CDPEAC Quick—-Reference

R ORI

CDPEAC: CM-5 Vector Unit Programming in C

This document describes the CDPEAC instruction set, used for writing
C programs that access the CM-5"s Vector Unit (VU) accelerators.

Note: This is a preliminary version of a forthcoming document on CDPEAC.
Please send any comments and/or corrections t0:  traveler@think.com

Syntax Conventions Used In This Document:

{a,b...} = Sclection; you must choose a or b or...

[x] = Optional part; you may include x

bold = Indicates opcode or suffix that can be added to opcode
register (Also uscd to indicate register names.)

name = Metavariable; replaced by a value or symbol

(typically indicated by a list of valid replacements)

1 CDPEAC Syntax

A CDPEAC program consists of C code with embedded CDPEAC statements.
These statements are cxpanded during compilation into code that controls the
CM-5’s Vector Units.
A CDPEAC statement is onc of the following:

® a VU Instruction

® a VU Accessor Instruction

® a VU Special Instruction

Version 1.0, February 1993



CDPEAC Quick-Reference — Preliminary Version

A VU Instruction corresponds to a scalar or vector operation performed by the
Vector Units, and is either:

® a VU Arithmetic operator, which performs an ALU operation:
addv(i,V0,V1,V2) /* vector add (V2=V0+Vl1l) */

®= a VU Memory operator, which performs a memory load or store:
loadv (i, address,V0) /* load values into V0 */

® a VU Statement Modifier, which affects statement compilation:
vmmmode (cond) /* Vector mask conditionalization */

= or some combination of the above types, made with the join operator:

join3(addv(i,v0,Vv1,V2),loadv(i,address,V0), vimnode (cond) )

A VU Accessor Instruction is an instruction that executes on the CM-5 node
microprocessor (thc SPARC), but modifies the contents of VU registers or paral-
lel memory:

dpwrt (i,ALL _DPS,sp _src,R0) /* Write VU data register */
dpget (i,DP_1,dp_stride memory) /* Get memory stride */

A VU Special Instruction is an instruction not in either of the above two classes,
which peforms some uscful opcration on the SPARC and/or VUs.

set_vector_length(8) /* Set default vector length */
1dvwm(R0) /* Set contents of dp_vector_mask register */

1.1 The Join Operator

The join operator connects arithmetic operations, memory operations, and
statement modifiers to form compound CDPEAC statements:

join (instructionl, instruction2) — default join, same as join2
joinN (instructionl, ..., instructionN) — N-way join
N = {11213141516171819}

A join can have at most one arithmetic and one memory operation, but any
number of modifiers from O to 7. The N of a joinN must match the total number
of instructons (opcrations and modifiers) supplied to the joinM.

Version 1.0, February 1993
Canvricht @ 1993 Thinking Machines Corporation

RO D il 5

TR Y B 3 OB S €% 5 S N




CDPEAC Quick-Reference — Preliminary Version
b

1.2 Registers

VU Data Registers: CDPEAC code generally refers to VU data registers. The
128 VU data registers are referenced by the following symbolic names:

RO — R127 All 128 Registers in sequential order.
V0 - V15 Vector Regs (first in each vector, same as R0, R8 ... R120)
S0 - 815 Scalar Regs (single precision), same as RO — R15

S0 - s30(even) Scalar Regs (double precision), same as R0 — R30 (even)

Vector Registers: The VU data registers are grouped in banks of 8, called vector
registers. The special register names V0 — V15 are used to refer to the first data
register in each vector. When a vector instruction requires an “aligned vector”
operand, the operand must be one of the van registers (or the equivalent Ran).

Scalar Registers: Scalar VU operations only accept the scalar registers. These
are S0 — s15 (singlc word), or the even registers from s0 — $30 (double word).
Scalar operations restrict their operands to the Snn (or equivalent Ran) registers.

Register Restrictions: The RO and R1 registers are used to store immediate
operands, so these registers should be used carefully.

Register Offsets: You can use an offset to a data register to access it and those
succeeding it in Rnn order as a vector (usually to access van elements). (See the
dreg_x register modifier in Section 1.3 below.)

Internal Registers: There are some VU internal registers that influence the
execution of DPEAC instructions. Some important examples are:

dp_stride_rsl Stride of srcl operand in arithmetic instruction.
dp_stride memory  Stride of memory addresses in memory instruction.
dp_vector_mask Context mask for vectored arithmetic operations.

dp_vector_mask_mode Decfault vector conditionalization (masking) mode.
dp_vector_length  Default vector length for both types of instructions.
dp_vector_mask_buffer Copy of dp_vector_mask used to save/restore it.

