
~,
_ - 1
~

' I

"

Connection Machine® Model CM-2 Technical Summary

Thinking Machines Corporation
Technical Report Series

.-

HA87-4

Thinking Machines Technical Report HA87-4

Connection Machine ®

Model CM-2

Technical Summary

April 1987

Connection Machine is a registered trademark of Thi~king :Machines Corporation.
Dat'aVawt, C*, *Lisp, C~ ... Lisp, and'Paris 8:re"tr~em:arkS %or'>;·~·>' :.~.
, ' 'Thinking MaChines' CorporatfHn. ,') "

~ymboJics3600 is a (radelli&r~ of Syriibopcs, Inc.
tNixis ~trademark ofAT&:T :aefiLl!.h6i~toiies;

VAX, VAXBI, and UI.TIUX ar~registeied traderiiark~ 'or Di~rta.fEqlilpment 90rporation.
, , ~ ,;:. . , r." ~'.::~ ;!:- f." :

';i'he infonnation in this document is subject to change witho~t notjc~ and sJtouJd
not be c()nstlu~d 'as it. commitmen~ by ThinkiJigMaelihi~) Co;potation:' 'lpliilti'rig
Machines !96rpo~ation reserveS thenght to make dlank~s ('0 'anY ~r()4u~~s d~~il~,l:)~4
herein to'iJUprOve functioning or design. Althouglitlieinformatl<>it in t1i~~~uriIen~
}laS been reviewed and . is 'believecl to be reliable, Thhikihg' Machin'es'q6~'P'6r~ti()n
do~s not assume responsibility or liability for anyeriots tpaf'mliyappear iIanii;
document:' Thinking Machines Corporation does not 'a:Ssuttle a'ri.Y)liti~H·~ titisth'g
rrorit'ihe applicatiolfor use of any information or pr()du:a"4esci:i'b~d~er'ein:. :f", "

Contents

1 Introduction
1.1 The Connection Machine System
1.2 Data Parallel Hardware
1.3 Data Parallel Software

2 System Organization

3 The Paris Language
3.1 Overview•........
3.2 Virtual Machine Model.
3.3 Organization of the Instruction Set.
3.4 Instruction Set Summary

4 Processor Architecture
4.1 Data Processors
4.2 The Router •
4.3 The Floating Point Accelerator

5 The Role of the Front End
5.1 Applications Development
5.2 Running Connection Machine Applications
5.3 Maintenance and Operations Utilities ..•
5.4 The Digital Equipment Corporation VAX As a Front End •
5.5 The Symbolics Lisp Machine As a Front End

6 Connection Machine I/O Structure

7 The Connection Machine DataVault
7.1 The File Server
7.2 Off·line Loading and Backup
7.3 Writing and Reading Data . •
7.4 Drive Failure and Data Base Healing .

8 High-Resolution Graphics Display

9 Languages

10 The C* Language
10.1 Data Parallel Machine Model
10.2 Parallel Expressions•.....
10.3 Parallel Statements.
10.4 Compiler Implementation••.

.....

1
1
2
3

4

8
8
9

10

11

19
19
20
22

23
23
24
24
25
25

27

28
28
29
29
30

31

33

35
35
37
39
41

11 Fortran
11.1 The Environment •
11.2 The Array Extensions of Fortran . . . • . .
11.3 Fortran Statements for Controlling Context
11.4 futerprocessor Communication in Fortran
11.5 Fortran and the Data Parallel Approach.

12 The "'Lisp Language
12.1 Pvars: The Basic *Lisp Data Object••••..
12.2 Processor Addressing. . . . • . . • • • • • • . • • . • .
12.3 Reading and Writing Data from and to Pvars •••••
12.4 Basic Parallel Operations • • • • .
12.5 Selection of Active Sets of Processors . -. • . . •
12.6 Communication between Processors •.
12.7 Global Reduction Operations . .
12.8 Summary

13 The eM-Lisp Language
13.1 Xappings, Xets, and Xectors
13.2 Parallel Computation: a Syntax .•...
13.3 futerprocessor Communication: f3 Syntax
13.4 Library Functions. • . •

14 An Example Program
14.1 The Example Program in C*
14.2 The Example Program in Fortran .•
14.3 The Example Program in *Lisp . ~

14.4 The Example Program in CM-Lisp

15 Performance Specifications
15.1 General Specifications
15.2 fuputjOutput Channels
15.3 Typical Application Performance (Fixed Point)
15.4 futerprocessor Communication.
15.5 Variable Precision Fixed Point .
15.6 Double Precision Floating Point.
15.7 Single Precision Floating Point .
15.8 Parallel Processing Unit Physical Dimensions
15.9 Parallel Processing Unit Environmental Requirements .

42
. 42

.

..

43
43
44
45

46
46
47
47
47
48
48
49
49

50
50
51
54
55

56
56
57
57
57

58
58
58
58
59
59
59
60
60
60

1

1 Introduction

The Connection Machine Model CM-2 is a data parallel computing system. Data par­
allel computing associates one processor with each data element. This computing style
exploits the natural computational parallelism inherent in many data-intensive prob­
lems. It can significantly decrease the execution time of a problem, as well as simplify
its programming. In the best cases, execution time can be reduced in proportion to
the number of data elements in the computation; programming effort can be reduced
in proportion to the complexity of expressing a naturally parallel problem statement
in a serial manner. In order to fully exploit these potential benefits, a computing sys­
tem consisting of both hardware and software that support this model of computing is
required.

The Connection Machine Model CM-2 is an integrated system of hardware and
software. The hardware elements of the system include front-end computers that pro­
vide the development and execution envIronments for the system software, a parallel
processing unit of 64K processors that execute the data parallel operations, and a
high-performance data parallel I/O system. The system software is based upon the
operating system or environment of the front-end computer. The visible software ex­
tensions are minimal. Users can program using familiar languages and programming
constructs, with all the development tools provided by the front end. Programs have
normal sequential control flow; new synchronization structures are not needed. Thus,
users can easily develop programs that exploit the power of the Connection Machine
hardware.

1.1 The Connection Machine System

At the heart of any large computational problem is the data set: some combination
of interconnected data objects, such as numbers, characters, records, structures, and
arrays. In any application this data must be selected, combined, and operated upon.
Data level parallelism takes advantage of the parallelism inherent in large data sets.

At the heart of the Connection Machine Model CM-2 system is the parallel pro­
cessing unit, which consists of thousands of processors, each with thousands of bits
of memory. These processors can not only process the data stored in their memory,
but also can be logically interconnected so that information can be exchanged among
the processors. All these operations happen in parallel on all processors. Thus, the
Connection Machine hardware directly supports the data parallel problem model

One way to view the relationship of the CM-2 parallel processing unit to the other
parts of the system is to consider it as an intelligent extension to the memory of the
front-end computer. The data parallel data objects are stored by assigning each one
to the memory of a processor. Then the operations on these objects can be specified
to operate simultaneously on any or all data objects in this memory.

The Connection Machine processors are used whenever an operation can be per­
formed simultaneously on many data objects. Data objects are left in the Connection

2 Connection Machine Model CM-2 Technical Summary

Machine memory during execution of the program and are operated upon in parallel at
the command of the front end. This model differs from the serial model of processing
data objects from a computer's memory one at a time, by reading each one in turn,
operating on it, and then storing the result back in memory before processing the next
object.

The flow of control is handled entirely by the front end, including storage and
execution of the program and all interaction with the user and/or programmer. The
data set, for the most part, is stored in the Connection Machine memory. In this way,
the entire data set can be operated upon in parallel through commands sent to the
Connection Machine processors by the front end. The front end can. also operate upon
data stored in individual processors in the Connection Machine, treating them logically
as memory locations in its virtual memory.

There are several direct benefits to maintaining program control only on the front
end. First, programmers can work in an environment that is familiar. The front end
interacts with the Connection Machine parallel processing unit using an integrated
command set, and so the programming languages, debugging environment, and oper­
ating system of the front end remain relatively unchanged. Second, a large part of the
program code for any application pertains to the interfaces between the program, the
user, and the operating system. Since the control of the program remains on the front
end, code developed for these purposes is useful with or without the Connection Ma­
chine parallel processing unit, and only the code that pertains specifically to the data
residing on the Connecti9n Machine processors needs to use the data parallel language
extensions. Finally, parts of the program that are especially suited for the front end,
such as file manipulation, user interface, and low-bandwidth I/O, can be done on the
front end, while the parts of the program that run efficiently in parallel, namely the
"inner loops" that operate on the data set, can be done on the Connection Machine.
In this way, the individual strengths of both the serial front end and the Connection
Machine processors can be exploited.

In general, the Connection Machine system appears to be a very powerful extension
of the front-end system. The data parallel hardware looks like intelligent memory; the
data parallel software extends the front end's capabilities to allow the direct execution
of parallel operations.

1.2 Data Parallel Hardware

The Connection Machine system implements data parallel programming constructs
directly in hardware. The system includes 65,536 physical processors, each with its
own memory. Parallel data structures are spread across the data processors, with a
single element stored in each processor's memory. When parallel data structures have
more than 65,536 data elements (the normal case), the hardware operates in virtual
processor mode, presenting the user with a larger number of processors, each with a
correspondingly smaller memory.

Communication among elements of a parallel data structure is implemented by

Chapter 1 Introduction 3

a high-speed routing network. Processors that hold interrelated data elements store
pointers to one another. When data is needed, it is passed over the routing network to
the appropriate processors.

Scalar data is held in a front-end processor. The front end also controls execution of
the overall data parallel program. Program steps that involve parallel data are passed
over an interface to the Connection Machine parallel processing unit, where they are
broadcast for execution by all the processors at once.

The Connection Machine front end provides the programming environment for the
system. Programs can be stored on front-end disks. Network communications links are
most effectively implemented on the front end as well.

High-speed transfers between peripheral devices and Connection Machine memory
take place through the Connection Machine I/O system. All processors, in parallel,
pass data to and from I/O buffers. The data is then moved between the buffers and the
peripheral devices. Connection Machine high-speed peripherals include the Data Vault
mass storage system and the Connection Machine graphics display system.

1.3 Data Parallel Software

The Connection Machine system software is designed to utilize existing programming
languages and environments as much as possible. The languages are based on well­
known standards; the extensions to support data parallel constructs are minimal so
that a new programming style is not required. The CM-2 front-end operating system
(either UNIX or Lisp) remains largely unchanged.

Fortran on the Connection Machine system uses the array extensions in the draft
Fortran 8x standard (proposed by ANSI technical committee x3J3) to express data
parallel operations. The remainder of the language is the standard Fortran 77. No
extension is specific to the Connection Machine; the Fortran 8x array extensions map
naturally onto the underlying data parallel hardware.

The *Lisp and CM-Lisp languages are data parallel dialects of Common Lisp (a
version of Lisp currently being standardized by ANSI technical committee x3J 13). * Lisp
gives programmers fine control over the CM-2 hardware while maintaining the flexibility
of Lisp. CM-Lisp is a higher-level language that adds small syntactic changes to the
language interface and creates a very powerful data parallel programming language

The C* language is a data parallel extension of the C programming language (as
described in the draft C standard proposed by ANSI technical committee x3J 11). C*
programs can be read and written like serial C programs; the extensions are unobtrusive
and easy to learn.

The assembly language of the CM-2 is Paris. This is the target language of the
high-level language compilers. This language logically extends the instruction set of
the front end and masks the physical implementation of the CM-2 processing unit.

4

2 System Organization

The Connection Machine Model CM-2 is a complete computing system that provid~s
both development and eXecution facilities for dl:).ta parallel progr~. It~ hardwaJ'e
consists of a parallel processing unit containing thousa;nds of datI:). processor~, from
one to four front-end computers, and an I/O system that supports J:IlASS storage cmd
graphic display devices (see Figure 1). The user interacts with. the f.ront~end computer;
all progr&m development and execution t8kes place withJn the front ent!. Because
the front-end computer runs standard serial software, fb.e user sees .. familar sYlltem
environment with additional languages and utilities and some very powerful hardware.

The central element ~ the system is the CM-2 plU'allel processing unit, which
contains:

• thousands of data processors

• an interprocessor communications network

• one or more sequencers

• an interface to one or more front-end computers

• zero or more I/O controllers and/or framebuffers

A parallel processing unit may contain 64K, 32K, or 16K data pro.cessors. (Here,
and throughout this document, "K" stands for 1024. Thus 64K means 65,536; 32K
means 32,768; 16K means 16,384; 8K means 8,192; and so OIl.) Each data processor
has 64K bits (8 kilobytes) of bit-addressable local memory and an arithmetic-logic unit
(ALU) that can operate on variable-length operands. E .. ch data processor can access
its memory at a rate of at least 5 megabits per second. A fully configured CM-2
thus has 512 megabytes of memory that can be read or written at .. bout 301) gigabits
per second. When 64K processors are operating in parallel, eliloCh performipg .. 32-bit
integer addition, the CM-2 parallel processing unit operates at about 2500 Mipsl. (This
figure includes all overhead for instruction issuing and decoding.) In addition to the
standard ALU, the CM-2 parallel processing unit has an optional par~el fioating point
accelerator that performs at 3500 MFlops2 (single precision) or 2500 MFlops (double
precision).

One of the most important requirements of general purpose dat .. parallel computing
is the ability of the data elements to communicate information among themselves in
patterns that vary according to the problem and with time. The CM.2 system provides
two forms of communication within the parallel processing unit. The more general
mechanism is known as the router, which allows any processor to communicate with
any other processor. One may think of the router as allowing every pro.cessor to send a
message to any other processor, with all messages being sent and delivered at the same
time.. Alternatively, one may think of the router as allowing every processor to access

1 Mips = MUlions of instructions per second
2MFlops = Millions of floating point operations per second

Chapter 2 System Organization 5

Nexus Front end 0

(DEC VAX or

Symbolics)
r--

Bus interface

Connection Machine \
Parallel Processing Unit

Front end 1
Connection Machine Connection Machine

(DEC VAX or
processors processors

Symbolics)
I---<

- Bus interface
r- f-e Sequencer Sequencer

0 3 ... '-f-e
Front end 2

(DEC VAX or ... r-- f-e Symbolics) -
. Sequencer Sequencer

-e 1 2 ... ""'- Bus interface

Connection Machine Connection Machine

processors processors Front end 3

(DEC VAX or

Symbolics)
I---<

I

Connection Machine I/O System - Bus interface

I I I
I
I

Data Data Data Graphic Network

Vault Vault Vault Display

Figure 1: Connection Machine Model CM-2 System Organization

6 Connection Machine Model CM-2 Technical Summa.ry

any memory location within the parallel processing unit, with all processors making
memory accesses at the same time; in effect, the router allows the local memories of
the data processors to be treated as a single large shared memory. The messages (or
accessed fields, if you will) may be of any length. The throughput of the router depends
on the message length and on the pattern of accesses; typical values are 80 million to
250 million 32-bit accesses per second.

