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Preface

This document served as the reference specification during the design and implementation of

the C* compiler. It has been updated to reflect the resolution of syntax and semantic ambiguities,

further clarifications on points of the language, corrections of errors, and extensions. This

document does not necessarily describe the current state of the implementation of C*. For

documentation on the current C* implementation, please see the C* documentation products

available from Thinking Machines Corporation. They are the newest versions of Getting Started in

C*, C* Programming Guide, C* User's Guide, and C* Release Notes. An overview of the

architecture of the Connection Machine® Systems is available in the appropriate Connection

Machine Technical Summary.
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1 Introduction

The C* language implemented for version 6.0 is different from the previous language accepted

by the version 4.3 and 5.0 compilers. The improvements include cleaner treatment of data types,

removal of the grid package and integration of grid operations into the language, access to scans

and spreads, and a variety of' other changes. Rather than focus on all the ways that the current

version differs from the previous language, this document will present the complete C* language.

It is expected that the reader is well versed in C and, furthermore, that the reader is familiar

with Standard C (ISO C Standard ISO/IEC 9899-1990 (E); ANSI C standard ANSI X3.159-

1989). Although not mandatory, an understanding of the Connection Machine system and

Connection Machine System Software is useful in understanding this document.

In addition to the extensions described within this technical report, C* accepts any Standard C

program and correctly compiles it for execution - without any parallelism.

2 Goals of the C* Language, Version 6.0

* Continue in the C tradition of an efficient, fairly low-level systems programming language.

Except for C* extensions, the language should follow Standard C.

The language should support data parallel programming idioms that C programmers can

understand and use effectively. It should be possible to write both operating systems and

libraries in the language. Even though the language should be data parallel, compilers

should be able to produce efficient code for both SIMD- and MIMD-type architectures.

* Efficiently allow access to all user-visible components of a distributed memory massively

parallel system, such as the Connection Machine system (e.g., router, n-dimensional

NEWS grid, scans, spreads, reductions). That is, the code produced by the compiler

should be almost as efficient as can be achieved on the machine.

* Allow dynamic behavior in the allocation and deallocation of parallel storage.

* Allow layered object-oriented extensions (even though these are not included in the current

language).

* Simplify previous C* pointer types and behavior (at least by guaranteeing the efficiency of

those that are available).

* Allow access to low-level operations (such as Paris instructions; see the Paris Reference

Manual for complete information on Paris) from C*. This is provided by means of

function calls.

0



2 TR-253

2.1 Programming Abstraction Presented by the Language

The language presents an abstraction of the machine known as the global view, which treats

parallel data as a new entity that is acted upon by new or overloaded operators and statements.

That is, parallel variables are seen as monolithic vectors or arrays that are operated on as a whole.

In particular, unlike previous versions of C*, version 6.0 does not support a local view - where

the programmer can imagine writing a C program for an individual processor, yet the program runs

on all processors seemingly independently. This change in view was required to present a parallel

programming abstraction that did not contain hidden execution costs. The local view requires that

invisible multiprocessing (support for multiple virtual program counters) and synchronization code

be generated by the compiler. This was in conflict with the desire for an efficient, fairly low-level

language.

2.2 Terminology

This language specification uses the term scalar in a manner different from the C Standard's

usage of the term. This document's use of the terms is consistent with the standard meanings of

the terms scalar and parallel in the parallel processing industry. In the Standard C document, scalar

is used to refer to "arithmetic types and pointer types ... collectively." That is, it refers to any

integral,- floating-point, or pointer type. In this specification, the term is used to refer to all non-

parallel types. Therefore, all traditional C data types are referred to as scalar data types. When a

traditional C data type is qualified to be parallel, it is referred to as a parallel data type. When the

Standard C use of scalar is mentioned in this specification, the term Standard-C-scalar will be

used.

2.3 New Reserved Words

C* has added the following reserved words to Standard C: allocate_detailed_shape,

allocate_shape, bool, boolsizeof, current, dimof, everywhere, overload, pcoord,

physical, positionsof, rankof, shape, shapeof, where, and with.

2.4 New Operators

C* has added the following operators to Standard C: <?, <?=, >?, >?=, % %, and

boolsizeof. In addition, several operators have new overloadings. The index operator ( [ and ] )

may now be used as a unary prefix operator. The compound assignment operators may now be

used as unary prefix operators. Many operators have new overloadings to work with parallel

types. I
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3.1 Shape

Unlike previous versions of C*, version 6.0 allocates parallel data only when such data is

tagged with a shape, which specifies the rank, dimensions, and layout of parallel data. shape is a

new reserved word in C*, and is added to the list of acceptable type-specifiers in Standard C. A

new construct, called left indexing, is the means used to declare shapes. Left indexing is simply

using the traditional C brackets to specify an index that precedes rather than follows the indexed

expression. Examples of shape specifications follow:

shape Sa, [10]Sb, [50] [30]Sc;
shape [30] [50]Sd, []Se, [] []Sf;

The names of shapes and variables declared throughout this document are meant to be both

consistent and cumulative. Therefore, all references to a variable or shape are to one that is

previously declared in this document. For clarity, variables, shapes, types, and other identifiers

may be redeclared in this document; all such redeclarations are identical to prior declarations.

Shape identifiers have the same scope as non-label identifiers in C. [See the discussion of

scope in the C Standard §3.1.2.1.] Shape identifiers are in the same name space as ordinary

identifiers. [See the discussion of name spaces of identifiers in the C Standard §3.1.2.3.] This

class includes variables, functions, typedef names, and enumeration constants.

Shapes Sa, Se, and Sf in the shape declarations above are not fully specified. Shape Sa does

not even have its rank specified - it is said to be fully unspecified. Shapes Se and Sf have their

ranks specified, but not their dimensions - they are said to be partially specified. Shapes Sb and

Se are of rank one; shapes Se, Sd, and Sf are of rank two. It is invalid to specify some but not

all dimensions of a shape. Thus, the language does not allow a shape to be specified as shape

[][1O]Sg;. All of the shapes specified above may be used in the allocation of parallel data once

they have become fully specified. Shape Sb is a shape with 10 positions. The term position is

used to refer to a potential slot within the framework established by a shape. Left indices are

numbered from left to right starting with index 0. Index 0 corresponds to the row number and

index 1 corresponds to the column number. For example, index 0 of Sc is 50, and index 1 of Sc

is 30; index 0 of Sd is 30, and index 1 of Sd is 50.

Implementation restriction: The initial implementation of C* version 6.0 restricts the possible

shape declarations that are acceptable. It requires each dimension of a shape to be a power of two

and the total number of positions of a shape to be a multiple of the number of processors in the

machine on which the program is to be executed.

9 It is also possible to have arrays of shapes or a pointer to a shape, as follows:



shape [2] [10]Sarrayl[4];

shape Sarray2 [40];

shape []Sarray3 [20];

shape *Sptr;

Sarrayl is an array of four shapes; they are all of rank two with dimensions 2 by 10. Note

that even though all shapes in the array have the same rank and dimensions, each of the shapes has

its own context [see §6.2]. Sarray2 is an array of forty shapes, all of which are fully

unspecified. Sarray3 is an array of twenty shapes, all of which are of rank one. Sptr is a

pointer to a shape (which may be allocated by means of standard memory allocation routines [see

§3.3]).

Left index is a unary prefix; operator; it has lower precedence than the conventional right index

operator. The left index operator is grouped with unary operators in the Standard C precedence

levels, whereas the right index operator is a postfix operator.

As in Standard C, if used at file-scope or with extern or static at block scope, the

expressions used as left or right subscripts in the shape statement must be constant expressions

(the notation for axis alignment, in section §3.10, is allowed as well) . In all other cases, any

expressions of integral type are permissible. The syntax of the shape declaration statement is as

follows:

shape left-inde>xed-declarator-list;

shape declarator--list = initializer;

If the shape declarator is not fully specified, it may be initialized. If the shape declarator is an

array, the elements may be initialized by a list of shape-valued expressions. As in Standard C, the

initializer must be legal in its scope (file scope or block scope). At file scope, the intrinsic

functions allocate_shape and allocate_detailed_shape [see §9] may be used as initializers,

but their arguments must be constant expressions. This is the reason that allocate_shape and

allocate_detailed_shape are intrinsic functions. At block scope, any shape-valued expression

may be used to initialize the shape. If partially specified, the rank of the shape-valued expression

used as an initializer must agree with the rank specified by the left indices.

Note that an initializer may be used in a shape declaration statement to declare or define an array

of shapes in which each array element is of a different size or shape. It is also possible to have

each element of an array of shapes differ in rank or dimensions by using assignment statements to

define individual elements in the array of shapes.

A shape functions as a parallel template for the allocation of variables of that shape. When a

variable is actually declared of a shape [see §3.4] or when a shape is selected [see §4], the shape

must be fully specified: that is, it must then have a known rank, and each dimension must be

defined. A shape itself may not be declared as a parallel variable (e.g., shape:S [O]R).

4 TR-253
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The shape must be declared appropriately in all compilation units that reference it. The shape

must be tagged as extern without an initializer in all compilation units but one, and one

compilation unit must either have an initializer for the shape or declare the shape without a storage

class specifier (this is in keeping with the Standard C combination of the Strict Ref/Def model and

the Initialization model [see Rationale for Standard C, §3.1.2.2]).

3.2 Predeclared Physical Shape

There is a predeclared shape identifier, physical, which is a one-to-one mapping to physical

processors in the massively parallel computing system. physical, which is a new reserved word,

is always of rank one, and its dimension is the same as the actual number of physical processors.

The programmer may allocate parallel variables of physical shape and know that they will have a

VP-ratio of one and will be accessed via physical instructions, if such instructions exist, whenever

possible. However, the predominant use of physical probably will be to cast a variable from

some other shape into the physical shape and then to act upon it as if it were of physical shape

(i.e., explicitly writing VP loops on parallel data). Please refer to § 10 for more information on

casting.

3.3 Dynamic Shape Object Allocation

A shape object is, in essence, a descriptor for a shape - in Paris, a VP-Set-ID. In general, C*

does not allow direct manipulation of the shape object. Instead, information in the shape object is

used implicitly in the language or is accessed via intrinsics. However, certain features are available

to allow dynamic allocation of shapes. The sizeof operator may be applied to a shape or to the

shape type to return the number of bytes in a shape object. This capability is needed so that the

programmer can use a storage allocation system call to allocate storage for shapes. For example:

shape *Sptr, [50] [30]Sc;

Sptr = (shape *) malloc(sizeof(Sc));

and

shape *Sptr;

Sptr = (shape *) malloc(sizeof(shape));

each allocate a new shape object that can be referenced by indirecting Sptr.

The syntax for sizeof applied to the shape type is:

size_t sizeof(shape) [size_t is defined in <stddef.h>]

3.4 Declaring Parallel Variables

Once a shape is fully specified, variables may be declared in that shape. Using these shapes:



shape Sa, [10]Sb, [50] [30]Sc, [30] [50]Sd, []Se, [] []Sf;

shape [2] [10]Sarrayl[4], []Sarray3[20], *Sptr;

the following are all legal declarations of parallel variables:

int:Sa ail, ai2; or equivalently: int ail:Sa, ai2:Sa;

int:Sb bil, bi2;

float:Sb bfl, bf2;

double:Sb bdl, bd2;

int:Sc cil, ci2;

int:Sd dil, di2;

int eil:Se, ei2:Se, fil:Sf, fi2:Sf;

int:(Sarrayl[2]) pvl;

int: (*Sptr) pv2;

int:(*(Sarray3+4)) pv3;

int: (Sarrayl[f(x)]) pv4;

Parallel variables ail and ai2 are of shape Sa; bil, bi2, bfl, bf2, bdl, and bd2 are of

shape Sb; cil and ci2 are of shape Sc; dil and di2 are of shape Sd; eil and ei2 are of shape

Se; fil and fi2 are of shape Sf. Parallel variable pvl is of shape Sarrayl[2]; pv2 is of the

shape to which Sptr points; pv3 is of shape Sarray3[4]; and pv4 is of the shape

Sarrayl[f(x)]. Note that each shape-valued expression that is used in a declaration is evaluated

once per declaration. This is important when the expression may cause side effects - as in the

declaration of pv4 above.

Parallel variables bil, bi2, bfl, bf2, bdl, and bd2 (declared of shape Sb) will each consist

of ten elements; they will exist on ten virtual processors. Parallel variables cil, ci2, dil, and di2

will each exist on 1500 virtual processors - with cil and ci2 organized 50 by 30 and dil and

di2 organized 30 by 50. Parallel variable pvl will exist on twenty processors, organized 2 by 10.

The declaration statements for parallel variables have the following syntax:

type-specifier:

signed-type-specifier

floating-type-specifier

unsigned-type-specifier

character-type-specifier

boolean-type-specifier

signed-type-specifier:

signed: shape-qualifier

signedopt int: shape-qualifier

6 TR-253



signedopt short intopt: shape-qualifier

signedopt long intopt: shape-qualifier

floating-type-specifier:

float: shape-qualifier

double: shape-qualifier

long double: shape-qualifier

unsigned-type-specifier:

unsigned short intopt: shape-qualifier

unsigned intopt: shape-qualifier

unsigned long intopt: shape-qualifier

character-type-specifier:

char: shape-qualifier

signed char: shape-qualifier

unsigned char: shape-qualifier

boolean-type-specifier.

bool: shape-qualifier

declarator:

declarator. shape-qualifier

1" -~eabstract-declarator:

abstract-declarator. shape-qualifier

If the shape qualifier is a simple shape name or the application of the intrinsic function

shapeof, then parentheses are not needed around it. In all other circumstances, the shape qualifier

should be enclosed within parentheses. This is required in general to allow unambiguous parsing

of the expression.

If the shape qualifier (i.e., the specification of the shape in the declaration of a parallel variable)

is part of the type-specifier, then the type is qualified to be a parallel type of the specified shape

and, therefore, applies to all declarators specified in that declaration statement. If the shape

qualifier is part of a declarator, then just that declarator is qualified to be of the specified shape.

Only one shape qualifier may be applied to either a type-specifier or a declarator, and a shape

qualifier may not be specified on both the type-specifier and the declarator in a declaration

statement (so as not to be misleading).

A shape is the name of a shape, such as Sb or physical, or a shape-valued expression. A

parallel type is a type-specifier that includes a shape, such as int:Sb or int:physical. A parallel

variable is a variable declared to be of a parallel type, such as bi2.

If the declaration or definition appears at file scope or is static or extern, then the shape-

valued expression must be constant. The definition of a constant expression is extended for shape-

TR-253 7
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valued expressions. In particular, a constant expression may be a simple shape that is fully

specified at compile time or that has storage class extern, an array of shapes that is fully specified

at compile time and whose right index is a constant expression, or an indirection of the sum of an

array of shapes that is fully specified at compile time and a constant expression. For example,

given these shapes,

shape [10]Sb, [:ISe, [2][10]Sarrayl[4], Sarray2[40], *Sptr;

the following are valid constant shape-valued expressions:

Sb

Sarrayl [4-3]

*(Sarrayl+(2*2)--2)

But the following expressions are not:

Se

Sarray2[4-3]

*(Sptr+ (2*2) -2)

The declarations of pv2, pv3, and pv4 above could not appear in a context where a constant

shape expression would be required. For pv2 and pv3, Sptr and Sarray3 are not fully-

specified shapes. For pv4, f(x:) is not a constant expression - it invokes a function whose result

is not known until run time.

C* has borrowed the same syntax for shape qualifiers that is used for bit-fields. The shape

specification is differentiated from the bit-field specification based on the type of the expression to

the right of the colon. If the expression is of type shape, then the qualifier indicates a parallel

variable in the specified shape; if the expression is of integral type (actually a non-negative constant

integral expression in StandardL C), then the qualifier indicates the bit-field width.

The ambiguity is also resolved by the current restrictions that a bit-field must be a non-negative

constant integer expression, that bit-fields may appear only within a struct, that shape qualifiers

may appear only outside a struct, and that a shape qualifier may appear on the type-specifier

whereas bit-fields may not. However, these current restrictions may change (if, for example, bit-

fields were allowed outside structs) and, therefore, are not the differentiating features.

