
The
Connection Machine
System

Change Pages to
Paris Reference Manual Supplement

Update for Version 5.2
October 1989

Add these change pages to the
Paris Reference Manual Supplement,

which was distributed with Version 5.1

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, October 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable. Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does not assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
C· is a registered trademark of Thinking Machines Corporation.
CM-l, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, * Lisp , and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and V AXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

About Paris Version 5.2 Change Pages

Purpose of These Change Pages

Change pages correct and update a manual. The change pages in this packet provide corrections
to dictionary entries in the Paris Reference Manual Supplement, Version 5.1.

What Has Changed?

The Version 5.2 Paris Release Notes include descriptions of the documentation errors corrected
by the change pages included in this packet.

What to Do with These Pages

By page number, replace the existing pages in the Paris Reference Manual Supplement, Version
5.1. In each case, simply tear out the existing page and replace it with the new one.

Placement of Change Pages

Change Page
Sequence

17,18

43,44

Replace
pages

17-18

43-44

After inserting the change pages, this explanatory page and the title page for this change pages
packet may be discarded.

Contents for Supplement Change Pages

CHANGE-FIELD-AUAS••.......................... 17
C-F-C IS•.•.............•...•.......................... 18

MAKE-FIELD-AUAS ...•.•......•.••........•.................•. 43
F-MOD .. 44

ii

CHANGE-FIELD-ALIAS

CHAN GE-FIELD-ALIAS

Changes the referent of the specified field alias.

Formats CM: change-field-alias alias-id, field-id

Operands alias-id An alias field-id. This must be an alias field-id returned by
CM:make-field-alias. It need not be in the current VP set.

Context

field-id A field-id. This must be a field id returned by CM: allocate-stack­
field or CM: allocate-heap-field; it may not be an offset into a field.
The field need not be in the current VP set.

This operation is unconditional. It does not depend on the contezt-flag.

The alias field id alias-id is made to reference the field identified by field-id. This function
allows field aliases to be recycled.

Mter a call to CM: change-field-alias, the field length and the physical length associated with
alias-id are exactly what they would be if CM: make-field-alias had been called with field-id.

An error is signaled if the physical length of the aliased field is not exactly divisible by
the VP ratio of the VP set to which field-id belongs. (For more on the physical length
associated with an alias field see the dictionary entry for CM:make-field-alias.)

The alias field-id can be used in all the same ways as a regular field-id can, with the following
exceptions:

• It cannot be passed to CM:deallocate-heap-field .

• It cannot be passed to CM:deallocate-stack-through.

17

CIS

C-F-CIS

Calculates the cosine and sine for the floating-point source field and stores the result in the
complex destination field.

Formats CM:c-f-cis-2-1L dest, source, s, e

Operands dest The complex destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of the dest field in this format is 2(s + e + 1). The
total length of the source field in this fO:rmat is s + e + 1.

Overlap The source field must be either identical to dest, identical to (dest + s + e + 1),
or disjoint from dest.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k) = 1 then

dest[k).real cos source[k)
dest[k).imag sinsource[k]

The result is a complex number whose real part is the cosine of the source and whose
imagina.ry part is the sine of the source. The term cis signifies cos +i sin.

18

MAKE-FIELD-ALIAS

MAKE-FIELD-ALIAS

Creates a new field-id that points to an existing field.

Formats result - CM: make-field-alias field-id

Operands field-id A field-id. This must be a field id returned by CM:allocate-stack­
field or CM: allocate-heap-field; it may not be an offset into a field.
The field need not be in the current VP set.

Result A field-id, the alias field-id. This id initially resides in the current VP set.

Context This operation is unconditional. It does not depend on the context-flag.

The return value is a field alias. It is a new field-id that identifies the same area of memory
as does field-id.

The field identified by jield-id can be in a VP set other than the current VP set. The
returned alias field-id initially resides in the current VP set. The alias field-id can be used
in all the same ways as a regular field-id can, with the following exceptions:

• It cannot be passed to CM:dealiocate-heap-field •

• It cannot be passed to CM:dealiocate-stack-through.

Associated with a field alias is a physical length: the number of bits that the field occupies
in each physical. processor. Also associated with a field alias is a field length: the number
of bits the field occupies in each virtual. processor. The physical. length is equal to the field
length multiplied by the VP ratio of the current VP set. It is an error if the physical length
is not exactly divisible by the VP ratio of the current VP set.

It is possible for the field length of an alias field to be different from the field length of the
original field. This is the case when make-field-alias is called on a field in a VP set that has
a VP ratio different from the VP ratio of the current VP set. Suppose, for example, the
current VP ratio is 32. If we make an alias for a 32-bit field that resides in a VP set with
a VP ratio of 1, the resulting alias field is a 1 bit field (in a VP ratio of 32).

43

MOD

F-MOD

The residue of one floating-point source value divided by another is placed in the destination
field. Overflow is also computed.

Formats CM:f-mod-2-1L
CM:f-mod-3-1L
CM:f-mod-constant-2-1L
CM:f-mod-constant-3-1L

dest/sourcel, source2, s, e
dest, sourcel, source2, s, e
dest/sourcel, source2-value, s, e
dest, sourcel, source2-value, s, e

Operands dest The floating-point destination field. This is the quotient.

The floating-point first source field. This is the dividend.

The floating-point second source field. This is the divisor.

Overlap

Flags

sourcel

source2

source2-value A floating-point immediate operand to be used as the second
source.

s, e The significand and exponent lengths for the dest, sourcel, and
source2 fields. The total length of an operand in this format is
s+e+l.

The fields sourcel and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two
floating-point fields are identical if they have the same address and the same
format. It is permissible for all the fields to be identical

test-flag is set if division by zero occurs; otherwise it is cleared.

overflow-flag is set if floating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source2 [k] = 0 then
dest[k] +- (unpredictable)
test-flag[k] +- 1

else

dest[k] +- sourcel[k] - source2[k] X

test-flag[k] +- 0
if (overflow occurred in processor k) then overflow-jlag[k] +- 1

44

The
Connection Machine
System

Change Pages to
Paris Reference Manual

Update for Version 5.2
October 1989

Add these change
pages to the

Paris Reference Manual
only after adding those

distributed with
Version 5.1

Thinking Machines Corporation
Cambridge, Massachusetts

First printing. October 1989

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines
Corporation reserves the right to make changes to any products described herein to
improve functioning or design. Although the information in this document has been
reviewed and is believed to be reliable. Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking
Machines Corporation does no~ assume any liability arising from the application or use of
any information or product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
C· is a registered trademark of Thinking Machines Corporation.
CM-I. CM-2. CM. and DataVault are trademarks of Thinking Machines Corporation.
Paris, * Lisp , and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and V AXBI are trademarks of Digital Equipment Corporation.
Symbolics. Symbolics 3600. and Genera are trademarks of Symbolics. Inc.
Sun and Sun-4 are trademarks of Sun Microsystems. Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1989 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge. Massachusetts 02142-1214
(617) 876-1111

About Paris Version 5.2 Change Pages

Purpose of These Change Pages

Change pages correct and update a manual. The change pages in this packet provide

• dictionary entries for Paris instructions new with Version 5.2

• dictionary entries for Paris instructions changed with Version 5.2

• corrected dictionary entries for Version 5.0 Paris instructions

What Has Changed?

The Version 5.2 Paris Release Notes describe the new and changed features that are documented
by these pages. The release notes also include descriptions of all the documentation errors cor­
rected by change pages included in this packet.

What to Do with These Pages

By page number, insert the change pages into your copy of the Paris Reference Manual,
Version 5.0.

Additional Pages
Any change page with a page number ending in a letter must be ~ to the exist­
ing manual. Find the page whose number matches the number part of the change
page number and insert the change page ~ it.

Replacement Pages
Any change page with a normal page number replaces an existing Paris manual
page. lear out the existing page and replace it with the new one.

Note that many of the replacement pages are included only to preserve the order
of the Paris dictionary entries.

ii

Placement of Change Pages

Change Page
Sequence

45,46

51,52

63,64

83, 84, 85, 86

89, 90, 91, 92
92a
93,94,95,96,97,98

Add after
page

92

1Ma 1M
107, 107a, 107b, 107c, 107d, 107e, 107f
108

113, 113a, 113b, 113c, 114

117,117a, 117b, 118

123, 124

133, 134, 135, 136

142a,142b
143, 143a, 143b, 143c, 144

157, 157a, 158, 159, 160, 161, 162

181, 182

185, 186, 187, 188

142

About Paris 5.2 Change Pages

Replace
pages

45-46

51-52

63-64

83-86

89-92

93-98

107
108

113-114

117-118

123-124

133-136

143-144

157-162

181-182

185-188

About Paris 5.2 Change Pages

Placement of Change Pages (continued)

Change Page
Sequence

Add after
page

211~ 212

271~ 274 273~ 274, 275~ 276, 277~ 278,
279~280~ 281~ 284283~284~285~286

301~ 304 303~ 304

307~308~309,310~ 311, 312

340a,340b~340c~340c,340d

341~342

'373~374~375~376,377,378~379~38O

435~435a

449~449a~449b,449c,450

455,456

340

Replace
pages

211-212

271-286

301-304

307-312

341-342

373-380

435

449-450

455-456

iii

After inserting all change pages, these explanatory pages and the title page for this change pages
packet may be discarded.

Contents for Reference Change Pages

F-ABS•..•....•.....•.......................•........... 63
S-ABS•......•.......•...•.......••.•................... 115
ALLOCATE-HEAP-FIELD-VP-SET•....................... 83
ALLOCATE-STACK-FIELD .. 84
ALLOCATE-STACK-FIELD-VP-SET•...•.................. 85
ALLOCATE-VP-SET • .. 86
AREF32 .. 89
AREF32-SHARED ..•....•........•............................. 91
ASET•...•..............................•......... 93
ASET32 .•.............•..........................•........... 95
ASET32-SHARED .. 97
AVAILABLE-MEMORy .. 106a

F-F-CEILING••....................•.............. 107
S-CEIUNG • .. 107a

S-F-CEIUNG•....................................... 107c
U-CEILING ... 107d

U-F-CEILING 107f
CLEAR-All-FLAGS••.................................. 108

F-COMPARE .. 113a
S-COMPARE .. 113b
U-COMPARE .. 113c
F-COS ... 114

CREATE-DETAILED-GEOMETRY 117
CREATE-GEOMETRY .. 118
DEPOSIT-NEWS-COORDINATE 123

FE-DEPOSIT-NEWS-COORDINATE 124
F-EXP ... 133
EXTRACT-MULTI-COORDINATE 134

FE-EXTRACT-MULTI-COORDINATE 135
EXTRACT-NEWS-COORDINATE 136

S-FLOOR ... 142a
S-F-FLOOR ... 143

U-FLOOR .. 143a
U-F-FLOOR .. 143c

v

Contents vi

FE-FROM-GRAY-CODE ... 144
GEOMETRY-SEND-ADDRESS-LENGTH 157
GEOMETRY-SERIAL-NUMBER 157a
GEOMETRY-TOTAL-PROCESSORS • • . • . • 158
GEOMETRY-TOTAL-VP-RATIO .•..•.••..•....•...............••.. 159
GET••.•.•..•.••.....•....•...••••...•....• 160
GET-AREF32 ..••..•........•....•...................•..•..... 161
GLOBAL-U-MAX ...•.•......•.••...•...............•....•..•.. 181
GLOBAL-U-MAX-S-INTLEN • • • 182
GLOBAL-U-MAX-U-INTLEN•..•................ 184
GLOBAL-F-MIN•....................... 186
GLOBAL-S-MIN•.......................... 187
GLOBAL-U-MIN . . . • • .. 188
LOAD-CONTEXT • .. 211
LOAD-flag .•.....•... 212
MULTISPREAD-F-ADD•............... 271
MULTISPREAD-8-ADD•........................... 273
MULTISPREAD-U-ADD .•.•..................•.......•.......... 274
MULTISPREAD-COPY ... , 275
MULTISPREAD-LQGAND· .. 276
MULTISPREAD-LOGIOR 277
MULTISPREAD-LOGXOR ...•..•.............•................•. 278
MULTISPREAD-F-MAX ... 279
MULTISPREAD-S-MAX ... 280
MULTISPREAD-U-MAX ... 281
MULTISPREAD-F-MIN 282
MULTISPREAD-S-MIN . • .. 283
MULTISPREAD-U-MIN .. 284
MY-NEWS-COORDINATE 285
MY-SEND-ADDRESS .. 286

F-U-POWER .. 300
S-S-POWER .. 302

POWER-UP .. 304
F-RANK .. 307
S-RANK .. 309
U-RANK .. 311

S-F-ROUND•....................................... 340a
U-ROUND ... 340b

U-F-ROUND .. 340d
RESET-TIMER .. 341

F-S-SCALE ... 342

Contents

SEND-ASET32-U-ADD .. 373

SEND-ASET32-LOGIOR ... 375

SEND-ASET32-0VERWRITE 3n
SEND-TO-NEWS ... 379

SEND-WITH-F-ADD•........................... 380

STORE-flag .. 435

U-TO-GRAY-CODE . • .. 449

vii

TRANSPOSE32 • .. 449a

F-F-TRUNCATE•...•...•............................ 450

U-F-TRUNCATE .. 456

Chapter 6. The C/Paris Interface

incl1LSion

One of the values CM_exclusive or CMJnclusive, indicating the boundaries of a scan
instruction.

smode

One of the values CM-"one, CM....start..bit, or CM....segment..bit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add "eM" to
the front and then convert colons and hyphens to underscores, yielding CM....start..bit.

6.3 C /Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.6 for a list. The C IP aris interface makes these
variables accessible through variables declared in the C IParis header file. They are ini­
tialized in an application program by a call to the subroutine CMJnit and should not be
changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM-physicaLprocessorsJimit is a value that depends
upon the size. of the Connection Machine to which the application is attached.

Numeric values that are constant for a given release of the CM System Software are given
in #define statements.

6.4 Calling Paris from C

This section describes how to build C programs that access the Paris instruction set using
the C/Paris interface. Such programs must manage the dynamic allocation and deallocation
of Connection Machine fields directly. This section describes the form of C main programs
and subprograms that call the C/Paris interface, as well as the steps involved in compiling
and linking such programs.

The following code fragment illustrates the structure ofa C main program that calls Paris
instructions.

#include <cm/paris.h>

mainO {
CM_initO;

CM_paris_instruction(...);

if (CM_configuration_variable > limit) ...

45

Chapter 6. The CjParis Interface

}

Note that the call to CMJnit is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a C subroutine subprogram that

calls Paris instructions.

'include (cm/paris.h>

float teste) {

if (CM_configuration_variable > limit) ...

}

It looks exactly like a main program. in its use of Paris, ezcept that a subprogram. should
not call CMJnit.

Use the following command to compile and link these program units:

1. cc main.c test.c -lparis -1m

Note that there should be no space between the -I option and its argument.

46

Chapter 7. The Fortran/Paris Interface

smode

One of the values CM..none, CM...starLbit, or CM...segmenLbit, indicating how a scan
operation is to be partitioned.

