
The
Connection Machine
System

CMOST Version 6.1.1 Release Notes

Version 6.1.1
March 1992

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, March 1992

The information in this docmnent is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
docmnent has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this docmnent. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

Connection Machine ® is a registered trademark of Thinking Machines Corporation.
CM, CM-I, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMOST and Prism are trademarks of Thinking Machines Corporation.

C*® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.
Sun, Sun-4, Sun Workstation, are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
The X Wmdow System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
24S First Street
Cambridge, Massachusetts 02142-1264

(617) 234-1000/876-1111

CMOST Version 6.1.1
Release Notes

1 Overview

These release notes document Version 6.1.1 of CMOST, the CM Operating
System, TImeshared, and the system software (utilities, compilers, and libraries)
that runs on top of it. CMOST Version 6.1.1 contains software patches to CMOST

Version 6.1; these patches consist of additional functionality and bug fixes.

Appendix A of these release notes lists the contents of this patch release.

1.1 Requirements

Recompiling and Rellnklng

All existing programs should be relinked to run with CMOST Version 6.1.1.
Recompiling is not necessary.

Sun OS Version

CMOST Version 6.1.1 requires SunOS Version 4.1.1 or 4.1.2, or VAX ULlRIX
Version 4.2.

March 1992 1

2 CMOST Version 6.1.1 Release Notes

1.2 Changes to Header Files

The header file paris. h has been changed to support the new C'" accessor rou­
tines CM_set_error_stream and CM_get_error_stream (see Section 6.1).

2 CMOST

2.1 1/0

This patch tape includes an fss.rver executable for the DataVault as well as
one for the front end. The DataVault executable must be copied to the MicroVAX
from the installation directory on the front end.

Enhancements

1. The CMFS fileserver (the fsserver) has been enhanced to provide improved
perfonnance through the use of a serial I/O buffer cache and the asynchronous
writing ofinode fIles to the MicroVAX disk. The use of these features is con­
trolled via two new switches to the fsserver: -c and -i. A new manual
page (fsserver. 8) describing these switches is provided on the tape.

• The -c integer switch changes the size of the DataVault's buffer
cache. Currently, the default buffer cache is 32 buffers (of one block
each).

A buffer cache of optimal size for a particular system can increase the
perfonnance of serial CM file system operations. The optimal size of
the buffer cache is dependent upon how much physical memory is typi­
cally free on the DataVault MicroVAX. If the cache is too big,
perfonnance will be degraded by fsserver paging. Until that point,
the bigger the cache, the better the perfonnance.

To disable the buffer cache, start the fsserver with -co.

• The -i 110 switch enables and disables asynchronous inode writing.
When enabled, this improves the perfonnance of file extension (espe­
cially beneficial to serial I/O perfonnance). Specifically, when a file is

March 1992

CMOST Version 6.1.1 Release Notes 3

extended under "asynchronous inode mode," the faaerver delays
writing the fIle's inode to disk until one of the following events occurs:

• The fIle shrinks in size.

• A request is made to close the fIle, and no other user has it open.

• The fIle server is idle for approximately 20 seconds.

• The fIle server is shut down via a SIGlERM signal.

When asynchronous inode writing is enabled, users can disable it on a
per-file-descriptor basis by supplying the CMFS_O_FSYNC flag when
opening the fIle. (A new CMl'S_open. 3 man page that incorporates
this new flag is provided on this patch tape.) Note that CMl'S_O_FSYNC
disables asynchronous inode writing for write operations, but not for
ftruncate operations (for example, CMl'S- [serial.] -ftruncate).

In this patch release, asynchronous inode writing is disabled by default.
In future versions of CMOST, however, this feature may be enabled by
default.

2. Message passing between the CMF'S library and the faaerver has been
speeded up. This reduces latency of CM file system operations.

3. The cmdd command now handles IBM labels. A new version of the cmdd man
page is on this patch tape and is included in Appendix B of these release notes.

4. The DataVault can now act as an NFS server. This enhances usability of the
CMF'S file system by allowing UNIX commands and calls to operate on the
CMF'S fIle system and its fIles (via serial I/O only). Since this release of NFS
is preliminary, its perfonnance may not be as good as CMF'S software per­
fonnance.

Three new man pages for the NFS server daemons, ugidd, unfsd/
unfamntd, and unfsd_exports, are on this patch tape and are included in
Appendix B of these release notes.

5. A new call for the CM-HIPPI, CMFS_get_extra_count (C/Paris only), re­
turns the number of virtual processors that received extra bits the last time the
local program read data from a socket into the CM and the CMFS-paral.lel.­
-recv-always or CMFS-read-fil.e-al.ways call returned a short bit
count. The call's syntax is:

March 1992

4 CMoSI' Version 6.1.1 Release Notes

A man page for this new call is in the CM-HIPPI User's Guide for the CM-2,
Version 6.1 Beta 2.

Fixes

1. By default, the commands cmcp, copyfromdv, and copytodv copy not only
the data file but also the associated attribute file. In CMOST Version 6.1, how­
ever, if the command failed to copy the data fIle - because of insufficient
pennission, for example - the command's subsequent attempt to copy the
attribute file caused an abort. Now, if the command fails to copy the data fIle,
it does not try to copy the attribute file.

2. Programs that used a VMEIO could become out of sync with the faaerver
on certain error conditions. This is now fixed.

3. The 6.1 faaerver now works with programs linked with the 6.0 CMF'S li­
brary.

4. Programs that attempt to read a file at EOF no longer occasionally receive the
target buay timeout error.

5. I/O via the Ethernet to and from files two gigabytes or larger in size now
worlcs properly.

6. CM-HIPPI:

a. Programs that perfonn direct data transfers between the CM-HIPPI and
the DataVault no longer lose the ability to communicate with the Data­
Vault faa.rver after some error conditions.

b. It is now possible to fully intennix serial and parallel operations on the
CM-HIPPI. (Previously, if all serial operations weren't multiples of 512
bits, subsequent parallel operations would fail.)

7. It is no longer an error to execute cmchmod, cmchgrp, or cmchown on an
attribute file that has no associated inode fIle.

