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1 Introduction 

The Connection Machine Model CM-2 is a data parallel computing system. Data par­
allel computing associates one processor with each data element. This computing style 
exploits the natural computational parallelism inherent in many data-intensive prob­
lems. It can significantly decrease the execution time of a problem, as well as simplify 
its programming. In the best cases, execution time can be reduced in proportion to 
the number of data elements in the computation; programming effort can be reduced 
in proportion to the complexity of expressing a naturally parallel problem statement 
in a serial manner. In order to fully exploit these potential benefits, a computing sys­
tem consisting of both hardware and software that support this model of computing is 
required. 

The Connection Machine Model CM-2 is an integrated system of hardware and 
software. The hardware elements of the system include front-end computers that pro­
vide the development and execution envIronments for the system software, a parallel 
processing unit of 64K processors that execute the data parallel operations, and a 
high-performance data parallel I/O system. The system software is based upon the 
operating system or environment of the front-end computer. The visible software ex­
tensions are minimal. Users can program using familiar languages and programming 
constructs, with all the development tools provided by the front end. Programs have 
normal sequential control flow; new synchronization structures are not needed. Thus, 
users can easily develop programs that exploit the power of the Connection Machine 
hardware. 

1.1 The Connection Machine System 

At the heart of any large computational problem is the data set: some combination 
of interconnected data objects, such as numbers, characters, records, structures, and 
arrays. In any application this data must be selected, combined, and operated upon. 
Data level parallelism takes advantage of the parallelism inherent in large data sets. 

At the heart of the Connection Machine Model CM-2 system is the parallel pro­
cessing unit, which consists of thousands of processors, each with thousands of bits 
of memory. These processors can not only process the data stored in their memory, 
but also can be logically interconnected so that information can be exchanged among 
the processors. All these operations happen in parallel on all processors. Thus, the 
Connection Machine hardware directly supports the data parallel problem model 

One way to view the relationship of the CM-2 parallel processing unit to the other 
parts of the system is to consider it as an intelligent extension to the memory of the 
front-end computer. The data parallel data objects are stored by assigning each one 
to the memory of a processor. Then the operations on these objects can be specified 
to operate simultaneously on any or all data objects in this memory. 

The Connection Machine processors are used whenever an operation can be per­
formed simultaneously on many data objects. Data objects are left in the Connection 
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Machine memory during execution of the program and are operated upon in parallel at 
the command of the front end. This model differs from the serial model of processing 
data objects from a computer's memory one at a time, by reading each one in turn, 
operating on it, and then storing the result back in memory before processing the next 
object. 

The flow of control is handled entirely by the front end, including storage and 
execution of the program and all interaction with the user and/or programmer. The 
data set, for the most part, is stored in the Connection Machine memory. In this way, 
the entire data set can be operated upon in parallel through commands sent to the 
Connection Machine processors by the front end. The front end can. also operate upon 
data stored in individual processors in the Connection Machine, treating them logically 
as memory locations in its virtual memory. 

There are several direct benefits to maintaining program control only on the front 
end. First, programmers can work in an environment that is familiar. The front end 
interacts with the Connection Machine parallel processing unit using an integrated 
command set, and so the programming languages, debugging environment, and oper­
ating system of the front end remain relatively unchanged. Second, a large part of the 
program code for any application pertains to the interfaces between the program, the 
user, and the operating system. Since the control of the program remains on the front 
end, code developed for these purposes is useful with or without the Connection Ma­
chine parallel processing unit, and only the code that pertains specifically to the data 
residing on the Connecti9n Machine processors needs to use the data parallel language 
extensions. Finally, parts of the program that are especially suited for the front end, 
such as file manipulation, user interface, and low-bandwidth I/O, can be done on the 
front end, while the parts of the program that run efficiently in parallel, namely the 
"inner loops" that operate on the data set, can be done on the Connection Machine. 
In this way, the individual strengths of both the serial front end and the Connection 
Machine processors can be exploited. 

In general, the Connection Machine system appears to be a very powerful extension 
of the front-end system. The data parallel hardware looks like intelligent memory; the 
data parallel software extends the front end's capabilities to allow the direct execution 
of parallel operations. 

1.2 Data Parallel Hardware 

The Connection Machine system implements data parallel programming constructs 
directly in hardware. The system includes 65,536 physical processors, each with its 
own memory. Parallel data structures are spread across the data processors, with a 
single element stored in each processor's memory. When parallel data structures have 
more than 65,536 data elements (the normal case), the hardware operates in virtual 
processor mode, presenting the user with a larger number of processors, each with a 
correspondingly smaller memory. 

Communication among elements of a parallel data structure is implemented by 
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a high-speed routing network. Processors that hold interrelated data elements store 
pointers to one another. When data is needed, it is passed over the routing network to 
the appropriate processors. 

Scalar data is held in a front-end processor. The front end also controls execution of 
the overall data parallel program. Program steps that involve parallel data are passed 
over an interface to the Connection Machine parallel processing unit, where they are 
broadcast for execution by all the processors at once. 

The Connection Machine front end provides the programming environment for the 
system. Programs can be stored on front-end disks. Network communications links are 
most effectively implemented on the front end as well. 

High-speed transfers between peripheral devices and Connection Machine memory 
take place through the Connection Machine I/O system. All processors, in parallel, 
pass data to and from I/O buffers. The data is then moved between the buffers and the 
peripheral devices. Connection Machine high-speed peripherals include the Data Vault 
mass storage system and the Connection Machine graphics display system. 

1.3 Data Parallel Software 

The Connection Machine system software is designed to utilize existing programming 
languages and environments as much as possible. The languages are based on well­
known standards; the extensions to support data parallel constructs are minimal so 
that a new programming style is not required. The CM-2 front-end operating system 
(either UNIX or Lisp) remains largely unchanged. 

Fortran on the Connection Machine system uses the array extensions in the draft 
Fortran 8x standard (proposed by ANSI technical committee x3J3) to express data 
parallel operations. The remainder of the language is the standard Fortran 77. No 
extension is specific to the Connection Machine; the Fortran 8x array extensions map 
naturally onto the underlying data parallel hardware. 

The *Lisp and CM-Lisp languages are data parallel dialects of Common Lisp (a 
version of Lisp currently being standardized by ANSI technical committee x3J 13). * Lisp 
gives programmers fine control over the CM-2 hardware while maintaining the flexibility 
of Lisp. CM-Lisp is a higher-level language that adds small syntactic changes to the 
language interface and creates a very powerful data parallel programming language 

The C* language is a data parallel extension of the C programming language (as 
described in the draft C standard proposed by ANSI technical committee x3J 11). C* 
programs can be read and written like serial C programs; the extensions are unobtrusive 
and easy to learn. 

The assembly language of the CM-2 is Paris. This is the target language of the 
high-level language compilers. This language logically extends the instruction set of 
the front end and masks the physical implementation of the CM-2 processing unit. 
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2 System Organization 

The Connection Machine Model CM-2 is a complete computing system that provid~s 
both development and eXecution facilities for dl:).ta parallel progr~. It~ hardwaJ'e 
consists of a parallel processing unit containing thousa;nds of datI:). processor~, from 
one to four front-end computers, and an I/O system that supports J:IlASS storage cmd 
graphic display devices (see Figure 1). The user interacts with. the f.ront~end computer; 
all progr&m development and execution t8kes place withJn the front ent!. Because 
the front-end computer runs standard serial software, fb.e user sees .. familar sYlltem 
environment with additional languages and utilities and some very powerful hardware. 

The central element ~ the system is the CM-2 plU'allel processing unit, which 
contains: 

• thousands of data processors 

• an interprocessor communications network 

• one or more sequencers 

• an interface to one or more front-end computers 

• zero or more I/O controllers and/or framebuffers 

A parallel processing unit may contain 64K, 32K, or 16K data pro.cessors. (Here, 
and throughout this document, "K" stands for 1024. Thus 64K means 65,536; 32K 
means 32,768; 16K means 16,384; 8K means 8,192; and so OIl.) Each data processor 
has 64K bits (8 kilobytes) of bit-addressable local memory and an arithmetic-logic unit 
(ALU) that can operate on variable-length operands. E .. ch data processor can access 
its memory at a rate of at least 5 megabits per second. A fully configured CM-2 
thus has 512 megabytes of memory that can be read or written at .. bout 301) gigabits 
per second. When 64K processors are operating in parallel, eliloCh performipg .. 32-bit 
integer addition, the CM-2 parallel processing unit operates at about 2500 Mipsl. (This 
figure includes all overhead for instruction issuing and decoding.) In addition to the 
standard ALU, the CM-2 parallel processing unit has an optional par~el fioating point 
accelerator that performs at 3500 MFlops2 (single precision) or 2500 MFlops (double 
precision). 

One of the most important requirements of general purpose dat .. parallel computing 
is the ability of the data elements to communicate information among themselves in 
patterns that vary according to the problem and with time. The CM.2 system provides 
two forms of communication within the parallel processing unit. The more general 
mechanism is known as the router, which allows any processor to communicate with 
any other processor. One may think of the router as allowing every pro.cessor to send a 
message to any other processor, with all messages being sent and delivered at the same 
time.. Alternatively, one may think of the router as allowing every processor to access 

1 Mips = MUlions of instructions per second 
2MFlops = Millions of floating point operations per second 
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any memory location within the parallel processing unit, with all processors making 
memory accesses at the same time; in effect, the router allows the local memories of 
the data processors to be treated as a single large shared memory. The messages (or 
accessed fields, if you will) may be of any length. The throughput of the router depends 
on the message length and on the pattern of accesses; typical values are 80 million to 
250 million 32-bit accesses per second. 

The CM-2 parallel processing unit also has a more structured, somewhat faster 
communication mechanism called the NEWS grid. In the CM-1 and some other fine 
grained parallel systems, communication can take place over a fixed two-dimensional 
grid. The CM-2, however, supports programmable grids with arbitrarily many dimen­
sions. Possible grid configurations for 64K processors include 256 X 256, 1024 X 64, 
8 X 8192, 64 X 32 X 32, 16 X 16 X 16 X 16,· and 8 X 8 X 4 X 8 X 8 X 4. The NEWS 

grid allows processors to pass data according to a regular rectangular pattern. For 
example, in a two-dimensional grid each processor could receive a data item from its 
neighbor to the east, thereby shifting the grid of data items one position to the left. 
The advantage of this mechanism over the router is merely that the overhead of ex­
plicitly specifying destination addresses is eliminated; for many applications this is a 
worthwhile optimization. 

The parallel processing unit is designed to operate under the programmed control of 
a front-end computer, which may be either a Symbolics 3600 Lisp machine or a DEC VAX 

8000 series computer with a BI bus. The front end provides the program development 
and execution environment. All Connection Machine programs execute on a front end; 
during the course of execution the front end issues instructions to the CM-2 parallel 
processing unit. In effect, the CM-2 parallel processing unit extends the instruction 
set and I/O capabilities of the front-end computer. The set of instructions that the 
front end may issue to the parallel processing unit is called Paris. It is designed for 
convenient use by front-end programs, and includes not only such operations as integer 
arithmetic, floating point arithmetic, and interprocessor communication, but also such 
powerful operations as vector summation, matrix multiplication, and sorting. The 
Paris instruction set is described further in Chapter 3. 

The data processors do not handle Paris instructions directly. Instead, Paris in­
structions from the front end are processed by a sequencer in the parallel processing 
unit. The task of the sequencer is to break down each Paris instruction into a sequence 
of low-level data processor and memory operations. The sequencer broadcasts these 
low-level operations to the data processors, which execute them at a rate of several 
million per second. The low-level operations are described further in section 4.1. 

To increase the flexibility of program development and execution, the CM-2 process­
ing unit may be divided into as many as four sections. Depending on the configuration, 
a section will have either 8K or 16K data processors. For example, a parallel processing 
unit with 64K data processors will be divided into four sections of 16K data processors; 
a processing unit with 32K data processors could consist of either two 16K sections or 
four 8K sections. 
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Each section can be treated as a complete parallel processing unit in itself; in 
particular, each section contains its own sequencer, router, and NEWS grid. Sections 
may also be ganged; when this is done, their sequencers are also ganged and behave 
as a single sequencer, their routers cooperate as a single router, and their NEWS grids 
cooperate to form. a single grid. A programmable, bidirectional switch called the Nexus 
allows up to four front-end computers to be attached to a single parallel processing 
unit. The front ends need not all be of the same type. Under front-end software 
control, the Nexus can connect any front end to any section or valid combination of 
sections in the CM-2 parallel processing unit. For example, in a CM-2 system with 
32K data processors (in four 8K sections) and four front ends, one could assign one 
section to each front end for software testing; or one could gang all four sections to be 
controlled by anyone front end for a production run; or one could assign 8K sections 
to each of two front ends, gang the other two sections to give 16K data processors to 
a third front end, and use the fourth front end for purposes unrelated to the parallel 
processing unit. The Nexus can be reconfigured in seconds; once this is done, data and 
instructions flow between the front end and the sequencers without visible intervention 
by the Nexus. 

For every group of 8K data processors there is one I/O channel. (A section with 8K 
processors therefore has one channel; a section with 16K process()rs has two channels.) 
To each I/O channel may be connected either one high-resolution graphics display 
framebuffer module or one general I/O controller supporting an I/O bus to which 
several DataVault mass storage devices may be connected. The front end controls I/O 
transfers in exactly the same manner that it controls the data processors, by issuing 
Paris instructions to the sequencer. The sequencer can then send low-level corrunands 
to the I/O channels and interrogate channel status. Data is transferred directly and 
in parallel between the I/O devices and the data processors, without being funneled 
through the sequencers. 
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3 The Paris Language 

The instructions that the front end may issue to the parallel processing unit constitute a 
language called Paris (from the phrase "parallel instruction set"). It is the lowest-level 
protocol by which the front-end computer directs the actions of Connection Machine 
processors. 

3.1 Overview 

Paris is intended primarily as a base upon which to build higher-level languages for 
the Connection Machine system. It provides a large number of operations similar to 
the machine-level instruction set of an ordinary computer. Paris supports primitive 
operations on signed and unsigned integers and floating point numbers, as well as 
message-passing operations, I/O commands, and facilities for transferring data between 
the Connection Machine processors and the front-end computer. 

Paris instructions direct the handling of data by the Connection Machine processors. 
Control instructions, such as subroutine calls, iC-then-else conditionals, and while 
loops are not a part of the Paris instruction set. The control structure for an application 
is provided by the front-end computer. A program that is "written in Paris" must 
actually be written in some ordinary sequential language for the front end, such as C, 
Fortran, Pascal, or Lisp. 

The Paris user interf~econsists of a set of functions, subroutines, and global vari­
ables. The functions and subroutines direct the actions of the Connection Machine 
processors, and the variables allow the user program to find out such information 
about the Connection Machine system as the number of processors available and the 
amount of memory per processor. 

As a simple example, here is a bit of C code that repeatedly causes every processor 
whose floating point z field is greater than 1.0 to be divided by two; the loop is 
terminated when no processor has a z value greater than one. 

while (CM_f_gt_constant(z. 1.0. 23. 8). 

