
The
Connection Machine
System

CM-5 I/O System
Programming Guide

_ S~~~~~~~~~~I I IlI 1,E O IIIIIIIII

Preliminary Documentation for Version 7.2 Beta 1

December 21, 1992

Thinking Machines Corporation .
Cambridge, Massachusetts

II'I,

I

!1

I

I
Ur

First beta printing, December 21, 1992

PRELIMINARY DOCUME ATION

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines assumes no liability for errors in this
document

This document does not describe any product that is currently available from Thinking Macines Corporation,
and Thinking Machines does not commit to implement the contents of this document in any product.

The pages describing cmtmr in this mamnal are derived from tar: The GNU Tape Archive, by Jay Fenlason As
such, these pages, and no others, carry the following copyright.

Copyright C 1988 Free Software Fomdation, Inc.
Permission is granted to make and distribute verbatim copies of the pages describing cmter provided that the
copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and
distribute modified versions of the pages describing cmtar under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed under the terms of a permission notice identical
to this one. Permission is granted to copy and distn'bute translations of the pages describing cmtr into another k
language, under the conditions stated above for modified versions.

Connection Machine0 is a registered tradeark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMosr, CMAX, and Prism are trademarks of Thinking Machines Corporation.
C*® is a registered trademark of Thinking Machines Corporation. i
Paris, *Lisp, and CM Fortan are trademarks of Thinking Machines Corporation.
CMFS, CMMD, CMSSL, and CMXIl are trademrks of Thinking Machines Coporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Thinkling Machines- is a registered trademark of Thinking Machines Coporation.
IBM is a trademark of nteatiol Business Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC Internaal, Inc.
Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc -
UNIX is a registered trademark of UNIX System Laboratories, Inc.
VAX, ULTRIX, VAXBI, and VMS are trademarks of Digital Equipment Corporation.
VMEbus is a trademark of Motorola Corporation.

Copyright O 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Coporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

Contents
1111111 ! !! ! ! ! ! !!-- ---....-------- !Ii! : - ;;!'

About This Manual ..

Field Test Support ..

Chapter 1 Introduction to CM-5 I/O

1.1 I/O Components of the CM-5 System

1.2 /0 Processes on the CM-5 System

1.3 The Connection Machine File Systems

1.3.1 Which File System Do You Want?

1.4 File System Interfaces

1.5 Accessing the File Systems from C-Based Languages

1.5.1 Accessing the File Systems from C

1.5.2 Accessing the File Systems from C*

1.6 Accessing the File Systems from Fortran-Based Languages

v

vii

1

4

5

7

8

9

9

10

11

1.6.1 Accessing the File Systems from Fortran 77 12
1.6.2 Accessing the File Systems from CM Fortran Version 1.2 12

1.6.3 Accessing the File Systems from CM Fortran Version 2.1 13

Chapter 2 Introduction to the CMFS File System and Its Software ... 15

2.1 The CMFS File System Environment 15

2.2 CMFS Files 17

2.3 The CMPS Software 18

2.3.1 The CMFS User Commands 18

2.3.2 The CMFS Library Clls 20

Appendixes

Appendix A CM-5 CMFS Commands 25

Appendix B CM-5 CMFS Calls 75

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation iii

........................

............

U

I
k

k

I
I

II

em

h

k
k0k

kh

I
I

1k

k

(ll

k

k

k

k

k

k

k
ek

About This Manual
.___PIIIII~lglY~8~gP--------

Objectives of This Manual

This manual describes the Connection Machine file systems available with
CMosT Version 7.2 Beta 1.

Intended Audience

We assume the reader is familiar with basic Connection Machine model CM-5
operation and terminology. We assume the reader is familiar with the UNIX file
system, or that documentation about it is available to him or her.

Revision Information

This is a preliminary draft of a new manual. We intend to expand the information
herein.

The manual Connection Machine I/0 System Programming, Version 6.1, may
provide helpful information in the interim.

Version 7.2 Beta 1, December 21, 1992
Copyright a 1992 Thinking Machines Corporation V

I
0
I
I
I
I
I

I
emII

1

I

0NN0
0

0
@11

N

Field Test Support

Field test software users are encouraged to communicate with Thinking
Machines Corporation as fully as possible throughout the test period. Please
report any errors you may find in this software and suggest ways to improve it.

When reporting an error, please provide as much information as possible to help
us identify the problem. A code example that failed to execute, a session tran-
script, the record of a backtrace, or other such information is extremely helpful
in this regard.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for field test support. Otherwise, please contact Thinking
Machines' home office customer support staff:

Internet
Electronic Mail: customer-supportathink.com

uucp
Electronic Mail: ames! think! customer-support

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Telephone: (617) 234-4000

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation Vii

Chapter 1

Introduction to CM-5 I/O

The Connection Machine 1/0 system facilitates the storage, retrieval, and inter-
process sharing of the massive amounts of data used and generated by the
Connection Machine supercomputers. The high speeds at which data transfer
typically occurs significantly enhances CM application performance. The Con-
nection Machine 1/0 system is both flexible and easy to use; it can incorporate
a wide variety of I/O devices and access any of these devices through a variety
of interfaces.

This volume describes how to use the 1/0 system of the Connection Machine
model CM-5 to achieve typical data transfer objectives. This chapter provides
background information about the CM-5 1/0 system, including descriptions of:

* The hardware components of the CM-5 1/O system.

* The software that manipulates the CM-5 I/O system and its files.

1.1 /0 Components of the CM-5 System

Figure 1 and Figure 2 show the 1/0 hardware components of a typical CM-S
system. In addition to the CM-5 itself, the system consists of one or more I/O
devices, listed below. As shown in Figure 2, a Connection Machine model CM-2
or CM-200 may also have access to the I/O devices. Your system administrator
can tell you which devices are available for general use.

As of CMoST Version 7.2, the CM-S system supports the following 1/O devices:

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation 1

SDA
CM-5

CMIO bus 1

ult

I

Ethemet

Figure 1. A typical CM IVO system for the CM-5.

I

mR

Figure 2. A typical CM 110O system shared by the CM-2/200 and the CM-5.

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation

)6
!

2

U
CM-5 o/0 System Programming Guide

I
I
I
I
I
p

m

m

m

~~~~gl888~~~~~~~~~~~~~~~~~P~~~~~~a11i s n r ------------------------- I----------------

I 1. I ,,



Chap11- ......rouc-o to--- -S ----------------.--------- T''Y ... 3

Scalable Disk Array (SDA)

The Scalable Disk Array is the CM-5 system's main, storage device, typi-
cally providing 25-200 Gbytes of disk storage at I/O bandwidths of 33-264
Mbytes/second. The SDA, which resides within the CM-5 cabinets, is a
collection of sets of high-speed commodity disks directly connected to the
CM-5 networks. The direct connection to the networks enables each set of
disks to contribute not only to storage capacity but also to /O perfor-
mance; the number of the disk sets in an SDA system can be increased or
decreased to achieve an I/O system matched to the performance and
capacity needs of CM-5 applications.

An SDA supports up to two separate UNIX-compatible file systems. Data
is striped over all the disks in a file system, transparently to the user. Parity
is checked (and single-bit errors are corrected, when necessary) on each
I/O operation.

The devices listed below reside on a high-speed multidrop CMIO bus, which has
a special interface to the CM-5 networks:

* DataVault

The DataVault is compatible with all the Connection Machine systems:
the CM-5, CM-2, and CM-200. It provides up to 60 Gbytes of disk storage.
The DataVault is dual-ported to allow high bandwidth data transfer and
system flexibility. The DataVault file server computer, a microcomputer
inside the DataVault, hosts the DataVault's UNIX-like file system.

* VMEIO Host Computer

The VMEIO host computer typically connects VME-based I/O devices,
such as video frame grabbers and magnetic tape drives, to the Connection
Machine systems. Such devices provide convenient means of backing up
and retrieving data. The file system that resides on the VMEIO host com-
puter treats each device as a file, and allows the host computer itself to
provide secondary disk storage for files.

* CM-IOPG

The CM-IOPG also supports the VME protocol. Typically, though, the CM-
IOPG connects storage devices that have SCSI drives - such as an IBM-
3480-compatible tape drive - to the Connection Machine systems. As on
the VMEIO host computer, the file system that resides on the CM-IOPG
treats each device as a file, and allows the host computer itself to provide
secondary disk storage for files.

Version 7.2 Beta 1, December 21, 1992
Copyright I 1992 Thinking Machines Corporation

Chapter . Introuction to CH-5 1/0. 3



4 CM-5 VO System Programming Guide

~··d·-d-·· -----·--·-·-· em~
To communicate with the CM-5 and each other, the I/O peripherals use internal
networks or a combination of the networks and external buses. The SDA has a
direct interface to the CM-5 processors via the CM-5's Control Network and Data _
Network. The other peripheral devices - DataVault, VMEIO host computer, and N
CM-IOPG - use Thinking Machines Corporation's proprietary CMIO bus to con-
vey data among themselves, and to and from the PNs (processing nodes); an B
Ethernet conveys control and status information.

An Ethernet also can convey data among the DataVault, VMEIO host computer, _
and CM-IOPG in the absence of an appropriate CMIO bus connection. In Figure 1 N
and Figure 2, for example, since there is no CMIO bus connection between either
CM and the CM-IOPG, CM-2/CM-5 - CM-IOPG data transfer would proceed
over the Ethernet. Since the Ethernet is very slow compared to a CMIO bus, if
a need were to arise for frequent CM-2/CM-5 - CM-IOPG data transfers in the
systems shown in these figures, an additional CMIO bus would be installed be- B
tween the CM(s) and the CM-IOPG.

1 I Ir Drn-aFgo e kan .h r R_U Ctsf E m

l he Connection Machine 1/U system is modeled on the typical client-server rela-
tionship: a program running on a machine acting as client requests that a machine
running a server process either send or receive data. The following CM-5 system
components can act as a client:

* CM-5 processing node(s)1

* CM-5 control processor memory

* CM-IOPG p
* VMEIO host computer

The following Connection Machine system components can act as a server:

* CM-5 control processor memory

• SDA

* DataVault

* CM-IOPG

* VMEIO host computer

1. That is, operating together as one body, or separately; see the CMMD UserS Guide.

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation

B)

I·L I/V rlV~~- I V I - .I I . . .. ll



Chptr . ntodctontoCMS /O 

The three kinds of 1/0 currently supported by the CM-5 system are distinguished
by which system component acts as client and which acts as server:

* Parallel I/0

The CM-5 - specifically, one or more processing nodes - is the client,
requesting a server to read to it or accept writes from it.

* Serial I/O

A CM-5 partition manager or other control processor, or a serial computer
(for example, a CM-IOPG or VMEIO host computer) is the client, request-
ing a server to read to it or accept writes from it.

* Tape O

A CM-5 partition manager or other control processor, or a serial computer
is the client, requesting a tape device acting as server to read to it or accept

writes from it.

1.3 The Connection Machine File Systems

The CM-5 system can access three file systems, two of which are proprietary to
Thinking Machines Corporation. The two proprietary file systems, the SFS and
CMFS file systems, exploit the great speed and massive storage capabilities of the
Connection Machine I/O systems. The other supported file system, UNIX, further
enhances system usability. All three file systems organize files into directories,
use pathnames to identify them, and treat all 170 devices as files. Following is a

brief description of each file system:

SFS (Scalable File System) is a UNIX-compatible file system mounted on

the SDA's I/0 control processor, which manages the SDA's files. The SFS
file system is an enhancement of the UNIX file system, with extensions to
support parallel 1/0 and files much larger than most UNIX implementa-
tions can accommodate. From a user's perspective, the SFS file system
appears like and behaves like a UNIX file system.

A CM-5 program can access the SFS file system via the CMMD library, the

CMFS library and a subset of the CMFS commands, standard UNIX rou-
tines and commands, and the CM Fortran Utility Library; see Section 1.4.

Version 7.2 Beta 1, December 21, 1992

Copyright © 1992 Thinking Machines Corporation

Chapter . Introduction to CM-5 /0. 5



I
6 CM-5 VO System Programming Guide

* CMFS (CM File System) is a UNIX-like file system that can reside on the
CMIO-bus data-storage devices, including the DataVault, CM-IOPG, and
VMEIO host computer. Like the SFS file system, the CMFS file system has
extensions to support parallel I/O and very large files. A CM-5 program
can access the CMFS file system via the CMFS library and CMFS com-
mands, the CMMD library, the CM Fortran Utility Library, and, if the
CMFS library is NFS-mounted, standard UNIX routines and commands 2 ;
see Section 1.4.

From a user's perspective, although the CMFS file system is similar to the
UNIX file system, there are some differences in its appearance and behav-
ior. For example, there are special environment variables that apply only
to the CMFS file system. Chapter 2 of this manual is an introduction to the
CMFS file system and the CMFS library and commands. In the future, this
manual will be expanded to provide more detailed information about
using the CMFS library on the CM-5 system. (In the meantime, the manual 3
Connection Machine I/0 System Programming Guide, Version 6.1, which
provides information about using CMFS commands and calls on the CM-2
and CM-200 systems, may be helpful to you.)

* The standard implementation of the UNIX file system can reside on all
CM-5 control processors and on all other serial computers in the Connec-
tion Machine systems. Note that this manual assumes you are familiar
with the UNIX file system, or that documentation that describes it is avail-
able to you.

The UNIX file system should hold the executable programs that run on the CM-5,
as well as CM-5 system software and (possibly) users' private files, but the SFS 3
and CMFS file systems should store data files only.

From a user's perspective, the CMFS file system is completely separate from the 3
SFS and UNIX file systems; the CMFS file system has a separate directory tree,
its own current working directory, and its own environment variables, and only
if it is NFS-mounted can the CMFS file system recognize UNIX. The SFS file I
system, however, shares name space with the UNIX file system on the CP on
which it is running; as such, the UNIX environment variables (PATH, for
example) and UNIX commands (chdir, for example), are recognized by the SFS 3
file system.

I
2. Although NFPS enhances usability of the CMFS file system, this release of NFS is preliminary, and

UNIX commands and calls may not afford performance as good as that of the other interfaces.

I
Version 7.2 Beta 1, December 21, 1992

Copyright © 1992 Thinking Machines Corporation

I



Chapter.. 1 .. I:ntrdutinoM- . ..... ::: .......... ....- - .:-

1.3.1 Which File System Do You Want?

In a CM-5 system that has access to more than one of the file systems described
in Section 1.3, indicate the file system you want to use by setting the CM-5 envi-
ronment variable CS8_PATTYPPE in your shell or in your . chrc file:

% setenv CMFSPATTYPE unix I cmfs I mixed

unix Any pathname refers to the local UNIX or UNIX- compat-
ible file system - the SDA, if your system contains one.

cmfs Any pathname refers to a CMFS file system - a
DataVault, VMEIO host computer, or CM-IOPG. If your
CM-5 system has access to more than one of these
devices, set the CMFS environment variables
DVHOSTNAoE and/or DVWD. If those environment vari-
ables are not set, the default CMFS file system, listed with
the kernel, is used.

mixed Any pathname that does not contain a colon (:) refers to
the SDA. A pathname that does contain a colon refers to
a CMFS file system:

* If there is a CMFS-hostname component included
before the colon, that device is used.

* If there is no CMFS-hostname component, the
device listed with DVlOSTNA and/or DVWD is
used. If those environment variables are not set, the
default CMFS file system, listed with the kernel, is
used.

(For file system defaulting behavior when CQISPATHTYPE is not set, please see
the man page FirS_PATETYPE (7).)

For example, in the CM-5 system shown in Figure 3, suppose the following:

* You set F8_PATTYPE to mixed.

* You set DVROSTNhM to dvl.

· You set DVWD to big project.

If your program calls a routine to open the file my_data, the file is opened in
your current working directory on the device sdal. If your program calls a rou-
tine to open the file :my_data, the file is opened in dvl: /big proJect. If

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 7Tinking Machines Corporation

Chapte 1. Introduction to CM-5 1/0. 7



CM-5 O/0 System Programming Guide

your program calls a routine to open the file opi :mydata, the file is opened
in iopl:/big_proj ct.

Ethemet

Figure 3. A typical CM 110 system for the CM-.

1.4 File System Interfaces

The CM programming languages have a variety of interfaces to the Connection
Machine file systems; these are described in the following subsections:

* For information about CM-5 /O using C, see Section 1.5.1.

* For information about CM-5 I/O using C*, see Section 1.5.2.

* For information about CM-5 1/0 using Fortran 77, see Section 1.6.1.

* For information about CM-5 1/0 using CM Fortran, see Sections 1.6.2 and
1.6.3.

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machins Corporation

8

I

I

I
a

eSM

h
Ii
H

HmH#1Ii

b

Im -qw m I- -w I I ------ ------ - ---- ------ ------ ------ --- 

- - - -- I I I I I



Chapter 1.XInroduti MS

File Padding

Padding - bytes consisting of undefined data - is automati-
cally placed into files to enhance performance. In most cases3,
the padding is handled transparently whenever the file is
accessed.

The following padding occurs automatically:

* Parallel write operations to the SFS file system (that is, from
the PNs to the SDA) pad the end of the file to the next 16-byte
boundary.

* All write operations to the CMFS file system pad the end of
the file to the next 512-byte boundary.

1.5 Accessing the File Systems from
C-Based Languages

The information in subsections 1.5.1 and 1.5.2 is summarized in Table 1.

1.5.1 Accessing the File Systems from C

To access any Connection Machine file system from a C program running on the
CM-5, use either the CMMD library, the CMFS library, or the UNIX routines:

* When performing parallel I/0, the program must use the CMMD library.

* When performing serial /0O, the program can use the CMFS library or the
UNIX routines. Note that UNIX routines can access a CMFS file system
only if it is NFS-mounted.

3. Certain circumstances may require the user program to handle the padding explicitly: reading a file
into an array(s) with characteristics different from the one(s) used to write the file, sharing a file
between the CM-5 and CM-2 or CM-200 systems, or reading or writing a file via a language or
library different from that used to write or read it.

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation

�i�B�H�"s��

Chapter . Introduction to CM-5 I10. 9



10 CM-5 1/0 System Programming Guide

Table 1. The C and C* interfaces to the Connection Machine file systems.

Programming
Language Mechanism File System(s) 1/0 Process(s) 4

C CMMD library SFS, CMFS, and UNIX Parallel

C CMFS library SFS, CMFS, and UNIX Serial

C UNIX routines SFS, NFS-mounted CMFS, Serial
and UNIX

C* CMFS library SFS and CMFS Parallel and serial

C* UNIX routines SFS, NFS-mounted CMFS, Serial
and UNIX

1.5.2 Accessing the File Systems from C*

Reminder

C*'s array dimensions are numbered left-to-right from 0. The
leftmost axis - xi in array A(X1, Xz, X3) - varies fastest.
This arrangement is called column-major order or axis co-
variant order.

CM-5 C* programs can access the SFS, CMFS, and UNIX file systems. C* pro-
grams that use the CMFS library must include <m/omf s.h, and link with
-lamf s c and -cmf sms.

4. Recall that parallel yIO - file PNs, and serial /0 - file - serial-computer-memory (which
includes file maintenance operations, such as cMSchmod).

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation

I
.U

INU

U

U

U

m

Sm

a

U

U

i
Ul
lU



Catr1Inrdcint C-SV.1
From C*, to access the SDA's SFS file system or a CMFS file system, use either
the CMFS library or the UNIX routines:

* When performing serial I/O, the program can use either the CMFS library
serial I/O routines or the UNIX I/O routines. (To use UNIX routines to

access a CMFS file system, it must be NFS-mounted.)

* When performing parallel I/O, the program must use the CMFS library's
synchronous5 I/O routines (CMFS_read_file_always and
CMFSwrite_file_always). Because the C* versions of these routines
are overloaded, they require C*-specific declarations:

overload CMFS read file always;
overload CMFS_write_file_always;

int CMFS_ read_file_always (int, void:void *, int);
int CMFS_write_file_always (int, void:void *, int);

For complete descriptions of these routines, see their man pages
(CMFS read_file_always (3) and CFs_ write_file_always (3))

in Appendix B of this manual.

Note that these routines are available with C* Version 7.0 with the Beta
1 patch, and with C* Version 7.1. For additional information about C* 1/O,
refer to Thinldng Machines Corporation's C* documentation, including
release notes.

To access the standard implementation of a UNIX file system via serial I/O only,
use the UNIX routines and commands.

1.6 Accessing the File Systems from
Fortran-Based Languages

The information in subsections 1.6.1, 1.6.2, and 1.6.3 is summarized in Table 2,
Table 3, and Table 4.

5. Currently, the CMPS library's buffered I/O and streaming I/O routines are not supported on the CM-5.

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation

Chapter . Introduction to CM-5 1/0. 11



12 CM-5 I/0 System Programming Guide

1.6.1 Accessing the File Systems from Fortran 77

To access the SFS file system or a CMFS file system from a Fortran 77 program
running on the CM-5, use the CMMD library, the CMFS library, or the UNIX rou-
tines:

* When performing parallel I/O, the program must use the CMMD library.

* When performing serial .1O, the program must use either the CMFS
library's serial routines or the UNIX routines. (To use UNIX routines to
access a CMFS file system, it must be NFS-mounted.)

To access a standard implementation of a UNIX file system via serial I/O only,
we recommend using UNIX routines and commands

Table 2. The Fortran 77 interfaces to the Connection Machine file systems.

Programming
Language Mechanism File System(s) 1/0 Process(s) 6

Fortran 77 CMMD library SFS and CMFS Parallel

Fortran 77 CMFS library SFS, CMFS, and UNIX Serial

Fortran 77 UNIX routines SFS and NFS-mounted CMFS, Serial
and UNIX

1.6.2 Accessing the File Systems from CM Fortran Version 1.2

Version 1.2 of CM Fortran does not support access to an SFS file system.

To access the CMFS file system from a CM Fortran Version 1.2 program nmning
on the CM-5, use the CM Fortran Utility Library, the CMFS library, or UNIX rou-
tines:

When performing parallel 1/O, the program must use the CM Fortran Util-
ity Library.

6. Recall that parallel 1/0 - file - PNs, and serial 1/0 - file - serial-computer-memory (which
includes file maintenance operations, such as Crs_chmod).

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation

I

1
U

U

U

_

.

a
B

B

B

B

------------ - - - -------------------------------- ----------------------- ------------ --------------- - - --------- ---- ---------------------------------- -



Chater 1. HInrui C-5 IO-- 13

* When performing serial 1V, the program can use the CM Fortran Utility
Library, the CMFS library, and, if the file system is NFS-mounted, UNIX
routines.

To access a standard implementation of a UNIX file system via serial 1/ only,
use the CM Fortran Utility Library, the language's /0 statements, the CMFS
library, or UNIX routines.

Table 3. CM Fortran (V. 1.2) interfaces to the Cunnection Machine file systems.

Programming
Language Mechanism File System(s) 1, I/0 Process(s)7

CM Fortran CMF Utility CMFS Parallel and serial
Libary

CM Fortran CMF Utility UNIX Serial
Library

CM Fortran 1o/ statements UNIX Serial

CM Fortran CMFS library CMFS and UNIX Serial

CM Fortran UNIX routines NFS-mounted CMFS and UNIX Serial

1.6.3 Accessing the File Systems from CM Fortran Version 2.1

Note that as of this writing, CM Fortran 2.1 is in its first Beta release (Beta 0).
Release notes issued with subsequent versions of CMF 2.1 may provide informa-
tion that updates this manual's information.

To access the SFS or CMFS file system from a CM Fortran Version 2.1 program
rmnning on the CM-5, use the CM Fortran Utility Library, the CMFS library, or
UNIX routines:

When performing parallel 1/0, the program must use either the CM For-
tran Utility Library or the CMFS library's synchronous I/O routines,
CIps READ FILE ALWAYS and caFm WRITE FILE ALWAYS. Manual
pages for these routines are provided in this manual's Appendix B.

7. Recall that parallel 110 - file - PNs, and serial /O - file - serial-computer-memory (which
includes file maintenance operations, such as cIMFSchmod).

Version 7.2 Beta 1, December 21. 1992
Copyright 0 1992 Thinking Machines Corporation

It, Chapter . Inftoducton to CM-5 I10. 13



14

* When performing serial I/O, the program can use the CM Fortran Utility
Library, the CMFS library, and, if the file system is NFS-mounted, UNIX
routines.

To access a standard implementation of a UNIX file system via serial I/0 only,
use the CM Fortran Utility Library, the language's I/0 statements, the CMFS
library, or UNIX routines.

Table 4. CM Fortran (V. 2.1) interfaces to the Connection Machine file systems.

Programming
Language Mechanism File System(s) 1/0 Process(s)s

CM Fortran CMF Utility SFS and CMFS Parallel and serial
Library

CM Fortran CMF Utility UNIX Serial
Library

CM Fortran I/O statements UNIX Serial

CM Fortran I /0 statements SFS and CMFS Parallel and serial
(support projected but not currently available)

CM Fortran CMFS library SFS and CMFS Parallel and serial

CM Fortran CMFS library UNIX Serial

CM Fortran UNIX routines SFS, NFS-mounted CMFS Serial
and UNIX

8. Recall that parallel 1/0 - file + PNs, and serial I/O - file serial-computer-memory (which
includes file maintenance operations, such as C8'_-chmod).

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation

p
CM-5 /0 System Programming Guide

V

I
I

Ipp!
p
p

Om

m

U

m

0
l
3
U

= II H l N 1 1 -- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ---- ----- ----- - --- ----- - --- ----- --- - ----



Chapter 2

Introduction to the CMFS File System
q and Its Software

I I r.:.: ..

q The CMFS file system is a UNIX-like file system that can reside on the CMIO-bus

data-storage devices, including the DataVault, CM-IOPG, and VMEIO host com-
puter. The CMFS file system software - a set of utilities and a library of
routines - operates on not only the CMFS file system, but also on the SFS file
system9. This chapter provides basic information about using the CMFS file sys-
tern and its software from a CM-5 system.

2.1 The CMFS File System Environment

The CMFS file system exploits the great speed and massive storage capabilities
of the CM-5 I/O system. The CMFS file system is also easy to use, especially if
you are familiar with the standard UNIX file system. The two file systems are
similar in several ways: they organize files into directories, use pathnames to
identify them, and treat I/O devices as files. Unlike a UNIX file system, however,
the CMFS file system does not have a single root directory. Each CMIO-bus de-
vice can have a CMFS file system directory tree with its own root directory, as
Figure 4 illustrates.

As described in Chapter 1, the CM-5 environment variable CMFS_PATHTYPE

defines the heuristic that the CM-5 uses to determine which file system to attempt
Mt to access, given a pathname: to use the CMFS file system, set CMFS_PATHTYPE

to cmf s or mixed. The specific CMFS file system host and the directory within

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation 15

I

I

9. As of CMOST 7.2 Beta 1, a subset only of the CMPS commands can operate on the SFS file system.
In a future release, the full set of CMPS commands will operate on the SFPS file system.

"""""""""^"""""~"""""~�"'~'~'""~�"~"""""



16 CM-5 IO System Programming Guide
. . . . . . . . . . . . . . . . . . . .

it are then defined by either a full pathname or a combination of a relative path-
name and environment variables:

* The CMFS file system identifies each data-storage device by its unique
hostname - the name of the machine followed by a colon(:). A file's full
pathname, therefore, includes a hostname component - for example,
dvl: /proJect/data. (Because the hostname component contains a co-
lon character, the name of the file itself cannot contain a colon.) If you
specify a full pathname, therefore, the CM-5 system requires no further
information in order to attempt to access the file.

* The CMFS environment variables, DVHOSTNAE and DVWD, define the
default CMFS file system host and default working directory, respectively. a
When you do not give a full pathname, these environment variables are
consulted.

Set DVHOSTNAME from a C shell as follows:

% setenv DVHOSTNAME default_hostname 1

Set DVHOsTNAE from a Bourne shell as follows:

$ DVHOSTNAME defaulthostname
$ export DVHOSTNA E

To specify your default current working directory in the CMFS file system,
set DvwD from a C shell:

% setenv DVWD newworking_directory

or from a Bourne shell: a
$ DVWD new_workingdirectory
$ export DVWD a

new_working_directory may or may not include a hostname component.
If it does not, new_working_directory is relative to the default CMFS host
set by DVHOSTNAE. For example, if you set the environment variables as
follows:

% setenv DVHOSTNAME dvl U
% setenv DVWD /project

and later refer to the file data, the system will interpret the full name of
the file as dvl:/project/data. If you want instead to use the file
dvil:/tests/data, either explicitly specify the file's full pathname or
reset DVWD to /tests. If you want to use the file dv2:/tests/data,

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation



Chapter 2. Introduction to the CMFS File System and Its Software

either explicitly specify the file's full pathname or reset DVHOSTNAME to
dv2.

If you do not set DVHOSTNAME, and if DVWD's new_working_directory

does not include a hostname component, the default CMFS hostname is the
one listed with the CM-5 system kernel (see your system administrator).
If none is listed with the kernel, the file /usr/local/etc/
dv_hostname is consulted. If that file is missing, the default CMFS file
system is the one on the local host.

For convenience, you can have your . login file or your . cshrc file set DVWD
and/or DVHOsTNAME (as well as Cs_PATHTYPE) each time you open a shell
to work in the CM-5 programming environment.

2.2 CMFS Files

A CMFSfile is one stored within the CMFS file system, regardless of which com-
puter model generated its data and format:

* A serial CMFS file is formatted in the conventional manner, as by serial
computers, consisting of only one stream of data. A file created on the
CM-5 is serial in format to allow it to be easily shared between Connection
Machine models as well as serial computers. A high-performance transpo-
sition mechanism automatically "parallelizes" the data when it is read into
the CM-5, and "serializes" it when it is written out to the file system.

* Parallel CMFS files are indigenous to the Connection Machine model
CM-2 and CM-200. Consisting of many streams of data, one stream per
CM-2/200 processor, they are specially formatted to take advantage of the
machine's massive parallelism. Although files created on the CM-2 and
CM-200 are parallel by default, you can choose to write data to them in
serial format, or even to bypass parallel formatting altogether by creating
the file in serial format; these options are discussed in the Connection
Machine I/O System Programming Guide, Version 6.1.

It is easy to share files among a CM-2 or CM-200 and a CM-5 or a serial computer
by using a CM-2 (and CM-200) transposition routine. Again, see the Connection
Machine /O System Programming Guide, Version 6.1.

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation

17



18 CM-5 /O System Programming Guide

2.3 The CMFS Software

The CMFS file system software for the CM-5 includes a set of user commands and
a library of functions for use by programs written in C, C*, Fortran, or CM For-
tran. Generally, you can use CMFS commands and library routines from any
client installed with CMPS software, although a few commands and routines
require specific hardware.

2.3.1 The CMFS User Commands

The CM-5 CMFS user commands, issued from within a shell, perform typical filed
directory manipulation tasks, such as copying, moving, and deleting files, and
building, deleting, and listing the contents of a directory. Table 5 lists all the
CMFS commands supported on the CM-5. Man pages for the CMFS commands
are in Appendix A of this manual.

As the table shows, many of the CMPS commands are simply UNIX commands N
with a "cm" prefix. In general, a CMFS command performs the same function as
its corresponding UNIX command.

The CMFS commands can operate on a file within a CMFS file system or an SFS
file system10, depending on how the caSF3_ATHTPE environment variable is
set. For example, in the CM-5 system in shown in Figure 4, suppose the follow-
ing:

* You set csFs_PATETYPE to mixed. 

* You set DVHOSTNME to dvi.

* You set DVWD to big project.

If you execute ibmtape on the file my_data, the file acted upon is the one
called my_data in your current workilng directory on the device sdal. If you
execute ibmtape on the file :my_data, the file acted upon is
dvi: /big_pzroject/my_data. If you execute ibmtape on the file
vme: /my_data, the file acted upon is vme: /my_data. 

10. As of CMOST 7.2 Beta 1, a subset only of the CMS commands can operate on the SSF file sys-
ter. In a future release, the full set of CMFS commands will operate on the SFS fle system.

Version 7.2 Beta 1, December 21, 1992
Copyright OC 1992 Thinking Machines Corporation



Chapter 2. Introduction to the CMFS File System and Its Software

CM-5

i?
ber

Ethernet

Figure 4. Files within a typical CMFS file system.

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation

ThX data- ...-
. .,. ::: .,, . -. - ·- ·- ·: .. :. i:.. ; .-;.i,;.::.~ i ii 'i .b ei:.- : - ! :i : ; :

M h:.'.:..:' - E' 'hOst . :'
!'..Compter,,..:

..� ... ;,!= 11 :,-11�1'.1'1%�--'�1-f;1 Acr es., 13, :

-

- -- -- I-

19

t

l

J-



CM-5 I/O System Programming Guide

Table 5. TheCM-S CMFS user commands.

Purpose

cmchgrp
cmchmod
cmchown
cmep

cmdd

cmdf

cmdu

cmdump

cmfind
cmglob

cmln

cmmkdir
cmmknod
cmmvf

cmptruncate
cmrestore
cmrm

cmrmdir

cmstat

cmtar

cmtruncate

copyfromdv

copytodv

ibmtape

Changes the group ownership of a CMFS file.
Changes the permissions mode of a CMFS file.
Changes the owner of a CMFS file.
Copies a file to another location within that CMFS file system or to another
CMFS file system.
Copies raw data on tape into a CMFS file.
Displays free and used disk space for a CMFS file system.
Summarizes disk usage for a CMFS file system.
Archives CMFS files or SFS files.
Finds CMFS files.
Prints the CMFS files that match the specified pattem(s), which enables
wildcarding.
Makes links to CMFS files or directories.
Lists a CMFS file system directory's contents.
Makes a CMFS file system directory.
Makes a CM character-special file.
Moves (renames) a CMFS file or directory.
Truncates or extends a CMFS file.
Extracts files from an archive made by cmdump.
Removes (unlinks) a CMFS file or directory.
Removes (unlinks) an empty CMFS file system directory.
Prints information about a CMFS file, including its mode, size, and time of
last access.
Creates or extracts a tape archive using either a CMFS file system or an
SFS file system.
Truncates or extends a CMFS file.
Copies a CMFS file system file into an SFS file system (or other
UNIX file system).
Copies an SFS file system file (or other UNIX-system file) to a CMFS file
system.
Import/export IBM data sets to/from a CMFS file system or SFS file system.

0

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation

20

Command

U

U

m

U

N
U

U

U

Um0

m
m

m

U

U

N

U

U

U

U

U

S

~~~p~~~~~Pe~~~~~~g~~~~g os~~~~11111 NNO - ------------------Ro


Chapter 2. Introduction to the CMFS File System and Its Software

2.3.2 The CMFS Library Routines

The CM-5 CMFS library routines, listed in Table 6, enable you to manipulate di-
rectories, files, and their data from within a program. Most CMFS library routines
have both a C-languages interface and a Fortran-languages interface:

* The C interface is used by programs written in C or C*.