The CM-2 parallel processing unit also has a more structured, somewhat faster
communication mechanism called the NEWS grid. In the CM-1 and some other fine
grained parallel systems, communication can take place over a fixed two-dimensional
grid. The CM-2, however, supports programmable grids with arbitrarily many dimen­
sions. Possible grid configurations for 64K processors include 256 X 256, 1024 X 64,
8 X 8192, 64 X 32 X 32, 16 X 16 X 16 X 16,· and 8 X 8 X 4 X 8 X 8 X 4. The NEWS

grid allows processors to pass data according to a regular rectangular pattern. For
example, in a two-dimensional grid each processor could receive a data item from its
neighbor to the east, thereby shifting the grid of data items one position to the left.
The advantage of this mechanism over the router is merely that the overhead of ex­
plicitly specifying destination addresses is eliminated; for many applications this is a
worthwhile optimization.

The parallel processing unit is designed to operate under the programmed control of
a front-end computer, which may be either a Symbolics 3600 Lisp machine or a DEC VAX

8000 series computer with a BI bus. The front end provides the program development
and execution environment. All Connection Machine programs execute on a front end;
during the course of execution the front end issues instructions to the CM-2 parallel
processing unit. In effect, the CM-2 parallel processing unit extends the instruction
set and I/O capabilities of the front-end computer. The set of instructions that the
front end may issue to the parallel processing unit is called Paris. It is designed for
convenient use by front-end programs, and includes not only such operations as integer
arithmetic, floating point arithmetic, and interprocessor communication, but also such
powerful operations as vector summation, matrix multiplication, and sorting. The
Paris instruction set is described further in Chapter 3.

The data processors do not handle Paris instructions directly. Instead, Paris in­
structions from the front end are processed by a sequencer in the parallel processing
unit. The task of the sequencer is to break down each Paris instruction into a sequence
of low-level data processor and memory operations. The sequencer broadcasts these
low-level operations to the data processors, which execute them at a rate of several
million per second. The low-level operations are described further in section 4.1.

To increase the flexibility of program development and execution, the CM-2 process­
ing unit may be divided into as many as four sections. Depending on the configuration,
a section will have either 8K or 16K data processors. For example, a parallel processing
unit with 64K data processors will be divided into four sections of 16K data processors;
a processing unit with 32K data processors could consist of either two 16K sections or
four 8K sections.

Chapter 2 System Organization 7

Each section can be treated as a complete parallel processing unit in itself; in
particular, each section contains its own sequencer, router, and NEWS grid. Sections
may also be ganged; when this is done, their sequencers are also ganged and behave
as a single sequencer, their routers cooperate as a single router, and their NEWS grids
cooperate to form. a single grid. A programmable, bidirectional switch called the Nexus
allows up to four front-end computers to be attached to a single parallel processing
unit. The front ends need not all be of the same type. Under front-end software
control, the Nexus can connect any front end to any section or valid combination of
sections in the CM-2 parallel processing unit. For example, in a CM-2 system with
32K data processors (in four 8K sections) and four front ends, one could assign one
section to each front end for software testing; or one could gang all four sections to be
controlled by anyone front end for a production run; or one could assign 8K sections
to each of two front ends, gang the other two sections to give 16K data processors to
a third front end, and use the fourth front end for purposes unrelated to the parallel
processing unit. The Nexus can be reconfigured in seconds; once this is done, data and
instructions flow between the front end and the sequencers without visible intervention
by the Nexus.

For every group of 8K data processors there is one I/O channel. (A section with 8K
processors therefore has one channel; a section with 16K process()rs has two channels.)
To each I/O channel may be connected either one high-resolution graphics display
framebuffer module or one general I/O controller supporting an I/O bus to which
several DataVault mass storage devices may be connected. The front end controls I/O
transfers in exactly the same manner that it controls the data processors, by issuing
Paris instructions to the sequencer. The sequencer can then send low-level corrunands
to the I/O channels and interrogate channel status. Data is transferred directly and
in parallel between the I/O devices and the data processors, without being funneled
through the sequencers.

8

3 The Paris Language

The instructions that the front end may issue to the parallel processing unit constitute a
language called Paris (from the phrase "parallel instruction set"). It is the lowest-level
protocol by which the front-end computer directs the actions of Connection Machine
processors.

3.1 Overview

Paris is intended primarily as a base upon which to build higher-level languages for
the Connection Machine system. It provides a large number of operations similar to
the machine-level instruction set of an ordinary computer. Paris supports primitive
operations on signed and unsigned integers and floating point numbers, as well as
message-passing operations, I/O commands, and facilities for transferring data between
the Connection Machine processors and the front-end computer.

Paris instructions direct the handling of data by the Connection Machine processors.
Control instructions, such as subroutine calls, iC-then-else conditionals, and while
loops are not a part of the Paris instruction set. The control structure for an application
is provided by the front-end computer. A program that is "written in Paris" must
actually be written in some ordinary sequential language for the front end, such as C,
Fortran, Pascal, or Lisp.

The Paris user interf~econsists of a set of functions, subroutines, and global vari­
ables. The functions and subroutines direct the actions of the Connection Machine
processors, and the variables allow the user program to find out such information
about the Connection Machine system as the number of processors available and the
amount of memory per processor.

As a simple example, here is a bit of C code that repeatedly causes every processor
whose floating point z field is greater than 1.0 to be divided by two; the loop is
terminated when no processor has a z value greater than one.

while (CM_f_gt_constant(z. 1.0. 23. 8).

}

CM_global_logior(CM_test_flag. 1» {
CM_f_divide_constant_2(z. 2.0. 23. 8);

The functions whose names begin with "CM-" are Paris operations: CM.-f_gt_constant
causes every processor to compare a field to a common, broadcast constant, storing a
bit reflecting the result in its "test" flag; CM-=f..divide_constant similarly causes every
processor to divide a floating point field by a common constant; and CM...globaLlogior
takes a bit field (in this example, a one-bit field, namely the test flag) from every
processor, and returns to the front end the result of a many-way bitwise inclusive-oR.
operation. The while construct is an ordinary C while loop, and is not a part of the
Paris language proper.

Chapter 3 The Paris Language 9

Several different versions of the user interface are provided, one for each front­
end programming language in which Paris is to be embedded. These interfaces are
functionally identical; they differ only in conforming to the syntax and data types of
one language or the other. Here is what the preceding example would look like if
embedded in the Lisp language:

(do 0
«progn (CM:f-gt-constant z 1.0 23 8)

(zerop (CM:global-logior CM:test-flag 1»»
(CM:f-divide-constant-2 z 2.0 23 8»

This example of Lisp code uses a Lisp control structure, do, that is nearest in function
to the C while statement. (It is actually a do-until statement, and the Lisp function
zerop is used here to invert the sense of the result of CM:global-logior.) However,
it would be appropriate to Lisp programming style to use a recursive function instead
to express such a loop:

(defun loop 0
(CM:f-gt-constant z 1.0 23 8)
(unless (zerop (CM:global-logior CM:test-flag 1»

(CM:f-divide-constant-2 z 2.0 23 8)
(loop»)

This example underscores the point that the control structure of the program may be
written in any programming language (even the assembly language of the front-end
computer, if necessary), and in any style suitable to that programming language. Paris
merely extends that language by providing for the parallel processing of data.

3.2 Virtual Machine Model

Paris presents to the user an abstract machine architecture that is very much like the
physical Connection Machine hardware architecture, but with two important exten­
sions: the virtual processor abstraction and a much richer instruction set.

The virtual processor abstraction (on which most higher-level software depends) is
supported at the Paris level. When the Connection Machine system is initialized for a
particular application, the number of virtual processors required by the application may
be specified. If this number exceeds the number of available physical processors, then
the local memory of each processor is split up into as many regions as necessary, and for
every Paris instruction the processors are automatically time-sliced among the regions.
For example, if an application should need to process a million pieces of data, it might
request V = 220 virtual processors. Assume the available hardware to have P = 216

physical processors each with M = 216 bits of memory. Then each physical processor
would support VIP = 16 virtual processors; this ratio VIP, usually denoted N, is
called the virtual processor ratio, or VP-ratio. In this example each virtual processor

10 Connection Machine Model CM-2 Technical Summary

would have MIN:::: 212 bits of memory and would appear to execute code at about
l/N:::: 1/16 the speed of a physical processor.

The time taken to perform a move depends on the length of the field to be moved
and also on the number of virtual processors in use. If each physical processor is
simulating N virtual processors, then issuing a single move instruction causes each
physical processor to execute N move operations. This will take N times as long as if
virtual processors were not in use, but also does N times as much work, so the Mips
measurement is about the same. Indeed, the use of virtual processors usually increases
the measured Mips rate, because the instruction needs to be decoded by the sequencer
only once for N executions, and so the decoding overhead may be amortized.

Each virtual processor has some local memory and also a number of 1-bit flags. Most
of the flags are condition codes such as overflow and float-inexact. The context
flag, however, controls conditional execution: for most Paris operations a processor
executes the operation if its context flag is 1, but does not participate if its context flag
is O. Processors whose context flag is 1 are said to be active; the set of active processors
is called the current conte:tt. A few operations ate unconditional, being executed by all
processors regardless of the values of their context flags. (It is important, for example,
that there be a way to set all context flags to 1 unconditionally!)

3.3 Organization of the Instruction Set

Most Paris operations deal with fields in the local memories of the Connection Machine
processors. A field is specified by two quantities: the address of its first bit, and its
length in bits. Uninterpreted bit fields (as processed by such operations as move, send,
and logand) may be of any length. The length of an unsigned integer may range from 0
to 128 bits, and the length of a signed integer may range from 2 to 128 bits. (Some very
simple arithmetic operations, such as addition, subtraction, and comparisons, are not
limited to 128 bits.) Floating point operations are available in a variety of precisions,
including 32-bit, 64-bit, and 80-bit formats.

Nearly all operations are memory-to-memory; for example, the signed integer ad­
dition operation can add the value of one memory field into another memory field
(two-address mode) or can replace a memory field with the sum of two other fields
(three-address mode). The flags are addressed as if they were 1-bit memory fields.

Many operations come in several forms, differing from each other in up to three
categories:

• Addressing modes. The operations s-add-2 and s-add-3 both perform signed
integer addition, but the one takes two addresses and a length and the other takes
three addresses and a length. The operation s':'add takes three addresses and
three lengths,allowing the three fields involved to be of different sizes. Anything
s-add-2 can do, s-add-3 can do by duplicating one address operand; anything
s-add-3 can do, s-add can do by triplicating the length operand. The concise
addressing modes improve performance by reducing total instruction size; the

Cbapter 3 Tbe Paris Language 11

front end has fewer operands to send to the sequencer, and the sequencer has
fewer operands to decode.

• Conditionalization. Most operations are executed only by active processors, but
some are executed unconditionally by all processors. For example, the operation
move copies one memory field to another for processors in the current context, but
the operation move-always copies one memory field to another in all processors,
regardless of the current context.

• Immediate operands. The operation s-add-2 adds one memory field into another
in all active processors; the operation s-add-constant-2 adds an immediate
quantity, sent from the front end as part of the instruction, into a memory field
in all active processors. Note that the word "constant" in the instruction name
is a relative term. The immediate operand is constant in being the same for all
the data processors, but need not be constant within the front-end program; the
front end may calculate the value to be sent to the sequencer.

3.4 Instruction Set Summary

The following sections list groups of related Paris instructions, with commentary, to
illustrate the expressive power of the instruction set. This is not a complete list of
Paris operations.

The names of the Paris operations are listed here in a compromise format. The
name to be used in a Lisp program is derived by prefixing a name given below with
"CM:"; the name to be used in a C program is derived by prefixing a name given below
with "CM_" and converting all hyphens to underscores. Thus the operation s-add-2
would be called CM: s-add-2 in Lisp code and CM_s_add..2 in C code.

3.4.1 Operations on Bit Fields

move move-constant move-always
logand logand-constant logand-always
logior logior-constant logi~r-always

logxor logxor-constant logxor-always
logeqv logeqv-constant logeqv-always
lognand lognand-constant lognand-always
lognor lognor-constant lognor-alvays
logandc1 logandc1-constant logandc1-always
logandc2 logandc2-constant logandc2-alvays
logorc1 logorc1-constant logorc1-alvays
logorc2 logorc2-constant logorc2-alvays
lognot array-fetch array-store
load-context store-context set-context
move-reversed move-zero latch-Ieds

12 Connection Machine Model CM-2 Technical Summary

Every instruction in this group is executed by each data processor independently
of the other data processors.

The move operations copy data from one memory field to another. Assuming only
one virtual processor per physical processor and 32·bit fields, a move instruction, in­
cluding all decoding overhead, takes about 21 microseconds; with 64K processors, this
represents an aggregate execution rate of 3000 million individual 32-bit move operations
per second.

All ten nontrivial binary bitwise boolean operations are provided. The array-fetch
and array-store perform indexed load and store operations; every data processor has
a small a.rray of items within it, and each data processor may have a different index
into its a.rray. The load-context, store-context, and set-context operations are
special cases of move optimized for use on' the context flag.

The red lights on the CM-2 cabinet may be turned off and on by the latch-leds
instruction; there is one light for every 16 processors.

3.4.2 Operations on Signed Integers

s-add s-add-constant s-add-carry
s-subtract s-subtract-constant s-subtract-borrow
s-mu1tiply s-multiply-constant s-add-flags
s-divide s-divide-constant s-mod
s-max ' s-max-constant a-rem
s-min s-min-constant s-random
s-eq s-eq-constant s-eq-zero
s-ne s-ne-constant s-ne-zero
s-gt s-gt-constant s-gt-zero
s-ge s-ge-constant s-ge-zero
s-lt s-lt-constant s-lt-zero
s-le s-le-constant s-le-zero
s-shift s-shift-constant s-integer-length
s-abs s-signwn s-new-size
s-negate s-count-bits a-isqrt

Every instruction in this group is executed by each active data processor independently
of the other data processors. Most of these are operations familiar to any assembly
language programmer: arithmetic operations, comparisons, absolute value, negate, and
shift. The s-new-size operation copies a signed integer from one field to another of
different size, performing sign extension or overfiow checking as appropriate.

Assuming only one virtual processor per physical processor and 32-bit fields, an
s-add instruction, including all decoding overhead, takes about 26 microseconds; with
64K processors, this represents an aggregate execution rate of 2500 million 32-bit ad­
ditions per second.

Chapter 3 The Paris Language 13

3.4.3 Operations on Unsigned Integers

u-add u-add-constant u-add-carry
u-subtract u-subtract-constant u-subtract-borrow
u-multiply u-multiply-constant u-add-flags
u-divide u-divide-constant u-mod
u-max u-max-constant u-rem
u-min u-min-constant u-random
u-eq u-eq-constant u-eq-zero
u-ne u-ne-constant u-ne-zero
u-gt u-gt-constant u-gt-zero
u-ge u-ge-constant u-ge-zero
u-lt u-lt-constant u-integer-from-gray-code
u-le u-le-constant u-gray-code-from-integer
u-shift u-shift-constant u-integer-length
u-abs u-signum u-new-size
u-negate u-count-bits u-isqrt

Every instruction in this group is executed by each active data processor indepen­
dentlyof the other data processors. Most of these operations correspond to those listed
in the preceding section, but operate on unsigned integers rather than signed integers.
Unusual are two instructions that convert values between unsigned binary representa­
tion and a binary reflected Gray code representation; these have some utility in the
Connection Machine architecture in performing low-level addressing calculations, be­
cause the processor addresses used by the router and those used by the NEWS grid are
related by a Gray encoding.

