The
Connection Machine
System

*Render Reference Manual
for Paris

Version 2.0
November 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, November 1991

3K 3k 2k e 3 ok ok o sk 3k ok 2k k sk 3k ok 3k ok ke ke sk ke e sk ok e sk ok ok ok ek ok sk ok ok ok sk ok sk o sk ok e e ke ok ak ke ok sk ok sk ok ok ok ok ok 3k ok ok sk 3k ke ke ak ke o ke o sk ok ok ok ok ok ok

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

3k ok 3k 3k ok ok ko ok ok o ok 3k sk e 3k 3k 3k 3k 3k ok sk sk ok 3k 3 e sk sk 3k 3k 3k ke ok 3k ok 3 sk ok ok s 3k ok e e sk sk ke s Sk ok ok s ok e ok ok ke sk ok e ok sk ok o ok sk e Sk ok sk ok ok sk ok

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-1, CM-2, CM-200, and DataVault are trademarks of Thinking Machines Corporation.

C*®is a registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
In Parallel® is a registered trademark of Thinking Machines Corporation.

Thinking Machines is a trademark of Thinking Machines Corporation.

Microsoft is a trademark of Microsoft Corporation.

Sun, Sun-4, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents

About This Manual i i et et xi
CUStOMET SUPPOIt ... ittt it ittt ittt e e e xiii
Chapter 1 Introduction to *Render 1
1.1 The CM Visualization Librariescocvteieeneninnenenn.. 1

1.1.1 The Generic Display Interface 2

1.1.2 The Image FileInterfacecccvvviuiniiennn.. 3

12 XReNAer ..ottt e e et e 3

1.3 Using *Renderccovuiiiiiiiinntiiiiieneianeennnanennns 4

131 CParisccvvvennn e 5

132 Fortran/Paris oovvvtiteee et iiieeieneananeennns 5

2 15T B PO 6

Chapter 2 Drawing Routinesciiiiiiat. 7
2.1 OVeTVIEW . ottt ettt ettt et tte e et aa e 7

2.1.1 The Image Buffer Fieldiiiiiiiin... 7

212 The ZBufferoovirtiiiiiieiieeer e eieianannns 8

2.1.3 Framebuffer-Ordered Geometriesonn.. 9

2.1.4 The Combiner Parameterccovvieuninnenn.. 9

2.1.5 Drawing Pointsand Lines................ccvviiion... 10

Floating-Point Coordinatesccccvveenn... 11

L3 1]+ 11~ PR 12

2.1.6 Sphere Drawingccoiiiiiiinniennnennnnnennn. 13

2.1.7 Transferring Image Arraysovveeivieennenenn.. 13

From a CM Field to the Image Buffer 14

Between a Front-End Array and a CM Field 14

2.2 *Render Drawing Routine Descriptionscovuueveennnn. 15
CMSR_initialize z buffer 17

CMSR £ draw point..............iiiiiiiiiiiin e, 19

CMSR f draw point 3d il 23

CMSR s _draw point................iiiiiiiiiiiii i, 27
CMSR fe f draw pointl 30
CMSR _fe f draw point_3dl 33

Version 2.0, November 1991 1ii

iv
e

*Render Reference Manual for Paris

CMSR fe s draw pointl 37
CMSR f draw linecciiiiiiiiiiiiii., 40
CMSR s draw_linecccoveiiiininninnnannnnnnnn 44
CMSR fe f draw_lineciiiiiiiiiiiin., 48
CMSR fe s draw_linec.oiiiiiiiiiiiiinnn, 52
CMSR f clip limes............ccooiiiiiiiiiiiiiniinnnn, 56
CMSR s _clip lines............ccoiiiiiiiiiiiinniinnnn, 59
CMSR s draw_spherec.ooiiiiiiiiia.an, 62
CMSR draw_imageoiiviiiieinniininnnninenns 66
CMSR fe draw rectangle............................... 69
CMSR write_array to_field 71
CMSR write array to field 1......................... 74
CMSR_read array from field.......................... 79
CMSR_read_array from field 1 82
Chapter 3 Math Routinest 87
31 OVeIVIEW ..o e 87
K T B T {3 ¢S 88
312 MatriCes ..vvvrtiiite it i e 88
3.1.3 Transformation Conventionscoviinun... 89
3.14 Color Spacesovviviieieiiine ittt 89
3.2 Front-End Vector Routinescooiiiiiniinniiiiineann... 91
CMSR fe v abs 2d............. il 93
CMSR fe v abs 3d............coiiiiiiiiiiiiiiii 93
CMSR fe v abs squared 2dl 95
CMSR fe v _abs squared 3dcciiiiiann 95
CMSR fe v add 2d............., 97
CMSR fe v _add 3d...............oiiiiiiiiiii i 97
CMSR fe v copy 2d...... ...ttt 99
CMSR fe v copy _3d..........oiiiiiiiiiiiii e 99
CMSR_fe v _cos between 2d 101
CMSR fe v _cos between 3d 101
CMSR fe v _cross_product 3d............... ... 103
CMSR_fe_v_dot product 2dl 105
CMSR_fe_v _dot product 3d 105
CMSR fe v is zero 2dc.cvvivieininneiinnn, 107
CMSR fe v is zero 3dciiiiiiiiiiiiiia, 107
CMSR fe v negate 2d, 109
CMSR fe_v negate 3dl 109
CMSR fe v normalize 2d..................... 111

Version 2.0, November 1991

Contents

CMSR fe v normalize 3d..................coiiiiiia., 111
CMSR _fe v perpendicular 2d..................c00... 113
CMSR_fe v perpendicular 3d.......................... 113
CMSR fe v print 2dl 115
CMSR fe v print 3d, 115
CMSR fe v reflect 2d ...t 117
CMSR fe v reflect 3d ...l 117
CMSR fe v _scale 2d, 119
CMSR fe v_scale 3diiiiiiiiiiiin., 119
CMSR fe v _subtract 2d................ ...l 121
CMSR fe v subtract 3d...................nll 121
CMSR_fe v _transform 2d................. ...l 123
CMSR fe v_transform 3d.................. .ol 123
CMSR fe v _transmit 3d................. .. il 126
3.3 Front-end Matrix Routinescooiiiiiiiii .. 129
CMSR_fe_identity matrix 2d.......................... 131
CMSR_fe_identity matrix 3d.................... ... 131
CMSR fe m copy 2d.........cciiniiiiiiiiiinniiininennnans 133
CMSR fe m copy 3d......... ..o 133
CMSR _fe m determinant 24, 135
CMSR_fe m determinant 3dl 135
CMSR fe m invert 2d ..., 137
CMSR fe m invert 3d ..., 137
CMSR fe m multiply 2d..............coiiiininenninn... 139
CMSR fe m multiply 3d................ ..ol 139
CMSR fe m print 2d ool 141
CMSR fe m print 3d, 141
CMSR_fe oblique proj matrix......................... 143
CMSR fe ortho proj matrix 145
CMSR_fe perspective matrix 147
CMSR_fe_ perspective proj matrix 149
CMSR_fe rotation matrix 2d..................... ... 151
CMSR fe scale matrix 2dooiiiiel, 153
CMSR _fe scale matrix 3doo0ial 153
CMSR_fe translation matrix 2d 155
CMSR _fe translation matrix 3d 155
CMSR fe view matrixo il 157
CMSR fe view proj matrix, 159
CMSR _fe x rotation matrix 3d 161
CMSR _fe y rotation matrix 3d 161
CMSR fe z rotation matrix 3d 161

Version 2,0, November 1991

Manual for Paris

3.4 Front-End Color CONVEISIONuuueeuiuuneiunnneeeennns 163
CMSR fe rgb to cmyl 164
CMSR fe cmy to_rgb ...l 164
CMSR fe rgb to yiqiiiiiiiian, 166
CMSR fe yiq to_rgb ...l 166
CMSR fe rgb to hsvl 168
CMSR fe hsv_to rgbl 168
CMSR fe rgb to hsl e 170
CMSR fe hsl to rgbl 170

3.5 Front-End Miscellaneous Routinesoooinia... 172
CMSR fe deg to radiiiiiiiiiiiiiiii 173
CMSR fe rad to degcooiiiiiiiiiiiiiiii. 173

3.6 CM Vector ROULINESovviiit it iiiiiiiiininenneeennns 175
CMSR v_abs 2d i e 177
CMSR v_abs 3dciiiiiiiiiiii e 177
CMSR v_abs squared 2d................oiiiiiiiiiia, 179
CMSR v_abs_squared 3d.................coiiiiiiiea, 179
CMSR v_add 2d ...t e 181
CMSR v_add 3dttt e 181
CMSR v_alloc_heap field 2d...................... ..., 183
CMSR v_alloc heap field 3d.................ccvonnn. 183
CMSR v_alloc_stack field 2d......................... 185
CMSR_v_alloc_stack field 3d......................... 185
CMSR Vv _COPY 2d i 187
CMSR v_COoPY 3d i e 187
CMSR v_copy const_2d ...ttt 189
CMSR v _copy const _3d ..., 189
CMSR v_cos_between 2d.................... ...l 192
CMSR v_cos between 3d.................... ...l 192
CMSR v_cross_product_3dl 195
CMSR v_dot product 2d............... ...l 197
CMSR v _dot product 3d.....................ieel, 197
CMSR v_field length, 200
CMSR v_is zero 2d...........c.ciiiiiiiiiniiiiiiinniannn, 202
CMSR v_is zero 3d.............coiiiiiiiiiiiiiiii 202
CMSR v negate 2d ...t 204
CMSR v negate 3d..............ciiiiiiiiiiiiiiiiiiia, 204
CMSR v _normalize 2dcciiiiiiiiiiiiinnnn, 207
CMSR v_normalize 3dccciiiiiiiiiiiinnn, 207
CMSR_v_perpendicular 2dial 210
CMSR_v_perpendicular 3dc.coiiiiiiiiinn, 210

Version 2.0, November 1991

Contents vii

s

CMSR v print 2d ... 213
CMSR v print 3d il 213
CMSR_v_read from processor 2d 215
CMSR v_read from processor 3d 215
CMSR v reflect 2d............... ... 218
CMSR v reflect 3d...................iiii 218
CMSR Vv ref X...... ...ttt i 221
CMSR V ref ¥c.oouiiiiiiiiiiii i 221
CMSR v ref z........ .. 221
CMSR v_scale 2d ...ttt 223
CMSR v_scale 3doiiiiiiiiiiiiiiiiiiii e 223
CMSR v_scale const_2d....................ciiiiinitn, 226
CMSR v_scale const 3d............................... 226
CMSR v_subtract 2dl, 229
CMSR v _subtract 3d i 229
CMSR v_transform 2dl 232
CMSR v_transform 3d 232
CMSR_v_transform const 2d 235
CMSR _v_transform const 3d 235
CMSR v_transmit 3d i 238
CMSR_v_write to_processor 2d 241
CMSR v_write to processor 3d 241
37 CMMatrix Routinesooviiuiiiiiii i, 244
CMSR_identity matrix 2d, 246
CMSR _identity matrix 3dl 246
CMSR m alloc heap field 2d.......................... 248
CMSR m alloc heap field 3d.......................... 248
CMSR m _alloc_stack _field 2d......................... 250
CMSR m alloc_stack _field 3d......................... 250
CMSR M COPY_2diiiiiiiiiiiiii i aineeens 252
CMSR m copy _3d ...ttt 252
CMSR m copy const_2d i iiiiiia., 254
CMSR m copy const 3d ..., 254
CMSR m determinant 2d...................... ...l 256
CMSR m determinant 3d.................. Ll 256
CMSR m _field length il 258
CMSR m invert 2d............... i, 260
CMSR m invert 3d 260
CMSR m multiply 2d ..., 262
CMSR m multiply 3dottt 262
CMSR m multiply const 2dc...... 265

Version 2,0, November 1991

viii *Render Reference Manual for Paris
: s

CMSR m multiply const 3d 265
CMSR m print 2dl 268
CMSR m print 3d ... 268
CMSR m_read from processor_2d 270
CMSR m read from processor_3d 270
CMSR m ref 2dottt 273
CMSR m ref 3d ... 273
CMSR m write to processor 2d 275
CMSR m write_to processor _3d 275
CMSR rotation_const matrix 2d 278
CMSR rotation matrix 2dl 280
CMSR_scale const matrix 2d.......................... 282
CMSR scale const matrix 3d.......................... 282
CMSR_scale matrix 2dl 285
CMSR scale matrix 3do, 285
CMSR_trans const matrix 2d.......................... 288
CMSR_trans_const matrix 3d..................... ... 288
CMSR_translation matrix 2d.......................... 291
CMSR_translation matrix 3d.......................... 291
CMSR_x_rotation _const matrix 3d.................... 294
CMSR y rotation const matrix 3d.................... 294
CMSR_z_rotation_const matrix 3d.................... 294
CMSR x rotation matrix 3d........................... 297
CMSR_y_rotation matrix 3d 297
CMSR z_rotation matrix 3d....................... ... 297
3.8 CM Color Conversion Routinesc.ovviviiiiiinninn.... 300
CMSR rgb to cmycoiiiiiiiiiii e 301
CMSR cmy to_rgbo i il 301
CMSR rgb to yiq ...l 303
CMSR yiq to rgbl 303
CMSR rgb to hsv il 305
CMSR hsv_to rgbttt 305
CMSR rgb to hsl ..., 307
CMSR hsl to rgbo 307
3.9 CM Miscellaneous Routinescoooviiiiieiiii ... 309
CMSR deg to radottt 310
CMSR rad to degooiviiiiiieiiiiiiniieninen.n, 310

Version 2.0, November 1991

Contents ix

Chapter 4 Dithering Routinescooiene.. 313
CMSR u halftoneo, 315
CMSR £ halftone, 315
CMSR u _halftone dot diff 317
CMSR_f halftone dot diff 317
CMSR_u halftone err Propccievvvuunnn. 320
CMSR_f halftone_err propocuo.... 320
CMSR f rgb to grayoiiiii. 323
CMSR u rgb to grayciiiiiiiiiiiiiiiian, 323
Alphabetical Index of ROUtINESiiiiniititiieetiiiiiieennnnaeennnnn 327
Keyword Index of ROUtinescuiuiniiiinneiuineiiiiieeeennannennnnn 331

Version 2,0, November 1991

About This Manual

Objectives of This Manual

This manual provides detailed reference information about the Paris interface to the *Render library
routines. Separate *Render manuals are available for the C* and CM Fortran interfaces.

Intended Audience

This manual is intended for programmers using *Render to support graphics or visualization
applications on the Connection Machine.

It is assumed that the reader has a basic understanding of Paris programming on the Connection
Machine System.

Revision Information
This manual documents *Render, Version 2.0.

This manual replaces the *Render Reference Manual, Version 5.2.

Organization of This Manual

Chapter 1 Introduction to *Render
A brief overview of the *Render library and its use.

Chapter 2 Drawing Routines
Detailed documentation of the *Render point, line, sphere, and array drawing rou-
tines.

Chapter 3 Graphics Math Routines
Detailed documentation of the *Render graphics math routines.

These routines provide utilities for performing common graphics math operations
on vectors and matrices in front-end arrays or CM fields.

Version 2.0, November 1991 xi

Xii *Render Reference Manual for Paris

Chapter 4 Dithering Routines
*Render’s halftone routines convert a grayscale image of floating-point or double-
floating-point values to a 1-bit-per-pixel image suitable for displaying on a black
and white monitor. In addition, the library includes two routines that convert color
RGB images to grayscale

Related Documents

This manual is one of three that make up the Connection Machine Visualization Programming
documentation set. The other two are:

" Generic Display Interface Reference Manual

® Image File Interface Reference Manual

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter C/Paris, Fortran/Paris, and Lisp/Paris language elements, such as oper-
ators, keywords, and function names, when they appear embedded in
text or in syntax lines. Also UNIX and CM System Software com-
mands, command options, and file names.

italics Argument or parameter names and placeholders, when they appear em-
bedded in text or syntax lines.

typewriter Code examples and code fragments.

% bold typewriter In interactive examples, user input is shown in bold typewriter
typewriter and system output is shown in regular typewriter font.

Version 2.0, November 1991

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

If your site has an Applications Engineer or a local site coordinator, please contact that person direct-
ly for support. Otherwise, please contact Thinking Machines” home office customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 021421264

Internet

Electronic Mail: customer—support@think.com
uucp

Electronic Mail: ames!think!customer—support
Telephone: (617) 2344000

(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To : field should be addressed
as follows:

To: customer—support@think.com

Please supplement the automatic report with any further pertinent information.

Xiii

Chapter 1

Introduction to *Render

The *Render library is a set of Paris-level utilities for drawing simple graphics primitives
into an image buffer field in the Connection Machine memory. This image may then be
transferred to an X Window System display or CM framebuffer for display.

This chapter provides a brief introduction to the *Render library. The remaining chapters
give full descriptions of the routines.

1.1 The CM Visualization Libraries

*Render is one of three libraries that support visualization programming on the CM. The
other two libraries are the Generic Display Interface and the Image File Interface.

As illustrated in Figure 1, these three libraries provide the basic tools for building visualiza-
tion applications on the CM. With *Render you can process the data produced by your
application to create an image in an image buffer in CM memory. With the Generic Display
Interface you can create and control a display space and write the image buffer to it. Final-
ly, the Image File Interface enables you to store images for future display or processing,
or to transfer the image to other graphics environments.

The image buffer is a CM field or variable in a 2D Paris VP set allocated in the size and
shape of the image to be displayed. The image buffer is used to collect and store pixel
values for display. Each virtual processor in the image buffer VP set contains a color value
and, if 3D, a z coordinate for the pixel at the corresponding (x, y) location on the display.
The image buffer is discussed in detail in the introduction to Chapter 2.

Version 2.0, November 1991 1

*Render Reference Manual for Paris
s

Application _|

Generic
Display Display
Interface

*
Data Render

Image Buffer
in CM Memory

Image
File
Interface

Figure 1. Basic data flow in Connection Machine visualization.

1.1.1 The Generic Display Interface

The Generic Display Interface is a library of routines that provide a single simple interface
through which your application can

create and initialize Generic Display workstations and displays by having the user
select them from a menu (the display provides a display space for images from CM
memory; the workstation provides resources to support text and cursor routines)

transfer image data from CM memory to different types of displays without
specialized routines

query and modify the characteristics of the physical displays from the Generic
Display Interface, including the display color maps

display text strings to any selected generic display

Version 2.0, November 1991

Chapter 1. Introduction

i
e

= display, track, and interact with a cursor on the generic display with your work-
station mouse

The Generic Display Interface simplifies image display and interaction and allows you to
write device-independent applications that can be moved to different displays at run time
without changing your application. It is documented in the Generic Display Reference
Manual for Paris included with the CM visualization document set.

1.1.2 The Image File Interface

The Image File Interface supports the transfer of images to files in TIFF (Tagged Image
File Format), a standard specification for image data files. TIFF is supported by many other
graphics software packages, so you can easily move CM images stored with the Image File
Interface to other graphics environments for editing or display. The TIFF format also pro-
vides for compression of the image data in the file and stores information about the image
that can be used when reading the file back into the Connection Machine system or into
some other TIFF reader.

The Image File Interface transfers images between files and an image buffer on the CM,
a scalar array on the front-end computer, or even directly to or from a Generic Display
Interface display. It is documented in the Image File Interface Reference Manual for Paris.

1.2 *Render

*Render is made up of the following major components:

®* Drawing Routines

The *Render drawing routines write 2D and 3D points, 2D lines, and image arrays
into an image buffer field in CM memory. Some routines, those with _fe in their
names, draw a single point or line specified by coordinates stored in 1D arrays on
the front-end computer. Other routines take a field of coordinates and draw the set
of lines or points specified in a single operation.

Simple sphere drawing is also supported by a routine that draws shaded spheres at
specified locations in the image buffer.

In addition, *Render includes clipping operations that allow you to clip a set of line
coordinates in a CM field to a specified clipping range.

Version 2.0, November 1991 3

*Render Reference Manual for Paris

These routines are described in Chapter 2 of this manual.

®* Graphics Math Routines

*Render’s Graphics Math routines support the basic graphics math operations on
vectors and matrices. As with the drawing routines, there are math routines to oper-
ate on a single vector or matrix in front-end memory, or on a field of vectors or
matrices in CM memory.

The vector routines include basic operations such as copying, adding, subtracting,
normalizing, negating, taking the cosine, dot product, cross product, or perpen-
dicular of two vectors, and applying transformation matrix to a vector. More
specialized routines include determining reflectance and transmittance vectors for
ray-tracing and radiosity applications.

Included with the graphics math routines are color conversion routines to trans-
form color vectors between different color models.

These routines are described in Chapter 3.

= Dithering Routines

The dithering routines allow you to move a color image to a grayscale or mono-
chrome scale with a minimum loss of image detail.

Two routines convert a color RGB image to an 8-bit grayscale image. That image
may then be given to one of a set of 6 dithering images that reduce the grayscale
to a 1-bit monochrome image. The dithering images support either integer or float-
ing point color values and allow you to apply either dot diffusion or error
propagation methods to produce the monochrome image.

These routines are described in Chapter 4.

1.3 Using *Render

To use the *Render routines you must include the appropriate header file in your program
and link with the supporting libraries when compiling.

4 Version 2.0, November 1991

1.3.1 C/Paris

To use the *Render drawing and dither routines you must include the header file cmsr-
draw.h as follows:
#include <cm/cmsr—-draw.h>

To use the *Render math routines you must include the header file emsr-math.h as
follows: ‘
#include <cm/cmsr-math.h>

For all the *Render routines, you must use the following links when compiling:
cc prog.c -lcmsr -1x11 -lparis -1lm

1.3.2 Fortran/Paris

To use the *Render drawing and dither routines you must include the header file ecmsx-
draw-fort.h as follows:
INCLUDE ‘/usr/include/cm/cmsr-draw-fort.h’

To use the *Render math routines you must include the header file cmsr-math-fort.h
as follows:
INCLUDE ' /usr/include/cm/cmsr-math-fort.h’

B

Note

This directory path, /usr/include/cm/cmsr-math-fort.h,
is the location for these header files recommended by the installa-
tion script for this software. However, you should check with your
system administrator for the exact location at your site.

For all the *Render routines, you must use the following links when compiling:
cc prog.c -lcmsr -1x1l1 -lparisfort -lparis -1lm

Version 2.0, November 1991 5

*Render Reference Manual for Paris

1.3.3 Lisp

For Lisp programs you must use a band in which the graphics package has been loaded.

If necessary, you can load it by entering:
(lcmw:load-optional-system ’‘graphics)

This will make all the graphics library functions available.

6 : Version 2.0, November 1991

Chapter 2

Drawing Routines

2.1 Overview

Render helps you create and manipulate an image in an image buffer in Connection
Machine memory. The drawing routines draw points, lines, arrays and spheres into an
image buffer in CM memory by writing color values into the appropriate locations.

2.1.1 The Image Buffer Field

The image buffer is a Paris field in a 2D VP set allocated in the size and shape of the image
to be displayed. The image buffer is the destination field for the *Render drawing opera-
tions and the source field for the Generic Display Interface’s display routines.

You allocate the image buffer so that the length of the axes of the image buffer VP set corre-
sponds to the resolution of the image to be displayed, 1 virtual processor to each pixel. Axis
0 of the geometry maps to the display’s x (horizontal) axis, and axis 1 of the geometry maps
to the display’s y (vertical) axis. Each virtual processor in the image buffer VP set contains
a color value and, if 3D, a z coordinate for the pixel at the corresponding (x, y) location on
the display.

*Render and the Generic Display Interface allow you to operate on the image buffer like
a virtual display space by specifying locations in screen coordinates. The visualization li-
braries assume the right-handed screen coordinate system shown in Figure 2. The origin
(0,0) is at the upper left corner of the image, positive x increases to the right, positive y
increases toward the bottom of the screen, and positive z increases into the screen. The
coordinate values are specified in terms of pixels.

Version 2.0, November 1991 7

*Render Reference Manual for Paris

+z .
(into screen)

+ X

(0,0)

ty

al .:|||| ::ul' u

Figure 2. The image buffer coordinate system.

The 2D *Render drawing routines specify the location of the drawing primitives in x and
y coordinate pairs that correspond to pixel/processor locations in the image buffer field.
The routines “draw” into the image buffer field by loading a specified color value into the
appropriate processor location.

The image buffer is then displayed by transferring the color data from CM memory to a
generic display, as with the Generic Display Interface routine CMSR_write to_display.
The origin of the image buffer field (0,0) is displayed at the upper left corner of the display
and the color value in each virtual processor is assigned to the corresponding pixel of the
display. The length of the image buffer field allocated for the color data should be the same
as the depth of the display. If the field length is longer, only the low order, least significant
bits are displayed. If the field length is shorter than the depth of the window, an error is
signaled.

2.1.2 The Z Buffer

For *Render’s 3D drawing routines, a z-buffer field is allocated containing two subfields,
one for color data and one for z coordinate data. The z value occupies the most significant
bits, and the color value occupies the least significant bits. The 3D drawing routines specify
x, y, and z coordinates, and color values. *Render includes a utility routine, CMSR_
initialize z_buffer, which prepares an allocated z-buffer field for use by initializing
the z coordinate portion of the z-buffer field to the largest value that can be represented and
the color portion to a specified background color.

8 Version 2.0, November 1991

Chapter 2. Drawing Routines

As with the 2D routines, the x and y coordinates determine the location in the z-buffer field
VP set that will receive the color value. But before writing the color value, the system per-
forms a z-buffer comparison between the incoming z coordinate and the z-buffer value
already stored at that location. If the incoming z coordinate is smaller (that is, “nearer” the
viewer), the color value associated with it is written to the field and the incoming z coordi-
nate becomes the z-buffer value at that point. If the incoming z coordinate is larger (that
is, “farther” from the viewer) than the current z-buffer value, neither the color nor z coordi-
nate is changed for that location. Thus, the point stored is the visible point nearest the
viewer.

2.1.3 Framebuffer-Ordered Geometries

The transfer of fields of color data between CM memory and the CM framebuffer can be
optimized by using image buffer geometries created with framebuffer ordering. 1/O per-
formance to X Window System or Symbolics generic displays is unaffected by the choice
of ordering.

The function CMFB-create-cmfb-geometry allocates and returns a 2D geometry of a
specified width and height. Width specifies the length of axis 0 of the geometry and maps
to the screen’s x (horizontal) axis. Height specifies the length of axis 1 and maps to the
screen’s y (vertical) axis. Both axes are created with framebuffer ordering.

Framebuffer-ordered geometries are intended to be used only as image buffers. While
image transfers to the CM framebuffer are faster, Paris NEWS communication functions
operate much more slowly on a framebuffer-ordered VP set. The NEWS function must per-
form a send to reorder a framebuffer-ordered geometry before the NEWS operation can be
completed.

If you do not use NEWS functions in the image buffer, it is recommended that you do not
use a normal grid-ordered geometry as an image buffer. The Generic Display Interface /O
functions will accept a NEWS-ordered geometry as an image buffer, but performance is
slowed significantly. These operations must perform a send to “shuffle” the field into
framebuffer order before transferring it to the CM framebuffer.

2.1.4 The Combiner Parameter

*Render routines that draw into the image buffer use a combiner parameter to define the
method used to combine the array values being transferred from the source field with the
values already in the image buffer field. Valid values for this parameter are:

Version 2.0, November 1991 9

*Render Reference Manual for Paris

= DEFAULT No combiner method specified.

* OVERWRITE Replace existing image buffer value with source value.
* LOGIOR Combine using bitwise logical inclusive OR.

* LOGAND Combine using bitwise logical AND.

* LOGXOR Combine using bitwise logical exclusive OR.

= U-ADD Combine using unsigned integer addition.

= S-ADD Combine using signed integer addition.

= U-MIN Combine using unsigned integer minimum operation.
= S-MIN Combine using signed integer minimum operation.

= U-MAX Combine using unsigned integer maximum operation.
= S-MAX Combine using signed integer maximum operation.

These values correspond to the appropriate versions of the Paris send functions. For exam-
ple, specifying a combiner of U-MAX will call send-with-u-max to write into the image
buffer. The DEFAULT setting corresponds to the send-1L Paris function.

Note that the combiner parameter also controls how multiple values sent to the same image
buffer location are to be combined. For example, if two or more color values are written
to a single location in the image buffer field and the combiner operation is ADD, each color
value is added to the current color at that location as it arrives at the processor. If the com-
biner operation is MAX, the largest of the arriving values or the original value is saved.

If more than one value is received at a single location when combiner is set to DEFAULT
or OVERWRITE, the result is unpredictable. The OVERWRITE operation discards the original
value, but does not predict which of the incoming values will be saved. The DEFAULT
operation overwrites the original value, but an unpredictable ordering of bits will be saved;
that is, none of the incoming messages will be saved intact. You should use these operations
only when you are sure that only one value will be sent to any location.