The potential ambiguity is shown in the following declarations:

struct structl 

int x:y;

} z;

int ai3:Sa;

Is this an attempt to declare a parallel int x of shape y or to declare an int x with field width y

(where y might have appeared in a prior #define)? Is ai3 declared as a parallel int of shape Sa or
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as an int ai3 with field width Sa? As previously stated, the rule above resolves the potential

ambiguity based on the types of y and Sa.

The shape is part of the type specifier and must appear in the order shown above; however, it is

possible to have storage class specifiers and type specifiers in either order. It is customary in C

and C* programming to write the storage class specifiers first (if they are present). A shape may

be either the name of a previously declared shape that is in the scope of the declaration and is

visible, or it may be a shape-valued expression.

An external parallel variable must be declared in all compilation units but one with the extern

keyword and without an initializer. In one compilation unit, the parallel variable must be declared

either with an initializer, without a storage class specified, or both with an initializer and without a

storage class specified. This is to be consistent with the Standard C linkage model [see Rationale

for Standard C, §3.1.2.2].

The following is a more formal treatment of the use of shape-valued expressions. There is a

hierarchy of such expressions. The most constrained shape-valued expression is a constant shape-

valued expression. A constant shape-valued expression may be used as an initializer for shapes

declared at file scope. In addition to syntactic entities allowed in a Standard C constant expression,

such an expression may contain use of file scope shape names, the shapeof intrinsic function

applied to compile-time fully specified constant shape-valued expressions, and dereferencing and

indexing, but may not contain the use of any potentially side-effecting operators - such as

assignment operators, increment or decrement operators, function calls, or comma operator -

except if they are not evaluated (for example, as operands of the sizeof or boolsizeof operators).

The next, less constrained shape-valued expression is afile scope shape qualifier. A file scope

shape qualifier is used as the shape qualifier in the declaration of parallel variables at file scope.

Such an expression encompasses all constant shape-valued expressions and, in addition, allows

the inclusion of the void shape name and the physical shape name.

At the next level is the parameter scope shape qualifier. In a function declaration, a parameter

scope shape qualifier may be applied to a parameter of that function or to the return value of that

function. This qualifier may be applied at file or block scope. It encompasses the attributes of file

scope shape qualifiers and, in addition, allows the inclusion of visible shape names at parameter

scope and use of the current shape name.

At the last level is the block scope shape qualifier. A block scope shape qualifier is used as the

shape qualifier in the declaration of parallel variables at block scope. Such an expression

encompasses all file scope shape qualifiers and, in addition, allows the inclusion of any shape-

valued expression (this includes use of assignment operators, increment and decrement operators,

functions calls, and the comma operator). If the expression is at block scope, but with the static
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storage-class specifier, or has external or internal linkage, the qualifier must be a file scope shape

qualifier.

3.4.1 Parallel Enumerated Types

C* also supports the use of enumerated types in parallel variables. The enumeration is defined

in the usual way; then a parallel enum may be specified as the type in declaring a parallel variable.

For example:

enum colors {green, yellow, red};

enum colors:Sb trafficLightO;

enum colors trafficLightl:Sb;

The grammar for a parallel enum follows:

enum-specifier:

enum-specifier: shape-qualifier

Like non-enumeration parallel variable declarations, if the shape qualifier is part of the enum-

specifier, then the type is qualified to be a parallel enum type of the specified shape and, therefore,

applies to all declarators specified in that declaration statement. If the shape qualifier is part of a

declarator, then just that declarator is qualified to be of the specified shape. Only one shape

qualifier may be applied to either a type-specifier or a declarator, and a shape qualifier may not be

specified on both the type-specifier and the declarator in a declaration statement (so as not to be

misleading).

3.4.2 Initializing Parallel Variables

When a parallel variable is defined, it may be initialized. Parallel variables with static storage

duration at file or block scope (i.e., parallel variables declared at file scope or parallel variables

declared at file or block scope with extern or static qualifiers) and of any shape may be initialized

only to a scalar constant expression. Otherwise, initialized parallel variables with automatic storage

duration must be of the current shape, and the initializer must be an expression that can be

evaluated at its scope. This is consistent with the usual equivalence of initialization of block scope

variables and writing that initialization as an assignment statement. That is, it would not be legal in

C* to execute such an assignment statement; therefore it cannot be performed in an initializer either.

This implies that any parallel code in the initializer must be able to be evaluated in the scope of the

current shape when the initializer is reached. There must be a current shape when an initialized

parallel variable's definition is reached, and that current shape must be the same as the shape of the

variable. Each parallel variable may be initialized to an expression that evaluates to a scalar or a

parallel value. If a scalar initializer is specified, all elements of the parallel variable are set to that
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') single scalar value. By default (i.e., when no initializer is present), static variables (including all

elements of static parallel variables) are initialized to zero.

Scalar variables may be initialized with an expression that contains parallel operations as long

as the expression can be evaluated at its scope (and with the current shape) and evaluates to a scalar

value.

For example, the following are legal C* initializing definitions:

int:Sa aizerol = 0, aizero2 = 0;

int:Sb bi37 = 37, bi42 = 42;

float:Sb bfuninit, bfpi = 3.14159265;

double:Sb bdpi = 3.1415926535897932, bduninit;

int:Sc cill = 11, ci21 = 21;

int:Sd dizerol = 0, dizero2 = 0;

int eizerol:Se = 0, eizero2:Se = 0, fizerol:Sf = 0,

fizero2:Sf = 0;

File scope initializers may not contain any parallel operations (including reductions and left

indexing). Block scope initializers may contain any appropriate operations. These are executed in

the current shape.

3.5 Parallel Structs and Unions

Parallel structs and unions are supported by the C* programming language. The term

structure will refer to both structs and unions. After a usual C structure is declared, parallel

variables based on that structure may be declared. When a parallel structure is declared, each of the

fields in the structure becomes parallel. Because parallel fields may not appear within structures,

an instantiation of a structure is either wholly scalar or wholly parallel. However, the same

structure declaration (when the structure itself is declared) may be used for both scalar and parallel

structures. In addition, shapes may not be declared within a structure, but a pointer to a shape may

exist as a structure field in a scalar structure. [Language designer's note: Shapes are not allowed

within a structure because this would allow a compile-time fully specified shape to appear within a

structure. This might imply that each new allocation of that structure would create a new shape or

might imply that all allocations would share a single, interned shape. This would happen when a

parallel version of the structure was defined. We did not want to allow this situation to occur. One

possible future relaxation of this restriction would be to allow only partially specified and fully

unspecified shapes within structures.] Of course, structures may be nested as in C. The

programmer should also be aware of the potential for different structure sizes between parallel and

* scalar structures, as discussed in §3.7. As does Standard C, C* allows assignment of structures
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and performs the appropriate translation when assigning between parallel and scalar structures

(even though the size and alignment of fields within such structures may differ).

Examples of parallel struct and union declarations follow:

struct Struct2 {

int il, i2;

float fl, f2;

struct Struct2:Sa struct2a;

struct Struct2 struct2b:Sb;

struct Struct3 {

int i;

}:Sc struct3c;

struct Struct3 {

int i;

} struct4c:Sc;

struct {

int i;

}:Sd structunld;

struct {

int i;

} structun2d:Sd;

union Unionl {

int il;

float fl;

struct Struct2 strl;

union Unionl:Sb unionla;

Parallel variable struct2a is of shape Sa; struct2b is of shape Sb, struct3c and struct4c

are of shape Sc, structunld and structun2d are of shape Sd, unionla is of shape Sb. The

grammar for a parallel struct is:

struct-or-union-specifier:

struct-or-union-specifier: shape-qualifier

Like non-structure parallel variable declarations, if the shape qualifier is part of the struct-or-

union-specifier, then the type is qualified to be a parallel structure type of the specified shape and,

therefore, applies to all declarators specified in that declaration statement. If the shape qualifier is

part of a declarator, then just that declarator is qualified to be of the specified shape. Only one
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shape qualifier may be applied to either a type-specifier or a declarator, and a shape qualifier may

not be specified on both the type-specifier and the declarator in a declaration statement (so as not to

be misleading).

Of course, a structure declaration may contain pointer fields; however, it is a compile-time error

to declare a parallel instance of such a structure. An array of non-empty size (i.e., not just empty

brackets) may be declared within a parallel instance of a structure. The qualified name of the array

will translate to a pointer to the first of the array elements.

3.5.1 Initializing Parallel Structs, Unions, and Arrays

When a parallel structure or array is defined, it may be initialized. The initializer for a struct

or union object that has automatic storage duration must be either an initializer list or a single

expression that has compatible structure or union type. All expressions in an initializer list for

structures or arrays must be constant expressions. All instances of the field or all such array

elements (i.e., all positions of the field or array element) will be set to that field's or element's

single scalar initializer value. The initializers are subject to the usual Standard C constraints and

semantics presented in §3.5.7 of the Standard. If the structure is a union, the initializer applies to

the member that appearsfirst in the declaration list of the union type.

For example, the following are legal C* initializing definitions:

struct Struct2:,Sa struct2a = {3, 7, 3.14159, 2.7828};

struct Struct2 struct2b:Sb = {1, 2, 3.0, 4.0};

int:Sa arraya[6] = {4, 34, 2, -18, 0, 1);

union Unionl:Sb unionla = {71};

3.6 Scalar Variables

Variables that are declared (and allocated) without a shape specification - that is, all traditional

C variables - are referred to as scalar variables. The following are all declared as scalar variables:

int sil, si2;

float sfl, sf2;

double sdl, sd2;

unsigned char ucArray[15];

An individual element (element is defined in §3.7) of a parallel variable (e.g., a single int of a

parallel int) is referred to as a scalar value.
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3.7 Storage Size Differences

Just as the term position is used to refer to a slot within the framework established by a shape,

the term element refers to the contents of one position of a parallel variable. An element of a

parallel variable and its scalar counterpart do not necessarily occupy the same amount of storage.

This may happen because of different basic datum widths (for example, a scalar bool [see § 14 for

boolean] may occupy one byte, but an element of a parallel bool might occupy one bit) or because

of different data alignment constraints (for example, scalar data types might be aligned on word

boundaries, but parallel data types might be aligned on bit boundaries). Therefore, it is necessary

to be able to ascertain either storage size. The sizeof operator behaves as it always has when its

argument is a scalar type, such as float. When invoked with a parallel type or a parallel variable,

however, it returns the storage requirements of an element of that parallel type in bytes, rounded up

to the nearest byte when necessary. For example:

sizeof (float)

returns the size of a scalar float in bytes; whereas,

sizeof(float:Sb)

and

sizeof(bil)

or

sizeof bil

return the size of a parallel float in bytes. An example of alignment having an effect on the size of

storage allocated is seen when sizeof is applied to a struct type.

In addition to sizeof, a new operator, boolsizeof, is added. boolsizeof is a new reserved

word in C*. Like sizeof, boolsizeof only requires parentheses enclosing its operand if the

operand is a type. boolsizeof has the same precedence and associativity as the existing C sizeof

operator. boolsizeof returns the size of its operand in units of the allocation of bools. More

explicitly, when boolsizeof is applied to a parallel type or variable, it returns its allocation in units

of parallel bools; when boolsizeof is applied to a scalar type or variable, it returns its allocation

in units of scalar bools.

boolsizeof(char:Sb) [See §14 for bool type]

would return the allocation of char:Sb in units of parallel bools; whereas,

boolsizeof(char) [See §14 for bool type]

would return the allocation of char in units of scalar bools.

For parallel types as operands when a parallel bool is implemented as a bit, boolsizeof
returns the actual number of bits required for allocation of a single element of a variable of that

parallel type. For parallel variables as operands when a parallel bool is implemented as a bit, t
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boolsizeof returns the actual number of bits that a single element of that variable occupies. Even

0 though it may not be particularly useful, boolsizeof may even be invoked with a shape or the

shape type as its operand. Some examples of using boolsizeof follow:

boolsizeof(bool) [See §14 for bool type]

and

boolsizeof(bool:Sb)

would each return 1; whereas,

boolsizeof bil

[See §14 for bool type]

or

boolsizeof(int :Sb)

might return 32, and

boolsizeof(int)

might return 4 if scalar bools are implemented as chars, and ints are four chars in size.

syntax for these operators follows:

size_t sizeof unary-explression [size_t is defined in <stddef.h>]

size_t sizeof(type-name) [type-name is extended to include parallel types

size_t boolsizeof unary-expression result of extending the acceptable

size_t boolsizeof(type-name) type-specifiers. See §3.4]

size_t sizeof(shape) [shape is also allowed as a type-name]

Just like the sizeof operator, boolsizeof does not evaluate its operand.

The

asa

3.8 Additional Intrinsics

The positionsof intrinsic function may be applied to a shape to return the total number of

positions - or virtual processors to the Paris programmer - in the shape. positionsof returns

the total number of positions in a shape, not just the number of active positions. Active positions

of a shape are those positions of the shape that will participate in operations when that shape is

selected [See §4 on shape selection]. Therefore, one important property of a shape is that each

fully specified shape includes the allocation of the context for that shape. It is precisely this

"context" that remembers the active and inactive positions. Two new intrinsic functions, rankof

and dimof, may be applied to a shape to return the rank and dimensions of a shape. Of course,

positionsof, rankof, and dimrof may not be able to be evaluated at compile time - if applied to

a shape that is not fully specified at compile time, they will return the appropriate value at run time.

(As will be noted later, positionsof, rankof, and dimof may also be applied to parallel

variables.) Thus, these functions are declared as follows:

9

9
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int positionsof(shape shape)

int rankof(shape shape])

int dimof(shape shape, int axis)

rankof returns zero if the shape is fully unspecified; it still returns the rank of its argument

even if the shape is just partially specified. dimof returns zero if the shape is not fully specified.

When a shape is specified, the left index axes are numbered from left to right starting with

zero. The information required by positionsof, rankof, or dimof must be defined - either

through compile-time informa.tion or through run-time calls - prior to execution of a request for

that information. If it is known at compile time that an error will result from a call to one of these

intrinsics, then a compile-time error is reported (this may occur, for example, when dimof is

called to return the dimension of a non existent axis). If it is not known until run time that an error

will result, then, with sufficient safety enabled, a run-time error is signalled. Given these

declarations,

shape [10]Sb, [50] [30]Sc, [30] [50]Sd, []Se, [] []Sf;
the following expressions show uses of positionsof, rankof, and dimof, and all evaluate to

true,

positionsof(Sb) == 10

(positionsof(Sc) == 1500) && (positionsof(Sd) == 1500)

(rankof(Sb) == 1) && (rankof(Se) == 1)

(rankof(Sc) == 2) && (rankof(Sd) == 2) && (rankof(Sf) == 2)

dimof(Sb, 0) == 10

(dimof(Sc, 0) == 30) && (dimof(Sd, 1) == 30)

(dimof(Sc, 1) == 50) && (dimof(Sd, 0) == 50)

3.9 Intrinsics Applied to Parallel Variables

A new intrinsic exists, shapeof, which returns the shape of a parallel variable (and, therefore,

can be used as a shape-valued expression). It is a syntax error to apply shapeof to anything that

is not a parallel variable. A use of shapeof is given here:

int:shapeof(bfl) bi3;

This is exactly equivalent to writing:

int:Sb bi3;

Equality of shapes is based on exact shape object matching (like eq in Common Lisp).

Therefore, even if two shapes look identical (that is, they have the same rank and dimensions) they

are not the same for the purposes of the C* type system. This attribute of shapes is required in C*

because each shape has a layout associated with it. The layout is a mapping of the shape's
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positions onto the processors of a compute engine. Since elemental operations within a shape are

guaranteed to be local (i.e., fast), shape equivalence must support that notion - that is, it may

equate shapes only if they have the same rank, dimensions, and layout. C* accomplishes this goal

through shape object equivalence.

Shapes may be compared by equality operators. Such a comparison (with ==) will produce a

true result if the two shapes are equal (i.e., denote the same shape object). Such a comparison

with != will produce a false result if the two shapes are not equal (i.e., denote different shape

objects). This comparison is useful when one of the shapes being compared is current [see §4

Shape Selection]. For example, comparing the current shape against a known shape within a

function could be used to check that the function was called with a particular shape selection. This

technique could also be used within an assertion type-check-block [see § 11.3] to perform the check

at compile-time.

