The
Connection Machine
System

C* Release Notes

Versions 6.0 and 6.0.1
December 1990

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, December 1990

The information in this document is subject to change without notice and should not be construed asa
commitmentby Thinking Machines Corporation. Thinking Machines Corporation reserves the right to
make changes to any products described herein to improve functioning or design. Although the infor-
mation in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation does not assume responsibility or liability for any errors that may appear in this document.
Thinking Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
c*®isa registered trademark of Thinking Machines Corporation.

CM-2, CM, Paris, and DataVault are trademarks of Thinking Machines Corporation.
VAX and ULTRIX are trademarks of Digital Equipment Corporation.

Sun, Sun-4, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
UNKX is aregistered trademark of AT&T Bell Laboratories.

Copyright © 1990 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 021421264
(617) 234-1000

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

‘When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet

Electronic Mail: customer—support@think.com
Usenet

Electronic Mail: ames!think!customer-support
Telephone: (617) 2344000

(617) 876-1111

1 About C*, Versions 6.0 and 6.0.1

C*® Versions 6.0 and 6.0.1 are the initial release of a new version of the C* data parallel
programming language. This release supersedes all previous releases of C*. Programs writ-
ten under these releases will not run under the new release. The new release has the
following goals:

= To support data-parallel programming idioms that C programmers can understand
and use effectively.

= To allow efficient access to all user-visible components of the Connection Machine
system (for example, grid and general communication, scans, spreads, and re-
ductions), so that coding in C* is almost as efficient as coding in the CM’s parallel
instruction set (Paris).

= To allow dynamic behavior.

2 Versions

The two versions of C* included in this release differ as follows:

= C* Version 6.0 works with Version 5.2 of CM system software.

» C* Version 6.0.1 works with Version 6.0 of CM system software.
Note that C* version numbers do not correspond to CM System Sofiware version numbers.
There are no differences in these C* versions other than their use with different versions
of CM system software. Either Version 6.0 or 6.0.1 is installed as the default in your sys-

tem. To use the version that is not the default, specify the ~release option when
compiling, as described in the C* User s Guide.

Back-compatibility mode is no longer required for C*.

C* Release Notes

To:use.the cempiler for the pre-6.0 version of C*, issue the command ocs instead of es.
(Check with your system administrator; this version may no longer be available on your
system.)

3 Documentation

The documentation for C* Versions 6.0 and 6.0.1 supersedes all previous C* documenta-
tion. Besides these release notes, it consists of the following:

® . The C* Programming Guide, which describes how to program in C*.

' The C* Users Guide, which describes how to develop, compile, execute, and
. debug C* programs on a Connection Machine system.

S R R

In addition, a technical report that provides a reference description of the C* language will
Qe ayallable separately Please note that this technical report includes descriptions of fea-

tures ‘of the language that are currently unimplemented; these features are listed in Section
4, below.

4 Unimplemented Features

The f;ifdﬁﬁé'féaMes of C* and ANSI C have not ‘j?et been implemented:
® safety checking
® parallel bit fields
. f . ;‘\paralllel enumerated types
s ﬁe physical_index function
% ' assertion grammar
® non-constant subscripts for array declarations

® const and volatile

® scalar versions ofithe bioolcpy, boolmove, boolset, and boblcmp fulictions!

(;

i il FD R o

® trigrams
® shape axis alignment

-
fnetave

In addition, please note that each dimension of a shape must be a power of 2, and the total
number of positions in the shape must equal the number of physical processors in the CM,
or be a power-of-2 multiple of this machine size.

41 Front-End C Compilers Are Not ANSI P

The C* compiler works with the C compiler on your VAX or Sun front end. Currently, these
compilers (in particular, their C pre-processors) do not conform to the ANSI standard for
C. This means that you may be unable to take advantage of certam features of C that are
new to the ANSI standard—for example, ANSI libraries. When comphant compllers are
released, these features will be available. L) am o onolgibbs o

ST

This restriction does not apply to functlon prototyping, whlch 1s curren‘t
e
through the C* compiler. ’

JEed .