2.1.5 Drawing Points and Lines

The 2D point drawing routines load a color value into a specific location in the image buffer
field. The 3D point drawing routines write to a specific (x, y) location in the z-buffer field
in the same way as the 2D routines. But the 3D routines also perform a z coordinate com-
parison as described in Section 1.3.2 above. The color value associated with the smaller z
(“nearer” the viewer) is chosen over the color value with a larger z. The line drawing rou-
tines draw a color value into the image buffer field along a line between specified
endpoints.

As summarized in Table 1, different versions of the *Render operations support either
front-end variables or other Connection Machine fields as the source for coordinate and

10 Version 2.0, November 1991

Chapter 2. Drawing Routines

color values. Similarly, in different *Render operations the coordinate and color values can
be either floating-point or signed integer values.

Table 1. *Render point and line drawing operations.

Uses Front-End Source Variable Uses CM Source Field
?;%:;; CMSR_fe s _draw_line CMSR_s_draw_line
Values CMSR fe s draw_point CMSR_s_draw_point
Floating- CMSR fe f draw_line CMSR f draw_line
Point CMSR_fe_f draw_point CMSR_f£ draw_point
Values - T . -
CMSR_fe f draw point 3d CMSR_f_draw_point_3d

The *Render operations that use front-end variables specify a single coordinate pair and
color value. These operations draw a single point or line with each call of the routine.

The *Render operations that use CM source fields operate in parallel on the set of coordi-
nate pairs and color values specified in the fields. With each call of these routines, one point
or line is drawn for each active virtual processor in the current VP set.

The source fields must be in the current VP set when the *Render operation is called, but
the source fields need not be in the same VP set as the image buffer field.

Floating-Point Coordinates

Floating-point coordinate values must, of course, be reduced to integer values to determine
which discrete pixels are actually turned on.

When using floating-point coordinate values, the *Render routines round the floating-point
values to integral pixel values by using the function

round (value) = floor (value + 0.5)

This means that the area of a pixel in floating-point coordinates is (x—0.5, x+0.5) by
(0.5, y+0.5). For example, the first pixel is lit by the coordinates from (—.05, —0.5) to
(0.5, 0.5), and a display space of size 128 by 128 has a floating-point extent of (0.5, —0.5)
to (127.5, 127.5).

Version 2.0, November 1991 11

*Render Reference Manual for Paris

This convention has been adopted because it allows more accurate line drawing. For exam-
ple, if a line is drawn from (0.0, 0.0) to (9.0, 1.0) the pixels that will be lit are as follows:

(0,0)

If a simple £loor function where used, the less intuitive result would be:

(0,0)

Note

Line drawing using floating-point coordinates with CMSR_fe £
draw_line or CMSR_f_draw_line is significantly slower than
the line-drawing routines that use integer coordinates. If you are
hampered by the speed of the floating-point routines, you may
want to convert the coordinates to integer values and then use
CMSR_fe_s draw_line or CMSR_s_draw_line.

The floating-point routines are slower because of added process-
ing needed to draw fractional slopes accurately.

Clipping

The *Render line and point drawing operations optionally clip the primitives to the coordi-
nate range of the image buffer field. If the c/ip_p parameter for these routines is true, points
and portions of lines with coordinates outside the image buffer field will not be drawn.
These operations do not change the coordinate values specified by the user in CM source
fields or front-end variables.

12 Version 2.0, November 1991

Chapter 2. Drawing Routines

In addition, two clipping operations, CMSR_£ clip_lines and CMSR s_clip lines,
clip source fields containing 2D floating-point or integer coordinate values, respectively,
to a user-defined coordinate range.

If a line falls completely outside the clipping range, these routines clear the test flag of the
corresponding virtual processor. If only a portion of a line is within the clipping range,
these routines set the virtual processor test flag and clip the lines by interpolating new end-
points at the boundary of the clipping range, overwriting the original line coordinates
specified in the source field. If a line is entirely within the clipping range, these routines
set the virtual processor test flag and leave the coordinates unchanged.

You may then use the Paris instruction CM_logand_context _with_test to load the
test flag values into the context flags of the source field VP set and use these fields as source
fields for CMSR_s_draw_line or CMSR f draw_line.

2.1.6 Sphere Drawing

CMSR_s_draw_sphere provides a simple interface for drawing shaded spheres into an
image buffer in CM memory.

CMSR_s_draw_sphere takes six CM fields as arguments:
= the image buffer field into which the spheres are to be drawn
= avector field specifying the 3D coordinates of each sphere’s center
= a field giving the radius of each sphere

= two fields giving minimum and maximum color values defining the range of
values from the color map that the sphere can take on

® an optional information field that can be used as you wish.

The spheres are shaded as if a light source was placed at negative infinity along the z axis,
and anti-aliasing may be performed to smooth the sphere edges.

2.1.7 Transferring Image Arrays

*Render also includes routines to transfer arrays of image data from one CM field to
another, and between a front-end array and a CM field.

Version 2.0, November 1991 13

*Render Reference Manual for Paris

S

From a CM Field to the Image Buffer

CMSR_draw_image allows you to transfer a portion of a source field of color values to the
image buffer field. Both the source field and the image buffer field must be in two-dimen-
sional VP sets. The source field must be in the current VP set when the operation is called.
The image buffer field does not have to be in the current VP set.

CMSR_draw_image specifies the coordinates of a subarray of the source field and a loca-
tion in the image buffer. This operation allows you to move a portion of an image into the
image buffer field from another two-dimensional VP set, or to move a portion of an image
to another position within an image buffer field.

Between a Front-End Array and a CM Field

The following routines use bit-packed transfers to move an image between an array on the
front-end computer and a field in CM memory.

The read routines pack image buffer field values into a front-end array:
CMSR_read array from field
CMSR_read array from field 1

These routines pack the image by loading the color values from the image buffer field into
the front-end array elements as closely as possible. For example, a 128 by 128 1-bit image
could be packed into a 16 by 128 front-end char or CHARACTER array, 8 image array
elements to a front-end array element. When CMSR_read array_from field writes
this image to the front-end array, the image field in 8 CM processors fills a byte of the
front-end array. If array_element size is 8, each CM processor fills a byte of the front-end
array elements, and if array_element size is 32, each CM processor fills a word of the
front-end array elements.

The write routines perform the opposite operation, loading an image array packed into a
front-end array into a CM image buffer field:

CMSR write_array to_field
CMSR write_array to_field 1

The routines that end in 1 are more detailed versions. They allow you to specify a portion
of the source (array or field) to be transferred rather than the entire array, and to specify
offsets indicating where the image array should be placed.

14 Version 2.0, November 1991

Chapter 2. Drawing Routines

2.2 *Render Drawing Routine Descriptions

This section provides individual descriptions of the *Render drawing routines:

CMSR _initialize z bufferl 17
CMSR f draw point 19
CMSR f draw point 3d............ i 23
CMSR_s draw_point 27
CMSR fe f draw point............ ... i 30
CMSR fe f draw point 3d i, 33
CMSR fe s draw point.......... ... il 37
CMSR £ draw_line.............oiiiiiiiiiiiiiiii i 40
CMSR s draw_line............iiiiiiiiniiiiiiii i, 44
CMSR fe_f draw_linecciiiiiiiiiiiiiiiiiiiiiiiiie e 48
CMSR fe_s draw_line ittt 52
CMSR £ clip linest i 56
CMSR s clip 1lines ittt e 59
CMSR s draw_sphereoiiiiiiiiniiiiiiiiiiiieeannnn.. 62
CMSR draw_imagec.iiiiiiininiiiiiienaniiieanaineennnnens 66
CMSR _fe draw _rectanglettt 69
CMSR write array to field................. 71
CMSR write array to field 1iiiiiiiiiiiii... 74
CMSR_read array from field, 79
CMSR read array from field 1 82

Version 2.0, November 1991 15

Chapter 2. Drawing Routines CMSR _initialize_z_buffer

CMSR _initialize_z_buffer

Initializes a z-buffer field for use.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR_initialize z_ buffer
(z_buffer_field, color_value, coord_s_len, coord_e_len, color_len)

CM _field id _t z_buffer field;
int color_value;
unsigned int coord s len;
unsigned int coord e len;
unsigned int color len;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR _INITIALIZE Z BUFFER
& (z_buffer_field, color value, coord s len, coord e len, color len)

INTEGER z buffer field
INTEGER color_value
INTEGER coord s len
INTEGER coord e len
INTEGER color_len

Lisp Syntax

CMSR:initialize-z-buffer (z—buffer—field
&optional (color-value 0) (coord—s—len 23)
(coord—e—len 8) (color—len 8))

Version 2.0, November 1991 17

CMSR _initialize_z_buffer *Render Reference Manual for Pari.
S A o

ARGUMENTS

z_buffer_field

color value

coord_s _len

coord_e_len

color_len

DESCRIPTION

A}

e]

A Paris field identifier. z_buffer_field is a CM field with subfields
for a floating-point z coordinate value and an unsigned integer
color value. The z value occupies the most significant bits, and the
color value occupies the least significant bits.

The total length of the field must be (coord_s_len + coord_e_len
+ 1 + color_len) where coord_s_len is the length of the z
coordinate significand, coord_e_len is the length of the z
coordinate exponent, 1 is the sign bit for the z value, and color_len
is the length of the color value.

The color value to which the z-buffer is to be initialized. In Lisp
this parameter defaults to 0.

The length, in bits, of the significand of the z coordinate value in

z_buf-fer field.

The length, in bits, of the exponent of the z coordinate value in

z_buf-fer_field.
The length, in bits, of the color value in z_buffer field.

CMSR initialize z buffer initializes a z-buffer field for use. The z coordinate
portion of z_buffer_field is initialized to the largest value that can be represented. The
color portion of z_buffer field is initialized to color_value.

This function should be used to initialize any z_buffer_field before use.

SEE ALSO

CMSR_f draw_point_3d
CMSR _fe f draw_point_3d

18

Version 2.0, November 1991

Chapter 2. Drawing Routmes CMSR_f draw point
e : Y

CMSR_f_draw_point

Draws a set of 2D points into the CM image buffer field using floating-point coordinate
values.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void
CMSR_f£ draw_point (image_buffer field, x_field, y_field, color_field,

coord_s_length, coord_e_length, color_length,
combiner, clip_p)

CM field id t image_buffer field, x_field, y field, color_field;

unsigned int coord_s_length, coord_e_length, color_length;
CMSR combiner_t combiner;
int clip p;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR_F_DRAW_POINT

& (image_buffer_field, x_field, y_field,color_field,
& coord_s_length,coord_e_length,color_length,
& combiner, clip_p)

INTEGER image buffer field, x_field, y field, color_field
INTEGER coord_s_length, coord_e_length, color_length
INTEGER combiner, clip_p

Lisp Syntax

CMSR: f-draw-point (image-buffer—field x—field y—field color—field
coord-s—length coord—e—length color—length
&key (combiner :default) (clip—p t))

Version 2.0, November 1991 19

CMSR_f_dr

ARGUMENTS

20

aw_point

*Render Reference Manual for Paris

image_buffer field A Paris field identifier. The points are drawn into this field at the

x_field, y_field

color_field

locations specified by the x_fieldand y_field coordinate pairs. The
image_buffer_field must be in a two-dimensional VP set, and may
or may not be in the same VP set as the color_field and coordinate
fields. It need not be in the current VP set.

Paris field identifiers. These fields contain floating-point values
that are, respectively, the x and y coordinates at which to draw the
points in the image buffer field. x_field and y field must be in the
current VP set.

A Paris field identifier. This field contains the value drawn into the
image buffer. color_field must be in the current VP set.

coord_s_length, coord_e_length

color_length

combiner

Unsigned integers specifying the length of the floating-point
significand and exponent, respectively, in the coordinate values
used for x_field and y_field.

The length, in bits, of the color_field.

A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR default :DEFAULT
CMSR_overwrite CMSR_overwrite :OVERWRITE
CMSR _logior CMSR_logior :LOGIOR
CMSR_logand CMSR _logand : LOGAND
CMSR_logxor CMSR_logxor :LOGXOR
CMSR u_add CMSR_u_add :U~ADD
CMSR_s_add CMSR_s_add :S~ADD
CMSR u _min CMSR u min :U-MIN
CMSR_s_min CMSR_s min :S=MIN
CMSR_u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR s max :S-MAX

Version 2.0, November 1991

clip p A symbol indicating whether the line is to be clipped or not.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines and points outside the range of the image buffer field
are not drawn.

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

DESCRIPTION

CMSR_f_draw_point draws a set of points, defined with floating-point coordinates,
into the specified image buffer field.

For each active processor in the current VP set, the value in color_field is drawn into
image_buffer field at the processor location (x_field, y_field].

The *Render routines round the floating-point values to integral pixel values by using
the function
round (value) = floor (value+0.5)

This means that the area of a pixel in floating-point coordinates is (x—0.5,x+0.5) by
(»-0.5,y+0.5). For example, the first pixel is lit by the coordinates from (—.05, —0.5) to
(.5, .5), and a display space of size 128 x 128 has a floating-point extent of (-0.5,
127.5) x (0.5, 127.5).

The value written into each location in the image buffer field is a combination of the
value of color_field, the previous value at that location, and the value of any other
points overwriting the same location. The method used to combine these values is con-
trolled by the combiner parameter.

If clip_p is true ((TRUE. in Fortran, non-NULL in C, non-nil in Lisp), points with coor-
dinates outside the range of the image buffer field coordinates are not drawn. If the CM
safety mode is on and clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), an
error is signaled if the point is not within the boundaries of the destination image buffer
field.

Version 2.0, November 1991 21

CMSR_f_draw_point *Render Reference Manual for Paris
e -

ERRORS

The following errors are signaled if the CM safety mode is on.
It is an error to call CMSR_draw_f_point with
= coordinates not within the destination image buffer field if clip_p is false
® an image_buffer_field that is not part of a two-dimensional VP set geometry

® a color_length that is longer than the length of the image buffer field or
color_field

®» color or coordinate fields not in the current VP set

SEE ALSO
CMSR_fe s_draw_point
CMSR fe f draw_point
CMSR_s_draw_point

22 Version 2.0, November 1991

CMSR_f_draw_point_3d

CMSR_f _draw_point_3d

Draws a set of 3D points into the CM image buffer field using floating-point coordinate
values.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR_£ draw_point_3d(z_buffer field, xyz_vector_field, color_field,
coord_s_len, coord_e_len, color len, clip p) ;
CM field id t z_buffer_field;
CM field id_t xyz vector field;
CM field id t color_field;
unsigned int coord s len;
unsigned int coord e len;
unsigned int color len;
int clip p;

Fortran Syntax

INCLUDE ’/usr/include/cm/cmsr—-draw-fort.h’

CMSR_F DRAW_POINT 3D (z_ buffer_field, xyz_vector_field, color_field,
& coord_s_len, coord_e_len, color_len, clip_p)

INTEGER z_buffer field
INTEGER xyz_vector_field
INTEGER color_field
INTEGER coord_s len
INTEGER coord e len
INTEGER color_len
INTEGER clip p

Lisp Syntax

CMSR: f-draw-point-3d (z-buffer—field xyz—vector—field color—field
coord—s—len coord—e-len color-len
 soptional (clip—pt))

Version 2.0, November 1991 23

CMSR_f_draw_point_3d *Render Reference Manual for Paris

e SRR S

ARGUMENTS

z_buffer field A Paris field identifier. z_buffer field is a CM field with subfields
for a floating-point z coordinate value and an unsigned integer
color value. The z value occupies the most significant bits, and the
color value occupies the least significant bits.

The total length of the field must be (coord_s_len + coord_e_len
+ 1 + color_len) where coord_s_len is the length of the z
coordinate significand, coord_e_len is the length of the z
coordinate exponent, 1 is the sign bit for the z value, and color_len
is the length of the color value.

The z subfield may be accessed by using the value CM_add__
offset_to_field(z_buffer_field, color_len) and the color
subfield may be accessed by using the value z_buffer_field.

xyz_vector_field A Paris field indentifier specifying the field containing the
coordinates, in screen coordinate space, of the points to be drawn
to z_buffer_field. The x and y coordinates specify the location in
the z_buffer field VP set that will receive this processor’s z
coordinate and color value.

The coordinates are floating-point values, each having a length of
(coord_s_len + coord _e_len + 1) bits. The vector field is
organized so that x occupies the least significant bits, y the
following bits, and z the most significant bits. The length of the
entire field is (3 * (coord_s_len + coord _e_len + 1))

color_field A Paris field indentifier identifying the field containing the integer
color values to be drawn into z_buffer_field.

coord_s _len The length, in bits, of the significand of the floating-point values
in the z subfield of z_buffer_field and the x, y, and z subfields of
xyz_vector_field.

coord_e_len The length, in bits, of the exponent of the floating-point values in
the z subfield of z_buffer field and the x, y, and z subfields of
xyz_vector_field.

color_len The length, in bits, of the color subfield in z_buffer field and the
color_field.

24 Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_f_draw_point_3d

clip p A symbol indicating whether the points are to be clipped or not.

If clip_p is true (.TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines, or portions of lines, drawn outside the range of the
z_buffer_field coordinates are clipped.

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the z_buffer field.

The range of the z_buffer field is defined by the length of the 2
axes in the 2D geometry in which it is defined.

DESCRIPTION

For each active processor in the VP set containing xyz_vector_field and color_field,
CMSR_f draw_point_3d draws a z-buffer image value into z_buffer_field at the
location specified by the x and y components of the xyz_vector_field. The z-buffer
image value is composed of the z value from xyz_vector_field and the color value from
color_field.

The *Render routines round the floating-point coordinate values to integral pixel
values by using the function

round (value) = floor (value + 0.5)

This means that the area of a pixel in floating-point coordinates is (x — 0.5, x + 0.5) by
(y-0.5,y+0.5). For example, the first pixel is lit by the coordinates from (—.05, —0.5)
to (0.5, 0.5), and a display space of size 128 by 128 has a floating-point extent of (-0.5,
127.5) to (0.5, 127.5).

The fields xyz_vector_field and color_field must both be in the current VP set when
CMSR_£f draw_point_3d is called. The field z_buffer field does not need to be in
same VP set as xyz_vector_field and color_field, nor does it need to be in the current VP
set.

The system performs a z-buffer comparison in z_buffer field based on a right handed
coordinate system, that is, positive z increases into the screen, positive y increases
toward the bottom of the screen, and positive x increases to the right. The origin of the
image (0,0) is the upper left corner. If a z-buffer image value is written to a point in
z_buffer_field that already contains an image value, the color value associated with the
smaller z (“nearer” the viewer) is chosen over the color value with a larger z.

Version 2.0, November 1991 25

CMSR_f_draw_p

N

oint_3d *Render Reference Manual for Paris

ERRORS
With CM safety mode on, an error is signaled if you call CMSR £ draw_point_3d
with
® az buffer field that is not part of a two-dimensional VP set geometry
= the fields xyz_vector_field, color_field not in the current VP set

® a color_length that is longer than the length of the image buffer field or
color_field

= coordinates not within the destination z-buffer field if clip_p is false

SEE ALSO
CMSR _fe f draw_point 3d
CMSR_f draw_point
CMSR_s draw_point
CMSR fe f draw_point
CMSR_fe_s_draw_point

26 Version 2.0, November 1991

ing Routines

CMSR_s_draw_point

Draws a set of points into the CM image buffer field using signed integer coordinates.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR s draw_point (image_buffer_field, x_field, y field, color_field,
coord_length, color_length, combiner, clip_p) ;

CM field id t image_buffer field, x_field, y field, color_field;

unsigned int coord_length, color_length;
CMSR_combiner_t combiner;
int clip p;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR_S_DRAW_POINT
& (image_buffer_field, x_field, y_field, color_field,
& coord_length, color_length, combiner, clip_p)

INTEGER image_buffer field, x_field, y field, color_field
INTEGER coord_length, color_length, combiner, clip p

Lisp Syntax

CMSR: s~draw-point (image-buffer—field x—field y—field
color—field coord—length color-length
&key (combiner :default) (clip-p t))

ARGUMENTS

image_buffer field A Paris field identifier. The specified point is drawn into this field
at the location specified by x_field and y_field. The image_buffer _

Version 2.0, November 1991 27

28

CMSR_s_draw_point

x_field, y_field

color_field

coord_length

color_length

combiner

clip p

field must be in a two-dimensional VP set, and may or may not be
in the same VP set as the color_field or coordinate fields. It need
not be in the current VP set.

Paris field identifiers. These fields contain integer values that are
the x and y coordinates, respectively, at which the point is to be
drawn in the image buffer field. x_field and y_field must be in the
current VP set.

A Paris field identifier. This fields contains the value to be drawn
into the image_buffer_field. color_field must be in the current VP
set.

An unsigned integer specifying the length of the coordinates used
for x_field and y_field.

NOTE: In routines using signed integer coordinates, coord_length
must include room for the sign bit.

The length, in bits, of color_field.

A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR default CMSR_default :DEFAULT
CMSR_overwrite CMSR overwrite : OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor : LOGXOR
CMSR u_add CMSR u_add :U-ADD
CMSR_s_add CMSR_s_add :S-ADD
CMSR u min CMSR_u_min :U-MIN
CMSR_s_min CMSR_s_min :S-MIN
CMSR_u_max CMSR_u_max :U-MARX
CMSR_s_max CMSR_s_max :S~-MAX

A symbol indicating whether the point is to be clipped or not.

If clip_p is true (.TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), points outside the range of the image buffer field
coordinates are not drawn.

Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_s_draw_point

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

DESCRIPTION

CMSR_s_draw_point draws a point, defined with signed integer coordinates, into the
specified image buffer field.

For each active processor in the current VP set, the value in color _field is drawn into
image_buffer_field at processor location (x,y).

The value written into each location in the image buffer is a combination of the value of
color_field, the previous value at that location, and the value of any other points over-
writing the same location. The method used to combine these values is controlled by
the combiner parameter.

If clip_p is true (.TRUE. in Fortran, non-NULL in C, non-nil in Lisp), points with coor-
dinates outside the range of the image buffer field are not drawn. If the CM safety mode
ison and clip_pis false ((FALSE. in Fortran, NULL in C, nil in Lisp), an error is signaled
if the point is not within the boundaries of the destination image buffer field.

ERRORS
With CM safety mode on, an error is signaled if you call CMSR_draw_s_point with
® coordinates not within the destination image buffer if clip_p is false
® an image_buffer field that is not part of a two-dimensional VP set geometry

® a color_length that is longer than the length or the image buffer field or
color_field

®» color or coordinate fields not in the current VP set

SEE ALSO
CMSR _f draw_point
CMSR _fe s_draw point
CMSR fe f draw_point

Version 2.0, November 1991 29

CMSR_fe_f _draw_point *Render Reference Manual for Paris

S
RRE

CMSR_fe_f_draw_point

Draws a point into the CM image buffer field using front-end floating-point coordinate
values.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR_fe_f draw_point (image_buffer_field, x, y, color,
color_length, combiner, clip_p)

CM _field id t image_buffer field;
double X, y;:
int color;
unsigned int color_length ;
CMSR combiner t combiner;
int clip p;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR_FE_F_DRAW_POINT (image_buffer field, x, y, color,
color_length, combiner, clip_p)

INTEGER image_buffer field

DOUBLE PRECISION X,y

INTEGER color, color_length, combiner, clip_p
Lisp Syntax

CMSR: fe-f-draw-point (image-buffer—field x y color color-length
' skey (combiner :default) (clip—p t))

30 Version 2.0, November 1991

>

CMSR_fe_f draw_point

Chapter 2. Drawing Routines

ARGUMENTS

image_buffer field A Paris field identifier. The specified point is drawn into this field
at the location specified by x and y. The image buffer field must
be in a two-dimensional VP set. It need not be in the current VP
set.

X,y Front-end floating-point coordinate values, defining the x and y
coordinates, respectively, at which to draw the point in the image
buffer field.

color_length The length, in bits, of color.

combiner A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

clip_p

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR_overwrite CMSR_overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor : LOGXOR
CMSR_u_add CMSR u_add :U-ADD
CMSR_s_add CMSR_s_add :S-ADD
CMSR_u_min CMSR u min :U-MIN
CMSR_s min CMSR_s_min :S-MIN
CMSR_u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max :S-MAX

A symbol indicating whether the point is to be clipped or not.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), points outside the range of the image buffer field
coordinates are not drawn.

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

Version 2.0, November 1991 31

*Render Reference Manual for Paris

%

DESCRIPTION

CMSR_fe f draw_point draws a point, defined with front-end coordinate values,
into the specified image buffer field.

The value in color_field is drawn into image_buffer_field at processor location (x,y).
The *Render routines round the floating-point coordinate values to integral pixel val-
ues by using the function

round (value) = floor (value+0.5)

This means that the area of a pixel in floating-point coordinates is (x—0.5,x+0.5) by
(»-0.5,y+0.5). For example, the first pixel is lit by the coordinates from (—.05, —0.5) to
(0.5, 0.5), and a display space of size 128 by 128 has a floating-point extent of (0.5,
127.5) to (-0.5, 127.5).

The value written into the location in the image buffer is a combination of the value of
color_field, the previous value at that location, and the value of any other points over-
writing the same location. The method used to combine these values is controlled by
the combiner parameter.

If clip_p istrue (TRUE. in Fortran, non-NULL in C, non-nil in Lisp), points with coor-
dinates outside the range of the image buffer field coordinates are not drawn. If the CM
safety mode is on and clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), an
error is signaled if the point is not within the boundaries of the destination image buffer
field.

ERRORS

With CM safety mode on, an error is signaled if you call CMSR_fe £ draw_point
with

= coordinates not within the destination image buffer if clip_p is false
® an image_buffer field that is not part of a two-dimensional VP set
® acolor_length that is longer than the length of the image_buffer_ field

SEE ALSO
CMSR_f draw_point
CMSR fe s _draw_point
CMSR_s_draw_point

32 Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_fe_f_draw_point_3d

CMSR_fe_f draw_point_3d

Draws a point into the CM image buffer field using 3D front-end floating-point coordinate

values.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR fe f draw_point 3d (z_buffer field, xyz_vector, color,

coord_s_len, coord_e_len, color_len, clip_p)

CM field id t z_buffer_field;

double
unsigned
unsigned
unsigned
unsigned
int

Fortran Syntax

INCLUDE

int
int
int
int

xyz_vector[3];
color;

coord_s len;
coord_e_len;
color_len;

clip p;

' /usr/include/cm/cmsr—-draw—-fort.h’

CMSR _FE_F DRAW_POINT 3D (z_buffer_field, xyz_vector, color,

INTEGER

coord_s_len, coord_e_len, color_len, clip_p)
z_buffer field

DOUBLE PRECISION xyz vector(3)

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

Lisp Syntax

color
coord_s _len
coord_e_len
color_len

clip p

CMSR: fe-f-draw-point-3d (z-buffer—field xyz—vector color

coord-s—len coord—e—len color-len
&optional (clip—p t))

Version 2.0, November 1991

33

CMSR_fe_f _draw_point_3d

S

ARGUMENTS
z_buffer_field

xyz_vector

color

coord_s_len

coord_e _len

color_len

clip_p

34

A Paris field identifier. z_buffer field is a CM field with subfields
for a floating-point z-coordinate value and an unsigned integer
color value. The z value occupies the most significant bits, and the
color value occupies the least significant bits.

The total length of the field must be (coord_s_len + coord_e_len
+ 1 + color_len) where coord_s_len is the length of the
z-coordinate significand, coord_e_len is the length of the
z-coordinate exponent, 1 is the sign bit for the z value, and
color_len is the length of the color value.

The z subfield may be accessed by using the value
CM_add_offset_to_field(z buffer field, color_len) and the
color subfield may be accessed by using the value z_buffer field.

An array of three double-precision floating-point values on the
Connection Machine’s front-end computer. The values represent
the x, y, and z coordinates, respectively, of the point to be drawn
into the z_buffer_field in Connection Machine memory. The x and
y coordinates specify the location in the z_buffer field VP set that
will receive the z coordinate value and the color value.

An unsigned integer containing the color value to be drawn to this
point in z_buffer_field. The number of bits used to represent the
color depends on the bits per pixel to be displayed.

The length, in bits, of the significand of the floating-point values
in the z subfield of z_buffer field.

The length, in bits, of the exponent of the floating-point values in
the z subfield of z_buffer_field.

The length, in bits, of the color subfield in z_buffer field. This
value specifies how many of the least significant bits of color to
transfer to CM.

A symbol indicating whether the points are to be clipped or not.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines, or portions of lines, drawn outside the range of the
z-buffer field coordinates are clipped.

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the z_buffer_field. The range

Version 2.0, November 1991

Chapter 2. Drawing Routines

of the z_buffer_field is defined by the length of the 2 axes in the
2D geometry in which it is defined.

DESCRIPTION

CMSR_fe f draw_point_3d draws a z-buffer image value into z_buffer_field at the
location specified by the x and y components of the xyz_vector field. The z-buffer
image value is composed of the z value from xyz_vector field and the color value from
the color argument.