The implications of this shape-typing scheme are numerous. Because shapes may be assigned,

passed to functions, returned from functions, their addresses taken, dynamically allocated, etc.,

there may in fact be two shape variables that both refer to exactly the same shape object. The

compiler performs an "intermediate shape equivalence" test on parallel variable usage. Let's

examine the following C* program:

shape [10]Sb;

int:Sb bi3;

shape newShape;

newShape = Sb;

with(newShape) { /* See §4 for a discussion of the with stmt. */

int:newShape newVar;

newVar = bi3; /* this line causes an error to be signalled */

The assignment of a parallel variable of shape Sb to a parallel variable of shape newShape is

signalled as an error because they don't both have the same shape name. The compiler does not

check all possible shape assignments to determine if, in fact, Sb and newShape must denote the

same shape object. To correct the above program, insert a shape-to-shape cast [see §10] in the

erroneous line as follows:

newVar = (int:newShape) bi3;

This is then acceptable. The compiler allows operations with a parallel variable of current shape

k and a parallel variable of a named shape, which must be the current shape, as follows:



int:current currentPVar;

newVar = cur:rentPVar;

positionsof, rankof, and dimof may also be applied to a parallel variable (rather than a

shape). This is simply a shorthand for writing positionsof(shapeof(bi3)),
rankof(shapeof(bi3)), and dimof(shapeof(bi3), axis). It is a syntax error to attempt to apply

positionsof, rankof, or dimof to anything other than shape or a parallel variable. These

functions are defined as follows:

int positionsof(parallel-variable)

int rankof(parallel-variable)

int dimof(parallel-variable, int axis)

Summary of valid arguments to intrinsics

Operator

or Intrinsic scalar type scalar expr. shape type shape expr. parallel type par. expr.

sizeof and boolsizeof do not evaluate their arguments; positionsof, rankof, dimof, and

shapeof do evaluate their arguments. At file scope, positionsof, rankof, dimof, and

shapeof may be used in a constant expression (in a declaration, for example) if their value is

determinable at compile time.

3.10 Shape Axis Alignment

The initialization component of a shape declaration may refer to previous shapes in an axis-by-

axis manner. In this way, a new shape may be declared that inherits the dimensions and alignment

(bitmask) of a previous shape for any of its axes. This is accomplished by indexing into a shape

that is in the scope of a new shape declaration. The index refers to the axis that is to be copied -

indices are numbered from zero increasing by one from left to right. Since there can be arrays of
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shapes, indices of shapes are used first to select the appropriate shape and then to select an axis of

a shape. Some examples of the use of shape axis alignment follow:

shape [256] [512] [128]Sq;

shape [Sq[O]][Sq[2]]Sr;

shape [Sq[O]][Sq[l]][Sq[2]] [4]Ss;

shape [4] [1024] [64]St[3];

shape [St[0][2]] [St[l] [0]] [St[2] [1]]Su;

shape Sv[3];

allocate_shape(&Sv[0], 3, 64, 1024, 4); /* See §9 for a

allocate_shape(&Sv[1], 1, 65536); discussion of

allocate_shape(&Sv[2], 2, 16, 512); allocate_shape */

shape [Sv[0][2]][Sv[1][O]][Sv[2][1]]Sw;

The declarations above are equivalent to those that follow when the specified alignments are

honored:

shape

shape

[256]

[256]

[512]

[128]

[128] 

Sr;

shape [256] [512] [128]

shape

shape

shape

Sq;

0th axis aligned with Sq[0]; 1st axis

aligned with Sq[2]

[4]Ss; 0th axis aligned with Sq[0];

1st axis aligned with Sq[l]; 2nd axis

aligned with Sq[2]

[4] [1024] [64]St[3];

[1024] [64] [4]Su; 0th axis aligned with St[0] [2]; 1st

axis aligned with St[l] [0]; 2nd axis

aligned with St[2] [1]

[512] [65536] [4]Sw; 0th axis aligned with Sv[0] [2]; 1st

axis aligned with Sv[l] [0]; 2nd axis

aligned with Sv[2] [1]

4 Shape Selection

A new statement, the shape selection statement, has been added to C*; this statement selects a

current shape. The statement has the following syntax:

with(shape-expression) shape-body
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The shape-body is a statement that is executed with the specified shape-expression as its current

shape. Of course, the shape-body may be a block containing declarations and statements. All

statements executed within the context of shape-body must perform operations only on variables in

the current shape or on scalar variables (with some exceptions listed later in this section), unless

the operation is within another nested shape selection. Keep in mind that the with statement has

effect on any code called from within shape-body as well. Thus, the current shape is determined

by following the dynamic call chain of function invocations to the innermost shape selection

statement.

When a C* program begins execution, all positions of all shapes are activated, but no shape is

initially selected (i.e., the C* language does not guarantee that there is any default shape; however,

an implementation may choose to provide one). A shape selection statement defines a parallel

context for the dynamic duration of its shape-body. A shape selection statement must be used to

select a current shape before any parallel code may be executed (with a few exceptions to be

presented later in this section). The shape selection statement does not alter the set of active

positions in the selected shape: it reestablishes whatever context was last associated with the

selected shape. [See §6.2 for a discussion of context.]

A function need not contain any shape selection statement. If it does not, then it will be

executed with the current shape of its caller. A predeclared shape identifier, called current (a new

reserved word), is always equated to the current shape. Thus, it is possible to declare two integer

parallel variables in the current shape as follows:

int:current Cil, Ci2;
The statements in the shape-body may reference parallel variables only of the current shape,

with six exceptions. , If a parallel variable's left indices are all scalar, then the result is treated as

a scalar quantity and the parallel variable need not be of the current shape. i A parallel variable in

another shape may be left indexed by a parallel variable of the current shape, in order to produce an

lvalue or an rvalue of the current shape. --, The boolsizeof operator and the intrinsic functions

dimof, rankof, positionsof, and shapeof may be applied to parallel variables that are not of

the current shape. The address-of operator, &, may be applied to a parallel variable that is not

of the current shape. f Declarations and definitions of parallel variables are not constrained to be

of the current shape. However, if they are not of the current shape, they may not be initialized.

= The dot operator, ., may be applied to select a field of a parallel struct or union of other than

the current shape - so long as that field is a non-aggregate type. A scalar pointer to a parallel type

of any shape may be dereferenced independent of the current shape because the pointer itself is a

scalar; however, the dereference expression is subject to the other constraints above. The compiler

will tag errors when it is able to do so - it may not be able to find all errors at compile time. If a
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sufficiently high level of safety is enabled at run time, then those errors not found at compile time

will be detected at run time.

In addition, several of the above operations are legal with no current shape (outside a parallel

context): a parallel variable may be left indexed by all scalar indices; the boolsizeof operator and

the intrinsic functions dimof, rankof, positionsof, and shapeof may be applied to parallel

variables; the address-of operator, &, may be applied to a parallel variable; and parallel variables

may be declared and defined.

5 Expression Syntax

The following changes to Standard C may affect the behavior of existing programs. There are

several new reserved words in C*; they are listed in §2.3. Some of these reserved words are

names of intrinsic functions. Intrinsic function is a term used for a function about which the

compiler needs to have special knowledge. The intrinsic functions are

allocate_detailed_shape, allocate_shape, dimof, pcoord, positionsof, rankof, and

shapeof. No header file need be included to access the intrinsic functions.

The term built-in function is used to refer to functions about which the compiler may be aware

of in order to have a more efficient implementation. A header file does need to be included when

accessing built-in functions. The functions defined in Appendix A are built-in functions when their

appropriate header files are included. This technique is similar to that used in Standard C to allow

a C compiler to recognize the standard C functions when their header files are included and to

produce more efficient (possibly in-line) code and to perform optimizations involving the internal

structure of those functions.

5.1 New Minimum, Maximum, and Modulus Operators

C* supports all standard C operators. In addition, several new binary operators have been

added. These include the minimum and maximum operators, <? and >?, and the modulus

operator, % %. They may be used to provide the minimum, the maximum, or the modulus of their

operands. Standard type compatibility and conversions, as described in the Standard C

specification for binary relational operators, are performed for <? and >? [see the C Standard

§3.3.8]. The precedence and associativity of the <? and >? operators is the same as for binary

relational operators, as well. Standard type compatibility and conversions, as described in the

Standard C specification for multiplicative operators, are performed for % % [see the C Standard

§3.3.5]. The precedence and associativity of the % % operator is the same as for multiplicative

operators, as well.

a <? b is equivalent to #define min(x,y) ((x)<(y)) ? (x) : (y)



min (a, b)
a >? b is equivalent to #define max(x,y) ((x)>(y) ? (x) : (y)

max(a, b)
if the operands to min or max were evaluated only once.

C* also supports assignment operator versions of the <? and >? operators. These operators,

<?= and >?=, are defined as; follows:

a <?= b; is equivalent to a = a <? b;

a >?= b; is equivalent to a = a >? b;

except that the left-hand-side, a, is evaluated only once.

The modulus operator is added to C* because the % operator's result in Standard C is uniquely

defined only when both of its operands are positive. The modulus operator evaluates the following

formula to compute the result of a % % b:

a-(b* foor(a/b))
A consequence of this formula is that the result always has the same sign as that of the

denominator. For example,

(17 %% 4) == 1

(17 %% -4) == -3

(-17 %% 4) == 3

(-17 %% -4) == -1
The modulus operator is used with the communication syntax to provide n-dimensional nearest

neighbor communication [see §8.6]. Standard type compatibility and conversions, as described in

the Standard C specification for compound assignment operators (like *=), are performed for <?=

and >?= [see the C Standard §3.3.16 and §3.3.16.2]. The precedence and associativity of the

<?= and >?= operators are the same as for compound assignment operators, as well.

5.2 Parallel Meanings for Standard C Operators

If two parallel variables are added together and assigned to a third parallel variable, and all

variables are of the current shape, each position of the first parallel variable is added to the

corresponding position of the second parallel variable and assigned to the third variable's

corresponding position. For example,

bil = bi2+bi3;
is equivalent to

for(i = O; i < 10; i++)
[i]bil = [i]bi2+[i]bi3;

22 TR-253
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except that all of the operations are carried out in parallel. The left indices used in the above

expression are used to select elements of the parallel variables [see §8]. In general, a parallel

binary or ternary operator must have all of its operands of the current shape and will produce a

result in the current shape with the operator applied elementally. That is, the operator performs its

computation on operands in corresponding positions to produce a parallel result. [Detail: Just as

the + operator has both integer and floating-point overloadings in C, it has scalar integer, scalar

floating-point, parallel integer, and parallel floating-point overloadings in C*.]

For almost all C* operators, if one operand is parallel and one is scalar, the scalar operand is

promoted to a parallel value of the other operand's shape by replicating the scalar value. This

replication applies to assignment operators only when the left-hand-side of the operator, or LHS, is

parallel and the right-hand-side of the operator, or RHS, is scalar [see §5.3 for those cases in

which replication of the scalar does not apply]. The parallel overloadings of Standard C operators

are affected by the same type compatibility constraints and conversion semantics that affect the

same scalar Standard C operators.

The integral promotions are extended to include new parallel integral promotions. These state

that a parallel char, a parallel short int, or a parallel int bit-field, or their signed or unsigned

varieties, or a parallel enumeration type, may be used in an expression wherever a parallel int or

parallel unsigned int may be used. If a parallel int can represent all values of the original type,

the value is converted to a parallel int; otherwise, it is converted to a parallel unsigned int. All

other parallel arithmetic types are unchanged by the parallel integral promotions. The parallel

integral promotions preserve value, including sign. [As we will see in § 14, both the integral and

parallel integral promotions are also extended to include bools.]

Similarly, the usual arithmetic conversions are extended to include parallel types. After the

scalar-to-parallel promotion detailed above has occurred, a set of new parallel arithmetic

conversions is applied. These are identical to the usual arithmetic conversions, but all types are

replaced by a parallel version of the same type and of the current shape. All other conversions are

similarly extended for parallel types.

5.2.1 Binary Operators

A standard binary C operator may be applied to parallel operands when both operands are of

the current shape. For the following list of binary operators, the operations are performed in

parallel on corresponding elements.

Multiplicative operators:

* multiplication % remainder

i / division %% modulus
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Additive operators:

+ addition

Shift operators:

<< left shift

Extremum operators:

<? minimum

Relational operators:

< is less than

<= is less than or equal to

Equality operators:

== is equal to

Bitwise AND operator:

& bitwise AND

Bitwise XOR operator:

A bitwise XOR

Bitwise OR operator:

bitwise OR

Logical AND operator:

&& conditional AND

Logical OR operator:

I I conditional OR

Assignment expressions:

Simple assignment operators:

- subtraction

>> right shift

>? maximum

> is greater than

>= is greater than or equal to

! = is not equal to

Causes contextualization of RHS just as scalar && causes

conditionalization [see below and §6.2]

Causes contextualization of RHS just as scalar I I causes

conditionalization [see below and §6.2]

Compound assignment operators:

/= A=

%= I=

Sequential expression:

, evaluate LHS then RHS expressions; the result is the value of the RHS

The short-circuit operators, && and I I, in C cause their RHS to be evaluated only if the result

of evaluating their LHS requires it. That is, for &&, the RHS is evaluated if and only if the LHS is

non-zero. For I I, the RHS is evaluated if and only if the LHS is zero. When both the LHS and

RHS are scalar, this normal Standard C behavior results. )

24



TR-253 25

This normal C behavior is extended to allow the LHS or the RHS or both to be parallel. Any

parallel expressions must be of the current shape, and if one expression is scalar and the other

parallel, the scalar is promoted to parallel of the current shape by replication. If either or both

operands are parallel, a parallel overloaded version of the operator applies. In this case, the RHS

is evaluated under the context imposed by the LHS [see §6.2 for a description of context and

contextualization]. That is, the context for the RHS is narrowed to be active only where the LHS

is true (non-zero) for parallel && or false (zero) for parallel I .

5.2.2 Ternary Operator

The standard ternary C operator may be applied to parallel operands:

Conditional expression operator:

condition-expression ? true-expression :false-expression

Causes contextualization of true- andfalse-expressions

just as scalar ? : causes conditionalization [see §6.2]

When the condition-expression is scalar, the normal Standard C behavior results. That is,

either the true-expression or the false-expression is evaluated depending on the value of the

condition-expression. This usual C behavior is extended to allow the true- and false-expressions

to be parallel (even when the condition-expression is scalar). Any parallel expressions must be of

the current shape. If either the true-expression or the false-expression is parallel and the other is

scalar, the scalar is promoted to parallel of the current shape by replication.

The conditional expression operator has an overloaded meaning when the condition-expression

is parallel. In this case, it behaves like the where statement [See §6.2 Contextualization

Statement] but returns a parallel result. Both the true- andfalse-expressions are promoted to be

parallel of the current shape, and both the true-expression and false-expression are always

evaluated (even if the condition-expression is either true or false in all positions). The true- and

false-expressions are evaluated under the context imposed by the condition-expression [see §6.2

for a description of context and contextualization]. That is, the context for the true-expression is

narrowed to be active only where the condition-expression is true (non-zero), and the context for

the false-expression is narrowed to be active only where the condition-expression is false (zero).

5.2.3 Postfix Operators

A standard postfix C operator may be applied to parallel operands as well. For the postfix

operators:

Subscripting: [Described in detail in §8 on indexing]

[] subscripting
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Component selection: [Described in detail in §8 on indexing]

component selection

-> dereferencing and component selection

Function calls: [Described in detail in §11 on functions]

( ) call function There are no parallelfunctions; however, functions

can take parallel arguments and return

parallel results

Postincrement operator:

++ increment

Postdecrement operator:

-- decrement

5.2.4 Unary Operators

A standard unary C operator may be applied to parallel operands as well. For the unary

operators:

Sizeof operator: [Described in detail above in §3. 7 on Storage Size

Differences]

sizeof operator to return size

Unary minus:

- integer or floating-point negative

Unary plus:

+ integer or floating-point identity

Logical negation:

non-zero becomes zero; zero becomes one

Bitwise negation:

bitwise ones-complement

Address operator: [Described in detail in § 12 on pointers]

& address of' operand

Indirection: [Described in detail in §12 on pointers]

* dereference operand

Preincrement operator:

++ increment

Predecrement operator:

-- decrement

.)
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* 5.2.5 Cast Operator

The standard C cast operator may be applied to parallel operands as well:

Cast expression: [Described in detail in §10 on casting]

( ) type conversion

5.3 Parallel-to-Scalar Reduction Assignment Operators

When the assignment operators (except for the remainder and shift operators) are used with a

scalar LHS and a parallel RHS, the operator performs a reduction. That is, it performs the

specified operation on the parallel RHS to convert it to a scalar value, which is then combined with

the scalar LHS. Only active positions of the RHS participate in the reduction [see §6.2]. If there

are no active positions, the LHS is unchanged. The reduction operators are:

+= sum &= bitwise AND <?= minimum

-= negative of the sum A= bitwise XOR >? = maximum

*= product l= bitwise OR

/ = reciprocal of the product

sil -= bil; isequivalentto sil -= += bil; [See §5.4]

sil /= bil; isequivalentto sil /= *= bil; [See §5.4]

The programmer should be aware that these reduction assignment operators take their LHS as

one of the operands, just like the standard C assignment operators. Thus,

sil += bil;

sums the ten elements of bil and the value of sil and stores the sum in sil.