3.4.4 Operations on Floating Point Numbers

f-move f-move-constant f-move-decoded-constant
f-adci f-add-constant f-square
f-subtract f-subtract-constant f-integer-power
f-multip1y f-mu1tiply-constant f-integer-power-constant
f-divide f-divide-constant f-mod
f-max f-max-constant f-rem
f-min f-min-constant f-random
f-eq f-eq-constant f-eq-zero
f-ne f-ne-constant f-ne-zero
f-gt f-gt-constant f-gt-zero
f-ge f-ge-constant f-ge-zero
f-1t f-1t-constant f-lt-zero
f-1e f-1e-constant f-le-zero
f-scale f-scala-constant f-logb
f-abs f-signum f-new-size

14 Connection Macbine Model CM-2 Technical SU11iInaty

f-negate
f-sin
f-cos
f-tan
f-sinh
f-cosh
f .. tanh

f-float-signum
f-asin
f-acos
f-atan
f-asinh
f-acosh
f-atanh

f-sqrt
float-exp
float-log
float-atan2
float-power
float-square
float-polynomial

Every instruction in this group is executed by each active data processor independently
of the other data processors. Most. of these are floating point operations familiar to any
assembly language programmer: arithmetic operations, comparisons, absolute value,
negate, scale, and the usual exponential, logarithm, and trigonometric functions.

3.4.5 Type Conversions

s-floor
s-ceiling
s-truncate
s-round

u-floor
u-ceiling
u-truncate
u-round

a-float
u-float

Every instruction in this group is executed by each active data processor indepen­
dently of the other data processors. These operations convert between integer (signed
or unsigned) and floating point representations.

3.4.6 Intraprocessor Vector Operations

f-vector-dot-product
f-vector-3d-cross-product
f-vector-norm
f-matrix-multiply

There are two ways to represent vectors and matrices within the Connection Ma­
chine memory: one may represent a large vector or matrix by placing one element
within each data processor, or one may represent many small vectors or matrices by
placing an entire vector or matrix within each data processor.

The operations in this section assume the latter representation. As an example,
f-matrix-multiply could be used to direct every active processor to multiply two
4 x 4 matrices. These operations could be expressed in terms of the simple floating
point instructions listed in the previous section; they are provided purely for reasons
of convenience and performance.

Computing the single-precision dot product of two vectors of length n with the
:floating point accelerator ta1ces approximately 13n - 5 microseconds. Assuming that
this operation requires 2n - 1 "flops" (n multiplications and n - 1 a:dditions), then the
aggregate execution rate for 64K processors is 10,000 MFlops (that is, 10 gigaflops J.

Chapter 3 The Paris Language

3.4.7 Interprocessor Vector Operations

global-count
global-logand
global-logior
global-s-add
global-s-multiply
global-s-max
global-s-min
global-u-add
global-u-multiply
global-u-max
global-u-min
global-f-add
global-f-multiply
global-f-max
global-f-min

copy-scan
logand-scan
logior-scan
s-add-scan
s-multiply-scan
s-max-scan
s-min-scan
u-add-scan
u-multiply-scan
u-max-scan
u-min-scan
f-add-scan
f-multiply-scan
f-max-scan
f-min-scan

segmented-copy-scan
segmented-logand-scan
segmented-logior-scan
segmented-s-add-scan
segmented-s-multiply-scan
segmented-s-max-scan
segmented-s-min-scan
segmented-u-add-scan
segmented-u-multiply-scan
segmented-u-max-scan
segmented-u-min-scan
segmented-f-add-scan
segmented-f-multiply-scan
segmented-f-max-scan
segmented-f-min-scan

15

Each of these operations takes one datum from each active processor and combines
them in some way.

The global- operations perform. reduction; the set of values, one from each pro­
cessor, is reduced to a single value through application of a bi~ary combining function.
This value is then returned to the front end. For example, global-s-add returns to
the front end the signed integer sum of all the values, and global-f-max treats the
items as floating point values and returns the largest one.

The -scan operations perform. a scan (also called "parallel prefix"). This takes an
array of values, one per virtual processor, and replaces each item with the reduction
of all items occurring before (and possibly including) that item. For example, if there
were eight processors, the argument and result fields might look like this for various
operations:

Argument 3 2 6 4 5 11 0 9
Result of exclusive u-add-scan 0 3 5 11 15 20 31 31
Result of inclusive u-add-scan 3 5 11 15 20 31 31 40
Result of exclusive u-mul tiply-scan 1 3 6 36 144 720 7920 0
Result of inclusive u-multiply-scan 3 6 36 144 720 7920 0 0
Result of exclusive u-max-scan 0 3 3 6 6 6 11 11
Result of inclusive u-max-scan 3 3 6 6 6 11 11 11

On a CM-2 system. with 64K physical processors, a u-add-scan operation on 64K
32-bit fields takes on the order of 300 microseconds.

The -scan operations come in many varieties. One set operates along the NEWS

grid, so as to perform. many scan operations, one for each row or column in the grid.
Another set allows the processors to be segmented into subarrays of differing length,

16 Connection Machine Model CM-2 Technical Summary

performing a scan independently within each subarray. The copy-scan operation is
partkularly useful in these cases; within each row, column, or segment it copies a value
from the first processor into all the other processors.

3.4.8 General Interprocessor Communication

send
send-with-overwrite
send-with-logior
send-with-logand
send-with-s-add
send-with-s-multiply
send-with-s-max
send-with-s-min
send-with-u-add
send-with-u-multiply
send-with-u-max
send-with-u-min
send-with-f-add
send-with-f-multiply
send-with-f-max
send-with-f-min
get

store
store-with-overwrite
store-with-logior
store-with-logand
store-with-s-add
store-with-s-multiply
store-with-s-max
store-with-s-min
store-with-u-add
store-with-u-multiply
store-with-u-max
store-with-u-min
store-with-f-add
store-with-f-multiply
store-with-f-max
store-with-f-min
fetch

Each of the send- operations takes two fields from each active processor, one con­
taining message data and the other containing the address of a destination processor;
each message is deposited into a third field within the memory of the processor specified
as the destination for that message.

The plain send operation assumes that no processor will receive more than one
message. The other send- operations cause multiple messages for the same destination
to be combined in a specified way; they differ only in the combining operation to be
used. Thus send-wi th-overwri te causes one message to be retained and the rest
discarded; send-wi th-s-add causes the destination processor to receive the sum of all
messages sent to it; and so on.

The send operation can process messages at rates varying typically from 80 million
to 250 million per second, depending on the communication pattern. For example, if
each of 64K processors sends a message to some other processor, the entire operation
will take somewhere between 260 and 820 microseconds.

IT send is viewed as a write into a global shared memory, then get is the corre­
sponding read operation.

The store operation is like send, but the processor sending a message specifies not
only which processor is to be the destination but also the memory location into which
to deposit the message. This allows a processor to receive more than one message

Chapter 3 The Paris Language 17

without combining them; it also supports the abstraction of having completely general
pointers into a global shared memory. The fetch operation is to store as get is to
send.

3.4.9 Communication within a Cartesian Grid

send-to-nevs
send-to-nevs-bounded

get-from-nevs
get-from-nevs-bounded

The send-to-nevs operation takes operands that specify a Cartesian coordinate
systein and a direction within that system, and causes every active processor to send
a message to its neighbor in that direction. In the case of a two-dimensional grid
the choices are North, East, West, or South, whence the name "NEWS grid." The
get-from-nevs operation is complementary: each active processor fetches data from
its neighbor. (There is no difference between sending to the West and getting from the
East if all processors are active.)

The ordinary NEWS operations actually organize the grid as a hypertorus: the edges
"wrap around" so that the West neighbor of a processor on the West edge of the grid
is the processor at the East edge of the same row. The -bounded versions of the
operations do not wrap around; data sent past the boundary of the grid is discarded,
and a specified immediate operand is sent in from the opposite boundary. In other
words, the plain operations perform a one-place circular shift' of each row or column,
while the bounded operations perform a one-place end-off shift with a specified value
shifted in.

3.4.10 Sorting

s-rank u-rank f-rank

A ranking operation takes one value from each active processor and calculates for
each processor the rank of that processor's value in a sorted ordering of all the values.
For example, if there were eight processors, the argument and result fields might look
like this:

Argument 3 2 6 4 5 11 o 9
Result of u-rank 2 1 5 3 4 7 o 6

If it is then desired to rearrange the values within the processors according to the
sorted order, the result of the rank operation may be used as a processor address (or to
calculate an address, say within the NEWS grid) for the send operation. An advantage
of separating the ranking process from the actual rearrangement of the data is that one
may perform the ranking step on a small key field and then use the result to reorder a
much larger record. This is usually much faster than simply sorting the large records
in one step.

On a CM-2 system with 64K physical processors, sorting 64K 32-bit fields (ranking
them and then rearranging them) takes about 30 milliseconds.

18 Connection Machine Model CM-2 Technical Summary

3.4.11 Data Transfer between Processors and Front End

s-read-from-processor
u-read-from-processor
f-read-from-processor
s-read-news-array
u-read-news-array
f-read-news-array
s-read-send-array
u-read-send-array
f-read-send-array

s-write-to-processor
u-write-to-processor
f-write-to-processor
s-write-news-array
u-write-news-array
f-write-news-array
s-write-send-array
u-write-send-array
f-write-send-array

The -read-from-processor and -wri te-to-processor commands allow the front
end to read or write a single field within a single data processor. The -array commands
provide a fast block transfer of many data items, stored one per data proessor in either
NEws-address order or send-address order, either to or from a block of memory in the
front end.

3.4.12 Housekeeping Operations

get-stack-pointer get-stack-limit
set-stack-pointer set-stack-limit
push-space , pop-and-discard
cold-boot attach
warm-boot detach

get-stack-upper-bound
set-stack-upper-bound
initialize-random
power-up
set-system-Ieds-mode

A single global stack pointer is maintained that allows part of the local memory
of each data processor to be treated as a stack, typically for the run-time allocation
of automatic variables for a compiled high-level language. The operation push-space
allocates stack space by adjusting the common stack pointer and performs a stack
over;flow check; the operation pop-and-discard de allocates stack space.

The initialize-random initializes the pseudo-random number generator used by
the operations s-random, u-random, and f-random.

The operations cold-boot, warm-boot, attach, detach, and power-up are used
to initialize the parallel processing unit and to assign sections for use by particular
front-end computers.

The set-system-leds-mode operation determines whether the red lights on the
CM-2 cabinet are to display internal status information or are to be controlled by the
user program through the latch-Ieds instruction.

19

4 Processor Architecture

This chapter describes details of the hardware in the CM-2 parallel processing unit.
Most of these details are hidden from the user by the Paris interface and usually
are of no concern to the Connection Machine application programmer. However, an
understanding of these details is helpful in predicting program performance.

The Connection Machine Model CM-2 parallel processing unit contains thousands
of data processors. Each data processor contains:

• an arithmetic-logic unit (ALU) and associated latches

• 64K bits of bit-addressable memory

• four I-bit flag registers

• optional floating point accelerator

• router interface

• NEWS grid interface

• I/O interface

The data processors are implemented using four chip types. A proprietary custom
chip contains the ALU, flag bits, router interface, NEWS grid interface, and I/O interface
for 16 data processors, and also contains proportionate pieces 'of the router and NEWS

grid network controllers. The memory consists of commercial R.AM chips. The floating
point accelerator consists of a custom floating point interface chip and a floating point
execution chip; one of each is required for every 32 data processors. A fully configured
parallel processing unit contains 64K data processors, and therefore contains 4096
processor chips, 2048 floating point interface chips, and 2048 floating point execution
chips, and half a gigabyte of R.AM.

4.1 Data Processors

A CM-2 ALU consists of a 3-input, 2-output logic element and associated latches and
memory interface. The basic conceptual AL U cycle first reads two data bits from mem­
ory and one data bit from a flag; the logic element then computes two result bits from
the three input bits; finally, one of the two results is stored back into memory and the
other result into a flag. One additional feature is that the entire operation is conditional
on the value of a third flag; if the flag is zero, then the results for that data processor
are not stored after all.

The logic element can compute any two boolean functions on three inputs; these
functions are simply specified (by the sequencer) as two 8-bit bytes representing the
truth tables for the two functions.

This simple ALU suffices to carry out, under control of the sequencer, all the oper­
ations of the Paris instruction set. Consider, for example, addition of two k-bit signed
integers. First the virtual processor context flag is loaded into a hardware flag register

20 Connection Machine Model CM-2 Technical Summary

(which is then used as the condition flag for all remaining ALU operations). Next a
second hardware flag is cleared for use as a carry bit. Next come k iterations of an ALU

cycle that reads one bit of each operand from memory and also the carry bit, computes
the sum (a three-way exclusive OR.) and carry-out (a three-input majority function),
and stores the sum back into memory and the carry-out back into the carry flag. These
cycles start with the least significant bits of the operands and proceed toward the most
significant bits. The last of the k cycles stores the carry-out into a different hardware
flag, so that the last two carry-outs may be compared to determine whether overflow
has occurred. Arithmetic is therefore carried out in a bit-serial fashion; at about half a
microsecond per bit, plus instruction decoding and other overhead, a 32-bit add takes
about 21 microseconds. With 64K processors all computing in parallel, this produces
an aggregate rate of 2500 Mips (that is, 2$ billion 32-bit adds per second). All other
Paris operations are carried out in like fashion.

The ALU cycle is broken down into subcycles. On each cycle the data processors
can execute one low-level instruction (called a nanoinstruction) from the sequencer
and the memories can perform one read or write operation. The basic AL U cycle for a
two-operand integer add consists of three nanoinstructions:

LOADA: read memory operand A, read flag operand, latch one truth table
LOADB: read memory operand B, read condition flag, latch other truth table
STORE: store memory operand A, store result flag

Other nanoinstructions direct the router, NEWS grid, and floating point accelerator,
initiate 110 operations, and perform diagnostic functions.

4.2 The Router

Interprocessor communication is accomplished in the CM-2 parallel processing unit
by special-purpose hardware. Message passing happens in a data parallel fashion; all
processors can simultaneously send data into the local memories of other processors, or
fetch data from the local memories of other processors into their own. The hardware
supports certain message-combining operations: that is, the communication circuitry
may be operated in such a way that processors to which multiple messages are sent
receive the bitwise logical OR. of all the messages, or the numerically largest, or the
integer sum.

Each CM-2 processor chip contains one router node, which serves the 16 data
processors on the chip. The router nodes on all the processor chips are wired together
to form the complete router network. The topology of this network happens to be a
boolean n-cube, but this fact is not apparent at the Paris level. For a fully configured
CM-2 system, the network is a 12-cube connecting 4096 processor chips. Each router
node is connected to 12 other router nodes; specifically, router node i (serving da,ta
processors 16i through 16i + 15) is connected to router node i if and only if Ii - il :;:: 2k
for some integer k, in which case we say that routers i and i are connected along
dimension k.

Chapter 4 Processor Architecture 21

Each message travels from one router node to another until it reaches the chip
containing the destination processor. The router nodes automatically forward messages
and perform some dynamic load balancing. For example, suppose that processor 117
(which is processor 5 on router node 7, because 117 = 16 x 7 + 5) has a message
M whose destination is processor 361 (which is processor 9 on router node 22). Since
22 = 7 + 24 - 2°, this message must traverse dimensions 0 and 4 to reach its destination.
In the absence of congestion, router 7 forwards the message to router 6 (6 = 7 - 2°),
which forwards it to router 22 (22 = 6 + 24), which delivers the message to processor
361. On the other hand, if router 7 has another message that needs to use dimension
0, it may choose to send message M along dimension 4 first, to router 23 (23 = 7 + 24),

which then forwards the message to router 22, which then delivers it.

