
,

•

Introduction to Data Le,eI PamIIeIism

Thinking Machines Corpomtion
Technical Report Series TR86-14

J

Thinking Machines Technical Report 86.14

Introduction to Data Level Parallelism

April 1986

With Programming Examples
for the Connect.ion Machine~SY5tem

© 1986 Thinking Machines Corporation

"Connection Machine- is a registered trademark or Thinking Machines Corporation.
"e." and ".Lisp· are trademarks or Thinking Machines Corporation.

Contents

1 Data Level Parallelism
1.1 Parallelism in the World Around Us
1.2 Parallelism in Computer Systems ...
1.3 Two Styles of Computer Parallelism .
1.4 The Connection Machine Data Level Parallel Computer

1.4.1 Progr&m Execution.
1.4.2 The Connection Machine Proceasorfl
1.4.3 Connection Machine I/ O

1.5 Communications: The Key to Data Level Parallelism .
1.6 Connection Machine Application Examples

2 Document. Retrieval
2.1 Accessing Computer Data Bases
2.2 Algorithms for Document Retrieval.
2.3 Database Loading on the Connection Machine System
2.4 Document Lookup on the Connection Machine System .
2.5 Retrieving the Highest Scoring Documents .
2.6 Timing and Performance ..
2.7 Summary and Implications

3 Fluid Dynamics
3.1 The Method of Discrete Simulation ...
3.2 A Discrete Simulation of Fluid Flow ..
3.3 Implementation on the Connection Machine System
3.4 Interactive Interface
3.5 Timing and Performance ..
3.6 Summary and Implications

1

1
1
2
2
3
3
4
4
5

7
7
8
8

11
12
13
14

15
16
16
18
21
23
23

u

4 Contour Mapa from Stereo Images
4.1 Analyzing Aerial Images by Computer
4.2 Seeing in Stereo.
4.3 Finding the Same Object in Both Images
4.4 Matching Edges
4.5 Measuring Alignment Quality
4.6 Drawing Contour Maps
4.7 Finding Edges on the Connection Machine System
4.8 Matching Edges on the Connection Machine System
4.9 Drawing Contours on the Connection Machine System
4.10 Timing and Performance ..
4.11 Summary and Implications

5 The C. Programming Language
5.1 C. Extensions

5.1.1 Parallel Control Flow ..
5.1.2 The Selection Statement.
5.1.3 Computation of Parallel Expressions
5.1.4 Data Movement

5.2 Summary

6 The -Lisp Programming Language
6.1 Fundam.entala of Lisp

6.1.1 Lisp Functions
6.1.2 Variablea
6.1.3 Program Control Structure

6.2 .Liap Extensions .
6.2.1 Procesaofa
6.2.2 Parallel Variablea
6.2.3 Acceasing Pvara Relative to a Grid
6.2.4 Selection
6.2.5 .Lisp Programs .

6.3 Summary

7 The Connection Machine System
7.1 Connection Machine Internal Structure.
7.2 Connection Machine Instruction FlolV' .
7.3 Computational and Global Instructiona
7.4 Communicationa Instructiona

CONTENTS

25
25
26
27
29
29
3[
32
33
36
38
38

39
39
40
4[
4[
43
43

••
45
46
46
47
47
47
48
50
50
50
50

51
51
52
53
53

CONTENTS

7.5 The Routins Process . . .
7.6 Dynamic Reconfiguration

8 Looking to the Future

m

55
56

57

List of Figures

2.1 Document. on the ,arne .ubject hove II high ovcrlap 0/ vocabulary ..
2.2 Document. on different .ubjeet. hOllc low otlcrlap 0/ vocabulary . ..

3.1 Unlc .. particle. art: ob.tructed by an ,,6,tacle, or collide into other particlu,

9
9

they continue in the .ame direction. .. 17
3.2 Situation. that c/lu.e particlu to chaagc direction.. 18
3.3 Hezogonal cella with .iz incoming 6iu for particle direction and ,iz outgoing

bit. lor particle direction .. 19
3.4 The formation of II fluid JWw phenomenon, caUed II ·vorte-z.drcet,· a. fluid

/fow.lrom left to ";ght pa.t II flat plok . 22

4.1 An oblique view 0/11 terroi" model ued in a demon.tration 0/ the contour
mapping algorithm. .. 27

4.2 A .tereo pair of the terrain ill Figurt -/.1, 06tailled from direetl, a60ve the
ttrrain. 28

4.3 All uample of edge •. The.e edgu wtre derived from the Itereo pair down 1'n
Figure -/ .l . They delineate the 60ulld.rie. 6dwuII oreal of differellt illtell.it,. 28

4.4 All illulltrotion of the lIliding pror:e ... Each ofthue imagu ,how, the content.
of all oligllmellt-ta6le-.lot in eoeh pUel. The Nth image .how. 1I0t N in ellery
pixel'. alignment ta61e. The dark arcu are regioll' 0/ good alignment, i.e.,
area. where the .ome alignment-ta6le.llot i. filled in many pi%ell. 30

4.5 A contour map of the terrain model .hown in Figuru -/ .1 and l, computed
on the COllnection Machine .y.tem. 32

Chapter 1

Data Level Parallelism

1.1 Parallelism in the World Around Us

Whenever many things happen at once, parallelism is at work . It is at work for one of
two reasons: either because someone is in a burry or because it is the natural course of
events. If, for example, many people are working at once to compose a song, it is because
someone is in a burry. Music is 8. naturally sequential process. Physical phenomena, on
the other band, are almost always parallel. The wind in a wind tunnel does not blow
over one square centimeter of an automobile body at a time. It blows across the whole
frame at once, abowing the engineers how the How in one section interacts with the flow in
another. If we simulate the wind in parallel, the results come faster as a natural consequence.
The parallelism is being utilized, but it is not being artificially imposed. Other examples
of fundamentally parallel phenomena include vision processing, information retrieval, and
many types of mathematical operations.

1.2 Parallelism in Computer Systems

The same two motivations, doing things in a hurry and doing things more naturally, also
motivate computer architects. Until recently, those architects who are focused on greater
speed have obtained it from faster circuitry. Making the electronics twice as fast , or the
memory twice as big, has traditionally been a cost-effective way to double the performance
of a single-processor computer system. But now these gaios have become much harder to
achieve. Limits to circuit speed have been reached. So designers wbo are solely focused on
speed are now seeking to inject parallelism into their designs. If two computers of traditional
architecture can operate in parallel, the overall speed of the system can double.

There is, however, another starting point for the design process. Computer architects

1

2 CHAPTER 1. DATA LEVEL PARALLELISM

can go back to the problems themselves and understand the parallelism that has been there
all along. Having understood it, they can build a system that exploits it directly. The first
benefit of this approach is simplicity. A computer that fits the problems it solves is easier to
use and program than a computer that doesn't. And it is also faster . Systems that couple
to ihe inherent structure of a problem mine a deeper vein of parallelism. For this reasoD,
they can dramatically outperform systems whose superficial performance specifications seem
superior. When parallelism is imposed on a problem, a speed-up of ten is considered good.
When inherent parallelism is exploited, speed-ups of 1000 are commonplace.

Some applications benefit much more than others. While cer tain problems do not have
a large amount of parallelism, there is a large and growing body of important problems that
do. For these applications the mdhod of de::ligning the comput.er around the inherent paral­
lelism of the problem is proving to be outstandingly valuable. This approach is called "data
level parallelism." The remaining sections of this report describe data level parallelism and
its application to three very different computing problems. The implementation examples
use the Connection Machine system, the first data level parallel computer available on the
commercial market. (See reference [8J for further discussion of the Connection Machine
system)

1.3 Two Styles of Computer Parallelism

All computer programs consist of a sequence of instructions (the control sequence) and a
sequence of data elements. Large programs have tens of thousands ofinstructions operating
on tens of thousands, or even millions of data elements. Parallelism exists in both places.
Many o(the instructions in the control sequence are independent; they may in (act be exe­
cuted in parallel by multiple processors. This approach is called "control level parallelism!'
On the other hand, large numbers o(the data elements are also independent; operations on
these data elements may be carried out in parallel by multiple processors. This approach,
as mentioned in the previous section, i~ called "data level parallelism." Each approach has
its strengths and limitations. In particular, data level parallelism works best on problems
with large amounts of data. Small data structures generally do not have enough inherent
parallelism at the data. level. When the ratio of program to data is high, it is often more
efficient to use control level parallelism. But control level parallelism requires the user to
brea.k up the program and then maintain control and synchronization of the pieces.

1.4 The Connection Machine Data Level Parallel Computer

The Connection Machine computer from Thinking Machines Corporation is the first system
to implement data level parallelism in a general purpose way. Since the computer is designed

1.4. THE CONNECTION MACHINE DATA LEVEL PARALLEL COMPUTER 3

around the structure of real world problems, the best way to understand the Connection
Machine architecture is to follow its use in solving an actual problem. A VLSI simulation
example will be used for that purpose. In VLSI simulation, the computer is used to verify
a circuit design before it is released to be manufactured. The Connection Machine system
provides a very direct way to perform this simulation. Each t ransistor in the circuit is
simulated by an individual processor in the system. The chapters which follow explain
three more examples in much greater detail.

1.4.1 Program Execution

Data level parallelism uses a single control sequence, or program, and executes it one step at
a time, just as it is done on a traditional computer. The Connection Machine system utilizes
a standard architecture front end computer for this purpose. All programs are stored on
the front end machine. Its operating system support! program development, networking,
and low speed I/O. The front end computer has access to all the memory in the system,
albeit one data element at a time because it is a serial computer.

All Connection Machine program execution is controlled by the front end system. A
Connection Machine program has two kinds of instructions in it: those that operate on one
data element and those that operate on a whole data set at once. Any single-data-element
instructions are executed directly by the {ront end; that is what it is good at. The important
instructions, those that operate on the whole data set at once, are passed to the Connection
Machine hardware for execution.

In the VLSI simulation example, the important instructions are the ones which tell
each processor to step through its individual transistor simulation process. Each processor
executes the same sequence of instructions, hut applies them to its own data, the data that
describes the voltage, current, conductance, and charge of its transistor at that time step
of the simulation.

1.4.2 The Connection Machine Processors

In order to operate on the whole data set at once, the Connection Machine system has
a distinct processor for each data element. The system implements a network of 65,538
individual computers, each with its own 4096 bits of memory. The data that describe
the problem are stored in the individual processors' memories. During program execution,
whenever the front end encounters an instruction which applies to all the data at once,
it passes the instruction across an interface to the Connection Machine hardware. The
instruction is broadcast to all 65,536 processors, which execute it in parallel.

Applications problems need not have exactly 65,538 data items. If there are fewer,
the system temporarily switches off'the processors that are not needed. If there are more
problem elements, the Connection Machine hardware operates in virtual processor mode.

4 CHAPTER 1. DATA LEVEL PARALLELISM

Each physical processor simulates multiple proees.sora, each with a smaller memory. Virtual
processing is a standard, and transparent, feature of the system. A Connection Machine
system can easily support up to a million virtual processors. In general, a problem should
have between ten thousand and a million data elements to be appropriate for the Connection
Machine system.

1.4.3 Connection Machine I/O

Since the front end system has access to all Connection Machine memory, it can load data
into that memory and read it back out again. For small amounts of data, this is a practical
approach. but for large amounts it is too slow. A separate 500-megabit-per-second I/O bus
is used instead. This bus is used for disk swapping, image transfer I and other operations
which exceed the capacity of the front end.

1.5 Communications: The Key to Data Level Parallelism

Large numbers of individual processors are n~essary for data level parallelism, but by
themselves they are not enough. After aU, there is more to a VLSI circuit than individual
transistors. A circuit is made up of transistors connected by wires. Similarly, there is
more to a Connection Machine system than just processors. A Connection Machine system
is made up of processora interconn~ted by • masaive inter-connection system called the
router.

The router allows any processor to establish a link to any other processor. In the case of
the VLSI simulation example, the links between processors exactly match the wiring pattern
between the transistors. Each processor computes the state of an individual transistor
and communicates that state to the other procesaors (transistors) it is connected to. All
Connection Machine processors may send and receive messages simultaneously. The router
has an overall capacity of three billion bits per second.