The assignment operators =, %=, <<=, and >>= cannot be used with a scalar LHS and a

parallel RHS. Any of these constructs causes a compile-time error.

An arbitrary representative of a parallel value may be chosen by casting a parallel value to be

scalar. That is, when a parallel value is cast to a scalar type, one of the elements of the parallel

value is selected and returned as the result. If no positions of the parallel value are active, the

behavior is undefined. [See § 10 for all uses of casting.]

5.4 Unary Use of the Reduction Assignment Operators

All of the reduction operators defined above are available as unary operators when applied to a

parallel operand. When the reduction assignment operators are used in a unary sense with a

parallel operand, they simply perform the reductions specified above and return the scalar reduced

result. As always, only active positions of the RHS participate in the reduction [see §6.2]. Unary

+=, -=, *=, and /= require their operand to be of arithmetic type. Unary &=, A=, and 1= require
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their operand to be of integral type. Unary <?= and >?= require their operand to be of Standard-

C-scalar type. All the unary assignment operators have the same precedence as the "unary

operators" in Standard C. The integral promotions are performed on their operands, and their

results have the promoted type. Use of these unary operators with scalar operands is a compile-

time error. Some examples of unary use of reduction assignment operators follow:

if((+= bi2) > 37) printf("Sum is greater than 37\n");

will print "Sum is greater than 37" if the sum of the bi2's is greater than 37. And

if(I= bi2) printf("At least one bit is on\n");

will print "At least one bit is on" if at least one bit in any of the bi2's is set.

5.5 Parallel-to-Parallel Reduction Assignment Operators

All of the reduction operators defined above are available as binary reduction operators when

used with a parallel LHS and a parallel RHS when the parallel LHS has collisions (more than one

lvalue is the same). Collisions may occur when the LHS is parallel left indexed [§8.2 on parallel

left indexing explains how collisions could occur]. When used in this way, the values on the RHS

with the same destination are all combined into the LHS location by performing the specified

operation. That is, these reduction operators perform the operation which, in Paris, is known as

send-with-type-operation (e.g., send-with-f-add). An example of how to use assignment

operators in this way is given in §8.4 on indexing.

When = is used with both a parallel LHS and RHS (which must be of the current shape), any

possible collisions are allowed. Once again, collisions may occur when the LHS is parallel left

indexed [see §8.2]. When collisions do occur with = as the assignment operator, one of the

colliding data elements is arbitrarily chosen to be stored into the destination. It should be noted that

although the choice is arbitrary, it must be reproducible on the same hardware in the same

configuration. [In the Paris implementation of C*, storing into a parallel-left-indexed parallel

variable uses send operations that allow overwriting].

6 Conditionalization and Contextualization Statements

6.1 Conditionalization Statement

There is no special conditional statement in C*. The standard C if statement functions as

expected in C*. It may take only a scalar expression as its condition.
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6.2 Contextualization Statement

where(where-expression) then-body

where(where-expression) then-body else else-body

The where statement is involved with setting the context, a process known as

contextualization. The context is a parallel boolean mask (i.e., each element of it is true or false)

that controls the execution of parallel operations position by position. A different context is

associated with each shape object, and the context associated with the current shape is always

applied to operators. If an element of the current context is true, parallel operations on elements in

the corresponding position take place - these are active positions; if an element of the context is

false, parallel operations on elements in the corresponding position do not take place - these are

inactive positions. Scalar operations are not affected by context.

The contextualization statement must be invoked with a parallel where-expression, which must

be of the current shape - it is a compile-time error to attempt to use where (a new reserved word)

with a scalar expression. The where statement causes contextualization of the positions of that

shape for the duration of the then-body and else-body. If APprior is the set of active positions in

the current shape immediately prior to execution of the where statement, then parallel code in the

then-body is executed only in those positions in the intersection of APprior and those positions in

'which the where-expression is true (or non-zero). That is, if Cprior is the context for the current

shape immediately prior to execution of the where statement, then for the duration of the then-

body, the context is narrowed to be the logical-AND of Cprior and (where-expression != 0). If

there is an else-body, then parallel code in it is executed only in those positions in the intersection

of APprior and those positions in which the where-expression is false (or zero). That is, if there is

an else-body, then for the duration of the else-body, the context is narrowed to be the logical-AND

of Cprior and (where-expression -= 0). All scalar code in both the then-body and the else-body is

always evaluated. After the where statement has completed, the set of active positions is restored

to its state prior to executing the where statement. For example, with the following declarations,

shape [10]Sb;

int:Sb bil, bi2, bi3, bi4;

int sil;

and if the data has the following values,
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Shape Sb: Position 0 Position 1 Position 2

bil: 2 4 3 ...

bi2: 0 0 0 ...

bi3: 1 5 32 ...

bi4: 0 0 0

Scalars:

sil: 12

and then the following program is executed with shape Sb current and all positions initially active,

where(bil >= 3) {

bi2 = bi3;

sil++;

bi4 = bi3;

the data will have the following values after execution,

Shape Sb: Position 0 Position 1 Position 2 ...

bil: 2 4 3 ...

bi2: 0 5 32 ...

bi3: 1 5 32 ...

bi4: 1 5 32 ...

Scalars:

sil: 13

Note that the assignment of bi3 to bi2 has occurred only in the active positions, that the scalar

variable sil is incremented once, but that the assignment of bi3 to bi4 has occurred in all

positions because the context after the where statement body has completed reverts back to its

state prior to the where statement.

The parallel where statement contextualized the positions of the shape, making position 0

inactive. This then affects the body of the contextualized statement in a dynamically bound way.

That is, the contextualization remains in effect for the duration of the statement and for all

procedures that it may call. (Note: there is a mechanism, called everywhere, to turn on all

positions of a shape in a nested context. [See §6.4]) It is mandatory that the parallel expression in

the where statement follow all of the usual rules for an expression. For example, the following

where statement is not acceptable because it tries to use a parallel variable in other than the current

shape:

where((bil >= 3) && (cil <= 1)) S;
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[Note: The previous example would be illegal even if a selection statement were not in C* because

it attempts to combine values in two different shapes with &&.]

The then-body and else-body that follow the where-expression may contain statements with

parallel expressions only of the current shape. It is possible for them to have expressions in a

different shape by nesting a shape selection statement within the then-body or else-body -

expressions of another shape are not affected by the contextualization of the shape of the where-

expression. Scalar code within the statements is also not conditionalized. Even if no positions of

the shape are made active by the contextualization, the then-body or else-body is still executed.

For example, with the following declarations,

shape [10]Sb, [50] [30]Sc;
int:Sb bil, bi2, bi3;

int:Sc cil, ci2;

int sil;

and the following data:

Shape Sb: Position 0 Position 1 Position 2 ...

bil: 2 4 3 0...

bi2: 0 0 0 0...

bi3: 1 5 32 54...

Shape Sc: Position 0,0 Position 0,1 Position 0,2 ...

cil: 0 0 0

ci2: 34 42 7

Scalars:

sil: O

then the following program is executed with shape Sb current and all positions (of both Sb and

Sc) initially active:

where(bi > 4)

bi2 = bi3;

sil = 4;

with(Sc)

cil. = ci2;

The data will be changed as follows after execution, even though no positions of shape Sb were

left active by the where-expression (bil > 4):
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Shape Sb: Position 0 Position 1 Position 2

bil: 2 4 3 0...

bi2: 0 0 0 0...

bi3: 1 5 32 54...

Shape Sc: Position 0,0 Position 0,1 Position 0,2

cil: 34 42 7

ci2: 34 42 7

Scalars:

sil: 4

Note that the assignment of 4 to sil has occurred even though no positions of Sb were active. An

optimizer for C* programs might check to see if the then-body or else-body contained any scalar

code. If it determined that there was no scalar code (including no calls to functions that might

contain parallel code), it might not execute the particular body at all if no positions were active.

This is an example of "as if' behavior - that is, an optimizer is free to change the actual behavior

of code it produces so long as the effect of that code is as if it did exactly what the specification

requires it to do. This is the basic license given to all code optimizers.

To keep scalar code and code in other shapes from executing if no positions of the current

shape are left active, use a reduction operator to evaluate the condition to a scalar, and then use an

if statement to conditionalize code, as follows:

if(l= (parallel_condition != 0))

where (paral 1 el_condition)

then_statement;

if (= !parallel_condition)

where( !parallel_condition)

else_statement;

except if the parallel_condition has side effects. The parallel_condition should be evaluated only

once to avoid multiple side effects. For example:

int:current parallel_temp;

if(l= ((parallel_temp = parallel_condition) != 0))

where (parallel_temp)

then_ s tatement;

if(l= !parallel_temp)

where ( !parallel_temp)

else_statement;

}

I
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If the parallelcondition is known to be 0- or 1-valued, the not-equal comparison to 0 is not needed

(the following example illustrates such a case). Alternatively, if the not-equal comparison to 0 is

needed, the parallel_temp could be declared of bool type [see § 14]. Our specific example from

above can be reformed to execute its then-body only if some positions are active, as follows:

int:Sb ptemp;

if(I= ptemp = (bil > 4))

where(ptemp) {

bi2 = bi3;

sil = 4;

with (Sc)

cil = ci2;

It is often desirable to allow iteration over parallel variables so that the iteration count varies

from position to position. This is referred to as per-position iteration. The following idiom is

useful in these cases:

while(I= (parallel_condition != 0))

where (paral 1 el_condi ti on)

statement;

It is expected that the execution of the statement will eventually decrease the positions in which the

parallel_condition is true. Thus, the statement is repeatedly executed with a gradually diminishing

set of active positions. When no more positions remain active, the while loop will terminate. As

above, the parallel_condition should be evaluated only once to avoid multiple side effects, as

follows:

int:current parallel_temp;

while( = ((parallel_temp = parallel_condition) != 0))

where (parallel_ temp)

statement;

Also as above, if the parallel_condition is known to be 0- or -valued, the not-equal comparison to

0 is not needed. Note that this technique may be used with the other iteration statements in C -

do-while and for) as well. Here is an example of this technique in a program fragment that

computes 2count in each position:



shape [10]Sb;

int:Sb count, prod;

with(Sb) {

/* Initialize each element of "count" here */

prod = 1;

while(j= (count>O))

where (count>O)

count--;

prod *= 2;

It is possible to cause more than one shape to be contextualized by nesting where statements,

as follows:

where(bil >= 3)

with (Sc)

where(cil <= 1)

S;
Any code in S (or called from S) that is of shape Sb is contextualized by the (bil >= 3)

expression, while any code in S that is of shape Sc is contextualized by the (cil <= 1)

expression.

The then-body always appears to be executed before the else-body. The compiler is free to

perform dependency analysis to prove that there are no possible dependencies between the two

bodies and run them in any order or concurrently.

The where statement provides an efficient mechanism to guarantee that the compiler may

generate code that simply contextualizes a shape without needing to perform a global reduction

(global-logior) to determine if there are any active positions left. Of course, the compiler is free to

actually generate a global-logior and branch around the code if the compiler determines that the

body contains only parallel code in the current shape and no function calls. It would do this if

there were a sufficiently large, number of lines of such code.

6.2.1 Execution with No Active Positions

The where statement allows execution of statements when there are no active positions of the

current shape. This implies that the following statement may be executed:

where(bil > 4)

sil = (+= bil);

34 TR-253
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This statement assigns to scalar variable sil the sum of the elements in active positions of bil.

0 What happens if the where statement leaves no active positions of shape Sb? The assignment to

sil should occur in any case because it is a scalar. C* deals with this situation by defining a set of

values that are returned by the unary reduction operators when there are no active positions. These

values are the identities for the operator (when one exists). Here is the table of reduction values

when there are no active positions:

Unary Reduction Operator Value

When one of the reduction operators is used in a binary context, the LHS is left unchanged if

there are no active positions of the expression's shape. (This is the natural consequence even if

one considers that the operators return the values specified in the table above, which then operate

with the LHS - except for the cast operator.) The where statement behavior implies that

operators (i.e., code generated for all operators) in all parts of a program where the

contextualization is not known at compile time (such as externally visible functions) must be able to

deal with the cases where there are no active positions of shapes.

The where statement can only further constrain the set of active positions of a shape - it can

never enlarge that set. It is precisely for the purpose of enlarging the active set of positions that the

everywhere statement [see §6.4] exists.

6.3 The switch Statement

The switch statement may be used only with a scalar-valued expression, and it behaves in the

same way that it does in C. Please note that the switch statement can cause a branch into a block.

+= 0

-_~~~~= O 0

*= 1

/= 1

&= -0 (all one bits)

A= 0

I= o
< ? = maximum value representable

> ? = minimum value representable

(scalar) [parallel value cast to a scalar type] undefined
b
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C* does not define the behavior of branching into a nested with, where, or everywhere body

or branching into a block containing a parallel variable declaration or a shape declaration.

6.4 The everywhere Statement

The grammar for the everywhere statement is:

everywhere activated-statement

The everywhere statement activates all positions of the current shape for the duration of the

activated-statement. everywhere is a new reserved word. After the activated-statement, the set

of active positions of the current shape is restored to its state immediately before the everywhere

statement. Note that, as mentioned in §4, all positions of all shapes are activated when a C*

program begins execution.

Because all parallel code in the activated-statement is executed in all positions (i.e., the context

is made active everywhere), it is equivalent to say that it is executed without performing

contextualization. An implementation is free to take advantage of this characteristic by producing

code that doesn't check to see if a position is active or not. Such code will often be more efficient

than code that may possibly be contextualized. In Paris, these instructions are known as always

instructions and they execute about 30% faster than non-always instructions.

An optimizer for the C* language may also choose to generate instructions that are independent

of context whenever it generates code whose result is stored into a compiler-generated temporary,

so long as the operation could not produce an error condition in what would otherwise be inactive

positions (e.g., division by zero).

7 Iteration Statements

All of the iteration statements, while, do, and for, behave exactly as they do in C. This

implies that all expressions in these statements must be scalar - with the exception of the initial-

expr and the increment-expr in the for statement, which may be parallel. The only interesting

cases come up in the behavior of break, continue, goto, and return. If the break, continue,

goto, or return statement is used to leave the nested context of a with statement to branch to an

outer level, the shape selection at the destination is once again made current. If the break,

continue, goto, or return statement is used to leave the nested context of a where or

everywhere statement to branch to an outer level, the contextualization at the destination is once

again made active. Note that this context may involve resetting the contexts of several shapes. C*

does not define the behavior of branching into a nested with, where, or everywhere body or

branching into a block containing a parallel variable declaration or a shape declaration. This
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behavior is determined by the implementation. Note that goto and switch can cause branches

into blocks.

If a return statement is executed while in a contextualized shape (i.e., inside a where or

everywhere), the return values are defined only in the active positions. The other return values

are determined by the implementation (everywhere may be used to initialize all values).

However, all values active in the caller's context will be visible after the return. This is simply a

manifestation of seeing more positions active after being assigned in a constrained context.

8 Position Indexing of Parallel Expressions

Parallel expressions may have their positions indexed by a set of subscripts to the left of the

parallel expression. We will refer to this type of an index as a left index. If a parallel expression is

left indexed, it must be indexed with an appropriate number of subscripts so that they conform to

the parallel expression's rank. The left indices must be integral expressions, and integral

promotions are performed on them. As will be shown later in this section, the left indices may be

either scalar or parallel. The precedence of left indexing is presented in §3.1.

