The
Connection Machine
System

A

e % %

CM/AVS User"s Guid

Version 1.0
February 1993

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, February 1993

dede e dededo s do s e de ke ke de sk e ek e e v e e e de ke sk s e e e e s e ek ek bk ek e ke de ek kb ke k ke k ke ke k ke k ke k ke ke ke kk ke kkkk

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
- Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.

dode oot g s sk e Ao do et e e e e de e o de e de e e e e e e de e o e Je de e e ke e e e e de e ke e e do e e de Yo de o e ke Jode e e de e e de de dededede de ke e ke de

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMosT, CMAX, and Prism are trademarks of Thinking Machines Corporation.

C*®is a registered trademark of Thinking Machines Corporation. _

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
AVS is a trademark of Advanced Visual Systems, Inc.

SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIKX is a registered trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142 -1264
(617) 234-1000

Contents

About ThisManualeuiiiiiniiiiiiiiii ittt eeieannieneeenannnas vii
CUStOMET SUPPOTE ...ttt t ittt et ittt iareeer et renennianaeaennns xi
Chapter 1 Introduction i, 1
1.3 Overview of CM/AV S ... ittt it ittt inntenannennns 1

14 The CM/AVS Packagec.iviiiiniiiiiiiirninnnnnnennnnnnnn 2
Chapter 2 Using CM/AVSModules 5
2.1 The CM/AVSModulesoiiiiiiiiiiineiiietennnannnnns 5

2.2 Using CM/AVS Modulesina Networkcovviinnennne. 6

2.3 Preparing to Run Remote CM/AVS Modulescoovvvennnen 7

2.4 Running a Remote CM/AVS Module — Tutorial 8

2.5 An Important Note about Performancecccvvveenennn... 12

2.6 Running CM/AVS Modules Locallyccoovviiiniiinnnnnn.. 13

27 Cleaning Up ..ot ittt et 14
Chapter 3 Writing CM/AVSModulesooael. 15
31 TheFeld TYpe . .covvviiiiiei it iiiiieeii e seiiieannnannns 15

32 TheParallel FieldTypecooivuiiiiiiinniiiiiiiannannn, 16

3.2.1 DeclaringaParallel Fieldc.o..... 17

3.22 PassingaParallel Fieldc.ooooin 17

3.3 Using AVS Field Routines on Parallel Fields R 17

3.4 Allocating Parallel Fields it iinn .. 18

3.4.1 ParallelInputPortsc.ciiiiiviniiiiinn.. 18

342 Explicit Allocationccoiiiiiiiiniiiieiiinnn.. 19

3.5 Accessing Field Data and Coordinatescovevvunnennnsen 20

3.5.1 AccessRouUtinescieeiiiiiiiiiiiniiiiiinnan. 20

3.5.2 Primitive DataTypescciviiiiieiiniininennnnns 22

353 DataArrayLayoutccciiiiiiiiiiiiiiiiiin.n 23

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation il

iv

CM/AVS User’s Guide

3.6

3.7
38
39

3.10

3.11

3.12

Appendix A
Al
A2
A3
Ad
A5
A6
A7
A8
A9

A0

Appendix B

3.5.4 Coordinate Array Layoutcivviiinencnnnnnn. 23
355 Declaringthe AImaysccoveeneerreerneacsannnns 23
Luminance Module Examplecoiviiiiiiinnneennnnnnenss 24
3.6.1 LuminanceModuleCodecocviiiineennrnnnnnn 24
The CM/AVS Header Filesccoovviiiiieinnenennnnnnnss 27
The CMJAVS Librariescccvviiiiiiiiniiiinnnenesnnnnneans 27
CompilingaModulecoiiiiiiiiiiiiiiiieinrenenenennns 28
DebuggingaModulec.iiviiiiiiiiiii it iiiienrraaas 29
Getting Helpooiviiiiniiiiiieeiiiiietionenaneatnnnneesnnns 29
Multiple-Module Binariesovieeiiininiinnenaseesnsnnaans 30
CM/AVSRoutinesccooviiiiiiiiiiiiiiiiiinnnnn, 31
CMAVScorout_imitccc0eeertiinnennnnnnennnneeensanasns 32
CMAVSdata_allocccoiiiviiiininnnnnnnn eeeereaaes 32
CMAVSfield_alloccoovevrneennnnn. e 33
CMAVSfield_alloc_data_shapec.coeviinennnnn 34
CMAVSfield_alloc_points_shapeccoiieiveneann. 35
CMAVSfield_copy_pointsccovviivirinirrennnnnseanes 35
CMAVSfield_data_getccoiiiiiiirniinnenneennnnns 36
CMAVSfield_points_getccoviiiiriiiiinneiinennns 37
CMAVSfield_reset minmaxcovieiiiiiiieniiennans 38
CMAVSIs field_ on_ CMciiiiiiiiiiiiienerninennnns 39
CMJ/AVS Modules (manpages)ccoveieeenennn. 41
antigliasem i it 43
ClamP O ... ittt ie ittt e, 45
colorrange Cmciiiiiiii it 48
COlOriZer €Mc0iiiniiiiiii ittt 51
combinescalarsem o i 54
comparefieldem i i i e 57
computegradientem i iiiiiiiiiiiiiieeaa 60
COMLTASE CIMciitiiiiniiniennesenncnconncneransnnnns 64
dowmsize cm il i e 67
Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