* The Fortran interface is used by programs written in Fortran 90, Fortran
8x, Fortran 77, CM Fortran (CMF).

The CMFS routines can operate on a file within a CMFS file system or an SFS file

system or other UNIX file system, depending on how the CMFsPATHTYPE envi-
ronment variable is set. See the examples in sections 1.3.1 and 2.3.1.

Table 6. The CM-5 CMFS library routines.

CMFS Routine Purpose

CMFS access

CMFS_chdir

CMFS[f] chmod

CMFS_ f]chown

CMFS close

CMFS close all files

CFs .closedir

CKFS close fileson server

CMFScreat

CMF_errmessage

CMFS_errno

CMFS_fcntl

CMFS_getwd

CMFS_glob

CMFSioctl

Determines the accessibility of a file.

Changes the current working directory.

Changes a file's mode.

Changes a file's owner and group.

Closes a file.

Closes all files; breaks TCP connections.

Closes the directory and releases pointer.

Closes server's files; breaks TCP connection.

Creates or recreates a file.

Stores the error message associated with the latest CMFS
library error in a buffer.

Stores the last error's error number.

Controls various characteristics of a file.

Returns the current CMFS file system's current working
directory.

Prints the files that match the specified pattern(s),
which enables wildcarding.

Supports an 1/0 subsystem device driver.
(continued)

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation

��3�5�:�:�·Y·i�'�^�6(�f��

21

U

CM-5 I/O System Programming Guide

Table 6 (cont'd). The CM-5 CMFS library calls.

Purpose

CMFS link

CMFS mkdir

CMFSmknod

CMFS_open

CMFS_opendir

CMFSperror

CMFS_physical_f truncate

CMFSphysical_lseek

CMFS read_file_always

CMFSreaddir

CMFSrename

CMFSrmdir

CMFSscandir

CMFSseekdir

CMF8 serial lseek

CMFSserial read file

CMFSserial_[f] truncatefile

CMFS_ erial write file

CMFSsetdebug_mode

CMFS_[f stat

cMFs tatfs
CMFs telldir

CMFS unlink

CMFSutimes

CMF8 vmeio allocate

CMFSvmeio free

CFS_writefi e_always

Creates a hard link to a file.

Makes a directory.

Creates a CM character-special file.

Opens or creates and opens a file.

Opens a directory and returns an identifying pointer.

Interprets an error condition.

Truncates or extends an open file.

Moves the read/write pointer associated with an open file.

Performs synchronous parallel 1/0 (i.e., file to PNs).

Returns a pointer to the next directory entry.

Renames a file.

Removes a directory.

Builds array of pointers to a directory's entries.

Sets position of the next directory read operation.

Moves the pointer of an open file.

Reads into the memory of a client that is a serial computer.

Truncates or extends an open file.

Writes from the memory of a client that is a serial
computer.

Enables/disables automatic CMFS debug-message printing.

Obtains file status information.

Obtains file system statistics.

Returns a pointer to the current directory location.

Removes a file from its directory.

Sets files times.

Allocates DRAM on a VMEIO host computer.

Frees a buffer on a VMEIO host computer.

Performs synchronous parallel 0/O (i.e., PNs to file).

Version 7.2 Beta 1, December 21, 1992
Copyright 1992 Thinking Machines Corporation

22

CMFS Routines

.

U

N

Y·

U

U

I

I
a

0

U

�h�1�3�i�3$�:�k2�~�

Appendixes
:.::..?:;:,.....,....;::... ... : .. :.::...'','..-::':.:<."...::'... . : _ : -:. :::.:; .

,

Version 7.2 Beta 1, December 21, 1992
Copyright © 1992 Thinking Machines Corporation 23

U

m

m

m

U

0
mm

U

Appendix A

CM-5 CMFS Commands

Version 7.2 Beta 1, December 21, 1992
Copyright 0 1992 Thinking Machines Corporation 25

N
4

II

II

I

I

I
II

II
1

IN
N

N

N

N

N

U

I!%Nme
U

U

U

U

U

U

p

I REEMEMMEM

U

'i.

U

0I
II

I

cmchgrp (1)

NAME

cmchgrp - Changes the group ownership of a CMFS file.

SYNTAX

cmchgrp [-f] [-R] group filenames

ARGUMENTS
-f Force. Do not report errors.

-R Recursive. cmchgrp descends through the directory and any subdirectories, setting the
specified group ID as it proceeds.

group The new group of filenames.

filenames The file(s) whose group is to be changed.

WHERE EXECUTED

Control processor
VMEIO host
CM-IOP

DESCRIPTION

cmchgrp change the group ID (GID) of the filenames given as arguments to group. group can be either
a decimal GID or a group name found in the GID file /etc/group.

This command uses the /etc/passwd and /etc/group files.

RESTRICTIONS

Only the owner of the filenames, or the superuser, can change the group of filenames.

Only one group number or list of groups is passed to the file server.

Permission checking is enabled only if the appropriate file server is set to check permissions (the
default).

The attribute files associated with filenames do not have their protections changed by cmchmod.

SEE ALSO
cmchmod
cmchown
cmls
cmstat

Last change: December 1992

cmchgrp (1)

CMOST 7.2 27

cmchmod ()

NAME
cmchmod - Changes the permissions mode of a CMFS file.

SYNTAX
cmchmod -fl [-R] mode filenames

ARGUMENTS
-f

-R

mode

Force. cmchmod will not complain if it fails to change the mode of a file.

Recursively descend through directory arguments, setting the mode for each file.

The new mode of filenames.

filenames The file(s) whose mode is to be changed.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
cmchmod changes the permissions (mode) of filenames. The mode of filenames is changed according to
mode, which can be absolute or symbolic, as follows:

o An absolute mode is an octal number constructed from the OR of the following modes:
0400 Read by owner.
0200 Write by owner.
0100 Execute (search in directory) by owner.
0040 Read by group.
0020 Write by group.
0010 Execute (search) by group.
0004 Read by others.
0002 Write by others.
0001 Execute (search) by others.

o A symbolic mode has the form:

[who] op permission [op permission]

who is a combination of:

u User permissions.
g Group permissions.
o Others.
a All (ugo).

If who is omitted, the default is a.

op is one of:

+ To add the permission.
To remove the permission.
To assign the permission explicitly
(all other bits for that category,
owner, group, or others, will be reset).

permission is any combination of:

r Read.

28 Last change: December 1992 CMOST 7.2

Is

bi

i

Sb

0
m

m

cmchmod(l)

cmchmod (1) cmchmod (l)

w Write.
x Execute.
X Give execute permission if the file s a directory or

if there is execute permission for one of the other
user classes.

For example, to take away all permissions, specify either -rwx or =.

Multiple symbolic modes, separated by commas, can be given. Operations are performed in the order
specified.

This command uses the /etc/passwd and /etc/group files.

RESTRICTIONS
Only the owner of filenames (or the superuser) can change the mode of filenames.

Sticky directory bits are not enforced.

There is no umask handling or umask call.

Only one group numberno list of groupsis passed to the file server.

The attribute files associated with filenames do not have their protections changed by cmchmod.

Permission checking is enabled only if the appropriate file server is set to check permissions (the
default).

EXAMPLE

The following code denies write permission to others.

% cmchmod o-w filename

SEE ALSO
cmchgrp
cmchown
cmls
cmstat

Last change: December 1992 29CMOST 7.2

cmchown (1)

NAME
cmchown - Changes the owner of a CMFS file.

SYNTAX
cmchown [-f] [-R] owner[.group] filenames

ARGUMENTS
-f

-R

owner

Do not report errors.

Recursively descend into directories, setting the ownership of all files in each directory
encountered.

The new owner of filenames.

group The new group of filenames.

filenames The file(s) whose owner and group are to be changed.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

cmchown changes the owner of filename to owner. The owner can be either a decimal user ID (UID) or
a login name found in the password file. An optional group can also be specified. The group can be
either a decimal group ID (GID) or a group name found in the GID file.

This command uses the /etc/passwd and etc/group files.

RESTRICTIONS
Only the superuser can change the owner of filenames.

The attribute files associated with filenames do not have their protections changed by cmchown.

Permission
default).

SEE ALSO
cmchgrp
cmchmod
cmls
cmstat

30

checking is enabled only if the appropriate file server is set to check permissions (the

Last change: December 1992 CMOST 7.2

cmchown (1) U

U

U

I
U

U

U

.

.

U

U

0

U

cmcp (1)

NAME

cmcp - Copies a file within a CMFS file system or from one CMFS file system to another.

SYNTAX
cmcp [-a] [-i] [-r] [-p] filel file2
cmcp [-a] [-i] [-r] [-p] files directory

ARGUMENTS
-a Appends the file named by filel to the file named by file2 rather than overwriting the

existing contents. It is an error if the destination file does not already exist.

-i Interactively prompt for a yes or no response if an existing file will be overwritten. The
prompt is the file's name and a question mark. If the response is y, the copy takes place
and the existing file is overwritten; any other response prevents the copy.

-p Preserve the modification times and modes of the file copied.

-r Recursively copy the contents of directories files, subdirectories, and the subdirectories'
contents that are supplied as the first argument, files, to the directory supplied as the
second argument. The second argument cannot be a file.

filel The file to be copied.

file2 The name of the copy.

files One or more files to be copied.

directory The directory into which to place the copies of files. The copies in the directory have the
same file names as the original files.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

In its first form, the command cmcp copies filel onto file2. If file2 already exists, the existing contents
are overwritten but the mode and owner of file2 are preserved. If file2 does not exist, it is created and
is given the same mode and owner as fiel. In its second form, the second argument is a directory
instead of a file name. One or more files are copied into directory. This command does not copy a file
onto itself.

Note that cmcp duplicates a file residing in a CM file system, and places the copy in a CM file system.
The command copytodv, however, duplicates a file residing in a local (or networked) UNIX file system,
and places the copy in a CM file system. (copyfromdv duplicates a file residing in a CM file system,
and places the copy in a local (or networked) UNIX file system.)

If the files systems where filel and file2 reside are connected by a CMIO bus, the CMIO bus performs
the copy; otherwise, the Ethernet performs the copy, albeit slowly.

SEE ALSO
cmmv
copyfromdv
copytodv

Last change: December 1992

cmcp(l)

31CMOST 7.2

cmdd (1) Thinking Machines Corp. cmdd (1)

NAME U
cmdd - Copies an input file to an output file, converting data as specified (supports both SFS and
CMFS file systems).

SYNTAX
cmdd [-fromdv] [-todv] [ifbs-n]
[obfstn] [-a] [if-name] [of-name]
[obs-n] [bs-n] [cbs-n] [skip-n] [files=n] [seek=n] [count-n]
[convvalue]

ARGUMENTS

-fromdv Use the input coming from a SFS or CMFS file (depending on the setting of
CMFSPATHTYPE(7)). (Otherwise, input is assumed to be coming from the computer
that executes cmdd.) The if=name option must be used with -fromdv.

-todv Send output to a SFS or CMFS file (depending on the setting of CMFSPATHTYPE(7)). U
(Otherwise, output is assumed to be going to the computer that executes cmdd.) The
of-name option must be used with -todv.

ifbs=n Use the input coming from a StorageTek tape drive, with a fixed block size of n bytes, N
where 0 < n < 64K. (Otherwise, input is assumed to be coming from the computer that
executes cmdd.) This option is used to put the StorageTek tape drive in fixed-block mode
for improved performance.

ofbs-n Send output to a StorageTek tape drive, with a fixed block size of n bytes, where 0 < n <
64K. (Otherwise, output is assumed to be going to the computer that executes cmdd.)
This option is used to put the tape drive in fixed-block mode for improved performance.

-a Append the input to the output file (rather than rewrite it if it already exists).

if-name Input file name. If the input is a SFS or CMFS file, this option is required. If this option
is not specified, the default is the standard input of the computer that executes cmdd.

of-name Output file name. If the output is a SFS or CMFS file, this option is required. If this
option is not specified, the default is the standard output of the computer that executes
cmdd.

ibs-n Input block size in bytes--65,536 bytes by default. Some devices do not support block size
greater than 65,535 bytes. See bs.

obs-n Output block size in bytes; 65,536 bytes by default. Some devices do not support block
size greater than 65,535 bytes. See bs.

bs-n Set both input and output block size to n bytes, superseding ibs and obs. Also, if bs is
specified, the copy is more efficient since no blocking conversion is necessary.

cbs-n Conversion buffer size in bytes. Use this option only if ascii, unblock, ebcdic, ibm, or
block conversion is specified. For ascii and unblock, n characters are placed into the
buffer, any specified character mapping is done, trailing blanks are trimmed, and a new-
line is added before sending the line to the output. For ebcdic, ibm, or block, characters
are read into the conversion buffer and blanks are added to make an output record of size
n bytes.

skip-n Skip n input records before starting to copy.

files-n Copy n input files before terminating. This option is useful only when the input is a mag-
netic tape or similar device.

seek-n Seek n records from beginning of output file before copying.

count-n Copy only n input records. U
conv=arg Perform specified conversion. arg is a comma-separated list of any of the following (see

the Examples section):

32 Last change: December 1992 CMOST 7.2

Thinking Machines Corp.

ascii Convert EBCDIC to ASCII.

ibm Slightly different map of ASCII to EBCDIC (see Restrictions).

block. Convert variable-length records to fixed length.

unblock Converi fixed-length records to variable length.

lcase Map alphabetics to lower case.

ucase Map alphabetics to upper case.

swap Swap every pair of bytes.

noerror Do not stop processing on an error.

sync Pad every input record to ibs.

tomultidrop
Convert a file so that it can be used on multidrop DataVault hardware.

frommultidrop
Convert a file from one that can be used on multidrop DataVault hardware.

WHERE EXECUTED
CP
VMEIO host computer
CM-IOP

DESCRIPTION
NOTE: cmdd's former IBM-dataset-handling capabilities have been moved to a new utility, ibmtape,
and further enhanced.

The command cmdd copies a specified input file to a specified output file with any requested conver-
sions. The input and output block size may be specified to take advantage of raw physical I/O. After
completion, cmdd reports the number of whole and partial input and output blocks.

Where sizes (n) are given for an option, the number may end with k for kilobytes (1024 bytes), b for
blocks (512 bytes), or w for words (2 bytes). Also, two numbers can be separated by the character x to
indicate a product.

Following are some of the more common reasons for converting a file:

o To convert unarchived data to a CMFS file. See the Examples section.

o To convert files moved via the Ethernet from a point-to-point DataVault to a multidrop Data-
Vault, or vice versa. See the example in the Example section. (Note that generally it is not
necessary to convert files residing on a DataVault at the time the Datavault is upgraded from
point-to-point to multidrop. Serial' files, however, are special cases; their conversion is
explained below.)

o To convert serial files stored on a point-to-point DataVault so they can be used on a mul-
tidropped CM system. The conversion is done at the time of the hardware upgrade. To perform
this conversion, use cmdd with the conv-ommultidrop option (yes, this is counterintuitive).
This conversion is necessary both for serial files that have been transposed from parallel format
and for serial data read directly to a DataVault using CMFS software that supports point-to-
point hardware.

RESTRICTIONS
cmdd does not support the use of multiple media, nor does it support files that span more than one tape
volume.

Last change: December 1992

cmdd (1) cmdd(l)

33CMOST 7.2

cmdd (1) Thinking Machines Corp. cmdd (l)

EXAMPLES
The following example shows how to read an EBCDIC tape (/devlrmtOh) into the ASCII file x in a
CM file system. The tape is blocked in ten 80-byte EBCDIC card images per record. The resulting
ASCII file has all lowercase characters. (cmdd is executed on a CP.)

% cmdd -todv if=/dev/rmt0h of-x ibs=800 cbs-80 conv-ascii,lcase

The following example writes a file (final.data) on the DataVault (dvl) to a tape (/dev/rmtOh). 64K
bytes are transferred at a time and no conversions are performed. (cmdd is executed on a CP.)

% cmdd -fromdv if=dvl:/final.data of-/dev/rmt0h

Note the use of raw magnetic tape. The cmdd command is especially suited to I/O on the raw physical
devices because it allows reading and writing in arbitrary record sizes.

The following example shows how to move files from a point-to-point DataVault to a multidrop Data-
Vault. If a backup file (on tape) called oldfile was saved from a point-to-point DataVault and is to be
restored as newfile on a multidrop DataVault, the file must first be written to the multidrop DataVault
using the appropriate program (such as cmtar). Then issue the following command:

% cmdd -fromdv -todv if-oldfile of=/newfile conv=tomultidrop

SEE ALSO

creep
copyfromdv
copytodv
dvcp
cmatar

cmdump
cmrestore
CMFSPATHTYPE(7)
ibmtape

34 Last change: December 1992 CMOST 7.2

p

p
m

p

i

I
mm

U

.

cmdf(l)

NAME
cmdf - Displays free and used disk space for a CMFS file system.

SYNTAX

cmdf [-i] [files]

ARGUMENTS

-i Report also the number of used and free inodes.

files Files whose file systems' free and used disk space is to be reported.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

The command cmdf displays the amount of free and used disk space on CM file systems. The numbers
are reported in kilobytes, and do not include disk space taken up by attribute file and directories.

If one or more files are specified, cmdf displays the amount of disk space available on the file system
containing files, If no arguments or options are specified, cmdf displays both the used disk space and
the free disk space on all of the file systems.

SEE ALSO

cmdu

__

_N

Last change: December 1992

cmdf(l)

35CMOST 7.2

cmdu (1)

NAME
cmdu - Summarizes CMFS file system disk usage.

SYNTAX

cmdu I-s] [-a] files

ARGUMENTS

-s

-a

files

cmdu (1)

Display the number of kilobytes contained collectively in files.

Display the disk usage for each file in files.

The names of the files or directories. If neither -s nor -a is specified, cmdu generates an
entry only for each directory, not for files.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
The command cmdu displays the number of kilobytes contained in the specified files and, recursively,
in the directories within each specified directory. (Attribute files are included in the number of kilobytes
reported for directories.) If the files argument is not supplied, the current directory is used by default.

A file that has more than one link to it is only counted once. Block-special files (for example, raw-
disk-special-file) are not counted.

SEE ALSO
cmdf

Last change: December 1992 CMOST 7.2

U

U

p

U

U

U

pmm
m

p

m

mm

36

0

U

cmdump (1)

NAME

cmdump - Archives SFS or CMFS files or directories.

SYNTAX

cmdump [-b number [-f filename]
[-n] [-s] [-v] [-V vol-name]

ARGUMENTS

-b number Set the archive's blocking factor. The default blocking factor of a Sun-4 is 3200; for a
VAX, it is 20.

-f filename Specify the archive file. The default for a Sun-4 is /dev/rstcO. For a VAX, the default is
/dev/rmt8. Multiple archives are supported.

-n Disable Emacs-style editing and history. If input is from a tty, Emacs-style and history is
enabled by default. If input is not from a tty, editing and history are disabled by default.

-s Disable output pagination. If output is going to a tty, output pagination is enabled (the
default). If output is not to a tty, output pagination is disabled by default.

-v Enable verbose mode. By default, verbose mode is disabled.

-V vol-name Specify a volume name. for the archive. By default, no volume name is given. -V must be
used on cmrestore if the archive was created with a volume name.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
Use cmdump to backup SFS or CMFS files to tape. cmdump provides a robust interface, composed of
the commands listed below, that allows users to browse the current file system, mark the files to be
backed up, and control some of the arguments passed to the cmtar that cmdump forks. Each file is
archived with its relative pathname only; that is, the leading hostname:/ portion of the path is stripped
off before archiving.

cmdump supports shell-like globbing (wildcarding), Emacs-style command-line editing and command
history (see the GNU Readline Library), and selectable output pagination.

Note that cmdump supports multiple archives: you can specify up to four -f archive arguments. Specify-
ing multiple archives is useful when using multi-volume mode with tape drives that take time to
rewind, such as StorageTek. If the cmdump command line is ... -f /dev/rstcO -f /devtstcl, for example,
cmdump uses /dev/rstcl while it is waiting for /dev/rstcO to rewind, unload, and reload.

Before executing cmdump, set the environment variables CMFS_PATHTYPE, DVHOSTNAME and
DVWD for the appropriate file system; although you can later change the current working directory
within the file system, you cannot change the current file system itself oance you invoke cmdump.

CMDUMP COMMANDS

The commands supported by cmdump are listed below in alphabetical order.

blocking blocking-factor
Set the archive's blocking factor.

cd directory Change the working directory for the Is, find, and mark commands.

display Print a list of the currently marked files.

emacsedit Enables/disables Emacs-style editing and history.

execute Run cmtar with the appropriate arguments on the marked files.

Last change: December 1992

cmdump (1)

37CMOST 7.2

cmdump (1) cmdump (1)

exit, quit Exit cmdump or cmrestore and return to the shell prompt. U
find expression

find recursively descends the directory hierarchy from the current directory, seeking files
that match a logical expression written using one of the available operators. It is almost
identical to cmfind (see its man page in this appendix), with the following exceptions:

Unlike cmfind, this version does not take any pathname arguments.

There are two new operators: -mark and -unmark. These provide a flexible method to
(un)mark files based on any of the characteristics supported by cmfind. p
Note: do not specify -print and -(un)mark in the same invocation.

help, ? Print a brief synopsis of all available commands.

Is [-aAcdfFgilqrRstul] files
List the contents of a directory. This command is identical to cmls (see the cmls man
page in this appendix), with the exception of the -C (columnar output) flag, which here is
the default, and which can be overriden by the -1 (the numeral 1) flag.

mark [-rin] files [[-4Cn] files]
Mark files for backup. The -r flag specifies that the filenames following it (until the next l
-n flag) are directories, and all files in the subtree rooted at those directories are to be
marked. The -n flag (the default) specifies that all files following it (until the next -r flag)
are not to be marked recursively. p
Specifying a directory to be marked non-recursively has no effect. Specifying a regular
file to be marked recursively is the same as specifying it non-recursively. In order for a
file to be marked, it must reside in either the current directory or one of its sub-
directories.

In verbose mode, all files being marked that aren't already marked are listed. See also I
unmark.

more Toggle output pagination via the UNIX more command. This command has no effect on
the output of the forked cmtar. p

prompt string
Set the command-line prompt to string.

pwd Print the name of the file system's current working directory.

status Display status information about cmdump, including archive filename, blocking factor,
current directory, verbose mode, prompt, Emacs-editing/history mode, and output pagina-
tion mode.

unmark [-rin] files [[-r-n] files]
unmark specifies that previously marked files should be unmarked. The -r flag specifies
that all files following it (until the next -n flag) are directory names, and all files in the
subtree rooted at those directories are to be unmarked. The -n flag (the default) specifies
that all files following it (until the next -r flag) are not to be unmarked recursively.

Specifying a directory to be unmarked non-recursively has no effect. Specifying a regular U
file to be unmarked recursively is the same as specifying it non-recursively. In order for a
file to be marked, it must reside in either the current directory or one of its sub-
directories.

In verbose mode, all files being unmarked that aren't already unmarked are listed. See 0

38 Last change: December 1992 CMOST 7.2

cmdump (1)

also mark

verbose Enable/disable verbose mode. In verbose mode, cmdump prints the names of the files as
they are marked or unmarked.

volname volume-name
Specify the volume name of the archive.

EXAMPLE
% CMFS PATHTYPE cmfs
% setenv DVHOSTNAME dvl
% setenv DVWD /bigproject
% cmdump
Using /dev/rstcO for archive Current directory is dvl:/big_project
cmdump% Is
june4 june3 june2
junel may31 may 30
jiml sean test
cmdump% mark -r sean -n may30 may31
cmdump% display
dvl:/big_projectl

dvl:/big_roject/may30
dvl :/bigroject/may31
dvl:/big_project/sean/
dvl:/bigproject/sean/abc
dvl :/big_project/sean/tree
cmdump% unmark may31
cmdump% display
dvl:/big_project/
dvl:/bigproject/may3O
dvl:/big_project/sean/abc
dv1:/big_project/sean/tree
cmdump% volname test
cmdump% execute
cmdump% (cmtar -c -M -V test -b 3200 -f /dev/rstcO -T - -G)
cmtar: Removing datavault spec from names in the archive.
cmtar: Removing leading from absolute pathnames in the archive.
cmtar: Prepare volume #2 (/dev/rstc0), then hit return
.cmdump% exit

RESTRICTIONS

As when using cmtar or UNIX tar, you must have read permission on each file and directory that you
archive. Archives created by cmdump cannot be restored using UNIX tar.

SEE ALSO
cmrestore
cmtar

Last change: December 1992

cmdump (1)

39CMOST 7.2

cmfind (1)

NAME
cmfind - Finds a CMFS file.

SYNTAX

cmfind pathnames expression

ARGUMENTS
pathnames

expression

The directory hierarchies to be searched.

A boolean expression describing the files that are to be matched by cmfind. The
boolean primaries listed below may be used for expression.

DESCRIPTION
The command cmfind recursively descends the directory hierarchy for each pathname in pathnames,
seeking files that match the boolean expression. In the boolean expressions, the argument n is used as a
decimal integer where +n means more than n, -n means less than n, and n means exactly n.

-atime n

-exec command

-group gname

-inum n

-links n

-mtime n

-name filename

-newer filename

-ok command

-perm onum

-print

-size n

-type c

-user uname

Tests true if the file has been accessed within the last n days.

Tests true if the executed command returns a zero value as exit status.
The end of the command must be punctuated by an excaped semicolon
(;) A command argument '}' is replaced by the current pathname.

Tests true if the file belongs to group gname. gname may be either a
group name or a numeric group ID.

Tests true if the file has inode number n.

Tests true if the file has n links.

Tests true if the file has been modified within the last n days.

Tests true if filename matches the current file name. Normal C shell
argument syntax may be used if escaped (preceded by a character).
Watch out for '[', '?' and '*'.

Tests true if the current file has been modified more recently than the
argument filename.

Executes specified command like -exec, but first writes the generated
command on standard output, then reads standard input, and executes the
command executed upon response y.

Tests true if the file's permission number exactly matches the octal
number onum. For further information, see chmod(l). If onum is
prefixed by a minus sign, more flag bits (017777) become significant and
the flags are compared: (flags&onum)==onum. For further information,
see CMFS-stat.

Always true; the current pathname is printed.

Tests true if the file is n blocks long (512 bytes per block).

Tests true if file is c type, where c is one of the following:

b block special file
c character special file
d directory
f plain file

Tests true if the file belongs to the user uname. uname may be either a
login name or numeric user ID.

Last change: December 1992

U

U

U

U

1

p
em

IUU
U

pII
II1

40

l
U

U

U
0

CMOST 7.2 I

cmfind ()

cmfind (1) cmfind (1)

The boolean primaries above may be combined using the following operators (in order of decreasing
precedence):

(..) A parenthesized group of primaries and operators. Parentheses are spe-
cial to the shell and must be escaped (preceded by a character).

!primary The negation of a primary ('!' is the unary not operator).

primary primary Concatenation of primaries (the and operation is implied by the juxtapo-
sition of two primaries).

primary -o primary Alternation of primaries (-o is the or operator).