There are other symbolic values as well, but these are the most important. All names
are formed by the standard rule: starting from a Lisp name such as :start-bit, add "eM" to
the front and then convert colons and hyphens to underscores, yielding CM...start.bit.

7.3 Fortran/Paris Configuration Variables

The configuration variables provide access to information about the configuration of the
Connection Machine system. See section 3.6 for a list. The Fortran/Paris interface makes
these variables accessible through variables declared in the common block named cmval,
defined by the Fortran/Paris header file. They are initialized in an application program by
a call to the subroutine CMJnit and should not be changed by an application program.

Each configuration variable is a numeric value that is constant over the course of a
session (from one cold boot operation to the next), or varies from one Connection Machine
configuration to another. For example, CM-physicaLprocessorsJimit is a value that depends
upon the size of the Connection Machine to which the application is attached. Most of
these configuration variables are declared to be of Fortran type INTEGER. .

Numeric values that are constant for a given release of the CM System Software are also
given in PARAMETER statements.

7.4 Calling Paris from Fortran

This section describes how to build Fortran programs that access the Paris instruction set
using the Fortran/Paris interface. Such programs must manage the dynamic allocation
and deallocation of Connection Machine fields directly. This section describes the form of
Fortran main programs and subprograms that call the Fortran/Paris interface, as well as
the steps involved in compiling and linking such programs.

The following code fragment illustrates the structure of a Fortran main program that
calls Paris instructions.

PROGRAM main
C VAX Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris-configuration-fort.h'
CALL CM_initO

CALL CM_paris_instruction(. ..)

IF (CM_configuration_variable .GT. limit) ...

END

51

Chapter 7. The Fortran/Paris Interface

Note that the call to CMJnit is required prior to any other calls to Paris instructions.
The following code fragment illustrates the structure of a Fortran subroutine subprogram

that calls Paris instructions.

SUBROUTINE test
C VAX Fortran or Sun Fortran

INCLUDE '/usr/include/cm/paris-configuration-fort.h'

IF (CM_configuration_variable .GT. limit) ...

END

It looks exactly like a main program in its use of Paris, ezcept that a subprogram should
not call CMJnit.

Using VAX Fortran, the following command compiles and links these program units to
run on the Connection Machine Model 2:

1. fort main.for test.for -lparisfort -lparis

Note that there should be no space between the -I option and its argument.
Using Sun Fortran, the following command compiles and links these program units to

run on the Connection Machine Model 2:

1. f77 main.f test.f -lparisfort -lparis

Note that there should be no space between the -I option and its argument.

52

ABS

F-ABS

Computes, in each selected processor, the absolute value of a floating-point source field and
stores it in the destination field.

Formats CM:f-abs-l-ll dest/source, s, e
CM:f-abs-2-1l dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

if source[k] ~ 0 then dest[k] +- source[k]
else dest[k] +- - source[k]

The absolute value of the source operand is placed in the dest operand.

For floating-point numbers, absolute value is calculated by changing the sign bit to 0 (pos­
itive). All other bits in the number are unchanged. As a result, the absolute values of
negative infinities, denormalized numbers, and NaN's are their positive counterparts.

63

ABS

S-ABS

Computes the absolute value of a signed integer source field and stores it in the destination
field.

Formats CM: s-abs-l-1L dest! source, len
CM:s-abs-2-lL dest, source, len
CM:s-abs-2-2L dest, source, dlen, slen

Operands dest The signed integer destination field.

The signed integer source field. source

len

dlen

slen

The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Flags overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose conte~t-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conte~t-flag[k] = 1 then

if source[k] ~ 0 then dest[k] +- source[k]
else dest[k] +- -source[k]
if (overflow occurred in processor k) then overjlow-flag[k] +- 1
else overftow-flag[k] +- 0

The absolute value of the source operand is placed in the dest operand. (IT the length of
the dest field equals the length n of the source field, overflow can occur only if the source
field contains _2n. If the length of the dest field is greater than the length of the source
field, then overflow cannot occur.)

64

ALLOCATE-HEAP-FIELD-VP-SET

ALLOCATE-HEAP-FIELD-VP-SET

Allocates a new heap field of the specified length in the specified VP set and returns a
unique identifier.

Formats result - eM: allocate-heap-field-vp-set len, vp-set-id

Operands len An unsigned integer, the length in hits of the field to he allocated.

vp-set-id A vp-set-id.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on the context-flag.

A new field of length len is allocated on the heap within the specified VP set. A field-id
for the newly created field is returned.

83

ALLOCATE-STACK-FIELD

ALLOCATE-STACK-FIELD

Allocates a new stack field of specified length in the current VP set and returns a unique
identifier.

Formats result +- eM: alloc:ate-stac:k-field len

Operands len An unsigned integer, the length, in bits, of the field to be allocated.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on the context-flag.

A new field of length len is allocated on the stack within the current VP set. A field-id for
the newly created field is returned.

84

ALLOCATE-STACK-FIELD-VP-SET

ALLOCATE-STACK-FIELD-VP-SET

Allocates a new stack field of the specified length in the specified VP set and returns a
unique identifier.

Formats result ~ CM:allocate-stack-field-vp-set len, vp-set-id

Operands len An unsigned integer, the length in bits of the field to be allocated.

vp-set-id A vp-set-id.

Result An unsigned integer, the new field-id.

Context This operation is unconditional. It does not depend on the context-flag.

A new field of length len is allocated on the stack within the specified VP set. A field-id
for the newly created field is returned.

85

ALLOCATE-VP-SET

ALLOCATE-VP-SET

Create a new VP set, within which fields may be allocated.

Formats result - CM: allocate-vp-set geometry-id

Operands geometry-id A geometry-ide

Result A vp-set-id, identifying the newly allocated VP set.

Context This operation is unconditional. It does not depend on the context-flag.

This operation returns a vp-set-id for a newly created VP set. This may be given to other
Paris operations in order to create memory fields in which data may be stored. The size
and shape of the VP set is determined by the geometry specified by the geometry-ide It is
possible to alter the geometry later (by using CM: set-vp-set-geometry), but the total number
of virtual processors in the VP set remains forever fixed.

86

AREF32

AREF32

Fetches array elements specified by a per-processor index and copies them to a fixed desti­
nation. The array is stored in a special format that allows fast access.

Formats CM: aref32-2L dest, array, inde~ dlen, index-len, index-limit
CM: aref32-always-2L dest, array, inde:c, dlen, index-len, inde:c-limit

Operands dest The destination field.

Overlap

Context

array

index

dlen

The source array field. This must contain data stored in a special
format by either CM:aset32 or CM:transpose32.

The unsigned integer index field. This is used as the per-processor
index into the array.

The length of the dest field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.

index-len The length of the index field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

index-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the array
extent.

The fields array and index may overlap in any manner. However, the array
and index fields must not overlap the dest field.

The non-always operations are conditional. The destination may be altered
only in processors whose context-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the context-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

if index [k] < index-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = l~J mod 32
let i = index[k]
for all j such that 0 :5 j < dlen do

dest[k](j) +- array[k - m X r + (j mod 32) X r](32 X (i + li2J))
else

(error)

89

AREF32

This is a simple form of array reference for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
index-limit with elements of length dlen.

The array element indexed by each active processor is copied into the dest field of that
processor. Different processors may reference different elements of their arrays. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field index. This is used to index into an
area of eM memory, army, whose allocated length in bits should be at least

(index-limit X r d!~n 1) X 32

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

A field of length dlen, and starting at address array + i X 32, where i is the the unsigned
number stored at index, is copied to dest in all selected processors. Even this is not quite
accurate, because the array data is not organized in the same manner as for CM: aref. Instead,
it is organized in a peculiar way for fast per-processor access. Parallel arrays stored in this
format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM: aref32 should
be accessed only through the operations CM:aset32 and CM:aref32, related operations such
as CM: get-aref32 and CM: send-aset32-overwrite, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

90

AREF32-SHARED

AREF32-SHARED

Fetches an array element specified by a per-processor index and copies it to a fixed destina­
tion. The source array is stored in a special format that allows fast access, and is accessed
in such a way that all the virtual processors within a group of 32 physical processors share
the same array.

Formats CM: aref32-shared-2L deBt, array, indez, dlen, indez-len, indez-limit
CM:aref32-shared-always-2L deBt, array, indez, dlen, indez-len, indez-limit

Operands deBt The destination field.

Overlap

Context

array

indez

dlen

The source array field. This must be a contiguous region in eM
memory. It need not be in the current VP set.

The unsigned integer index field. This is used as the per-processor
index into array.

The length of the deBt field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This is normally
taken as the array element length and must be a multiple of 32.
As a special case, dlen may be 8 or 16 and, if so, access into both
the source and the destination fields is offset appropriately.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of array.

The fields array and indez may overlap in any manner. However, the array
and indez fields must not overlap the deBt field.

The non-always operations are conditional. The destination may be altered
only in processors whose contezt-Jlag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-ftag[k] = 1) then

if indez[k] < indez-limit then
for all i such that 0 :5 i < dlen do

dest[k] (i)

91

AREF32-SHARED

array [32 la;,. J + (j. mod 32)] (index-limit l i2 J + index [k])
else

(error)

where r is the VP ratio, and where j is the bit position in each field.

This is a simple form of array reference for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent index-limit with elements of length dlen.

The shared array element (or a portion of it) indexed is copied into dest in all (selected)
processors. Different processors may access different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing.

Each processor has an array index stored in the field index. This is used to index into array.
The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

The data within the source array area is not organized in the same manner as for CM: arefj
instead, it is organized in a peculiar way for fast per-processor access. Shared arrays stored
in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa­
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 x index-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM:aref32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a VP ratio of 1,
with a single call to CM:alloc:ate-stac:k-field or to CM:alloc:ate-heap-field. Alternatively, from
Lisp, the memory may be allocated within a with-stac:k-field form at a VP ratio of 1.

The area of eM memory occupied by array should be allocated at a VP ratio of 1 as a
field whose length in bits is exactly

index-limit X dlen

Shared array memory should be accessed only with the operations CM: aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all processors
(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM: transpose32 instruction.

92

AREF32-SHARED

As a special case, if the dlen argument is specified as 8 or 16, then each processor accesses
one byte or one half-word of a 32-bit element. The index-limit argument must be specified
as the extent of the array when considered to contain 32-bit elements. Nonetheless, valid
index values are integers 0 through 2 or 4 times this index-limit. The index argument may
be thought of as consisting of two fields, one that indexes a 32-bit array element and one
that indexes an 8- or 16-bit offset into that element. To index bytes, the low 2 bits of index
specify the offset. To index half-words, the low 1 bit of index specifies the offset.

92a

ASET

ASET

Stores into an array element specified by a per-processor index a value copied from a fixed
source field.

Formats CM:aset-2L source, array, indez, slen, indez-len, indez-limit, element-len

Operands source The source field.

array

indez

slen

The destination array field.

The unsigned integer index into the array field.

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez.

element-len An unsigned integer immediate operand to be used as the
length of an array element.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Flags test-flag is set if the value in the indez field is less than the indez-limitj
otherwise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-Jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

if indez [k] < indez-limit then
let p = indez [k] x element-len
array[k](p: p + slen - 1} - source[k]
test-flag[k] - 1

else
test-Jlag[k] - 0

This is a simple form of array modification, for arrays stored in the memory of individual
processors. Each processor has an array index stored in the field indez. This is used to

93

ASET

index into an array, whose length in bits should be indez-limit x element-len. The source
field is copied into the element indexed (or a portion of it) in all selected processors. Thus
different processors may modify different elements of their arrays.

More precisely, the source field is copied to a field of length slen and starting at address
array + i x element-len, where i is the unsigned number stored at indez, in all selected
processors.

The argument indez-limit is one greater than the largest allowed value of the index. Those
processors that have index values greater than or equal to indez-limit do not alter the value
of the destination field; they also clear test-flag. All processors in which the index field is less
than indez-limit set test-flag. The argument element-len is the length of individual elements
of the array. Usually this will be the same as dest-length, but for certain applications it
is worthwhile for it to differ. For example, within an array of 128-bit records one may
store into just one 16-bit component of an indexed record by letting sien be 32, letting
element-len be 128, and by offsetting the array address by the offset within each record of
the 16-bit quantity to be modified. As another example, to modify a 4-character substring
of a string of 8-bit characters, one may let slen be 32 and element-len be 8.

94

ASET32

ASET32

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The destination array is stored in a special format that allows fast access.

Formats CM: aset32-2L source, aN'aY, indez, slen, indez-Ien, indez-limit

Operands source The source field.

array

indez

The destination array field.

The unsigned integer index field. This is used as the per-processor
index into array.

slen The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*. This is taken as the
array element length and must be a multiple of 32.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the array
extent.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-ftag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag{ k] = 1 then

if indez[k] < indez-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set»

let m = l ~ J mod 32
let i = indez[k]
for all j such that 0 ~ j < slen do

array[k - m X r + (j mod 32) X r](32 X (i+ l12J» +- source[k](j)
else

(error)

This is a simple form of array modification for parallel arrays whose elements are stored
across the memory of individual processors. To each processor belongs an array of extent
indez-limit with elements of length slen.

95

ASET32

The source field value for each active processor is copied into the indexed array element
belonging to that processor ~ Thus different processors may modify different elements of
their arrays. For this reason, this form of array access is known as indirect addressing.

Each processor has an array index stored in the field index. This is used to index into an
area of OM memory, array, whose allocated length in bits should be at least

(index-limit X r s~n 1) X 32

The argument index-limit is one greater than the largest allowed value of the index. It is
an error for any index value to equal or exceed this limit.

In all selected processors, the source field is copied to a field of length slen and starting at
address array + i X 32, where i is the the unsigned number stored at index. Even this is not
quite accurate, because the data within the destination array area is not organized in the
same manner as for CM: aset. Instead, it is organized in a peculiar way for fast per-processor
access. Parallel arrays stored in this format are termed slicewise parallel arrays.

Slicewise parallel array data is arranged with successive bits stored in successive processors
within groups of 32 virtual processors. Thus, slicewise array data belonging to one processor
is spread over the memories of the 32 processors in its group and the memory of each
processor holds data belonging to all 32 processors.

A region of memory set aside for a slicewise array of the format required by CM: aset32 should
be accessed only through the operations CM:aref32 and CM:aset32, related operations such
as CM:send-aset32-overwrite and CM:get-aref32, or operations that copy the array as a whole
from all processors (such as I/O operations). It is also possible to operate on this memory
in blocks of 32-bit square matrices with the CM:transpose32 instruction.

96

ASET32-SHARED

ASET32-SHARED

Copies data from a fixed source to the destination array elements specified by a per-processor
index. The array is stored in a special format that allows fast access, and is accessed in
such a way that all the virtual processors within a group of 32 physical processors share the
same array.

Formats CM:aset32-shared-2L source, array, indez, slen, indez-Ien, indez-limit

Operands source The source field.

array

indez

slen

The destination array field. This must be contiguous region in
eM memory. It need not be in the current VP set.