8. A bug in reading directories that caused cmdu to loop occasionally has been
fixed.

9. The commands dv_disk_util and dv_util_VlDSio, when inadvertently
run without root privileges, no longer leave an unusable ra -disk­
special-file on the DataVault Also, dv_disk_util and dv_util_

March 1992

CMOST Version 6.1.1 Release Notes
M!Wmil

5

vmeio have been relinked with the 6.1.1 version of the Paris and CMFS li­
braries.

10. The CMFS-rename routine and the cmmv command now verify that the user
has write permissions for both the directory in which the file (or directory)
resides and the one that the file (or directory) will reside in.

11. The overhead timing test that is part of dvteat2 now prints more detailed
information about CMFS overhead. In addition, dvtest2 's usage message is
now correct.

12. The cmtar command now allows reading or writing more than two gigabytes
to a single tape. This functionality is important when using Exabyte drives.

13. Under 6.1 timesharing, if some processes were doing I/O to the DataVault
when the timesharing system had to swap jobs out to the Data Vault, both the
swap and the process I/O could fail. This problem has been corrected.

Known Problems

1. Running cmfsck without the -p switch, or running cmfsck on a dirty file
system, changes the last access time of all files.

2. To prevent fsserver problems, be sure the permissions on the two Data­
Vault root directories (usually /dvl and /dv2) are the same.

2.2 Operating System

Enhancements

1. The command that manipulates the CM's access-control lists, cmac1, now has
a -c option. The -c option modifies the access-denial lists, which, since they
are checked after the access-granted lists, act as a list of exceptions to the
access-granted lists.

March 1992

Using the -c option is practical where CM access is available to most users
and groups: The access-granted lists can remain empty, indicating that access
is unrestricted, while the exceptions are made by executing

% cmac1 -c [-ul-g] n~ [na~ •••]

6 CMOST Version 6.1.1 Release Notes

where name is a user name or a group name, consistent with whether -u or
-g is specified. Note that the primary group ID (set by ~ogin or nevqrp ())

is the only group ID checked for denial of access due to group membership.

When cmacl -c is executed without any name arguments, the contents of
the access-denial list is printed.

An updated man page for cmacl is on this patch tape.

2. The CM device driver now enforces CM connect-time limits, which are set by
a new command, cmcountdown. Its syntax is:

cmcountdown [-u user-name connect-time-limit]
[-g group-name connect-time-limit]

connect-time-limit is the number of seconds the user or group can run jobs
on the CM. Note that a group accrues connect time from each member's CM
activity; that is, the limit applies to the group as a whole, not to each member.

A process that runs under timesharing accumulates connect time only when
the job is scheduled on the CM, not when it is simply waiting to use the CM.
Under exclusive mode, connect time is the same as the difference between
detach and attach times.

When cmcountdown is executed without arguments, it prints a list of the cur­
rent connect-time limits.

A man page for cmcountdown is on this patch tape and is included in Appen­
dix B of these release notes.

3. A new system verifier, cmverify, aids in preventive maintenance. A man
page for [cmverify is on this patch tape and is included in Appendix B of
these release notes.

4. As of CMOST 6.1.1, multiprocessor Suns (Sun 6OO-MP series) are supported
as Connection Machine front ends.

Fixes

1. Accounting:

a. The accounting command emsa, which coalesces and displays CMjob
accounting records, has been changed:

March 1992

CMOST Version 6.1.1 Release Notes 7
~ ,~

March 1992

(1) In CMosT Version 6.1, the value of 'em. processors reported
by emsa was always the full size of the eM. In Version 6.1.1,
'em. processors reports the true value represented in the ac­
counting file.

(2) emsa now tests the contents of the accounting file's data struc­
tures for validity, reducing the likelihood of erroneous output.

(3) emsa now prints an additional record on start-up containing the
process creation time of the oldest process in the accounting file;
the First and Last records reflect the times of the earliest
attach and latest detach, respectively. The emsa. awk script has
been modified to understand this new field. Users who have
written their own versions of emsa. awk should make similar
changes to their scripts.

In addition, accounting summaries generated by the cmacct
command now reflect the earliest attach time and the last detach
time found in the accounting file, so that cmacct accounting
summaries no longer exaggerate the period of time that they
cover. Previously, the summaries stated that they covered a peri­
od of time longer than expected because of cmacct 's use of the
process creation time of the first and last processes in the ac­
counting file rather than the earliest attach time and last detach
time.

b. By default, the eM accounting daemon, cm-acctd, writes vari­
able-length records to its accounting file, which minimizes wasted disk
space but increases the risk of file corruption. A new em-acctd flag,
-F, allows the system administrator to choose increased log reliability
by forcing the accounting daemon to write fixed-length records (of 512
bytes) and perfonn an fsync () operation to flush all records to disk
as they arrive.

Regardless of whether the -F flag is specified, em-acctd now per­
fonns a consistency check on the accounting file on start-up, which
eliminates the possibility that a partial record or corrupted datum will
cause the em-acctd to crash. Also, em-acctd now logs error condi­
tions to the eM logger facility.

In accordance with the new -F switch to em-acctd, the pracct com­
mand now handles both variable length and fixed length accounting
records, and em-logger now understands the subsystem, "CM Ac­
counting Daemon."

8 CMoSI' Version 6.1.1 Release Notes
ili

c. Another new flag to cm-acctd, -p directory, allows the file contain­
ing the process ID of the CM accounting daemon to be placed in a
directory other than the default (lusr/spool/cm). For example:

cm-acctd -p /tmp /tmp/my-accounting-file

creates the fIle /tmp/ hostnaTne . cm-acctd. pid and the file that will
contain the accounting data, /tmp/my-accounting-file.

d. The script that rotates log mes and deletes old ones, newcmlog, also
now supports the -p directory option, allowing it to fmd the accounting
daemon's process ID me so that it can signal the daemon that the log
files are being rotated. (If -p is not specified, newcmlog looks for the
process ID:tile in /usr/spool/cm.) Specify the -p flag to newcmlog
whenever the -p flag is used with cm-acctd. For example:

newcmlog -a /tmp/my-accounting-file -p /tmp

rotates the accounting:tile /tmp/my-accounting-file and signals
the accounting daemon to close its open mes and start writing to new
log files.