Contents

extractscalarem L., 70
i1 2« 72
field mathem....... e e, 74
fieldtobytecm ittt 78
fieldtodoublecm i, 80
fieldtofloatem, e 82
fieldtointem i, 84
luminanceem.......... ... e e 86
orthogonalsliceremo oo, 89 -
thresholdem 93
Appendix C Unsupported Programsand Modules 95
AVSIOPPIMttt ittt ittt e e 97
PPIMOAVS ittt iiaertan et 98
fieldtopolygons i 99
fieldtospheres..................... et iieer i e, 101
Index ..o 105
Version 1.0, February 1993

G

Copyright © 1993 Thinking Machines Corporation

About Thls Manual -

RS

Objectives of This Manual

This manual describes CM/AVS. Working in conjunction with the Application
Visualization System (AVS), CM/AVS provides a graphic programming
environment for building distributed visualization applications. This manual tells
how to build applications that include computation on a CM-5 system, and how
to create your own CM/AVS modules.

Intended Audience
This manual is intended for

= Users who are familiar with the AVS product and who want to visualize
data on a CM-5 system. You must also be familiar with using a CM-5.

» Application developers who want to write modules that are compatible
with CM/AVS. You should be an experienced C or Fortran programmer,
knowledgeable about AVS, and familiar with C* or CM Fortran and using
a CM-5.

Revision Information

This is a new manual.

Organization of This Manual

This manual contains the following chapters:

Chapter 1 Introduction
An overview of CM/AVS concepts and a list of installed compo-
nents.

Version 1.0, February 1993 .
Copyright © 1993 Thinking Machines Corporauon vii

Chapter 2

Chapter 3

Appendix A

Appendix B

Appendix C

CMJ/AVS User s Guide

Using CM/AVS Modules

How to set up the environment to run CM/AVS modules locally
on a CM-5 partition manager or remotely from a workstation.
How to to build a simple application “network™ to use a CM/AVS
module remotely.

Writing CM/AVS Modules

A brief discussion of the properties that differentiate serial and
parallel fields. How to allocate and access parallel fields. Exam-
ple module. How to compile, debug, and link modules.

CM/AVS Routines
Descriptions of the CM/AVS routines.

CM/AVS Modules
Descriptions of the CM/AVS modules.

Unsupported Programs and Modules
Descriptions of programs and modules that are included in the
CM/AVS package without guarantee or support.

Related Documents

The following document contains information concerning the hardware and
software requirements and installation of CM/AVS:

® CM/AVS Release Notes for Version 1.0.

You should have the complete AVS document set. The following manuals are

required:

®* AVS User's Guide
An introduction to AVS. To use CM/AVS effectively, you must be familiar
with the concepts introduced in this manual.

® AVS Developer s Guide
How to write AVS modules,

® AVS Module Reference
Detailed descriptions of all the AVS modules.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

About This Manual

® AVS Tutorial Guide
A tutorial introduction to using AVS.

® AVS Applications Guide
Information on using the Module Generator.

Notation Conventions

The table below displays the notation conventions observed in this manual.

Convention Meaning

bold typewriter . UNIX and CM System Software commands, com-
mand options, and filenames, when they appear
embedded in text. Also, programming language
elements, such as keywords, operators, and func-
tion names, when they appear embedded in text.