The unsigned integer index field. This is used as the per-processor
index into the array.

The length of the source field. This must be non-negative and
no greater than CM: *maximum-integer-Iength*. This must be a
multiple of 32 and is taken as the array element length.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

indez-limit An unsigned integer inunediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of array.

Overlap The fields source and indez may overlap in any manner. However, the source
and indez fields must not overlap the array field.

Context This operation is conditional, but whether data is copied depends only on the
contezt-jlag of the originating processor; the message, once transmitted to the
receiving processor, is stored into the the field indicated by array regardless
of the contezt-Jlag of the receiving processor.

Definition For every virtual processor k in the current-l1p-set do
if contezt-flag[k] = 1 then

if indez [k] < indez-limit then
for all j such that 0 :5 j < dlen do

array [32~jultc~~JW>J1 32)] (indez-limit l i2 J + indez [k])
else

(error)

where r is the VP ratio, and where j is the bit position in each field.

97

ASET32·SHARED

For any two active virtual processors, k and k', if indez(k] = indez(k'], then
~ither source(k] or source(k'] is stored in dest, depending upon the implemen­
tation.

This is a simple form of array modification for arrays whose elements are stored across the
memory of individual processors and accessed in such a way that many processors appear
to share a single array of extent indez-limit with elements of length slen.

The source field in each selected processor is copied into the array element (or a portion of
it) indexed. Different processors may modify different elements of the shared array. For this
reason, this form of array referencing is known as indirect addressing. If several processors
sharing the same array attempt to modify the same element in a single CM: aset32-shared
operation, then one of the values is stored and the rest are discarded.

Each processor has an array index stored in the field indez. This is used to index into array.
The argument indez-limit is one greater than the largest allowed value of the index. It is
an error for any indez value to equal or exceed this limit.

The data within the destination array area is not organized in the same manner as for
CM:aset; instead, it is organized in a peculiar way for fast per-processor access. Shared
arrays stored in this format are termed slicewise shared arrays.

Slicewise shared array data is arranged with successive bits stored in successive processors,
within groups of 32 physical processors. Each 32-bit word of each element is stored sepa­
rately in processor memories, as follows: The low-order 32 bits of all elements are grouped
together across processor memories in a field of length 32 x indez-limit bits. Similarly, the
next 32 bits of all elements are grouped together, and so on, up to the high-order bits of all
array elements. This data format allows fast hardware-supported access to the individual
elements of a shared array.

A region of memory set aside for an array of the format required by CM: aset32-shared must
be contiguous in memory. It must therefore be allocated all at once, at a VP ratio of 1,
with a single call to CM:allocate-stack-field or to CM:allocate-heap-field. Alternatively, from
Lisp, the memory may be allocated within a with-stack-field form at a VP ratio of 1.

An area of eM memory occupied by array should be allocated at a VP ratio of 1 as a field
whose length in bits is exactly

indez-limit X dlen

Shared array memory should be accessed only with the operations CM:aref32-shared and
CM:aset32-shared, or with operations that copy the array as a whole from all processors
(such as I/O operations). Data in such a region of memory may, however, be reoriented
with the CM: transpose32 instruction.

98

AVAILABLE-MEMORY

AVAILABLE-MEMORY

Determines the number of bits of memory, per virtual processor, that remain available for
allocation on either the heap or the stack.

Formats result ~ CM: available-memory

Result An unsigned integer, the number of bits available.

Context This operation is unconditional. It does not depend on the context-flag.

The number of bits available for allocation by either CM:allocate-heap-field or CM:allocate­
stack-field is returned to the front end as an integer. The return value represents the number
of bits available for each virtual processor in the current VP set.

l06a

CEILING

F-F-CEILING

Determines the smallest integral value that is not less than the floating-point source field
value in each selected processor and stores it in the floating-point destination field.

Formats CM:f-f-ceiling-l-1L dest/source, s, e
CM:f-f-ceiling-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. souree

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is a + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-aet do
if context-flag[k] = 1 then

dest[k] ~ rsource[kJ1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +00, which is stored into the deat field as a floating-point-number.

Note that overflow cannot occur.

107

CEILING

S-CEILING

The ceiling of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:s-ceiling-3-3L dest, source1, source2, dlen, slen1, slen2

Operands dest The signed integer quotient field.

The signed integer dividend field.

The signed integer divisor field.

Overlap

Flags

source1

source2

dlen

slen1

slen2

For CM:s-ceiling-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM:s-ceiling-3-3L, the length of the source1 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

For CM:s-ceiling-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose conte:r:t-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conte:r:t-flag[k] = 1 then

dest[k] - rSource1 k 1
source2 k

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag[k] - 0
if source2 [k] = 0 then

test[k]- 1 .
else test[k] - 0

107a

CEILING

The signed integer source1 operand is divided by the signed integer source2 operand. The
ceiling of the mathematical quotient is stored into the signed integer memory field dest.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

l07b

CEILING

S-F-CEILIN G

The floating-point source field values are converted to signed integer values and stored in
the destination field.

Formats CM: s-f-ceiling-2-2L dest, source, dlen, s, e

Operands dest The signed integer destination field.

The floating-point source field. source

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-jlag[k] = 1 then

dest[k] (- r source[kll
if (overflow occurred in processor k) then overftow-flag[k] (- 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +00. The result is stored into the dest field as a signed integer.

l07c

CEILING

U-CEILING

The ceiling of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM: u-ceiling-3-3L dest, so'Uree1, so'Uree2, dlen, slen1, slen2

Operands dest The unsigned integer quotient field.

Overlap

Flags

so'Urce1 The unsigned integer dividend field.

so'Uree2 The unsigned integer divisor field.

dlen For CM: u-ceiling-3-3L, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slen1 For CM:u-ceiling-3-3L, the length of the so'Uree1 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slen2 For CM: u-ceiling-3-3L, the length of the so'Uree2 field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

The fields so'Urce1 and so'Urce2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the c'Urrent-vp-set do
if context-jlag[k] = 1 then

dest[k] ~ r so'Urce1 k 1
so'Urce2 k

if (overflow occurred in processor k) then overflow-flag[k] ~ 1
else overflow-jlag[k] ~ 0
if so'Urce2 [k] = 0 then

test[k] ~ 1
else test[k] ~ 0

l07d

CEILING

The unsigned integer sourcel operand is divided by the unsigned integer source2 operand.
The ceiling of the mathematical quotient is stored into the unsigned integer memory field
dest.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

l07e

CEILING

U-F-CEILING

The floating-point source field values are converted to unsigned integer values and stored
in the destination field.

Formats CM:u-f-ceiling-2-2L dest, source, dIm, s, e

Operands dest The unsigned integer destination field.

The floating-point source field. source

len

s, e

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose conte-::t-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if conte-::t-flag(k] = 1 then

dest +- r source 1
if (overflow occurred in processor k) then overflow-flag[k] +- 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of +00, which is stored into the dest field as an unsigned integer.

107f

CLEAR-ALL-FLAGS

CLEAR-ALL-FLAGS

Clears all flags (but not the context bit).

Formats

Context

CM: clear-all-flags
CM:clear-all-flags-always

The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if (always or contezt-jlag[k] = 1) then

test-flag[k] +- 0
overjlow-flag[k] +- 0

Within each processor, all flags for that processor are cleared (but not the context bit).

108

COLD-BOOT

most recent such operation was CM:cold-boot, then the same virtual processor configuration
set up then will be used this time. IT the most recent such operation was CM:attach, then
the number of virtual processors will be equal to the number of physical processors, and
the virtual NEWS grid will have the same shape as the physical NEWS grid.

Bootstrapping a Connection Machine system includes the following actions:

• Evaluating all initialization forms stored in the variable CM: *before-cold-boot­
initializations*. This is done before anything else.

• Loading microcode into the Connection Machine microcontroller and initiating mi­
crocontroller execution.

• Clearing and initializing the memory of allocated Connection Machine processors.

• Initializing all of the global configuration variables described in section 3.6.

• Initializing the pseudo-random number generator by effectively invoking the operation
CM:initialize-random-number-generator with no seed.

• Initializing the system lights-display mode by effectively invoking the operation
CM:set-system-leds-mode with an argument oft.

• Evaluating all initialization forms stored in the variable CM: *after-cold-b oot­
initializations*. This is done after everything else.

IT the cold-booting operation fails, then an error is signalled. IT it succeeds, then three
values are returned: the number of virtual processors, the number of physical processors,
and the number of bits available for the user in each virtual processor. (These are exactly
the values of the configuration variables CM: *user-cube-address-limit*, CM: *physical-cube­
address-limit*, and CM: *user-memory-address-limit*.

In the C/Paris and Fortran/Paris interfaces, the cold-booting operation is performed by a
user command cmcoldboot at shell level. See the Front End Subsystems manual.

113

COMPARE

F-COMPARE

Compares two floating-point source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:f-compare-3-2L dest, source1, source2, dlen, s, e

Operands dest The signed integer destination field.

The floating-point first source field.

The floating-point second source field.

source 1

source2

dlen

a, e

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The significand and exponent lengths for the sourcel and source2
fields. The total length of an operand in this format is s + e + 1.

Overlap The fields dest and source1 must not overlap in any manner. The fields deat
and source2 must not overlap in any manner. The fields source1 and source2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

if source1 [k] < source2[k] then
dest[k] +- -1

else if sourcel[k] > source2[k] then
dest[k] +- 1

else
dest[k] +- 0

Two operands are compared as floating-point numbers. The destination receives the signed
integer value -1, 0, or 1 depending on whether the first source value is less than, equal to,
or greater than the second source value.

113a

COMPARE

S-COMPARE

Compares two signed integer source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats
I

CM: s-compare-3-3L dest, so'Urcel, so'Urce2, dlen, slenl, slen2

Operands dest The signed integer destination field.

The signed integer first source field.

The signed integer second source field.

so'Urcel

so'Urce2

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

slenl The length of the so'Urcel field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

slen2 The length of the so'Urce2 field. This must be no smaller than 2
but no greater than CM:*maximum-integer-length*.

Overlap The fields dest and so'Urcel must not overlap in any manner. The fields dest
and so'Urce2 must not overlap in any manner. The fields sO'UTcel and sO'UTce2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the c'Urrent-up-set do
if context-ftag[k] = 1 then

if sO'UTcel[k] < souTce2[k] then
dest[k] ..- -1

else if souTcel[k] > souTce2[k] then
dest[k] ..- 1

else
dest[k] ..- 0

Two operands are compared as signed integers. The destination receives the value -1, 0,
or 1 depending on whether the first source value is less than, equal to, or greater than the
second source value.

113b

COMPARE

U-COMPARE

Compares two unsigned integer source values and stores into the signed integer destination
field the result -1, 0, or 1 depending on whether the first source value is less than, equal
to, or greater than the second source value.

Formats CM:u-compare-3-3L dest, sourcel, souree2, dlen, slenl, slen2

Operands dest The signed integer destination field.

source 1 The unsigned integer first source field.

The unsigned integer second source field. source2

dlen The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

slenl The length of the soureel field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

slen2 The length of the souree2 field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Overlap The fields dest and soureel must not overlap in any manner. Th~ fields dest
and souree2 must not overlap in any manner. The fields souree1 and souree2
may overlap in any manner.

Context This operation is conditional. The destination may be altered only in proces­
sors whose eontezt-Jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if eontezt-jlag[k] = 1 then

if sourcel[k] < source2[k] then
dest[k] +- -1

else if soureel[k] > source2[k] then
dest[k] +- 1

else
dest[k] +- 0

Two operands are compared as unsigned integers. The destination receives the signed
integer value -1, 0, or 1 depending on whether the first source value is less than, equal to,
or greater than the second source value.

113c

cos

F-COS

Calculates, in each selected processor, the cosine of the floating-point source field value and
stores it in the floating-point destination field.

Formats CM:f-cos-l-1L dest/ SOUTce, S, e
CM:f-cos-2-1L dest, source, s, e

Operands dest The floating-point destination field.

The floating-point source field. SOUTce

s, e The significand and exponent lengths for the dest and SOUTce fields.
The total length of an operand in this format is S + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] 4- cos souTce[k]

The cosine of the value of the source field is stored into the dest field.

114

CREATE-DETAILED-GEOMETRY

typedef enum {CM_news_order. CM_send_order } CM_axis_order_t;

typedef struct CM_axis_descriptor {
unsigned. length;
unsigned weight;
CM_axis_order_t ordering;
unsigned char on_chip_bits;
unsigned char off_chip_bits;

} * CM_axis_descriptor_t;

Actually, this structure has other components as well. C code should use the definition of
CM..axis_descriptor from the cmtypes.h include file.

The Fortran/Paris interface defines CM...axis-CIescriptor as an array:

INTEGER RANK.DESCRIPTOR_ARRAY(7.RANK)

The elements of each Fortran axis descriptor are defined such that:

DESC RI PTO R..ARRAY(l, I) is the length of axis I
DESCRIPTOR..ARRAY(2,I) is the weight of axis I
DESCRIPTOR..ARRAY(3,I) is the ordering of axis I
D ESC RI PTO R..ARRAY(4, I) is the on-chip bits of axis I
D ESC RI PTO R..ARRAY(6, I) is the off-chip bits of axis I

Thus eM: axis-descriptor-array is, in Fortran, an array of axis descriptor arrays.

The Lisp definitions of the type of the ordering component and of the axis descriptor are
shown below.

(deftype cm:axis-order () '(member :news-order :send-order»

(defstruct CM:axis-descriptor
(length 0) (weight 0) (ordering :news-order)
(on-chip-bits 0) (off-chip-bits 0»

The axis-descriptor-array operand must be created by first making one axis descriptor for
each axis and then using these to assign values to the array elements. An example in C is
given below. Notice that axisl and axis2 are pointers to axis descriptor structures and that
the descriptor structures are zeroed before any values are assigned.

CM_geometry_id_t my_geometry;
CM_axis_descriptor_t my_geometry_axes[2]j
CM_axis_descriptor_t axis1, axis2j

117

CREATE-DETAILED-GEOMETRY

axis1 = (em_axis_deseriptor_t)malloe(sizeof(struet CM_axis_deseriptor»j
axis2 = (em_axis_deseriptor_t)malloe(sizeof(struet CM_axis_deseriptor»j
bzero(axis1. sizeof(struet CM_axis_deseriptor»j
bzero(axis2. sizeof(struet CM_axis_deseriptor»j
axis1->length = 128;
axis2->length = 256;
axis1->veight = 5;
axis2->weight = 10;
axis1->ordering = eM_news_order;
axis2->ordering = CM_nevs_order;

my_geometry_axes[O] = axis1;
my_geometry_axes[1] = axis2;
my_geometry = CM_ereate_detailed_geometry(my_geometry_axes. 2);

The following example specifies the same axes, descriptor array, and geometry in Lisp.
Notice that the constructor eM: make-axis-descriptor is used.