2. Timesharing:

a. The -current switch has been removed from the cmts-admin com­
mand, because the functionality provided by this switch is· already
available by running ants-admin with no arguments. In addition,
ClUts-admin now prints error messages upon encountering error con­
ditions.

b. The cmts-shutdown command now prints an error message if for any
reason it is unable to shut down timesharing. In addition, cmts­
shutdown now sends a SIGURG and a SIGINT signal (rather than a
SIGKllL and a SIGTERM, as previously documented) so that processes
that had been running under timesharing no longer must be killed by
hand. A new man page for ClUts-shutdown is on this patch tape.

c. A bug that caused processes to fail to get a process slot from the ts­
daemon has been fixed.

d. TImesharing would occasionally tenninate an application and log a
message on the system console referring to cuw error 1. This re­
sulted from a race condition within the CM device driver and is now
corrected

March 1992

CMOST Version 6.1.1 Release NOles 9
~m:m;;:m _ ~

3. The following bugs regarding attaching are now fixed:

a. If an application began execution on the eM via the auto attach mecha­
nism, the eM safety mode would not be set in accordance with the
value of the environment variable CM_DEFAULT_SAFETY. The value
of this environment variable is now used to set the current eM safety
mode, regardless of the method used to attach to the eM. (CM_

DEFAULT_SAFETY is also now applied properly to jobs that run under
NQS.) See also Section 2.2.3, number 5.

b. A cmattach bug caused both User A and User B to be detached under
the following scenario:

User A: cmattach -iX

User A: cmattach -iY (from within the cmattach subshell)

User B: cmattach -iX

User A: exit (exiting the cmattach subshell)

This problem, which affected sites with multiple interfaces on a single
front end, is now fixed.

c. If a user was attached to, for example, 8K processors on a timeshared
sequencer, and then issued the command, cmattach -p16k, the
command would appear to succeed when in fact the user would only
be attached to the original 8K processors.

d. The command, cmdetach user, when user was attached to a time­
shared interface, would reply: Are you sure? user/root appears
to be running timesharing on that interface.

Unstated in this query is the fact that the ts-daemon and all time­
shared users would be detached from the interface, along with user.
Consequently, cmdetach has been changed so that it refuses to detach
a timeshared interface if the request is made via cmdetach user. It will
detach a timeshared interface if the request is made via cmdetach in­
terface-number.

4. If cmrenice was invoked with no arguments, it would abort with a segmen~
tation fault. cmrenice now prints an appropriate usage message and exits
cleanly under these conditions.

5. coldboot-paris and cmlist have been compiled with the new Paris
library.

March 1992

10
_ill

CMOST Version 6.l.l Release Notes

6. There was a bug in the Cllllllan command that caused it to improperly deter­
mine the location of the installed CM man pages on a VAX. This bug is now
fixed.

7. On CM-200 systems only, the cmpowarup command and the (cm:powerup)
function in Lisp would set the CM clock speed incorrectly. cmpowarup and
(cm:powarup) now set the CM clock speed according to the :clock-speed
parameter in the CM configuration file, configuration . lisp. The binary
configuration file, /usr/spool/cm/configuration.bin, must be rebuilt
before this fix will take effect. To do this, delete the file
/usr/spool/Cm/configuration.bin and run the cmfinger command
as root

8. eM timers running under timesharing no longer produce wrong timings. Pre­
viously, the perfonnance monitor register was reloaded incorrectly when a
process was being switched in. If only one process was doing timings under
timesharing, the timer could be fairly accurate, but extremely wrong timings
(including negative values) could result if more than one currently running
process was using the timers.

Documentation Errors and Clarification

1. On page 13 of the VerSion 6.1 eM System Administrator's Guide, the setting
of the : clock-speed parameter for a CM-2 is listed incorrectly as 4- Mhz.
The correct setting of this parameter is '-Mhz.

The table below clarifies the appropriate settings of the : clock-speed and
: bus-speed-code parameters of the CM configuration file:

eM
CM-2
CM-200
CM-200

:clock-speed

7-Mhz
8-Mhz

10-Mhz

:bus-speed-code

Oxba
Ozaa
Ozdd

Running a CM with these parameters set at values different from those listed
in this table is not supported and will result in unpredictable behavior.

March 1992

CMoSI' Version 6.1.1 Release Notes 11
~WQ;;:;·; i;

2. Page 74 of the Version 6.1 CM System Administrator's Guide reports incor­
rectly that the auto-attach feature is disabled by default. In fact, the
auto-attach feature is enabled by default. To disable it, add the following
entry to /etc/cm-base-system-config (capital letters necessary):

ALLOW-AUTO-ATTACH = NO

3. Page 85 of the Version 6.1 CM User's Guide incorrectly lists the name of a
coldboot function as CM_coldboot. The correct name is CM_cold_boot

(note the second underscore).

4. Section 5.2 of the Version 6.1 CM User's Guide discusses the 01 attach

routines (CM_attach, CM_attach_to, etc.). The following caveat should be
appended to that discussion:

The CM_attach routines must be called before any parallel variables
are defined. This means that a program that uses GLOBAL parallel vari­
ables (C*) or CM arrays in COMMON (CM Fortran) cannot use the
CM_attach routines, since GLOBAL parallel variables and CM arrays
in COMMON are defined by the run-time system before the user's main
routine is invoked.

5. Section 6.1 of the CM User's Guide, which discusses run-time safety
checking, omits an explanation of the interaction between the CM~
DEFAULT_SAFETY environment variable and the cmsetsafety command.
When CM_DEFAULT_SAFETY is on, it overrides the cmsetsafety com­
mand. That is, in order for the cmsafety command to tum safety checking
on and off for a program, CM_DEFAULT_SAFETY must be set to off (it is off
by default). Also note that cmsetsafety has no effect in an auto-attached
program.