It is part of the reality of the world we live in that many things happen at once, in
parallel. It is part of the beauty of the world we live in that these many thing9 connect snd
interact in a variety of patterns. Looking at the whole problem at once requires a computer
that combines the ability to operate in parallel with the ability to interconnect.

Since the structure of each problem is different, the interconn~tion pattern of the com­
puter must be flexible. Alllinkage9 between Connection Machine processors are e9tabli9hed
in software. Therefore, the system can configure its procesaofB in a rectangular grid for one
problem and then into a semantic network for the next. Rings, trees, and butterflie9 are
other commonly used t.opologies. The chapter on hardware describes router operation in
greater detail.

1.6. CONNECTION MACHINE APPLICATION EXAMPLES 5

1.6 Connection Machine Application Examples

Each of chapters 2, 3, and 4 describes a Connection Machine example in detail. First
the algorithm is described, and then the actual program that implements this algorithm
is presented and discussed. It is not necessary to study the program to appreciate the
simplicity of the overall approach. Many readers will want to skip over these details. The
third example , contour mapping, is quite sophisticated. Hence the program for this example
is more complex than the two that precede it.

The initial Connection Machine languages are C* and *Lisp. C* is an extension of C
and is appropriate for a wide range of general purpose applications. *Lisp is an extensicn of
Lisp. Lisp, while less well known than C, is also an appropriate language for a wide variety
of applications. Its primary use, however, has been in the field of artificial intelligence.
Chapters 6 and 6 provide an introduction to these la.ngua.ges.

6 CHAPTER 1. DATA LEVEL PARALLELISM

Chapter 2

Document Retrieval

There is too much to read. The written material (or almost every discipline grows much
faster than anyone person can read it. Computers have not provided much relief to date.
Now data level parallelism provides the computing power to implement significantly better
solutions to the document retrieval problem. These solutions are more natural, 80 they
require less user training. And they are much more accurate, 80 they give the user much
greater confidence in the results.

2.1 Accessing Computer Data Bases

There are & number of systems today that provide on-line access to text information, but
they perform poorly because they rely on & -keyword- mechanism for finding documents.
The premise of a keyword system is that the relevance of a whole document can be deter­
mined by the presence or absence of a few individual word!. Users enter one or more "key.
words" or labels t.hat. t.hey feel capture t.he sense of t.he information needed. All documents
which either cont.ain t.hese words or have been indexed under t.hese words are retrieved.
Those that do not are ignored. Even with refinements, such as "Find all occurrence! of
'New England Patriots' within ten words of 'Superbowl',- a keyword search generally tends
to either find too many documents for the user to cope with, or too few for the user to find
useful. It is a guessing game, wit.h the user trying to imagine tbe most fruitful search terms.

Not all relevant documents contain t.he one part.icular word that. the user chose, because
writers use language differently. A search for documents containing the word "chips- may
find five relevant documents, but miss ten othenl t.hat were indexed under "integrated
circuits" or "VLSI.- Since the search yield! only one third of the relevant documents, it
would be considered to have a retcU of 33%. Worse yet, the five relevant documents might
be returned mixed int.o t.wenty other documente describing cookies or paint or other subjects

7

B CHAPTER 2. DOCUMENT RETRIEVAL

where the word "chips· appears. Such 8. search would be considered to have a precisio" of
20%. Recent published testing has shown that recall results of as little as 20% are common
witb keyword based systems [1].

In short, keyword-based systems are very good at finding one or two relevant documents
quickly. What they are poor at is producing a refined result with high recall and high
precision. The Connection Machine document retrieval system provides a very powerful
way for doing complete searches. It starts out wing a keyword approach, but once the
first relevant document is found, the whole approach changes. The user proceeds by simply
pointing to one or more relevant documents and saying, in effect, ~Find me all the documents
in the database that are on the same subjects as this one." A document that has been
identified 8.lII relevant by the user is referred t.o Lere ~ a. "good document."

2.2 Algorithms for Document Retrieval

Data level parallelism makes massive document comparisons simple. The basic idea is
this: a database of documents is stored in the Connection Machine system, one or more
documents per processor. Once the first good document is found, it is used to form a search
pattern . The search pattern contains all the content words of the document. The host
machine broadcasts the words in the pattern to all the processors at once. Each processor
checks to see if its document h8.lll the word. !fit does, it increases the score for its document.
When the entire pattern has been broadcast, the document that most closely matches the
pattern will have the highest score, and can be presented first to the user.

The algorithm is simple to program becatae it takes advantage of innate characteristics
of documents rather than programming tricks and second guessing. Every document is,
in effect, a thesaurus of its subject matter. A high percentage of the synonyms of each
topic appear because writers work to avoid repetition. In addition, variants of each word
(such as plural, singular, and possessive forms)' and semantically related terms also appear
among the words in a particular artjcl~. Clearly not every synonym, variant, and related
term will occur in a single article, but many terms will. Each reinforces the connection
between the search pattern and the document. Spurious documents, on the other hand,
will not be reinforced. The word "chip" will appear in an article about cookies, but "VLSI"
and "integrated circuit" simply will not. In the overall scoring, truly useful documents are
reliably separated from random matches. (See figures 2.1 and 2.2.)

2.3 Database Loading on the Connection Machine System

A document database may be constructed from sources of text such as wire services, elec­
tronic mail, and other electronic databases. For this description it is important to draw a

2.3. DATABASE LOADING ON THE CONNECTION MACHINE SYSTEM 9

automobile

Figure 2.1 : Document, on the ,ame ,t/bjed have a high overlap 0/ vocabulary.

VLSI
sugar

chocolate
wafer chip

shelf life
integrated
circuit retail

Figure 2.2: Document! on different ,.bject! have low overlap 0/ vocabulary.

10 CHAPTER 2. DOCUMENT RETRIEVAL

distinction between .ouree document. and conhnt kernc16. A .ouree document contains the
full actual text of a particular article, book, letter, or report, and is stored on the front-end'!
disk. A content kernel is a compressed form of the source document that encodes just the
important words and phrases. It omits the commonplace words. Content kernels are stored
in the memory of Connection Machine system.

The content kernel il!l produced automatically from the Bouree document. First, the
Bource document is processed by a Thinking Machines document indexer program that
mark! the most significant terms in the text. Next these terms are encoded into a bit­
vector data structure, using a method called "surrogate coding." Surrogate coding, which
is sometimes referred to as a "hash coding" method, allows the content kernel to be stored
more compactly. It also speeds up the search process. In surrogate coding, each term in
the content kernel i. mapped into ten different bib in a l024.bit vector. The ten selected
bits in the vector are set to one to indicate the presence of the word in the document. In a
content kernel of 30 terlI15, the process of surrosate coding ends up marking about a third
of the bits as ones.

The source document in its original form is available for retrieval and presentation to
the u!er when needed. The location of the original document on the system disk is stored
with the content kernel.

Each segment of the content kernel is made up of the following fields:

.score. is used by the document lookup program to accumulate the ranking of each
content kernel in the database according to how closely the content kernel matches
the user's search pattern. Each time a match is found, .score. is updated .

• do(ument-id. contains a reference to the original source document that this content
kernel was derived from. When a content kernel is selected from the database lookup,
the user is shown the source document referred to by this index .

• kernel. is a table of the surrogate·coded bit-vector encoding.

The necessary declarations for these fields are as follows. (In this chapter only, all of the
code is presented twice, first in the .Lisp language and then in the C. language, to make it
easy to compare the two languages. Because the characters. and? may not appear in C­
identifiers, such .Lisp names as .scor e . and word-appears? are rendered in C· simply as
score and word..appears.)

;;; Declarations for the .L1sp version.

(defconstant table· size 1024)
(defconstant hash-size 10)

2.4. DOCUMENT LOOKUP ON THE CONNECTION MACHINE SYSTEM 11

(*defvar .Bcore.)
(.defvar .document-id.)
(.defvar .kernel.)

/. Declarations for the C. version. -/

#define TABLE_SIZE 1024
.define HASH_SIZE 10

poly unsigned score, document_id;

poly bit kernel(TABLE_SIZE];

2.4 Document Lookup on the Connection Machine System

During the first stage of document lookup, the user lists a set of terms to be used to search
the database, and receives back an ordered. list of documents that contain all or some of
those terms. The user then points to a document which is relevant, and from this document
an overall 6torch pa.ttern of content-bearing words is assembled. The search pattern is simply
a list of these words, with weights assigned. to each word. The weight assigned to a word is
imersely proportional to its frequency in the database (for example, "platinum" appears in
the database less frequently than "gold," and therefore bas a higher weight associated with
it) . This weighting mechanism ensures that uncommon words have more of an influence
than common words over which content kernels get selected during the document lookup
process.

Next, the search pattern is broadcast to all processors in the Connection Machine system.
The same mechanism that is used to code each word in the content kernel as a series of bits
is a.pplied to the words in the searcb pattern. For each word in the search pattern a set of
ten bit indices is broadcast. All content kernels that have these same ten bits set will have
the weight of that word added into their .score* field. (It is possible that all ten bits for
a word might happen to be set on account of other words even though that word doesn't
really appear in the source document. Such &D accident will result in a "false hit- on that
word. However, for two reasons, this will not seriously affect the results of the lookup.
First, the probability of a false hit is small: (H I O, or less than one in 50,000. Second, a
false hit will be only one of many terms contributing to the score, and 80 will have only a
small effect even when it does occur.)

The following code is used to broadcast one search pattern word to all the processors

12 CHAPTER 2. DOCUMENT RETRIEVAL

in the system, which ched: their content kernels and add the value of weight into their
*score. if it contains the word. The word is represented by a list of ten bit locations
(bit-Iocs) .

; ;; _Lisp code for testing the presence 01 a single word .

(*defun increment-acore-lf-word-appears (bit-Iocs word-weight)
' .. let «word-appears? tl I»

(dolist (bit bit-Ioca)
,_set word-appears?

(andl! word-appears?
(not I I (zeropll (load-byte I , .kernel. (II bit.) (11 t»»»)

(*if word-appears?
(-set .score. (+1 I _Bcore_ (I I word-weight»»»

/* C. code for testing the presence of a alngle word . */

poly void increment_8core.if.sll. bits.set

)

(mono unsigned word.bit.position[HASH.SIZE1 . mono int weight) {
lIIono j;
poly bit wor~appear •• 1;
tor (J - 0; l < HASH_SIZE; l++)

wor~appear." kernel[wor~bit_position[j]];

it (word_appears)
score +- weight:

The main search program simply calls this routine once for each keyword in the keyword
list.

2.5 Retrieving the Highest Scoring Documents

The code that follows is used to retrieve the *docoent-id* for each of the highest scoring
content kernels in the database. The program returns a list of *document-id's for the
content kernels with the highest scores. The program first retrieves the *document-id' for
the highest score, then the next highest score, etc., until a list of length docUlllent -count is
retrieved. The already-retrieved? flag is set once a processor has had its *document-id'
retrieved 50 it will not be retrieved again.

2.6. TIMING AND PERFORMANCE

;;; -Lisp code for retrieving documents in order, highest score first.

(*de1un retrieve-best-documents
(let «top-documents-list nil»

(-let «already-retrieved? nil»
(do times (i document-count)

(_when (not I I already-retri8'1ed?)
(-when (-I I -score- (-max *score*»

(-let «next-highest-document (_min (self-address I I»»
(setq top-documents-lilt

(append top-documentl-list
(list (pref *document-id* next-highest-document»»

13

(sett (pret already-retrieVed? next-highest-document) t»»»
top-documents-list»

1* C_ code for retrieYing documents in order, highest score first. *1

poly void retrieye_best_documents

}

(mono document_count, aono unsigned .document_i~array) {
poly bit already_retrieved - 0;
mono i;
10r (i - 0; i < document_count; i++) {

if (Ialready_retrieved) {

}

}

if (score -- (><- score» {

}

processor .next_highest_document • «>- this);
document_i~array[i] • next_highest_document->document_id;
next_highest_document-)already_retrieved • 1;

2.6 Timing and Performance

A production level version of the algorithms described above has been implemented and
extensively tested on the Connection Machine system. Performance studies have been done
on a database of 15,000 newswire articles, which constitute 40 megabytes of text. An

14 CHAPTER 2. DOCUMENT RETRIEVAL

automatic indexing system, selects the content kernels for each document. The content
kernels are about one third of the original size of the text. Surrogate coding compresses the
data by another factor of about two. In the system currently in use, the kernels afe encoded
into as many 1024-bit vectors as are needed at 30 terms per vector. For a long document
several vectors are used; additional code, Dot shown above, is needed to chain the vectors
together and combine the results.

