencer and makes the sequencer available.

The user being detached receives a message like this one:

Version 6.1, October 1991

54

3.4.1

CM Users Guide

o voten
- (You have been detacl

(This message is not printed if you detach yourself.) A running process is sent
a SIGURG signal when it is being detached.

Note that detaching a user isn’t a particularly friendly thing to do if the user has
an important program running on the CM. The cmdetach command is
helpful if, for example, a user simply forgets to exit from a cmattach
subshell before going home for the night. Detaching the forgetful user reclaims
the CM processors. Your system administrator can configure the system so that
users are automatically detached if they are idle for a specified period of time;
this is a better way of handling the problem of forgetful or selfish users.

You can issue cmdetach without any arguments from within a cmattach
subshell; this detaches your interface from the CM but leaves you in the
subshell. This lets you preserve the UNIX environment of the subshell.

Under Timesharing

NOTE: Do not detach an interface or user attached to a sequencer under
timesharing. If you do so, you abort all processes running on that sequencer
and shut down timesharing.

If you try to do this, cmdetach notes that timesharing is running, and queries
you an extra time to make sure this is what you want to do, as in the example
below.

Note that the message displayed in response to the cmdetach specifies the
owner of the timesharing daemon, even if you issue the cmdetach command
to detach some other user. :

If you wish to stop timesharing from running on a sequencer, talk to your
system administrator, who can issue the cmts - shutdown command; this
command shuts down timesharing in an orderly fashion.

Version 6.1, October 1991

Chapter 3. Miscellaneous CM Operating System Commands 55

@ % cmdetach :10 R Bl ooy \
M Seqs Slze Fxont end I/F User Idle Command
 JACQUES = 1 8K enki 0 root Oh 00m " {CM}*"
" ey dm Oh 00m "cmattach"
'JACQUES 0 8K wotan = 1 kathy "tests"

cm2 with 256K memory, 64-bit floating‘ point
no free sequencers .on JACQUES

-cmdetach You are about to try to detach user r1dm’
~from Connection Machine '’ ‘JACQUES' ro :

Proceed? lynl ¥y

vcmdetach: Are you sure? -root appéars to be running
' timesharing on Connection Machine JACQUES from front-end =
enki.think.com, interface 0. Detaching or powering up a’
“timeshared ‘interface w1ll dlsrupt all the users of the
1nterface. v ' '

-Reélly proceed? [yh] n

Function aborted.

3.5 Resetting the CM: The cmcoldboot Command

Use cmcoldboot to reset the state of the CM hardware to which you are
attached. Issuing the command loads microcode into the control store of the
sequencer, initializes system tables, and clears processor memory. You can
issue cmcoldboot only from a cmattach subshell, or as part of a script file
being submitted as an NQS batch request; see Chapter 2.

By default, the CM hardware is automatically cold booted when you first attach
to it. Depending on the application, you might want to reset the CM between
program runs. A warm boot is performed every time a program is executed;
this warm boot does everything the cold boot does except clear processor
memory and reload microcode into the sequencer. For some applications, not
cold booting saves the time of reloading data into the CM processors for every

Version 6.1, October 1991

56

3.5.1

3.6

CM User’s Guide

single program run. If, however, you want to make sure that the current run of
a program is not affected by the state left from a previous one, issue
cmcoldboot between the runs. Also, if a computation is interrupted at some
point and not continued, you should issue cmcoldboot and start the program
over from the beginning. '

As arguments to cmcoldboot, you can specify the geometry of a VP set in
Paris programs; in programs written in high-level languages, the compiler does
this for you. You do not need to specify -g, as you do for cmattach. For
example,

creates a VP set of 16,384 processors, arranged in a 64-by-256 geometry.

[% cmcoldboot 64 256

Another option cmcoldboot has in common with cmattach is -u, which
you can use to specify which version of the CM microcode you want the CM
to use. See page 28 for a discussion of this option.

Under Timesharing
Issuing cmcoldboot has an effect only if you have exclusive access to the

CM. 1t is unnecessary if your program is executing under timesharing, since the
system automatically performs a cold boot every time a program runs.

Timing a CM Program: The cmtime Command

Use the cmtime command to print information about the execution time of a
program that uses the Connection Machine system. The results are displayed
on the standard output. For example, to execute the program myprog and
obtain timing information, issue this command:

The output is slightly different depending on whether the program runs in
exclusive mode or in timesharing mode. In exclusive mode, the output looks
like this:

Version 6.1, October 1991

Chapter 3. Miscellaneous CM Operating System Commands 57

Elapsed time: 115.38 sec.; CM time 111.72 sec. _
Front end virtual time (seconds): 10.39 user, 1.26 system
CM Utilization: 97%; Front end utilization: 10%-

Under timesharing, the output looks like this:

Elapsed time: 14.25 sec.; CM time 7.53 (out of 13.63) sec.
Front end virtual time (seconds): 2.04 user, 4.40 system
CM Utilization: 55%; {CM*} share: 96%

The fields have these meanings:

= Elapsed time is the total elapsed wallclock time that the program took
to run.

= CM time is the amount of time that the program used the CM. For
timesharing, the amount of time during which the program had the CM
available for use is also listed.

s Front end virtual time gives the amount of time the program used the
front end. User time is the amount of front-end time spent in the
program itself. System time is the time spent by the front-end operating
system kernel on behalf of the program.

s CM Utilization, for exclusive mode, is the percentage of elapsed time
represented by CM time. For timesharing, it is the percentage of time
that the program used the CM out of the total time the CM was available
to it.

= Front end utilization (exclusive mode only) is the percentage of
elapsed time represented by front-end user and system time.

s {CM?*} share (timesharing mode only) is the percentage of elapsed time
during which the CM was available to the program.

Note these points in using cmtime:

» cmtime obtains its data from the CM’s accounting system. If the
accounting daemon is not running, cmtime can only display
information about the use of the front end. Ask your system
administrator if the accounting daemon is running on your system.

Version 6.1, October 1991

58 CM User’s Guide

s The cmtime data is an estimate, obtained from polling the sequencer
every .01 second. If you need more accurate information, use the timing
routines discussed in Section 6.2 on page 99.

» As discussed in that section, to increase the accuracy of your timing, we
recommend using a front end that is as unloaded as possible, and
running the program several times; the minimum elapsed time reported
will be the most accurate.

3.7 Obtaining Information about the cmattach
Subshell: The cm Command

Use the cm command to obtain information about the CM to which you are
attached via a cmattach subshell. The syntax is:

[em [-C] [-d] [-4] [-8] S]
where:
-C prints the name of the CM to which this subshell is attached.
-d prints the name of the CM device driver. This is always
/dev/cm.
-1 prints the number of the interface to which this subshell is
attached.
-S prints the sequencer set to which this subshell is attached.

One way to use this command is to change your prompt while in the subshell.
For example, issue this command (in the C shell) to set your prompt to the
name of the CM to which you are attached:

3.8 Changing the Priority of Timesharing Jobs

Use the cmnice and cmrenice commands to change the priority of a
process running under CM timesharing; the higher the priority, the more often

Version 6.1, October 1991

Chapter 3. Miscellaneous CM Operating System Commands 59

3.9

the process is scheduled to run on the CM. Use cmnice to set the priority of
the process when you first run it. Use cmrenice to change the priority of a
process that is already running under timesharing.

The cmnice command takes as its argument a number from 0 to 5 (0 to 9 if
you are the superuser), followed by the name of the program and any
arguments to the program. The lower the number, the lower the priority; the
default is 5. Note that therefore only the superuser can increase the priority of
a process beyond this standard timesharing priority. Users can only lower their
priority. For example,

($ cmnice -0 simple : : ' J

executes the program simple with a cmnice value of 0; this means that the
process will run only when no other process in the system wants to.

The cmrenice command takes as its arguments the process ID of the process
whose priority you want to change, and, optionally, -p n, where n is a number
from O to 5 (0 to 9 if you are the superuser). If you omit the -p argument, the
process’s priority is reduced by 1. You can change the priority only of a process
you own. (The superuser can change the priority of any process.)

You can obtain the process’s process ID by issuing the cmps command; see
Section 3.3 on page 51.

Note that you can use cmrenice to increase the priority of a process, but only
if you originally ran the program with a lower-than-average priority, and only
up to the standard timesharing priority of 5.

For example,

[% cmrenice -p3 26440 : o : j

changes to 3 the cmnice priority of the process with process ID 26440.

Displaying CM Manual Pages:
The cmman Command

CM System Software contains a large number of on-line manual pages.
Included in the 6.1 release are manual pages for:

Version 6.1, October 1991

CM Users Guide

all CMost user and system administrator commands
all CM Fortran utilities and intrinsics
all CMFS commands and calls

all Paris instructions

More manual pagés will be added in the future.

Use the cmman command to display one of these pages. For example, issue
this command to display the man page for the CM Fortran utility
CMF_ALLOCATE_ARRAY:

[$ cmman CMF_ALLOCATE ARRAY v - J

You can use any of the options accepted by the UNIX command man. You can
also issue cmman to display standard UNIX man pages; use it in the same way
you would use man.