Known Problems

1. vbutil'S Test 19 (the VMEFEBJ: lliegalOps test) is disabled on Sun 4/600 sys­
tems, as it generates VMEbus timeout conditions that cannot be safely handled
on these systems.

March 1992

12 CMoSI' Version 6.1.1 Release Notes
Wi!!!!!!i;;;miilii!! ill

2.3 NQS

This patch release of NQS does not require an NQS database rebuild.

Fixes

1. The following bugs relating to enforce mode are fixed:

a. If a sequencer was in use from one front end, and another front end
tried to attach to that sequencer on behalf of an enforce-mode NQS
batch queue, the enforce-mode attach would fail when it should have
succeeded. When the enforce-mode attach failed in this manner on a
VAX computer, NQS enforce mode left the interface attached even
though the sequencer was not attached.

b. Any jobs running on the CM resource belonging to a NQS en­
force-mode queue would be forcibly detached when the enforce-mode
queue started up. This bug is fixed so that only those jobs submitted
from a queue with lower priority than the enforce-mode queue are de­
tached when the enforce-mode queue starts up.

2. If a system administrator had not built the NQS database before trying to run
nmapmgr, nampmgr would report a fatal error and exit. The error message
now tells the administrator what to do to fix the problem.

3. Batch queues are now processed in priority order when a restriction window
opens.

4. Pipe queues generally did not work as released in CMOST Version 6.1 because
of a configuration problem. As of this release, however, NQS can run jobs
submitted to a pipe queue. Following are some pipe-queue-related enhance­
ments:

a. NQS no longer mistakenly applies a wall-clock limit to a pipe queue.

b. Jobs remain in the pipe queue until a destination queue that can run the
job right away becomes available. (The previous behavior allowed a
job to be submitted to a destination queue that was stopped or that
didn't have a CM resource available.)

c. Inter-machine permissions: NQS now understands NIS (yp) syntax in
fete/hosts .equiv. NQS's parsing of . rhosts has been enhanced:

March 1992

CMOST Version 6.1.1 Release Notes 13
~~!!i!!;; "'::f;:_:~:l:::;'::~ ___

(1) Trailing whitespace is now allowed after the hostname and user­
name in the . rhosts file.

(2) If a user is required to have a . rhosts file for cross-machine
authentication but does not, the user now gets a no access
authorization error message. (The previous behavior al­
lowed the request to keep trying to route, up to the pipe queue
retry limit, and on exit provided no helpful interpretation of the
problem.)

d. The order in which a pipe queue attempts to submit jobs to its destina­
tion queues has been made more useful: The destination queues are
first sorted alphabetically by name, and then by machine ID (MID).
When a pipe queue receives a request, it attempts to submit it to each
queue in the sorted list, in tum, until one accepts the job.

For example, given the batch queues qlSM8cmfe3, qlh8cmfel,
q2h8cm£e2, and q6h@cm£e3, the following pipe queue destination
lists would work. appropriately:

Pip. Queue

cm15m

cmlh
cm2h
cm6h

Desired Destination Queue Order

q15m@cmfe3,qlh@cmfel,q2h@cmfe2,
q6h@cmfe3
qlh@cmfel,q2h@cmfe2,q6h@cmfe3
q2h@'cmfe2, q6h@cmfe3
q6h@cmfe3

For simplicity, we recommend choosing unique names for all pipe
queues so that sorting by MIDs is not necessary.

Note that the description of destination-queue sorting given in Section
3.13.2 of the eM System Administrator's Guide is incorrect.

Known Problems

1. Ifapipe queue on a CM-2 feeds jobs to a CM-5, or vice versa, anincompatibil­
ity between CM-2 NQS (software versions 6.1.1 and earlier) and CM-5 NQS
(software versions 7.1.3 and later) will cause some error codes generated on
one machine to be misinterpreted on the other.

March 1992

14 CMOST Version 6.1.1 Release Notes
t U" ;un: Bd

3 Run-Time System

3.1 Enhancements

1. The file cmrt . h is on this patch tape.

2. The performance of CMRT_intern_qeometry and CMRT_intarn_
detailed_qeometry has been improved:

a. Programs that attached via the cmattach command no longer generate
unnecessary calls to an internal routine, CM_attached, used by the
auto-attach mechanism.

b. The geometry creation routine has been speeded up via a geometry
caching system.

These improvements improve the performance of programs that create large
numbers of geometries.

3.2 Fixes

1. eM Fortran programs would occasionally fail under timesharing with a mes­
sage about out of scratch memory, when there should have been plenty
of free memory. This problem has been fixed.

4 Paris

4.1 Enhancements

1. A dynamically linked, shared version of the Paris library is now available.
Using this library greatly reduces application size and link time.

March 1992

CMOST Version 6.1.1 Release Notes 15
mlmh!

4.2 Fixes

1. CM Fortran/Paris array section transfers would fail because of a bug in
cross-vp-move. This has been fixed.

2. Calling eM_get _lL or eM_send _lL with overlapping arguments, although
technically illegal, would work but produce a message (only under timeshar­
ing) saying, Compress heap called from within-vp-fields, not
compressing. These functions now work without producing the message.

3. The CMOST Version 6.1.1 of eM_rank _lL returns its performance level to
that of Version 6.0. In addition, eM_rank _lL has been further speeded up for
certain VP ratios.

4. CM: send-to-shared-queue32-2L on certain hardware configurations
would occasionally generate false message-parity errors. This is now fixed.

5. New microcode corrects eM-2oo-specific potential timing problems.

5 Fortran

5.1 Enhancements

1. A checkpointing subroutine call, ckpt..,.P8riodic, is now available from
Fortran. This subroutine is documented in the Version 6.1 eM User's Guide,
but was not actually present in CMosT 6.1.

2. The F77 version of attach-fort. h, a header file that defines Fortran inter­
faces for eM_attach, is included on this patch tape.

3. The header file /usr/include/cm/ckpt-fort .h, which allows check­
pointing to be done from Fortran, is included on this patch tape.