Using this encoding, the Connection Machine system is able to retrieve the 20 nearest
documents to a ZOO-word search pattern from a data base of 160 MBytes in about 50
milliseconds. (160 MBytes is equivalent to an entire year of news from a typical newswire.)
In th is time the Connection Machine system performs approximately 200 million operations
for an effective execution speed of 6,000 Mips.

2.7 Summary and Implications

The program is brief because the algorithm is simple. The Connection Machine system is
able to match the user's needs directly. It is powerful enough to carry out the algorithm in
a stra.ightforward way. The user wants to say to the database" An documents on the same
subject as this one, line up in order here." That is exactly the service that the Connection
Machine system provides for the user. It broadcasts the contents of the selected document
to tens of thousands of processors at once. Each processor decides in parallel how similar
its documents are. Then the most similar ones are !IOrted and presented to the user.

Even larger databases can use the same technique with two enhancements. The first
enhancement is the use of a very high-speed paging disk, which allows larger numbers of
content kernels to be swapped into the system for searching. The second enhancement is
the use of cluster analysis. When the system hu many documents on the same subject, it
need not store all their content kernels individually. It can Btore one for the whole cluster,
then retrieve the full set of related documents when needed. A single document may, of
course, participate in more than one cluster. As the total database size grows, the size of
the average cluster grows with it, making this a particularly appropriate technique for large
scale databases. The addition of paging and clustering extends the algori thm described
above to the 100gigabyte range and beyond.

Chapter 3

Fluid Dynamics

Fluid flow simulation is a key problem in many technological applications. From the flow
of air over an airplane wing to mixing in a combustion chamber, the problem is to predict
the performance of a design without building and testing a physical model.

Until recently, fluid flow models were based almost exclusively on partial differential
equations, typically the Navier-Stokes equations or approximations to them. These equa­
tions are not generally solvable by normal analytical methods. Numerical approximation
techniques, such as finite difference methods and finite element methods, have been devel­
oped to solve these partial differential equations. AIl of these methods involve large numbers
of floating point operations which require great amounts of fast memory. In addition, ob­
struct.ions to the flow must usua.lly be mathematically simple shapes.

Recent physics research has suggested that it is possible to make intrinsically discrete
models of fluids. The fluids are made up of idealized molecules that move according to very
simple rules, much simpler than the Navier·Stokes equations. The models are examples of
cellular automata and are particularly well-suited to simulation on the Connection Machine.
Cellular automata are systems composed of many cells, each ceU having a small number
of possible states. The states of all cells are simultaneously updated at each "tick" of a
clock according to a simple set of rules that are applied to each cell. This approach involves
only simple logical operations and does not require floating point arithmetic. It allows for
all obstructions regardless of their shape. In addition, mathematical methods can be used
to show that the results of such simulations agree with the results that would be obtained
from the Navier-Stokes equations.

15

16 CHAPTER 3. FLUID DYNAMICS

3.1 The Method of Discrete Simulation

Discrete simulation is used to model fluid flo on the Connection Machine system. The
technique involves six key clements: particles, cells, time steps, states, obstacles, and in­
teraction rules. Particle8 correspond to molecules of a fluid . A particle has a speed and a
direction which determine how it moves. A time 8tep is a "tick" of a clock that synchronizes
the movement of particles. Duri ng each time step , particles move one cell in the direction
that they are heading. A cell is a specific place in the overall region that .is being observed.
The region is completely filled with cells. Particles can move into and out of each cell during
each time step. A state is a value assigned to each cell that indicates the number of part icles
within the cell, and in which directions they are heading. An olMtacle is a set of special
cells that obstruct the natural movement of particles. The interaction rufe. determine the
movement of each particle when it shares a cell with one or more other particles. This
movement is carried out by updating the state of the cells to reflect the new positions of
the particles within the region.

A discrete simulation typically uses fixed cells. The cells never move or change during
the simulation. Particles are completely in one cell during a time step, and move completely
into the next cell (determined by the interaction rules) during the next time step. Du ring
each time step, every cell gathers data about particles heading in its direction from each of
its neighboring cells. aased on the interaction rules, each cell determines the direction of
its newly acquired particles and updates its own state.

A simulation designer can choose the cell topology and the interaction rules. The cell
topology determines how many sides a cell bas, and therefore, the directions by which
particles may enter and exit. The simulation designer also determines the number of cells
in the region being observed, and the average number of particles in each cell. Cellular
automata theory provides the background for the simulation designer's decisions. It suggests
thata simple cell topology, a huge number of cens and particles, and simple, local interaction
rule! are the most likely to be successful.

3.2 A Discrete Simulation of F luid Flow

Thinking Machines i!l currently simulating fluid flow using a two-dimensional region that is
divided into 16,000,000 hexagonal cells. Each cell is assigned to its own Connection Machine
processor (using the virtual processor mechanism) . The hexagonal mesh is a simple topology
that gives the randomness that is required on a microscopic level to get correct results on
the macro!lcopic level.

One of the fundamental reasons for computer simulation of fluid fl ow is to observe the
behavior of a fluid as it flows past an obstacle. In the discrete model, obstacles are groups
of cells that particles can not travel through. When a particle approaches an obstacle cell,

3.2. A DISCRETE SIMULATION OF FLUID FLOW 17

it bounces off during the next time step. In order to observe the behavior of a fluid, tens
of millions of microscopic particle interactions are simulated. Each individual particle's
path through the cells and off of tbe obstacle cells appears almost random, just as in real
fluids. However, when all of the particles' paths are considered, the overall behavior of the
model is consistent with the way that real fluids behave. (See references [4,7,141 for further
discussion of the use of cellular automata to model fluid Row.)

Individual particles can enter or exit through any of the six sides of each cell. A cell
may contain a maximum of one particle heading in each of the six possible directions during
a given time step (and 80 the total number of particles per cell per time step is anywhere
from a to 6). A particle that has not collided with another particle during a time step
will continue moving in the same direction during the next time step. (See figure 3.1.)
When particles collide, a simple set of rules determines their new directions, conserving
both momentum and the number of particles.

1 1 r J
l J r (/ ,./'--.

·L:o
,' .. " l (>foe 1

Figure 3.1: U"ir::1l1l particlr::lJ IIrr:: oblJlruclr:: d by an ohtacif';, or eollidl'; into other parliclelJ,
they continue in the lJame dirl';etion.

At each time step, every cell updates ib state by checking all of its adjoining cells, or
neighbors, for particles that are heading in its direction. All cells then update their own
states based on the information that they have gathered . In the model currently imple­
mented, there are five situations that cause a particle to change directions: 2-way symmetric
collisions. 3-way symmetric collisions, 3-way asymmetric collisions, 4-way symmetric colli­
sions, and collisions with an obstacle cell. (See figure 3.2.)

Although the algorithm is implemented by modeling the individual movements and
collisions of tens of millions of particles at each time step, the behavior of the fluid is observed
by averaging the behavior of all of the particles in the entire region and by analyzing the

18 CHAPTER 3. FLUID DYNAMICS

tb) It:)

'"I '<I

Figure 3.2: Situations that cause particles to change directions.
(a) Tvo-way symmetric: two particles enter a cell from opposite /N'dcs. The particles exit
through a different pair 0/ opposite wal13.
(b) Three -way symmetric: three particles enter a cell from non-adjacent sides. Each particle
exits 6y the side through which it entered.
(c) TAree-way asymmetric: three particles enter a cell, two of them from opposite sidcs.
One particle passts through unobstructed; the other two particles behave a8 in 4 two-way
symmetric.
(d) Four-way symmetric: four particles enter a tell, each particle's side is adjacent to only
one other particle's side. Particles behave as in two two-way symmetric collisions (maximum
of one particle exiting per 8ide).
(e) Collisions with an obstacle cell: a particle always leaves an obstacle cell by th e side
through which it entered.

results over many time steps. In a typical simulation, macroscopic results are gathered by
averaging particles together in groups of 20,000. Although each individual particle has only
one speed and six possible directions, the average of 20,000 particles provides the full range
of possible velocities.

3.3 Implementation on the Connection Machine System

There are two available ways for the Connection Machine system to implement the con­
nections among the hexagonal cells. It can use the full router, setting up six connections
for each site, one for each adjacent hexagon. Or it can use its grid, which connects four

3.3 IMPLEMENTATION ON THE CONNECTION MACHINE SYSTEM 19

adjacent processors directly. The grid network was chosen for this implementation. It is
very fast for small data transfers to nearby processors.

Of course , t he grid cannot implement hexagonal connections directly. It connec ts to
four adjacent processors, not six. Therefore, two of the six connections require two-step
com munication (i.e., up one and over one for the diagonal) . The simulation program im­
plements thia two-step process. Each aite can quickly learn the Itatus of its six neighbors
and can determine which one~ z:mtain particles that are moving in iu direction.

Each ce ll haa only 13 biu associated with it: six bits for incoming atate (numbered
0-5), six bits for outgoing state (numbered 0-5). and one bit to indicate whether or not it
is an obstacle. Each of the six incoming staLe and six outgoing ltate bits is dedicated to a
particular direction. If a particle is entering or exiting through that direction, then the bit
is set to 1, otherwise it is eet to o. (See figure 3.3.)

III rs () 1 _ .1 J ~

I"\C<)\II"\ ti I I!_~! 0 I 0 1 ~ 0 I
Ol TGO' (; ,. ! _-.!!.._I~ __ ~_ ~

F igure 3.3: HU4g onoi ctlt.. with';:l incoming bits/or particle direction and sir outgoing 6i!s
lor partide direction

/ . A cell stat. is represented by • s i x-bit unsigned integer,

whi ch can also be regarded as an array 01 six individual bits . • /

typede1 union STATE {unligned:6 Val: unsigned :1 Bit(6]:} state;

j . Each processor 1n the domain "grid" will contain a cell state
(the outgOing atate), another atat. (the inco.ing atate) used
10r temporary purpoaes in the calculation, and a bit saying
whether or not it is an obstacle cell . */

poly atate outgoing_atate. incoming_atate;
poly unsigned : 1 obetacle3ell :

20 CHAPTER 3. FLUID DYNAMICS

j . The following declare. the actual grid of procea.ora . */

/. Grid 1s the C pointer type that corresponda to the above array type . -/

typed.! proc ••• or '*grid) [ARRAY_T_SIZE) ;

At each time step, instructions are broadcast that tell each cell how to gather data
about particles heading in itl direction. When the cella poll each of their six neighbon for
information, they formulate their own 6-bit incominr; IItaLe. For example, a cdl would ~k
its East neighbor for its outgoing state bit number 3, and would place the answer in its own
incoming state bit number O. It would then Il8k its NorthEaat neighbor for its outgoing
state bit number 4 and would place tbe answer in ita own incoming bit number 1. All cells,
in parallel, check the ,tate of all six of their neighboring cell!. This extreme data level
parallelism allows for a large amount of data to be collected in a small amount of time.

/ * This code is executed within each processor . Outgoing state
bita from aix neighbors are gathered and placed within the local
incoming_atate array . Note the use of a C cast expression
«grid)this) to create a aelf·pointer that has a two-dimensional
array type suitable for double indexing. (Thh codl actually is
oVlraimplified in that it do .. not handle the boundary condition.s
for cella on the edge of the grid . Handling the.e cond i tions 1.
a bit tedious but conceptually straightforward .) */

po ly void glt_neighbor.() {
incoming_state . Bit[D] •
inc ollling_. tate. B1 t (1]
incollling_state . Bit(2)
incoming.8tate .Bit(3]
incoming_atate .B1t(4]
incoming_state . Bit[6] •

)

«grid)thia) [1) (0] .outgoiD8_8tate.Bit[3]:
«grid)thi a) [0) (1] .outgoing_8tate . Bit[4] :
« grid)thia) [-1] (1] . outgoing_. tate . Bit (6) :
«grid) thia) [- 1] [0]. outgoing_state . B1 t (0) :
«grid)thia) [0) [-1] . outgoing_state . B1 t [1] :
«grid)th18) (1] (-1] . outsoing_state . Bi t [2] :

Once each cell has determined which particles are entering (by collecting its incoming
state). it updates its outgoing state to reflect the particle interac tions . F irst, all cells that
have their obstacle-bit turned on are instr ucted to aet tbeir outgoing state t o be the same as
lhfir incoming state (since part icles that hit an obstacle bounce back in the same direction) .