Note these points in specifying the names of CM functions and commands:

If a function or command name has a prefix (such as CM or CMFS),
make this prefix uppercase. Make the rest of the name lowercase, using
underscores (not hyphens) as word-separators (except for the cases
noted below). For example, CMFS_read_£file is correct;
cmfs_read_file is incorrect.

Fortran names can also be specified using all uppercase. For example,
CMF_ALLOCATE_ARRAY and CMF_allocate_array are both
correct.

Use Lisp syntax to specify a function used only in Lisp: for example,
CMFS:make-stat.

For Paris functions, you can omit the _1L, _2L, etc. suffixes, as well
as the _always, _constant, and _const qualifiers. You can also
specify a general name that matches the heading in the Paris Reference
Manual. For example, to display the man page for CM_c_add_2_1L
you can simply refer to it as CM_c_add.

For CMFS functions, in general specify exact names when they end
with _always; however, if a non-always version of the function exists,
leave off the _always. For example, specify the function
CMFS_read_fille_always as CMFS_read_f£file (because there
is a CMFS_read_file). However, you would specify
CMFS_transpose_always as CMFS_transpose_always
(because there is no function CMFS_ transpose).

Version 6.1, October 1991

3.9.1

Chapter 3. Miscellaneous CM Operating System Commands 61

If You Don’t Want to Use cmman

You can use the man command instead of cmman to display CM manual
pages; you can also use xman to display these man pages under X. To do this,
however, you have to add the CM man page directories to the path set by your
MANPATH environment variable. One advantage of this approach is that it
gives you somewhat more flexibility in how the search for a man page is
carried out.

By default, the CM man-page directories are in the path /usr/local/man,
with each subject area in its own directory. Note, however, that your system
administrator may have put them somewhere else; check with your system
administrator if you can’t find them. These directories are currently available:

CMF CM Fortran intrinsics and utilities
CMFS CM file system calls and I/O commands
CMOST User-level CM commands

PARIS All Paris functions

Add these directories anywhere in your MANPATH. For example,

% setenv MANPATH /usr/man: /usr/local/man: /usr/local/man/CMF: \
/usx/local /man/CMFS: /usr/local/man/CMOST: /usr/local/man/PARIS

If you add these directories before the standard directories (/usr/man,
/usr/local/man), they are searched first; this may give you a slightly
faster response time for CM man pages. You can also omit directories you
aren’t interested in. For example, if you don’t use Fortran, you can omit the
CMF directory; once again, this can speed up a search slightly.

Version 6.1, October 1991

Part III
Programming with the

Chapter 4

4.1

4.1.1

This chapter describes the basic process of programming for the Connection
Machine system. In it, we assume that you are familiar with programming in a
UNIX environment. See Chapter 6 for a discussion of tools you can use in
programiming.

Users of *Lisp and Lisp/Paris should read Part V of this manual for an
introduction to programming in the Lisp environment.

Choosing a Language

The Connection Machine system offers several data parallel programming
languages, which are discussed in this section. Complete information on these
languages is available in separate manuals in the Connection Machine
documentation set.

NOTE: Your Connection Machine system may not contain all the high-level
programming languages discussed here; check with your system administrator.

Paris

Paris is the PARallel Instruction Set for programming the Connection Machine
system. It is roughly similar to the machine-level instruction set of an ordinary
computer. Interfaces to Paris are available from C, Lisp, and Fortran; the
resulting “languages” are referred to as C/Paris, Lisp/Paris, and Fortran/Paris.
These interfaces all call exactly the same Paris instructions; the only difference
is that each interface conforms to the syntax and data types of its higher-level

language.

Version 6.1, October 1991 ' 65

66

4.1.2

413

4.1.4

CM User’s Guide

The compilers for the data parallel languages described below (except for
slicewise CM Fortran) generate code that makes direct calls to Paris. You can
also include calls to Paris in programs written in these languages. You may be
able to write faster code using Paris calls; the trade-off, of course, is that using
Paris calls requires a deeper understanding of the Connection Machine
architecture.

CM Fortran

CM Fortran implements the Fortran 77 programming language, extended with
array-handling facilities from the Fortran 90 standard. CM Fortran supports all
features of Fortran 77 that control allocation of or access to data residing on the
front end; some restrictions are placed on the use of Fortran 77 features that
would cause a program to depend on the storage order of data residing in CM
memory. Most array data in CM Fortran is allocated in CM memory, one
element per processor, and array operations on such data are performed by the
CM processors in parallel.

A slicewise version of the CM Fortran compiler is available; this version
generates special optimizations for programs running on systems with a 64-bit
floating point accelerator.

c*

C* is a data parallel extension of the C programming language. C* programs
are a mixture of familiar C code, which operates on data on the front end, and
new C* code. C* provides new syntax for describing the size and shape of
parallel data and for creating parallel variables. It also provides methods for
choosing the parallel variables, and the specific data points within parallel
variables, upon which C* code is to act.

*Lisp

*Lisp is an extension of the Common Lisp language. It allows you to write data
parallel programs in Lisp that map simply onto Connection Machine hardware
features. Most *Lisp functionality corresponds directly to underlying Paris
instructions, making the execution speed of a *Lisp program predictable.

The CM system provides both a *Lisp interpreter and a *Lisp compiler; the
*Lisp compiler executes as part of the Common Lisp compiler. Compiled

Version 6.1, October 1991

Chapter 4. Programming: The Basics 67

4.2

4.3

4.3.1

*Lisp runs more efficiently than interpreted *Lisp. There is also a *Lisp
simulator that you can use to test and debug *Lisp code without using a CM.
The simulator runs entirely on the front end and simulates the operations of an
exclusive-access CM.

If you are going to progra.in in *Lisp or Lisp/Paris, you can omit the remainder
of this chapter and go instead to Part V, “In the Lisp Environment.”

Overview of the Programming Process

The entire process of CM programming takes place on the front end. You need
to be attached to a CM only to run the program and to debug it.

The remaining sections of this chapter discuss the basics of the programming
process.

Developing a Program

You write source code for a data parallel program on the front end as you
normally would for a serial program. The only difference is that C* and CM
Fortran have new suffixes for the names of files containing source code: C*
files must end in .cs, and CM Fortran files must end in . £cm. C/Paris and
Fortran/Paris programs are standard C and Fortran programs that include the
library of Paris operations and make calls to these operations.

Libraries and Include Files

This section lists CM libraries and include files that you are likely to use in
your data parallel programs; check with your system administrator for the
location of these files. You can also use standard libraries and include files—for
example, <stdio.h> for C/Paris and C* programs. Consult the CM
documentation for the relevant language for complete information—for
example, you must explicitly link some libraries to your program, while other
libraries are linked automatically. Also note that some languages and libraries
may not be available at your site.

Version 6.1, October 1991

68

4.4

CM Users Guide

Table 6. CM software libraries

Library Contents

libckpt.a Checkpointing library

libckpt-pg.a Checkpointing library for use when profiling

libcmfs.a CM file system routines

libcmfs-pg.a CM file system routines to use when profiling
libcmszr.a *Render and Generic Display Interface graphics routines
libcmsr-pg.a *Render and Generic Display routines to use when profiling
libcmssl.a CM Scientific Software Library routines

libparis.a Paris instructions for C

libparis-pg.a Paris instructions to use when profiling
libparisfort.a Paris instructions for Fortran

Compiling a Program

You compile and link data parallel programs on the front end as you normally
do.

Use the command cs to invoke the C* compiler, which works in conjunction
with the standard C compiler.

Use the command cmf to invoke the CM Fortran compiler; it can also invoke
the standard Fortran and C compilers, as appropriate.

These commands and their options are discussed in detail in the user’s guides
for C* and CM Fortran.

Use the standard Fortran and C compilers to compile Fortran/Paris and C/Paris
programs, respectively.

Version 6.1, October 1991

Chapter 4. Programming: The Basics

4.5

69

Table 7. CM include files

File Include with:

Xcm.h X Windows graphics routines
attach.h Attaching routines for C
attach-fort.h Attaching routines for Fortran
ckpt.h Checkpointing routines for C/Paris
ckpt-fort.h Checkpointing routines for Fortran
cm_conf.h CM character-special device drivers
cm _dir.h Certain CMFS directory routines
cm_errno.h CMFS routines

cm_file.h Certain CMFS file routines
cm_mount.h CMFS_statfs routine
cm_ioctl.h CMEFS ioctl routines

cm_param.h Certain CMFS routines
cm_stat.h Certain CMFS statistics routines
cmfb.h Framebuffer graphics routines
cmsr.h *Render routines for C* and C/Paris
cmsr-fort.h *Render routines for CM Fortran and Fortran/Paris
cmssl-cmf.h CMSSL routines for CM Fortran
cmgsl-paris.h CMSSL routines for C/Paris

cmssl-fort-constants.h

Symbolic CMSSL constants for CM Fortran

cmssl-fort-paris.h

cmssltypes.h
cmtypes.h

display-fort.h

CMSSL routines for Fortran/Paris
CMSSL routines for C* and C/Paris

CM data types, when paris.h is not included ’
Generic Display Interface routines for CM Fortran and

Fortran/Paris

display.h Generic Display Interface routines for C* and C/Paris
paris-configuration-fort.h
Paris instructions in CM Fortran and Fortran/Paris

paris.h Paris instructions in C* and C/Paris

Executing a Program

Chapter 2 discusses in detail the process of attaching to a CM and executing a
program, using either batch or direct access. See also Chapter 5, which
discusses how to attach to a CM from within a program, and Chapter 6, which

Version 6.1, October 1991

70

4.6

4.7

CM User’s Guide

discusses how to restart a program that has been checkpointed during
execution.