March 1992

16
: f

CMoSI' Version 6.1.1 Release NOles

6 C*

6.1 Enhancements

1. For various reasons, C* users are not able to access CM _error_stream, a
paris.h variable that redirects some eM functions' output from stderr or
stdout to another file. To perfonn this task for C* users, there are two new
accessor routines:

finclude <stdio.h>
finclude <cm/paris.h>

main ()
{

FILE *foobar, baz;

foobar = fopen("myfile","w")
CM set_error_stream(foobar);

baz = CM_get_error_stream();
[... etc]

C/Paris programmers can also use CM_set_error_stream and
CM_get_error_stre~

7 *Lisp

7.1 Bug Fixes

1. The *Lisp example fIles mentioned in the *Lisp documentation were not
present in 6.1. The examples are included in this patch tape and will be in
directory/cm-optional/starlisp/interpreter/ f6101, where direc­
tory is the directory into which this patch tape is tar'ed.

March 1992

Appendix A
~~I~~!!!11.!1!iil11~_

CMOST Version 6.1.1 contains the following:

• New microcode for CM2/CM200

• Paris
• regular (compiled -0), Sun/VAX

• profile (compiled -pq), Sun/VAX

• Shareable libraries for Sun

• Slicewise RTS
• All versions, CM2{200, Sun/VAX

• Sys-Commands

• emsa, emsa-. awk

• cm-acctd

• cmac~

• pracct

• cmrenice

• cmverify

• cmts-admin

• coldboot-paris

• cmcountdown

• cmts-shutdown

• User-Commands

• Cllpowerup

• cmJ.ist

• ' cmattach

• cm-~ogger

• cm-update-confiq

March 1992 17

18 CMosr Version 6.1.1 Release Notes
::: :! : 3iBlts: :dhd2bmM j~:

• cmman

• Ts-daemon

• NQS

• All commands and all daemons for the Sun and VAX

• Man pages

• czp.dd .1, CMFS_open. 3, unfsd_exports. 5, fsserver. 8,
ugidd.8.unfsQ/unfsmtd.8. cmacl.8. cmverify.8. cmcount­
down. 8

• Header files that have changed since CMOST Version 6.1 final

• Also cmrt . h

• CM device driver et al.

• CMF'S

• libcmfs.a

• fsservar

• dvtest2

• cmdd

• dv disk_util

• cmtar

• dv util vmeio - -
• cmcp

• copyfromdv

• copytodv

• Auxiliary libraries:

• libckpt

• libcmfe

• libtoolkit

• Data Vault/Microvax

• fsservar

• nfsd

• nfs_mountd

• ugidd

March 1992

Appendix B

The remainder of this manual contains updated man pages for the following com­
mands and daemons:

• cmdd

• cmcountdown

• cmverify

• ugidd

• unfsd, unfsmntd

• unfsd_exports

March 1992 19

cmdd(CMFS) cmdd(CMFS)

NAME
cmdd - Copies an input file to an output file, converting data as specified.

SYNTAX
cmdd [-fromdv] [-todv] [ifbs=n]
[obfs=n] [-a] [if=name] [of=name]
[obs:=n] [bs=n] [cbs=n] [skip=n] [files=n] [seek=n] [count=n]
[conv=value] [Iabel=[isll inll osll
onll obi]] [vsn=List-of-vol-serial-nos]
[dsn=List-of-dataset-names] [rformat=j1nt:blen:rlen]

ARGUMENTS
-fromdv Use the input coming from a CMFS file. (Otherwise, input is assumed to be

coming from the computer that executes cmdd.) The if=name option must
be used with -fromdv.

-todv Send output to a CMFS file. (Otherwise, output is assumed to be going to
the computer that executes cmdd.) The of=name option must be used with
-todv.

ifbs=n Use the input coming from a StorageTek tape drive, with a fixed block size
of n bytes, where 0 < n < 64K. (Otherwise, input is assumed to be coming
from the computer that executes cmdd.) This option is used to put the Stor­
ageTek tape drive in fixed-block mode for improved performance.

ofbs:=n Send output to a StorageTek tape drive, with a fixed block size of n bytes,
where 0 < n < 64K. (Otherwise, output is assumed to be going to the com­
puter that executes cmdd.) This option is used to put the tape drive in fixed­
block mode for improved performance.

-a Append the input to the output file (rather than rewrite it if it already exists).

if=name Input file name. If the input is a CMFS file, this option is required. If this
option is not specified, the default is the standard input of the computer that
executes cmdd.

of=name Output file name. If the output is a CMFS file, this option is required. If this
option is not specified, the default is the standard output of the computer that
executes cmdd.

ibs=n Input block size in bytes--65,536 bytes by default. Some devices do not sup­
port block size greater than 65,535 bytes. See bs.

obs=n Output block size in bytes; 65,536 bytes by default. Some devices do not
support block size greater than 65,535 bytes. See bs.

bs=n Set both input and output block size to n bytes, superseding ibs and obs.
Also, if bs is specified, the copy is more efficient since no blocking

CMI/06.1 Last change: Feb 1992 21

cmdd(CMFS) cmdd(CMFS)

22

conversion is necessary.

cbs=n Conversion buffer size in bytes. Use this option only if ascii, unblock,
ebcdic, ibm, or /fBblock/fR conversion is specified. For ascii and unblock,
n characters are placed into the buffer, any specified character mapping is
done, trailing blanks are trimmed, and a newline is added before sending the
line to the output For ebcdic, ibm, or block, characters are read into the
conversion buffer and blanks are added to make an output record of size n
bytes.

skip=n Skip n input records before starting to copy.

files:=n Copy n input files before terminating. This option is useful only when the
input is a magnetic tape or similar device.

seek=n Seek n records from beginning of output file before copying.

count=n Copy only n input records.

conv=arg Perform specified conversion arg is a comma-separated list of any of the
following (see the Examples section):

ascii
Convert EBCDIC to ASCII.

ibm Slightly different map of ASCII to EBCDIC (see Restrictions).

block
Convert variable-length records to fixel;llength.

unblock
Convert fixed-length records to variable length.

lcase
Map alphabetics to lower case.

ucase
Map alphabetics to upper case.

swap Swap every pair of bytes.

noerror
Do not stop processing on an error.

sync Pad every input record to ibs.

tomultidrop
Convert a file so that it can be used on multidrop DataVault
hardware.

frommultidrop
Convert a file from one that can be used on multidrop
Data Vault hardware.