3.4. INTERACTIVE INTERFACE 21

Next, patterns are broadcast that correspond to each of the possible S-bit incoming states,
followed by the corresponding S-bit outgoing- state. Each cell compares its incoming state
to the pattern being broadcast. When there is a match, the cell updates its outgoing state
accordingly. For example, a cell with an incoming state of 011011 would then have an
outgoing state of 110110 (refer to figure 3.2d).

/- The rule table is indexed by a six-bit incoming- state value
and contains the corresponding outgoing-state values. */

state rule.table[64]:

/- Calculate the new outgoing_state for all cells, based on the
incoming.state and the obstacle.cell bit. _/

poly void update.state {
if (obstacle.cell)

outgoing.state.Val • incomiDg.state.Val:
else outgoing.state.Val • rule.table[inco.ing.state Val) .Val:

}

It is important to note that this trivial, non-computational, table look-up is the driving
force of the whole simulation. The Connection Machine system has replaced all of the math­
ematical complexity of the Navier-Stokes equations with this small set of bit-comparison
operations. The simulation is successful because the system can perform this operation on
huge numbers of particles in very short amounts of time. It is an example of the Connection
Machine system being easier to program because it supports a much simpler algorithm.

3.4 Interactive Interface

A typical urun" of a fluid flow simulation begins by allowing the user to make several
choices. The user typically specifies the average number of particles per cell (density) and
the average speed and direction of the particles (velocity). Technically this means that the
entire region starts out with particles randomly distributed among the cells (based on the
density) and moving in a certain overall direction (based on the average velocity). The user
also selects or draws one or more obstacles snd places them somewhere in the region being
observed. All cells that are part of an obstaele have their obstacle bit set. As the simulation
runs, new particles are randomly injected from the edges of the region in order to maintain
the selected density and velocity. Once the model is running, each cell's state is continually
updated, and aversge results for regions of cells are displayed.

22 CHAPTER 3. FLUID DYNAMICS

j* This 1s the main computation loop. At each time step. each
cell fetches state from neighbors and updates its own state:
then the reBults are displayed . *j

poly void fluid_flow() {

}

for (;;) (
get_neighbors();
update_state 0 ;
display_state();

}

/* Execution begins here . */

void Itart_fluid_flowO (

/* Initialization . */
initialize_rule_table();
initialize_cell();

}

j* Activate all processors in flUid_grid
and then call the function fluid_flow . -/

[[] []fluid_grid] . (fluid_flow(); }

Figure 3.4: The formation of a fluid flow phenomenon, called a "vortex 8tred, " 48 fluid
flows from left to right past a flat plate.

3.5. TIMING AND PERFORMANCE 23

3.5 Timing and Performance

A production level version of the algorithm described in this chapter has been implemented
and extensively tested on the Connection Machine system. The simulation operates on a
4000 x 4000 grid of cells, typically containing a total of 32 million particles. The Con­
nection Machine system is able to perform one billion cell updates per second. Figure 3.4
shows several displays from a simulation of lOO,(X)() time steps. Each time step includes
approximately 70 logical operations per cell; the simulation therefore required a total of
100 trillion (IOU) logical operations. The complete simulation took less than 30 minutes.
Current results are very competitive with state-of-the-art direct numerical simulations of
the full Navier-Stokes equations.

3.6 Summary and Implications

In addition to providing very accurate simulation of fluid behavior, the Connection Mschine
method for simulating fluid flow allows scientists to continually interact with the model.
Any of the user's original choices may be modified during a run of the simulation, without
long delays for new results. Since particles are continually moving through the cells, a new
density or average velocity may be est.ablished by adjusting the particles being randomly
injected from the edges. When a new obstacle is added during a run, the obstacle bits in
the appropriate cells are set, and those cells begin to re8ect particles. Within less than a
minute (a few thousand time steps), results based on the new selections become apparent
in the displayed flow.

The algorithm for simulating fluid 80w em the Connection Machine system is simple. It
overcomes problems formerly associated with computer simulations of 8uid flow by using
a discrete simulation that takes advantage of the Connection Machine aystem's inherent
data level parallelism. During each time step, every particle can move in the direction it is
heading, every cell can evaluate its new partIcles based on collision rules, and every cell can
update its state to reflect the direction of the particles it currently contains. The algorithm
involves a small number of instructions executed over a large amount of data. Since the
Connection Machine system is able to assign a processor to each data element, and to allow
all processors to communicate simultaneously, it has provided the computational power
required to provide the ideal solution to this applications need.

24 CHAPTER 3. FLUID DYNAMICS

Chapter 4

Contour Maps from St e r eo Images

Human beings have extremely sophisticated and well-developed visual capabilities, which
scientists are just now beginning to understand. Since humans are very good at dealing
with visual data, graphics and image processing provide an excellent opportunity for cre­
ative partnership between people and computers. An example of this partnership is t he
widespread use of graphical output for computer applications, such as scientific simula­
tions. The computer does what it does best, computing the results and displaying them in
a picture or a movie. Researchers do what they do best, usmg their sophisticated visual
system to make qualitative judgements based on the visual information.

In many important computer applications, however, this partnership breaks down.
When the flow of visual data is too large, the human visual system makes mistakes. Of­
ten this is simply because humans get tired and lose their concentration when faced with
very large and monotonous streams of visual data, not because they are trying to extract
information too subtle (or current computer science to handle.

4.1 Analyzing Aerial Images by Computer

The analysis of detailed aerial images is an area where increa.sed computer processing is
highly desirable. Topographers would like to have the computer partially "digest" the visual
data first, presenting only the essential properties of the images to the human user. In some
cases, they would like to have the computer go even further, drawing abstract conclusions
from raw visual data. Scientific progress in image processing and artificial intelligence
has recently made this kind of information processing possible. However, conventional
computers cannot keep up with the enormous flow of data that these applications present.
Consequently, humans are still doing most of the work in these areas. The partnership has
broken down because people are doing what the computer should be doing for them.

25

26 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Data level parallelism is helping to redress this balance. It is ideally suited to the analysis
of multiple images and the detection of subtle differences between them. In particular, it
is allowing stereo vision algorithms to be applied to terrain analysis in very high volume
applicdions. Stereo vision is the process by which humans are able to take in two slightly
different images (from the two eyes) and use the small differences arising from the two
different perspectives to determine the distances to the objects in the field of view. Using
the same principle, the Connection Machine system is able to analyze two aerial images
to determine the terrain elevation and to draw a contour map. Contrary to the apparent
ease with which humans can perform this process, it is a subtle and difficult computational
problem which no computer has yet solved perfectly. That is why humans are always
involved to "coach" the process. The Connection Machine system, with its natural ability
to handle large numbers of images and compare them in great detail, can help to drastically
reduce the amount of work people must do in this area.

This chapter describes the underlying algorithms for stereo vision on a data level parallel
computer, and shows some of the implementation on the Connection Machine system. Many
detailed elements of an actual production system, such as straightening out misaligned
images and displaying intermediate results, have been omitted in order to focus on the
underlying algorithms. See references (2,3,5,11 ,12,131 for more information on machine
vision and the stereo matching problem.

4.2 Seeing in Stereo

Images are very large, inherently parallel data structures. Therefore the processing of images
is an application that is ideally suited for data level parallelism. An image is stored as an
array of picturt dtmtnb, or piuis. An image with 256 pixels in the vertical dimension and
256 in the horizontal dimension has a total of 65,536 data elements. More detailed images,
with 1024 by 1024 pixels, have more than a million data elements. For black and white
images, the value stored in each of the pixels is the intensity of light at that point, ranging
from pure white through various shades of gray to pure black. (Pixels in color images
contain information describing the hue and saturation as well as the brightness.) The
contour mapping problem is one of extracting terrain elevation information from images
that, upon first inspection, contain only information about terrain 6rightneB8 at each pixel.

The term sltrto means "dealing with three dimensions." StUtO vision is "the ability to
see in three dimensions." Humans and many animals have the remarkable ability to take
in two images, obtained from slightly different perspectives-one from each eye-and fuse
them to perceive a three-dimensional world. The difference in perspective causes objects to
appear in slightly different places in the two images. The amount of positional difference is
relat.ed to the distance of the object from the viewer.

4.3. FINDING THE SAME OBJECT IN BOTH IMAGES 27

Because stereo vision occurs automatically in humans, we tend to be unconscious of the
process. A simple demonstration serves as a reminder. Hold a pencil in front of a piece of
paper and fix. your gaze on the paper. Start to alternately close one eye and then the other,
then slowly move the pencil toward your face. Keep the paper stationary and your gaze
fixed on the paper while you move the pencil. The paper always seems to shift back and
forth by the same small amount, but the cla!ler the pencil moves to you, the more it j umps
in position between the two views.

The two images used in a stereo vision system are called a "stereo pair." Figures 4.1
and 4.2 give an ex.ample. Figure 4.1 shows a model of some terrain, as seen from an oblique
angle. Figure 4.2 shows a stereo pair obtained from directly above the terrain. Figure 4.2
can produce a vivid sensation of depth when observed with an appropriate stereo viewing
apparatus.

Figure 4.1: An oblique tnew 01 a terrain model ulJed in a demonlJtration 01 the contour
mapping algorithm.

4.3 Finding the Same Object in Both Images

Individual pixels within an image are not reliable indicators of objects. Two pixels, one
in each image, can have the same brightness value without being part of the same object.
Features larger than individual pixels must be found. The "edges" between areas of different
intensities make up an effective set of such features. An edge is a line, usually a crooked line,
along the boundary between two areas of the image that have different intensity. Instead
of trying to match pixels based on their intensity, the a1gorithms match them based on
the IJhape 01 nearby edgu. The shape of edges is usually much more strongly related to

28 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Figure 4.2: A ,tUtO pair of the terra1'n III Figure 4.1, obtained from directly above the
terrain .

distinct objects than the simple brightness value.

Figure 4.3 shows an example of edges. These edges were derived from the stereo pair in
Figure 4.2.

Tn.e process of finding edges falls into the category of image computations called "local
neighborhood operations," Individual pixels are classified based on characteristics of a
group, or neighborhood, of nearby pixels. Edge~ are found by having each pixel determine
whether the brightness of nearby pixels on one side of it is very different from the brightness
of nearby pixels on the other side. This will be the case only for pixels that pass this test:
they mu,t lie between two image refl1·on. that are .imilar within them.elvu but different from
each other. These edge pizel. are detected by examining the local neighborhood of every
pixel in parallel, and storing the ones that pass the test in an array. Typically, only 10 to
20 percent of the pixels in an image get classified as edge pixels.

Figure 4.3: An ezample of edgu. The.e edge. were derived from the .tereo pair .hown in
Figuft ./ .£. They delineate the boundllnu bdwun area. 0/ different inten.itll.

4.4. MATCHING EDGES 29

4.4 Matching Edges

Even though edges are much more closely tied to objects than simple brightness values, there
is still a great deal of work involved in deciding whether an edge in one image corresponds
to a particular edge in the other image. Real images suffer from distortions due to several
sources. Distortions include random fluctuations or "noise" introduced in the electronic
imaging process, relative misalignment between the cameras, and irregular illumination.
In addition to these effects, which tend to blur the distinction between edges that match
and those that do not, there is a "bad luck" fac tor: an object or surface marking in one
image very ' often just happens to look like several markings in the other image. For these
reasons, the final choice of matches, and therefore the correct positional difference, is always
somewhat ambiguous.

If t.he de~o:<;tio ll of edges wer" a p"rfecL prOl;e8::i, df:(;idiug wll k h posi~iollll.l diITereJice ill
best for each pixel would be simple. A local neighborhood of edges would align exactly at
one relative shift and very little at all the others. Because of the imperfections described
above, however, such a high level of precision is impossible. Every neighborhood of edges
in one image matches to some extent with many neighborhoods in the other image. The
competition is usually very close.