Important: The pair of VUs on a single chip (that is, VUs 0/1 and 2/3) actually
share all these intcmal registers except for the two registers dp_vector_mask
and dp_vector_mask_buffer. This means that any change to a shared register
affects bora VUs that sharc it.

Version 1.0, February 1993

Ll La AN INND L L i A mn L i £ e imatl i



4 CDPEAC Quick-Reference — Preliminary Version

.

e NN

1.3 Register Modifiers

These modifiers can be applied to any register argument in a CDPEAC operation
to specify an offsct, stride, or indirection for the register.

Register offsets:

dreg_x(dreg, index) Register offset (index must be a constant).
If dreg is Ran, this refers to R(nn+index).

Note: The dreg_x form can be the dreg argument in any modifier below.

Register striding: (Note: Unit stride is 1 for singles, 2 for doubles)
dreg With no modifier, use unit striding
dreg_u(dreg, stride) Use given stride once
scalar (dreg) Scalar striding, same as dreg_u (dreg, 0)
SCALAR (dreg) Altemnmate name for scalar (dreg)

Srcl register striding: (Note: Default szel stride is dp_stride_rsi)

dreg u(dreg,mode) Use default stride (mode is a literal symbol)
dreg_s(dreg,stride)  Storc stride as the srcl default and use it
dreg_u_s (dreg, stride, set_stride)

Use stride, and store set_stride as default

Register indirection:

dreg_i (dreg, ireg) Simple register indirection
dreg_i (dreg,dreg_u(ireg, stride))
Register indirection,ireg striding

Version 1.0, February 1993
Conurioht © 1993 Thinkino Machines Cnrnnentin.




CDPEAC Quzck—Reference — Preliminary Version 5

1.4 Common Abbreviations

Common CDPEAC opcode suffixes:

Type:  Meaning:

s Scalar operation — single elemental operation on given arguments
Vector operation — multiple elemental operation with striding
i Memory stride indirection (for memory operations)

Immediate value in src2 argument  (for arithmetic operations)

v Usc explicit veclor length  (unsticky, vlen = constant or register)

vs Usc and sct vector length  (sticky, vlen = constant or register)

vh Vlen from register ficld (unsticky, 1+(bits 19:22 of reg))

vhs  Vlen from register ficld (sticky, 1+(bits 19:22 of reg))

CDPEAC Operand type symbols:

Type: Meaning:

u Unsigned single—precision (32 bit) integer
du Unsigned double—precision (64 bit) integer
i Signed single—precision (32 bit) integer
di Signed double-precision (64 bit) integer

£ Single-prccision (32 bit) float

df Doublc-precision (64 bit) float

1.5 Typical CDPEAC Operand Names

address — VU memory address

type —  CDPEAC operation type

src,src<n> —  sourcc VU data registers (or immediate values)
dest —  destination VU data register

sp_src —  SPARC source register

sp_dest —  SPARC destination register

dreg — VU data register

ireg —  data register being used for indirection

creg — VU control register

Ver.nan 1 0, February 1993



6 CDPEAC Quick-Reference — Preliminary Version
2 CDPEAC Arithmetic Instructions
2.1 Monadic (One Source) Operators
These operators perform an arithmetic operation on the single sxc argument, and
store the result in the dest argument.
Formats:
opcode{s, v} [i] (type, src,dest)
opcode{s,v)_{v,vs,vh,vhs} (1ype,vlen, src,dest)
type = {u, du, i, di, £, df}
Opcodes: Types: Purpose:
move {u, du, i, di, £,df} Move src t0 dest, no status generated
test {w, du, i, di, £, df} Move src to dest and test
not {u, du} Bitwise invert (dest = ~src)
clas (£, df} Classify operand (dest = class of src)
exp {£, df} Extract exponent from float
mant {£, df) Extract mantissa with hidden bit
££b {u, du} Find first “1” bit
neg {i, di, £, df} Negaic (dest = 0 - src)
abs {4, di, £, df} Absolute value (dest = |src| )
inv (£, af} Invert (dest = 1/src)
sqrt (£, df} Square root (dest = sqrt (src))
isqt {£, df} Inverse root (dest = 1/sqrt (sre))
2.1.1 Convert Operator (Monadic with extra type argument)

The to operator converts between data types (szc is of typel, dest of type2).