The algorithm used by the router can be broken into stages called petit cycles. The
delivery of all the messages for a Paris send operation might require only one petit cycle
if only a few processors are active, but if every processor is active then typically many
petit cycles are required. It is possible for a message to traverse many dimensions,
possibly all 12, in a single petit cycle, provided that congestion does not cause it to be
blocked; the message data is forwarded through multiple router nodes in a pipelined
fashion. A message that cannot be delivered by the end of a petit cycle is buffered
in whatever router node it happens to have reached, and continues its journey during
the next petit cycle. If petit cycles are regarded as atomic operations, then the router
may be viewed as a store-and-forward packet-switched network. Within a petit cycle,
however, the router is better regarded as a circuit-switched network, where dimension
wires are assigned to particular messages whose contents are then pumped through the
reserved circuits.

Each router node has a limited At u, distinct from those for the data processors.
During each petit cycle, each router node checks to see if its buffers hold several mes­
sages that are all going to the same processor. If so, the messages are combined. This
may be done by taking the numerically greatest, summing them, taking the bitwise
logical OR, or by arbitrarily discarding all but one. Other combining functions are
implemented in terms of these. For example, combining with bitwise logical AND is
performed by inverting the original message data, sending it with oR-combining, and
re-inverting received messages. (Such tricks are implemented by the sequencer, trans­
parently to the Paris user.) This hardware support for combining accelerates such
Paris instructions as send-vith-logand, send-with-s-add, and send-with-u-max.
The combining hardware also combines read requests during execution of the Paris get
instruction, so that a value fetched once from a processor can be returned to many
requestors in a single petit cycle.

Each router node also contains specialized logic to support virtual processors. When
a message is to be delivered by a router node, it is placed not only within the correct
physical processor, but in the correct region of memory for the virtual processor origi­
nally specified as the message's destination.

22 Connection Machine Model CM-2 Technical Summary

4.3 The Floating Point Accelerator

In addition to the bit-serial data processors described above, the CM-2 parallel process­
ing unit has an optional floating point accelerator that is closely integrated with the
processing unit. There are two possible options for this accelerator: Single Precision
or Double Precision. Both options support IEEE standard floating point formats and
operations. They each increase the rate of floating point calculations by more than
a factor of 20 (see Chapter 15). Taking advantage of this speed increase requires no
change in user software.

The hardware associated with each of these options consists of two special purpose
VLSI chips, a memory interface unit and a floating point execution unit, for each pair
of CM-2 processor chips.

As an example of the operation of the floating point accelerator, consider the exe­
cution of a two-operand floating point instruction such as f-add-2 or f-multiply-2.
Execution proceeds in five stages; each stage is generally comprised of 32 nanoinstruc­
tion cycles (one cycle for each of the 32 data processors on the two CM-2 processor
chips).

1. The first operand for each of 32 data processors is transferred from memory to
the interface chip.

2. The first operand is transferred from the interface chip to the floating point
execution chip. (The floating point execution chip is capable of storing 32 values
of a given precisio~.) Simultaneously, the second operand is transferred from
memory to the interface chip.

3. The second operand is transferred from the floating point interface chip to the
floating point execution chip, where the operation is performed. At the end of
this stage, the floating point execution chip contains the 32 results.

4. The results are transferred from the floating point execution chip to the interface
chip.

5. The results are transferred from the interface chip to memory.

If the virtual processor ratio is N, this process is pipelined so as to require only 3N + 2
stages instead of 5N stages.

23

5 The Role of the Front End

A front-end computer is a gateway to the Connection Machine system. It provides
software development tools, software debugging tools, and a program execution en­
vironment familiar to the user. From the point of view of the user, the Connection
Machine environment appears to be an extended version of the normal front-end envi­
ronment. In addition to the usual suite of tools and languages provided by the front
end, the environment includes at least one resident compiler or interpreter for a Con­
nection Machine language. The front end also contains specialized hardware, called a
Front-End Bus Interface (or FEB I), which allows communication with the Connection
Machine.

A front end can be any computer system for which a FEBI exists. At the present
time, a FEBI is available for most Digital Equipment Corporation VAX 8000 series
minicomputers and for Symbolics 3600 series Lisp machines. The choice of which
computer to use as a Connection Machine system front end depends on the nature
of the application and on the preferences of the intended users. For example, an
artificial intelligence application such as visual object recognition may be most naturally
implemented in CM-Lisp, and would therefore work best with a Symbolics front end,
whereas scientific applications normally implemented in Fortran would require a VAX

front-end computer. Different types of front-end computers may be attached to the
same Connection Machine and be running applications simultaneously. In addition,
a single front-end computer may contain more than one FEB I to support up to four
time-sharing users running Connection Machine applications simultaneously.

The front-end computer serves three primary functions in the Connection Machine
system:

• It provides an applications development and debugging environment.

• It runs applications and transmits instructions and associated data to the Con­
nection Machine parallel processing unit.

• It provides maintenance and operations utilities for controlling the Connection
Machine and diagnosing problems.

5.1 Applications Development

Users create Connection Machine programs in the development environment provided
by the front end. The editors, file systems, and debugging tools are those that are part
of the front end's normal environment. The resident Connection Machine language,
which contains parallel extensions to a language already familiar to the user, is used to
express algorithms exploiting the data parallel structure of a problem. Thus, users with
very little experience in data parallel programming may begin to use the Connection
Machine immediately.

24 Connection Machine Model CM-2 Technical Summary

The native debugging facilities of the front end are augmented by simulators pro­
vided as part of the Connection Machine software system. The use of simulators can
enhance productivity of users by allowing them to debug application programs, at least
in part, without tying up the Connection Machine hardware.

5.2 Running Connection Machine Applications

Once a Connection Machine program has been written, it is executed on the front­
end computer. Most statements are translated directly to the native machine code of
the front end. Those source-level constructs that correspond to Connection Machine
(data parallel) operations are translated to a mix of native machine code and memory
operations addressing the FEBI. These are totally transparent to the user.

Data that resides in the Connection Machine need not be returned to the front
end immediately. In typical programs, data structures are created in the Connection
Machine memory and are used in precisely the same manner as structures in front-end
memory. The difference is that operations on the Connection Machine structures can
be carried out on many data items in parallel.

Facilities are provided for users to run their programs in interactive or batched
mode. Typically the interactive mode will be used during initial program debug, where
the user will run the same program repeatedly under control of a debugger, or when
the program requires user intervention. Programs that do not require interaction may
be placed on a batch queue and run in the background.

5.3 Maintenance and Operations Utilities

The front-end computer also provides utilities to support these functions:

• Allocating and deallocating Connection Machine resources

• Querying Connection Machine system status

• Diagnosing hard ware problems

These tools are designed to be compatible with the style and operation of similar
tools in the front-end environment.

Information on what segments of the Connection Machine system are in use is made
available through status-querying functions. "Attach" and "detach" utilities are pro­
vided to allocate and deallocate all or a legal subset of Connection Machine processors
to a user logged into a front-end computer. The minimum unit of allocation is what­
ever is attached to a single sequencer. See Chapter 2 for a description of hardware
associated with a sequencer. The following table lists permitted configurations.

Chapter 5 The Role of the .Front End

Total number of
processors

16K
32K
32K
64K

Number of
sequencers

2
2
4
4

Processors per
sequencer

8K
16K
8K

16K

Permitted attachable
subsets

8K,16K
16K,32K
8K, 16K, 32K

16K, 32K, 64K

25

Tools are provided for initializing an allocated sequencer, a procedure known as
"booting" the Connection Machine system. There are two levels of initialization pro­
vided. The more drastic is "cold boot," which initializes the state of the attached
sequencer (including downloading fresh microcode to the sequencer's writable control
store) and also initializes the associated Connection Machine data processors (including
clearing all memory and initializing per-processor memory-resident global data). The
milder form of initialization is called "warm boot," which resets only the state of the
sequencer without touching Connection Machine processor memory. When debugging
programs, "warm boot" can be used to get the sequencer to a known state in order
to be able to examine Connection Machine memory after a program crash. Note that
neither of these procedures will affect other users running at the same time on other
segments of the Connection Machine, nor will they affect unallocated processors.

A complete set of diagnostics is provided with the Connection Machine software.
Facilities are also provided to make it easy to send error reports and details of diagnostic
failures through an electronic message network to the Customer Support Group at
Thinking Machines Corporation.

5.4 The Digital Equipment Corporation VAX As a Front End

Currently any Digital Equipment Corporation VAX that contains a VAXBI I/O bus and
runs the ULTR.IX operating system may be used as a Connection Machine system front
end. The VAXBI bus FEBI board provided by Thinking Machines Corporation is de­
signed to allow the user program access to the Connection Machine system sequencer
and Nexus registers with minimum. system overhead. To accomplish this, the ULTR.IX

device driver for the FEBI maps the FEBI registers into the address space of the Connec­
tion Machine applications program, which then reads and writes the registers as if they
were VAX processor memory. Thus, no system overhead at all is incurred in performing
Connection Machine I/O. This scheme works especially well with the two-processor
VAX computers in the 8000 series, as one processor can be dedicated to running the
Connection Machine while the other performs normal time-sharing duties.

All Connection Machine languages are supported in the VAX environment. A VAX

front end may contain more than one FEBI (up to four).

5.5 The Symbolics Lisp Machine As a Front End

Any Symbolics 3600 series Lisp nw:hjne can be used as a Connection Machine system
front end. The FEBI board provided by Thinking Machines Corporation is designed to

26 Connection Machine Model CM-2 Technical Summary

allow the user program access to the Connection Machine system sequencer and Nexus
registers with minimum system overhead. To accomplish this, the FEBI registers are
mapped into into the Lisp address space; a Connection Machine applications program
can then read and write the registers as if they were 3600 processor memory. Since
Lisp machines are single user workstations, only one FEBI per front end is supported.

The languages currently supported for the Symbolics Lisp machine front end are
CM-Lisp, *Lisp, and Paris.

27

6 Connection Machine 110 Structure

The Connection Machine I/O structure allows data to be moved into or out of the
parallel processing unit at aggregate peak rates as high as 320 megabytes per second
for a system with multiple I/O controllers. Input/output is done in parallel, with as
many as 2K data processors able to send or receive data at a time. All transfers are
parity checked on a byte-by-byte basis.

The data processors send and receive data via I/O controllers, which interface
through an 1/ a channel to Connection Machine data lines. These 1/ a controllers, in
turn, operate under the control of the parallel processing unit sequencers. There may be
as many as four sequencers in a fully configured system. A maximum 1/ a configuration
for a 64K processor Connection Machine system includes eight 1/ a channels, each of
which permits input and output operations for a set of 8K data physical processors.

An I/O controller treats its 8K physical processors as two banks of 4K. Each CM-2
processor chip contains 16 data processors and has one I/O line, so each bank of 4K
processors is implemented on 256 chips and has 256 I/O lines. A bank can therefore
pass 256 bits in parallel at a time to its associated I/O controller. Each sequencer
controls a bank switch that determines which bank is active.

I/O controllers store data internally in 288-bit chunks (256 data bits plus 32 parity
bits). Parity is checked each time data is transferred between a controller and the
data processors. Each controller has the ability to store 512 of these 288-bit chunks in
its own internal memory. Data transfers between 1/ a controllers and data processors
proceed under control of a Connection Machine sequencer. Two I/O controllers may
be active simultaneously on each sequencer.

A Connection Machine I/O bus runs from each I/O controller to the devices it
controls. This bus is 80 bits wide (64 data bits, 8 parity bits, and 8 control bits). The
I/O controller multiplexes and demultiplexes between 256-bit processor chunks and
64-bit I/O bus chunks. The controller also acts as arbitrator, allocating bus access to
the various devices on the bus.

Since standard peripheral devices do not operate at the speeds that the Connection
Machine system itself can sustain, it is often desirable to place multiple devices on
multiple buses. For example, each of eight disk units could interface to several sections
of data processors via several I/O controllers, each disk reading and writing data in
parallel with the others. In this way, up to eight times the aggregate transfer rate
of a single disk unit is achieved. Alternatively, devices may be interfaced to a single
bus, interfaced in tum to I/O controllers in all sections of the parallel processing unit,
allowing data to be moved directly between that device and any part of the processing
unit. Typical configurations use a mix of these techniques. Some devices are connected
to multiple controllers. Others connect to just one controller, and the Conection Ma­
chine router is used as necessary to move data to its final destination in the parallel
processing unit.

28

7 The Connection Machine DataVault

The DataVault is the Connection Machine mass storage system. It combines very high
reliability with very fast transfer rates for large blocks of data. The Data Vault holds
five gigabytes of data, expandable to ten gigabytes. It transfers data at a rate of 40
megabytes per second. Eight Data Vaults, operating in parallel, offer a combined data
transfer rate of 320 megabytes per second and hold up to 80 gigabytes of data.

Each Data Vault unit stores its data in an array of 39 individual disk drives. Data
is spread across the drives. Each 64-bit data chunk received from the Connection
Machine I/O bus is split into two 32-bit words. Mter verifying parity, the DataVault
controller adds 7 bits of Error Correcting Code (ECC) and stores the resulting 39 bits
on 39 individual drives. Subsequent failure of anyone of the 39 drives does not impair
reading of the data, since the ECC code allows any single bit error to be detected and
corrected. Although operation is possible with a single failed drive, three spare drives
are available to replace failed units until they are repaired. The ECC codes permit
100% recovery of the data on the failed disk, allowing a new copy of this data to be
reconstructed and written onto the replacement disk. Once this recovery is complete,
the data base is considered to be healed.

The Data Vault supports job staging and data base storage. New jobs may be loaded
onto the DataVault from external devices such as magnetic tape drives. Once in the
DataVault, a maximum-size 512-megabyte memory image may be loaded in under 15
seconds. This same 512-x,negabyte memory image may be loaded in less than 2 seconds
on a system with eight DataVaults operating in parallel. Running jobs may use the
Data Vault for file storage, opening and accessing files as needed.

7.1 The File Server

All Data Vault operations take place under the control of a file server, which is a stan­
dard minicomputer. File server commands include creating files, as well as opening,
reading, writing, and determining status. Commands to be executed by the file server
are passed to it over the Connection Machine I/O bus. Commands such as "open"
or "status" that do not involve data transfers are completed by the file server, and a
completion message is returned via the I/O bus to the front end.

The file server supports "read" and "write" commands that can specify a field of
any size. The data in this field is then transferred between each Connection Machine
processor and the Data Vault.

In systems with multiple Data Vaults, a single master file server controls the file
creation and deletion process, although the file itself may be spread across multiple
units. Each file server that has a portion of the file maintains a file of disk block
locations that allows files to be mapped into disk blocks. These files are not stored
on the Data Vault itself. They are stored redundantly on two independent file server
disks to prevent a single medium failure from blocking access to the file. Two write
operations are performed each time the information is changed. When a file is opened,

Chapter 7 The Connection Machine Data Vault 29

the block location information is moved to the file server's main memory for faster
access during subsequent reads and writes. File space is allocated in blocks of 32K
bytes.

