
UNIX and the Connection Machine Operating System

Brewster U. Kahle

William A. Nesheim

Marshallismatt

Thinking Machines CorponIli.on
Cambridge, Massachuseus

0588- 1
A.JJSTRACT

'The UNlXI o~g system is used on several different cunpU1ers that
comprise the Connection M.achin~l system. This makes the Connection Machine
orxorating !ys\em I simple distributed operating system optimized for larJe data appli.
cations. Common minicomputen are used IS front ends for the data ~, wi!h
one controlling the disk system. and other computers used as J,IO processors. The
front end acts as a cenLel of control for the other partS of the system, and is connected
to the data processors via an interface on iu I/O bus. Programs run on the front end ,
and instructions are sent to the Connection Machine (CM) processors to read.. write,
and manipulate data in CM memory. CM file transfers are set up and monitored by
the front end and !he disk controlling compukrS wh.ile the data is transferred over I

high speed lJO bus. Application specific data transfers are handled by other I/O ~
cesstt'S over I general purpose interface to the high speed data TJO bus. UNIX is used
&s the operating system on these components to provide a unified operating system
model for the system.

This papec will ilJuSIralt how the pieces of the Connection Machine System are
integrated 10 provide a distributed operating system based on UNIX. The structw'e
and the integration of the overall system will be discussed without going into detail on
the design and implementation of each. Funhennore, I prototype method of timeshar·
ing a massively parallel machine will be outlined. Finally, a list of interesting issues
still 10 be addressed in operating systems foc massively parallel computers will be
presented.

1. Introduction

The Connection Machine SYStem is a data parallel computer that is designed to run data intensive
applications. This system consists of a conventional serial machine as a front end. many tens of
thousands of data processors, and a selection of 1J() devices and processors. A program executing on
the front end commands all the components of the Connection Machine SYStem including the data pro­
cessors, disk system, and 110 devices. The user program is in many ways similar to a conventional
serial machine program using UNlX like devices, but at run time many interconnected computers are
used 10 perform operating system functions. Controlling these computers requires a distributod

1 v:>.lX is alndnnarl< of AT&T R~JJ Lobon""", •.

1 c.n.ca.ion M,o,hlll' is • "'l ilLu~d lndemlrt< 01 Thinkin, Mad1inu Corpon.lion.

AUl!:ust 26.1988

- 2 -

opc:ratinl system. This paper describes the Connection Machine operating SYSitm.

The QwIection Machine opcrtIting system is • hybrid of UNIX and eM specific code thai con­
trols the components of the system. Since the CM is quite different from conventional computer sys·
tems, its computational model will be bricfty described. An overview of the hardware and software
components of the J)'Stem are given. and the inlCrface between UNIX and the y';ous portions of the
Connection M.:hine sySlmi ..e described in some detail. Further work on the Connection Machine
op:rating system is suggested.

2. A nata ParaUel Computer System

Two distinct types of parallelism can be found in lOday's parallel computers. COlitrol paralltl
computerS IChicvc increased performance by taking advantage of parallelism found in the control $lJUC.

ture of programs. The e n y X-MP, BBN Butterfly,' and CaITech Cosmic Cube· are examples of con·
trol parallel computers. In Ihese machines, each processor executes a p:;Irtion of the program. Ca1se­
quently. each processor must have capabilities comparable to the processor of • serial computer on
which the same program couJd be run.

Datil paralkl COfTlpuLers achieve increased performance by taking advantage of parallelism found
in the da1a of. problem.5 The COIUlCCUon Machine system, DAP,6 and Massively Parallel Processor'
are eumples of data paralJeI computers. Data parallel computers consist of • single instructioa engine,
and thousands of data processors. each having local memory and connected 10 a communications net­
wed over ",hich they may exchange infcnnalion with other processors. There ~ twO reasons the fae­
IOfS affecting the design of data processors in a data parallel computer are quite different from those
affecting the design of the processors in a control parallel computer. First, the control aspects of a JrO­
gram on the data parallel computer may be executed by the instruction engine. This means the dala
processors are noc required to handle insttuctions, and may instead be optimized fa" data manipulation.
Second. dar.a parallel problems have tens of thousands of data elements whlch may be operated on
simulWlCOUSly with minimal interproces.sor interaction.

Progrwnming • dar.a parallel computer is m(W'e akin 10 programming serial machines than 10 pro­
granuning control p;nl1e1 machines. Data parallel programs have only one control sequence. and the
program eJlecutes on one processor, the front end. Thus. the program is running in a familiar environ­
ment with familiar tools. The data resides in Connection Machine memory and is manipulated by the
CM daa pocessors. which can access the memory d other CM proce.ssas by using a high speed inter­
communication network. Similarly the front end can access the eM memory easily and efficiently. A
major difference: between data parallel and serial code is that iteration ova the data objects is WlllCCCS·
sary. as all data objects can be operated on at once.