Debugging a Program

We recommend that you use Prism, the CM’s programming environment, to
debug and analyze the performance of your program. For complete information
on Prism, see the Prism User s Guide.

UNIX Utilities

You can use other standard UNIX utilities like make and gprof with a data
parallel program. See Chapter 6 for information about how to use gprof to
profile a data parallel program.

Version 6.1, October 1991

Chapter 5

Attaching and Detaching

5

from within a Program

In their programs, users can include calls to a variety of functions that
correspond to many of the commands discussed in Part II of this guide. Using
these calls, a program can:

Attach to a CM resource, specifying the interface, the sequencer(s), the
memory size, and other characteristics of the resource.

Detach from the CM.
Detach other users from the CM.
Power up and cold boot the CM.

Obtain cmf inger-style information about who is using the CM.

The routines discussed in this chapter are available for C*, CM Fortran,
C/Paris, and Fortran/Paris programs. For information on *Lisp and Lisp/Paris
versions, see Part V.

5.1 Overview

Table 8 lists the routines discussed in this chapter. See the individual sections
of the chapter for the specific C and Fortran versions of the routines, and for
their arguments,

Version 6.1, October 1991 71

72

5.2

CM Users Guide

Table 8. Routines for attaching, detaching, and obtaining cmf inger data

Routine Use

CM_attach Attach to any CM resource.
CM_attach_to Attach to the specified CM resource.
CM_preempt Detach anyone else, then attach.
CM_detach Detach from the CM.

CM_detach_cm
CM_detach_interface
CM_detach_user
CM_detach_cm by seqg

CM_coldboot
CM_powerup
CM_finger

Detach users from the specified CM.

Detach users from the specified FEBL
Detach the specified user.

Detach users from the specified sequencer(s)
on the specified CM.

Cold boot the CM.

Power up the specified CM.

Print a complete cmfinger output.

There are also a number of C-only routines that provide more flexibility in
obtaining cmfinger data; these routines are described in Section 5.5.1.
Section 5.6 describes C routines for obtaining information about sequencers.

Section 5.8 describes a C-only mechanism for obtaining a user’s command line
arguments to determine the configuration of the desired CM resource.

To use the routines discussed in this chapter, include the file
<cm/attach.h> (for C programs); for Fortran programs, include the file
/usr/include/cm/attach-£fort.h. Link with the Paris library,
libparis. a, if your program does not do so automatically.

Attaching to a CM
Three routines are available for attaching to a CM:
s Call CM_attach to attach to any available CM resource.

= Call cM_attach_to to attach to a specific CM resource; the
arguments to the routine specify the resource.

» Call CM_preempt to detach a process from the CM, then attach in its
place.

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 73

5.2.1

In addition, the routine CM_attached is available to let you determine if the
program is attached to a CM. CM_attached takes no arguments; it returns
non-zero if the program is attached, and 0 if it isn’t attached.

Attaching to Any CM Resource
Call the CM_attach routine to attach to any available CM resource.

The routine has this definition in C:

[int CM_attach() :‘ , : : j

Call the routine from Fortran as follows:

[call CM_attach() . . ‘ vl j

CM_attach takes no arguments, and settles for any free CM resource it can
get. If resources are available, by default it receives the highest-numbered
sequencer that is free on the CM connected to the lowest-numbered interface
that is also free.

If the process is already attached when it issues CM_attach (for example,
because the program was executed from a cmattach subshell), CM_attach
inherits the existing attachment.

CM_attach has these return values:

s 0 — There are no free CM resources available from this front end. The
error message “No CM resources available” appears on your stderr.

s -1 — The request couldn’t be satisfied for some other reason. An
explanation of the failure is displayed on your stderr.

s >0 — If the return value is greater than 0, the process successfully
attached, and the value represents the number of processors to which it
attached.

5.2.2 Attaching to a Specific CM Resource

Call the CM_attach_to routine to attach to a specific CM resource.

The routine has this definition in C:

Version 6.1, October 1991

74 CM Users Guide

(int @ attach ro(char cm nane, u bits bits)

Call the routine from Fortran as follows:

[can M attach_to(cm_name, bis)]

where:

cm_name is the name of the CM to which you want the program to at-
tach. Specify 0 to indicate that you will accept any CM.

bits is a bit-mask that specifies the configuration of the CM re-
source to which you want to attach (see below). Specify 0 to
indicate that any configuration is acceptable. The defaults are
the same as those for the cmattach command: you are at-
tached to the highest-numbered sequencer that is free on the
lowest-numbered available interface.

Thus,

in C, is equivalent to CM_attach().

Specifying the CM Resource

The bit-mask in CM_attach_to is also used in other routines. You can use
this bit-mask to specify:

» Whether the process is to wait for the resource to become available.
= What memory size you want.

= The type of floating-point accelerator you want.

s Whether you want the resource to have a framebuffer.

s Whether you want to run in exclusive mode only, under timesharing
only, or you don’t care.

s Whether you want the resource to have a DataVauit.

s The number of sequencers you want.

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 75

» The precise set of sequencers you want.
s The number of processors you want.

Table 9 lists the arguments and their meaning. Note that Fortran versions of the
arguments all begin with I (so that Fortran implicitly assumes that the values

are integral).

Table 9. Arguments to CM_attach_to*
Argument Meaning
CMA_WAIT Wait for the resource.
CMA_CMn Get a resource on the specified CM model.
CMA_Mmemsize Get a resource with at least memsize memory size.
CMA_MEXACT Get a resource with exactly CMA._Mmemsize.

CMA_FPU_fputype Get a resource with fputype floating-point accelerator.
CMA_FRAMEBUFFER Get a resource with a framebuffer.
CMA_DATAVAULT Get a resource with a DataVault.
CMA_TIMESHARED Get a resource running under timesharing.
CMA_EXCLUSIVE Get a resource running in exclusive mode.

CMA_UCCS_n Get a resource with 7 sequencers.
CMA_UCCn[_and n] Get a resource with the specified sequencer set.
CMA _Pn Get a resource with at least n processors.
CMA_PEXACT Get a resource with exactly CMA_Pn processors.
CMA_In Attach to the CM via the specified interface.

*Fortran versions have an I added to the beginning.

You can specify any combination of requirements, as long as they are .
consistent. For example,

[CM_attach_tb ("frodo", CMA_WAIT + CMA_EXCLUSIVE);]

(in C) specifies that the process is to attach to Frodo in exclusive mode, and
will wait for resources. But

CM attach tO("fIOdO“ ’ CMA TIMESHARED . :
+ ‘CMA EXCLUSIVE), /* wrong */

incorrectly asks for both a timeshared resource and an exclusive resource.

Waiting for the resource. To specify that the process is to wait for the
required CM resource to become available, include the argument CMA_WAIT

Version 6.1, October 1991

76

CM User’s Guide

(ICMA_WAIT in Fortran). If you don’t include this argument,
CM attach to returns 0 if it can’t obtain the specified resource.

Specifying the CM model. If you have more than one model of the CM
available at your site, use the CMA_CMn argument (ICMA_CMn in Fortran) to
specify the model to which you want to attach. Possible values are 2 and 200.
Use 2 if you want to attach to a CM-2 series machine; use 200 if you want to
attach to a CM-200 series machine.

If you omit this argument, you are attached to whatever is available, using the
standard algorithm.

Specifying memory size. To request a memory size for the CM resource, use
one of the arguments listed below:

CMA_M64K or CMA_M64 64K memory size
CMA_M256K or CMA_M256 256K memory size
CMA_M1M or CMA_M1 1M memory size
CMA_MA4M or CMA_M4 4M memory size

(Fortran versions have an I added to the beginning.) These arguments indicate
that you will accept at least the specified memory size, unless you also specify
CMA_MEXACT (ICMA_MEXACT in Fortran); this indicates that you will accept
only the specified memory size. Omit these arguments if you will accept any
memory size.

Macros are available that let you convert a memory size constant into an actual
memory size, and vice versa. These may be useful, for example, in converting
between human input and the format required by CM_attach_to.

Use CMA_MSIZE (ICMA_MSIZE in Fortran) to convert a size constant into an
actual memory size. For example, CMA_MSIZE (CMA_M1M) returns 1048576.

Use CMA_MBITS (ICMA_MBITS in Fortran) to convert an actual memory size
to a constant that can be used in CM_attach_to. For example,
CMA_MBITS (1048576) returns CMA_M1M.