If a shape is not fully specified but has its rank specified at compile time, as is the case for

shapes Se and Sf [declared in §3.1], then a compile-time check can be made to insure that the

appropriate number of subscripts are present. If the rank of a shape is not specified at compile

time, as is the case for shape Sa, then a run-time check may be generated (depending on safety

level) to insure that the rank is correct. This implies that the rank of a shape must be determined

before expressions of that shape can be left indexed. In fact, the shape must be fully specified

before parallel variables of that shape may be allocated.

Every left index must be in range for that dimension or undefined behavior may occur. Run-

time safety may be set to check for left indices that are out of range.

8.1 Scalar Left Indices

A parallel expression may be left indexed by a list of scalar expressions to select an individual

position of that parallel expression. So, for example, given the declarations:

shape Sa, [10]Sb, [50] [30]Sc;

int ail:Sa, cil:Sc;

float:Sb bf2;

int sil, si2;

the following are scalar-valued expressions:

[sil]ail if Sa is of rank one

[sill [si2]ail if Sa is of rank two



[2]bf2
[10] [sil]cil

When a scalar-left indexed expression is used as an rvalue, the value of one element is fetched

from the specified position. When a scalar-left indexed expression is used as an lvalue, it denotes

a single position of that expression. If it is used as the left-hand-side of an assignment, a scalar

value is stored into the specified position.

Because parentheses are used to convey information about the rank of an expression being left

indexed, they may not appear within a contiguous list of scalar left indices (e.g., [10]([sil]cil)

is not valid). Parentheses surrounding a left indexed expression terminate the parsing of a

complete left indexed expression.

8.2 Parallel Left Indices

It is also possible to specify parallel left indices for a parallel expression. If this is done, all

parallel left indices must be of the current shape [see §4]. If some subscripts are scalar but at least

one other is parallel, the scalar subscripts are promoted to be parallel of the current shape. The

result of parallel left indexing a parallel expression of shape S1 with subscripts of the same or

another shape, S2, is a mapping from S1 to S2 - the result is the expression being left indexed

mapped into the shape of the left indices. For example,

shape [10]Sb, [50] [30]Sc, [30] [50]Sd;

int:Sb bil, bi2, bi3;

float:Sb bf2;

int:Sc cil, ci2, ci3;

int:Sd dil, di2;

[cil]bf2 is a parallel expression of shape Sc

[bil]bf2 is still a parallel expression of shape

Sb, but its elements may be reordered in

any possible combination

[dil] [di2]ci2 is a parallel expression of shape Sd

The indices indicate which elements of the source shape should be selected in the mapping to

the destination shape. So, in the first example above, if it were used as an rvalue, it would be as if

a temporary parallel floating-point variable in shape Sc were being created as follows:

float:Sc temp;

for (O <= indexO < 30) and (O <= indexl < 50) do

[indexO] [indexl] temp = [[indexO] [indexl]cil ]bf2;

If a parallel-left-indexed parallel expression appears as an rvalue, it would imply that a get

would be needed to retrieve the value from another shape. If a parallel-left-indexed parallel
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expression appears as an value, it would imply that a send would be needed to store the value in a

variable of another shape.

For the program fragment,

shape [10]Sb, [2] [4]S1;
int:Sb bi2;

int:Sl lil, li2;
with ( S )

lil = [i2]bi2;

each element of parallel variable 1i2 (of shape SI) will serve as an left index to select an element of

bi2 (of shape Sb). The bi2 retrieved will be stored into the corresponding position of l. Thus,

each li2 (of shape Si) is used as a position left index of bi2 to get an element of bi2 (from shape

Sb) and store it into its ll. Note that it is possible for different il's to get from the same bi2

element (this will happen if they both have the same value in 1i2). Here is a schematic

representation of this operation with some specific data for 1i2:

li2:

bi2:

lil:

0 1 2 3 4 5 6 7 8 9

I I I I I I I I I I

4II- .I/ v V I 4' I I- I I
,7 A ) 101 -.

/ /' //,

Note that in this example, element 4 of bi2 was received by both elements [0][2] and [1][2] of lil,

but that elements 5, 7, and 9 of bi2 were not received by any elements of lil.

For the program fragment,

shape [10]Sb, [2] [4]S1;

int:Sb bil, bi2, bi3;

int:S1 li2;

with (Sb)

[bill] [bi2]li2 = bi3;

corresponding elements of parallel variables bil and bi2 (of shape Sb) will serve as a left index to

select an element of li2 (of shape Sd), where the corresponding element of variable bi3 will be

0 3 4 6

2 1 4 8

7 -

, tY ,e
!

0

I I I I 

I '11I
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stored. Note that if the pair of bil and bi2 is the same for different bi3s, then a collision will

occur - this is an attempt to store more than one value into the same location. When a collision

occurs, one of the data elements is chosen arbitrarily. Although the choice is arbitrary, it must be

reproducible on the same hardware in the same configuration. Here is a schematic representation

of this operation with some specific data for bil and bi2,

bil:

bi2:

bi3:

li2: 0

1

Note that in this example, there are three collisions that occur: elements 3 and 5 of bi3 are both

sent to element [0][2] of 1i2; elements 4 and 7 of bi3 are both sent to element [0][3] of 1i2; and

elements 6 and 9 of bi3 are both sent to element [1][3] of 1i2. In each of these cases, one of the

elements would be arbitrarily chosen. Also note that no datum was sent to element [0][1] of 1i2.

Because parentheses are used to convey information about the rank of an expression being left

indexed, they must not be used to separate the contiguous indices used as a left index for a single

expression. That is, for left indexing, no parentheses may separate the set of left indices whose

number is equal to the rank of the expression being left indexed. In addition, if an expression is

being left indexed more than once, parentheses must be used to separate each set of left indices.

For example, in

[ci2] [ci3] ([cil]bf2)

the parallel variable bf2 (of shape Sb) first is indexed by cil (of shape Sc), then is indexed again

this time by ci2 and ci3 (both of shape Sc).

A parallel-left-indexed parallel expression may not be the operand of the & operator. This

restriction guarantees that a parallel pointer handle cannot be created as a result of the & operator.

If the C* language is later extended to allow parallel pointer handles, this restriction may be lifted.

A parallel-left-indexed parallel expression is a modifiable lvalue if and only if the expression being

0 1 1 0 0 0 1 0 1 

0 0 1 2 3 2 3 3 2 3
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indexed is a modifiable value. In addition, a parallel-left-indexed parallel expression is an lvalue if

and only if the expression being indexed is an value.

A scalar-left-indexed parallel expression also may not be the operand of the & operator. This

restriction guarantees that a pointer to a single element cannot be created as a result of the &

operator. If the C* language is later extended to allow pointers to single elements of parallel

variables, this restriction may be lifted.

8.3 Left-indexed Expressions

In addition to being able to left index parallel variables, certain parallel expressions may also be

left indexed. Constraints on which expressions may be left indexed are implied because the

language requires that almost all operators are evaluated on operands of the current shape [see §4].

So, when no shape change is performed by the left indexing (i.e., the indexed expression is of the

current shape), any expression may be left indexed, subject to the constraint that if the left-indexed

expression is used where a modifiable lvalue is required (such as the left-hand-side of an

assignment), only a modifiable Ivalue may be left indexed. If the left index operation is changing

the shape of the indexed expression, then the only valid expressions are: parallel identifiers

(including entire parallel structs and unions), a selected field of a parallel struct or union, a

dereferenced scalar pointer to a parallel variable, and another left-indexed expression. This is the

list of operations that may be performed on operands that are not of the current shape.

8.4 How Parallel Left Indexing Is Affected by Context

A parallel-left-indexed operation is performed only as directed by active positions. When

parallel left indexing appears in an rvalue, context affects which elements are received. When

parallel left indexing appears on the LHS of an assignment, context affects which elements are

sent. Here are the examples from above with the inclusion of contextualization:

shape [10]Sb, [2] [4]S1;

int:Sb bi2;

int:Sl lil, i2;

with ( S1 )

where(! (li2 % 2))

lil = [li2]bi2;

Here is a schematic representation of the operation of this program fragment with the same data for

li2:

'e
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li2: 0

2

bi2:

lil:

Inactive:

Notice that the context has affected which positions received data because the operation performed

was a get.

shape [1O]Sb, [:2] [4]S1;

int:Sb bil, bi2, bi3;

int:S1 li2;

with (Sb)

where (!bil)

[bil] [bi2]li2 = bi3;

Here is a schematic representation of the operation of this program fragment with the same data for

bil and bi2:

Inactive:

bil: I

bi2:

bi3:

li2: 0

1

U

Io 2 13 ~i2 I 3

O O O f~~~~~~~~~~-----
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Notice that the context has affected which positions sent data because the operation performed was

tip a send.

§8.3 discusses how an expression rather than a simple identifier may be left indexed. The

question arises as to the context under which the left-indexed expression is evaluated. (Remember

that C* requires that, in almost all cases, parallel variables must be of the current shape. The

exceptions are in §4. Following these rules, when left indexing an expression that is not simply an

identifier or the selection of a struct or union member, the expression being left indexed must be

of the current shape.) When the shape of the indexed expression does not have all positions active,

should that expression be evaluated under the context of its shape, or should it be evaluated in

those positions that are being: requested by the values of the left index expression. In the former

case, it is possible that an inactive position of the left-indexed expression's shape would be read

into an active position of the current shape - this position would have an undefined value. In the

latter case, the context of the current shape would be sent to the left-indexed expression and this

expression would be evaluated in all positions whose values were requested - no requested

positions could have undefined values because they are inactive.

The C* language uses the former semantics. This solution enables more efficient code to be

generated because an additional communication operation (to send the context) is not required. The

semantics of the latter case may still be implemented by explicitly sending the current context and

recontextualizing.

8.5 Parallel-to-Parallel Reduction Assignment Operators Revisited

The reduction operators detailed in §5.3 may be used in conjunction with a left-indexed left-

hand-side. In these cases, the reductions are performed with results accumulated in multiple

elements of a parallel variable. For example:

shape [8]Sj, [10]Sk;
int:Sj jil = 42;

int:Sk kil, ki2;

with(Sk)

[ki2]jil += kil;

Starting with the following values after initialization, but before execution:

Shape Sj positions: 0 1 2 3 4 5 6 7

jil: 42 42 42 42 42 42 42 42

Shape Sk positions: 0 1 2 3 4 5 6 7 8 9

kil: 34 1 4 7 3 2 1 1 2 5

ki2: 0 4 2 3 4 4 1 5 7 5
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yields the following results after execution:

Shape Sj positions: 0 1 2 3 4 5 6 7

jil: 76 43 46 49 48 48 42 44

Shape Sk positions: 0 1 2 3 4 5 6 7 8 9

kil: 34. 1 4 7 3 2 1 1 2 5

ki2: 0 4 2 3 4 4 1 5 7 5

As discussed earlier, if the simple assignment operator is used in conjunction with a left-

indexed left-hand-side, collisions are resolved arbitrarily. For example:

shape [8]Sj, [1.0]Sk;

int:Sj jil = 42;

int:Sk kil, ki2;

with (Sk)

[ki2]jil = kil;

Starting with the following values after initialization, but before execution:

yields the following results

t Element 4 of jil gets assigned either 1 (from element 1 of kil), 3 (from element 4 of kil), or

2 (from element 5 of kil), selected arbitrarily.

$ Element 5 of jil gets assigned either 1 (from element

selected arbitrarily.

7 of kil) or 5 (from element 9 of kil),

8.6 The pcoord Function and Grid Communication

The pcord intrinsic function is a parallel axis-coordinate value constructor. Its declaration is:

int:current pcoord(int axis)

Shape Sj positions: 0 1 2 3 4 5 6 7

jil: 42 42 42 42 42 42 42 42

Shape Sk positions: 0 1 2 3 4 5 6 7 8 9

kil: 34 1 4 7 3 2 1 1 2 5

ki2: 0 4 2 3 4 4 1 5 7 5

after execution:

Shape Sj positions: 0 1 2 3 4 5 6 7

jil: 34 1 4 7 t t 42 2

Shape Sk positions: 0 1 2 3 4 5 6 7 8 9

kil: 34 1 4 7 3 2 1 1 2 5

ki2: 0 4 2 3 4 4 1 5 7 5

I
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pcoord is called with an axis argument and returns a parallel value in the current shape in

which each position is initialized to its coordinate along the specified axis. It is an error to specify

an axis number that is greater than or equal to the rank of the shape.

shape Sa, [10]Sb, [30] [50]Sd;
Here is an example of using pcoord with shape Sb current:

pcoord(O)- I 0 11 12 1 3 14 5 17181 9

Here are examples of using pcoord with shape Sd current:

0 o 0 0 0

1 1 1 1 1

2 2 2 2 2

[29 29 29 29 29

0 0

1 1

2 2

I 1291291

50 columns

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

48 49

48 49

48 49

I 4849

Besides being useful in its own right by providing a way to create an index array, pcoord is

also used for n-dimensional NEWS , or grid, communication. When pcoord calls are used as left

subscripts of a parallel value in a small number of well-defined ways (see below), NEWS

communication primitives are generated. These operations are much faster than general9

pcoord(0) -

9

pcoord(l) 30 rows

_
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communications but require that each datum transferred follow the same relative path from source

to its destination. For example, with shape Sb current,

bil = [pcoord(O)+1]bi2;

causes the generation of instructions that execute a get-from-right. As a shorthand for writing

pcoord(axis-where-this-appears) when pcoord appears within a left index, one can write the

period symbol instead. Therefore, the following statement is equivalent to the one above:

bil = [.+1]bi2;
It is important that the programmer sufficiently contextualize the positions that are active before

attempting to perform a NEWS operation, so that it will not attempt to access non-existent

positions. That is, all subscripts must be within range - positions in which invalid subscripts

would otherwise exist may be disabled through the use of the where statement. Therefore, for

correct execution of the above statement it might be necessary to encapsulate it within a

contextualization as follows:

where (pcoord(C)) < (dimof(Sb, 0)-1))

/* turn off rightmost position */

bil = [.+L]bi2;

Grid communication may appear on the left-hand-side as follows:

where (pcoord(O) > 0)

/* turn off leftmost position */

[.-1]bil = bi2;

Note that the above send-to-left grid operation was appropriately contextualized before its

execution.

It is also possible to perform NEWS operations in any number of dimensions of multi-

dimensional data at once, as follows:

dil = [.+1][.-4]di2;

dil = [.-121[.]ldi2;

dil = [.][.+17]1di2;

NEWS operations with wrapping are easily achieved by using the modulus operator as

follows:

bil = [(.+1) %% dimof(Sb, O)]bi2;

Because the dimof intrinsic function returns a signed int, it also is possible to use wrapping

with a negative NEWS offset: as follows:

bil = [ (.-1) %% dimof(Sb, O)]bi2;
The compiler may generate a NEWS instruction for the left indexing operator if all of the

expressions being left indexed are of the current shape and if each of the left index expressions are

of one of the following forms:



pcoord( this-dim)

pcoord( this-dim!) +/- scalar-int-expression

(pcoord( this-dim) +/- scalar-int-expression) %% dimof (shape-

of-this-parallel-var, this-dim)

(pcoord( this-dim) +/- scalar-int-expression) %% dimof( this-

paraj'lel-var, this-dim)

+/- scalar-int-expression

(. +/- int-expression) %% dimof (shape-of-this-parallel-var,

this--dim)

(. +/- int-expression) %% dimof(this-parallel-var, this-dim)

Note that simply referring to a parallel variable by name is equivalent to left indexing it with the

appropriate number of pcoord expressions, each with the axis' self-index as its argument. For

example, bi2 is the same as [pcoord(0)]bi2, which is the same as [.]bi2. Keep in mind that

just as for general, or router, communication, these left-indexed expressions may appear on either

the left-hand-side or right-hand-side of assignment operators.

The most efficient communications operation is chosen by the compiler in these pcoord-offset

left-index cases. For example, if the number of primitive grid communication operations is greater

than approximately 15, router communications may be used. The C* compiler automatically

generates primitive grid communication operations that can move data in both directions on any

axis and that can move data a power-of-two distance in a single operation. Particularly with these

instructions, it is almost never necessary to revert to router (general) communication when

expressions are of the above forms.