3. CODDKtioD Machine System CompOOtDts

"The Connection Machine system can consist of several front end processors, a dividable block of
data processors, DataVault8 disk units. high speed graphic display systems. and various LQ computers.
While many combinations are possible, this section will describe one configuration in order 10 illustrate
the function of each component in the system (see figure I).

J Boll BctuIdt ond Ne_ hM:. CNwlo{I"WN of .. BIIl/~rftJ JrltJ/iprocCMl' Tut BuI.. Repon No. SI72. QuUlerly
TecblkaI Rcpon No. I, M.rdI 1915 •

• C. L. Scil%, TN C.-.i& cw.. CommWlioui::IIIJ oIlhe ACM. VoL 21. No. I. JII\\I..". 1915
, ThiJWA& M.dlinu Coopontioa. J,1I,otIW;:lio~ /0 0..", LAW/I P",,,III1,,,", ThiJWA& Moc:b.inc. eo.porotion TedtnieoJ

Rq>on &6.14, April 1986

• f1ondcn, P_'A. CI al. EjJici4.u Hilh S~td C""'P"'III1 wirll/itt Di.JtribW~d .4ml)' ProcUJOf". Hi", Speed ComputeT
.nd. AlaorUhm OrJaniuotion. AQdemic I'rul . 1m, pp. II)·I'!I.

, 8a&I:het. Kerv>c1l'l E. (1980). Du;,~ ~" MosJi 1y !'or<rIld !'rocnJot , IEEE Traru.oaion . on Compute .. . C.29
OJ

I DolaV. lIIt is IlnuSm.rtc 01 Thinl'.i:nl ~bdlinel Cooporalion.

AUl!"ust 26. 1988

• 3 .

3 MBytes/ see 64 MB}'\es/se<:

Sun- 4
1-, -----.-,'---- ---, •..

Front End

Connection
Machine

Data Processors

'25 MBytes/sec

: ;".~M~.~'~"~V~AX~J
FS Computer

DataVault
10 GByte Disk

Figure 1: Example COIU'IeCDOO Machine System

10-20 MBytes i se<:

I/O Computer
wI peripherals

A Sun Microsystem.' 500-410 workswion can be used as _ front end to the Connection
Machine processors in running user programs. This processor controls resoun:e allocation, petfonns
scalar computation and exec:utes the control portions of Connection Machine programs. No programs
are s1Ol'Od or execu\ed in the eM data proces.sors.. 111: user programs run on !he hont end and issue
inslrUCtions 10 the Connection Machine. Data may also be uansfemd berween the front end and the
Connection Machine processors via lhis interface.

The data processors SlOre and process the larger data segments of an application. Each data pro­
cessor operates on a different piece of data using the same instruction from !he controlling front end
processor. The data processors are vcry simple; a typical configuration consists of 16k - 64k processors
containing 128 to 512 megabyte.S of memory.! I A 64k processor machine performs a 4k by 4k matri.\
multiply at about 2500MFJops.l2 Each processor can efficiently access the memory of other processors
and process the data within its local memory.

The connection between the scalar front ends and the data processors is a front end bus interface
(FEB/), • crossbar switch called the NUlLS, and a S~qlUlIur that takes ~insD'Uctions and issues
lower level inSlJUCtions (nan(>.instructions) 10 the indivjtluai data fW'OCessors. The FEBl is connected 10
the system ItO bllS of the front end computer. Scalar uansfers from the £ront end 10 the Sequencer run
at approximately 2.5·3.5 MBytes/sec. Direct memory access block transfers are not suppon.ed on this
interlace because the bul1c of the transfers are small instruction transfers from the front end CPU. The

, Su:o Mil;'!'OlyJtemI is I "'gil"'~ iridemiA: cJ Sun MiCl'OIyr=l. Inc.

10 S""..01 i l a IrademOA: of Sun MicrQ'y."'m •. Inc.

!1 'lbink illg Machines Co.p:m.tim. TM IIrchiucr". cf 1M C.1oI .2 {Mill P'QCt SJD'. Thinkin, Mlchine. Coopon.tion
Te.chr'liw Report HAIl.uI. ApnllIIKI

It llUnking Machine. CorponUon. MDtkI CM·2 T"MiciJI S~. llunltln& Midl ine. Corporuion Tedmie&! Re ·
peon HAI7..o1 . April]987

AUilUSI 26. 1988

·4 .