The *Render routines round the floating-point coordinate values to integral pixel
values by using the function

round (value) = floor (value+0.5)

This means that the area of a pixel in floating-point coordinates is (x—0.5,x+0.5) by
(»-0.5,y1+0.5). For example, the first pixel is lit by the coordinates from (—.05, -0.5) to
(0.5, 0.5), and a display space of size 128 by 128 has a floating-point extent of (0.5,
127.5) to (0.5, 127.5).

The system performs a z-buffer comparison in z_buffer field based on a right handed
coordinate system, that is, positive z increases into the screen, positive y increases
toward the bottom of the screen, and positive x increases to the right. The origin of the
image (0,0) is the upper left corner. If a z-buffer image value is written to a point in
z_buffer field that already contains an image value, the color value associated with the
smaller z (“nearer” the viewer) is chosen over the color value with a larger z.

ERRORS

With CM safety mode on, an error is signaled if you call CMSR_fe £ draw_point_
3d with

= coordinates not within the destination image buffer if clip—p is false
® az buffer field that is not part of a two-dimensional VP set

® a color_length that is longer than the length of the color component of
z_buffer field

Version 2.0, November 1991 35

CMSR_fe_f_draw_point_3d

SEE ALSO

CMSR_£f draw_point_ 3d
CMSR_f draw_point
CMSR_s_draw_point
CMSR_fe f draw point
CMSR_fe_s_draw_point

*Render Reference Manual for Paris

36

Version 2.0, November 1991

. Chapter 2. Drawing Routines CMSR_fe_s_draw_point

R

FE

CMSR_fe_s_draw_point

Draws a point into the CM image buffer field using front-end signed integer coordinate
values.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void
CMSR_fe s_draw_point (image_buffer_field, x, y, color,
color_length, combiner, clip_p)

CM _field id t image_buffer field;
int x, y, color;
unsigned int color_length ;
CMSR_combiner_t combiner;

int clip p;

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR_FE_S_DRAW_POINT (image_buffer_field, x, y, color,
& color_length, combiner, clip_p)

INTEGER image_ buffer field x, y, color, color_length
INTEGER combiner
INTEGER clip p

Lisp Syntax

CMSR: fe-s—draw-point (image-buffer—field x y color color-length
&key (combiner :default) (clip—p t))

Version 2.0, November 1991 37

CMSR_fe_s_draw_point

R

*Render Reference Manual for Paris

ARGUMENTS

image_buffer field A Paris field identifier. The specified point is drawn into this field
at the location specified by x and y. The image_buffer field must
be in a two-dimensional VP set. It need not be in the current VP

set.

X,y Front-end integer coordinate values, defining the x and y
coordinates, respectively, at which to draw the point in the image
buffer field.

color An unsigned integer containing the color value to be drawn to this

point in z_buffer_field. The number of bits used to represent the
color depends on the bits per pixel to be displayed.

color_length The length, in bits, of color.

combiner A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

Fortran Lisp

C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR_overwrite CMSR _overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor :LOGXOR
CMSR_u_add CMSR u_add :U-ADD
CMSR_s_add CMSR_s_add :S-ADD
CMSR_u_min CMSR _u_min :U-MIN
CMSR_s min CMSR _s_min : S=MIN
CMSR_u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max :S-MAX

clip p A symbol indicating whether the point is to be clipped or not.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), points outside the range of the image buffer field
coordinates are not drawn.

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_fe_s_draw_point

e

DESCRIPTION

CMSR_fe_s_draw_point draws a point, defined with front-end coordinate values,
into the specified image buffer field.

The value in color_field is drawn into image_buffer_field at the processor location
().

The value written into the location in the image buffer is a combination of the value of
color_field, the previous value at that location, and the value of any other points over-
writing the same location. The method used to combine these values is controlled by
the combiner parameter.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in Lisp), points drawn with
coordinates outside the range of the image buffer field coordinates are clipped. If the
CM safety mode is on and clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp),
an error is signaled if the point is not within the boundaries of the destination image
buffer field.

ERRORS
With CM safety mode on, an error is signaled if you call CMSR_fe_s draw_point
with
® coordinates not within the destination image buffer if clip_p is on
® an image_buffer field that is not part of a two-dimensional VP set

® a color_length that is longer than the length of the image buffer field or
color_field.

SEE ALSO
CMSR_f draw_point
CMSR fe f draw_point
CMSR_s_draw_point

Version 2.0, November 1991 39

CMSR_f_draw_line

Draws a set of lines into a CM image buffer field using floating-point coordinates.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR_f draw_line (image_buffer_field, x_start field, y_start field,
x_end_field, y end_field, color_field, coord_s_length,
coord_e_length, color_length, combiner,
draw_end_point_p, clip_p)

CM field id_t image buffer_field, color field,
x_start_field, y_start_field,
x_end field, y end_field;
unsigned int color_length, coord s length,coord_e_length;
CMSR_combiner combiner;
int draw_end_point _p, clip p;

Fortran Syntax
INCLUDE '’ /usr/include/cm/cmsr—-draw-fort.h’

SUBROUTINE CMSR_F_DRAW_LINE

& image_buffer field, x_start _field, y start field, x_end field, y end_field,
color_field, coord_s_length, coord_e_length, color length,

& combiner, draw_end_point_p, clip_p)

[

INTEGER image_buffer field, color field

INTEGER x_start field,y start field, x_end_field,y end field
INTEGER color_length, coord_s_length, coord_e_length combiner
INTEGER draw_end_point p, clip p

Lisp Syntax

CMSR: f-draw-line (image-buffer—field x—start—field y—start—field x—end—field
y—end—field color—field coord—s—length coord—e—length
color-length skey (combiner :default)
(draw—end-point-p t) (clip—p t))

40 Version 2.0, November 1991

Chapter 2. Drawing Routines

CMSR_f_draw_line

ARGUMENTS

image_buffer field A Paris field identifier. The specified lines are drawn into this field

at the locations specified by the (x_start_field, y start field) and
(x_end_field, y_end_field) coordinate pairs. The image buffer
field must be at least as long as color_length. The image buffer
field must be in a two-dimensional VP set, and may or may not be
in the same VP set as the color_field and coordinate fields.

x_start field, y start field
Paris field identifiers. These fields contain floating-point values
that are the x and y coordinates, respectively, at which to begin
drawing the lines. These fields must be in the current VP set.

x_end _field, y_end_field
Paris field identifiers. These fields contain floating-point values
that are the x and y coordinates, respectively, at which to end the
lines. These fields must be in the current VP set.

color _field

combiner

Version 2.0, November 1991

A Paris field identifier. This field contains the value drawn into the
image buffer. The color field must be in the current VP set.

A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR default CMSR_default :DEFAULT
CMSR_overwrite CMSR_overwrite :OVERWRITE
CMSR logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR logxor CMSR_logxor :LOGXOR
CMSR_u_add CMSR_u_add :U-ADD
CMSR_s_add CMSR_s_add :S-ADD
CMSR _u_min CMSR_u_min :U-MIN
CMSR_s min CMSR_s_min :S-MIN
CMSR_u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max :S-MAX

41

CMSR_f_draw_line *Render Reference Ma
B i i i

nual for Paris

coord_s_length, coord_e_length
Unsigned integers specifying the length of the floating-point
significand and exponent, respectively, in the coordinate values
used for x_start field,y start field,x_end_field, andy_end_field.

color_length The length, in bits, of the color_field.

draw_end_point_p A symbol indicating whether the end points of the lines (x_end_
field, y_end_field) are to be drawn or not. The end points are only
drawn if draw_end_point_p is true (TRUE. in Fortran, non-NULL
in C, non-nil in Lisp).

clip p A symbol indicating whether the lines are to be clipped or not.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines, or portions of lines, drawn outside the range of the
image buffer field coordinates are clipped.

If clip_p is false ((FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

DESCRIPTION

42

CMSR_f draw_line draws a set of lines, defined with floating-poing coordinates,
into the specified image buffer field.

For each active processor in the current VP set, the value in color_field is drawn into
the image_buffer_field at the processor locations along the line from the (x_start_field,
y_start_field) to (x_end_field, y_end_field). The starting points of the lines are always
drawn; the end points are only drawn if draw_end_point_p is true (TRUE. in Fortran,
non-NULL in C, non-nil in Lisp).

The *Render routines round the floating-point coordinate values to integral pixel
values by using the function

round (value) = floor (value+0.5)

This means that the area of a pixel in floating-point coordinates is (x—0.5, x+0.5) by
(»-0.5, y+0.5). For example, the first pixel is lit by the coordinates from (—.05, —0.5) to
(0.5, 0.5), and a display space of size 128 by 128 has a floating-point extent of (0.5,
127.5) to (0.5, 127.5).

The value written into each location in the image buffer is a combination of the value of
color_field, the previous value at that location, and the value of any other lines writing

Version 2.0, November 1991

Chapter 2.

B
R

Drawing Routines CMSR_f_draw_line

to the same location. The method used to combine these values is controlled by the
combiner parameter.

If the CM safety mode is on and clip_p is false (FALSE. in Fortran, NULL in C, nil in
Lisp), an error is signaled if a line is not within the boundaries of the destination image
buffer field. If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in Lisp), lines,
or portions of lines, drawn outside the range of the image buffer field coordinates are
clipped.

Note

Line drawing using floating-point coordinates with CMSR_fe £
draw_line or CMSR_f draw_line is significantly slower than
the line drawing routines that use integer coordinates. If you are
hampered by the speed of the floating-point routines, you may
want to convert the coordinates to integer values and then use
CMSR_fe s_draw_line or CMSR s_draw_line.

s

ERRORS
With CM safety mode on, an error is signaled if you call CMSR_draw_f£_line with
= coordinates not within the destination image buffer if clip_p is false
® an image_buffer_field that is not part of a two-dimensional VP set

® a color_length that is longer than the length of the image buffer field or
color_field

= color or coordinate fields that are not in the current VP set

SEE ALSO
CMSR fe s draw_line
CMSR fe f draw_line
CMSR_s draw_line

Version 2.0, November 1991 43

CMSR_s_draw_line *Render Reference Manual for Paris

CMSR_s_draw_line

Draws a set of lines into the CM image buffer field using signed integer coordinate values.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR_s_draw_line (image_buffer_field, x_start field, y start_ field,
x_end_field, y_end_field, color_field, coord_length,
color_length, combiner, draw_end_point_p, clip_p)

CM field id t image_buffer_field, color_field, x_start field,
y_start field;
CM field id t x_end_field, y_end field, color field;

unsigned int coord_length, color_length ;
CMSR_combiner_t combiner;
int draw_end_point _p, clip_p:

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr—-draw-fort.h’

SUBROUTINE CMSR_S DRAW_LINE
(image_buffer _field, x_start_field, y_start field,
& x_end_field, y end_field, color_field, coord_length,
& color_length, combiner, draw_end_point_p, clip_p)

INTEGER image_buffer field, x_start field, y start field
INTEGER x_end field,y end field, color field
INTEGER coord_length, color_length

INTEGER combiner

INTEGER draw_end_point_p, clip p

Lisp Syntax

CMSR:s-draw-line (image-buffer—field x—start—field y—start—field x—end—field
y—end—field color—field coord-length color-length
skey (combiner :default) (draw—end-point-p t)
(clip-p t))

44 Version 2.0, November 1991

Chapter 2. Drawing Routines

ARGUMENTS

image_buffer field A Paris field identifier. The specified lines are drawn into this field
at the locations specified by the (x_start field, y start_field) and
(x_end field, y_end_ field) coordinate pairs. The image buffer
field must be at least as long as color_length. The image buffer_
field must be in a two-dimensional VP set, and may or may not be
in the same VP set as the color_field and coordinate fields. It need
not be in the current VP set.

x_start field,y start field
Paris field identifiers. These fields contain integer values that are
the x and y coordinates, respectively, at which to begin drawing
the lines. These fields must be in the current VP set.

x_end field, y _end_field
Paris field identifiers. These fields contain integer values that are
the x and y coordinates, respectively, at which to end the lines.
These fields must be in the current VP set.

color_field A Paris field identifier. This field contains the value drawn into the
image buffer. color_field must be in the current VP set.

combiner A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

color_length

Version 2.0, November 1991

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR _default :DEFAULT
CMSR overwrite CMSR_overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor :LOGXOR
CMSR u_add CMSR_u_add :U~ADD
CMSR_s_add CMSR_s_add :S~ADD
CMSR u min CMSR_u_min :U-MIN
CMSR s min CMSR_s_min :S=MIN
CMSR _u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max :S~MAX

The length, in bits, of the color_field.

CMSR_s_draw_line
E e

coord_length An unsigned integer specifying the length of the coordinates used
for x_start field, y start field, x_end field, and y_end_field.

Note: In routines using signed integer coordinates, coord_length
must include room for the sign bit.

draw_end point p A symbol indicating whether the end point of the line
(x_end_field, y_end_field) is drawn or not. The end point is only
drawn if draw_end_point_p is true (TRUE. in Fortran, non-NULL
in C, non-nil in Lisp).

clip p A symbol indicating whether the line is to be clipped or not.

If clip_p is true (.TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines or portions of lines drawn outside the range of the
image buffer field coordinates are clipped.

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

DESCRIPTION

46

CMSR_s_draw_line draws lines, defined with signed integer coordinates, into the
specified image buffer field.

For each active processor in the current VP set, the value in color_field is drawn into
image_buffer_field at the processor locations along the line from (x_start field,
y_start_field) to (x_end _field, y_end_field). The start points of the lines are always
drawn; the end points are only drawn if draw_end_point_p is true (.TRUE. in Fortran,
non-NULL in C, non-nil in Lisp).

The value written into each location in the image buffer is a combination of the value of
color_field, the previous value at that location, and the value of any other lines over-
writing the same location. The method used to combine these values is controlled by
the combiner parameter.

If the CM safety mode is on and clip_p is false (FALSE. in Fortran, NULL in C, nil in
Lisp), an error is signaled if the line is not within the boundaries of the destination
image buffer field. If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines or portions of lines drawn outside the range of the image buffer field coor-
dinates are clipped.

Version 2.0, November 1991

£

Chapter 2. Drawing Routines CMSR_s_draw_line

ERRORS

With CM safety mode on, an error is signaled if you call CMSR_draw_s_line with
= coordinates not within the destination image buffer if clip p is false
® an image buffer field that is not part of a two-dimensional VP set
® acolor_length that is longer than the image_buffer field or color_field

= color or coordinate fields not in the current VP set

SEE ALSO
CMSR_f draw_line
CMSR fe_ s draw_line
CMSR _fe f draw_line

Version 2.0, November 1991 47

CMSR_fe_f _draw_line *Render Reference Manual for Paris

[SRS

CMSR_fe_f draw_line

Draws a line into the CM image buffer field using front-end floating-point coordinate
values.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR_fe £ draw_line (image_buffer_field, x_start, y_start,
x_end, y_end, color, color_length, combiner,
draw_end_point_p, clip_p)

CM field id t image_buffer_field;

double x_start,y start,x_end,y end;

int color;

unsigned int color_length ;

CMSR combiner_t combiner;

int draw_end_point p, clip p;
Fortran Syntax

INCLUDE ’ /usr/include/cm/cmsr—-draw-fort.h’

SUBROUTINE CMSR FE_F_DRAW_LINE

& (image_buffer field, x_start, y start,
& x_end, y_end, color, color_length, combiner,
& draw_end_point_p, clip_p)
INTEGER image_buffer_field
DOUBLE PRECISION x_start,y start,x_end,y end
INTEGER color, color_length, combiner draw_end_point_p
INTEGER clip p
Lisp Syntax

CMSR: fe-f-draw-line (image-buffer—field x—start y—start x—end
y—end color color-length
&key (combiner :default)
(draw—end-point-p t) (clip—p t)

48 Version 2.0, November 1991

Chapter 2. Drawing Routines

ARGUMENTS
image_buffer field

x_start, y start

x_end, y_end

color

combiner

color_length

draw_end_point_p

Version 2.0, November 1991

A Paris field identifier. The specified line is drawn into this field
at the location specified by (x_start, y_start) and (x_end, y_end).
The image_buffer field must be in a two-dimensional VP set. It
need not be in the current VP set.

Front-end floating-point coordinate values, defining the x and y
coordinates, respectively, at which to begin drawing the line in the
image buffer field.

Front-end floating-point coordinate values, defining the x and y
coordinates, respectively, at which to end the line in the image
buffer field.

The value to be drawn into the image_buffer_field.

A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR_overwrite CMSR overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor :LOGXOR
CMSR_u_add CMSR_u_add :U~-ADD
CMSR_s_add CMSR_s_add :S-ADD
CMSR u min CMSR_u_min :U-MIN
CMSR_s_min CMSR s_min :S-MIN
CMSR_u_max CMSR u_max :U-MAX
CMSR_s_max CMSR_s_max : S~-MAX

The length of color in number of bits.

A symbol indicating whether the end point of the line (x_end,
y_end) is drawn or not. The end point is only drawn if
draw_end_point_p is true (TRUE. in Fortran, non-NULL in C,
non-nil in Lisp).

49

CMSR_fe_f _draw_line *Render Reference Manual for Paris

clip p A symbol indicating whether the line is to be clipped or not.

If clip_p is true (.TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines, or portions of lines, drawn outside the range of the
image buffer field coordinates are clipped.

If clip_p is false ((FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

DESCRIPTION

50

CMSR_fe f draw_line draws a line, defined with front-end floating-point coordi-
nate values, into the specified image buffer field.

The value in color is drawn into the image_buffer_field at the processor locations along
the line from (x_start, y_start) to (x_end, y_end). The start point is always drawn; the
end point is only drawn if draw_end_point_p is true (TRUE. in Fortran, non-NULL in
C, non-nil in Lisp).

The *Render routines round the floating-point coordinate values to integral pixel val-
ues by using the function

round (value) = floor (value+0.5)

This means that the area of a pixel in floating-point coordinates is (x—0.5, x+0.5) by
(0.5, y+0.5). For example, the first pixel is lit by the coordinates from (—.05, —0.5) to
(0.5, 0.5), and a display space of size 128 by 128 has a floating-point extent of (-0.5,
127.5) to (0.5, 127.5).

The value written into each location in the image buffer is a combination of the value of
color, the previous value at that location, and the value of any other lines overwriting
the same location. The method used to combine these values is controlled by the com-
biner parameter.

If clip_p is true (.TRUE. in Fortran, non-NULL in C, non-nil in Lisp), lines, or portions
of lines, drawn outside the range of the image buffer field coordinates are clipped. If
the CM safety mode is on and clip_p is false (.FALSE. in Fortran, NULL in C, nil in
Lisp), an error is signaled if the line is not within the boundaries of the destination
image buffer field.

Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_fe_f_draw_line
e s

Note

Line drawing using floating-point coordinates with CMSR_fe £
draw_line or CMSR_f draw_line is significantly slower than
the line drawing routines that use integer coordinates. If you are
hampered by the speed of the floating-point routines, you may
want to convert the coordinates to integer values and than use
CMSR fe s draw_line or CMSR s_draw line.

ERRORS
With CM safety mode on, an error is signaled if you call CMSR_fe_£ draw_line with
= coordinates not within the destination image buffer field if clip_p is false
® an image_buffer_field that does not have a two-dimensional VP set geometry
= acolor_length that is longer than the length of the image_buffer_field or color

= color or coordinate fields (x_start, y start,x_end, y_end, or color) are not
in the current VP set

SEE ALSO
CMSR_f draw_line
CMSR_fe s_draw_line
CMSR_s_draw_line

Version 2.0, November 1991 51

CMSR_fe_s_draw_line *Render Reference Manual for Paris

CMSR_fe_s_draw_line

Draws a line into the CM image buffer field using front-end signed integer coordinate
values.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR_fe s draw_line
(image_buffer_field, x_start, y_start, x_end, y_end, color,
color_length, combiner, draw_end_point_p, clip_p) ;

CM field id t image_buffer field;

int x_start,y start,x_end,y_end, color;

unsigned int color_length ;

CMSR combiner_t combiner;

int draw_end_point p, clip p;

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR FE_S_DRAW_LINE

& (image_buffer_field, x_start, y_start, x_end,
& y_end, color, color_length, combiner,
& draw_end_point_p, clip_p)

INTEGER image_buffer field
INTEGER x_start,y _start, x_end,y_end, color, color_length
INTEGER combiner, draw_end point_p, clip p

Lisp Syntax

CMSR: fe-s-draw-line (image—buffer—field x—start y—start x—end
y—end color color-length
skey (combiner :default)
(draw—end-point-p t) (clipp t)

52 Version 2.0, November 1991

Chapter 2. Drawing Routines

CMSR_fe_s_draw_line

ARGUMENTS

image_buffer field A Paris field identifier. The specified line is drawn into this field

Xx_start, y start

x_end, y end

color

combiner

color_length

draw_end_point p

Version 2.0, November 1991

at the location specified by (x_start, y_start) and (x_end, y_end).
The image_buffer _ field must be in a two-dimensional VP set. It
need not be in the current VP set.

Front-end integer coordinate values, defining the x and y
coordinates, respectively, in the image buffer field at which to
begin drawing the line.

Front-end integer coordinate values, defining the x and y
coordinates, respectively, in the image buffer field at which to end
the line.

The value to be drawn into the image_buffer field.

A symbol defining the method used to combine the color values
being written into the image buffer field with the values already
in the image buffer field. Valid values are listed in the table below.

- Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR_overwrite CMSR overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor : LOGXOR
CMSR_u_add CMSR _u_add :U-ADD
CMSR s add CMSR_s_add :S-ADD
CMSR u_min CMSR u min :U-MIN
CMSR s_min CMSR_s min :S-MIN
CMSR_u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max :S-MAX

The length, in bits, of color that is to be transferred to the image

buffer field.

A symbol indicating whether the end point of the line (x_end,
y_end) is drawn or not. The end point is only drawn if
draw_end_point p is true (.TRUE. in Fortran, non-NULL in C,
non-nil in Lisp).

53

CMSR_fe_s_draw_line

clip p A symbol indicating whether the line is to be clipped or not.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in
Lisp), lines, or portions of lines, drawn outside the range of the
image buffer field coordinates are clipped.

If clip_p is false (FALSE. in Fortran, NULL in C, nil in Lisp), it is
an error to draw outside the range of the image buffer field.

DESCRIPTION

CMSR_fe s_draw_line draws a line, defined with front-end signed integer coordi-
nate values, into the specified image buffer field.

The value in color is drawn into the image_buffer_field at the processor locations along
the line from (x_start_field,y start_field)to (x_end_field,y_end_field). The start point
is always drawn; the end point is only drawn if draw_end_point p is true (TRUE. in
Fortran, non-NULL in C, non-nil in Lisp).

The value written into each location in the image buffer is a combination of the value of
color, the previous value at that location, and the value of any other lines overwriting
the same location. The method used to combine these values is controlled by the com-
biner parameter.

If clip_p is true (TRUE. in Fortran, non-NULL in C, non-nil in Lisp), lines, or portions
of lines, drawn outside the range of the image buffer field coordinates are clipped. If
the CM safety mode is on and clip _p is false (FALSE. in Fortran, NULL in C, nil in
Lisp), an error is signaled if the line is not within the boundaries of the destination
image buffer field.

ERRORS

54

With CM safety mode on, an error is signaled if you call CMSR_fe s _draw_line with
= coordinates not within the destination image buffer field if clip_p is false
® an image_buffer_field that does not have a two-dimensional VP set geometry
= acolor_length that is longer than the length of the image_buffer field or color

= fields not in the current VP set

Version 2.0, November 1991

Chapter 2. Drawing Routines

SEE ALSO
CMSR _f draw_line
CMSR _fe f draw_line
CMSR_s_draw_line

Version 2.0, November 1991 ' 55

CMSR_f _clip_lines *Render Reference Manual for Paris
S s

CMSR_f _clip_lines

Clips floating-point line coordinates to specified boundaries.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR f clip lines
(x_start_field, y_start field, x_end field, y end_field,
x_min, y_min, x_max, y_max, coord_s_length,
coord_e_length)

CM field id _t x_start field, y start field, x_end field,y end field;
double X_min, y_min, X_max,y_max;
unsigned int coord_s length, coord_e_length;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR F CLIP_ LINES

& (x_start_field, y start field, x_end_field,

& y_end_field, x_min, y_min, x_max,y_max,

& coord_s_length, coord_e_length)
INTEGER x_start_field, y _start field, x_end_field,y end_field
DOUBLE PRECISION Xx_min,y_min, x_max,y_max
INTEGER coord_s_length, coord_e_length

Lisp Syntax

CMSR:f-clip-lines (x—start—field y—start—field x—end—field y—end—field
Xx—min y—min x—-max y—max coord—s—length
coord—e-length)

56 Version 2.0, November 1991

Chapter 2.

Drawing Routines CMSR_f_clip_lines

ARGUMENTS

x_start_field, y start field
Paris field identifiers. These fields contain floating-point values
that are the x and y coordinates, respectively, of the beginning of
the lines to be clipped. These fields must be in the current VP set.

x_end field, y _end_field
Paris field identifiers. These fields contain floating-point values
that are the x and y coordinates, respectively, of the end of the lines
to be clipped. These fields must be in the current VP set.

x_min, y_min Floating-point coordinates, given as front-end values, specifying
the lower boundary of the clipping range.

X_max,y_max Floating-point coordinates, given as front-end values, specifying
the upper right corner of the clip range bounding box.

coord_s_length, coord_e_length
Unsigned integers specifying the length of the floating-point
significand and exponent, respectively, in the coordinates used for
x_start_field, y start field, x_end_field, and y end_field.

DESCRIPTION

CMSR_£f_clip_lines clips the line coordinates in the fields x_start_field,
y_start_field, x_end_field, and y_end_field to the clipping range defined by x_min,
y_min, x_max, and y_max. These fields may then be used in a call to CMSR_£ draw_
line to draw the clipped set of lines into a CM image buffer.

CMSR £ clip_lines modifies the line coordinate fields as follows:

= If a line falls completely outside the clipping range, this routine clears the test
flag of the virtual processor containing that line’s coordinates.

= If only a portion of a line falls within the clipping range, this routine sets the
virtual processors’ test flag and clips the out-of-range coordinates to the edge
of the clipping box. To clip a line, this routine interpolates new endpoints for
the line segment and overwrites the fields x_start_field, y_start_field,
x_end field, and y _end_field for that line.

= If the line falls completely within the clipping range, the routine sets the virtual
processors’ test flag and leaves the line coordinates unchanged.

Version 2.0, November 1991 57

CMSR_f_clip_lines *Render Reference Manual for Paris
e

NOTE: Before using these clipped fields as source fields for CMSR_£_draw_line, you
must use the Paris instruction CM_logand_context with_test to load the context
flags of the coordinate fields’ VP set with the modified test flag values. (See the Paris
Reference Manual and Getting Started in C/Paris Programming, Chapter 4, for more
information.)

ERRORS

With CM safety turned on, an error is signaled if x_min is not less than or equal to
x_max and y_min is not less than or equal to y_max.

SEE ALSO

CMSR _s_clip lines

58 Version 2.0, November 1991

N

Chapter 2. Drawing Routines

R

CMSR_s_clip_lines

Clips and/or interpolates signed integer line coordinates to specified boundaries.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR_s_clip_ lines
(x_start_field, y start_field, x_end_field, y end field,
Xx_min, y_min, x_max, y_max, coord_length)

CM field id t x_start field, y_start field, x_end field,y_end_field;
int X_min, y_min, x_max,y_max;
unsigned int coord length;

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR_S_CLIP_LINES

& (x_start_field, y_start field, x_end_field,
& y_end_field, x_min, y_min, x_max, y_max,
& coord_length)
INTEGER Xx_start_field, y start field, x_end field,y end_field
INTEGER x_min, y_min, x_max,y_max
INTEGER coord_length
Lisp Syntax

CMSR:s-clip-lines
(x—start—field y—start—field x—end—field y—end—field x—min
y—min x—max y—max coord—length)

Version 2.0, November 1991 59

CMSR_s_clip_lines *Render Reference Manual for Paris

ARGUMENTS

x_start_field, y start field
Paris field identifiers. These fields contain signed integer values
that are the x and y coordinates, respectively, of the beginning of
the lines to be clipped. These fields must be in the current VP set.

x_end_field, y end_field
Paris field identifiers. These fields contain signed integer values
that are the x and y coordinates, respectively, of the end of the lines
to be clipped. These fields must be in the current VP set.

x_min, y_min Integer coordinates, given as front-end values, specifying the
lower bounds of the clipping range for the x and y coordinates.

X_max, y_max Integer coordinates, given as front-end values, specifying the
upper bounds of the clipping range for the x and y coordinates.

coord_length An unsigned integer specifying the length of the coordinates used
for x_start field, y_start field, x_end_field, and y_end_field.

DESCRIPTION

CMSR_s_clip_lines clips the line coordinates in the fields x_start field, y_start
field,x_end_field, andy_end_field against the clipping range defined by x_min, y_min,
x_max, and, y_max. These fields may then be used in a call to CMSR_s_draw_lines
to draw the clipped set of lines into a CM image buffer.