% bold typewriter In interactive examples, user input is shown in
regular typewriter bold typewriter and system output is shown in
regular typewriter font.

typewriter Code examples and code fragments.
italics ' Argument names and placeholders in function and
command formats.
Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

r Support

Custome

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help

-us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines’
home office customer support staff:

Internet
Electronic Mail: customer-support@think.com
uucp
Electronic Mail: ames!think!customer~support
U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264
Telephone: (617) 234-4000
Version 1.0, February 1993 ’ xi

Copyright © 1993 Thinking Machines Corporation

Chapter1

Introduction

1.1

CM/AVS adapts and extends the Application Visualization System (AVS) to the
realm of the CM-5. AVS provides a graphic programming environment in which
a user builds a distributed visualization application. An application may involve
diverse operations such as filtering, graphing, volume rendering, polygon
rendering, image processing, and animation. CM/AVS enables an application to
operate on data that is distributed on CM-5 processing nodes and to interoperate
with data from other sources. CM/AVS also facilitates the incorporation of CM-5
code into a CM/AVS application.

CM/AVS is not run separately from AVS. A user runs AVS normally, using
CM/AVS modules and functions to handle data on the CM-5.

Overview of CM/AVS

The building blocks of an AVS application program are small, packaged units of
code, called modules. Most modules process typed data input(s) into typed data
output(s). Each module performs a given function. The function may be as
simple as adding two arrays, or as complicated as extracting isosurfaces of a
volume. When a CM/AVS module is used, the function is performed on a CM-5.

Modules are connected to form larger applications, called networks. In a
network, information is passed between the modules as various data types. Only
the field data type, which represents an array of data, is relevant to CM/AVS.
CM/AVS supports a parallel field that accommodates the distribution of data
across the CM-5 processing nodes. CM/AVS includes routines to allocate the
parallel arrays, and to access the data and coordinates as CM Fortran arrays or
C* parallel variables.

Version 1.0, February 1993 :
Copyright © 1993 Thinking Machines Corporation 1

2 CM/AVS User s Guide

When CM/AVS modules that operate on paralle]l data are connected with AVS
modules that operate on serial data, CM/AVS routines convert the data between
parallel and serial fields as required. The conversion is transparent to the user and
to the module writer.

The AVS Network Editor visual interface makes it easy to build application
networks graphically. Alternatively, the Network Editor may be driven by the
AVS Command Language Interpreter.

1.2 The CM/AVS Package

The CM/AVS software package includes: (
= A set of modules that handle data on a CM-5. The modules are described
in Appendix B.

= A set of routines that provide general operations for parallel fields. The
routines are used by the CM/AVS modules and users may incorporate them
in their own C* or CM Fortran modules. The concepts that differentiate
serial and parallel fields are discussed in Chapter 3. The routines are
described in Appendix A.

® On-line code examples, help files, and release notes.

CMJ/AVS is installed on the CM-5 compile server as follows:

CM/AVS libraries /usz/1lib

CM/AVS include files /usr/include

Combined module binary, /usr/l1ib/cmavs_library
list-dir file, and

library description file

Examples /usr/examples/cmavs
Module help files /usr/doc/cmavs/modules

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 1. Introduction

Release notes /usr/doc/cmavs-1.0. releasenotéa

Source (by license only) /usr/src/cmavs

The directory /usr/examples/cmavs/unsupported contains items that are

supplied without guarantee or support. The README file in this directory

contains information about its contents. Appendix C contains additional -
" information about unsupported programs and modules.

Version 1.0, February 1993
Copvright © 1993 Thinking Machines Corporation

Chapter 2

KUsing

CM/AVS Modules

This chapter tells how to execute the CM/AVS modules from a workstation and
from a CM-5 partition manager. The following topics are discussed:

For
AVS

The CMJAVS Modules

Using CM/AVS Modules in a Network
Preparing to Run Remote CM/AVS Modules
Running a Remote CM/AVS Module — Tutorial
An Important Note about Performance

Running CM/AVS Modules Locally

Cleaning Up

a more thorough discussion of remote module execution, please refer to the
Users Guide.

2.1 The CM/AVS Modules

CM/AVS provides the following modules. Most are CM-5 versions of AVS
modules. A detailed description of each module appears in Appendix B.

antialias cm
clamp cm

color range cm
colorizer cm
combine scalars cm

Version 1.0, February 1993

A2 2a A 1AND Thiubisnn Marhinse Cnrnaratinn 5

2.2

CM/AVS User s Guide

compare field cm
compute gradient cm
contrast cm
downsize cm

extract scalar cm
fft om

field math cm

fleld to byte cm
field to double cm
fleld to float cm
field to int cm
luminance cmi
orthogonal slicer cm
threshold cm

The following modules are unsupported. Detailed descriptions of these modules
appear in Appendix C.

field to polygons
field to spheres

Using CM/AVS Modules in a Network

AVS supports distributed computation over a heterogeneous network of
computers. While you run the AVS kernel on a local graphics workstation, you
can execute modules locally or on other workstations or systems. Using CM/AVS,
you can also execute CM/AVS modules on a CM-5.

