
The
Connection Machine
System

Paris Release Notes

Version 5.1
June 1989

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, June 1989

The information in this document is subject to change without notice and should not be
construed as a commitment· by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable. Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-I. CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris. * Lisp. C·. and CM Fortran are trademarks of Thinking Machines Corporation.
VAX and ULTRIX are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge. Massachusetts 02142-1214
(617) 876-1111

Contents

Customer Support . v
About Version 5.1 Paris Documentation .. vii

1. About Paris Version 5.1 1

1.1. Summary of New Features " 1

1.2. Summary of Changed Features 2

1.3. Status of Layered Products. 3

1.4. C/Paris Interface .. 3
1.4.1. Standard UNIX Math Library............................... 3
1.4.2. ClParis Header Files . 3

1.5. Back Compatibility .. 4
Back-Compatibility Mode. 4

2. Implementation Restrictions 5

2.1. Maximum Message Length....................................... ... 5

2.2. Incomplete Support for IEEE Floating-Point 6

3. Implementation Errors. 7

3.1. Corrected Errors ... 7

3.2. Outstanding Errors '" 8
c-star-simulator 8
cm-get-ll-runs-out-of-mem 9
cm-time-overflows 9
deposit-news-constant 10
lintlib ... 10
negative-field-length 11
no-psim-on-sun4 and psim-back-only . 11
no-segment-bits-for-scans 12
send-to-news-wrong-context 12

iii

iv Contents

4. Documentation Errors .. 13

4.1. Corrected Errors '" , 13

4.2. Outstanding Errors........... 14
4.2.1. Instruction Set Overview ,... 14

Omissions... 14
Inaccuracies .. 14

4.2.2. Dictionary: General Problems 14
C/Paris Types..... 14
Field ID Type .. 15
Zero Length Operands . 15
Integer Immediate Operands . 15
Integer Division . 16
CM Floating Point 16

4.2.3. Dictionary: Specific Problems. .. 16
CM:f-abs .. 17
CM:allocate-stack-field-vp-set and

CM:allocate-heap-field-vp-set 17
CM:aref32-shared-2L and CM:aset32-shared-2L 17
CM:deposit-news-coordinate-IL 17
CM:extract-news-coordinate and CM:extract-multi-coordinate 17
CM:get-IL and CM:get-aref32-2L 18
CM:initialize-random-number-generator 18
CM:load-flag . 18
CM:multispread . 18
CM:my-send-address . 18
CM:s-s-power .. 18
CM:rank ... 19
CM:send-to-news 19
CM:store-flag .. 19

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.s. Mail:

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

For Symbolics users only:

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

customer-support@think.com

harvard!think!customer-support

(617) 876-1111

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc­
curs, simply press Ctrl-M to create a report. In the mail window that appears, the To: field
should be addressed as follows:

To: bug-connection-machine@think.com

Please supplement the automatic report with any further pertinent information.

v

About Version 5.1 Paris Documentation

Intended Audience and Objectives

The Paris language and its documentation are intended for experienced developers of Connec­
tion Machine system software and applications. Version 5.1 Paris documentation is published
to inform Paris programmers about new and modified Paris features.

Revision Information

The version 5.1 Paris release notes and supplementary documentation supersede all previous
Paris release notes and all past editions of the Paris sections of In Parallel software bulletin.
Release notes distributed with versions 5.0, S.lA Field Test, and with any earlier releases are
now obsolete and should be removed from the Programming in Paris binder. In Parallel editions
published before June 1989 should also be discarded.

Organization of Version 5.1 Paris Documentation

Paris Release Notes, Version 5.1
The release notes broadly describe new and changed Paris features and detail lan­
guage restrictions. Outstanding implementation and documentation errors are
also reported.

Change Pages to Paris Dictionary, Version 5.1
The change pages document Paris instruction that have been changed for Version
5.1 and should be used to replace Version 5.0 dictionary pages with descriptions
accurate for Version 5.1.

Paris Reference Manual Supplement, Version 5.1
The supplement documents Paris features new with Version 5.1. It includes an
instruction overview section, organized by functionality, and a dictionary section,
arranged alphabetically.

Scientific Subroutines
This short section describes two types of operations that mark the beginning of a
Scientific Subroutines Library for the Connection Machine: Fast Fourier Trans­
form routines and Matrix Multiplication routines are included.

vii

viii About Version 5.1 Paris Documentation

Related Manuals

• Paris Reference Manual Version 5.0, printed February 1989

• Introduction to Programming in CIParis Version 5.0, printed June 1989

• In Parallel, Software Bulletin

Published as necessary between releases of Connection Machine System Software ver­
sions, In Parallel provides up-to-date information including bug reports and program­
mmg hints. See the Paris section in each In Parallel issue published since the release of
Version 5.1.

Typeface Conventions

The table below displays the typeface conventions used in the Paris documentation.

Convention

boldface

italics

typewriter

Meaning

Language elements, such as keywords and instruction
names, when they appear embedded in text.

Operand names and placeholders in instruction formats and
when they appear embedded in text.

Code examples and code fragments.

New Notation Convention

All Paris Version 5.1 documentation follows the conventions for alphabetizing, syntax, and
pseudocode established at the beginning of Chapter 9 of the Paris Reference Manual Version
5.0. One new convention has been introduced.

In the Formats portion of dictionary entries, brackets, [and], enclose arguments that are
either not provided, optional, or keywords in the Lisp/Paris interface. Wherever this notation is
used, the Operands list states explicitly whether the brackets enclose unprovided, optional, or
keyword arguments. For example, in the format line

Formats result +- eM: intern-geometry dimension-array. [rank]

the rank operand is not provided when calling Paris from Lisp.

1. About Paris Version 5.1

The Paris Language is the Connection Machine assembly language. Paris is currently
the lowest-level instruction set available for programming the Connection Machine. It
provides a large number of operations similar to the machine-level instruction set of a
serial computer. Paris is intended primarily as the basis for higher-level Connection
Machine languages such as *Lisp, C*, and CM Fortran. It may nonetheless be called
directly from standard Lisp, C, or Fortran or from *Lisp, C*, or CM Fortran code.

Paris Version 5.1 provides an expanded parallel instruction set and corrects a number
of implementation errors present in Version 5.0.

1.1. Summary of New Features

These new features distinguish Paris Version 5.1 from earlier versions:

• CM Fortran now generates Paris 5.1. CM Fortran no longer needs to be run in
back-compatibility mode.

• Scientific subroutines. Two operations from the Connection Machine Scientific
Subroutines Library are included in this release. These are Fast Fourier Trans­
formation (FFf) of complex numbers and matrix multiplication of either float­
ing-point or complex numbers.

A separate supplement to the Paris reference manual documents these scien­
tific subroutines. As more numerical and scientific routines become available,
they will be released as a library. At that time, these routines will no longer be
incorporated into Paris proper.

• Complex floating-point numbers. Most Paris operations may now be performed
on complex numbers. with the real and imaginary parts represented as either
single- or double-precision floating-point numbers.

• Moves across VP sets. The new CM:cross-vp-move instruction copies data be­
tween VP sets.

1

2 Paris Release Notes

• Geometry and VP set interning. A set of new instructions create geometry and
VP set descriptors that may be reused, thus reducing CM memory manage­
ment overhead. The names of these instruction all begin with CM:intern.

• Field aliases. New instructions introduce a mechanism for referencing the
same CM field from within different VP sets.

• NEWS instructions with floating-point operands. A variety of new instructions
perform calculations in which all operands are floating-point fields and one of
these fields is taken from a NEWS neighbor. The names of these instruction all
begin with CM:f-news.

• Power of 2 NEWS. With the new CM:get-from-power-of-two instructions,
each processor retrieves data from another processor, where the distance in
the NEWS grid between the source and destination processors is a power of
two.

• floating-point format conversion. Two new operations, CM:f-ieee-to-vax-1 L
and CM:f-vax-to-ieee-1L convert floating-point numbers between the IEEE
and VAX formats.

• Heap compression. A new memory management instruction, named CM:com­
press-heap, removes heap fragmentation.

Paris features new with Version 5.1 are documented in the Paris Reference Manual
Supplement Version 5.1.

1.2. Summary of Changed Features

These Paris features existed in Version 5.0 and have been modified in Version 5.1:

• Revised geometry creation. The CM:create-geometry and CM:create-detailed­
geometry instructions have been rewritten, as has their documentation.

• Revised bit block transfers. The CM:read-from-news-array and CM:write-to­
news-array family of operations, which copy data between the eM and the
front end, have been improved and expanded. These now support transfers of
complex numbers, packed arrays, arrays of structures, and portions of multi­
dimensional arrays.

Version 5.0 Paris features modified in Version 5.1 are documented by the packet enti­
tled Change Pages to Paris Dictionary Version 5.1.

Version 5.1 3

1.3. Status of Layered Products

• The CM Fortran compiler now generates calls to Version 5.1 Paris instructions
and fully supports all Paris features, including the virtual processor architec­
ture, n-dimensional NEWS, and instructions new with Version 5.1. CM
Fortran programs no longer need to be executed in back-compatibility mode.

• *Lisp fully supports all Paris features, including the virtual processor architec­
ture, n-dimensional NEWS, and instructions new with Version 5.1.

• The C* compiler generates code for Version 4x Paris instructions only. C*
programs must run in back-compatibility mode as C* does not take advantage
of either the new virtual processor architecture or n-dimensional NEWS.

• The DataVault mass storage system uses the new Paris features. Programs
that use the DataVault may be run either under Version 5.1 or in back-com­
patibility mode. (The lowest-level interface to the Data Vault depends only on
processor cube addresses.)

• The CM graphic display system uses Paris features. Whether programs that
use display instructions run under Version 5.1 or in back-compatibility mode
depends on the language from which the display instructions are called.

1.4. C/Paris Interface

1.4.1. Standard UNIX Math Library

The standard UNIX math library is no longer automatically linked with Paris. When
linking 5.1 C/Paris code, it is therefore necessary to use the -1m switch. For example,
the following cc command will link a module named test. c with a main program
named main.c.

% cc main.c test.c -lparis -1m

1.4.2. C/Paris Header File

C/Paris typing information, contained in the paris.h header file has been updated and
corrected for Version 5.1. C/Paris globals, constants, and functions are declared in this
file. C/Paris types are declared in the file cmtypes. h, which is included in paris. h.