Last change: Feb 1992 CM I/O 6.1

cmdd(CMFS)

The following options are used in mM-format tape label processing:

label=[isll inll ibll osll onll obi]
isl Standard label processing on input tape.
inl Non-labeled processing on input tape.
ibl Bypass label processing on input tape.
osl Standard label processing on output tape.
onl Non-labeled processing on output tape.
obi Bypass label processing on output tape.

vsn=List of Volume Serial Numbers

cmdd(CMFS)

Specifies the volume serial numbers (VSNs) of the different volumes, separated by
commas. On input tapes, only the volumes specified are processed. For output tapes,
enough VSNs must be specified to accomodate all the data. Extra VSNs are ignored.

dsn=List of dataset names
Specifies the name(s) of the current dataset(s), separated by commas. Concatenating
multiple datasets is supported only on input tapes.

rformat=fmt:blen:rlen
Specifies the record format and blocking format of the tape. This option is currently
ignored on input standard-label tapes because format information is determined auto­
matically from the labels on input tapes. The fields are:

fmt: (also see the Description section)
f Fixed-length records
fb Fixed-length blocked records
v Variable-length records
vb Variable-length blocked records
vbs Variable-length, blocked, spanned records
u Undefined

bien: (Maximum) block length
rlen: (Maximum) record length

WHERE EXECUTED

UNIX front end
YMEIO host computer
CM-IOP

DESCRIPTION

The command cmdd copies a specified input file to a specified output file with any
requested conversions. The input and output block size may be specified to take advan­
tage of raw physical I/O. After completion, cmdd reports the number of whole and par­
tial input and output blocks.

Where sizes (n) are given for an option, the number may end with k for kilobytes (1024
bytes), b for blocks (512 bytes), or w for words (2 bytes). Also, two numbers can be

CMl/06.1 Last change: Feb 1992 23

cmdd(CMFS) cmdd(CMFS)

separated by the character x to indicate a product.

Following are some of the more common reasons for converting a file:

o To convert unarchived data to a CMFS file. See the Examples section.

o To convert files moved via the Ethernet from a point-to-point OataVault to a mul­
tidrop DataVault, or vice versa. See the example in the Example section. (Note
that generally it is not necessary to convert files residing on a Oata Vault at the
time the Oatavault is upgraded from point-to-point to multidrop. Serial files,
however, are special cases; their conversion is explained below.)

o To convert serial files stored on a point-ta-point OataVault so they can be used on
a multidropped CM system. The conversion is done at the time of the hardware
upgrade. To perform this conversion, use cmdd with the conv=frommuItidrop
option (yes, this is counterintuitive). This conversion is necessary both for serial
files that have been transposed from parallel format and for serial data read
directly to a OataVault using CMFS software that supports point-to-point hard­
ware.

IBM-FORMAT TAPE-LABEL PROCESSING

24

cmdd has the capability to efficiently process IBM-format tapes. It supports Standard
Label (SL), Non-Labeled (NL), and Bypass Label (BL) tape-processing modes. This man
pages assumes familiarity with IBM tape-label formats and processing modes. For back­
ground information on tape labels and label processing, consult MVSI370 Magnetic Tape
Labels and File Structure Administration, IBM manual #GC26-4064-2, Chapters 1, 2,
andS.

The IBM-format tape-label processing options are label=, vsn=, dsn=, and rformat=.

Note the following about variable-record format processing (specifically, v, vb, fs, and
vbs of the /mt field of the rformat option):

On input variable-record format tapes, cmdd creates a control file
(the filename is generated by the output filename and is named output­
filename.ctl), which contains information about the record and block lengths
of the input tape. The block descriptor words (BOW) and record/segment
descriptor words (ROW/SOW) are NOT stripped from the data.

On output variable-record format tapes, cmdd checks for the existence of a
corresponding control file. If the file exists, cmdd uses it to determine the
size of each tape block to write. The data must either contain the correct
BOW and RDW/SOW entries, or contain placeholders (zeros) at the correct
locations, as specified by the control file. In the latter case, cmdd fills in the
placeholders with the correct descriptor words extracted from the control file.

If no control file is found, cmdd peruses the data itself to determine the size
of each tape block to write. In this case, the data must contain the correct

Last change: Feb 1992 CMI/06.1

cmdd(CMFS) cmdd(CMFS)

descriptor words.

When processing variable-record output tapes, cmdd attempts to use fixed­
block mode (see below) when it determines that all the block sizes in its
buffer are the same size. In this instance, the buffer size specified on the com­
mand line does not need to be a multiple of the fixed block size. This use of
fixed-block mode cannot be overridden.

Note the following about fixed-block mode processing (specifically, f and tbs of the fmt
field of the rformat option):

If the tape drive is determined to be a StorageTek 4980, cmdd uses fixed-block mode
as described below to greatly improve performance. To take full advantage of this,
specify a large buffer size (usually on the order of several megabytes) to cmdd. Just
as when specifying fixed-block mode explicitly on the command line, the buffer size
specified must be a multiple of the value used for fixed-block mode, which is deter­
mined as follows:

For isl processing, cmdd automatically sets fixed-block mode to the size speci­
fied in the block length field specified in the HDRl label.

For osl or onl processing, cmdd automatically sets fixed-block mode to the
biock length specified in the rformat argument, except for variable-record for­
mat tapes (see below).

To prevent cmdd from automatically using fixed-block mode as described above,
specify a fixed-block mode size of -Ion the command line (using the itbs or otbs
arguments).

RESTRICTIONS

cmdd does not support the use of multiple media, nor does it support files that span more
than one tape volume, except when handling mM tapes.
Specifying conversion operations on IBM tapes is not supported.
The full- and partial-block counts reported by cmdd are not meaningful for IBM tapes.

