
• M ~ .. -'~.. • !' • ~-._ '
. ~. . ,
. . .

•

'. :~;". " .-

Communications Ar<hitecture in the Conneetion Machine· S}~tem
c. S/ollli li

Thinking Machines Corporation
Technical Ikport Series I-IA8?-3

Communications Architecture in the
Connection Machine''' System

Craig Stanfill
Thinking Machines Corporation

245 First Street
Cambridge, Massachusetts, 01242

USA

March 17, 1987

ABSTRACT

To build computers which are fundamenta lly more powerful than those cur
rently available, it is necessary to build systems incorporating large num
bers of processors. At this point, communications architecture becomes the
dominant problem facing the machine designer, for if the processors cannot
communicate they cannot cooperate in solving a problem. Many different
architectures have been proposed, but most sca le poorly. so that the number
of processors they can support is limited either by interconnect bandwidth
or by escalating hardware costs. Other architectures scale well , but are
limited to specialized applications. However. the family of architectures
including omega networks, hypercubes, and fat-trees scales well both in
terms of hardware required and in terms of communications time. One
such architecture. the hypercube, was chosen as the basis of a new parallel
compute r, the Connection Machine System.

1. Computer Architecture as Communications Architecture

The recent revolution in micro-electronics has opened up an opportunity to bui ld com
puters which are many times more powerful than their predecessors. By linking together
tens of thousands of inexpensive microprocessors, it is possible to build machines which
can perform over 10 9 operations per second, compared with the 10' which is typica l of
large uniprocessor machines. The key to realizing this potentia l lies in bui lding a commu
nication system which allows information to be transferred from one processor to another.
For this reason. communications architecture has become an inseparable part of com
puter architecture.

When electronic computers were deve loped in the 40's and 50's, the bulk of the sys
tem cost was in the centra l processing unit and primary storage. The transfer of informa-

- 1 -

tion between the two was accompl ished by running a modest number of wires (the memory
bus) from one pan of the machine to another. In each computational cycle, the processor
may read a value from memory or write a value to memory. This is the well known von
Neumann architecture.

CPU K Memory BUS)i Memory

The von Neumann Architecture

When trying to build more powerful computers, the simple memory bus becomes a
fundamental limitation. Suppose the single CPU in the von Neumann machine is re
placed with four CPUs:

~~ ~ ~l(Memory Bus)I Memory

A Four-Processor von Neumann Machine

The resulting four- processor machine is fundamentally no more powerful than the
Single-processor machine because, although the processing component of the system is
now four times more powerful, the communications component has not changed. A
possible remedy to this problem is using four busses and four memories.

I CPU K Memory Bus)I Memory I
I CPU K Memory Bus ~ Memory I
I CPU K Memory Bus ~ Memory I
I CPU K Memory Bus ~ Memory I

Adding Busses and Memories

This design has four times the computational power of the original von Neumann
machine. but is no longer a sing le machine. In order to cooperate in performing a compu
tation, the CPUs must be able to communicate not only with their own memories but
among themselves . When such a communication system has been added, the result is no
longer a von Neumann machine, but something completely new: a parallel computer. The

- 2 -

..trchitecture of communications systems is therefore an important issue in the design of
parallel computers.

2. Requirements for a Communications Architecture

Instantaneous communications with infinite bandwidth among arbitrary sets of proces
sors is obviously desirable and, just as obviously, impossible. This section will di scuss the
ke}' tradeoffs which must be made in the communications architecture and how various
compromises are likely to affect overall system utility. This discussion will be based on
work by Hillis (1).

2.1. Communication Patterns

The first step is to characterize the communication patterns of the algorithms to be
run on a parallel computer. Relevant features include locality, regularity, fan in, and fan
out. Note that this discussion pertains to patterns of data movement for abstract algo
rithms, and not to any particular communication architecture. Any of the algorithms
discussed below could be run on a serial von Neumann computer, or on a variety of
parallel machines.

Many algorithms have highly localized communication patterns: if the problem is
embedded in a two- or three-dimensional grid. then a given computation wi!! only need
to access data in a small region of the grid. Algorithms for computer vision, such as line
detectors, are particularly likely to exhibit this sort of behavior. For example, if an
image is represented as a grid of dots (pixels), lines may be detected by finding all dark
pixels which have exactly two dark neighbors.