} 

CM_global_logior(CM_test_flag. 1» { 
CM_f_divide_constant_2(z. 2.0. 23. 8); 

The functions whose names begin with "CM-" are Paris operations: CM.-f_gt_constant 
causes every processor to compare a field to a common, broadcast constant, storing a 
bit reflecting the result in its "test" flag; CM-=f..divide_constant similarly causes every 
processor to divide a floating point field by a common constant; and CM...globaLlogior 
takes a bit field (in this example, a one-bit field, namely the test flag) from every 
processor, and returns to the front end the result of a many-way bitwise inclusive-oR. 
operation. The while construct is an ordinary C while loop, and is not a part of the 
Paris language proper. 
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Several different versions of the user interface are provided, one for each front­
end programming language in which Paris is to be embedded. These interfaces are 
functionally identical; they differ only in conforming to the syntax and data types of 
one language or the other. Here is what the preceding example would look like if 
embedded in the Lisp language: 

(do 0 
«progn (CM:f-gt-constant z 1.0 23 8) 

(zerop (CM:global-logior CM:test-flag 1»» 
(CM:f-divide-constant-2 z 2.0 23 8» 

This example of Lisp code uses a Lisp control structure, do, that is nearest in function 
to the C while statement. (It is actually a do-until statement, and the Lisp function 
zerop is used here to invert the sense of the result of CM:global-logior.) However, 
it would be appropriate to Lisp programming style to use a recursive function instead 
to express such a loop: 

(defun loop 0 
(CM:f-gt-constant z 1.0 23 8) 
(unless (zerop (CM:global-logior CM:test-flag 1» 

(CM:f-divide-constant-2 z 2.0 23 8) 
(loop») 

This example underscores the point that the control structure of the program may be 
written in any programming language (even the assembly language of the front-end 
computer, if necessary), and in any style suitable to that programming language. Paris 
merely extends that language by providing for the parallel processing of data. 

3.2 Virtual Machine Model 

Paris presents to the user an abstract machine architecture that is very much like the 
physical Connection Machine hardware architecture, but with two important exten­
sions: the virtual processor abstraction and a much richer instruction set. 

The virtual processor abstraction (on which most higher-level software depends) is 
supported at the Paris level. When the Connection Machine system is initialized for a 
particular application, the number of virtual processors required by the application may 
be specified. If this number exceeds the number of available physical processors, then 
the local memory of each processor is split up into as many regions as necessary, and for 
every Paris instruction the processors are automatically time-sliced among the regions. 
For example, if an application should need to process a million pieces of data, it might 
request V = 220 virtual processors. Assume the available hardware to have P = 216 

physical processors each with M = 216 bits of memory. Then each physical processor 
would support VIP = 16 virtual processors; this ratio VIP, usually denoted N, is 
called the virtual processor ratio, or VP-ratio. In this example each virtual processor 
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would have MIN:::: 212 bits of memory and would appear to execute code at about 
l/N:::: 1/16 the speed of a physical processor. 

The time taken to perform a move depends on the length of the field to be moved 
and also on the number of virtual processors in use. If each physical processor is 
simulating N virtual processors, then issuing a single move instruction causes each 
physical processor to execute N move operations. This will take N times as long as if 
virtual processors were not in use, but also does N times as much work, so the Mips 
measurement is about the same. Indeed, the use of virtual processors usually increases 
the measured Mips rate, because the instruction needs to be decoded by the sequencer 
only once for N executions, and so the decoding overhead may be amortized. 

Each virtual processor has some local memory and also a number of 1-bit flags. Most 
of the flags are condition codes such as overflow and float-inexact. The context 
flag, however, controls conditional execution: for most Paris operations a processor 
executes the operation if its context flag is 1, but does not participate if its context flag 
is O. Processors whose context flag is 1 are said to be active; the set of active processors 
is called the current conte:tt. A few operations ate unconditional, being executed by all 
processors regardless of the values of their context flags. (It is important, for example, 
that there be a way to set all context flags to 1 unconditionally!) 

3.3 Organization of the Instruction Set 

Most Paris operations deal with fields in the local memories of the Connection Machine 
processors. A field is specified by two quantities: the address of its first bit, and its 
length in bits. Uninterpreted bit fields (as processed by such operations as move, send, 
and logand) may be of any length. The length of an unsigned integer may range from 0 
to 128 bits, and the length of a signed integer may range from 2 to 128 bits. (Some very 
simple arithmetic operations, such as addition, subtraction, and comparisons, are not 
limited to 128 bits.) Floating point operations are available in a variety of precisions, 
including 32-bit, 64-bit, and 80-bit formats. 

Nearly all operations are memory-to-memory; for example, the signed integer ad­
dition operation can add the value of one memory field into another memory field 
(two-address mode) or can replace a memory field with the sum of two other fields 
(three-address mode). The flags are addressed as if they were 1-bit memory fields. 

Many operations come in several forms, differing from each other in up to three 
categories: 

• Addressing modes. The operations s-add-2 and s-add-3 both perform signed 
integer addition, but the one takes two addresses and a length and the other takes 
three addresses and a length. The operation s':'add takes three addresses and 
three lengths,allowing the three fields involved to be of different sizes. Anything 
s-add-2 can do, s-add-3 can do by duplicating one address operand; anything 
s-add-3 can do, s-add can do by triplicating the length operand. The concise 
addressing modes improve performance by reducing total instruction size; the 
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front end has fewer operands to send to the sequencer, and the sequencer has 
fewer operands to decode. 

• Conditionalization. Most operations are executed only by active processors, but 
some are executed unconditionally by all processors. For example, the operation 
move copies one memory field to another for processors in the current context, but 
the operation move-always copies one memory field to another in all processors, 
regardless of the current context. 

• Immediate operands. The operation s-add-2 adds one memory field into another 
in all active processors; the operation s-add-constant-2 adds an immediate 
quantity, sent from the front end as part of the instruction, into a memory field 
in all active processors. Note that the word "constant" in the instruction name 
is a relative term. The immediate operand is constant in being the same for all 
the data processors, but need not be constant within the front-end program; the 
front end may calculate the value to be sent to the sequencer. 

3.4 Instruction Set Summary 

The following sections list groups of related Paris instructions, with commentary, to 
illustrate the expressive power of the instruction set. This is not a complete list of 
Paris operations. 

The names of the Paris operations are listed here in a compromise format. The 
name to be used in a Lisp program is derived by prefixing a name given below with 
"CM:"; the name to be used in a C program is derived by prefixing a name given below 
with "CM_" and converting all hyphens to underscores. Thus the operation s-add-2 
would be called CM: s-add-2 in Lisp code and CM_s_add..2 in C code. 

3.4.1 Operations on Bit Fields 

move move-constant move-always 
logand logand-constant logand-always 
logior logior-constant logi~r-always 

logxor logxor-constant logxor-always 
logeqv logeqv-constant logeqv-always 
lognand lognand-constant lognand-always 
lognor lognor-constant lognor-alvays 
logandc1 logandc1-constant logandc1-always 
logandc2 logandc2-constant logandc2-alvays 
logorc1 logorc1-constant logorc1-alvays 
logorc2 logorc2-constant logorc2-alvays 
lognot array-fetch array-store 
load-context store-context set-context 
move-reversed move-zero latch-Ieds 
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Every instruction in this group is executed by each data processor independently 
of the other data processors. 

The move operations copy data from one memory field to another. Assuming only 
one virtual processor per physical processor and 32·bit fields, a move instruction, in­
cluding all decoding overhead, takes about 21 microseconds; with 64K processors, this 
represents an aggregate execution rate of 3000 million individual 32-bit move operations 
per second. 

All ten nontrivial binary bitwise boolean operations are provided. The array-fetch 
and array-store perform indexed load and store operations; every data processor has 
a small a.rray of items within it, and each data processor may have a different index 
into its a.rray. The load-context, store-context, and set-context operations are 
special cases of move optimized for use on' the context flag. 

The red lights on the CM-2 cabinet may be turned off and on by the latch-leds 
instruction; there is one light for every 16 processors. 

3.4.2 Operations on Signed Integers 

s-add s-add-constant s-add-carry 
s-subtract s-subtract-constant s-subtract-borrow 
s-mu1tiply s-multiply-constant s-add-flags 
s-divide s-divide-constant s-mod 
s-max ' s-max-constant a-rem 
s-min s-min-constant s-random 
s-eq s-eq-constant s-eq-zero 
s-ne s-ne-constant s-ne-zero 
s-gt s-gt-constant s-gt-zero 
s-ge s-ge-constant s-ge-zero 
s-lt s-lt-constant s-lt-zero 
s-le s-le-constant s-le-zero 
s-shift s-shift-constant s-integer-length 
s-abs s-signwn s-new-size 
s-negate s-count-bits a-isqrt 

Every instruction in this group is executed by each active data processor independently 
of the other data processors. Most of these are operations familiar to any assembly 
language programmer: arithmetic operations, comparisons, absolute value, negate, and 
shift. The s-new-size operation copies a signed integer from one field to another of 
different size, performing sign extension or overfiow checking as appropriate. 

Assuming only one virtual processor per physical processor and 32-bit fields, an 
s-add instruction, including all decoding overhead, takes about 26 microseconds; with 
64K processors, this represents an aggregate execution rate of 2500 million 32-bit ad­
ditions per second. 
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3.4.3 Operations on Unsigned Integers 

u-add u-add-constant u-add-carry 
u-subtract u-subtract-constant u-subtract-borrow 
u-multiply u-multiply-constant u-add-flags 
u-divide u-divide-constant u-mod 
u-max u-max-constant u-rem 
u-min u-min-constant u-random 
u-eq u-eq-constant u-eq-zero 
u-ne u-ne-constant u-ne-zero 
u-gt u-gt-constant u-gt-zero 
u-ge u-ge-constant u-ge-zero 
u-lt u-lt-constant u-integer-from-gray-code 
u-le u-le-constant u-gray-code-from-integer 
u-shift u-shift-constant u-integer-length 
u-abs u-signum u-new-size 
u-negate u-count-bits u-isqrt 

Every instruction in this group is executed by each active data processor indepen­
dentlyof the other data processors. Most of these operations correspond to those listed 
in the preceding section, but operate on unsigned integers rather than signed integers. 
Unusual are two instructions that convert values between unsigned binary representa­
tion and a binary reflected Gray code representation; these have some utility in the 
Connection Machine architecture in performing low-level addressing calculations, be­
cause the processor addresses used by the router and those used by the NEWS grid are 
related by a Gray encoding. 

3.4.4 Operations on Floating Point Numbers 

f-move f-move-constant f-move-decoded-constant 
f-adci f-add-constant f-square 
f-subtract f-subtract-constant f-integer-power 
f-multip1y f-mu1tiply-constant f-integer-power-constant 
f-divide f-divide-constant f-mod 
f-max f-max-constant f-rem 
f-min f-min-constant f-random 
f-eq f-eq-constant f-eq-zero 
f-ne f-ne-constant f-ne-zero 
f-gt f-gt-constant f-gt-zero 
f-ge f-ge-constant f-ge-zero 
f-1t f-1t-constant f-lt-zero 
f-1e f-1e-constant f-le-zero 
f-scale f-scala-constant f-logb 
f-abs f-signum f-new-size 
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f-negate 
f-sin 
f-cos 
f-tan 
f-sinh 
f-cosh 
f .. tanh 

f-float-signum 
f-asin 
f-acos 
f-atan 
f-asinh 
f-acosh 
f-atanh 

f-sqrt 
float-exp 
float-log 
float-atan2 
float-power 
float-square 
float-polynomial 

Every instruction in this group is executed by each active data processor independently 
of the other data processors. Most. of these are floating point operations familiar to any 
assembly language programmer: arithmetic operations, comparisons, absolute value, 
negate, scale, and the usual exponential, logarithm, and trigonometric functions. 

3.4.5 Type Conversions 

s-floor 
s-ceiling 
s-truncate 
s-round 

u-floor 
u-ceiling 
u-truncate 
u-round 

a-float 
u-float 

Every instruction in this group is executed by each active data processor indepen­
dently of the other data processors. These operations convert between integer (signed 
or unsigned) and floating point representations. 

3.4.6 Intraprocessor Vector Operations 

f-vector-dot-product 
f-vector-3d-cross-product 
f-vector-norm 
f-matrix-multiply 

There are two ways to represent vectors and matrices within the Connection Ma­
chine memory: one may represent a large vector or matrix by placing one element 
within each data processor, or one may represent many small vectors or matrices by 
placing an entire vector or matrix within each data processor. 

The operations in this section assume the latter representation. As an example, 
f-matrix-multiply could be used to direct every active processor to multiply two 
4 x 4 matrices. These operations could be expressed in terms of the simple floating 
point instructions listed in the previous section; they are provided purely for reasons 
of convenience and performance. 

Computing the single-precision dot product of two vectors of length n with the 
:floating point accelerator ta1ces approximately 13n - 5 microseconds. Assuming that 
this operation requires 2n - 1 "flops" (n multiplications and n - 1 a:dditions), then the 
aggregate execution rate for 64K processors is 10,000 MFlops (that is, 10 gigaflops J. 



Chapter 3 The Paris Language 

3.4.7 Interprocessor Vector Operations 

global-count 
global-logand 
global-logior 
global-s-add 
global-s-multiply 
global-s-max 
global-s-min 
global-u-add 
global-u-multiply 
global-u-max 
global-u-min 
global-f-add 
global-f-multiply 
global-f-max 
global-f-min 

copy-scan 
logand-scan 
logior-scan 
s-add-scan 
s-multiply-scan 
s-max-scan 
s-min-scan 
u-add-scan 
u-multiply-scan 
u-max-scan 
u-min-scan 
f-add-scan 
f-multiply-scan 
f-max-scan 
f-min-scan 

segmented-copy-scan 
segmented-logand-scan 
segmented-logior-scan 
segmented-s-add-scan 
segmented-s-multiply-scan 
segmented-s-max-scan 
segmented-s-min-scan 
segmented-u-add-scan 
segmented-u-multiply-scan 
segmented-u-max-scan 
segmented-u-min-scan 
segmented-f-add-scan 
segmented-f-multiply-scan 
segmented-f-max-scan 
segmented-f-min-scan 
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Each of these operations takes one datum from each active processor and combines 
them in some way. 

The global- operations perform. reduction; the set of values, one from each pro­
cessor, is reduced to a single value through application of a bi~ary combining function. 
This value is then returned to the front end. For example, global-s-add returns to 
the front end the signed integer sum of all the values, and global-f-max treats the 
items as floating point values and returns the largest one. 

