
The
Connection Machine
System

Paris Release Notes

Version 5.0
February 1989

Thinking Machines Corporation
Cambridge, Massachusetts

First printing. February 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable. Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-t, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, '"Lisp, C·, and CM Fortran are trademarks of Thinking Machines Corporation.
VAX and ULTRIX are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

Customer Support .. iii

1. About Paris Version 5.0 1
1.1. Summary of New Features.. 1
1.2. Status of Layered Products .. 3
1.3. Porting Paris Code ... 3

Back-Compatibility Mode .. 3

1.4. New and Changed Paris Instructions 4
1.5. Obsolete Memory Management Instructions . 4
1.6. Changes Unique to ClParis .. 5

New ClParis Header File... 5
ClParis Type Names Changed 5

1.7. Changes Unique to Lisp/Paris.. 5

Elimination of Stack-Relative Addressing.. 5

2. Implementation Restrictions 6

2.1. Maximum Message Length .. 6
2.2. Incomplete Support for IEEE Floating-Point 7

3. Implementation Errors. 7

4. Documentation Discrepancies . 8
4.1. Unimplemented Instructions Documented 8
4.2. Documented and Implemented Names Differ. 8
4.3. Operand Order Switched in VP Set Memory

Allocation Instructions .. 9
4.4. Zero Length Operands . 9

c

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

u.S. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

For Symbolics users only:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

customer-support@think.com

harvard! think ! customer-support

(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc~

curs, simply press Ctrl-M to create a report. In the mail window that appears, the To: field
should be addressed as follows:

To: bug-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.

iii

(

(

\

1. About Paris Version 5.0

Connection Machine System Software Version 5.0 is built on a new and significantly
expanded parallel instruction set. Several important design goals have been achieved
in this release:

• Better performance. For most applications, the new software achieves faster
performance, more efficient memory management, and better memory utiliza­
tion. Many instructions have been reimplemented to improve overall system
performance.

• More sophisticated memory management. User-allocated data sets are man­
aged through abstract fields that maintain information about the location and
size of data elements residing in CM processors' memory. This form of mem­
ory management uses CM memory more efficiently and can thus handle prob­
lems with even larger data sets than before. Data access through field-ids also
permits more safety checks and more flexibility in managing memory.

• Better utilization of CM-2 hardware. New instructions have been added that
make better use of the CM-2 hardware, including the router and the floating­
point accelerator.

• Easier programming. New classes of instructions have been implemented that
make Paris programming easier and provide a higher level of programming
support. Consistent and regular naming conventions for instructions and ar­
guments also simplify Paris programming.

1.1. Summary of New Features

These major new features of Paris Version 5.0 distinguish it from earlier versions:

• More flexible virtual processor architecture. The new virtual processor architec­
ture supports multiple sets of virtual processors within a program. Virtual
processor sets of different sizes can coexist in a program and can be created
and destroyed under program control.

1

2 Paris Release Notes

• Support for n·dimensional NEWS addressing. Static, 2-dimensional NEWS ad­
dressing has been replaced by dynamic, n-dimensional addressing in a recti­
linear coordinate system of up to 31 dimensions specified by axes ordered
from 0 through 30, inclusive. The number of dimensions and the size of each
dimension in the coordinate system can be changed under program control.

• New classes of communication instructions. New classes of instructions com­
bine structured communication between processors with arithmetic and logi­
cal operations. Multiple·direction scan-like instructions called spreads can
replicate data or perform reductions along several dimensions simultaneously;
also, scan instructions now support all combining operations.

• Expanded transcendental math library. Many basic transcendental functions
(including sine, cosine, and others) have been added to Paris.

• Alphanumeric instruction names. Paris instruction names no longer contain
special symbols that conflict with the naming conventions of high-level lan­
guage interfaces. There is now a simple and direct correspondence between
Lisp names and those used by other languages.

• Faster intra processor a"ay access. The new software exploits existing hardware
support for fast array-indexing operations on arrays that are allocated each
within a single processor. The new operations simultaneously access a possibly
different element of each array within each processor.

• Enhanced routing instructions. The routing instructions (e.g., send and get)
have more combiners and use special hardware features that enhance their
overall performance for high virtual processor ratios.

• Compatibility with earlier releases. Version 5.0 supports all documented in­
structions provided in Version 4x. Certain Version 4x instructions have been
superseded by newer instructions with more logically-chosen names and en­
hanced behavior, but the old names are still supported for this release.

• Fortran/Paris interface. The Paris object library includes a Fortran-callable in­
terface to the Paris instructions. The instructions can be called from CM
Fortran on a V AX front end, V AX Fortran on a V AX front end, and UNIX
Fortran 77 on a Sun front end.