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

EXAMPLE

To remove all files named oldata or *.tmp that have not been accessed for a week:

cmfind / -name oldata -o -name '*.tmp') -atime +7 \
-exec cmrm '{ }';

SEE ALSO

cmglob

CMOST 7.2 Last change: December 1992 41

q
q

I

p

aI
BII IIw

II

cmglob (1)

NAME

cmglob - Prints the CMFS filenames that match the pattern(s) given by the input argument.

SYNTAX
cmglob filenames

ARGUMENTS
filenames The name of one or more files for which to find matches. filenames does not have to

be the complete name of a file-it can be simply one or more characters.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
cmglob provides a workaround to the inconvenience that arises from the inability of CMFS commands
such as cmrm
and cmls to accept a wildcard in an argument. In effect, cmglob provides the CMFS commands with

the ability to accept wildcarding.

cmglob takes as an argument one or more filenames, which can contain shell-type wildcard characters
(*, ?, D, and it output a list of all CMFS files that are matched by the patterns given. Any wildcard
characters used must be escaped either preceded by a backslash character 0 or enclosed within single or
double quotes to prevent the shell from interpreting them. cmglob searches only the current directory;
unlike cmfind, it does not search directories recursively.

Used as input to another CMFS command, such as cmrm or cmls, the filenames that make up its output
are separated by a space, causing them to be accepted as a list by the oither command.

When cmglob is used on its own, the filenames that it prints are listed one per line, separated by a new-
line.

EXAMPLE

% cmls -1
total 20640
-rw-rw-rw 1 joe 19824640 A
-rw-rw-rw 1 joe 524288 At
-rw-rw-rw 1 joe 262144 At
-rw-rw-rw 1 root 0 Aug
-rw-rw-rw 1 root 0 Aug
-rw-rw-rw 1 root 524288 At
% cmglob *15*
transpose. 15063
transpose.15052
% echo 'cmglob *15*'
transpose.15063 transpose.15052
% cmls -1 'cmglob *15*'
-rw-rw-rw 1 root 0 Aug:
-rw-rw-rw 1 root 524288 Au

SEE ALSO
cmis
cmrm
cmfind

ug 22 17:20 conditional.7385
ig 22 18:20 reliability.7565
ig 22 18:29 reliability.7619
23 16:54 transpose.14898
23 17:49 transpose.15052
ig 23 19:41 transpose.15063

23 17:49 transpose.15052
g 23 19:41 transpose.15063

Last change: December 1992

cmglob (1) N

(~I

N

I
I
I
I
a
U

too

U

I
1
a
1

42

I

0
I
l

CMOST 7.2

I

cmin(l)

NAME
cmln - Makes links to CMFS files or directories.

SYNTAX
cmln [-fJ file linkame]
cmln files directory

ARGUMENTS

-f Suppress all but the usage message.

file The file or directory to be linked.

linkname The new name to be associated with file.

files Files to be linked; the new names are directory/ files.

directory The new directory name to be associated with files.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

The command cmln assigns an additional name (directory entry), called a link, to a CMFS file or direc-
tory. A file, together with 'its size and all its protection information, may have several links to it.

The command cmln creates hard links. A hard link to a file is indistinguishable from the original direc-
tory entry. Any changes to a file are effective independent of the name used to reference the file. Hard
links may not span file systems, may not refer to directories, and can be made only to an existing file.

In cmln's first form, file is the name of the file or directory to be linked and linkname is the new name
to be associated with file. If linkname is omitted, the last component of the pathname given as file is
used. In cmln's second form, links are made in the named dire ctory to all the named files. These links
will have the same file names, within directory, as the files to which they are linked.

RESTRICTIONS

In a UNI file system there are two kinds of links--hard links and symbolic links. The cmln command
creates only hard links; the UNIX In command creates either kind.

SEE ALSO

cmcp
cmmv
cmrm
CMFS-stat

Last change: December 1992

cmn (1)

43CMOST 7.2

cmls(l) cmls(l)

NAME U
cmls - Lists the contents of a CMFS file system directory.

SYNTAX

cmls[-acdfgilqrstulACFR] files

-a Display all entries including those beginning with a period (.). p
-c Sort entries by time of last inode change instead of by name. The inode is changed if the

files' size, links, or permissions change.

-d Display names of directories only, not contents. Use -d with -1 to display the status of a 3
directory.

-f Display names in the order they exist in the directory. (For more information, see dir(5).)
Entries beginning with a period (.) are also listed. This option overrides the -1, -t, -s, and -r 3
options.

-g (Use with -1 only). Cause the -1 option to also display the assigned group ID . The default is
to display the assigned owner ID. 3

-i Display the i-number for each file in the first column of the report.

-1 List the long format, giving the mode, number of links, owner, size in bytes, and time of last u
modification for each file. See -f. If the file is a special file, the size field reports the major
and minor device numbers instead of the file's size.

The mode field consists of 10 characters. The first character indicates the type of entry:

d Directory
b Block-type special file
c Character-type special file
- Plain file

The next nine characters are interpreted as three sets of three characters each. The first set of
three characters refers to file-access permissions for the user; the next set, for the group; and
the last set, for all others. The pemnissions are indicated as follows:

r The file is readable
w The file is writable
x The file is executable
- The indicated permission is not granted.

-q Force non-graphic characters in file names to be printed as the question mark character (?).
This is the default when output is to a terminal. p

-r Sort entries in reverse alphabetic or time order. See -f.

-s Display the size in kilobytes of each file. This is the first item listed in each entry. See -f.

-t Sort by time the files' contents were modified (latest first) instead of by name. See -f. U
-u Use the time of last access instead of last modification for sorting (with the -t option) or

printing (with the -1 option).

-1 Display one entry per linethe default when the output is not to a terminal.

-A Display all entries including those beginning with a period, except for . (current directory)
and .. (parent directory). 3

-C Force multi-column output for pipe or filter. This is the default when the output is to a ternni-

nal.ange: December 1992 COST 7.2

44 Last change: December 1992 CMOST 7.2 3

cmls (1)

-F Mark directories with trailing slash ().

-R Recursively list all subdirectories.

files The files or directories to list. If this argument is one or more directories, the contents of the
directories are listed.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
cmls is used to list files, and information about them, that are in the CM file system. When the argu-
ment is one or more directories, cmls lists the contents of those directories; when the argument is one
or more files, cmls repeats each file name and gives any other infonnation you request using the
options.

By default, the list is sorted alphabetically. When no argument is given, the current directory is listed.
When several arguments are given, files are listed fist, followed by directories and the files within each
directory.

File names of the form hostname.pathname are valid arguments. hostname specifies a device, other than
the default (see DVWD and DVHOST NAME), containing the files you want to list.

This command uses the following files:

/etc/passwd Used to obtain user IDs for cmls -1

/etc/group Used to obtain group IDs for cmls -g

RESTRICTIONS

The output device is assumed to be 80 columns wide. Newline and tab are considered printing charac-
ters in file names.

This command, like all CMFS commands, does not accept wildcards in its arguments. Using cmglob in
conjunction with cmls, however, provides a workaround to this restriction, in effect providing c mis the
ability to use wildcarding.

SEE ALSO

UNIX chmod(l)
DVHOSTNAME (env. variable)
cmglob

Last change: December 1992

cmls (1)

45CMOST 7.2

cmmkdir(l) cmmkdir()

NAME

cmmkdir - Makes a CMFS file system directory. ~
SYNTAX

cmmkdir directories

ARGUMENTS
directories Directories to be created.

WHERE EXECUTED

Control processor
VMEIO host computer 3
CM-IOP

DESCRIPTION
The command cmmkdir creates the specified directories in the CMFS file system. Directories are
created with read, write, and execute permissions for user, group, and all others (mode 777). Standard
entries (. for the directory itself and .. for its parent) are made automatically.

This command requires write permission in the parent directory. 3
SEE ALSO

cmrm
cmrmdir

kI

0

Last change: December 199246 CMOST 7.2

cmmknod (1)

NAME

cmnknod - Makes a CM character-special file.

SYNTAX
cmmknod filename c major-device-number minor-device-number

ARGUMENTS
filename The name of the CM character-special

file.

major-device-number
The number of the file's structure entry in the device switch cmcdevsw (specified by
the CM character-special file's inode).

minor-device-number
The CM character-special file's minor device number, as specified by the file's inode.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

The CM file system views /O devices, such as tape drives, as CM character-special files. To make a
special device entry in the CM file system directory tree served by an fsserver process, execute
cmmknod as follows:

% cmmknod filename c major-device-number minor-device-number

where filename is the name by which the CM file system knows your device. Include the hostname:
component of the path namethe name of the computer the device is connected to, as given in that
computer's /etc/hosts table (for example, vmel :/dev/new-device).

Obtain the major-device-number from the device switch cm_cdevsw: if your device's structure is the
nth one in the device switch, major-device-number is n-l (structures in the switch are numbered from
0).

minor-device-number can specify the device's unit number, drive number, line number, and the like. If
more than one minor device number is associated with the device, execute cmmknod as many times as
necessary, specifying one minor device number at each execution. (The minor device number is not
used by the CMFS library or by fsserver; it is passed to the driver via the dev argument to CMFS-ioctl,
and can be used as you see fit.

SEE ALSO
CMFS-fcntl

Last change: December 1992

cmmknod (1)

47CMOST 7.2

cmmv (1) cmmv (l)

NAME U
cmmv - Moves (renames) a CMFS file system file or directory.

SYNTAX
cmmv [-il [-fl [-1 filel file2
cmmv [-i] [-f4 [-] files directory

ARGUMENTS
-i Interactively prompt for a yes or no response whenever a move results in overwriting an

existing file. The prompt is the file's name and a question mark. If the response is y, the
move takes place and the existing file is overwritten; any other response prevents the move.

-f Force the move to proceed regardless of any restrictions imposed by the mode or by the -i
option.

- Interpret all following arguments as file names, to allow file names starting with a minus
sign.

filel The file or directory to move (rename).

file2 The file or directory name to which to move (rename) filel.

files Files or directories to move into directory.

directory The directory into which to place files.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
The command cmmv moves a CMFS file or directory filel to file2, in effect changing its name from
filel to file2. In the second form, one or more files (plain files or directories) are moved to directory,
retaining their file names. This command refuses to move a file onto itself.

If file2 already exists, it is removed before filel is moved. If file2 has a mode that forbids writing,
cmmv prints the mode and queries the user as to whether to complete the move. If the user responds
with y, the move takes place; any other response causes cmmv to exit.

RESTRICTIONS
cmmv may not be used to move a file between CMFS file systems. Use cmcp followed by cmrm to
move a file between file systems.

SEE ALSO
cmcp
cmrm
copyfromdv
copytodv

A

48 Last change: December 1992 CMOST 7.2

Thinking Machines

NAME
cmptruncate - Tncates or extends a file.

SYNTAX

cmptruncate filename number-cmwords number-extra-bytes

filename The file to be truncated or extended.

number-cmwords
The number of cmwords you want the file filename to contain. (Usually, 1 cmword - 512
bytes; verify by executing cmstat on the file.)

number-extra-bytes
The number of additional files - that is, additional to the number of cmwords specified by
number-cmwords - you want the tnmcated file to contain.

WHERE EXECUTED
Control Processor
VMEIO host computer
CM-IOP

DESCRIPTION
cmptruncate truncates or extends a file to any non-negative value, including a value larger than the (2
Gbytes -1) limit imposed by cmtruncate. At the conclusion of execution, the total file size (in bytes) -
(number-cmwords * cmword size in bytes) + number-extra-bytes.

SEE ALSO
cmtruncate

Last change: December 1992

cmptruncate (I cmptnmcate (I

49CMOST 7.2

cmrestore (1) cmestore (1)

NAME
cmrestore - Restores (extracts) files and directories from an archive (supports SFS and CMFS file sys- '
tems).

SYNTAX
cmrestore [-b number]

[-f filename] [-n] [-s]
[-v] [-V vol-name]

ARGUMENTS
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

Use cmrestore to extract files from the tape archive and place them into the current file system. When
executed, cmrestore builds a tree representation of the archive's directory information and provides an
interface, composed of the commands listed below, that lets you browse through the tree, mark the files
to be extracted, and control some of the arguments passed to the cmtar that cmre store forks. Files are
extracted relative to the directory that is current when cmrestore is invoked. cmrestore supports shell-
like globbing (wildcarding), Emacs-style command-lin e editing and command history (see the GNU
Readline Library), and selectable output pagination.

Note that cmrestore supports multiple archives: you can specify up to four -f archive arguments. Speci-
fying multiple archives is useful when using multi-volume mode with tape drives that take time to
rewind, such as StorageTek. If the cmrestor e command line is ... -f /dev/rstcO -f /dev/rstcl, for exam- U
ple, cmrestore uses /dev/rstcl while it is waiting for /dev/rstcO to rewind, unload, and reload.

Before executing cmrestore, set the environment variables DVHOSTNAME, DVWD, and
CMFS PATHTYPE(7) for the appropriate file system; although you can later change the current work-
ing directory within the file system, you cannot change the current file system itself once you invoke
cmrestore. [

cmrestore Commands

The commands supported by cmrestore are listed below in alphabetical order.

blocking blocking-factor
Set the archive's blocking factor.

cd directory
Change the current directory within the archive's tree for the Is and mark commands.

display Print a list of the currently marked files.

Emacsedit
Enables/disable both the Emacs-style command-line editing and history mechanisms.

execute Run cmtar with the appropriate arguments on the marked files.

ex, qut
Exit cmdump or cmrestore and return to the shell prompt.

help, ? Print a brief synopsis of all available commands.

Is List the contents of a directory. Is is a simplistic version of cmls that lists names only, does not
provide columnated output, and takes no arguments other than one or more file names.

mark [-4n] files [[-oin] files] B
Flag files for restoration. The -r flag specifies that all files following it (until the next -n flag)
are directory names, and all files in the subtree rooted at those directories are to be marked. p

50 Last change: December 1992 CMOST 7.2

- -

I

cmrestore (1)

The -n flag (the default) specifies that all files following it (until the next -r flag) are not to be
marked recursively.

Specifying a directory to be marked non-recursively has no effect. Specifying a regular file to
be marked recursively is the same as specifying it non-recursively. In order for a file to be
marked, it must reside in either the current directory or one of its sub-directories.

In verbose mode, all files being marked that aren't already marked are listed. See also unmark.

more Toggles output pagination via the UNIX more command. This command has no effect on the
output of the forked cmtar.

prompt string
Set cmrestore's command-line prompt to string.

pwd Print the name of the current working directory (a directory within the archive's tree).

status Display status information about cmrestore: archive filename, blocking factor, current directory,
verbose mode, prompt, Emacs-editing/history mode, and output pagination mode.

unmark [-rin] files [[-rin] files]
Specify that previously marked files should be unmarked. The -r flag specifies that all files fol-
lowing it (until the next -n flag) are directory names, and all files in the subtree rooted at those
directories are to be unmarked. The -n flag (the default) specifies that all files following it
(until the next -r flag) are not to be unmarked recursively.

Specifying a directory to be unmarked non-recursively has no effect. Specifying a regular file
to be unmarked recursively is the same as specifying it non-recursively. In order for a file to be
marked, it must reside in either the current directory or one of its sub-directories.

In verbose mode, all files being unmarked that aren't already unmarked are listed. See also
mark

verbose Toggle verbose mode. In verbose mode, cmrestore prints the names of the files as they are
marked or unmarked.

EXAMPLE

This is a continuation of the example presented in the cmdump man page.

% setenv CMFS PATHTYPE cmfs
% setenv DVHOSTNAME dvl
% setenv DVWD /bigroject
% cmrestore
Retrieving directory info from archive(s) /dev/rstcO...done
Current directory is big project
Files will be restored into CMFS directory dvl:/bigproject
cmrestore% ls

bigproject/sean/
bigproject/may30
cmrestore% ed sean
cmrestore% ls
abc
tree
cmrestore% cd..
cmrestore% mark -r sean
cmrestore% display
big_project/seanl
big_project/sean/abc

Last change: December 1992

cmrestore (1)

51CMOST 7.2

c restore (1) cmrestore (I)

big_project/sean/tree
cmrestore% execute
(cmtar -x -M -b 3200 -f /dev/rstcO -T -)
cmrestore% exit

RESTRICTIONS
As when using cmtar or UNIX tar, you must be owner of the extracted files, and you must have write
permission on the directory to which you restore them. Also, if a file with the same name as an
extracted file already exists in the directory, you must have write permission on that file, as it will be
overwritten.

cmrestore cannot extract files or directories archived by UNIX tar.

SEE ALSO
cmdump
cmtar

Last change: December 1992 CMOST 7.2

I

U

U

a
a
U

aw

Ws

rs

4)

52 I

cmrm(l)

NAME
cmrm - Removes (unlinks) a CMFS file or directory.

SYNTAX
cmnrm [-f4 [-i] [-r] [-] files

ARGUMENTS

-f Force the file to be removed without first requesting confirmation. Only system or usage mes-
sages are displayed.

-i Interactively prompt for a yes or no response before removing each file. Do not prompt if
combined with the -f option.

-r Recursively delete the contents of the specified directory, its subdirectories, and the directory
itself.

- Interpret all following arguments as file names, to allow file names starting with a minus
sign.

files The files or directories to be removed.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
The command cmrm removes one or more CMFS files and their directory entries. If a directory entry
was the last link to a file, the file's contents are lost. The commands cmtm -r and cmrmdir remove
CMFS directories. The cmrmdir command removes a directory only if it is empty; cmrm -r removes a
directory if it first removes its files and subdirectories.

To remove a file, you must have write permission in its directory, but you do not need read or write
permission on the file itself. If you don't have write permission on the file and you are using cmrm
from a terminal, cmrm asks for confirmation before destroying the file. If your response begins with y
the file is deleted; otherwise it is not deleted.

If the input to cmrm has been redirected from another command or program, cmrm checks to be sure it
is not coming from your terminal. If it is not, cmrm sets the -f option, which overrides the file protec-
tion, and removes the files silently regardless of what you have specified in the redirected input. For
example, suppose you don't have write permission on the file water. Suppose also the file response con-
tains a response of n. The following deletes the file, even though the redirected input file contains a
response of n:

cmrm < response water

RESTRICTIONS
Wildcards will not work when the files you are referencing are not mounted on the system you are
logged in to. Using cmglob in conjunction with cmrm, however, provides a workaround to this restric-
tion, in effect providing cmrm the ability to use wildcarding.

SEE ALSO
cmrmdir
cmin
cmglob

For information about directory entries, see directory operations.

Last change: December 1992 3

cmm (1)

53CMOST 7.2

cmrm(l)

NAME
cmrmdir - Removes (unlinks) an CMFS file system empty directory.

SYNTAX
cmnndir directories

ARGUMENTS
directories Directories to be removed.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

The command cmrmdir removes one or more directories (and their directory entries) in the CMFS file
system. The directories must be empty; if a directory is not empty cmrmdir displays an error message
and does not remove it.

SEE ALSO
cmrm

Last change: December 1992

U
U

m111

U

U

U

U

U

U

um.I

IIII
II

U

a
U

U

U

amm
m
m

m

4)

U

U

cmrm(l)

54 CMOST 7.2

m

cmstat (1)

NAME
cmstat - Prints status information about a CMFS file.

SYNTAX
cmstat files

ARGUMENTS
files One or more files about which to print information.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

cmstat prints information about the status of one or more files in the CMFS file system, including its
type, mode, owner, size, and time of last access, modification, and change.

The Size field (see the sample output, below) shows the 32-bit byte count returned by CMFS stat. The
True file size field shows the actual file size, calculated using the Size in CM words field, the CMword
size (bits) field, and the Free bytes in last CMword field.

The times shown in parentheses in the Access, Modify, and Change
since access, modification, or change, respectively,
(days.hours:minutes:seconds). Changes of owner, group, link count,
not the Modify field.

EXAMPLE
A sample output:
% cmstat file
File: "file"
Filetype: Regular File
Mode: (0666/-rw-rw-rw-) UID: (ll55username) Gid: (10/ staff)
Device: 907 Inode: 453 Links: 1
True file size: 60817408 bytes
Size: 60817408
Allocated Blocks: 118784
Free bytes in last CMword: 0
Extents on disk: 1
Size in CM words: 118784
CMword size (bits): 4096
Optimal Blocksize: 131072

Access: Fri May 18 14:53:22 1990(00000.00:04:02)
Modify: Fri May 18 14:45:34 1990(00000.00:11:50)
Change: Fri May 18 14:50:38 1990(00000.00:06:46)

SEE ALSO

CMFS stat

fields indicate the amount of time
occurred. The units are

or mode set the Change field but

Last change: December 1992

cmstat ()

55CMOST 7.2

cmtar (1) cmtar (1)

NAME cmtar - Archives a file (tape or other media) (supports SFS and CMFS file systems). '

SYNTAX
cmtar command [options] [option argument] [files] I

ARGUMENTS
command One of the following must be specified. For the commands only, the preceding hyphen is

optional.

-c Create a new archive containing fies. If files
are not specified, no files are archived. If the archive file already exists, it is overwritten;

the old contents are lost.

-d Compare the archive with the files in the file system and report differences in file size,
mode, owner, and contents; also report it if a file exists in the archive but not in the file
system. If files are specified, they are compared with the tape and they must all exist in
the archive. If files are not specified, all the files in the archive are compared.

-r Add files to the end of the archive. Files must be specified. The archive file must already
exist and must be in the proper format (which probably means it was created previously
with cmtar). If the archive is not in a format that cmtar understands, the results will be
unpredictable.

Display a list of the files in the archive. If files are specified, only those specified that
appear in the archive are listed.

-u Add files to the end of the archive, but only under one of two conditions: if a file is not
already in the archive, or if a file is newer than the version in the archive (the time of last
modification is compared). Files must be specified. This command can be very slow to
execute.

-x Extract files from the archive. If files are not supplied, all the files in the archives are
-extracted.

-A Concatenate several archive files into one big archive file. All files should be archive [
files; these are appended to the end of the archive file on which cmtar is operating (see
the option -f). The original files are not changed. The UNIX cat command cannot be used
to concatenate archive files because each archive contains an end-of-archive marker, so
material added to the end by cat is ignored. The -A command removes the end-of-archive
markers before appending archive files.

-D Delete files from the archive. This command is extremely slow. Warning: Deleting files
from an archive stored on magnetic tape may result in a scrambled archive, because there.
is no safe way, except for completely rewriting the archive, to delete files from a mag-
netic tape.

options I
options argument
Zero or more of the options below may be specified. Some of the options are meaningful
only with certain commands. The options below are grouped according to the commands
with which they are used.

Options that do not take arguments may appear either after command (with no hyphen
and with no space between command and options), or separately (with the hyphen). The I
single exception is -version, which must be specified separately to avoid confusion with
-v.

Options that take an argument must appear separately (with the hyphen) and must be
immediately followed by the argument.

56 Last change: December 1992 CMOST 7.2

cmtar (1)

The following options are meaningful with any of the commands:

0w~ ~ -b number Specify a blocking factor for the archive; cmtar reads and writes the archive in blocks of
number x 512 bytes. The default blocking factor is set when cmtar is compiled, and is
usually 3200. A blocking factor of 3200 is fine for the DataVault and the StorageTek tape
drive, but it is too high for most standard tape drives. We recommend using a blocking
factor of 126 for standard reel tape drives, 1/4" Sun catridge tape drives, and the like.
(The maximum size of the blocking factor is limited only by the maximum block size of
the device containing the archive, or by the amount of available virtual memory.)

Use the same blocking factor when creating, updating, and extracting an archive.

-f filename Specifies the file name of the archive on which cmtar operates.

Multiple archives are supported: you can specify up to four -f a rchive arguments. Speci-
fying multiple archives is useful when using multi-volume mode with tape drives that take
time to rewind, such as StorageTek. If the cmtar command line is ... -f /dev/rstc -f
/dev/rstcl, for example, cmtar uses /dev/r stcl while it is waiting for /dev/rstc0 to rewind,
unload, and reload.

If -f is not supplied, but the shell environment variable TAPE exists, its value is used;
otherwise, a default archive name (picked when cmtar was compiled) is used. The default
is normally set to /dev/rstc0, which is the first StorageTek tape drive (if the system has a
StorageTek unit).

cmtar supports remote access only to magnetic tape device files, but not to regular files.
Therefore, if you are accessing a remote magnetic tape device, filename can be specified
as hostnam e:filename (filename must start with /dev/). If hostuame is not indicated, the
tape drive on the machine you're logged in to is used. If hostname is given, the tape drive
on hostname is used. If hostname contains the @ symbol, it is treated as user@hostname:
filename. If hostname indicates a remote tape drive, cmtar invokes the command rsh (or
remsh) to start up an /etc/rmt on the remote machine. If you give an alternate login name,
it will be given to the rsh. Naturally, the remote machine must have a copy of /etc/rmt.
The program /etc/r mt is free software from the University of California, and a copy of
the source code can be found with the sources for cmtar. This program must be modified
to run on non-BSD4.3 UNIX systems.

If filename is -, cmtar reads the archive from standard input (when listing or extracting),
or writes it to standard output (when creating). If - is given when updating an archive,
cmtar reads the original archive from its standard input and writes the entire new archive
to its standard output.

-C dir Change the working directory to dir before continuing. This option is usually interspersed
with the files on which cmtar is to operate. It is especially useful when several files from
different directories are to be stored in the same directory in the archive. For example,
executing the following command places on a tape the files iggy and iggy from the
current directory, followed by the file melvin from the directory baz.

% cmtar -c iggy ziggy -C baz melvin

The file melvin is recorded in the archive under the precise name melvin, not baz/melvin.
Thus, the archive contains three files that all appear to have come from the same direc-
tory; if the archive is extracted with cmtar -x, all three files will be created in the current
directory. In contrast, the following command records the third file in the archive under
the name bar/melvin, so that cmtar -x creates the third file in a subdirectory named bar.

Last change: December 1992

cmtar (1)

57CMOST 7.2

cmtar(l)

% cmtar -c iggy ziggy bar/melvin

-M Write a multi-volume archive: one that may not fit on the medium used to store it. Instead

of aborting when it cannot read or write any more data, cmtar asks for a new volume. For

example, if the archive is on a magnetic tape, the tape must be changed. Each volume of

a multi-volume archive is an independent cmta r archive. Any volume can be listed or

extracted alone, as long as -M is not specified. However, if a file in the archive is split

across volumes, the only way to extract it successfully is with a multi-volume extract

command (-xM) starting on or before the volume where the file begins.

-N date Only operate on files whose modification or inode-changed times are newer than date.

When creating an archive, only new files are written; when extracting an archive, only

newer files are extracted. D ate must be quoted if it contains any spaces. It is parsed using
getd ate.

-R Print, along with every message normally produced, the record number within the archive

where the message occurred. This option is especially useful when reading damaged

archives because it helps pinpoint the damaged sections. -R can also be useful when mak-

ing a log of a file system backup tape. Its results allow you to locate the file you want to

retrieve on several backup tapes, and choose the tape where the file appears closest to the
front of the tape.

-T filename Instead of taking the list of files on which to operate from the command line, read it from
filename. If filename is -, the list is read from standard input. Specifying both -T - and -f

- at once can only be done with the -c command.

-V name Write out a volume header at the beginning of the archive. If -M is specified, each

volume of the archive is given a volume header of name Volume n" where n is 1 for the

first volume, 2 for the next, etc.

-v Be verbose about the actions taken. Normally, the command to list an archive (-t) prints

just the file names and the other commands are silent. The command -tv prints a full line

of information about each file, like the output of cmls -1. The -v option with any other

command prints the name of each file operated on. The output from -v appears on the

standard output except when creating or updating an archive to the standard output, in

which case the output from -v is sent to the standard error.

-version Print the version number of cmtar to the standard error. To avoid confusion with the -v

option, -version must be given as a separate option preceded by a hyphen.

-w Print a message for each action cmtar intends to take, requesting confirmation. If the

response begins with y the action is performed; otherwise it is not. Actions requiring

confirmation include adding a file to the archive, extracting a file from the archive, delet-

ing a file from the archive, and deleting a file from disk. If cmtar

is reading the archive from the standard input, it opens the file /dev/tty to ask for
confirmation.

-X file Read a list of file names (actually regular expressions) from file and ignore files with

those names. For example, cmtar -c -X foo . prevents files in the current directory whose

names end in .o from being added to the archive. Multiple -X options may be specified.

-Z, -z Compress the archive as it is written, or decompress it as it is read, using the compress

program. This option works on physical devices (tape drives, etc.) and remote files as well

as on normal files; data to or from such devices or remote files is reblocked by another

copy of the ctar program to enforce the specified (or default) block size. The default

compression parameters are used; to override them run compress explicitly instead of

using this option. This option cannot be used with the option -M, nor with the commands
-u, -r, -A, and -D.

Last change: December 1992

cmtar ()

58 CMOST 7.2

cmtar (1)

The following options are meaningful with the commands for creating or updating an
archive (-c, -r, -u, -A, and -D). These options control which files are placed in an archive
and the format in which the archive is written.

-G At the beginning of the archive, write an entry for each of the directories on which cmtar
will operate. -G is only used when creating an incremental backup of a file system. The
entry for each directory includes a list of all the files in the directory at the time of the
backup, and a flag for each file indicating whether the file is going to be put in the
archive. This information is used when doing a complete incremental restore. Note: this
option causes cmtar to create a non-standard archive that may not be readable by non-
GNU versions of the UNIX tar program.

-h If a symbolic link is encountered, archive the file to which it is linked instead of simply
recording the presence of a symbolic link. If the file is archived again, an entire second
copy of it is archived instead of a link.

-1 Do not cross file system boundaries when archiving parts of a directory tree. This option
does not affect files on the command line; these are archived even if they reside in vari-
ous file systems. Rather, this option only affects files that are being archived because they
reside in a directory that is being archived. Any files not archived because of -1 are
printed on the standard error. This option is useful for making full or incremental archival
backups of a file system, as with the UNIX dump command.

-o Write an old format archive, which does not include information about directories, pipes,
FIFOs, contiguous files, or device files, and which specifies file ownership by numeric
user and group IDs rather than by user and group names. In most cases, a new format
archive can be read by an old UNIX tar program without serious trouble, so this option
should seldom be needed. When updating an archive, do not use -o unless the archive was
created with -o.

-W Verify the archive after writing it. Each volume is checked after it is written and any
discrepancies are recorded on the standard error. Verification requires the archive to be on
a medium capable of back-spacing. This means pipes, some cartridge tape drives, and
some other devices cannot be verified.

The following option is meaningful with the commands for updating an archive (-r, -u, -A, and -D), list-
ing files (-t), and extracting files (-x).

-B If an attempt to read a block from the archive does not return a full block, keep reading
until a full block is obtained. This behavior is the default when cmtar is reading an
archive from standard input or from a remote machine. This is because on certain U NIX
systems a read of a pipe the amount in the pipe even if it is less than the amount cmtar
requested. Without this option, c mtar would fail as soon as it read an incomplete block
from the pipe.