1.2 Off-line Loading and Backup

Off-line storage devices (such as magnetic tape) interface directly to the file server
minicomputer. New data may be loaded into the Data Vault without involvement of
the rest of the Connection Machine system. Dumping of Data Vault information to
magnetic tape for backup also occurs without involving the rest of the system.

1.3 Writing and Reading Data

Data transfers move information between parallel variables in Connection Machine
memory and DataVault files. A single read or write moves a specified number of
bits (which could correspond to a single parallel variable or to a series of parallel
variables that are contiguous in memory) into or out of each Connection Machine
virtual processor.

Reading and writing of data are very similar operations. Here, the process of writing
data will be described under the assumption that no errors occur.

A write operation is initiated by the front end. The front en,d issues a write instruc­
tion to the appropriate sequencer, which in turn activates the necessary I/O controllers.
The request is received by the Data Vault file server, which translates the logical file
request into a series of physical disk addresses.

Data from Connection Machine memory is moved to the I/O controllers, with parity
checked for each byte, and stored in the 288-bitx512 buffer memories on those con­
trollers. When the buffers are sufficiently full, the I/O controller signals its readiness
to send data to the DataVault. At this point, the Connection Machine processors are
free to proceed with other tasks.

Data in the 1/ a controllers is split into 64-bit units. Eight parity bits are added and
the resulting 72-bit unit is sent on a Connection Machine I/O bus to the DataVault.

Parity of data arriving at the Data Vault is checked twice, by two independent sets
oflogic. If both parity checkers agree that the data is valid, the 64 bits of data are split
into two 32-bit words. For each 32-bit word, two independent ECC circuits generate 7
ECC bits for the data. As long as both units generate the same code, the resulting 39
bits are split up and each bit is sent to one of 39 disk buffers. As these buffers fill up,
the data is written out to the individual disks.

When all data has been moved from Connection Machine memory through the 1/ a
controllers and the disk buffers and physically written on the disks, a signal is returned
to the front end that the transfer is complete.

Data being read into the Connection Machine memory from the Data Vault follows
the same path as for writing, but in reverse order), through the disk buffers, the I/O
bus, and the 110 ·controller buffers. The data coming off the disks is checked by two

30 Connection Machine Model CM-2 Technical Su:cnmary

independent ECC circuits. Errors are checked for, corrected, and logged, and the data
is written to the I/O bus.

7.4 Drive Failure and Data Base Healing

A transfer status may indic~te that a single disk drive is failing and that the ECC

has been required to correct the data. At this point, system operation should be
interrupted to verify that, in fact, a drive has failed. If it has, it must be switched out
of the array and a spare drive switched in. Switching and sparing is done automatically
by the Data Vault. To assure integrity of the data, the information on the failed disk is
reconstructed and written onto the spare. The ECC information stored along with each
32 bits of data allows this reconstruction. Regeneration of this data takes about ten
minutes, after which the data is again protected against the failure of another drive.

Repair or replacement of the failed drive allows it to return to active use. Restora­
tion of data at this point is very straightforward. It is only necessary to copy the
contents of the spare drive that has been used in the interim. Once this transfer is
completed, the repaired drive may be returned to active status. The spare drive is
again marked as unused, and the data base is fully healed.

31

8 High-Resolution Graphics Display

The Connection Machine graphics system consists of a framebuffer module and a high­
resolution 19-inch color monitor. The framebuffer, unlike the Data Vault, is not con­
nected to a Connection Machine I/O bus; instead it is a single module that resides
in the Connection Machine backplane in place of an I/O controller. This direct back­
plane connection allows the framebuffer to receive data from the Connection Machine
processors at rates up to 1 gigabit per second.

The framebuffer contains a large video memory, which holds the actual raster image
data. There are 28 planes of memory, divided into 4 buffer areas: red, green, and blue
areas having 8 planes each, and an "overlay" area with 4 planes. Each plane provides
one bit per pixel, and contains enough memory for 221 (over two million) pixels. There
are also three color lookup tables (red, green, and blue). Each color lookup table is 8
bits wide and has 259 entries; the first 256 entries handle data from the red, green, or
blue area, and the last 3 entries are used for overlay processing.

The region displayed from the video memory planes is software configurable. Pan
and zoom logic allows a specified subrectangle of the video memory to be displayed,
magnified by an integral zoom factor. The subrectangle displayed at zoom factor 1 (no
magnification) is typically 1280 X 1024 pixels.

The framebuffer uses 24 bits of data per pixel to produce an analog video signal to
be supplied to the monitor. The 24 bits for a pixel may be computed in one of two
ways, depending on a software selectable mode. (To simplify the discussion, the effects
of the overlay planes are ignored for the moment.)

In 24-bit mode, 24 bits are read from the red, green, and blue planes. For each of
the three colors, the 8 bits from the video memory for that color are used as an index
into the corresponding color lookup table. The 8 bits read from the color lookup table
are then used to produce the analog signal for that color. In the simplest case, entry
j of each color lookup table can be initialized to contain the value j (0 :$ j :$ 255),
so that the values in the video memory in effect drive the digital-to-analog converters
directly; but the color lookup tables can be initialized in other ways so as to perform
gamma correction for the particular monitor being used.

In 8-bit mode, only 8 bits are read from the video memory for each pixel The same
8-bit value is used as an index into all three color lookup tables (red, green, and blue);
the three table values are then used to produce the analog red, green, and blue signals
as for 24-bit mode. In this mode the color lookup tables provide a palette of up to
256 distinct colors. The 8 bits for each pixel may be taken from anyone of the color
areas (red, green, or blue) of the video memory, depending on a software-controlled
submode. (Of course, an image read from from the "red" color area in 8-bit mode is
not restricted to shades of red, because each 8-bit pixel value is used to index all three
color lookup tables and thereby produce signals for all three colors. In this context
the three areas of video memory are called "red" and "green" and "blue" merely for
purposes of identifying areas of the video memory within which three distinct images

32 Connection Machine Model CM-2 Technical Summary

may be stored.)
Only the 24-bit mode can display images containing more than 256 different pixel

color values. The 8-bit display mode does offer two advantages, however. One is
that only one-third as much data must be transferred from the Connection Machine
processors for each displayed image. The other is that in the 8-bit display mode the
framebuffer supports double' buffering of output data. While data is being displayed
on the monitor from, say, the "red" video memory planes, the "green" planes may be
loaded from the Connection Machine processors. Once the data has been completely
loaded, a software command can cause the roles of the "red" and "green" memories
to be reversed. The reversal does not occur immediately, but rather during the next
vertical retrace. The image in the "green" planes is then displayed, and the Connection
Machine processors can begin to load the next image into the "red" planes. In this
manner the user never sees parts of two different images on the screen at the same
time; the change is synchronized and appears to be instantaneous.

In either 8-bit mode or 24-bit mode, the region of video memory to be displayed on
the monitor is defined by a table of address pointers that indicate the starting point
within the video memory of each scan line. The framebuffer can hold several of these
scan line tables at one time, and can switch .between scan line tables during vertical
retrace in the same way that it can switch between buffers in double buffered 8-bit
mode.

The overlay planes make it easy to overlay a full color image with independent or
temporary images such ~ text labels and cursors. Overlay information may be white,
black, or one of the three overlay colors specified in the last three entries of the color
lookup tables.

The usual way to organize an image within the Connection Machine memory is one
pixel per virtual processor, with the virtual processors organized into a two-dimensional
NEWS grid. Any subrectangle of such a NEWS grid may be transferred to the framebuffer
for display.

The framebuffer supports a number of output formats under software control. The
two principal formats are 1280 X 1024 pixels for a 60 Hz non-interlaced high-resolution
monitor, and NTSC format, which is of broadcast resolution and is suitable for use with
a standard television monitor or videotape recorder.

33

9 Languages

The data parallel style of programming associates a processor with every element of
a program's data. There are very few differences between a data parallel program
and a conventional serial program. In both cases, a single sequence of instructions is
used, with a serial control structure. the Connection Machine system provides parallel
processing without requiring the applications programmer to indicate synchronization
explicitly in programs.

Because the data parallel and serial programming styles are similar, they utilize
the same languages. The languages currently supported for the Connection Machine
system are C*(pronounced "see-star"), Fortran, *Lisp (pronounced "star-lisp"), and
CM-Lisp (pronounced "see-em-lisp"). The Fortran 8x array extensions to Fortran 77
are implemented directly, with no changes to the standard language definition. Each of
the other three languages is very close to the corresponding serial language specification,
but in each case extends it by adding a new data type; very little new syntax is added,
the power of parallelism arising instead from extending the meaning of existing program
syntax when applied to parallel data.

There are some broad themes connnon to any data parallel programming language
that are useful to keep in mind when examining a language description:

Establishing Parallel Data Structures. Data parall~l programs can be ex­
pressed in terms of the same data structures used in serial programs. The difference is
that the individual elements of a composite data structure, such as an array, are spread
across processing elements, so that each data element has an associated processor. Since
each processing element has its own dedicated memory, the task of associating data
elements with processing elements is simply the task of assigning memory locations
across processors. This assignment is done by the compilers when the array is first
declared or created. In C*, the data types in a declaration implicitly specify whether a
data structure is parallel In Fortran, the compiler detennines whether an array should
be considered serial or parallel according to how it is used in the program. In * Lisp and
CM-Lisp, data structures are created dynamically, and different creation operations are
used by the programmer to indicate creation of serial or parallel data structures.

Establishing Linkages among Data Elements. During the execution of a pro­
gram, data from different problem elements are used together. Data parallel programs
use pointers or array subscripts to establish connections between processors and hence
between their data elements. An array of pointers, itself a parallel data structure,
establishes an arbitrary pattern of intercommunication. If the required patt~ are
regular and local, such as processors sharing data with tlieir nearest neighbors, then
no explicit array of pointers is needed because each processor can easily calculate the
address of its neighbors as needed.

Establishing Scalar Data. Some data is not parallel eFor example, it is wasteful
to place a copy of a constant in every processor's memory since the constant can
be efficiently broadcast as needed from a central point. For this reason, scalar data

34 Connection Machine Model CM-2 Technical Summary

(whether constant or variable) is declared as such and stored in the front end.
Operations on Parallel Data Structures. In a data parallel program, a single

operation can affect all the elements of a parallel data structure at once, since each
data element has its own processor. The same operation in a serial program must be
expressed as a loop, with the basic operation applied sequentially to all the elements of
the array. Some parallel operations are totally local to individual processing elements.
The required data elements are all in the processing element's memory and the result
is to be stored there. Other parallel operations have implicit communications cycles
imbedded in them since some or all of the required data resides in other processors'
memories.

Operations on Mixed Data. Operations that use both scalar and parallel data
typically involve replication or reduction. H a scalar value participates in an operation
that yields a parallel result (such as adding a constant to every element of an array), the
scalar value is replicated by broadcasting it to all processors at once. If parallel data
participates in an operation that yields a scalar result (such as finding the sum of all of
the elements of an array), a reduction operation is used; given one processor for each
data element, such an operation can be completed in time logarithmic in the number
of data elements, by organizing the operations on the data into a balanced binary
tree. (This organization is carried out by the underlying language implementation.)
As with the sequential programming style, data parallel programmers do not need to
do anything special when mixing scalar and parallel data.

Conditionals. Data parallel programs implement conditionals by limiting the
impact of operations to a certain subset of processing elements, and hence to a subset
of the elements of a parallel data structure. The if . .. then operation first tests a
specified condition in all elements of a parallel data structure and then performs the
indicated operations only in processors where the conditional was true. As in serial
programs, conditionals may be nested in very general ways.

Chapters 10-13 describe the four high-level programming languages for the Con­
nection Machine system. Fortran and C* are the most commonly used languages for
numeric applications. CM-Lisp is commonly used for artificial intelligence and other
symbolic processing applications. The *Lisp language is significantly "closer to the
hardware" than the other three languages; it allows the programmer access to nearly
all the hardware features of the Connection Machine system within a framework offer­
ing all the convenience and power of the Lisp language. Chapter 14 compares the four
languages by presenting versions of the same small program in each of the languages.

All of the CM-2 languages are upward compatible extensions of existing industry
standard languages. CM-Lisp and *Lisp extend Common Lisp; C* extends the pro­
posed ANSI standard C language; and Fortran extends Fortran 77 with the proposed
ANSI Fortran 8x array extensions. Each language supports all the serial programming
constructs defined by the industry standard. The design goal in each case was to
maintain the normal programming style of the serial language even for data parallel
operations.

35

10 The C* Language

C* is an extension of the C programming language designed to support programming
in the data parallel style, in which the progranuner writes code as if a processor were
associated with every data element. C* features a single new data type (based on
classes in C++), a synchronous execution model, and a minimal number of extensions
to C statement and expression syntax. Rather than introducing a plethora of new
language constructs to express parallelism, C* relies on existing C operators, applied
to parallel data, to express such notions as broadcasting, reduction, and interprocessor
communication in both regular and irregular patterns. While C* effectively allows the
processing of large arrays of data, it preserves the interchangeability of arrays with
pointers, a feature central to the C language. C* relies on pointers for interprocessor
communication.

10.1 Data Parallel Machine Model

Just as the C language assumes an abstract machine model with certain interesting
abstract properties (sequential execution, uniform address space, meaningful pointer
arithmetic), so C* assumes a certain abstract machine model. The C* model is an ex­
tension of the plain C model They share such important features as a uniform address
space and meaningful pointer arithmetic. C* extends C by having many processors
instead of just one, all executing the same instruction stream. The C* model may be
summarized as providing the programmer with lots of processors of an otherwise con­
ventional nature, operating within a uniform address space in a synchronous execution
mode.

C* assumes a synchronous model of computation, in which all instructions are
issued from a single source, a distinguished processor called the front end. All the
other processors are called data proCessors. At any time, the data processors that are
executing the instruction stream sent out from the front end are called the" active set."
The local memory of an idle processor does not change, unless another processor writes
it.

The layout of memory within each data processor is conventional. Except for the
fact that no code is stored in the memory of a data processor, memory is laid out
exactly as for a C program in a conventional sequential computer. One end of memory
is used to hold statically allocated variables (storage classes static and extern), and
the other end is used as a stack area for the allocation of automatic variables (storage
class auto).

Processor memory layout can be informally described as a record structure, that is,
a C struct. (The C language is very good at describing arbitrary memory layouts.)
When there are many processors, as in the C* machine model, different processors
may have different memory layouts because they may hold different kinds of data for
different purposes. H we think of a data processor's memory layout as being a record
structure, then we might as well say that a processor's memory really does belong to

36 Connection Machine Model CM-2 Technical Summary

such a structure type, and we can distinguish groups of processors by that type. In
C* a structure type that describes the memory of a data processor is called a domain.
The layouts of 26 different processors might be described as follows:

domain employee {
double salary;
employee_type type;
char *name;
int knowledge;

};

domain part {

};

int part_number;
double price;
vendor *supplier;
char *description;

domain book {

, };

char *title. *ISBN;
int content;
employee *owner; ,

domain employee Fred;
domain employee Sally;
domain part grommet;
domain employee George;
domain part wing_nut;
domain book my_novel;
domain employee programmer[20];

1* Processor 0 *1
1* Processor 1 *1
1* Processor 2 *1
1* Processor 3 *1
1* Processor 4 *1
1* Processor 6 *1
1* Processors 6-26 *1

In C*, all code is divided into two kinds: serial and parallel. Code that belongs to a
domain is parallel, and may be executed by many data processors at once. Other code
is serial, and is executed by the front end as if it were ordinary sequential C code. The
two types of code are distinguished by syntactic context: code may belong to a domain
(and therefore be parallel) only as the body of a member function of the domain or as
the substatement of a selection statement (discussed in section 10.3) that selects the
domain. Once the context is established, however, the two types of code are written
using the same syntax; parallel code, taken out of context, looks exactly like ordinary
sequential C code.