Local Communications on a Grid

Many algorithms generate very regular communication patterns, even if that communi
cation is not strictly local. A good example is an algorithm which finds the total of a set
of numbers represented as a binary tree . In this algorithm, there are two types of struc
tures: leaves, which contain numbers, and nodes, which can refer to either two leaves or
to two other nodes. To total up the values of the leaves, the nodes of the tree repeatedly
ask each of their two children for their total , until the process terminates at the root of the
tree.

- 3 -

Regular Communications

In the general case, an algorithm may exhibit neither local nor regular communication
patterns. For example, the components making up a sil icon chip can be connected in an
arbitrary pattern. To simulate the behavior of such a chip, a computer must allow infor
mation such as voltage and current to be moved around in arbitrary patterns. The diffi
culty of implementing a communications subsystem which can handle these arbitrary pat
terns is the primary reason why the widespread use of parallel computers has been slow
in coming.

A Problem with Arbitrary Connectivity

Communications patterns can also differ in the number of destinations to receive a
given message (fan-out) and the number of destinations attempting to send a message the
same place (fan-in). Tht: simplest case is when both fan-in and fan-out are 1 (Le.
one-to-one). The most difficult case is when fan-i n and fan-out are both high (Le. each
sender is broadcasting to many destinations, and each receiver gets many incoming mes
sages. An example of this is a neural network simulation, where an individual neuron has
a large number (severa l hunderds) of inputs and outputs.

Neuron I Neuron I

Neuron I Neuron I

Neuron I Neuron I

Combined Fan-in and Fan-out

- 4 -

In summary, algorithms can be characterized by their communications pattern. Some
algorithms use only local communicat.ions, while other communicate in very regular pat
terns. In many cases, however, an a lgorithm will require the unrestricted flow of informa
tion between diffe rent structures taking part in the computation. Further complicating the
situation, communications are not always one-to-one; there are many cases where the
pattern is many-to-one (fan-out) , one-to-many (fan-in), or even many-to-many (com
bined fan- in and fan-out). If the communications architecture of a parallel computer
does not efficiently support all these modes of communication, the system's usefulness
may be sharply limited.

2.2. Program Behavior

A single communications task is not an isolated episode, but part of a larger computa
tion. The way in which these tasks are linked together into programs affects the load
which is placed on the communications subsystem. One variable is the degree of cou
pling and sparseness: the uniformity of the communications needs throughout the system,
and the proportion of the processors needing communications services at any moment. A
second va riable is the size of the packets which need to be moved around, whether they
are short messages or sustained bursts of information . Finally. the degree to which the
communications pattern is dynamic affects system performance; if a pattern remains uni
form throughout a long computation, then the cost of an expensive setup phase may have
negligible effect overall, whereas with a highly dynamic pattern setup costs may dominate
the computation.

One important aspect of a parallel computation is the degree to which the actions
taking place in the various processors is coupled. In a tightly coupled computation, all
processors will be performing the same action at the same time. Periods of high commu
nications activity will alternate with periods when the communications system is inactive.
Furthermore, no processor wi ll be able to proceed until every message in the communica
tions pattern has reached its destination. In this situation the time required to perform a
communications taSk, from stan to finish, is the primary measure of system perfurmance.
In a loosely coupled system, the various processors will be performing dissimilar activi
ties. so that communication and computation will overlap. Here the most relevant meas
ure of system performance is the total effective bandwidth of the system.

- l -

Compute Communicate Compute

Compute Communicate Compute

Compute Communicate Compute

Compute Communicate Compute

Compute Communicate Compute

Communicate

Compute Communicate

Communicate Compute

Tight vs Loose Coupling

Another important aspect of a computation is sparseness: the proportion of processors
trying to communicate at a given time. A communications system which is adequate
when onl y 10% of the processors are trying to communicate may be woefully inadequate
when the load approaches 100%; if a communications system is not carefully designed,
putting too many messages into it at once may cause a traffic jam to develop, so that the
movement of information comes nearly to a halt.