Nexus connects up 10 4 £ront ends 10 4 sections of • CM 10 allow for nexible configuration. In our
example syseem, we c.an tiSWTlt that thC'ZC is simply a direct connectioo from the Sun-4 10 the eM.
Dau. from the front end is written 10 a lifo in the Sc:qUCncl2' which, in tum, in~1S these instructions
call5 or handles incoming data as appropriate. Results are relayed ba:k to the front end through an OUt­
put fifo. Each of these components also has a few Status and configuration registers that are accessible
from the froat end.

The DataVault disk system coosi.ru • large nwnbct of standard disks opcming in parallel, and a
file server computer. The disk system can deliver data to the data processors or va interface compultrs
at 25 MBytes/sec:. The file server computer initiates data rransfcr operations, manages the eM file sys­
lan, and provides facilities for di..sk mainltnarx:c and diagnostics. External data is available 10 the Data­
Vaull system through the LQ interfaces of the file server computer, or preferably via the 64Mbyte/sec
eM 110 bus from an 1,10 processor.

The 00 interface system is a minicomputer wilh a VME bus interface , which is attached to the
eM 1,10 bus via a spec:ial high .speed interlace. Data can be transferred between VME. peripherals and
the eM data processors 0" the DataVauit under control of the Connection Machine operating syStem
and the 110 interface computer. The speed of the connecliQf1 depends on the peripherals and IJO pro­
cessor involved, but 1().20 MB~ can be expected from optimized software and hardware combina.·

"""'.
The resulting Connection Machine system can sustain mgt! enough UO bandwidths to keep the

data processors busy, and have enough front end speed to handle several Connection Machine users.
The remainder of the paper discusses the software and operating system wks performed by these com·
ponents .

.c. The CObbKtiOD Machine Operatin& System (CMOS)

The Connection Machine system operating provides many of the feaD.lfe5 found in a conventional
operatinr system but implements them in I distnbuted marmer. Pans of the CMOS run on each front
end computer, the Sequencer, the file server computer and any ocher J,IO intc:dace computers. This sec·
tion aplains where the functions of resotree allocation and management are ptrlonned. Furthet details
on the components are discussed in lat.et sections.

The CMOS functions generally are layered on top of the locaJ operating sygern running on each
computer wilhin the CM system. Due 10 the number of diffl7el1l compultn involved and the standard
nature of the kxa1 operating system fuoctions required, it does DOt make sense fcI' the CMOS 10 be the
native operating syst.em 00 ~h computer in the eM system. Instead a common operating sySlem,
which is some variant of UNIX, is used on each ccmpultr. The front end computcr is a Sun-4 running
sunOs t3 or. VAX~14 running T..n..TRJX", the file server computer is a MicroVAX running ULTRIX.
and the LQ interface computer can be any VME based UNIX system. The Symbotics l6 Lisp Macrune,
as I front end. is the only non·UNIX computer tha1 currently can be a part of the Connection Machirc
syStem. Each local UNlX is used to provide interprocess communication primitives needed to commun·
icate among the dislributcd comp:ments of the CMOS . The local OS is also used to provide proteCtion.
local file SU)rage, and swiLChing between multiple local processes. The only modification to the local
UNIX as is I device driver for the CM specific device on each computcr.

The cmattach command is used to obtain access to the 0.1: system. This command is analogous
to logging in to a UNIX system: once this operation is complete , use of the eM can begin. A cmfmger
command, analogous 10 the UNIX command who. uses the same UNIX IPC mechanisms to list all
current CM users.

n sunOS it a1rademartc of Sun Mi<:t'OlllYSLemI. Inc ,

I' V AX. is a ~lil~mI tndemark of OlliLa! Eq~\pmen' CcllpCJrUion.
II UL nux is a tnd<mlrt ol Di,iLa! Eqt.Upmeru CorponUIZI.
16 Symbolic, .. a tnd<martc of Symb:>l,e,. Inc..

AUI!USl 26. 1988

Proc:ess management Ind memory management are handled by a combUwion oC me froot-end
CCI'llputcf .00 the ScquellCT!f. All pJUc:y level decislOl'LS are handled on the front ends and some
mechanism level fimcOOns ~ impltrnented by the Sequencu.