Specifying the floating-point accelerator. To request a specific type of
floating-point accelerator (or no floating-point accelerator at all), use one of
these arguments:

CMA_FPU_32 32-bit floating-point accelerator
CMA_FPU_64 64-bit floating-point accelerator
CMA_FPU_NONE No floating-point accelerator

(Fortran versions have an I added to the beginning.) Omit these arguments if
you will accept any kind of floating-point accelerator. Note that this is different

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 77

from specifying CMA_FPU_NONE, which specifically requests a resource with
no floating-point accelerator.

Specifying attached devices. Include the argument CMA_ DATAVAULT
(ICMA_DATAVAULT in Fortran) to request a resource that has access to a
DataVault.

Include the argument CMA_FRAMEBUFFER (ICMA_DATAVAULT in Fortran)
to request a resource that has access to a framebuffer.

Specifying timeshared vs. exclusive access. Include the argument
CMA_EXCLUSIVE (ICMA_EXCLUSIVE) if you want only a resource
operating in exclusive mode.

Include the argument CMA_TIMESHARED (ICMA TIMESHARED in Fortran)
if you want only a resource operating under timesharing.

Omit these arguments if you will accept a resource operating either under
timesharing or in exclusive mode.

Specifying the number of sequencers. Use one of these arguments to request
a specific number of sequencers:

CMA_UCCS_1 1 sequencer
CMA_UCCS_2 2 sequencers
CMA_UCCS_4 4 sequencers

(Fortran versions have an I added to the beginning.) Omit these arguments if
you will accept any number of sequencers.

Specifying the sequencer set. Use one of these arguments to request a specific
sequencer or set of sequencers:

CMA_UCCO sequencer 0
CMA_UCC1 sequencer 1
CMA_UCC2 sequencer 2
CMA_UCC3 sequencer 3

CMA_UCCO_and_1 sequencers 0 and 1
CMA_UCC2_and_3 sequencers 2 and 3
CMA_UCCO_to_3 sequencers 0 through 3

(Fortran versions have an I added to the beginning.) Omit these arguments if
you will accept any sequencer or set of sequencers.

Specifying the number of processors. Use one of these arguments to request
a specified number of processors:

Version 6.1, October 1991

78 CM Users Guide

CMA_P4K 4096 processors
CMA_P8K 8192 processors
CMA P16K 16384 processors
CMA_P32K 32768 processors
CMA_P64K 65536 processors

(Fortran versions have an I added to the beginning.) These arguments indicate
that you will accept at least the specified number of processors, unless you also
specify CMA_PEXACT; this indicates that you will accept only the specified
number of processors. Omit these arguments if you will accept any number of
Processors.

Macros are available that let you convert a processor-number constant into an
actual number of processors, and vice versa:

Use CMA_PCOUNT (ICMA_PCOUNT in Fortran) to convert a processor-
number constant into an actual number of processors. For example,
CMA_PCOUNT (CMA_P4K) returns 4096.

Use CMA_PBITS (ICMA_PBITS in Fortran) to convert an actual number of
processors to a constant that can be used in CM_attach_to. For example,
CMA_PBITS (4096) returns CMA_P4K.

Specifying the interface. In C only, use the CMA_In argument to specify the
number of the front-end bus interface by which you want to attach to the CM.
For example, specify CMA_I0 to attach via interface 0. Omit this argument if
you will accept any interface.

To convert an interface number into a bit mask that can be passed to
CM_attach_to, use the macro CMA_interface_to_bits or CMA_I
(ICcMA_interface_to_bits or ICMA_ I in Fortran); its single argument
is the interface number. For example, this Fortran code fragment asks for
interface 0 in exclusive mode:

. I=10MA I(0) | g
call CM attach to(ICMA exclus:.ve + I)

To convert the bits to an interface number, use the macro
CMA_bits_to_interface (ICMA_bits_to_interface in Fortran).

Examples

This Fortran call requests a resource on CM Top with 8192 processors and a
framebuffer:

Version 6.1, October 1991

5.2.3

Chapter 5. Attaching and Detaching from within a Program 79

[:call ...cm__attach_tb ("top*,” ICMA__‘PBK * .ICMA_FRAMEBUFFER))]

This C call requests a resource on CM Frodo with one sequencer and a 64-bit
floating-point accelerator, running in exclusive mode; the process is willing to
wait:

CM_attach to("frodo", CMA WAIT
: : + CMA_UCCS_1
+ CMA_FPU 64
'+ CMA_EXCLUSIVE);

Return Values

CM_attach_to has the following return values:

0 There are no free resources on this front end that match the re-
quested configuration.
-1 The requested configuration is contradictory (for example, the

CM you specified doesn’t have the kind of floating-point ac-
celerator you requested).

>0 The process is attached to this number of processors.

Preempting Another User

Call the CM_preempt routine to detach whoever is using the specified CM
resource, and then attach to the resource in its place.

NOTE: Only the superuser or the owner of the timesharing daemon can detach
timesharing from a CM resource.

The routine has this definition in C:

[nlt 'm_preerﬁpt(c‘ha:‘: *cm_'naipe, CM_bits bits) o j

Call the routine from Fortran as follows:

[cali M preempt (cm_name, bits) - B AL ‘]

Version 6.1, October 1991

80

CM User’s Guide

5.3

5.3.1

where cm_name and bits are the name .of the CM and the bit-mask that
specifies the resource, as discussed in the previous section.

The return values are the same as those for CM_attach_to; see the previous
section.

Example

This C call preempts the user of sequencer 0 on CM Frodo:

(CM_‘P#e‘empg(afrodéﬁ?IY'CMA_;U(::'CO.)“;‘ A

Detaching
These routines are available for detaching from a CM:

s Call cM_detach to detach the calling process from the CM resource to
which it is attached.

» Call CM_detach_cm to detach anyone attached to a specified CM.

= CallcM _detach_interface to detach anyone attached to a CM on
a specified interface.

s Call cM_detach_cm_by_seq to detach anyone attached to a CM on
a specified sequencer set.

= Call cM_detach_user to detach a specified user from the CM
resource to which he or she is attached.

NOTE: Only the superuser or the owner of the timesharing daemon can detach
timesharing from a CM resource.

Detaching the Calling Process

Call the routine CM_detach to detach the calling process from its CM
resource.

The routine has this definition in C:

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 81

5.3.2

[void CM_detach() B Nk ey e LT j

Call the routine from Fortran as follows:

[call CM_detach () o | E | J

There are no return values. The process is detached from the CM resource it is
using.

Detaching All Users from a CM

Call the routine CM_detach_cm to detach all users who are attached to the
CM you specify via a single FEBI from the front end on which your process is
running.

The routine has this definition in C:

[int vCM_detach__cmv(char *cm__name, boolean confirm) v)

Call the routine from Fortran as follows:

[call CM_detach_cm(cm_name,confirm)] J

where:
cm_name is the name of the CM from which you want to detach users.

confirm is either TRUE or FALSE. If it is TRUE, the routine asks for
confirmation of the detach by printing a message on the stan-
dard error device. If it is FALSE, the routine proceeds with
the detach without waiting for confirmation.

Note:

= Only the superuser or the owner of the timesharing daemon can detach
timesharing from a CM resource. "

= The routine works only if the CM is connected to the front end via one
front-end bus interface; if there are multiple interfaces, use
CM_detach_interface to choose which interface you want to
detach; see below.

» If the calling process is attached to the specified CM, it too is detached.

Version 6.1, October 1991

82

CM User's Guide

» Users attached to the specified CM via an interface on another front end
are not detached.

Return Values

CM_detach_cm has these return values:

The detach was successful.

The detach failed. An explanation of the failure is printed on
your stderr.

The CM is attached to this front end on more than one inter-
face. Use the CM_detach_interface routine to detach it
from each interface individually.

5.3.3 Detaching Users from a Specific Interface

Call the routine CM_detach_interface to detach all users attached to a
CM via the front-end bus interface that you specify.

The routine has this definition in C:

(int CM_detach_interface(int iface, boolean confirm) j

Call the routine from Fortran as follows:

[c‘:a‘ll' CM_detach_interface (iface, .conﬁrm):‘ S 5 iy :]
where:
iface is the number of the interface from which users are to be

confirm

Note:

detached.

is either TRUE or FALSE. If it is TRUE, the routine asks for
confirmation of the detach by printing a message on the stan-
dard error device. If it is FALSE, the routine proceeds with
the detach without waiting for confirmation.

s Only the superuser or the owner of the timesharing daemon can detach
timesharing from a CM resource.

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 83

5.3.4

n If the calling process is attached via the specified interface, it too is
detached.

» Users attached to the specified CM via any other interface are not
detached.

Return Values

CM_detach_interface has these return values:

0 The detach was successful.
-1 The detach failed. An explanation of the failure is printed on
your stderr.

Detaching Users from a Specific Sequencer Set

Use the routine CM_detach_cm_by_seq to detach all users from the
specified sequencer(s) on the specified CM.