You use CM/AVS modules in exactly the same manner as AVS modules. When
you build a network, you may interconnect AVS modules and CM/AVS modules.

If you run AVS on a CM-5 partition manager, you can run CM/AVS modules
locally. (We do not recommend this as a good use of partition manager
resources.) ’

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Using CM/AVS Modules 7

2.3 Preparing to Run Remote CM/AVS Modules

It is likely that you will run AVS on a local workstation and run the CM/AVS
modules on the CM-5. The remote use of any modules, including CM/AVS,
requires some preparation.

AVS uses a “hosts file” to find remote modules. The file identifies remote hosts
and the directories on those hosts that contain modules. The hosts file format is
described under Remote Module Execution in the Advanced Network Editor
chapter in the AVS User s Guide.

You may choose to rely on the system administrator to maintain the file
/usr/avs/runtime/hosts. Alternatively, you may choose to create and
maintain a private hosts file. In either case, your .avsrc initialization file must
point to a legitimate hosts file.

To create and use a .avsrc file, follow these steps:

1. Createa .avszc file. AVS looks for this file first in the current directory,
and then in your home directory. We recommend putting it in your home
directory.

A minimal .avszc file might look like this:

Point to a file containing remote hosts
Hosts /home/yourname/.avs-hosts

where the specified hosts file is /home/yourname/.avs-hosts.
2. Check the hosts file:

= It must reside at the pathname specified in the .avszc file. The
pathname must be valid on the system where AVS is invoked.

« It must contain one line of information for every remote
host/directory combination where you want AVS to look for
modules.

Each information line in a hosts file contains four fields, in this order:

(1) A logical name that identifies a particular combination of a remote
host and a module directory. This logical name will appear in the
Remote Host Browser. (Just the host name may be used for this
purpose, unless more than one module directory on the host is of
interest. In that case, each of the directories requires its own line in
the hosts file.)

Version 1.0, February 1993
Convricht © 1993 Thinkine Machines Corporation

CM/AVS User s Guide

(2) Both the name of the remote shell program (the path to rsh) and
the actual host name of the remote machine. (For CM/AVS modules,
the host name should be a CM-$ partition manager.) You may add
options to rsh. The entire field is enclosed in double quotes.

(3) The directory on the remote host that should be searched for
modules.

(4) The default data directory on the remote host.

To make the remote CM/AVS modules available, the hosts file must
contain a line that specifies a CM/AVS modules directory on a partition
manager. The line might look like this:

pep.think.com “/usr/ucb/rsh pep.think.com -n”
/usr/lib/cmavs_library
/usr/avs/data

pep.think.com is the logical name of the CM-5 partition manager
(pep.think.com) and the module directory /usr/1ib/cmavs_
library. (Field 1)

/usr/ucb/rsh is the command to run a command shell on the remote
machine, whose real name is pep . think. com; -n is an xrsh option that
prevents input conflicts with the caller. (Field 2)

/usr/lib/cmavs_library is the directory that contains CM/AVS
modules. (Field 3)

/usr/avs/data is the data directory. (Field 4)

2.4 Running a Remote CM/AVS Module — Tutorial

In this section, we build a simple network to turn an RGB image into a greyscale
image. We use a CM/AVS module, luminance cm, in the network. The module
is the CM-5 version of the AVS luminance module.

First, make the preparations described in Section 2.3. Then, follow these steps:

Start AVS and bring up the AVS network editor. From the menu in the
upper left of the network editor menu, select Module Tools, as shown

in Figure 1.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Using CM/AVS Modules 9

2. Optional: If you want the CM/AVS rhodule icons to appear under a
cM Modules Library header instead of being incorporated in the AVS
module lists, do the following:

Select Edit Moduie Library, then select Create Empty Library on the
resulting pop-up window. Enter M Modules in the pop-up prompt for
a name, then select OK. Close the Edit Module Library pop-up
window. CM Modules appears as the selected AVS Module Library
header in the AVS Module Palette.

8YS Hetwork Editor:

Figure 1. Modulie Tools menu.

3. Select Read Remote Moduie(s) from the Module Toois menu. This
brings up a Remote Host Browser containing a list of available hosts.
Select a CM-5 partition manager (one that is named in .avs-hosts)
from this list. In this example, we use pep, as shown in Figure 2.