(setq my-geometry-axes make-array(2»
(setq axis1
(CM:make-axis-deseriptor :length 128 :veight 5

:ordering :news-order»
(setq axis2

(CM:make-axis-deseriptor :length 256 :weight 10
:ordering :news-order»)

(setf (aref my-geometry-axes 0) axis1)
(setf (aref my-geometry-axis 1) axis2)
(setq my-geometry (CM:make-detailed-geometry my-geometry-axes 2)

Once the geometry has been created, the user may destroy the descriptors and the array
used to provide axis information. All necessary information is copied out of these structures
as the geometry is created.

The "length" component of an axis descriptor specifies the length of the axis; it must be a
power of two.

The "weight" component of the axis descriptors specifies the relative frequency of inter­
processor communication along different axes. For instance, in the above example it is
assumed that communication occurs about half as often along axis1, which is given a weight
of 5, as along axis2, which is given a weight of 10. Only the relative values of the weight
components matter. The same communication traffic could be specified with weights of
1 and 2, or of 3 and 6. IT all weights are 1, it is assumed that all axes· are used equally
frequently.

117a

CREATE-DETAILED-GEOM ETRY

Given a set of weight components, Paris lays out the hypercube grid for optimal per­
formance. Virtual processors are mapped onto the physical hypercube in a pattern that
exploits the fact that communication is especially rapid among virtual processors within
the same physical processor and among virtual processors within the same physical chip.

The "ordering" component of an axis descriptor specifies how NEWS coordinates are mapped
onto physical processors for that axis. The value: news-order specifies the usual embedding
of the grid into the hypercube such that processors with adjacent NEWS coordinates are in
fact neighbors within the hypercube. The value : send-order specifies that, if processor A has
a smaller NEWS coordinate than processor B, then A also has a smaller send-address than B.
This ordering is rarely used. However,: send-order ordering is useful for specific applications
such as FFT. The value :framebuffer-order is provided solely for creating VP sets that are
used as image buffers (for details, see chapter 1 of the Generic Display Interface Reference
Manual).

IT the "weight" components are all 1, then the mapping of virtual to physical processors
can be specified with the "on-chip-bits" and "off-chip-bits" components of the axis descrip­
tors. This is not recommended. To tune performance for communication, use the weight
component.

117b

CREATE-GEOM ETRY

CREATE-GEOMETRY

Creates a new geometry given the grid axis lengths. See also CM: intern-geometry.

Formats result +- CM: create-geometry dimension-array, [rank}

Operands dimension-array A front-end vector of unsigned integer lengths of the

Result

Context

grid axes. In the Lisp interface, this may be a list of dimension
lengths instead of an array of dimension lengths, at the user's
option.

rank An unsigned integer, the rank. (number of dimensions) of the
dimension-array. This must be inbetween 1 and CM:*max­
geometry-rank*, inclusive. This argument is not provided when
calling Paris from Lisp.

A geometry-id, identifying the newly created geometry.

This operation is unconditional. It does not depend on the context-flag.

The dimension-array must be a one-dimensional array of nonnegative integers; each must
be a power of two. The product of all these integers must be a multiple of the number of
physical processors attached for use by this process.

This operation returns a geometry-id for a newly created geometry whose dimensions are
specified by the dimension-array. The length of axis j of the resulting geometry will be
equal to dimension-array[j]. Such a geometry-id may then be used to create a VP set, or
to respecify the geometry of an existing VP set.

The geometry will be laid out so as to optimize performance under the assumption that
the axes are used equally frequently for NEWS communication. The operation CM:create­
detailed-geometry may be used instead to get more precise control over layout for perfor­
mance tuning.

Once the geometry has been created, the user may destroy the array used to provide the
dimension information. All necessary information is copied out of this array as the geometry
is created.

118

DEPOSIT-NEWS-COORDINATE

DEPOSIT-NEWS-COORDINATE

Modifies a send address to reflect a specific NEWS coordinate.

Formats eM: deposit-news-coordinate-IL geometry, dest/ send-address,
azis, coordinate, slen

eM: deposit-news-constant-IL geometry, dest/ send-address,
azis, coordinate-value, slen

Operands geometry A geometry-id. This geometry determines the NEWS dimensions
to be used.

dest The unsigned integer destination field. (In the instruction for­
mats currently provided, the dest field is always the same as the
send-address source field. The length of this field is implicitly the
same as geometry-send-address-Iength(geometry).)

send-address The unsigned integer send-address field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate The unsigned integer NEWS coordinate field. field. This
specifies the position along the corrsponding axis of the proces­
sor whose send address is to be calculated.

coordinate-value An unsigned integer immediate operand to be used as
the NEWS coordinate along the specified axis.

slen The length of the coordinate field. This must be non-negative and
no greater than eM: *maximum-integer-Iength*.

Overlap For eM: deposit-news-coordinate-lL, the coordinate field must not overlap the
dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

dest[k] +- deposit-news-coordinate(geometry, send-address, axis, coordinate)

where deposit-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the send-address of a processor
that has a specified coordinate along a specified NEWS axis, with all other coordinates equal
to those for the processor identified by send-address.

123

DEPOSIT-NEWS-COORDINATE

FE-DEPOSIT -NEWS-COORDINATE

Calculates on the front end the modification of a send address to reflect a specific NEWS
coordinate.

Formats result +- CM:fe-deposit-news-coordinate geometry, send-address,
azis, coordinate

Operands geometry A geometry-ide This geometry determines the NEWS dimensions
to be used.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

coordinate An unsigned integer immediate operand to be used as the
NEWS coordinate along the specified axis.

Result An unsigned integer, the send address of the processor whose coordinate along
the specified axis is coordinate and whose coordinate along all other axes
equals those of send-address.

Context This operation is unconditional. It does not depend on the contezt-flag.

Definition Return deposit-news-coordinate(geomeiry, send-address, azis, coordinate)

where deposit-news-coordinate is as defined on page 33.

This function calculates, entirely on the front end, the send-address of a processor that has
a specified coordinate along a specified NEWS axis, with all other coordinates equal to those
for the processor identified by send-address.

124

EXP

F-EXP

Calculates, in each selected processor, the exponential function eZ of the floating-point
source field and stores it in the floating-point destination field.

Formats CM:f-exp-l-1L dest/source, s, e
CM:f-exp-2-1L dest, source, s, e

Operands dest The fioating-point destination field.

The fioating-point source field. source

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two fioating-point fields are identical if they have the same address and the
same format.

Flags overflow-flag is set if fioating-point overfiowoccurs; otherwise it is unaffected.

Context This operation is conditional. Tlie destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-fiag[k] = 1 then

if source[k] = +00 then
dest[k] +- +00

else if source[k] = -00 then
dest[k] +- +0

else
dest[k] +- exp source[k]

if (overflow occurred in processor k) then overflow-flag[k] +- 1

Call the value of the source field S; the value e8 is stored into the dest field, where e ~
2.718281828 ... is the base of the natural logarithms.

133

EXTRACT-MULTI-COORDINATE

EXTRACT-MULTI-COORDINATE

Determines the NEWS multi-coordinate of a processor specified by send-address.

Formats CM:extract-multi-c:oordinate-1L geometry, dest, axis-mask, send-address, dlen

Operands geometry A geometry-ide This geometry determines the NEWS dimensions
to be used.

dest The unsigned integer destination field.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

send-address The send-address field. For each processor, this identifies the
send-address of some other processor. "

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-jlag[k] = 1 then

let azis-set = {m 10:5 m < r 1\ (axis-mask(m) = 1)}
dest[k] _ extract-multi-coordinate(geometry, axis-set, send-address)

where extract-multi-coordinate is as defined on page 34.

This function calculates, within each selected processor, the NEWS multi-coordinate of a
processor along specified NEWS axes. The axes are indicated by the axis-mask argument;
the processor is identified by its send-address.

134

EXTRACT-MULTI-COORDINATE

FE-EXTRACT-MULTI-COORDINATE

Calculates, on the front end, the NEWS multi-coordinate of a processor specified by send­
address.

Formats result +- CM:fe-extract-multi-coordinate geometry, axis-mask, send-address

Operands geometry A geometry-id. This geometry determines the NEWS dimensions
to be used.

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

send-address An unsigned integer immediate operand to be used as the
send address of some processor.

Result An unsigned integer, the NEWS multi-coordinate of the specified processor
along the specified axes.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let axis-set = {m I 0 ~ m < r" (axis-mask(m) = 1)}
Return extract-multi-coordinate(geometry, axis-set, send-address)

where extract-multi-coordinate is as defined on page 34.

This function calculates, entirely on the front end, the NEWS multi-coordinate of a processor
along specified NEWS axes. The axes are indicated by the axis-mask argument; the processor
is identified by its send-address.

135

EXTRACT -N EWS-COORDINATE

EXTRACT -NEWS-COORDINATE

Determines the NEWS coordinate of a processor specified by send-address.

Formats CM:extrac:t-news-c:oordinate-lL geometry, dest, azis, send-address, dlen

Operands geometry A geometry-ide This geometry determines the NEWS dimensions
to be used.

dest The unsigned integer destination field.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

send-address The send-address field. For each processor, this identifies the
send-address of some other processor.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-/lag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

dest[k] +- ea:tract-news-coordinate(geometry, aa:is, send-address)

where ea:tract-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the NEWS coordinate of a processor
along a specified NEWS axis. The axis is indicated by the aa:is argument; the processor is
identified by its send-address.

136

FLOOR

S-FLOOR

The floor of the quotient of two signed integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:s-floor-3-3L dest, source1, source2, dlen, slen1, slen2

Operands dest The signed integer quotient field.

The signed integer dividend field.

The signed integer divisor field.

Overlap

Flags

source1

source2

dlen

slen1

slen2

For CM: s-floor-3-3L, the length of the dest field. This must be no
smaller than 2 but no greater than CM: *maximum-integer-Iength*.

For CM: s-floor-3-3L, the length of the source1 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length •.

For CM: s-floor-3-3L, the length of the source2 field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length •.

The fields source1 and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

dest[k] _lsource1 k J
source2 k

if (overflow occurred in processor k) then overftow-flag[k] - 1
else overflow-flag[k] - 0
if source2[k] = 0 then

test[k] - 1
else test[k] - 0

142a

FLOOR

The signed integer so'Urcel operand is divided by the signed integer so'Urce2 operand. The
floor of the mathematical quotient is stored into the signed integer memory field dest.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

142b

FLOOR

S-F-FLOOR

Calculates, in each selected processsor, the largest integer that is not greater than a specified
floating-point value and stores the result as a signed integer field.

Formats CM: s-f-floor-2-2L dest, source, dlen, s, e

Operands dest The signed integer destination field.

The floating-point source field. source

len The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-ftag(k] = 1 then

dest[k'] - L source[k]J
if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-ftag[k] - 0

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of -00, which is stored into the dest field as a signed integer.

143

FLOOR

U-FLOOR

The floor of the quotient of two unsigned integer source values is placed in the destination
field. Overflow is also computed.

Formats CM:u-f1oor-3-3l dest, souree1, souree2, dlen, slenl, slen2

Operands dest The unsigned integer quotient field.

Overlap

Flags

soureel The unsigned integer dividend field.

source2 The unsigned integer divisor field.

dlen For CM: s-floor-3-3l, the length of the dest field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slenl For CM:s-fioor-3-3l, the length of the sourcel field. This must be
non-negative and no greater than CM:*maximum-integer-length*.

slen2 For CM:s-fioor-3-3l, the length of the source2 field. This must be
non-negative and no greater than CM: *maximum-integer-Iength*.

The fields soureei and source2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the eurrent-vp-set do
if contezt-flag[k] = 1 then

dest[k] +-l sourcel k J
source2 k

if {overflow occurred in processor k} then overflow-flag[k] +- 1
else overflow-flag[k] +- 0
if souree2[k] = 0 then

test[k] +- 1
else test[k] +- 0

143a

FLOOR

The unsigned integer so'Urcel operand is divided by the unsigned integer so'Urce2 operand.
The floor of the mathematical quotient is stored into the unsigned integer memory field
dest.

The overflow-flag and test-flag may be affected by these operations. IT overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

143b

FLOOR

U-F-FLOOR

Converts floating-point source field values into unsigned integers by rounding towards -00.

Formats CM: u-f-floor-2-2L dest, source, dlen, s, e

Operands dest The unsigned integer destination field.

The floating-point source field. source

len

s, e

The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag(k] = 1 then

dest +- L source J
if (overflow occurred in processor k) then overflow-flag[k] +- 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of -00. The result is stored into the dest field as an unsigned integer.

143c

FROM-GRAY-CODE

FE-FROM-GRAY-CODE

Calculates, on the front end, the Gray code representation of a specified integer.

Formats result +- CM:fe-from-gray-code code

Operands code An unsigned integer immediate operand to be used as the Gray
encoding, represented as a nonnegative integer.

Result An unsigned integer, the nonnegative integer represented by code.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let n = integer-length(code)

Return nel l code J
;=0 23

This function calculates, entirely on the front end, the integer represented by a bit-string
encoding code in a particular reflected binary Gray code.

Note that the binary value 0 is always equivalent to a Gray code string that is all O-bits.

144

GEOMETRY-SEND-ADDRESS-LENGTH

GEOMETRY-SEND-ADDRESS-LENGTH

Returns the number of bits needed to represent a send-address.

Formats result _ eM: geometry-send-address-Iength geometry-id

Operands geometry-id A geometry-id.

Result An unsigned integer, the number of bits required to represent a send-address
for a processor in the specified geometry.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let n = rank(geometry-id)
n-1

Return E integer-length(axis-descriptors(geometry-id)[j].length - 1)
;=0

This operation returns the number of bits required to represent a send-address for a virtual
processor in any VP set whose geometry is the one specified by the geometry-id. This will
be equal to the sum of the numbers of bits needed to represent NEWS coordinates for all
the axes.

157

GEOMETRY-SERIAL-NUMBER

GEOMETRY-SERIAL-NUMBER

Assigns a unique number to the specified geometry.

Formats result 4- CM:geometry-serial-number geometry-id

Operands geometry-id A geometry-ide This geometry-id must be obtained by calling
CM:create-geometry or CM: create-detailed-geometry.

Result The serial number that uniquely identifies the geometry.

Context This operation is unconditional. It does not depend on the context-flag.

A unique number, the serial number, is assigned to the specified geometry. This facilitates
geometry-based caching; geometry serial numbers are useful as hash table keys.

Note that geometry-id's are not unique identifiers. After a geometry is deallocated, its id
may be reused for another geometry. In contrast, geometry serial numbers are guaranteed
to be unique.

157a

GEOMETRY-TOTAL-PROCESSORS

GEO M ETRY -TOTAL-PROCESSO RS

Returns the number of virtual processors for a geometry.

Formats result +- eM: geometry-total-processors geometry-id

Operands geometry-id A geometry-id.

Result An unsigned integer, the total number of processors in the specified geometry.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let n = rank(geometry-id)
n-1

Return II axis-descriptors(geometry-id)[j].length
;=0

This operation returns the total number of virtual processors in any VP set whose geometry
is the one specified by the geometry-id. This will be equal to the product of the lengths of
all the axes.