The routine has this definition in C:

int CM_detach_cm__by__Seq(char *cm_name, int seqgs,
: - : boolean confirm)

Call the routine from Fortran as follows:

[call CM_detach_cm_by;seq(cmname, segs, confirm) |]

where:
cm_name is the name of the CM.

seqs specifies the sequencer(s) from which users are to be de-
tached. Possible values are CMA_UCCO, CMA_UCC1,
CMA_UcCC2, and CMA_UcC3 for individual sequencers;
CMA_UCCO_and_1, CMA_UCC2_and_3, and
CMA_UCCO_ to_3 for sequencer sets. (Fortran versions have
an I added to the beginning.)

confirm is either TRUE or FALSE. If it is TRUE, the routine asks for
confirmation of the detach by printing a cmf inger listing on

Version 6.1, October 1991

its standard error device and asking if you are sure you want
to disrupt the listed users. If it is FALSE, the routine proceeds
with the detach without waiting for confirmation.

Note:

= Only the superuser or the owner of the timesharing daemon can detach
timesharing from a CM resource.

a If the calling process is attached via one of the specified sequencers, it
too is detached.

s Users on other front ends attached to this sequencer are also detached.

s Users attached to the specified CM via any other sequencers are not
detached.

Return Values

CM_detach_cm_by_seq has these return values:

0 The detach was successful.
-1 The detach failed. An explanation of the failure is printed on
your stderr.

5.3.5 Detaching a Specific User
Use the routine CM_detach_user to detach the user you specify.

The routine has this definition in C:

Ent.CM_detach_;user (char *uname, v"Abooléan confirm) J

Call the routine from Fortran as follows:

[call M _detach_user (uname, comfrm)]
where:
uname is the name of the user whom you want to detach.

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 85

confirm is either TRUE or FALSE. If it is TRUE, the routine asks for
confirmation of the detach by printing a message on the stan-
dard error device. If it is FALSE, the routine proceeds with
the detach without waiting for confirmation.

Return Values

CM_detach_user has these return values:

0 The detach was successful.
-1 The detach failed. An explanation of the failure is printed on
your stderr.
2 The request was ambiguous (for example, because the user is

attached to more than one CM resource).

5.4 Cold Booting and Powering Up a CM

54.1

Call the CM_cold_boot routine to cold boot a CM resource.

Call the CM _poﬁerup routine to power up a CM.

Cold Booting a CM Resource

Call the CM_cold_boot routine to cold boot the CM resource to which you
are attached. For information on cold booting, see Chapter 3.

The routine has this definition in C:

[void CM_cold_boot () L) E]

Call the routine from Fortran as follows:

[Call CM_cold_boot () : » - | J

NOTE: CM_cold_boot has no effect if you are attached to a sequencer that
is running under timesharing.

Version 6.1, October 1991

86

CM User's Guide

5.4.2 Powering UpaCM

Call the CM_powerup routine to initialize the CM you specify. It is equivalent
to the cmpowerup command, which is discussed in the CM System
Administrator s Guide. CM_powerup initializes the nexus of the CM and
detaches any users who are currently attached.

The routine has this definition in C:

[intv CM_powerup (char *cm name, boolean confirm)]

Call the routine from Fortran as follows:

[c;dll M _powerup (cm_name, confirm) j

where:

cm_name is the name of the CM you want to power up. If you specify a
0 for this argument, CM_powerup powers up the CM to
which you are currently attached.

confirm is either TRUE or FALSE. If it is TRUE, the routine requests
confirmation of the powerup by printing the cmfingexr out-
put for the CM to the standard error device and asking if you
really want to detach these users. If it is FALSE, the routine
proceeds with the powerup without waiting for confirmation.

NOTE: CM_powerup will not power up a CM on which timesharing is
running. You must first take down the timesharing daemon; see the CM System
Administrator s Guide for information on how to do this.

Return Values
CM_powerup has these return values:
0 The powerup was successful.

-1 The powerup failed. An explanation of the failure is printed
on your stderr.

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 87

5.5 Obtaining cmfinger Data

5.5.1

Call cM_£finger to print the standard cmfinger display on the standard
output; see Chapter 3 for examples of this display.

CM_finger has this definition in C:

(void CM finger {) : J

Call the routine from Fortran as follows:

(call» CM_finger () :]

CM_£finger prints on the standard output the cmf ingex display for all front
ends connected to the same CMs as the front end from which the routine was
called.

C-Only cmfinger Routines

The routines discussed in this section are provided in C only. They give more
flexibility in the use of the cmfinger data.

s CM_finger_d returns a list of CM_£finger_data structures
describing all the interfaces to all the CMs attached to this front end.
The cM_£finger_ data structure is described below.

[CM__‘finger-data *CM_finger d() | J

s CM_finger_delete deletes the memory allocated to hold the list of
CM_finger_data structures in £. Its definition is:

[void CM finger_delete(CM_finger_data *f) L J

= CM finger print prints the CM_finger_data structure on the
process’s I/O stream. Its definition is:

CM f:.nger data *CM flnger_prlnt (FILE *stream,
. S T CM | finger_data *f)

» Call cM_finger_banner to display the standard CM_£finger
banner on the process’s I/O stream. Its definition is:

Version 6.1, October 1991

88

CM Users Guide

s)

» CM_finger_cm returns a linked list of CM_finger_data structures
that describe the state of each sequencer of the specified CM. Its
definition is:

[m;f,ingex_data *CM_finger_cm(char *cm name)]

s CM_finger host_cm returns a linked list of CM_finger_data
structures that describe the state of each sequencer of the specified CM
that is attached to the specified host. Its definition is:

' CM fmger data *CM f:Lngex host cm(char *host
: o ; ~ Char *em name)

s CM_finger_ host_interface returns a CM_finger_data
structure that describes the CM that is attached to the specified interface
of the specified host. Its definition is:

CM flnger data *CM flnger host 1nterface(char
. '*host, 1nt 1nterface) :

» CM_finger_interface returns a CM_finger_ data structure
that describes only this front end’s connection to the CM on the
specified interface. Its definition is:

[CM__f inger data *CM_finger_interface(int iface)]

» CM_finger_all_interfaces returns a list of
CM_finger data structures that describe all the interfaces on this
front end (but does not query other hosts attached to this front end). It
takes no arguments.

= CM waiters returns the number of users waiting for a CM resource,
and prints the list to the file structure you specify. Its definition is:

[‘int M waiters(FILE *))

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 89

Example

The code below uses some of these routines to print a complete finger output
onto the standard output:

CM_finger_ banner (stdout});
CM flnger delete(CM flnger__prlnt(stdout
CcM_finger d(NULL, 0))):

The CM_finger_data Structure

The cM_finger_data structure is defined in <cm/cm-interface.h>
and looks like this:
- : v v : ~
typedef struct CM_finger_ data {

struct CM finger_data *next;
struct CM finger_data *prev;:

char *cm_name; /* the name of the M */
char *host; /* the front -end */-
int interface /* the interface (on host) to the . */

/* N . .
* if f->udata is set, then f->user, f->last_event, and f->cmd can
+* be ignored (f->user may be set to ’‘unknown’’ or ‘‘nobody’’,
* the others have undefined values).
™M UDATA LIST *udata; /* data about the users on the CM. */
/% This is a list because the */
/* interface may be timeshared. */

* If f->user is ‘‘nobody’’, then the cmd and last-event
* fields are undefined. o N ‘ R

* /- .
char *user; = ,/* the name of the user on the cM */
c¢har ‘*cmd; ©0 . /* user’s command */

long last_event; f* time. L.tV sec of last: smgn;ficant event */,(
‘ ’ . /* set. to 0 for remote machines %/
int segs; © " /* the sequencer set the user’s att’d to */
- ' ’ /% according to ‘the using_cm server*/
int nexus seqgs; /* the. sequencer set the user"s-att’'d to */
, , /* according to the nexus regs (this */
/* value is 0 'when this front-end is */
/* not attached to the CM in ‘question)*/

char *hsg;' ce /* a message (generally, ‘an-error: message) */
long nprocs; /* count of ~processors 1n use . */
} CM finger_data; - g :

\ i s e vi Ln ’3?:;;35if %-~;"'tbi ﬂ.,)

Version 6.1, October 1991

CM User s Guide

CM_UDATA_LIST is also defined in <cm/cm- interface.h>, and looks
like this:

e

- typedef

#;mclude <cm/cmloct1 h> { .
struct CM UDATA LIST L
Struct CM UDATA LIST *prev-'

~struct CM UDATA_LIST *next

char *user; L
CM_UDATA ud
} CM) UDATA LIST~"'

™

CM_UDATA is defined in <cm/cmioctl.h>, and looks like this:

short
shqxt
short

“iilongl
. .u_long ud mazk; .
:char ‘ud |_command [CM MAX' CMD LENGTH+1]. /* User command, and null */
} CM_UDATA;

ud_intf;
ud_uid;

uQ;detach;uid;
ud ‘error_ csr;

"typedef struct cm | user_ data qQ
u_short ud_state; o *
N

/*
/ﬂ
A
i

'State flags for thlS indirect: dev1ce */'
‘Associated interface (ox -1 if ‘none) */ L

UID of -device "owner" (first openex) * /i
UID of whoever detached us- (if ‘we: were) */

‘SBaved:'CSR in case -of" hard error: */

Time of -day of last s:gnlflcant event */

ud_state can have these flag values:

-#define
“#define
“#define

#define
#define
$#define
#define
. #define

. ‘#define

~#define
gdefine

#define

#define

#define

#define

US_OPEN -

US_WAITING &

US_CONNECTED
US_EXCLUSIVE

US_HARD_ ERROR

‘US_ATTACHING
'US_BOOTING -

US_ BLOCKED
US_SHARED. | '
US ' BEQUEATHED
US :DIRECT. "
US_READING -
US_WRITING
US_CM_ERROR

0x0001 "
0x0002.