The selection causes the display of the contents of the current directory
on the host. If the binary file cmavs-modules is not in the contents list,
change to the directory that contains it (/usr/1ib/cmavse_
library). Select cmavs-modules from the list and close the module
selection window.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

‘Remote Host Browser

Figure 2. Remote Host Browser.

When the read of the binary file is complete, an icon representing each
of its modules appears under the appropriate Library header. Each icon
has a button on the right side. On a remote module, this button is colored
pink.

Drag one instance each of the following modules into the network editor
workspace. Place them as shown in Figure 3. The appearance of colored
badges designating input and output ports indicates that the AVS
modules are active and ready to accept connections. Wait for the ports
to appear on one module before you drag in the next one. (Section 2.5
explains the benefit of waiting.)

read image (Data Input list)
luminance cm (Filter list)
colorizer cm (Filter list)
display image (Data Output list)

When display image becomes active, the image display window
comes up. Reposition it, if you like. (It will expand to about four times
its initial size to accomodate the result.)

‘When all four modules are active, connect the output of read image to
the input of luminance cm: position the cursor over the read image
output port, press the middle mouse button, move the cursor to the
luminance cm input port, and release. Similarly, connect the output of
luminance cm to the input to colorizer cm, and the output of
colorizer cm to the input to display image. See Figure 3.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

fe

hapter 2. Using CM/AVS Modules 11

e

R

6. Select read image on the Network Control Panel and read the image
/usr/avs/data/image/mandrill.x. (This image file is included
with AVS.) The modules in the network change color when they are
active, so you can watch as the image data progresses through the
network. During processing, it is actually transferred to the CM-5 for
luminance and colorizer calculations, then back to the local workstation
to be displayed. See Figure 3 and Figure 4.

4 ale Gudp !
e

izplag imate

Figure 3. The complete network and dispiay.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

12

CM/AVS User s Guide

l read image I

I luminance cml

Workstation

I colorizer cml

[display image l

Figure 4. Example network: processing locations,

2.5 An important Note about Performance

To realize the best performance for your application, you must take a bit of care
when you add modules to a network. After you drag a module into the
workspace, wait for its ports to appear before you drag in another module.

This can have an effect on performance because multiple CM/AVS or AVS
modules may be linked into a single binary, enabling multiple modules in a
network to run in a single process. Field transfers between modules in a single
process consist of a simple pointer copy. By contrast, field transfers between
processes must use sockets. If you add new modules to your network too quickly,
AVS may not have time to ascertain whether or not it can fulfill the module
requests with a single process.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Using CM/AVS Modules 13

2.6 Running CM/AVS Modules Locally

Running AVS on a CM-5 partition manager does not make the best use of the
partition manager resources. However, it can be done, provided you follow these
steps to make the CM/AVS modules accessible to the AVS Network Editor:

1. Start AVS and bring up the AVS Network Editor. From the menu in the
upper left of the Network Editor menu, select Module Tools, as shown
in Figure 5.

2. Optional: If you want the CM/AVS module icons to appear under a
CM Modules Library header instead of being incorporated in the AVS
module lists, do the following:

Select Edit Module Library, then select Create Empty Library on the
resulting pop-up window. Enter CM Modules in the pop-up prompt for
a name, then select OK. Close the Edit Module Library pop-up
window. CM Modules appears as the selected AVS Module Library
header in the AVS Module Palette.

& Module Tools

Flash Active Moduies

Figure 5. Moduie Tools menu

3. Select Read Moduie(s) from the Network Editor list. A display shows
the contents of the current directory. If the binary file cmavs-modules

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

14 CM/AVS User s Guide

is not in the contents list, change to the directory that contains it
(/usx/lib/cmavs_library). Select cmavs-modules from the list,
then close the module selection window. (From this point, you may pick
up with Step 4 in the tutorial, Section 2.4, if you like.)

2.7 Cleaning Up

If AVS terminates abnormally (if the kernel crashes or if there are network
problems, for example), CM/AVS modules may be left running on the CM-5.
Therefore, it is a good idea to use cmps and check the partition manager process
status after AVS terminates. Be sure that no stray modules continue to run and
waste system resources.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3
Writing CM/AVS Modules

3.1

You can develop new code or adapt existing code to be compatible with the
CMJ/AVS environment. You may combine your modules in a network with
modules from other sources. '

This chapter talks about the aspects of code that are unique to handling parallel
arrays, including the topics listed below:

= The Parallel Field Type

= Using AVS Field Routines on Parallel Fields

= Allocating Parallel Fields

® Accessing Field Data and Coordinates

The chapter includes a sample module, and concludes with instructions for
compiling and debugging your modules.