A third important characteristic of a computation is the size of the information packets
being exchanged. If packets are large, then it is sensible to establish a complete path
from sender to receiver before transmitting the data. The machine would then have a
circuit switching architecture. However, if the packets are small , then it is sensible to send
the data in a series of short jumps, buffering it at intermediate points. This yields a
packet switching scheme. Using a circuit switching system with short messages may be
inefficient because bandwidth may be wasted while waiting to establish the circuit . On
the other hand, using packet switching with long messages may result in inefficiency if the
messages are longer than the size of the intermediate buffers, which would necess itate
breaking the message into severa l smaller units.

Finally, there is a distinction between a static communication pattern and a dynamic
one. Establishing a communication pattern may involve significant setup time. If the
pattern is unchanging, then this setup time does not matter very much. If, on the other
hand, the pattern changes from one communications phase to the next, then setup time
becomes a significant issue.

In short, the behavior of a program over time significantly affects the performance of
the communications system of a parallel computer. If the various computations are
strongly coupled, then the time to completion for a communications pattern (rather than
bandwidth) is the best measure of performance. If every processor tries to communicate
simultaneously, there is a danger of a traffic jam. If the size of the packets is small, then
a circuit switching network may suffer from excessive overhead in establishing connec-

- 6 -

tions. Finally, if the communication pattern is highly dynamic, then a system requiring a
high setup cost will be inefficient.

3. Communications Systems

Over the years, many different ways of combining processors, memories, and commu
nications systems have been suggested or tried. Some methods work quite well for mod
est numbers of processors, but become impractical as the number of processors climbs
into the thousands. This section will discuss some of these methods and point out their
relative strengths and weaknesses. Of particular interest is how the cost building the
system and the time needed to deliver a set of messages grows as the number of proces
sors (N) increases.

This discussion is based on work by Hilli s [1J. For a review of communications topolo
gies, see Broomel and Heath [2l. Thompson [3l. or Benes [4}. For a taxonomy of
parallel architectures, see Schwartz [5]

3.1. Shared vs Local Memory

There are two general ways of using a communications system in a parallel computer.
The first is to interpose it between the CPU and the memories. In this case, the comput
er's memory will accessible to all processors, and the system will have a shared memory
architecture.

CPU Memory

CPU Memory

CPU Memory

CPU Memory

A Shared Memory Computer

It is also possible to use a communications system for direct communications between
CPUs, yielding a local memory architecture. The main difference between the two styles
of machine is that in a shared memory computer, data flows in only one direction during
one communicat.ions activity (from the CPU to the memory, or vice-versa), while in a
local memory computer data may enter or exit the communications system through any
port.

-7-

CPU Memory

CPU Memory

CPU Memory

CPU Memory

A Local Memory Computer

3.2. Shared Busses

One simple communications architecture is a single communications bus which is
shared by all processors. This scheme suffers from several major problems. First, the
bandwidth of the bus limits the total communications activity of the system. One way of
compensating for this is by increasing the bandwidth of the bus. If the size of the packets
is large (e .g. several hundred bits), then this can be done by making the bus wider.
Another strategy is to use a higher level of technology in the bus than in the processors; it
might then be possible to couple processors with a cycle time of 100 nanoseconds with a
bus having a cycle time of 10 nanoseconds. This strategy suffers because the cost of
building faster and faster busses escalates out of control; and in any event there is a limit
to how fast a bus may be built. A second limitation with a shared bus is the time needed
to arbitrate access to the bus; the speed of li ght places fundamental limits on how quickly
ownership of the bus can be changed. A third limitation stems from the electrical fan-out
of the bus; as the number of processors tapping into the bus increases, difficulties arise
in supplying sufficient energy to drive all the taps.

In summary, a shared bus limits the total amount of information that can be ex
changed (due to bandwidth restrictions) as well as the total number of messages that can
be exchanged (due to arbitration restrictions). This limits the usefulness of shared busses
to architectures with re latively small numbers of processors.

For a discuss ion of a bus structured machines, see Davidson [6] (AMP-I·).