4 Paris Release Notes

1.5. Back Compatibility

Version 5.1 supports all documented instructions provided in Versions 4x and 5.0.

Back-Compatibility Mode

Any existing programs that call Paris 4x instructions must be recompiled and relinked
with the new Paris object library and must be run in back-compatibility mode. Back­
compatibility mode implements the 4x stack discipline by allocating the stack in field
zero and making stack addresses offsets into this field. See the Front-End Systems Re­
lease Notes Version 5.1, for information on executing programs in back-compatibility
mode.

Version 5.1 5

2. Implementation Restrictions

2.1. Maximum Message Length

The constant CM: * maximum-message-Iength * has been defined as 128. This con­
stant is an upper bound on the number of bits transferred between processors by cer­
tain router instructions (sendS and gets).

• The maximum message length restriction also applies to the following Version
5.x router instructions:

CM:send-with-f-max-1 L
CM:send-with-f-min-1 L
CM: send-with-f-add-1 L
CM:send-aset32-overwrite-1 L
CM: send-aset32-u-add-1 L
CM: send-aset32-logior-1 L
CM:get-aref32

• The following Version 5.x router instructions have no message length restric­
tion; their message size is limited only by available memory:

CM:get-1L
CM:send-1L
CM: send-with-overwrite-1 L
CM:send-with-logxor-1 L
CM:send-with-logior-1 L
CM: send-with-logand-1 L
CM: send-with-u-min-1 L
CM: send-with-u-max-1 L
CM: send-with-s-min-1 L
CM:send-with-s-max-1 L
CM:send-with-u-add-1 L
CM:send-with-s-add-1 L

• The limit on message length applies to the following Version 4x router instruc­
tions:

CM:send
CM: send-with-overwrite
CM: send-with-Iogior
CM: send-with-Iogxor

6

CM:send-with-logand
CM:send-with-add
CM:send-with-max
CM:send-with-min
CM:send-with-unsigned-max
CM: send-with-unsigned-min

Paris Release Notes

2.2. Incomplete Support for IEEE Floating-Point

Support for IEEE floating-point instructions and flags is incomplete in Version 5.1. In
particular:

• the five IEEE floating-point flags are not supported

• denormalized numbers are not supported

• Infinity and NaN values are only partially supported

Also, all Version 5.1 floating-point instructions:

• set the integer test-flag and the integer overflow-flag if division by zero occurs

• set the integer overflow-flag if floating-point overflow occurs

• set the integer test-j1ag in response to an invalid operation

• produce a zero result on underflow, with no other indication

When overflow occurs, the value stored in the destination field varies depending on the
floating-point hardware present. The result may be 0.0, it may be a quiet NaN, or it may
be the biased adjusted result specified by IEEE. Similarly, using a NaN as an operand
to a floating-point instruction yields indefinite results.

Version 5.1 7

3. Implementation Errors

Most of the Paris implementation errors reported in the In Parallel software bulletin
issues for January, February, March, and April of 1989 are corrected in Version 5.1.
The outstanding bugs are reported again in these release notes. All past issues of Pro­
gramming in Paris In Parallel may therefore be discarded.

3.1. Corrected Errors

The following Version 5.0 implementation errors, reported in In Parallel Number 1,
January 1989, are fixed in Paris Version 5.1.

aref32
cross-vp-send-f-add
fortran-lib
lib-not-profiled

Ivnp
prototypes
subfrom-const-always

bitblt-cross-seq
deposit-news-coordinate
iIIegal-psect
libparis-pg
mult-const-sub
send-to-news
u-to-grey-code

The following Version 5.0 implementation errors, reported in In Parallel Number 2,
February 1989, are fIxed in Paris Version 5.1.

aref32-index-bug
exp-with-vps
sincosatan-inaccurate

copy-scan-no-segments
negative-field-Iength

The following Version 5.0 implementation errors, reported in In Parallel Number 3,
March 1989, are fixed in Paris Version 5.1.

f-s-power
signed-exponentiation-error

f-u-power

No Paris implementation errors were reported in In Parallel Number 4, April 1989.

8 Paris Release Notes

The error reported below has not been previously reported.

10 create-detailed-geometry-bug

This is corrected in Paris Version 5.1.

Environment

Paris, Versions 5.0; any front-end/CM configuration

Description

The axis weighting mechanism available with CM:create-detailed-geometry
did not work properly at VP ratios higher than 1. Instead of favoring communi­
cation along axes of lesser weight, it favored axes that had been assigned
greated weights.

3.2. Outstanding Errors

Version 5.1 of Paris has some known implementation errors, most of which have been
previously reported. They are reported here in alphabetical order by bug report ID.

10 c-star-simulator

This was originally reported in In Parallel Number 1, January 1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1; any front-end/CM configuration

Synopsis

C* does not work with the Paris simulator.

Version 5.1 9

10 cm-get-11-runs-out-of-mem

This was originally reported in In Parallel Number 2, February 1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1; any front-end/CM configuration.

Description

Calls to CM:get-1 L may cause the CM to run out of heap memory because
CM:get-1L performs backward routing, a communication process that stores
router trace information in order to speed interprocessor data transmission.
The amount of memory required depends on the pattern being run. The fol­
lowing message indicates the executing program has run out of memory:

Forward sprint-send-with-trace has exceeded its allowed
space for saving out trace data.

CM Microcode Function: CMI::SAVE-OUT-PETIT-CYCLE-TRACE

Workaround

Use CM:get, the older version of CM:get-11. This instruction is slower, but it
uses far less memory than does CM:get-11.

10 cm-time-overflows

This was originally reported in In Parallel Number 2, February 1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1; any front-end/CM configuration.

Description

The result returned by CM:time can become too large to fit into the 32 bits that
are allocated to accumulate and store the total time. When this happens in

10 Paris Release Notes

Lisp/Paris, control is transferred to the Lisp debugger; in C/Paris, CM_time
returns an incorrect result.

10 deposit-news-constant

This was originally reported in In Parallel Number 1, January 1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1; any front-end/CM configuration.

Synopsis

CM:deposit_news_coordinate_1L and CM:deposit_news_constant_1L are
documented to execute conditionally but, in the current implementation, they
execute unconditionally.

10 lintlib

This was originally reported in In Parallel Number 1, January 1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1; any front-end/CM configuration.

Synopsis

The lint version of the Paris library does not work on the VAX front end.

Description

There is an ULTRIX bug that prevents our lint library from working.

Version 5.1 11

10 negative-field-Iength

10

This was originally reported in In Parallel Number 2, February 1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1; any front-end/CM configuration.

Description

The field allocation routines, CM:allocate-stack-field and CM:allocate-heap­
field, successfully return when passed negative lengths as arguments-even if
safety is on. The negative lengths can later cause a CM exception.

no-psim-on-sun4 and psim-back-only

This was originally reported under both ID's in In Parallel Number 1, January
1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1.

Synopsis

The Paris simulator only works in back-compatibility mode. Therefore, since
the Sun front end is supported only by CM System Software versions 5.0 and
higher, there is no working C/Paris simulator for the Sun front end.

12 Paris Release Notes

10 no-segment-bits-for-scans

This was originally reported in In Parallel Number 3, March, 1989.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1; any front end with any CM configuration.

Description

None of the Paris scan instructions accept the :segment-bit (CM_seg­
ment_bit) value for the smode operand.

10 send-to-news-wrong-context

This has not been previously reported.

Environment

Paris, Versions 5.0, 5.0.1, and 5.1, any front end with any CM configuration.

Synopsis

For the Paris send-to-news operation, both the documentation and the imple­
mentation are in error. Execution of the conditional version of this operation
should depend on the context of the sending processors; it instead depends on
the context of the receiving processors.

Description

For CM:send-to-news-1L, the context bit of the source processors should de­
termine which processors send messages to their neighbors. Instead, in the
current implementation, the context bit of the destination processors is used to
determine which processors receive messages. The Context portion of the dic­
tionary entry should read as follows:

Context The non-always operation is conditional. The source value is
set only by processors whose context-flag is 1.
The always operation is unconditional. The source value is sent
regardless of the value of the context-flag.

The implementation should be changed to reflect this.

Version 5.1 13

4. Documentation Errors

4.1. Corrected Errors

The instructions listed below were reported in Paris Release Notes, Version 5.0, as
documented but not implemented. They are all now implemented and the documenta­
tion for them is correct.

CM: u-add-carry-3-1 L

CM:aref-2L
CM:u-isqrt-1-1L
CM: s-s-power-3-3L
CM:s-f-signum-2-2L

CM: u-add-carry-3-3L
CM:aset-2L
CM: {u,s}-move-const-always-1 L
CM: {f.u.s}-rank-2L
CM:s-s-signum-1-1L

The instructions listed below were reported in Paris Release Notes, Version 5.0, as
documented under one name and implemented under another. The documented
names are implemented in Paris Version 5.1. The names under which these instruc­
tions were originally implemented continue to exist to allow back-compatibility. Pro­
grammers are, however, cautioned against using the undocumented names, which may
be removed in the future.

Undocumented Name

CM: my-send-address-1 L

CM:swap-2-1L

CM: send-aset3 2-logior-1 L

CM:send-aset32-overwrite-1 L

CM: send-aset3 2-u-add-1 L

CM:float-move-decoded-constant

Documented Name

CM: my-send-address

CM:swap-1L

CM:send-aset32-logior-2L

CM:send-aset32-overwrite-2L

CM:send-aset32-u-add-2L

CM:f-move-decoded-constant-1 L

14 Paris Release Notes

4.2. Outstanding Errors

A number of documentation errors in the Paris Reference Manual, Version 5.0, remain
outstanding. A corrected edition of the manual will be published in the future. Mean­
while, Paris programmers are strongly urged to add the corrections suggested here to
their manuals by hand.

4.2.1. Instruction Set Overview

Omissions

The charts in Chapter S, "Instruction Set Overview," do not include the following op­
eration names. However, these operations are implemented and they are documented
in the dictionary.

CM: extract-multi-coordinate
CM:field-vp-set
CM: move-decoded-constant
CM: {s,u,f}-rank-2L

Inaccuracies

The charts in Chapter 5, "Instruction Set Overview," include the following operation
names. However, these operations are neither included in the dictionary, nor are they
implemented.