Format:

opcode{s,v} [i] (typel, type2[x], src,dest)
opcode{s,v}_{v,vs,vh,vhs) (typel,type2[r],vlen, src,dest)
typel, type2 = {u, du, i, di, £, df}

Purpose:

Convert integer to float
Convert to another precision

{u,du, i,di}r Convert to integer (round)

Opcode: Typel: Type2:
to {u, du, i,di} (£, df}
to (£, df} {£, df)
to {£, af}
to (£, df}

{u, Qu, i, di} Convert to integer (truncate)

Version 1.0, February 1993
Copyright ® 1993 Thinking Machines Cornorntinm




,SP” EAC Quick-Reference — Preliminary Version
R

2.1.2 Dyadic (Two Source) Operators:

These operators perform an arithmetic operation on the srcl and src2 argu-
ments, and storc the result in the dest argument.

Formats:

opcode{s,v) [i] (type, sxcl,src2,dest)
opcode{s,v}_{v,vs,vh,vhs} (fype, vlen, srcl,src2,dest)

type = {u, du, i, di, £, df}

Opcodes: Types:

Purpose:

add
addc
sub
subc
subr
sbrc
mul
mulh
div

enc

shl
shlr
shr
shrr

and
nand
andc

nor
Xoxr

{u, du, i, di, £, df}
{u, du, i, di}

{u, du, i, di, £, df)
{u, du, i, di}

{u, du, i, di, £, df)
{u, du, i, di}

{u, du, i, di, £, df}
{du, di)

{£, df}

{u, du}
{u, du}
{u, du}

{u, du, 1, di}
{u, du, i, di}

(u, du, i, di, £, df}

Version 1.0, February 1993

Add (dest = srcl + src2)

Integer add with carry

Subtract (dest = srcl - src2)

Integer subtract with carry

Subtract reversed (dest = sxc2 — srcl)
Integer subtract reversed with carry
Multiplication (low 32/64 bits for ints)
Integer multiply (high 64 bits)

Divide (dest = srcl / sxc2)

Make float from exp and mant (srcl, src2)

Shift left (dest = srcl << src2)

Shift left reversed (dest = srxc2 << srcl)
Shift right (dest = sxcl >> src2)

Shift right reversed (dest = src2 >> srcl)

Bitwise logical AND

Bitwise logical NAND

Bitwise logical AND, srl complemented
Bitwise logical IOR

Bitwise logical NOR

Bitwise logical XOR

If vector mask bit = 1 then srel else sxe2



214

CDPEAC Quick-Reference — Preliminary Version

Arithmetic Comparisons:

These operators perform an arithmetic comparison between the srcl and src2
arguments, and set status flags accordingly.

Format:

opcode{s,v} [i] (type,srcl,sxc2)
opcode{s,v}_{v,vs,vh,vhs} (fype,vlen, srcl, src2)
type = {u, du, i, di, £, df}

Opcodes: Types: Purpose:
gt {u, du, i, di, £, df} Greater than
ge {u, du, i, di, £, df} Greater than or equal
1t {u, du, i, di, £,df} Lecss than
le {w, du, i, di, £, df}] Less than or equal
eq {u, du, i, di, £, df} Equal
{
{
{

ne

ig
un

u, du, i, di, £,df} Not equal or unordered
u, du, i, di, £, df} Ordered and not equal
u, du, i, di, £,df} Unordered

Compare (Dyadic with Rd constant)

The Compare operation tests for a numeric relationship between the srcl and
src2 arguments, as indicated by the supplied constant code.

Format:

opcode{s,v} [i] (type, srcl,src2,code)
opcode{s,v}_{v,vs,vh,vhs) (fype,vlen, srcl,src2,code)
type = {u, du, i, di, £, df}

Opcode: Types: Code: Purpose:
{u,du, i,di, £,df} O Test for greater than
{u, du, i, di, £, df} Test for equal
{u, du, i, di, £, df} Test for less than
}
}

{u, du, i, di, £, af Test for greater than or equal

{u, du, i, di, £, df Test for unordered (NaN present)
{u, du, i, di, £, df} Test for ordered and not equal
{u, du, i, di, £, df} Test for not equal or unordered
{u, du, i, di, £, df} Test for less than or equal

EEREREE

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation




nary Version 9

2.1.5 Dyadic Mult-Op Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the srcl, src2, and dest arguments, and store the result in dest.