'The Connection Machine File SYSIem (CMFS) provides. UNIX-like hierarchical file system with
• pogramming interface that paralJels the UNIX file system calJ inleJface. The rue server runs CII •
MicroVu located inside the DataV.ult pII'allel disk: !lUbsystem. The file genet daemOn is aD ULTltIX
uer process that takes advantage of UNIX facilities Cor pith name resolution and communication opt.n­

lions 10 seMce CMFS operations. Portions oC the fiJe system code run on the front end computer, pJr"­

lions on the CM ScqLXnCer, and pMions on the fiJe SC!'Ve- com~. The front end and file server
computerS use UNIX IPC Cor communicating contrOl iruamation. and the rugh speed parallel CM 110
data bus is used Cor dala aansfers.

An JJO inleJface computet can also participate u one end oC a file system tnnSaCUon. nus com ­
puter can act as a client oC the DalaVaull.. Cor tranSferring data 10 or from the disk subsystem. or as a
Jet"Yer for the data needs of the eM data processors. This computer is interfaced 10 the high speed eM
J.() bus via • VME interface board. This board allows a standard VME based UNIX host and all iL5
peripherals 10 be a pan of • CM system. The J.() interface computer uses UNIX IPC and OCher UNIX
devices along with the CM specific hardware and software.

The eM graphics display consists of a eM specific board wruch resides in the CM backplane and
• standard high resolution color monitor. The sofrware necessary 10 display imq:es runs 0rI the front
end and Sequencc"Z. Access to this device is attained via • mechanism similar to that of cmmtiJCh.

Error hmdling facilities u distributed among all of the COInponetits of the eM system. There is
communication among the components to pass error information and use of the underlying UNIX sys­
tem to log errors and provide core dumps and debugging tools for user programs.

S. Tbt CODDedioa MacbUie FroDt EDd Subsystem

The control of the Connection Machine system is based in the front end processor. This section
will describe the mechanism by wruch the front end system contrOls the CM data pucessors (see figure
2).

r-

Front FEBI N Sequ encer Data
End Processors

- E t-
o 0 0 0

0 0 X 0 0

0 0 - - 0 0

u

D s
-

Figure 2: Fronl End Subsystem

The front end processor cona-ols the front end bus interface (FEBI), the Nexus, and the Sequencer
via 16 Connection Machine system registers. Four of these registers control the operation of the Ne""s.
while lhe remaining 12 access registers on the allocated Sequencer(s). Two of lhese registers are us:d
to write 10 and read from fifo 's in the Soquencu.

Ausrust 26, 1988

·6 .

The ability to rapidly deliver insttuctions and let results from the Conntction MKhlne is crucial
to ,oad applic.u.ioo performance. JU this reason the Sequencer regislen are mapped directly into !he
address space of the hoot end system process curnndy ~Ilt&chcd~ to the Camection Madtine sysum
rather than using operating syslem calLs to ICces5 the re~.

A process KCCW$ CM reSlOUI'CeS by first pining exclusive ICCe$S 10 the FEBt Access 10 !he
FEBt is controlled by the UNIX FEBl device driver. When. process desires K:CeSS to the FEBt. it first
opens an -indin:ct- CM device. This dummy device docs not initially have ac:ccss 10 the FEBI regisaer5.
and is in &ct not usociated with any hardware at all , but allows the user process to caU driver ioetll)
routines.

Afu:z sllc«ssfuDy opening the indire.:t device. • proc.e:ss can issue •
CONNECT_TO_IN1ERFACE joe/If) to requeSt the driver to allocate a real FESI. Blocking and non·
blocking versions of this call take a list of requested FEBts as an argumenl Once successfully anached
to I particular hardw~ interface, a process can map the FEBI eM registers into its address spa:e.
This nupping is accomplished on sunOS sy~ms via • f1'\I'1ItJP{) entry 10 the FEBI device driver, and via
a special ioctlO in the driver on UL TRIX systems.

Gaining .:cess to the Connection Machine processors requires the further step of setting up the
Nexus 10 connect a given front end 10 the desired set of Sequencer:!> and then initializing the eM prt)­

cessars, memory. and Sequencers. In some circwnstances, new CM microcode is loaded into the
Sequencers. For historical reasons, and rer compau.bility 8(:ross our front-ends. die code which imple.
ments these functions is currently written in Lisp.

Usen running Lisp under UNIX call C stubs to obtain access to the FESI as described above.
Then tt.e Lisp process performs me Sequencer alIocu.ion and initializalion functions. For non-Lisp
.a:ess to the eM we have implemented a syStem which actually uses lisp 10 do the allocation and ini­
lializaLion of eM hardware. The WU command cmaltllt:h calls the driver to access a FEBI. If one is
not available, cmDltach can optionally wait until a FEBI is available. Once the interface is allocated, a
daemon process running a usp subprocess is called 10 set up and initialize !be Connection Machine
system. If the daemon indicates that the requested Sequencers are DOt available (for example if they are
in we by a different front end), the cmattach command can sleep a short time and uy the operation
again.