The Field Type

The data that is passed between AVS modules is categorized by type. Only the
field data type is pertinent to CM/AVS.

An AVS field is an n-dimensional array of byte, short integer, integer, floating-
point, or double-precision floating-point numbers. AVS fields contain some
descriptive information, such as the number of dimensions and the type of
coordinate mapping, but the bulk of a field is in its data and coordinate arrays.

A field is defined in a computation space where the axes are orthogonal and each
data point is unit distance away from its neighbors along any axis.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation 15

3.2

R —

CM/AVS User s Guide

RS

This computation space is mapped into a coordinate space in one of three ways;

uniform The coordinate space is determined by minimum and
maximum values along each axis and is mapped directly
onto the Cartesian grid defined by these extents.

rectilinear The neighbors along any axis may be different distances
apart; for each axis there is a separate array that gives
the mapping from computation to coordinate space.

irregular Each data point also has an explicit coordinate stored
with it; this can be used to represent curvilinear

volumes. The connectivity is still topologically recti-
linear.

Fields are described in further detail in the AVS Developer s Guide.

The Parallel Field Type

The defining feature of a parallel field is the distribution of its data across the
CM-5 processing nodes. The field’s coordinate array may also be stored on the
processing nodes. If the mapping from computation space to coordinate space is
rectilinear or irregular, then the coordinate array is automatically placed on the
processing nodes. If the mapping is uniform, then the few floating point-numbers
that describe the mapping are left on the partition manager; the coordinate array
for a uniform field is never put on the processing nodes.

In this discussion, we use the term parallel field for a field whose data is
distributed over the CM-5 processing nodes. The term serial field refers to a field
whose data lives in the memory of some scalar machine: either your local
workstation or a CM-5 partition manager. When this distinction does not matter,
we simply use the term field. CM/AVS provides routines for allocating and
accessing parallel fields.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3 Wntmg CM/AVS Modules 17

R R e

3.2.1

3.2.2

3.3

Declaring a Parallel Field

Parallel fields are declared in the same way as standard AVS fields. In C*, a
parallel field is declared as a structure or as a pointer to a structure, as
appropriate:

AvsSfield *field;

In CM Fortran, a parallel field is declared as an opaque integer, which should be
operated on only with AVS or CM/AVS routines:

integer field

Passing a Parallel Field

Parallel fields must be passed as single arguments to CM Fortran functions. This
means that any CM Fortran module must include in its module description
function a call to AvSset_module_flags with the SINGLE_ARG_DATA flag
set:

call AvSset_module_ flags (SINGLE ARG _DATA)

For coroutine modules that output parallel fields, the COROUT_UNPACK_ARGS
flag must also be set. In CM Fortran, module flags may be combined by using
the IOR intrinsic:

call AvSset_module flags(IOR(SINGLE ARG_DATA,
$ COROUT_UNPACK_ARGS))

Using AVS Field Routines on Parallel Fields

Most of the standard AVS field access routines work correctly on parallel fields;
the exceptions are the ones that that touch the field data or coordinates. CM/AVS
provides equivalents for these, as listed in Table 2.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Table 2. Standard AVS field routine equivalents for parallel fields.

Standard AVS Field Routine

CMAVS Replacement

Avsfield alloc

Use cMAvVSfield_alloc or
CMAVSdata_alloc.

AvSfield free

Use Avsdata_free.

AVsfield data_offset
AvSfield data ptr

Convert the field into a CMF array or C*
pvar with cMAVSfield_data_get.

Avsfield points_offset
Avsfield points_ptr

Use these routines only for UNIFORM
CM/AVS fields. For others, use
CMAVSfield points get.

Avsfield reset minmax

Use CMAVSfield_reset minmax.

Avgfield copy_points

Use only for UNIFORM CM/AVS fields.
For others, use
CMAVSfield copy_points.

Avsbuild field
Avsbuild 2d_field
AVsbuild_3d_field

Obsolete after AVS 2.0.

3.4 Aliocating Parallel Fields

34.1

There are two ways that a parallel field can come into being: it may be explicitly
allocated, or an input port may be declared as parallel, causing the received field

to reside on the processing nodes.

