The
Connection Machine
System

CM-5 C* Release Notes

Version 7.1
May 1993

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, May 1993 -~

kkhkhkhkkkhkhkkhkhkkhkhkhkhkhkhkhkkhhkhkkhhkhkkhkhkhhhhkhhkhkhkhhkhhkkhhkhhhrkhkhhhkhhhhhhhhkhhhkhkkdhhiiit

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein. o

khkkhARAEAAAkkhkAhkkhhkkbrbhkrhhhhhhkrhhhhbhkhhhkhhhhhdkhrhhhhhkhhkhrhhhhhhhkkkhkhkhbhkrkhkhrk

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMost and Prism are trademarks of Thinking Machines Corporation.

c*®isa registered trademark of Thinking Machines Corporation.

Paris and CM Fortran are trademarks of Thinking Machines Corporation.

Thinking Machines® is a registered trademark of Thinking Machines Corporation.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142 -1264 -
(617) 234-1000

Customer Support

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines’

home office customer support staff:
Internet
Electronic Mail: customer-support@think.com
uucp
Electronic Mail: ames!think!customer-support
U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street

Cambridge, Massachusetts 02142-1264

Telephone: (617) 234-4000

Version 7.1, May 1993
Copyright © 1993 Thinking Machines Corporation iii

CM-5 C* Version 7.1
Release Notes

1 About CM-5 C* Version 7.1

CM-5 C* Version 7.1 is a new release of the CM-5 C* compiler. CM-5 C* is an
implementation of the C* language, as described in the C* Programming Guide.
Version 7.1 works with CMOST Version 7.2 S2 or later. CMOST Version 7.2 Beta
Patch 3 is required to remove some restrictions in support for CMFS calls on
CM-5s with vector units.
The release notes are organized as follows:

= Section 2 lists changes from the Beta release of Version 7.1.

® Section 3 lists differences between CM-5 C* and CM-200 C*.

= Section 4 discusses issues in porting CM-200 C* programs to the CM-5.
To learn about restrictions in this release, see the on-line bug update report,

which is by default in the file /usr/doc/cstar-7.1.bugupdate; if this file
doesn’t exist on your system, check with your system administrator.

2 Changes from the Beta Release

The final release of Version 7.1 adds the features discussed in this section to
CM-5 C*. :

Version 7.1, May 1993
Copyright © 1993 Thinking Machines Corporation 1

2.1

2.2

2.3

24

C* Release Notes

Routines for Manipulating Pointers
to Parallel Variables

A functional interface has been added that gives you access to the memory
address and stride for a pointer to parallel variable, and lets you create pointers
to parallel variables using this information. For a description of this interface, see
Appendix C of the C* Programming Guide, May 1993 edition.

Interface for Calling C* Routines from CM Fortran

An interface is now available that lets you call C* routines from a CM Fortran
program. For complete information and sample programs, see Chapter 2 of the
CM-5 C* User s Guide.

Increased Performance

Several areas of the compiler have been made more efficient for the official
release of Version 7.1.

CMFS_diseek Supported as of CMOST 7.2 Beta 2

As of CMOST 7.2 Beta 2, CM-5 C* will support CMFS_dlseek. CMFS_dlseek
is the same as CMFS_1lseek, except that it takes a double as the argument
specifying the number of bytes. A new C* CMFS library will be shipped with
CMOST 7.2 Beta 2 to support this enhancement.

Version 7.1, May 1993
Copyright © 1993 Thinking Machines Corporation

C* Release Notes 3
e SRR 3 PR R B SR e AN

3

3.1

3.2

33

Differences from CM-200 C*

This section lists differences between CM-5 C* and C* for the CM-2 and CM-200
(referred to as CM-200 C*). For further information on these differences, see the
C* Programming Guide, May 1993 edition.

Restriction on Shape Sizes Removed

The CM-200 C* restrictions on shape extents are not present in CM-5 C*. The
sizes of a shape’s dimensions need not be powers of 2, and the total number of
positions in the shape need not be a multiple of the number of physical
processors that the C* program is using. The only restriction is that the size of
each dimension must be greater than 0.

