
Addendum to the CM-5 C* User's Guide
Version 7.1, May 1993

1 Physical /O Routines

Section 2.4.3 of the CM-5 C* User 's Guide omits a discussion of routines for
performing physical I/O; these routines are available in Version 7.1.

The physical I/O routines are CMFS_wr i te_f ile_phys i cal and
CMFS_read_file_physical. They have the same interfaces as
CMFS_write_file_always and CMFS_read_file_always. Namely:

int CMFS_write_file_physical(int fd,

void:void* source,

int bytes_per_position)

int CMFS read file physical(int fd,
void:void* destination,

int bytes_per_position)

These routines are faster than the corresponding standard I/O routines and use

less memory. However, note these points about their use:

They are not portable. If you use the CFS_write_f ile_physical rou-
tine to write data to an external storage device, you can recover the data

only by using the CMFS_read_filephysical routine to read the data
onto the same set of physical processors, using the same file system, and
into a parallel variable with the same memory layout as the parallel vari-
able from which the original write occurred. Essentially, you must use the
same partition size, file system, and shape for both writing and reading;
if you do a physical write, you must do a physical read.

June 1993
Copyright © 1993 Thinking Machines Corporanion 1

Adderldum to the CM-5 C* User s Guide, /Version 7.1, Ma! 1993
............. ,,-......................:....,......... .k....,..........,.,............... ,[.......,..,................:..L:...........:..:.......... X ,:: .

* These routines return the total number of bytes read or written, rather than
the number of bytes read or written per-position.

* The I/O data read or written by these routines is padded. When the file
pointer is not located at an alignment boundary appropriate to the I/O

device where the file referenced through the f d argument resides, the file
pointer is adjusted upward to such a boundary before the transfer of the
data between the CM and the I/O device begins. Furthermore, garbage
data is written to pad the length of the I/O transaction to the same
alignment. The alignment padding used is 512 bytes for Datavault IO, and
16 bytes for SDA IO.

To anticipate the impact of padding before doing a read or write, use this
routine:

int CMFS physical transferlength(int fd,
void:void* target,

int bytes)

CMFS_physical_transfer_length takes the arguments of a

CMFS_read_filephysical or CMFS_write_file_physical func-

tion call and returns the number of bytes that such a call will transfer. In

other words, it returns the same value that a successfully completed call
to the read or write function would return.

Because of the complications of padding, we recommend using a physical
read only when the file pointer is in the same position it was in when the
physical write was performed.

2 Additional Discussion of Return Values of /O
Read and Write Routines

Section 2.4.3 notes that CMFS_read_file [_always] and
CMFS_write_file [_always) return the number of bytes read or written in
each position of the parallel variable. In addition, note that, if the requested
amount of data isn't actually read, CMFS_read_file [_always] returns 0,
because it can't sensibly represent the number of bytes read in each position
(which may be fractional).

June 1993
Copyright Cc, 1993 Thinking Machines Corporation