The -scan operations perform. a scan (also called "parallel prefix"). This takes an 
array of values, one per virtual processor, and replaces each item with the reduction 
of all items occurring before (and possibly including) that item. For example, if there 
were eight processors, the argument and result fields might look like this for various 
operations: 

Argument 3 2 6 4 5 11 0 9 
Result of exclusive u-add-scan 0 3 5 11 15 20 31 31 
Result of inclusive u-add-scan 3 5 11 15 20 31 31 40 
Result of exclusive u-mul tiply-scan 1 3 6 36 144 720 7920 0 
Result of inclusive u-multiply-scan 3 6 36 144 720 7920 0 0 
Result of exclusive u-max-scan 0 3 3 6 6 6 11 11 
Result of inclusive u-max-scan 3 3 6 6 6 11 11 11 

On a CM-2 system. with 64K physical processors, a u-add-scan operation on 64K 
32-bit fields takes on the order of 300 microseconds. 

The -scan operations come in many varieties. One set operates along the NEWS 

grid, so as to perform. many scan operations, one for each row or column in the grid. 
Another set allows the processors to be segmented into subarrays of differing length, 
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performing a scan independently within each subarray. The copy-scan operation is 
partkularly useful in these cases; within each row, column, or segment it copies a value 
from the first processor into all the other processors. 

3.4.8 General Interprocessor Communication 

send 
send-with-overwrite 
send-with-logior 
send-with-logand 
send-with-s-add 
send-with-s-multiply 
send-with-s-max 
send-with-s-min 
send-with-u-add 
send-with-u-multiply 
send-with-u-max 
send-with-u-min 
send-with-f-add 
send-with-f-multiply 
send-with-f-max 
send-with-f-min 
get 

store 
store-with-overwrite 
store-with-logior 
store-with-logand 
store-with-s-add 
store-with-s-multiply 
store-with-s-max 
store-with-s-min 
store-with-u-add 
store-with-u-multiply 
store-with-u-max 
store-with-u-min 
store-with-f-add 
store-with-f-multiply 
store-with-f-max 
store-with-f-min 
fetch 

Each of the send- operations takes two fields from each active processor, one con­
taining message data and the other containing the address of a destination processor; 
each message is deposited into a third field within the memory of the processor specified 
as the destination for that message. 

The plain send operation assumes that no processor will receive more than one 
message. The other send- operations cause multiple messages for the same destination 
to be combined in a specified way; they differ only in the combining operation to be 
used. Thus send-wi th-overwri te causes one message to be retained and the rest 
discarded; send-wi th-s-add causes the destination processor to receive the sum of all 
messages sent to it; and so on. 

The send operation can process messages at rates varying typically from 80 million 
to 250 million per second, depending on the communication pattern. For example, if 
each of 64K processors sends a message to some other processor, the entire operation 
will take somewhere between 260 and 820 microseconds. 

IT send is viewed as a write into a global shared memory, then get is the corre­
sponding read operation. 

The store operation is like send, but the processor sending a message specifies not 
only which processor is to be the destination but also the memory location into which 
to deposit the message. This allows a processor to receive more than one message 
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without combining them; it also supports the abstraction of having completely general 
pointers into a global shared memory. The fetch operation is to store as get is to 
send. 

3.4.9 Communication within a Cartesian Grid 

send-to-nevs 
send-to-nevs-bounded 

get-from-nevs 
get-from-nevs-bounded 

The send-to-nevs operation takes operands that specify a Cartesian coordinate 
systein and a direction within that system, and causes every active processor to send 
a message to its neighbor in that direction. In the case of a two-dimensional grid 
the choices are North, East, West, or South, whence the name "NEWS grid." The 
get-from-nevs operation is complementary: each active processor fetches data from 
its neighbor. (There is no difference between sending to the West and getting from the 
East if all processors are active.) 

The ordinary NEWS operations actually organize the grid as a hypertorus: the edges 
"wrap around" so that the West neighbor of a processor on the West edge of the grid 
is the processor at the East edge of the same row. The -bounded versions of the 
operations do not wrap around; data sent past the boundary of the grid is discarded, 
and a specified immediate operand is sent in from the opposite boundary. In other 
words, the plain operations perform a one-place circular shift' of each row or column, 
while the bounded operations perform a one-place end-off shift with a specified value 
shifted in. 

3.4.10 Sorting 

s-rank u-rank f-rank 

A ranking operation takes one value from each active processor and calculates for 
each processor the rank of that processor's value in a sorted ordering of all the values. 
For example, if there were eight processors, the argument and result fields might look 
like this: 

Argument 3 2 6 4 5 11 o 9 
Result of u-rank 2 1 5 3 4 7 o 6 

If it is then desired to rearrange the values within the processors according to the 
sorted order, the result of the rank operation may be used as a processor address (or to 
calculate an address, say within the NEWS grid) for the send operation. An advantage 
of separating the ranking process from the actual rearrangement of the data is that one 
may perform the ranking step on a small key field and then use the result to reorder a 
much larger record. This is usually much faster than simply sorting the large records 
in one step. 

On a CM-2 system with 64K physical processors, sorting 64K 32-bit fields (ranking 
them and then rearranging them) takes about 30 milliseconds. 
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3.4.11 Data Transfer between Processors and Front End 

s-read-from-processor 
u-read-from-processor 
f-read-from-processor 
s-read-news-array 
u-read-news-array 
f-read-news-array 
s-read-send-array 
u-read-send-array 
f-read-send-array 

s-write-to-processor 
u-write-to-processor 
f-write-to-processor 
s-write-news-array 
u-write-news-array 
f-write-news-array 
s-write-send-array 
u-write-send-array 
f-write-send-array 

The -read-from-processor and -wri te-to-processor commands allow the front 
end to read or write a single field within a single data processor. The -array commands 
provide a fast block transfer of many data items, stored one per data proessor in either 
NEws-address order or send-address order, either to or from a block of memory in the 
front end. 

3.4.12 Housekeeping Operations 

get-stack-pointer get-stack-limit 
set-stack-pointer set-stack-limit 
push-space , pop-and-discard 
cold-boot attach 
warm-boot detach 

get-stack-upper-bound 
set-stack-upper-bound 
initialize-random 
power-up 
set-system-Ieds-mode 

A single global stack pointer is maintained that allows part of the local memory 
of each data processor to be treated as a stack, typically for the run-time allocation 
of automatic variables for a compiled high-level language. The operation push-space 
allocates stack space by adjusting the common stack pointer and performs a stack 
over;flow check; the operation pop-and-discard de allocates stack space. 

The initialize-random initializes the pseudo-random number generator used by 
the operations s-random, u-random, and f-random. 

The operations cold-boot, warm-boot, attach, detach, and power-up are used 
to initialize the parallel processing unit and to assign sections for use by particular 
front-end computers. 

The set-system-leds-mode operation determines whether the red lights on the 
CM-2 cabinet are to display internal status information or are to be controlled by the 
user program through the latch-Ieds instruction. 
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4 Processor Architecture 

This chapter describes details of the hardware in the CM-2 parallel processing unit. 
Most of these details are hidden from the user by the Paris interface and usually 
are of no concern to the Connection Machine application programmer. However, an 
understanding of these details is helpful in predicting program performance. 

The Connection Machine Model CM-2 parallel processing unit contains thousands 
of data processors. Each data processor contains: 

• an arithmetic-logic unit (ALU) and associated latches 

• 64K bits of bit-addressable memory 

• four I-bit flag registers 

• optional floating point accelerator 

• router interface 

• NEWS grid interface 

• I/O interface 

The data processors are implemented using four chip types. A proprietary custom 
chip contains the ALU, flag bits, router interface, NEWS grid interface, and I/O interface 
for 16 data processors, and also contains proportionate pieces 'of the router and NEWS 

grid network controllers. The memory consists of commercial R.AM chips. The floating 
point accelerator consists of a custom floating point interface chip and a floating point 
execution chip; one of each is required for every 32 data processors. A fully configured 
parallel processing unit contains 64K data processors, and therefore contains 4096 
processor chips, 2048 floating point interface chips, and 2048 floating point execution 
chips, and half a gigabyte of R.AM. 

4.1 Data Processors 

A CM-2 ALU consists of a 3-input, 2-output logic element and associated latches and 
memory interface. The basic conceptual AL U cycle first reads two data bits from mem­
ory and one data bit from a flag; the logic element then computes two result bits from 
the three input bits; finally, one of the two results is stored back into memory and the 
other result into a flag. One additional feature is that the entire operation is conditional 
on the value of a third flag; if the flag is zero, then the results for that data processor 
are not stored after all. 

The logic element can compute any two boolean functions on three inputs; these 
functions are simply specified (by the sequencer) as two 8-bit bytes representing the 
truth tables for the two functions. 

This simple ALU suffices to carry out, under control of the sequencer, all the oper­
ations of the Paris instruction set. Consider, for example, addition of two k-bit signed 
integers. First the virtual processor context flag is loaded into a hardware flag register 
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(which is then used as the condition flag for all remaining ALU operations). Next a 
second hardware flag is cleared for use as a carry bit. Next come k iterations of an ALU 

cycle that reads one bit of each operand from memory and also the carry bit, computes 
the sum (a three-way exclusive OR.) and carry-out (a three-input majority function), 
and stores the sum back into memory and the carry-out back into the carry flag. These 
cycles start with the least significant bits of the operands and proceed toward the most 
significant bits. The last of the k cycles stores the carry-out into a different hardware 
flag, so that the last two carry-outs may be compared to determine whether overflow 
has occurred. Arithmetic is therefore carried out in a bit-serial fashion; at about half a 
microsecond per bit, plus instruction decoding and other overhead, a 32-bit add takes 
about 21 microseconds. With 64K processors all computing in parallel, this produces 
an aggregate rate of 2500 Mips (that is, 2$ billion 32-bit adds per second). All other 
Paris operations are carried out in like fashion. 

The ALU cycle is broken down into subcycles. On each cycle the data processors 
can execute one low-level instruction (called a nanoinstruction) from the sequencer 
and the memories can perform one read or write operation. The basic AL U cycle for a 
two-operand integer add consists of three nanoinstructions: 

LOADA: read memory operand A, read flag operand, latch one truth table 
LOADB: read memory operand B, read condition flag, latch other truth table 
STORE: store memory operand A, store result flag 

Other nanoinstructions direct the router, NEWS grid, and floating point accelerator, 
initiate 110 operations, and perform diagnostic functions. 

4.2 The Router 

Interprocessor communication is accomplished in the CM-2 parallel processing unit 
by special-purpose hardware. Message passing happens in a data parallel fashion; all 
processors can simultaneously send data into the local memories of other processors, or 
fetch data from the local memories of other processors into their own. The hardware 
supports certain message-combining operations: that is, the communication circuitry 
may be operated in such a way that processors to which multiple messages are sent 
receive the bitwise logical OR. of all the messages, or the numerically largest, or the 
integer sum. 

Each CM-2 processor chip contains one router node, which serves the 16 data 
processors on the chip. The router nodes on all the processor chips are wired together 
to form the complete router network. The topology of this network happens to be a 
boolean n-cube, but this fact is not apparent at the Paris level. For a fully configured 
CM-2 system, the network is a 12-cube connecting 4096 processor chips. Each router 
node is connected to 12 other router nodes; specifically, router node i (serving da,ta 
processors 16i through 16i + 15) is connected to router node i if and only if Ii - il :;:: 2k 
for some integer k, in which case we say that routers i and i are connected along 
dimension k. 
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Each message travels from one router node to another until it reaches the chip 
containing the destination processor. The router nodes automatically forward messages 
and perform some dynamic load balancing. For example, suppose that processor 117 
(which is processor 5 on router node 7, because 117 = 16 x 7 + 5) has a message 
M whose destination is processor 361 (which is processor 9 on router node 22). Since 
22 = 7 + 24 - 2°, this message must traverse dimensions 0 and 4 to reach its destination. 
In the absence of congestion, router 7 forwards the message to router 6 (6 = 7 - 2°), 
which forwards it to router 22 (22 = 6 + 24 ), which delivers the message to processor 
361. On the other hand, if router 7 has another message that needs to use dimension 
0, it may choose to send message M along dimension 4 first, to router 23 (23 = 7 + 24 ), 

which then forwards the message to router 22, which then delivers it. 

The algorithm used by the router can be broken into stages called petit cycles. The 
delivery of all the messages for a Paris send operation might require only one petit cycle 
if only a few processors are active, but if every processor is active then typically many 
petit cycles are required. It is possible for a message to traverse many dimensions, 
possibly all 12, in a single petit cycle, provided that congestion does not cause it to be 
blocked; the message data is forwarded through multiple router nodes in a pipelined 
fashion. A message that cannot be delivered by the end of a petit cycle is buffered 
in whatever router node it happens to have reached, and continues its journey during 
the next petit cycle. If petit cycles are regarded as atomic operations, then the router 
may be viewed as a store-and-forward packet-switched network. Within a petit cycle, 
however, the router is better regarded as a circuit-switched network, where dimension 
wires are assigned to particular messages whose contents are then pumped through the 
reserved circuits. 

Each router node has a limited At u, distinct from those for the data processors. 
During each petit cycle, each router node checks to see if its buffers hold several mes­
sages that are all going to the same processor. If so, the messages are combined. This 
may be done by taking the numerically greatest, summing them, taking the bitwise 
logical OR, or by arbitrarily discarding all but one. Other combining functions are 
implemented in terms of these. For example, combining with bitwise logical AND is 
performed by inverting the original message data, sending it with oR-combining, and 
re-inverting received messages. (Such tricks are implemented by the sequencer, trans­
parently to the Paris user.) This hardware support for combining accelerates such 
Paris instructions as send-vith-logand, send-with-s-add, and send-with-u-max. 
The combining hardware also combines read requests during execution of the Paris get 
instruction, so that a value fetched once from a processor can be returned to many 
requestors in a single petit cycle. 

Each router node also contains specialized logic to support virtual processors. When 
a message is to be delivered by a router node, it is placed not only within the correct 
physical processor, but in the correct region of memory for the virtual processor origi­
nally specified as the message's destination. 
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4.3 The Floating Point Accelerator 

In addition to the bit-serial data processors described above, the CM-2 parallel process­
ing unit has an optional floating point accelerator that is closely integrated with the 
processing unit. There are two possible options for this accelerator: Single Precision 
or Double Precision. Both options support IEEE standard floating point formats and 
operations. They each increase the rate of floating point calculations by more than 
a factor of 20 (see Chapter 15). Taking advantage of this speed increase requires no 
change in user software. 

The hardware associated with each of these options consists of two special purpose 
VLSI chips, a memory interface unit and a floating point execution unit, for each pair 
of CM-2 processor chips. 

As an example of the operation of the floating point accelerator, consider the exe­
cution of a two-operand floating point instruction such as f-add-2 or f-multiply-2. 
Execution proceeds in five stages; each stage is generally comprised of 32 nanoinstruc­
tion cycles (one cycle for each of the 32 data processors on the two CM-2 processor 
chips). 

1. The first operand for each of 32 data processors is transferred from memory to 
the interface chip. 

2. The first operand is transferred from the interface chip to the floating point 
execution chip. (The floating point execution chip is capable of storing 32 values 
of a given precisio~.) Simultaneously, the second operand is transferred from 
memory to the interface chip. 