4.5 Measuring Alignment Quality

To resolve the competition, the Connectioo Machine algorithms hold one of the images
stationary and "slide" the other one over it horizontally one pixel at a time. Each time the
moving image is slid one more pixel's distance, all the stationary pixels compare themselves
to the pixe13 to which they now correspond in the slid image. They record the presence
or absence of an edge alignment in a table in their own memory. Typically, the maximum
8hif~ bet.wtlen two imagCIJ ill SO pixels, IJO a t ll.ble of SO alignllllm~ lIut. tdn:s is cr"",te,J ill the
memory of each stationary pixel's processor.

This sliding procedure, using the edges from Figure 4.3, is illustrated in Figure 4.4.
Each of the 16 images shows an alignment table entry for each pixel. Black pixe13 indicate
positive alignment table entries, i.e., "match-ups" between the stationary and the sliding
images. For example, the 7th image shows alignment-table-slot 7 in each pixel. Thus every
black pixel in image 7 corresponds to a match-up between stationary and sliding edges when
the relative shift was 7 pixe13.

The resulting alignment tables generally show several spurious matches, but al80 one
or two solid onea where the local neighborhood of edges lined up very tightly. Wheo this
happens at a pixel, it is a signal that the correct shift (the correct positional difference) for
that pixel has been found.

30 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

~.:..

': ./' ;~-.:
,' . ":'" ,

~f{":r '1""f.!" .
.:. ~'

-< ,. ,

~.

. , ,
,~· • .'t, . "\

. :' ~ . ,', .. -;":'-

~_~; ':- 1.6" " ',- -<is:
, ", . .. ," ._.

-. ;
, <

.'.
- ~.::' , , ' • [2"

.'

,
.'

.'

Figure 4.4: An illustration of the sliding prott", Each of theBe images show, the con­
tents of an alignment-tabLe.slot in each pixel. The Nth image shows slot N in every pixel'.
alignment table . The dark areas art regions of good alignment, i.e., area" where the same
aligl'untnt.table-slot is filled in many piuls.

4.6. DRAWING CONTOUR MAPS 31

Nt in the edge detection process, the alignment quality of every ahift position in the
alignment table is measured by a local neighborhood operation. In this case, the operation
is the following: for each ahift position, each pixel processor counts and records the number
of matching edge pixels in a small neighborhood around itself. This count or "score" will
be high for pixels whose nearby edges are tightly aligned with the edges in the other imsge
at the ume po&ition 6ut di'plfJeed 61f the &hift.

The best shift for a given pixel is determined by comparing the alignment scores at
every position in its alignment table. The .hift that hu the Aighed .core i. cho.en u the
corred ,hift lor the pixel. This process takes place in parallel for all pixels; in this way a
shift is determined for each pixel.

Areas of tight alignment are clearly visible in Figure 4.4. For example, the small shifts
(1 through 4) are tightly aligned over low terrain (refer to Figure 4.1), and the III-rgt: ,biIttl
(13 through 16) are tightly aligned over high terrain. Match-ups in these areas will get high
alignment scores because they lie amidst many other match-ups.

4.6 Drawing Contour Maps

The processing described so far yields the shirt (or elevation) for every pixel that is part of
an edge. These pixels form a "web" of height. that approximates the shape of the terrain,
but is not yet smooth and continuous. It is full of holes (where non-edge pixels were) which
must be filled in by interpolation.

Interpolation is accomplished by another local neighborhood operation. Each pixel that
is not on the web takes on a new elevation which is the average elevation of the pixels in
a small neighborhood around it. The neighborhood includes the four pixels above. below,
to the left and to the risbt of the pixel. The pixeIa that make up the web maintain their
original elevations; only the pixels in the holes change their values. This process is repeakd
or ~iterated" a few hundred times.

Pixels that lie in the middle of holes in the web have zero elevation. Therefore, when
they become the average of their neighbors, which also have zero elevation, their elevation
does not change. However, pixels that lie near the edges of holes in the web have neighbors
whose elevation is nonzero. Therefore, when they become the average of their neighbors,
they jump to a nonzero elevation. On the next iteration, these new nonzero pixels influence
their neighbors, in turn creating new nonzero elevations. Gradually, after a few hundred it­
erations, the pixels on the web--which remain unchanged throughout the process---spread"
their elevations across the holes in the web, fiUing it in to create a smooth, continuous sur­
face from which a contour map may be drawn. An example of a contour map is shown in
Figure 4.S .

32 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Figure 4.5: A conlour map oj the turain modd .hown in Figures 4.1 and t, computed on
tht: Connection Machine .y,tem.

4.1 Finding Edges on the Connection Machine System

A pbc:ei is classified &8 an edge pixel if it lies between two image regions that are similar
within themselves but different from each other. This is the program that performs the
edge classification operation.

(*detun 1ind-edgea-between-left-and-rightl I
(*let* «average-brightn8s8-on-the-left

(/11 (+11 (pret-grid-relativell

(pret-grid-relativell
(pret-grid-relativel I

(II 3.0»)
(average-brightneas-on-the-r1ght

(/1' , ." (pref-grid-relativel!
(pref-grid-relativel I
(pref-grid-relativel I

(II 3.0»))

(brightness-pvar threshold)

brightness-pvar
brightness-pvar
brightness-pvar

brightness-pvar
brightness-pur
brightness-pvar

(average-brightness-overall
(/1 I (.1 I average-brightness-on-the-left

average-brightness-on-the-right)

(11 -1) (11
(II .1) (II
(II .1) «(I

(!! 1) (II
(II 1) (II
(! I 1) (II

-1))

0))

1) »

-1))

0»
1»)

4.8. MATCHING EDGES ON THE CONNECTION MACHINE SYSTEM

(II 2.0»»
(if I I (>1 I (absolute-value' I (-II average-brightness-on-the-Ieft

average-brightness-on-the-rlght»
(*1 I (II threshold) average-brightness--overall»

(II 1)

(I, 0»»

33

The preceding program sequence calculates the average brightness in a small region to
the left (i.e., with relative x-coordinate - 1, and relative y-coordinates -1, 0, and 1) and
the average brightness in a small region on the right side (with relative x-coordinate 1) of
each pixel. If. at any particular pixel, the difference between these averages is greater than
the specified threshold, then the pixel is marked with a one, mea.ning that it i" lln edge
pixel. Otherwise it is marked with a o. The threshold is multiplied by the overall a'·erage
brightness, a process called "normalization." With normalization, the threshold adapts to
the image, becoming small in regions where the image is generally dark, and large where
the image is generally bright.

Since this program compares regions on the left and right aides of a pixel, it work. only
for edges that are more or less vertical. It is easy to write a program that finds horizontal
edges by having it compare small regions on the top and bottom of a pixel, in the aame way
that this program compares regions on the left and right. The aame could be done edges
in both diagonal directions. The four programs may then be combined to find all edges in
the following way:

(.detun find-all-edgesll
(it II (orll (., (II 1)

(., (II 1)

(., (II 1)

(., (II 1)

(II 1)

(II 0»)

(brightness-pvar threshold)
(find-edgea-between-Ieft-and-rightl I

brightneas-pvar thrashold»
(find-edgea-between-above-and-belowl I

brightneas-pvar threshold)}
(find-edgea-between-upper-Ieft-and-Iower-rightl !

brightneas-pvar threshold»
(find-edges-between-Iower-Ieft-and-upper-rightl I

brightness-pvar threshold»)

4.8 Matching Edges on the Connection Machine System

The following program sequence implements the sliding procedure described above. One of
the edge images is held stationary and the other edge image is moved across it horizontally.

34 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

one piKel at a time. At each relative shift (1, 2, ... I 30), each processor records whether
an edge match has been found in the sliding image. This information is stored in a pvar
that represents one of the alignment tables disculISed above. All of the alignment tables are
stored in the Connection Machine memory at the same time.

(de fv&r .array-of-pvars-holding-matchea- at-each-ahift* (make-array 30»
This ia just a regular Lisp array. but each element of this
array will be a pvar . Notice that we'll try to find positional
difterences of up to 30 pixels. (Note: each one of the pvars
in this array will hold an "alignment-table-slot" for every pixel,
as discussed in the text).

(.defun fillup-pvars-wherever-edges-align (lett-edges right-edges)
" This program recorda the edge-pixel match-ups at every ahitt;
;; that ia, thia program createa -match-up images ,- as shown in
;; Figure 4.4.
(dotimea (i 30)

(aset (itl I (-,! lett-edges
(pret-grid-relativell right-edges (I I i) (!! 0»
) -This PREF-GRID-RELATlVE! I accomplishes

(!! 1) ; the -sliding- process.
(I! 0»

array-ot-pvars-holding-matchea-at-each-shitt
i)))

The next step in the process is to decide at each pixel position which shift produced
the best match-up. Most locations will contain a somewhat random pattern of match-up
pixels. However, at some locations, the local neighborhood of match-ups will be very dense
and regular, indicating that the shift responsible for that match-up image is probably the
correct shift for that neighborhood.

The following *Lisp program measures the density or alignment quality of every neigh­
borhood. It does so by counting the number of 1'13 (match-ups) in a square around each
pixeL The counting process is accomplished in parallel, for all pixels at once, on the Con­
nection Machine system.

The square tor each pixel is to be centered on that pixel.
Because a DOTIMES l oop always produces values starting at zero,
it is necessary to subtract one-half the width ot the square
from the loop variable in order to get relative indexes that

4.8. MATCHING EDGES ON THE CONNECTION MACHINE SYSTEM 35

;;; are centered on zero .

(.defun add·up· all-pixels·in-a·square (pvar width·ot-squara)
(let «ona·half-the·square-width (I width-ot·.quare 2»)

(.let «total (II 0»)
(dotimes (relative·x width-of-square)

(dotimes (relative-y width-ot-square)
(.set total

total»)

(+1 I total
(pref·srid-relativel I

pvar
(- relative-x one-halt-the·square·width)
(- relative-] one- half·the·square- width»»»

At this point, it is a simple matter to record the alignment quality or sc:ore for every
pixel.

(defver .array-of-pvar.-holding-score8-at·each·8hitt. (mak8 ·array 30»
; ; ; Another Lisp erray holding .Lisp pvar8.

The next atep ia to fill all the elements of the Liep array with .Liap pvan. The Nth
element of the Liep array holds a pvar containing the scores, or alignment qualitiea, of all
the mat.chea that occurred when the edge images were ahifted by N pixela relative to each
other. (Note that thia program records scores only at locations where mat.ch·ups occurred.
Other locations have no score, which reBects our original intention of matching edge., not
the holes between them.)

(*detun tillup·pvars-with·match-scores (width·ot·square)
;; WIDTH·OF·SQUARE will typically be 21.
(dotimes (i 30)

(*let «sum-ot·all·nearby-pixe18
(add·up·all·pixels-in·a·8quare

(aret *array·of·pvars·holding·matches·at·each-shift* i)
width-of-square»)

(*11 (-" (aret *array·ot·pvars·holding·matches·at-each-shift* i)
(I I 1» ; ;; Record. score wherever there was a match-up.

C*set sum-ot·all-nearby-pixels
array-ot-pvars-ho lding-8core8-at-each-.hift
')))))

36 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

Now that the score for every match-up has been recorded, there is only ODe more step
required to establish which of the match-ups is correct. The following *Lisp program loops
throus:h all the shifts, keeping track of the best tlCore at each pixel. The shift that produced
the best score at each pixel ia recorded as the -winning shift."

This function computee the web of known shifts. Recall that
the shift at each pixel corresponds directly to the elevation.

C*defun f1nd-the - ahifta-of-the-h1gheat-acor1ng-matches ()
'.let «beat-acorn (I' 0»

(winning-shifts (II 0»)
The following DOTrNES loop makea Rure that each
pixel in the BEST-SCORES pvar containa the maximum
acore found at any shift.