CM: invert-bit
CM: {s,u}-round

CM:deposit-multi-coordinate

4.2.2. Dictionary: General Problems

This section describes general problems with the Paris reference documentation.
These are errors that occur in many instruction definitions.

C/Paris Types

The C/Paris Interface chapter is quite vague about the types of various Paris operands.
In previous releases the header files cmtypes. h and paris. h were not entirely accurate
either. In the future, the C/Paris type information will be more explicitly described in

Version 5.1 15

the Paris Reference Manual. Meanwhile, the cmtypes.h and paris.h header files have
been corrected for the release of Version 5.1. While we apologize for the inconven­
ience, C/Paris users are encouraged to use these header files as their definitive source
of information about C/Paris operand and return value types.

Field 10 Type

The dictionary section of the Paris Reference Manual, Version 5.0, defines a field-id as
an unsigned integer. Although field-id's are currently implemented as unsigned inte­
gers, this may not be true in future Connection Machine System Software versions.

This error occurs throughout Version 5.0 of the Paris Reference Manual. For instance,
definitions for all the field allocation instructions should define the return values as
field-id's rather than as the field-id's of unsigned integer fields. Similarly the dest and
send-address arguments to instructions such as CM:deposit-news-coordinate should
be defined simply as field-id's-not necessarily as field-id's of unsigned integer fields.

User code should not depend on the type of a field-id. C/Paris and Fortran/Paris code
should conform to the language-specific field-id types given in the "C/Paris Interface"
and the "Fortran/Paris Interface" chapters. Lisp/Paris code may rely on automatic
coercion.

Zero Length Operands

In Version 5.0 of the Paris Reference Manual, all Paris operations on unsigned integers
are documented to permit length operan~s of value zero. However, as implemented,
some do support zero length operands and some do not. Giving an unsigned instruc­
tion a length operand of value zero will cause obvious errors in some cases, will cause
subtle errors in other cases, and will work correctly in still other cases. It is therefore
inadvisable to pass zero length operands to operations on unsigned integers.

Zero length operands are generally not useful and therefore this inconsistency should
not prove troublesome. If a workaround is needed, provide a one-bit field containing
zero in each processor.

It is uncertain whether this restriction will persist in the future.

Integer Immediate Operands

For all Paris instructions that take signed and unsigned integer immediate operands,
which become constant operands once broadcast to the CM processors, the constant
must be representable in the number of bits specified by the len argument.

16 Paris Release Notes

The statement "The constant need not be representable in the number of bits specified
by len." is, in the current implementation, false. This discrepancy between the docu­
mentation and the implementation applies to all binary arithmetic and integer con­
stant operations such as, for example,

CM:{s,u}-add
CM: {s,u}-max
CM:{s,u}-min
CM:{s,u}-mod
CM:{s,u}-multiply
CM: {s,u}-subtract
cm: {s u}-{It, Ie, eq, ne, ge, gt}-constant-1 L

Integer Division

Division on signed or unsigned integers is accomplished with the truncation opera­
tions, CM:s-truncate, CM:s-f-truncate, and CM:u-truncate. Chapter 5, "Instruction
Set Overview," does not make this clear.

eM Floating Point

The CM System Software currently does not fully support the IEEE standard for float­
ing point operations. For every Paris floating-point instructions, the flags section of
the dictionary entry should read:

Flags test-flag is set if division by zero occurs; otherwise it is unaffected.
overflow-flag is set if floating-point overflow (including division by
zero) occurs; otherwise it is unaffected.
Underflow sets the result field to all zeros.

4.2.3. Dictionary: Specific Problems

This section describes specific problems in Version 5.0 of the Paris reference docu­
mentation. These are errors that affect only individual instruction definitions. They
are listed here alphabetically by instruction name.

Version 5.1 17

CM:f-abs

If the source operand is a NaN, then the output is also a NaN. The dictionary entry
erroneously claims that a NaN source is copied unchanged. The entry should read
as follows:

For floating-point numbers, absolute value is calculated by changing the sign
bit to a 0 (positive). All other bits in the number are unchanged. As a result,
the absolute values of negative infinities, denormalized numbers, and NaNs are
their positive counterparts.

CM:allocate-stack-field-vp-set and CM:allocate-heap-field-vp-set

The order in which operands to CM:allocate-stack-field-vp-set and CM:allocate­
heap-field-vp-set are to be specified is documented as vp-set-id, len. However, as
implemented, these instructions expect their arguments in the opposite order.

CM:aref32-shared-2L and CM:aset32-shared-2L

For CM:aset32-shared-2L and CM:aref32-shared-2L (including the -always ver­
sion), the a"ay operand is not completely documented. The a"ay field operand
must be contiguous in eM memory. Therefore, it must be allocated all at once with
a single call to CM:allocate-stack-field. Alternatively, the array may be allocated
within a with-stack-fields form-but only if no other field is allocated within the
same form.

CM:deposit-news-coordinate-1 L

The coordinate operand definition is misleading. To emphasize that this is a field,
it should read:

coordinate The NEWS coordinate field. This specifies the position along the
corresponding axis of the processor whose send address is to be
calculated.

CM:extract-news-coordinate and CM:extract-multi-coordinate

The send-address operand definition is wrong for both operations. It should read:

send-address The send address field. Within each processor, this identifies the
send address of some other processor.

18 Paris Release Notes

CM:get-1 Land CM:get-aref32-2L

In both initial descriptions, the phrase "from the same address" should read "from
the same memory address."

The send-address operand definition is wrong for both operations. It should read:

send-address The send address field. This specifies the processor from which the
message is retrieved.

CM:initialize-random-number-generator

This operation is documented under the name CM:inltializa-random-ganarator. It
is, however implemented as CM:initializa-random-numbar-ganarator.

CM:load-flag

CM:load-ovarflow-always and CM:-Ioad-tast-always are implemented. They are
the unconditional versions of CM:load-ovarflow and CM:load-tast and should be
among the CM:load-flag instructions listed in the dictionary.

CM:multispread

The definition formula for most of the CM:multispraad operation dictionary en­
tries contains the following errors. The statement "let r = rank()" should read "let
r = rank(g)." The statement ''where scan-subclass is as defined on page 36" should
read ''where hyperplane is as defined on page 36."

CM:my-send-address

The dest operand definition fails to mention the lower bound on this value. It
should read:

dest

CM:s-s-power

The unsigned integer destination field. This must be at least equal
to the value returned by CM:geometry-sand-addrass-length.

CM:s-s-power-constant-3-2L is implemented. It should be among the CM:s-s­
powar instructions listed in the dictionary.

Version 5.1 19

CM:rank

For all the CM:rank instructions, the dlen operand definition fails to mention the
upper bound on this value. It should read

dlen The length of the dest field. This must be nonnegative, no greater
than CM: * maximum-integer-Iength *, and no larger than the value
returned by CM: geometry-coordinate-Iength.

CM:send-to-news

In the context description for the CM:send-to-news instructions, the first two
paragraphs erroneously refer to the context-flag of the destination rather than to
that of the source. It should read

Context

CM :store-f1ag

The non-always operation is conditional. The source value is sent
only by processors whose context-flag is 1.
The -always operation is unconditional. The source value is sent
regardless of the value of the context-flag.

CM:store-overflow-always and CM:store-test-always are implemented. They are
the unconditional versions of CM:load-overflow and CM:load-test and should be
among the CM:store-flag instructions listed in the dictionary.

The
Connection Machine
System

Change Pages to
Paris Dictionary

Update fromVersion 5.0 to Version 5.1
June 1989

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, June 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-I, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, ·Lisp, C·, and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and V AXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics. Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

About Paris Version 5.1 Change Pages

Purpose of Change Pages

Change pages correct and update a manual. The change pages in this packet document those
Paris instructions that existed in Version 5.0 but which have been changed with the release of
Version 5.1. Changed Paris instructions are documented with change pages rather than as part
of the 5.1 Supplement to help readers avoid accidentally referring to obsolete documentation.

What to Do with Change Pages

Take this packet of change pages and insert them, by page number, in the dictionary section of
the Paris Reference Manual, Version 5.0. To do this, look at the page numbers on the change
pages and compare them with those in the dictionary.

There are two kinds of change pages: replacement pages and additional pages.

Additional Pages
Any change page with a page number ending in a letter must be ~ to the exist­
ing manual. Find the page whose number matches the number part of the change
page number and insert the change page behind it. For example, the change page
numbered 86a must be inserted after the existing page 86.

Replacement Pages
Any change page with a normal page number replaces an existing Paris manual
page. Tear out the existing page and replace it with the new one. For example, the
old page 116 must be replaced by the change page numbered 116.

Note that some of the replacement pages are included only to preserve the order
of the Paris dictionary entries. For example, although no changes have been made
to the description of CM:f-cosh, it is reprinted because it appears on one side of
the CM:create-detailed-geometry description, which has been updated.

iii

iv

Placement of Change Pages

Change Page
Sequence

Add after
page

86a, 86b 86

About Paris 5.1 Change Pages

Replace
pages

115, 116, 117, 117a, 117b, 118 115-118

294a,294b 294 (blank)

312a, 312b, 312c 312

313, 314, 314a, 315, 316, 316a,
317, 318, 318a 313-318

435, 435a, 435b, 436 435-436

459, 459a, 459b, 459c, 460, 461, 461a,
462, 463, 463a, 464,465, 465~466 459-466

After inserting all change pages, these explanatory pages and the title page for the change
pages packet may be discarded.

What Has Changed?

Two Paris features have been reimplemented and the documentation rewritten. Although the
new implementations are backwardly compatible, they necessitate new documentation.

CM:create-detailed-geometry

The documentation for this instruction has been updated to make it less confusing. In particu­
lar, the following changes have been made.

• A recommendation to use CM:create-geometry instead of CM:create-detailed
geometry now follows the initial description.

• The definition of the rank operand is corrected to clarify that this operand specifies the
rank of the geometry being created.

About Paris 5.1 Change Pages v

• The use of axis weight values is encouraged and emphasized while the specification of
on-chip-bits and off-chip-bits is discouraged and deemphasized.

• There is a warning that NEWS operations and any grid-oriented operations do not
work for axes with :send ordering.