3. The second operand is transferred from the floating point interface chip to the 
floating point execution chip, where the operation is performed. At the end of 
this stage, the floating point execution chip contains the 32 results. 

4. The results are transferred from the floating point execution chip to the interface 
chip. 

5. The results are transferred from the interface chip to memory. 

If the virtual processor ratio is N, this process is pipelined so as to require only 3N + 2 
stages instead of 5N stages. 
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5 The Role of the Front End 

A front-end computer is a gateway to the Connection Machine system. It provides 
software development tools, software debugging tools, and a program execution en­
vironment familiar to the user. From the point of view of the user, the Connection 
Machine environment appears to be an extended version of the normal front-end envi­
ronment. In addition to the usual suite of tools and languages provided by the front 
end, the environment includes at least one resident compiler or interpreter for a Con­
nection Machine language. The front end also contains specialized hardware, called a 
Front-End Bus Interface (or FEB I), which allows communication with the Connection 
Machine. 

A front end can be any computer system for which a FEBI exists. At the present 
time, a FEBI is available for most Digital Equipment Corporation VAX 8000 series 
minicomputers and for Symbolics 3600 series Lisp machines. The choice of which 
computer to use as a Connection Machine system front end depends on the nature 
of the application and on the preferences of the intended users. For example, an 
artificial intelligence application such as visual object recognition may be most naturally 
implemented in CM-Lisp, and would therefore work best with a Symbolics front end, 
whereas scientific applications normally implemented in Fortran would require a VAX 

front-end computer. Different types of front-end computers may be attached to the 
same Connection Machine and be running applications simultaneously. In addition, 
a single front-end computer may contain more than one FEB I to support up to four 
time-sharing users running Connection Machine applications simultaneously. 

The front-end computer serves three primary functions in the Connection Machine 
system: 

• It provides an applications development and debugging environment. 

• It runs applications and transmits instructions and associated data to the Con­
nection Machine parallel processing unit. 

• It provides maintenance and operations utilities for controlling the Connection 
Machine and diagnosing problems. 

5.1 Applications Development 

Users create Connection Machine programs in the development environment provided 
by the front end. The editors, file systems, and debugging tools are those that are part 
of the front end's normal environment. The resident Connection Machine language, 
which contains parallel extensions to a language already familiar to the user, is used to 
express algorithms exploiting the data parallel structure of a problem. Thus, users with 
very little experience in data parallel programming may begin to use the Connection 
Machine immediately. 
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The native debugging facilities of the front end are augmented by simulators pro­
vided as part of the Connection Machine software system. The use of simulators can 
enhance productivity of users by allowing them to debug application programs, at least 
in part, without tying up the Connection Machine hardware. 

5.2 Running Connection Machine Applications 

Once a Connection Machine program has been written, it is executed on the front­
end computer. Most statements are translated directly to the native machine code of 
the front end. Those source-level constructs that correspond to Connection Machine 
(data parallel) operations are translated to a mix of native machine code and memory 
operations addressing the FEBI. These are totally transparent to the user. 

Data that resides in the Connection Machine need not be returned to the front 
end immediately. In typical programs, data structures are created in the Connection 
Machine memory and are used in precisely the same manner as structures in front-end 
memory. The difference is that operations on the Connection Machine structures can 
be carried out on many data items in parallel. 

Facilities are provided for users to run their programs in interactive or batched 
mode. Typically the interactive mode will be used during initial program debug, where 
the user will run the same program repeatedly under control of a debugger, or when 
the program requires user intervention. Programs that do not require interaction may 
be placed on a batch queue and run in the background. 

5.3 Maintenance and Operations Utilities 

The front-end computer also provides utilities to support these functions: 

• Allocating and deallocating Connection Machine resources 

• Querying Connection Machine system status 

• Diagnosing hard ware problems 

These tools are designed to be compatible with the style and operation of similar 
tools in the front-end environment. 

Information on what segments of the Connection Machine system are in use is made 
available through status-querying functions. "Attach" and "detach" utilities are pro­
vided to allocate and deallocate all or a legal subset of Connection Machine processors 
to a user logged into a front-end computer. The minimum unit of allocation is what­
ever is attached to a single sequencer. See Chapter 2 for a description of hardware 
associated with a sequencer. The following table lists permitted configurations. 
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Total number of 
processors 

16K 
32K 
32K 
64K 

Number of 
sequencers 

2 
2 
4 
4 

Processors per 
sequencer 

8K 
16K 
8K 

16K 

Permitted attachable 
subsets 

8K,16K 
16K,32K 
8K, 16K, 32K 

16K, 32K, 64K 
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Tools are provided for initializing an allocated sequencer, a procedure known as 
"booting" the Connection Machine system. There are two levels of initialization pro­
vided. The more drastic is "cold boot," which initializes the state of the attached 
sequencer (including downloading fresh microcode to the sequencer's writable control 
store) and also initializes the associated Connection Machine data processors (including 
clearing all memory and initializing per-processor memory-resident global data). The 
milder form of initialization is called "warm boot," which resets only the state of the 
sequencer without touching Connection Machine processor memory. When debugging 
programs, "warm boot" can be used to get the sequencer to a known state in order 
to be able to examine Connection Machine memory after a program crash. Note that 
neither of these procedures will affect other users running at the same time on other 
segments of the Connection Machine, nor will they affect unallocated processors. 

A complete set of diagnostics is provided with the Connection Machine software. 
Facilities are also provided to make it easy to send error reports and details of diagnostic 
failures through an electronic message network to the Customer Support Group at 
Thinking Machines Corporation. 

5.4 The Digital Equipment Corporation VAX As a Front End 

Currently any Digital Equipment Corporation VAX that contains a VAXBI I/O bus and 
runs the ULTR.IX operating system may be used as a Connection Machine system front 
end. The VAXBI bus FEBI board provided by Thinking Machines Corporation is de­
signed to allow the user program access to the Connection Machine system sequencer 
and Nexus registers with minimum. system overhead. To accomplish this, the ULTR.IX 

device driver for the FEBI maps the FEBI registers into the address space of the Connec­
tion Machine applications program, which then reads and writes the registers as if they 
were VAX processor memory. Thus, no system overhead at all is incurred in performing 
Connection Machine I/O. This scheme works especially well with the two-processor 
VAX computers in the 8000 series, as one processor can be dedicated to running the 
Connection Machine while the other performs normal time-sharing duties. 

All Connection Machine languages are supported in the VAX environment. A VAX 

front end may contain more than one FEBI (up to four). 

5.5 The Symbolics Lisp Machine As a Front End 

Any Symbolics 3600 series Lisp nw:hjne can be used as a Connection Machine system 
front end. The FEBI board provided by Thinking Machines Corporation is designed to 
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allow the user program access to the Connection Machine system sequencer and Nexus 
registers with minimum system overhead. To accomplish this, the FEBI registers are 
mapped into into the Lisp address space; a Connection Machine applications program 
can then read and write the registers as if they were 3600 processor memory. Since 
Lisp machines are single user workstations, only one FEBI per front end is supported. 

The languages currently supported for the Symbolics Lisp machine front end are 
CM-Lisp, *Lisp, and Paris. 
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6 Connection Machine 110 Structure 

The Connection Machine I/O structure allows data to be moved into or out of the 
parallel processing unit at aggregate peak rates as high as 320 megabytes per second 
for a system with multiple I/O controllers. Input/output is done in parallel, with as 
many as 2K data processors able to send or receive data at a time. All transfers are 
parity checked on a byte-by-byte basis. 

The data processors send and receive data via I/O controllers, which interface 
through an 1/ a channel to Connection Machine data lines. These 1/ a controllers, in 
turn, operate under the control of the parallel processing unit sequencers. There may be 
as many as four sequencers in a fully configured system. A maximum 1/ a configuration 
for a 64K processor Connection Machine system includes eight 1/ a channels, each of 
which permits input and output operations for a set of 8K data physical processors. 

An I/O controller treats its 8K physical processors as two banks of 4K. Each CM-2 
processor chip contains 16 data processors and has one I/O line, so each bank of 4K 
processors is implemented on 256 chips and has 256 I/O lines. A bank can therefore 
pass 256 bits in parallel at a time to its associated I/O controller. Each sequencer 
controls a bank switch that determines which bank is active. 

I/O controllers store data internally in 288-bit chunks (256 data bits plus 32 parity 
bits). Parity is checked each time data is transferred between a controller and the 
data processors. Each controller has the ability to store 512 of these 288-bit chunks in 
its own internal memory. Data transfers between 1/ a controllers and data processors 
proceed under control of a Connection Machine sequencer. Two I/O controllers may 
be active simultaneously on each sequencer. 

A Connection Machine I/O bus runs from each I/O controller to the devices it 
controls. This bus is 80 bits wide (64 data bits, 8 parity bits, and 8 control bits). The 
I/O controller multiplexes and demultiplexes between 256-bit processor chunks and 
64-bit I/O bus chunks. The controller also acts as arbitrator, allocating bus access to 
the various devices on the bus. 

Since standard peripheral devices do not operate at the speeds that the Connection 
Machine system itself can sustain, it is often desirable to place multiple devices on 
multiple buses. For example, each of eight disk units could interface to several sections 
of data processors via several I/O controllers, each disk reading and writing data in 
parallel with the others. In this way, up to eight times the aggregate transfer rate 
of a single disk unit is achieved. Alternatively, devices may be interfaced to a single 
bus, interfaced in tum to I/O controllers in all sections of the parallel processing unit, 
allowing data to be moved directly between that device and any part of the processing 
unit. Typical configurations use a mix of these techniques. Some devices are connected 
to multiple controllers. Others connect to just one controller, and the Conection Ma­
chine router is used as necessary to move data to its final destination in the parallel 
processing unit. 
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7 The Connection Machine DataVault 

The DataVault is the Connection Machine mass storage system. It combines very high 
reliability with very fast transfer rates for large blocks of data. The Data Vault holds 
five gigabytes of data, expandable to ten gigabytes. It transfers data at a rate of 40 
megabytes per second. Eight Data Vaults, operating in parallel, offer a combined data 
transfer rate of 320 megabytes per second and hold up to 80 gigabytes of data. 

Each Data Vault unit stores its data in an array of 39 individual disk drives. Data 
is spread across the drives. Each 64-bit data chunk received from the Connection 
Machine I/O bus is split into two 32-bit words. Mter verifying parity, the DataVault 
controller adds 7 bits of Error Correcting Code (ECC) and stores the resulting 39 bits 
on 39 individual drives. Subsequent failure of anyone of the 39 drives does not impair 
reading of the data, since the ECC code allows any single bit error to be detected and 
corrected. Although operation is possible with a single failed drive, three spare drives 
are available to replace failed units until they are repaired. The ECC codes permit 
100% recovery of the data on the failed disk, allowing a new copy of this data to be 
reconstructed and written onto the replacement disk. Once this recovery is complete, 
the data base is considered to be healed. 

The Data Vault supports job staging and data base storage. New jobs may be loaded 
onto the DataVault from external devices such as magnetic tape drives. Once in the 
DataVault, a maximum-size 512-megabyte memory image may be loaded in under 15 
seconds. This same 512-x,negabyte memory image may be loaded in less than 2 seconds 
on a system with eight DataVaults operating in parallel. Running jobs may use the 
Data Vault for file storage, opening and accessing files as needed. 

7.1 The File Server 

All Data Vault operations take place under the control of a file server, which is a stan­
dard minicomputer. File server commands include creating files, as well as opening, 
reading, writing, and determining status. Commands to be executed by the file server 
are passed to it over the Connection Machine I/O bus. Commands such as "open" 
or "status" that do not involve data transfers are completed by the file server, and a 
completion message is returned via the I/O bus to the front end. 

The file server supports "read" and "write" commands that can specify a field of 
any size. The data in this field is then transferred between each Connection Machine 
processor and the Data Vault. 

In systems with multiple Data Vaults, a single master file server controls the file 
creation and deletion process, although the file itself may be spread across multiple 
units. Each file server that has a portion of the file maintains a file of disk block 
locations that allows files to be mapped into disk blocks. These files are not stored 
on the Data Vault itself. They are stored redundantly on two independent file server 
disks to prevent a single medium failure from blocking access to the file. Two write 
operations are performed each time the information is changed. When a file is opened, 
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the block location information is moved to the file server's main memory for faster 
access during subsequent reads and writes. File space is allocated in blocks of 32K 
bytes. 

1.2 Off-line Loading and Backup 

Off-line storage devices (such as magnetic tape) interface directly to the file server 
minicomputer. New data may be loaded into the Data Vault without involvement of 
the rest of the Connection Machine system. Dumping of Data Vault information to 
magnetic tape for backup also occurs without involving the rest of the system. 

1.3 Writing and Reading Data 

Data transfers move information between parallel variables in Connection Machine 
memory and DataVault files. A single read or write moves a specified number of 
bits (which could correspond to a single parallel variable or to a series of parallel 
variables that are contiguous in memory) into or out of each Connection Machine 
virtual processor. 

Reading and writing of data are very similar operations. Here, the process of writing 
data will be described under the assumption that no errors occur. 

A write operation is initiated by the front end. The front en,d issues a write instruc­
tion to the appropriate sequencer, which in turn activates the necessary I/O controllers. 
The request is received by the Data Vault file server, which translates the logical file 
request into a series of physical disk addresses. 

Data from Connection Machine memory is moved to the I/O controllers, with parity 
checked for each byte, and stored in the 288-bitx512 buffer memories on those con­
trollers. When the buffers are sufficiently full, the I/O controller signals its readiness 
to send data to the DataVault. At this point, the Connection Machine processors are 
free to proceed with other tasks. 

Data in the 1/ a controllers is split into 64-bit units. Eight parity bits are added and 
the resulting 72-bit unit is sent on a Connection Machine I/O bus to the DataVault. 

Parity of data arriving at the Data Vault is checked twice, by two independent sets 
oflogic. If both parity checkers agree that the data is valid, the 64 bits of data are split 
into two 32-bit words. For each 32-bit word, two independent ECC circuits generate 7 
ECC bits for the data. As long as both units generate the same code, the resulting 39 
bits are split up and each bit is sent to one of 39 disk buffers. As these buffers fill up, 
the data is written out to the individual disks. 

When all data has been moved from Connection Machine memory through the 1/ a 
controllers and the disk buffers and physically written on the disks, a signal is returned 
to the front end that the transfer is complete. 

Data being read into the Connection Machine memory from the Data Vault follows 
the same path as for writing, but in reverse order), through the disk buffers, the I/O 
bus, and the 110 ·controller buffers. The data coming off the disks is checked by two 
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independent ECC circuits. Errors are checked for, corrected, and logged, and the data 
is written to the I/O bus. 

7.4 Drive Failure and Data Base Healing 

A transfer status may indic~te that a single disk drive is failing and that the ECC 

has been required to correct the data. At this point, system operation should be 
interrupted to verify that, in fact, a drive has failed. If it has, it must be switched out 
of the array and a spare drive switched in. Switching and sparing is done automatically 
by the Data Vault. To assure integrity of the data, the information on the failed disk is 
reconstructed and written onto the spare. The ECC information stored along with each 
32 bits of data allows this reconstruction. Regeneration of this data takes about ten 
minutes, after which the data is again protected against the failure of another drive. 