Parallel Input Ports

To direct a module to distribute data on the CM-5 processing nodes, use the
PARALLEL flag with AvScreate_input_port. (This flag may be or’ed with
others, such as REQUIRED.) If the PARALLEL flag is not set, the data is placed
on the partition manager.

For example, a CM Fortran module that reads an image and processes it on the
processing nodes might contain this input port definition:

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. Writing CM/AVS Modules 19

inport = AVScreate_input port(’input field’,
S 'field 2D 4-vector byte’,
$ IOR(REQUIRED, PARALLEL))

The AVS Network Editor displays ports for parallel fields and serial fields the
same way, and allows connections between the two.

NOTE

A connection between an AVS module and a CM/AVS module
can work only if the modules are not linked in the same binary.
If this condition is not met, the results may appear to be correct
at first; however, errors may appear later.

3.4.2 Explicit Allocation

To allocate a CM/AVS field, one may call cMAvSdata_alloc or
CMAVSfield alloc.

Given a dimension array and a string describing the desired field, cMAVSdata_
alloc returns a parallel field.

output = CMAVSdata_alloc
(“field 2D scalar byte”,dims)

The string desc;ibing the field is the same as that used by Avsdata_alloc.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

3.5

3.5.1

CM/AVS User s Guide

CMAVSdata_alloc may be used only to allocate fields. If the
string describes any other type, an error is raised.

cMAvSfield_alloc takes an AVS field as a template and allocates a
corresponding parallel field. The new field may take its dimensions from the
template or from an explicit dimensions array. This CM Fortran code fragment
allocates an output field with the same properties as the input field:

iresult = AVSfield make template(input, template)
output = CMAVSfield alloc(template, 0)

The resulting output field is a duplicate of the input field, and it is guaranteed to
be on the processing nodes, even if the input field was not.

Accessing Field Data and Coordinates

CM/AVS provides some special routines to gain access to a parallel field’s data
and coordinates.

Access Routines

There are two CM/AVS routines that give access to the data and coordinates in
a CM/AVS field: cMAVS£ield data_get and cMAVSfield points_get:

void:void *
CMAVSfield_data_get (AvSfield *field, shape S);

float:void *
CMAvVsfield_points_get (AVSfield *field shape S);

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapte

r 3. Writing CM/AVS Modules 21

The C* interface to these routines takes both a field and a shape, and returns a
pointer to a parallel variable. The parallel pointer refers to the coordinates in the
first argument (AVvS£field). You must pre-allocate the shape using
CMAVSfield_alloc_points_shape. You may use the same shape to
construct pointers to any fields that have the same rank and dimensions.

In CM Fortran, the situation is slightly more complicated because both these
routines construct and return arrays of arbitrary rank. There is no way to express
such a generic array constructor in CM Fortran itself, so the routines instead
return an opaque object that can be passed to a routine expecting a CM Fortran
array.

This approach is similar to that used by the CM Fortran utility function
CMF_ALLOCATE_ARRAY. CM/AVS uses a small array on the partition manager to
hold an array descriptor. This one-dimensional array of integers must have length
CMF_SIZEOF_DESCRIPTOR, which is defined in /usr/include/cm/
CMF_defs.h.

include ’/usr/include/cm/CMF_defs.h’
include ‘/usr/include/cm/cmavs.inc’
integer field

integer desc(CMF_SIZEOF_DESCRIPTOR)
CMFSLAYOUT desc(:serial)

call CMAVSfield data_get(field, desc)
call CMAVSfield points_get(field, desc)

The cMF$LAYOUT directive is not actually needed, but its use in the
documentation and example code emphasizes that desc must not be a parallel
array. The descriptor array returned by cCMAvVSfield data_get or CMAVS-
field points_get may be passed to any routine expecting a CM Fortran
array. Section 3.5.5 shows how to declare the layout of these arrays.

Note that both the C* and CM Fortran access routines are really returning
pointers to a memory location on the processing nodes. Be careful not to refer
to one of these pointers after freeing a field; it will no longer refer to valid data.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

CM/AVS User s Guide

3.5.2 Primitive Data Types

When you declare a C* parallel variable or a CM Fortran array, the primitive data
type must correspond with the AVS type, as shown in Table 3.

Table 3. Primitive data types.
AVS Type C* Type CM Fortran Type
AVS_TYPE_BYTE unsigned char |integer
AVS_TYPE_ SHORT short integer
AVS_TYPE_INTEGER |integer integer
AVS_TYPE_REAL float real
AVS_TYPE_DOUBLE double double-precision

CM/AVS byte and short fields are promoted to integers for CM Fortran, since CM
Fortran does not support parallel arrays of bytes or shorts, and it is simpler to
manipulate integer fields. During this promotion, shorts are sign-extended to
form integers, and bytes are not sign extended: shorts are in the range -32768 <=
X <= 32767 and bytes are in the range 0 <= x <= 255.