• A common ClParis error is warned against. From C, the axis-descriptor-array is an ar­
ray of pointers to axis descriptors-not an array of axis descriptors.

• Example ClParis and Lisp/Paris code is included to demonstrate how to use
CM: create-detail ed-geometry.

CM:read-from-news-arrayand CM:write-to-news-array

The entire suite of array transfer instructions has been reimplemented. The new documenta­
tion reflects this. In particular, the following changes have been made.

• Block transfers of complex numbers are now supported and documented.

• Several arguments are renamed to distinguish arguments that describe front-end data
from arguments that describe CM data. Thus offset-vector is now fe-offset-vector and
start-vector, end-vector, and axis-vector are now cm-start-vector, cm-end-vector, and
em-axis-vector.

• The element-len argument to all versions of both CM: read-from-news-array and
CM:write-to-news-array has been replaced by a new argument namedformat. This
is backwardly compatible with the old element-len but allows more explicit specification
of the front-end array format.

• Three new instructions are provided and documented: CM:fe-array-format,
CM:fe-packed-array-format, and CM:structure-array-format. These each re­
turn an array descriptor, which may be used as the value of the new format argument to
any of the array transfer instructions.

Contents

FE-ARRAY-FORMAT .. 86a
F-COSH .. 115

CREATE-DETAILED-GEOMETRY 116
CREATE-GEOMETRY .. 118

FE-PACKED-ARRAY-FORMAT 294a
C-READ-FROM-NEWS-ARRAY 312a
F-READ-FROM-NEWS-ARRAY 313
S-READ-FROM-NEWS-ARRAY 315
U-READ-FROM-NEWS-ARRAY 317

STORE-flag ... 435
FE-STRUCTURE-ARRAY-FORMAT 435a

F-SUB-MUL T .. 436
WARM-BOOT . 459

C-WRITE-TO-NEWS-ARRAY 459a
S-WRITE-TO-NEWS-ARRAY 460
S-WRITE-TO-NEWS-ARRAY 462
U-WRITE-TO-NEWS-ARRAY 464
F-WRITE-TO-PROCESSOR 466

vii

ARRAY-FORMAT

FE-ARRAY-FORMAT

This front-end instruction returns an array format descriptor. An array format descriptor
may be passed to any array transfer instruction to specify a front-end array format, although
this is not required.

See also CM:fe-packed-array-format and CM:fe-structure-array-format.

Formats result +- CM:fe-array-format [em-element-size, array-element-size,
stride, ordering]

Operands em-element-size A signed integer immediate operand to be used as the
number of bits each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 128.

In Lisp/Paris this is a keyword argument. IT not specified, it
defaults to array-element-size. IT array-element-size is also not
specified, em-element-size defaults to the size of the Connection
Machine field being read or written.

array-element-size A signed integer immediate operand to be used as the
number of bits in each front-end array element. This must be a
power of two between 1 and 128.

In Lisp/Paris this is a keyword argument. IT not specified,
array-element-size defaults to the actual front-end element size
or, if the front-end array elements are general (Le., of type t),
array-element-size defaults to the value of em-element-size.

stride A signed integer immediate operand to be used as the distance,
in units of array-element-size, between adjacent front-end array
elements. This must be either a null value or a positive integer
between 1 and 65,535 that obeys the following restrictions. The
product (stride x array-element-size) must be either a multiple of
em-element-size or a multiple of 32 bits. If stride is specified as a
null value (null in C, 0 in Fortran, nil in Lisp), it defaults to the
minimum legal value. In Lisp/Paris this is a keyword argument.

ordering The ordering in which Connection Machine elements are stored
in a front-end array. The value of ordering must be either a
null value or one of: :default-ordering, : Isb-first (least significant
bit first), or :msb-first (most significant bit first). (These are
CMJ.lefault..ordering, CMJsb.first, or CM.msbJirst from C or For­
tran.) IT specified as a null value (null in C, 0 in Fortran, nil in
Lisp), it defaults to :default-ordering, which is the standard order­
ing for the front end. (Most significant bit first on Suns; least

86a

ARRAY-FORMAT

Result

Context

significant bit first on VAXes.) In LispjPat'is this is a keyword
at'gument.

The at'ray format descriptor specified.

This is a front-end operation. It does not depend on the value of the eontezt­
flag·

The return value is a format descriptor for arrays; it can be passed to any at'ray transfer
instruction as the value of format. CM:fe-array-format provides the most generality in spec­
ifying an at'ray format for tranfers. More specific descriptors may be obtained with CM:fe­
pac:ked-array-format and CM: fe-struc:ture-array-format.

The value of em-element-size defines the unit of measure for the fe-offset-vector at'gument
to the CM: read-from-news-array and CM:write-to-news-array instructions.

The value of array-element-size defines the unit of measure for the fe-dimension-vector
at'gument to the CM:read-from-news-array and CM:write-to-news-array instructions.

H em-element-size is less than array-element-size, a packed transfer is specified. That is,
multiple Connection Machine array elements at'e packed into each front-end at'ray element.
H em-element-size is greater than array-element-size, an extended-element at'ray is specified.
That is, more than one front-end array element is used to store each Connection Machine
array element.

For most at'rays, the value of stride is 1. For packed at'ray transfers, stride must be 1. For
extended-element at'ray transfers, the stride must be lat'ge enough to ensure that consecutive
elements do not overlap on the front end. To read or write every other (non-packed, non­
extended) front-end array element, use a stride value of 2.

For a normal (non-packed, non-extended) at'ray transfer, specify ordering as ~ null value.

A packed format with : Isb-first ordering stores the. Connection Machine element with the
smallest coordinates in the least significant bits of the at'ray element. A packed format
with : msb-first ordering stores the CM element with the lat'gest coordinates in the most
significant bits of the front-end array.

An extended-element format with : Isb-first ordering stores the low-order bits of the Con­
nection Machine element in the front-end array location with the smallest coordinate. An
extended-element format with: msb-first ordering stores the high-order bits of the CM ele­
ment in the front-end at'ray location with the smallest coordinate.

86b

COSH

F-COSH

Calculates, in each selected processor, the hyperbolic cosine of the floating-point source field
value and stores it in the floating-point destination field.

Formats CM:f-cosh-l-1L dest/source, s, e
CM:f-cosh-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] - coshsource[k]
if (overflow occurred in processor k) then overflow-flag[k] _ 1

The hyperbolic cosine of the value of the source field is stored into the dest field.

115

CREATE-DETAILED-GEOM ETRY

CREATE-DETAILED-GEOMETRY

Creates a new geometry given detailed information about how the grid is laid out.

For most applications, the simpler CM: create-geometry instruction is recommended over this
one. Use CM: create-detailed-geometry only to tune the performance of an application with
stable, known inter-processor communication patterns.

See also CM:intern-detailed-geometry and CM:intern-geometry.

Formats result +- CM:create-detailed-geometry azis-descriptor-array, [rank}

Operands azis-descriptor-array A front-end vector of descriptors for the grid axes. In
the C interface, the elements of the a:eis-descriptor-array must
be of type CM..axis.descriptor_t, that is, they must be pointers to
structures of type CM..axis.descriptor.

Result

Context

In the Lisp interface, the azis-descriptor-array may be either a list
of descriptors or an array of descriptors.

rank An unsigned integer, the rank (number of dimensions) of the ge­
ometry being created. This must be in between 1 and CM:*max­
geometry-rank., inclusive. This argument is not provided when
calling Paris from Lisp.

A geometry-id, identifying the newly created geometry. . This is of type
CM~eometryjd_t in C, of type CM: geometry-id in Lisp, and an integer in
Fortran.

This operation is unconditional. It does not depend on the conte;z;t-flag.

CM: create-detailed-geometry takes an array of axis descriptors, one for each axis. The oper­
ation returns a geometry-id, which may then be used to create a VP set or to respecify the
geometry of an existing VP set.

Each axis descriptor specified by CM:axis-descriptor-array is a structure describing one NEWS

axis in some detail. Most of the descriptor components are unsigned integers, but the
value of the ordering component is different. From Lisp, the ordering component must be
either :news-order or :send-order. From C or Fortran, it must be either CM-"ews..order or
CM..send..order.

The C definitions of the type of the ordering component and of the axis descriptor are shown
below. Notice that the elements of the aris_descriptor_arraymust be pointers to type struct
CM..axis_descriptor.

116

CREATE-DETAILED-GEOM ETRY

typedet enum {CM_news_order. CM_send_order } CM_axis_order_t;

typedet struct CM_axis_descriptor {
unsigned length;
unsigned weight;
CM_axis_order_t ordering;
unsigned char on_chip_bits;
unsigned char ott_chip_bits;

} * CM_axis_descriptor_t;

Actually, this structure has other components as well. C code should use the definition of
CM..axis_descriptor from the cmtypes.h include file.

The Fortran/Paris interface defines CM..axis..descriptor as an array:

INTEGER RANK.DESCRIPTOR_iRRAY(7.RANK)

The elements of each Fortran axis descriptor are defined such that:

DESCRIPTOR..ARRAY(l,I) is the length of axis I
DESCRIPTOR..ARRAY(2,I) is the weight of axis I
DESCRIPTOR..ARRAY(3,I) is the ordering of axis I
DESCRIPTOR..ARRAY(4,I) is the on-chip bits of axis I
DESC RIPTOR..ARRAY(6, I) is the off-chip bits of axis I

Thus eM: axis-descriptor-array is, in Fortran, an array of axis descriptor arrays.

The Lisp definitions of the type of the ordering component and of the axis descriptor are
shown below.

(dettype cm:axis-order () '(member :news-order :send-order»

(detstruc,t CM:axis-descriptor
(length 0) (weight 0) (ordering :news-order)
(on-chip-bits 0) (ott-chip-bits 0»

The azis-descriptor-array operand must be created by first making one axis descriptor for
each axis and then using these to assign values to the array elements. An example in C is
given below. Notice that azisl and a:r:is2 are pointers to axis descriptor structures and that
the descriptor structures are zeroed before any values are assigned.