Once the sysu:m is initialized, the cma1lach program forks either an intenctive sub-shell from
which users execute their CM programs, or executes the user's program directly, The indirect device
name is passed to the USt:z program in an environment variable. When a eM appI..ication starts up, it
opens t/ae device named in the CMDEVICE environment variable, queries the driver via an iocllO to
mall:c sure !hat the device is slill connected to the interface, and then maps the FEBI registers into the
process's address space,

Eaor handling is also done by the Lisp system. Vlhen a CM Exception is flagged by the FESt,
the runtime system calls the Lisp daemon to probe the hardware and interpret the error condition. Error
infcrmation is written to a user definable error stream (genezal.ly siderr), and a usct settable e~ func­
tion is called (by default aborl(», Should an interface error occur, such as a parity error or bus
timoout, the driver can modify the process's page table entries mapping the device to prevent funher
register accesses. The driver can also detaCh an indirect device from the hardware interface, allowing a
process to be (oreeably detached from the CM.

SheU level commands are also provided (or deallocating the CM (cmdt/QChJ, finding OUt who is
cLllTefltly attached 10 or waiting for an interface (cmwtrs), detaching another us.er or front end system
from the CM (cmtkltlCh), and initializing the system (cWlCofdbool).

The front end system also acts as a center of conlTOl of CM I,.Q subsystem devlce5 (figure 3).
The simplest case the Connection Machine graphics display system. The graphics display is con­
nected 10 a interface board which resides in the Connection Machine SYStem backplane. Under control
of front end instructions, data is cransferre.d directly from the Connection Machine processors to the
display 5yStem. In order for a program \0 access the display system, the program mUSt be auached \0

the section of the CM in which the frame buffer board resides. Thus allocation of graphics display sys­
tems is currently handled in the same manner as allocation of Sequencers and processors; the: user either

AU2Ust 26. 1988

- 7 -

leu exclusive fIOCt:SI or no access at all .

User
Process

eM Memory
Management

:rpc .

-1 eM Device I Sequencer

--- I I 1

MlcroVAX.
Parallel
Disks

DataVault -
• VME Com puter eM Oc\1ce

I/ O Computer

I- Data Processors

High-speed

I- 0- I/O Bus
Data &
Synchroniza

Figure 3: The from end and the 110 system.

tion

110 operations 10 the eM I/O bus are also initiated under front end cootrol Under front end coo­
aoJ, 1be CM processors transfers data 10 the CM I/O controller board. and the JJO controller board is
prosrammed to send or receive data on the eM IJO bus. Bdcre a transfer CD Ibe bus is initiated, how­
ever. the front end system must anange the other end of the transfer with !he destination JJO subsysrem
controller host. 1bcse systems are are sepanue minicomputers running UNIX and in opentions wttich
transfer data between the eM and an 00 device, they ~ in cooperation ,..jib the front end system.

When a process running on the eM needs 10 lCCesS data on me DataVault or retrieve data from.
00 proces5IOr. the front end system sends • command message 10 the 1,10 processor computer which
then sets up the data transfer over the eM ItO bus. These command messages may be SClIt eimer via
standard UNIX IPC mechanisms (TCP/IP networking). or via a cOOlmand channel on the eM va bus.
The 110 pnx::e.ssor receives the message and passes it off 10 a eM J,IO daemoo server process. Another
IPC message is sent back to the front end system 10 inform it of the success or failure of the operation.
Data transfer is !hen initiated from Ihe ItO processor to the CM via the CM J..Q bus, freeing !he 1,10
proc:e.s.sor and the front end processor for other computations. Completioo a enor infonnation is
passed from the 110 processor.

6. User Process Memory Management

Memory allocation within a user process has sane novel aspects that are appropriate fa mas­
sively paralJe1 machines. Data struclUl'es (memory 6elds) are allocated across all processors. This
striping means that large anays have elements across the entire machine. In fact. each element of a
large array appears to have its 0 '0 processor. Funher, the dimensions of the data SITUClUl'es are not
limil.ed 10 the number of data pro::essors because of a mechanism for simulating more processors.
CurrenrJy, the CM does not suppon disk based vinual memory, so each usc's entire memory space

Au\!ust 26. 1988

• ••
must fit wUhin the physical memory of the CM (..5 GByt.es for • 64k. proceuor m.ctline). Memory
allocalion within • processor is pcrlonned by the run-time system in user- s:pecified increments mher
than Cued pq:ea. The3e increments are often small such as a I bit Jlag 01" • 32 bit numbtr in each of
the da1a proceuors. 'IlW JeClioo will address on1y those pans of memory alloc.at.ion sysaem that are
necessary fer mdenlanding the opeBling system. For. further ap1anaJ.ioo of the programming model
toe IwodJll:aml To DtJl4 uwl Parolltlism.17