158

GEOMETRY-TOTAL-VP-RATIO

GEOMETRY-TOTAL-VP-RATIO

Returns the total VP ratio for a specified geometry.

Formats result - eM: geometry-total-vp-ratio geometry-id

Operands geometry-id A geometry-id.

Result An unsigned integer, the number of virtual processors represented within each
physical processor for the specified geometry.

Context This operation is unconditional. It does not depend on the context-flag.

Definition Let n = rank(geometry-id)
n-1

Return n azis-descriptor(geometry-id)[j].vp-ratio
j=O

This operation returns the total VP ratio for a specified geometry. This is equal to the
total number of virtual processors for the geometry, divided by the total number of physical
processors.

159

GET

GET
Each selected processor gets a message from a specified source processor, possibly itself. A
source processor may supply messages even if it is not selected. Messages are all retrieved
from the same memory address within each source processor, and all the source processors
may be in a VP set different from the VP set of the destination processors.

Formats CM:get-lL dest, send-address, source, len

Operands dest The destination field.

send-address The send-address field. For each processor, this indicates
from which processor a message is retrieved.

source The source field.

len The length of the dest and source fields.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with the send-address or source but, if it does, then it is forbidden to
send a message to a selected processor. In other words, the dest may overlap
with the send-address or source only if at most one of them will be used within
each processor.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

dest[k] - source[send-address[k]]

For every selected processor Pd, a message length bits long is sent to Pd from the processor P.

whose send-address is in the field send-address in the memory of processor Pd. The message
is taken from the source field within processor P. and is stored into the field at location
dest within processor Pd. Although the send-address operand is a field in the VP set of the
destination processors, its value must specify a valid send address for source, which may
belong to a different VP set.

Note that more than one selected processor may request data from the same source processor
P., in which case the same data is sent to each of the requesting processors.

160

GET-AREF32

GET-AREF32

Each selected processor gets a message from a specified array field within any specified
source processor (possibly itself). A source processor may supply messages even if it is
not selected. Messages are all retrieved from the same memory address within each source
processor.

Formats CM: get-aref32-2L dest, send-address, array, indez, dlen, indez-len, indez-limit

Operands dest The destination field.

send-address The send-address field. For each processor, this indicates

array

indez

dlen

from which processor a message is retrieved.

The source array field. This must be stored in the special format
required by CM:aref32.

The unsigned integer index into the array field. This is used as a
per-processor index into array. It specifies portions of the array
memory area in increments of dlen.

The length of the dest field.

indez-len The length of the indez field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of array.

Overlap The send-address and array may overlap in any manner. The dest field may
overlap with the send-address or array but, if it does, then it is forbidden to
send a message to a selected processor. In other words, the dest may overlap
with the send-address or array only if at most one of them will be used within
each processor.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-Jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag(k] = 1 then

if indez[k] < indez-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = l ~ J mod 32
let i = indez[k]

161

GET-AREF32

for all j such that 0 ~ j < dlen do
let q = send-address[k] - m X r + (j mod 32) X r

let b = i + l if J
dest[k](j) +- array[q]{b)

else
{error}

For every selected processor Pd, a message length bits long is sent to Pd from the processor P.

whose send-address is in the field send-address in the memory of processor Pd. The message
is taken from the array field within processor P. as if by the operation aref32 and is stored
into the field at location dest within processor Pd.

Note that more than one selected processor may request data from the same source processor
p., possibly from different locations within the array. Note also that in each case the array
element to be sent from processor P. to processor Pd is determined by the value of index
within Pd, not the value within P ••

162

GLOBAL-MAX

GLOBAL-U-MAX

One unsigned integer is examined in every selected processor, and the largest of all these
integers is retUrned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-lL source, len

Operands source The unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Result An unsigned integer, the largest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the maximum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = {m I mE current-vp-set" context-flag[m] = I}
If lSI = 0 then

return 2'en - 1 to front end
else

let R = (max source[m])
mES

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] +- 1

else
test-flag[k] +- 0

return R to front end

The CM:global-u-max operation returns the largest of the unsigned-integer source fields of
all selected processors. This largest value is sent to the front-end computer as an unsigned
integer and returned as the result of the operation. In addition, the test-flag is set in every
selected processor whose field is equal to the finally computed value, and is cleared in all
other selected processors. If there are no selected processors, then the value 0 is returned.

181

GLOBAL-MAX-INTLEN

GLOBAL-U-MAX-S-INTLEN

One signed integer is examined in every selected processor, and the largest length of all
these integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-max-s-intlen-1L source, len

Operands source The signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM: *maximum-integer-Iength*.

Result An unsigned integer, the length of the source field value of greatest length.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor has a length equal to the
maximum; otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose contez.t-flag is 1.

Definition Let S = {m I mE current-vp-set" contezt-flag[m] = 1 }
HISI = 0 then

return _2'en- 1 to front end
else

let R = (~rlOg2 (~+ I~ + source[m]l)l)
For every virtual processor k in the current-vp-set do

if contezt-flag[k] = 1 then
if source[k] = R then

test-ftag[k] +- 1
else

test-ftag[k] +- 0
return R to front end

The CM:global-u-max-s-intien operation computes the integer-length of each signed integer
source value. The largest length is sent to the front-end computer as an unsigned integer
and returned as the result of the operation. In addition, the test-flag is set in every selected
processor whose field is equal to the finally computed value, and is cleared in all other
selected processors. If there are no selected processors, then the value 0 is returned.

A call to CM:global-u-max-s-intlen-1L is equivalent to the sequence

182

CM:u-integer-length-lL temp, source, len, len
CM:global-u-max-ll temp, len

but may be faster.

185

GLOBAL-MAX-INTLEN

GLOBAL-MIN

GLOBAL-F-MIN

One floating-point number is examined in every selected processor, and the smallest of all
these integers (that is, the one closest to -00) is returned to the front end as a floating-point
number.

Formats result +- CM:global-f-min-lL source, s, e

Operands source The floating-point source field.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Result A floating-point number, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose conte:et-flag is 1.

Definition Let 5 = { m I mE current-vp-set" conte:et-flag[m] = 1 }
If 151 = 0 then

return +00 to front end
else

let R = (min source[m))
mES

For every virtual processor k in the current-vp-set do
if conte:et-flag[k) = 1 then

if source[k) = R then
test-flag[k) +- 1

else
test-flag[k) +- 0

return R to front end

The CM: global-f-min operation returns the smallest (that is, closest to -00) of the floating­
point source fields of all selected processors. This smallest value is sent to the front-end
computer as a floating-point number and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value +00 is returned.

186

GLOBAL-MIN

GLOBAL-S-MIN

One signed integer is examined in every selected processor, and the smallest of all these
integers (that is, the one closest to -00) is returned to the front end" as a signed integer.

Formats result +- CM:global-s-min-1L source, len

Operands source The signed integer source field.

len The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

Result A signed integer, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose context-flag is 1.

Definition Let S = { m I mE current-vp-set A context-flag[m] = 1}
If lSI = 0 then

return _21en- 1 to front end
else

let R = (min source[m]) to front end
mES

For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if source[k] = R then
test-flag[k] +- 1

else
test-flag[k] +- 0

return R to front end

The CM: global-s-min operation returns the smallest (that is, closest to -00) of the signed­
integer source fields of all selected processors. This smallest value is sent to the front-end
computer as a signed integer and returned as the result of the operation. In addition, the
test-flag is set in every selected processor whose field is equal to the finally computed value,
and is cleared in all other selected processors. If there are no selected processors, then the
value 21en- 1 - 1 is returned.

187

GLOBAL-MIN

GLOBAL-U-MIN

One unsigned integer is examined in every selected processor, and the smallest of all these
integers is returned to the front end as an unsigned integer.

Formats result +- CM:global-u-min-1L source, len

Operands SOUTce The unsigned integer source field.

len The length of the source field. This must be non-negative and no
greater than CM:*maximum-integer-length*.

Result An unsigned integer, the smallest of the source fields.

Overlap There are no constraints, because overlap is not possible.

Flags test-flag is set if the value in a particular processor equals the minimum;
otherwise it is cleared.

Context This operation is conditional. The result returned depends only upon proces­
sors whose conte~t-ftag is 1.

Definition Let S = {m I mE current-vp-set A conte~t-ftag[m] = 1 }
If lSI = 0 then

return 0 to front end
else

let R = (min source[m])
meS

For every virtual processor k in the current-vp-set do
if conte~t-flag[k] = 1 then

if source[k] = R then
test-ftag[k] +- 1

else
test-ftag[k] +- 0

return R to front end

The CM: global-u-min operation returns the smallest (that is, closest to -00) of the unsigned­
integer SOUTce fields of all selected processors. This smallest value is sent to the front-end
computer as an unsigned integer and returned as the result of the operation. In addition,
the test-flag is set in every selected processor whose field is equal to the finally computed
value, and is cleared in all other selected processors. If there are no selected processors,
then the value 2'en - 1 is returned.

188

LOAD-CONTEXT

LOAD-CONTEXT

Unconditionally reads a bit from memory and loads it into the context bit.

Formats eM: load-con text source

Operands source The source bit (a one-bit field).

Context This operation is unconditional.

Definition For every virtual processor k in the current-vp-set do
contezt-jlag[k] +- source[k]

Within each processor, a bit is read from memory and unconditionally loaded into the
context bit for that processor.

211

LOAD-FLAG

LOAD-flag

Reads a bit from memory and loads it into a flag.

Formats eM: load-test source
eM: load-test-always source
eM: load-overflow source
eM: load-overflow-always source

Operands source The source bit (a one-bit field).

Context The non-always operations are conditional.

The always operations are unconditional.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag(k] = 1 then

ftag[k] +- source[k]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, a bit is read from memory and loaded into the indicated flag for
that processor.

212

MULTISPREAD-ADD

MULTISPREAD-F-ADD

The destination field in every selected processor receives the sum of the floating-point source
fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-add-1L dest, source, aris-mask, s, e

Operands dest The floating-point destination field.

source The floating-point source field.

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m I 0 $ m < r /\ (azis-mask(m) = 1)}
let ele = {m I mE hyperplane(g, k, azis-set) /\ context-jlag[m] = 1}

dest[k] +-.(L: source[m])
mECr.

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-f-add operation combines source fields by performing floating-point addi­
tion.

A call to CM: multispread-f-add-ll is equivalent to the sequence

CM:f-move-zero-always-1L temp, s, e
CM:f-move-1L temp, source, s, e
CM: store-context ctemp
CM: set-context

271

MULTISPREAD-ADD

for all integers j, 0 :$ j < rank (geometry(current-vp-set)) , in any sequential order, do
if azis-mask(j} = 1 then

CM:spread-with-f-add-lL temp, temp, j, s, e
CM: load-context ctemp
CM:f-move-lL dest, temp, s, e

but may be faster.

272

MULTISPREAD-ADD

MULTISPREAD-S-ADD

The destination field in every selected processor receives the swn of the signed integer source
fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-s-add-lL dest, source, axis-mask, len

Operands dest The signed integer destination field.

The signed integer source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag(k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m 10:5 m < r 1\ (axis-mask(m) = 1)}
let GTc = { m I m E hyperplane(g, k, axis-set) 1\ context-flag[m] = 1 }

dest[k] +- (E source[m])
mECI!

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-s-add operation combines source fields by performing signed integer addi­
tion.

273

MULTISPREAD-ADD

MUL TISPREAD-U-ADD

The destination field in every selected processor receives the sum of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-u-add-1L dest, source, azis-mask, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m I 0 :5 m < r A (azis-mask(m) = I)}
let ele = {m I mE hyperplane(g, k, azis-set) A contezt-Jlag[m] = I}

dest[k] 4- (E source[m])
meC.

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-u-add operation combines source fields by performing unsigned integer ad­
dition.

274

MULTISPREAD-COPY

MULTISPREAD-COPY

The destination field in every selected processor receives a copy of the source value from a
particular value within its scan subclass.

Formats CM: muitispread-copy-IL dest, source, axis-mask, len, multi-coordinate

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

multi-coordinate An unsigned integer, the multi-coordinate indicating
which element of each hyperplane is to be replicated throughout
that hyperplane.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flo,g[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank (g)
let axis-set = {m 10:$ m < r" (axis-mask(m) = 1)}
let c = deposit-multi-coordinate(g, k, axis-set, multi-coordinate)
dest[k] +- source[c]

where deposit-multi-coordinate is as defined on page 34.

See section 5.16 on page 34 for a general description of multispread operations.

275

MULTISPREAD-LOGAND

MULTISPREAD-LOGAND

The destination field in every selected processor receives the bitwise logical AND of the
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logand-1L dest, source, azis-mask, len

Operands dest The destination field.

The source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-/lag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m I 0 ~ m < r A (azis-mask(m) = 1)}
let Ole = { m I m E hyperplane(g, k, azis-set) A contezt-/lag[m} = 1 }

dest[k] +- (" source[m])
mec"

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of "multispread operations. The
CM:multispread-logand operation combines source fields by performing bitwise logical AND

operations.

276

MULTISPREAD-LOGIOR

MULTISPREAD-LOGIOR

The destination field in every selected processor receives the bitwise logical inclusive OR of
the source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: muitispread-iogior-IL dest, source, axis-mask, len

Operands dest The destination field.

The source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces-
sors whose context-flag is 1. -

Definition For every virtual processor k in the current-vp-set do
if context-ftag(k] = 1 then

let g = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m I 0 ~ m < r A (axis-mask(m) = 1)}
let Ole = {m I mE hyperplane(g, k, axis-set) A context-flag{m] = 1}

dest[k] +- (V source[m])
mEC.

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-logior operation combines source fields by performing bitwise logical inclu­
sive OR operations.

277

M U L TISPREAO-LOGXOR

MULTISPREAD-LOGXOR

The destination field in every selected processor receives the bitwise logical exclusive OR of
the source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-logxor-lL dest, source, azis-mask, len

Operands dest The destination field.

The source field. source

a:eis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let a:eis-set = {m I 0 :5 m < r 1\ (azis-mask(m) = 1)}
let Ole = {m I mE hyperplane(g, k, azis-set) 1\ contezt-fiag[m] = 1}

dest[k] - (E9 source[m))
mec"

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-Iogxor operation combines source fields by performing bitwise logical ex­
clusive OR operations.

278

MULTISPREAD-MAX

MULTISPREAD-F-MAX

The destination field in every selected processor receives the largest of the floating-point
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-max-1L dest, source, azis-mask, s, e

Operands dest The floating-point destination field.

The floating-point source field. source

axis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m 10::; m < r A (azis-mask(m) = 1)}
let Cle = { m I m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] - (max source[m])
mEC.

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-f-max operation combines source fields by performing a floating-point max­
imum operation.

279

MULTISPREAD-MAX

MULTISPREAD-S-MAX

The destination field in every selected processor receives the largest of the signed integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-s-max-IL dest, source, azis-mask, len

Operands dest The signed integer destination field.