CMSR_s_clip lines modifies the line coordinate fields as follows:

= If a line falls completely outside the clipping range, this routine clears the test
flag of the virtual processor containing that line’s coordinates.

= If only a portion of a line falls within the clipping range, this routine sets the
virtual processors’ test flag and clips the out-of-range coordinates to the edge
of the clipping box. To clip a line, the routine interpolates new endpoints for
the line segment and overwrites the fields x_start field, y_start_field, x_end
field, and y _end_field for that line.

= If the line falls completely within the clipping range, the routine sets the virtual
processors’ test flag and leaves the line coordinates unchanged.

NOTE: Before using these clipped fields as source fields for CMSR_s_draw_line, you
must use the Paris instruction CM_logand_context_with_test to load the context

60 Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_s_clip_lines
S

flags of the coordinate fields’ VP set with the modified test flag values. (See the Paris
Reference Manual and Getting Started in C/Paris Programming, Chapter 4, for more
information.)

ERRORS

With CM safety turned on, an error is signaled if x_min is not less than or equal to
x_max and y_min is not less than or equal to y_max.

SEE ALSO
CMSR_f clip lines

Version 2.0, November 1991 : 61

CMSR_s_draw_sphere

*Render Reference Manual for Paris
B i o

AR

CMSR_s_draw_sphere

Draws a set of spheres into the CM image buffer field.

SYNTAX
C Syntax

f#include <cm/cmsr.h>

void
CMSR_s_draw_sphere
(image_buffer_field, xyz_vector_field, min_color_field,
max_color_field,sphere_info_field, radius_field, ncomponents,
coord_len, color_len, sphere_info_len, radius_len, anti_alias) ;

CMSR_field id t image_buffer_field, xyz_vector_field;
CMSR field _id t min_color_field[ncomponents] ;
CMSR_field id t max_color_field [ncomponents];
CMSR_field id_t sphere_info_field, radius_field;

unsigned int ncomponents, coord_len;
unsigned int color_len[ncomponents];
unsigned int sphere_info_len, radius_len;

CMSR anti_alias_t anti_alias;

Fortran Syntax
INCLUDE’ /usr/include/cm/cmsr—-draw-fort.h

SUBROUTINE CMSR_S_DRAW_SPHERE

& (image_buffer field, xyz_vector_field, min_color_field, max_color_field,
& sphere_info_field, radius_field, ncomponents, coord_len,
& color_len, sphere_info_len, radius_len, anti_alias) ;

INTEGER image buffer field, xyz_vector field

INTEGER min_color_field(ncomponents), max_color_field(ncomponents)
INTEGER sphere_info_field, radius_field, ncomponents, coord_len
INTEGER color_len(ncomponents), sphere_info_len, radius_len, anti_alias

Lisp Syntax

This routine is not available from Lisp.

62 Version 2.0, November 1991

\\

ARGUMENTS

CMSR_s_draw_sphere

image_buffer field A Paris field identifier. The image buffer is the field into which

xyz_vector_field

min_color_field

max_color_field

sphere_info_field

radius_field

Version 2.0, November 1991

the spheres are drawn. The image buffer field must be at least
(color_len * ncomponents) + sphere_info_len bits.

A Paris field identifier specifying the field containing the
coordinates, in screen coordinate space, of the center point of each
sphere.

The coordinates are signed integer values of coord len length.
The length of the entire field must be 3 * coord len bits. The
vector field is organized so that x occupies the least significant
coord_len bits, y occupies the next coord_len bits, and z the most
significant coord _len bits.

An ncomponent array of Paris field identifiers specifying the
fields containing the minimum color for each color component.
The min_color field is unsigned.

The minimum color is the lowest color map entry to be used to
draw the sphere. Spheres are shaded from max_color at the center
to min_color at the edge.

An ncomponent array of Paris field identifiers specifying the field
containing the maximum color for each sphere. The max_color
field is unsigned.

The maximum color is the highest color map entry to be used to
draw the sphere. Spheres are shaded from max_color at the center
to min_color at the edge, or if min_color is 0, to black.

A Paris field identifier specifying an optional sphere information
field. This field can be defined and used by the programmer in any
way that is useful to the application. The sphere information is
placed in the most significant sphere_info_len bits of image
buffer.

The sphere_info placed in the image_buffer is applied to the
sphere closest to each pixel.

A Paris field identifier. The radius of each sphere to be drawn.
This field must be radius_len bits long.

The radii of the spheres must all be the same, or must decrease
with increasing z.

63

CMSR_s_draw_sphere *Render Reference Manual for Paris

ncomponents An unsigned integer specifying the number of color components
that will be used to specify color for all spheres. The number of
color components must be at least 1.

coord_len The length, in bits, of a single coordinate value as specified in
xyz_vector.
color len An ncomponent array giving the length, in bits, of each color

component in the image buffer field. For example, for RGB true
color, ncomponents is 3 and color_len for each component is 8.

sphere_info len The length, in bits of the optional sphere information field.
radius_len The length, in bits, of the value specified in radius.

anti_alias An enumerated variable indicating the method of anti-aliasing to
be applied when drawing the spheres. Valid values are:

" CMSR no_anti_alias
No anti-aliasing is performed.

" CMSR edge anti_alias
Performs anti-aliasing at the edges between spheres and
the background, but leaves jagged edges where spheres
interpenetrate.

DESCRIPTION

For each active processor in the current VP set, CMSR_s_draw_sphere draws a
sphere into the image_buffer field in CM memory. The fields xyz_vector, min_color,
max_color, sphere_info, and radius must all be in the current VP set when CMSR_s__
draw_sphere is called.

Each sphere is centered at the screen coordinates specified by the x and y components

of the xyz_vector field and is drawn with a radius of radius. If the center of the sphere is
outside the boundaries of the image, the entire sphere is not drawn; otherwise, portions
of the sphere outside the image boundaries are clipped. Where spheres intersect, the
sphere with smaller z coordinates (nearer the viewer) overwrite spheres with larger z
values.

64 Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_s_draw_sphere

NOTE

CMSR_s_draw_sphere calculates hidden surface removal for
the set of spheres before drawing them to the image buffer. This
routine does not write the z coordinate to a user accessible z-buffer
field as do the 3D point drawing routines, CMSR_£_draw_
point_3d,CMSR_fe f draw_point_ 3d,andCMSR s_draw_
point_3d.

The color components are written to the least significant bits of the image buffer field,
followed by the sphere_info. When the image_buffer is written to a display, the low bits
of the field are interpreted as a color value to the depth (or bits per pixel) of the display
and the high-order bits are left unchanged. The sphere_info portion of the field may be
used by the application as required.

The spheres are shaded as though a light source were placed at negative infinity along
the z axis. Shading is based on the range of colors in the display color map from
max_color to min_color. The color specified by max_color is drawn at the center of the
sphere and color values are then interpolated over the range of colors to min_color at
the edge of the sphere.

If the anti_alias argument is CMSR_edge_anti_alias, anti-aliasing is performed to
smooth the sphere edges. However, two restrictions apply to anti-aliasing:

® No anti-aliasing is performed where the edge of a sphere intersects with
another sphere.

® The color map from min_color to max_color for each color component must
be a single range that increases linearly. That is, if ncomponents is 1, the color
map must be set up, like a grayscale map, as a single ramp from black to some
maximum color. If ncomponents = 3, each component must contain a single
linear ramp.

Version 2.0, November 1991 65

CMSR_draw_image *Render Reference Manual for Paris
E i

CMSR_draw_image

Transfers a subarray of a CM source field into the CM image buffer field.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR_draw_image
(image_buffer_field, source_field, source_length, x_offset, y_offset,
x_start,y_start,x_limit, y_limit, combiner) ;

CM _field id _t image_buffer field, source_field;
unsigned int source_length;

int x_offset, y_offset;

int x_start, y_start, x_limit, y_limit;
CMSR_combiner combiner;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr—-draw-fort.h’

SUBROUTINE CMSR_DRAW_TIMAGE
& (image_buffer_field, source_field, source_length, x_offset, y_offset,
& x_start, y_start, x_limit, y_limit, combiner)

INTEGER image buffer field, source_field, source_length
INTEGER x offset, y offset x_start,y start, x_limit, y_limit
INTEGER combiner

Lisp Syntax

CMSR:draw-image (image—-buffer—field source—field source—length
x—offset y—offset x—start y—start x—limit y—limit
skey (combiner :default))

66 Version 2.0, November 1991

ARGUMENTS

image_buffer_field A Paris field containing unsigned integers. The source_field is

source_field

source_length

x_offset, y_offset

copied into this field beginning at the location specified by
x_offset and y_offset. The image_buffer_field must be in a
two-dimensional VP set, and may or may not be in the same VP set
as the source_field. It need not be in the current VP set.

A Paris field containing unsigned integers. This field, within the
subarray specified by x_start, y_start, x_limit, and y_limit, is
copied into image_buffer field. The source_field must be in a
two-dimensional VP set, and must also be in the current VP set.

An integer specifying the length of the data values in the
source_field field. The value of source_length must be less than,
or equal to, the length of the image buffer field.

Front-end integer values, specifying the location in the image
buffer field at which to begin loading the values from the
source_field.

x_start,y_start, x_limit, y_limit

combiner

Version 2.0, November 1991

Front-end integer values, defining the location of a rectangle in
source_field from which values are taken to be loaded into
image_buffer_field. The values moved include the value at the
start location, but exclude the value at the limit location.

A symbol defining the method used to combine the array values
being transferred from the source array with the values already in
the image buffer field. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR overwrite CMSR_overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR _logand : LOGAND
CMSR_logxor CMSR_logxor : LOGXOR
CMSR u_add CMSR _u_add :U-ADD
CMSR s_add CMSR_s_add :S-ADD
CMSR_u_min CMSR u min :U-MIN
CMSR_s min CMSR_s_min :S=MIN
CMSR _u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max : S-MAX

67

CMSR_draw_image *Render Reference Manual for Paris

DESCRIPTION

CMSR_draw_image transfers the values in the Paris field source_field, within the sub-
array specified by x_start, y_start, x_limit, and y_limit into image_buffer_field. The
subarray will be loaded into image_buffer field beginning at the location specified by
x_offset and y_offset.

Both source_field and image buffer field must be associated with VP sets with
two-dimensional geometries.

The source_field coordinates (x_start, y_start) and (x_limit, y_limit) define the sub-
array to be moved to the image buffer field. The first element, at the virtual processor
location (x_start, y_start), is moved to the location in the image buffer field specified
by (x_offset, y_offset). The last source element moved is at location (x_Jimit — 1,
y_limit - 1). The width of the the rectangle is x_limit —x_start, and the height is y_limit
—y_start.

x_start must be less than x_limit, and y_start must be less than y_limit.

The value written into each location in the image buffer is a combination of the value of
source_field, the previous value at that location, and the value of any other lines writ-
ing to the same location. The method used to combine these values is controlled by the
combiner parameter.

ERRORS

With CM safety mode on, an error is signaled if you call CMSR_draw_image with
= start coordinate indices greater than, or equal to, the /imit coordinates
= start or limit coordinate indices that are out of the bounds of the source field
= offset coordinate indices that are out of the bounds of the image buffer field

= acoordinate index sum (offset + (limit — start)), which is out of the bounds of
the image buffer field

® asource_field or image buffer_field that does not have a two-dimensional VP
set geometry

® a source_length that is longer than the length of the image buffer field or
source_field

= source field not in the current VP set

68

Version 2.0, Noyember 1991

Chapter 2. Drawing Routines CMSR_fe_draw_rectangle

CMSR_fe_draw_rectangle

Fills a rectangle in a CM image buffer field with a specified color.

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR_fe_draw_rectangle

int
int
int
int
int

(image_buffer_field, x, y, width, height, color, depth)

CM field id_t image_ buffer_field;

x;

y:
width ;
height ;
color;

unsigned int depth;

Fortran Syntax

INCLUDE

' fusr/include/cm/cmsr—-draw-fort.h’

SUBROUTINE CMSR_FE_DRAW_RECTANGLE

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

Lisp Syntax

(image_buffer_field, x, y, width, height, color, depth)
field;

x;

y;
width ;
height ;
color;
depth ;

CMSR: fe-draw-rectangle

(image_buffer field, x, y, width, height, color, depth)

Version 2.0, November 1991 69

ARGUMENTS

CMSR_fe_draw_rectangle *Render Reference Manual fo

image_buffer field A Paris field identifier. The specified rectangle is drawn int0 this

X,y

width, height

color

depth

DESCRIPTION

field. The image buffer field must be in a two-dimensional VP
set. It need not be in the current VP set.

The position in the image buffer field at which to begin drawing
the rectangle. The position is measured in pixels from the UPPer
left corner. x is the horizontal distance to the right. y is the vertical
distance down.

The dimensions in pixels of the rectangle to be drawn. widfh.is the
horizontal distance of the rectangle from (x, y). height 1S the
vertical distance of the rectangle from (x, y).

An integer specifying the color value to be written into the image
buffer field.

The length, in bits, of the image buffer field.

CMSR_fe draw_rectangle draws a filled rectangle of the specified color into the
image buffer field. The x and y arguments define the location in the image buffer at
which to begin drawing the rectangle, and width and height specify the number of
pixels in each dimension of the image. The rectangle fills the image buffer from (,)
at the upper left corner to ((x + width), (y + height)) at the lower right.

SEE ALSO

CMSR fe display rectangle

70

Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_write_array_to_field

CMSR_write_array_to_field

Writes an image packed into a front-end array to a CM image buffer field.

SYNTAX
C Syntax

#include <cm/display.h>

void
CMSR write array to field
(field, array, array_width, array_height, array_element_size) ;

CM field id_t field;

char *array;

unsigned int array_width, array_height;
unsigned int array_element size;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR WRITE_ARRAY TO_ FIELD
& (field, array, array_width, array_height, array_element_size)

INTEGER field

CHAR* (*) array

INTEGER array width
INTEGER array_height
INTEGER array_element size

Lisp Syntax

CMSR:write—array-to-field
(field, array, soptional [array—element—size nil))

ARGUMENTS
field The destination field. This field must be 2D.

Version 2.0, November 1991 71

CMSR_write_array_to_field *Render Reference Manual for Paris

array A 2D array on the front-end computer to be copied to the field.

array_width The number of image elements, in array_element_size units,
along the faster varying dimension of the front-end array. For
Fortran this is the first index; for C this is the second index. This
is the axis that is mapped to axis 0 of the field.

Because CMSR_write_array to_field does packed-bit
transfers, the width of the array must be byte-aligned, that is,
(array_width * array_element size) % 8 =0

For Lisp, the array dimensions can be determined and must not be
specified.

array_heigh The number of image elements along the slower varying
dimension of the front-end array. For Fortran this is the second
index; for C this is the first index. This axis is mapped to axis 1
in the field.

For Lisp, the array dimensions can be determined and must not be
specified.

array_element _size The length, in bits, of the image array elements packed into the
front-end array, array. Usually this is the depth of the image to be
displayed.

This must be a power of two between 1 and 128. In Lisp, this
defaults to the actual size of an array element.

DESCRIPTION

72

CMSR_write array to_field copies an image array packed into array on the
front-end computer to field in CM memory. The front-end array must be a 2D array but
can be any front-end data type.

The three parameters array width, array_height, and array _element_size define the
image array packed into the front-end array array. The array_element_size argument
specifies the length in bits of each pixel value in the image array. The arguments
array_width and array_height are the total number of image elements (pixels) in each
dimension of the image array.

Beginning at the first element of the array, an array_width by array_height rectangle of
array_element_size units is copied into the CM field, overwriting any pixel values that
are already stored there. The array is transferred so that the fastest varying front-end

Version 2.0, November 1991

dimension maps to axis 0 on the CM. Therefore, the CM field should have axis 0 of at
least length array width and axis 1 of length array_height to hold all of the array.

If the array_width or array_height is larger than the field, the image array elements
beyond the field boundaries to the right and bottom are clipped.

If the array_width or array_height is smaller than the field dimensions, the portion of
the field beyond the array width and height is left unchanged.

Note that array_width, array_height, and array element_size refer to the image array
to be transferred, not to the front-end array in which the image is stored. For example, a
128 by 128 1-bit image could be packed into a 16 by 128 front-end char or CHARAC-
TER array, 8 image array elements to a front-end array element. When CMSR_
write array to_field writes this image with an array_element_size of 1 to the
field, each byte of the front-end array source, fills the 1-bit image field in 8 CM proces-
sors. If the image array_element_size were 8, each byte of the front-end array would go
to a single CM processor.

To take one more example, 128 x 128 image that is 32 bits deep might be stored in a
512 x 128 front-end character array; each pixel’s data packed into 4 front-end array
elements. If this array was passed to CMSR_write_array to_field 1 with an
array_element_size of 32 each 4 bytes of the front-end array would be stored in the
field of a single CM processor.

CMSR write array to_field uses the byte ordering of the front-end computer. So
if the front-end byte ordering is MSB-first, the most significant byte and bit of the array
elements go to the lowest processor address in CM memory.

SEE ALSO

CMSR write array to_ field 1

Version 2.0, November 1991 73

*Render Reference Manual for Paris
e

CMSR_write_array_to_field_1

Writes a specified subarray of an image packed into a front-end array to a CM image buffer
field.

SYNTAX
C Syntax

#include <cm/cmsr-draw.h>

void
CMSR write_array to_ field 1
(field, array, array_width, array_height, array_element_size,
xoffset, yoffset, xstart, ystart, width, height,
x_varies_fastest_p, combiner)

CM field id t field;

void *array;

unsigned int array_width, array_height;
unsigned int array_element size;

int xoffset, yoffset ;
int xstart, ystart;

int width, height ;

int X_varies_fastest p;

CMSR combiner t combiner;

Fortran Syntax

L

74

INCLUDE ' /usr/include/cm/cmsr-draw-fort.h’

SUBROUTINE CMSR_WRITE_ARRAY_TO_FIELD 1
(field, array, array_width, array_height, array _element_size,
xoffset, yoffset, xstart, ystart, width, height,
x_varies_fastest _p, combiner)

INTEGER field

CHAR* (*) array

INTEGER array_width, array_height
INTEGER array_element size
INTEGER xoffSet, yoffset

INTEGER Xxstart, ystart

INTEGER width, height

INTEGER Xx_varies_fastest_p
INTEGER combiner

Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_write_array_to_field_1

G

Lisp Syntax

CMSR:write-array-to-field 1 (field array skey array—element—size
xoffset yoffset xstart ystart width height
(x—varies—fastest-p t) combiner)

ARGUMENTS
field The destination field. This field must be 2D.
array An array on the front-end computer containing the image data to
be copied to the field.
array_width The number of image elements, in array element size units,

along the faster varying dimension of the front-end array. For
Fortran this is the first index; for C this is the second index. If
X_varies_fastest_p is true, this is the axis that is mapped to axis 0
of the field. ‘

Because CMSR_write_array_to_field does packed-bit
transfers, the width of the array must be byte-aligned, that is,
(array_width * array_element_size) % 8 =0

For Lisp, the array dimensions can be determined and must not be
specified.

array_height
The number of image elements, in array_element_size units,
along the slower varying dimension of the front-end array. For
Fortran this is the second index; for C this is the first index. If
X_varies_fastest_p is true, this axis is mapped to axis 1 in the field.

For Lisp, the array dimensions can be determined and must not be
specified.

array_element_size The length, in bits, of the image array elements packed into the
front-end array, array. Usually this is the depth of the image to be
displayed.
This must be a power of two between 1 and 128. In Lisp, this
defaults to the actual size of an array element.

xoffset, yoffset The location in array at which to begin copying data. The xoffset
is the number of elements along the width (i.e., the faster varying)
dimension of the array in units of array_element_size. The yoffset

Version 2.0, November 1991 75

" *Render Reference Manual for Paris

CMSR_write_array_to_field_1
S

a5

is the number of elements along the height (i.e., the slower
varying) dimension. In Lisp, this defaults to (0,0).

xoffset and yoffset must be non-negative.

xstart, ystart The location in field at which to begin writing the image array.

xstart is measured along axis 0, ystart is measured along axis 1.

width The number of image array elements, in array_element_size units,
to be transferred along the horizontal (i.e., the faster varying)
dimension of the array. In Lisp, this defaults to array_width.

height The number of image array elements to be transferred along the
vertical (i.e., the slower varying) dimension of the array. In Lisp,

this defaults to array_height.
combiner A symbol defining the method used to combine the color values

being written from the array into the field with the values already
in the field. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR_overwrite CMSR_overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_1logxor :LOGXOR
CMSR_u_add CMSR_u_add :U-ADD
CMSR_s add CMSR_s_add :S-ADD
CMSR u min CMSR_u_min :U-MIN
CMSR s min CMSR_s_min :S-MIN
CMSR u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max :S-MAX

x_varies_fastest p 1f x_varies_fastest p is true (TRUE. in Fortran, non-NULL in C,
non-nil in Lisp), the front-end array is mapped directly to the field,
aligning the faster-varying axis of the array to axis 0 of the field.
This produces the correct results for Fortran arrays and for C
arrays that are referenced [y][x].

If x_varies_fastest p is false (FALSE. in Fortran, NULL in C, nil
in Lisp), the front-end array is transposed as it is transferred to the
field; the faster-varying axis of the array is mapped to axis 1 of the

76 Version 2.0, November 1991

e

Chapter 2. Drawing Routines CMSR_write_array_to_field_1

field. This produces correct results for C arrays that are referenced

[x]Dy]-

DESCRIPTION

CMSR _write array to_field 1 copies a specified subarray of the image packed
into array on the front-end computer to field in CM memory. The front-end array must
be a 2D array, but it can be any front-end data type that provides a length in bits that is a
power of two between 1 and 128.

The three parameters, array width, array_height, and array_element_size define the
image array packed into the front-end array array. The array_element_size argument
specifies the length in bits of each pixel value in the image array. This is the size of each
data elements that will be transferred to a CM processor. The arguments array width
and array height are the total number of image elements (pixels) in each dimension of
the image array.

Note that array_width, array_height, and array_element_size refer to the image array
to be transferred, not to the front-end array in which the image is stored. For example, a.
128 by 128 1-bit image could be packed into a 16 by 128 front-end char or CHARAC-
TER array, 8 image array elements to a front-end array element. When CMSR_
write array to_field 1, with an array_element_size of 1, writes this image to
the field, each byte of the front-end array source fills the 1-bit image field in 8 CM
processors. If the image array_element_size were 8, each byte of the front-end array
would go to a single CM processor.

To take one more example, 128 x 128 image that is 32 bits deep might be stored in a
512 x 128 front-end character array; each pixel’s data packed into 4 front-end array
elements. If this array was passed to CMSR_write_array to_field 1 with an
array_element_size of 32, each 4 bytes of the front-end array would be stored in the
field of a single CM processor.

The arguments xoffset, yoffset, width, and height define the subarray within the image
array that is to be transferred. xoffset and yoffset define the location in the image array,
in array_element_size units, at which the transfer should begin. width and height are
the number of image array elements to be transferred in each direction. So, the portion
of the image array to be transferred is the subarray from (xoffset, yoffsef) at the upper
left corner, to ((xoffset + width), (yoffset + height)) at the lower right corner.

Each image element of the subarray is transferred to the corresponding location in the
image buffer field beginning at the point defined by (xstart, ystart). Each array element
value is combined with the pixel value at the corresponding field location according to

Version 2.0, November 1991 77

CMSR_write_array_to_field_1 *Render Reference Manual for Paris
e i i

i = s

the value of combiner. The default value is to overwrite. If the array_element_size is
smaller than the depth of the field, an error is signaled. If the array_ element_size is
larger than the depth of the field, only the lower-order bits of the array element, up to
the field’s depth, are used.

If the width or height of the image to be transferred is larger than the image buffer field
dimensions, the portion of the array beyond the field boundaries to the right and bottom
is clipped. If the width or height of the image to be transferred is smaller than the field,
the portion of the field beyond the array width and height is left unchanged.

CMSR write array to_field 1 uses the byte ordering of the front-end computer.
So if the front-end byte ordering is MSB-first, the most significant byte and bit of the
array elements go to the lowest processor address in CM memory.

SEE ALSO

CMSR write_array to_field

78

Version 2.0, November 1991

CMSR _read_array_from_field

Packs an image array from a CM field into a front-end array.

SYNTAX
C Syntax

#include <cm/cmsr-draw.h>

void
CMSR_read array from field
(field, array, array_width, array_height, array _element size) ;

CM field id t field;

CMSR_generic_pointer_ t array;

unsigned int array_width, array_height ;

unsigned int array_element_size;
Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr—-draw-fort.h’

SUBROUTINE CMSR READ ARRAY FROM FIELD
& (field, array, array_width, array_height, array_element_size)

INTEGER field

CHAR* (*) array

INTEGER array width
INTEGER array_height
INTEGER array_element_size

Lisp Syntax

CMSR:write—array-to-field
(field, array, soptional array—element—size)

ARGUMENTS
field The source field. This field must be 2D.

Version 2.0, November 1991 79

CMSR_read_array_from_field *Render Reference Manual for Paris
e

array A 2D front-end array into which the data from the field is to be
read.
array_width The number of elements, in array_element_size units, to be stored

along the faster varying dimension of the front-end array. For
Fortran this is the first index; for C this is the second index. Axis
0 of the field is mapped to this dimension of the array.

Because CMSR_read_array_ from_ field does packed-bit
transfers, the array width must be byte-aligned, that is,
(array_width * array_element size) % 8 =0

array_height The number of elements to be stored along the slower varying
dimension of the front-end array. For Fortran this is the second
index; for C this is the first index. Axis 1 of the field is mapped
to this axis.

For Lisp, the array dimensions can be determined and must not be
specified.

array_element_size The length, in bits, of field. This will also be the size of the image
array elements stored in the front-end array array. This must be a
power of two between 1 and 128. In Lisp, this defaults to the
actual size of an array element.

DESCRIPTION

80

CMSR_read array from field readsimage values from field and packs them into
array on the front-end computer.

The front-end array must be a 2D array but can be any front-end data type. If the array
is not large enough to hold the entire field, the portions of the field image on the right
and bottom (+x, +y) beyond the array dimensions are clipped.

The three parameters array_width, array_height, and array_element size define the
image array in field to be packed into the front-end array array. The array_element
size argument specifies the depth of the field. array width is the length of axis 0 and
array_height is the length of axis 1. The array is transferred so that axis 0 of field maps
to the fastest varying dimension of the front-end array.

Note that array_width, array_height, and array_element_size refer to the image array
to be transferred, not to the front-end array in which the image is stored. For example, a
128 by 128 1-bit image could be packed into a 16 by 128 front-end char or CHARAC-
TER array, 8 image array elements to a front-end array element. When CMSR_

Version 2.0, November 1991

read array_ from_field writes this image to the front-end array, the image field in
8 CM processors fills a byte of the front-end array. If array_element size is 8, each CM
processor fills a byte of the front-end array elements, and if array _element size is 32,
each CM processor fills a word of the front-end array elements.

CMSR_read_array from field uses the byte ordering of the front-end computer.
So if the front-end byte ordering is MSB-first, the most significant byte and bit are
taken from the lowest processor address in CM memory.

SEE ALSO

CMSR_read_array from field 1

Version 2.0, November 1991 81

CMSR_read_array_from_field_1 *Render Reference Manual for Paris
Pt

CMSR_read_array_from_field_1

Packs a specified subarray of an image in a CM image buffer field into a subarray of a
front-end array.

SYNTAX
C Syntax

#include <cm/cmsr-draw.h>

void
CMSR_read_array from field 1
(field, array, array_width, array_height, array _element_size,
xoffset, yoffset, xstart, ystart, width, height,
X_varies_fastest_p, combiner)

CM field id t field;
CMSR_generic_pointer_ t array;
unsigned int array_width, array_height ;
unsigned int array_element size;
int xoffset, yoffset ;
int xstart, ystart;
unsigned int width, height ;
int Xx_varies_fastest p;
CMSR_combiner_ t combiner ;

Fortran Syntax

[

82

INCLUDE '’ /usr/include/cm/cmsr-~draw-fort.h’

SUBROUTINE CMSR_READ ARRAY FROM FIELD 1
(field, array, array_width, array_height, array _element_size,
xoffset, yoffset, xstart, ystart, width, height,
x_varies_fastest_p, combiner)

INTEGER field

CHAR* (*) array

INTEGER array width, array_height
INTEGER array_element size
INTEGER xoffset, yoffset

INTEGER xstart, ystart

INTEGER width, height

INTEGER Xx_varies_fastest_p
INTEGER combiner

Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_read_array_from_field_1

Lisp Syntax

CMSR:read-array-from-field 1 (field array &key array—element-size

xoffset yoffset xstart ystart width height
(x—varies—fastest—p t) combiner)

ARGUMENTS
field

array

array_width

array_height

array_element_size

xoffset, yoffset

xstart, ystart

Version 2.0, November 1991

The source field. This field must be 2D.

A 2D front-end array into which the data from the field is to be
read.