0x0004

0x0008
US_DISCONNECTED

0x0020
0x0040

/0X0080
. 0x0100

0X0200

0X0400
©10%0800
0x1000"

0x2000

0%4000

]f
/-k
e
]*

0x0010

I*
/*
T

/*
,/*v

!*
/*

7%
e

/a

A piacess.is connected.to this slot s/ . =
A connected process is waiting to attach */
We .are attached to a hardware interface *fo
No further opens of thig device allowed f/:

/* We once were attached, ‘but no.more */

P;ocess

‘Process

Prqcess

Process

:Process
Exrxar detected on suspend */

:Fatal hardware ‘error occurred */
Process

is trying to attach %/

is trying to.icold- boc: */

is blocked on 10" e/

“is sharing this devace */
Process
Process:
Iia in Iead */0

has:pass on exclusive rlghts */)
has opened: d;rect devmce */ M-"

is in write */

In all cases the linked lists are terminated by a NULL - >next pointer.

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 91

5.6 C-Only Routines for Sequencer Information

The routines discussed in this section provide ways of converting sequencer-set
bit information to printable strings and vice versa.

Use CM_sequencer_set to convert a printable string to a bit mask that
represents the sequencer set. Its definition is:

[inty CM_sequencer_set (char *str)]

Legal strings for sequencer sets are 0, 1, 2, 3, 0-1, 2-3, and 0-3. The error value
is 0.

Use CM_sequencer_string to convert the bit mask to a printable string.
Its definition is:

(char *CM sequencer_string(int s) j

If successful, the routine returns a string constant, so that you don’t have to
save the result before calling it again. If a bad sequencer set is specified, the
routine returns a string that reports the error, using this format:

[Bad ‘sequeh_cez mask: Oxhexstring j

This string is a static and needs to be saved.

Two macros are provided that convert between the sequencer set returned by
CM_sequencer_set and the format required by CM_attach_to (see
Section 5.2.2):

Use CMA_BITS_TO_UCCS (ICMA_BITS_TO_UCCS in Fortran) to convert
the CM_attach_to format to the CM_sequencer_set format.

Use CMA_UCCS_TO_BITS (ICMA_UCCS_TO_BITS in Fortran) to convert
the CM_sequencex_set format to the CM_attach_ to format.

Thus, to convert a string typed by the user to the CM_attach_to format, you
could use this idiom:

(CMA;UCCS_-_TQ_‘_BITS(CM;sequenceI_set(Sﬂing)) B]

Version 6.1, October 1991

92

CM User's Guide

5.7 C-Only Methods for Error Handling

5.8

Error messages from the CM subsystem are sent to the file pointer
CM_error_stream. By default, this is bound to stderr; you can change this
default if, for example, you want error messages to be sent to a file.

CM errors are handled by CM_panic, which calls the function pointer
CM_abort_function as the last thing it does. By default, this generates a
core dump, but you may want to define your own abort function (for example,
a longJjmp to a top-level handler).

CM_abort_function has this definition:

[void (#(ﬁ:‘M:_aborlt;fle:mcti'dr_l)ﬂf‘()'::"'_‘ZE‘» o ey | L J

It can take an argument (CM_panic calls it with an argument 0). It must not
return; if it returns, a core dump is generated.

To use CM_abort_function:

1. Declare your error-handling subroutine. For example:

‘fod() (L
_int a;
o char ab;

2. Tell Paris about the error handler:

[t?M_'_zaLboz:i;;___fi.irict:.:i_.:m';== "f'oo;‘:vv _' | e : s s j

C-Only Methods for Attaching via
Command-Line Arguments

You can use the C routines CM_getopt and CM_attach_getopt to parse
command-line arguments and use them to determine the characteristics of the

CM resource to which the user wants to attach. To use these routines, you
should be familiar with the C routine getopt, on which they are based.

CM_getopt and CM_attach_getopt take the standard getopt
arguments: argc, argv, and an option string. In addition, they take a pointer

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program 93

to a string pointer, which is where the routine stores the name of a CM (if the
user supplies one via the -C option), and an integer pointer, which is where the
routine stores the bit-mask that represents the characteristics of the CM
resource. (The routines ignore the values of these last two arguments—they are
used to only return values.) In every case, the syntax of the option is identical
to the syntax used by cmattach.

The definition of CM_getopt is:

int CM getopt(int argc, char -**argv, char *optstring,
' e char *cmnamestore, int *cmbitstore)

The definition of CM_attach_getopt is identical.
CM_getopt understands these command-line options:
-Cname Selects a CM by name.
-1 number Selects a CM by interface.
-8 seq-set Selects a sequencer set.
In addition to these options, CM_attach_getopt understands these options:

-64, -32, -0
Selects CM by floating-point type.

-cm name Selects CM architecture.

-D The CM resource must have a DataVault.

-e User wants exclusive access only.

-F The CM resource must have a framebuffer.
-pn Selects the number of processors to attach to.
-t User wants timeshared access only.

-w User will wait for resource to become available.

All other options are passed on to the application program.

Here is a sample program that uses CM_attach_getopt. It accepts the
additional option - P, which causes the program to call CM_preempt to obtain
the requested resource.

Version 6.1, October 1991

94 CM User’s Guide

f‘#include.<stdio,h>;

:chax ~*CM_progname;
~-extern char **environ;

void
main (axgc,»argv)
“ int arge;
char. **argv;

{n

int ¢;

extern char *optarg;

extern int optind, opterr: =
) ektezn char *CMA attach usage_| strlng.

‘extern chaI *CM | usage_string; ’

v‘booleanvpreempt = FALSE;
char *cmname = NULL;
int cmbits = 0;

CM_prognamé = argv[d];

’ while((c = CM . attach getopt(argc, azgv ‘"P"i &cmname, &cmbits)) d= EOF)
csswiteh{e) { . i
case 'P':

_preempt = TRUE;
break; ' : ' I
fprlntf(stderr, "$s usage: %s [P]\n" CM_progname,
CM_progname).; : Vv A
fprintf{stderz, "ss", CMA~§ttacn;usagq_stxing)§ﬁf: 1
~ fprintf(stderr; "%s", CM_usage_string); = =
ex1t(1). R RN
3

if(preempt? CM_preempt(cmname, cmbits) cu;attachiﬁo(cmname,‘cmbits)flb,
if(fork() == 0) { o o e

: 1f(CM t attach())’ {
todnt. 1‘ L

CM'exec coldbobt;paris(i}v:f

:-execl("/bln/ksh"” uow, 0),v : : et

" fprintf(stderr, *%s: Can’t execl /bin/ksh, %s\n" Lt

CM_progname,: ezrormsg), e : B
ex1t(1), e

Version 6.1, October 1991

Chapter 5. Attaching and Detaching from within a Program

95

else{ : o e
fprintf(stderz, "$s (child): Can’t attach!\n",
. CM'progname) ; (s S
L exit(1); :
S }
R ‘T) w e :
‘else { fprintf(stderr, "%s (child): Can’t attach!\n",
L CM_prognam
“int status; s i
fprintf(stdan, "gs (parent) waiting for child....\n"v,
CM__progna.me), o ’
i wa:.t(&status), i :
else { . : N
fp:lntf(stdex:x, “%s (pa:ent) H can't attach\n" ' CM_pIogname); L
: exzt(l), G S ol ’
h J

Version 6.1, October 1991

Chapter 6

Programming Tools

This chapter describes tools you can use in programming the Connection
Machine system. Using these tools, you can:

Perform safety checking of a program. See Section 6.1, below.
Time a program, or parts of it. See Section 6.2 on page 99.
Profile a program. See Section 6.3 on page 105.

Checkpoint a program, so that it can restart from a specified point in its
execution. See Section 6.4 on page 107.

Visualize your data, using CM graphics display software. See Section
6.5 on page 125.

The discussions in this chapter apply to C*, CM Fortran, C/Paris, and
Fortran/Paris programs. (Checkpointing is not available for C*.) For
information on *Lisp and Lisp/Paris, see Part V of this guide.

6.1 Run-Time Safety Checking

The CM system provides a safety utility that checks for Paris-level errors and
inconsistencies in programs. This utility can be used both for Paris programs
and for programs written in high-level languages; see the user’s guides for the
high-level languages for information on additional safety checking available
for these languages. Safety checking reduces execution speed, of course, but it
can be useful in developing and debugging programs.

When turned on, the safety utility checks:

Version 6.1, October 1991 97

98

6.1.1

6.1.2

CM Users Guide

s Whether field IDs passed as arguments to Paris instructions refer to
fields in the current VP set '

s Whether field IDs passed as arguments to Paris instructions are valid
field IDs (although not all invalid field IDs are caught)

s Whether the lengths passed to Paris instructions exceed the lengths of
the respective field operands

(For information on field IDs and VP sets, see the Paris Reference Manual.)
When the utility detects an error, it aborts the execution of the program and
prints information about the error to your standard error device.