Format:

opcode{s,v} [i] (type, srcl, src2,dest)
opcode{s,v}_{v,vs,vh,vhs) (fype,vlen, srcl,src2,dest)
type = {u, du, i, di, £, df}

Note: In the opcode descriptions below, the optional [h] indicates that the high
64 bits of the multiplication are to be used in the logical operation, rather than
the low 64 bits (the default).

Accumulative Operators

Opcodes: Types: Purpose:
mada {u, du, i, di, £,df} dest = (srcl * src2) + dest
msba {u, du, i,di, £,df} dest =(srcl * src2)- dest
msra {u,du, i,di, £,df} dest = dest —(srcl * src2)
{u }

nmaa ,du, i,di, £f,df} dest =-dest —(srcl * src2)

m[h]sa {du]} dest = (srcl * src2) AND dest
m[hlma {du} dest = (srcl * sre2) AND NOT dest
m{h]oa {du} dest = (srcl * src2) IOR dest
m[h]xa {du} dest = (srel * src2) XOR dest

Inverted Operators

Opcodes: Types: Purpose:

madi {u, du, i, di, £,df}] dest =(src2 * dest) + srcl
msbi  {u, du, i, di, f,df] dest =(src2 * dest)- srcl
}
]

msri {u, du, i, di, £,df} dest = srcl-(src2 * dest)
nmai {u,du, i, di, £f,df}] dest =-srcl-(src2 * dest)

m(h]si {du} dest = (src2 * dest) AND szcl
mhlmi {du) dest = (src2 * dest) AND NOT szcl
m{hjoi {du} dest = (src2 * dest) IOR sxcl
m(h]xi {du} dest = (src2 * dest) XOR szcl

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation



2.1.6 Convert Operation (Dyadic with Rs2 constant)

These operations convert the szc argument to the type indicated by the constant
code argument, and store the result in the dest argument.

Format:

opcode{s,v} [i] (type, src,code, dest)
opcode{s,v}_{v,vs,vh,vhs) (lype,vlen, src,code, dest)

ype = {i[r], £, £i}

code = a C constant from the list below

Opcode/Type: Code:

Purpose:

evt i[x] cvrIicD F I (4)
evt i[rx] cCvVTICD F_U(5)
cvt i[r] CVTICD_F_DI (6)
evt i[r] cvTICD_F DU (7)
cvt i[r] cvrTICcD _DF_I (12)
evt i[r] cvrIiCcD DF_U (13)
cvt i[r] CVTICD_DF DI (14)
evt i[r] cCvTICD DF DU (14)
cvt £ CVTFCD_F_DF (3)
evt £ CVTFCD_DF_F (9)
cvt  £i CVTFICD_I_F (1)
cvt fi CVTFICD U_F (5)
cvt fi CVTFICD_I_DF (3)
evt £i  CVTFICD_U_DF (7)
cvt  £i CVTFICD_DI_F (9)
cevt f£i CVIFICD DU_F (13)
evt £i  CVTFICD_DI_DF (11)
cvt £i

CVTFICD_DU_DF (135)

Single float to single signed integer
Same, to unsigned integer

Single float to double signed integer
Same, to unsigned integer

Double float to single signed integer
Same, 10 unsigned integer

Double float to double signed integer
Same, to unsigned integer

Single float to double float
Double float to single float

Single signed integer to single float
Same, but from unsigned integer

Single signed integer to double float
Same, but from unsigned integer

Double signed integer to single float
Same, but from unsigned integer

Double signed integer to double float
Same, but from unsigned integer

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation



CDPE
sy

2.1.7

2.1.8

AC Quick-Reference — Preliminary Version o 11

True Triadic (Three Source) Operators

These operations perform a muliplication and an arithmetic (or logical) operation
on the srcl, src2, and src3 arguments, and store the result in dest.

Format:

opcode (s, v} [i] (type,srcl,src2,src3, dest)
opcode{s,v)_{v,vs,vh,vhs} (&ype, vlien,srcl,src2,src3,dest)
type = {u, du, i, di, £, df}

Note: In the opcode descriptions below, the optional [h] indicates that the high
64 bits of the multiplication are to be used in the logical operation, rather than
the low 64 bits (thc default).