Repair or replacement of the failed drive allows it to return to active use. Restora­
tion of data at this point is very straightforward. It is only necessary to copy the 
contents of the spare drive that has been used in the interim. Once this transfer is 
completed, the repaired drive may be returned to active status. The spare drive is 
again marked as unused, and the data base is fully healed. 
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8 High-Resolution Graphics Display 

The Connection Machine graphics system consists of a framebuffer module and a high­
resolution 19-inch color monitor. The framebuffer, unlike the Data Vault, is not con­
nected to a Connection Machine I/O bus; instead it is a single module that resides 
in the Connection Machine backplane in place of an I/O controller. This direct back­
plane connection allows the framebuffer to receive data from the Connection Machine 
processors at rates up to 1 gigabit per second. 

The framebuffer contains a large video memory, which holds the actual raster image 
data. There are 28 planes of memory, divided into 4 buffer areas: red, green, and blue 
areas having 8 planes each, and an "overlay" area with 4 planes. Each plane provides 
one bit per pixel, and contains enough memory for 221 (over two million) pixels. There 
are also three color lookup tables (red, green, and blue). Each color lookup table is 8 
bits wide and has 259 entries; the first 256 entries handle data from the red, green, or 
blue area, and the last 3 entries are used for overlay processing. 

The region displayed from the video memory planes is software configurable. Pan 
and zoom logic allows a specified subrectangle of the video memory to be displayed, 
magnified by an integral zoom factor. The subrectangle displayed at zoom factor 1 (no 
magnification) is typically 1280 X 1024 pixels. 

The framebuffer uses 24 bits of data per pixel to produce an analog video signal to 
be supplied to the monitor. The 24 bits for a pixel may be computed in one of two 
ways, depending on a software selectable mode. (To simplify the discussion, the effects 
of the overlay planes are ignored for the moment.) 

In 24-bit mode, 24 bits are read from the red, green, and blue planes. For each of 
the three colors, the 8 bits from the video memory for that color are used as an index 
into the corresponding color lookup table. The 8 bits read from the color lookup table 
are then used to produce the analog signal for that color. In the simplest case, entry 
j of each color lookup table can be initialized to contain the value j (0 :$ j :$ 255), 
so that the values in the video memory in effect drive the digital-to-analog converters 
directly; but the color lookup tables can be initialized in other ways so as to perform 
gamma correction for the particular monitor being used. 

In 8-bit mode, only 8 bits are read from the video memory for each pixel The same 
8-bit value is used as an index into all three color lookup tables (red, green, and blue); 
the three table values are then used to produce the analog red, green, and blue signals 
as for 24-bit mode. In this mode the color lookup tables provide a palette of up to 
256 distinct colors. The 8 bits for each pixel may be taken from anyone of the color 
areas (red, green, or blue) of the video memory, depending on a software-controlled 
submode. (Of course, an image read from from the "red" color area in 8-bit mode is 
not restricted to shades of red, because each 8-bit pixel value is used to index all three 
color lookup tables and thereby produce signals for all three colors. In this context 
the three areas of video memory are called "red" and "green" and "blue" merely for 
purposes of identifying areas of the video memory within which three distinct images 
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may be stored.) 
Only the 24-bit mode can display images containing more than 256 different pixel 

color values. The 8-bit display mode does offer two advantages, however. One is 
that only one-third as much data must be transferred from the Connection Machine 
processors for each displayed image. The other is that in the 8-bit display mode the 
framebuffer supports double' buffering of output data. While data is being displayed 
on the monitor from, say, the "red" video memory planes, the "green" planes may be 
loaded from the Connection Machine processors. Once the data has been completely 
loaded, a software command can cause the roles of the "red" and "green" memories 
to be reversed. The reversal does not occur immediately, but rather during the next 
vertical retrace. The image in the "green" planes is then displayed, and the Connection 
Machine processors can begin to load the next image into the "red" planes. In this 
manner the user never sees parts of two different images on the screen at the same 
time; the change is synchronized and appears to be instantaneous. 

In either 8-bit mode or 24-bit mode, the region of video memory to be displayed on 
the monitor is defined by a table of address pointers that indicate the starting point 
within the video memory of each scan line. The framebuffer can hold several of these 
scan line tables at one time, and can switch .between scan line tables during vertical 
retrace in the same way that it can switch between buffers in double buffered 8-bit 
mode. 

The overlay planes make it easy to overlay a full color image with independent or 
temporary images such ~ text labels and cursors. Overlay information may be white, 
black, or one of the three overlay colors specified in the last three entries of the color 
lookup tables. 

The usual way to organize an image within the Connection Machine memory is one 
pixel per virtual processor, with the virtual processors organized into a two-dimensional 
NEWS grid. Any subrectangle of such a NEWS grid may be transferred to the framebuffer 
for display. 

The framebuffer supports a number of output formats under software control. The 
two principal formats are 1280 X 1024 pixels for a 60 Hz non-interlaced high-resolution 
monitor, and NTSC format, which is of broadcast resolution and is suitable for use with 
a standard television monitor or videotape recorder. 
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9 Languages 

The data parallel style of programming associates a processor with every element of 
a program's data. There are very few differences between a data parallel program 
and a conventional serial program. In both cases, a single sequence of instructions is 
used, with a serial control structure. the Connection Machine system provides parallel 
processing without requiring the applications programmer to indicate synchronization 
explicitly in programs. 

Because the data parallel and serial programming styles are similar, they utilize 
the same languages. The languages currently supported for the Connection Machine 
system are C*(pronounced "see-star"), Fortran, *Lisp (pronounced "star-lisp"), and 
CM-Lisp (pronounced "see-em-lisp"). The Fortran 8x array extensions to Fortran 77 
are implemented directly, with no changes to the standard language definition. Each of 
the other three languages is very close to the corresponding serial language specification, 
but in each case extends it by adding a new data type; very little new syntax is added, 
the power of parallelism arising instead from extending the meaning of existing program 
syntax when applied to parallel data. 

There are some broad themes connnon to any data parallel programming language 
that are useful to keep in mind when examining a language description: 

Establishing Parallel Data Structures. Data parall~l programs can be ex­
pressed in terms of the same data structures used in serial programs. The difference is 
that the individual elements of a composite data structure, such as an array, are spread 
across processing elements, so that each data element has an associated processor. Since 
each processing element has its own dedicated memory, the task of associating data 
elements with processing elements is simply the task of assigning memory locations 
across processors. This assignment is done by the compilers when the array is first 
declared or created. In C*, the data types in a declaration implicitly specify whether a 
data structure is parallel In Fortran, the compiler detennines whether an array should 
be considered serial or parallel according to how it is used in the program. In * Lisp and 
CM-Lisp, data structures are created dynamically, and different creation operations are 
used by the programmer to indicate creation of serial or parallel data structures. 

Establishing Linkages among Data Elements. During the execution of a pro­
gram, data from different problem elements are used together. Data parallel programs 
use pointers or array subscripts to establish connections between processors and hence 
between their data elements. An array of pointers, itself a parallel data structure, 
establishes an arbitrary pattern of intercommunication. If the required patt~ are 
regular and local, such as processors sharing data with tlieir nearest neighbors, then 
no explicit array of pointers is needed because each processor can easily calculate the 
address of its neighbors as needed. 

Establishing Scalar Data. Some data is not parallel eFor example, it is wasteful 
to place a copy of a constant in every processor's memory since the constant can 
be efficiently broadcast as needed from a central point. For this reason, scalar data 
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(whether constant or variable) is declared as such and stored in the front end. 
Operations on Parallel Data Structures. In a data parallel program, a single 

operation can affect all the elements of a parallel data structure at once, since each 
data element has its own processor. The same operation in a serial program must be 
expressed as a loop, with the basic operation applied sequentially to all the elements of 
the array. Some parallel operations are totally local to individual processing elements. 
The required data elements are all in the processing element's memory and the result 
is to be stored there. Other parallel operations have implicit communications cycles 
imbedded in them since some or all of the required data resides in other processors' 
memories. 

Operations on Mixed Data. Operations that use both scalar and parallel data 
typically involve replication or reduction. H a scalar value participates in an operation 
that yields a parallel result (such as adding a constant to every element of an array), the 
scalar value is replicated by broadcasting it to all processors at once. If parallel data 
participates in an operation that yields a scalar result (such as finding the sum of all of 
the elements of an array), a reduction operation is used; given one processor for each 
data element, such an operation can be completed in time logarithmic in the number 
of data elements, by organizing the operations on the data into a balanced binary 
tree. (This organization is carried out by the underlying language implementation.) 
As with the sequential programming style, data parallel programmers do not need to 
do anything special when mixing scalar and parallel data. 

Conditionals. Data parallel programs implement conditionals by limiting the 
impact of operations to a certain subset of processing elements, and hence to a subset 
of the elements of a parallel data structure. The if . .. then operation first tests a 
specified condition in all elements of a parallel data structure and then performs the 
indicated operations only in processors where the conditional was true. As in serial 
programs, conditionals may be nested in very general ways. 

Chapters 10-13 describe the four high-level programming languages for the Con­
nection Machine system. Fortran and C* are the most commonly used languages for 
numeric applications. CM-Lisp is commonly used for artificial intelligence and other 
symbolic processing applications. The *Lisp language is significantly "closer to the 
hardware" than the other three languages; it allows the programmer access to nearly 
all the hardware features of the Connection Machine system within a framework offer­
ing all the convenience and power of the Lisp language. Chapter 14 compares the four 
languages by presenting versions of the same small program in each of the languages. 

All of the CM-2 languages are upward compatible extensions of existing industry 
standard languages. CM-Lisp and *Lisp extend Common Lisp; C* extends the pro­
posed ANSI standard C language; and Fortran extends Fortran 77 with the proposed 
ANSI Fortran 8x array extensions. Each language supports all the serial programming 
constructs defined by the industry standard. The design goal in each case was to 
maintain the normal programming style of the serial language even for data parallel 
operations. 
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10 The C* Language 

C* is an extension of the C programming language designed to support programming 
in the data parallel style, in which the progranuner writes code as if a processor were 
associated with every data element. C* features a single new data type (based on 
classes in C++), a synchronous execution model, and a minimal number of extensions 
to C statement and expression syntax. Rather than introducing a plethora of new 
language constructs to express parallelism, C* relies on existing C operators, applied 
to parallel data, to express such notions as broadcasting, reduction, and interprocessor 
communication in both regular and irregular patterns. While C* effectively allows the 
processing of large arrays of data, it preserves the interchangeability of arrays with 
pointers, a feature central to the C language. C* relies on pointers for interprocessor 
communication. 

10.1 Data Parallel Machine Model 

Just as the C language assumes an abstract machine model with certain interesting 
abstract properties (sequential execution, uniform address space, meaningful pointer 
arithmetic), so C* assumes a certain abstract machine model. The C* model is an ex­
tension of the plain C model They share such important features as a uniform address 
space and meaningful pointer arithmetic. C* extends C by having many processors 
instead of just one, all executing the same instruction stream. The C* model may be 
summarized as providing the programmer with lots of processors of an otherwise con­
ventional nature, operating within a uniform address space in a synchronous execution 
mode. 

C* assumes a synchronous model of computation, in which all instructions are 
issued from a single source, a distinguished processor called the front end. All the 
other processors are called data proCessors. At any time, the data processors that are 
executing the instruction stream sent out from the front end are called the" active set." 
The local memory of an idle processor does not change, unless another processor writes 
it. 

The layout of memory within each data processor is conventional. Except for the 
fact that no code is stored in the memory of a data processor, memory is laid out 
exactly as for a C program in a conventional sequential computer. One end of memory 
is used to hold statically allocated variables (storage classes static and extern), and 
the other end is used as a stack area for the allocation of automatic variables (storage 
class auto). 

Processor memory layout can be informally described as a record structure, that is, 
a C struct. (The C language is very good at describing arbitrary memory layouts.) 
When there are many processors, as in the C* machine model, different processors 
may have different memory layouts because they may hold different kinds of data for 
different purposes. H we think of a data processor's memory layout as being a record 
structure, then we might as well say that a processor's memory really does belong to 
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such a structure type, and we can distinguish groups of processors by that type. In 
C* a structure type that describes the memory of a data processor is called a domain. 
The layouts of 26 different processors might be described as follows: 

domain employee { 
double salary; 
employee_type type; 
char *name; 
int knowledge; 

}; 

domain part { 

}; 

int part_number; 
double price; 
vendor *supplier; 
char *description; 

domain book { 

, }; 

char *title. *ISBN; 
int content; 
employee *owner; , 

domain employee Fred; 
domain employee Sally; 
domain part grommet; 
domain employee George; 
domain part wing_nut; 
domain book my_novel; 
domain employee programmer[20]; 

1* Processor 0 *1 
1* Processor 1 *1 
1* Processor 2 *1 
1* Processor 3 *1 
1* Processor 4 *1 
1* Processor 6 *1 
1* Processors 6-26 *1 

In C*, all code is divided into two kinds: serial and parallel. Code that belongs to a 
domain is parallel, and may be executed by many data processors at once. Other code 
is serial, and is executed by the front end as if it were ordinary sequential C code. The 
two types of code are distinguished by syntactic context: code may belong to a domain 
(and therefore be parallel) only as the body of a member function of the domain or as 
the substatement of a selection statement (discussed in section 10.3) that selects the 
domain. Once the context is established, however, the two types of code are written 
using the same syntax; parallel code, taken out of context, looks exactly like ordinary 
sequential C code. 

In C*, all data is also divided into two kinds: scalar and parallel. These are 
described in the language using two new keywords, mono and poly; they are used 
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somewhat like the storage class keywords extern, static, and auto, but describe an 
independent attribute. In certain situations they may sensibly be used in the same 
way as the canst and volatile keywords of proposed ANSI standard C. Some example 
declarations: 

mono int total; 
poly int salary; 
poly extern float coefficients[10]; 
mono int *poly x; 1* A poly pointer 

to a mono integer. *1 
poly static struct faa x[20]; 
poly auto double all_the_day; 

The mono or poly attribute may be omitted, and usually is, just as the storage class 
is often omitted in ordinary C code. Within parallel code, the default is poly; within 
serial code, the default is mono. (The declaration of poly variables is in fact forbidden 
within serial code, and so the keyword poly is required only in pointer-declaration 
contexts and casts.) 

Scalar (mono) data resides in the memory oUhe front end, and parallel (pOly) data 
resides in the memory of the data processors. Note that poly data is only potentially 
parallel; it is processed in parallel only if referred to by para)lel code. It is possible 
for the front end, executing serial code, to access poly data in a sequential manner. 
Similarly, serial data may be processed by many data processors at once if the front 
end will first broadcast copies. 