Since the memory structure in each data processor is the same, only one map 10 this structure
must be kept for each process using the CM. This information, called the field table, is t.epc. in the
front.end processor. Some information about the most recently used fields is c.::hed on the Sequencer
for dficiency. All allocation and field management is done on the front-end by explicit calls from the
uer process. In fact, the table thai S10reS all the field locations (memory stripes .00 their properties) is
$lORd in the user- process's address space. This is similar to heap and stack management within I
Ianruage. but this functionality has been incorporaled iN/) the eM inslruCtion let so thal programs writ­
ten in different languages can call each other. This field table is n()l used 10 share infonnation between

"'" process<$.

1be only reSDictions that the CUITenI memory allocation procedure makes on the inLet-usa
memory allocation organization is that each user must have a contiguous block of eM memory. Usa
mm.ory does noc hive 10 be u:ro based, so that a uset can be)cealed in any portion of memory. A
user processes' memory is relocatable by looping through the field table, moving the dala in the eM
and updating the field table. The user does not have access to the physM:al location of the fields. Since
the fiekl table contains physical locations, relocation is apensive, but the run-time behaYicr is fast.
Since the CM does not have hardware page tables, caching the addresses in this manner is desirable
from a perfomwK:e plim of view.

7. ConDrction Machine Process Manaeement

Cwrently, muJtiple users can access the Connection Machine system through a simpk: batch sys·
tem. Under batch operation, a simple queue is maintained on the front-end and the data p-ocessors are
compk:tely reset between users. Each user gets sole use of the data processors, and all their associated
memory and 110 devices. Under batch, oruy one fron! end process has acecss 10 the CM at a given
time. Timesharing the Connectioo Machine between several users on the front end system can be
achieved by allocating the FEBI device for shCl't interVals 10 different processes as they are requested.
Each process is given a fraction of the lOcal CM memcry, but when active, uses all the CM dala. proces­
!OrS. This section will descnbe this simple timesharing model.

Urder" a prolO(ype timesharing implementation, each user is allocated a virtual CM with no inler·
process oommunication, which is identical to the Imtch model of the machine with the single exception
of haYing less memory available on each data pnx::essor (see figure 4). Tunesharing of the data proces·
sors is done on lOp of the UNIX timesharing syslCm of Ihe from end. Only operations requiring the use
of the CM dala ~ cause the syStem 10 delermine whether the ll$el can use the data processors
at a given time. Manipulation of serial data, front end 110, and user interaction all leave the CM data
processors idle. Since most da1a parallel programs are actually a mix of serial and parallel code, most
opmItions requiring the use of the CM data processors come in bursts. Because of lhis the CM process
switching quantum can be quite large by traditionaJ timesharing sWldards such as 1 second.

17 llLinkin. Modi", Corporation. 1_""' "",. II> D"", lAw. 1 P""oJl. l<1 Thinkin, M.cJWw,. Co<pon"on Techni·
cal Rq><>n86.I., April 19S6

Au!Zust 26. 1988

64K
Data
Processors ~

•
• •
0

· 9 ·

eM Memory 64K BII!>

• •

USER 0 USER I USERN SCRATCH
••• Memory SPACE Memory Memo!'y

Figure 4: CM memory configuration under timesharing.

A prototype implemenwion of the eM timesharing system involves several pieces. Schedulin8
and resowee management is handled by a daemon process. User processes requesting timesharing ser­
vices use UNIX IPC pimitivcs 10 communicate with the timesharing daemon. A sauc:twe is shared
becwoen the daemon and the user processes via UNIX $hared memory CaciliLies in order 10 implement
an inralocking mechanism (see figure 5).

The timeslwing daemon handles the registering of new users and swilChlng between eM
pnx::es.ses. A process gains access 10 the eM data processors by regisuring it.sclf with the timesharing
dIemon. A UNIX IPC message is sent from the user process to the timesharing daemon requesting eM
resources. The timesharing daemon sends • reply bad. to the user precess indicabng the success Of

failure of the request. and if suc:cessfuJ. includes information on the amount of memory alJocaled to the
user and • KY for accessing a shared data structure. This data struclUfe is used (or most communica·
boo between !he daemon and the user process.