If the scalar-int-expression added to any pcoord index is not a constant, the compiler cannot

determine at compile time the distance to the source or destination. Therefore, in these cases, a

run-time routine is called to determine the minimum number of positive/negative nearest-

neighbor/power-of-two grid moves necessary to accomplish the operation. Once again, if the

number of primitive grid communication operations exceeds some threshold, router

communications may be used.

9 Dynamic Shapes and Parallel Variables

If a shape is not fully specified (as for Sa, Se, and Sf in §3.1), the programmer must call:

overload allocate_shape;

/* Create a shape with specified rank and dimensions */

shape allocate_shape(
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shape *sp,
int rank,
int dimensions, ...);

/* Create a shape of specified rank. An array of the
dimensions is passed as the second argument */

shape allocate_shape(
shape sp,
int rank,
int dimension_array[]);

before allocating variables in that shape or selecting the shape through the use of a with statement.

In the prototype declarations above, two different functions are declared with the same name [see

Overloading in § 13]. Either of these functions may be called, and the appropriate function is

chosen based on the arguments supplied in the call. allocate_shape is an intrinsic function in

C*. The call to allocate_shape modifies the shape object pointed to by its first argument and

also returns the same fully specified shape. allocate_shape guarantees that the rank passed to it

as the second argument is consistent with the rank specified when the shape was declared, if the

shape was partially specified. This check (that assignments are performed so as to be consistent

with a partially specified rank) will be performed at compile time when possible or will be

conditionally emitted at run time, depending upon the safety level.

Several calls to allocate-shape are given here as examples:

allocate_shape(&Sa, 1, 20);

allocate_shape(&Se, 1, 40);

allocate_shape(&Sf, 2, 5, 20);

shape Sg = allocate_shape(&Sg, 2, 5, 20);

Note that the last use of allocate_shape, which might have appeared in a declaration at file scope

level, uses the return value firom the intrinsic - in fact, it requires that allocate_shape return the

newly fully specified shape so that it can be assigned in the initialized declaration.

A shape may be assigned (copied) to another shape by using the assignment operator as well.

As detailed above, this assignment may occur only if the LHS of the assignment operator is a non-

fully-specified shape of appropriate rank (if partially specified). When one shape is assigned to

another, the storage duration of the shape specified on the left-hand-side should be the same as the

storage duration of the shape specified on the right-hand-side (i.e., they will both share the same

shape). This issue does not become a problem unless one examines the possibilities of assigning a

fully specified shape with a shorter storage duration to a non-fully-specified shape with a longer

storage duration. For example,
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shape S; /* Unspecified shape S */

void f(void) {

shape [1024] [512]T; /* Fully-specified shape T */

S = T; /* S will share T's shape */

void main() {

f();

int:S i; /* This allocation will fail

because S's shape was deallocated

when procedure f exited */

}

This illustrates how shape assignment is similar to pointer assignment. It is the user's

responsibility to ensure that such behavior is correct.

Shapes may be deallocated through the use of the deallocate_shape function - defined in

the <stdlib.h> header file. It has the following form:

/* Deallocate the shape pointed to by sp and make it be
either fully unspecified or partially specified, so as
to be consistent with the pointer's declaration.*/

void deallocate_shape(shape *sp);

A shape thus deallocated should not be used, nor should any copies made of it through shape

assignment. In addition, there should be no remaining parallel variables of that shape still allocated

(i.e., the behavior is undefined if parallel variables of a deallocated shape still exist). That is,

before calling deallocateshape all parallel variables of that shape that were allocated with

palloc should have been deallocated by calling pfree, and all automatic parallel variables of that

shape should have been deallocated by leaving the blocks in which they were declared.

deallocate_shape modifys the shape object to indicate that a shape is no longer associated with

that shape object and to maintain a rank constraint if the shape was partially-specified when

declared (i.e., only allow shape allocations that are consistent with the declaration).

Shapes that are explicitly allocated by the programmer by calling allocate_shape or

allocate_detailed_shape will not be implicitly deallocated by the compiler. It is the

programmer's responsibility to explicitly call deallocate_shape. This statement is true even if
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allocate_shape or allocate_detailedshape is called in the initializer of a shape.

allocate_shape and allocate_detailed_shape may be called in the initializer of a file-scope

shape. These functions are defined to be intrinsics precisely to allow them to be called in this

context.

Parallel variables may not be allocated in a non-fully-specified shape. They may be declared as

automatics in a nested scope, which is executed after the appropriate call to allocate_shape has

been made, as follows:

shape []S;

main()

allocate_shape(&S, 1, 4096);

/* Open a block so that auto parallel variables of

shape S can be declared now that S is fully-

specified */

int:S tO, tl;

with(S) {

tO = 23;

tl = 76;;

tO += tl;

deallocate_shape(&S);

If a pointer to a parallel variable [see §12] is declared, then a heap-managed parallel variable in

a dynamic shape may be allocated by explicitly allocating storage for that variable:

int:Sd *pl, *p2;

int:Sa *ql, *q2;

pl = palloc(Sd, boolsizeof(int:Sd));

ql = palloc(Sa, boolsizeof(int:Sa));

Of course, the shape must be fully-specified before calling palloc. Notice that palloc may be

called for non-dynamic shapes as well. In the example above, shape Sd is fully-specified at

compile-time. If the call to palloc does not succeed, a value equal to CMC_no_field-
declared in <cscomm.h> - is returned.

The detailed function prototype of palloc is as follows:

void:void *pal:loc(shape shape, int size_in_bools);
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The corresponding function pfree is also available to free the storage allocated by palloc. Its

argument must be a pointer to a parallel variable previously returned by palloc. The function

prototype of pfree follows:

void pfree(void:void *pvar);

Both palloc and pfree are prototyped in the <stdlib.h> header file. Because palloc/pfree

storage is heap managed, it may be allocated and freed in any order - not necessarily in a last

allocated, first freed stack protocol. For the example above, the storage pointed to by pl could be

freed before the storage pointed to by ql.

Once again, the extent of run-time checking is determined by the safety level specified at

compile time. At high safety, a check will be made to ensure that a shape has been fully-specified

before allocation of a variable of that shape is allowed. At no safety, no such check will be emitted

by the compiler.

In addition to allocate_shape, another intrinsic function is provided to dynamically allocate

shapes. It allows several other characteristics of the shape to be defined in addition to rank and

dimensions. The allocate_shape intrinsic function may be specific to a particular implementation

-the following is the CM-2 version:

overload allocate_detailed_shape;

/* Create a detailed shape with specified rank and axes */

shape allocate_detailed_shape(
shape sp,
int rank,
CM_axis;_descriptor_t axes[]);

/* Create a detailed shape of specified rank. An array of
axis descriptors is allocated locally and initialized
with the variable list of arguments */

shape allocate_detailed_shape(
shape *sp,
int rank,
unsigned long length,
unsigned long weight,
CM_news_order_t ordering,
unsigned long on_chipbits,
unsigned long off_chip_bits, ...);

/* Fill in the axis descriptor with the list of
arguments. This function is used to prepare the
"axes" argument passed to the first overloading of
allocate_detailed_shape above. */

void fill_axis_descriptor(
CM_axis_descriptor_t axis,
usigned long length,



usigned long weight,
CM_news_order_t ordering,
unsigned long on_chip_bits,
unsigned long off_chip_bits);

allocate_detailed_shape should be used in all cases where the programmer needs to have finer

control over the exact allocation for a shape. For more detail on the CM-2 version, please see the

Paris reference manual.

deallocate_shape, palloc, and pfree are functions provided by the run-time system. The

compiler has no special knowledge about these functions.

10 Casts Involving Parallel Types and Values

The cast operator may be used to cast an expression to be in a particular shape. For example, it

is possible to cast a scalar expression to a parallel expression in a named shape. This cast is

accomplished by replication of the scalar value:

/* Store number of active positions in shape Sc in sil. */

sil = += (int:Sc) 1;

/* Is any position of shape Sc active? */

sil = = (int:Sc) 1;

The reader should recognize the programming idioms expressed in these examples. The constant

one is cast to a parallel value by replication. Then, in the first example, a sum reduction is

performed on that parallel value. The sum reduction takes place in all positions that are active in

shape Sc. Therefore, the value assigned is the number of active positions in shape Sc. In the

second example, an inclusive OR reduction is performed on the promoted parallel value. The

result is zero if there are no active positions and one otherwise. Therefore, the value assigned is a

boolean reflecting whether there are any active positions.

The full type-specifier must be given in the cast type (i.e., (: Sc) is not a legal cast operation).

Another case where a cast may be used is where there are two expressions that are of the

identical shape, but the type system in the compiler cannot ascertain that. In these situations, the

programmer may explicitly cast one of the expressions to be of the shape of the other so that they

may interact together. There is no movement of data implied in a parallel-to-parallel cast. [See

§3.9 for an example of such a parallel-to-parallel cast.]

Another parallel-to-parallel cast is one that does not alter the shape but changes the base type.

This kind of cast performs the same conversions that such a scalar-to-scalar cast would cause in

Standard C. An example of this kind of cast follows:

overload fcn;

float:current fcn(float:current);
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int:current fcn(int:current);

shape [10]Sb;

int:Sb bil;

float:Sb bfl;

with (Sb)

bfl = fcn((float:Sb) bil);

In the above program, the cast was used to force the selection of the parallel float version of the

overloaded function fcn rather than the parallel int version.

A cast may also be used to arbitrarily select an element of a parallel expression. In this case a

parallel expression is cast to a scalar type. [Such a cast is referred to in §5.3.] If no positions of

the parallel value are active, the behavior is undefined. Please remember that a parallel expression

being cast to a scalar type must be of the current shape. Such a parallel to scalar cast has cost

comparable to any other reduction operation. An example of parallel to scalar cast follows:

shape [10]Sb;

float:Sb bfl;

float sfl;

9I with (Sb)

sfl = (float) bfl;

Casts may also be used for scalar pointers to parallel data - once again, no movement of data

is implied. For example, the program fragment in the previous section may optionally contain

casts, as follows:

int:Sd *pl, *p2;
int:Sa *ql, *q2;

p = (int:Sd *) palloc(Sd, boolsizeof(int:Sd));

ql = (int:Sa *) palloc(Sa, boolsizeof(int:Sa));

If the shape of the target of a pointer is changed to actually cause data to later be accessed as if it

were of a different shape, then the behavior of this operation is implementation defined.

It is also possible to use a cast to the physical shape to view any other shape as it is actually

allocated on the machine. Such a physical view of a shape is dependent upon the shape's layout

and is implementation defined. Any other use of cast, for instance casting a parallel value from one

shape to another of different rank, size, or layout, has implementation defined behavior. Any

implementation is free to allow these to function without signalling an error. They should simply

allow a parallel value of one shape to be viewed as if it were of another shape. This kind of shape

altering parallel-to-parallel cast will make layouts visible to the programmer. Shape altering
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parallel-to-parallel casts do not work in the early Paris implementations of the C* compiler (the

compiler will allow the parallel value to be treated as if it were of the cast shape, but Paris still

believes that the value is of the original shape and, if Paris safety is turned on, will signal a run-

time error).

10.1 Index Mapping Function

Casting a parallel variable to a new shape does not guarantee row-major order of positions

(row-major is the normal ordering of C arrays). Therefore, C* includes a built-in function to map

left indices of parallel variables of one shape to left indices of that same parallel variable when cast

to the physical shape. This function, physical_index, is defined as follows:

overload physical_index;

int physical_index(shape shape, int indices, . . . );

int:current physical_index(shape shape, int:current indices,

... ) ;

11 Functions

Both shapes and parallel variables may be passed to and returned from functions. It is

acceptable to use a non-fully-specified shape to declare or define a function's arguments, return

value, and local variables so long as the shape is fully specified when the function is invoked.

Parallel arguments to functions and parallel return values must be of the current shape (the

keyword current need not be used, but the specified shape does need to be the current shape

when the function is called). In the same way that parameters in C are passed by value, parallel

variables are also passed by value. This implies that there may be a hidden local variable for each

parameter passed to a function. For parallel parameters, the storage required for such a local copy

may not be negligible.

As occurs with assignment, a parallel expression passed by-value is only passed in the active

positions. To allow all positions (i.e., including the inactive positions) of a parallel variable to be

accessible from within a function, pass a pointer to the variable (or insure that all positions are

active by using everywhere around the call). In practice, the contextualization of arguments and

return value is only visible if the function accesses inactive positions via an everywhere statement

in the function or if it performs communication into or from inactive positions.

As in C, arguments to a prototyped function are implicitly converted, as if by assignment, to

the types of the corresponding parameters. Arguments to an unprototyped function undergo
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default argument promotions extended by parallel default argument promotions. Parallel default

argument promotions include the parallel integral promotions [see §5.2] and the conversion that

parallel float arguments are promoted to parallel double.

Here is a function that takes a parallel argument.

void print_sum(int:Sb x)

printf("Sum of parallel argument is %d\n", += x);

This function would be called as follows:

print_sum(bil);

print_sum(bi2);

Functions may also return parallel values:

float:current increment (float:current x)

return x+l.Of;

This function might be called as follows:

bfl = increment(bf2);

Shapes may also be passed as arguments and returned. Here is a function that takes a shape as

an argument and allocates a local variable of that shape.

int number_of_active_processors(shape x)

int:x local;

with(x) {

local = 1;

return += local;

11.1 Passing Arguments of Non-Current Shape

C* requires that all paranleters and return values be of the current shape. This restriction is a

natural consequence of parameter passing being similar to assignment. The assignment operators

require that their operands are of the current shape, and the same is true of parameters and return

values. However, C* does allow parallel variables of any shape to be passed into and returned
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from a function by reference (i.e., use a pointer to a parallel variable). [Please see § 12 on

Pointers.]

At high safety, the compiler will emit code to check the shape of such arguments at run-time to

guarantee the type safety of the program. At low safety, such checks may be omitted.

11.2 Assertion Grammar for Functions

Any function may contain a set of assertions that can be evaluated at either compile- or run-

time. These assertions may be used to indicate that the rank of an argument must be equal to a

particular value, that the second dimension of one argument need be the same as the first dimension

of another argument, that all arguments are of the same rank, and so forth. The assertions, if

present, are written at the end of the argument list enclosed within braces (the code within the

braces is known as a type-check-block) as follows:

float transpose(shape St, float:current array {

assert rankof(current) == 2;

assert rankof(St) == 2;

assert dimof(current, 1) == dimof(current, 0);

} );

These assertions should be included in both the header file (i.e., in the compilation unit that

references the function) and the file that defines the function. In that way, both the caller and the

callee know the set of assertions made by the programmer and can use them in code generation.

The compiler will attempt to interpret the assertions at compile-time. If the assertions cannot be

guaranteed at compile-time and if a sufficiently high safety level is specified, code will be generated

to check the assertions at run-time.

The only statements that may appear within the type-check-block are assertion statements. The

following operands may appear within the block: formal parameters that are parallel variables or

shapes, constants, and the predeclared shape identifiers physical and current. Parallel variables

may appear only when they are the operand of sizeof or boolsizeof or the argument of a call to

positionsof, rankof, dimof, or shapeof. All binary operators, with the exception of the

assignment and sequential expression operators, may be used. The ternary operator may be used.