Domains differ from classes in that member declarations for domains can use the 
storage class keywords auto, register, static, and extern. In particular, different 
files can declare different members of a domain, and the extern keyword can mark 
members that are defined in one file but referenced in another. (In contrast, a C++ 
class may not be declared in such a piecemeal fashion.) Note that auto variables in 
member functions are allocated within each instance, on per-processor stacks. This is 
all consistent with the fact that the memory of each data processor is organized in the 
same way as for a sequential C program. 

10.2 Parallel Expressions 

For convenience, the C* language includes maximum and minimum operators, which 
are really arithmetic operators. The minimum operator <1 and the maximum operator 
> 1 may be applied to po~ters as well as to numeric data. By themselves these operators 
are relatively unimportant, but the assignment operators <1= and >1= have great utility 
in C*. 

In C* most assignment operators may be used as unary operators. This unary use 
of existing binary operators is introduced purely for convenience, as an abbreviation 
for a frequently used and otherwise rather awkward idiom. 
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Instead. of adding new operators for parallel computation, C* takes advantage of 
the compile-time type distinction between scalar (mono) and parallel (poly) data, and 
extends existing operators, through overloading, to operate on parallel data. These 
extended interpretations allow us to express various interesting patterns of communi­
cation: 

reading: fetching one value from a particular data processor to the front end 
writing: storing a value from the front end into a particular data processor 
replication: broadcasting a value from the front end to all data processors 
reduction: combining values from all data processors to produce one result 
permutation: interprocessor communication (in both regular and irregular patterns) 

All these patterns of communication are achieved by using the standard C operators 
and by adding two rules to the usual rules of C evaluation: 

Replication Rule: A scalar value is automatically replicated where necessary to 
form a parallel value. 

As-If-Serial Rule: A parallel operator is executed for all active processors as if 
in some serial order. 

The Replication Rule requires that when a binary (or ternary) operator combines 
mono and poly data, the mono value is replicated before you do the operation. A mono 
value is also replicated if passed as an argument to a function whose corresponding 
formal parameter is poly. In other words, replication occurs automatically wherever 
necessary. 

The As-IT-Serial Rule is more subtle; it facilitates parallelism by imposing a se­
quential semantics (while permitting a parallel implementation). The following code 
segment illustrates the point: 

double total_salary; 

{ 

} 

total_salary = 0; 
[domain employeeJ.{ 

total_salary += salary; 
} 

The second assignment (the one within the selection of domain employee) will first 
replicate the variable total..salary as an lvaluej then the processor for every employee 
will attempt to perform the += operation on its own salary and that same lvalue. The 
As-If-Serial Rule is a simple way of stating the guarantee that, from the programmer's 
point of view, the processors do not interfere with each other. The net effect is that 
every employee's salary value has been added into totaLsalary exactly once. This, 
then, is how reduction is expressed in C*. The other C assignment operators may be 
used in a similar manner. 
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The other three patterns of communication, namely reading, writing, and permu­
tation, arise naturally from the fact that addressing and the use of pointers in C* is 
perfectly as general as in C. To put it another way, the language restrictions that one 
might fear would be imposed because ofimplementation considerations are not imposed 
after all. 

The communication pattern of reading is expressed quite simply. Within serial code 
one might write, for example, 

strcmp(programmer[2J.name. "Jane Jetson"); 

As in the example introduced earlier, programmer is an array of twenty employees, 
and so the elements of this array are instances of the class employee, residing in the 
memories of the data processors. The front end can refer to the name component of 
programmer number 2 simply by referring to programmer [2J . name in the natural way. 

Writing is expressed in exactly the same manner; for example, because the name 
component is public and writable, one can change an employee's name in the obvious 
way: 

programmer[2J.name = "Jane Eyre"; 

Permutation is also achieved through the natural use of C pointers. Any parallel 
processor can have pointers into the memory of any other processor. Therefore if x is 
some poly variable of type T, and p is a poly variable of type "pointer to T," then the 
statement 

.p = x; 

means "send message x to processor p" (or more precisely to a specific variable within 
a processor, both being indicated by p); all active processors do this in parallel. 

The use of an explicit pointer variable p allows any topological communications 
pattern to be expressed. The space· required for such a pointer may be eliminated 
in cases where the pattern is sufficiently regular that it may easily be computed "on 
the fly." Here the ability of the C language to express address arithmetic is valuable; 
every processor can obtain a pointer to itself (by referring to the variable this) and 
then perform arithmetic on that pointer, allowing all kinds of relative addressing. For 
example, 

x = (this+l)->x; 

causes all x values to be shifted downward by one processor (every processor fetched 
the x value from the processor one above it). 

10.3 Parallel Statements 

C* adds only one new type of statement to C, the selection statement, which is used 
to activate multiple processors. 

All of the standard C statem~t types may be used in C* in both serial and parallel 
code. The treatment of control flow in parallel code satisfies the following design goals: 
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• As long as processors do not interact, the program behaves as if each processor 
were executing its own code independently. It is as if each of the parallel processes 
were executing ordinary serial C code. 

• When processors do interact, the interactions are completely predictable, deter­
ministic, and repeatable. This is achieved without ever requiring the programmer 
to write explicit synchronization code. 

10.3.1 Selection Statement 

The format of a selection statement is as follows: 
[domain tag] . statement 

A selection statement activates all instances of a specified domain and then executes a 
substatement. (As with the switch statement, the substatement may be any statement 
but in practice it is typically a block.) On completion of the substatement, the instances 
activated by the selection statement are deactivated. 

Within the substatement, the keyword this is bound to the primal parallel value: 
for each active instance, this is a pointer to that very instance. Because writing the 
name of a member variable memvar is equivalent to writing this->memvar, all references 
to such a variable also constitute parallel values. 

The selection statement is the means by which serial code initiates parallel execu­
tion. The selection statexp.ent is also used within parallel code; in this case all instances 
active just before execution of this statement become inactive, and on completion of 
the statement the same instances become active again. 

10.3.2 If Statement 

In parallel code, the expression in an if statement is treated as a poly value, so 
that each active domain instance has its own value for the test. (If the expression is 
not poly, then one may regard the parallel if statement either as behaving like an 
ordinary serial if statement or as first casting the value of the expression to be poly, 
thereby replicating it. These two points of view are equivalent.) 

For the statement 
if ( expression) statement 

the statement is executed with only those instances active whose test value was non­
zero. 

For the statement 

if ( expression) statement else statement 

the first substatement is executeq. with only those instances active whose test value 
was non-zero, and then the second substatement is executed with only those instances 
active whose test value was zero. 
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10.3.3 While Statement 

On each iteration of the statement 
while ( ezpression ) do statement 
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the ezpression is calculated as for an if statement. Instances that calculate the value 
zero become inactive; instances that calculate a non-zero value execute the substate­
ment and then loop. The while loop completes if and when the active set becomes 
empty. At that time each individual processor has executed the substatement some 
number of times, and each may have executed it a different number of times, depending 
on the data being processed. 

If the processors do not interact during the course of the loop, then it is as if 
each processor executes the while statement independently, each iterating the appro­
priate number of times, and then all processors become resynchronized when all have 
completed. 

If the processors do interact, then their interactions are predictable; for example, all 
processors that execute the substatement as many as three times will all be executing 
it for the third time together. 

10.4 Compiler Implementation 

The C* compiler for the Connection Machine computer system is implemented as a 
translator to ordinary C code that is then compiled by an ordinary C compiler for 
the front-end computer. The C* compiler parses the C* source code, performs type 
and data flow analyses, and then translates parallel code into a series of function calls 
that invoke Connection Machine Paris operations. The use of the front end's usual C 
compiler allows all the programming tools associated with the front-end programming 
environment to be applied to C* programs. 



42 

11 Fortran 

Fortran for the Connection Machine system is a complete implementation of ANSI 

Fortran 77 as defined by ANSI x3.9-1978, incorporating two sets of extensions: those 
defined by MIL-STD-1753, and a subset of those proposed in the draft ANSI Fortran 8x 
standard (draft S8, version 103). Fortran 8x is a data parallel language. The array 
extensions treat whole arrays as single entities. An array in Fortran 8x is a parallel data 
structure. The Connection Machine system associates a processor with each element 
of data in an array. 

Newly written Fortran programs can take advantage from the start of the array 
features from Fortran 8x to implement data parallel algorithms that run efficiently 
on the Connection Machine. These same programs will run on any other computing 
system that supports the array handling features described in the draft Fortran 8x 
standard. Since the Fortran 8x standard is still in a state of flux, future versions of the 
Fortran implementation for the Connection Machine system may change to reflect the 
evolving standard. 

In the current draft of the Fortran 8x standard, some of the most powerful array 
handling features have been moved to an appendix and labeled "removed extensions." 
The removed extensions are not formally part of the standard, but it is intended that 
any Fortran implementation providing the functionality of these features will follow 
the definitions given in the appendix. Many of these removed extensions are imple­
mented on the Connection Machine system, among them vector-valued subscripts; the 
FORALL statement, which performs element array assignment; and the instrinsic func­
tions DIAGONAL, REPLICATE, RANK, PROJECT, FIRSTLOC, and LASTLOC. 

11.1 The Environment 

Fortran runs on a system consisting of a Digital Equipment Corporation VAX computer 
equipped with a VAXBI bus attache<! to a Connection Machine. Fortran currently runs 
under the ULTRIX operating system. A future version will run under the VMS operating 
system. 

Object modules generated by the Digital Equipment Corporation VAX Fortran com­
piler may be linked with modules produced by the Thinking Machines Fortran compiler 
without recompilation. This facility is very useful for incorporating existing library rou­
tines into a Fortran application, as well as supporting the incremental conversion of 
an application from serial code to parallel array operations. Routines compiled by the 
Digital Equipment Corporation VAX Fortran compiler will of course not take advantage 
of the Connection Machine processors. 

A Fortran program may call C routines. In addition, Paris operations may be 
invoked directly from a Fortran program, through the same interface that is used from 
C code. 
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11.2 The Array Extensions of Fortran 

The most important difference between Fortran 77 and Fortran 8x is that expressions 
in Fortran 8x treat entire arrays as atomic objects. The expression 

A = B + C 

adds every element of C to the corresponding elements of B and store the results in A. 
B and C may be scalars, vectors, matrices, or many-dimensional arrays. 

Arrays are stored in the Connection Machine with one element per processor. The 
array axes map directly onto the multidimensional communications grid of the Connec­
tion Machine system. To perform an operation on whole array arguments, the context 
flags are set so that every processor that contains an element of the arrays in question 
is enabled. The operation is executed simultaneously in all selected processors. 

Most Fortran 77 intrinsic functions are extended to arrays in this element-by­
element fashion. Where an elemental function takes two arguments, they must be 
conforming. Two arrays are conforming if they are the same rank and shape. The 
Fortran compiler allocates conformable arrays in the same processors, eliminating un­
necessary data movement. Scalars may be freely used in array valued expressions. 
They are automatically replicated to conform with the other arrays in the expression. 

In addition to the elemental functions, Fortran includes many functions that inquire 
about array attributes, perform data reduction, or perform other complicated array 
operations. Examples ofreduction operations are SUM, PRODUCT, MAIVAl, MINVAl, ANY, 
and All. Examples of complex operations are DOTPRODUCT (vector dot product) and 
MATMUL (matrix multiplication). 

For example, suppose that M is a matrix with 30 rows and 56 columns. SUM(M. 
DIM=l) yields a 56-element vector containing the sum of each column. MAIVAl(M. 
DIM=2) yields a 30-element vector containing the largest value from each row. 

A reduction operation may take a MASK argument, a boolean vector indicating which 
elements of the array argument are to be included. On the Connection Machine system, 
the mask is used to subselect processors before the operation is performed. 

The transformational intrinsics of Fortran 8x facilitate the treatment of arrays as 
single data objects. The following are examples of Fortran transformational intrinsics. 

MERGE 
SPREAD 
TRANSPOSE 
CSHIFT 
EO SHIFT 

Merge of two arrays according to a mask 
Replication of an array along a new dimension 
Transposition of a two-dimensional matrix 
Circular shift of an array 
End-off shift of an array 

11.3 Fortran Statements for Controlling Context 

The WHERE statement uses a boolean array as a mask on the elements of a conforming 
array expression. The expression: 
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WHERE(A .GE. 0) A = SQRT(A) 

replaces the nonnegative elements of A with their square roots while leaving the negative 
elements untouched. An alternate form. of the WHERE statement specifies what is to 
happen in the processors that fail the test. For example, in the code: 

WHERE(B .NE. 0) 
C = A I B 

ELSEWHERE 
C = INFINITY 

END WHERE 

where A, B, C, and INFINITY are all conforming arrays, the result of AlB is assigned to 
C in each processor containing a non-zero element of B, and INFINITY is assigned to C 
in each processor containing a zero element of B. 

The FORALL statement is similar to the WHERE statement except that index expres­
sions may be used instead of (or in addition to) a mask to select the active processors. 
The following code initializes the matrix H to contain a Hermitian matrix of size N: 

FORALL (I = 1:N, J = 1:N) H(I,J) = 1.0 I REAL(I + J - 1) 

This code clears the part of the matrix H below the diagonal: 

FORALL (I = 1:N, J = '1:N, I .GT. J) H(I,J) = 0.0 

Note, in this last example, the use of a mask expression in addition to the index 
variables I and J. 

11.4 Interprocessor Communication in Fortran 

The Fortran 8x standard defines the concept of array sections. Array sections may 
be used anywhere that whole arrajS can be used. An array section is the result of 
extracting selected elements from another array as specified by a subscript expression 
for each dimension o/the array. Suppose that A is a 10 x 10 matrix. Then A(1:5,1:5) 
is the upper left quadrant of A, and A(1:5,6:10) is the upper right quadrant; each of 
these sections is a 5 X 5 array. The statement 

A(1:5,1:5) = A(1:6,6:10) 

therefore copies the upper right quadrant into the upper left quadrant. The section 
A(1: 10: 4,1: 10: 3) is a 3 x 4 array of elements of A as follows: 

A(1,1) 
A(6.1) 
.1(9,1) 

A(1,4) 
A(6,4) 
A(9,4) 

A(1,7) 
A(5,7) 
A(9,7) 

A(1,10) 
A(6,10) 
A(9,10) 
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A particularly useful way of describing an array section is by the use of vector-valued 
subscripts, currently a "removed extension" of Fortran 8L Vector-valued subscripts 
may be used to describe general interprocessor communication. H the same index 
appears more than once in a subscript vector, the result is to communicate the same 
source value to more than one destination. For example, after the statements 

S = [1. 2. 2. 3. 3. 3. 2. 2. 1. 7. 1. 1. 3. 3. 3. 2] 
V = [15. 20. 25. 30. 35. 40. 45] 
B = V(S) 

the value of B will be 

[15. 20. 20. 25. 25. 25. 20. 20. 15. 45. 15. 15. 25. 25. 25. 20] 

When this code is executed on the Connection Machine hardware, the values of V at 
the processor addresses specified by S are sent to the processors in which the array B 

resides. 