The following options are meaningful with the commands for listing files in an archive (-t) and extract-
ing files from an archive (-x).

-G The archive is an incremental backup. The behavior of -G depends on which command it
modifies.

With -t: for each directory in the archive, list the files in that directory at the time the
archive was created. The format of this list, while not easy for users to read, is unambigu-
ous for a program: each file name is preceded by Y if the file is present in the archive, by
N if the file is a directory, or by nothing if it is not in the archive. Each file name is ter-
minated by a null character. The last file is followed by an additional null character and a
newline to indicate the end of the data.

With -x: when the entry for a directory is found, delete all files in that directory that are

Last change: December 1992

cmtar ()

59CMOST 7.2

cmtar()(1)

not listed in the archive. This behavior is convenient when restoring a damaged file sys- i-

tem from a succession of incremental backups: it restores the entire state of the file sys-
tem to that which obtained when the backup was made. With out -G, the file system will
probably fill up with files that shouldn't exist any more.

-i Ignore blocks of zeros in the archive. Normally a block of zeros indicates the end of the
archive. This option allows cmtar to read archives containing blocks of zeros, such as
damaged archives, or archives created by concatenating several archives together with cat.
This option is not on by default because many versions of tar write garbage after blocks
of zeros. Note that this option causes cmtar to read to the end of the archive file, which
may sometimes avoid problems when multiple files are stored on a single physical tape.

-K filename Begin extracting or listing the archive with the file filename; consider only the files start-
ing at that point in the archive. This is useful if a previous attempt to extract files failed
when it reached filename due to lack of free space. k

-s Indicates that the list of file names to be listed or extracted is sorted in the same order as
the files in the archive. This option allows a large list of names to be used, even on a
small machine that would not otherwise be able to hold all the names in memory at the
same time. Such a sorted list can be created by executing c mtar -t on the archive and
editing its output. This option is unlikely to be needed on modern computer systems.

The following options are meaningful with the command for extracting files from an archive (-x).

-k Do not overwrite existing files with files of the same name from the archive.

-m Leave the modification times of the files cmtar extracts as the time when the files were
extracted, instead of setting it to the time recorded in the archive.

-O Instead of creating the files specified, write the contents of the files extracted to the stan-
dard output. This may be useful when extracting the files in order to send them through a
pipeline.

-p Set the modes (access permissions) of extracted files exactly as recorded in the archive. If
this option is not used, the current umask setting limits the permissions on extracted files.

files One or more SFS or CMFS files to be stored in an archive file. An archive file describes
the names and contents of constituent files, providing a way to transport a group of files
from one system to another, and to store several files on one tape while retaining their 1
names.

When extracting or listing files, the files are treated as regular expressions, using almost the same syn-
tax as the shell. The shell matches each substring between backslashes separately, while cmtar matches i
the entire string at once, so some anomalies occur: for example, * or ? can match a /. To specify a reg-
ular expression as an argument to cmtar, quote it so the shell will not expand it.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

cmtar provides for storing many SFS or CMFS files into a single archive, which is a file that describes
the names and contents of its constituent files. An archive file is the only way to store several files on
one tape and retain their names. (A magnetic tape can store several files in sequence, but it stores no
names for themjust relative position on the tape). cmtar creates new archives, adds files to an existing
archive, lists the files stored in an archive, and extracts files from an archive.

An archive can be stored in a file on the control processor or on an I/O device such as a magnetic tape, h
floppy, cartridge, or disk; sent over a network; or piped to another program. Piping one cmtar command
to another is an easy way to copy a directory's contents from one disk to another while preserving the i

Last change: December 1992 CMOST 7.2

cmtar ()

60

cmtar (1)

dates, modes, owners, and link-structure of all the files therein.

Creating an archive is useful for packaging a set of files to move them to another CM system, as well
as for making backup copies of a file system. cmtar has special features for making incremental and full
dumps of all the files in a file system. (If a backup file was saved from a point-to-point DataVault and
is to be restored onto a multidrop DataVault, use cmtar to write the file to the multidrop DataVault and
then convert it using cmdd.)

The first argument to cmtar must include exactly one command, and it may also include zero or more
options. The command specifies whether to create a new archive (-c), compare an archive with files in
the file system (-d), add files to an archive (-r, -u), list files in an archive (-t), extract files from an
archive (-x), concatenate several archives together into one larger archive (-A), or delete specified files
from an archive (-D).

The next arguments to cmtar may be one or more options. Since the options control the behavior of the
commands, some of the options only make sense with certain commands. The options can be specified
in either of two ways. The first method is as described above under Syntax": options that don't take an
argument may be specified either with the command or individually preceded by a hyphen, while
options that do take an argument are specified individually, preceded by a hyphen and immediately fol-
lowed by the argument. The second method is that the option letters are specified with the command
with no preceding hyphen, and the options' arguments, if any, follow in the same order as the options.
The following two commands, which both accomplish the same thing, illustrate both methods:

cmtar -c -v -b 20 -f /dev/rmt0

cmtar cvbf 20 /dev/rmt0

The last argument to cmtar is files: a list of the files and directories on which cmtar is to operate. For
example, they are the files cmtar is to place in a new archive or extract from an existing archive. If a
directory is named, cmtar recursively operates on the directory, its files, and its subdirectories. If files is
not supplied, the default behavior depends on which command was used. Some commands have no
default and report an error if files are not specified. The files on which cmtar is to operate can also be
read from a file; see the -T option.

If a full pathname is specified when creating an archive, it is written to the archive without the host-
name and initial backslash () so the files can later be read into a place other than the original location,
and a warning is printed. If files are extracted from an archive that contains full pathnames, they are
extracted relative to the current directory and a warning message is printed.

When reading an archive, cmtar continues after finding an error.

The command cmtar is derived from the GNU tar program, which was written by John Gilmore and
modified by many people, and whose GNU enhancements were written by Jay Fenlason.

RESTRICTIONS

As in tar, a bug in the Bourne shell usually causes an extra newline to be written to the standard error
when remote archives are used.

As in tar, a bug in dd prevents turning off the x+y records in/out messages on the standard error when
dd is used to reblock or transport an archive.

SEE ALSO
cmdd
cmfind
cmdump

Last change: December 1992

cmtar ()

61CMOST 7.2

cmtar (1) cmtar (1)

cmrestore k ar(l)i
tar(5)

rsh(1)
compress(l)

I
I
I

U

62 Last change: December 1992 CMOST 7.2

cmtnmcate (1)

NAME
cmtruncate - Truncates a CMFS file.

SYNTAX
cmtruncate path length

ARGUMENTS
path The path of the file to truncate.

length The length in bytes to which to truncate the file; if length is greater than the file's current
length, the file is extended to length bytes.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION

The command cmtruncate changes the size of the file named by path to length bytes. If the file previ-
ously was larger than length bytes, the extra data is lost. If the file was previously smaller than length
bytes, the file is extended to length bytes. This command allows you to extend files by pre-allocating
contiguous physical disk blocks for efficient writing.

SEE ALSO

CMFSserial [fitruncate file(3)
cmptruncate

Last change: December 1992

cmtrmcate (1

63CMOST 7.2

copyfromdv (1)

NAME

copyfromdv - Copies a CMFS file to an SFS file system or other UNIX file system.

SYNTAX
copyfromdv [-a] [-i] [-p] [-r] sourcepath destpath

ARGUMENTS
-a

-i

-p

-r

Appends the file named by sourcepath to the file named by destpath rather than overwrit-
ing the existing contents. It is an error if the destination file does not already exist.

Interactively prompt for a yes or no response if an existing file will be overwritten. The
prompt is the file's name and a question mark. If the response is y, the copy takes place
and the existing file is overwritten; any other response prevents the copy.

Preserve the modification times and modes of the file copied.

Recursively copy the contents of directories, files, subdirectories, and the subdirectories'
contents that are supplied as the first argument, files, to the directory supplied as the
second argument. The second argument cannot be a file.

sourcepath The file, in a CMFS file system, to be copied. Multiple files may be specified.

destpath The name of the copy, which is a file in an SFS or other UNIX file system. If sourcepath
specifies multiple files, destpath is a directory in which to place the copies of the files.

WHERE EXECUTED
Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
The command copyfromdv copies a file residing in the CMFS file system into an SFS or other UNIX
file system.

sourcepath names the CMFS file. destpath names the copy, which is a file in an SFS or other UNIX file
system.

SEE ALSO

cmcp
copytodv

64 Last change: December 1992 CMOST 7.2

copyfromdv (1) I
I
I
I
I
I
I

crI

I
i

I
1
I
I
I
U

U

copytodv (1)

NAME
copytodv - Copies an SFS file or other UNIX-system file to a CMFS file system.

SYNTAX

copytodv [-a] [-i] [-p] [-r] sourcepath destpath

ARGUMENTS
-a Appends the file named by sourcepath to the file named by destpath rather than overwrit-

ing the existing contents. It is an error if the destination file does not already exist.

-i Interactively prompt for a yes or no response if an existing file will be overwritten. The
prompt is the file's name and a question mark If the response is y, the copy takes place
and the existing file is overwritten; any other response prevents the copy.

-p Preserve the modification times and modes of the file copied.

-r Recursively copy the contents of directoriesfiles, subdirectories, and the subdirectories'
contentsthat are supplied as the first argument, files, to the directory supplied as the
second argument. The second argument cannot be a file.

sourcepath The file, in a UNIX file system, that is to be copied. Multiple files may be specified.

destpath The name of the copy, which is a file in the CM file system. If sourcepath specifies multi-
ple files, destpath is a directory in which to place the copies of the files.

WHERE EXECUTED

Control processor
VMEIO host computer
CM-IOP

DESCRIPTION
The command copytodv copies a file residing in an SFS file system or other UNIX file system to a file
residing in a CMFS file system.

sourcepath names the file in the SFS or UNIX file system. destpath names the copy, which is a file in a
CMFS file system.

The -a append option is used to join several files in a SFS or UNIX file system into a single file in the
CMFS file system. For example, the SFS or UNIX file may span several tapes.

The command copytodv extends the destination file to the final size before writing it. If copytodv -a is
interrupted while copying, the recorded length for the file is the original length plus the source file's
length. cmtrnmcate can be used to truncate the file to its former length.

SEE ALSO

copytodv
cmcp
cmtruncate

Last change: December 1992

copytodv ()

CMOST 7.2 65

ibmtape (1) Thinking Machines Corp. ibmtape (1)

NAME
ibmtape - Imports/exports IBM datasets and handles label reading, writing, and verification.

SYNTAX
ibmtape {-fromdv I -todv} ifinputfile of=outputJile [-vmeio]
label = { isl Il i l I inlosl I onl I obl I osl,wsl I osl, wnl }

vsn=list-of-vol-serial-nos dsn=list-of-dataset-names [bs=buffersize] rformatfmit:blen:rlen
[stackers=n] [-leds] [-compress] [-a]

ARGUMENTS

{-fromdv I -todv}
These switches indicate the direction of motion of the data. If -todv is specified, it is
assumed that the input file is a StorageTek tape unit and the output file resides on the
DataVault or SDA (depending on the setting of CMFSPATHTYPE); if -fromdv is
specified, the reverse is true. One and only one of these switches must be specified.

if=inputfile Specifies the name of the input file. If a dataset is being written, this specifies the name of
the file that is being read; if a dataset is being read from tape, this specifies the name of
the device to read it from (usually /dev/rstc0 through /dev/rstc3). Whether the file is
being moved to or from a CM file system must be specified by the -todv or fromdv
switch. When inputfile is a CMFS file, it can be specified using a full pathname (i.e.,
hostname:filename) or, if DVWD and/or DVHOSTNAME are set appropriately, a relative
pathname.

ofoutputfile Specifies the name of the output file. See if=.

-vmeio When executed on a CM-IOP, this switch causes ibmtape to use the VMEIO hardware in
the CM-IOP to transfer the data to or from the CMFS file system, instead of sending it
over the Ethernet. Note that when ibmtape is executed on an ITS system, this switch has
no effect (the ITS automatically uses the fastest possible data transfer route).

label={ isl I ibl I inl I osl I onl I obl I osl,wsl I osl, wnl
Specifies the type of label processing to process against the given input or output dataset.
This option applies to the tape being read or written on the StorageTek tape unit.

isl Standard label processing on input tape.
inl Non-labeled processing on input tape.
ibl Bypass label processing on input tape.
osl Standard label processing on output tape.
onl Non-labeled processing on output tape.
obl Bypass label processing on output tape.
osl, wsl Replace the existing standard label with the given standard label, rather than f
using it simply for verification.
osl, wnl Replace the existing standard label with the given non-labelled data, rather
than using it simply for verification. _

vsn-list of volume serial numbers
Specifies the six-digit volume serial numbers (VSNs) of the different volumes, separated by
commas. On input tapes, only the volumes specified are processed. For output tapes, enough I
VSNs must be specified to accomodate all the data, and extra VSNs are ignored.

dsn=list of dataset names
Specifies the name(s) of the current dataset(s), separated by commas. These are matched
against the label of each input or output tape, in turn. Concatenating multiple datasets is sup-
ported only on input tapes.

bs-buffersize
Specifies the size of the buffer to allocate in VMEIO host computer or CP main memory.

rformat=fmt:blen:rlen n
Specifies the format of the data on the tape. If this option is omitted for input standard label

66 Last change: December 1992 CMOST 7.2

Thinking Machines Corp.

tapes, the formatting information is extracted from the label and used. format must be pro-
vided for output data. fint specifies the format of the records on the tape, and must be one of
f, fb, v, vb, vbs, or u. blen specifies the length of each physical tape block. rlen specifies the
length of each logical record on the tape (0 for variable-format tape). The record length must
divide evenly into the block length, and the block length must divide evenly into the buffer
size (that is, bs >= blen >= rlen, and bs/blen = 0, and blenlrlen = 0). The fint fields are:

f Fixed-length records
fb Fixed-length blocked records
v Variable-length records
vb Variable-length blocked records
vbs Variable-length, blocked, spanned records
u Undefined

stackers=n
Causes the use of up to four input stackers. This allows the operator to overlap the time needed
to rewind and unload one tape that has finished processing with the loading and reading or
writing of a subsequent tape in the dataset. It also allows more than 10 tapes to be loaded at
one time (each stacker on a StorageTek typically holds 10 tapes).

-leds Displays the volume serial number of the tape currently being processed on the status display
of the StorageTek drive.

-compress
Enables use of the ICRC (Improved Cartridge Recording Capability) hardware on the
StorageTek drives. This switch is only needed for output tapes; compressed tapes are
uncompressed automatically on input and require no special processing. If compressed tapes
are loaded on a drive that does not have the compression hardware, the operator is alerted and
the tapes are rejected. New compressed tapes are labelled as such and cannot be read by tape
units that do not have the ICRC hardware.

-a Specifies that the dataset is to be appended to the destination file.

WHERE EXECUTED
CP
VMEIO host computer
CM-IOP

DESCRIPTION

ibmtape allows the import and export of IBM datasets on IBM Standard Label 3480-type tapes via a
StorageTek 4980 tape drive connected to a CM-IOP system or an ITS system. The CM-IOP acts as a
gateway between the SCSI interconnect used by the StorageTek drives and the CMIO bus that connects
the CM-IOP to a device that hosts a CMFS file system. The ITS acts as a gateway between the SCSI
interconnect used by the StorageTek drives and the CM-5 networks that connects the ITS to a Scaleable
Disk Array. ibmtape allows the operator to optimize the throughput between the StorageTek and the
file system through buffering capabilities of either the VMEIO hardware in the CM-IOP or the ITS
hardware. ibmtape also performs the standard tasks of label reading, writing, and verification.

OVERVIEW: FILE FORMATS
Under UNIX, a file has no format - it is a raw sequence of bytes existing on a disk or tape, or other
media. An application is responsible for intepreting a file in a way appropriate for it. For instance, a
text editor interprets a file as sequences of bytes terminated by newlines (carriage returns), and a data-
base program might interpret a file as a series of fixed-length records. On an IBM system, however,
files are treated differently. The IBM operating system (typically MVS) handles most of the user's file
processing needs. It allows the user to select from a variety of common file formats and allows a user's
application to read and write these files without requiring a lot of file-format-specific code.

Last change: December 1992

ibmtape () ibmtape ()

67CMOST 7.2

ibmtape (1) Thinking Machines Corp. ibmtape (1)

Definition: a dataset name (dsn) consists of a sequence of characters interspersed with the period l
character (.), roughly equivalent to a UNIX filename. P'

An example of a dataset name is PAYROLL.JULY.SOFrWARE". Dataset names have a max-
imum length of 44 characters. The names imply a hierarchy. For instance, the above dataset is
really a subset of a larger dataset called PAYROLL.JULY" which is, in turn, a subset of a
dataset called "PAYROLL". Datasets consist of records. l

Definition: a record is a sequence of bytes from a dataset. It is typically the smallest unit of
addressable data in a dataset.

Records come in two types in the IBM world: fixed and variable. Fixed records are all of the
same length. These are the most common type and are used widely in databases. Under UNIX, a
particular record in a file like this would be extracted by multiplying the record length by the B
number of the desired record and doing a seek operation. On an IBM, however, the user merely
issues a read call with the particular record number.

Variable length records are more complicated. In datasets of this type, the records may be of arbi- I
trary length. Under UNIX, a user would have to scan an entire file to locate a particular record.
On an IBM, pointers to specific records are kept along with the file. I

OVERVIEW: TAPE FORMATS
As with any form of physical media, tapes impose their own structure upon the data that is written on
them. To a UNIX user, tapes are visible simply as files in the filesystem that, when read, present a i
sequence of bytes followed by an "end of file" condition. To an IBM system user, a tape is an integral
extension of the file system. Datasets that have moved to tape have not actually left the file system, per
se. Rather, they have been entered into a catalog and are archived. The operating system maintains this
catalog and is capable of retrieving the dataset when needed (usually by asking a human to put the tape t
in the drive).

Interestingly enough, when handling tapes more of the structure of the process is visible to the IBM
user than to the UNIX user. Here are a few terms used by both the IBM and the UNIX community:

Definition: a tape file is a sequence of records (IBM) or bytes (UNIX) on a tape, terminated by a
file mark or tape mark A tape mark is simply an indicator written on the media by the drive (and
unreadable by the user) that indicates an end of file" condition. There are two other special
marks on the tape: the BOT marker and the EOT marker. These are physical indicators on the
tape designating the beginning of the tape and the end of the tape.

A tape file should not be confused with an actual data file. Under UNIX, a whole directory structure
can be archived into one tape file using the tar program, and individual UNIX files can be extracted
later. On an IBM, one dataset can span multiple tapes (and hence multiple tape files), or it may occupy
only one tape file.

The tape mark is "invisible" to the applications programmer. It is merely an indication to the user that
there may be no more data beyond this point. Multiple tape files may be storedon tape by separating
them by tapemarks; two tape marks are typically written to indicate the end of the last file on the tape.
Tape drives may also position the tape at the granularity of a file. Special hardware exists in the drive
to "fast-forward" a tape past a tape mark, leaving the tape ready to read the next file on the tape.

The only indicators on a tape that must be obeyed are the BOT and EOT markers. The BOT marker l
informs a tape drive that it has completely rewound the tape. The EOT marker lets the applications pro-
grammer know that the physical end of tape has been reached. 'An application is notified of an EOT
condition on reading or writing. More data may then be written, but the consequences could be dire --

68 Last change: December 1992 CMOST 7.2

Thinking Machines Corp.

on oder round tapes, the tape would frequently fall off the reel and require the operator to reload the
tape.

The file is not the smallest granularity with which data may be written to a tape, however. Tape drives
partition data on the tape into blocks or records.

Definition: A tape block is the smallest unit of data that may be addressed on a tape. Tape blocks
are unfortunately sometimes referred to as tape records, in which case the records of the dataset
on the tape are called logical records and the tape blocks themselves are referred to as physical
records.

Like a tape file, there is not a one-to-one mapping between records in a dataset and blocks on a tape
(although there could be). Tape blocks are usually much larger, to improve performance. If they are
larger than a record in a dataset, the records in the dataset are packed into the tape block in some logi-
cal fashion. A drive may position itself on a specific block on the tape by performing FSR (forward
space record) or BSR (backward space record) operations. In addition, mot tape drive units support a
high-speed access method called fixed block mode, which allows collections of similar-sized records to
be extracted at once. The normal mode of operation is variable block mode.

All of the preceding terms describe attributes that are common to all tapes, whether or not they ori-
ginate from a UNIX system or an IBM system. They are also common to all tape styles, such as 9-
track ("reel-to-reel"), QIC (cartridge), 3480 (IBM "square" tapes), or Exabyte (8mm video). On IBM
systems, however, there are a group of conventions for how the user's data is laid out on the tape,
known as tape formats, and a group of conventions for placing descriptive data on each tape, known as
label formats.

Definition: a tape label is an electronic version of the label found on the outside of the tape,
except that it is written on the first few recors of the tape itself The label usually contains data
descriptive of the contents of the tape, such as the dataset name, the volume number, the owner of
the tape, the number of the records, etc. There are several formats for labels, the most common of
which is the IBM standard label. There is also a label format known as an ANSI label. IBM also
supports a tape format called a non-labelled tape, which is not to be confused with a unlabelled
tape (a tape that has no label).

Tape labels serve several different purposes. First, they support the IBM concept of extending the file
system out to a collection of tapes, and allow the computer to verify the contents of a particular set of
tapes. Second, they provide an element of protection. Jobs that run on an IBM must specify the dataset
name and volume serial numbers of the tapesthey want to work with. If the wrong volume is inadver-
tently mounted on the drive, or the volumes of the dataset are mounted out of order, the operator will
be notified and requested to mount the correct volume. Third, they describe the contents of the tape and
givethe information necessary to reconstruct the dataset on disk as it has been written to tape (poten-
tially across many separate volumes).

A label on a tape is essentially a small tape file that appears before any tape files containing data. This
file typically contains anywhere from one to three 80-character records. If a program such as dd(l) is
used to read the tape, this file can be extracted and examined by the user. However, the information
contained in the label is meant to be read by a program and not a human. Most tape label formats also
include trailer labels, which aresimilar to the labels found on the front of the tape, except that they con-
tain information such as checksums, block counts, and anindication as to whether or not there are more
volumes to be read in a paticular dataset.

Many of the options to ibmtape are used to perform the verification of the tape labels on the various
volumes of the datasets. This includes the label, dsn, vsn, and rformat options. The most important of
these options is the label option. This man page describes only processing tapes with standard labels, as

Last change: December 1992

ibmtape (1) ibmtape ()

69CMOST 7.2

ibmtape (1) Thinking Machines Corp. ibmtape (1)

they are by far the most common type. .i
label-isl This format indicates that each volume of the input dataset is preceded by an IBM stan-
dard label. The data read fromthis label is compared against the values given in the dsn and vsn
options. If any of these fields do not match, the operator is alerted and given the option of cancel-
ling processing of the mismatched tape or allowing processing to continue. If no rformat option
is specified, the data format, block size, and record size in the label are used during processing.
When the end of volume on each tape is reached, the number of blocks read from the tape is
compared with the block count given in the label. If these counts do not match, the operator is
alerted and given the option of aborting or continuing processing. If the tape label indicates that
the tape was written in compressed format, and the hardware the tape is loaded on is not capable
of reading compressed media, the tape is rejected.

iabel-osl This format is used when producing output tapes that already have a valid label written 3
on them. Many data centers initialize the label on new tapes with the volume number the tape has
been assigned in the center's library, and the name of the dataset that will reside on it. When a
volume is processed, the dataset name and volume numberfrom the label are compared against
the dataset name and volume number from the command line. If these do not match, the operator
is alerted and given the option of aborting or proceeding. If the- operator chooses to proceed, the
tape will be written, but the label will not be altered.

labelosl,wsl This form of the label option is used when producing output tapes and initializing,
rewriting, or overriding the label data on a tape. When a volume is processed, it is first checked
forthe presence or absence of a label. If no label is found, one is written using the information 3
provided on the command line. If a label is found, the operator is alerted that allowing the job to
continue will overwrite the label on the tape. If the operator chooses to proceed, the old label
data is replaced with the information given on the command line, and the dataset is written to the
tape.

IBM-FORMAT TAPE-LABEL PROCESSING

Note the following about variable-record format processing (specifically, v, vb, fs, and vbs of the fint
field of the rformat option):

On input variable-record format tapes, ibmtape creates a control file
(the filename is generated by the output filename and is named output filename.ctl), which I
contains information about the record and block lengths of the input tape. The block
descriptor words (BDW) and record/segment descriptor words (RDW/SDW) are NOT
stripped from the data.

On output variable-record format tapes, ibmtape checks for the existence of a correspond-
ing control file. If the file exists, ibmtape uses it to determine the size of each tape block 3
to write. The data must either contain the correct BDW and RDW/SDW entries, or contain
placeholders (zeros) at the correct locations, as specified by the control file. In the latter
case, ibmtape fills in the placeholders with the correct descriptor words extracted from the
control file.

If no control file is found, ibmtape peruses the data itself to determine the size of each
tape block to write. In this case, the data must contain the correct descriptor words.

When processing variable-record output tapes, ibmtape attempts to use fixed-block mode
(see below) when it determines that all the block sizes in its buffer are the same size. In
this instance, the buffer size specified on the command line does not need to be a multiple
of the fixed block size. This use of fixed-block mode cannot be overridden. !

Last change: December 199270 CMOST 7.2

Thinking Machines Corp.

Note the following about fixed-block mode processing (specifically, f and fbs of the fint field of the
rformat option):

If the tape drive is determined to be a StorageTek 4980, ibmtape uses fixed-block mode as
described below to greatly improve performance. To take full advantage of this, specify a large
buffer size (usually on the order of several megabytes) to ibmtape. Just as when specifying fixed-
block mode explicitly on the command line, the buffer size specified must be a multiple of the value
used for fixed-block mode, which is determined as follows:

For isi processing, ibmtape automatically sets fixed-block mode to the size specified in the
block length field specified in the HDR2 label.

For osl or onl processing, ibmtape automatically sets fixed-block mode to the block length
specified in the rformat argument, except for variable-record format tapes (see below).

To prevent ibmtape from automatically using fixed-block mode as described above, specify a
fixed-block mode size of -1 on the command line (using the ifbs or ofbs arguments).

PERFORMANCE CONSIDERATIONS

At full speed, the StorageTek unit is able to read data from tape and provide it to the SCSI host at
2MB/sec. Data from the tape is read into the buffer memory of the VMEIO board in the CM-IOP sys-
tem. This buffer memory is available to the Ciprico SCSI board via direct DMA across the Sun back-
plane in the CM-IOP system - thus, no intervention by the operating system is necessary to move the
data. Oncethe data has been deposited in the buffer memory of the VMEIO, it can be written to a
CMFS file system via the CMIO bus at 15-20 MB/sec.

The principal reason why performance tunning may be necessary to get close to 2MB/sec isthat the
StorageTek is a streaming tape unit. This means that the tape system is capable of reading and writing
data as fast as the tape passes beneath the tape heads. However, if the system rims out of data to write,
it will not stop motion immediately, and it will be forced to rewind the tape past the point that it
stopped I/O and bring the tape up to speed again before resuming data transfer. If the StorageTek sys-
tem is "starved" for data when writing a tape, or if the user's peripheral is not able to receive data as
fast as the StorageTek provides it, more and more time will be spent repositioning the tape.

To solve this problem, the ibmtape command employs a system known as double buffering. When the
user specifies a buffer size with the bs option, two of these buffers are actually allocated in the VMEIO
buffer memory. When reading from tape, data is read into one of the two buffers. When that buffer has
been filled, the tape unit starts depositing data into the second buffer, and the first buffer is used to
write to the CMFS file system. As the StorageTek completes transfers, these buffers are repeatedly
switched, ensuring that the tape is kept more or less continually in motion. A similar process is
employed for writing, with the CMFS file system filling one buffer with data while theStorageTek is
removing data from the other.

Each VMEIO has 32 MB of on-board buffer memory available to the user. A small amount of this
memory i reserved for the system (approximately 48K) leaving in the range of 31 MB of memory avail-
able for the application or for use by ibmtape. In order to achieve maximum performance fromt he
CM-IOP system, it is usually wise to setthe bs option as large as possible. The bs value must be a con-
stant multiple of the block length from the tape (as specified in the tape label or on the command line
via the rformat argument). Keeping in mind that two buffers must be allocated for the double buffering
algorithm, the bs option can be no larger than about 15 MB. Maximum performance is usually reached
with buffer sizes in the range of 5-10 MB.

Performance of the StorageTek system may also be improved by carefully selecting the data format to

Last change: December 1992

ibmtape () ibmtape ()

71CMOST 7.2

ibmtape (1) Thinking Machines Corp. ibmtape () I

be used on the tape. Not all data formats are equal. In general, the various fixed-record formats (f, fb) U
can be processed much faster than the variable formats (v, vb, vbs, and u). Due to the fact that the
UNIX file system does not support structured files, additional processing is performed on variable-
format files as they are read from the tape system. Variable-format fles have information contained in 3
the data stream that indicates the start and end of records. Most application programs will want to
remove or skip this data when processing the file, so the ibmtape command creates an index into the
dataset as it is read, called a control file. This contorl file is created with the smae name as the dataset
with an extension of .ct. The process of creating this file can be quite time-conuming since it requires
scanning the entire input buffer before it is written to disk Double buffering provides extra time for
ibmtape to scan the buffer, but extremely short variable-length records can still cause a considerable
performance degradation. If a variable-length data format is being used to store primarily fixed-length U
data, it would be advantageous to switch to a fixed or unblocked format if at all possible.

Another factor that can degrade performance when reading from the StorageTek system is the presence 3
of short blocks in the data stream on the tape. ibmtape attempts to use fixed block mode when reading
data fromthe tape, assuming that this will achieve the maximum transfer rate possible. If, during the
read option, the StorageTek encounters a block on the tape that is shorter than the given block size, it
will be unable to continue the read, and returns a count of the number of blocks actually read to
ibmtape. ibmtape must then take the driv eout of fixed block mode, back the tape up one record,
reread the short record, put the drive back into fixed block mode, and continue with the read. This can
cause a considerable performance penalty if it must be done frequently while reading a particular
volume. Since the block size for fixed block mode is specified by the block size in the rformat option
(or in the tape label), it is important that this value accurately represent the blocking of the data on the
tape, and not be arbitrary or inaccurate. 3
It is important to note that even fixed format tapes are not exempt from having short blocks written on
them. The term fixed' refers to the length of the user records in the data, not to the length of the
blocks on the tape. So, it is possible to have a tape with an rformat of fb:8000:80 record length of 80
bytes, block size of 8000 bytes, 100 records per tape block), where every other tape block has 99
records on it. Such a data layout can considerably degrade performance. Unfortunately, considerations
like this are largely governed byt he system that produced the tapes being read.