3.3. Crossbars

The simplest way of constructing a communications system is to connect every node to
every other node, producing what is called a crossbar switch. A crossbar has certain
advantages: communications time is independent of the number of processors, and it does
not matter how many processors are simultaneously trying to communicate. In addition,
if several connections out of a node are simultaneously active, then it is poss ible to imple
ment fan-out in an efficient manner ("his gives no help, however, in handling fan-in).
The disadvantage of a crossbar is that the number of connections increases as the square
of the number of processors: a 1000 processor machine would need 1,000,000 connec-

- 8 -

tions. This makes crossbars useful only for relatively small machines (up to a hundred
processors or so) . For a discussion of some crossbar machines. see Buehrer (7J (EM
PRESS) or Trujillos [8} (Multimicrocomputer).

A 4x4 Crossbar

3.4. Clos Networks

If connections are one-to-one, then multi-layer networks with many of the same prop
erties as a crossbar can be constructed with far fewer switches. These are caned Clos
networks. For example, a 5 layer Clos network with 1000 inputs requires only 146,300
switches, as opposed to 1,000,000 for a full crossbar. Nevertheless, costs still grow so
fast as to preclude their use in machines with large numbers of processors. Clos networks
are described by Benes [4]

3.5. Rings

A ring network consists of a set of communications nodes arranged in a circle. At
regular intervals, each node transmits information to the node to its right, and receives
information from the node to its left. The nodes then examine the messages, and remove
those which have reached their destination. Rings suffer from the same bandwidth limita
tions as shared busses, as a finite amount of information that can be moved from one
station to the next on any cycle. Arbitration and electrical fan-out problems do not arise,
but in their place are latency problems: the time needed to delivel a message is propor
tional to the number of nodes in the network. Again, this architecture is not feasibl e for
large numbers of processors. For a discussion of the ZMOB, a 256 processor machine
using a ring network, see Rieger [9}.

A 12 node Ring Network

-9-

3.6. Grids

It is also possible to structure a machine as a two dimensional grid. Such a machine
has several advantages. First, it is easily laid out on two dimensional boards and chips.
Second , it allows very fast local communications. Third. it scales indefinitely: it is practi
cal to build a grid machine of nearly unlimited size. The disadvantage of a grid structure
is that communications between non-adjacent processors may have to pass through a
large number of intermediate processors; this limits the' applicability of grid machines to
algorithms using only local communications . For a discussion some actual grid machines,
see Slotnick [101 (IUlAC IV), Batcher [111 (STARAN) or Batcher [121 (MPP).

Local Communications Non-Local Communications

A 16 Processor Grid

3.7. Trees

The simplest topology that supports non-local communications for machines of arbi
trary size is the tree. Trees have the advantage that for a machine with N processors, the
distance between two nodes is never more than log2 N, and the cost grows linearly in N.
In addition, it supports some of the most common regular communications patterns quite
well. The disadvantage is that the root of the tree is a communications bottleneck.
Furthermore, in the worst case every message in the system must pass through the root,
and for an average random pattern half the messages will pass through it. This limits the
applicability of tree machines to algorithms with one of a few regular communications
patterns. For discussions of tree machines, see Shaw [1 3] (NON-VON) or Stolfo 114]
(DADO).

Local Best Case Worst Case

15 Node Binary Tree

3.8. Fat Trees

The problem of root congestion in tree machines may be remedied by adding extra
communications paths at the higher levels of the tree. For example, the first and second

- 10 -

levels might be connected by single wires, the second and third levels by double wi res. the
third and fourth by quadruple wires, and so forth. All computation takes place at the
leaves of the tree. The interior nodes switch signals between the various channels con
necting to it. One advantage of fat trees is that, by varying the number of wires at each
level, a family of architectures suitable for a variety of different applications can be
generated. If the total number of wires at each level is kept constant (i.e. level N has 2N
wires), then the total cost of the network will be N log2 N, and the average time for a
random one-to-one communications pattern will be log2 N. Both these numbers grow
slowly enough to allow the construction of fat-tree machines with tens of thousands, even
millions, of process ing elements. Leiserson [1 5] proves that fat trees are universal, in the
sense that a fat tree can simulate any physically bui ldable machine with no more than a
log2 N factor slowdown.