11.5 Fortran and the Data Parallel Approach 

Fortran has traditionally been a very scalar oriented language. In Fortran 77, opera­
tions are defined only on individual scalars; DO loops are required to step through a 
collection of elements performing a given operation on each orie. The array extensions 
in Fortran 8x express program sequences that operate on all the data at once. These 
extensions are implemented directly in the Connection Machine hard ware. 
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12 The *Lisp Language 

The *Lisp language is an extension of Common Lisp for programming the Connection 
Machine in a data parallel style. It is intended for people who wish to write Connection 
Machine programs in Lisp that map simply onto' Connection Machine hardware fea­
tures. It supports primitives that correspond directly to the operation of the hardware, 
and also allows the users to build their own abstractions on top of those primitives. 
The language is a fully compatible extension of the Common Lisp standard. 

Because the primitives of the language correspond very closely to the instruction 
set of the Connection Machine, is is possible to write code that executes very efficiently. 

The parallel primitives of *Lisp support a model of the Connection Machine in 
which each processor executes a subset of Common Lisp, with a single thread of control 
residing on the front-end computer. For most Common Lisp functions, *Lisp provides 
a corresponding parallel function that can operate on all processors, or some selected 
subsets, simultaneously. In addition, the language provides Lisp-level operators for 
communicating between processors, both through pointers and in regular patterns. 
Sequential Common Lisp code, running on the front end, can be freely intermixed with 
the parallel code executed on the Connection Machine; 

Most *Lisp functionality corresponds directly to underlying Paris instructions (see 
Chapter 3). As a result, the execution speed of a *Lisp program is predictable and 
easily computed by hand, and direct calls to Paris instructions and special purpose 
microcode blend in naturally with *Lisp code. 

*Lisp provides a safe programming environment. The run time system will signal 
an error when the user causes a computation to overflow or when a pointer is used 
illegally. All user type declarations are continuously verified during the execution of 
the application. This error checking may be turned oft' for better performance. 

The *Lisp implementation consists of an interpreter and a compiler. Both are 
written in Common Lisp and are transportable to any front-end computer that supports 
Common Lisp. 

12.1 Pvars: The Basic ... Lisp Data Object 

*Lisp supports all of the standard Common Lisp data types, including symbols, fixed 
and floating point number, and arrays. It also supports an additional parallel data 
type called a pvar (parallel variable). A pvar is a first-class Lisp data type that has 
value for each processor in the machine. It is similar to an array, except that it is also 
possible to access and update its elements in parallel. 

There are two ways of viewing a pvar. In one model, each processor is simultaneously 
running the same Common Lisp program, and the pvar represents a variable that exists 
in all processors and gets operated upon simultaneously in all processors. In the other 
model, the pvar represents an array whose size is the same as the number of processors 
in the machine. The elements of the array are located in consecutive processors. 
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The individual elements of a pvar may contain different types of data. *Lisp sup­
ports data of type integer, float, boolean (t and nil), and pointer. The integer and 
float types may be of any size supported by Paris. Although integers of any size from 
1 to 128 bits are guaranteed to work, most operations work for sizes up to the amount 
of memory available in a processor. 

Like Common Lisp, *Lisp supports run-time type checking, so a *Lisp program re­
quires no declarations. If desired, programmers may insert type declarations to improve 
performance. *Lisp adheres to the standard Common Lisp declaration syntax. 

12.2 Processor Addressing 

The Connection Machine supports two different types of communication between pro­
cessors. One is general pointer-based addressing, and the other is local communication 
on an n-dimensional grid. For general addressing, each processor is assigned a single 
number between zero and the number of processors in the machine. For grid addressing, 
each processor is assigned a vector address. *Lisp provides functions for communication 
in both modes. 

12.3 Reading and Writing Data from and to Pvars 

The standard functions for reading or writing the contents of a pvar in a single processor 
are pref and pre:f-grid. The Common Lisp macro Betf is wed in combination with 
pref and pref-grid to store data from the front end into a pvar of a processor. 

For example, (Betf (pref my-pvar 10) 123.4) will store the quantity 123.4 into 
processor 10 of the pvar my-pvar. Thereafter (pre:f my-pvar 10) will return 123.4. 

Similarly, (Betf (pre:f-grid my-pvar 5 7) 111) will store 111 into pvarmy-pvar 
at grid location (5.7) (assuming of course that the processors are configured as a two­
dimensional grid). Thereafter (pre:f-grid my-pvar 5 7) will return 111. 

12.4 Basic Parallel Operations 

All the functions in this section operate only on active processors. 
The assignment operator is called *set. It takes a destination pvar and a pvar 

expression whose value is to be 'tored into that destination. 
For example, (*set pvarl pvar2) will store· the contents of pvar2 into pvarl in 

all active processors. 
The function !! accepts a scalar and returns a pvar that contains the scalar in all 

active processors. 
The statement C*sat pvarl C!! 5» will store the quantity 5 into pvarl for all 

active processors. 
The functions +! !, -! !, *! !, and /! ! perform the same operations as the Common 

Lisp functions +, -, *, and /, but in all active processors. 
The statement (*set pv~l (+!! pvarl (!! 1») will increment the value of 

pvarl in all active processors. 
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There are many other *Lisp functions for manipulating other types of data. For 
example, the functions and! !, not! !, and or! ! return boolean (t or nil) quantities in 
active processors. Mter the statement 

(*set boolean-pvar (and!! (=!! pvarl (!! S» 
(>!! pvar2 (!! 100»» 

is executed, boolean-pvar will be t in all processors where pvarl contains S and pvar2 
is greater than 100. 

Most Common Lisp functions have parallel equivalents in *Lisp. Typically, the user 
thinks of the name of a Common Lisp function and appends the characters "! !" to 
the function name to arrive at the parallel version. The characters"! !" are meant to 
represent the mathematical symbol II, which means "parallel." Some of these functions 
are: 

mod!! 
max! ! 
ldb! ! 

ash! ! 
min! ! 
dpb! ! 

round! ! 
if!! 
byte! ! 

integerp! ! 
eql! ! 
numberp! ! 

There are also parallel functions in *Lisp that do not have a corresponding Common 
Lisp equivalent. For example, (*set pvari (self-address!!» will set pvarl to the 
send address of each processor, and (*set pvarl (self-address-grid!! (!! 1») 
will set pvarl to the firs~ component of each processor's vector grid address. 

12.5 Selection of Active Sets of Processors 

All basic *Lisp functions will compute values only in active processors. Pvars in inactive 
processors are always left unmodified. Some of the * Lisp macros for manipulating the 
current set of active processors are *all and *when. The *all construct activates all 
processors for the block of *Lisp code in its body; the *when construct subs elects , for 
the duration of the block of code in its body, all already active processors that satisfy 
a predicate. 

(*all (*set pvarl (!! 10») 
(setf (pref pvarl 100) 0) 
(*when (/=!! pvarl (!! 0» 

(*set pvarl (1-!! pvarl» 

;store 10 in all processors pvarl 
;set processor 100 pvarl to 0 

;decrement non-zero values 

One may nest *when and *all statements to any depth. 

12.6 Conununication between Processors 

One of the primary strengths of the Connection Machine lies in its communication 
abilities. The basic functions for using the communication system are pref!! and 
pref-grid!!. Whereas pref and pref-grid allow the front-end computer to serially 
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read or write the data in a pvar in a single processor, the!! versions allow each active 
processor to simultaneously read/write the value of a pvar in any processor. Even if two 
or more processors attempt to read the data of a single processor, they all receive the 
same correct data. (This is supported by the Connection Machine router hardware.) 

The following two pieces of code have equivalent effects, although they achieve these 
effects in different ways: 

(*a11 (*set pvar2 (pref!! pvar1 (!! 23»» 

(*a11 (*set pvar2 (!! (pref pvar1 23»» 

Note that the second form freely mixes serial and parallel code. 
Although the previous example used pref!! to access the data of a single processor, 

it may also be used to access data in any processor. For example, the statement 

(*a11 (*set pvar2 (pref!! pvar1 (random!! (!! 100»») 

causes every processor to make a pseudo-random choice from the first 100 elements of 
pvar1 and store the fetched value in pvar2. 

Some other standard *Lisp routines that use the communication network especially 
efficiently are sort!! and enumerate! ! . 

12.7 Global Reduction Operations 

Some *Lisp functions reduce the contents of a pvar in all active processors to a single 
value, which is then returned to the front-end computer. Examples of this class of 
functions are *min, *sum, and *logior. For example, (*a11 (*sum (!! 1) » will sum 
together the quantity 1 in all processors in the Connection Machine. The result will 
be the number of processors in the particular Connection Machine system being used 
(actually, the number of virtual processors into which the system has been configured). 

12.8 Summary 

Each of the categories of functions described above contain many more functions not 
mentioned here. The Essential *Lisp Manual documents them all, as well as memory 
management, machine initialization and operation, and other related topics. 

* Lisp has been successfully used by many Connection Machine programmers. Its 
simplicity leads to a quick understanding of how to program the Connection Machine 
efficiently. AB an extension of Common Lisp, it is easily learned by those who already 
know Lisp. Though it provides a small number of abstractions, users frequently build 
their own with the help of the excellent tools provided by Common Lisp. The result is 
a productive programming environment for easily exploiting the massive power of the 
Connection Machine. 
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13 The eM-Lisp Language 

CM-Lisp is a dialect of Common Lisp extended to allow a fine-grained, data-oriented 
style of parallel execution. This parallelism is organized around objects called xappings, 
which are similar to arrays or hash tables. Two syntactic constructs are introduced: 
one allows existing Lisp functions to operate on elements of xappings in parallel, and 
the other provides a means of expressing general interprocessor communication. 

CM-Lisp differs from *Lisp in providing higher-level data abstractions, an imple­
mentation based on garbage-collected heap storage, and a somewhat more rigorous 
semantic theory. CM-Lisp is concerned less with providing access to details of the 
Connection Machine system than with providing convenient progranuning support for 
parallel processing of symbolic data structures. *Lisp is therefore the Lisp dialect of 
choice for the CM-2 when speed is important, whereas CM-Lisp may be more conve­
nient for experimentation with algorithms and rapid prototyping. 

13.1 Xappings, Xets, and Xectors 

All parallelism in CM-Lisp is organized around a data structure known as a xapping 
(pronounced "zapping," and derived from "mapping"). Xappings are data objects 
similar in structure to arrays or hash tables, but they have one essential characteristic: 
operations on the entries of xappings may be performed in parallel. A xapping, like 
any other Lisp object, may be dynamically allocated, and its associated storage is 
automatically reclaimed' when all references to it are deleted. Xappings may be of 
arbitrary size (up to some reasonably high implementation-dependent limit), and may 
contain pointers to any other Lisp objects (including other xappings). 

A xapping is an unordered set of ordered pairs. The first item of each pair is called 
an index, and the second item is called a value. Pairs are written as index-+value, and 
all the pairs in a xapping are written surrounded by braces. All the indices in a given 
xapping must be distinct, but their values need not be (the Common Lisp function 
eql determines sameness). A xapping that maps yertle to turtle and horton to 
elephant would be written like this: 

{yertle-+turtle horton-+elephant} 

The order in which the pairs are written makes no difference. One may think of indices 
as abstract names for processors in a parallel computer, and of their corresponding 
values as data stored within those processors. Later we will see how these "abstract 
processor names" are used to combine data within processors and route data between 
processors. 

The set of all indices ofaxapping is called the domain of the xapping. The corre­
sponding set of values is called the range of the xapping. When a xapping maps each 
index to itself, the xapping is known as a xet (pronounced "zet," and derived from 
"set"). Pairs in which index and value are the same may be written in an abbreviated 
notation as just the value, without the index or separating arrow. So, the xet 
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{constantinople-+constantinople timbuktu-+timbuktu} 

can be written as simply 

{constantinople timbuktu} 
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If the domain ofaxapping consists entirely of consecutive integers starting with 
zero, then the xapping is known as a zector (pronounced "zector," and derived from 
"vector"). A xector may be abbreviated by writing its values in order surrounded by 
brackets. So, the xector 

{O-+hop 1-+on 2-+pop} 

can be written as 

[hop on pop] 

Observe that the use of brackets is merely a notational convenience; a xector is the same 
data structure whether written with braces (and explicit indices) or with brackets. 

The number of elements in a xapping may range from zero to infinitely many. The 
smallest xapping has zero elements; it is called an empty xapping, and is written as n. 
At the other extreme are two sorts of infinite xappings: 

• A constant zapping has the same value for every index. A constant xapping with 
value v is written as {-+v}. The xapping {-+6} has the'value 6 for every index. 

• A universal zapping maps every index to itself; it is the xet of all Lisp objects. A 
universal xapping is written as {-+}. 

Infinite xappings may have a finite number of explicit exceptions, where values for 
particular indices are specified. The infinite part of the xapping is written after all of 
the explicit pairs. For example, 

{boy-+blue girl-+pink -+green} 

specifies that boy maps to blue, girl maps to pink, and all other objects map to 
green. 

13.2 Parallel Computation: a Syntax 

The function call mechanism of eM-Lisp allows xappings of functions to be called as 
functions, provided that all arguments to a xapping of functions are themselves xap­
pings. The result of such a function call is a xapping whose domain is the intersection of 
the domains of the function xapping and argument xappings, and whose range is made 
up of the results of applying each function to the values from the argument xappings 
at the corresponding indices. When a xapping of functions is called in this way, the 
individual function calls may be performed in parallel. Resynchronization occurs, at 
latest, when all of the parall~l computations have completed. 

One could perform several additions in parallel by doing this: 
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(funcall '{-++} '[10 20 30 40] '[8 7 6 6 4 3 2]), 

The result of this call is a xapping whose domain consists of the integers 0 through 3 
(i.e., the intersection of the infinite domain, the domain of a x ector of length 4, and 
the domain of a x ector of length 7), and whose range is formed by calling elements 
from the function xapping (always +) with corresponding elements from the argument 
xappings: 

[18 27 36 46] 

A special syntax using the alpha character, a, allows us to write parallel function 
calls more concisely than we did above. The expression az constructs a constant 
xapping with the value z. Using a, we can now rewrite the parallel function call shown 
above like this: 

(a+ '[10 20 30 40] '[8 7 6 643 2]) 

Note that a xapping of xappings of functions may be called as a function, too, as long 
as its arguments are xappings of xappings, and so on. 

(aa+ '[[1 2 3] [4 6 6] [7 8 9]] 
, [[9 8 7] [6 6 4] [3 2 1]]) 

::} [[10 10 10] [10 10 10] [10 10 10]] 

Consider two forms: ta+ a2 a3) and a(+ 2 3). The first evaluates the function 
and argument forms to produce {-++}, {-+ 2}, and {-+3}. An "infinite number" of 
function calls are set up, all of the form (+ 2 3). All of these calls produce the result 
5, and so the result is {-+5}. a( + 2 3) simply constructs a constant xapping from 
the result of the form (+ 2 3), and so the result here is also {-+5}. This leads to an 
important syntactic property: a distributes over function calls. 