Version Number 3

1.2. Status of Layered Products

• *Lisp fully supports and uses the new virtual processor architecture, n-dimen­
sional NEWS, and the new Paris instructions.

• The C* compiler generates code for Version 4x Paris instructions only. C*
programs must run in back-compatibility mode, as C* does not take advan­
tage of either the new virtual processor architecture or n-dimensional NEWS.

• The CM Fortran compiler generates calls to some Version 5.0 Paris instruc­
tions, but CM Fortran programs must be executed in back-compatibility mode
as they must use the previous virtual processor system. CM Fortran programs
use n-dimensional NEWS for efficient operations on multidimensional arrays,
but the relevant instructions are not the documented Paris NEWS instructions.
(The operations that CM Fortran generates use masks rather than geometries
to describe the coordinate system .) These restrictions will be removed in the
next release of CM Fortran.

• The DataVault mass storage system uses the new Paris features. Programs
that use the Data Vault may be run in Version 5 mode or in back-compatibility
mode (the lowest level interface to the DataVault depends only on processor
cube addresses).

• The CM graphic display system uses the new Paris features. Whether pro­
grams that use display instructions run in Version 5 mode or in back-compati­
bility mode depends on the language from which the display instructions are
called.

1.3. Porting Paris Code

Back-Compatibility Mode

Any existing programs that call Paris instructions must be recompiled and relinked
with the new Paris object library and must be run in back-compatibility mode. Back­
compatibility mode implements the 4x stack discipline by allocating the stack in field
zero and making stack addresses offsets into this field. See the Front-End Systems Re­
lease Notes, Version 5.0, for information on executing programs in back-compatibility
mode.

4 Paris Release Notes

1.4. New and Changed Paris Instructions

Most Paris Version 4x instructions have Version 5.0 equivalents; some do not. The 4x
names will work in 5.0 programs, with the exception of instructions based on the old
NEWS scheme and of those based on the old memory management scheme. See Appen­
dix A of the Paris Reference Manual, Version 5.0, for a list of 4x instructions and their
corresponding 5.0 equivalents. The same appendix describes the naming conventions
introduced with Version 5.0, highlights new instructions, and identifies all obsolete 4x
instructions.

1.5. Obsolete Memory Management Instructions

In Version 5.0, Paris manages memory by means of a field allocation mechanism
rather than through direct manipulation of a stack. The following Version 4x stack
manipulation instructions are supported in back compatibility mode only. Their con­
tinued use is strongly discouraged.

CM: push-space
CM: pop-and-discard
CM: set-stack-pointer
CM: set-stack-limit
CM: set-stack-upper-bound
CM: get-stack-pointer
CM:get-stack-limit
CM: get-stack-upper-bound
CM: reset-stack-pointer

Any existing code that uses the above 4x instructions should be converted as soon as
possible to use the 5.0 replacement instructions. The obsolete 4x instructions will be
removed in a future release of the software.

To allocate space on the stack, use the 5.0 instruction

CM:allocate-stack-field

To deallocate stack space previously allocated, use the 5.0 instruction

CM:deallocate-stack-through

Version Number 5

See the Concepts section of the Paris Reference Manual, Version 5.0, for a discussion of
fields. See Appendix A of the Paris Reference Manual, Version 5.0 for a complete list of
obsolete Version 4x Paris instructions.

1.6. Changes Unique to C/Paris

New C/Paris Header File

The C/Paris functions and types are now declared in the header file cm/paris. h. All
function and type declarations previously declared in cm/cm.h are still supported
(and are still available by including that header file).

C/Paris Type Names Changed

The following C/Paris types have changed with Version 5.0.

Version 4.x type

CM_memaddr_t

CM_cubeaddr_t

Version 5.0 type

CM_field_id_t

CM_sendaddr_t

The old types are still defined and the compiler will accept them (although lint will
complain), but this may not be true in the future.

1.7. Changes Unique to Lisp/Paris

Elimination of Stack-Relative Addressing

The Lisp/Paris function CM:stack, which performed stack-relative addressing, is no
longer supported under the new virtual processor field-addressing scheme.

6 Paris Release Notes

2. Implementation Restrictions

2.1. Maximum Message Length

The constant CM: * maximum-message-Iength * has been defined to be 128. This con­
stant is an upper bound on the number of bits transferred between processors by cer­
tain send instructions.