Opcodes: Types: Purpose:
madt (u,du, i,di, £,df} dest =(srcl * src2)+ src3
msbt {u, du, i, di, £,df} dest =(srcl * src2) - src3
msrt (u,du, i,di, £,df} dest = src3 - (srcl * src2)
nmat {u, du, i, di, £f,df} dest =-sre3 - (srcl * src2)

m{h]st {du] dest = (srcl * src2) AND sre3

m/hjmt {du] dest = (srcl * sre2) AND NOT sze3

m{hlot {du] dest = (srcl * src2) IOR src3

m(h]xt {du] dest = (srel * src2) XOR sre3
Important:

When a triadic operators is joined with a memory operator, the szc2 argument
of the triadic must be identical to the dreg argument of the memory operator.
(This restriction is imposed by the way such statements are assembled.)

No-op Operator

The untyped arithmetic no—op allows modifier side—effects without specifying
an operation. The no-op takes no arguments. The suffixes are as described above.

Format:

fnop(s,v} ()
fnop({s,v}_{(v,vs,vh,vhs} ()

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation



12 CDPEAC Quick-Reference — Preliminary Version

..........

3 CDPEAC Memory Operations

These operations move data between VU memory and data registers.
Note: the default memory stride is stored in dp_stride_memory.

Formats:
opcode (s, v} (type, address, dreg)
— use default memory stride
opcode {s,v}_u(type,address, stride,dreg)
— use stride once
opcode {s,v}_s(type,address, stride, dregq)
— use stride and store it as default
opcode{s,v}_u_s(type, address, stride, set_stride,dreg)
— use stride, and store set_stride as default
opcode{s,v}_i(type,address, irég, dregq)
— memory stride indirection
opcode{s,v}_i(type, address,dreg_u(ireg,stride),dreg)
— memory indirection with stride on ireg
opcode{s,v}_(v,vs,vh,vhs} (fype, vlen, address, dreg)
— explicit vector length for CDPEAC statement
opcode{s,v}_{(v,vs,vh,vhs}_i (fype,vlien, address, ireqg, dreg)
— vector length and memory stride indirection
opcode{s,v}_{v,vs,vh,vhs}_u(lype,vlen, address,cstride,dregq)
— vector length and use-once stride
type = {u, du, i, di, £, df}

Opcode: Types: Purpose:
load {u, du, i,di, £f,df} Load from memory to VU data register
store {u,du,i,di, £f,df} Storc from VU data register to memory

No-Op Instruction: Untyped memory no—op allows modifier side-effects with-
out a load or store. Suffixes and arguments are as in the load/store formats above.

memnop (address)

memnop u(address, ustride)

memnop_s (address, stride)

memnop_u_s (address, stride, set_stride)
memnop i (address, idreg)

memnop_ (v, vs,vh, vhs} (vlen, address)
memnop_{v,vs,vh,vhs}_i(vlen, address, idreq)
memnop_{v,vs,vh,vhs} u(vlen, address, ustride)

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation



CDPEAC Quick-Reference — Preliminary Version
S

R e

4 CDPEAC Statement Modifiers

This section describes the statement modifiers that can be joined with arithme-
tic and memory operations to affect their assembly and/or execution. Note: Some
of these modifiers (such as the last three) can be used on their own.

General Modifiers:

nopad, pad(n)  Vcctor length padding ( n = new length, default is 4 )
maddr(address) Memory address for statement lacking memory load/store
[nolalign Doubleword alignment guarantee on memory operand

Vector Mask Modifiers:

vmmode[_s](mode)  Vector mask conditionalization mode
(_s version sets value of dp_vector_mask_mode)

Mode: Meaning:

viomode  Use default vector mask mode (dp_vector_mask_mode)
cond Full conditionalization

condalu Arithmetic operation only

condmem Mcmory operation only

always No conditionalization

vmrotate, vimcurrent Vector mask bit rotation
vminvert, vmtrue Vector mask bit sense
vmold, vmnew, vmnop Vector mask copy mode

Accumulated Context Count:

vmcount[{v,s}] (dreg) Sct dreg to count of 1's in vector mask

Note: _s version is for scalar ops, _v for vector ops. (_v is the default.)

VU Pair Data Exchang_ea

exchange, noexchange Arithmetic results exchanged by pairs of
VUs on the same chip

Population Count:

epc(s,v} (type, src,dest) Counts 1 bits in src, stores total in dest
type = {u,du)

Version 1.0, February 1993
Convrioht © 1993 Thinkino Marhines Cornoration



CDPEAC Quick-Reference — Preliminary Version

5 VU Accessor Instructions

“These accessor instructions are always used as single statements, execute on the
node microprocessor (the SPARC), and generally move data between the SPARC
and the VU, or affect values stored in SPARC registers.