The signed integer source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-Jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m I 0 :5 m < r A (azis-mask(m) = 1)}
let Cle = {m I mE hyperplane(g, k, axis-set) A context-ftag[m] = 1}

dest[k] +- (max source[m])
mEek

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-s-max operation combines source fields by performing a signed integer max­
imum operation.

280

MULTISPREAD-MAX

MULTISPREAD-U-MAX

The destination field in every selected processor receives the largest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-u-max-ll dest, source, azis-mask, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

let g = geometry(current-vp-set)
let .,. = rank(g)
let axis-set = {m I 0 ::; m < r A (azis-mask(m) = 1)}
let Cle = { m I m E hyperplane(g, k, axis-set) A context-flag[m] = 1 }

dest[k] - (max source[m])
mEC.

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-u-max operation combines source fields by performing an unsigned integer
maximum operation.

281

MULTISPREAD-MIN

MUL TISPREAD-F-MIN

The destination field in every selected processor receives the smallest of the floating-point
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-f-min-lL dest, source, azis-mask, s, e

Operands dest The floating-point destination field.

source The floating-point source field.

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

s, e The significand and exponent lengths for the dest and source fields.
The total length of an operand in this format is s + e + 1.

Overlap The source field must be either disjoint from or identical to the dest field.
Two floating-point fields are identical if they have the same address and the
same format.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-ftag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m I 0 ~ m < r" (azis-mask(m) = 1)}
let Ck = {m I mE hyperplane(g, k, azis-set) " context-flag[m] = 1}

dest[k] - (min source[m])
mec"

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-f-min operation combines source fields by performing a floating-point mini­
mum operation.

282

MULTISPREAD-MIN

MULTISPREAD-S-MIN

The destination field in every selected processor receives the smallest of the signed integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM: multispread-s-min-1L dest, source, azis-mask, len

Operands dest The signed integer destination field.

The signed integer source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be no smaller
than 2 but no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces'"
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let azis-set = {m I 0 ~ m < r A. (azis-mask(m) = I)}
let Cle = {m I mE hyperplane(g, k, aZis-set) A. contezt-jlag[m] = I}

dest[k] +- (min source[m])
mEC.

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM:multispread-s-min operation combines source fields by performing a signed integer min­
imum operation.

283

MULTISPREAD-MIN

MULTISPREAD-U-MIN

The destination field in every selected processor receives the smallest of the unsigned integer
source fields from all processors in the same hyperplane through the NEWS grid.

Formats CM:multispread-u-min-1L dest, source, azis-mask, len

Operands dest The unsigned integer destination field.

The unsigned integer source field. source

azis-mask An unsigned integer, the mask indicating a set of NEWS axes.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let r = rank(g)
let axis-set = {m I 0 ~ m < r A (axis-mask(m) = 1)}
let Cle = { m I m E hyperplane(g, k, axis-set) A context-Jlag[m] = 1 }

dest[k] - (min source[m])
mec"

where hyperplane is as defined on page 36.

See section 5.16 on page 34 for a general description of multispread operations. The
CM: multispread-u-min operation combines source fields by performing an unsigned integer
minimum operation.

284

MY-N EWS-COO RDINATE

MY-NEWS-COORDINATE

Stores the NEWS coordinate of each selected processor along a specified NEWS axis into
a destination field within that processor.

Formats CM: my-news-coordinate-IL dest, azis, dlen

Operands dest The unsigned integer destination field.

a:ns An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

Context This operation is conditional. The destination may be altered only in proces­
sors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let g = geometry(current-vp-set)
dest[k] +- extract-news-coordinate(g, axis,k)

where extract-news-coordinate is as defined on page 33.

This function calculates, within each selected processor, the NEWS coordinate of that pro­
cessor along a specified NEWS axis.

285

M'I-S-END-ADDRESS

MY-SEND-ADDRESS

Stores the send-address of each selected processor into a destination field in that processor.

Formats CM: my-send-address dest

Operands dest The unsigned integer destination field. This must be no less than
the value returned by CM:geometry-send-address-length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-Jlag is 1.

Definition For every virtual processor k in the current-l1p-set do
if contezt-Jlag[k] = 1 then

dest[k] +- k

This function stores into the dest field, within each selected processor, the send-address of
that processor.

286

POWER

The souree1 field (the base) is raised to the power source2 (the exponent).

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

301

POWER

S-S-POWER

Raises a signed integer to a signed integer power.

Formats CM: s-s-p ower-3-3L
CM: s-s-power-2-1L
CM:s-s-power-3-1L
CM:s-s-power-constant-2-1L
CM: s-s-power-constant-3-1L
CM: s-s-power-constant-3-2L

dest, souree1, souree2, dlen, slen1, slen2
dest/ source1, souree2, len
des~ source1, souroe2, len
dest/ source1, souree2-value, len
dest, source1, source2-value, len
dest, souree1, souree2-value, dlen, slen

Operands dest The signed integer destination field.

The signed integer base field.

Overlap

Flags

souree1

souree2 The signed integer exponent field.

souree2-value A signed integer immediate operand to be used as the second
source.

len The length of the des~ source1, and souree2 fields. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

dlen For CM: s-s-power-3-3L and CM:s-s-power-constant-3-2L, the length
of the dest field. This must be no smaller than 2 but no greater
than CM: *maximum-integer-Iength*.

slen For CM:s-s-power-constant-3-2L, the length of the souree1 field.
This must be no smaller than 2 but no greater than CM: *maximum­
integer-Iength*.

slen1 For CM: s-s-power-3-3L, the length of the soureel field. This must
be no smaller than 2 but no greater than CM: *maximum-integer­
length*.

slen2 For CM: s-s-power-3-3L, the length of the souree2 field. This must
be no smaller than 2 but no greater than CM:*maximum-integer­
length*.

The fields souree1 and souree2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the result cannot be represented in the destination field;
otherwise it is cleared.

302

POWER

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

if sOtLrce~[k] < 0 then
dest[k] - 0

else if source~ [k] = 0 then
dest[k] - 1

else
dest[k] _ (sourcel [k n-0urc:d[lc]

if (overflow occurred in processor k) then overflow-flag[k] - 1
else overflow-flag{ k] - 0

The sourcel field (the base) is raised to the power source~ (the exponent). If the exponent
is negative, the result is always 0; if the exponent is zero, the result is always 1.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

The overflow-flag may be altered by these operations. If overflow occurs, then the destina­
tion field will contain as many of the low-order bits of the true result as will fit.

The constant operand sourcel-value or source~-value should be a signed integer front-end
value. The operation is performed properly in all cases; the constant need not be repre­
sentable in the number of bits specified by len.

303

POWER-UP

POWER-UP

This operation resets the Nexus, causing all front-end computers to become logically de­
tached from the Connection Machine system.

Formats CM:power-up

Context This operation is unconditional. It does not depend on the conte:tt-flag.

This function resets the state of the Nexus, causing all front-end computers to become
logically detached from the Connection Machine system. When a Connection Machine
system is first powered up or is to be completely reset for other reasons, this is the first
operation to perform.. Any of the front-end computers may be used to do it.

If users on other front-end computers are actively using the Connection Machine system,
their computations will be disrupted. Normally all the front-end computers are connected
not only through the Connection Machine Nexus but also through some sort of commu­
nications network; a front end that executes CM:power-up will attempt to send messages
through this network to the other front-end computers on the same Nexus indicating that
a CM:power-up operation is being performed.

304

RANK

F-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM:f-rank-2L dest, source, azis, dlen, s, e,
direction, smode, sbit

Operands dest The unsigned integer destination field.

source The floating-point source field. This is the sort key.

azZ8 An unsigned integer inunediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM:geometry-coordinate-length.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

direction Either : upward or :downward.

smode Either: none, : start-bit, or : segment-bit.

sbit The segment bit or start bit (a one-bit field). If smode is :none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-fiag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-set(g, k, azis, direction, smode, sbit)
case direction of

: upward:
let Lk = {m I mE Sk /\ ((source[m] < source[k]) V (source[m] = source[k]

: downward:
let Lk = {m 1m E Sk /\ ((source[m] > source[k]) V (source[m] = source[k]

dest[k] +- ILkl

where scan-set is as defined on page 37.

307

RANK

See section 5.16 on page 34 for a general description of scan sets and the effect of the axis,
direction, smode, and sbit operands. .

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where the
data should be moved so as to sort it.

In more detail: The dest field in each selected processor receives, as an unsigned integer,
the rank of that processor's key within the set of keys in the scan set for that processor.
The smallest key has rank 0, the next smallest has rank 1, and so on; the largest key has
rank n - 1 where n is the number of processors in the scan set. This rank may be used to
calculate a send address a CM:send operation may then be used to put the data into sorted
order. (An advantage of decoupling the rank determination from the reordering process is
that the data to be moved may be much larger than the key that determines the order,ing,
and indeed it may be desirable to reorder the other data but not the key itself. In this way
ranking and reordering each need operate only on the relevant data.)

308

RANK

S-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM:s-rank-2L dest, source, azis, dlen, slen,
direction, smode, sbit

Operands dest The unsigned integer destination field.

source The signed integer source field. This is the sort key.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM: *maximum-integer-Iength*. This must be no
larger than the value returned by CM:geometry-coordinate-length.

slen The length of the source field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

direction Either: upward or :downward.

smode Either: none, : start-bit, or : segment-bit.

shit The segment bit or start bit (a one-bit field). IT smode is : none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the source
and sbit fields must not overlap the dest field.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-ftag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sic = scan-set(g, k, azis, direction, smode, sbit)
case direction of

: upward:
let Llc = {m 1m E Sic A «source[m] < source[kD V (source[m] = source[k]

: downward:
let Llc = {m 1m E Sic A «source[m] > source[k)) V (source[m] = source[k]

dest[k] +- ILkl
where scan-set is as defined on page 37.

309

RANK

See section 5.16 on page 34 for a general description of scan sets and the effect of the axis,
direction, smode, and sbit operands.

This operation determmes the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where the
data should be moved so as to sort it.

In more detail: The dest field in each selected processor receives, as an unsigned integer,
the rank of that processor's key within the set of keys in the scan set for that processor.
The smallest key has rank 0, the next smallest has rank 1, and so on; the largest key has
rank n - 1 where n is the number of processors in the scan set. This rank may be used to
calculate a send address a CM:send operation may then be used to put the data into sorted
order. (An advantage of decoupIing the rank determination from the reordering process is
that the data to be moved may be much larger than the key that determmes the ordering,
and indeed it may be desirable to reorder the other data but not the key itself. . In this way
ranking and reordering each need operate only on the relevant data.)

310

RANK

U-RANK

The destination field in every selected processor receives the rank of that processor's key
among all keys in the scan set for that processor.

Formats CM: u-rank-2L dest, source, axis, dlen, slen,
direction, smode, sbit

Operands dest The unsigned integer destination field.

source The unsigned integer source field. This is the sort key.

azis An unsigned integer immediate operand to be used as the number
of a NEWS axis.

dlen The length of the dest field. This must be non-negative and
no greater than CM:*maximum-integer-length*. This must be no
larger than the value returned by CM: geometry-coordinate-Iength.

slen The length of the source field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

direction Either :upward or :downward.

smode

sbit

Either: none, : start-bit, or : segment-bit.

The segment bit or start bit (a one-bit field). If smode is :none
then this may be CM:*no-field*.

Overlap The fields source and sbit may overlap in any manner. However, the sbit field
must not overlap the dest field, and the field source must be either disjoint
from or identical to the dest field. Two integer fields are identical if they have
the same address and the same length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-jlag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

let 9 = geometry(current-vp-set)
let Sk = scan-set(g, k, azis, direction, smode, sbit)
case direction of

: upward:
let Lk = {m 1m E Sk /\ ((source[m] < source[k]) V (source[m] = source[k] I

: downward:
let Lk = {m 1m E Sk /\ ((source[m] > source[k]) V (source[m] = source[k] I

dest[k] +- ILkl

where scan-set is as defined on page 37.

311

RANK

See section 5.16 on page 34 for a general description of scan sets and the effect of the aris,
direction, smode, and sbit operands.

This operation determines the ordering necessary to sort the source fields within each scan
set. It does not not actually move the data so as to sort it, but merely indicates where the
data should be moved so as to sort it.

In more detail: The dest field in each selected processor receives, as an unsigned integer,
the rank of that processor's key within the set of keys in the scan set for that processor.
The smallest key has rank 0, the next smallest has rank 1, and so on; the largest key has
rank n - 1 where n is the number of processors in the scan set. This rank may be used to
calculate a send address a CM:send operation may then be used to put the data into sorted
order. (An advantage of decoupIing the rank determination from the reordering process is
that the data to be moved may be much larger than the key that determines the ordering,
and indeed it may be desirable to reorder the other data but not the key itself. In this way
ranking and reordering each need operate only on the relevant data.)

312

ROUND

S-F-ROUND

Converts floating-point source field values to signed integer values by rounding to the nearest
integer.

Formats CM:s-f-round-2-2L dest, source, dlen, s, e

Operands dest The signed integer destination field.

The floating-point source field. source

len

s, e

The length of the dest field. This must be no smaller than 2 but
no greater than CM:*maximum-integer-length*.

The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-flag[k] = 1 then

let v = source[k]

if v > l v + l J then
dest[k] +- Lv J

else if v < l v + l J then
dest [k] +- r v 1

else if even(L v J) then
dest[k] +- LvJ

else
dest[k] +- rvl

if (overflow occurred in processor k) then overflow-flag[k] +- 1

The source field, treated as a floating-point number, is rounded to the nearest integer (to
the nearest even integer if its value is equal to an integer plus ~). The result is stored into
the dest field as a signed integer.

340a

ROUND

U-ROUND

The quotient of two unsigned integer source values, rounded to the nearest integer, is placed
in the destination field. Overflow is also computed.

Formats CM:s-round-3-3L dest, so'Urce1, source2, dlen, slen1, slen2

Operands dest The unsigned integer quotient field.

Overlap

Flags

so'Urce1 The unsigned integer dividend field.

so'Urce2 The unsigned integer divisor field.

dlen The length of the dest field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

slen1 The length of the source1 field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

slen2 The length of the so'Urce2 field. This must be non-negative and no
greater than eM: *maximum-integer-Iength*.

The fields so'Urce1 and so'Urce2 may overlap in any manner. Each of them,
however, must be either disjoint from or identical to the dest field. Two integer
fields are identical if they have the same address and the same length. It is
permissible for all the fields to be identical.

overflow-flag is set if the quotient cannot be represented in the destination
field; otherwise it is cleared.

test-flag is set if the divisor is zero; otherwise it is cleared.

Context This operation is conditional. The destination and flags may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the c'Urrent-vp-set do
if contezt-flag[k] = 1 then

I t so'Urce1 k e v = --....".f,.,:-+
so'Urce2 k

if v > l v + l J then
dest[k] +- LvJ

else if v < l v + l J then
dest[k] +- fvl

else if even(l v J) then
dest[k] +- LvJ

340b

ROUND

else
dest[k] - r vl

if {overflow occurred in processor k} then overflow-flag[k] - 1

The unsigned integer source1 operand is divided by the unsigned integer source2 operand.
The mathematical quotient, rounded to the nearest integer (or to whichever of two equally
near neighbors is even) is stored into the unsigned integer memory field dest.