(dotilnea (1 30)

(*if (>I! (aret *array-of -pvars-holding-scores-at-each-shift* i)
beat-acoree)

C*sst best-acorea
(aref *array-of-pvara-holding-scores-at-each-shift* i»»

;; The following DOTlMES loop recorda a "winning"
;; shift at every pixel whose score is the best.
(dotillles (i 30)

(*1f (-II (eref *array-of-pvara-holding-scores-at- each- shift* i)
beat-scores)

(*set winning-shifts (I I (1+ i»»)
winning-shifts»

4.9 Drawing Contours on the Connection Machine System

A contour map cannot be constructed without a smooth, continuous surface on which to
draw the lines. All of the processing 80 rar has produces a web of known elevations (returned
by the last *Lisp function above). Interpolation across the holes in the web produces &

continuous surface.

4.9. DRAWING CONTOURS ON THE CONNECTION MACHINE SYSTEM 37

(*delun fill-in-web-hole. (web-of-known-elevationa ti ••• -to-r.peat)
Each time through the loop, every pixel not on the web (i . e . ,
every pixel that ia not zero to begin with) takea on the
average elevation of ita four neighbora . Therefore, the web
pixels gradually "apread" their elevationa acroa. the hole.,
while they the ••• lvea remain ~hang.d.

(doti.ea (i tim.a-to-repeat)
(*let «not-fixed (zeropll web-ot-known-elevationa»)

'*it not-fixed
(*.et web-of-known-eIBvatione

(/1 (+11 (pref-grid-relativell
web-of -known-elevationa
(II 1) (II 0» ;Noighbor to tho right

(pret-grid-relative' I
web-of-known-elevationa
(II 0) (II 1» ; Neighbor above

(pret-grid-relativel I
web-of-known-elevationa
(II -1) (II 0» ;Neighbor to the left

(pret-grid-relativell
web-of-known-elavationa
(II 0) (I! -1»)

(II 4))))))
; Neighbor below

wab-ot-known-elevationa) ;;; thia ia now a more or lea ••• ooth .urface.

The following code takes the smoothed-out web and constructs a contour map in the
form of a plane of black-and-white pixels suitable for display on a graphics device.

(-delun draw-contour-map (number-of-contour-lineB
pvar-of-amooth-continuou.-elevationa)

The idea ia to divide the whole range of elevationa into
a number of intervala, then to draw a contour line at every
interval.

(let* « max-elevation (-max pvar-of-.mooth-continuoua-elavationa»
(min-elevation (_.in pvar-of-a.ooth-continuoua-elevation.»
(range-of-elevations (- max-elevation min-elevation»
(contour-line-interval (I range-of-elevation.

number- of -contour-line.»)

38 CHAPTER 4. CONTOUR MAPS FROM STEREO IMAGES

;; Now the variable CONTOUR-LIRE-INTERVAL tells U8 how many
;; elevations. or shifts, to skip between contour lin •• .

(if I I (zeropll
(modI I (-11 pvar-of-smooth-continuoua-elevations

(I! min-elevation»

(II 1)

(11 0»»

(I I contour- line-interval»)
This IF!! draws all the elevation contours
at once, returning a bit map suitable for
for immediate display.

4.10 Timing and Performance

A production level version of the contour mapping algorithm described in this chapter has
been implemented and extensively tested on the Connection Machine system. Parameters
such IS the size of the images and the range of positional differences ("shifts") are variable,
depending on the application. A typical program run processes images containing 512 x 512
(262,144) pixels, while allowing for positional differences from 0 to 30 pixels. In such a mode,
the Connection Machine system performs approximately two billion (2 x 109) operations
du ring the most time-consuming phase of the algorithm, the so-called "inner loop," in
which the match-ups are detected and their alignment quality is measured . This inner loop
is executed in less than two seconds.

4.11 Summary and Implications

Contour mapping using stereo vision is an example of an image processing application that
is sophist icated and computationally expensive. The Connection Machine system, because
it readily accommodates itself to the inherently parallel structure of image data, made it
easy to conceptualize and to program the contour mapping algorithm. The simplicity and
brevity of the prog rams shown above is evidence of this natural fit.

The raw speed of the Connection Machine system is as valuable as its architecture. The
system can extract elevation information from large amounts of visual data at very high
rates. This speed allows scientists and engineers who are developing new techniques in
computer vision to try their ideas "on the fly." A short turnaround time for experimenting
with new ideas is essential for the rapid development of the field of computer vision. The
effects of various program modifications are realized almost instantaneously. The system's
computational power is a valuable aid in the design and implementation of sophisticated
algorithms.

Chapter 5

The C* Programming Language

C* (pronounced aee atar) is a simple extension to the C programming language [6,101 that
exploits the power of the Connection Machine architecture. C* is (almost) a strict extension
of C; any valid C program, if it avoids the use of a small number of C. reserved words, is
aho a valid C. program. A few new features of the language serve to indicate where data is
stored and which operations are executed in parallel in the Connection Machine network.

5.1 C* Extensions

In order to indicate whetber a variable is located on the host or in the Connection Machine
memory, two storage class identifiers Ilona and poly have been included in C.,

1I0no i:n.t X'

poly int y;
/* x resides in the hoat •• lIory ' ./
t* y resid.a in the Connection Machine a.llory *,

The modifier poly declares variables present in all processors.

The majority of parallel code is standard C code. Parallel functions are simply distin­
guished by the identifier poly. It is a mark 01 the general-purpose nature of the Connection
Machine architecture that the lull C language is available lor programming the procesaors
of the Connection Machine system. Likewise, it is a mark of the simplicity of the architec­
ture that the C language suffices for this task . In fact, no new language features need to
be introduced in order to perform parallel control8ow, interprocessor communication, and
memory allocation. The real power of C. comes from the natural parallelization of familiar
constructs of C.

39

40 CHAPTER 5. THE C* PROGRAMMING LANGUAGE

5.1.1 Parallel Control Flow

Inside of a parallel function, the normal C control-How statements, such as 11 and while,
work as expected. This is perhaps unexpected to someone experienced with other parallel
languages. For example, an 11 statement may have a conditional expression whose value is
different in different processors:

poly salary;

11 (salary <- 0)
salary· t1xup_s.l.ry();

It would clearly be an error for all processcrs to make the call to tixup..aalary. 'The
way C* handles such a statement is to reduce the active set of processors, by temporarily
inactivating all those whose salary variables are positive. The body of the it statement is
run, and then the original active set is restored. Such conditional statements can be nested
to any degree.

The while statement can also operate in parallel. At each evaluation of the loop's
conditional expression, more processors can drop out of the active set; they stay inactive
until the loop is finished. Finally, when all processors are finished with the loop, the
statement is done, and the original active set is restored. For example:

while (reaumes_to_read > 0) {

)

/ * Read ten resumes at a time . */
resumes_to_read -. 10;

In this case, all processors with resUlII.es.to...read between 1 and 10 execute the loop body
exactly once.

All other standard C control constructs are handled in similar ways in C*; even goto is
accommodated. The program behaves as if the standard C code were running separately
in each processor, with processors that are doing the same thing doing it at the same time.

5.1 . C- EXTENSIONS 41

5.1.2 The Selection Statement

In order to execute code in a selected set of processors, an additional statement called the
, election "tctement is included in C*. Selection statements may be used within any C.
function. The selection statement has the form:

[.elector] . statement

The selector indicates a set of processors. These are activated, and the statement IS

executed within those processors. For example, given the following declaration,

processor managers [100] ;

the following statement

[[l00]managers) . { salary .- 1.06; }

or, more simply,

[[]managers].{ salary *- 1.06; }

selects all 100 of the lIanagera , and gives them a six percent raise. The code:

[[50]managers] . { salary *- 1.11; }

gives the first 50 an eleven percent raise, while this:

[managers [0] ,managera[2]].{ salary -- 1000; }

singles out the first and third managers for a pay cut. (More complicated forms of selection
are also available.)

5.1.3 Computation of Parallel Expressions

C* extends the meaning of C expressions to parallel computations by means of two simple
rules. The first rule says that if a single value (typically of storage class lIono) is combined
with a parallel value (of class poly), the single value is first replicated to produce a poly
value. (In hardware terms, the single value is 6roodco.t to all relevant processors.) For
example, in the expression (salary> 20000), the single value 20000 is replicated to match
the parallel variable salary. This rule is an addition to the rules of "usual conversionsn in
plain C.

The second rule says that an operation on a parallel value (or values) must be processed
a, if only a single operation were executed at a time, in lOme aerial order. In the expreasion
(salary> 20000) it is u if we took first one salary value and compared it to 20000,
then another, and 80 on, doing the comparisons one at a time.

42 CHAPTER 5. THE C. PROGRAMMING LANGUAGE

Fortunately. we can analyze the> operation and determine that doing all the compar­
isons at once will produce the same result, because doing 60 will not aft'ed the outcome.
This is hardly surprising, and it is exactly the effect we want anyway. 80 why do we bave
the "as if serial" rule at all? It is because some operators tio have side effects: assignment
operators. Consider the expression

total_payroll +- salary;

Now totaLpayroll is a single value (what in C is called an lvalue, because it occurs on the
left side of an assignment). By the first rule it is replicated. We then have many assignments
to perform, one for each value in the parallel value .. lary:

total_payroll .- salary_1;
total _payroll ~- aalary_2:
total_payroll .- aalary_3:

The second rule guarantees that the program behaves 0. if all of these assignments were
performed in some aerial order. Which order does not matter; the result is the same. The
point is that if these &SSignments were executed in parallel some updates might be lost;
but C. guarantees that all the aalary values will be correctly added into totaLpayroll.
(Doing this efficiently is bandied by tbe C. implementor.)

A C assignment operator may be used 88 a unary operator in C. to reduce a parallel
value to a single result that may be further operated upon. For example,

(.- salary)

adds up the salaries for all persons for which processors are active, and

(.- salary)/(.- «poly) 1»)

computes the average of all salaries because the expression

«poly) 1)

makes a 1 for every active processor and

(.- «poly) 1))

adds up all the l's, thereby counting all the active processors.
In C., "<>" is the "minimum" operator and "><" is the "maximum" operator. The

expreS9ion "a >< b" means the same 88 "(a> b) ? • : b" . The assignment operators
0- and ><- are also defined: ". <>- b" assigns b to. if b is less than a . The expression
(><- salary) finds the largest salary, and «>- salary) finds the smallest salary.

5.2. SUMMARY 43

5.1.4 Data Movement

C. has no language extensions to handle data movement or interprocessor communication
per se. Instead, the normal C operations are used ; the Connection Machine architecture
allows random access to the desired datum, wherever it is in the system.

Within the code of a poly function, the keyword this is a C* reserved word whose value
is a pointer to the currently executing processor. This value is sometimes called the adJ.
pointer. If many processors are executing, Mch will have its own self-pointer. References
to the processor's variables implicitly refer 10 the self-pointer: saying salary is the same
as saying this->salary. Explicit references to this are useful for accessing the memory
of neighboring processors through indexing.

The key point is that any processor may contain a pointer to data in the memory of any
other processor, and access through that pointer is lupported by the Connection Machine
router. All interprocessor communication csn therefore be expressed in C* merely by the
usual explicit and implicit pointer indirection mechanisms. For example, to increment a
neighbor's salary field, and then decrement one's own based on the result, the following
code might be used:

this[l] . salary .- 1000:
salary -- this{l] . salary •. 10;

Similar expressions csn also ~ used to broadcast data throughout the system, to transfer
data between the host and Connection Machine processing network, or to collect data from
many sources into one location.

5.2 Summary

The C* language is a version of the standard C language Imitable for programming the Con­
nection Machine system. Because of the simplicity and power of the Connection Machine
architecture, C* itself is a simple yet powerful extension of C. The Connection Machine
memory is treated as a large section of hos,-accessible memory with active objects stored
in it. Because standard C is already excellent at manipulating structures, pointers, and the
like, relatively few new language features are needed to deal with the Connection Machine
architecture. All the familiar C language constructs acquire the power of parallelism easily
and naturally.

44 CHAPTER 5. THE C- PROGRAMMING LANGUAGE

Chapter 6

The *Lisp Programming Language

*Lisp (pronounced star lisp). is an extension of Common Lisp [9J, a standard dialed of Lisp
that is found on a variety of computer systems. Lisp has many features that are common
to most programming languages, but its unusual structure and syntax make the programs
a bit difficult to read for someone who has mainly had experience with block structured
languages such as FORTRAN or C.