EXAMPLE

The following example shows how to read an EBCDIC tape (/dev/rmtOh) on the front
end into the ASCII file x in the CM file system. The tape is blocked in ten 80-byte
EBCDIC card images per record. The resulting ASCII file has all lowercase characters.
(cmdd is executed on the front end.)

%cmdd -todv if=/dev/rmtOh of=x ibs=800 cbs=80 conv=ascii,lcase

The following example writes a file (final. data) on the DataVault to a tape (/dev/rmtOh)
on the front end. 64K bytes are transferred at a time and no conve{Sionsare performed.

CM I/O 6.1 Last change: Feb 1992 25

cmdd(CMFS) cmdd(CMFS)

(cmdd is executed on the front end.)

%cmdd -fromdv if=dvl:/final.data of=/dev/rmtOh

Note the use of raw magnetic tape. The cmdd command is especially suited to I/O on the
raw physical devices because it allows reading and writing in arbitrary record sizes.

The following example shows how to move files from a point-to-point DataVault to a
multidrop DataVault. If a backup file (on tape) called oldfile was saved from a point-to­
point DataVault and is to be restored as newfile on a multidrop DataVault, the file must
first be written to the multidrop DataVault using the appropriate program (such as cmtar).
Then issue the following command:

%cmdd -fromdv -todv if=oldfile of=/newfile conv=tomultidrop

To read a four-volume, IBM standard-labeled dataset with VBS fonnat and maximum
blocksize of 32760 bytes:

%cmdd if=/dev/rstcO of=dvl:dataset -todv label=isl \
dsn=TMC.IBM.DATASET vsn=811302,808911,823984,822922 bs=3276000

To write an IBM standard-labeled dataset spanning no more than four volumes, with
fixed-size records of 80 bytes and tape blocksize of 8000 bytes:

% cmdd if=dvl: data of=/dev/rstcO -fromdv label=osl \
dsn=TMC.IBM.FIXEDDATA vsn=812391,B22661,B24907,BOB961 \
rformat=f:BOOO:BO bs=800000

To read two datasets from IBM non-labeled tapes with 6400-byte blocks, concatenating
them:

%cmdd if=/dev/rstcO of=dvl:merged-data -todv label=inl \
vsn=111111,222222 files=2 ifbs=6400 bs=640000

To ,read two datasets from a single IBM standard-labeled tape volume, concatenating
them:

%cmdd if=/dev/rstcO of=dvl:merged-data -todv label-isl vsn=865148
dsn=IBM.DATA.l,IBM.DATA.2 bs=3276000

SEE ALSO

26

cmcp
copyfromdv
copytodv
dvcp
cmtar
cmdump

Last change: Feb 1992 CMI/06.1

CMCOUNTDOWN (8) CM ADMINISTRATION/MA1N1ENANCE CMCOUNTDOWN (8)

NAME

cmcountdown - Limit the amount of time a user/group may consume on any CM.

SYNOPSIS

cmcountdown [-u user-name connect-time-limit] [-g group-name connect-time-limit]

DESCRIPTION

cmcountdown, when run with the -u and -g switches, sets limits for the amount of con­
nect time that a certain user or group may spend on any Connection Machine. When
cmcountdown is executed without arguments, it prints a list of the current connect-time
limits.

A process that runs under timesharing. accumulates connect time only when the job is
scheduled on the CM, not also when it is simply waiting to use the CM. Under exclusive
mode, connect time is the same as the difference between detach and attach times.

Note that a group accures connect time from each member's CM activity; that is, the limit
applies to the group as a whole, not to each member.

Connect time is never automatically "refreshed"; to allot more time to a user or group,
cmcountdown must be re-ex~cuted. When cmcountdown is rerun for a user or group
that has time remaining, the effect is that the new connect-time-limit replaces the old con­
nect-time-limit, rather than adding the new time allotment to the old time allotment. (To
increase the amount of allotted connect-time, cmcountdown must be run as Root. When
a user (not root) runs cmcountdown with the -u switch, he or she can reduce the connect­
time allotment but not increase it.)

As the system does not remember connect-time allotment and expenditure between sys­
tem reboots, cmcountdown must be rerun at reboot time with the updated account infor­
mation (extracted from the most recent set of accounting records: currently there are no
tools to do so automatically).

ARGUMENTS

-u Specify connect-time-limit, in seconds, for user user-name.

-g Specify connect-time-limit, in seconds, for group group-name.

SEE ALSO

cmsa

Thinking Machines Lastchange:02ft)4192 27

CMVERlFY (8) . CM ADMINISTRATION/MAINTENANCE CMVERIFY(8)

NAME

cmverify - CM system verifier

SYNOPSIS

cmverify [-iHv] [-n number] [-r number]

ARGUMENTS

-i Ignore errors.

-H Run the check-hot-boards verifier.

-nnumber-qf-passes
Run the verifier the specified number of times.

-r number
Run number router verifiers. number must be 0, 1, 2, 3, or 4.

-v Be verbose.

DESCRIPTION

28

cmverify is a user-level system verifier that provides an additional level of system verin­
cation beyond that provided by the CM diagnostics. Although it is useful for detecting
hardware problems, cmverify generally cannot provide enough infonnation to call out
the specific component that is failing. CM diagnostics should always be used to provide
detailed fault isolation before any hardware is moved or replaced. cmverify can run 7
basic test groups, listed below. By default, cmverify runs all of the test groups except
check-hot-boards.

check-hot-boards
This test prints out infonnation about all boards in the system that are signalling a
thennal warning condition. A thennal warning condition is NOT NECESSAR­
ILY A PROBLEM: large CM's indicate thennal warnings in interior locations
under nonnal conditions. A change in the thennal warnings exhibited by a given
system can be useful in tracking down broken or stuck fans, however. System
administrators are encouraged to keep a log of thennal warnings exhibited over
time, to allow them to notice changes in the heat characteristics of the system.
This test is disabled by.default.

test-UC-scratch-ram
This test exercises IMP memory, using the same mechanisms used by PARIS and
the Fortran runtime system to download and execute IMPS.

test-timer-trap

Last change: 1/31/92 Thinking Machines

CMVERIFY (8) CM ADMINISTRATION/MAlNTENANCE CMVERIFY(8)

This test checks for a sequencer branch condition failure mode, which diagnos­
tics often do not catch.

basic-routing
This test, which is run at various VP ratios and geometries, does some basic send
operations with and without combinors. Results are checked and errors are
reported if they are not as expected.

indirect-addressing
This test uses theCM_aset32_shared_2L instruction to verify correct operation
of the indirect addressing hardware.

router-verifiers
Several levels of router verifiers can be run. Level 1 is the quickest, with level 4
taking several hours to complete. By default, the level 2 verifiers are run.

check-em-memory
After running all tests, cmverify scans CM memory and reports any single bit
ECC errors found. Double bit ECC errors are fatal to any application, and will
be reported by the error system.