The overflow-flag and test-flag may be affected by these operations. If overflow occurs, then
the destination field will contain as many of the low-order bits of the true result as will fit.

340c

ROUND

U-F-'ROUND

Converts the floating-point source field values to unsigned integer values, which are stored
in the destination field.

Formats CM: u-f-round-2-2L dest, source, dlen, s, e

Operands dest The unsigned integer destination field.

The floating-point source field. source

len The length of the dest field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

s, e The significand and exponent lengths for the source field. The
total length of an operand in this format is s + e + 1.

Overlap The fields dest and source must not overlap in any manner.

Flags overflow-flag is set if the result cannot be represented in the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag(k] = 1 then

if dest > L source J then
dest +- L source J

else if dest < l source J then
dest +- r source 1

else if even(l source J) then
dest +- l source J

else
dest +- r source 1

if (overflow occurred in processor k) then overjlow-ftag(k] +- 1

The source field, treated as a floating-point number, is rounded to the nearest integer (to
the nearest even integer if its value is equal to an integer plus i), which is stored into the
dest field as an unsigned integer.

340d

RESET-TIMER

RESET-TIMER

For the C/Paris and Fortran/Paris interfaces, resets the timing facility before timing other
operations.

Formats CM: reset-timer

Context This operation is unconditional. It does not depend on the context-flag.

The function CM: reset-timer is used in the C /Paris and Fortran/Paris interfaces to reset the
facility for timing the execution of other operations on the Connection Machine system.

One should first call CM: reset-timer to clear the timing counters. Subsequently one may
alternately call CM:start-timer and CM:stop-timer. The amounts of real time and run time
between a start and a stop are accumulated into the counters. One may start and stop
the clocks repeatedly. Every time CM: stop-timer is called, it returns a structure of type
CM_timevaLt that contains time accumulated between all start/stop call pairs since the last
call to CM:reset-timer.

The timing facility is provided in the Lisp/Paris interfaces through the CM:time macro.

341

SCALE

F-S-SCALE

In each selected processor, multiplies a floating-point number by a specified power of two
and stores the result into the destination.

Formats CM: f-s-scale-2-2L
CM: f-s-scale-3-2L
CM:f-s-scale-constant-2-1L
CM:f-s-scale-constant-3-1L

dest / souree1, souree2, slen2, s, e
dest, souree1, source2, slen2, s, e
dest/ source1, souree2-value, s, e
dest, so'Uree1, so'Urce2-val'Ue, 5, e

Operands dest The floating-point destination field.

so'Uree1

so'Urce2

The floating-point first source field. This is the quantity to be
scaled.

The signed integer second source field. This is the base-2 logarithm
of the scale factor.

5o'Urce2-val'Ue A signed integer immediate operand to be used as the second

5, e

source.

The significand and exponent lengths for the dest and source1
fields. The total length of an operand in this format is s + e + 1.

slen2 The length of the so'Urce2 field. This must be no smaller than 2
but no greater than CM: *maximum-integer-Iength*.

Overlap The fields 50uree1 and souree2 may overlap in any manner. However, the
so'Uree2 field must not overlap the dest field, and the field source1 must be
either disjoint from or identical to the dest field. Two floating-point fields are
identical if they have the same address and the same format.

Flags overflow-flag is set iffloating-point overflow occurs; otherwise it is unaffected.

Context This operation is conditional. The destination and flag may be altered only
in processors whose context-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if context-ftag[k] = 1 then

dest[k] ~ lsource1 [k] x 2,o",.ce.e[k] J
if (overflow occurred in processor k) then overjlow-flag[k] ~ 1

The operand so'Uree1 is scaled by the power of two specified by source2.

The result is stored into the memory field dest. The various operand formats allow operands
to be either memory fields or constants; in some cases the destination field initially contains
one source operand.

342

SEN O-AS ET32-A DO

SEND.;.ASET32-U-ADD

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
unsigned integer addition.

Formats CM:send-aset32-u-add-2L array, send-address, source, indez,
slen, indez-Ien, indez-limit

Operands array The destination array field.

send-address The send-address field. For each processor, this indicates to

source

indez

slen

which processor a message is sent.

The source field.

The unsigned integer index into the array field. This is used as a
per-processor index into array. It specifies portions of the array.
memory area in increments of slen.

The length of the source field. This must be a multiple of 32.

indez-len The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

indez-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the index. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with the send-address or source but, if it does, then it is forbidden to
send a message to a selected processor. In other words, the dest may overlap
with the send-address or source only if at most one of them will be used within
each processor.

Context This operation is conditional., but whether a message is sent depends only on
the context-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the the field indicated by array
regardless of the context-flag of the receiving processor.

Definition For every virtual. processor k in the current-vp-set do
let Sic = {m I mE current-vp-set /I. context-flag[m] = 1/1. send-address[m] = k}
for every processor k' in Sic do

373

SEND-ASET32-ADD

if indez[k'] < indez-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = l ~ J mod 32
let i = indez[k']
for all j such that 0 $ j < dlen do

let temp,,(j) = array[k - m X r + (j mod 32) X r]{32 X (i + liaJ)}
let sum" = temp" + source[k']
for all j such that 0 $ j < dlen do

array[k - m X l' + (j mod 32) X 1'](32 X (i + liaJ) +- sum,,(j)

else
(error)

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P.. The message is taken from the source field within processor P. and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of indez within P., not the value within

Pd·

The CM:send-aset32-u-add operation combines incoming messages with unsigned integer
addition. To receive the sum of only the messages, the destination array should first be
cleared in all processors that might receive a message.

374

SEN D-ASET32-LOGIOR

SEND-ASET32-LOGIOR

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. All incoming messages are combined with the destination array element using
bitwise logical inclusive OR.

Formats CM:send-aset32-logior-2L array, send-address, source, inde-z,
slen, inde-z-len, inde-z-limit

Operands array The destination array field.

Overlap

send-address The send-address field. For each processor, this indicates to

source

inde-z

slen

which processor a message is sent.

The source field.

The unsigned integer index into the array field. This is used as a
per-processor index into array. It specifies portions of the array
memory area in increments of slen.

The length of the source field. This must be a multiple of 3~.

inde-z-len The length of the inde-z field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

inde-z-limit An unsigned integer immediate operand to be used as the
exclusive upper bound for the inde-z. This is taken as the extent
of the destination array.

The send-address and source may overlap in any manner. The dest field may
overlap with the send-address or source but, if it does, then it is forbidden to
send a message to a selected processor. In other words, the dest may overlap
with the send-address or source only if at most one of them will be used within
each processor.

Context This operation is conditional, but whether a message is sent depends only on
the conte-zt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the the field indicated by array
regardless of the conte-zt-flag of the receiving processor.

Definition For every virtual processor k in the current-vp-set do
let Sic = { m I mE current-vp-set A conte-zt-flag[m] = 1 A send-address[m] = k}
for every processor k' in Sic do

375

SEN D-ASET32-LOGIOR

if indez[k'] < indez-limit then
let r = geometry-total-vp-ratio(geometry(current-vp-set))

let m = l ~ J mod 32
let i = indez [k']
for all j such that 0 ::; j < dlen do

let q = k - m X r + (j mod 32) X r

let b = 32 X (i + l if J)
array[q](b) +- array[q](b) V source[k'](j)

else
(error)

For every selected processor P., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P.. The message is taken from the source field within processor P. and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of indez within P., not the value within

Pd·

The CM:send-aset32-logior operation combines incoming messages with a bitwise logical in­
clusive OR operation. To receive the logical inclusive OR of only the messages, the destination
array should first be cleared in all processors that might receive a message.

376

5 EN D-AS ET32-0VERWRITE

SEND-ASET32-0VERWRITE

Sends a message from every selected processor to a specified destination processor and stores
it there, as if by aset32, in an array. Each selected processor may specify any processor as
the destination, including itself. A destination processor may receive messages even if it is
not selected. If a processor receives more than one message destinated for the same array
element, then one is stored in that array element and the rest are discarded.

Formats CM: send-aset32-overwrite-2L array, send-address, source, indez,
slen, indez-Ien, indez-limit

Operands array The destination array field.

send-address The send-address field. For each processor, this indicates to

source

indez

slen

which processor a message is sent.

The source field.

The unsigned integer index into the array field. This is used as a.
per-processor index into array. It specifies portions of the array
memory area in increments of slen.

The length of the source field. This must be a multiple of 32.

indez-Ien The length of the indez field. This must be non-negative and no
greater than CM: *maximum-integer-Iength*.

indez-limit An unsigned integer inunediate operand to be used as the
exclusive upper bound for the indez. This is taken as the extent
of the destination array.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with the send-address or source but, if it does, then it is forbidden to
send a message to a selected processor. In other words, the dest may overlap
with the send-address or source only if at most one of them will be used within
each processor.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-jlag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the the field indicated by array
regardless of the contezt-jlag of the receiving processor.

Definition For every virtual processor k in the current-1Jp-set do
let Sk = {m I mE current-1Jp-set /\ contezt-jlag[m] = 1/\ send-address[m] = k}
let k' = choice(S k)

377

SEND-ASET32-0VERWRITE

if indez[k'] < indez-limit then
let r = geometry-total-l1p-ratio(geometry(current-l1p-set))

let m = l ~ J mod 32
let i = indez[k']
for all j such that 0 ~ j < dlen do

array[k - m X r + (j mod 32) X r](32 X (i + li2J) +- source[k'](j)
else

(error)

For every selected processor p., a message length bits long is sent from that processor to
the processor Pd whose send address is stored at location send-address in the memory of
processor P.. The message is taken from the source field within processor P. and is stored
into an array element within processor Pd. Note that in each case the array element to be
modified in processor Pd is determined by the value of indez within P., not the value within

Pd·

The eM: send-aset32-overwrite operation will store one of the messages sent to a particular
array element, discarding all other messages as well as the original contents of that array
element in the receiving processor.

378

SEND-TO-NEWS

SEND-TO-NEWS

Each processor sends a message to a neighboring processor along a specified NEWS axis.

Formats CM:send-to-news-1L dest, source, axis, direction, len
CM:send-to-news-always-IL dest, source, aris, direction, len

Operands dest The destination field.

source The source field.

ax", An unsigned integer immediate operand to be used as the number
of a NEWS axis.

direction Either : upward or :downward.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length.

Context This operation is conditional, but whether data is copied depends only on the
context-flag of the originating processor; the message, once transmitted to the
receiving processor, is stored into the the field indicated by dest regardless of
the context-flag of the receiving processor.

Note that in the conditional case the storing of data depends only on the
context-flag of the processor sending the data, not on the context-flag of the
processor receiving the data.

Definition For every virtual processor k in the current-vp-set do
if (always or context-flag[k] = 1) then

let 9 = geometry(current-vp-set)
dest[news-neighbor(g, k, axis, direction)] f- source[k]

The source field in each processor is stored into the dest field of that processor's neighbor
along the NEWS axis specified by aris in the direction specified by direction.

IT direction is :upward then each processor stores data into the neighbor whose NEWS coor­
dinate is one greater, with the processor whose coordinate is greatest storing data into the
processor whose coordinate is zero.

IT direction is :downward then each processor stores data into the neighbor whose NEWS

coordinate is one less, with the processor whose coordinate is zero storing data into the
processor whose coordinate is greatest.

379

SEND-WITH-ADD

SEND-WITH-F-ADD

Sends a message from every selected processor to a specified destination processor. Each
selected processor may specify any processor as the destination, including itself. A des­
tination processor may receive messages even if it is not selected, and all the destination
processors may be in a VP set different from the VP set of the source processors. Messages
are all delivered to the same address within each receiving processor. All incoming messages
are combined with the destination field using floating-point addition.

Formats CM:send-with-f-add-lL dest, send-address, source, s, e, notify

Operands dest The floating-point destination field.

send-address The send-address field. For each processor, this indicates to

source

s, e

notify

which processor a message is sent.

The floating-point source field.

The significand and exponent lengths for the dest and source fields.
The total length of an operand in t~s format is s + e + 1.

The notification bit (a one-bit field). This argument may be
CM:*no-field* if no notification of message receipt is desired.

Overlap The send-address and source may overlap in any manner. The dest field may
overlap with the send-address or source but, if it does, then it is forbidden to
send a message to a selected processor. In other words, the dest may overlap
with the send-address or source only if at most one of them will be used within
each processor.

Context This operation is conditional, but whether a message is sent depends only on
the contezt-flag of the originating processor; the message, once transmitted
to the receiving processor, is combined with the dest field regardless of the
contezt-flag of the receiving processor. The notify bit may be altered in any
processor regardless of the value of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
let Sk = {m I mE current-vp-set /\ contezt-flag[m] = 1/\ send-address[m] = k}
if ISkl = 0 then

if notify[k] ¥= CM: *no-field* then notify[k] ~ 0
else

if notify[k] ¥= CM:*no-field* then notify[k] ~ 1

dest[k] ~ dest[k] + (:E source[m])
mES"

380

STORE-flag

Conditionally stores a flag bit into memory.

Formats eM: store-test
eM: store-test-always
eM: store-overflow

dest
dest
dest

eM: store-overflow-always dest

Operands dest The destination bit (a one-bit field).

STORE-FLAG

Context The non-always operations are conditional. The destination may be altered
only in processors whose contezt-flag is 1.

The always operations are unconditional. The destination may be altered
regardless of the value of the contezt-flag.

Definition For every virtual processor Ie in the current-vp-set do
if contezt-flag[le] = 1 then

dest[le] +- flag [Ie]

where flag is test-flag or overflow-flag, as appropriate.

Within each processor, the indicated flag for that processor is stored into memory.

435

STRUCTU RE-ARRAY -FO RMAT

FE-STRUCTURE-ARRAY-FORMAT

This instruction returns an array format descriptor for a particular slot in an array of
structures. A format descriptor may be passed to any array transfer instruction to specify
a front-end array format, although this is not required. See also CM:fe-array-format and
CM: fe-packed-array-format.

This instruction is not provided for the Lisp interface to Paris.

Formats result +- CM: fe-structure-array-format cm-element-byte-size,
structure-byte-size

Operands cm-element-byte-size A signed integer immediate operand to be used as the
number of bytes each Connection Machine element occupies in the
front-end array. This must be a power of two between 1 and 16.

Result

Context

structure-byte-size A signed integer immediate operand to be used as the
length of the front-end structure in bytes. This may be any positive
integer.

The array format descriptor specified.

This is a front-end operation. It does not depend on the value of the context­
flag·

The return value is a format descriptor for a front-end array of structures. Such a format
descriptor can be passed to any of the CM array transfer instructions in order to allow
transfers in either direction between CM fields and a front-end array of structures. If this
is done, one CM element per selected processor is copied into, or receives data from, the

r(·· specified slot across an array of structures on the front end.