Data Register Read/Write Operators: These move data between SPARC Reg-
isters and VU Data Registers:

dpwrt [_sync,_nosync] (fype, selector, sp_src,dreg)
dprd{_sync,_nosync] (ype, selector, dreg,sp dest)
type = {u, du, i, di, £, df}
sync/nosync = whether to sync VU pipeline (default is sync)

Control Register Read/Write Operators: These move values between SPARC
Registers and VU Control Registers:

dpset [_supervisor] (Iype,selector,sp_src,creq)
dpget [_supervisor] (fype, selector, creqg, sp_dest)
type = {u, du, i, di, £, 4f)
supervisor = gel/set in supervisor region

Parallel Memory Load/Store Operators: These move values between SPARC
registers and VU parallel memory:

dpld (type, address, sp_dest)
dpst (fype, sp_szc,address)
type = {u, du, i, di, £, df}

Memory Space/Bank Conversions: These operators modify the memory
address in the szc register 1o point to a different space/bank of VU memory, and
store the modified address in dest.

dpchgsp (src, dest) Toggle between data/instruction spaces
dpchgbk (src, selector,dest) Change referenced VU region
VU Pipeline Sync: This operator prevents the preceding and following

CDPEAC statements [rom overlapping in the VU pipeline:

dpsync ()

Version 1.0, February 1993
" Copyright © 1993 Thinking Machines Corporation



CDPEAC Quick-R

CDPEAC Function Setup/Cleanup:

dpsetup () Initializes the VU registers for use with CDPEAC code;
must appear at start of block of CDPEAC code.

dpcleanup () Restores state of VU registers required for CM Run-Time
System code. Must appear at end of a block of CDPEAC
code that can be called by CMRTS.

6 VU Special Instructions

These control operations are always used as single statements, and typically per-
form some useful operation on VU or SPARC registers and/or memory locations.

VU Internal Register Modifiers: These operations expand into CDPEAC
instructions with special modifier flags that sct the values of one or more of the
following VU intemnal registers:

dp_vector mask _mode Default vector mask mode

dp_stride memory Default memory stride

dp_stride_rsl Default sxc1 register stride

dp_vector_length Default vector length
set_vmmode (vmmode) Sets dp_vector_mask_mode t0 vmmode
set_mem stride (stride) Scts dp_stride memory to stride
set_rsl_stride(rsl_stride) Sets dp_stride_ rsl o rts_stride
set_vector_length(vlen) Scis dp_vectoxr_length to vien

set_vector_length and vmmode (vlen, vmmode)
set_vector_length and_rsl stride(vlen,rsl_stride)
set_vector_ length and rsl_stride and_vmmode

(vlen, rsl_stride, vmmode)

Vector Mask Load/Store: These operators move the value of the vector mask
register to or from the specified VU data register (dreg).

ldvm (dreg)
stvm(dreq)

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation ; P



16 CDPEAC Quick-Reference — Preliminary Version
R e A A 3 R S o e vy

7 Special Notes and Restrictions

Register Stride Restrictions:

When you apply a stride of O to the srcl argument of an arithmetic operation
(for example, dreg_u (R0, 0) ), the sxcl register must be one of the scalar
registers S0 through s15 (or $30 for double precision).

Src2 Operand Restrictions:
The szc2 operand of an arithmetic instruction has the following restrictions:

= For vector operations, src2 cannot be any of RO through R7, by any
name (S0, V0, etc.).

s In scalar operations, src2 cannot be any of Ran, where nn is any
multiple of 16 (for single-precision) or 32 (for double-precision).

(For the Curious: This restriction is imposed by the way CDPEAC opera-
tions are represented internally.)

Triadic Operator Restrictions:

When a triadic arithmetic operation and a memory operation are joined, the
src2 operand of the arithmetic operation must be identical to the dreg operand
of the memory operation.

Double Precision Move Immediate:

Double-precision move operations only use the upper 32 bits of an immediate
source operand. Thus, opcrands with any non-zero bits in the lower 32 bits
cannot be specified.

Version 1.0, February 1993

M amawinke B 1002 TL!wlica Mankiman Maconecatine