The limesbaring daemon can take the eM away from a user process anytime that process is not
in • CM instruction. To implement this. all CM instructions check whether it is dear 10 run. If it is
not clear 10 run lhc::n the process puts it.sclf 10 s10cp and waits for a signal from the daemon. If it is
clear 10 run, then • flag is set in the shared data saucture indicating that the user is actively using the
eM. Once the CM instruction is completed. lhc flag is cleared. eM instructions are not interruptible
by me daemon. To avoid a race condition. in fact. the instruction registers itself as using the eM
before it chocks 10 see if it has the right 10 acDJal.ly use it, clearing the flag again if it is not clear 10

run. U the user process encounters an error on the eM • also gives up the machine. infenning the dae·
mon via another flag.

A further complication arises in handling errors that a user may have caused but not yet handled.
A pnx:es.s may send many instructions to the eM beCore reading any results back. Error chocking is
generally done only at the time results are read back fran the eM. so an errtt condition may exist for
some time beCore • process notices it In fact. one JX'OCC:SS may genera1e an error condition. and the
e M switched 10 another process, before the first process is aware of the entt. For this reason the
timesharing daemon must check for any error conditions before switching eM processes. Since lhere
are sophisticated error handling capabilities available to the user, an error does not)cad to loss of Stale

in the eM. The daemon uses anolher Hag in the shared sO'Ucture to indicate that an error has occurred
in the background.

AUi:!USI 26. 1988

User
Process

- 10 ·

User Process

CM Memory Management

Insld e ·lnstructlon
fr ee·to-ru:l
user-error
background-error
cm-memory-stan
Cm-mcmory-end
<other accounting Info>

Timeshare Daemon

scheduUng
allocation
error handling

Shared Memory

Figure !5: Timesharing oomrol mechanism.

User
Process

When more than one process is ~gislered wCI the timesharing daemon, the daemon begins
opention as a lChedu1er. A.c:cas 10 the eM data ~ is granted in a simple round robin mechan­
ism, with the daemon granting a proc:ess access 10 the CM by sea:ing the appropriale flag bit in !he
shared data suucture, and sending !he user process a signa] if it is waiting for CM resources.

Inter-u.sez proICCtion is accomplished by a variety of mechanisms. User state in !he sequencer is
unloaded and kladed again by the timesharing daemon process. User stale in the CM memory is pro­
tec:1ed by hardware bounds registers that keep users from al1C7ing each others memory (either accidently
or othawise). I,.() operations are left 10 complete before processes are switched, thus achieving safety
and simplicity while sacrificing scme performance.

As in all operaring system code. code ordering is imponant to prevent race conditions. Since !he
master is not in the kernel III this point, many of these considenttions are exacerbated. CM instructions
are simple writes 10 the FEBI registers. so it is extremely unlikely that the UNIX syslern will block the
current CM process for an eXlended period of time. Timesharing on a massively paraI..IeJ machine
needs further design and implementation work..

8. Tbe ConnKtion Macbine File S,.stem (CMFS)

The Connection Machine File System is a high ~. paralle l. hiernn::hical file system. It runs on
a parallel disk subsystem called the DataVault which stripes bits across 32 data carrying drives and
pl.aces error correcting code infonnation on 7 additional drives. The software and hardware is deSigned

AUlnlst 26. 1988

- 11 -

to mwmlU throughput for large data transfers. The programming inrerface is very similar to !he
UNIX file fYStenI with the read and "";te primitives causing dala to be lraJ15fern:d from ea;h virtual
processor ill the eM.

The CMFS 1w two main components. They.-e the file system library which is linked in with
the user prtJSnITI and runs on !he CM front end processor, and the CMF'S file SU\'CI' prcc.essor wluch
runs OD the file scrva computer inside the DataVault. 1be system operates under a clienl/serva model
wbae swe is maintained between calls to the file S«Ya. A simple file sysu:.m proaxol runs on top of
UNIX IPC which provides the communication path between the clients and server which run on
separate computers.

The file server provides patMame resolution, logical file 10 physical disk block mapping and
block allocation. Although there can be more than one CM front end using a DataVault, the disuibuled
file systems issues are substantially reduced by having a single server responsible for the file sysu:m.
The division d labor between the client and server in the CMF'S is similar to thai. in NFSlI. The
CMFS, however, uses a separate namespace foc file names and uses a separate set of calls to access
CMFS files. The separation was necessary 10 allow fer large dala transfers 10 occur in single L'O opera­
tions directly from the ltigh speed CM IJO bus. The CMF'S implements an extent based data layout. A
file is made up of a variable number of extentS where each eXlent is a variable sized. physically con·
tiguous sel of blocks OIl the disks. Only <hIta is stored on the set of parallel disks twe all directory
and inode type infarnation is SlCI'ed in the UNIX file syslem on !he file server computer.