There are two ways of using this utility:

» By using the Paris instruction CM_set_safety_mode from within a
program

» By issuing the command cmsetsafety from within a cmattach
subshell

From within a Program

The safety utility is available as CM_set_safety_mode, a Paris instruction
you can include in your program. To turn on safety, specify any non-zero
integer as an argument to the instruction. To turn it off, specify zero as the
argument.

If you call this routine in a C* or CM Fortran program, you must include the
Paris header file. For C*, the file is <cm/paris.h>. For CM Fortran, the file
is /usr/include/cm/paris-configuration-fort.h (you may
need to specify a different path for this file; check with your system
administrator).

From a cmattach Subshell

The CM command cmsetsafety performs the same function as the Paris
instruction CM_set_safety_mode. Using the command rather than the
instruction lets you turn safety checking on and off for a program without
changing the source file. However, cmsetsafety does not let you limit
safety checking to selected parts of a program.

Version 6.1, October 1991

Chapter 6. Programming Tools 99

6.1.3

6.2

To turn on Paris-level safety checking, issue this command from a cmattach
subshell:

[% cmsetsafety on ¢ a0 o) j

You can also put the command into a script file to be executed as an NQS batch
request. See Chapter 2 for a discussion of the cmattach subshell and batch
requests.

To turn off safety checking, use the argument of£ instead of on. Safety
checking is initially off in a cmattach subshell. Turning it on causes it to stay
on until you turn it off or exit the subshell. See below for a way to change the
default behavior of safety checking.

Changing the Default Safety Behavior

As mentioned above, safety checking is initially turned off for a cmattach
subshell. To enable safety checking by default for all CM program execution
(including batch requests), set the environment variable
CM_DEFAULT_SAFETY to on. For example, if you are running the C shell,
put this line in your .login or .cshrc file:

[setenv CM_DEFAULT_SAFETY on i]

If the variable is not set, or if it is set to any other value, safety is off for
background execution and initially off in a cmattach subshell.

It is often convenient to set the defaults such that safety is off for background
execution (that is, when you specify the name of your program on the
cmattach command line) but on in a cmattach subshell. To accomplish
this in the C shell, add this line to your . cshrc file:

[ﬁif’ ($?CMDEVICE) cmsetsafety on) J

Timing a Program

The CM system provides a timing utility that lets you determine how much
time any part of a program takes to execute on the CM. The timer consists of

Version 6.1, October 1991

a set of Paris instructions that you insert at the appropriate places in your
program.

NOTE: C* has its own versions of these routines, which C* users may prefer to
use. See the C* User s Guide for information.

The timing utility has the following features:

= A timer calculates total elapsed (wall clock) front-end process run time
and the total amount of time the CM is active. It provides times of up to
43 hours, with microsecond precision.

s Multiple timers can be active at the same time.

s Timers can be nested. This allows you, for example, to start one timer
that will time the entire program, while using other timers to determine
how different parts of the program contribute to the overall time.

You can have up to 64 timers running in a program. An individual timer is
referenced by an unsigned integer (from O to 63 inclusive) that is used as an
argument to the Paris timing instructions. Instructions with the same number as
an argument affect only the timer with that number.

To start timer 0, for example, put a call to the CM_timer_start routine in
your program, using 0 as an argument.

In C, the call would be:

[Clﬁ;timer'_s tart(0);

|]

[CALL}YCM__‘timér_;st»:art‘(O)f _;: g v ;v'ffﬂz'»vjf» 'Eﬁ'i-ﬁ‘]

In Fortran, the call would be:

You can subsequently stop timer 0 by calling the CM_timer_stop routine
later in your program. For example:

This function stops the timer and updates the values for total elapsed time and
total CM idle time being held by the timer. You can subsequently call
CM_timer_start again to restart timer 0; the timing starts at the values
currently held in the timer. This is useful for measuring how much time is spent
in a frequently called subroutine. The timer keeps track of the number of times
it has been restarted.

{.m;_‘tfimér__fs‘top'(b Yoo ;

Version 6.1, October 1991

Chapter 6. Programming Tools 101

You can start or stop other timers while timer 0 is running; each timer runs
independently.

To get the results from timer 0, call the following routine after you have called
CM_timer_stop:

[CM_tkimer_pr int (0): B J

CM_timer_print prints information like the following to your standard
output:

Starts: 1
CM Elapsed time: 27.7166 seconds
CM busy Time: 23.1833 seconds

The following routines return specific information from the timer for use in a
program:

= CM timer_read_starts returns an integer that represents the
number of times the specified timer has been started.

s CM_timer_read_elapsed returns a double-precision value that
represents the total elapsed time (in seconds) for the specified timer.

s CM_timer_read_cm_idle returns a double-precision value that
represents the total CM idle time (in seconds) for the specified timer.

= CM timer_read_cm_busy returns a double-precision value that
represents the total time (in seconds) the CM was busy for the specified
timer. CM busy time is the total elapsed time minus the CM idle time.

s CM_timer_read_run_ state returns TRUE (1 in C) if and only if
the specified timer is running.

If you call any of these timing routines in a C* or CM Fortran program, include
the Paris header file. For C*, this file is <cm/paris.h>. For CM Fortran, the
file is /usr/include/cm/paris-configuration-fort.h. (You
may need to specify a different path for this file; check with you system
administrator).

In addition, CM_timer_set_starts takes a timer number and an integer
value as arguments. It sets the number of starts for the specified timer to the
specified value. This is useful if you want to write a function that can query a
running timer without changing the number of starts. Not changing the number

Version 6.1, October 1991

102

6.2.1

CM User’s Guide

of starts is important if you want to know how many times a large chunk of
code was called, but you also want to get sub-timings within that block.

To clear the values maintained by timer 0, call CM_timer_clear:

[CM__timer__.cle'ar‘(O)v';:," S R ESnoy J

This zeroes the total elapsed time, the total CM idle time, and the number of
starts for this timer.

When you run a program that contains timer routines, the timer first prints the
CM’s clock speed to your standard output device before displaying any
timings. For example:

(C’M speed = 6.99714 MHz = o S j

As mentioned above, you can have up to 64 timers active. The maximum
number of timers may change in future releases. You can check the maximum
number of timers as follows:

s In C, check the extern unsigned variable CM_number_ of_timers
in <cm/paris.h>.

= In CM Fortran, use the external function CM_number_of_timexrs ()
in /usr/include/cm/paris-configuration-£fort.h.

Interpreting the Results

In interpreting the results of a timer, it is important to understand something of
how the timing utility works.

The elapsed time reported by a timer includes time when the process is
swapped out on the front end. The more processes that are running on the front
end, the more distorted this figure will be. Therefore, we recommend the
following:

» Use a front end that is as unloaded as possible.

= Run the process several times; the minimum elapsed time reported will
be the most accurate.

Similar considerations apply when the process is running on a CM under
timesharing. To obtain the best results, run the process on a sequencer that is
not timeshared. If that isn’t possible, try to run the process when no other

Version 6.1, October 1991

Chapter 6. Programming Tools 103

processes are using the same sequencer. Under timesharing, elapsed time is the
amount of time your process used the CM (not elapsed wall clock time).

CM idle time includes only those cycles during which the CM is waiting for an
instruction from the front end. Consequently, CM active time includes not only
those cycles during which the CM is performing computations, but also those
during which the CM is waiting for arguments to an instruction it has received.
Therefore:

= Expect slightly different CM active times on different front-end models
for code segments that do not keep the CM 100 percent active. The time
the CM spends waiting for data to appear is counted as active, but front-
end models differ in the speed with which they can move data over the
FEBI to the sequencer.

= Avoid stopping a process that is being timed.

In addition, make sure that Paris safety checking is turned off, since safety
checking slows down execution of a program; see Section 6.1 on page 97.

6.2.2 An Example
The following CM Fortran program uses several features of the timing utility:
™

ptdg:am_ timing
integer A(100)}, B
parameter (N=20 000)

include ‘/usr /inclﬁde/cm/par is-configuration-fort.h’

call Cm_;set__saf‘e.ty_mode(ov.) ‘t Turn off safety
'-ca’lil‘ »cm_‘time‘:_'__'sta:‘:t(O)‘ 1 Start outer timer .
call cm__'timevr.__'start(lu) 1. Start inner timer
N S e
do (N) times: ,'!'vDo‘an operation on CM array

A=A+l T
end do o oo Ei

call cm_timer_stop(1) , : .

print *, 'CM integer array addition:'
call cm timer print(1) ! Print inner timer
call cm_timer_clear (1) T

Version 6.1, October 1991

104 ' CM User’s Guide

»ﬁcall cm tlmer start(l)
 8%=”0’,w" 5 : .
' do {N) tlmes ,"Do an operatlon on front end
B”B*‘l‘ . - g
end do T
call ‘cm timer, stop(l) _
print *, 'Scalar 1nteger addltlon-: 5
call cm tlmer_pzlnt(l) ;! Prlnt lnner tlmer
call cm_timer_ stop(o) . _ ‘
print *, 'Total process ‘time: I
call cm tlme:_prlnt(O) ?jb Prlnt outer tlmerbﬁi
“end i : '

_

The program’s output is shown below:

 f CM“intégér”arrayféddit;on:

5f.Starts.i'u<7 }° et (Rt R
™ Elapsed time: 9. 58206 seconds.
. CM busy T;me 4.74322 seconds.