• The limit on message length applies to the following Version 4x send instruc­
tions:

CM:send
CM:send-with-overwrite
CM:send-with-logior
CM: send-with-Iogxor
CM:send-with-logand
CM:send-with-add
CM:send-with-max
CM:send-with-min
CM:send-with-unsigned-max
CM:send-with-unsigned-min

• The maximum message length restriction also applies to the following Version
5.0 router instructions:

CM: send-with-f-max-1 L
CM:send-with-f-min-1 L

CM: send-with-f-add-1 L
CM:send-aset32-overwrite-1 L
CM:send-aset32-u-add-1 L

CM:send-aset32-logior-1 L
CM:get-aref32

• The following new Version 5.0 send instructions have no message length re­
striction; their message size is limited only by available memory:

CM:get-1L
CM:send-1L
CM:send-with-overwrite-1 L
CM: send-with-logxor-1 L
CM:send-with-logior-1 L

CM:send-with-logand-1 L

(
\

\

Version Number

CM:send-with-u-min-1 L
CM:send-with-u-max-1 L

CM: send-with-s-min-1 L
CM: send-with-s-max-1 L
CM:send-with-u-add-1 L

CM: send-with-s-add-1 L

2.2. Incomplete Support for IEEE Floating-Point

7

Support for IEEE floating-point instructions and flags is somewhat lacking in Version
5.0. In particular:

• the five floating-point flags are not supported

• denormalized numbers are not supported

• Infinity and NaN values are only partially supported

Also, all Version 5.0 floating-point instructions:

• set the integer overflow flag if overflow occurs

• set the test flag in response to an invalid operation

• produce a zero result on underflow, with no other indication

3. Implementation Errors

In Parallel contains descriptions of known Paris implementation errors. Published
monthly between releases, In Parallel provides up-to-date information including bug
reports and programming hints. Please see the Paris section in each In Parallel issue
published since the release of Version 5.0.

8 Paris Release Notes

4. Documentation Discrepancies

4.1. Unimplemented Instructions Documented

The instructions listed below, although they are not implemented, are documented in
the accompanying Paris Reference Manual, Version 5.0.

CM: u-add-carry-3-1 L
CM: u-add-carry-3-3L
CM:s-s-power-3-3L
CM: {u,s}-move-const-always-1 L
CM: {f,u,s}-rank-2L
CM: s-f-signum-2-2L
CM:s-s-signum-1-1 L
CM:u-isqrt-1-1L
CM:aref-2L
CM:aset-2L

Implementation of all but the last two instructions listed above is anticipated for Paris
Version 5.1.

CM:aref-2L and CM:aset-2L are not implemented, except under the 4x names CM:aref
and CM:aset. These instructions are very slow and should be avoided. As a conse­
quence of the poor performance of these general array instructions, it is unlikely that
CM:aref-2L and CM:aset-2L will be implemented in any future release.

Although more strictly restricted in allowable array parameters, the new, faster array
instructions, CM:aref32 and CM:aset32, should be used for array manipulation. To
make this easier, an array transposition instruction, which would convert arrays from
and to a sideways representation, is planned for Version 5.1.

4.2. Documented and Implemented Names Differ

The following list shows the correspondence between Paris instructions that, with the
release of Version 5.0, are documented under one name and implemented under an-

Version Number 9

other. They work as documented, although called by a different name. These inconsis­
tencies are expected to be resolved with Version 5.1.

Implemented

CM: my-send-address-1 L

CM:swap-2-1L

CM: send-aset32-logior-1 L

CM: send-aset32-overwrite-1 L

CM:send-aset32-u-add-1 L

CM:float-move-decoded-constant

Documented

CM: my-send-address

CM:swap-1L

CM: send-aset32-logior-2L

CM:send-aset32-overwrite-2L

CM:send-aset32-u-add-2L

CM:f-move-decoded-constant-1 L

4.3. Operand Order Switched in VP Set Memory
Allocation Instructions

The order in which operands to CM:allocate-stack-field-vp-set and CM:allocate­
heap-field-vp-set are to be specified is documented as vp-set-id, len. However, as
implemented, these instructions expect their arguments in the opposite order.

4.4. Zero Length Operands

All Paris operations on unsigned integers are documented to permit length operands
of value zero. However, as implemented, some do support zero length operands and
some do not. Giving an unsigned instruction a length operand of value zero will cause
obvious errors in some cases, will cause subtle errors in other cases, and will work cor­
rectly in still other cases. It is therefore inadvisable to pass zero length operands to
operations on unsigned integers.

Zero length operands are generally not useful and therefore this inconsistency should
not prove troublesome. If a workaround is needed, provide a one-bit field containing
zero in each processor. It is uncertain whether this restriction will persist in the future.

(
\

\",