9. Geural Purpos.e VO Computer

The L'O Computer can be any VME bus based computer running UNIX. A VME interface board
is used 10 cransfer data from this system to the proprietary CM 00 bus. This interface (currently under
development) allows standard computers and their peripherals to transfer data 10 and from the CM sys·
tMI at high data rates. By interfacing to a standard VME a wealth of peripherals available for those
systems is made available to the Connection Machine system.

The IOftware interface between the IJO processo- and the CM system u the same as that used by
the CM File System. When moving data 10 and from the DataVault the IJO intelface computer telS
liU d'Ie client and executes almost the same code as the eM front end computer executes hen uUtg
the DataVault. "The JJO Interface Computer can also act as the server when exchanging dala with the
eM. In both cases UNIX IPC and other UNIX devices are used for the operations. SiIu the JJO bus
speed of the eM is 64MBytes/sec, this interface is limited only by the speed of the VME bus and the
pcripberals involved in the transfer.

10. FlIhlrt Work OD Massively ParaUtI Operating Systems

Operating systems for massively parallel computers, like the Connection Machine. open many
design issues. Many of the petfarnance characteristics for paging and user loads, for instance. are
different for these systems. Thus !he opportunities for significant perfonnance and functionality
increases are Wlfolding. Some of the areas that need further study are:

[lJ Sophisticated Timesharing

(2J Virtual memory: Paging and Swapping

{3] Integrated 00 subsystems

{4J Remote Access

Timesharing systems could, for instance, be extended to have a process model that supported IPC.
forking, and shared memory, but the specifics on how this would perfonn or even be designed for such
systems is noI under$lOOd. Further, asynchronous IJO might boost system throughput of a timeshared
system. Anolher issue is the desirability o f tighLly coupling the timesharing system with the front·end
kerne l to make smaller Connection Machine time quanlWns e ffi c ient. An efficienLly timeshated parallel
computer would greatl y extend the number of potential users and make very large systems more

II NFS il I ttademlrlr. of Sun Mic rosyllDnl , Inc.

AU2ust 26. 1988

• 12 -

afTcnlabl.e. Acc:ounting and performance analysis on a machine like the Connec:tioo Machine is Ul
inttze5ting problem because of &be number 0(indepcnduIt processors wa1cing on one proeran1.

PaginJ aDd ...-.pping could u1end the data s:iz.c:s users can easily axnpute on from .ji GigaByteS
10 10-100 GigaByte&. How the.-ae tab)es should be managed needs further study of existing programs
bued on how memory acce.ss panc:ms of data pamDcl a1gorilhms. Caching ptrlonrwx:e is also effected
in intereslina ways in the common data pcallcl applications.

Vuious inPlIJOUtput devices can be used ., make data-paralltl machines more aeful. One can
imagine the WiltS for high speed aenera! pwpose DtlWIrts, frame grabbers, music syoshesizm, speaker
systems, FAX machines, and the like, if they wen: cleanly interfaced and controUed by a large compute
engine. Keeping integrated control ovtz a large Dlmlber of different high spcc:d deviccs, some 0(whK:h
might be physically distant. is an interesting task of distnbuted concrol.

Using a high speed computers as a compute set'ltr in workslation environments opens interesting
issues eX dall. transfer, simulalion, and splitting of user programs. Many institutions will have large
pwallel compute:n accessible on netWorks of various performances (from lOOMBy\CS 10 S6k Bits).
How uscn can best use Ihese rcsource:s is not understood. Handling this smoothly wiD put demands on
networu and operatina system code.

Many rJ. the system perfcnnance characteristics .-e diffe~nt enough in • massively parallel com­
put.e.f, that the many operating !)'stem issues need 10 be re-culIIined. We. kx*: forwa-d 10 research in
this area of operating system design to increase the usefulness and performance of massively parallel
computer systems.

11. CODclusioD

UNIX is an important vehicle for unifying the dis lributed pans of the COMoction Machlne sys­
tem. Insttad of implementing a native UNIX for the CM. we have used serial maclUne's implementa­
tions on diffa-ent platforms and have built what we need on top of iL Massively puallel computers
share many of the system demands that a serial machines do. so we can use the inlUfac.es and philoso­
phy of UNlX in implementing operating system comporents for the Connection Machine system.

Further work needs 10 be done to make the ConDecti.oo Machine operating system • true mwti­
user, virtual memory system. Sirx:e the control issues and memory use statistics are different from
serial machines. some or the current OS work. can be exploited d.i.rcctly while other ~ need 10 be
examined anew.

Aurust 26. 1988