'f]sdalar ihtéger’addiﬁiqﬂif~ff

 starts: 1 0 Rl i
OCM Elapsed time: 0.0117976 secondS{,~,7,
CM busy Time: 6.67014E-06 seconds.

'ffTbtél'piocéssvtimé?';%ﬁ’"“"*””

.”fStarts. 1 . i
 CM Elapsed time: 9.72201 seconds.
g;'CM busy Tlme.v4 74331 secondsJ

Note the following about this program:

= It explicitly calls CM_set_safety_mode to turn off run-time safety
checking.
a It uses one timer (timer 0) to time the entire program, and another timer

(1) to time the two DO loops within the program. The first DO loop uses
the CM,; the second doesn’t.

Version 6.1, October 1991

Chapter 6. Programming Tools 105

6.3

6.3.1

6.3.2

Profiling

You can use the UNIX gprof command to generate a “call graph” profile of a
data parallel program. This profile displays a summary of the amount of time
spent in each routine, as well as a list of which routines call, and are called by,
other routines. For complete information about gpro£, consult your UNIX
documentation.

The CM system provides special Paris and CM file system libraries that you
can link with your data parallel program; by linking with these libraries and
using gpro£, you can see which routines are getting called most frequently,
and which are using the most time during program execution.

NOTE: The profiling utility does not provide information about usage of the
CM. To obtain that information, use the timing utility described in Section 6.2.

Effects of Using the Profiling Libraries

In the profiling libraries, all CM calls operate synchronously; this is not the
case in the normal libraries. By synchronizing the CM and the front end, the
profiling libraries enable gprof£ to obtain accurate information about both the
front end and CM time for CM operations. This causes some loss of efficiency
in the program as a whole, however.

Using the Profiling Libraries

From C/Paris and Fortran/Paris
To use the profiling libraries, do this when compiling the program:
s Use the —pg option with the compiler command.

s Use the -1 option to link with the Paris library 1ibparis-pg.a
(using the syntax -lparis-pg).

u If the program uses the CM I/O system, also link with the CM J/O library
libcmfs-pg.a (-lcmfs-pg).

s If the program uses *Render or Generic Display Interface graphics rou-
tines, also link with the *Render library 1ibcmsr-pg.a (-lcmsr-
Pg).

Version 6.1, October 1991

106

CM User’s Guide

Do not link with the standard versions of these libraries.

You can then run the program on the CM as you normally would. When the
program has run, you can use the gprof command to profile it, as described
below.

From C* and CM Fortran

To use the profiling libraries, use the —pg option to the ¢s or cmf command
when compiling the program. The compiler automatically links with the
profiling libraries. You can then run the program on the CM as you normally
would. When the program has run, you can use the gprof command as
described below.

Issuing the gprof Command

Issue gprof with the name of the program as its argument. If you are profiling
a program called simple, for example, issue the command as follows:

[% -‘gpzéf‘ simple e]

The gprof command produces a huge amount of output, so you might want
to redirect the output to a file. For example:

E_»%”gyrojf; s;l.mpié >"‘simpie“‘.,p:of“i;|.e e Fa]

To help in interpretation, the output from gprof contains explanations of the
various parts of the profile. Note, however, that the high-level languages are
compiled into Paris, and the Paris calls are included in the profile. Thus,
interpretation of these profiles is difficult without an understanding of Paris.

Note in particular that you may see many routines of the type
_CMI_read rfifo_xx_xx in your output. These are calls inserted by the
profiling libraries to synchronize the CM and the front end. You can therefore
ignore the information about these routines.

For more information on gprof and its options, type
[%man sprofb‘:.‘..,. L T i E)

to read the on-line manual page for gprof.

Version 6.1, October 1991

Chapter 6. Programming Tools ' 107

6.4 Checkpointing a Program

The Connection Machine system’s checkpointing package lets you save an
executable copy of a program’s state; you can subsequently issue a command
to restart execution of the program from this state. This package is especially
useful for programs with long execution times, where it is important that
execution does not have to start over from the beginning because of a problem
with the system. You can insert any number of checkpoints in a program, and
you can restart a program from a particular checkpoint any number of times.

There are three basic methods of checkpointing:
= You can insert checkpoints at particular points in a program.
= You can have checkpoints occur periodically within a program.

= With some restrictions, you can have a checkpoint occur when a program
is sent a particular signal (for example, during a planned shutdown of the
system).

6.4.1 Features of CM Checkpointing

The CM checkpointing mechanism has the following features:

w It is callable from C/Paris, CM Fortran, and Fortran/Paris. (Note that it is
not callable from C*.)

= It can be used from within a debugger like dbx.
= It does not require extensive modification of a program.

u It can be used on programs that execute only on the front end, as well as
on programs that use the CM.

Limitations

You cannot use the checkpointing mechanism to restore communication links
and pipes unless the program includes the code to do this itself. See Section
6.4.6 on page 113 for a further discussion of this issue.

If you initially run a program under timesharing, you must restart the

checkpointed version under timesharing. Likewise, if you run the program in
exclusive mode, you must restart it in exclusive mode.

Version 6.1, October 1991

108

6.4.2

CM User's Guide

Overview of CM Checkpointing

Programming a Checkpoint
You checkpoint a program by inserting calls to checkpointing routines in your

program. These routines are listed in Table 10 and are described in detail in
later sections. '

Table 10. Checkpointing routines

Routine Use

ckpt Checkpoints a program.

ckpt_hook_set Adds a routine to the list of routines to be executed
during checkpointing.

ckpt_hook_delete Deletes a routine from the list to be executed
during checkpointing.

ckpt_init Initializes the checkpointing package.

ckpt_periodic Calls ckpt if the checkpoint bit is set.

ckpt_periodic__start Starts the timer for periodic checkpointing; sets the
checkpoint bit at the end of the period.
ckpt_periodic_stop Stops the timer for periodic checkpointing.
ckpt_periodic_with_return value (C only)
Calls ckpt if the checkpoint bit is set; otherwise

returns.
ckpt_print_error Prints an error message. (Fortran only)
ckpt_restart Restarts a checkpointed program; for use with a
debugger.

The Checkpoint Files

When a checkpoint occurs, the checkpointing package saves the state of the
program in the following files:

» =-core — This is a standard core file, containing the state of the
program on the front end.

s -cm-core — This file contains the state of the program on the CM.
This file is not created if the program is not using the CM.

s -file-list — This is a list of the files that the program had open
when it was checkpointed.

s -program — This is a stored copy of the checkpointed program.

Version 6.1, October 1991

Chapter 6. Programming Tools 109

6.4.3

These files have prefixes added to them to create complete pathnames. The
prefixes are specified by the routine that executes the checkpoint. The -core,
-file-11ist, and -program files all share the same prefix, which specifies
a path in the front-end file system,; this is referred to as the front-end prefix. For
example, if the routine specifies the prefix /jones/myprog, then the front-
end core file is stored in /jones/myprog-core, and the list of I/O files is
stored in /jones/myprog-£file-list.

The ~cm-core file is stored in the CM file system. Typically, its prefix would
specify a pathname for a DataVault: for example, dva: /jones/myprog;
this is referred to as the CM prefix. (See Chapter 7 for information on how to
specify a DataVault pathname.)

Compiling a Program Containing Checkpoints

When compiling a program that contains checkpoints, link with the ckpt and
cmEs libraries, in that order. For example:

[%‘cmf k.my‘prog.féd -ilckpt' -lcmfé T o j

Restarting a Checkpoint

To run a checkpointed version of a program, use the CM command restart.
For example,

[% restart /vjones/my:}rog v T S J

This restarts execution of the checkpointed version of the program myprog,
using the front-end prefix /jones/myprog to identify the files that contain
the checkpoint. (It obtains the CM prefix, if any, from the program being
restarted.) For more details, see Section 6.4.13 on page 121.

Include Files for the Checkpointing Package

C Programmers: To use the CM checkpointing package in a C/Paris program,
include the file <cm/ckpt.h> in your program. If your program does not
contain code executed on the CM, include the following #define before
including the checkpointing file:

(‘#define CKPT_SKIP_CM CODE = =]

Version 6.1, October 1991

110

6.44

CM User's Guide

This loads a front-end-only version of the package, thereby avoiding the
overhead of linking in the entire Paris library.

Fortran Programmers: To use checkpointing in a Fortran/Paris or CM
Fortran program, include the file /usr/include/cm/ckpt-£fort.h.

Initializing the Checkpointing Package

To initialize the checkpointing package, call the routine ckpt_init; you
must do this before calling any other checkpointing routine, and before any
parallel operation or CM function. Its only argument is the name of the