EXAMPLES

To read a four-volume, IBM standard-labeled dataset with VBS format and maximum blocksize of 3
32760 bytes:

% cmdd iff/dev/rstcO of-dvl:dataset -todv label-isl \
dsn-TMC.IBM.DATASET vsn-811302,808911,823984,822922 bs-3276000 I
To write an IBM standard-labeled dataset spanning no more than four volumes, with fixed-size records
of 80 bytes and tape blocksize of 8000 bytes:

% cmdd if=dvl:data of-/dev/rstc0 -fromdv label-osl \
dsn=TMC.IBM.FIXEDDATA vsn-812391,822661,824907,808961 \
rformat-f:8000:80 bs-800000

To read two datasets from IBM non-labeled tapes with 6400-byte blocks, concatenating them: 3
% cmdd if-/dev/rstcO of-dvl:merged-data -todv label=inl \
vsn-111111,222222 files=2 ifbs-6400 bs=640000 }

To read two datasets from a single IBM standard-labeled tape volume, concatenating them:

72 Last change: December 1992 CMOST 7.2

/I

Thinking Machines Corp.

% cmdd if=/dev/rstcO of=dvl:merged-data -todv label=isl vsn-865148 \
dsn=IBM.DATA.1,IBM.DATA.2 bs=3276000

SEE ALSO
cmcp
copyfromdv
copytodv
dvcp
cmtar
cmdump
cmrestore
CMFS PATHTYPE7)

Last change: December 1992

ibmtape () ibmtape ()

73CMOST 7.2

I

N

II
NNN

I
N

N

00N

S

I

S

S1

Appendix B

CM-5 CMFS Calls

Version 7.2 Beta 1, December 21, 1992
Copyright a 1992 Thing Machines Corporation 75

q

q

q
q
q
q
qIt

Si/.I
q
qNN

qN
N,N

N

4qIIIIII
4%
II

4

------------ ------------- 11

S

41" ,

S

I
SI b
i

i

m

M
e

i

0*S

S
S1
SI
SI
SI

S

SI

CMFS_access (3)

N@N NAME
NAME, CMFS-access - - Determines the accessibility of a file.

C SYNTAX
#include <
n CMFS_access(path, mode)
int n, mode;NI int n, moc~;char *path;
INTEGER n, mode STRING path

ARGUMENTSN. path A pointer to the pathname of the file whose permissions to check.

mode The mode to verify.

RETURN VALUE

0 Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS errno and errnno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION
CMFS access checks the file named by path for accessibility according to mode, which is an inclusive
OR of the following bits:

N CMFSROK test for read permission
CMFS W OK test for write permission
CMFS_X_OK test for execute or search permissionS .CMFS FOK test whether the directories leading to the file

can be searched and the file exists.

Only access bits are checked. A directory may be indicated as writable by CMFS access, but an
attempt to open it for writing will fail (although files may be created there).

ERRORS

If an error occurs, the value - is returned and the external variables CMFSermo and errno are set to
indicate the cause of the error. CMFS unlink fails if any of the following are true:

CMFS EACCES
Search permission is denied for any component of the path name.

CMFS ENOTDIR
A component of the path prefix is not a directory.

CMS EINVAL
path contains a character with a high-order bit set.

CMFS ENAMETOOLONG
- path exceeded 255 characters in length.

CMFS ENOENT
The file referred to by path does not exist.

N CMFS EFAULT
path points to an invalid address.

CMFS EIO An 110 error occurred while reading from or writing to the file system.N· ~ CMFS EROFS
The named file resides on a read-only file system and write access was requested.

I
q CMOST 7.2 Last change: December 1992 77

CMFS- es(3)

CMFS access (3) CMFSaccess (3) a

SEE ALSO ,

CMFS chdir
CMFS [flchmod
CMFS_[f]stat i
CMFS_[fichown

isi

i
ki

I1

i
i
II

Last change: December 1992 CMOST 7.278

qI CMFS_chdir (3) CMFS chdir(3)

q NAME

CMFSchdir - Changes the current working directory.

C SYNTAX

n = CMFSchdir(path)
char *path;

int n;

q4 FORTRAN SYNTAX

n = CMFS_CHDIR(path)
INTEGER nI STRING path

ARGUMENTS

path The directory to become the new current working directory.

qIN RETURN VALUE
O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFSerrno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE

q(None.

DESCRIPTION

CMFS chdir causes the directory named by path to become the current working directory, the starting
point for path names not beginning with the slash ().

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS_chdir fails--the current working directory remains unchanged--if
any of the following are true:

CMFS ENOTDIR
_E- NA component of the pathname is not a directory.

CMFS EINVAL
The pathname contains a character with the high-order bit set.

CMFS ENAMETOOLONG
Path exceeds 255 characters in length.

CMFS ENOENT
The named directory does not exist.

CMFS EACCES
Search permission is denied for any component of the path name.

CMFS_EIO An I/O error occurred while reading from or writing to the file system.

CMFS ESTALE
The file handle given in the argument was invalid. The file referred to by that file handle
no longer exists or has been revoked.

CMFS ETIMEDOUT
A connect request or remote file operation failed because the connected party did not
properly respond after a period of time that is dependent on the communications protocol.

SEE ALSO

DVWD (environment variable)

ICMOST 7.2 Lst change: December 1992 79

CMOST 7.2 Last change: December 1992 79

CMFS chmod(3) CMFS chmod (3)

NAME

CMFSchmod - Changes the mode of a file.

C SYNTAX
#include <sys/typesh>
#include <cm/cm stat.h>

n - CMFSchmod (path, mode)
char *path;
int mode, n;

n - CMFS fchmod (fd, mode)
int n, fd, mode;

FORTRAN SYNTAX

n - CMFS CHMOD (path, mode)
INTEGER n, mode
STRING path

n - CMFS FCHMOD (fd, mode)
INTEGER n, fd, mode

ARGUMENTS
path

mode

fd

RETURN VALUE

0

-1

Character string. The pathname of the file whose mode is to be changed.

Integer. The mode to assign to the file named by path or referenced by fd.

Integer. File descriptor of the file whose mode is to be changed.

Indicates successful completion.

Indicates an error occurred; the external variables CMFS ermo and ermo are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMPS_[f]chmod changes the mode of the file whose name is given by path or referenced by the file
descriptor fd to mode. Modes are constructed by ORing together some combination of the following:

CMFS S ISUID 04000 Set user ID on execution.
CMFSSISGID 02000 Set group ID on execution.
CMFSS IREAD 00400 Read by owner.
CMFS_S IWRITE 00200 Write by owner.
CMFSS IEXEC 00100 Execute (search on directory) by owner.

00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

These bit patterns are defined in /usrl/include/cm/cm_stath.

In order to change the mode of a file, the effective user ID of the process must either match the
owner of the file or be superuser.

RESTRICTIONS
Permission checking is enabled only if the appropriate file server is set to check permissions (the
default).

80 Last change: December 1992 CMOST 7.2

I

!AN

I
I

I
i
N

I

!

I
!

I

I
N

I

I
I

----- -- ----

q CMFSchmod(3) CMPS chmod(3)

ERRORS

If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS chmod fails-the file mode remains unchanged-if any of the fol-q lowing are true:

CMFS ENOTDIR
A component of the path prefix of path is not a directory.

-q CMFS ENAMETOOLONG
The length of a component of path exceeds 255 characters in length.

CMFS ENOENT
The file referred to by path does not exist.

CMFS EACCES
Search permission is denied for a component of the path prefix of path.

CMFS EPERM
The effective user ID does not match the owner of the file and the effective user ID is not
the superuser.

CMFSfchmod fails--the file mode remains unchanged-if any of the following are true:

CMPS EBADFD
The file descriptor is not valid.

CMFS EPERM
The effective user ID does not match the owner of the file and the effective user ID is notI the superuser.

CMFS_EIO An I/O error occurred while reading from or writing to the file system.

I~J) SEE ALSO
CMFS chown
CMFS stat
cmchgrp
cmchown
cmchmod

CMOST 7.2 Last change: December 1992 81

CMFS chown(3) CMFS chown (3) 3

NAME s

CMFS_chown - Changes the owner and group of a file.

C SYNTAX
n = CMFSchown (path, owner, group)
char *path;
int n, owner, group; p
n = CMFS fchown (fd, owner, group)
int n, fd, owner, group;

FORTRAN SYNTAX 3
n = CMFS_CHOWN (path, owner, group)
INTEGER n, owner, group
STRING path 3
n = CMFS_FCHOWN (fd, owner, group)
INTEGER n, fd, owner, group i

ARGUMENTS

path Character string. The pathname of the file whose owner and group is to be changed.

owner Integer. The owner to assign to the file named by path or referenced by fd. 3
group Integer. The group to assign to the file named by path or referenced by fd.

fd Integer. File descriptor of the file whose owner and group is to be changed.

RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS ermo and ermo are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS_[f]chown changes the owner and group of the file named by path or referenced by fd to owner
and group, respectively. Only the superuser can change the owner of the file. Both the owner of the file
and the superuser can change the group of the file.

If owner or group is specified as -1, the corresponding ID of the file is not changed.

RESTRICTIONS

Permission checking is enabled only if the appropriate file server is set to check permissions (the
default). 3

ERRORS

If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS chown fails--the file will be unchanged-if any of the following
are true:

CMFS ENOTDIR
A component of the path prefix of path is not a directory. 3

CMFS ENAMETOOLONG
The length of a component of path exceeds 255 characters in length.

CMFSENOENT
The file referred to by path does not exist.

CMFS EACCES

82 Last change: December 1992 CMOST 7.2 L

CMFS chown(3)

Search permission is denied for a component of the vath prefix of path.

CMFS EPERM
The user ID specified by owner is not the current owner ID of the file, or the group ID
specified by group is not the current group ID of the file and the effective user ID is not
the superuser.

CMFS EINVAL
Sockets are not supported.

CMFS fchown fails-the file mode remains unchanged-if any of the following are true:

CMFS EBADFD
The file descriptor is not valid.

CMFS EPERM
The user ID specified by owner is not the current owner ID of the file, or the group ID
specified by group is not the current group ID of the file, and the effective user ID is not
the superuser.

CMFS_EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO
CMFS chmod
CMFS stat
cmchrod
cmchgrp
cmchown

l

Last change: December 1992

CNFS chown (3)

83CMOST 7.2

CMFSclose (3) CMFS_close (3) 3

NAME

CMFS close - Closes a file or socket.

C SYNTAX

n = CMFSclose(fd)
int n, fd;

FORTRAN SYNTAX

n = CMFS CLOSE (fd)
INTEGER n, fd

LISP SYNTAX

(CMFS:close fd)

ARGUMENTS

fd File descriptor returned by a previous call to CMFS_creat or CMFS_open; or socket
descriptor returned by a previous call to CMFS_socket or CMFS accept.

RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION
CMFS close closes the object represented by fd, deleting the descriptor from the per-process object
reference table. Using fd in further /O calls is no longer valid. If the close operation is the last refer-
ence to the underlying object, the object is deactivated. On the last close of a file, the current seek
pointer associated with the file is lost; when a socket is closed, associated naming information and
queued data are discarded.

A close of all of a process's descriptors is automatic on exit, but since there is a limit (29) on the !
number of active file descriptors per process, CMFSclose is necessary for programs using many file
descriptors. Forking is not supported; if either of two processes closes an object, the other process can
no longer use its file descriptor.

When doing buffered I/O, CMFS_close flushes the buffer, ensuring that all buffered writes are actually
written to disk

ERRORS

If an error occurs, the value -1 is returned and the external variables CMFSerrno and errno are set to
indicate the cause of the error. CMFSclose fails if:

CMFSEBADF fd is not an active descriptor.

SEE ALSO
CMFSaccept
CMFS close all files
CMFS connect
CMFS_open
CMFS shutdown
CMFS socket
CMFS write file

84 Last change: December 1992 CMOST 7.2

Ii~

CMFS close all files(3)

NAME
CMFS close all files - Close all files and break the TCP connections.

C SYNTAX
void
CMFS close all files

n CMFS close files on server(hostname)
int n;
char *hostname;

FORTRAN SYNTAX
SUBROUTINE CMFS CLOSE ALL FILES

n - CFS CLOSE FILES ON SERVER (hostname)
INTEGER n
STRING hostname

ARGUMENTS

hoshname Character string.

RETURN VALUE
CMFS close all files

None.

CMFS close files on server

n The number of files closed.

CM STATE CHANGE
None.

DESCRIPTION
CMFS close all files closes all open files and breaks their TCP connections.
CMFS close files on server closes all files residing on the device having the specified hostname and
breaks the TCP connection to that device. If hostname is NULL, the default hostname is used.

ERRORS

For CMFS close files on server, if an error occurs, the value -1 is returned and the external variables
CMFS errno and ermo are set to indicate the cause of the error. CMFS close all files always
succeeds.

SEE ALSO

CMFS close
CMFS_open

Last change: December 1992

CUFS close-all files (3)

85CMOST 7.2

CMFSclosedir (3)

NAME
Directory Operations - Open, read, seek, tell the location in, and close directories.

C SYNTAX

#include <cm/cm_dirh>

dirp *CMFSopendir(pathname)
char *pathname;
CMDIR *dirp;

entp - CMFS_readdir(dirp)
CMDIR *dirp;
struct cm direct *entp;

n - CMFS_telldir(dirp)
long n;
CMDIR *dirp;

void CMFS seekdir(dirp, loc)
CMDIR *dirp;
long loc;

n CMPFSclosedir(dirp)
CMDIR *dirp;
int n;

FORTRAN SYNTAX
Not supported.

ARGUMENTS

pathname Character string. The pathname of the directory to be opened.

dirp A pointer to identify the directory stream. dirp is returned by CMFS_opendir and used in
the other directory operations.

loc Integer. Returned by an earlier call to CMFS telldir, this argument to CMPS seekdir sets
the position of the next CMFS readdir. A loc of O sets the position to the beginning of
the directory stream.

entp A pointer to the next directory entry. entp is returned by CMFS readdir

RETURN VALUES

CMFS_opendir

dirp Pointer to identify the directory stream.

NULL Indicates the directory cannot be accessed or insufficient memory is available to open it.

CMFS readdir

entp Pointer to the next directory entry.

NULL Indicates the end of the directory has been reached or an invalid seekdir
operation has been detected.

CMFS telldir

n Current location associated with the directory stream.

CMFS seekdir

86 Last change: December 1992 CMOST 7.2

CWS-cloedir(3)

CMFS closedir(3)

CMFS closedir

O Indicates successful close

-1 Indicates an error; CMFS errnmo is set

CM STATE CHANGE
None.

DESCRIPTION
CMFSopendir opens the directory named by pathname and associates a directory stream with it.
CMPSopendir returns a pointer to identify the directory stream in subsequent operations. The pointer
NULL is returned if the specified filename can not be accessed, or if insufficient memory is available
to open the directory file.

CMFSreaddir returns a pointer to the next directory entry. It returns NULL or nil upon reaching the
end of the directory or upon detecting an invalid seek operation. CMFS_readdir uses the UNIX get-
directories system call to read directories.

CMFS telldir returns the current location associated with the named directory stream. Values returned
by CMFS telldir are good only for the lifetime of the DIR pointer from which they are derived. If the
directory is closed and then reopened, the CMFStelldir value may be invalidated due to undetected
directory compaction.

CMFS seekdir sets the position of the next CMFSreaddir operation on the directory stream. Only
values returned by CMFS telldir should be used with CMFSseekdir.

CMFS closedir closes the named directory stream. If the close is successful, 0 is returned; if the close
fails, -1 is returned and CMFS erno is set. All resources associated with this directory stream are
released.

The directory stream that CMFS opendir associates with pathname contains an entry for each directory
residing in pathname. Each directory entry has associated with it four pieces of information. This infor-
mation is stored in a directory structure having four elements. A pointer to this structure is returned by
CMFS readdir. The four elements are:

cmd ino Inode number
cmd reclen Directory record length
cmd namlen Directory name length
cmd name Directory name entry

The content of an element is referenced by pointer -> element-name. For example, if dir ent ptr is the
pointer returned by CMFS readdir, the directory name entry is referenced by dir ent ptr -> d_name.

EXAMPLE

The following sample code searches a directory for the entry name.

len = strlen(name);
dirp - CMFS_opendir(.);
for (dp = CMFS readdir(dirp); dp !- NULL;

dp - CMFS readdir(dirp))
if (dp->cmd namlen -- len && !strcmp(dp->cmd name, name)) {

CMFS closedir(dirp)
return FOUND;

CMFS closedir(dirp);
return NOT FOUND;

Last change: December 1992

CUFS closedir (3)

87CMOST 7.2

CMFS creat (3)

NAME

CMFScreat - Creates or rewrite a file.

C SYNTAX

fd = CMFS creat(path, mode)
char *path;
int fd, mode;

FORTRAN SYNTAX I
fd = CMFS_CREAT(path, mode)
STRING path
INTEGER mode I

ARGUMENTS

path Character string. The file to be created, or an existing file to be rewritten.

mode Integer. The mode to assign to the file. See CMFSchmod.

RETURN VALUE

fd A file descriptor, to be used in other operations on the file.

-1 Indicates an error occurred; the external variables CMFS ermo and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS_creat either creates a new file or prepares to rewrite an existing file. It returns a non-negative
integer called a file descriptor, to be used in other operations on that file. CMFS creat leaves the file
open for writing, even if the mode does not permit writing, and sets the file pointer to the beginning of
the file.

The path argument points to the pathname of a file. New files are created with mode mode, as described
in CMFS chmod.

An existing file is truncated to zero length. The mode and owner of the file remain unchanged.

File protection is supported. When a file is created using CMFS_open or CMFS_creat, the owner and
group of the file are set to the default values, as described in the UNIX reference manual pages for
open(2) and creat(2); the file's mode is explicitly set (see CMFS_chmod). The utility cmls, as well as
the library calls CMFS_[flstat, shows the correct mode, owner, and group associated with a file.

RESTRICTIONS
The name of a CMFS file can be no more than 255 characters.

ERRORS 3
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS_creat fails if any of the following are true:

CMFS EINVAL
The argument .contains a character with the high-order bit set.

CMFS ENOTDIR
A component of the path prefix is not a directory.

CMFS EISDIR
The file is a directory.

CMFS EMFE
There are too many files open. i

CMFSEROFS I

Last change: December 1992

CCffS creat (3

88 CMOST 7.2

q CMFS creat(3) CMFScreat (3)

The named file resides on a read-only file system.

CMFS ENXIO
The file is a character-special or block-special file, and the associated device does not
exist.

CMFS EOPNOTSUPP
The file is a socket, which is not implemented.

CMFS ENAMETOOLONG
Path exceeded 255 characters in length.

CMFSENOENT
The named file does not exist.

CMFS ENFILE
The system file table is full.

CMFS ENOSPC
The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory.

CMFS ENOSPC
There are no free inodes on the file system on which the file is being created.

CMFSEDQUOT
Quotas are not supported.

CMFS_EIO An /O error occurred while maling the directory entry or allocating the inode.

CMFS ESTALE
The file handle given in the argument is invalid. The file referred to by that file handle
no longer exists or has been revoked.

CMFS ETIMEDOUT
A connect" request or remote file operation failed because the connected party did not
properly respond after a period of time that is dependent on the communications protocol.

SEE ALSO
cmis
CMFS open
CMFS chmod
CMFS chown

CMOST 7.2 Last change: December 1992 89

CMFS directory_operations (3)

NAME O_

Directory Operations - Open, read, seek, tell the location in, and close directories.

C SYNTAX

#include <cm/cm dirh>

dirp - *CMFS opendir(pathname)
char *pathname;
CMDIR *dirp;

entp - CMFS readdir(dirp)
CMDIR *dirp;
struct cmdirect *entp;

n CMFS_telldir(dirp)
long n;
CMDIR *dirp;

void CMFS seekdir(dirp, loc)
CMDIR *dirp;

long loc; U
n - CMFS closedir(dirp)
CMDIR *dirp;
int n;

FORTRAN SYNTAX

Not supported

ARGUMENTS

pathame Character string. The pathname of the directory to be opened.

dirp A pointer to identify the directory stream. dirp is returned by CMFS_opendir and used in
the other directory operations.

loc Integer. Returned by an earlier call to CMFS telldir, this argument to CMFS seekdir sets
the position of the next CMFSreaddir. A loc of O sets the position to the beginnin of
the directory stream.

entp A pointer to the next directory entry. entp is returned by CMFS readdir

RETURN VALUES
CMS_opendir

dirp Pointer to identify the directory stream.

NULL Indicates the directory cannot be accessed or insufficient memory is available to open it.

CMFS readdir

entp Pointer to the next directory entry.

NULL Indicates the end of the directory has been reached or an invalid seekdir

CFS telldir operation has been detected.

n Current location associated with the directory stream.

CMFSseekdir

None.

90 Last change: December 1992 CMOST 7.2

CMwS director operations(3)

CMFS directory_operations (3)

CMFS closdir

O Indicates successful close

-1 Indicates an error, CMFS errno is set.

CM STATE CHANGE
None.

DESCRIPTION

CMFS_opendir opens the directory named by pathname and associates a directory stream with it.
CMFS_opendir returns a pointer to identify the directory stream in subsequent operations. The pointer
NULL is returned if the specified filename can not be accessed, or if insufficient memory is available to
open the directory file.

CMFS_readdir returns a pointer to the next directory entry. It returns NULL or nil upon reaching the
end of the directory or upon detecting an invalid seek operation. CMFSreaddir uses the UNIX get-
directories system call to read directories.

CMFS telldir returns the curent location associated with the named directory stream. Values returned
by CMFS telldir are good only for the lifetime of the DIR pointer from which they are derived. If the
directory is closed and then reopened, the CMFS telldir value may be invalidated due to undetected
directory compaction.

CMFS _ seekdir sets the position of the next CMFS readdir operation on the directory stream. Only
values returned by CMFS telldir should be used with CMFS seekdir.

CMFSclosedir closes the named directory stream. If the close is successful, 0 is returned; if the close
fails, -1 is returned and CMFSerrno is set. All resources associated with this directory stream are
released.

The directory stream that CMFS opendir associates with pathname contains an entry for each directory
residing in pathname. Each directory entry has associated with it four pieces of information. This infor-
mation is stored in a directory structure having four elements. A pointer to this structure is returned by
CMFS readdir. The four elements are:

cmd ino Inode number
cmd reclen Directory record length
cmd namlen Directory name length
cmd_name Directory name entry

The content of an element is referenced by pointer -> element-name. For example, if dir entptr is the
pointer returned by CMFS_readdir, the directory name entry is referenced by dir ent_ptr -> d name.

EXAMPLE

The following sample code searches a directory for the entry name.

len - strlen(name);
dirp - CMFSopendir(.);
for (dp - CMFS readdir(dirp); dp !- NULL;

dp - CMFS readdir(dirp))
if (dp->cmd namlen -- len && strcmp(dp->cmd_name, name)) {

CMFS_closedir(dirp)
return FOUND;

CMFS closedir(dirp);
return NOTFOUND;

Last change: December 1992

CUFS directory operations (3

91CMOST 7.2

CMFS_errmessage (3) Thinking Machines CMFS_errmessage (3) 5

NAME

CMFS_emnessage - Stores the error message (associated with the latest CMFS error) in a buffer. i"

C SYNTAX
void
CMFS_errmessage(buffer)
char *buffer;

FORTRAN SYNTAX

Not supported.

ARGUMENTS

buffer A pointer to the buffer that will store the error message string.

RETURN VALUE

None

CM STATE CHANGE
None.

DESCRIPTION
CMFS_errmessage places the string corresponding to the number taken from the external variable
CMFS_errno into a buffer (rather than writing it to standard error, as does CMFSperror).

SEE ALSO

CMFSperror
CMFS errno

Last change: December 199292 CMOST 7.2

Thinking Machines

NAME
CMFS errno - Stores the error number of the last error that occurred (external variable).

C SYNTAX
n CMFS erno
extem int n;

FORTRAN SYNTAX
Not supported.
N CFS ERRNO
INTEGER N

DESCRIPTION

When a CMFS call is not successfully completed, the CMFS external variable CMFS ermo and the
UNIX external variable errno are set to a number indicating the cause of the error. If the cause of the
error is not unique to a CM system, errno and CMFSerrnoO are set to the same value; if the cause of
the error is unique to a CM system, CMFS erno is set to a value representing the exact error, but
ermo0 is set to a value representing a general /O error.

If CMFS enrno is set to 128 or less, the error description associated with it matches the UNIX error
description given for it in the UNIX reference page intro(2). If CMFS erno is set to 129 or greater, the
error is specific to the CM system and is one of those listed below. (A few of the UNIX error numbers
correspond to different error descriptions in different implementations of a UNIX system. CM I/O error
numbers and descriptions, for values of 128 or less, match those used in the ULTRIX system, which is
the implementation of UNIX nmning on the DataVault file server computer.)

The system call CMFSperror is used to print the error message corresponding to the value of
CMFS_erno. (Although the UNIX call perrorO also prints the correct error message for errors not
unique to a CM system, its use is not recommended.) CMFSperror writes an error message on the
standard output file describing the last error encountered, by writing both a user-supplied string and a
system-supplied message. See the list below for error numbers and their descriptions. These emns are
defined in C in the file <cm/cm ermo.h>.

When calls are successfully completed, CMFS ermo is not cleared so it always contains the value of
the last error that occurred.

n

129 DIAGFL Diagnostic failure.

130 BPHASE Bad phase from file server.

131 SWCHEK Software consistency check.

132 HDWFAL Hardware failure.

133 MEDIAF Disk media failure.

134 MLTECC Multiple-bit ECC error detected.

135 CONFUS DataVault software got confused but is now resetting.

136 CBSPRO CMIO bus protocol error.

137 ILPARM Illegal/invalid parameter in command.

Last change: Nov 1992

Ches ermno(3) CMFS errno(3)

93CMOST 7.2

CMFSero (3) Thinking Machines CMFS_erno (3)

138 PSTEOM Request goes past physical end of media.

139 GARBLD Unknown command blockcommand garbled.

140 RSVDNZ Reserved field(s) not set to zero.

141 BPCKSM Bad PROM checksum.

142 BRCKSM Bad RAM checksum.

143 FNSREV Function not supported in this revision. U
144 BADPAR Bad parity on data.

145 DRVFMT Inconsistent drive format.

146 DRVERR Drive error. 3
147 NODRVA No drives active (cannot initialize drive-related tables).

148 NOTLOD RAM not loaded with viable image. U
149 DINAVL Diagnostic not available in current configuration.

150 PIPSFT Data pipeline corrected single bit emor(s).

151 BDSPAR Configuration error: incorrect/illegal sparing selection.

152 SCTIME SCSI-related timeout.

153 DATIME Data transfer timeout.

154 COTIME Control transfer timeout.

155 DRVSFT Disk drive recovered from soft error.

156 DRVHRD Disk drive could not recover from error.

157 NAKRNL Command not available from kernel.

158 LOGFUL Log almost full. 3
159 BUSBSY Bus busy timeout.

160 NAKRCV Target busy timeout.

161 NOARBT No arbiter on bus.

162 TSELTO No response from target select.

163 XCPRCV Bus exception received.

164 NOTSEL No target select received.

94 Last change: Nov 1992 CMOST 7.2

Thinking Machines

165 PCERR DataVault pipe counter mismatch.

179 CMFS EINVALID RETURN COUNT
File server return count was an invalid value.

181 CMFS ESTRIPE NOTAVAIL
One or more of the file servers serving the striped
CM file system is not running.

182 CMFS ECMIOBUS UNREACH
The requested CMIO bus is unreachable from the file server.

183 CMFS EPROTOCOL MISMATCHq 'There is no library support for the feature (for
example, disk striping) that the file server is
attempting to use, or the file server doesn't support
the feature that the application program is trying to use.

184 CMFS ESYNC LOST
The synchronization has been lost on the network
connection between the CMFS library and the CMFS file server.

185 CMFS ENO FILE SERVERq The file server to which the control processor is trying
to connect is not running.

186 CMFS ERAW ULTRA
Raw HIPPI attempted on Ultranet.

187 CMFS_EHIPPI SRC PARITYq CMHIPPI source board detected a parity error.

188 CMFS EHIPPI DST PARITY
CMHIPPI destination board detected a parity error.

189 CMFS EHIPPI IOP PARITY
CMHIPPI IOP board detected a parity error.

SEE ALSO

CMFS_perror
errno(2) (on Vaxen)
intro(2) (on Suns)

q,

I CMOST 7.2 Last change: Nov 1992 95

CWS- ermno(3) CWS- ermno (3)

CMFSfchmod (3) CMFSfchmod (3)

NAME

CMFSchmod - Changes the mode of a CMFS file.

C SYNTAX
#include <sys/types.h>
#include <cm/cmstat.h>

n = CMFS_chmod (path, mode)
char *path;
int mode, n;

n CMFS fchmod (fd, mode)
int n, fd, mode;

FORTRAN SYNTAX

n = CMFS_CHMOD (path, mode)
INTEGER n, mode
STRING path

n = CMFS FCHMOD (fd, mode)
INTEGER n, fd, mode

ARGUMENTS

path

mode

fd

RETURN VALUE
0

-1

Character string. The pathname of the file whose mode is to be changed.

Integer. The mode to assign to the file named by path or referenced by fd.

Integer. File descriptor of the file whose mode is to be changed.

Indicates successful completion.

Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS_[f]chmod changes the mode of the file whose name is given by path or referenced by the file
descriptor fd to mode. Modes are constructed by ORing together some combination of the following:

CMFS S ISUID 04000 Set user ID on execution.
CMFS_SISGID 02000 Set group ID on execution.
CMFS_SIREAD 00400 Read by owner.
CMFSSIWRITE 00200 Write by owner.
CMFSS_IEXEC 00100 Execute (search on directory) by owner.

00070 Read, write, execute (search) by group.
00007 Read, write, execute (search) by others.

These bit patterns are defined in /usr/include/cm/cmstat.h.

In order to change the mode of a file, the effective user ID of the process must either match the
owner of the file or be superuser.

RESTRICTIONS

Permission checking is enabled only if the appropriate file server is set to check permissions (the
default).

Last change: December 1992

I

I

I
U

I
I

'I.

I

1

m

96
CMOS 7. IN

q CMFS fchmod (3) CMFS fchmod (3)

q ERRORS0 , If an error occurs, the value -1 is returned and the external variables CMFS ernno and errno are set to
indicate the cause of the error. CMFS chmod fails-the file mode remains unchanged-if any of the fol-qI lowing are true:

CMFS ENOTDIR
A component of the path prefix of path is not a directory.

CMFS ENAMETOOLONG
The length of a component of path exceeds 255 characters in length.

CMFS ENOENT
The file referred to by path does not exist.

CMFS EACCES
|| Search permission is denied for a component of the path prefix of path.

CMFS EPERM
The effective user ID does not match the owner of the file and the effective user ID is notq the superuser.

CMFS fchmod fails-the file mode remains unchanged-if any of the following are true:

CMFS EBADFD
The file descriptor is not valid.

CMFS EPERM
The effective user ID does not match the owner of the file and the effective user ID is not

the superuser.

CMFS EIO An I/O eror occurred while reading from or writing to the file system.