In C*, all data is also divided into two kinds: scalar and parallel. These are
described in the language using two new keywords, mono and poly; they are used

Chapter 10 Th.e C* Language 37

somewhat like the storage class keywords extern, static, and auto, but describe an
independent attribute. In certain situations they may sensibly be used in the same
way as the canst and volatile keywords of proposed ANSI standard C. Some example
declarations:

mono int total;
poly int salary;
poly extern float coefficients[10];
mono int *poly x; 1* A poly pointer

to a mono integer. *1
poly static struct faa x[20];
poly auto double all_the_day;

The mono or poly attribute may be omitted, and usually is, just as the storage class
is often omitted in ordinary C code. Within parallel code, the default is poly; within
serial code, the default is mono. (The declaration of poly variables is in fact forbidden
within serial code, and so the keyword poly is required only in pointer-declaration
contexts and casts.)

Scalar (mono) data resides in the memory oUhe front end, and parallel (pOly) data
resides in the memory of the data processors. Note that poly data is only potentially
parallel; it is processed in parallel only if referred to by para)lel code. It is possible
for the front end, executing serial code, to access poly data in a sequential manner.
Similarly, serial data may be processed by many data processors at once if the front
end will first broadcast copies.

Domains differ from classes in that member declarations for domains can use the
storage class keywords auto, register, static, and extern. In particular, different
files can declare different members of a domain, and the extern keyword can mark
members that are defined in one file but referenced in another. (In contrast, a C++
class may not be declared in such a piecemeal fashion.) Note that auto variables in
member functions are allocated within each instance, on per-processor stacks. This is
all consistent with the fact that the memory of each data processor is organized in the
same way as for a sequential C program.

10.2 Parallel Expressions

For convenience, the C* language includes maximum and minimum operators, which
are really arithmetic operators. The minimum operator <1 and the maximum operator
> 1 may be applied to po~ters as well as to numeric data. By themselves these operators
are relatively unimportant, but the assignment operators <1= and >1= have great utility
in C*.

In C* most assignment operators may be used as unary operators. This unary use
of existing binary operators is introduced purely for convenience, as an abbreviation
for a frequently used and otherwise rather awkward idiom.

38 Connection Macb.ine Model CM-2 Tecb.nical Summary

Instead. of adding new operators for parallel computation, C* takes advantage of
the compile-time type distinction between scalar (mono) and parallel (poly) data, and
extends existing operators, through overloading, to operate on parallel data. These
extended interpretations allow us to express various interesting patterns of communi­
cation:

reading: fetching one value from a particular data processor to the front end
writing: storing a value from the front end into a particular data processor
replication: broadcasting a value from the front end to all data processors
reduction: combining values from all data processors to produce one result
permutation: interprocessor communication (in both regular and irregular patterns)

All these patterns of communication are achieved by using the standard C operators
and by adding two rules to the usual rules of C evaluation:

Replication Rule: A scalar value is automatically replicated where necessary to
form a parallel value.

As-If-Serial Rule: A parallel operator is executed for all active processors as if
in some serial order.

The Replication Rule requires that when a binary (or ternary) operator combines
mono and poly data, the mono value is replicated before you do the operation. A mono
value is also replicated if passed as an argument to a function whose corresponding
formal parameter is poly. In other words, replication occurs automatically wherever
necessary.

The As-IT-Serial Rule is more subtle; it facilitates parallelism by imposing a se­
quential semantics (while permitting a parallel implementation). The following code
segment illustrates the point:

double total_salary;

{

}

total_salary = 0;
[domain employeeJ.{

total_salary += salary;
}

The second assignment (the one within the selection of domain employee) will first
replicate the variable total..salary as an lvaluej then the processor for every employee
will attempt to perform the += operation on its own salary and that same lvalue. The
As-If-Serial Rule is a simple way of stating the guarantee that, from the programmer's
point of view, the processors do not interfere with each other. The net effect is that
every employee's salary value has been added into totaLsalary exactly once. This,
then, is how reduction is expressed in C*. The other C assignment operators may be
used in a similar manner.

Chapter 10 The C* Language 39

The other three patterns of communication, namely reading, writing, and permu­
tation, arise naturally from the fact that addressing and the use of pointers in C* is
perfectly as general as in C. To put it another way, the language restrictions that one
might fear would be imposed because ofimplementation considerations are not imposed
after all.

The communication pattern of reading is expressed quite simply. Within serial code
one might write, for example,

strcmp(programmer[2J.name. "Jane Jetson");

As in the example introduced earlier, programmer is an array of twenty employees,
and so the elements of this array are instances of the class employee, residing in the
memories of the data processors. The front end can refer to the name component of
programmer number 2 simply by referring to programmer [2J . name in the natural way.

Writing is expressed in exactly the same manner; for example, because the name
component is public and writable, one can change an employee's name in the obvious
way:

programmer[2J.name = "Jane Eyre";

Permutation is also achieved through the natural use of C pointers. Any parallel
processor can have pointers into the memory of any other processor. Therefore if x is
some poly variable of type T, and p is a poly variable of type "pointer to T," then the
statement

.p = x;

means "send message x to processor p" (or more precisely to a specific variable within
a processor, both being indicated by p); all active processors do this in parallel.

The use of an explicit pointer variable p allows any topological communications
pattern to be expressed. The space· required for such a pointer may be eliminated
in cases where the pattern is sufficiently regular that it may easily be computed "on
the fly." Here the ability of the C language to express address arithmetic is valuable;
every processor can obtain a pointer to itself (by referring to the variable this) and
then perform arithmetic on that pointer, allowing all kinds of relative addressing. For
example,

x = (this+l)->x;

causes all x values to be shifted downward by one processor (every processor fetched
the x value from the processor one above it).

10.3 Parallel Statements

C* adds only one new type of statement to C, the selection statement, which is used
to activate multiple processors.

All of the standard C statem~t types may be used in C* in both serial and parallel
code. The treatment of control flow in parallel code satisfies the following design goals:

40 Connection Machine Model CM-2 Technical Summary

• As long as processors do not interact, the program behaves as if each processor
were executing its own code independently. It is as if each of the parallel processes
were executing ordinary serial C code.

• When processors do interact, the interactions are completely predictable, deter­
ministic, and repeatable. This is achieved without ever requiring the programmer
to write explicit synchronization code.

10.3.1 Selection Statement

The format of a selection statement is as follows:
[domain tag] . statement

A selection statement activates all instances of a specified domain and then executes a
substatement. (As with the switch statement, the substatement may be any statement
but in practice it is typically a block.) On completion of the substatement, the instances
activated by the selection statement are deactivated.

Within the substatement, the keyword this is bound to the primal parallel value:
for each active instance, this is a pointer to that very instance. Because writing the
name of a member variable memvar is equivalent to writing this->memvar, all references
to such a variable also constitute parallel values.

The selection statement is the means by which serial code initiates parallel execu­
tion. The selection statexp.ent is also used within parallel code; in this case all instances
active just before execution of this statement become inactive, and on completion of
the statement the same instances become active again.

10.3.2 If Statement

In parallel code, the expression in an if statement is treated as a poly value, so
that each active domain instance has its own value for the test. (If the expression is
not poly, then one may regard the parallel if statement either as behaving like an
ordinary serial if statement or as first casting the value of the expression to be poly,
thereby replicating it. These two points of view are equivalent.)

For the statement
if (expression) statement

the statement is executed with only those instances active whose test value was non­
zero.

For the statement

if (expression) statement else statement

the first substatement is executeq. with only those instances active whose test value
was non-zero, and then the second substatement is executed with only those instances
active whose test value was zero.

Chapter 10 The C* Language

10.3.3 While Statement

On each iteration of the statement
while (ezpression) do statement

41

the ezpression is calculated as for an if statement. Instances that calculate the value
zero become inactive; instances that calculate a non-zero value execute the substate­
ment and then loop. The while loop completes if and when the active set becomes
empty. At that time each individual processor has executed the substatement some
number of times, and each may have executed it a different number of times, depending
on the data being processed.

If the processors do not interact during the course of the loop, then it is as if
each processor executes the while statement independently, each iterating the appro­
priate number of times, and then all processors become resynchronized when all have
completed.

If the processors do interact, then their interactions are predictable; for example, all
processors that execute the substatement as many as three times will all be executing
it for the third time together.

10.4 Compiler Implementation

The C* compiler for the Connection Machine computer system is implemented as a
translator to ordinary C code that is then compiled by an ordinary C compiler for
the front-end computer. The C* compiler parses the C* source code, performs type
and data flow analyses, and then translates parallel code into a series of function calls
that invoke Connection Machine Paris operations. The use of the front end's usual C
compiler allows all the programming tools associated with the front-end programming
environment to be applied to C* programs.

42

11 Fortran

Fortran for the Connection Machine system is a complete implementation of ANSI

Fortran 77 as defined by ANSI x3.9-1978, incorporating two sets of extensions: those
defined by MIL-STD-1753, and a subset of those proposed in the draft ANSI Fortran 8x
standard (draft S8, version 103). Fortran 8x is a data parallel language. The array
extensions treat whole arrays as single entities. An array in Fortran 8x is a parallel data
structure. The Connection Machine system associates a processor with each element
of data in an array.

Newly written Fortran programs can take advantage from the start of the array
features from Fortran 8x to implement data parallel algorithms that run efficiently
on the Connection Machine. These same programs will run on any other computing
system that supports the array handling features described in the draft Fortran 8x
standard. Since the Fortran 8x standard is still in a state of flux, future versions of the
Fortran implementation for the Connection Machine system may change to reflect the
evolving standard.

In the current draft of the Fortran 8x standard, some of the most powerful array
handling features have been moved to an appendix and labeled "removed extensions."
The removed extensions are not formally part of the standard, but it is intended that
any Fortran implementation providing the functionality of these features will follow
the definitions given in the appendix. Many of these removed extensions are imple­
mented on the Connection Machine system, among them vector-valued subscripts; the
FORALL statement, which performs element array assignment; and the instrinsic func­
tions DIAGONAL, REPLICATE, RANK, PROJECT, FIRSTLOC, and LASTLOC.

11.1 The Environment

Fortran runs on a system consisting of a Digital Equipment Corporation VAX computer
equipped with a VAXBI bus attache<! to a Connection Machine. Fortran currently runs
under the ULTRIX operating system. A future version will run under the VMS operating
system.

Object modules generated by the Digital Equipment Corporation VAX Fortran com­
piler may be linked with modules produced by the Thinking Machines Fortran compiler
without recompilation. This facility is very useful for incorporating existing library rou­
tines into a Fortran application, as well as supporting the incremental conversion of
an application from serial code to parallel array operations. Routines compiled by the
Digital Equipment Corporation VAX Fortran compiler will of course not take advantage
of the Connection Machine processors.

A Fortran program may call C routines. In addition, Paris operations may be
invoked directly from a Fortran program, through the same interface that is used from
C code.

Chapter 11 Fortran 43

11.2 The Array Extensions of Fortran

The most important difference between Fortran 77 and Fortran 8x is that expressions
in Fortran 8x treat entire arrays as atomic objects. The expression

A = B + C

adds every element of C to the corresponding elements of B and store the results in A.
B and C may be scalars, vectors, matrices, or many-dimensional arrays.

Arrays are stored in the Connection Machine with one element per processor. The
array axes map directly onto the multidimensional communications grid of the Connec­
tion Machine system. To perform an operation on whole array arguments, the context
flags are set so that every processor that contains an element of the arrays in question
is enabled. The operation is executed simultaneously in all selected processors.

Most Fortran 77 intrinsic functions are extended to arrays in this element-by­
element fashion. Where an elemental function takes two arguments, they must be
conforming. Two arrays are conforming if they are the same rank and shape. The
Fortran compiler allocates conformable arrays in the same processors, eliminating un­
necessary data movement. Scalars may be freely used in array valued expressions.
They are automatically replicated to conform with the other arrays in the expression.

In addition to the elemental functions, Fortran includes many functions that inquire
about array attributes, perform data reduction, or perform other complicated array
operations. Examples ofreduction operations are SUM, PRODUCT, MAIVAl, MINVAl, ANY,
and All. Examples of complex operations are DOTPRODUCT (vector dot product) and
MATMUL (matrix multiplication).

For example, suppose that M is a matrix with 30 rows and 56 columns. SUM(M.
DIM=l) yields a 56-element vector containing the sum of each column. MAIVAl(M.
DIM=2) yields a 30-element vector containing the largest value from each row.

A reduction operation may take a MASK argument, a boolean vector indicating which
elements of the array argument are to be included. On the Connection Machine system,
the mask is used to subselect processors before the operation is performed.

The transformational intrinsics of Fortran 8x facilitate the treatment of arrays as
single data objects. The following are examples of Fortran transformational intrinsics.

MERGE
SPREAD
TRANSPOSE
CSHIFT
EO SHIFT

Merge of two arrays according to a mask
Replication of an array along a new dimension
Transposition of a two-dimensional matrix
Circular shift of an array
End-off shift of an array

11.3 Fortran Statements for Controlling Context

The WHERE statement uses a boolean array as a mask on the elements of a conforming
array expression. The expression:

44 Connection Machine Model CM-2 Technical Summary

WHERE(A .GE. 0) A = SQRT(A)

replaces the nonnegative elements of A with their square roots while leaving the negative
elements untouched. An alternate form. of the WHERE statement specifies what is to
happen in the processors that fail the test. For example, in the code:

WHERE(B .NE. 0)
C = A I B

ELSEWHERE
C = INFINITY

END WHERE

where A, B, C, and INFINITY are all conforming arrays, the result of AlB is assigned to
C in each processor containing a non-zero element of B, and INFINITY is assigned to C
in each processor containing a zero element of B.

The FORALL statement is similar to the WHERE statement except that index expres­
sions may be used instead of (or in addition to) a mask to select the active processors.
The following code initializes the matrix H to contain a Hermitian matrix of size N:

FORALL (I = 1:N, J = 1:N) H(I,J) = 1.0 I REAL(I + J - 1)

This code clears the part of the matrix H below the diagonal:

FORALL (I = 1:N, J = '1:N, I .GT. J) H(I,J) = 0.0

Note, in this last example, the use of a mask expression in addition to the index
variables I and J.