The number of elements, in array_element_size units, to be stored
along the faster varying dimension of the front-end array. For
Fortran this is the first index; for C this is the second index.

Because CMSR_read_array_ from_ field does packed-bit
transfers, the array width must be byte-aligned, that is,
(array_width * array _element size) % 8 = 0

The number of elements, in array_element_size units, to be stored
along the slower varying dimension of the front-end array. For
Fortran this is the second index; for C this is the first index.

For Lisp, the array dimensions can be determined and must not be
specified.

The length, in bits, of field. This will also be the size of the image
array elements stored into the front-end array array. This must be
a power of two between 1 and 128. In Lisp, this defaults to the
actual size of an array element.

The offset into the array at which to begin writing the data from
the field. The xoffset is the number of elements along the width
(i.e., the faster varying) dimension of the array in units of
array_element_size. The yoffset is the number of elements along
the height (i.e., the slower varying) dimension. In Lisp, this
defaults to (0,0).

xoffset and yoffset must be non-negative.

The location in field at which to begin reading the image. x_start
is measured in grid coordinates along axis 0, y_start along axis 1.

83

CMSR_read_array_from_field_1

84

height

Xx_varies_fastest_p

combiner

*Render Reference Manual for Paris

The number of image array elements, in array_element_size units,
to be transferred along the horizontal (i.e., the faster varying)
dimension of the array. In Lisp, this defaults to array_width.

The number of image array elements to be transferred along the
vertical (i.e., the slower varying) dimension of the array. In Lisp,
this defaults to array_height.

Indicates whether the first or second array index varies fastest in
array.

If x_varies_fastest p is true (.TRUE. in Fortran, non-NULL in C,
non-nil in Lisp), the axis 0 of the field is mapped directly to the
faster-varying axis of the array. This produces the correct results
for Fortran arrays and for C arrays that are referenced [y][x].

If x_varies_fastest p is false ((FALSE. in Fortran, NULL in C, nil
in Lisp), the image data is transposed as it is transferred from the
field into the array so that axis 1 of the field is mapped to the
faster-varying axis of the array. This produces correct results for
C arrays that are referenced [x][y].

x_varies_fastest_p should be true for Fortran arrays or for C
arrays that are referenced [y][x]. For C arrays referenced [x][y],
x_varies_fastest_p should be false.

A symbol defining the method used to combine the color values
being written from the field into the array with the values already
in the array. Valid values are listed in the table below.

Fortran Lisp
C Values Values Keywords
CMSR_default CMSR_default :DEFAULT
CMSR_overwrite CMSR_overwrite :OVERWRITE
CMSR_logior CMSR_logior :LOGIOR
CMSR_logand CMSR_logand : LOGAND
CMSR_logxor CMSR_logxor : LOGXOR
CMSR_u_add CMSR_u_add :U-ADD
CMSR_s_add CMSR_s_add :S-ADD
CMSR _u min CMSR _u min :U-MIN
CMSR_s _min CMSR_s_min :S=MIN
CMSR_u_max CMSR_u_max :U-MAX
CMSR_s_max CMSR_s_max : S-MAX

Version 2.0, November 1991

Chapter 2. Drawing Routines CMSR_read_array_from_field_1

DESCRIPTION

CMSR_read_array from field 1 reads a subarray or the image in field and packs
it into array on the front-end computer. The front-end array must be a 2D array but can
be any front-end data type that provides an appropriate number of bits for the depth of
the field.

The three parameters array width, array_height, and array _element size define the
image array in the field from which the subarray is to be read. The array_element_size
argument specifies the depth of the field. array width is the length of axis 0 and
array_height is the length of axis 1. The array is transferred so that axis 0 of field maps
to the fastest varying dimension of the front-end array.

Note that array_width, array_height, and array_element_size refer to the image array
to be transferred, not to the front-end array in which the image is stored. For example, a
128 by 128 1-bit image could be packed into a 16 x 16 front-end char or CHARACTER
array, 8 image array elements to a front-end array element. When CMSR_read__
array_ from field writes this image to the front-end array, the image field in 8 CM
processors fills a byte of the front-end array. If array_element size is 8, each CM pro-
cessor fills a byte of the front-end array elements, and if array_element_size is 32, each
CM processor fills a word of the front-end array elements.

The arguments xoffset and yoffset specify the location in the font-end array at which to
begin reading in the data from the field. The subarray of the field to be read is defined
by the arguments xstart, ystart, width and height. The portion of the field to be read is
from (xstart, ystart) at the upper left corner, to ((xstart + width), (ystart + height) at the
lower right. If the array is not large enough to hold the entire field subarray, the por-
tions of the field on the right and bottom (+x, +y) beyond the array dimensions are
clipped.

CMSR_read array from field 1 uses the byte ordering of the front-end com-
puter. So if the front-end byte ordering is MSB-first, the most significant byte and bit
are taken from the lowest processor address in CM memory.

SEE ALSO

CMSR_read array from field

Version 2.0, November 1991 85

Chapter 3
Math Routines

This chapter documents the *Render Math routines. These routines provide utilities for
performing common graphics math operations on vectors and matrices in front-end arrays
or Connection Machine (CM) fields.

In addition, a set of routines is included for converting between the color spaces RGB,
CMY, YIQ , HSV, and HSL.

The next section provides an overview of these routines. Following sections provide
detailed descriptions of the individual routines.

3.1 Overview

In many applications it is necessary to manipulate the image’s coordinate data for display.
You must often scale, rotate, and translate objects in the image to position them properly
in the display.

The standard method for applying geometric operations to the image coordinates is through
transformation matrices. In this method the point coordinates are represented as vectors
(e.g.,[x, y, z]) and a matrix is composed representing the transformation to be performed
on the image. By applying the matrix to the set of point vectors, using the conventions of
matrix algebra, we can generate a new set of coordinates defining the transformed position
of the object in the display space.

*Render provides functions to allocate vector and matrix structures in either CM memory
or on the front-end computer, and to perform the basic matrix operations. The routines that
operate on front-end vectors and matrices operate on a single instance of these structures
allocated as front-end arrays. The CM routines operate on a field of vectors or matrices in
parallel.

Version 2.0, November 1991 87

*Render Reference Manual for Paris

Lo S i

SE———

If you would like more information on the use of matrix method, please see any basic text
on computer graphics. Two particularly useful discussions are found in

® David F. Rogers, Mathematical Elements for Computer Graphics (New York:
McGraw-Hill, 1990).

= James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Com-
puter Graphics: Principles and Practice, 2d ed. (Reading, Mass.: Addison-Wesley,
1990).

3.1.1 Vectors

Vectors in *Render are one-dimensional arrays of either two or three elements.

On the front-end computer, each vector is an array of double-precision floating-point val-
ues. On the CM, each vector is a single field of (dimension)*(signif lentexp_len+1) bits,
where signif len is the length of the significand, exp_len is the length of the exponent, and
the 1 is for a sign bit. Each element of the vector occupies a subfield of (sig-
nif lentexp_len+1) bits, and these subfields are arranged so that element 0 is in the least
significant bits.

In a position vector, representing the coordinates of a point, x occupies element 0, y occu-
pies element 1, and z (if present) occupies element 2.

3.1.2 Matrices

Matrices in *Render are assumed to be square, homogeneous matrices. *Render supports
matrices of dimension 2 or 3, for transforming two-dimensional or three-dimensional vec-
tors.

The fact that homogeneous coordinates are used implies that an extra row and column are
added to the matrix: a matrix of dimension » contains (#+1)(n+1) elements. The additional
row and column hold translation, perspective, and general scaling elements. The elements
of a 3D transformation matrix are arranged as follows:

column = 0 1 2 3

Where

= RS = rotation, reflection, skew, and scaling elements

88 Version 2.0, November 1991

Chapter 3. Math Routines

S

= P = perspective elements
® T = translation elements

= GS = global scale element

On the front end, a matrix is an appropriately sized array of double-precision floating-point
values. On the CM, a matrix is a field of (dimension + 1) * (dimension + 1)(signif len +
exp_len +1) bits, where signif len is the length of the significand, exp _len is the length of
the exponent, and the 1 is for a sign bit. Each matrix element occupies one floating-point
field of (signif len + exp_len +1) bits.

3.1.3 Transformation Conventions

*Render uses the following conventions for transformations:
= Objects and operations are defined in a right-handed coordinate system.

= Screen space is right-handed, with the origin in the upper left corner of the screen:
x increases to the left, y increases downwards, and z increases into the screen, away
from the viewer.

= Rotations are clockwise about an axis as seen by an observer at the origin looking
along the axis in the positive direction.

3.1.4 Color Spaces

*Render provides routines to convert between several widely used ways of representing
color. Each way of representing color may be thought of as a color “space.” For example,
the RGB space can be pictured as a cube with three orthogonal axes for red, green, and blue.

Following this model, a specific color is a vector in the appropriate color space. For the
color spaces that *Render currently supports, colors are 3-element vectors. Color vectors
are organized as shown in the following chart:

Color Space Element 0 Element 1 Element 2
RGB red green blue
CMY cyan magenta yellow
YIQ Y (luminance) I(chromaticity) Q(chromaticity)
HSV hue saturation value
HSL hue saturation lightness

Version 2.0, November 1991 89

P

*Render Reference Manual for Paris
O =

The supported color spaces are:

RGB

Additive color model using three primaries (red, green, and blue) in a Cartesian
coordinate system. *Render uses floating-point values to represent the contribu-
tions of each primary. A value of 0.0 indicates no contribution, and 1.0 indicates
full contribution. The main diagonal of this RGB “color cube” represents gray lev-
els, with equal amounts of each primary. (0,0,0) is black, and (1,1,1) is white.

CMY

Subtractive color model using three primaries (cyan, magenta, and yellow) that is
useful for hardcopy devices. This model uses the same Cartesian coordinate sys-
tem as RGB, except that (0,0,0) is white and (1,1,1) is black.

YIQ

A re-coding of RGB that is used in commercial color television broadcast. The Y
component is the luminance for a color. This term can therefore be used to display
a color image as a grayscale image. The I and Q components encode chromaticity.

HSV

This model uses hue, saturation, and value to encode colors. The geometry of this
space is a truncated hexcone. Hue is an angle from 0 to 2*pi radians. Red is at 0.0,
green is at 2*pi/3 radians, and blue is at 4*pi/3 radians. Complementary colors are
pi radians apart. Saturation is a fraction from 0.0 to 1.0. Value is a number from
0.0 to 1.0. When S is 0.0, H is irrelevant. When V is 0.0, H and S are irrelevant.
(Also called HSB.)

HSL
Hue, lightness, and saturation. HSV deformed into a double hexcone. The hue ori-
gin at 0.0 radians is red.

Note that the saturation in HSV is not the same as that in HSL.

90

Version 2.0, November 1991

Chapter 3. Math Routines

i

3.2 Front-End Vector Routines

This section documents the *Render routines that operate on vectors in front-end arrays.
Vectors in *Render are one-dimensional arrays of either two or three elements allocated as
an array of double-precision floating-point values.

The routines documented here are:

CMSR fe v _abs 2d...........ciiiiiiiii i e e 93
CMSR fe v _abs 3d...........oiiiiiiiiiiiiii e e e 93
CMSR fe v _abs squared 2dcciiiiiiiiiiiiii i 95
CMSR fe v _abs_squared 3d................ ittt 95
CMSR fe v add 2d....... i i e 97
CMSR fe v _add 3d..........iiiiiiiiiiii e e 97
CMSR fe v COPY _2d ...t e e 99
CMSR fe v copy _3d ... i i 9
CMSR fe_ v _cos between 2do, 101
CMSR fe v _cos between 3d i, 101
CMSR _fe v _cross_product_3dl 103
CMSR_fe_v dot product 2d o i, 105
CMSR fe_v dot product 3d i, 105
CMSR fe v is zero 2d........ i e 107
CMSR fe v is zero 3d........... ...t 107
CMSR fe v megate 2d i 109
CMSR fe v mnegate 3d il 109
CMSR _fe v normalize 2d il 111
CMSR fe v nmormalize _3diiiiiiiiiiiiiiii e 111
CMSR fe v _perpendicular 2diiiiiiiiiiiiii., 113
CMSR fe v perpendicular 3dciiiiiiiiiiiiiiii.,, 113
CMSR fe v print 2d 115
CMSR fe_ v print 3d 115
CMSR fe v reflect 2d.......... ... i e 117

Version 2.0, November 1991) 91

92

CMSR fe v reflect 3d..... ... i

CMSR fe v _scale 2d

CMSR fe v _scale 3d
CMSR fe v_subtract_2d ...
CMSR_fe v _subtract_3d ...

CMSR_fe v_transform 2d ..

CMSR _fe v_transform 3d ..

e e 121
B e 121
e e 123
e 123

CMSR fe v_transmit 3dl 126

Version 2.0, November 1991

CMSR_fe_v_abs_2d
Chapter 3. Math Routines CMSR_fe_v_abs_3d

CMSR_fe_v_abs_2d
CMSR _fe_v_abs_3d

Returns the length of the specified front-end vector.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double
CMSR_fe v_abs 2d (src_vector)

double src_vector[2];

double
CMSR_fe v_abs_3d (src_vector)

double src_vector[3];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
DOUBLE PRECISION FUNCTION CMSR FE V_ABS 2D (src_vector)
DOUBLE PRECISION src_vector(2)

DOUBLE PRECISION FUNCTION CMSR FE_V_ABS 3D (src_vector)
DOUBLE PRECISION src_vector(3)

Lisp Syntax
CMSR: fe-v-abs-2d (src—vector)
CMSR: fe-v—-abs-3d (src—vector)

ARGUMENTS

src_vector The vector for which the length is to be calculated. For CMSR_fe
v_abs_2d src_vector is a 1 x 2 front-end array of double-
precision values. For CMSR_fe_v_abs_3d itis a 1 x 3 array.

Version 2.0, November 1991 93

CMSR_fe_v_abs_2d
CMSR_fe_v_abs_3d
e

*Render Reference Manual for Paris

DESCRIPTION

CMSR_fe_v_abs_2d and CMSR_fe_v_abs_3d return the length of the vector
src_vector.

SEE ALSO
CMSR_fe v_abs_squared 2d
CMSR_fe v_abs squared 3d
CMSR_v_abs_2d
CMSR v_abs_3d
CMSR_v_abs_squared 2d
CMSR v_abs_squared 3d

94 Version 2.0, November 1991

CMSR_fe_v_abs_squared_2d
Chapter 3. Math Routines CMSR_fe_v_abs_squared_3d

CMSR_fe_v_abs_squared_2d
CMSR_fe_v_abs_squared_3d

Returns the square of the length of a specified 2D (3D) front-end vector.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double
CMSR fe v_abs squared 2d (src_vecfor)

double src_vector[2];
double

CMSR_fe v_abs squared 3d (src_vector)
double src_vector[3]:;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
DOUBLE PRECISION FUNCTION CMSR_FE_V_ABS_SQUARED_ZD (src_vector)
DOUBLE PRECISION src_vector(2)

DOUBLE PRECISION FUNCTION CMSR FE V_ABS SQUARED 3D (src_vector)
DOUBLE PRECISION src_vector (3)

Lisp Syntax
CMSR: fe-v-abs-squared-2d (src—vector)
CMSR: fe-v-abs—-squared-3d (src—vector)

ARGUMENTS

src_vector The vector for which the length squared is to be calculated. For
CMSR fe v_abs_squared_2d src_vector is a 1 x 2 front-end

array of double-precision values. For CMSR_fe_v_abs_

squared 3ditisal x 3 array.

Version 2.0, November 1991 95

CMSR_fe_v_abs_squared_2d
CMSR_fe_v_abs_squared_3d *Render Reference Manual for Paris

DESCRIPTION

CMSR_fe v_abs_squared_2d returns the square of the length of a 2D (1 x 2)
src_vector in front-end memory.

CMSR_fe v_abs_squared_3d returns the square of the length of a 3D (1 x 3)
src_vector in front-end memory.

SEE ALSO
CMSR fe v_abs_2d
CMSR fe v_abs_3d
CMSR v_abs 2d
CMSR v_abs_3d
CMSR v_abs squared 2d
CMSR_v_abs_squared 3d

96 Version 2.0, November 1991

CMSR_fe_v_add_2d
Chapter 3. Math Routines CMSR_fe_v_add_3d

CMSR_fe _v_add_2d
CMSR_fe_v_add_3d

Performs element-wise addition of two vectors.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe_v_add_2d (srcl_vector, src2_vector, dest vector)

double srcl vector[2], src2 vector[2], dest vector[2];

double *
CMSR_fe_v_add_3d (srcl_vector, src2_vector, dest_vector)

double srcl vector[3], src2 vector[3], dest vector[3]:

Fortran Syntax

INCLUDE ’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE_V_ADD_2D (srcl_vector, src2_vector, dest_vector)
DOUBLE PRECISION srcl vector(2), src2_vector(2), dest_vector(Z)

SUBROUTINE CMSR FE V_ADD 3D (srcl_vector, src2_vector, dest_vector)
DOUBLE PRECISION srcl vector(3), src2_vector(3), dest vector(3)

Lisp Syntax

CMSR: fe~v-add-2d (srcI-vector src2—vector &optional dest—vector)

CMSR: fe-v—-add-3d (srcl—vector src2—vector &optional dest—vector)

Version 2.0, November 1991 97

CMSR_fe_v_add_2d
CMSR_fe_v_add_3d *Render Reference Manual for Paris

e s

ARGUMENTS

srcl_vector, src2_vector
One-dimensional arrays containing the vectors to be added.

dest_vector A one-dimensional array containing the result of adding
srcl_vector and src2_vector.

For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-clement arrays.

DESCRIPTION

CMSR fe v_add 2dand CMSR fe v_add 3d do element-wise addition of the com-
ponents of srcl_vector and src2_vector and put the result in dest_vector. In C and Lisp
this routine also returns a pointer to dest_vector.

dest_vector may be the same as either src!_vector or src2_vector.

If a vector is a position vector, x occupies the first element, y occupies the second ele-
ment, and z (if present) occupies the third element.

98

Version 2.0, November 1991

CMSR_fe_v_copy_2d
CMSR_fe_v_copy_3d

2

CMSR_fe_v_copy_2d
CMSR_fe_v_copy_3d

Copies one vector to another.

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR_fe_v_copy_2d (src_vector, dest_vector)

double src_vector[2], dest vector[2];

double *
CMSR_fe v_copy_3d (src_vector, dest_vector)

double src_vector[3], dest vector[3];

Fortran Syntax

INCLUDE ’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE_V_COPY_ 2D (src_vector, dest_vector)
DOUBLE PRECISION src_vector(2), dest vector(2)

SUBROUTINE CMSR _FE V_COPY 3D (src_vector, dest_vector)
DOUBLE PRECISION src_vector(3), dest vector(3)

Lisp Syntax
CMSR: fe-v-copy-2d (src—vector &optional dest-vector)

CMSR: fe~v-copy-3d (src—vectfor soptional dest—vector)

Version 2.0, November 1991

99

CMSR_fe_v_copy_2d
CMSR_fe_v_copy_3d *Render Reference Manual for Paris

ARGUMENTS
src_vector A one-dimensional array containing the vector to be copied.
dest_vector A one-dimensional array to which src_vector is to be copied.
For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-clement arrays.
DESCRIPTION

CMSR _fe v_copy_2d and CMSR_fe_v_copy_3d copy src_vector to dest_vector. In
C and Lisp a pointer is also returned to dest_vector.

If a vector is a position vector, x occupies the first element, y occupies the second ele-
ment, and z (if present) occupies the third element.

100 Version 2.0, November 1991

CMSR_fe_v_cos_between_2d
Chapter 3. Math Routines CMSR_fe_v_cos_between_3d

CMSR_fe_v_cos_between_2d
CMSR_fe_v_cos_between_3d

Computes cosine of angle between two (three) vectors.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double
CMSR fe_v_cos_between_2d (srcl_vector, src2_vector)

double srcl_vector[2], src2 vector[2];

double
CMSR_fe_v_cos_between_3d (srcl_vector, src2_vector)

double srcl_vector[3], src2 vector[3];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’

DOUBLE PRECISION FUNCTION CMSR FE V_COS_BETWEEN_ 2D
& (srcl_vector, src2_vector)

DOUBLE PRECISION srcl_vector(2), src2_vector(2)

DOUBLE PRECISION FUNCTION CMSR_FE_V_COS__BETWEEN_3D
& (srcl_vector, src2_vector)

DOUBLE PRECISION srcl_vector(3), src2_vector(3)

Lisp Syntax
CMSR: fe-v-cos-between-2d (src—vectorl src—vector?2)

CMSR: fe-v-cos-between-3d (src—vectorl src—vector?)

Version 2.0, November 1991 101

CMSR_fe_v_cos_between_2d
CMSR_fe_v_cos_between_3d *Render Reference Manual for Paris

f

ARGUMENTS

srcl_vector, src2_vector
One-dimensional arrays containing the vectors.

For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-element arrays. x occupies element 0, y occupies
element 1, and z (if present) occupies element 2.

DESCRIPTION

CMSR_fe v_cos_between_2d and CMSR_fe v_cos_between_3d return the co-
sine of the angle between two vectors. This is the dot-product of the normalized
vectors. The source vectors, srcl_vector and src2_vector, need not be unit length.

Neither vector should be 0 length.

ERRORS

If either vector is of length 0, the result of this routine is undefined.

102 Version 2.0, November 1991

Chapter 3. Math Routines CMSR_fe_v_cross_product_3d

CMSR _fe_v_cross_product_3d

Calculates the cross-product of two 3D vectors.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe_v_cross_product_3d (srcl_vector, src2_vector, to_vector)

double srcl vector[3]:;
double src2 vector[3];
double fo_vector[3];

Fortran Syntax
INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_FE_V_CROSS_PRODUCT_3D (vectorl, vector2, to_vector)

DOUBLE PRECISION srcl_vector(3)
DOUBLE PRECISION src2_vector(3)
DOUBLE PRECISION fo_vector (3)

Lisp Syntax

CMSR: fe-v—-cross—-product-3d
(srcl—vector src2—vector &optional to—vector)

ARGUMENTS

srcl_vector, src2_vector
1 x 3 arrays of double-precision numbers containing the vectors to
be operated on.

to_vector A 1 x 3 array in which the cross-product of srcl_vector and
src2_vector is returned.

Version 2.0, November 1991 103

CMSR_fe_v_cross_product_3d *Render Reference Manual for Paris
E B]

DESCRIPTION

CMSR_fe v_cross_product_3d calculates the cross-product between the 3-dimen-
sional vectors srcl_vector and src2_vector and stores the result in fo_vector.

In C and Lisp, CMSR_fe_v_cross_product_3d also returns a pointer to fo_vector.

SEE ALSO

CMSR_cross_product_3d

104 Version 2.0, November 1991

CMSR_fe_v_dot_product_2d
Chapter 3. Math Routines CMSR _fe_v_dot_product_3d

CMSR_fe_v_dot_product_2d
CMSR _fe_v_dot_product_3d

Returns the dot product of two 2D (3D) vectors.

SYNTAX
C Syntax

#include <cm/cmsr.h>
double
CMSR_fe_v_dot_product_2d (srcl_vector, src2_vector)

double srcl vector[2];
double src2 vector[2];

double
CMSR_fe v_dot product_3d (srcl_vector, src2_vector)

double srcl vector[3];
double src2 vector[3];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’

DOUBLE PRECISION FUNCTION CMSR FE V_DOT PRODUCT_ 2D
(srcl_vector, src2_vector)

DOUBLE PRECISION srcl vector(2)
DOUBLE PRECISION src2_vector(2)

DOUBLE PRECISION FUNCTION CMSR_FE__V_DOT_PRODUCT_3D
(srcl_vector, src2_vector)

DOUBLE PRECISION srcl vector(3)
DOUBLE PRECISION src2_vector(3)

Lisp Syntax

CMSR: fe-v-dot-product-2d (srcl-vector src2—vector)

CMSR: fe-v-dot-product-3d (srcl—-vector src2-vector)

Version 2.0, November 1991 105

CMSR_fe_v_dot_product_2d

CMSR_fe_v_dot_product_3d *Render Reference Manual for Paris
- S]

ARGUMENTS

srcl_vector, src2_vector
1 x 2 arrays of double-precision numbers containing the vectors to
be operated on.

DESCRIPTION

CMSR_fe_v_dot_product_2d and CMSR_fe v_dot_product_3d retumn the dot
product of the two front-end vectors srcl_vector and src2_vector.

SEE ALSO

CMSR v_dot_product_2d
CMSR_v_dot_product_3d

106 . Version 2.0, November 1991

CMSR_fe_v_is_zero_2d

Chapter 3. Math Routines CMSR_fe_v_is_zero_3d
e — R

CMSR_fe_v_is_zero_2d
CMSR_fe_v_is_zero_3d

Tests whether a vector is zero length.

SYNTAX
C Syntax
#include <cm/cmsr.h>
int
CMSR_fe v_is zero_2d (vector)
double vecfor[2]:;
int
CMSR_fe v_is_zero_3d (vecfor)
double vector[3]:

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
LOGICAL FUNCTION CMSR_FE V_IS_ZERO 2D (vector)
DOUBLE PRECISION vecfor(2)

LOGICAL FUNCTION CMSR FE V_IS_ZERO 3D (vector)
DOUBLE PRECISION vectfor(3)

Lisp Syntax
CMSR: fe-v-is-zero-2d (vector)
CMSR: fe-v-is-zero-3d (vector)

Version 2.0, November 1991 107

CMSR_fe_v_is_zero_2d

CMSR_fe_v_is_zero_3d *Render Reference Manual for Paris
e S : B
ARGUMENTS
vector A one-dimensional array containing the vector to be tested.
For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-element arrays.
DESCRIPTION

CMSR _fe_v_is zero_2dand CMSR fe v_is_zero_3d test whether vector is zero
length. If the given vector is of length 0, these routines return true (.TRUE. in Fortran,
non-NULL in C, non-nil in Lisp). If the vector has length, these routines return false
(.FALSE. in Fortran, NULL in C, nil in Lisp).

The x coordinate occupies the first element, y occupies the second element, and z (if
present) occupies the third element.

108 Version 2.0, November 1991

CMSR_fe_v_negate_2d

Chapter 3. Math Routines CMSR_fe_v_negate_3d
S R

CMSR_fe_v_negate_2d
CMSR_fe_v_negate_3d

Multiplies each vector element by —1.

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR_fe_v_negate_2d (src_vector, dest_vector)

double src_vector[2], dest vector[2];

double *
CMSR_fe_v_negate_3d (src_vector, dest_vector)

double src_vector[3], dest vector[3];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR _FE V_NEGATE_2D (src_vector, dest_vector)
DOUBLE PRECISION src_vector(2), dest vector(2)

SUBROUTINE CMSR FE V_NEGATE 3D (src_vector, dest_vector)
DOUBLE PRECISION src_vector(3), dest vector(3)

Lisp Syntax

CMSR: fe-v-negate-2d (src—vector &optional dest—vector)

CMSR: fe~v-negate-3d (src-vector &optional dest—vector)

Version 2.0, November 1991 109

CMSR_fe_v_negate_2d

CMSR_fe_v_negate_3d *Render Reference Manual for Paris

S s e e

X

ARGUMENTS
src_vector A one-dimensional array containing the vector to be negated.
dest_vector A one-dimensional array containing the result of negating
src_vector.
For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-element arrays.
DESCRIPTION

CMSR_fe v_negate_2d and CMSR_fe_v_negate_3d multiply each vector element
by —1 and put the result in dest_vector. In C and Lisp these routines also return a point-
er to dest_vector.

If a vector is a position vector, x occupies the first element, y occupies the second ele-
ment, and z (if present) occupies the third element.

110

Version 2.0, November 1991

CMSR_fe_v_normalize_2d
CMSR_fe_v_normalize_3d

CMSR_fe_v_normalize_2d
CMSR_fe_v_normalize_3d

Normalizes a vector to a unit vector.

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR_fe_v_normalize 2d (src_vector, dest_vector)

double src_vector[2], dest vector[2];
double *

CMSR_fe v_normalize 3d (src_vector, dest_vector)

double src_vector[3], dest vector[3];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_FE_V_NORMALIZE 2D (src_vector, dest_vector)
DOUBLE PRECISION src_vector(2), dest vector(2)

SUBROUTINE CMSR_FE_V_NORMALIZE 3D (src_vector, dest vector)
DOUBLE PRECISION src_vector(3), dest_vector(3)

Lisp Syntax
CMSR: fe-v-normalize-2d (src—vecfor &optional dest—vector)

CMSR: fe-v-normalize-3d(src—vecfor soptional dest-vector)

Version 2.0, November 1991 111

CMSR_fe_v_normalize_2d

CMSR_fe_v_normalize_3d *Render Reference Manual for Paris
e i

ARGUMENTS
src_vector A one-dimensional array containing the vector to be normalized.
dest_vector A one-dimensional array containing the result of normalizing
Src_vector.
For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-element arrays. x occupies element 0, y occupies
element 1, and z (if present) occupies element 2.
DESCRIPTION

CMSR_fe v_normalize_ 2d and CMSR_fe_v_normalize_3d compute a unit vec-
tor pointing in the same direction as src_vector and put the result in dest_vector. In C
and Lisp these routines also return a pointer to dest_vector.