SEE ALSO
CMFS chown
CMFS stat
cmchgrp
cmchown
cmchmod

CMOST 7.2 ast change: December 1992 97

CMOST 7.2 Last change: December 1992 97

CMFS_fchown (3) CMFSfchown (3) f

NAME
CMFS chown - Changes the owner and group of a CMFS file.

C SYNTAX

n = CMFS chown (path, owner, group)
char *path;
int n, owner, group;

n = CMFS fchown (fd, owner, group)
int n, fd, owner, group;

FORTRAN SYNTAX N
n = CMFS_CHOWN (path, owner, group)
INTEGER n, owner, group
STRING path 3
n = CMFSFCHOWN (fd, owner, group)
INTEGER n, fd, owner, group i

ARGUMENTS
path Character string. The pathname of the file whose owner and group is to be changed.

owner Integer. The owner to assign to the file named by path or referenced by fd. 3
group Integer. The group to assign to the file named by path or referenced by fd.

fd Integer. File descriptor of the file whose owner and group is to be changed. 3
RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None. 3

DESCRIPTION

CMFS_[f]chown changes the owner and group of the file named by path or referenced by fd to owner
and group, respectively. Only the superuser can change the owner of the file. Both the owner of the file
and the superuser can change the group of the file.

If owner or group is specified as -1, the corresponding ID of the file is not changed.

RESTRICTIONS

Permission checking is enabled only if the appropriate file server is set to check permissions (the
default). p

ERRORS

If an error occurs, the value -1 is returned and the external variables CMFS erno and errno are set to
indicate the cause of the error. CMFS_chown fails--the file will be unchanged--if any of the following I
are true:

CMFS ENOTDIR

A component of the path prefix of path is not a directory.

CMFS ENAMETOOLONG
The length of a component of path exceeds 255 characters in length.

CMFS ENOENT

The file referred to by path does not exist.

CMFS EACCES

98 Last change: December 1992 CMOST 7.2 5

CMFS fchown(3) CMFS_fchown (3)

Search permission is denied for a component of the path prefix of path.

CMFS EPERM
The user ID specified by owner is not the current owner ID of the file, or the group ID
specified by group is not the current group ID of the file and the effective user ID is not
the superuser.

CMFS EINVAL
Sockets are not supported.

CMFSfchown fails-the file mode remains unchanged-if any of the following are true:

CMFS EBADFD
The file descriptor is not valid.

CMFS EPERM
The user ID specified by owner is not the current owner ID of the file, or the group ID
specified by group is not the current group ID of the file, and the effective user ID is not
the superuser.

CMFS EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO
CMFS chmod
CMFS stat
cmchmod
cmchgrp
cmchown

CMOST 7.2 Last change: December 1992 99

N

q

q

q

I

I
111

RP
m

R1

4

4

CMFS fcntl (3) CMFSfcntl (3)

CMFS fcntl - Controls various characteristics of a file.

C SYNTAX
include <cm/cm_fileh>

res = CMFS fcntl(fd, request, arg)

int res, fd, request, arg;

FORTRAN SYNTAX
res = CMFSFCNTL (fd, request, arg) [
INTEGER res, fd, request, arg

ARGUMENTS

fd File descriptor, which was returned by a previous call to CMFS_creat or CMFS open.

request Integer. Specifies which operations to perform on fd; the values allowed are described
below.

arg Integer. The meaning of arg depends on request and is described below. 3
RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFerrno and errno are set to indicate
the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION
The CMFSfcntl system call provides control over the file descriptors of open files. It performs a
variety of operations: creating and sizing CM block-special files, and obtaining and setting a file _
descriptor status flag.

CMFS fcntl allows you to create CM block-special files. Such files provide direct access to the raw
disk, instead of letting the system handle the disk access as with ordinary file operations. The fd argu-
ment is the file descriptor. The request argument defines what you want done; its allowed values are
described below. The meaning of the arg argument varies according to the request argument, as
described below.

CMFS fcntl allows you to access raw physical disk blocks on the disk. Two calls to CMFS fcntl are
needed. The first one uses CMFSMAKE BLOCK SPECIAL to declare that the file is a block-special I
file, and the second one uses CMFSSETSIZE to specify the number of blocks needed.

Not all the requests allowed for the UNIX fcntl call are supported by CMFSfcntl. The requests sup-
ported follow:

CMFS MAKE BLOCK SPECIAL
Make this file a block-special file. The argument arg is the device number. The file must
be a regular file of zero length.

CMFS SET SIZE
Set the size in disk blocks of the block-special file. The argument arg is the size of the
raw device as the number of CM file disk blocks. The file must be a CM block-special
file of zero length. The size of a disk block is defined in cm/cm-param.h as the variable
BYTESPERBLOCKSTRIPE.

CMFS F GETFL, CMFSFSETFL
Get or set file descriptor status flags. Each file descriptor points to an entry in an array of
file pointers which, among other things, define the file's current status. The file descriptor 3

100 Last change: December 1992 CMOST 7.2 3

q4 CMFS fcntl (3) CMFS_fcntl (3)

status flags, which in C are defined in cm file.h, are returned. The following flags are
defined:

CMFS_FSTREAMING Activate streaming I/O mode.
CMFSqFAPPEND Set append mode.

ERRORS

If an error occurs, the value -1 is returned and the external variables CMFS ermo and errno are set to
indicate the cause of the error. CMFSfcntl fails if the following is true:

CMFS EBADF
fd is not a valid open file descriptor.

CMFS EINVAL
CMFS_MAKEBLOCK_SPECIAL is requested and fd is not a regular file of length zero.

CMFS EINVAL
CMFSSET SIZE is requested and fd is not a block-special file.

SEE ALSO
CMFS close
CMFS open

l

NaCMOST 7.2 Last change: December 1992 101

CMFSfstat (3) CMFSfstat (3)

NAME p
CMFS stat - Obtains file status information.

C SYNTAX
#include <cm/cmstat.h>

n = CMFS stat(path, buffer)
char *path;
struct cm stat *buffer,
int n;

n CMFSfstat(fd, buffer)
int fd, n;
struct cm stat *buffer;

struct cm stat

int cmstdev; /* device inode resides on */
long cmstino; /* this inode's number */
unsigned cmst_mode;/* protection */
int cmst nlink /* number of hard links to the file */
int cmst uid; /* user-id of owner *
int cmstgid; /* group-id of owner *
int cmst_rdev; /* device type, for inode that is device *!
long cmst size; /* total size of file in bytes */
long cmstatime; /* file last access time */
int cmst_sparel;
long cmstmtime; /* file last modify time */
int cmst-spare2;
long cmstctime; /* file last status change time */
int cmst_spare3;
long cmstblksize; * optimal blocksize for file, */

/* system i/o ops in total bits *1
long cmst blocks; /* actual number of blocks allocated */
long cmstfree_bytes;
long cmstphysmach;
long cmstvps;
long cmst_numextents;
long cmst_cmwords; /* size of file in CM words */
long cmst bits percmword; /* unit of CM word */
long cmst-spare[l0]; /* reserved for future enhancements */

};

FORTRAN SYNTAX

n = CMFS_STAT (path, buffer)
INTEGER, n, buffer(32)
STRING path

n = CMFS FSTAT (fd, buffer)
INTEGER n, fd, buffer(32)

ARGUMENTS

path Character string. The file about which to return status information.

buffer A pointer to a cm_stat structure in C; an array of 32 integers in Fortran. The structure
that receives the file status information.

102 Last change: December 1992 CMOST 7.2

CMFSfstat(3)

ON fd File descriptor (which was returned by a previous call to CMFScreat or CMFS_open) of
the file about which to return status information.

RETURN VALUE
O Indicates rsuccsful completion_

-1 Indicates an error occurred; the external variables CMFS errno and ermo are set to indi-
cate the cause of the error.

None.

DESCRIPTIONI4 CMPS stat obtains information about the file named by path and places it in the status structure indi-
cated by buffer. Read, write, or execute permission of the named file is not required, but all directories
listed in the pathname leading to the file must be searchable. CMFS fstat obtains the same information
about an open file referenced by the descriptor fd.

In C, the argument buffer is a pointer to a cm stat structure; the structure is defined in the file
<cmcmstath>.

The elements in the status structure are described below. In C, the contents of an element are refer-
enced by structure-name.cmst_element-name.

dev The device on which the inode resides.

ino This inode's number.

mode The protection in effect for this file.

nlink The number of hard links to the file.

uid The user ID of the file's owner.

gid The group ID of the file's owner.

rdev The device tvype. for the inode that is the device.

size The total size of the file in bytes. However, if a file's size is equal to or greater than 2
my~U71opic ;10 VIA 0W W.II U_ I Inh - 1

1l5UC~J6V 1W SCyv1U OLCW WilW 'G r BI,&U7U - .

atime Time when file data was last read or modified. This is changed by the system calls
~CMFS_[flstat, CFS serial readitefile, but is not changed when a directory is

searched.

mtime Time when data was last modified. This is not set by changes of owner, group, link count,I or mode. It is changed by the system call CMFSserialwrite file.
ctime Time when file status was last changed. This is set both by writing and changing the

inode, and is changed by the system calls CMFS link, CMFS unlink, and

^ ClS oCMFS serial write file(always).

blksize The optimal block size for CM file system I/O operations, in the total number of bits.

blocks The actual number of blocks allocated.
Z__ "- - MML_ . 1 I ;-- U '- A--- I- r' S -.- 1 2- 'L- QI f i A- e f l%,f IC &M- I. -A
I-'Ur .IJJ UJLtUI[ltC U.1 r U IU U r;i AL .nV1 WUU LU UG JLI. V I l.VL-J UUaD VULUD WD U

on the bits-per-cmword and size fields.

B^ physmach The number of physical processors the file spans (physical width). On a CM-5, this field
is set to 1.

vps The number of virtual processors the file spans (virtual width). On a CM-5, this field is
* set to 1.

numextents The number of extents the file occupies. On a CM-5, this field is set to 1.

cmwords The size of file in CM words. On a CM-5, this value is based on the bits-per-cmword and

Last change: December 1992

CMDFS fstat (3)

103CMOST 7.2

CMFSfstat(3) CMFSfstat (3)

size fields. :

bits-per-cmword
The size in bits of a CM word. On a CM-5, this field is set to 128 (16 bytes). j

The status element mode comprises one of the file-type bit patterns OR'ed with one or more
permission-type bit patterns:

File Type P
CMFS S IFMT 0170000 Isa file.
CMFS_ S IFDIR 0040000 Is a directory.
CMFS S IFBLK 0060000 Is a block-special file.
CMFS SIFCHR 0020000 Is a character-special file.
CMFS_S_IFREG 0100000 Is a regular file.

Permission Type

CMFS_SIREAD 0000400 Has read permission for the owner.
CMFS_ SWRITE 0000200 Has write permission for the owner.
CMFS S IEXEC 0000100 Has execute/search permission for the owner.

The mode bits 0000070 and 0000007 encode group and others permissions.

For futher infaomation, see CMFS chmod.

RESTRICTIONS
CMFS_[f]stat do not return a file's geometry infonnation. The command cmstat, however, lists
geometry information along with other information contained in the file's attribute file.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS stat fails if any of the following are true: l
CMFS ENOTDIR

A component of the path prefix is not a directory.

CMFS EINVAL
path contains a character with the high-order bit set.

CMFS ENAMEOOLONG l
path exceeded 255 characters in length.

CMFS ENOENT
The file referred to by path does not exist. p

CMFS EACCES
Search permission is denied for a component of the path prefix.

CMFS EFAULT
The arguments buffer or path point to an invalid address.

CMFS EIO An I/O error occurred while reading from or writing to the file system.

The system call CMFS fstat fails if one or more of the following are true: I
CMFS EBADF

fd is not a valid open file descriptor.

CMFS EFAULT
buffer points to an invalid address.

104 Last change: December 1992 CMOST 7.2

q CMFSfstat (3) CMFS_fstat (3)

q .%~~ ~ CMFS_EIO An I/O error occurred while reading from or writing to the file system.

SEE ALSO

CMFS_[flchmod
CMFS_[flchown
cmstat

l-

III
I
I
I

CMOST 7.2 Last change: December 1992 105

Thinking Machines

NAME
CMFSgetwd - Returns the current CMFS file system's current working directory.

C SYNTAX
n = CMFSgetwd(buffer)
char *n, *buffer;

FORTRAN SYNTAX

Not supported

ARGUMENTS

buffer

RETURN VALUE
n

CM STATE CHANGE
None.

DESCRIPTION
CMFS_getwi

SEE ALSO
CMFS chdir

106

A pointer to a buffer that will be filled in with the CMFS file system's current working
directory.

A pointer to the CMFS file system's current working directory.

I returns the CMFS file system's current working directory.

Last change: December 1992 CMOST 7.2

mI
m

I

Im

I
I
am

mm

CWS-getwd (3) N~CWS-~getwd (3)

CMFSioctl (3) CMFSioctl (3)

NAME

CMFSioctl - Supports CM character-special device drivers.

C SYNTAX
n = CMPS_ioctl(fd, cmd, arg)
int n, fd, cmd;
caddr_t arg;

ARGUMENTS

fd The file descriptor returned by a preceding CMFS_open call.

cmd A driver-specific code that specifies the device-specific task to perform.

arg A pointer to a driver-specific buffer, which usually contains information needed by the
driver to perform the task specified by cmd.

RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variable CMFS errno is set to the CMFS error
code returned by the fileserver (and by the CMFS character-special device driver called).

CM STATE CHANGE
None.

DESCRIPTION

CMFSioctl performs an operation-for example, resetting a tape drive or obtaining status information-
on the device referred to by the file descriptor fd. Note that the character-special file that represents the
device must be open.

The set of tasks that an ioctl routine performs is device-specific. For each device, a header file lists the
request codes-defines-for specific tasks. Pass the pertinent define to the driver via the CMFS ioctl cmd
argument. If the driver requires additional information to perform the operation, pass it via the arg argu-
ment.

A typical CMFS ioctl call encodes in cmd the general driver task-to obtain status information about
the device, for example-and encodes in arg specific information about the device or operation-the
device's status register location, for example.

The steps below summarize the composition of a typical CMFSioctl call.

1. CMFS iocd's first argument, fd, is the device's open file descriptor.

2. CMFS_ioctl's second argument, cmd, is the name of one of the defines in the device's header
file.

The list of valid cmd values is in the device's header file, which is usually in /usr/include/cm.
If there are no comments specifying which defines are cmd values, you can identify them by
their typical form:

define define_name _IOxx(x, #, data-type)

3. CMFS ioctl's third argument, arg, usually contains information needed by the driver in order
to perform the task indicated by cmd. The device's header file indicates what kind of informa-
tion to assign to arg.

arg is a pointer to a variable of type data-type (from the define's definition, i.e., _IOxx(x, #,
data-type): in your program, define a variable of type data-type, and assign it an appropriate
value, according to information in the header file. Then, in the CMFS ioctl call itself, list arg
as a pointer to that variable.

Last change: December 1992 107CMOST 7.2

CMFS ioctl (3) CMFS ioctl (3)

EXAMPLE
The following code demonstrates how to make a CMFS ioctl call to rewind a tape on a magnetic tape
device. For reference, the header file cm mtio.h is listed after the code.

#include <sys/types.h> /* defines type daddr_t,
used in <cm/cm mtio.h> */

#include <cmlcm/cmioctl.h> /* has the macros associated with
the defines in <cm/cm_mtio.h> */

#include <cm/cmmtio.h> /* lists a define for each task
that the ioctl can perform for
this device */

[...declarations, including the one below...]
struct cm_mtop cm_rewind;

[...code to open the device, etc...]
/* rewind the tape */
cm_rewind.mt.op = MTREW;
cm rewind.mt.count - 1;
CMFS ioctl(fd, CMMTIOCTOP, &cm rewind);

[...code to write to the device, close the device, etc...]

/* MagTape header file /usr/include/cm/cm_mtio.h */

I*
* Structures and definitions for mag tape io control commands
*/

I*
* structure for CMMTIOCTOP - mag tape op command
*/

struct cmmtop
long mt op; /* operations defined below */
daddr t mtcount; /* how many of them */

I;

/* operations */
#ifndef MTFSF
#define MTWEOF 0 /* write an end-of-file record */
#define MTFSF 1 /* forward space file */

#define MTBSF 2 /* backward space file */
#define MTFSR 3 /* forward space record */
#define MTBSR 4 /* backward space record */
#define MTREW 5 /* rewind */
#define MTOFFL 6 /* rewind and put the drive offline */
#define MTNOP 7 /* no operation, sets status only */
#define MTRETEN 8 /* retension the tape */
#define MTERASE 9 /* erase the entire tape */

Last change: December 1992

I
V111

a
I
U

U

I
I
I

Wm

I
I

108

!

L

I
I
a

CMOST 7.2

I

CMFS ioctl (3)

#define MTEOM 10 /* position to end of media (SCSI only) */

#endif

/*
/* structure for CMMTIOCGET - mag tape get status command
*/

struct cmjmtget I
short mt_type; /* type of magtape device */

/* the next two registers
are grossly device-dependent */

short mtdsreg; /* "drive status" register */
short mt erreg; /* "error" register */
short mt resid; /* residual count */

l;

#define CMMTIOCTOP _IOW(m, 1, struct cm_mtop)
/* Do a tape op. */

#define CMMTIOCGET _IOR(m, 2, struct cm mtget)
/* Get status. */

#define CMMTIOCSETREC IOW(m, 1, int)
/* Set record size */

SEE ALSO
CMFS mknod
/dev/hippi
/dev/ufb[_p]

Last change: December 1992

CWS- ioctl (3)

109CMOST 7.2

CMFSlink(3) CMFSlink(3)

NAME <i
CMFS link - Creates a hard link to a file. '

C SYNTAX
n = CMFS_link(pathl, path2)
char *pathl, *path2;
int n;

FORTRAN SYNTAX

n = CMFS LINK (pathl, path2)
INTEGER n
STRING pathl, path2

ARGUMENTS

pathl Character string. The file to which to create a link.

path2 Character string. The name of the link.

RETURN VALUE
O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS errno and are set to indicate the
cause of the error.

CM STATE CHANGE

None.

DESCRIPTION

CMFSlink creates a hard link to the file named by pathl; the link has the name path2. Both pathl and U
path2 must be in the same file system. The file pathl must exist, and it must not be a directory. Both
the old and the new link share equal access and rights to the underlying object.

ERRORS i
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFSlink fails-no link is created--if any the following are true:

CMFSENOTDIR -
A component of either path prefix is not a directory.

CMFS EINVAL
Either pathname contains a character with the high-order bit set.

CMFS ENAMETOOLONG
Pathl or path2 exceeded 255 characters in length.

CMFS ENOENT
A component of either path prefix does not exist.

CMFS ENOENT
The file named by pathl does not exist. H

CMFS EACCES
A component of either path prefix denies search permission. l

CMFS EACCES
The requested link requires writing in a directory with a mode that denies write permis-
sion. l

CMFS EEXIST
The link named by path2 does exist.

CMFS_EPERM
The file named by pathl is a directory and the effective user ID is not superuser. 'l

CMFS EXDEV

110 Last change: December 1992 CMOST 7.2

CMFS link(3) CMFS link(3)

The link named by path2 and the file named by pathl are on different file systems.

CMFS EROFS
The requested link requires writing in a directory on a read-only file system.

CMFS ENOSPC
The directory in which the entry for the new link is being placed cannot be extended
because there is no space left on the file system containing the directory.

CMFSEDQUOT
Quotas are not supported.

CMFSEIO An 1/0 error occurred while reading from or writing to the file system to make the direc-
tory entry.

CMFS ESTALE
The file handle given in the argument is invalid. The file referred to by that file handle
no longer exists or has been revoked.

CMFS ETIMEDOUT
A "connect" request or remote file operation failed because the connected party did not
properly respond after a period of time that is dependent on the communications protocol.

SEE ALSO

CMFS unlink

CMOST 7.2 Last change: December 1992 111

q

II

.mii
I!

CMFS_ mkdir (3) CMFS mkdir(3)

NAME
CMFSmkdir - Makes a directory. V""

C SYNTAX _
include <sys/typesh>

n = CMFS _ mkdir(path, mode)
char *path; .
int n, mode;

FORTRAN SYNTAX

n - CMFS_ MKDIR (path, mode) /
INTEGER mode
STRING path

ARGUMENTS

path Character string. The directory to be created.

mode Integer. The mode to assign to the file. See CMFSchmod.

RETURN VALUE I
O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFSerrno and errno are set to indi -
cate the error.

DESCRIPTION

CMFS mkdir creates a new directory file with name path. The directory is created with mode mode, as I
described in CMFS chmod. The new directory's owner ID effective user is set to the process's
effective user ID. The directory's group ID is set to that of the parent directory in which it is created.

ERRORS
CMFS ENOTDIR

A component of the path prefix of path is not a directory.

CMFSENAMETOOLONG M
The length of path exceeds 255 characters.

CMFS ENOENT
A component of the path prefix of path does not exist.

CMFS EACCES
Search permission is denied for a component of the path prefix of path.

CMFSEIO An I/O error occurred while reading from or writing to the file system.

CMFS ENOSPC
The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory. i

CMFS ENOSPC
There are no free inodes on the file system on which the file is being created.

CMFS EEXIST /
The file referred to by path exists.

SEE ALSO
CMFS rmdir U
CMFS chmod

112 Last change: December 1992 CMOST 7.2

[[

CMFS mknod(3)

NAME

CMFS_mlknod - Create a new file that can call a specific device driver.

C SYNTAX

#include <sys/types.h>

n = CMFSmknod(path, mode, device)
char *path;
dev t device;
int n, mode;

FORTRAN SYNTAX
Not supported.

ARGUMENTS
path Character string. The file to be created.

mode Integer. The mode to assign to the file. Must be (

device

'MFS S IFCHR (0020000) for
character-special files or CMFS S IFBLK (0060000) for block-special files. The owner
ID of the file is set to the effective user ID of the process, and the group of the file is set
to the effective group ID of the process.

A configuration-dependent specification of a character or block I/O device. It contains the
device's major and minor device numbers as encoded by the majorO and minorO macros
defined in <sys/types.h>.

RETURN VALUE
0

-1

Indicates successful completion.

Indicates an error occurred; CMFS errno and errno are set to indicate the error.

DESCRIPTION

CMFSmknod creates a new file in the CM filesystem named by the path name pointed to by path.
Such a file, called a special file, represents an I/O device. In the CM file system, I/O devices are con-
nected to a VMEIO host computer or to a CM-IOP, depending on whether they are VME-based or have
a SCSI interface, respectively.

ERRORS
ENOTDIR A component of the path prefix of path is not a directory.

ENAMETOOLONG
The length of path exceeds 255 characters.

ENOENT A component of the path prefix of path does not exist.

EACCES Search permission is denied for a component of the path prefix of path.

EIO An I/O error occurred while reading from or writing to the file system.

ENOSPC The directory in which the entry for the new file is being placed cannot be extended
because there is no space left on the file system containing the directory.

ENOSPC There are no free inodes on the file system on which the file is being created.

EEXIST The file referred to by path exists.

SEE ALSO
CMFS ioctl

Last change: December 1992

CNFS-knod(3)

113CMOST 7.2

CMFS_open(3) Thinking Machines CMFS_open (3)

NAME I
CMFS_open - Opens or creates and opens a file for reading or writing.

C SYNTAX

#include <cmJcm_file.h>

fd - CMFSopen(path,flags[,mode)
int fd, flags, mode; f
char *path;

FORTRAN SYNTAX

fd - CMFS OPEN (path, flags, mode) I
INTEGER fd, flags, mode
STRING path

LISP SYNTAX f
(CMFS:open path flags [mode])

ARGUMENTS

path Character string. The pathname of the file to be opened.

flags Integer. Certain characteristics of I/O to the file are controlled by ORing flags from the
list below and supplying the result as the flags argument. (Note that only one of
CMFS O RDONLY, CMFS O WRONLY, or CMFS_O RDWR may be used at once.) I
CMFS O0RDONLY

Open the file for reading only.

CMFS 0 WRONLY N
Open the file for writing only.

CMPS RDWR a_
Open the file for reading and writing.

CMFS 0 APPEND
Prior to each write, set the file pointer to the end of the file.

CMFS 0 CREAT
If the file does not exist, create it. Otherwise, do nothing.

CMFS O TRUNC
If the file exists, truncate its length to 0.

CMFS 0 WILDCARD
If the file does not exist (CMFS O CREAT is also specified), create a wild-
card file. If the file already exists, ignore its associated geometry and open it
in "wildcard mode.".

CMFS OEXCL
If CMFS OCREAT is also set, return an error message if the file already I
exists. This can be used to implement a simple exclusive access locking
mechanism.

CMFS O FSYNC
Disable asynchronous inode writing for write operations (but not for ftun-
cate operations). See fsserver.8.

mode Integer, optional argument. The mode to assign to the newly created file (see
CMFS_chmod). Mode is ignored unless the CMFS O CREAT flag is set.

RETURN VALUE ,
fd File descriptor, to be used in other operations on the open file.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to

114 st chnge: Decmbe 1992 CMOST 7.2
114 Last change: December 1992 CMOST 7.2

Thinking Machines

indicate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION
CMFS_open opens the file specified by path for reading or writing, and returns a non-negative integer
called a file descriptor. The file descriptor is then used in other operations on that file. CMFSopen also
sets the file pointer, which is used to mark the current position within the file, to the beginning of the
file.

The flags argument determines whether the file is read or written, and determines additional options.
This argument can be used to indicate the file is to be created if it does not already exist. To do this,
set the CMFS_O_CREAT flag. The file is created with the mode given by the optional argument mode
(in CM Fortran, however, mode is required), as described in CMFS chmod.

By default, when either CMFScreat or CMFS_open is used from a front end attached to a CM to
create a file, the format of the new file is parallel: the file's VP geometry is set to match the geometry
of the CM's current VP set. When either of these calls is used from a machine not attached to a CM to
create a file, the format of the new file is serial, and the file is assigned no geometry.

When both flags CMFS_O CREAT and CMFSO_WILDCARD are specified, the CM file system
creates a wildcard file, which has the generic geometry of virtual width - physical width - 1. When the
CMFS_ OWILDCARD flag is specified without the CMFSO0CREAT flag, the CM file system ignores
the geometry of the already-created and opens it in "wildcard mode," under the assumed generic
geometry.

The CMFS_O RDONLY, CMFS O WRONLY, and CMFS_O_RDWR flags are for permission check-
ing. In C, all the flags are defined in the header file <cm/cmfile.h>.

A file can be opened more than once, and can therefore have more than one file descriptor associated
with it. There is a system-enforced limit on the number of open file descriptors per process.
CMFSclose closes a file descriptor.

File protection is supported. When a file is created using CMFS_open or CMFS_creat, the owner and
group of the file are set to the default values, as described in the UNIX reference manual pages for
open(2) and creat(2); the file's mode is explicitly set (see CMFS_chmod). The utility cmis, as well as
the library calls CMFS_[fJstat, shows the correct mode, owner, and group associated with a file.

RESTRICTIONS

Up to 200 CMFS files can be open on any CMFS file system data-storage device (DataVault, front end,
VMEIO host computer, CM-HIPPI). A single process can have a maximum of 64 CMFS files open at
any given time.

The name of a CMFS file can be no more than 255 characters.

To open a striped file, all file servers in the striped file system must be operational.

All CMFS files must be closed prior to a UNIX execve(2) system call. A file descriptor remains open
across an execve(2) system call, but none of the CM file system data structures are set up.

The following flags, available to a UNIX open(2) call, are not implemented for the CM file system:

O SYNC
O FSYNC

Last change: December 1992

CMFS_open(3) CWS-~open(3)

115CMOST 7.2

CMFS_open (3) Thinking Machines CMFS_open (3)

O NDELAY /
O BLKINUSE
O BLKANDSET

ERRORS /
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFSopen fails if any of the following are true:

CMFS EINVAL
The pathname contains a character with the high-order bit set.

CMFSENOTDIR
A component of the path prefix is not a directory. U

CMFS ENOENT
CMFS O CREAT is not set and the named file does not exist.

CMFS ENOENT
A component of the pathname that must exist does not exist.

CMFS_EACCES
The required permissions for reading and/or writing are denied for the named flag.

CMFS EACCES
Search permission is denied for a component of the path prefix.

CMFS EACCES
CMFS_O CREAT is specified, the file does not exist, and the directory in which it is to
be created does not permit writing.

CMFS EISDIR
The named file is a directory, and the arguments specify it is to be opened for writing.

CMFS EROFS m
The named file resides on a read-only file system, and the file is to be modified.

CMFS EMFILE P
The maximum number of file descriptors are currently open.

CMFS ENXIO
The named file is a character-special or block-special file, and the device associated with l
this special file does not exist.

CMFS ETXTBSY
The file is a pure procedure (shared text) file that is being executed and the open call
requests write access.

CMFS EEXIST
CMFSO0CREAT and CMFS_O_EXCL were specified and the file exists. p

CMFS ENAMETOOLONG
Path exceeded 255 characters in length.

CMFS ENFLE E
The system file table is full.

CMFS ENOSPC
CMFSO_CREAT is specified, the file does not exist, and the directory in which the entry !
for the new file is being placed cannot be extended because there is no space left on the
file system containing the directory.

CMPS ENOSPC 3
CMFS O CREAT is specified, the file does not exist, and there are no free inodes on the
file system on which the file is being created.

116 Last change: December 1992 CMOST 7.2

CMFS_open (3) Thinking Machines CMFS open (3)

CMFS EDQUOT
Quotas are not supported.

CMFSEIO An I/O error occurred while making the directory entry or allocating the inode for
CMFS O CREAT.

CMFS ESTALE
The file handle given in the argument is invalid. The file referred to by that file handle no
longer exists or has been revoked.

CMFS ETIMEDOUT
A "connect" request or remote file operation failed because the connected party did not
properly respond after a period of time that is dependent on the communications protocol.

CMFS ESTRIPE NOTAVAIL
One or more of the file servers serving the striped CM file system is not running.

SEE ALSO
cmls
CMFS_[flchmod
CMFS close
CMFS creat

II

I
III

I
I
I
I
I

CMOST 7.2 Last change: December 1992 117

CMFS_opendir (3) CMFS_opendir (3)

NAME Directory Operations - Open, read, seek, tell the location in, and close directories. 6"

C SYNTAX
#include <cm/cm_dir.h>

dirp = *CMFS_opendir(pathname)
char *pathname;
CMDIR *dirp;

entp = CMFS readdir(dirp)
CMDIR *dirp;
struct cm direct *entp;

n = CMFS telldir(dirp) P
long n;
CMDIR *dirp; p
void CMFS_seekdir(dirp, loc)
CMDIR *dirp;
long loc;

n = CMFS closedir(dirp)
CMDIR *dirp;
int n;

FORTRAN SYNTAX
Not supported.