CM_geometry_id_t my_geometry;
CM_axis_descriptor_t my_geometry_axes[2];
CM_axis_descriptor_t axis1. axis2;

117

CREATE-DETAILED-GEOMETRY

axisl = malloc(sizeot(struct CM_axis_descriptor»;
axis2 = malloc(sizeot(struct CM_axis_descriptor»;
bzero(axisl. sizeot(struct CM_axis_descriptor»;
bzero(axis2. sizeot(struct CM_axis_descriptor»;
axisl->length = 128;
axis2->length = 266;
axisl->veight = 6;
axis2->veight = 10;
axis1->ordaring = eM_nevs_order;
axis2->ordering = CM_nevs_order;

my_geometry_axes[O] = axisl;
my_geometry_axes[l] = axis2;
my_geometry = CM_create_detailed_geometry(my_geometry_axes. 2);

The following example specifies the same axes, descriptor array, and geometry in Lisp.
Notice that the constructor eM: make-axis-descriptor is used.

(setq my-geometry-axes make-array(2»
(setq axis1
(CM:make-axis-descriptor :length 128 :veight 6

:ordering :nevs-order»
(setq axis2

(CM:make-axis-descriptor :length 266 :veight 10
:ordering :nevs-order»)

(sett (aret my-geometry-axes 0) axisl)
(sett (aret my-geometry-axis 1) axis2)
(setq my-geometry (CM:make-detailed-geometry my-geometry-axes 2)

Once the geometry has been created, the user may destroy the descriptors and the array
used to provide axis information. All necessary information is copied out of these structures
as the geometry is created.

The "length" component of an axis descriptor specifies the length of the axis; it must be a
power of two.

The "weight" component of the axis descriptors specifies the relative frequency of inter­
processor communication along different axes. For instance, in the above example it is
assumed that communication occurs about half as often along azul, which is given a weight
of 5, as along azis2, which is given a weight of 10. Only the relative values of the weight
components matter. The same communication traffic could be specified with weights of
1 and 2, or of 3 and 6. If all weights are 1, it is assumed that all axes are used equally
frequently.

117a

CREATE-DETAILED-GEOM ETRY

Given a set of weight components, Paris lays out the hypercube grid for optimal per­
formance. Virtual processors are mapped onto the physical hypercube in a pattern that
exploits the fact that communication is especially rapid among virtual processors within
the same physical processor and among virtual processors within the same physical chip.

The "ordering" component of an axis descriptor specifies how NEWS coordinates are mapped
onto physical processors for that axis. The value: news-order specifies the usual embedding
of the grid into the hypercube such that processors with adjacent NEWS coordinates are in
fact neighbors within the hypercube. The value : send-order specifies that, if processor A
has a smaller NEWS coordinate than processor B, then A also has a smaller send-address
than B. This ordering is rarely used. However,: send-order ordering is useful for specific
applications such as FFT.

Be careful: All grid-oriented operations may be used only on axes with : news-order or­
dering. This includes scans, spreads, reductions, and the get-from-news and send-to-news
instructions.

If the "weight" components are all 1, then the mapping of virtual to physical processors
can be specified with the "on-chip-bits" and "off-chip-bits" components of the axis descrip­
tors. This is not recommended. To tune performance for communication, use the weight
component.

117b

CREATE-GEOMETRY

CREATE-GEOMETRY

Creates a new geometry given the grid axis lengths. See also CM:intern-geometry.

Formats result +- CM:create-geometry dimension-array, [rank}

Operands dimension-array A front-end vector of unsigned integer lengths of the

Result

Context

grid axes. In the Lisp interface, this may be a list of dimension
lengths instead of an array of dimension lengths, at the user's
option.

rank An unsigned integer, the rank (number of dimensions) of the
dimension-array. This must be inbetween 1 and CM: *max­
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

A geometry-id, identifying the newly created geometry.

This operation is unconditional. It does not depend on the conte:tt-flag.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of two. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

This operation returns a geometry-id for a newly created geometry whose dimensions are
specified by the dimension-array. The length of axis i of the resulting geometry will be
equal to dimension-array[i]. Such a geometry-id may then be used to create a VP set, or
to respecify the geometry of an existing VP set.

The geometry will be laid out so as to optimize performance under the assumption that
the axes are used equally frequently for NEWS communication. The operation CM:create­
detailed-geometry may be used instead to get more precise control over layout for perfor­
mance tuning.

Once the geometry has been created, the user may destroy the array used to provide the
dimension information. All necessary information is copied out of this array as the geometry
is created.

118

PACKED-ARRAY-FORMAT

FE-PACKED-ARRAY-FORMAT

This front-end instruction returns an array format descriptor for a packed front-end array
format. A format descriptor may be used as the format argument to any array transfer
instruction, although this is not required.

See also eM: fe-array-format and eM: fe-structu re-array-format.

Formats result +- eM: fe-packed-array-format em-element-size, [array-element-size]

Operands em-element-size A signed integer immediate operand to be used as the

Result

Context

number of bits each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 128.

array-element-size A signed integer immediate operand to be used as the
number of bits in each front-end array element. This must be a
power of two between 1 and 128.
In Lisp/Paris, this argument is optional. If not specified, it de­
faults to the actual front-end element size or, if the front-end array
elements are general (i.e., of type t), array-element-size defaults
to the value of em-element-size.

The array format descriptor specified.

This is a front-end operation. It does not depend on the value of the eontext­
flag.

The return value is a format descriptor for packed aTraySj it can be passed to any array
transfer instruction. In this format, multiple Connection Machine array elements are packed
into each front-end array element during array transfers in either direction between the
Connection Machine and the front-end computer.

By using this instruction, it is also possible to specify an ext"ended-element front-end array
format. In an extended-element format, each CM element is stored in multiple front-end
array elements.

The value of em-element-size defines the unit of measure for the fe-oJJset-vector argument
to the eM: read-from-news-array and eM: write-to-news-array instructions.

The value of array-element-size defines the unit of measure for the argument
fe-dimension-veetor to the eM: read-from-news-array and eM: write-to-news-array instruc­
tions.

The number of Connection Machine elements packed into each front-end array element
is the ratio of array-element-size to em-element-size. If array-element-size is larger than

294a

PACKED-ARRAY -FORMAT

em-element-size, multiple Connection Machine elements are packed into each front-end
array element. Alternatively, if array-element-size is smaller than em-element-size, each
CM element is stored in more than one front-end array element.

The ordering of the packing defaults to the standard ordering for the front end. For example,
on a VAX the Connection Machine element with the smallest coordinates is put into the least
significant bits of the front-end array element. On a Sun, the Connection Machine element
with the largest coordinates is put into the least significant bits of the front-end array
element.

294b

REAO-FROM-N EWS-ARRAY

C-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a sub array of the NEWS grid into a subarray
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as complex numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current VP set.

Formats eM: c:-read-from-news-array-1L front-end-a1TO.Y, fe-oJJset-vector, cm-start-vector,
cm-end-vector, cm-azis-vector, source, s, e,
[fe-rank, /e-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of complex
data.

Context

fe-oJJset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-azis-vector A front-end vector of signed integer numbers specifying
NEWS axes.

source

s, e

fe-rank

The complex source field.

The significand and exponent lengths for the source field. The
total length of an operand in this format is 2(s + e + 1).

A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the context-flag.

312a

READ-FROM-NEWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped sub­
block of an array in the front end. Complex number values are copied from the Connection
Machine processors to the specified front-end-atTay.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-atTay parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-atTay and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-veetor parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front­
end array dimensions can be deduced from the value of front-end-atTay and -must not be
specified.

The fe-off set-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units of
em-element-size, which is implicitly specified by format. (See the description of format
below.)

The em-start-veetor parameter specifies the coordinate of the first CM element to copy
to the front end. The em-end-vector parameter specifies the coordinate of the last CM
element to copy to the front end.

The em-azis-veetor parameter specifies how Connection Machine axes are mapped to front­
end array axes. For example, if cm-a:ns-veetor[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end ar­
ray. An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed­
array-format, or CM: structure-array-format. Alternatively, from C or Fortran, one of the
following predefined complex format values may be used: CM_complex..float...single or
CM..complex_floaLdouble. For complex data types in C, two front-end elements are used
for each Connection Machine element.

When calling Paris from Lisp, the format parameter is a keyword argument; for complex
transfers, only arrays of type t may be used.

312b

READ-FROM-N EWS-ARRAY

nmi-l
Definition For all i such that 0 ~ i < II (end; - start;) do

;=0
for all m such that 0 ~ m < rank do

let S(i.m) = l1'4U_1 i j mod (endm - startm)
II (cnd; -d4I't;)

;=m+1
1'4nll-l

let ki = V make-news-coordinate(axis;, start; + Si.;)
;=0

jront-end-arraY.(i.0) •• (i.1) (i "_1) - source[kil

Another fonnulation:

For all So such that 0 ~ So < (endo - starto) do
for all SI such that 0 ~ SI < (end1 - starft) do

for all S2 such that 0 ~ S2 < (end2 - start2) do

for all Sl'lIu-l such that 0 ~ Sl'Cld-l < (endI'4nll-l - startI'4d-l) do
I'Clnll-l

let k.0 •• 1 •...•• I'ClU_1 = .v make-news-coordinate(axis;, start; + S;)
3=0

jront-end-arraYol!ut_vcetoI'O +.0. ol!ut-vcetol'1 +.1 •.. ·• ol!.ct-vc/!tOI'1'4nll_1 +-1'4nk-1
- source[k.0 •• 1.···.·l'Clnll_11

312c

READ-FROM-N EWS-ARRAY

F-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a sub array of the NEWS grid into a sub array
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as floating-point numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified eM field be in the current VP set.

Formats eM: f-read-from-news-array-1L front-end-anuy, fe-offset-vector, em-start-vector,
cm-end-vector, cm-am-vector, source, s, e,
[fe-rank, fe-dimension-vector,
fONnatJ

Operands front-end-arra.y A front-end array (possibly multidimensional) of floating­
point data.

Context

fe-offset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

em-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-a:eis-vector A front-end vector of signed integer numbers indicating
NEWS axes.

source

s, e

fe-rank

The floating-point source field.

The significand and exponent lengths for the source field. The
total length of an operand in this format is 8 + e + 1.

A signed integer, the rank (number of dimensions) of the
front-end-arra.y. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-anuy. This argument is not provided when calling Paris
from Lisp.

fONnat The array descriptor for front-end-anuy. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the conte:et-flag.