SAMPLE RUN

Sample run: % cmverify -H
**
Attached to {CM}* Timesharing on "Rosie" Sequencer 1
**
Running "cmverify" on CM "ROSIE", sequencer(s) 1, 1 pass
Test started Mon Feb 3 23:15:51 1992
2048 physical processors
Eunuch and Boxer chips
CM physical memory limit = 254464
FPU = WTL3164
Calibrating CM timer ... Done. CM speed = 7.00 MHz

(0 errors): check-hot-boards ...
(0 errors): Testing UC scratch ram ...
(0 errors): test-timer-trap ...
(0 errors): basic routing; VP ratio 1, (4, 512)
(0 errors): basic routing; VP ratio 2, (4096, 1)
(0 errors): basic routing; VP ratio 4, (16, 512)
(0 errors): basic routing; VP ratio 8, (4, 4096)
(0 errors): basic routing; VP ratio 16, (512, 64)

Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,
Pass 1,

(0 errors): basic routing; VP ratio 32, (1, 65536)
(0 errors): basic routing; VP ratio 64, (2, 65536)
(0 errors): basic routing; VP ratio 128, (1, 262144)
(0 errors): basic routing; VP ratio 256, (524288, 1)
(0 errors): indirect-addressing ...

Thinking Machines

(0 errors): router-verifiers (level 2) ...
(0 errors): 9heck-cm-memory

Last change: 1/31/92 29

CMVERIFY (8) CM ADMINISTRATION/MAINTENANCE

Test completed, 0 errors
147.9 user 5.5 system 4:00 (63%)
0+5576k (414 max) 85+6io 153+1084pf Osw

SEE ALSO

30

vbutil
bbutil
new-test-nexus
test-uc
hardware-test-complete
dvtest2 (a comparable IIO-system verifier)

~tchange: 1/31192

CMVERIFY(8)

Thinking Machines

UNFSD(8) CM ADMINISTRATION/MAINlENANCE UNFSD(8)

NAME

unfsd, unfsmntd - user-level NFS daemons

SYNOPSIS

lusr/local/etc/unfsd [-f exports-file] [-p] [-0 option-string]

lusr/localletclunfsmntd

DESCRIPTION

unfsd starts a daemon that handles client filesystem requests. Unlike nfsd(8), unfsd
operates as a normal user-level process and can be run on standard 4.3BSD systems.

unfsmntd starts an ancillary user-level mount daemon.

Options: The -f option specifies the exports file. listing the clients that this server is pre­
pared to serve and parameters to apply to each such mount (see unfsd_exports(S». By
default exports are read from lusr/localletc/unfsd_exports -p option puts the server into
promiscuous mode where it will serve any host on the network. The -0 option specifies
default mount parameters in the same format as those appearing in the unfsd _exports
file.

SEE ALSO

BUGS

unfsd _ exports(S)
ugidd(8C)

Does not understand netgroups.

Last change: 4 February 1992 31

FILE FORMATS

NAME

unfsd_exports - NFS file systems being exported by user-level NFS server

SYNOPSIS

lusr/local/etclunfsd _exports

DESCRIPTION

The file lusr/local/etclunfsd _exports describes the file systems which are being exported
to nfs clients. It is processed by the user-level NFS daemon unfsd(8C) when the daemon
is started.

The file format is similar to that of the SunOS exports file. The file is organized by lines.
A # introduces a comment to the end of the line; a \e preceding a new line disables the
line break, making the entry of long input lines more convenient. Each line consists of a
mount point and list of machine names allowed to remote mount the server's file hierar­
chy at that mount point. A machine name is optionally followed by a list of mount
parameters enclosed in parentheses. These are the parameters that are currently reCOg­
nized.

secure *

insecure

root_squash

Reject requests that originate on an internet port ~

IPPORT_RESERVED.

Accept requests originating on any port.

Map requests from uid 0 on the client to uid -2 on the server.

no_root_squash * Don't map requests from uid O.

ro * Mount file hierarchy read-only.

rw Mount file hierarchy read-write.

link relative * Convert symbolic links starting with a slash into relative links
by prepending the necessary number of .J's to get from the link
directory to the file hierarchy root on the server.

link absolute Leave symbolic links starting with a slash as they are.

map _ ident it Y * Assume the client and server share the same uid/gid space.

map_daemon Map local and remote names and numeric ids using a lname/uid
map daemon on the client from which the NFS request origi­
nated. to map between the client and server uid spaces (see
ugidd(8)).

(* indicates defaults.)

EXAMPLE

32 Last change: February 1992

FILES

FTI...E FORMATS

/ snail whelk(map_identity)
tusk (root_squash, map_daemon, ro)
/usr usage (root_squash, map_daemon, ro)

lusr/localletc/unfsd _exports
Sample unfsd _exports:
/ fel(insecure, no_root_squash, map_identity, rw)
/ fe2(insecure, no_root_squash, map_identity, rw)
/ fe3(insecure, no_root_squash, map_identity, rw)

SEE ALSO

mountd(8C)
unfsd(8C)
ugidd(8C)

BUGS

The mount point at the start of each line is currently ignored. Authorized clients may
mount at any point in the server's hierarchy.

Last change: February 1992 33