All unary operators, with the exception of pre-increment and pre-decrement, may be used. The

operators sizeof and boolsizeof and the intrinsics positionsof, rankof, dimof, and shapeof

may also appear in this context. [See §3.9 for a discussion of comparing shapes and shape

equivalence.]
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12 Pointers and Arrays

This section discusses the kinds of pointers that are available in C*. C* extends the set of

possible pointer targets to include shapes, parallel types, functions which take and return extended

C* types, and other pointer types composed of these. C* also allows arrays of parallel types to be

created. The following are some examples of the pointer and array types (including those already

available in C):

* Scalar pointer to a scalar int:

int *ptrtointl; ptrtointl = &sil;

* Scalar pointer to a scalar pointer to a scalar int:

int **ptrtoint2; ptrtoint2 = &&sil;

* Scalar pointer to an unprototyped function returning a double:

double (*ptrtofcnl)(); ptrtofcnl = fcnl;

* Scalar pointer to a prototyped function taking no arguments and returning a char:

char (*ptrtofcn2)(void); ptrtofcn2 = fcn2;

* Scalar pointer to a prototyped function taking a pointer to an int as its only parameter and

returning a float:

float (*ptrtofcn3) (int *p); ptrtofcn3 = fcn3;

Scalar pointer to parallel int of shape Sb:

int:Sb *ptrtoparintl; ptrtoparintl = &bil;

* Scalar pointer to scalar pointer to a parallel int of shape Sb:

int:Sb **ptrtoparint2; ptrtoparint2 = &&bil;

* Scalar pointer to a parallel int of the current shape:

int:current *pt.rtoparint3; ptrtoparint3 = &bil;

* Scalar pointer to a scalar shape:

shape *ptrtoshapel; ptrtoshapel = &Sb;

* Scalar pointer to a scalar pointer to a scalar shape:

shape **ptrtoshape2; ptrtoshape2 = &&Sb;

* Array of 30 parallel ints of shape Sc:

int:Sc Aci[30]; ci2 = Aci[4];

ci2 = Aci[cil];

* Scalar pointer to a prototyped function taking three parameters and returning a pointer to a

parallel float of shape C. The parameters are: (1) a parallel char of the current shape, (2) a

pointer to a parallel double of any shape, and (3) a pointer to a parallel float of shape T:

float:C *(*ptrtofcn4)(char:current a, double:void *b, float:T

*c); ptrtofcn4 = fcn4;
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In the C tradition, it is a goal of C* that utilizing pointers will continue to be a fast operation. C*'s

pointers are guaranteed to have an efficient implementation. In this regard, dereferencing pointers

never involves communications among positions.

The application of the address-of operator, &, to a parallel value produces a scalar pointer to

such an lvalue. The operand of & need not be of the current shape, and no shape need be current

to apply & to a parallel lvalue. The application of & to a shape produces a pointer to shape. Left-

indexed expression may not be the operand of & [see §8.2].

The application of the dereference operator, *, to a pointer to a parallel type produces the

parallel type. The shape of the target of the pointer must be current for the result of the dereference

to be used in a program. The application of the dereference operator, *, to a pointer to a shape

produces the shape. C* allows the dereference operator to be applied to the result of adding a

scalar integral expression to either a pointer to parallel data or an array of parallel data (since an

array of parallel data is coerced into a pointer to parallel data when used in an expression). The

result has the type of the parallel data. As in C, when an integral expression is added to a pointer,

the addition is performed so that the integral expression is scaled by units of the target of the

pointer. For example, adding two to a pointer to a parallel int produces a pointer to a parallel int

which is two parallel ints past the pointer's original target. C* also allows the dereference

operator to be applied to the result of adding a parallel integral expression to an array of parallel

data. The parallel integral expression must be of the same shape as the data in the array (i.e., the

target of the pointer into which the array is coerced), which must be the current shape. The result

of this operation also has the type of the parallel data but requires the parallel integral expression to

be added in each position. This addition and subsequent dereference is an indirect addressing

operation.

The result of adding a parallel integral expression to a pointer to parallel data may appear in an

expression only if it is immediately dereferenced. Keep in mind that right indexing is exactly

equivalent to the sequence of addition followed by dereference (i.e., a[b] - *(a+b)). The addition

of a parallel index to a pointer to parallel data produces a parallel pointer handle! This type is

explicitly hidden from the programmer and no variables may be declared of this type. By making

this construct illegal in all cases but this one, the language reserves the right to extend this construct

in the future. It was a goal of the C* design to simplify the pointer types available. If it becomes

useful to include parallel pointer handles in a future version of C*, this issue may be revisited.

Note that dereferencing ptrtointl results in a scalar int; dereferencing ptrtoint2 results in a

pointer to a scalar int; dereferencing ptrtoparintl results in a parallel int of shape Sb;

dereferencing ptrtoparint2 results in a pointer to a parallel int of shape Sb; dereferencing

ptrtoparint3 results in a parallel int of the current shape; dereferencing ptrtoshapel results in a

scalar shape; dereferencing ptrtoshape2 results in a pointer to a scalar shape.
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Dereferencing or indexing into Aci with a scalar integral expression (i.e., a scalar right index)

results in a parallel int of shape Sc; indexing into Aci with a parallel integral expression of shape

Sc (i.e., a parallel right index) results in a parallel expression of shape Sc and also requires

indirection (indirect addressing) within each position. This is the only case in which a parallel right

index is allowed in C*.

C* supports the concept of void shape in a manner not unlike that used for pointers to void.

That is, the user may declare a pointer to a parallel variable of some currently unknown shape.

Pointers to parallel variables of void shape maintain knowledge of the shape of the variable to

which they actually point. This shape may be fetched through the use of the shapeof intrinsic

function. When a pointer to a parallel variable is dereferenced, the variable may be manipulated as

a parallel variable in the current shape. This pointer facility allows a pointer to a parallel variable of

any shape to be passed into a function. If the variable is not of the current shape, the current shape

may be set to be appropriate by using with(shapeof(...)). Note that unlike C, it is not

necessary to cast a pointer to a parallel variable of void shape into a pointer to a parallel variable of

some specific shape before dereferencing it. However, it is still necessary to cast a pointer if the

base type is void (this is the use of void in pointer targets in Standard C).

13 Overloading

C* allows the programmer to overload functions, but not overload operators. Overloading is

performed on the basis of argument types and number. That is, several declarations of a function

with the same name may exist if the compiler is told that overloading is being utilized with an

overload statement, which should precede the second declaration (and possibly precede all

declarations) of the named function. Additionally, any two overloaded function declarations with

the same name must differ in either the argument type of some argument or in the number of

arguments accepted by the function (except if those declarations may form a composite type). Only

prototyped functions may be overloaded.

The overload statement is simply the word overload followed by a comma-separated list of

the names of functions which may be overloaded:

overload fcnl, fcn2, fcn3;
The overload keyword may also be used as a type-qualifier directly in the declaration of a

function.

Most C* compilers will probably choose to utilize some form of name mangling to implement

overloading. This is a scheme in which a new name that embodies all necessary overloading

information is created for each overloaded function. However, because C* compilers need to

remain compatible with other languages and compilers, they still need to be able to create
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unmangled names. C* accomplishes this goal by stating that any function declaration which

precedes an overload designation of that name will not be mangled. Any function declaration

which follows or includes the overload designation will be mangled. This capability imposes a

constraint on the programmer: if some particular overloading precedes the overload designation in

any one compilation module, it must precede the overload designation in all compilation modules.

For purposes of overloading, the types of arguments are considered in their entirety. That is, a

pointer-to-int and a pointer-to-float are of different types. In addition, struct equivalence for

overloading is consistent with C's equivalence of structs based on struct names and field types.

Therefore, for two struct's to be equivalent, they must have the same struct name and the same

field types in the same order. In practice, these names and types are always consistent because

common header files are used across compilation units.

In addition, overloading may be triggered on the basis of the shape of a parallel variable. That

is, there may be one overloading for an int of shape Sa and another overloading for an int of

shape Sb. [The initial implementations of C* do not, in fact, allow overloading based on shape.

Because of this restriction, they allow only current and void shapes in the declarations of

overloaded function formal parameters.]

When an overloaded function is called, the most appropriate overloading must be found. This

search, known as the overloading algorithm, is detailed here. Initially, a search is started for an

exact match based on the number and types of the arguments. If one overloading is found, the

search has succeeded; if more than one overloading is found, an error is signalled. Next, the

search proceeds by applying conversions to the arguments. The search is conducted by

considering each parameter over all the overloadings. The first parameter's type in each

overloading is compared to the first argument's type in the call. If the call could be made by

applying some conversion, then the cost of that conversion is remembered. This is repeated for

each overloading of that called function. When all overloadings have been considered, if there is a

single minimum cost conversion, it is selected. If several overloadings have the same minimum

cost, the search continues by considering the second parameter and argument. If the search tries all

parameters and arguments and still has multiple overloadings to consider, an error is signalled. If

no appropriate overloading is found (because no conversion could be applied to an argument to

make it assignment compatible to the parameter's type), an error is also signalled. If a single

function overloading is selected, a final check is performed to insure that all remaining arguments

may be successfully converted to the types of the parameters. If any arguments cannot be

converted, an error is signalled.

The conversions are listed in the following table in order of increasing cost:

I
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Conversion

Exact match

Conversion of base type to larger base type

Promotion of scalar to parallel

Conversion of scalar base type to parallel larger base type

Conversion of base type to smaller base type

Conversion of scalar base type to parallel smaller base type

Examples

<actual argument, formal parameter>

<int, int> <float:S, float:S>

<char, int> <bool:S, double:S>

<char, char:S> <float, float:S>

<char, int:S> <bool, double:S>

<int, char> <double:S,bool:S>

<int, char:S> <double,bool:S>

If the programmer wants to guarantee the invocation of one specific overloaded function, the

arguments in the call must be cast to be of the appropriate types for that function. Although not

present in the early C* implementations, a technique to take the address of one of the overloading

of a function should be available. Following the lead of C++, it should be possible to assign the

address of a function to a pointer or to cast the address of a function to a specific overloaded type

and thereby cause that overloading to be selected. Although somewhat foreign to a C programmer

(because the cast operator affects the overloading selection to which it is applied - that is, because

understanding the expression requires information to flow up the parse tree), this approach was

chosen to be consistent with C++. Here is an example,

a) overload float:current increment (float:current x);

overload double:current increment(double:current x);

double:current (*ptrtofcnl) (double:current);

float:current (*ptrtofcn2) (float:current);

/* Select the parallel double overloading becase of the

declaration of the pointer: */

ptrtofcnl = increment;

/* Select the parallel float overloading becase of the

cast type: */

ptrtofcn2 = (float:current (*)(float:current)) increment;

14 Boolean Type

C* extends the basic set of types with a boolean integral data type. This type is named bool, a

new reserved word. A bool undergoes the standard integral promotions specified in the C

Standard and the extended parallel integral promotions. That is, when used as an rvalue, it is

promoted to an int (when a parallel boot of the current shape is used an an rvalue, it is promoted

to a parallel int of the current shape). A bool is unsigned - this is important when booleans are

' compared or interact with other signed or unsigned data. The modifier signed may not be applied

v,
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to a bool because creating signed boots would cause boolean comparisons to return different

results depending on the number of bits in a particular implementation. The size of a bool is at

least one bit. Both scalar and parallel boots may exist. Their actual size and alignment are

implementation dependent -- on a CM-2 System, a parallel bool occupies one bit of memory and

is aligned on a bit boundary. In this same implementation, a scalar bool is currently implemented

as a char. It is possible for scalar and parallel boots to have different size and alignment, but it is

not possible for them to have different sizes within one implementation. In particular, a scalar

bool may not have a size of one when in a struct and a size of eight when declared outside a struct.

The size of an object in units of boots may be determined through the use of the boolsizeof

operator [See §3.7]. The address of either a scalar or a parallel bool may be taken. Unlike bit-

fields, boots are not limited to appear only within structs, and arrays of boots may be formed.

When a non-bool is assigned to a bool or when a non-bool is cast to a bool, a logical

conversion test occurs. That is, the value assigned or the result of the cast, respectively, is 0 if the

operand was 0 and 1 if the operand was non-zero. When a boot is cast or assigned to a different

integral type, the value 0 or 1 is the result.

14.1 Pointers to Booleans

Pointers to booleans are potentially different from pointers to other types. Specifically, if a

pointer to a bool is a bit address and all other pointers are byte addresses (or, in general, if a

pointer to a bool has a finer granularity address than other pointer types), translation would be

required when a pointer is cast from a bit-based pointer to a byte-based pointer and vice versa.

When a pointer to a bool is cast to a byte-based pointer type, the pointer will point to the byte of

which the bool is a part. When a pointer to a byte-based pointer type is cast to bool, it is

implementation dependent which bit it will point to.

14.2 Boolean String Handling Functions

The set of string handling functions is extended to include parallel overloadings for the

Standard C memcpy, memmove, memcmp, and memset functions and to add equivalent

scalar and parallel boolean-sized string handling calls. Prototypes for all of these functions are

included in the <string.h> header file. [Please see Appendix A.4 for a complete description.]

15 Run-time Specification of Array Size

The array size of auto variables may be a run-time defined expression. This is acceptable for

parallel arrays as well.
I
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16 Calling Paris

The C* language does not define how parallel variables, shapes, or pointers to these are

represented in memory, passed to functions, or returned from functions. The representation of,

passing technique for, and returning technique for parallel variables, shapes, and pointers to these

are implementation dependent.

The Paris implementation of C* for the Connection Machine System has chosen to document

some of the above interface for that implementation. Because it is often desirable to be able to pass

field-id's to Paris, the Paris implementation of C* simplifies this task by making the representation

of a pointer to a parallel variable be a field-id. Therefore, Paris functions that expect field-id's may

be called directly from C* by passing parallel variables by address.

When a Paris function expects a VP-set-id, call the function passing a C* shape as the

appropriate argument.

17 Scans and Spreads

Scans and spreads are provided through functional interfaces. [Please see Appendix A. 1 for a

full description.]

.
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Appendix A Library Functions

This appendix includes prototyped declarations of parallel versions of library functions

(including standard library functions). [In practice (i.e., with a non-Standard-C back-end C

compiler), the following rules apply: (1) only those scalar functions supported by the underlying C

system will be supported by C* and (2) parallel versions of functions will exist only for those

functions with scalar implementations.]

These function descriptions are prototyped function declarations. type is a placeholder for all

C* base types - namely: bool, signed char, unsigned char, signed short int, unsigned

short int, signed int, unsigned int, signed long int, unsigned long int, float, double,

and long double. ftype is a placeholder for all C* floating-point types - namely: float,

double, and long double.

A.1 Communication functions from <cscomm.h>

Please see the C* Programming Guide for more information on these functions.

#define CMC_no_field 0

extern int CM_error_on_failed_get;
enum CMC_collision_mode {CMC_no_collisions, CMC_few_collisions,

CMC_many_collisions, CMC_collisions};
typedef enum CMC_collision_mode CMC_collision_mode_t;
typedef void (*CMC_combiner_t)();
extern CMC_combiner_t CMC_combiner_add;
extern CMC_combiner_t CMC_combinermax;
extern CMC_combiner_t CMC_combinermin;
extern CMC_combiner_t CMC_combiner multiply;
extern CMC_combiner_t CMC_combiner_logand;
extern CMC_combiner_t CMC_combinerlogior;
extern CMC_combiner_t CMC_combiner_logxor;
extern CMC_combiner_t CMC_combiner_copy;
extern CMC_combiner_t CMC_combiner_overwrite;

type:current get(
CMC_sendaddr_t:current send_address,
type:void *sourcep,
CMC_collision_mode_t collision_mode);

void get(
void:current *destp,
CMC_sendaddr_t:current *send_addressp,
void:void *sourcep,
CMC_collision_mode_t collision_mode,
int length);

type:current send(
type:void *destp,
CMC_sendaddr_t:current send_address,
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type:current source,
CMC_combiner_t combiner,
bool:void *notifyp);

void:current *send(
void:void *destp,
CMC_sendaddr_t:current *send_addressp,
void:current *sourcep,
int length,
bool:void *notifyp);

type:current scan(
type:current source,
int axis,
CMC_combiner_t combiner,
CMC_communication_direction_t direction,
CMC_segmentmode_t smode,
bool:current *sbitp,
CMC_scan_inclusion_t inclusion);

type global(
type:current source,
CMC_combiner_t combiner);

type:current spread(
type:current source,
int axis,
CMC_combiner_t combiner);

type:current copy_spread(
type:current *sourcep, '
int axis,
int coordinate);

type:current multispread(
type:current source,
unsigned int axis_mask,
CMC_combiner_t combiner);

type:current copy_multispread(
type:current *sourcep,
unsigned int axis_mask,
CMC_multicoord_t multi_coord);

void reduce(
type:current *destp,
type:current source,
int axis,
CMC_combiner_t combiner,
int to_coord);

void copy_reduce(
type:current *destp,
type:current source,
int axis,
int to_coord,
int from_coord);

unsigned int:current enumerate(
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int axis,
CMC_communication_direction_t direction,
CMC_scan_inclusion_t inclusion,
CMC_segment_mode_t smode,
bool:current *sbitp);

unsigned int:current rank(
type:current source,
int axis,
CMC_communication_direction_t direction,
CMC_segment_mode_t smode,
bool:current *sbitp);

type read_from_position(
CMC_sendaddr_t send_address,
type:void *sourcep);

type write_to_position(
CMC_sendaddr_t send_address,
type:void *destp, type source);