This chapter covers both Lisp and *Lisp in sufficient depth to make it possible to under­
stand the program examples in this book. See references [9,15,16) for a deeper understanding
of the Lisp language and its structure.

6.1 Fundamentals of Lisp

What most people remember about Lisp is that it uses lots of parentheses. And it is true-­
Lisp does. But it is not necessary to understand the full implications of the parentheses
to understand the sample progr8Jll8. Roughly, in a Lisp expression the first thing that
comes after the open parenthesis is the function name, and after that are the arguments.
So (+ 7 A) would call the function +, which adds 7 and the value of the variable A, and
returns the result.

Lisp function calls can be nested as they can in other languages. For example:

(. 6 (+ 1 2 3»

would first add together 1, 2, and 3, and then multiply the result by 5, giving 30.
Most Lisp programs are indented to help reveal their structure and to show how many

levels deep parentheses have been nested. Expert Lisp programmers keep their code properly
indented, and rely on the indentation as much as the parentheses when reading code.

45

46 CHAPTER 6. THE *LISP PROGRAMMING LANG UAGE

6 .1.1 Lisp Functions

Functions are the program building blocks of Lisp. Unlike many other programming lan­
guages, Lisp does not have a main program followed by a series of functions. In Lisp
everything is a function, and programs are executed by invoking those functions from an
interactive Lisp interpreter.

The Lisp function-defining operation is called DEFUN. The first argument to DEFUN is
the name of the function that is being defined, the second a list of its arguments; these are
followed by the operations to be performed. For example:

(detun add-three (x) (+ x 3»
defines a function named add-three that takes one argument named x, and the operation
that is performed by the function is (+ x 3).

6.1.2 Variables

It is not necessary in Lisp to predefine variables, but it is often done for clarity. The
mechanism is straightforward:

(detvar a 25)

defines a variable named a with an initial value of 25. Variables defined with detvar are
global variables that can be accessed by any function at any time.

Temporary variables are defined in Lisp with the let operation, which takes a list of
variable-value pairs, and is followed by a sequence of operations to be performed. For
example,

(let ({ temporary 25)

(x 49»
(print (+ temporary x»
(print ,. temporary x»)

allocates two temporary variables temporary and x, assigns them the values 25 and 49
respectively, prints their sum and product, and then deallocates them when the let is
exited.

Variables have their value set with the setq function which takes as its arguments a
variable name and a value. So

(setq b 34.5)

sets the variable b to 34.5.

6.2. -LISP EXTENSIONS 47

6.1.S Program Control Structure

The it construct is a simple method for conditionally controlling the flow of a program; it
is used in several places in the example prosrams. It takes a test clause, an expression to
evaluate if the result of evaluating the test clause is true, and, optionally, an expression to
evaluate if the result is falae. The following simple example shows how it is used.

(if (- a 10)
(print "a is 10")
(print "a is not 10"»

Several of the examples use dotimea, a facility for executing a series of expressions a
specified number of times. A.JJ an example,

(dotimes (j 10)
(print l»

prints the integera from 0 to 9.

6.2 .Lisp Extensions

A .Lisp program looks much like an ordinary Lisp program. The bin:est distinction is
that -Lisp operations manipulate data stored in the Connection Machine hardware, while
Lisp operates exclusively on the host proce390r. There are no instructions stored in the
Connection Machine processors; instructions are generated from the -Lisp program and
broadcast to the Connection Machine system.

The names of mOl!lt .Lisp functions either begin with an " •• or end in "II" (meant
to look like two parallel lines, and pronounced bang hang) which means that they perform
operations on parallel voriobles. This is only a namins convention and does nothins but
distinguish functions that work with the Connection Machine system and parallel variables
from functions that don't. User programs may also follow the convention, but it is not a
requirement.

This section describes enough .Lisp to make the example programs understandable.
As part of that, it is first necessary to describe a few of the fundamental features of the
Connection Machine system.

6.2.1 Procesaors

A procenor is the entity that operates on data in parallel . Each processor has a unique
address that allows it to be directly accessed. The addl'1!1I8 is made up of one or more num­
ben depending how many dimensions the Connection Machine hardware is simulating. A

48 CHAPTER 6. THE *L1SP PROGRAMMING LANG UAGE

one dimensional machine would take one number as an address, a two dimensional machine
two numbers, etc. -Lisp has instructions that can directly access data in the Connection
Machine processors via these addresses.

6.2.2 Parallel Variables

The parallel variable mechanism is one of the key programming differences between .Lisp
and sequent ial programming languages. A thorough understanding of what parallel vari·
abies are and how they work is crucial to understanding the example *Lisp programs in
this document.

On a serial machine a variable may have only one value at a time. On the Connec­
tion Machine system a parallel .Lisp variable has as many values as there are processors.
Descriptors for parallel variables, or p",ar., reside on the host computer, and the values of
those parallel variables are in the Connection Machine memory.

The .Lisp expression for defining a pvar is similar to the Lisp mechanism for allocating
a variable. The expression

(.de:tvar b (II 6»

defines a pvar named b which has a value of 5 on every processor in the machine. The
function .de:tvar is the parallel version of Lisp's defvar. The expression

(!! 6)

is the part of the defvar that actually does the allocation of a field with a value of 5 in
every Connection Machine processor.

Values are retrieved from processors with the pref function. For example,

(pre! b 7)

would return the value ofpvar b in processor 7. Setting a value in a processor is accomplished
with the Lisp seU function.

(setf (pref b 3) 10)

would set the value of pvar b to 10 in processor 3. The first argument to seU describes
how to access the field that is going to be altered and the second argument is the new value
of the field .

The following series of .Lisp expressions show in some detail how to allocate and use
pvars.

First define some pvars:

(.defvar a)

l

6.2. *LISP EXTENSIONS

(*defvar b (II 6) "This is a documentation string.")
(*defvar c (I! -2.67»
(*defvar d tl!)
(*defvar e (1+11 (self-address!I»)

49

These statements created live pvars. The last four have been initialized with specific
values: b is a Lisp symbol that has as a value a pvar whose contents is the integer 5 in
each processor, c contains the Boating point number - 2.67 in each processor, d contains
the boolean value true in each processor, and e contains the address of the next higher
processor. The function self-address is a function that returns a pvar which contains the
address of the selected processor.

Now read some of the values using prd.

(pref c 0)

returns the lisp value - 2.67 since that is what is contained in pvar c in processor O.

(pref d 366)

returns the lisp value t since that is what is contained in pvar d in processor O.
Now do some arithmetic on these pvars:

(*set a (+11 b c»

will set the contents of pvar a to he the sum of the contents of pvar band pvar c. Notice that
c contains Boating-point values. The integers contained in b are converted to Boating.point
numbers and the result in a will be floating point as well. Expressions can be nested:

This expression sets a to the difference of b and twice a. This simple expression could cause
thousands of such operations to go on simultaneously! The expression (11 2) returns a
pvar that is 2 in all processors.

This point is important. The expression

(+11 a 2)

is an incorrect *Lisp expression. The variable a is a pvar, whose values are stored on
the Connection Machine system, while the integer 2 is a Lisp object stored on the front
end system. It is necessary to convert the 2 to a parallel value before doing any parallel
computation.

50 CHAPTER 6. THE *LISP PROGRAMMING LANGUAGE

6.2.3 Accessing Pvars Relative to a Grid

Two of the example programs, Ruid Rowand stereo matching, make heavy use of the
Connection Machine system's grid mechanism, which facilitates communications between
processors for problems with two-dimensional data structures. For example say image was
a pvar containing a two-dimensional image. The following expression would shift the entire
image over by one pixel in the x direction and place the result in shitted-image:

(*set shifted-image (pr ef-grid-relativell image (!! 1) (!! 0»)

in this example the (!! 1) specifies that there is a shift of 1 in the x-dimension, and the
(!! 0) specifies that there is no shift in the y-dimension.

6.2.4 Selection

Tn *Li~p it is possible to do an operation in a selected subset of all processors. The *Lisp
function *lJ1hen is used to do that selection. For example:

(*when (,,!! a (!! 5»
(*set a (+!! (!! 2»»

adds two to a in all processors in which a has a value of 5.

6.2.5 .Lisp Programs

*Lisp programs are defined in much the same way that Lisp functions are defined. The
main difference is that *defun is used instead of defun to define functions that either take
a parallel variable as an argument or return a parallel variable as a result.

6.3 Summary

*Lisp is a simple extension to Common Lisp that integrates the Connection Machine system
into an ord inary serial programming environment. For someone familiar with Lisp, the
essentials of *Lisp can be learned and put to productive use within a few hours.

Chapter 7

The Connection Machine System

The Connection Machine system from Thinking Machines Corporation is the first computer
to implement data. level parallelism in a general purpose way. It combines a very large num­
ber of processora with the communications capability necessary to match data topologies
exactly, This chapter describes the hardware implementation of the Connection Machine
system.

7.1 Connection Machine Internal Structure

As described in Chapter 1, the Connection Machine system operates by receiving it. strum
of instructions from its front end computer. A microcontroller receives the instructions,
expands each of them into a series of machine instructions, then broadcasts the machine
instructions, one at a time, to all processors at once. The instructions coming in from the
front end are referred to as ~macro-instructions." The instructions broadcast to the individ­
ual processors are called "nano-instructions." Macro-instructions are similar to assembly
language instructions on a conventional machine. They are the instruction codes produced
by the Connection Machine language processors. In the sections that follow, names of
macro-instructions appear in italics.

The Connection Machine system includes 65,536 physical processors, but may be con­
figured for a much larger number of logical processors by means of the cold-boot command.
Cold-boot takes two arguments that allow a two-dimensional array of virtual processors per
physical processor. Cold-boot(4,4), for exsmple, sets up the machine in the million-processor
mode (or, more precisely, the 1,0418,576 processor mode) because each of the 65,536 proces­
sors will simulate 16 (4 x 4) virtual proceSlOrs. The same number of virtual processors could
be establ ished by the command cold-boot (16, 1). Since virtual processors a re 80 commonly
used , they are referred to simply as "processors". Where it is necessary to refer to one or

51

52 CHAPTER 7. THE CONNECTION MACHINE SYSTEM

the 65 ,536 hardware processors, the term ~phY8ica.l processor" is used .
Each physical processor bas 4096 bits of memory, totalling 32 megabytes for the machine

as a whole. In the million.processor mode, each processor has 256 bits of memory. Memory
is divided into a data area and a stack area, with. the layout being the same in each. processor.
A single, system·wide register, the stack limit, defines the boundary between stack space
and data space. The stack pointer is also a system-wide register. The stacks in all processors
act in unison.

Memory is bit-addressable; all data fields are of arbitrary length. For numeric computing
there are three standard formats: unsigned-integer, signed-integer, and floating-point . Each
is of arbitrary length. In particular , floating-point numbers can be of any length. P icture
and word data are of arbitrary format and length.

A complete Connection Machine memory address has thft.~ parts. The first part indi­
cates a physical processor. The second part indicates one of the virtual processors simulated
by that physical processor. (This part is empty if there is only one virtual processor per
physical processor.) The third part is an address within the memory of that virtual proces­
w , .

Data may be exchanged between the Connection Machine memory and the front end in
any of three ways: slicewise, processorwise, and arraywise. Read·,lice reads a single bit of
information from the memory of each of a series of consecutive processors, assembles them
into a signed integer, and passes the integer to the front end. Write- slice moves data from
the front end to the Connection Machine memory. Slice operations are typically done 16 or
32 processors at a time . Read.proceBlor and write·proceBlor move a single field between the
front end and a single processor. Read·arrayand write-array move arrays of fields between
the front end and a set of contiguous processors.

7.2 Connection Machine Instruction Flow

All instructions flow into the Connection Machine hardware from the front end. These
macro-instructions are sent to a microcontroller, which expands them into a series of nano­
instructions. Some expand into just a few nano-instructions. O thers expand into hundreds
or thousands. It is also possible to feed nano-level instructions to the microcontroller and
con\rol the hardware directly. It is not, however, efficient to do so, because the front-end
cannot supply these instructions rapidly enough to keep the system busy. (Direct control
of the hardware from the front end is provided primarily 50 that the front end can support
debugging and diagnostic aids.)