Suppose there is a need to add 32 to every element ofaxapping Cj one may 
write (a+ c a32).Now suppose instead that one wishes to multiply each element 
of C by 9/5 before adding 32j the appropriate code is (a+ (a'" C a9/5) a32). Or 
perhaps the real need is for a xapping of lists pairing each such computed value with 
the original element of c: (alist c (a+ (a'" c a9/6) a32». More complicated 
expressions contain more and more a operators. The distribution rule can be used to 
"factor out" these operators if every subform of a function call has a preceding a, but 
that is not the case in the above example. 

This problem is solved by using the bullet operator, 0, which is an "inverse" to a. 
By definition, aoz == z. Thus, it is possible to apply the distribution law by introducing 
occurrences of "ao" first. To continue the example, one can begin with the expression 
(alist C (a+ (a* c a9/6) a32» and make successive transformations: 
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(alist c (a+ (a* c a9/6) (32» -
(alist aoe (a+ (a* aoe a9/6) (32» -
(alist aoe (a+ a( * oe 9/6) (32» -
(alist aoe a( + ( * oC 9/6) 32» -

a( list oe ( + ( * oe 9/6) 32» 

and derive the result a (list oC (+ (* oe 9/6) 32». 
This notation is powerful because it allows two simultaneous points of view. On 

the one hand, it can be understood as a computation with a single thread of control, 
operating on arrays of data, thereby allowing a global understanding of how the data 
is transformed. On the other hand, it can be understood as an array of processes, with 
each process executing the same code that follows the "a" and with "0" flagging data 
values that may differ among processes. This view allows one to take a piece of code 
written for a single processor and trivially change it to operate on many processors 
by annotating it with "a" and "0" in a few places. Thus the notation simultaneously 
supports both macroscopic and microscopic views of a parallel computation. 

Lisp control structure does not consist entirely of function calls-special forms and 
macros are used very frequently to express variable binding, control flow, and other 
operations. In general, it is an error to precede the name of a special form or macro 
with a; however, there are a number of special forms and macros for which parallel 
execution is both meaningful and useful. , 

Conditional execution is accomplished with aif, a parallel version of the if special 
form. To evaluate the expression (aif condition then else), one first evaluates the 
condition, which must return a xapping. The next step is to evaluate the then expres­
sion, but only at the indices for which the condition is true. The final step evaluates 
the else expression at indices for which the condition is false. The result of aif is the 
union of the then and else xappings. For example: 

a(if (oddp 0'[0 123 4 6 6 7 8 9J) 'odd 'even) 
=> [even odd even odd even odd even odd even oddJ 

Note that both consequents of an aif are always evaluated, but at disjoint sets of 
indices (i.e., in disjoint sets of processors). 

Local variable bindings may be established in each processor with alet, a parallel 
version of the let special form. Variables are bound to values specified in an initial 
value xapping for the duration of the alet body, in which each form is evaluated as if 
it were preceded by a. The result of alet is the result of the last form in the body. 

a(let «x 0'[0 1 2 3 466 7 89J» 
(* x x x» 
=> [0 1 8 27 64 125 216. 343 612 729] 

The values at a set of indices in a xapping may be altered in parallel with asetf, 
a parallel version of the setf macro. (asetf old new) sets the value of each index 
appearing in both old and ~w to the value at that index in new. 
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(setq x '{a~1 b~2 c~3}) 
(asetf x '{b~5 c~7 d~9}) 
x ::} {a~1 b~5 c~7} 

13.3 Interprocessor Communication: 13 Syntax 

The a syntax is a way of broadcasting data and programs to different indices (i.e., 
processors). Another syntax, using the beta character, 13, is used to gather data and 
route it between processors. 

The simplest use of 13 is called reduction. The expression (131 x) takes a two­
argument function I and a xapping z and returns the result of combining all the values 
of z using J. For example, 

(13+ '[0 1 2 3 4 6]) 

returns the sum of all the values in the xector, namely 15. Any two-argument combining 
function may be used, but the result is unpredictable if the function is not associative 
and commutative, because the order in which the values are combined is not predictable. 

The more complex use of 13 is called combination. (131 d x) takes a binary function 
I and two xappings d and x and returns a new xapping z whose indices are specified by 
the values of d and whose values are specified by the values of z. The value of (131 d 
x) is: 

{q~s I S = {p~r I (p~r E z) A (p~q E d)} A lSI> 0 A s = (131 S)} 

For every distinct value q in d there will be a pair q~s in the result. If that value q occurs 
in more than one pair of d, then s is the result of combining all of the corresponding 
values from z. For example: 

(13+ '{toyota~japan gm~usa ford~usa fiat~italy} 

{toyota~136 gm~125 ford~103 vw~164}) 

::} {japan~136 usa~228} 

The pair usa~228 appears because the values 125 from gm and 103 from ford were 
summed by the combining function +. The result has no pair with index italy or value 
164 because neither fiat nor vw appears as an index in both operand xappings. 

Reduction may be viewed as a communications operation that sends values from 
each index (i.e., each processor) ofaxapping to some neutral ground, where the values 
are combined. Combination may be viewed as a distributed form ofreduction, in which 
different values may be sent to different indices (processors) and combined there. This 
functional similarity between reduction and combination was our motivation for using 
one character, 13, in expressing both operations. 
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13.4 Library Functions 

Common Lisp has a large library off unctions for performing useful operations on arrays 
and lists. CM-Lisp extends the functionality of this library to xappings as well. These 
"generic sequence functions" allow one to extract subsequences of a sequence, reverse 
the ordering of elements in a sequence, concatenate sequences, search sequences for 
particular items or subsequences, sort sequences, and so on. 

Common Lisp provides operations on character strings for case conversion, string 
comparison, and so forth. These functions have also been extended to operate on 
xappings. 

A number of other functions are introduced that provide useful high-level operations 
on xappings. Perhaps the most interesting of these is scan, which is analogous to the 
j\z operator of APL. The scan function takes a combining function and a xector, and 
returns a new xector in which the value at each index i is the result of reducing the 
values at indices 0 through i of the original xector with the given function. The scan 
may be broken up into several separate scans by using the : segment keyword argument. 
The scan will "start from scratch" at each index in the : segment xector that has a 
non-nil value. For example: 

(scan #'max '[1 6 2 7 3 4 2]) 
=? [1 6 6 7 7 7 7] 

(scan #'max '[1 627 342] 
:segment '[t nil nil nil t nil nil]) 

=? [1 6 6 7 3 4 4] 

A number of very simple functions are used idiomatically in reduction, combina­
tion, and scanning. These have been given canonical names to save typing: arg1 
always returns its first argument, arg2 always returns its second argument, arb re­
turns either argument unpredictably, and CI signals an error if called (it is usually used 
in combination when no collisions are expected). 
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14 An Example Program 

The four high-level programming languages for the Connection Machine system may 
be compared by examining the four subroutines given below. Each identifies all prime 
integers below 100,000 by the sieve method, with minor variations dictated by the 
natural style of the programming language. 

The algorithm uses two parallel arrays of boolean (true/false) values called prime 
and candidate. At every step element k if candidate is true if k has not yet been 
ruled out as a possible prime. At the beginning of each iteration, the smallest value of 
k for which candidate has a true entry is in fact always a prime; the corresponding 
element of prime may be set to true, and multiples of this value are then eliminated 
as candidates. The algorithm terminates when no more candidates remain, at which 
point element j of prime is true if j is prime and false if j is not prime. 

This example does not show off all the capabilities of the languages or of the Con­
nection Machine system. It is intended merely to illustrate the stylistic differences 
among the languages. For example, iteration in the C* example is performed by a 
while loop; in Fortran, by a logical IF statement with a GO TO; and in both the *Lisp 
and CM-Lisp examples by a Lisp do loop, though with different termination tests. 

One of the more interesting differences is the way in which each processor calculates 
its own position within an array. C* has all the facilities of C for performing address 
calculations; in the example, every processor takes a pointer to itself (represented by 
the reserved word this) ,and subtracts from it the address lsieve [0] of the start of the 
array of processors, thereby computing its own index within the array. In Fortran, the 
FORA.LL statement provides each processor with a different value for an index variable. 
In *Lisp, the built-in function self-address!! behaves like the keyword this in C*, 
returning within each processor the address of that processor. In CM-Lisp, the built-in 
function iota takes a number n and generates a xector of n integers from 0 to n - 1. 

14.1 The Example Program in C* 

#define N 100000 
typedef int bit:1; 
domain SIEVE { bit prime; } sieve[N]; 

void sieve::find_primes() { 

} 

int value = this - lsieve[O]; 
bit candidate = (value >= 2); 
prime = 0; 
while (candidate) { 

} 

mono int next_prime = «1= value); 
sieve[next_prime].prime = 1; 
if (value Yo next~prime == 0) candidate = 0; 
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14.2 The Example Program in Fortran 

SUBROUTINE FINDPRIMES(PRIME) 
PARAMETER (N = 99999) 
LOGICAL PRIME(N).CANDIDATE(N) 
PRIME = .FALSE. 
CANDIDATE = . TRUE. 
CANDIDATE(1) = . FALSE. 

20 NEXTPRIME = MINLOC([1.N].CANDIDATE) 
PRIME(NEXTPRIME) = . TRUE. 
FORALL (I = 1:N. MOD(I.NEXTPRIME) .EQ. 0) CANDIDATE(I) = .FALSE. 
IF (ANY(CANDIDATE» GO TO 20 
RETURN 
END 

14.3 The Example Program in *Lisp 

(*defun find-primes () 
(*a11 

(*let «prime (!! nil» (candidate (!! t») 
(*if «!! (self-address!!) (!! 2» 

(*set candidate nil» 
(do () «*or candidate» 

(*vhen candidate 
(let «next-prime (*min (self-address!!»» 

(setf (pref prime next-prime) t) 
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(*vhen (zerop!! (mod!! (self-address!!) (!! next-prime») 
(*set candidate (!! nil»»» 

prime» 

14.4 The Example Program in eM-Lisp 

(defun primes (n) 
(let «candidate (make-xector n :initial-element t» 

(primes (make-xector n :initial-element nil») 
(asetf candidate '[nil nil]) 
(do «next-prime (position t candidate) (position t candidate») 

«null next-prime) primes) 
(setf (xref primes next-prime) t) 
a(setf .candidate 

(and .candidate 
(not (zerop (mod .(iota n) next-prime»»»» 
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15 Performance Specifications 

The specifications in this chapter assume a fully configured Connection Machine Model 
CM-2 system with 64K data processors and eight I/O channels. Specifications for 
floating point performance assume the use of a floating point accelerator. 

Thinking Machines Corporation believes all specifications are accurate as of the 
date of publication. Thinking Machines Corporation cannot, however, be responsible 
for inadvertent errors. Product specifications are subject to change without notice. 

15.1 General Specifications 

Processors 
Memory 
Memory bandwidth 

65,536 
512 megabytes 

300 gigabits per second 

The memory bandwidth is the maximum sustained transfer rate of data to or from 
memory. 

15.2 Input/Output Channels 

Number of channels 
Capacity per I/O controller 
Total I/O controller transfer rate 
Capacity per framebuffer 

8 
40 megabytes per second 

320 megabytes per second 
1 gigabit per second 

Each I/O channel may support either one general-purpose I/O controller or one 
framebuffer module. The total I/O controller transfer rate assumes simultaneous use 
of eight I/O controllers. 

15.3 Typical Application Performance (Fixed Point) 

General computing 
Terrain mapping 
Document search 

2500 Mips 
1000 Mips 
6000 Mips 

These numbers indicate the averaged performance of the machine on applications 
for which it is well matched. The numbers are based on actual measurements that 
include all overhead in the sequencer, the operating system, the front-end user code, and 
inefficiencies of I/O transfers and algorithm design. The terrain mapping application, 
for example, cited as running at 1000 Mips, does indeed run approximately 1000 times 
faster than the same application running on a serial computer rated at 1 Mips. 

Mips = Millions of instructions per second 
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15.4 Interprocessor Communication 

Regular pattern of 32-bit messages 
Random pattern of 32-bit messages 
Sort 65,536 32-bit keys 

250 million per second 
80 million per second 

30 milliseconds 
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The amount of time required to deliver messages depends on the pattern. A fully 
loaded random pattern is the worst case that has currently been measured. Sparse 
message patterns are faster, as are patterns with regular structure, such as grids, trees, 
or shuffles. The sort time is given here because it is a communication-intensive bench­
mark. 

15.5 Variable Precision Fixed Point 

64-bit integer add 
32-bit integer add 
16-bit integer add 
8-bit integer add 
64-bit move 
32-bit move 
16-bit move 
8-bit move 

1500 Mips 
2500 Mips 
3300 Mips 
4000 Mips 
2000 Mips 
3000 Mips 
3800 Mips 
4500 Mips 

These numbers indicate the performance of the machine running repeated cycles 
of the same instructions. The rates include the worst case for all overhead associated 
with virtual processors. For applications using large numbers of virtual processors per 
physical processor, the performance will be higher, especially when operating on small 
fields. 

15.6 Double Precision Floating Point 

4Kx4K matrix multiply benchmark 
Dot product 

2500 MFlops 
5000 MFlops 

The 4Kx4K matrix multiply benchmark starts with two matrices; approximately 
16,000,000 elements each are distributed to the machine. The result is the matrix 
product. The number includes all communications overhead. The dot product rate is 
for multiplying two vectors, approximately a hundred elements each, stored within each 
processor in the optimal format, using the Paris f-vector-dot-product operation. 
This gives an indication of high rates that can be achieved for short periods of time. It 
is unusual to sustain such rates over the course of a computation. All double precision 
rates assume the machine is equipped with a.double precision floating point accelerator. 

MFlops = Millions of floating point operations per second 
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15.7 Single Precision Floating Point 

Addition 
Subtraction 
Multiplication 
Division 
4K X 4K matrix multiply benchmark 
Dot product 

4000 MFlops 
4000 MFlops 
4000 MFlops 
1500 MFlops 
3500 MFlops 

10,000 MFlops 

Single precision rates are for a CM-2 equipped with either a double precision or a 
single precision floating point accelerator. The rates for addition, subtraction, multi­
plication, and division assume the use of two-address, unconditional Paris instructions 
with a virtual processor ratio of 32 (2048K virtual processors), and include all instruc­
tion issuing and decoding overhead. 

See the comments in section 15.6 concerning the 4K x 4K matrix multiply benchmark 
and dot product. 

15.8 Parallel Processing Unit Physical Dimensions 

Size 
Weight 

56" x 56" x 62" 
2600 lbs. 

These dimensions ate for the parallel processing unit only and do not include the 
front-end computer(s), the high-resolution graphic's display monitor, or the DataVault 
mass storage system. 

15.9 Parallel Processing Unit Environmental Requirements 

Power Dissipation 
Power Input 
Operating Temperature 
Operating Relative Humidity 

28kW 
Four 30-amp 3-phase 1l0/208V 

70°F ± 5°F 
50% ± 10% 

These figures are for the parallel processing unit only and do not include the front­
end computer(s), the high-resolution graphics display monitor, or the DataVault mass 
storage system. 