The source vector should not be zero length.

ERRORS

If the src_vector is zero length, the behavior of this routine is undefined.

112 Version 2.0, November 1991

CMSR_fe_v_perpendicular_2d
CMSR_fe_v_perpendicular_3d

Chapter 3. Math Routines

CMSR_fe_v_perpendicular_2d
CMSR_fe_v_perpendicular_3d

Constructs a unit vector perpendicular to one 2D or to two 3D vectors.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe v_perpendicular_2d (src_vector, dest_vector)

double src_vector[2], dest vector[2];

double *
CMSR fe_v_perpendicular_3d (srcl_vector, src2_vector, dest vector)

double srcl_vector[3], src2 vector[3], dest vector[3]:;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE V_PERPENDICULAR 2D (src_vector, dest_vector)
DOUBLE PRECISION src_vector(2), dest vector(2)

SUBROUTINE CMSR FE V_PERPENDICULAR 3D
& (srcl_vector, src2_vector, dest_vector)

DOUBLE PRECISION srcl vector(3), src2_vector(3), dest_vector(3)

Lisp Syntax

CMSR: fe-v—-perpendicular-2d (srcl-vector soptional dest—vector)

CMSR: fe-v-perpendicular-3d
(srcl—vector src2—vector &optional dest—vector)

Version 2.0, November 1991 113

CMSR_fe_v_perpendicular_2d

CMSR_fe_v_perpendicular_3d *Render Reference Manual for Paris

SRl s e s

ARGUMENTS

src—vector, src—vectorl, src—vector2
One-dimensional arrays containing the vectors to be operated on.

dest_vector A one-dimensional array containing the result of the routine.

For the 2D routine these are 2-element arrays; for the 3D routine these are 3-element
arrays. x occupies element 0, y occupies element 1, and z (if present) occupies
element 2.

DESCRIPTION

CMSR_fe_v_perpendicular_2d constructs a unit vector perpendicular to src_
vector, and puts the result in dest_vector. In C and Lisp this routine also returns a point-
er to dest_vector.

The source vector need not be unit length, but src_vector should not be zero length.

CMSR_fe_v_perpendicular_3d constructs a unit vector perpendicular to srcl_
vector and src2_vector and puts the result in dest_vector. In C and Lisp this routine also
returns a pointer to dest_vector. The source vectors need not be unit length.

The cross-product of the source vectors should not be zero length.

114

Version 2.0, November 1991

Chapter 3. Math Routines

CMSR _fe_v_print_2d
CMSR_fe_v_print_3d

Prints the vector on stdout.

CMSR_fe_v_print_2d
CMSR_fe_v_print_3d

St

i

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR fe v _print 2d (src_vector)

double src_vector[2] ;
double *
CMSR_fe_v_print 3d (src_vector)

double src_vector[3];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE V_PRINT 2D (src_vecfor)
DOUBLE PRECISION src_vector(2)

SUBROUTINE CMSR FE V_PRINT 3D (src_vector)
DOUBLE PRECISION src_vector(3)

Lisp Syntax
CMSR: fe-v-print-2d (src-vector)
CMSR: fe—-v-print-3d (src—vector)

Version 2.0, November 1991

115

CMSR_fe_v_print_2d
CMSR_fe_v_print_3d

ARGUMENTS
src_vector A one-dimensional array containing the vector to be printed.
For the 2D routine this is a 2-element array; for the 3D routine this
is a 3-element array. x occupies element 0, y occupies element 1,
and z (if present) occupies element 2.
DESCRIPTION

CMSR fe v _print 2dandCMSR fe v_print_3d print the src_vector on stdout.
In C and Lisp these routines also return a pointer to src_vector.

The elements of the vector are printed on one line, separated by spaces, and followed
by a carriage return.

116 Version 2.0, November 1991

CMSR_fe_v_reflect_2d
CMSR_fe_v_reflect_3d

CMSR_fe_v_reflect_2d
CMSR_fe_v_reflect_3d

Calculates a reflectance vector for specified incident and normal vectors.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe v_reflect_2d (incident_vector, normal_vector, dest_vector) ;

double incident vector[2), normal_vector[2], dest vector[2];

double *
CMSR_fe_v_reflect_3d(incident vector, normal_vector, dest vector) ;

double incident vector[3], normal_vector[3], dest vector[3];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’

SUBROUTINE CMSR FE V_REFLECT_ 2D
& (incident_vector, normal_vector, dest_vector)

DOUBLE PRECISION incident vector(2) , normal_vector(2), dest_vector(2)

SUBROUTINE CMSR FE_V_REFLECT 3D
& (incident_vector, normal_vector, dest_vector)

DOUBLE PRECISION incident vector(3), normal vector(3), dest vector(3)

Lisp Syntax
CMSR: fe-v-reflect-2d (incident—vector normal-vector
&optional dest—vector)

CMSR: fe-v-reflect-3d (incident—vector normal-vector
&optional dest—vector)

Version 2.0, November 1991 117

CMSR_fe_v_reflect_2d
CMSR_fe_v_reflect_3d *Render Reference Manual for Paris

o SRS R e

ARGUMENTS

incident_vector A one-dimensional array containing the vector indicating the
direction of the incident light.

normal_vector A one-dimensional array containing the vector indicating the
normal vector of the surface from which the light is to reflect.

dest_vector A one-dimensional array containing the vector indicating the
direction of the reflected light.

For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-element arrays. x occupies element 0, y occupies
element 1, and z (if present) occupies element 2.

DESCRIPTION

CMSR_fe_v_reflect_2d and CMSR fe v_reflect 3d determine the vector re-
sulting from reflecting incident vector around normal_vector and put the result in
dest_vector. In C and Lisp these routines also return a pointer to dest_vector. The inci-
dent and normal vectors need not be unit length, but the reflected vector will be.

Neither input vector should be zero length.

To build the destination vector, the incident and normal vectors are first normalized.
The reflected vector (R), is then constructed from the unit-length incident vector (I)
and unit-length normal (N) vector:

R = [-2*(N dot)*N

normal_vector (N)

incident_vector (I) dest_vector (R)

118 Version 2.0, November 1991

CMSR_fe_v_scale_2d
Chapter 3. Math Routines CMSR_fe_v_scale_3d

CMSR _fe_v_scale_2d
CMSR _fe_v_scale_3d

Multiplies a vector by a constant scale value.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR fe v_scale_2d (src_vector, scale_value, dest vector)

double src_vector[2], scale value, dest vector[2];

double *
CMSR fe v_scale_3d (src_vector, scale_value, dest _vector)

double src_vector[3], scale value, dest vector[3];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE_V_SCALE 2D (src_vector, scale_value, dest_vector)
DOUBLE PRECISION src_vector(2), scale value, dest vector(2)

SUBROUTINE CMSR _FE V_SCALE 3D (src_vector, scale_value, dest_vector)
DOUBLE PRECISION src_vector(3), scale value, dest vector(3)

Lisp Syntax
CMSR: fe-v-scale-2d (src—vector scale-value &optional dest—vector)

CMSR: fe-v-scale-3d(src—vector scale—value &optional dest—vector)

Version 2.0, November 1991 119

CMSR_fe_v_scale_2d

CMSR_fe_v_scale_3d *Render Reference Manual for Paris
e

ARGUMENTS
src_vector A one-dimensional array containing the vector to be scaled.
scale_value The scaling factor to be applied to src_vector:
dest_vector A one-dimensional array containing the result of scaling
src_vector by the scale_value.
For the 2D routine .the arrays contain 2 elements; for the 3D
routine the arrays contain 3 elements. x occupies element 0, y
occupies element 1, and z (if present) occupies element 2.
DESCRIPTION

CMSR_fe_v_scale_2d and CMSR_fe_v_scale_3d multiply each element of
src_vector by the constant scale_value and put the result in dest_vector. In C and Lisp,
these routines also return a pointer to dest_vector.

dest_vector may be the same as src_vector.

120 Version 2.0, November 1991

CMSR_fe_v_subtract_2d
CMSR_fe_v_subtract_3d

CMSR_fe_v_subtract_2d
CMSR_fe_v_subtract_3d

Subtracts each element of one vector from another.

SYNTAX
C Syntax

#include <cm/cmsr.h>
double *
CMSR_fe v_subtract_2d (srcl_vector, src2_vector, dest_vector)

double srcl_vector[2], src2 vector[2], dest vector[2];

double *
CMSR_fe_v_subtract_3d (srcl_vector, src2_vector, dest vector)

double srcl_vector[3], src2 vector[3], dest vector[3];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR _FE_V_SUBTRACT 2D
& (srcl_vector, src2_vector, dest_vector)

DOUBLE PRECISION srcl vector(2), src2 vector(2), dest vector(2)

SUBROUTINE CMSR_FE_V_SUBTRACT 3D
& (srcl_vector, src2_vector, dest_vector)

DOUBLE PRECISION srcl _vector(3), src2 vector(3), dest vector(3)

Lisp Syntax

CMSR: fe-v-subtract-2d (srcl-vector src2—vector &optional dest—vector)

CMSR: fe-v-subtract-3d (srcl-vector src2—vector &optional dest—vector)

Version 2.0, November 1991 121

CMSR_fe_v_subtract_2d

CMSR_fe_v_subtract_3d *Render Reference Manual for Paris
P T

ARGUMENTS

srcl_vector, src2_vector
One-dimensional arrays containing the vectors to be subtracted.

dest_vector A one-dimensional array containing the result of subtracting
srcl_vector and src2_vector.

For the 2D routine the arrays contain 2 elements; for the 3D
routine the arrays contain 3 elements. x occupies element 0, y
occupies element 1, and z (if present) occupies element 2.

DESCRIPTION

CMSR_fe v_subtract 2d and CMSR_fe_v_subtract_3d subtract each element
of src2_vector from srcl_vector (srcl_vector — src2_vector) and put the result in
dest_vector. In C and Lisp these routines also return a pointer to dest_vector.

dest_vector may be the same as srcl_vector or src2_vector.

122

Version 2.0, November 1991

CMSR_fe_v_transform_2d

Chapter 3. Math Routines CMSR_fe_v_transform_3d
i S : 5

CMSR_fe_v_transform_2d
CMSR_fe_v_transform_3d

Returns vector transformed by transformation matrix.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe_v_transform 2d (src_vecfor, src_matrix, dest~vector)

double src_vector[2] ;
double src_matrix[3][3];
double dest _vector[2];

double *
CMSR_fe_v_transform 3d (src_vector, src_matrix, dest_vector)

double src_vector[3];
double src_matrix[4] [4];
double dest _vector[3];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE V_TRANSFORM 2D
& (src_vector, src_matrix, dest__vector)

INTEGER src_vector (2)
INTEGER src_matrix (3, 3)
INTEGER dest vector (2)

SUBROUTINE CMSR _FE_V_TRANSFORM 3D
& (src_vector, src_matrix, dest_vector)

INTEGER src_vector (3)
INTEGER src_matrix (4,4)
INTEGER dest vector(3)

Version 2.0, November 1991 123

CMSR_fe_v_transform_2d
CMSR_fe_v_transform_3d *Render Reference Manual for Paris

Lisp Syntax
CMSR: fe-v-transform-vector-2d :
(src—vector src—matrix &optional dest-vector)

CMSR: fe-v-transform-vector-3d X‘ , ‘
(src—vector src—matrix &optional dest—vector)

ARGUMENTS
src_vector For CMSR_fe v_transform 2d a 1 x 2 array, and for CMSR_
fe v_transform 3d a 1 x 3 array containing the vector to be
transformed.
src_matrix For CMSR_fe_v_transform 2d a 3 x 3 array, and for CMSR _
fe_v_transform_3d a 4 x 4 array containing the homogeneous
transformation matrix to be applied to src_vector. The matrix
elements are stored in row- major order.
dest_vector For CMSR_fe_v_transform 2d a 1 x 2 array, and for CMSR_
fe_v_transform 3d a 1 x 3 array containing the transformed
vector.
DESCRIPTION

CMSR_fe v_transform 2d and CMSR_fe v_transform_3d calculate the result
of transforming the vector src_vector by the homogeneous transformation matrix
src_matrix and store the result in dest_vector. dest_vector may be the same as src_
vector.

In C and Lisp, these routines also return a pointer to dest_vector. In Lisp dest_vector is -
optional; space for the vector is allocated if it is not specified.

ERRORS

If the homogeneous coordinate of the transformed vector goes to zero, the result of this
routine is undefined.

124 Version 2.0, November 1991

CMSR_fe_v_transform_2d

Chapter 3. Math Routines ‘ .CMSR_fe__v trapsform_3d

S e I 3

SEE ALSO
CMSR_v_transform 2d
CMSR_v_transform 3d
CMSR_v_transform const 2d

CMSR v_transform const_3d

Version 2.0, November 1991 125

CMSR_fe_v_transmit_3d

[s s

CMSR_fe_v_transmit_3d

Creates a transmittance vector for light refracted through two materials.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR fe v_transmit_3d
(incident_vector, normal_vector, indexl, index2, transmitted vector)
double incident vector[3], normal_vector[3];
double indexl, index2;
double ftransmitted_vector[3] ;

Fortran Syntax
INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_FE_V_TRANSMIT 3d
& (incident_vector, normal_vector, index1, index2, transmitted_vector)

DOUBLE PRECISION incident vector(3), normal_vector(3)
DOUBLE PRECISION indexl, index2
DOUBLE PRECISION transmitted_vector(3)

Lisp Syntax

CMSR: fe-v-transmit-3d (incident—vector normal-vector indexl index2
&optional ftransmitted—vector)

ARGUMENTS

incident_vector A one-dimensional array of 3 elements containing the vector
indicating the direction of the incident light. x occupies element 0,
y occupies element 1, and z (if present) occupies element 2.

For the 2D routine these are 2-element arrays; for the 3D routine
these are 3-clement arrays.

126 Version 2.0, November 1991

Chapter 3. Math Routines CMSR_fe_v_transmit_3d

normal_vector A one-dimensional array of 3 elements containing the vector
indicating the surface normal of the material through which the
light is to pass. x occupies element 0, y occupies element 1, and z
(if present) occupies element 2.

indexl, index2 The index of refraction of the medium containing incident_vector
and transmitted_vector, respectively.

transmitted_vector A one-dimensional array of 3 elements containing the vector
indicating the direction of the transmitted light. x occupies
element 0, y occupies element 1, and z (if present) occupies
element 2.

DESCRIPTION

CMSR_fe_v_transmit_3d, given an incident vector, surface normal, and indices of
refraction for the two materials, constructs a transmitted light vector and puts the vec-
tor in transmitted_vector. In C and Lisp this routine also returns a pointer to
transmitted_vector.

The unit length transmitted vector T is given by:

2
T=" 1+ N[2N -a)- 1+(—"—‘) <(N-—I)2—1>'
ny ny

n2

N is the unit vector in the direction of normal_vector.1 is the unit vector in the direction
of incident _vector. nl is indexl, the index of refraction of the medium containing the
incident vector. n2 is index2, the index of refraction of the medium which contains the
transmitted vector.

normal_vector (N)

incident vector (I) incident medium

Version 2.0, November 1991 127

CMSR_fe_v_transmit_3d *Render Reference Manual for Paris

If the expression under the square root becomes negative, the result is total internal
reflection. If total internal reflection occurs, CMSR_fe v_transmit_3d retumns a
NULL pointer.

Neither the incident vector nor the normal vector should be length 0. The second index
of refraction should not be 0.

128 Version 2.0, November 1991

Chapter 3. Math Routines

3.3 Front-end Matrix Routines

This section documents the *Render routines that operate on matrices in front-end arrays.
Matrices in *Render are assumed to be square, homogeneous matrices. *Render supports
matrices of dimension 2 or 3, for transforming two-dimensional or three-dimensional vec-
tors. On the front end, a matrix is an appropriately sized array of double-precision
floating-point values.

The routines documented here are:

CMSR fe_identity matrix 2dl 131
CMSR_fe_identity matrix 3dl 131
CMSR fe m copy 2d ...t e i e 133
CMSR fe m copy 3d ...t e 133
CMSR _fe m determinant 2d i 135
CMSR fe m determinant 3d.................... . e 135
CMSR fe m invert 2d e 137
CMSR fe m invert 3d e 137
CMSR fe m multiply 2d ... 139
CMSR fe m multiply 3d ...ttt 139
CMSR fe m print 2d e 141
CMSR fe m print_3d e e 141
CMSR_fe oblique proj matrixiiiiiiiiii., 143
CMSR _fe_ortho proj matrixcciiiiiiiiiiiiiiiiiiia., 145
CMSR_fe perspective matrixl 147
CMSR_fe_perspective proj matrixl 149
CMSR_fe rotation matrix 2d, 151
CMSR_fe scale matrix 2dciiiiiiiiiiiii i 153
CMSR_fe_scale matrix 3d i 153
CMSR_fe translation matrix 2d...................l 155
CMSR fe translation matrix 3dl 155
CMSR fe view matrix 157
CMSR_fe view proj matrix i, 159

Version 2.0, November 1991 129

*Render Reference Manual for Paris
S

CMSR_fe x rotation matrix 3dc.l, 161
CMSR fe y rotation matrix 3doollll 161

CMSR fe z rotation matrix 3dllll 161

130 Version 2.0, November 1991

CMSR_fe_identity_matrix_2d
Chapter 3. Math Routines CMSR_fe_identity_matrix_3d

CMSR_fe_identity_matrix_2d
CMSR_fe_identity_matrix_3d

Creates 2D (3D) homogeneous transformation identity matrix in front-end array.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe_identity matrix 2d (dest_matrix)

double dest matrix[3][3];
double *

CMSR fe identity matrix 3d (dest_matrix)
double dest matrix[4][4]:

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE_IDENTITY MATRIX 2D (dest _matrix)
DOUBLE PRECISION dest matrix(3,3)

SUBROUTINE CMSR FE_IDENTITY MATRIX 3D (dest matrix)
DOUBLE PRECISION dest matrix(4,4)

Lisp Syntax
CMSR: fe-identity-matrix-2d (&optional dest-matrix)
CMSR: fe-identity-matrix-3d (&optional dest-matrix)

ARGUMENTS

dest_matrix A 3 x 3 array for CMSR_fe_identity matrix 2dora4 x4
array for CMSR_fe_identity matrix_3d into which a
homogeneous identity matrix is stored. The matrix elements are
stored in row-major order.

Version 2.0, November 1991 131

CMSR_fe_identity_matrix_2d

CMSR_fe_identity_matrix_3d *Render Reference Manual for Paris

22

DESCRIPTION

CMSR_fe_identity matrix 2d and CMSR_fe_ identity matrix 3d set the
front-end matrix dest_matrix to an identity matrix for 2D or 3D homogeneous trans-
formations.

In C and Lisp, the routines also return a pointer to dest_matrix. In Lisp, dest-matrix is
optional; space is allocated if the matrix is not specified.

The identity matrix is the identity element for matrix multiplication. It is an array in
which all elements are set to 0 except for the diagonal elements, which are set to 1.

SEE ALSO
CMSR_identity matrix 2d
CMSR_identity matrix 3d

132 Version 2.0, November 1991

CMSR_fe_m_copy_2d
Chapter 3. Math Routines CMSR_fe_m_copy_3d

CMSR_fe_m_copy_2d
CMSR_fe_m_copy_3d

Copies 2D (3D) transformation matrix between front-end arrays.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe m_copy 2d (from_matrix, to_matrix)

double from_matrix[3] [3];
double to_matrix[3] [3];

double *
CMSR_fe m copy_3d (from_matrix, to_matrix)

double from _matrix[4] [4];
double fo_matrix[4][4];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_FE M COPY_2D (from_matrix, to_matrix)

DOUBLE PRECISION from_matrix(3,3)
DOUBLE PRECISION tfo_matrix(3,3)

SUBROUTINE CMSR_FE_M COPY_3D (from_matrix, to_matrix)

DOUBLE PRECISION from_matrix(4,4)
DOUBLE PRECISION fo_matrix(4,4)

Lisp Syntax

CMSR: fe-m-copy-2d (from—matrix &optional to-matrix)

CMSR: fe-m~copy-3d (from-matrix &optional to-matrix)

Version 2.0, November 1991 133

CMSR_fe_m_copy_2d

CMSR_fe_m_copy_3d
e

*Render Reference Manual for Paris

RS

ARGUMENTS
Jfrom_matrix
For CMSR_fe_m copy_2d a 3 x 3 array, or for CMSR_fe m _
copy_3d a 4 x 4 array containing the homogeneous
transformation matrix to be copied. The matrix elements are
stored in row-major order.
to_matrix
For CMSR_fe m copy_2d a 3 x 3 array, or for CMSR_fe m
copy_3d a4 x 4 array into which from_matrix is to be copied.
The matrix elements are stored in row-major order.
DESCRIPTION

CMSR_fe m_copy_2d and CMSR_fe_m_copy_3d copy the front-end matrix
Jfrom_matrix to the front-end matrix to_matrix.

In Cand Lisp, CMSR_fe_m_copy_2d and CMSR_fe m_copy_3d also return a pointer
to to_matrix. In Lisp, from—matrix is optional; space is allocated for the matrix if it is
not specified.

134 Version 2.0, November 1991

CMSR_fe_m_determinant_2d
CMSR_fe_m_determinant_3d

SRR

CMSR_fe_m_determinant_2d
CMSR_fe_m_determinant_3d

Returns the determinant of a matrix.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double
CMSR_fe m determinant 2d (matrix)

double matrix[3]1[3]1;
double

CMSR_fe m determinant_3d (matrix)
double matrix[4][4];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
DOUBLE PRECISION FUNCTION CMSR__FE__M__DETERMINANT_ZD (matrix)
DOUBLE PRECISION matrix(3,3)

DOUBLE PRECISION FUNCTION CMSR FE M DETERMINANT 3D (matrix)
DOUBLE PRECISION matrix(4,4)

Lisp Syntax

CMSR: fe-m-determinant-2d4 (matrix)
CMSR: fe-m-determinant-3d (matrix)

ARGUMENTS

matrix For CMSR_fe_m determinant 2d a3 x 3 array, or for CMSR_
fe_m_determinant_3d a 4 x 4 array, containing a
homogeneous transformation matrix. The matrix elements are
stored in row-major order.

Version 2.0, November 1991 135

CMSR_fe_m_determinant_2d

CMSR_fe_m_determinant_3d *Render Reference Manual for Paris
O

DESCRIPTION

CMSR_fe m determinant_ 2d and CMSR_fe m determinant_3d return the
determinant of the matrix specified in matrix.

136 Version 2.0, November 1991

CMSR_fe_m_invert_2d
Chapter 3. Math Routines CMSR_fe_m_invert_3d

CMSR_fe_m_invert_2d
CMSR_fe_m_invert_3d

Creates the inverse of a 2D (3D) matrix using arrays on the front-end computer.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe m invert_2d (from_matrix, to_matrix))

double from_matrix[3] [3]1, to_matrix[3][3];
double *

CMSR_fe m invert_3d (from_matrix, to_matrix)
double from_matrix[4] [4]1, to_matrix[4][4];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE M INVERT 2D (from_matrix, to_matrix)
DOUBLE PRECISION from_matrix(3, 3), to_matrix(3, 3)

SUBROUTINE CMSR FE M INVERT 3D (from_matrix, to_matrix)
DOUBLE PRECISION from_matrix(4, 4), to_matrix(4, 4)

Lisp Syntax
CMSR: fe~m-invert-2d (from—matrix &optional fo—matrix)

CMSR: fe-m-invert-3d (from—matrix &optional to—matrix)

Version 2.0, November 1991 137

CMSR_fe_m_invert_2d

CMSR_fe_m_invert_3d *Render Reference Manual for Paris
e e

S

ARGUMENTS
Jfrom_matrix An array containing the transformation matrix to be inverted. For
the 2D routine this is a 3 x 3 array of homogeneous coordinates;
for the 3D routine this is a 4 x 4 array. The matrix elements are
stored in row-major order.
to_matrix An array into which the inverted from_matrix is to be copied. For
the 2D routine this is a 3 x 3 array of homogeneous coordinates;
for the 3D routine this is a 4 x 4 array. The matrix elements are
stored in row-major order.
DESCRIPTION

CMSR_fe_m_invert_2d and CMSR_fe_m_invert_3d place the inverse of
Jfrom_matrix in to_matrix. The destination matrix, fo_matrix, may be identical to the
source matrix from_matrix. If the matrix is singular (that is, if its determinant is zero), a
fatal error occurs.

In C and Lisp, these routines also return a pointer to to_matrix. In Lisp, to-matrix is
optional; space is allocated if the matrix is not specified.

ERRORS

If the matrix is singular (that is, if its determinant is zero), a fatal error occurs.

SEE ALSO

CMSR m_invert 2d
CMSR m_invert_ 3d

138 Version 2.0, November 1991

CMSR_fe_m_muitiply_2d
ines CMSR_fe_m_multiply_3d

SEesS i T

CMSR_fe_m_multiply_2d
CMSR_fe_m_multiply_3d

Multiplies two 2D (3D) transformation matrices.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe m multiply 2d (src!/_matrix, src2_matrix, dest_matrix)

double srcl_matrix[3][3]:;
double src2_matrix[3]1[3];
double dest_matrix[3][3]:

double *
CMSR_fe m multiply 3d (srcl_matrix, src2_matrix, dest_matrix)

double srcl_matrix[4]1[4]:
double src2 matrix[4][4];
double dest matrix[4][4]:

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’

SUBROUTINE CMSR_FE M MULTIPLY_ 2D
& (src_matrix] src_matrix2 dest_matrix)
DOUBLE PRECISION srcl_matrix (3, 3)
DOUBLE PRECISION src2 _matrix (3, 3)
DOUBLE PRECISION dest matrix (3, 3)
SUBROUTINE CMSR FE M MULTIPLY_ 3D
& (src_matrixl src_matrix2 dest_matrix)
DOUBLE PRECISION srcl_matrix (4, 4)
DOUBLE PRECISION src2 _matrix (4, 4)
DOUBLE PRECISION dest matrix (4, 4)

Lisp Syntax

CMSR: fe-m-multiply-2d (srcl-matrix src2-matrix &optional dest-matrix)
CMSR: fe-m~multiply-3d (srcl-matrix src2-matrix &optional dest—matrix)

Version 2.0, November 1991 139

CMSR_fe_m_multiply_2d

CMSR_fe_m_muitiply_3d *Render Reference Manual for Paris
S

ARGUMENTS

srcl_matrix, src2_matrix
For CMSR_fe_m_multiply_2d 3 x 3 arrays, and for
CMSR_fe_m multiply_ 3d 4 x 4 arrays, containing the
homogeneous transformation matrices to be multiplied. The
matrix elements are stored in row-major order.

dest_matrix For CMSR_fe_m_multiply_2d a 3 x 3 array, and for
CMSR_fe m multiply 3d a4 x4 array, in which the product of
srcl_matrix and src2_matrix is returned. The matrix elements are
stored in row-major order.

DESCRIPTION

CMSR fe m multiply 2dandCMSR fe m multiply 3d calculate the product of
two homogeneous transformation matrices, (src—matrix1* src—matrix2) and store the
result in dest_matrix. The destination matrix may be the same as either source matrix.

In C and Lisp, these routines also return a pointer to dest_matrix. In Lisp dest-matrix is
optional; space is allocated for the matrix if it is not specified.

SEE ALSO
CMSR m multiply 2d
CMSR m multiply-3d
CMSR m multiply const_2d
CMSR m multiply const 3d

140 Version 2.0, November 1991

CMSR_fe_m_print_2d
Chapter 3. Math Routines CMSR_fe_m_print_3d
e : 38 o

i i

i 2

CMSR_fe_m_print_2d
CMSR_fe_m_print_3d

Prints the contents of a matrix on stdout.

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR_fe m print 2d (src_matrix)

double src_matrix[3] [3];

double *
CMSR_fe m print_3d (src_matrix)

double src_matrix[4] [4];

Fortran Syntax
INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE M PRINT 2D (src_matrix)
DOUBLE PRECISION src_matrix(3, 3)

SUBROUTINE CMSR FE M PRINT 3D (src_matrix)
DOUBLE PRECISION src_matrix(4, 4)

Lisp Syntax
CMSR: fe-m-print-2d (src—matrix)
CMSR: fe-m-print-3d (src—matrix)

Version 2.0, November 1991 141

CMSR_fe_m_print_2d

CMSR_fe_m_print_3d *Render Reference Manual for Paris
B R S

SRR

ARGUMENTS
src_matrix The front-end array to be printed.
For CMSR _fe m print_2d src—matrix is a 3 x 3 array.
For CMSR_fe m print 3d src-matrix is a 4 x 4 array.
DESCRIPTION

CMSR_fe m print_2dandCMSR_fe m print_3d print the double-precision float-
ing-point contents of the src_matrix array on stdout. The matrix elements are printed
one row per line, separated by spaces, and followed by a carriage return.