Nano-instructions are broadcast to all processors in parallel. Processors, however, ha.ve
the option of "sitting out- a series of instructions. A one-bit ftag within each processor, the
conlext /fag, determines whether that individual processor will respond to the instruction

7.3. COMPUTATIONAL AND GLOBAL INSTRUCTIONS 53

or not. Most of the instructions discussed in this chapter are "conditional" in the sense
that they take effect only in the processors that are active, that is, whose context flag is 1.

The Connection Machine system is implemented with four physical microcontrollers,
one for each section of 16,384 processors. If the system has a single front end, that front
end is connected to all four microcontrollers and therefore drives all 65,536 processors. A
system may be configured with up to four front ends. A crossbar switch called the :'>l"exus
makes the connections between front ends and microcontrollers. It is possible, therefore,
to have four users operating simultaneously. Each works at a separate front end, and each
has a separate instruction stream executing in a section of the system's processors. The
examples in this chapter, however, assume that the system is operating with a single front
end.

1.3 Computational and Global Instructions

Computational instructions operate on signed integers, unsigned integers, and floating·point
values. They include unary operators such as not, negate, absolute value, and square root.
All standard binary operators such as add, suhtract, multiply, divide, compare, and shift are
included. These instructions operate in all processors simultaneously; each processor uses
the data that is stored in that processor's memory.

The random instruction places an independently chosen pseudo-random number in each
processor. Two processors mayor may not be assigned the same random value.

Global instructions produce a single result from data items stored in the memories of
all selected processors. Global-Iogior, for example, takes the inclusive OR of a field in each
processor's memory. Global-count examines a single-bit field in aU processors and returns
the number of "I" bits. Global-add sums multi-bit fields. Global-max and global-min return
the largest (smallest) value found in a specified field across all selected processors. Global-
4dd operates on unsigned integers, signed integers, or floating point values, as do global-max
and global-min. The enumerate instruction places a different consecutive integer into each
of a selected set of processors.

1.4 Communications Instructions

The simplest form of communication bet een Connection Machine processors is between
nearest neighbors. Each processor is wired to its neighbors to the North, East, West,
and South by a communications network called the NEWS grid. Four instructions, get­
from-north, get-from- east, gtt-from-weBt , and get-from-south control the transfer of data.
Information is passed one bit at a time.

General intercommunication and dynamic reconfiguration is performed by a much more

54 CHAPTER 7. THE CONNECTION MACHINE SYSTEM

powerful communications system, the Connection Machine router. It allows full message!
to be sent from any processor to any other; the sending procesaor simply needs to have the
address of the destination processor. Messages may be of any length. Typical message!
contain 32 hits of informatioD; adding the address information and headers results in a
transmitted package of 50 to 60 bits (depending on the number of virtual processors heiDI:
used).

Each" of the 65,536 physical processors is connected to 16 other physical processors in
a special organization (8 IS-dimensional hypercube) that provides large numbers of direct
paths to distant parts of the system. Every processor is connected to 16 other processors,
namely those whose binary address is different in just one of the 16 bits. The following
example shows the interconnections of processors 610 and 207010. The binary addresses are
shown in pArentheses.

, (0000 0000 0000 0010)

4 (0000 0000 0000 0100)

• (0000 0000 0000 0110)

7 (0000 0000 0000 0111)

14 (0000 0000 0000 1110)

" (0000 0000 0001 0110)

3. (0000 0000 0010 0110)

70 (0000 0000 0100 0110)
134 (0000 0000 1000 0110)

2.' (0000 0001 0000 0110)

61. (0000 0010 0000 0110)

1030 (0000 0100 0000 0110)

2064 (0000 1000 0000 0110)

4102 (0001 0000 0000 0110)

8108 (0010 0000 0000 0110)

16300 (0100 0000 0000 0110)

32774 (1000 0000 0000 011 0)

" (0000 0000 0001 0110)
2064 (0000 1000 0000 0110)

2066 (0000 1000 0001 0010)

2068 (0000 1000 0001 0100)

2070 (0000 1000 0001 0110)

2071 (0000 1000 0001 0111)

2078 (0000 1000 0001 1110)

1.5. THE ROUTING PROCESS 55

2102 (0000 1000 0011 0110)

2134 (0000 1000 0101 0110)

2108 (0000 1000 1001 0110)

2326 (0000 1001 0001 0110)

2582 (0000 1010 0001 0110)

309. (0000 1100 0001 0110)

6166 (0001 1000 0001 0110)

10262 (0010 1000 0001 0110)

18454 (0100 1000 0001 0110)

34838 (1000 1000 0001 0110)

These two sets of addresses have a common connection. Processors 6 and 2070 both
connect to 22. Thus it is possible to pass a message, for example, from processor 14. to
processor 10262 in just four steps. The router at processor 14 passes it to the router at
processor 6, which passes it to 22. From there it goes to 2070 and then to 10262.

7.5 The Routing Process

Connection Machine physical processors are grouped sixteen to a chip. There is a single
router on each chip that services all sixteen processors. Hence four of the sixteen routing
connections are internal to an individual chip. It takes a maximum of twelve steps to move
from any chip to any other chip. During message routing, the system goes through aU
twelve steps. If the router on a given chip has a message whose relative address has a ml"
in the low order bit position, it sends that message on the first of the twelve steps to the
chip whose address differs in that same bit (Le., the next chip). If the message it has has
a ·0" in the low order relative address bit, the on-chip router does not send any data on
that step. The process continues through all twelve steps, with all router chips responding
in the same way.

The basic message passing instruction is send. Arguments to lend spedfy the length of
the message and two memory fields. Within each processor, one field contains the message
data, and the other contains the address of & destination processor. Send causes all active
processors to initiate message transfers at once. The special Connection Machine routing
hardware handles the volume of messages efficiently. An individual router on a chip may
receive as many as twelve messages from other chips during a message cycle, one from each
other chip that it is connected to. It can in turn send as many as twelve messages, one
on each of the wires. If two messages need to go down the same wire, one is buffered
until the next routing cycle. If an individual router becomes extremely busy, it can defer
acceptance of any new messages from its own processors. Deferral keeps the router free to

56 CHAPTER 7. THE CONNECTION MACHINE SYSTEM

handle messages from other chips. If the chip's buffer space still fills, it refers messages to
neighboring chips.

Simultaneous message sending introduces the possibility that the same location in the
same processor will receive two or more mes..c.ages in the same cycle. The simple send
instruction gives unpredictable results in this case. Several variations of the Bend instruction,
such as Bend.witla.odd, deal with this possibili~y. If two or more send-witla-add messages
arrive at the same destination, they are summed. Send-witll-overwrite causes one message
to be delivered intact, discarding all other messages directed to that destination. Other
options include send·with-ma% and send.with.log1or.

7.6 Dynamic Reconfiguration

A processor address is all it takes to establish .. link on the system. This flexibility allows
applications to reconfigure dynamica1ly. A number of intructions support this capability.
The my-addre" instruction allows processors to determine their own addresses, so they
can send them to other processors and thus establish new connections. The proce"o,·con,
instruction allows each selected processor to find another "free" processor.

P,oceuor-con, specifies the address of a one-bit field , the "free flag .~ A processor is
considered free if it has a "I" in that field. The system looks in parallel for processors with
1 's and passes to each selected processor the address of a different free processor, and at
the sa.me time clears the free flags of those free processors.

Chapter 8

Looking to the Future

At one level this report is about a.lgorithms for data level parallel computers: algorithms
for looking at the whole problem at once. But at a deeper and more important level, it is
really the story of what happened when three very creative people teamed up with a new
style of computer> the Connection Machine system. All three people saw new ways to break
1hrough old barriers. The computer allowed them to confirm their intuition quickly and
then to build upon that intuition.

The intuitive insight behind the document retrieval algori thm is the fact that documents
contain a rich set of synonyms for their main content topics. Comparing whole documents
could eliminate the need to play guessing s-ames with key words. The idea had never been
effectively tested because no conventional computer could execute the algorithms quickly
on large data bases. In fact, the first tests on document retrieval by whole document com­
parison were not particularly encouraging. They were run on a data base of 150 documents,
which turned out to be inadequate. When the test was widened to 1500 documents, results
were more encouraging. At the level of 15,000 documents, they were outstanding. With­
out a data level parallel computer such as the Connection Machine system, there would
have been no way to even try the approach with 15,000 documents. Test runs would have
taken days. Interaction would have been impossible. Now that it has been shown that the
algorithm works, whole new p058ibilities for data base system design are opening up.

The intuitive insight behind the fluid Row algorithm is the fact the behavior of fluids can
be simulated without extensive arithmetic computations. Modeling the primitive behavior
of molecule packets on a large enough seale can elicit the same macroscopic behavior as
real fluids. Tests on the Connection Machine computer suggest strongly that it does. The
result is a new and potentially important avenue of scientific investigation.

The intuitive insight behind the contour mapping algorithm is the fact that sophisticated
image processing and vision algorithms can be tested on large amounts of data with a small
amount of programming effort. The drawing of contour maps, for example, is greatly

57

58 CHAPTER 8. LOOKING TO THE FUTURE

simplified by data level parallelism, because it is not necessary to identify the contours one
by one and then traverse the perimeter of each one sequentially ; instead, each pixel of the
centaur map "draws itself" in parallel with all the other pixels. Instead of having to break
up each phase of the problem into smaller pieces (or sequencing purposes, the programmer
can tackle it all at once. The result is smaller and simpler programs.

The revolution in data level parallel computing is here. The three algorithms described
in this report arc only a beginning. But they make an important point: innovative users
are an integral part of the story. Users who are stimulated to look at old problems in new
ways. Users who rev isit problems given up on as impossible in the 60's and 70's. Users who
know that a simpler 80lution i8 a better solution. These are the users who will assure that
the future belongs to compu~rs that look at the whole problem at once.

Bibliography

[I] David C. Blair and M. E. Maron. An evaluation of retrieval effectiveness for a full-tex t
document-retrieval system. Comm. A OM, 28(3):289-267, March 1985.

[2] John F. Canny. Finding Lints and Edgu in /mogell, AI Memo 720, MIT Artificial
Intelligence Laboratory, Cambridge, M&88&chusetts, 1983.

[3[Michael Drumheller and Tomaso P oggio. On puallel stereo. In International COA/er.
ence on Ro6otiell and Automation, IEEE, Apri11986.

[4] U. Frisch, 8 . Hasslacher, and Y. Pomeau. A Lattice Ga.. Automoton for the Namer­
Stoke, equation. Preprint LA-UR-85-3503, Los Alamos, 1985.

[5] W. Eric L. Grimson. From Image. to Surface. MIT Press, Cambridge, Massachusetts,
1981.

[6] Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual. Prentice-Hall,
Englewood Cliffs, New Jersey, 1984.

[7] J . Hardy, O. de Pazzia, and Y. Pomau. Molecular dynamics of a classical lattice gas:
transport properties and time correlation functions. Phy,. Rev., AI3(1949), 1916.

1s] W. Daniel Hillis. The Conntction Machine. MIT Press, Cambridge, Massachusetts,
1985.

[9] Guy L. Steele Jr., Scott E. Fahlman, RichardP. Gabriel, David A. Moon, and Daniel L.
Weinreb. Common Li,p: Tht Languagt. Digital Press, Burlington, Massachusetts,
1984.

[10J Brian W. Kernighan and Dennis Ritchie. The C Programming Language. Prent.ice­
Hall , Englewood Cliffs, New Jersey, 1918.

[ll J David Marr. Vi6ion . W. H. Freeman, San Franci8Co, 1982.

59

60 BIBLIOGRAPHY

[12] David Man and Ellen Hildreth. Theory of edge detection. Proc. Roy. Soc. London,
B(207P87-217, 1980.

113] K. Prazdny. Detection of binocular disparities. Biological Cyberne#c6, 52:93- 99, 1985.

{14] James B. Salem and Stephen Wolfram. Thermodynamiu and Hydrodynamic6 with
Cellular A utomata. Internal technical report, Thinking Machines Corporation, Ca~
bridge, Massachusetts, November 1985.

[15] David S. Touretzky. Lisp: A Gentle Introduction to Symbolic Computation. Harper &:
Row, New York, 1984.

[16} Patrick Henry Winston and Berthold Klaus Paul Horn. Lisp. Addison-Wesley, Read­
ing, Massachusetts, second edition, 1984.