A Fat Tree

3.9. Omega Networks

An omega network (or shuffle exchange or perfect shuffle) is a multi-layer switching
network sueh that layer k allows signals to either propagate straight through or to be
swapped with a signal 2k wires away. As was the case with fat trees, the hardware cost
grows as N log2 N in the number of processors, and the communu.:ations time is log2 N.
One property of the omega network is that it has a bipartite topology: messages go from a
set of input ports to a di sjoint set of output ports. This makes butterflies well su ited to
shared memory architectures, where memories may be placed at the bottom of the switch
and processors at the top. Another feature of an omega network is that there is exactly
one path between any input node and any output node. This simplifies the routing of
messages through the network. There are, however, patterns where a traffic jam develops
and routing takes much more time. One remedy to this problem is to send messages via a
randomly chosen intermediate processor, converting the problem to one with two random
routings. Another remedy is to add additional data paths to allow for alternative routes.
For discussions of some machines using omega networks, see Bolt Beranek and Newman
Inc. [16]. Rettberg and Thomas [17] (Butterfly TM), or Schwartz [l 81 (Ultracomputer) .
For a demonstration of the equivalence of many omega-like networks, see Parker [19] or
Snir [20].

- 11 -

Congested

A 3-1ayer Omega Network

3.10. Hypercubes

A hypercube (or N-cube) is a topology in which each of 2 Ii. nodes is connected to k
other nodes (the details of how this connection takes place are easier illustrated, below,
than described) . As with an omega network, a machine with N processors requires on the
order of N log2 N components to construct, and has log2 N communication time. Its
other properties are somewhat different. First, it has a uniform topology, in that mes
sages may be both received and sent by one node in a single cycle. For this reason,
hypercubes are particularly useful in local memory machines. Second, there are many
routes connecting any pair of nodes. This leads to added flexibility in avoiding congestion
and traffic jams, provided the routing algorithm is able to take advantage of thi s added
flexibility. It should be noted that in a hypercube, there are N wires coming out of each
node. In order to completely use this available communications bandwidth, it is therefore
desirable to put approximately N processors at each node. This also faci litates the use of
the redundant data paths by allowing up to N messages to converge on a single node. For
a discussion of a machines based on hypercubes, see Hilli s 111 (Connection Machine ™
System).

Path 1 Path 2

A 4-Cube, showing two independent paths

3.11. Summary

A parall el computer requires a communications network to move information between
its processors. Some communications architectures, such as shared busses and ring net
work.s, have limited bandwidth, placing a strict cei ling on the number of processors which
they can support. Others, such as crossbars and Clos networks, have communication
times which remains essentially constant as the size of the machine grows. but costs
which grow so fast that they are economically infeasible for large numbers of processors.
Grid and tree machines can be build to arbitrary sizes, but their topology limits the com-

- 12 -

munications patterns they can efficiently execute to either local or certain regular pat
terns. Fat trees, butterflies, and hypercubes are a good compromise between escalating
cost and deteriorating performance; their cost per processor grows as N log2 N in the
number of processors, and their communication time increases as log2 N. This allows
fat-tree, omega network, and hypercube machines of arbitrary size to be constructed.
The choice between these architectures is governed by engineering and board layout con
cerns (e.g. compactness, uniformity, and ease of wiring) which are beyond the scope of
this paper.

4. Architecture of the Connection Machine ™ System

The previous section described the various interconnect topologies available to the
computer architect. This section will describe how one such topology - the hypercube -
was used as the basis of the Connection Machine ™ System. The explanation will include
a discussion of factors governing the construction of the nodes, the routing of messages,
and some problems associated with fan-in and fan-out. Programming issues will not be
discussed except as they impact on communications issues.

4.1. Communications Architecture

The primary design constraint on the Connection Machine System was that it have
several orders of magnitude more computational power than a conventional machine.
This immediately ruled out any sort of von Neumann machine, as well as parallel archi
tectures (such as shared bus, ring, and cross bar) which are infeasible for large numbers
of processors. An additional constraint was that it handle non-local and non-regular
communications patterns. This ruled out grid and tree machines, leaving the choice be
tween omega networks and hypercubes (design of the Connection Machine predates
Leiserson's work on fat trees). Eventually, the hypercube was chosen.