In C and Lisp these routines also return a pointer to src_matrix.

SEE ALSO
CMSR m print_ 2d
CMSR m print_ 3d

142 Version 2.0, November 1991

CMSR_fe_oblique_proj_matrix

CMSR_fe_oblique_proj_matrix

Creates an oblique projection matrix for a specified angle and foreshortening.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe_oblique _proj_matrix (foreshortenting, angle, dest_matrix)

double foreshortening;
double angle;
double dest matrix[4]14];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’

SUBROUTINE CMSR _FE OBLIQUE PROJ MATRIX
& (foreshortenting, angle, dest_matrix)

DOUBLE PRECISION foreshortening;
DOUBLE PRECISION angle;
DOUBLE PRECISION dest_matrix(:l, 4);

Lisp Syntax

CMSR: fe-oblique-proj—matrix
(foreshortenting angle &optional dest—-matrix)

ARGUMENTS

foreshortenting The ratio of the projected length of a line in z, to its true
length.The length of a projected z-axis unit vector.

angle The angle between the projected z-axis and the true horizontal of
the object.

Version 2.0, November 1991 143

CMSR_fe_oblique_proj_matrix *Render Reference Manual for Pari

s
e i

dest_matrix A 4 x 4 front-end array containing a homogeneous transformation
matrix that expresses the oblique projection defined by foreshort-
enting and angle.

DESCRIPTION

CMSR_fe oblique proj_matrix builds an oblique projection matrix and stores it
in dest_matrix. In C and Lisp, this routine also returns a pointer to dest_matrix.

An oblique projection is one in which the parallel projectors intersect with the projec-
tion plane at an oblique angle. In this routine, angle is the angle that the projected z-axis
makes with the horizontal. The projection is onto the plane z = 0. Foreshortening is the
length of a projected z-axis unit vector. When foreshortening is 0, an orthographic
projection results.

144 Version 2.0, November 1991

Chapter 3. Math Routines CMSR_fe_ortho_proj_matrix

CMSR_fe_ortho_proj_matrix

Creates an orthographic projection matrix perpendicular to a specified plane.

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR_fe ortho_proj_matrix (axis, dest_matrix)

int axis:
double dest matrix[4] [4];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE_ORTHO PROJ MATRIX (axis, dest_matrix)

INTEGER axis
DOUBLE PRECISION dest matrix(4, 4)

Lisp Syntax

CMSR: fe-ortho-proj-matrix (axis &optional dest-matrix)

ARGUMENTS
axis The axis that will be the plane of projection. axis may be specified
either symbolically or with an integer:
" Xxaxis=CMSR xor0
" yaxis=CMSR yorl
" zaxis=CMSR_zor2
dest_matrix A 4 x 4 front-end array containing a homogeneous transformation

matrix that expresses an orthographic projection onto axis.

Version 2.0, November 1991 145

*Render Reference Manual for Paris
e

DESCRIPTION

CMSR_fe_ortho_proj_matrix builds an orthographic projection matrix and
stores it in dest_matrix. In C and Lisp this routine also returns a pointer to dest_matrix.

An orthographic projection is a perpendicular projection onto one of the coordinate
planes. This projection is commonly used for engineering drawings.

In this routine, the axis parameter determines the plane of projection:
If axis is CMSR_x or 0, then the plane of projection is x = 0.
If axis is CMSR _y or 1, then the plane of projection is y = 0.

If axis is CMSR_z or 2, then the plane of projection is z = 0.

If axis is not one of the above, a fatal error results.

ERRORS
If axis is not CMSR_x (0) , CMSR_y (1), or CMSR_z (2), a fatal error results.

146 Version 2.0, November 1991

Chapter 3. Math Routines CMSR_fe_perspective_matrix

CMSR_fe_perspective_matrix

Creates a perspective transformation matrix.

SYNTAX
C Syntax

#include <cm/cmsr.h>
double *
CMSR_fe perspective matrix (axis, center_of proj, dest_matrix)
int axis;
double center_of proj;
double dest_matrix[4] [4];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR _FE_PERSPECTIVE MATRIX
& (axis, center_of proj, dest_matrix)

INTEGER axis
DOUBLE PRECISION center_of proj
DOUBLE PRECISION dest matrix(4, 4)

Lisp Syntax

CMSR: fe—-perspective-matrix
(axis center—of-proj &optional dest—matrix)

ARGUMENTS

axis The axis that will be the plane of projection. axis may be specified
either symbolically or with an integer:

" xaxis=CMSR xor0
" yaxis=CMSR_yorl
® zaxis=CMSR zor2

If axis is not one of the above, a fatal error results.

Version 2.0, November 1991 147

*Render Reference Manual for Paris

s

R SRR

center_of proj Specifies the point on axis on which the projection is to be
» centered.

If center_of proj is zero, a fatal error results.

dest_matrix A 4 x 4 front-end array containing the homogeneous transforma-
tion matrix created by the routine.

DESCRIPTION

CMSR_fe_perspective_matrix builds a perspective transformation matrix and
stores it in dest_matrix. In C and Lisp, this routine also returns a pointer to dest_matrix.
axis specifies the axis of projection. center_position is the center of projection along
axis.

When the completed perspective transformation is applied to object coordinates, object
size is reduced with increasing distance from the center of the projection.

Note that CMSR_fe perspective matrix creates a matrix that maps from one 3D
space into another 3D space. To transform an object for drawing into a two-dimension-
al image buffer, you must concatenate a projection matrix to this perspective matrix.

ERRORS

A fatal error results if axis is not CMSR_x (0) , CMSR_y (1), or CMSR_z (2) or if
center_of proj is zero.

148 Version 2.0, November 1991

Chapter 3. Math Routines CMSR_fe_perspective_proj_matrix

CMSR_fe_perspective_proj_matrix

Creates a transformation matrix composed of a perspective transformation and an orthogo-
nal projection.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe_perspective_proj_matrix (axis, center_of proj, dest_matrix)

int axis;
double center_of proj;
double dest matrix[4][4];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’

SUBROUTINE CMSR_FE_PERSPECTIVE_PROJ MATRIX
& (axis, center_of proj, dest_matrix)

DOUBLE PRECISION axis
DOUBLE PRECISION cenfer_of proj
DOUBLE PRECISION dest matrix(4, 4)

Lisp Syntax

CMSR: fe-perspective-proj-matrix
(axis center—of~proj &optional dest—matrix)

ARGUMENTS

axis The axis that will be the plane of projection. axis may be specified
either symbolically or with an integer:
" xaxis=CMSR xor0
" yaxis=CMSR yorl
® zaxis=CMSR_z or2

If axis is not one of the above, a fatal error results.

Version 2.0, November 1991 149

CMSR_fe_perspective_proj_matrix
S Y

-

center_of proj Specifies the point on axis on which the projection is to be
centered.

If center_of proj is zero, a fatal error results.

dest_matrix A 4 x 4 front-end array containing the homogeneous transforma-
tion matrix created by the routine.

DESCRIPTION

CMSR_fe perspective_proj_matrix builds a transformation matrix that is a
composition of a perspective transformation centered on center_of proj and an ortho-
gonal projection along the axis specified by axis. This transformation matrix is placed
in dest_matrix. In C and Lisp, this routine also returns a pointer to dest_matrix.
The axis parameter determines the plane of projection.

If axis is CMSR_x or 0, then the plane of projection is x = 0.

If axis is CMSR_y or 1, then the plane of projection is y = 0.

If axis is CMSR_z or 2, then the plane of projection is z = 0.

ERRORS

A fatal error results if axis is not CMSR_x (0) , CMSR_y (1), or CMSR_z (2) or if center_
of proj is zero.

150 Version 2.0, November 1991

Chapter 3. Math Routines | CMSR_fe_rotation_matrix_2d

CMSR_fe_rotation_matrix_2d

Creates a 2D transformation matrix with a specified rotation in a front-end array.

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR_fe rotation matrix 2d (theta, dest_matrix)

double theta;
double dest matrix[3] [3]:;

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_FE_ROTATION MATRIX 2D (theta, dest_matrix)

DOUBLE PRECISION theta
DOUBLE PRECISION dest matrix(3,3)

Lisp Syntax

CMSR: fe-rotation-matrix-2d (theta &optional dest-matrix)

ARGUMENTS
theta A double-precision value specifying the the angle of rotation, in
radians, to be incorporated into the transformation matrix in
dest_matrix.
dest_matrix A 3 x 3 array in which the resulting 2D transformation matrix is

returned. The matrix elements are stored in row-major order.

Version 2.0, November 1991 151

CMSR_fe_rotation_matrix_2d *Render Reference Manual for Paris

e

s

DESCRIPTION

CMSR_fe rotation _matrix 2d calculates a two-dimensional homogeneous trans-
formation matrix with a rotation of theta radians and places the result in dest_matrix.

In C and Lisp, CMSR_fe_rotation_matrix_2d also returns a pointer to dest_
matrix. In Lisp dest_matrix is optional; space is allocated if the matrix is not specified.

The rotation is about the origin of the image. Positive rotations are counter-clockwise.

SEE ALSO

CMSR_fe x rotation matrix 3d
CMSR_fe_y rotation matrix 3d
CMSR_fe z_rotation matrix 3d
CMSR rotation matrix 2d
CMSR_rotation_const matrix 2d
CMSR_x rotation _const matrix 3d
CMSR_x rotation matrix 3d
CMSR_y_rotation const matrix 3d
CMSR_y rotation matrix 3d
CMSR_z_rotation_const matrix 3d

CMSR z rotation matrix 3d

152

Version 2.0, November 1991

CMSR_fe_scale_matrix_2d
Chapter 3. Math Routines CMSR_fe_scale_matrix_3d

CMSR_fe_scale_matrix_2d
CMSR_fe_scale_matrix_3d

Creates a 2D (3D) transformation matrix with specified scaling values in a front-end array.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR fe_scale matrix 2d (sx, sy, dest _matrix)

double sx, sy;
double dest matrix[3] [3];

double *
CMSR_fe_scale matrix 3d (sx, s), sz, dest_matrix)

double X, Sy, $z;
double dest matrix[4][4];

Fortran Syntax
INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE_SCALE MATRIX 2D (sx, 5y, dest_matrix)

DOUBLE PRECISION sX, Sy
DOUBLE PRECISION dest matrix(3,3)

SUBROUTINE CMSR FE_SCALE MATRIX 3D (sx, S5y, sz, dest_matrix)

DOUBLE PRECISION sX, S). Sz
DOUBLE PRECISION dest matrix(4,4)

Lisp Syntax

CMSR: fe-scale-matrix-2d (sx sy &optional dest—matrix)

CMSR:fe-scale-matrix-3d (sx sy sz &optional dest-matrix)

Version 2.0, November 1991 153

CMSR_fe_scale_matrix_2d

CMSR_fe_scale_matrix_3d *Render Reference Manual for Paris
— S

ARGUMENTS
sx A double-precision value specifying the x coordinate scaling
value to be incorporated into the transformation matrix in
dest_matrix.
sy A double-precision value specifying the y coordinate scaling
value to be incorporated into the transformation matrix in
dest_matrix.
sy A double-precision value specifying the z coordinate scaling value
to be incorporated into the transformation matrix in dest_matrix.
dest_matrix A 3 x 3 array for CMSR_fe scale matrix 2d, or a4 x 4 array
for CMSR_fe_scale_matrix_3d, in which the resulting
transformation matrix is returned. The matrix elements are stored
in row-major order.
DESCRIPTION

CMSR_fe_scale matrix 2d calculates a two-dimensional homogeneous transfor-
mation matrix with the scaling terms sx and sy. CMSR_fe_scale_matrix_3d
calculates a three-dimensional transformation matrix with the scaling terms sx, sy, and
sz. The scaling matrix is stored in dest_matrix.

In C and Lisp these routines also return a pointer to dest_matrix. In Lisp dest-matrix is
optional; space is allocated if the matrix is not specified.

SEE ALSO
CMSR_scale_const matrix 2d
CMSR_scale_const matrix_ 3d
CMSR _scale matrix 2d .
CMSR_scale matrix 3d

154 Version 2.0, November 1991

CMSR_fe_translation_matrix_2d

Chapter 3
e

Math Routines

CMSR_fe_translation_matrix_2d
CMSR_fe_translation_matrix_3d

Creates a 2D (3D) transformation matrix in a front-end array with specified translation
values.

SYNTAX
C Syntax
#include <cm/cmsr.h>

double *
CMSR_fe translation matrix 2d (fx, #y, dest_matrix)

double x, ty;
double dest matrix[3] [3];

double *
CMSR_fe translation_matrix 3d (fx,), fz, dest_matrix)

double x, ty tz;
double dest matrix[4] [4]:

Fortran Syntax
INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_FE_TRANSLATION MATRIX 2D (tx, ty, dest_matrix)

DOUBLE PRECISION #x,
DOUBLE PRECISION dest matrix(3,3)

SUBROUTINE CMSR FE TRANSLATION MATRIX 3D (&, &), Iz dest_matrix)

DOUBLE PRECISION &, ¥y, Iz
DOUBLE PRECISION dest matrix (4,4)

Lisp Syntax
CMSR: fe-translation-matrix-2d (fx fy &optional dest—matrix)
CMSR: fe-translation-matrix-3d (ix ty fz &optional dest-matrix)

Version 2.0, November 1991 155

CMSR_fe_translation_matrix_2d

CMSR_fe_translation_

s

ARGUMENTS

tx

1z

dest_matrix

DESCRIPTION

matrix_3d *Render Reference Manual for Paris
: A s

A double-precision value specifying the x translation value to be
incorporated into the transformation matrix in dest_matrix.

A double-precision value specifying the y translation value to be
incorporated into the transformation matrix in dest_matrix.

A double-precision value specifying the z translation value to be
incorporated into the transformation matrix in dest_matrix.

A 3 x 3 array for CMSR_fe_translation matrix 2dora4x
4 array for CMSR_fe_translation_matrix_3d, in which the
resulting transformation matrix is returned. The matrix elements
are stored in row-major order.

CMSR_fe_translation matrix 2d and CMSR _fe translation matrix 3d
calculate a 2D or 3D transformation matrix, respectively, which translates homoge-
neous coordinate values by #x, #, and, in the 3D case, #z. The matrix is stored in the
front-end matrix dest_matrix.

In C and Lisp, these routines also return a pointer to dest_matrix. In Lisp dest—matrix is
optional; space is allocated for the matrix if it is not specified.

SEE ALSO

CMSR_translation_const matrix 2d

CMSR_translation const matrix 3d

CMSR_translation matrix 2d

CMSR_translation-matrix-3d

156

Version 2.0, November 1991

Chapter 3. Math Routines CMSR_fe_view_matrix

CMSR_fe_view_matrix

Creates a viewing transformation matrix.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe view_matrix (eye vector, look_at_vector, roll, view_matrix)

double eye_vector([3];
double look_at vector[3];
double roll;

double view_matrix[4] [4];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
INTEGER FUNCTION CMSR_FE_VIEW MATRIX
& (eye_vector, look_at_vector, roll, view_matrix)

DOUBLE PRECISION eye_vector(3)
DOUBLE PRECISION Jook at vector(3)
DOUBLE PRECISION roll

DOUBLE PRECISION view_matrix(4, 4)

Lisp Syntax

CMSR: fe-view-matrix
(eye—vector look—at-vector soptional (roll 0) view—matrix)

ARGUMENTS

eye_vector A one-dimensional, 3-element, position vector: x occupies
element 0, y occupies element 1, and z occupies element 2. The
view_matrix created transforms this point to the negative z axis.

Version 2.0, November 1991 157

CMSR_fe_view_matrix *Render Reference Manual for Paris
e i

look_at _vector A one-dimensional, 3-element, position vector: x occupies
element 0, y occupies element 1, and z occupies element 2. The
view_matrix created transforms this point to the origin of the
viewing space.

roll The amount of rotation about the z axis to be included in the
view_matrix transformation.

view_matrix
An array containing the completed view transformation matrix.
For the 2D routine this is a 3 x 3 array of homogeneous
coordinates; for the 3D routine this is a 4 x 4 array. The matrix
elements are stored in row-major order.
DESCRIPTION

CMSR_fe view_matrix builds a viewing transformation matrix, puts it in view_
matrix, and returns a pointer to view_matrix. This matrix transforms the coordinate
space defined by eye_vector, look_at_vector, and roll so that the look_at vector
position is at the origin and the eye_vector position is on the negative z axis.

The roll argument allows you to specify how much this coordinate space should be
rotated around the z axis. Each of the vectors must be of dimension 3 and the view_
matrix must be 4 x 4.

ERRORS

If eye_vector is identical to look_at vector, a fatal error results because the view can
not be determined.

SEE ALSO

CMSR fe view proj_matrix

158 Version 2.0, November 1991

Chapter 3. Math Routines

CMSR_fe_view_proj_matrix

CMSR_fe_view_proj_matrix

Creates a viewing transformation matrix.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR fe view proj_matrix

(center_of proj, eye_vector, look_at_vector, roll, dest_matrix)

double
double
double
double
double

center_of proj;
eye_vector[3] ;
look_at vector([3] ;

roll;

dest_matrix[4] [4];

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math—-fort.h’

INTEGER FUNCTION CMSR FE VIEW PROJ MATRIX
(center_of proj, eye_vector, look_at_vector, roll, dest_matrix)

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

Lisp Syntax

PRECISION
PRECISION
PRECISION
PRECISION
PRECISION

center_of proj
eye_vector(3)
look_at _vector (3)
roll

dest_matrix (4, 4)

CMSR: fe-view-proj-matrix
(eye—vector look—at—vector soptional (roll 0) dest—matrix)

Version 2.0, November 1991

159

CMSR_fe_view_proj_matrix *Render Reference Manual for Paris

fon

ARGUMENTS

center_of proj

eye_vector

look_at_vector

roll

dest_matrix

DESCRIPTION

R

Specifies the point on the z axis on which the projection is to be
centered.

If center_of proj is zero, a fatal error results.

A one-dimensional, 3-element, position vector: x occupies
element 0, y occupies element 1, and z occupies element 2. The
view_matrix created transforms this point to the negative z axis.

A one-dimensional, 3-element, position vector: x occupies
element 0, y occupies element 1, and z occupies element 2. The
view_matrix created transforms this point to the origin of the
viewing space.

The amount of rotation about the z axis to be included in the
view_matrix transformation.

A 4 x 4 front-end array containing the homogeneous transforma-
tion matrix created by the routine.

CMSR fe view_proj_matrix returns a pointer to a matrix that is a composition of a
viewing transformation defined by eye_vector, look_at_vector, and roll, with a per-
spective projection along the z axis centered on center_of proj.

This matrix transforms the coordinate space defined by eye_vector, look_at vector,
and roll so that the look_at vector position is at the origin and the eye_vector position
is on the negative z axis and then projects this transformation onto the z axis at the
plane located at center_of proj.

ERRORS

A fatal error results if eye_vector is identical to look_at vector or if center_of proj is

Zero.

160

Version 2.0, November 1991

CMSR_fe_x_rotation_matrix_3d

CMSR_fe_y_rotation_matrix_3d
Chapter 3. Math Routines CMSR_fe_z_rotation_matrix_3d

CMSR_fe_x_rotation_matrix_3d
CMSR_fe_y rotation_matrix_3d
CMSR_fe_z_rotation_matrix_3d

Creates, in a front-end array, a 3D transformation matrix with a specified rotation about the
x (v, 2) axis.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_x_rotation matrix 3d (theta, dest matrix)

double *
CMSR_y rotation matrix 3d (theta, dest_matrix)

double *
CMSR_z rotation_matrix 3d (theta, dest _matrix)

double theta;
double dest matrix[4] [4];

Fortran Syntax

INCLUDE ’ /usr/include/cm/cmsr-math-fort.h’

SUBROUTINE CMSR X ROTATION MATRIX 3D (thefa, dest matrix)
SUBROUTINE CMSR_Y ROTATION MATRIX 3D (theta, dest matrix)
SUBROUTINE CMSR_Z_ROTATION MATRIX 3D (thefa, dest matrix)

DOUBLE PRECISION theta
DOUBLE PRECISION dest matrix(4,4)

Lisp Syntax

CMSR:x-rotation-matrix-3d (thefa &optional dest-matrix)
CMSR:y-rotation-matrix-3d (theta &optional dest-matrix)

CMSR:z-rotation-matrix-3d (theta soptional dest—matrix)

Version 2.0, November 1991 161

CMSR_fe_x_rotation_matrix_3d
CMSR_fe_y_rotation_matrix_3d

CMSR_fe_z_rotation_matrix_3d *Render Reference Manual for Paris
e s

i #

ARGUMENTS
theta A double-precision value specifying the the angle of rotation
about the axis, in radians, to be incorporated into the transforma-
tion matrix in dest_matrix.
dest_matrix A 4 x 4 array in which the resulting 3D homogeneous transforma-
tion matrix is returned. The matrix elements are stored in
row-major order.
DESCRIPTION

CMSR_fe_x rotation matrix 3d, CMSR_fe_y rotation matrix 3d, and
CMSR_fe_z rotation_matrix 3d calculate a three-dimensional transformation
matrix with a rotation of theta radians around the x, y, or z axis and store it in dest_
matrix. Positive rotations are counter-clockwise as you look down the axis from the
origin.

In C and Lisp, these routines both return a pointer to the resulting matrix and also place
the result in dest matrix. In Lisp dest-matrix is optional; space is allocated if the
matrix is not specified.

SEE ALSO

CMSR_fe rotation matrix 2d
CMSR_rotation _matrix 2d
CMSR_rotation const matrix 24
CMSR_x rotation_const matrix 3d
CMSR_x rotation _matrix 3d

CMSR_y rotation_const matrix 3d
CMSR_y rotation_matrix 3d
CMSR_z_rotation const matrix 3d

CMSR_z_rotation matrix

162

Version 2.0, November 1991

Chapter 3. Math Routines

U

3.4 Front-End Color Conversion

This section documents the new *Render routines that convert color vectors between color
spaces.

CMSR fe rgb to cmyc.oiiiiiiiiii e 164
CMSR fe cmy to rgb 164
CMSR fe rgb to yiq ...ttt e e 166
CMSR fe yiq to rgb 166
CMSR fe rgb to hsv, 168
CMSR fe hsv_to rgb i e 168
CMSR fe rgb to hsl 170
CMSR fe hsl to rgbiiiiiiiiiiiiiiii it iaiiiianaeanas 170

Version 2.0, November 1991 163

CMSR_fe_rgb_to_cmy

CMSR_fe_cmy_to_rgb *Render Reference Manual for Paris
B

CMSR_fe_rgb_to _cmy
CMSR_fe_cmy_to_rgb

Converts color vector from RGB to CMY (CMY to RGB) color models.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe rgb_to_cmy (rgb_vector, cmy_vector) ;

double rgb vector[3], cmy_vector[3];

double *
CMSR_fe cmy to_rgb (cmy_vector, rgb_vector) ;

double cmy vector[3], rgb_vector[3];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’

INTEGER FUNCTION CMSR FE RGB TO _CMY (rgb_vector, cmy_vector)
DOUBLE PRECISION rgb vector(3), cmy_vector(3)

INTEGER FUNCTION CMSR _FE CMY TO RGB (cmy_vector, rgb_vector)
DOUBLE PRECISION cmy vector(3), rgb_vector(3) ‘

Lisp Syntax

CMSR: fe-rgb-to-cmy (rgb—vector &optional cmy—vector)
CMSR: fe-cmy-to-rgb (cmy-vector &optional rgb—vector)

164 Version 2.0, November 1991

CMSR_fe_rgb_to_cmy
Chapter 3. Math Routines CMSR_fe_cmy_to_rgb

ARGUMENTS

rgb_vector A one-dimensional array of 3 elements containing an RGB color
triplet. The red intensity is in the first element, the green intensity
is in the second element, and the blue intensity is in the third
element. Each of the RGB color components should be in the
range of [0,1].

cmy_vector A one-dimensional array of 3 elements containing a CMY color
triplet. The cyan intensity is in the first element, the magenta
intensity is in the second element, and the yellow intensity is in the
third element. Each of the CMY color components should be in the
range of [0,1].

DESCRIPTION

CMSR_fe rgb_to_cmy converts the RGB triplet in rgb_vector to CMY triplet, places
the result in cmy_vector, and returns a pointer to cmy_vector. The relationship is

(cym,y) = (1,1,1) - (r,qg,b)

CMSR_fe cmy to_rgb converts the CMY triplet in cmy_vector to RGB, places the
result in 7gb_vector and returns a pointer to rgh_vector. The relationship is

(r,g:b) = (11111) - (C,mry)

Version 2.0, November 1991 165

CMSR_fe_rgb_to_yiq

CMSR_fe_yiq_to_rgb *Render Reference Manual for Paris
B

CMSR_fe_rgb_to_yiq
CMSR_fe_yiq_to_rgb

Converts color vector from RGB to YIQ (YIQ to RGB) color models.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe rgb_to_yiq (rghb_vector, yiq_vector)

double rgb vector[31, yig vector[3];

double *
CMSR_fe_yiq_to_rgb (yig vector, rgb_vector)
double yiq vector[3], rgb_vector[3];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’

INTEGER FUNCTION CMSR _FE RGB_TO_YIQ (rgb_vector, yiq_vector)
DOUBLE PRECISION rgb_vector(3), yiq_vector(3)

INTEGER FUNCTION CMSR _FE_YIQ TO_RGB (yig_vector, rgb_vector)
DOUBLE PRECISION yig vector(3), rgb_vector(3)

Lisp Syntax

CMSR: fe~-rgb~to-yiq (rgb-vector soptional yig—vector)
CMSR: fe-yig~-to-rgb (yig—vector &optional rgb—vector)

166 Version 2.0, November 1991

CMSR_fe_rgb_to_yiq
CMSR_fe_yiq_to_rgb

S S

ARGUMENTS
rgb_vector A one-dimensional array of 3 elements containing an RGB color
triplet. The red intensity is in the first element, the green intensity
is in the second element, and the blue intensity is in the third
element. Each of the RGB color components should be in the
range of [0,1].
yiq_vector A one-dimensional array of 3 elements containing a YIQ color
triplet.
DESCRIPTION

CMSR_fe_rgb_to_yigq converts an RGB triplet in rgb_vector to a YIQ triplet, places
the result in yiq_vector, and returns a pointer to yig_vector. Each of the RGB color
components should be in the range [0,1].

CMSR_fe yiq_to_rgb converts a YIQ triplet in yig_vector to an RGB triplet, places
the result in rgh_vector, and returns a pointer to rgb_vector. Each of the YIQ color com-
ponents should be in the range [0,1] but this restriction is not enforced.

Version 2.0, November 1991 167

CMSR_fe_rgb_to_hsv

CMSR_fe_hsv_to_rgb *Render Reference Manual for Paris
B e

CMSR_fe_rgb_to_hsv
CMSR_fe_hsv_to_rgb

Converts a color vector from RGB to HSV (HSV to RGB) color models.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe rgb_to_hsv (rgb_vector, hsv_vector)

double rgb vector[3], hsv_vector[3];

double *
CMSR_fe _hsv_to_rgb (hsv_vector, rgb vector)

double hsv_vector[3], rgb_vector[3];

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’

SUBROUTINE CMSR _fe rgb to_hsv (rgb_vector, hsv_vector)
DOUBLE PRECISION rgb _vector(3), hsv_vector(3)

SUBROUTINE CMSR fe hsv_to_rgb (hsv_vector, rgb_vector)
DOUBLE PRECISION hsv_vector(3), rgb_vector(3)

Lisp Syntax

CMSR: fe~-rgb-to-hsv (rgb—vector soptional hsv—vector)
CMSR: fe~-hsv-to~-rgb (hsv—vector soptional rgb—vector)

168 Version 2.0, November 1991

CMSR_fe_rgb_to_hsv
CMSR_fe_hsv_to_rgb

ARGUMENTS

rgb_vector A one-dimensional array of 3 elements containing an RGB color
triplet. The red intensity is in the first element, the green intensity
is in the second element, and the blue intensity is in the third
element. Each of the RGB color components should be in the
range of [0,1].

hsv_vector A one-dimensional array of 3 elements containing an HSV color
triplet. The hue of the color is in the first element, the saturation
is in the second element, and the value is in the third element. Hue
should be in the range [0, 2*pi], and saturation and value should
be in the range [0,1].

DESCRIPTION

CMSR_fe_rgb_to_hsv converts the RGB triplet in 7gb_vector to HSV, places the re-
sult in hsv_vector, and returns a pointer to hsv_vector. Hue will be between 0.0 and
2*pi. If s is zero, h is irrelevant and is set to zero. If v is zero, 4 and s are irrelevant and
are also set to zero.

CMSR_fe hsv_to_rgb converts the HSV triplet in Asv_vector to an RGB triplet,
places the result in rgb_vector and returns a pointer to rgb_vector. Hue is taken modulo
2*pi. If s is zero, A is irrelevant. If v is zero, s and v are irrelevant.