CMC_multicoord_t make_multi_coord(
shape s,
unsigned int axis_mask,
CMC_sendaddr_t send_address);

CMC_multicoord_t make_multi_coord(
shape s,
unsigned int axis_mask,
int axes[]);

CMC_multicoord_t make_multi_coord(
shape s,
unsigned int axis_mask,
int axis,

CMC_sendaddr_t:current make_send_address(
shape s,
int:current axis,

CMC_sendaddr_t:current make_send_address(
shape s,
int:current axes[]);

CMC_sendaddr_t make_send_address(
shape s,
int axis, ...);

CMC_sendaddr_t make_send_address(
shape s,
int axes[]);

type:current from_grid(
type:current *sourcep,
type:current value,
int distance,

void from_grid(
void:current *destp,
void:current *sourcep,
void:current *valuep,
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int length,
int distance,

type:current from_grid_dim(
type:current *sourcep,
type:current value,
int axis,
int distance);

void from_grid_dim(
void:current *destp,
void:current *sourcep,
void:current *valuep,
int length,
int axis,
int distance);

void to_grid(
type: current *destp,
type:current source,
type:current *valuep,
int distance,

void to_grid(
void:current *destp,
void:current *sourcep,
void:current *valuep,
int length,
int distance,

... ); f

void to_grid_dim(
type:current *destp,
type:current source,
type:current *valuep,
int axis,
int distance);

void to_grid_dim(
void:current *destp,
void:current *sourcep,
void:current *valuep,
int length,
int axis,
int distance);

type:current from_torus(
type:current *sourcep,
int distance,

void from_torus(
void:current *destp,
void:current *sourcep,
int length,
int distance,

type:current from_torus_dim(
type:current *sourcep,
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int axis,
int distance);

void from_torus_dim(
void:current *destp,
void:current *sourcep,
int length,
int axis,
int distance);

void to_torus(
type:current *destp,
type:current source,
int distance,
...);

void to_torus(
void:current *destp,
void:current *sourcep,
int length,
int distance,
... );

void to_torus_dim(
type:current *destp,
type:current source,
int axis,
int distance);

void to_torus_dim(
void:current *destp,
void:current *sourcep,
int length,
int axis,
int distance);

void read_from_pvar(
type *destp,
type:current source);

type:current write_to_pvar(
type *sourcep);

A.2 Math functions from <math.h>

/* Parallel overloadings */
overload
overload
overload
overload
overload
overload
overload
overload
overload
overload
overload
overload
overload
overload

ftype:current
ftype: current
ftype: current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current

sqrt(ftype:current x);
fabs(ftype:current x);
exp(ftype:current x);
log(ftype:current x);
loglO(ftype:current x);
cos(ftype:current x);
sin(ftype:current x);
tan(ftype:current x);
acos(ftype:current x);
asin(ftype:current x);
atan(ftype:current x);
cosh(ftype:current x);
sinh(ftype:current x);
tanh(ftype:current x);

0
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ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current
ftype:current

acosh(ftype:current x);
asinh(ftype:current x);
atanh(ftype:current x);
atan2(ftype:current x, ftype:current x2);
pow( ftype:current, ftype:current);
ceil(ftype:current);
floor(ftype:current);
truncate(ftype:current);
frexp(ftype:current value, int:current *exp);
ldexp(ftype:current x, int:current exp);
modf(ftype:current value, ftype:current *iptr);
fmod(ftype:current x, ftype:current y);

A.3 Utility functions from <stdlib.h>

/* Parallel overloadings */
overload int:current abs(int:current i);
overload int:current atoi(const char:current *);
overload long int:current atol(const char:current *);
overload void qsort(void:current *, size_t:current, size_t:current, int

(*)(const void:current *, const void:current *));

/* Parallel functions */
void psrand(unsigned seed);
int:current prand(void);
void deallocate_shape(shape *s);
void:void *palloc(shape s, int bsize);
void pfree(void:void *pvar);

A.4 String Handling and Boolean String Handling functions from <string.h>

/* Parallel overloadings of memcpy, memmove, memcmp, and memset */
void:current *memcpy(void:current *sl, const void:current *s2, size_t

n);
void:current *memmove(void:current *sl, const void:current *s2, size_t

n);
int:current memcmp(const void:current *sl, const void:current *s2,

size_t n);
void:current *memset(void:current *s, int:current c, size_t n);

New scalar and parallel boolean-sized memory manipulation calls follow:

bool *boolcpy(bool *sl, const bool *s2,
bool:current *boolcpy(bool:current *sl,

size_t n);
const bool:current *s2, size_t n);

Description:

The boolcpy function copies n booleans from the object pointed to by s2 into the object

pointed to by sl. If copying takes place between objects that overlap, the behavior is undefined.

Returns:

The boolcpy function returns the value of sl.

bool *boolmove(bool *sl, const bool *s2, size_t n);

overload
overload
overload
overload
overload
overload
overload
overload
overload
overload
overload
overload
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bool:current *boolmove(bool:current *sl, const bool:current *s2, size_t n);

71

Description:

The boolmove function copies n booleans from the object pointed to by s2 into the object

pointed to by sl. Copying takes place as if the n booleans from the object pointed to by s2 are

first copied into a temporary array of n booleans that does not overlap the objects pointed to by sl

and s2, and then the n characters from the temporary array are copied into the object pointed to by

sl.
Returns:

The boolmove function returns the value of sl.

int boolcmp(const bool *sl, const bool *s2, size_t n);
int:current boolcmp(const bool:current *sl, const bool:current *s2, size_t n);

Description:

The boolcmp function compares the first n booleans of the object pointed to by s to the first

n booleans of the object pointed to by s2.

Returns:

The boolcmp function returns an integer greater than, equal to, or less than zero, accordingly

as the object pointed to by sl is greater than, equal to, or less than the object pointed to by s2.

bool *boolset(bool *s, bool b, size_t n);
bool:current *boolset(bool:current *s, bool:current b, size_t n);

Description:

The boolset function copies the value of b into each of the first n booleans of the object

pointed to by s.

Returns:

The boolset function returns the value of s.
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Appendix B Sample Programs

B. 1 Program to Compute Cuberoots

#include <math.h>

#define Epsilon 0.001
#define Limit 8192

shape Limit]cubes;

double oneThird = 1.0/3.0;

double:cubes result;

double:cubes cuberoot(double:cubes a)
double:cubes x, nextX;
int:cubes active;
nextX = 1.0;
active = 1;

do
where(active) {

x = nextX;
nextX = oneThird * ((x+x) + a/(x*x));
active = (fabs(nextX-x)>=Epsilon);

}
while (I=active);
return nextX;

main() {

int i;

with(cubes)
result = cuberoot(pcoord(0)+l);

for(i=l; i<=Limit; i++)
printf("The cube root of %3d is %f\n", i, [i-l]result);

B.2 Program to Find Prime Numbers

#define MAXIMUM_PRIME 16384

#define FALSE 0
#define TRUE 1
#define FIRST_PRIME 2

/* */
/* Function to find prime numbers */
/* */
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/* Parameters:
/*
/* A pointer, "isprime_p," to a one-dimensional parallel
/* char which will have non-zero elements in all positions
/* where the index is a prime number
/*
/* Side effects:
/*
/* find_primes alters the one-dimensional parallel char
/* which is pointed to by "is_prime_p."
/*
/* Calling constraints:
/*
/* The shape of the parallel char pointed to by
/* "is_prime_p" must be the current shape and all
/* positions must be active
/*
/* Algorithm:
/*
/* This function will use the Sieve of Eratosthenes to
/* find the prime numbers. That is, it will iterate
/* through all numbers which are indices to the one-
/* dimensional parallel char
/*
void find_primes(bool:current *is_prime_p) {
bool:current is_candidate;
int minimum_prime;

*is_prime_p = FALSE;

is_candidate = (pcoord(O) >= FIRST_PRIME) ? TRUE : FALSE;

do
where(is_candidate) {

minimum_prime = <?= pcoord(O);
where(!(pcoord(0) % minimum_prime))

is_candidate = FALSE;
[minimum_prime]*is_prime_p = TRUE;

w
while(l= is_candidate);

}

main() {

shape [MAXIMUM_PRIME]s;

bool:s is_prime;
int i;

printf("Finding primes...\n");

with(s)
find_primes(&is_prime);

for(i=0; i<MAXIMUM_PRIME; i++)
if([i]is prime)
printf("The next prime number is %d\n", i);

}
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B.3 Program to Play Conway's Game of Life

#include <sys/types.h>
#include <stdio.h>
#include <cm/cmsr.h>
#include <cm/display.h>
#include <stdlib.h>

#define LIMIT 127
#define N 512

void initialize_display(void);

shape [N][N]S;

main() {

time_t timeofday = time((time_t *)O);
int gen_no = 0;
bool:S bool_gen, save_gen;
char:S neighbors;
int:S generation;

psrand(timeofday);
with(S) everywhere {

initialize_display();

/* initialize the first generation to a random pattern at the
lowest value (zero or one) -- also, generate the bool version
of the generation. "generation" has the display value for the
frame buffer (values from zero to "LIMIT", inclusively); "bool_gen"
has a zero or one value */

bool_gen = generation = prand() & 1;

do {

CMSR_write_to_display(&generation);

/* to check for stability and every other generation oscillation,
save every other generation */

if(++genno & 1) save_gen = bool_gen;

/* count number of live neighbors */
neighbors = [(.-1)%%dimof(S,0)][(.-l)%%dimof(S,1)]boolgen +

[.][(.-1)%%dimof(S,l)]bool_gen +
[(.+l)%%dimof(S,0)][(.-1)%%dimof(S,l)]bool_gen +
[(.-l)%%dimof(S,0)][(.+l)%%dimof(S,l)]bool_gen +
[.][(.+)%%dimof(S,l)]bool_gen +
[(.+l)%%dimof(S,0)][(.+l)%%dimof(S,l)]bool_gen +
[(.-1)%%dimof(S,0)][.]bool_gen +

[(.+1)%%dimof(S,O)][.]bool_gen;

/* a cell continues to live if it has 2 or 3 neighbors and a
new cell is born if it has exactly 3 neighbors -- in all
other cases, the cell dies or no birth occurs */

where((neighbors == 3) (bool_gen & (neighbors == 2))) {
/* increment "generation" to change its color, but don't

increment beyond "LIMIT" */
where(generation < LIMIT)



generation++;
}
else

generation = 0;

/* create the bool version of the generation, as well */
bool_gen = generation;

/* print out the generation number every 100 generations */
if((gen_no % 100) == 0) printf("Generation %d\n", gen_no);

/* loop until stability or every other generation oscillation has
occurred */

} while(j=(bool_gen != save_gen));

/* print out the generation number when stability occurred */
printf("Last generation %d\n", genno);

void initialize_display(void) {
int zoom;

CMSR_select_displaymenu(8, N, N);
if(CMSR_display_type() == CMSR_cmfb_display) {
zoom = (1024/N) - 1;
CMFB_set_zoom(CMSR_cmfb_dispdisplisplayid(), zoom, zoom, 0);
CMSR_set_display_offset(128/(zoom+l), 0);

}

B.4 Matrix Multiply of Square Matrices

/*************************************************************************

Matrix multiply of two square matrices

This is what we have been calling Cannon's matrix multiply.
Below is the explanation of the algorithm:

1) First both matrices being multiplied, A and B, get skewed
along a dimension. A will be skewed along dimension 1 and
B along dimension 0. The skewing vector is the same for
both matrices, except it is applied to a different axis.

2) Then a loop gets executed for as many rows as there are in a
matrix. Inside the loop:
R = R + A*B
A = A shifted by 1 along dimension 1
B = B shifted by 1 along dimension 0

Example of 3x3 matrix multiply:

Vector of skewed values: [0 1 2] I
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Matrix A before and after the skewing, it is skewed along dimension 1:

I aOO a01 a02 I
I alO all a12 I
Ia20 a21 a22 I

aOO aOl a02 I
==> all a12 alO I

I a22 a20 a21 

Matrix B before and after the skewing, it is skewed along dimension 0:

+- -+ +- -+
I bOO bOl bO2 I I bOO bll b22 |
Ibl bll b12 => blO b21 b02 
I b20 b21 b22 b2 b01 bl2 
+- -+ +- -+

Now we enter the loop, which goes on for the number of rows in a matrix
and we do a dot product.

IaOObO aOlbll a02b22 I
allblO al2b21 alObO2 I

I a22b20 a20bOl a21b12

Next we shift each matrix by one, along a dimension. Matrix A would
get shifted along dimension 1 and matrix B would get shifted along
dimension 0.

Then the loop is repeated.

This alorithm is optimal, since no processor is ever idle.

#define size 512

shape [size][sizels;

float:s a,b,c;

main() {

int i;

with(s) {

/* Initialize the arrays */

b = /*l.Of*/pcoord(O)*size+pcoord(l);
a = /*pcoord(O)+l*/pcoord(O)*size+pcoord(l);

/* Skew both matrices first (using general communications) */

[.][(.-pcoord(O)) %% dimof(s,l)]a = a;
[(.-pcoord(l)) %% dimof(s,0)][.]b = b;

/* Perform matrix multiplication */

.
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c = O.Of;

for(i=O; i<size; i++) {
c = c + a*b;
[.][(.-1) %% dimof(s,1)]a=a;
[(.-1) %% dimof(s,0)][.]b=b;

}

B.5 Program to Perform the Shuffle Exchange

#include <stdio.h>
#define DECK_SIZE 52

/*
/* Function to print a deck of cards
/*
/* Parameters:
/*
/* A parallel int, "deck," of physical shape, the first
/* DECK_SIZE entries of which contain card numbers
/*
/* Side effects:
/*
/* The contents of "deck" is printed (allowing three
/* columns per int) followed by a new line
/*
/* Calling constraints:
/*
/* The first DECK_SIZE entries of physical shape should
/* be active (because "deck" is passed by value) and
/* DECK_SIZE should be less than or equal to
/* dimof(physical, 0)
/*
/* Algorithm:
/*
/* Self-evident
/*
void print_deck(int:physical deck) {

int i;

for(i = 0; i < DECK_SIZE; i++)

printf("%3d", [i]deck);
printf("\n");

/*
/* Main function to shuffle a deck of cards
/*
/* Parameters:
/*
/* None
/*
/* Description:
/*
/* This program takes a pseudo deck of cards and
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/* repeatedly performs the perfect shuffle transformation */
/* on the deck until it is back in its original order. */
/* '/
/* The perfect shuffle is performed by cutting the deck */
/* in the middle and then interleaving cards from the */
/* two half decks. For example, if the original deck */
/* contained the cards 0, 1, 2, 3, 4, and 5, the first cut */
/* deck would contain 0, 1, and 2, and the second cut */
/* deck would contain 3, 4, and 5. Interleaving these */
/* two decks results in 0, 3, 1, 4, 2, and 5. */
/* */
/* Side effects: */
/* */
/* The program performs output */
/* */
/* Program constraints: */
/* */
/* The number of cards in the deck, DECK_SIZE, should be */
/* less than or equal to dimof(physical, 0) */
/* */
/* Algorithm: */
/* */
/* A "send" is used to perform the shuffle */
/* */
main() {

int:physical original_deck, deck, shuffling_order;

/* offset is the half-way point in the deck (for cutting purposes) */
int offset = (DECK_SIZE+1)/2, number_shuffles = 0;

with (physical)
/* only positions in the deck are left active */
where((deck = original_deck = pcoord(O)) < DECK_SIZE) {
printf("original deck:");
print_deck(original_deck);

/* generate the perfect shuffle transformation: positions in the
first half of the deck are to be sent to consecutive even positions
in the shuffled deck; whereas positions in the second half of the
deck are to be sent to consecutive odd positions in the shuffled deck*/

shuffling_order = (2*deck < DECK_SIZE) ? (2*deck) : (2*(deck-offset)+l);

printf("shuffle order:");
print_deck(shuffling_order);

do {

/* perform the shuffle */
[shuffling_order]deck = deck;

/* print the shuffled deck and an incremented sequence number */
printf("%3d:", ++number_shuffles);
print_deck(deck);

/* continue to shuffle until the deck is in its original order */
} while(l=(deck != original_deck));

/* print the number of shuffles required */
printf("Number of shuffles = %d\n", number_shuffles);
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}

}
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