313

READ-FROM-NEWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped
subblock of an array in the front end. Floating-point number values are transferred from
the Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are o~e-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is fi.11ed in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front­
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-oJJset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units of
cm-element-size, which is implicitly specified by format. (See the description of format
below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to copy
to the front end. The cm-end-vector parameter specifies the coordinate of the last OM
element to copy to the front end.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front­
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end
array. An appropriate descriptor may be obtained by a call to CM:array-format, CM: packed­
array-format, or CM: structure-array-format. Alternatively, one of the predefined floating­
point format values may be used. These are CMJloat..single or CM_float..double from C or
Fortran, and :float-single or :float-double from Lisp.

When calling Paris from Lisp, the format parameter is a keyword argument. Ifnot specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type and size of the Connection Machine field.

314

READ-FROM-NEWS-ARRAY

7'fI,,"-1
Definition For all i such that 0 ~ i < n (end; - start;) do

;=0

for all m such that 0 < m < rank do

let S(i,m) = IN ... _' - i j mod (endm - startm)

n (e"d;-dG1't;)
;= ... +1

1'G,,"-1
let ki = .v make-news-coordinate(aris;t start; + Si,;)

3=0

jront-end-arraY8(i,O),8(i,I), ... ,8(i,ra.""_I) +- source[kil

Another formulation:

For all So such that 0 ~ So < (endo - starto) do
for all S1 such that 0 ~ S1 < (end1 - start1) do

for all S2 such that 0 ~ S2 < (end2 - start2) do
. .

for all 87'f1,,"-1 such that 0 ~ 87'f1u-1 < (end1'GU-1 - start,.Gu_1) do
7'fIu-1

let k80 ,81, ... ,87'f1U_l = .v make-news-coordinate(azisj, start; + Sj)
3=0

jront-end-arraYojJU fo+ 8 o,OjJ8eft +81, ... ,OjJ8et7'flM_l +87'f1M_l

+- source[k80,81, ••• ,87'f1u_1 l

314a

REAO-FROM-NEWS-ARRAY

S-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a sub array of the NEWS grid into a sub array
(of the same shape) of an array in the memory of the front end. Both the source and
destination values are treated as signed integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current VP set.

Formats CM: s-read-from-news-array-1L front-end-army, fe-offset-veetor, cm-start-vector,
em-end-veetor, em-am-vector, source, len,
[fe-rank, fe-dimension-veetor,
format]

Operands front-end-army A front-end array (possibly multidimensional) of signed in­
teger data.

Context

fe-off set-vector A front-end vector of signed integer subscript offsets for the
front-end-army.

em-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

em-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

em-am-vector A front-end vector of signed integer numbers indicating
NEWS axes.

source

len

fe-rank

The signed integer source field.

The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-veetor A front-end vector of signed integer dimensions of the
front-end-army. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-army. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the eontezt-flag.

315

READ-FROM-NEWS-ARRAY

This operation copies a rectangular sub block of the NEWS grid into a similarly shaped
sub block of an array in the front end. Signed integer values are transferred from the
Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

When calling Paris from Lisp, the array may be eitheJ; a general array (of type t) containing
signed integers, or a specialized integer-element array (such as an array of type (unsigned­
byte 8»).

The fe-ranA parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank..

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front­
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-oJJset-vector parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units of
cm-element-size, which is implicitly specified by format. (See the description of format
below.)

The cm-start-vector parameter specifies the coordinate of the first CM element to copy
to the front end. The cm-end-vector parameter specifies the coordinate of the last eM
element to copy to the front end.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front­
end array axes. For example, if cm-a:l:is-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed-array­
format, or CM:structure-array-format. Alternatively, one of the predefined signed format
values may be used.

316

READ-FROM-NEWS-ARRAY

From C or Fortran a value of CM..8..bit, CM-16..bit, or CM.32..bit specifies an unpacked front­
end array while CM.2..biLpacked, or CM_4..bit-packed specifies a front-end array in which
several OM elements are packed into each array element. From Lisp, the predefined signed
format keywords are : 8-bit, : 16-bit, : 32-bit, : 2-bit-packed, and : 4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. Ifnot specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type and size of the Connection Machine field.

t"fInl=-1
Definition For all i such that 0 ~ i < n (end; - start;) do

;=0
for all m such that 0 < m < rank do

let S(i,m} = l~ .. -. -i j mod (endm - startm)
n (endj-.t",.tj)

j= ... +1
,."nl=-1

let k, = V make-news-coordinate(azis;, start; + s,,;)
;=0

jront-end-arraY.(i,O),.(i.l)' ... '.(i _l) +- source[k,]

Another formulation:

For all So such that 0 ~ So < (endo - starto) do
for all S1 such that 0 ~ S1 < (end1 - starft) do

for all S2 such that 0 ~ S2 < (end2 - start2) do

for all S,."nJ.-l such that 0 ~ St"fIM-l < (end,. J._l - start,." .. J._l) do
t"fIM-1

let k.O •• 1 ,. nl=-l = V make-news-coordinate(azis;, start; + s;)
,." ;=0

front-end-arraYoi!uto+.o,oi!n~ +.l, ... ,oi!utt"flM_1 +.,."M-1

+- source[k.O'.l '···'·t"fI .. J._l]

316a

READ-FROM-NEWS-ARRAY

U-READ-FROM-NEWS-ARRAY

Copies a field within a set of processors forming a sub array of the NEWS grid into a sub array
(of the same shape) of an array in the memory of the front end. Both the source and
destination values aTe treated as unsigned integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified CM field be in the current VP set.

Formats CM: u-read-from-news-array-IL front-end-array, fe-oJJset-vector, cm-start-vector,
cm-end-vector, cm-azis-vector, source, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end aTray (possibly multidimensional) of unsigned
integer data.

Context

fe-off set-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-am-vector A front-end vector of signed integer numbers indicating
NEWS axes.

source

len

fe-rank

The unsigned integer source field.

The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

A signed integer, the rank (number of dimensions) of the
front-end-array. This aTgument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This aTgument is not provided when calling Paris
from Lisp.

format The aTray descriptor for front-end-array. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the context-flag.

317

REAO-FROM-N EWS-ARRAY

This operation copies a rectangular subblock of the NEWS grid into a similarly shaped
subblock of an array in the front end. Unsigned integer values are transferred from the
Connection Machine processors to the specified array.

The source parameter specifies the memory address within each processor of the field to be
copied.

The front-end-array parameter specifies the front-end destination array into which one
element from each processor specified by source is copied.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to the
rank of the source field geometry. When calling Paris from Lisp, this value can be deduced
from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) The front-end array is filled in row major
order. That is, the last dimension varies fastest. When calling Paris from Lisp, the front­
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-oJJset-veetor parameter contains the coordinate of the first front-end array element
to receive Connection Machine data. The length of this argument is measured in units of
em-element-size, which is implicitly specified by format. (See the description of format
below.)

The em-start-vector parameter specifies the coordinate of the first CM element to copy
to the front end. The em-end-vector parameter specifies the coordinate of the last CM
element to copy to the front end.

The em-a:r:is-veetor parameter specifies how Connection Machine axes are mapped to front­
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to eM: array-format, eM: packed -array­
format, or eM: structure-array-format. Alternatively, one of the predefined unsigned format
values may be used.

From C or Fortran a value of CM...8...bit, CM..l6...bit, or CM..32_bit specifies an unpacked front­
end array while CM..l...bit-packed, CM.2...bit-packed, or CM_4..bit-packed specifies a front-end
array in which several CM elements are packed into each array element. From Lisp, the
predefined unsigned format keywords are : a-bit, : 16-bit, : 32-bit, : I-bit-packed, : 2-bit-packed,
and : 4-bit-packed.

318

READ-FROM-N EWS-ARRAY

When calling Paris from Lisp, the format parameter is a keyword argument. Ifnot specified,
it defaults based on the element type of the front-end array Of, if the array is of type t,
based on the type of the eM field.

I'lIM-1
Definition For all i such that 0 :5 i < II (end; - start;) do

;=0
for all m such that 0 < m < rank do

let S(i,m) = IN .. _' - i j mod (endm - startm)
II (entlj-dllf"li)

;= ... +1
""M-1

let ki = V make-news-coordinate(azis;, start; + Si,;)
;=0

jront-end-arraY.(i,O)'.(i,l)' ... ,.(i, "_l) +- source[kiJ
Another formulation:

For all So such that 0 :5 So < (endo - starto) do
for all Sl such that 0 :5 Sl < (end1 - start 1) do

for alls2 such that 0:5 S2 < (end2 - start2) do

for all SI'llM-1 such that 0 :5 S"IIM-1 < (endI'llM-1 - start"IIM_1) do
I'lInk-1

let k.O,.1'''''.l'lInk_l = .Vo make-news-coordinate(azis;, start; + s;)
:1=

jront-end-arraYoJ!,eto+.o,oJ!nt,. +.l, ... ,oJ!utI'llM_1 +.,,"M-l

+- source[k.O,.1'''·'·''lInk_l]

318a

STORE-FLAG

STORE-flag

Conditionally stores a flag bit into memory.

Formats CM: store-test deat
CM:store-overflow deat

Operands deat The destination bit (a one-bit field).

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag(k] = 1 then

dest[k] - flag[k]

where flag is teat-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is stored into memory.

435

STRUCTU RE-ARRAY -FO RMAT

FE-STRUCTURE-ARRAY-FORMAT

This instruction returns an array format descriptor for a particular slot in an array of
structures. A format descriptor may be passed to any array transfer instruction to specify
a front-end array format, although this is not required. See also CM: fe-array-format and
CM: fe-packed-array-format.

This instruction is not provided for the Lisp interface to Paris.

Formats result +- CM: fe-structure-array-format cm-element-byte-size,
structure-byte-size

Operands cm-element-byte-size A signed integer immediate operand to be used as the
number of bytes each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 16.

Result

Context

structure-byte-size A signed integer immediate operand to be used as the
length of the front-end structure in bytes. This may be any positive
integer.

The array format descriptor specified.

This is a front-end operation. It does not depend on the value of the context­
flag·

The return value is a format descriptor for a front-end array of structures. Such a format
. descriptor can be passed to any of the CM array transfer instructions in order to allow
transfers in either direction between CM fields and a front-end array of structures. If this
is done, one CM element per selected processor is copied into, or receives data from, the
specified slot across an array of structures on the front end.