Values for both cm-element-byte-size and cm-structure-byte-size may be obtained by calls
to sizeof(...).

The valueof cm-element-byte-size specifies the length of the structure slot in bytes. It also
defines the unit of measure for the fe-off set-vector argument to the CM: read-from-news-array
and CM: write-to-news-array instructions.

The value of structure-byte-size specifies the length of the entire stucture in bytes. It also
defines the unit of measure for the argument fe-dimension-vector to the CM:read-from-news­
array and CM:write-to-news-array instructions.

If a slot other than the first slot in the front-end structure is the destination of a CM:read­
from-news-array or the source for a CM: write-to-news-array transfer instruction, then a pointer
to that slot must be provided as the value of front-end-arroy. This is a bit tricky. The

435a

TO-GRAY-CODE

U-TO-GRAY-CODE

Converts an unsigned binary integer to a bit string representing a Gray-coded integer value.

Formats CM:u-to-gray-cocle-l-1L dest/source, len
CM: u-to-gray-code-2-1l dest, source, len

Operands dest The destination field.

source The unsigned integer source field.

len The length of the dest and source fields. This must be non-negative
and no greater than CM:*maximum-integer-length*.

Overlap The source field must be either disjoint from or identical to the dest field.
Two integer fields are identical if they have the same address and the same
length.

Context This operation is conditional. The destination may be altered only in proces­
sors whose contezt-flag is 1.

Definition For every virtual processor k in the current-vp-set do
if contezt-jlag(k] = 1 then

dest[k](len - 1) +- source[k](len - 1)
for j from len - 2 to 0 do

dest[k](j) +- source[k](j) EB source[k](j + 1)

The source operand is an unsigned binary integer, and is converted to a bit-string value in
a particular reflected binary Gray code. The position of that value in the standard Gray
code sequence is the source."" \.

Note that the binary value 0 is always equivalent to a Gray code string that is all O-bits.
;, "

449

TRANSPOSE32

TRANSPOSE32
1(lt..~!))I"!··,,:; 1",.1-1"-, IL~.{ , ;., :'<':r,

W:~~ffif:1'Ha~~~blSter of 32 physical profe.ss~bAor every group of 32 virtual processors in
such a cluster, copies one 32-bit field to anodier. During this copying operation, transposes
the data as a 32-by-32 bit matrix. Thus, each virtual processor receives one bit from the
souree,value'; of eachvirtuai processor in its group of 32.

Fo,!:~~!~J ':"f::iC~!tr.anspo~e32-1-~}(1 J~e~t/sof!,~.; len
" CM:transpose32-2-1L dest, source, len

Operands source The source field.

dest The destination field.

len The length of the source and dest fields. This must be non-negative
and no greater than CM: *maximum-integer-Iength*. This must be
a multiple of 32.

Overlap The source field must be either disjoint from or identical to the dest field. Two
bit fields are identical if they have the same address and the same length. The

,._-1" - fields deat and source may overlap in any manner.
'. i·

i Context This operation is unconditional. The destination may be altered regardless of
the value' of the contezt-flag.

Definition For every virtual processor k in the current-vp-set do
if contezt-flag[k] = 1 then

for all j such that 0 :5 i < dlen do

dest[k]~f'ee [32r l3~rJ + (k mod r) + r(j mod 32)] (32li2J + km~d32)
where r is the value of CM: *virtual-to-physical-processor-ratio* and j is the bit
position in each field.

This instruction copies each 32-bit field to the corresponding 32-bit field within each virtual
p'rc;>cess()r. In the course of copying the bits, it "transposes" them so that a 32-bit value
!ying entirely within the source field of one virtual processor is made to occupy a memory
slice, that is, one bit in each of 32 virtual processors. The opposite is also true: the 32-bit
value ~hat ends up in the dest field of a virtual processor is made up of one bit from each
of 32 virtual processors. Transposed data is said to be stored in a slicewise format.

For the purposes of this instruction, the physical processors are divided into clusters of 32.
Two processors are in the same cluster if their physical processor numbers agree in all but
the five least significant bits.

449a

TRANSPOSE32

The virtual processors are similarly divided into groups of 32; a group of virtual processors
consists of one virtual processor from each physical processor of a clustert such that the vir­
tual processors occupy the same physical memory locations within their respective physical
processors. Thust two virtual processors are in the same group if their virtual processor
numbers agree in all but bit positions n through:n'+ 4t where n is the number :o{vittUM?'
processors bits in each physical processor. ,., , .)~;!,-:J (; ;j~):'<

t 0.' ~ '. ',' .fr f.J3 ~; :h .. ·.£., .J .",? J

The CM:transpose32 operation may then be understood as taking the 32 32-bit source values~
from a group of 32 virtual processors as the rows of a 32-by-32 bit matrixt and then..s.toring.-­
the columns of this matrix into the dest fields of these same virtual processors.

. . '., , "' ,~ .. ' -l"M"'ft. "".t;

The process may be understood pictorially. Suppose that before the· operation the memory .
of a group of 32 virtual processors looks like this:

proc ... or source
31 ~~~--------------------------~----
30 • 2.

:2
1
o

bit 0

• -
•

bit 31 bit 0

Thent after the CM: transpose-data operationt it will look like this:

449b

bit 31

;:'1 ~;"J;"I'

i "'rrl 9d)

TRANSPOSE32

proc ... or source dest
31 ~~~----------------------------~--~--~--------~~~------------r-~
30 .' ,_. f .. ~ ~ 'u' :
" ,:; ; ~:.t ~,J.: ,: ~J .l-~ ~ . •
bns ~.~,t J~'~," .L)'L1 f1.bdj~ 1~: i~',~: .:~: it A ~H!;'f;Y ~h'''2:' C-l .. ~ , ~~J.,).

- .i: .. "ir .-;}, .;d:l,SD Ai ::.f ';~()n
;.t.d~· (,." Bl.'.LI ... ·

2
1

•

!Ia' , . ~. . . . r
..... ,. ~bii 0 ..

y 1 . .!- ::.. ~,.

'1 ~ 0. E~\~' "~" ~ '".:(~'i tJ PI;

'';: t't~ ~~~'1,.!.;-·,..~.\:i··· ,oJ tI .. j·:':I~:~5:)MU~1-~,,~'

~,,::' .'·'1''\)"0 t';~ l " .:'-~. ';:.'''~ ·\t:!··

. ,\ .. r ••..•... ;0" ... r ,. v, " •. !. , ••. """" r ,rrr
• •• .. bit si" bu 0 . f"'" m- ••

.~ <1 .ISH: C'; "1.:(' .. j lJ 1DQO :r:'; 1'.' I1.j:'it~l ,':':;')~ ".;!.l

•

•
I

bit 31

KrltJWledg"e dflth%Suiteffil\ttfetiulS';'ol Co:tlD.ettidnl"8.c'Hin~?VP :ffi:efn.arJ'\1~l<r&lis required to
uie1' ~thiB ;irlstnietio~rptOperlY' 'ibnr so1iH:J; ~ueS' 'tepr~sent~ tiiJ. '4riSr~·tii~ . 32'Ybrts .

• J.n::rT !(:,1 <'.m; ~

This instruction reorients processor data into a slicewise format that permits rapid, indirect
field~addftssilig~ • A:metm1-y'1'egion oorttainilig ;ira.nspaS~dr,d!ata' maf:Oei\riew~d either as a
single, shared slicetoise array or as a set of parallel slii:k1iW$tl o:riays; (SeEH;he'CM: aref32 and
C.M.:..auf32",shaled .. diction.a:ry.....entries. ~ a-descrip.tion-ef--these- -data--f&rmats.)- Viewed as a
shared slicewise array, this is especially useful for quickly constructing lookup tables .

. ~ . ~ ~ , " ,- I!l.: 'S~ <;0· ,~~... L.~~.r· ·1·~"·:" ~-~ ~
Transposition is reversed "by applying the CM: tra~.sl?pse32 < in~tr)lction, to a field already
stored in the slicewise format. To preserv~ the co~ela:tion betw~~i1 processors and data,
this instruction should not be used on slicewise data that was orginally stored by providing
CM:aset32 or CM:aset32-shared with an index-limit other than 32.

449c

TRUNCATE

F-F-TRUNtATE

Rounds each source field value to the lar~est in~egral value not greater than ,~hat value ajnd
stores the result as a floating-point numb~ in the destination field. 1!1''f, I I

Formats

: ' I I I
CM:f-f-truncate-l-1L destls,ource, s, e I!l I I
CM:f-f-truncate-2-1l de,st, .ource, s, e !

Operands dest The lloating~~o~t destination field. RM'.f •• II1IIiIIl:_ i I
• i

source rfhe lloatinr.:: o~t SOuk~1!.~eld.a~''l':~'Id.~;lj\,l~':' ".-1 ! ~
" 'I ! I j

.. _-'t-fL-_._The.s.ignific d and exponent lengths fOr..the-de8t-aac:l-89tw€~f.
... The totallengt~ of an 'operand in this f~rmat is s + e +0 i:"

Overlap,. :rfl:~.:{~~ur<i~Jv.~ mus,t, J~~1 ~Vh~f, ;9isjqint ffOIJl; pr ;400.R£~. tPrl~~ 4.~'t;.ti.i~ld.:l
, ~,~~ ;H~t?ng7,P?¥tt.rf\~J~~;"~~I~~,~Hcal i(~~~. 4~v~ :tht1$~M§~~th~jJ

same format.
i ; ~ '" J .. -:. ("-' .? ,-:: ~ i.h P 'ro'~' (-,',;:: ;.i ""~71'''H)'::-:'1 f1(.' ;'1 ~H.t'! ;".~ ;.1.1 " T'

Context This.,oper~~ion,is conditional. Thedestinationi~y~e,.tt~red .only>:in piiOCeS~Jl
sors .whose conte.zt-flag.is 1. , ' ;I" "; <,.,' ", \IT"" •. ~<n·,:.~~;·\.i.!}(Lilj;:wi'l

, '
.~ ... q f' ... ·f' . : 1

.. ,

Definition For every virtual processor k in the current-vp-set do
.. ~, .', ~ •. , "; ~ . • 1" .~" \A\i< 1'4- ~:~.

, if contezt-flag(k] = 1 then . '.. .' "." •
dest[k] ~ sign(source) x Llsource[k]1J ,"

~ ~ .;."fj'. ~o~,,~.a..s·ll\
j ."; i'~! ~::0'" ~

The source field, treated as a lloating-point number, is rounded to the nearest integer in
the direction of zero, which is stored into the dest field as a floating-point number.

450

~:TA)!i ·';.HT
·'·f'.' " ... ~., I'~""" _ "'~:!V:t ~i J' t.... .

..:. ." l .,.

i .. :~ !":, ~

t.;;)rz.~~~;;, !.~ !~' .. ~
:~:.)...:,;! <F1~~~: l';" h,t': !'\ .. !~:,!'J,,~ l;..-ci~}~I\;.): ~~

~i -7 1':11 'n,';", ··jj·or;,·;:>'}o ~':"d
¥ ~,' 'I.

. f.r,!:.l~HI() t:::;>"I.i?t;rt:,·::;Y'ii.: ly)e';\~~'~'i~ :;~j~J; >,,0 /) .. ~:;:,'>;~ :j); ·~~:;~t;,CiC·, t)~~.).), 'r~c:e<~ilJ iH:T~:t..IW ~,l"
nt":' ""O:'""~ I' ~'j~ •..• t ... :· r.,.;. T' •• ,r."f.:" "'1'1' '1"; fhl·";··:.: 1ft,'· I ":'1', ,; . .1 U'A-jj rr:' IJsrn r. "'J 'lOl.,tJ .. ,:

.... .:. "'" l ,.", .. 1",.. '""." "~.'.: ':.~,.~";:.. t, '1.~. l,·:·~"~,:.~ , ~: .~~t; ~. , ; '. ' .. _. ~ .. '. ~ .. ~~.' .. ~~ ,t ;'r'" t", "~ I.: .) _.1 J . ~J '" ••

: .. JJu"Jf:rro~. ' Jf.l L. 11. \'Tom>'l!. .. J.H,.' -,0 1. Il, f! ... ;.,' 'l'.'tL . .E- /l.sfInol~:.f$:lf'·:J') aiJlJ mv l7if.T 0:1"':'

.b. F1"',0 ~i"'" ,'.'l~ ~l.l<'; t'HLi'<lifrx, .)l.;') 01. ;)Isr~ ij(.;J,d!1J.r~")h ~'fn <::;~;;i:> t<>;rro-,:::;(

'/(. ;,:,

. ~:t':, '..;..'~\~;'~i!. ,\~'

,~f':' ; .. ~.~ :,il:'~~ fJri .• : ri, 'I ... ,~ ,ll~ "'.}. '" :rl~}!1f1J.(;'"!·:)q '~i ~rt);.~f~':i:

.. j.'1:.~.\ d ! ... ~!:··l(''l~q~ .. ,~l,ij ~:~ ·Ui(:.l.'"J·r~

if sO'ILrce2[k] = 0 then
dest [k] - (Unpredictable)

else

, 'de$t[k] _lso'ILrcel k J
sO'ILrce2 k

if (overflow occur~ed in processor k) th~n overftow-flag[k] - 1
else overflow-flam. k] - 0

The unsigned integer sO'ILrcel operand is divided by the tn.lsigned intege:t:so'ILrce2 operand.
The floor of the mathematical quotien:t Is st6red into the' unsigned integer memory field
dest. The various operand formats allow operands to be 'either memorY fields are constants;
in some cases the destination field initially contains one source operand.

The overflow-flag may be affected by these operations. If oVerlIow occurs, then the desti­
nation field will contain as many of the low-order bits' of the true result as will fit.

The constant operand sO'ILrce2';'~alue should be a signed integer front-end value. The op­
eration is performed, properly in all cases; the constant need not be representable in' the
number of bits specified by len.

455

U-F-TRUNCATE

R.oun4s each source field value to the largest integer not greater than that value and stores
the result as an unsigned integer ir;t- ,the destination Jield.

Formats CM: u-f-truncate-2-2l dest, source, dlen, s, e

Operands dest The unsigned integer-'deStination field.

The fio'atm.g-point source'field. source

len

s, e

The length of the dest field. This must' be non-n4!'gative :andno­
greater than CM:.maximum-integer~length.-.

The significand an.d exponen~leng1;hs for thesourcefreld. The
total length of an operand;in this·format,is s + e + 1.

Overlap The fields deBt and Bourcemust not overlap in any manner.

Flags ol1erflo~ flag is set if the result . cannot be represented in' the dest field; other­
wise it is cleared.

Context This operation is conditional. The destination and flag may be altered only
in processors whose contezt.Jlag is 1.

Definition For every virtual processor k in the current-l1p-set do
if contezt-jlag(k] = 1 then

dest - sign(source) X L\sourcelJ
if (ove:rfiow occUtted in p~ssOrk}then ollerfto·w-ftag[k]- 1

The source field, treated as a floating-point number, is rounded to the nearest integer in
the direction of zero, and the result is stored into the deat field as an unsigned integer.

456