11.4 Interprocessor Communication in Fortran

The Fortran 8x standard defines the concept of array sections. Array sections may
be used anywhere that whole arrajS can be used. An array section is the result of
extracting selected elements from another array as specified by a subscript expression
for each dimension o/the array. Suppose that A is a 10 x 10 matrix. Then A(1:5,1:5)
is the upper left quadrant of A, and A(1:5,6:10) is the upper right quadrant; each of
these sections is a 5 X 5 array. The statement

A(1:5,1:5) = A(1:6,6:10)

therefore copies the upper right quadrant into the upper left quadrant. The section
A(1: 10: 4,1: 10: 3) is a 3 x 4 array of elements of A as follows:

A(1,1)
A(6.1)
.1(9,1)

A(1,4)
A(6,4)
A(9,4)

A(1,7)
A(5,7)
A(9,7)

A(1,10)
A(6,10)
A(9,10)

Chapter 11 Fortran 45

A particularly useful way of describing an array section is by the use of vector-valued
subscripts, currently a "removed extension" of Fortran 8L Vector-valued subscripts
may be used to describe general interprocessor communication. H the same index
appears more than once in a subscript vector, the result is to communicate the same
source value to more than one destination. For example, after the statements

S = [1. 2. 2. 3. 3. 3. 2. 2. 1. 7. 1. 1. 3. 3. 3. 2]
V = [15. 20. 25. 30. 35. 40. 45]
B = V(S)

the value of B will be

[15. 20. 20. 25. 25. 25. 20. 20. 15. 45. 15. 15. 25. 25. 25. 20]

When this code is executed on the Connection Machine hardware, the values of V at
the processor addresses specified by S are sent to the processors in which the array B

resides.

11.5 Fortran and the Data Parallel Approach

Fortran has traditionally been a very scalar oriented language. In Fortran 77, opera­
tions are defined only on individual scalars; DO loops are required to step through a
collection of elements performing a given operation on each orie. The array extensions
in Fortran 8x express program sequences that operate on all the data at once. These
extensions are implemented directly in the Connection Machine hard ware.

46

12 The *Lisp Language

The *Lisp language is an extension of Common Lisp for programming the Connection
Machine in a data parallel style. It is intended for people who wish to write Connection
Machine programs in Lisp that map simply onto' Connection Machine hardware fea­
tures. It supports primitives that correspond directly to the operation of the hardware,
and also allows the users to build their own abstractions on top of those primitives.
The language is a fully compatible extension of the Common Lisp standard.

Because the primitives of the language correspond very closely to the instruction
set of the Connection Machine, is is possible to write code that executes very efficiently.

The parallel primitives of *Lisp support a model of the Connection Machine in
which each processor executes a subset of Common Lisp, with a single thread of control
residing on the front-end computer. For most Common Lisp functions, *Lisp provides
a corresponding parallel function that can operate on all processors, or some selected
subsets, simultaneously. In addition, the language provides Lisp-level operators for
communicating between processors, both through pointers and in regular patterns.
Sequential Common Lisp code, running on the front end, can be freely intermixed with
the parallel code executed on the Connection Machine;

Most *Lisp functionality corresponds directly to underlying Paris instructions (see
Chapter 3). As a result, the execution speed of a *Lisp program is predictable and
easily computed by hand, and direct calls to Paris instructions and special purpose
microcode blend in naturally with *Lisp code.

*Lisp provides a safe programming environment. The run time system will signal
an error when the user causes a computation to overflow or when a pointer is used
illegally. All user type declarations are continuously verified during the execution of
the application. This error checking may be turned oft' for better performance.

The *Lisp implementation consists of an interpreter and a compiler. Both are
written in Common Lisp and are transportable to any front-end computer that supports
Common Lisp.

12.1 Pvars: The Basic ... Lisp Data Object

*Lisp supports all of the standard Common Lisp data types, including symbols, fixed
and floating point number, and arrays. It also supports an additional parallel data
type called a pvar (parallel variable). A pvar is a first-class Lisp data type that has
value for each processor in the machine. It is similar to an array, except that it is also
possible to access and update its elements in parallel.

There are two ways of viewing a pvar. In one model, each processor is simultaneously
running the same Common Lisp program, and the pvar represents a variable that exists
in all processors and gets operated upon simultaneously in all processors. In the other
model, the pvar represents an array whose size is the same as the number of processors
in the machine. The elements of the array are located in consecutive processors.

Chapter 12 The *Lisp Language 47

The individual elements of a pvar may contain different types of data. *Lisp sup­
ports data of type integer, float, boolean (t and nil), and pointer. The integer and
float types may be of any size supported by Paris. Although integers of any size from
1 to 128 bits are guaranteed to work, most operations work for sizes up to the amount
of memory available in a processor.

Like Common Lisp, *Lisp supports run-time type checking, so a *Lisp program re­
quires no declarations. If desired, programmers may insert type declarations to improve
performance. *Lisp adheres to the standard Common Lisp declaration syntax.

12.2 Processor Addressing

The Connection Machine supports two different types of communication between pro­
cessors. One is general pointer-based addressing, and the other is local communication
on an n-dimensional grid. For general addressing, each processor is assigned a single
number between zero and the number of processors in the machine. For grid addressing,
each processor is assigned a vector address. *Lisp provides functions for communication
in both modes.

12.3 Reading and Writing Data from and to Pvars

The standard functions for reading or writing the contents of a pvar in a single processor
are pref and pre:f-grid. The Common Lisp macro Betf is wed in combination with
pref and pref-grid to store data from the front end into a pvar of a processor.

For example, (Betf (pref my-pvar 10) 123.4) will store the quantity 123.4 into
processor 10 of the pvar my-pvar. Thereafter (pre:f my-pvar 10) will return 123.4.

Similarly, (Betf (pre:f-grid my-pvar 5 7) 111) will store 111 into pvarmy-pvar
at grid location (5.7) (assuming of course that the processors are configured as a two­
dimensional grid). Thereafter (pre:f-grid my-pvar 5 7) will return 111.

12.4 Basic Parallel Operations

All the functions in this section operate only on active processors.
The assignment operator is called *set. It takes a destination pvar and a pvar

expression whose value is to be 'tored into that destination.
For example, (*set pvarl pvar2) will store· the contents of pvar2 into pvarl in

all active processors.
The function !! accepts a scalar and returns a pvar that contains the scalar in all

active processors.
The statement C*sat pvarl C!! 5» will store the quantity 5 into pvarl for all

active processors.
The functions +! !, -! !, *! !, and /! ! perform the same operations as the Common

Lisp functions +, -, *, and /, but in all active processors.
The statement (*set pv~l (+!! pvarl (!! 1») will increment the value of

pvarl in all active processors.

48 Connection Machine Model CM-2 Technical Summary

There are many other *Lisp functions for manipulating other types of data. For
example, the functions and! !, not! !, and or! ! return boolean (t or nil) quantities in
active processors. Mter the statement

(*set boolean-pvar (and!! (=!! pvarl (!! S»
(>!! pvar2 (!! 100»»

is executed, boolean-pvar will be t in all processors where pvarl contains S and pvar2
is greater than 100.

Most Common Lisp functions have parallel equivalents in *Lisp. Typically, the user
thinks of the name of a Common Lisp function and appends the characters "! !" to
the function name to arrive at the parallel version. The characters"! !" are meant to
represent the mathematical symbol II, which means "parallel." Some of these functions
are:

mod!!
max! !
ldb! !

ash! !
min! !
dpb! !

round! !
if!!
byte! !

integerp! !
eql! !
numberp! !

There are also parallel functions in *Lisp that do not have a corresponding Common
Lisp equivalent. For example, (*set pvari (self-address!!» will set pvarl to the
send address of each processor, and (*set pvarl (self-address-grid!! (!! 1»)
will set pvarl to the firs~ component of each processor's vector grid address.

12.5 Selection of Active Sets of Processors

All basic *Lisp functions will compute values only in active processors. Pvars in inactive
processors are always left unmodified. Some of the * Lisp macros for manipulating the
current set of active processors are *all and *when. The *all construct activates all
processors for the block of *Lisp code in its body; the *when construct subs elects , for
the duration of the block of code in its body, all already active processors that satisfy
a predicate.

(*all (*set pvarl (!! 10»)
(setf (pref pvarl 100) 0)
(*when (/=!! pvarl (!! 0»

(*set pvarl (1-!! pvarl»

;store 10 in all processors pvarl
;set processor 100 pvarl to 0

;decrement non-zero values

One may nest *when and *all statements to any depth.

12.6 Conununication between Processors

One of the primary strengths of the Connection Machine lies in its communication
abilities. The basic functions for using the communication system are pref!! and
pref-grid!!. Whereas pref and pref-grid allow the front-end computer to serially

Cbapter 12 Tbe * Lisp Language 49

read or write the data in a pvar in a single processor, the!! versions allow each active
processor to simultaneously read/write the value of a pvar in any processor. Even if two
or more processors attempt to read the data of a single processor, they all receive the
same correct data. (This is supported by the Connection Machine router hardware.)

The following two pieces of code have equivalent effects, although they achieve these
effects in different ways:

(*a11 (*set pvar2 (pref!! pvar1 (!! 23»»

(*a11 (*set pvar2 (!! (pref pvar1 23»»

Note that the second form freely mixes serial and parallel code.
Although the previous example used pref!! to access the data of a single processor,

it may also be used to access data in any processor. For example, the statement

(*a11 (*set pvar2 (pref!! pvar1 (random!! (!! 100»»)

causes every processor to make a pseudo-random choice from the first 100 elements of
pvar1 and store the fetched value in pvar2.

Some other standard *Lisp routines that use the communication network especially
efficiently are sort!! and enumerate! ! .

12.7 Global Reduction Operations

Some *Lisp functions reduce the contents of a pvar in all active processors to a single
value, which is then returned to the front-end computer. Examples of this class of
functions are *min, *sum, and *logior. For example, (*a11 (*sum (!! 1) » will sum
together the quantity 1 in all processors in the Connection Machine. The result will
be the number of processors in the particular Connection Machine system being used
(actually, the number of virtual processors into which the system has been configured).

12.8 Summary

Each of the categories of functions described above contain many more functions not
mentioned here. The Essential *Lisp Manual documents them all, as well as memory
management, machine initialization and operation, and other related topics.

* Lisp has been successfully used by many Connection Machine programmers. Its
simplicity leads to a quick understanding of how to program the Connection Machine
efficiently. AB an extension of Common Lisp, it is easily learned by those who already
know Lisp. Though it provides a small number of abstractions, users frequently build
their own with the help of the excellent tools provided by Common Lisp. The result is
a productive programming environment for easily exploiting the massive power of the
Connection Machine.

50

13 The eM-Lisp Language

CM-Lisp is a dialect of Common Lisp extended to allow a fine-grained, data-oriented
style of parallel execution. This parallelism is organized around objects called xappings,
which are similar to arrays or hash tables. Two syntactic constructs are introduced:
one allows existing Lisp functions to operate on elements of xappings in parallel, and
the other provides a means of expressing general interprocessor communication.

CM-Lisp differs from *Lisp in providing higher-level data abstractions, an imple­
mentation based on garbage-collected heap storage, and a somewhat more rigorous
semantic theory. CM-Lisp is concerned less with providing access to details of the
Connection Machine system than with providing convenient progranuning support for
parallel processing of symbolic data structures. *Lisp is therefore the Lisp dialect of
choice for the CM-2 when speed is important, whereas CM-Lisp may be more conve­
nient for experimentation with algorithms and rapid prototyping.

13.1 Xappings, Xets, and Xectors

All parallelism in CM-Lisp is organized around a data structure known as a xapping
(pronounced "zapping," and derived from "mapping"). Xappings are data objects
similar in structure to arrays or hash tables, but they have one essential characteristic:
operations on the entries of xappings may be performed in parallel. A xapping, like
any other Lisp object, may be dynamically allocated, and its associated storage is
automatically reclaimed' when all references to it are deleted. Xappings may be of
arbitrary size (up to some reasonably high implementation-dependent limit), and may
contain pointers to any other Lisp objects (including other xappings).

A xapping is an unordered set of ordered pairs. The first item of each pair is called
an index, and the second item is called a value. Pairs are written as index-+value, and
all the pairs in a xapping are written surrounded by braces. All the indices in a given
xapping must be distinct, but their values need not be (the Common Lisp function
eql determines sameness). A xapping that maps yertle to turtle and horton to
elephant would be written like this:

{yertle-+turtle horton-+elephant}

The order in which the pairs are written makes no difference. One may think of indices
as abstract names for processors in a parallel computer, and of their corresponding
values as data stored within those processors. Later we will see how these "abstract
processor names" are used to combine data within processors and route data between
processors.

The set of all indices ofaxapping is called the domain of the xapping. The corre­
sponding set of values is called the range of the xapping. When a xapping maps each
index to itself, the xapping is known as a xet (pronounced "zet," and derived from
"set"). Pairs in which index and value are the same may be written in an abbreviated
notation as just the value, without the index or separating arrow. So, the xet

Ch.apter 13 Th.e CM-Lisp Language

{constantinople-+constantinople timbuktu-+timbuktu}

can be written as simply

{constantinople timbuktu}

51

If the domain ofaxapping consists entirely of consecutive integers starting with
zero, then the xapping is known as a zector (pronounced "zector," and derived from
"vector"). A xector may be abbreviated by writing its values in order surrounded by
brackets. So, the xector

{O-+hop 1-+on 2-+pop}

can be written as

[hop on pop]

Observe that the use of brackets is merely a notational convenience; a xector is the same
data structure whether written with braces (and explicit indices) or with brackets.

The number of elements in a xapping may range from zero to infinitely many. The
smallest xapping has zero elements; it is called an empty xapping, and is written as n.
At the other extreme are two sorts of infinite xappings:

• A constant zapping has the same value for every index. A constant xapping with
value v is written as {-+v}. The xapping {-+6} has the'value 6 for every index.

• A universal zapping maps every index to itself; it is the xet of all Lisp objects. A
universal xapping is written as {-+}.

Infinite xappings may have a finite number of explicit exceptions, where values for
particular indices are specified. The infinite part of the xapping is written after all of
the explicit pairs. For example,

{boy-+blue girl-+pink -+green}

specifies that boy maps to blue, girl maps to pink, and all other objects map to
green.

13.2 Parallel Computation: a Syntax

The function call mechanism of eM-Lisp allows xappings of functions to be called as
functions, provided that all arguments to a xapping of functions are themselves xap­
pings. The result of such a function call is a xapping whose domain is the intersection of
the domains of the function xapping and argument xappings, and whose range is made
up of the results of applying each function to the values from the argument xappings
at the corresponding indices. When a xapping of functions is called in this way, the
individual function calls may be performed in parallel. Resynchronization occurs, at
latest, when all of the parall~l computations have completed.

One could perform several additions in parallel by doing this:

52 Connection Machine Model CM-2 Technical Summary

(funcall '{-++} '[10 20 30 40] '[8 7 6 6 4 3 2]),

The result of this call is a xapping whose domain consists of the integers 0 through 3
(i.e., the intersection of the infinite domain, the domain of a x ector of length 4, and
the domain of a x ector of length 7), and whose range is formed by calling elements
from the function xapping (always +) with corresponding elements from the argument
xappings:

[18 27 36 46]

A special syntax using the alpha character, a, allows us to write parallel function
calls more concisely than we did above. The expression az constructs a constant
xapping with the value z. Using a, we can now rewrite the parallel function call shown
above like this:

(a+ '[10 20 30 40] '[8 7 6 643 2])

Note that a xapping of xappings of functions may be called as a function, too, as long
as its arguments are xappings of xappings, and so on.