Version 2.0, November 1991 169

CMSR_fe_rgb_to_hsl

CMSR_fe_hsl_to_rgb *Render Reference Manual for Paris

CMSR_fe_rgb_to_hsl
CMSR_fe_hsl_to_rgb

Converts a color vector from RGB to HSL (HSL to RGB) color models.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR_fe rgb_to_hsl (rgb_vector, hsl_vector)

double rgb vector[3], hsl vector[3];
double *

CMSR_fe hsl to_rgb (hsl_vector, rgb_vector)
double #Asl_vector[3], rgb_vector[3];

Fortran Syntax

INCLUDE ’/usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR FE RGB_TO_HSL (rgb_vector, hsi_vector)
DOUBLE PRECISION rgb vector(3), hsv_vector(3)

SUBROUTINE CMSR _FE HSL_TO_RGB (hsv_vector, rgb_vector)
DOUBLE PRECISION hsv_vector(3), rgb_vector(3)

Lisp Syntax

CMSR: fe-rgb-to-hsl (rgb—vector &optional hsv—vector)
CMSR: fe-hsl-to-rgb (Asv-vector &optional rgb—vector)

170 Version 2.0, November 1991

CMSR _fe_rgb_to_hsl

ARGUMENTS

rgb_vector A one-dimensional array of 3 elements containing an RGB color
triplet. The red intensity is in the first element, the green intensity
is in the second element, and the blue intensity is in the third
element. Each of the RGB color components should be in the
range of [0,1].

hsl_vector A one-dimensional array of 3 elements containing an HSL color
triplet. The hue of the color is in the first element, the saturation
is in the second element, and the lightness is in the third element.
Hue should be in the range [0, 2*pi], and saturation and lightness
should be in the range [0,1].

DESCRIPTION

CMSR_fe_rgb_to_hsl converts the RGB triplet in 7gb_vector to an HSL triplet and
places the result in Asl_vector. CMSR_fe_hsl to_rgb converts the HSL triplet in
hsl_vector to an RGB triplet and places the result in rgh_vector.

In C and Lisp these routines also return a pointer to the result vector.

If saturation is zero, the resulting color is a gray shade. In this case hue is irrelevant and
is set to zero. If lightness is zero, the color is black. In this case both hue and saturation
are irrelevant and are set to zero.

Version 2.0, November 1991 171

*Render Reference Manual for Paris

fa e

3.5 Front-End Miscellaneous Routines
This section contains utility routines to convert between degrees and radians:

CMSR fe deg to rad ...t 173

CMSR fe rad to deg ...ttt 173

172 Version 2.0, November 1991

CMSR_fe_deg_to_rad

CMSR_fe_deg_to_rad
CMSR_fe_rad_to_deg

Converts degrees to radians (radians to degrees).

Chapter 3. Math Routines CMSR_fe_rad_to_deg .

SYNTAX
C Syntax

#include <cm/cmsr.h>

double
CMSR_fe_deg to_rad (value)

double value;
double

CMSR_fe rad to_deg (value)
double value;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
DOUBLE PRECISION FUNCTION CMSR FE DEG_TO RAD (value)
DOUBLE PRECISION value

DOUBLE PRECISION FUNCTION FSR FE_RAD TO DEG (value)
DOUBLE PRECISION value

Lisp Syntax
CMSR: fe-deg-to-rad (value)
CMSR: fe-rad-to-deg (value)

ARGUMENTS

value The value to be converted.

Version 2.0, November 1991

173

CMSR_fe_deg_to_rad

CMSR_fe_rad_to_deg *Render Reference Manual for Paris

e R

DESCRIPTION

CMSR_fe_deg_to_rad accepts the argument value, in degrees, and returns it
expressed in radians.

CMSR_fe_rad_to_deg accepts the argument value, in radians, and returns it
expressed in degrees.

174

Version 2.0, November 1991

3.4 Front-End Color Conversion

This section documents the new *Render routines that convert color vectors between color
spaces.

CMSR fe rgb_to amyoiiiiiiiiii i 164
CMSR fe cmy to_rgb i 164
CMSR fe rgb to yiq oot e 166
CMSR fe yiq to rgbo 166
CMSR fe rgb to hsv i 168
CMSR fe hsv_to_rgb 168
CMSR fe rgb_to_hsl i 170
CMSR fe hsl to rgb i 170

Version 2.0, November 1991 163

CMSR_fe_rgb_to_cmy

CMSR_fe_cmy_to_rgb *Render Reference Manual for Paris
e e

CMSR_fe_rgb_to_cmy
CMSR_fe_cmy_to_rgb

Converts color vector from RGB to CMY (CMY to RGB) color models.

SYNTAX
C Syntax

#include <cm/cmsr.h>

double *
CMSR fe rgb to_cmy (rgb_vector, cmy_vector) ;

double rgb vector[3], cmy vector[3];

double *
CMSR_fe_cmy to_rgb (cmy_vector, rgb_vector) ;

double cmy vector[3], rgb vector[3];

Fortran Syntax

INCLUDE ’ /usr/include/cm/cmsr-math-fort.h’

INTEGER FUNCTION CMSR FE_RGB TO CMY (rgb_vector, cmy_vector)
DOUBLE PRECISION rgb vector(3), cmy_vector(3)

INTEGER FUNCTION CMSR_FE CMY TO_RGB (cmy_vector, rgb_vector)
DOUBLE PRECISION cmy vector(3), rghb_vector(3) "

Lisp Syntax

CMSR: fe-rgb-to-cmy (rgb—vector &optional cmy-vector)
CMSR: fe-cmy-to-rgb (cmy-vector soptional rgb-vector)

164 Version 2.0, November 1991

Chapter 3. Math Routines

3.6 CM Vector Routines

This section documents the *Render routines that operate on vectors in Paris fields in CM
memory. Vectors in *Render are one-dimensional arrays of either two or three elements.

On the CM, each vector is a single field of (dimension)*(signif lentexp_len+1) bits, where
signif len is the length of the significand, exp len is the length of the exponent, and the 1
is for a sign bit. Each element of the vector occupies a subfield of (signif lentexp len+1)
bits, and these subfields are arranged so that element 0 is in the least significant bits.

The routines documented here are:

CMSR V_abs 2d ..ottt i 177
CMSR v_abs 3dt i i e e e 177
CMSR v_abs_squared 2doiiiiiiiiiiiiiiiiiii i 179
CMSR v_abs squared 3diiiiiiiiiiieiiiiiiiiiiia e 179
CMSR v_add 2dottt e e e e 181
CMSR v_add 3d ...t i e e e 181
CMSR v_alloc_heap field 2dciiiiiiiiiiiinennennn., 183
CMSR v_alloc heap_field 3diiiiiiiiiiiinn... 183
CMSR_v_alloc_stack_field 2d i, 185
CMSR v_alloc_stack field 3doiiiiiiiiiiiiiiian, 185
CMSR V_COPY 2d ...ttt e ttiaiit e aaaiiiaaaeaaaass 187
CMSR V_COPY _3d ...ttt i it i i s 187
CMSR v_copy const _2dttt 189
CMSR v_copy const_3d ... 189
CMSR v_cos_between 2d it 192
CMSR v_cos between 3d il 192
CMSR v_cross product 3d i 195
CMSR v_dot product 2d i 197
CMSR v_dot product 3dol 197
CMSR v_field length i 200
CMSR v_is_zero 2dottt 202

Version 2.0, November 1991 175

176

*Render Reference Manual for Paris
S e

&5

CMSR v_is zero 3dcoiiiiiiiiiiin., i 202
CMSR v negate 2d............ciiuiiiiiiiiiiinitinnniiiteantoeneenonns 204
CMSR v_negate 3d................iiiiiiiiiii 204
CMSR v _normalize 2dciiiiiiiiiiiiireennitenanineennans 207
CMSR v normalize 3doitiiiiiiiiiiiiii i 207
CldSR;v perpendicular 2dot 210
CMSR v _perpendicular 3dl 210
CMSR v _print 2d....... ... it e e 213
CMSR v print_3d..........iiiiiiiiiii i e it e 213
CMSR _v_read from processor_2dccoiiiiiiiiiiiiaiaan, 215
CMSR v_read from processor_3dceiiiiiiiiiiiiiiinan, 215
CMSR v_reflect 2dcciiiiiiiiiiii ittt 218
CMSR v_reflect 3d 218
CMSR V_Xef Xiiiiiiiiiiiiitii ittt ettt 221
CMSR V_Xef ¥ ..ottt ittt eiea e reaii it 221
CMSR V_ ref Zcoiiiiiiiiiiiiii ittt 221
CMSR v_sScale_2d...........iitiiiiiiennninneennniteennnieenaninenaans 223
CMSR v_scale _3d...........iiiiiiiiiiiiiiiiiiiiiitiiniiiianainaaaans 223
CMSR v_scale_const_2dcoiiiiiiiiiiiiiiidaiiiei e, 226
CMSR v_scale const_3d ...ttt 226
CMSR v_subtract_2dt 229
CMSR v_subtract 3d 229
CMSR v_transform 2dottt e 232
CMSR v_transform 3dol 232
CMSR v_transform const 2d................iiiiiiiiiiiiiiiiiia, 235
CMSR v_transform const _3d............. ool 235
CMSR v_transmit 3d il e 238
CMSR v_write_to_processor 2d R 241
CMSR _v_write to processor 3d oo, 241

Version 2.0, November 1991

Chapter 3. Math Routines

S

CMSR_v_abs_2d
CMSR_v_abs_3d

Calculates the length of a 2D (3D) vector.

CMSR_v_abs_2d
CMSR_v_abs_3d

SYNTAX
C Syntax

#include <cm/cmsr.h>

void

CMSR _v_abs_2d (dest_field, src_vector_field, signif len, exp_len)

void

CMSR_v_abs_3d (dest_field, src_vector_field, signif len, exp_len field)

CM field id t
CM field id t
unsigned int
unsigned int

Fortran Syntax

INCLUDE

' fusr/include/cm/cmsr-math-fort.h’

dest_field ;
src_vector_field;
signif len;
exp_len;

CMSR_V_ABS 2D (dest_field, src_vector_field, signif len, exp_len)
CMSR V_ABS 3D (dest_field, src_vector_field, signif len, exp_len field)

INTEGER
INTEGER
INTEGER
INTEGER

Lisp Syntax

CMSR:v-abs-2d

CMSR:v-abs-3d

dest_field
src_vector_field
signif len
exp_len

(destfield src—vector—field
&optional (signif-len 23)

(destfield src—vector—field

(exp—len 8))

s&optional (signif-len 23) (exp—len 8))

Version 2.0, November 1991

177

CMSR_v_abs_2d
CMSR_v_abs_3d *Render Reference Manual for Paris

ARGUMENTS

dest_field A Paris field identifier specifying the field in CM memory to
which the result is written. dest_field must be in the same VP set
as src_vector_field.

src_vector_field A Paris field indentifier specifying the field containing the vector.
Each element has a length of (signif len + exp_len + 1) bits.

For CMSR_v_abs_2d the vector contains two floating-point
values organized so that x occupies the least significant bits and y
the most significant bits. The length of the entire field is 2 *
(signif len + exp_len + 1)

For CMSR_v_abs_3d the vector contains three floating-point
values organized so that x occupies the least significant bits, y the
following bits, and z the most significant bits. The length of the
entire field is 3 * (signif len + exp_len + 1)

signif len The length, in bits, of the significand of the floating-point values
in dest_field and src_vector_field.

exp _len The length, in bits, of the exponent of the floating-point values in
dest_field and src_vector_field.

DESCRIPTION

For each active processor, CMSR_v_abs_2d and CMSR_v_abs_3d calculate the length
of the vector specified in src_vector_field and write the result to dest_field. The fields
src_vector_field and dest_field must both be in the current VP set.

SEE ALSO
CMSR_v_abs_squared_2d
CMSR v_abs squared_3d
CMSR fe v_abs_2d
CMSR_fe v_abs_3d
CMSR_fe v_abs_squared 2d
CMSR_fe v_abs_squared 3d

178 Version 2.0, November 1991

CMSR_v_abs_squared_2d

Chapter 3. Math Routines

2 R

CMSR_v_abs_squared_2d
CMSR_v_abs_squared_3d

Calculates the length squared of a 2D (3D) vector.

CMSR_v_abs_squared_3d

SYNTAX
C Syntax
#include <cm/cmsr.h>
void
CMSR _v_abs squared 2d
(dest_field, src_vector_field, signif len, exp_len field)
void
CMSR v_abs_squared 3d

(dest_field, src_vector_field, signif len, exp_len field)
CM field id t dest field;
CM_field id t src_vector field;
unsigned int signif len, exp len;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_V_ABS_SQUARED 2D

& (dest_field, src_vector_field, signif len, exp_len field)
SUBROUTINE CMSR_V_ABS_SQUARED 3D
& (dest_field, src_vector_field, signif len, exp_len field)

INTEGER dest field
INTEGER src_vector field
INTEGER signif len, exp_len

Lisp Syntax
CMSR:v-abs-squared-2d (dest—field src—vector—field
&optional (signif-len 23) (exp—len 8))

CMSR: v-abs-squared-3d (destfield src—vector—field
&optional ‘(signif-len 23) (exp—len 8))

Version 2.0, November 1991

179

CMSR_v_abs_squared_2d

CMSR_v_abs_squared_3d *Render Reference Manual for Paris
e

ARGUMENTS
dest_field

src_vector_field

signif len

exp_len

DESCRIPTION

A Paris field identifier specifying the field in CM memory to
which the result is written. dest_field must be in the same VP set
as src_vector_field.

A Paris field indentifier specifying the field containing the vector.
Each element has a length of (signif len + exp_len + 1) bits.

For CMSR_v_abs_squared_2d the vector contains two
floating-point values organized so that x occupies the least
significant bits and y the most significant bits. The length of the
entire field is 2 * (signif len + exp_len + 1)

For CMSR_v_abs_squared_3d the vector contains three
floating-point values organized so that x occupies the least
significant bits, y the following bits, and z the most significant
bits. The length of the entire field is 3 * (signif len+exp_len + 1).

The length, in bits, of the significand of the floating-point values
in dest_field and src_vector_field.

The length, in bits, of the exponent of the floating-point values in
dest_field and src_vector_field.

For each active processor, CMSR_v_abs_squared 2d and CMSR v_abs_squared
_3d calculate the the length squared of the vector specified in src_vector_field and
write the result to dest_field. src_vector_field and dest_field must both be in the current

VP set.

SEE ALSO

CMSR v_abs_3d,CMSR v_abs 3d
CMSR_fe_v_abs 2d,CMSR_fe v_abs_3d
' CMSR_fe_v_abs squared 2d,CMSR_fe v_abs squared 3d

180

Version 2.0, November 1991

CMSR_v_add_2d

Chapter 3. Math Routine
S

R

CMSR_v_add_2d
CMSR_v_add_3d

Adds 2D (3D) vectors element by element.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void
CMSR_v_add 2d
(dest_vector _field, srcl_vector_field, src2 vector field, signif len, exp_len)
void
CMSR_v_add_3d
(dest_vector_field, srcl_vector_field, src2 _vector_field, signif len, exp len)
CM _field id_t dest_vector_field;
CM field id t srcl_vector field;
CM field id t src2 vector field;
unsigned int signif len;
unsigned int exp len;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_V_ADD_2D

& (dest_vector_field, srcl_vector_field, src2_vector_field, signif len, exp len)
SUBROUTINE CMSR_V_ADD_3D
& (dest_vector_field, srcl_vector_field, src2 vector_field, signif len, exp len)

INTEGER dest_vector field;
INTEGER srcl vector field;
INTEGER src2_vector_field;
INTEGER signif len;
INTEGER exp _len;

Version 2.0, November 1991 181

CMSR_v_add_2d

CMSR_v_add_3d *Render Reference Manual for Paris
§ R ey

Lisp Syntax
CMSR:v-add-2d (dest—vector—field srcl-vector—field src2—vector—field
soptional (signif-len 23) (exp—len 8))

CMSR:v-add-3d (dest—vector—field srcl-vector—field src2-vector—field
soptional (signif-len 23) (exp-len 8))

ARGUMENTS

dest_vector_field A Paris field identifier specifying the vector field in CM memory
to which the result is written. dest vector_field must be in the
same VP set as srcl_vector_field or src2_vector_field.

srcl_vector_field, src2_vector_field
Paris field indentifiers specifying the fields containing the vectors
that are to be added.

For CMSR_v_add_2d the vector fields contain two floating-point values organized so
that x occupies the least significant bits and y the most significant bits. Each element
has a length of (signif len + exp_len + 1) bits. The length of the entire field is
2 * (signif len + exp_len + 1).

For CMSR_v_add_3d the vector contains three floating-point values organized so that
x occupies the least significant bits, y the following bits, and z the most significant bits.
Each element has a length of (signif len + exp_len + 1) bits. The length of the entire
field is 3 * (signif len + exp_len + 1).

signif len The length, in bits, of the significand of the floating-point values
in dest_vector_field, srcl_vector_field, and src2_vector_field.

exp_len The length, in bits, of the exponent of the floating-point values in
dest_vector_field, srcl_vector_field, and src2_vector_field.

DESCRIPTION

For each active processor, CMSR_v_add_2d and CMSR_v_add_3d add each element
of the vector specified in srcl_vector_field to the corresponding element of src2
vector_field and write the result to dest _vector field. The fields srcl_vector field,
src2_vector_field, and dest_vector_field must be in the current VP set.

182 Version 2.0, November 1991

CMSR_v_alloc_heap_field_2d

Chapter 3. Math Routines CMSR _V_ alloc heap ﬁeld 3d
R R R e R e R S

CMSR_v_alloc_heap_field_2d
CMSR_v_alloc_heap_field_3d

Allocates a vector field organized as a 2-element (3-element) array on the heap and return
its Paris field ID.

SYNTAX
C Syntax

#include <cm/cmsr.h>
CM field id t
CMSR_v_alloc_heap_field 2d (signif len, exp_len)

unsigned int signif len, exp len;
CM field id t
CMSR v_alloc_heap_ field 3d (signif len, exp_len)

unsigned int signif len, exp len;

Fortran Syntax
INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
FUNCTION INTEGER CMSR V_ALLOC_HEAP FIELD_2D (signif len, exp_len)
INTEGER signif len, exp len;

FUNCTION INTEGER CMSR _V_ALLOC_HEAP FIELD 3D (signif len, exp_len)
INTEGER signif len, exp len;

Lisp Syntax
CMSR:v-alloc-heap-field-2d (signif-len exp—len)
CMSR:v-alloc-heap-field-3d (signif-len exp-len)

Version 2.0, November 1991 183

CMSR_v_alloc_heap_field_2d

CMSR_v_alloc_heap_field_3d

i

*Render Reference Manual for Paris
O s R i A

ARGUMENTS
signif len The length, in bits, of the significand of the floating-point values
to be stored in the returned field.
exp_len The length, in bits, of the exponent of the floating-point values to
be stored in the returned field.
DESCRIPTION

CMSR v_alloc_heap_field 2d and CMSR_v_alloc_heap_field 3d allocate a
vector field on the heap and return its Paris field ID.

A vector field is organized to contain an array of floating-point values. Each element of
the vector has a length of (signif len + exp_len + 1), where signif len is the length of
the significand, exp_len is the length of the exponent, and 1 is the sign bit.

CMSR v_alloc_heap field 2d allocates a field organized as a 2-element array.
The length of the entire field is 2 * (signif len + exp_len + 1).

CMSR_v_alloc_heap_field 3d allocates a field organized as a 3-element array.
The length of the entire field is 3 * (signif len + exp_len + 1).

If the vector is a position vector, the field is organized so that x occupies the first ele-
ment, y occupies the second element, and z (if present) occupies the third element.

184

Version 2.0, November 1991

CMSR_v_alloc_stack_field_2d
Chapter 3. Math Routmes CMSR V. alloc stack ﬂeld 3d

CMSR_v_alloc_stack_field_2d
CMSR_v_alloc_stack_field_3d

Allocates a vector field organized as a 2-element (3-element) array on the stack and return
its Paris field ID.

SYNTAX
C Syntax

#include <cm/cmsr.h>
CM _field id t
CMSR_v_alloc_stack_field 2d (signif len, exp_len)

unsigned int signif len, exp_len;

CM field id_t
CMSR_v_alloc_stack_field 3d (signif len, exp_len)

unsigned int signif len, exp len;

Fortran Syntax

INCLUDE ' /usr/include/cm/cmsr-math-fort.h’
FUNCTION INTEGER CMSR V_ALLOC_STACK FIELD 2D

(signif len, exp_len)
INTEGER signif len, exp len;

FUNCTION INTEGER CMSR_V_ALLOC_STACK FIELD 3D
(signif len, exp_len)
INTEGER signif len, exp_len;

Lisp Syntax

CMSR:v-alloc-stack-field-2d (signif-len exp-len)
CMSR:v-alloc-stack-field-3d (signif-len exp—len)

Version 2.0, November 1991 185

CMSR_v_alloc_stack_field_2d
CMSR_v_alloc_stack_field_3d *Render Reference Manual for Paris

ARGUMENTS
signif len The length, in bits, of the significand of the floating-point values
to be stored in the returned field.
exp_len The length, in bits, of the exponent of the floating-point values to
be stored in the returned field. '
DESCRIPTION

CMSR_v_alloc_stack_field 2d and CMSR_v_alloc_stack field 3d allo-
cate a vector field on the stack and return its Paris field ID.

A vector field is organized to contain an array of floating-point values. Each element of
the vector has a length of (signif _len + exp_len + 1), where signif len is the length of
the significand, exp_len is the length of the exponent, and 1 is the sign bit.

CMSR _v_alloc_stack field 2d allocates a field organized as a 2-element array.
The length of the entire field is 2 * (signif len + exp_len + 1).

CMSR_v_alloc_stack field 3d allocates a field organized as a 3-clement array.
The length of the entire field is 3 * (signif len + exp_len + 1). -

If the vector is a position vector, the field is organized so that x occupies the least signif-
icant bits, y the following bits, and z the most significant bits.

186

Version 2.0, November 1991

CMSR_v_copy_2d

Math Routines ‘ CMSR_v_copy_3d

Chapter 3.
3 S

CMSR_v_copy_2d
CMSR_v_copy_3d

Copies the two (three)values in one vector field to another.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void
CMSR_v_copy_2d (dest_vector_field, src_vector_field, signif len, exp_len)

CM field id t dest vector_field, src_vector_field;
unsigned int signif len, exp_len;

void
CMSR_v_copy_3d (dest_vector_field, src_vector_field, signif len,
exp_len)

CM _field id t dest vector_field, src_vector_field;
unsigned int signif len, exp_len;

Fortran Syntax

INCLUDE ’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR _V_copy 2D

& (dest_vector_field, src_vector_field, signif len, exp_len)
INTEGER dest_vector_field, src_vector_field
INTEGER signif len, exp len

SUBROUTINE CMSR_V_copy_3D

& (dest_vector_field, src_vector_field, signif len, exp_len)
INTEGER dest_vector_field, src_vector_field
INTEGER signif len, exp_len

Version 2.0, November 1991 187

CMSR_v_copy_2d

CMSR_v_copy_3d
R

Lisp Syntax

CMSR:v-copy-2d

SRR

*Render Reference Manual for Paris
R S

(dest—vector—field src—vector—field soptional signif-len exp—len)

CMSR:v-copy-3d

(dest—vector—field src—vector—field soptional signif-len exp—len)

ARGUMENTS

dest_vector_field

src_vector_field

signif len

" exp_len

DESCRIPTION

A Paris field identifier specifying the vector field in CM memory
to which src_vector_field is to be copied.

A Paris field identifier specifying the vector field in CM memory
from which the vectors are to be copied.

For CMSR_v_copy_2d this vector field contains two
floating-point values, each having a length of (signif len +
exp_len + 1) bits. The vector field is organized so that x occupies
the least significant bits and y the most significant bits. The length
of the entire field is 2 * (signif len + exp_len + 1).

For CMSR_v_copy_3d this vector field contains three
floating-point values, each having a length of (signif len +
exp_len + 1) bits. The vector field is organized so that x occupies
the least significant bits, y the following bits, and z the most
significant bits. The length of the entire field is 2 * (signif len +
exp_len + 1).

The length, in bits, of the significand of the floating-point values
in dest_vector_field and src_vector_field.

The length, in bits, of the exponent of the floating-point values in
dest _vector_field and src_vector_field.

For each active processor in the current VP set, CMSR_v_copy_2d and

CMSR_v_copy_3d

copy the value in src_vector_field to dest_vector_field.

All fields must be in the current VP set. dest_vector_field may be the same field as
src_vector_field, or the fields may be totally disjoint. However, partially overlapping
fields cause unpredictable results.

188

Version 2.0, November 1991

CMSR_v_copy_const_2d

Chapter 3. Math Routines CMSR_v_copy_const_3d
S

CMSR_v_copy_const_2d
CMSR_v_copy_const_3d

Broadcasts a specified 2D (3D) vector to a vector field.

SYNTAX
C Syntax
#include <cm/cmsr.h>
void
CMSR_v_copy_const_2d (dest_vector_field, src_vector, signif len,
exp_len)
CM_field id t dest vector_field;
double src_vector[2] ;

unsigned int signif len, exp len;

void
CMSR_v_copy_const_3d (dest_vector_field vector signif len exp_len)

CM field id t dest vector_field;
double src_vector[3] ;
unsigned int signif len, exp len;

Fortran Syntax

INCLUDE '’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_V_COPY_CONST_ZD

& (dest_vector_field, src_vector, signif len, exp_len)
INTEGER dest_vector_field
DOUBLE PRECISION src_vector(2)
INTEGER signif len, exp len

SUBROUTINE CMSR_V_COPY_CONST_3D

& (dest_vector_field vector signif len exp_len)
INTEGER dest_vector_field
DOUBLE PRECISION src_vector(3)
INTEGER signif len, exp len

Version 2.0, November 1991 189

CMSR_v_copy_const_2d

CMSR_v_copy_const_3d *Render Reference Manual

Lisp Syntax

for Paris

R # R

SRR

CMSR:v-copy-const-2d (vector—field src—vector

soptional (signif-len 23) (exp—len 8))

CMSR:v-copy—-const-3d (vector—field src—vector

soptional (signif-len 23) (exp—len 8))

ARGUMENTS

dest_vector_field A Paris field indentifier specifying the field in which the 2D vector

src_vector

signif len

exp_len

DESCRIPTION

is to be stored. Each element of the vector has a length of
(signif len + exp_len + 1) bits.

For CMSR_v_copy_const_2d the vector field contains two
floating-point values organized so that x occupies the least
significant bits and y the most significant bits. The length of the
entire field is 2 * (signif len + exp_len + 1).

For CMSR_v_copy_const_3d the vector field contains three
floating-point values organized so that x occupies the least
significant bits, y the following bits, and z the most significant bits.
The length of the entire field is 3 * (signif len + exp_len + 1).

A1 x 2 array for CMSR_v_copy_const_2d or a 1 x 3 array for
CMSR_v_copy_const_3d, containing the vector to be loaded
into the vector field.

The length, in bits, of the significand of the floating-point values
in dest_vector _field.

The length, in bits, of the exponent of the floating-point values in
dest_vector_field.

For each active processor, CMSR_v_copy_const_2d and CMSR_v_copy_const_3d
place the contents of src_vector in dest_vector_field.

190

Version 2.0, November 1991

CMSR_v_copy_const_2d

Chapter 3. Math Routines CMSR_v_copy_const_3d
e S

SEE ALSO

CMSR_v_write_to_processor_2d
CMSR_v_write_to_processor_ 3d
CMSR v_read from processor_2d

CMSR_v_read_ from processor_ 3d

Version 2.0, November 1991 191

CMSR_v_cos_between_2d
CMSR_v_cos_between_3d *Render Reference Manual for Paris

CMSR_v_cos_between_2d
CMSR_v_cos_between_3d

Finds the cosine of the angle between two 2D (3D) vectors.

SYNTAX
C Syntax

#include <cm/cmsr.h>
void
CMSR_v_cos_between_2d
(dest_field, srcl_vector field, src2 vector field, signif len, exp_len)

CM _field id t dest field, srcl_vector_field, src2_vector_field;
unsigned int signif len, exp len;

void
CMSR_v_cos_between_3d
(dest_field, srcl_vector_field, src2 vector _field, signif len, exp_len)

CM _field id t dest field, srcl_vector_field, src2_vector_field;
unsigned int signif len, exp len;

Fortran Syntax

INCLUDE ’ /usr/include/cm/cmsr-math-fort.h’
SUBROUTINE CMSR_V_COS_BETWEEN 2D

& (dest_field, srcl vector field, src2 vector field, signif len, exp_len)
INTEGER dest_field, srcl _vector field, src2_vector_field
INTEGER signif len, exp len

SUBROUTINE CMSR_V_COS_BETWEEN_ 3D

& (dest_field, srcl <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>