A full explanation of why the hypercube was chosen over the omega network is be
yond the scope of this discussion, but a few notes are in order. First, a hypercube has
redundant data paths. This, it was felt, would reduce delays in routing due to contention
fo r wires. Second, a hypercube has only computational nodes, rather than a mixture of
computational and switching nodes; this reduces the number of different component types
In addition, it makes the computational facilities of the individual processors available to
assist in the routing of messages. Finally, every node in a hypercube is topologically
equivalent; th is means that only one type of node, and one type of board to carry those
nodes, is ever needed. Based on economic and engineering limits, a hypercube with 4096
(212) nodes was chosen.

There are advantages to placing more than one processor at each node of a hypercube.
First, for the regular patterns alluded to above, it is optimal to have one processor at
tached to each wire of a node. Second, for non-regular patterns, doubling the number of
processors at each node causes the communications time to increase by a factor of less
than two. This effect is due to the efficient utilization of the interconnecting wires. A

- 13 -

hypercube has sufficient bandwidth to route messages in log2 N time. However, because
it is impossible [0 keep all wires busy all the time, the actual communication time is log2
N. Putting severa l processors at each wire and queuing messages waiting to use the wire
increases the utilization of the system's raw bandwidth. Partly on the basis of these con
siderations, each node was given 16 processors. This gives a tota l of 65,536 (2 16) proces
sors.

4.2. The Router

Each node is contained in a single chip, which contains the 16 processors. the hyper
cube node, and connections to 12 wires. The processors' local memory is located else
where. The router performs 5 functions: injecting, routing. buffering, referring, and deliver
ing. Injecting is removing a message from a processor and placing it in the hypercube
network. Routing is switching a message to a wire. Buffering is temporarily storing a
message when a wire is being used. Referring is sending a message over a random wire
when buffer space is exhausted. Delivering is removing a message which has reached its
destination out of the hypercube system and placing it in a processor.

It is poss ible to assign binary numbers to the node of a hypercube in such a way that
the numbers assigned to two nodes differ by exactly one bit if and only if they are con
nected by an edge. Furthermore, every dimension of the hypercube corresponds to a bit
position in the address. In the figure below, the left-right dimension corresponds to the
rightmost bit, the in-out dimension corresponds to the middle bit, and the up-down
dimens ion corresponds to the leftmost bit. This yields the routing algorithm for the Con
nection Machine System. First, for every message, find the relative address by taking the
exclusive-OR of the addresses of the sending and receiving processors. Second, send the
message over any unused wire corresponding to a 1 in the relative address. If no such
wire can be found , put the message in a buffer. If no buffer is available, send the
message over any free wire. Third, whenever a message crosses a wire, the correspond
ing bit in the relative address is inverted. Finally. when the relative address conta ins all
D's, the message has reached its destination.

Numbering of Nodes on a 3-Cube

This scheme works qu ite well for one-to-one communications patterns, so that a pat
tern of 65,536 32-bit messages can be routed in 800 microseconds. A modification of
this scheme suggested by 81elloch [2 1] allows patterns with fan-in and fan-out to be
routed in approximately twice the bas ic message cycle time. For fan-out , this is done by
using a fast (log2 N time) algorithm to make an appropriate number of copies of each
message. then using the routing algorithm shown above the deliver the copies. For fan-

- 14 -

in, the above process is inverted. The two may be used together to implement combined
fan-in and fan-out. Thc only disadvantage of Blelloch's methods is that they require a
substantial amount of time (16 milliseconds) to set up, and are thus poorly suited to
applications with highly dynamic communications patterns having fan-in or fan-out. The
implications of these techniques have been investigated by Hillis and Steele 122].

S. Summary

In summary, computer architecture has become, in large measure, communications
architecture. This is because the only way to build computers which are fundamentally
more powerful than those currently available is to use thousands or tens of thousands of
processing elements. At this point, communications rather than computation becomes the
primary preoccupation of the computer architect. Many communications schemes have
been suggested. Some of these are unsuitable for large architectures , either because their
bandwidth does not increase quickly enough or because their cost escalates too quickly.
Other communications schemes are indefinitely sca lable , but are limited to specialized
applications by restrictions on the sorts of message patterns they can support. Finally,
there is a group of schemes, including fat trees, omega networks, and hypercubes, that
are indefinitely scalable, both in terms of the ir cost and the time needed to deliver a set of
m~ssages.