ARGUMENTS
pathname Character string. The pathname of the directory to be opened.

dirp A pointer to identify the directory stream. dirp is returned by CMFS opendir and used in
the other directory operations.

loc Integer. Returned by an earlier call to CMFS telldir, this argument to CMFS seekdir sets
the position of the next CMFSreaddir. A loc of 0 sets the position to the beginning of
the directory stream.

entp A pointer to the next directory entry. entp is returned by CMFS readdir.

RETURN VALUES

CMFS_opendir

dirp Pointer to identify the directory stream.

NULL Indicates the directory cannot be accessed or insufficient memory is available to open it.

CMFS readdir

entp Pointer to the next directory entry.

NULL Indicates the end of the directory has been reached or an invalid seekdir
operation has been detected.

CMFS telldir

n Current location associated with the directory stream.

CMFSseekdir

None.

118 Last change: December 1992 CMOST 7.2

CMFS_opendir (3)

CMFS closdir

O Indicates successful close

-1 Indicates an error; CMFSerrno is set.

CM STATE CHANGE
None.

DESCRIPTION
CMFS_opendir opens the directory named by pathname and associates a directory stream with it.
CMFS_opendir returns a pointer to identify the directory stream in subsequent operations. The pointer
NULL is returned if the specified filename can not be accessed, or if insufficient memory is available to
open the directory file.

CMFS readdir returns a pointer to the next directory entry. It returns NULL or nil upon reaching the
end of the directory or upon detecting an invalid seek operation. CMFS_readdir uses the UNIX get-
directories system call to read directories.

CMFStelldir returns the current location associated with the named directory stream. Values returned
by CMFS telldir are good only for the lifetime of the DIR pointer from which they are derived. If the
directory is closed and then reopened, the CMFS_telldir value may be invalidated due to undetected
directory compaction.

CMFS_seekdir sets the position of the next CFS readdir operation on the directory stream. Only
values returned by CMFStelldir should be used with CMFS seekdir.

CMFSclosedir closes the named directory stream. If the close is successful, 0 is returned; if the close
fails, -1 is returned and CMFS_errno is set. All resources associated with this directory stream are
released.

The directory stream that CMFSopendir associates with pathname contains an entry for each directory
residing in pathname. Each directory entry has associated with it four pieces of information. This infor-
mation is stored in a directory structure having four elements. A pointer to this structure is returned by
CMFS readdir. The four elements are:

cmdino Inode number
cmd_reclen Directory record length
cmd namlen Directory name length
cmd name Directory name entry

The content of an element is referenced by pointer -> element-name. For example, if dir ent ptr is the
pointer returned by CMFS readdir, the directory name entry is referenced by dir ent ptr -> d_name.

EXAMPLE

The following sample code searches a directory for the entry name.

len = strlen(name);
dirp = CMFSopendir(.);
for (dp - CMFS readdir(dirp); dp ! NULL;

dp CMFS_readdir(dirp))
if (dp->cmd_namlen = len && !strcmp(dp->cmd_name, name))

CMFS_closedir(dirp)
return FOUND;

CMFS closedir(dirp);
return NOTFOUND;

Last change: December 1992

CAOSopendir (3)

119CMOST 7.2

CMFSperror (3) CMFSperror (3)

NAME

CMFSperror - Writes a system error message to the standard error file.

C SYNTAX
void
CMFS_perror(s)
char *s;

FORTRAN SYNTAX

SUBROUTINE CMFSPERROR(s)
STRING s

ARGUMENTS

s Character string. The user-supplied portion of the error message.

RETURN VALUE

None.

CM STATE CHANGE
None.

DESCRIPTION
The CMFS_perror subroutine writes a short error message on the standard error file describing the last
error encountered during a system call. The error message consists of the string s, a colon, the message,
and a newline.

The error description written is determined by the number taken from the external variable
CMFS errno.

SEE ALSO
CMFS ermo bwII

Last change: December 1992120 CMOST 7.2

CMFS physical_ftruncate (3)

NAME

CMFSphysicalftnmcate - Truncates or extends an open file.

C SYNTAX

n - CMFSphysical_ftruncate(fd, number cmwords, number_extra bytes)
long number cmwords, number extra bytes;
int fd, n;

FORTRAN SYNTAX
Not supported

LISP SYNTAX

Not supported

ARGUMENTS

fd File descriptor, which was returned by a previous call to CMFScreat or CMFS_open.

number cmwords
The number of cmwords you want the truncated file to contain. (Usually, 1 cmword - 512
bytes; verify by executing cmstat or CMFS_[fistat on the file.)

number extra bytes
The number of additional bytes - that is, additional to the number of cmwords specified
by number cmwords - you want the truncated file to contain.

RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION
CMFSphysicalftruncate changes the size of the file referenced by fd to any non-negative value,
including one larger than the (2 Gbytes -1) limit imposed by CMFSserialtruncate file. The new size
of the file in bytes is calculated by:

(number-cmwords * cmword size in bytes) + number-extra-bytes

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error.

CMFSphysicalftruncate fails if any of the following are true:

CMFS EROFS
The named file resides on a read-only file system.

CMFS_EIO An Io error occurred updating the inode.

CMFS ENOSPC
An error occurred while attempting to allocate disk blocks.

CMFS EBADF
fd is not a valid descriptor.

CMFS EBADF
fd is not open for writing.

CMFS ETIMEDOUT
A "connect" request or remote file operation failed because the connected party did not
properly respond after a period of time that is dependent on the communications protocol.

CMFS EINVAL

Last change: December 1992

Thinking Machines CMFSPhysicaLtrucate (3)

CMOST 7.2 121

CMFS physical_ftruncate (3) Thinking Machines CMFSphysical_ftruncate (3)

number cmwords or number_extrabytes is negative.

CMFS EINVAL
number_extra_bytes is greater than or equal to the number of bytes per cmword.

CMFS EINVAL
fd references a socket, not a file.

SEE ALSO
CMFSopen
CMFS serial truncate file
CMFS- [ftruncate file

122 Last change: December 1992 CMOST 7.2

I

I

I

I
I
I
I
I

I
I
I
ii

1

I
I
UI
II

CMFSphysicallseek (3)

NAME

CMFSphysicallseek - Moves the read/write pointer associated with an open file.

C SYNTAX

n = CMFSphysical_lseek(fd, offset_cmwords, offset_extra_bytes, whence)
long *offset_cmwords, *offsetextra bytes;
int n, fd, whence;

FORTRAN SYNTAX

Not supported

ARGUMENTS

fd File descriptor (which was returned by a previous call to CMFS_creat or CMFS_open)
of a file open for reading or writing.

offset_cmwords
The number of cmwords to offset the file pointer from the position specified by whence.
Usually, 1 cmword = 512 bytes; verify by executing cmstat or CMFS_[fJstat on the file.)
offset_cmwords may be negative.

offsetextra_bytes
The number of additional bytes -- that is, additional to the number of bytes specified by
offsetcmwords -- to offset the file pointer from the position specified by whence.
offset_extra_bytes may be negative.

whence Integer. The location at which to set the file pointer. whence is one of the following:

CMFS LSET
Set the pointer to ((offset_cmwords * cmword size in bytes) +
offseextra bytes) bytes.

CMFS L INCR
Set the pointer to the current position plus ((offsetcmwords * cmword size
in bytes) + offsetLextra bytes) bytes.

CMFS L XTND
Set the pointer to the length of the file plus ((offset_cmwords * cmword size
in bytes) + offsetextra bytes) bytes.

RETURN VALUE

0 Indicates success.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

offset cmwords
When successful, on return this variable's value is the number of cmwords contained from
the beginning of the file to the new file pointer position.

offset extrabytes
When successful, on return this variable's value is the number of bytes in the space
between the last cmword boundary and the new file pointer position. For instance, if the
file pointer's position is on a cmword boundary, this variable's value is 0.

CM STATE CHANGE
None.

DESCRIPTION
CMFS_physical_lseek moves the file pointer associated with a file open for reading or writing, so the
next data item read or written need not be logically adjacent to the item used in the previous operation.
The file-pointer-position value can be greater than (2 Gbytes -1) (the limit imposed by CMFSlseek
and CMFS_serial lseek). The file-pointer-position value is specified by the arguments offsetcmwords,
offsetextra bytes, and whence, as indicated in the previous ARGUMENTS section.

Last change: December 1992

CMFSgphysical-seek (3) Thinking Machines

123CMOST 7.2

CMFS.physicallseek (3) Thinking Machines MFSphysicall seek (3)

The argument fd represents the file open for reading or writing.

Note that CMFS_physica Iseek does not actually perform a seek on the disks; that is, it only moves
the file pointer, not the disk heads. The disks don't seek until a CMFS_readfile(_aiways) or
CMF_writefile(_always) is issued.

Seeking far beyond the end of a file, then writing, causes file blocks to be allocated in the gap between
the end of the file and the location at which the write proceeds. The contents of these blocks are
undefined, containing whatever was left there by previous uses of those blocks.

Upon successful completion, 0 is returned.

RESTRICTIONS

Although the file-pointer-position value can be negative, any attempt to perform I/O while at a negative
offset will fail.

Some devices are incapable of seeking. The value of the pointer associated with such a device is
undefined.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and errmo are set to
indicate the cause of the error. CMFS_physical seek fails if any of the following are true:

CMFS EBADF
fd is not an open file descriptor.

CMFS EINVAL
whence is not a proper value.

CMFS EISPIPE
fd refers to a socket, not a file.

SEE ALSO

CMFS flush
CMFS_open
CMFS serial Iseek
CMFS Iseek

124 Last change: December 1992 CMOST 7.2

I
ti
I
I
I
I
I
I
I

ON

I
I
i
I
I

Iii

I

CMFS read fle[_always] (3)

NAME

CMFS read file[always] - Reads from a file or a connected socket into CM-5 processing nodes.

SYNTAX
C SYNTAX

Not supported

C* SYNTAX

n - CMFSreadfile[_ aways](fd, pvar*, count)
int n,fd, count,
void * pvar,

FORTRAN SYNTAX

Not supported

CM FORTRAN SYNTAX

N = CMFS READFLE[_ AWAYS(FD, ARRAY, COUN7)
INTEGER N, FD, COUNT
ANY_TYPE ARRAY(:,:,...,:) ! any type, any rank

ARGUMENTS

fd File descriptor (returned by a previous call to CMFS_creat or CMFS_open) of a file
open for reading, or socket descriptor (returned by a previous call to CMFS socket or
CMFSaccept) of a connected socket.

pvar* (C*) A pointer to a parallel variable of any type in which to place the data.

ARRAY (CMF)
An array (of any type or rank) in which to place the data.

count Integer. The number of bytes to read into each element of the parallel variable or array.
count can be any number of bytes, but performance is diminished when count is not a
multiple of 4 bytes (the CM-5 word size).

RETURN VALUE

n, N The total number of bytes read into the parallel variable or array

O Indicates that end-of-file has been reached, or that the sending program has closed or shut
down its socket and all pending data has been read.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indicate
the cause of the error.

CM STATE CHANGE

In the parallel variable pvar, or array ARRAY, n bytes are placed.

CONTEXT

CMFS read file: Conditional, occurs in selected PNs.
CMFS readfile always: Unconditional, occurs in all PNs.
Currently both CMFS read file and CMFS read file always operate unconditionally. Since a future
software release may support conditional reads via CMFS_readfile, we recommend that programs use
only CMFSread file always at this time.

Last change: Dec. 1992

Thinldng Machines CMF_readffie[_Aways] (3)

125CMOST 7.2

CMFSread_file[always] (3) Thinking Machines CMFS_read_file[always] (3)

DESCRIPTION
CMFSread file and CMFSreadfile_always attempt to read count bytes of information into each $
element of the parallel variable pointed to by the pvar argument (in C*) or each element of the array
ARRAY (in CM Fortran) from the object represented by fd; fd is either a file descriptor returned by a
previous call to CMFS creat or CMFS_open, or a socket descriptor returned by a previous call to
CMFS socket or CMFS_accept. To read from a socket, you must use CMFS read file_always, as
reading from a socket is unconditional. If no messages are available at the socket, the call waits for a
message to arrive. When a file is read, the read starts at a position given by the file pointer associated
with fd (see CMFS_serial_lseek (3)). Upon return from CMFS_readfile[_always], the pointer is
incremented by the number of bytes actually read.

Upon successful completion, CMFS_read file and CMFS_read_file_always return the number of bytes
read. If fewer bytes remain to be read than the number requested, the remaining bytes are read until the
end-of-file is encountered or all data has been read from the socket. The routine returns the number of
bytes actually read (as opposed to the number requested). If an attempt to read is made after end-of-file
has been encountered, zero is returned. If the sending program has closed or shut down its socket, the
remaining data is read; if no more data remains to be read, zero is returned.

RESTRICTIONS
Reading a file requires that the read begin on a cmword boundary, where a cmword is usually defined
as 4096 bits. You will receive an error if you attempt to read starting at an illegal position.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS readfile and CMFS readfile always fail if any of the follow-
ing are true:

CMFS EBADF g
fd is neither a valid file descriptor open for reading, nor a valid socket descriptor.

CMFS EINVAL

The current file position is negative.

CMFS EIO
An I/O error occurred while reading from the file system. This error could occur if a disk drive
failed and a second DataVault disk drive failed before the system administrator corrected the
first failure.

CMFS ESTRIPE NOTAVAIL
One or more of the file servers serving the striped CM file system is not running.

CMFS ECONNABORTED

The socket connection has been aborted by the underlying TCP protocol.

CMFS ECONNRESET I
The socket connection has been reset by the underlying TCP protocol.

CMFS ENOTCONN

If fd is a socket descriptor, the socket is not connected. If fd is the descriptor of the CM-HIPPI
device, the connection to the remote system has been broken or has not yet been established.

CMFS ETIMEDOUT
A connection request or remote file operation failed because the connected party did not prop-
erly respond after a period of time that is dependent on the communications protocol. If fd is
the descriptor of the CM-HIPPI device, the CM-HIPPI timed out waiting for data or for the
remote system to issue a connection request.

126 Last change: Dec. 1992 CMOST 7.2

CMFSread_file[_ always] (3)

-IN SEE ALSO

If CMFS serial Iseek
CMFS socket
CMFS_open
CMFS write file
CMFSerrno

I intro(2) (on Suns)

I

I

I

I

I

I

I

I

I

I

Last change: Dec. 1992

Thinkdng Machines CW-~readflf always](3)

CMOST 7.2 127

CMFSreaddir(3) CMFS readdir (3)

NAME
Directory Operations - Open, read, seek, tell the location in, and close directories.

C SYNTAX
#include <cm/cm dir.h> I
dirp - *NFS_ pendhtltnme)
char *pathname;
CMDIR *dirp;

entp - CMFSreaddir(dirp) !
CMDIR *dirp;
struct cm direct *entp;

n = CMFStelldir(dirp)
long n;
CMDIR *dirp;

void CMFS_seekdir(dirp, loc)
CMDIR *dirp;
long loc;

n - CMFS closedir(dirp)
CMDIR *dirp;
int n;

FORTRAN SYNTAX

Not supported.

ARGUMENTS
pathname Character string. The pathname of the directory to be opened.

dirp A pointer to identify the directory stream. dirp is returned by CMFS opendir and used in
the other directory operations.

loc Integer. Returned by an earlier call to CMFS_telldir, this argument to CMFS seekdir sets
the position of the next CMFS readdir. A loc of 0 sets the position to the beginning of
the directory stream.

entp A pointer to the next directory entry.

RETURN VALUES
CMS_opendir

dirp Pointer to identify the directory stream.

NULL Indicates the directory cannot be accessed or insufficient memory is available to open it.

CMFS readdir

entp Pointer to the next directory entry.

NULL Indicates the end of the directory has been reached or an invalid seekdir
operation has been detected.

CMFS telldir

n Current location associated with the directory stream.

CMFS seekdir

None.

128 Last change: December 1992 CMOST 7.2

CMFS readdir(3)

CMFS closdir

O Indicates successful close

-1 Indicates an error; CMFS errno is set.

CM STATE CHANGE
None.

DESCRIPTION

CMFS_opendir opens the directory named by pathname and associates a directory stream with it.
CMFS_opendir returns a pointer to identify the directory stream in subsequent operations. The pointer
NULL is returned if the specified filename can not be accessed, or if insufficient memory is available to
open the directory file.

CMFSreaddir returns a pointer to the next directory entry. It returns NULL or nil upon reaching the
end of the directory or upon detecting an invalid seek operation. CMFSreaddir uses the UNIX get-
directories system call to read directories.

CMFS telldir returns the current location associated with the named directory stream. Values returned
by CMFStelldir are good only for the lifetime of the DIR pointer from which they are derived. If the
directory is closed and then reopened, the CMFStelldir value may be invalidated due to undetected
directory compaction.

CMFS seekdir sets the position of the next CMFSreaddir operation on the directory stream. Only
values returned by CMFS teldir should be used with CMFSseekdir.

CMFS_closedir closes the named directory stream. If the close is successful, 0 is returned; if the close
fails, -1 is returned and CMFSernmo is set. All resources associated with this directory stream are
released.

The directory stream that CMFS opendir associates with pathname contains an entry for each directory
residing in pathname. Each directory entry has associated with it four pieces of information. This infor-
mation is stored in a directory structure having four elements. A pointer to this structure is returned by
CMFS readdir. The four elements are:

cmd ino Inode number
cmdreclen Directory record length
cmd namlen Directory name length
cmd_name Directory name entry

In C, the content of an element is referenced by pointer -> element-name. For example, if dir entptr is
the pointer returned by CMFS readdir, the directory name entry is referenced by dir entptr -) dname.

EXAMPLE
The following sample code searches a directory for the entry name.

len - strlen(name);
dirp - CMFSopendir(.);
for (dp = CMFSreaddir(dirp); dp I- NULL;

dp - CMFS readdir(dir(dip))
if (dp->cmd_namlen -- len && !strcmp(dp->cmd name, name)) I

CMFS closedir(dirp)
return FOUND;

I
CMFS closedir(dirp);
return NOTFOUND;

Last change: December 1992

CMFSraddir (3)

129CMOST 7.2

CMFS rename (3) CMFS rename (3)

NAME
CMFS rename - Renames a file.

SYNTAX
C Syntax

n = CMFS_ rename(oldname, newname)
char *oldname, *newname;
int n;

Fortran Syntax

n = CMFS RENAME (oldname, newname)
INTEGER n
STRING oldname, newname

ARGUMENTS

oldname Character string. The name of the file to be renamed.

newname Character string. The file's new name.

RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS ermrno and errno are set to indicate the
cause of the error.

CM STATE CHANGE

None.

DESCRIPTION
CMFS rename renames the file (or directory) named oldname to newname. If newname already exists,
then it is first removed. Both oldname and newname must be of the same type (that is, both directories
or both non-directories), and must reside on the same file system. If newname is an existing directory, it
must be empty.

CMFS_rename guarantees that an instance of newname will always exist, even if the system should
crash in the middle of the operation.

The system can deadlock if a loop in the file system graph is present. Suppose an entry in directory a,
say a/filel, is a hard link to directory b, and an entry in directory b, say b/file2, is a hard link to direc-
tory a. If two separate processes attempt to perform rename a/filel b/file2 and rename b/file2 a/filel,
respectively, the system may deadlock attempting to lock both directories for modification.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFSerrno and errno are set to
indicate the cause of the error. CMFS_rename fails if any of the following are true:

CMFS ENOTDIR

CMFS ENAMETOOLONG

CMFS ENOENT

CMFSENOENT

CMFS EACCES

A component of the path prefix of either oldnam e or newname is
not a directory.

Oldname or newname exceeded 255 characters in length.

A component of the path prefix of either oldname or newname does
not exist.

The file named by oldname does not exist.

A component of the path prefix of either oldname or newname
denies search permission.

Last change: December 1992

i

I
I
U

I
U

I
U

I
I
I
I
U

1

a

130 CMOST 7.2a

CMFS rename (3)

CMFS EACCES

CMFS EXDEV

CMFS ENOSPC

CMFSEDQUOT

CMFS EIO

CMFS EROFS

CMFS EINVAL

CMFS ENOTEMPTY

CMFS EBUSY

SEE ALSO

CMFS_open

CMOST 7.2

CMFS_rename (3)

The requested rename operation requires writing in a directory with a
mode that denies write permission.

The link named by newname and the file named by oldname are on
different logical devices (file systems).

The directory in which the entry for the new name is being placed
cannot be extended because there is no space left on the file system
containing the directory.

Quotas are not supported.

An 1/0 error occurred while reading oldname or writing to the file
system.

The requested rename requires writing in a directory on a read-only
file system.

oldname is a parent directory of newname, or an attempt is made to
rename . (the current directory) or .. (the parent directory).

newname is a directory and is not empty.

Mount points are not supported.

Last change: December 1992 131

U

I

III
II

II
II

'll

CMFS_rmdir (3) CVMFSrmdir (3)

NAME a
CMFSrmdir - Removes a directory. 65

SYNTAX p
C Syntax

n CMFS_rmdir(path)
char *path;
int n;

Fortran Syntax

n = CMFS RMDIR (path)
INTEGER n
STRING path

ARGUMENTS

path Character string. The directory to be removed.

RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indicate the
cause of the error.

CM STATE CHANGE l
None.

DESCRIPTION

CMFS rmdir removes the directory whose name is path. The directory must be empty; it must not have
any entries other than . (the current directory) and .. (the parent directory).

ERRORS

If an error occurs, the value -1 is returned and the external variables CMFS_ermo and errno are set to l
indicate the cause of the error. CMFS_rmdir fails if any of the following are true:

CMFS ENOTEMPT Y The named directory contains files other than . (the current directory)
and .. (the parent directory) in it.

CMFS EPERM The directory containing the directory to be removed is marked
sticky, and neither the containing directory nor the directory to be
removed are owned by the effective user ID.

CMFS ENOTDIR A component of the path is not a directory.

CMFSENOENT The named directory does not exist.

CMFSEACCES Search permission is denied for a component of the path prefix.

CMFS EACCES Write permission is denied on the directory containing the link to be
removed. p

CMFS EBUSY The directory to be removed is the mount point for a mounted file
system.

CMFSEROFS The directory entry to be removed resides on a read-only file sys-
tem.

CMFS EINVAL The pathname contains a character with the high-order bit set.

CMFS ENAMETOOLONG Path exceeded 255 characters in length.

CMFSEIO An I/O error occurred while deleting the directory entry or deallocat-
ing the inode. p

132 Last change: December 1992 CMOST 7.2

CMFS rmdir(3)

CMFS ETIMEDOUT A "connect" request or remote file operation failed because the con-
nected party did not properly respond after a period of time that is
dependent on the communications protocol.

SEE ALSO
CMFS mkdir
CMFS unlink

Last change: December 1992

CMFS rmdir(3)

133CMOST 7.2

CMFS scandir (3) CMFS scandir (3)

NAME

CMFS scandir - Scans a directory.

SYNTAX

C Syntax

#include <sys/types.h>
#include <cm/cmdir.h>

n = CMFS_scandir(directory, namelist, select, compare)
char *directory;
struct cm direct *(*namelist[);
int n, (*select)O;
int (*compare)O;

alphasort(dl, d2)
struct direct **dl, **d2;

ARGUMENTS

directory Character string. The directory to be scanned.

namelist A pointer to an array of structure pointers.

Integer. A pointer to a user-supplied routine that is called
directory entries.

compare Integer. A pointer to a user-supplied routine that is passed
entries.

Nby CMFS scandir to select

to qsort(3) to sort directory

RETURN VALUE

n The number of entries in the array. Through the argument namelist, a pointer to the array is
also returned.

-1 Indicates the directory cannot be opened for reading, or malloc (3) cannot allocate enough
memory to hold all the data structures.

CM STATE CHANGE
None.

DESCRIPTION
CMFSscandir reads the directory directory and builds an array of pointers to directory entries using
malloc(3). It returns the number of entries in the array and a pointer to the array through namelist.

Select is a pointer to a user-supplied routine that is called by CMFS_scandir to select the directory
entries that are to be included in the array. t is called with a pointer to a directory entry and should
return a non-zero value if the directory entry is to be included in the array. If select is NULL all the
directory entries are included.

Compare is a pointer to a user-supplied routine that is passed to qsort(3) to sort the completed array. If
this pointer is NULL the array is not sorted. The routine alphasort can be used to sort the array alpha-
betically.

The memory allocated for the array can be deallocated with free (see malloc(3)) by freeing each pointer
in the array and the array itself.

ERRORS
A return value of -1 indicates that either the directory cannot be opened for reading, or malloc(3) can-
not allocate enough memory to hold all the data structures.

Last change: December 1992 CMOST 7.2

I
,L

1
` %AN

i

select

N

I
I

I

i
I
N

N

I

t

134 I

CMFSscandir (3) CMFSscandir (3)

SEE ALSO

directory operations
malloc(3)
qsort(3)
dir(5))

CMOST 7.2 Last change: December 1992

q

q

l
I

I
U

II

I

/I
135

CMFS seekdir (3) CMFS seekdir (3)

NAME
Directory Operations - Open, read, seek, tell the location in, and close directories.

C SYNTAX
#include <cm/cm_dirh>

dirp- *CMFSopendir(pathname)
char *pathname;
CMDIR *dirp;

entp - CMFS readdir(dirp)
CMDIR *dirp;
struct cm direct *entp;

n - CMFPStelldir(dirp)
long n;
CMDIR *dirp;

void CMFSseekdir(dirp, loc)
CMDIR *dirp;
long loc;

n - CMS closedir(dirp)
CMDIR *dixp;
int n;

FORTRAN SYNTAX
Not supported.

ARGUMENTS

pathname Character string. The pathname of the directory to be opened.

dirp A pointer to identify the directory stream. dirp is retumned by

loc

entp

.I
I

I

I
I

.3
CMFS opendir and used in

the other directory operations.

Integer. Returned by an earlier call to CMS_ telldir, this argument to CMFS seekdir sets
the position of the next CMFSreaddir. A loc of O sets the position to the beginning of
the directory stream

A pointer to the next directory entry. entp is returned by CMFSreaddir.

I
I
IRETURN VALUES

CMFSopendir

dirp Pointer to identify the directory stream.

NULL Indicates the directory cannot be accessed or insufficient memory is available to open it.

CMFS readdir

entp

NULL

Pointer to the next directory entry.

Indicates the end of the directory has been reached or an invalid seekdir
operation has been detected.

CMFS telldir

n

CMFS seekdir

None.

I
I
I

Current location associated with the directory stream.

I

Last change: December 1992

I

136

I
CMOST 7.2 I

CMFSseekdir (3)

CMFS closdir

0 Indicates successful close

-1 Indicates an error; CMFS errno is set.

CM STATE CHANGE
None.

DESCRIPTION
CMFS_opendir opens the directory named by pathname and associates a directory stream with it.
CMFSopendir returns a pointer to identify the directory stream in subsequent operations. The pointer
NULL is returned if the specified filename can not be accessed, or if insufficient memory is available to
open the directory file.

CMFS readdir returns a pointer to the next directory entry. It returns NULL or nil upon reaching the
end of the directory or upon detecting an invalid seek operation. CMFSreaddir uses the UNIX get-
directories system call to read directories.

CMFS telldir returns the current location associated with the named directory stream. Values returned
by CMFS telldir are good only for the lifetime of the DIR pointer from which they are derived. If the
directory is closed and then reopened, the CMFStelldir value may be invalidated due to undetected
directory compaction.

CMFSseekdir sets the position of the next CMFS readdir operation on the directory stream. Only
values returned by CMFS_telldir should be used with CMFSseekdir.

CMFSclosedir closes the named directory stream. If the close is successful, 0 is returned; if the close
fails, -1 is returned and CMFS_errno is set. All resources associated with this directory stream are
released.

The directory stream that CMFS opendir associates with pathname contains an entry for each directory
residing in pathname. Each directory entry has associated with it four pieces of information. This infor-
mation is stored in a directory structure having four elements. A pointer to this structure is returned by
CMFS readdir. The four elements are:

cmd ino Inode number
cmd reclen Directory record length
cmd namlen Directory name length
cmdname Directory name entry

In C, the content of an element is referenced by pointer -> element-name. For example, if dir ent ptr is
the pointer returned by CMFS readdir, the directory name entry is referenced by dir_ent ptr -> d.name.

EXAMPLE

The following sample code searches a directory for the entry name.

len = strlen(name);
dirp = CMFS_opendir(.);
for (dp = CMFS_readdir(dirp); dp != NULL;

dp = CMFS_readdir(dirp))
if (dp->cmd_namlen =- len && !strcmp(dp->cmd_name, name)) {

CMFSclosedir(dirp)
return FOUND;

}
CMFS closedir(dirp);
return NOTFOUND;

Last change: December 1992

CN[FSseekdir(3)

137CMOST 7.2

I

I
I

I

S1

i

iiSiSi

CMFS serialseek (3)

NAME

CMFSserial_lseek, CMFS seek - Moves the pointer associated with an open file.
Currently CMFS serial seek and CMFSlseek are functionally equivalent. Since a future software
release may provide parallel seeks via CMFS_iseek, we recommend that programs use only
CMFS serial Iseek at this time.

C SYNTAX
#include <cm/cmfile.h>

n = CMFS_[seial_]lseek(fd, offset, whence)
long n, offset;
int fd, whence;

FORTRAN SYNTAX
n - CMFS_[SERIAL_]LSEEK (fd, offset, whence)
INTEGER n, fd, offset, whence

ARGUMENTS

fd File descriptor, which was returned by a previous call to CMFS_creat or CMFS open of a
serial file open for reading or writing.

offset Integer. The number of bytes to offset the file pointer from the position specified by
whence.

whence Integer (values defined in (cm/cm_file.h>):

CMFS_L_SET sets the pointer to offset bytes.

CMFSL INCR sets the pointer to the current position
plus offset bytes.

CMFSL_XTND sets the pointer to the length of the file
plus offset bytes.

RETURN VALUE
n The current file pointer value. This value is measured in bytes from the beginning of the

file. The first byte is byte 0.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS_[serialllseek moves the file pointer associated with a file open for reading or writing, so the
next data item read or written need not be logically adjacent to the item used in the previous operation.
The argument fd represents the file open for reading or writing. CMFS_[serial lseek sets the file
pointer to the position specified by offset and whence.

Seeking far beyond the end of a file, then writing, causes file blocks to be allocated in the gap between
the end of the file and the location at which the write proceeds. The contents of these blocks are
undefined, containing whatever was left there by previous uses of those blocks.

Upon successful completion, the current file pointer value is returned. This pointer is measured in bytes
from the beginning of the file, where the first byte is byte 0.

Last change: December 1992

CMFS seria-seek(3)

139CMOST 7.2

CMFS serial lseek (3) CMFSserial Iseek (3)

RESTRICTIONS
Some devices are incapable of seeking. The value of the pointer associated with such a device is
undefined.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS_[serial_]lseek fails if any of the following are true:

CMFS EBADF
fd is not an open file descriptor.

CMFS EINVAL
whence is not a proper value.