5 Restrictions cwial A

This section dlSCIlSSCS known restrictions in the Version 6.0 and 6.0. 1 relqase of ((:* o
. s v . i it

S BN
R

N -

5.1 Programs Can Become Too Big for the VAX Compller

w13
On a VAX, compiling a C* program may result in one of the followmg error messages:

Out of temporary string- space *

btw: Branch too far: Try -J flag o E

C* Release Notes

The problem is that the . .c file produce by the cs:compilepis; too large for the VAX C
compiler. (Using the -J flag won’t help if you receive the latter message.) The workaround
is-to break-up your source file into smaller files. Also, if you have long functions in your
program; try splitting them up into smaller functions, i'y..c g 2 arnnn

5.2 The rank Function Doesn’t Work with a Segment Bit

The rank function in the communication library currently does ot a¢éept.a’ segment bit
for an argument Spemfy either CMC_start bit or CMC none mstead

i nre
S

Xy i . : F - SN

5.3 The write_to_pvar Function Doesn’t Work with bools

The write_to_pvar function in the communication library currently does not work cor-
rectly when the front-end data to be written is ,ap}ar;ayifgf bools.

e

5.4 Grid Communication Functions Limited to 128 Bits

The grid communication functions have versions with a Length argument that let you
transmit data of any length. In the current version, the length argument must be -128 bits
or less. The affected functions are listed below:
wodot s oet T L el Coarger togn e g s oo et
from gr:Ld
from grid dim
to_grid
to_grid dim
from_torus
from torus_dim
to_torus
to_torus_dim

Versions 6.0 and 6.0.1

5.5 Incorrect«Lme Number§ S ol el v
Toaagneanon i at, s ' : It B R IR NI T Te taty

Infrequently, mCorrect #1ine directlves wilh dppear in the mtermedla‘te . c file.'Sisilarly,
the line number may occasionally be-incorrect in error messages from the:eofipiler: 277

We would appreciate hearing from you if you run into either of these problems.

Chymrwl om0 s gy S8
5.6 Problem with Error Recovery Coo e adT

N ¢ gk i_ry)

Occasionally the compller w111 fmd an error in a program, print a message and then be
unable to continue processing the program. Instead, it reports an internal compiler error.

We would appreciate hearing from you if you run into either of these problems.

gt Lo s Tl g RS ':(:t. A “1..
oo o ot <ol 2
. A T o !
5.7 Negation of Unsigned Constants
The compiler incorrectly optimizes the following code:
unSlg'n%d"“u; b b e T aTE veslte eniiregys B R
floa’t f;-bé ‘ng‘ ES R E PRt '%.»’ta.‘?'?- FE ALY '%u N}fgg‘s ’f"".‘{}-
BT ELTY, St N I SRR Lk i
A £ “-f“* g e Vopr ol 4 i
KA Ry 4 H P
To work around the problem, do not negate the unsigned constant. Instcad, do the follow-
mg: DT 1 ’31’\“_1,
§ b4
u = 200;
£f = -200;

" ~C* ReleaseNotes

5.8 ;QQan’t,Reﬂafme*m e:;um Constant 1ﬁ~tmhanen$cope

et sl T eneinze
An enum constant cannot be re-used as an 1dent1ﬁer ina places where the enum definition

is yisible. For example, the compiler currently produces a syntax error-for the; following

s

legal C code: SR TV ORI 15 L T SCINE RS o
enum enuma { a }; e R
main () .) e
(=) ERREE It gt DU
int a;
} S A THIRIL L E

The workaround is to use different’hames: ~ *© - D ML TR S ARa0e

5.9 *Shapesvaluéd Expressions Aré Releviludtéd in®~
Parallel Variable Declarations SETLAVBIET