(aa+ '[[1 2 3] [4 6 6] [7 8 9]]
, [[9 8 7] [6 6 4] [3 2 1]])

::} [[10 10 10] [10 10 10] [10 10 10]]

Consider two forms: ta+ a2 a3) and a(+ 2 3). The first evaluates the function
and argument forms to produce {-++}, {-+ 2}, and {-+3}. An "infinite number" of
function calls are set up, all of the form (+ 2 3). All of these calls produce the result
5, and so the result is {-+5}. a(+ 2 3) simply constructs a constant xapping from
the result of the form (+ 2 3), and so the result here is also {-+5}. This leads to an
important syntactic property: a distributes over function calls.

Suppose there is a need to add 32 to every element ofaxapping Cj one may
write (a+ c a32).Now suppose instead that one wishes to multiply each element
of C by 9/5 before adding 32j the appropriate code is (a+ (a'" C a9/5) a32). Or
perhaps the real need is for a xapping of lists pairing each such computed value with
the original element of c: (alist c (a+ (a'" c a9/6) a32». More complicated
expressions contain more and more a operators. The distribution rule can be used to
"factor out" these operators if every subform of a function call has a preceding a, but
that is not the case in the above example.

This problem is solved by using the bullet operator, 0, which is an "inverse" to a.
By definition, aoz == z. Thus, it is possible to apply the distribution law by introducing
occurrences of "ao" first. To continue the example, one can begin with the expression
(alist C (a+ (a* c a9/6) a32» and make successive transformations:

Chapter 13 The CM-Lisp Language 53

(alist c (a+ (a* c a9/6) (32» -
(alist aoe (a+ (a* aoe a9/6) (32» -
(alist aoe (a+ a(* oe 9/6) (32» -
(alist aoe a(+ (* oC 9/6) 32» -

a(list oe (+ (* oe 9/6) 32»

and derive the result a (list oC (+ (* oe 9/6) 32».
This notation is powerful because it allows two simultaneous points of view. On

the one hand, it can be understood as a computation with a single thread of control,
operating on arrays of data, thereby allowing a global understanding of how the data
is transformed. On the other hand, it can be understood as an array of processes, with
each process executing the same code that follows the "a" and with "0" flagging data
values that may differ among processes. This view allows one to take a piece of code
written for a single processor and trivially change it to operate on many processors
by annotating it with "a" and "0" in a few places. Thus the notation simultaneously
supports both macroscopic and microscopic views of a parallel computation.

Lisp control structure does not consist entirely of function calls-special forms and
macros are used very frequently to express variable binding, control flow, and other
operations. In general, it is an error to precede the name of a special form or macro
with a; however, there are a number of special forms and macros for which parallel
execution is both meaningful and useful. ,

Conditional execution is accomplished with aif, a parallel version of the if special
form. To evaluate the expression (aif condition then else), one first evaluates the
condition, which must return a xapping. The next step is to evaluate the then expres­
sion, but only at the indices for which the condition is true. The final step evaluates
the else expression at indices for which the condition is false. The result of aif is the
union of the then and else xappings. For example:

a(if (oddp 0'[0 123 4 6 6 7 8 9J) 'odd 'even)
=> [even odd even odd even odd even odd even oddJ

Note that both consequents of an aif are always evaluated, but at disjoint sets of
indices (i.e., in disjoint sets of processors).

Local variable bindings may be established in each processor with alet, a parallel
version of the let special form. Variables are bound to values specified in an initial
value xapping for the duration of the alet body, in which each form is evaluated as if
it were preceded by a. The result of alet is the result of the last form in the body.

a(let «x 0'[0 1 2 3 466 7 89J»
(* x x x»
=> [0 1 8 27 64 125 216. 343 612 729]

The values at a set of indices in a xapping may be altered in parallel with asetf,
a parallel version of the setf macro. (asetf old new) sets the value of each index
appearing in both old and ~w to the value at that index in new.

54 Connection Machine Model CM-2 Technical Summary

(setq x '{a~1 b~2 c~3})
(asetf x '{b~5 c~7 d~9})
x ::} {a~1 b~5 c~7}

13.3 Interprocessor Communication: 13 Syntax

The a syntax is a way of broadcasting data and programs to different indices (i.e.,
processors). Another syntax, using the beta character, 13, is used to gather data and
route it between processors.

The simplest use of 13 is called reduction. The expression (131 x) takes a two­
argument function I and a xapping z and returns the result of combining all the values
of z using J. For example,

(13+ '[0 1 2 3 4 6])

returns the sum of all the values in the xector, namely 15. Any two-argument combining
function may be used, but the result is unpredictable if the function is not associative
and commutative, because the order in which the values are combined is not predictable.

The more complex use of 13 is called combination. (131 d x) takes a binary function
I and two xappings d and x and returns a new xapping z whose indices are specified by
the values of d and whose values are specified by the values of z. The value of (131 d
x) is:

{q~s I S = {p~r I (p~r E z) A (p~q E d)} A lSI> 0 A s = (131 S)}

For every distinct value q in d there will be a pair q~s in the result. If that value q occurs
in more than one pair of d, then s is the result of combining all of the corresponding
values from z. For example:

(13+ '{toyota~japan gm~usa ford~usa fiat~italy}

{toyota~136 gm~125 ford~103 vw~164})

::} {japan~136 usa~228}

The pair usa~228 appears because the values 125 from gm and 103 from ford were
summed by the combining function +. The result has no pair with index italy or value
164 because neither fiat nor vw appears as an index in both operand xappings.

Reduction may be viewed as a communications operation that sends values from
each index (i.e., each processor) ofaxapping to some neutral ground, where the values
are combined. Combination may be viewed as a distributed form ofreduction, in which
different values may be sent to different indices (processors) and combined there. This
functional similarity between reduction and combination was our motivation for using
one character, 13, in expressing both operations.

Chapter 13 The CM-Lisp Language 55

13.4 Library Functions

Common Lisp has a large library off unctions for performing useful operations on arrays
and lists. CM-Lisp extends the functionality of this library to xappings as well. These
"generic sequence functions" allow one to extract subsequences of a sequence, reverse
the ordering of elements in a sequence, concatenate sequences, search sequences for
particular items or subsequences, sort sequences, and so on.

Common Lisp provides operations on character strings for case conversion, string
comparison, and so forth. These functions have also been extended to operate on
xappings.

A number of other functions are introduced that provide useful high-level operations
on xappings. Perhaps the most interesting of these is scan, which is analogous to the
j\z operator of APL. The scan function takes a combining function and a xector, and
returns a new xector in which the value at each index i is the result of reducing the
values at indices 0 through i of the original xector with the given function. The scan
may be broken up into several separate scans by using the : segment keyword argument.
The scan will "start from scratch" at each index in the : segment xector that has a
non-nil value. For example:

(scan #'max '[1 6 2 7 3 4 2])
=? [1 6 6 7 7 7 7]

(scan #'max '[1 627 342]
:segment '[t nil nil nil t nil nil])

=? [1 6 6 7 3 4 4]

A number of very simple functions are used idiomatically in reduction, combina­
tion, and scanning. These have been given canonical names to save typing: arg1
always returns its first argument, arg2 always returns its second argument, arb re­
turns either argument unpredictably, and CI signals an error if called (it is usually used
in combination when no collisions are expected).

56

14 An Example Program

The four high-level programming languages for the Connection Machine system may
be compared by examining the four subroutines given below. Each identifies all prime
integers below 100,000 by the sieve method, with minor variations dictated by the
natural style of the programming language.

The algorithm uses two parallel arrays of boolean (true/false) values called prime
and candidate. At every step element k if candidate is true if k has not yet been
ruled out as a possible prime. At the beginning of each iteration, the smallest value of
k for which candidate has a true entry is in fact always a prime; the corresponding
element of prime may be set to true, and multiples of this value are then eliminated
as candidates. The algorithm terminates when no more candidates remain, at which
point element j of prime is true if j is prime and false if j is not prime.

This example does not show off all the capabilities of the languages or of the Con­
nection Machine system. It is intended merely to illustrate the stylistic differences
among the languages. For example, iteration in the C* example is performed by a
while loop; in Fortran, by a logical IF statement with a GO TO; and in both the *Lisp
and CM-Lisp examples by a Lisp do loop, though with different termination tests.

One of the more interesting differences is the way in which each processor calculates
its own position within an array. C* has all the facilities of C for performing address
calculations; in the example, every processor takes a pointer to itself (represented by
the reserved word this) ,and subtracts from it the address lsieve [0] of the start of the
array of processors, thereby computing its own index within the array. In Fortran, the
FORA.LL statement provides each processor with a different value for an index variable.
In *Lisp, the built-in function self-address!! behaves like the keyword this in C*,
returning within each processor the address of that processor. In CM-Lisp, the built-in
function iota takes a number n and generates a xector of n integers from 0 to n - 1.

14.1 The Example Program in C*

#define N 100000
typedef int bit:1;
domain SIEVE { bit prime; } sieve[N];

void sieve::find_primes() {

}

int value = this - lsieve[O];
bit candidate = (value >= 2);
prime = 0;
while (candidate) {

}

mono int next_prime = «1= value);
sieve[next_prime].prime = 1;
if (value Yo next~prime == 0) candidate = 0;

Chapter 14 An Example Program

14.2 The Example Program in Fortran

SUBROUTINE FINDPRIMES(PRIME)
PARAMETER (N = 99999)
LOGICAL PRIME(N).CANDIDATE(N)
PRIME = .FALSE.
CANDIDATE = . TRUE.
CANDIDATE(1) = . FALSE.

20 NEXTPRIME = MINLOC([1.N].CANDIDATE)
PRIME(NEXTPRIME) = . TRUE.
FORALL (I = 1:N. MOD(I.NEXTPRIME) .EQ. 0) CANDIDATE(I) = .FALSE.
IF (ANY(CANDIDATE» GO TO 20
RETURN
END

14.3 The Example Program in *Lisp

(*defun find-primes ()
(*a11

(*let «prime (!! nil» (candidate (!! t»)
(*if «!! (self-address!!) (!! 2»

(*set candidate nil»
(do () «*or candidate»

(*vhen candidate
(let «next-prime (*min (self-address!!»»

(setf (pref prime next-prime) t)

57

(*vhen (zerop!! (mod!! (self-address!!) (!! next-prime»)
(*set candidate (!! nil»»»

prime»

14.4 The Example Program in eM-Lisp

(defun primes (n)
(let «candidate (make-xector n :initial-element t»

(primes (make-xector n :initial-element nil»)
(asetf candidate '[nil nil])
(do «next-prime (position t candidate) (position t candidate»)

«null next-prime) primes)
(setf (xref primes next-prime) t)
a(setf .candidate

(and .candidate
(not (zerop (mod .(iota n) next-prime»»»»

58

15 Performance Specifications

The specifications in this chapter assume a fully configured Connection Machine Model
CM-2 system with 64K data processors and eight I/O channels. Specifications for
floating point performance assume the use of a floating point accelerator.

Thinking Machines Corporation believes all specifications are accurate as of the
date of publication. Thinking Machines Corporation cannot, however, be responsible
for inadvertent errors. Product specifications are subject to change without notice.

15.1 General Specifications

Processors
Memory
Memory bandwidth

65,536
512 megabytes

300 gigabits per second

The memory bandwidth is the maximum sustained transfer rate of data to or from
memory.

15.2 Input/Output Channels

Number of channels
Capacity per I/O controller
Total I/O controller transfer rate
Capacity per framebuffer

8
40 megabytes per second

320 megabytes per second
1 gigabit per second

Each I/O channel may support either one general-purpose I/O controller or one
framebuffer module. The total I/O controller transfer rate assumes simultaneous use
of eight I/O controllers.

15.3 Typical Application Performance (Fixed Point)

General computing
Terrain mapping
Document search

2500 Mips
1000 Mips
6000 Mips

These numbers indicate the averaged performance of the machine on applications
for which it is well matched. The numbers are based on actual measurements that
include all overhead in the sequencer, the operating system, the front-end user code, and
inefficiencies of I/O transfers and algorithm design. The terrain mapping application,
for example, cited as running at 1000 Mips, does indeed run approximately 1000 times
faster than the same application running on a serial computer rated at 1 Mips.

Mips = Millions of instructions per second

Chapter 15 Performance Specifications

15.4 Interprocessor Communication

Regular pattern of 32-bit messages
Random pattern of 32-bit messages
Sort 65,536 32-bit keys

250 million per second
80 million per second

30 milliseconds

59

The amount of time required to deliver messages depends on the pattern. A fully
loaded random pattern is the worst case that has currently been measured. Sparse
message patterns are faster, as are patterns with regular structure, such as grids, trees,
or shuffles. The sort time is given here because it is a communication-intensive bench­
mark.

15.5 Variable Precision Fixed Point

64-bit integer add
32-bit integer add
16-bit integer add
8-bit integer add
64-bit move
32-bit move
16-bit move
8-bit move

1500 Mips
2500 Mips
3300 Mips
4000 Mips
2000 Mips
3000 Mips
3800 Mips
4500 Mips

These numbers indicate the performance of the machine running repeated cycles
of the same instructions. The rates include the worst case for all overhead associated
with virtual processors. For applications using large numbers of virtual processors per
physical processor, the performance will be higher, especially when operating on small
fields.

15.6 Double Precision Floating Point

4Kx4K matrix multiply benchmark
Dot product

2500 MFlops
5000 MFlops

The 4Kx4K matrix multiply benchmark starts with two matrices; approximately
16,000,000 elements each are distributed to the machine. The result is the matrix
product. The number includes all communications overhead. The dot product rate is
for multiplying two vectors, approximately a hundred elements each, stored within each
processor in the optimal format, using the Paris f-vector-dot-product operation.
This gives an indication of high rates that can be achieved for short periods of time. It
is unusual to sustain such rates over the course of a computation. All double precision
rates assume the machine is equipped with a.double precision floating point accelerator.

MFlops = Millions of floating point operations per second

60 Connection Machine Model CM·2 Technical Summary

15.7 Single Precision Floating Point

Addition
Subtraction
Multiplication
Division
4K X 4K matrix multiply benchmark
Dot product

4000 MFlops
4000 MFlops
4000 MFlops
1500 MFlops
3500 MFlops

10,000 MFlops

Single precision rates are for a CM-2 equipped with either a double precision or a
single precision floating point accelerator. The rates for addition, subtraction, multi­
plication, and division assume the use of two-address, unconditional Paris instructions
with a virtual processor ratio of 32 (2048K virtual processors), and include all instruc­
tion issuing and decoding overhead.

See the comments in section 15.6 concerning the 4K x 4K matrix multiply benchmark
and dot product.

15.8 Parallel Processing Unit Physical Dimensions

Size
Weight

56" x 56" x 62"
2600 lbs.

These dimensions ate for the parallel processing unit only and do not include the
front-end computer(s), the high-resolution graphic's display monitor, or the DataVault
mass storage system.

15.9 Parallel Processing Unit Environmental Requirements

Power Dissipation
Power Input
Operating Temperature
Operating Relative Humidity

28kW
Four 30-amp 3-phase 1l0/208V

70°F ± 5°F
50% ± 10%

These figures are for the parallel processing unit only and do not include the front­
end computer(s), the high-resolution graphics display monitor, or the DataVault mass
storage system.