SEE ALSO
CMFSopen
CMFS serial truncate file

140 Last change: December 1992 CMOST 7.2

I

ON

-I

CMFS serial read file (3)

NAME
CMFS serial read file-

Reads from a file or a connected socket into the memory of a serial computer that supports the CMFS
library.

C SYNTAX

bytes = CMFSserialreadfile(fd, buffer, count)
int bytes, fd, count;
char *buffer

FORTRAN SYNTAX

bytes = CMFS SERIAL READFILE (fd, buffer, count)
INTEGER bytes, fd, buffer(l), count

Note: The actual size of the buffer array is count/4

ARGUMENTS

fd File descriptor (returned by a previous call to CMFS_creat or CMFS open) of a file open
for reading, or socket descriptor (returned by a previous call to CMFSsocket or
CMFS accept) of a connected socket.

buffer A pointer to a buffer in C; an integer in Fortran. The location in the memory of the serial
computer at which to place the data read from the file or socket.

count Integer. The number of bytes to read from the file identified by fd.

RETURN VALUE

bytes The number of bytes read and placed in the buffer of the serial computer.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFSserial read file attempts to read data from a CMFS file or a connected socket into the memory
of a serial computer that supports the CMFS library and is connected to the rest of the CM system
across Ethernet (for example, a CM-IOP or a VMEIO host computer). These reads completely bypass
the CM. If a CMIO bus connects the destination machine's memory to the system where the file resides
(or, if a socket is being read, to the CM-HIPPI), the data transfer occurs over the CMIO bus; otherwise,
the data transfer occurs over the Ethernet, albeit slowly.

CMFSserial read file attempts to read count bytes of information from the file or connected socket
referenced by fd into buffer. In C, buffer is a byte address in the serial computer's memory. The value
returned is the number of bytes read. If fewer bytes remain to be read than the number requested, the
remaining bytes are read until the end-of-file is encountered, or until all remaining data has been read
from the socket. The routine returns the number of bytes actually read (as opposed to the number
requested) If an attempt to read is made after end-of-file has been encountered, zero is returned. If the
sending program has closed or shut down its socket, the remaining data is read; if no more data remains
to be read, zero is returned.

When a file is read, the read starts at a position given by the pointer associated with fd (see
CMFS_serial_lseek). Upon return from CMFS serial read_file, the pointer is incremented by the
number of bytes actually read.

CM-2/200 files read using CMFS_serialread file may be in parallel format. If they are, when the file is
subsequently used by a serial computer, the data will be in an inappropriate order. To ensure that the

Last change: December 1992

CWS-seriarad-file (3

CMOST 7.2 141

CMFS serial read file (3) CMFS serial readfile (3)

file will be able to be used by a serial computer, before calling CMFS_serialread_file:

Call CMFS_read_file(_always) to read the file into the CM-2/200.

Call CMFS_transpose_always or CMFS_transpose_record always on a CM-2/200 to rearrange the data
for use by a serial machine.

Call CMFSwritefile(_always) to write the data back to the file (in serial order).

Similarly, when you read data into a serial computer from a CM-2/200 socket, you must ensure that the
data is arranged correctly in the serial computer's memory. Call CMFS_transpose(_record) always on a
CM-2/200 to transpose the data to serial format if necessary.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFSerrno and errno are set to
indicate the cause of the error. CMFS_serialread fails if any of the following are true:

CMFS_EINVAL Reading was attempted with a current file position that was negative.

CMFS_EBADF fd is not a valid file descriptor open for reading.

CMFS_EIO An I/O error occurred while reading from the file system.

CMFSECONNABORTED
The socket connection has been aborted by the underlying TCP protocol.

CMFS_ECONNRESET The socket connection has been reset by the underlying TCP protocol.

CMFSENOTCONN

CMFSETIMEDOUT

CMFS EHIPPI SRC PA]

CMFS EHIPPI DST PA]

CMFSEHIPPI DSTPA]

If fd is a socket descriptor, the socket is not connected. If fd is the descriptor
of the CM- HIPPI device, the connection to the remote system has been bro-
ken or has not yet been established.

A connection request or remote file operation failed because the connected
party did not properly respond after a period of time that is dependent on the
communications protocol. If fd is the descriptor of the CM-HIPPI device, the
CM-HIPPI timed out waiting for data or for the remote system to issue a con-
nection request.

RITY
A parity error was detected on the CM-HIPPI source board.

RITY
A parity error was detected on the CM-HIPPI destination board.

RITY

A parity error was detected on a CM-HIPPI IOP board.

SEE ALSO

CMFSopen CMFSserial truncate_file
CMFS_read_file(_always) CMFS_READ_AND TRANSPOSEALWAYS (CM-2/200 only)
CMFSsocket CMFStwuffie_to serialorder always _11
CMFS-serial_lseek CMFStwuffle from serial order always_lL
CMFS serial write file

Last change: December 1992 CMOST 7.2

I

I
I
I
iN

i
I
I

I
I
II

142

I

I

I
a

CMFS serial truncate file(3)

NAME

CMFS serial truncate file - Truncates or extends a file.

C SYNTAX
n = CMFS serial truncate_file(path, length)
char *path;
long length;
int n;

n = CMFSserial_ftruncate_file(fd, length)
int fd;
long length;
int n;

FORTRAN SYNTAX

n = CMFSSERIALTRUNCATE FILE (path, length)
INTEGER n, length
STRING path

n = CMFSSERIAL FIRUNCATE FILE (fd, length)
INTEGER n, fd, length

ARGUMENTS
path Character string. The file whose length is to be changed.

length The new length, in bytes, of the file named by path.

fd File descriptor, which was returned by a previous call to CMFS_creat or CMFS_open.

RETURN VALUE
O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFS errno and ermo are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS serial truncate file and CMFS serial ftruncate file change the size of the file named by path, or
referenced by fd, respectively, to length bytes. If the file was previously larger than this size, the extra
data is lost. If the file was previously smaller than this size, the file is extended to length bytes. (This
allows you to pre-allocate physical disk blocks in as contiguous a manner as possible.)
CMFS serial ftruncatefile requires the file to be open for writing.

ERRORS

If an error occurs, the value -1 is returned and the external variables CMFSermno and errno are set to
indicate the cause of the error. CMFS serialtruncate file fails if any of the following are true:

CMFS ENOTDIR
A component of the path prefix is not a directory.

CMFS ENOENT
The named file does not exist.

CMFS EACCES
Search permission is denied for a component of the path prefix.

CMFS EISDIR
The named file is a directory.

CMFS EROFS

Last change: December 1992

C LIBRARY UNC7IONS CMIS-serialtruncatefile (

143CMOST 7.2

CMFS serial truncate file(3) C LIBRARY FUNCTIONS CMFS serial truncate file (3)

The named file resides on a read-only file system.

CMFS ETXTBSY
The file is a pure procedure (shared text) file that is being executed.

CMFS EINVAL
The pathname contains a character with the high-order bit set.

CMFS ENAMETOOLONG
Path exceeded 255 characters in length.

CMFS EIO An I/O error occurred updating the inode.

CMFS ENOSPC
An error occurred while attempting to allocate disk blocks.

The library call CMFS serial ftruncate_file fails if any of the following are true:

CMFS EBADF
fd is not a valid descriptor.

CMFS EINVAL
fd references a socket, not a file.

CMFS ETIMEDOUT
A "connect" request or remote file operation failed because the connected party did not
properly respond after a period of time that is dependent on the communications protocol.

SEE ALSO

CMFS_open
CMFS serial lseek
CMFS-serial-read file
CMFS serial write file

Last change: December 1992

I

I
1

1

VI

Iii
U-

144 CM HIPPI 6.1

CMFS serial writefile (CMFS)

NAME
CMFS serial write file-

Writes to a file or a connected socket from the memory of a serial computer that supports the CMFS
library.

C SYNTAX

bytes = CMFS_serialwritefile(fd, buffer, count)
int bytes, fd, count;
char *buffer;

FORTRAN SYNTAX

bytes = CMFS_SERIAL WRITE_ FLE (fd, buffer, count)
INTEGER bytes, fd, buffer(l), count

Note: The actual size of the buffer array is count/4

ARGUMENTS

fd File descriptor (returned by a previous call to CMFS_creat or CMFS open) of a file open
for writing, or socket descriptor (returned by a previous call to CMFSsocket or
CMFS accept.

buffer A pointer to a buffer in C; an integer in Fortran. The location in the serial computer's
memory from which to write data to the file or socket identified by fd.

count Integer. The number of bytes to write into the file identified by fd.

RETURN VALUE

bytes The number of bytes written from the buffer on the serial computer to fd.

-1 Indicates an error occurred; the external variables CMFS errno and ermo are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS serial write file attempts to write data into a CMFS file or to a connected socket from the
memory of a serial computer that supports the CMFS library and that connects to the rest of the CM
system across Ethernet (for example, a front-end computer, a CM-IOP, or a VMEIO host computer).
These write operations completely bypass the CM. If a socket is not ready for writing, the
CMFS serial write file waits for it to become ready.

If a CMIO bus connects the source system's memory to the system where the file resides (or, in the
case of a socket, to the CM-HIPPI), the data transfer occurs over the CMIO bus; otherwise, the data
transfer occurs over the Ethernet, albeit slowly.

CMFS serial write file attempts to write count bytes of information from the buffer pointed to by
buffer to the file or socket referenced by fd. buffer is a byte address in the serial computer's memory.
(To obtain decent performance when writing to a DataVault, buffer should contain several megabytes.)
The value returned is the number of bytes written.

When a file is written, the write starts at a position given by the file pointer associated with the file
-descriptor fd. When CMFSserial_write file returns, this file pointer is incremented by the number of
bytes actually written.

Data written using CMFS serial_write_file is written to a CMFS file in serial format. Consequently,
when the file is subsequently read into the CM-2/200 using CMFS read_file(_always), the data is placed
in the CM-2/200 processors in an order that, although predictable, is not desired. To arrange the order

Last change: May 1992

CWS- serial write file CFS

145CM HIPPI 6.1

CMFS serial write file (CMFS) CMFS serial write file (CMFS)

appropriately, call CMFS_transpose_always or CMFS_transposerecord always on the CM-2/200 after
reading the data into the CM-2/200.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and ermo are set to
indicate the cause of the error. CMFS serial_write file fails the file pointer remains unchanged if any of
the following are true:

CMFSEBADF

CMFS ENOSPC

CMFSEIO

CMFS EINVAL

CMFS ENOTCONN

fd is not a valid descriptor open for writing.

There is no free space remaining on the file system containing the file.

An I/O error occurred while reading from or writing to the file system.

count is negative or the current file pointer position is negative.

If fd is a socket descriptor, the socket is not connected. If fd is the descriptor
of the CM-HIPPI device, the connection to the remote system has been bro-
ken or has not yet been established.

CMFS_ETIMEDOUT A "connect" request or remote file operation failed because the connected
party did not properly respond after a period of time that is dependent on the
communications protocol. If fd is the descriptor of the CM-HIPPI device, the
CM-HIPPI timed out waiting for data or for the remote system to respond to
a connection request.

CMFS EHIPPI SRC PARITY

A parity error was detected on the CM-HIPPI source board.

CMFS EHIPPI DST PARITY
A parity error was detected on the CM-HIPPI destination board.

CMFS EHIPPI DST PARITY
A parity error was detected on a CM-HIPPI IOP board.

SEE ALSO

CMFS_open
CMFS serial seek
CMFS serial read file
CMFS serial truncate file
CMFS socket
CMFS_transpose always (CM-2/200 only)
CMFS_transpose record_always (CM-2/200 only)
CMFS write file

CMFS TRANSPOSE AND WRITE ALWAYS (CM-2/200 only)
CMFStwuffie to serial orderalways_11
CMFStwufflefrom serial orderalwayslL

Last change: May 1992 CMOST 7.2

A

I

.

I

146

aIs
a

a1

aI

CMFSsetdebug mode (3) CMFSset_debug mode (3)

NAME

CMFS set debug mode - Activates/deactivates automatic CMFS debugging messages.

C SYNTAX
void
CMFS set debug mode (val)
int val;

FORTRAN SYNTAX
SUBROUTINE CMFSSETDEBUG MODE (val)
INTEGER val

ARGUMENTS

val Integer. If val is non-zero, the automatic printing of CMFS debugging messages is
activated. If val is zero, the automatic printing of CMFS debugging. messages is deac-
tivated.

RETURN VALUE

None

CM STATE CHANGE
None.

DESCRIPTION

The setting of CMFS_setdebug mode activates or deactivates the automatic printing of CMFS debug-
ging messages. The CMFS set debug mode routine is especially useful for Symbolics users, since they
cannot use the environment variable CMFS DEBUG.

CMFS_set debugmode is also useful to those users who want to explicitly control the portions of their
code for which automatic CMFS debugging message printing is enabled: when CMFS_setdebugmode
I is called, debugging messages are printed for all code that executes before CMFS_setdebug mode 0
is called.

SEE ALSO

CMFS DEBUG (environment variable)

Last change: December 1992 147CMOST 7.2

CMFS statfs(3)

NAME

CMFSstatfs - Obtains file system statistics.

C SYNTAX

#include <cm/cm mount.h>

n - CMFS statfs (path, buffer)
char *path;
struct cm statfs *buffer,
int n;

struct cm statfs
long cmf type;
long cmf bsize;
long cmf blocks;
long cmf_bfree;
long cmf bavail;
long cmf_files;
long cmfffree;
long cmf stripe;

/* type of info, zero for now */
/* fundamental file system block size */
/* total blocks in file system */
/* free blocks */
/* free blocks available to non-superuser */

/* total 'inodes' in the file system '/
/* free 'inodes' in the file system */
/* striping factor *1

long cmf spare[8]; /* reserved
1;

FORTRAN SYNTAX

n - CMFS STATFS (path, buffer)
INTEGER n, buffer(l6)
STRING path

*/

ARGUMENTS
path

buffer

RETURN VALUE
0

Character string. The path name of any file within the mounted file system.

A pointer to a CMFS statfs structure in C; an array of 16 integers in Fortran. The struc-
ture that receives the status information about the mounted file system.

Indicates successful completion.

-1 Indicates an error occured; the external variables CMFS errnno and errno are set to indi-
cate the cause of the error.

value

CM STATE CHANGE
None.

DESCRIPTION

CMFSstatfs places up-to-date information about a mounted file system into a file system data structure
indicated by buffer. path is the pathname of any file within the mounted file system.

In C, the argument buffer is a pointer to a cm statfs structure.

The elements in the file system data structure are described below. Fields that are undefined for a file
system are set to -1. In C, the contents of an element are referenced by structure-name.cmstelement-
name.

type The type of information
bsize The fundamental file system block size.
blocks The total number of blocks in the file system.
bfree The number of free blocks in the file system.

Last change: December 1992

Iii

i

i
{i

I
I
I1

I
I

CNFS-statfs (3

148 CMOST 7.2

CMFSstatfs (3) CMFS statfs (3)

bavail The number of free blocks available to users other
than the superuser.

files The total number of inodes in the file system.
ffree The number of free inodes in the file system.
stripe The number of DataVaults in the striped file system.

EXAMPLE
(setq fs-info (cmfs:make-statfs)) ; Generate a statfs struct
(cmfs:statfs "." fs-info) ; Fill in the structure
(cmfs:statfs-bfree fs-info) ; Return number of free

; blocks

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFS errno and errno are set to
indicate the cause of the error. CMFS_statfs fails if any of the following are true:

CMFS ENOTDIR
A component of the path prefix of path is not a directory.

CMFS EINVAL
path contains a character with the high-order bit set.

CMFS ENAMETOOLONG
path exceeded 255 characters in length.

CMFS ENOENT
The file referred to by path does not exist.

CMFS EACCESS
Search permission is denied for a component prefix of path.

CMFS EFAULT
buffer or path points to an invalid address.

CMFS EIO An I/O error occurred while reading from, or writing to, the file system.

CMOST 7.2 Last change: December 1992 149

II

q
q
q

no
I

II

IIII- f

CMFS telldir (3) I

NAME

Directory Operations - Open, read, seek, tell the location in, and close directories.

C SYNTAX

#include <cm/cmdirh>

dirp= *CMFSopendir(pathname)
char *pathname;
CMDIR *dirp;

entp = CMFSreaddir(dirp)
CMDIR *dirp;
struct cm direct *entp;

n = CMFStelldir(dirp)
long n;
CMDIR *dirp;

void CMFS seekdir(dirp, loc)
CMDIR *dirp;
long loc;

n = CMFSclosedir(dirp)
CMDIR *dirp;
int n;

FORTRAN SYNTAX

Not supported.

ARGUMENTS

pathname

dirp

loc

entp

RETURN VALUES

CMFSopend

dirp

NULL

CMFS readd

entp

NULL

Character string. The pathname of the directory to be opened.

A pointer to identify the directory stream. dirp is returned by CMFS _opendir and used in
the other directory operations.

Integer. Returned by an earlier call to CMFStelldir, this argument to CMFS_seekdir sets
the position of the next CMFS readdir. A loc of 0 sets the position to the beginning of
the directory stream.

A pointer to the next directory entry. entp is returned by CMFSreaddir.

dir

Pointer to identify the directory stream.

Indicates the directory cannot be accessed or insufficient memory is available to open it.

ir

Pointer to the next directory entry.

Indicates the end of the directory has been reached or
operation has been detected.

an invalid seekdir

CMFS telldir

n Current location associated with the directory stream.

CMFS seekdir

None. CMFS closdir

Last change: December 1992

I

I
I
!i.

I
i

I
I
I
N

I

150

I

4
U

U
CMOST 7.2 I

CMFS telldir (3)

CMFS telldir(3)

O Indicates successful close

-1 Indicates an error; CMFS errno is set.

CM STATE CHANGE
None.

DESCRIPTION

CFS_ opendir opens the directory named by pathname and associates a directory stream with it.
CMFS_opendir returns a pointer to identify the directory stream in subsequent operations. The pointer
NULL is returned if the specified filename can not be accessed, or if insufficient memory is available to
open the directory file.

CMFS readdir returns a pointer to the next directory entry. It returns NULL or nil upon reaching the
end of the directory or upon detecting an invalid seek operation. CMFSreaddir uses the UNIX get-
directories system call to read directories.

CMFStelldir returns the current location associated with the named directory stream. Values returned
by CMFS telldir are good only for the lifetime of the DIR pointer from which they are derived. If the
directory is closed and then reopened, the CMFS_telldir value may be invalidated due to undetected
directory compaction.

CMFS seekdir sets the position of the next CMFSreaddir operation on the directory stream. Only
values returned by CMFS telldir should be used with CMFSseekdir.

CMFS closedir closes the named directory stream. If the close is successful, 0 is returned; if the close
fails, -1 is returned and CMFSerrno is set. All resources associated with this directory stream are
released.

The directory stream that CMFS opendir associates with pathname contains an entry for each directory
residing in pathname. Each directory entry has associated with it four pieces of information. This infor-
mation is stored in a directory structure having four elements. A pointer to this structure is returned by
CMFS readdir. The four elements are:

cmd ino Inode number
cmd reclen Directory record length
cmdnamlen Directory name length
cmd name Directory name entry

In C, the content of an element is referenced by pointer -> element-name. For example, if dir entptr is
the pointer returned by CMFS readdir, the directory name entry is referenced by dir ent.ptr -> dname.

EXAMPLE

The following sample code searches a directory for the entry name.

len = strlen(name);
dirp - CMFS opendir(.);
for (dp - CMFSreaddir(dirp); dp != NULL;

dp = CMFSreaddir(dirp))
if (dp->cmd_namlen -- len && !strcmp(dp->cmd name, name)) (

CMFS closedir(dirp)
return FOUND;

I
CMFS closedir(dirp);
return NOT FOUND;

Last change: December 1992

CUFS-telldir (3)

151CMOST 7.2

CMFS unlink(3)

NAME

CMFSunlink - - Removes a file from a directory.

C SYNTAX

n = CMFSunlink(path)
int n;
char *path;

FORTRAN SYNTAX
n = CMFSUNLINK (path)
INTEGER n
STRING path

ARGUMENTS

path Character string. The directory entry to be unlinked.

RETURN VALUE

O Indicates successful completion.

-1 Indicates an error occurred; the external variables CMFSerrno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS unlink removes the entry for the file path from its directory. If this entry was the last link to the
file and no process has the file open, then the file is deleted and all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is delayed
until it is closed, even though the directory entry has disappeared.

ERRORS
If an error occurs, the value -1 is returned and the external variables CMFSerrno and errno are set to
indicate the cause of the error. CMFS_unlink fails if any of the following are true:

CMFS ENOTDIR
A component of the path prefix is not a directory.

CMFS ENOENT
The named file does not exist.

CMFS EACCES
Search permission is denied for a component of the path prefix.

CMFS EACCES]

Write permission is denied on the directory containing the link to be removed.

CMFS EROFS
The named file resides on a read-only file system.

CMFS EINVAL
The pathname contains a character with the high-order bit set. _

CMFS ENAMETOOLONG

path exceeded 255 characters in length.

CMFS_EIO An I/O error occurred while deleting the directory entry or deallocating the inode.

CMFS ETIMEDOUT
A connect" request or remote file operation ailed because the connected party did not
properly respond after a period of time that is dependent on the communications protocol.

SEE ALSO
CMFS link
CMFS_rmdir

Last change: December 1992

CMFS un n(3)

152 CMOST 7.2

CMFS utimes (3)

NAME
CMFS utimes - - Set file times.

C SYNTAX
#include <sys/typesh>
n - CMFSutimes(path, tvp)
char *path;
int n;
struct timeval *tvp;

FORTRAN SYNTAX
Not available.

ARGUMENTS

path A pointer to the pathname of the file whose access and modification times to check

tvp An indication of how to set the access and modification times.

access-seconds
An integer indicating the seconds portion of the access time, the seconds since 1/1/70
00:00:00 GMT.

access-usecs An integer indicating the microseconds portion of the access time.

modification-time
An integer indicating the seconds portion of the access time (seconds since 1/170
00:00:00 GM).

modification-usecs
An integer indicating the microseconds portion of the modification time.

RETURN VALUE
n

0 Indicates success.

-1 Indicates an error occurred; the external variables CMFS errno and errno are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION

CMFS utimes sets the access and modification times of the file named by path. If tvp is NULL, the
access and modification times are set to the current time; a process must be the owner of the file or
have write permission for the file to use CMFS utimes in this manner.

If tvp is not NULL, it is assumed to point to an array of two timeval structures. The access time is set
to the value of the first member, and the modification time is set to the value of the second member.
Only the owner of the file or the super-user may use CMFS_utimes in this manner. In either case, the
inode-changed time of the file is set to the current time.

ERRORS

If an error occurs, -1 is returned and the external variables CMFS errno and errno are set to indicate
the cause of the error. CMFSutimes fails if any of the following are true:

CMFS EACCES
Search permission is denied for any component of the path name.

CMFS EACCES
The effective user ID of the process is not super-user and not the owner of the file, write
pennission is denied for the file, and tvp is NULL.

CMFS ENOTDIR

Last change: December 1992

CWS-utimes (3)

153CMOST 7.2

CMFS utimes (3) CMFS utimes (3)

A component of the path prefix is not a directory.

CMFS ENOENT
The file referred to by path does not exist.

CMFS EFAULT
path or tvp points outside the process's allocated address space.

CMFS EIO An I/O error occurred while reading from or writing to the file system.

CMFS EROFS
The file system containing the file is mounted read-only.

CMFS ELOOP
Too many symbolic links were encountered in translating path.

CMFS EPERM
The effective user ID of the process is not super-user and not the owner of the file, and
tvp is not NULL.

SEE ALSO
CMFS stat

154 Last change: December 1992 CMOST 7.2

I
I

N

N

NB-

CMFS vmeio allocate (3)_ m

NAME

CMFS_vmeioallocate - - Allocates DRAM on a VMEIO host computer.

C SYNTAX

n = CMFSvmeio_allocate(length, unit)
char *n;
int length, unit;

FORTRAN SYNTAX
Not available.

ARGUMENTS
length Integer. The number of contiguous bytes of DRAM to allocate.

unit The VMEIO board from which to allocate the DRAM.

RETURN VALUE
n For success, a pointer to the allocated buffer.

NULL pointer
Indicates an error occurred; the external variables CMFS errno and ermo are set to indi-
cate the cause of the error.

CM STATE CHANGE

None.

DESCRIPTION
CMFS vmeio allocate attempts to allocate length bytes of contiguous VMEIO DRAM on the VMEIO
board specified by unit. unit is a small integer, usually 0 or 1, but possibly also 2 or 3. See your system
administrator of your site's Thinking Machines Corporation application engineer for the unit number of
the VMEIO board on the same bus as the CMFS device to which you are writing or from which you
are reading.

ERRORS

If an error occurs, a NULL pointer is returned and the external variables CMFS errno and errno are set
to indicate the cause of the error. CMFS_vmeio_allocate fails if any of the following are true:

CMFS ENODEV
The requested VMEIO board was not found.

CMFS ENOBUFS
The requested buffer space was not available.

SEE ALSO
CMFS vmeio free

Last change: Dec 1992

Thinking Machines CMFS-vmeio-allocate

CMOST 7.2 155

CMFS vmeio free (3) Thinking Machines CMFS vmeio free (3)

NAME
CMPS vmeiofree - Frees a buffer on a VMEIO host computer.

C SYNTAX

n = CMFS vmeio free(buffer, unit)
int n;
int unit;
char *buffer;

FORTRAN SYNTAX
Not available.

LISP SYNTAX
Not available.

ARGUMENTS
buffer

unit

RETURN VALUE
n

-1

A pointer to the VMEIO memory which to free.

The VMEIO board on which the memory resides.

0 indicates success. B

Indicates an error occurred; the external variables CMFS erno and ermo are set to indi-
cate the cause of the error.

CM STATE CHANGE
None.

DESCRIPTION
CMFSvmeio free frees the previously allocated memory pointed to by buffer on the VMEIO board
represented by unit

ERRORS
If an error occurs, -1 is returned and the external variables CMFS errno and errno are set to indicate
the cause of the error. CMFSvmeio free fails if any of the following are true:

CMFS ENODEV
The requested VMEIO board was not found.

CMFS EINVAL
Invalid buffer argument for unit.

SEE ALSO

CMFS vmeio allocate

156 Last change: Dec 1992 CMOST 7.2

U

e m
m

!

'3

Nm

U

p
I
I

i
a

CMFS write file[_always] (3)

NAME

CMFSwritefile[_always] - Writes to a file or a connected socket from CM-5 processing nodes.

SYNTAX
C SYNTAX

Not supported

C* SYNTAX

n = CMFSwrite_file[-always](fd, pvar*, count)
int n,fd, count,
void * pvar,

FORTRAN SYNTAX

Not supported

CM FORTRAN SYNTAX

N = CMFS_WRITE_FLE[_ALWAYS](FD, ARRAY, COUNT)
INTEGER N, FD, COUNT
ANY_TYPE ARRAY(:,:,...,:) ! any type, any rank

ARGUMENTS

fd File descriptor (returned by a previous call to CMFS_creat or CMFS_open) of a file
open for writing, or socket descriptor (returned by a previous call to CMFS_socket or
CMFSaccept) of a connected socket.

pvar* A pointer to a parallel variable of any type from which to write CM-5 data.

ARRAY (CMF)
An array (of any type or rank) from which to write the data.

count Integer. The number of bytes to write from each element of the parallel variable or array.
count can be any number of bytes, but performance is diminished when count is not a
multiple of 4 bytes (the CM-5 word size).

RETURN VALUE

n The total number of bytes written from the parallel variable or array. -1 Indicates an error
occurred; the external variables CMFS_errno and errno are set to indicate the cause of the
error.

CM STATE CHANGE
None.

CONTEXT

CMFS write file: Conditional, occurs in selected PNs.
CMFS_write file always: Unconditional, occurs in all PNs.
Currently both CMFS_write_file and CMFS_write_file always operate unconditionally. Since a future
software release may support conditional writes via CMFS write file, we recommend that programs
use only CMFS_write_filealways at this time.

DESCRIPTION
CMFS_write_file and CMFS_writefile_always attempt to write count bytes of information from each
element of the parallel variable pointed to by the pvar argument (for C*) or each element of the array
ARRAY (in CM Fortran) to the object represented by fd; fd is either a file descriptor returned by a previ-
ous call to CMFS_creat or CMFS_open, or a socket descriptor returned by a previous call to

Last change: Dec. 1992

0v1FS-write_file[__always (3) Tbinking Machines

157CMOST 7.2

CMFS_write_file[_always] (3) Thinking Machines CMFS_writefile[_always] (3) 3

CMFS socket or CMFS accept. To write to a socket, you must use CMFSwritefile_always, as
writing to a socket is unconditional. If a socket is not ready for writing, CMFS write filealways waits
for it to become ready. I

When a file is written, the write starts at a position given by the file pointer associated with fd (see
CMFS serialIseek (3)). When the write call returns, the file pointer is incremented by count bytes.
Upon successful completion, CMFSwrite file and CMFS writefilealways return the number of 3
bytes written.

RESTRICTIONS L
Writing to a file requires that the write begin on a cmword boundary, where a cmword is usually
defined as 4096 bits. You will receive an error if you attempt to write starting at an illegal position.

ERRORS 3
If an error occurs, the value -1 is returned and the external variables CMFS-errno and errno are set to
indicate the cause of the error. CMFS_readfile and CMFSread file always fail if any of the follow-
ing are true: I

CMFS EBADF
fd is neither a valid file descriptor open for writing, nor a valid socket descriptor.

CMFSEINVAL 3
The current file position is negative.

CMFS EIO
An /O error occurred while writing to the file system. This error could occur if a disk drive 3
failed and a second DataVault disk drive failed before the system administrator corrected the
first failure.

CMFS ESTRIPENOTAVAIL
One or more of the file servers serving the striped CM file system is not running.

CMFS ENOSPC
There is no free space remaining on the file system containing the file. 3

CMFSEDQUOT
Quotas are not supported.

CMFS ECONNABORTED U
The socket connection has been aborted by the underlying TCP protocol.

CMFS ECONNRESET I
The socket connection has been reset by the underlying TCP protocol.

CMFS ENOTCONN
Iffd is a socket descriptor, the socket is not connected. Iffd is the descriptor of the CM-HIPPI s

device, the connection to the remote system has been broken or has not yet been established.

CMFS ETIMEDOUT
A connection request or remote file operation failed because the connected party did not prop-
erly respond after a period of time that is dependent on the communications protocol. If fd is
the descriptor of the CM-HIPPI device, the CM-HIPPI timed out waiting for data or for the
remote system to issue a connection request.

SEE ALSO U
CMFS creat
CMFS fentl
CMFS serial Iseek 3
CMFS-socket
CMFSopen
CMFSread file 3

158 Last change: Dec. 1992 CMOST 7.2 3

CMFS write_file[_always (3) Thinking Machines CMFS write file[_always] (3)

CMFS errno
errno(2) (on Vaxen)
intro(2) (on Suns)

CMOST 7.2 Last change: Dec. 1992

q

I. qqq
q
q

qI

159