Whtén iisinga shape-valued expression in declating multiple parailel varmbles, fiote that
the exprestion 1§ 4ncorrectly re-evatliated for-each paralle]l varisble: For example? = 1"

int:(s()) i, 3j:

If s() has side effects, i and 5 may not be allocated in the same shape

oy

The workaround is to assign the result of the function to a temporary slia‘pc, and ‘declare
the parallel variables to be of this shape. For example:

R T
shape t = s()» T S S

{

int:t i, j:

SOMIRLILE . HT O Gee oA e Codne ol OPewor 500y sl

Versionss6.0 and-6.0.1 “7

5.10. “Short-ciscuit® Operators Complain about:Goristant 3.4
Expressmns They Shouldn’t Reach

T amd i pengks 155 A TS RN AT B <

For example, the following line of code:

int i =1 || 2/0; Y
produces the error message
bad constant expression =
even though the compiler should not evaluate the expression 2/0, ;. = iy, - ad 7

egl;anﬁm to.a Painter to
o daire el resS

5.11 Assigningan Adgdress, of:
a Scalar Array aprg $8

Asjglgnmg the;address:of an array,to a pointer to a scalag array p;oguces a. sqgmentaﬁpn

fault at ryn time., For, ezgagpple, the- followmg.legal codedoes pot mly WOIK: e, 4
main () ¢ AP R .
{
int 1 ; iy
int bl 2] sgie sirss and ok buovpools of pnives foes BoarenTe okl ws 1 et
st PR el 2']*:;’ qere oo ochion® el nal e Y i
wlaern ot g 1o
a = &b ; ’
i= (*a)[0] ; T e
) ;

For this code to work, compile the program with ~o00 to turn off optimization.

4
B
z

C*Rdhu@Ab&m

mgtion Does Not

ﬁWhen a par:allcl ﬁmcuon does note retmn a value the compﬂer gcnerates aWammg mes-
sage hke the followmg

“(null)", llne 0: warnlng CMC return val not requlred in func-
tion foo ' :

You‘can ignore this message.

6 1 Incorrect Descrlptxon of send Function

The descnpuon,of the parameters of the send functlon in Sectmn 14.3.1, page 217, of the

.'Progmmmmg' Guide, states the source is a scalar pomtex toa parallel ‘variable: In fact,

it isa parallel variable. The deﬁmtmh at the begmmng of the sethon and the exmnp”les later

in the sectwn are corfect.

7 Sample Programs

Supplement to the C* Release Notes,
Versions 6.0 and 6.0.1

The restrictions listed below were uncovered too late to be included in the Release Notes
for C*, Version 6.0 and 6.0.1. Please add this sheet to the Release Notes.

Send Operations with Wrapping May Produce Incorrect Results

If you want to use a left-indexed send operation with wrapping (using pcoord and the $%
operator), make sure that the second operand of the %% operator is equal to the number of
positions in the dimension (for example, by using the dimof function). Using this syntax
with other values may produce incorrect results. For example, the following code produces
incorrect results if n is not equal to the number of positions in axis 1:

int n;
/* ..
[0 + 1) %% nla = a;

‘The wortkaround is to useth@biRes SRR fddtess and $aAd functiohs from the C* coin-
‘munigation library to do the senﬂ’kﬁﬁﬁé&}y

e tmmme Not Deaﬂﬁé&é&’aﬁerg&o Seontitde,
' prafkpor rétirntStatement

""" “Shapes allocatéd within afunction of’ ‘block ité ‘Hot:dsaliocated wher ou leave the function
via a retderstitdment, dr the block Via & goto, cont:.ﬁ'ﬁe, or. bﬂ&k statement. "This
could cause’ ‘@preiram to¥un out of VP §ets. One workaround is to §i¥actiire your code so
that it exits any-bloek or fiinction cdnﬁiﬁihg%cal shifpe declaratibis through the bottom;
another is to movethe shipe declarafion out of the functién or block.