Values for both cm-element-byte-size and cm-structure-byte-size may be obtained by calls
to sizeof(...). .

The value of cm-element-byte-size specifies the length of the structure slot in bytes. It also
defines the unit of measure for the fe-oJJset-vector argument to the CM: read-from-news-array
and CM: write-to-news-array instructions.

The value of structure-byte-size specifies the length of the entire stucture in bytes. It also
defines the unit of measure for the argument fe-dimension-vector to the CM: read-from-news­
array and CM:write-to-news-array instructions.

If a slot other than the first slot in the front-end structure is the destination of a CM: read­
from-news-array or the source for a CM: write-to-news-array transfer instruction, then a pointer
to that slot must be provided as the value of front-end-amlY. This is a bit tricky. The

435a

STRUCTURE-ARRAY-FORMAT

pointer must identify the location of the chosen slot in the structure that is the first element
of the array of structures.

Here is an example in C.

#define n_foos 256

/* declare array of structure foo */
struct foo { int a; double b; char c; } fooarray[n_foos];

/* declare the format */
CM_array_format_t foo_format;

/* declare an offset for the 'b' slot of struct foo */
/* this is a pointer to a double - b is a double */
double *bslot_pointer;

/* lots of other declarations etc. in here */

/* create format descriptor for foo.b */
foo_format • CM_structure_array_format(sizeof(double) , sizeof(struct foo»;

/* create pointer offset to slot b of struct foo */
bslot_pointer • tfooarray[O].b;

/* store src-field values in slot b of each foo struct in foo_array */
/* all variables xxxx_vector should be self explanatory */

CM_f_read_from-nevs_array_1L(bslot_pointer, offset_vector,
start_vector, end_vector, axis_vector,
src_field, 23, 8, rank,
dimension_vector, foo_format);

Slot b of each foo structure in the array foo..array receives a copy of the value stored in the
corresponding eM arc-field processor.

The value of bslot..pointer is a pointer to the b slot of the first foo structure in foo..array.
Given this starting place, foo3ormat indicates how many bytes must be skipped between b
slots.

For further examples, refer to the manual entitled Introduction to Programming in C/Paris.

435b

SUB-MULT

F-SUB-MULT

Calculates a value (z - a)b and places it in the destination.

Formats CM:f-sub-mult-1L
CM: f-sub-const-mult-1L
CM:f-sub-mult-const-1L
CM:f-sub-const-mult-const-1L

dest, source1, source2, source3, s, e
dest, source1, source2-value, source3, s, e
dest, source1, source2, source3-value, s, e
dest, source1, source2-value, source3-value, s, e

Operands dest The floating-point destination field.

source1 The floating-point first source (minuend) field.

source2 The floating-point second source (subtrahend) field.

source2-value A floating-point immediate operand to be used as the second
source (subtrahend).

source3 The floating-point third source (multiplier) field.

source3-value A floating-point immediate operand to be used as the third
source (multiplier).

s, e The significand and exponent lengths for the dest, source1, source2,
and source3 fields. The total length of an operand in this format
iss+e+1.

Overlap The fields source1, source2, and source3 may overlap in any manner. Each
of them, however, must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format. It is permissible for all the fields to be identical.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The" destination and flag may be altered only
in processors whose contezt-Jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

dest[k] +- (source1[k] - source2[kD x source3[k]
if (overflow occurred in processor k) then overflow-Jlag[k] +- 1

The operand source2 is subtracted from source1, treating them as floating-point numbers,
and then the difference is multiplied by a third operand source3. The result is stored

436

WARM-BOOT

WARM-BOOT

Thls operation is used by the Lisp/Paris interface to reinitialize the Connection Machine
system without disturbing user memory.

Formats CM: warm-boot

Context Thls operation is unconditional. It does not depend on the context-flag.

This operation clears error status indicators for the attached Connection Machine hardware.
It also clears the IFIFO and OFIFO in the bus interface and possibly loads fresh microcode
into the attached microcontroller(s). The user memory areas in the Connection Machine
system are not disturbed, but are checked for errors; any memory errors are reported.
Certain system memory areas in the Connection Machine system are reinitialized, but the
state of the pseudo-random number generator is not altered and the system lights-display
mode is not altered. The intent is to recover from an error condition whlle preserving as
much of the machine state as possible.

The facility for warm-booting Connection Machine hardware is provided in different ways
in the Lisp/Paris interface (on the one hand) and the C/Paris and Fortran/Paris interfaces
(on the other hand).

In the Lisp/Paris interface, CM:warm-boot is a function.

Thls operation takes no arguments and returns no values. It signals an error if the warm­
boot process was not successful.

There are two sets of initializations, kept in the variables CM: *before-warm-boot­
initializations* and CM:*after-warm-boot-initializations*, that are evaluated before and af­
ter anything else occurs.

In the C/Paris and Fortran/Paris interfaces, there is no CM:warm-boot operation. Instead,
a related operation called CM:init is used.

459

WRITE-TO-NEWS-ARRAY

C-WRITE-TO-NEWS-ARRAY

Copies a sub array of an array in the memory of the front end into a field within a set
of processors forming a subarray (of the same shape) of the NEWS grid. Both source and
destination values are treated as complex numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified eM field be in the current VP set.

Formats eM: c-write-to-news-array-IL front-end-a1TO.Y, fe-oJJset-vector, cm-start-vector,
cm-end-vector, cm-a:l:is-vector, dest, s, e,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of complex
data.

Context

fe-oJJset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-a:l:is-vector A front-end vector of signed integer numbers indicating
NEWS axes.

deat

s, e

fe-rank

The complex destination field.

The significand and exponent lengths for the dest field. The total
length of an operand in this format is 2(8 + e + 1).

A signed integer, the rank (number·· of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-a1TO.Y. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the conte:l:t-ftag.

459a

WRITE-TO-NEWS-ARRAY

This operation copies a rectangular subblock of an array in the front end into a similarly
shaped sub block of the NEWS grid. Complex number values are transferred from the speci­
fied front-end-array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front­
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-off set-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of em-element-size, which is implicitly specified by format. (See the description of format
below.)

The cm-start-vector parameter specifies the coordinate of the first eM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end.

The cm-tUis-vector parameter specifies how Connection Machine axes are mapped to front­
end array axes. For example, if cm-tUis-vector[Aj = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end ar­
ray. An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed­
array-format, or CM: structure-array-format. Alternatively, from C or Fortran, one of the
following predefined complex format values may be used: CM-complex_float...single or
CM-complexJloaLdouble. For complex data types in C, two front-end elements are used
for each Connection Machine element.

When calling Paris from Lisp, the format parameter is a keyword argument; for complex
transfers only arrays of type t may be used

Definition
7'Cln1:-1

For all i such that 0 ~ j < n (end; - start;) do
;=0

459b

WRITE-TO-N EWS-ARRAY

for all m such that 0 $ m < rank do

let s("m) = lNnll_1 i J mod (endm - startm) n (cndj-d"ptj)
j= .. +1

p"u-1
let ki = V make-news-coordinate(azisj, startj + Si,j)

j=O

dest[k.] +- jront-end-arraY.(iIO)I.(iI1)1 ... ,.(i,,. ... "_1)

Another formulation:

For all So such that 0 $ So < (endo - starto) do
for all Sl such that 0 $ Sl < (end1 - start 1) do

for alls2 such that 0 $ S2 < (end 2 - start2) do

for all SNu-1 such that 0 $ SNu-1 < (endN "i_1 - start p"ni_1) do
p""i-1

let k.OI.11"".P"U_1 = .v make-news-coordinate(azis j, start j + s j)
3=0

dest[k,ol'11""'P"U_l] +-

jront-end-arraYojJu fo+,olojJ,ct1 +'1 •...• 0jJutNU_1 +'P"U-l

459c

WRITE-TO-N EWS-ARRAY

F-WRITE-TO-NEWS-ARRAY

Copies a sub array of an array in the memory of the front end into a field within a set
of processors forming a subarray (of the same shape) of the NEWS grid. Both source and
destination values are treated as floating-point numbers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified eM field be in the current VP set.

Formats eM: f-write-to-news-array-l L front-end-array, fe-oJJset-11ector, cm-start-11ector,
cm-end-11ector, cm-azis-11ector, dest, s, e,
[fe-rank, je-dimension-11ector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of floating­
point data.

Context

fe-oJJset-11ector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-11ector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-11ector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-azis-11ector A front-end vector of signed integer numbers indicating
NEWS axes.

dest

s, e

fe-rank

The floating-point destination field.

The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-11ector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the contezt-flag.

460

WRIT E-TO-N EWS-A RRAY

This operation copies a rectangular subblock of an array in the front.end into a similarly
shaped subblock of the NEWS grid. Floating-point number values aTe transferred from the
specified array to the Connection Machine processors.

The dest paTameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-aTTaY parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank paTameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Pms from Lisp, this value can be
deduced from the value of front-end-aTTaY and must not be specified.

The vector arguments aTe one-dimensional front-end arrays of length fe-rank.

The fe-dimension-veetor paTameter specifies the dimensions of the front-end array. These
dimensions aTe measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling PaTis from Lisp, the front­
end array dimensions can be deduced from the value of front-end-aTTaY and must not be
specified.

The fe-offset-veetor parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The lengths of the above three vector aTguments
are measured in units of em-element-size, which is implicitly specified by format. (See the
description of format below.)

The em-start-vector paTameter specifies the coordinate of the first CM element to receive
data from the front end. The em-end-veetor paTameter specifies the coordinate of the last
CM element to receive data from the front end.

The em-azis-veetor parameter specifies how Connection Machine axes aTe mapped to front­
end array axes. For example, if em-azis-veetor[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end
array. An appropriate descriptor may be obtained by a call to CM:array-format, CM:packed­
array-format, or eM: structure-array-format. Alternatively, one of the predefined floating­
point format values may be used. These aTe CM_float..single or CM_float-double from C or
Fortran, and :float-single or :float-double from Lisp.