One such scheme, the hypercube, was chosen as the basis of the Connection Machine
System. The communications system it contains supports 65,536 processors, can transmit
65,536 messages in 800 microseconds, and can be adapted to patterns with high degrees
of fan-in and fan-out. The result is the state-of-the-art in computer communications
architecture.

References

[I} Hill is, D., The Connection Machine, (MIT Press, Cambridge Massachusetts, 1986).

[2J Broomel, G., and Heath, 1.R., "Classification Categori es and Historical Develop
ment of Circuit Switching Topologies," Computing Surveys 15 (2) (1983) pp 95-133.

[3] Thompson, c., "Generalized Connection Networks for Parallel Processor]ntercom
munication," IEEE transactions on Computers, C-27 (12) (1978).

[4] Benes, V. E., Mathematical Theory of Connecting Networks and Telephone Traffic (Aca
demic Press, 1965) .

[5] Schwartz, J., "A Taxonomic Table of Parallel Computers, Based on 55 Designs,"
Courant Institute , New York University (1983).

[6] Davidson, E., "A Multiple Stream Microprocessor Prototype System: Nv'1P-l-," Co
ordinated Science Laboratory, University of Illinois, Urbana, IL, and IEEE (1980).

- 15 -

P] Buehrer, R. E., et ai, "The ETH-Multiprocessor EWRESS: A Dynamically Config
urable MIMD System," IEEE Transactions on Computers C-31 (11) (1982) pp
1035-1044.

[8] Trujillo, V. , "System Architecture of a Reconfigurable MultimicroproCf'8sor Re
search System," 1982 International Conference on Parallel Processing (1982).

[9] Rieger, C., "ZMOB: A Mob of 256 Cooperative Z80A-Based Microcomputers,"
Computer Science Tech. Rep. Series TR-852, University of Maryland, College Park,
MD, (1979).

[10J Slotnick, D. L, et al., "The IlLlAC IV Computer," IEEE Transactions on Computers
C-17 (8) (1978) pp 746-757.

ll1J Batcher, K. E. , "STARAN Paralle l Processor System Hardware," AFIPS Con! Proc.
43 (1974) pp 405-410.

[1 2] Satcher, K. E., "Design of a Massively Para llel Processor," IEEE Transactions on
Computers, C-29 (9) (1980).

[13] Shaw, D.E., "The NON-VON Supercomputer," Department of Computer Science,
Columbia University (1982).

[14] Stolfo, S., and Shaw, D., "DADO: A Tree- Structured Machine Architecture for
Production Systems," Department of Computer Science, Columbia University
(1982).

[15J Leiserson, C.E., "FAT- TREES: Universa l Networks for Hardware-Efficient Super
computing," 1985 International Conference on Parallel Processing, IEEE Computer
Society (August 1985) .

[16] Bolt Beranek and Newman Inc., "Development of a Butterfly Multiprocessor Test
Bed," Report 5872, Quarterly Technical Report No.1 (1985).

[17] Rettberg, R. , and Thomas, R., "Contemion Is No Obstacle to Shared-Memory Multi
processing," Communications of the ACM, 9 (12) (December 1986) pp 1202-1212.

[18] Schwartz, J., "Ultracomputers," ACM Transactions on Programming Languages and
Systems 2 (4) (1 980) pp 484- 521.

f191 Parker, D., "Notes on ShufflelExchange-Type Switching Networks," IEEE Transac
tions on Computers C-29 (3) (1980) pp 213-222.

[20] Snir, M., "Comments on Lens and Hypertrees - or [he Perfect-S huffle Again,"
Ultracomputer Note 38, Computer Science Department, New York University
(1982).

[21] Ble tloch, G., "Parallel prefix versus concurrent memory access," Technical Report,
Thinking Machines Corporation, Cambridge MA (June 1986).

[221 Hillis , D., and Steele, G., "Data Parallel Algorithms," Communications of the ACM,
29 (12) (December 1986) pp 11 70-1183.

- 16 -