Different Size for Parallel bools

On the CM-5, parallel bools occupy 1 byte of storage, not 1 bit, as on the CM-2
and CM-200. (This change is necessary because CM-5 memory is not
bit-addressable.) The semantics of using bools remain the same; you need not
change an existing program to deal with the new size. Memory usage will go up
on the CM-5, however. Also note that on the CM-5, boolsizeof gives a size in
bytes, and is therefore exactly like sizeof. See Section 5.4 of the C*
Programming Guide for more information.

Programs Can’t Call Paris

CM-5 C* programs can’t call Paris routines (because there is no Paris on the
CM-5). CM-2-specific header files such as <cm/paris.h> are not available on
the CM-5.

Version 7.1, May 1993
Copyright © 1993 Thinking Machines Corporation

3.4

3.5

3.6

3.7

C* Release Notes

R e

o

Improved Performance of Parallel Right Indexing

Parallel indexing into parallel arrays performs better in CM-5 C* than it does in
CM-200 C*.

New *= and /= Reduction Operators

CM-5 C* implements the *= and /= parallel-to-scalar reduction operators.

As a binary reduction operator, *= multiplies the values of the active elements
of the parallel RHS by the value of the scalar LHS and assigns it to the LHS. As
a unary operator, it returns the product of the active elements of the parallel
variable.

As a binary reduction operator, /= divides the value of the scalar LHS by the
product of the parallel RHS and assigns the result to the scalar LHS. When it is
used as a unary operator, it returns the reciprocal of the product of all active
positions in the paralle] variable.

ANSI Compliance
The CM-5 C* compiler is generally compliant with the ANSI standard. This

means that the CM-5 C* compiler will reject some programs that previously
compiled without error.

Parallel enums Are Supported

Unlike the CM-200 C* compiler, CM-5 C* supports parallel enums. See Section
5.6 of the C* Programming Guide for more information.

Version 7.1, May 1993
Copyright © 1993 Thinking Machines Corporation

C* Release

3.8

3.9

3.10

€s

Not:

Limitations on Parallel Unions Removed

The limitations on parallel unions discussed on page 60 of the C* Programming
Guide, Version 6.0.2, are removed in CM-5 C*. Note, however, that taking
advantage of the removal of these limitations may make your program
nonportable. See Section 5.5 of the C* Programming Guide, May 1993 edition.

New Versions of read_from_pvar and write_to_pvar

CM-5 C* overloads the communication functions read_from_pvar and
write_to_pvar for parallel data of any length. Using these versions of
read from pvar and write_to_pvar for aggregate data may make your
program nonportable. See Section 14.4 of the C* Programming Guide for more
information.

New allocated_detailed_shape Function

CM-5 C* has its own version of allocate_detailed_shape. For a
description of it, see Appendix B of the C* Programming Guide.

Porting CM-200 C* Programs to the CM-5

Most CM-200 C* programs should port without difficulty to the CM-5. You must
recompile and relink using the CM-5 C* compiler. This list summarizes the
changes that you must make (when applicable) to ensure portability:

®* Remove all Paris calls.

® Remove all calls to libraries not supported on the CM-5.

Version 7.1, May 1993
Copyright © 1993 Thinking Machines Corporation

6 C* Release Notes
i I

®* Remove all include files not supported on the CM-5 (for example,
<cm/paris.h>).

® If you express lengths in terms of bits in a function (for example, in the
overloaded versions of the grid communication functions or the get or
send function), rewrite the code to express the size with boolsizeof
and the appropriate parallel type.

* Change calls to allocate_detailed_shape to use the new format.

®* The CM-5 C* compiler disallows casts between scalar types and pointers
to parallel variables. If you call palloc() in a CM-200 C* program
without including <stdlib.h> (which properly declares its return type)
and cast the result, the code won’t compile on the CM-5. Thus, this code
won’t work:

/* No included stdlib.h file */

int:current *p = (int:current *)palloc(current,
boolsizeof (int:current)) ;

Change it to this so that it will work in CM-5 C*:

#include <stdlib.h>

int:current *p = palloc(current,
boolsizeof (int:current)) ;

Version 7.1, May 1993
Copyright © 1993 Thinking Machines Corporation