When calling Paris from Lisp, the format paTameter is a keyword aTgument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

461

WRITE-TO-N EWS-A RRAY

I'Gni-1
Definition For all i such that 0::; j < II (end; - start;) do

;=0
for all m such that 0 ::; m < rank do

let S(i,m) = ll'Gni_1 i J mod (endm - startm)

II (end; - .t/ln;)
;= ... +1

,./lM-1
let ki = V make-news-coordinate(a:eisj, startj + Si,j)

;=0
deat[ki] +- jront-end-arraY'(i,O)"(i,1) , ... ,.(i,,. -1)

Another formulation:

For all 80 such that 0 ::; So < (endo - starto) do
for all a1 such that 0 ::; 81 < (endt - start 1) do

for all 82 such that 0 ::; 82 < (end 2 - start2) do

..
for all 81'Gni-1 such that 0 ::; 8,./lni-1 < (end,./lM-1 - start,./lni-l) do

I'Gni-1
let k'O"1, ... ,' i-1 = V make-new8-coordinate(a:eiaj, start; + s;)

I'Gn ;=0

deat[k.o"1'···'·I'GM_1] +-

jront-end-arraYof/u lo+.o,of/.flt1 +'1 , ... , of/.fIt,./lM_1 +. ,./lni-1

461a

WRITE-TO-N EWS-ARRAY

S-WRITE-TO-NEWS-ARRAY

Copies a sub array of an array in the memory of the front end into a field within a set of
processors forming a subarray (of the same shape) of the NEWS grid. Both the source and
destination values are treated as signed integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified eM field be in the current VP set.

Formats CM:s-write-to-news-array-lL front-end-array, fe-ofJset-vector, cm-start-vector,
cm-end-vector, cm-aris-vector, dest, len,
[fe-rank, te-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of signed in­
teger data.

Context

fe-ofJset-vector A front-end vector of signed integer subscript offsets for the
front-end-array.

cm-start-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-azis-vector A front-end vector of signed integer numbers indicating
NEWS axes.

dest

len

fe-rank

The signed integer destination field.

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the contezt-jlag.

462

WRITE-TO-N EWS-ARRAY

This operation copies a rectangular subblock of an array from the front end into a similarly
shaped subblock of the NEWS grid. Signed integer values are transferred from the specified
array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which the data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

When calling Paris from Lisp, the array may be either a general array (of type t) containing
signed integers, or a specialized integer-element array (such as an array of type (unsigned­
byte 8».

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-veetor parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, the front­
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-oJJset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of em-element-size, which is implicitly specified by format. (See the description of format
below.)

The em-start-vector parameter specifies the coordinate of the first eM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
CM element to receive data from the front end.

The cm-azis-veetor parameter specifies how Connection Machine axes are mapped to front­
end array axes. For example, if em-a:l:is-vector[A] = B, then axis A of the Connection
Machine destination field geometry is mapped to axis B of the front-end array. The length
of this vector must be equal to the rank of the destination field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to eM: array-format, eM: packed-array­
format, or eM: struc:ture-array-format. Alternatively, one of the predefined signed format
values may be used.

463

WRITE-TO-N EWS-A RRAY

From C or Fortran a value of CM.8.hit, CM..16.hit, or CM.32.hit specifies an unpacked front­
end array while CM..1.hiLpac:ked, CM..2..bit-pac:ked, or CM_4..bit-packed specifies a front-end
array in which several eM elements are packed into each array element. From Lisp, the
predefined signed format keywords are : 8-bit, : 16-bit, : 32-bit, : I-bit-packed, : 2-bit-packed,
and : 4-bit-packed.

When calling Paris from Lisp, the format parameter is a keyword argument. If not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

I'II"k-1
Definition For all i such that 0 ~ j < IT (end j - start j) do

j=O

for all m such that 0 ~ m < rank do

let S(i,m) = ll'llnil_1 i j mod (endm - startm)

IT (e"tl;-dlll't;)
;= ... +1

I'lIu-1
let ki = .v make-news-coordinate(a:1:is j, startj + Si,j)

3=0

dest[kil +- front-end-arraY.(i,O),.(i,1)' ... ,.(i, Jo_1)

Another formulation:

For all So such that 0 ~ So < (endo - starto) do
for all Sl such that 0 ~ Sl < (end1 - start 1) do

for all S2 such that 0 ~ S2 < (end2 - start2) do

for all SI'II"k-1 such that 0 ~ SI'll"k-1 < (endl'llnil_1 - startl'lI"k_1) do
I'llniI-1

let k.O,.1 , l'IIniI-1 = .v make-news-coordinate(a:J:is j, start j + S j)
3=0

dest[k.o,.1'·"'·l'IIu_11 +-

front-end-arraYof1.do+.o,of1n~ +.1 , ... ,offutl'lI"k_1 +.I'II"k-1

463a

WRITE-TO-N EWS-ARRAY

U-WRITE-TO-NEWS-ARRAY

Copies a sub array of an array in the memory of the front end into a field within a set of
processors forming a sub array (of the same shape) of the NEWS grid. Both the source and
destination values are treated as unsigned integers.

Note: The read-from-news-array and write-to-news-array operations do not require that the
specified eM field be in the current VP set.

Formats CM: u-write-to-news-array-1L front-end-array, fe-off set-vector, cm-start-vector,
cm-end-vector, cm-a:tis-vector, dest, len,
[fe-rank, fe-dimension-vector,
format]

Operands front-end-array A front-end array (possibly multidimensional) of unsigned
integer data.

Context

fe-off set-vector A front-end vector of signed integer subscript offsets for the
• front-end-array.

cm-stan-vector A front-end vector of signed integer inclusive lower bounds
for NEWS indices.

cm-end-vector A front-end vector of signed integer exclusive upper bounds
for NEWS indices.

cm-a:r:is-vector A front-end vector of signed integer numbers indicating
NEWS axes.

dest

len

fe-rank

The unsigned integer dest field.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

A signed integer, the rank (number of dimensions) of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

fe-dimension-vector A front-end vector of signed integer dimensions of the
front-end-array. This argument is not provided when calling Paris
from Lisp.

format The array descriptor for front-end-array. This is a keyword argu­
ment when calling Paris from Lisp.

This operation is unconditional. It does not depend on the conte:tt-flag.

464

WRITE-TO-N EWS-ARRAY

This operation copies a rectangular subblock of an array from the front end into a similarly
shaped subblock of the NEWS grid. Unsigned integer values are transferred from the specified
array to the Connection Machine processors.

The dest parameter specifies the memory address within each processor of the field into
which data is stored.

The front-end-array parameter specifies the front-end source array from which one element
is copied to each processor specified by dest.

The fe-rank parameter specifies the rank of the front-end array and is normally equal to
the rank of the destination field geometry. When calling Paris from Lisp, this value can be
deduced from the value of front-end-array and must not be specified.

The vector arguments are one-dimensional front-end arrays of length fe-rank.

The fe-dimension-vector parameter specifies the dimensions of the front-end array. These
dimensions are measured in units of array-element-size, which is implicitly specified by
format. (See the description of format below.) When calling Paris from Lisp, thefront­
end array dimensions can be deduced from the value of front-end-array and must not be
specified.

The fe-oJJset-vector parameter contains the coordinate of the first front-end array element
transferred to the Connection Machine. The length of this argument is measured in units
of em-element-size, which is implicitly specified by format. (See the description of format
below.)

The em-start-vector parameter specifies the coordinate of the first eM element to receive
data from the front end. The cm-end-vector parameter specifies the coordinate of the last
eM element to receive data from the front end.

The cm-azis-vector parameter specifies how Connection Machine axes are mapped to front­
end array axes. For example, if cm-azis-vector[A] = B, then axis A of the Connection
Machine source field geometry is mapped to axis B of the front-end array. The length of
this vector must be equal to the rank of the source field geometry.

The format parameter is an array descriptor that specifies the format of the front-end array.
An appropriate descriptor may be obtained by a call to eM: array-format, eM: packed-array­
format, or eM: structure-array-format. Alternatively, one of the predefined unsigned format
values may be used.

From C or Fortran a value of CM..8.bit, CM ..16.bit, or CM ..32.bit specifies an unpacked front­
end array while CM..1.biLpacked, CM.2.biLpacked, or CMA.bit-packed specifies a front-end
array in which several eM elements are packed into each array element. From Lisp, the
predefined unsigned format keywords are :8-bit, : 16-bit, :32-bit, :l-bit-packed, :2-bit-packed,
and : 4-bit-packed.

465

WRITE-TO-NEWS-ARRAY

When calling Paris from Lisp, the format parameter is a keyword argument. IT not specified,
it defaults based on the element type of the front-end array or, if the array is of type t,
based on the type of the Connection Machine field.

I"/lM-1
Definition For all i such that 0 :5 j < n (end 3 - start;) do

3=0
for all m such that 0 < m < rank do

let S(i.m} = In.o-, -i j mod (endm - startm)

n (end;-d/ll"t;)
;= ... +1

I"/lnk-1
let ki = .v make-news-coordinate(a:z:is 3' start; + Si.;)

.1=0

dest[kil +- jront-end-array.{ •. O) •• { •• 1) •...•• { ,._1)

Another formulation:

For all So such that 0 :5 So < (endo - starto) do
for all 81 such that 0 :5 Sl < (end1 - start1) do

for all S2 such that 0 :5 S2 < (end 2 - start2) do

for all SI"/lM-1 such that 0 :5 Sl"/lnk-1 < (endl"flnk-1 - startl"/lM_1) do
I"fIM-1

let k.O •• 1 •...•• I"/lnk_1 = .Vo make-news-coordinate(azis;,start; + s;)
.1=

dest[k.o •• 1.···.·I"/lnk_11 +-

jront-end-arraYofl.efo+.o.ofl.et1 +.1 •...• ofl.etl"/lM_1 +·I"lInk-1

465a

WRITE-TO-P ROCESSOR

F-WRITE-TO-PROCESSOR

Stores an immediate floating-point number operand value into the destination field of a
single specified processor.

Formats CM:f-write-to-processor-1L send-address-value, dest, source-value, s, e

Operands send-address-value An immediate operand, the send address of a single
particular processor.

dest The ft.oating-point destination field.

source-value A floating-point immediate operand to be used as the source.

s, e The significand and exponent lengths for the dest field. The total
length of an operand in this format is s + e + 1.

Context This operation is unconditional. It does not depend on the contezt-jiag.

Definition dest[send-address-value] +- source-value

The specified source-value, a floating-point number, is stored into the dest field of the
processor whose send address is the immediate operand send-address-value.

466