S

Even though the field data is promoted to integers, the
min_data and max_data values are still kept as bytes and shorts.
With Version 5.0, AVS provides AvsSfield_get_minmax
as_int and AvSfield_set_minmax_as_int, which
automatically coerce shorts and bytes to ints.

S

When you convert the coordinates in a CM/AVS field to a C* parallel variable or
CM Fortran array, the result is always stored as single-precision floating-point

numbers.

Version 1.0, February 1993

Copyright © 1993 Thinking Machines Corporation

Chapter 3. Writing CM/AVS Modules

3.5.3

3.54-

3.5.5

Data Array Layout

An AVS field is essentially an n-dimensional Cartesian grid, where each point in
the grid may contain a single value or a vector of values. The length of this vector
is given by the veclen member of the £ield structure.

In C*, the field data is stored in an n-dimensional shape. In this shape, we
allocate a 1-dimensional per-processor array of length veclen using the
appropriate primitive data type.

In CM Fortran, the field data is stored in an array with n+1 dimensions. The first
axis has : SERIAL ordering (elements along this axis reside in the same physical
processor) and length veclen. We call this serial axis the “vector axis.” To make
it easier to write modules that are independent of vector-length, this vector axis
is present even for scalar fields; in this case it is of length one. The remaining
axes have :NEWS ordering.

Coordinate Array Layout

There is only one valid type for coordinate arrays: single-precision floating
point. This applies to coordinates on the processing nodes or on the partition
manager.

Uniform fields always have their coordinates stored on the partition manager.

Irregular fields are placed in a floating-point array with ndim+1 axes, where ndim
is the dimensionality of the data array. The first ndim are :NEWS axes whose
length is given by the corresponding entry in the dimensions array. The
remaining axis is : SERIAL and of length nspace, where nspace is the
dimensionality of the space in which the data points exist.

Rectilinear fields are placed in a 1-dimensional floating-point array with a single
:NEWS axis. The length of the array is the sum of the lengths of all axes in the
field.

Declaring the Arrays

Assume that you have a 2-dimensional uniform field, with a 4-vector of bytes at
every point. In CM Fortran, the field data would be loaded into an array declared

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

3.6

3.6.1

CM/AVS User s Guide

e

S

integer array(4, x, y)
CMFSLAYOUT (:serial, :news, :news)

where x and y are the lengths of the field’s axes.

If you have a 3-dimensional scalar field, the field data would be loaded into an
array declared

integer array(l, x, y, z)
CMFSLAYOUT (:serial, :news, :news, :news)

Luminance Module Example

As a simple example, consider a module that takes the luminance of an image.
In AVS, an image is represented by a 2-dimensional field with a 4-vector of bytes
at every point. The coordinate mapping is usually uniform.

The luminance of an image is a weighted sum of the color components at each
pixel. The first byte in each 4-vector is the alpha component; this component is
typically used to store opacity, and it is not used to compute the luminance. The
remaining bytes are the red, green, and blue components; we combine these,
using weights appropriate for the NTSC luminance. This choice of weights makes
our simple routine compatible with the AVS luminance module. :

Luminance Module Code

A copy of the module 1uminance. fem is included with other examples in the
directory

/usr/examples/cmavs

Below is the CM Fortran code for the module. Note that the bytes of the image
are automatically promoted to integers by CM/AVS; this makes it easier to deal
with byte fields in CM Fortran. Note also that we have a separate routine,
luminance compute, which extracts parallel arrays from the CM/AVS fields
and passes them to the function that actually computes the luminance.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. Writing CM/AVS Modules 25

Chhkkhhkhkhkhhdkhkhhhdhdhhkhkhhbhhhkhhhddkhkhhhkhkhhhhdhhkkhhhdhhhhbbhdkhhdhdkhkhkkdd

C A luminance module
C*************#**

c

C Describe the module to AVS

c

(9}

Set

Cre

Cre

subroutine AVSinit modules
implicit none

include ‘avs/avs.inc’
include ‘cm/cmavs.inc’
integer iport, oport
external luminance_compute

the module name and type
call AvSset_module_name(’luminance CM’, ‘filter’)

Make sure we pass in the args as integers

call AvSset_module flags (IOR(SINGLE_ARG_DATA,
$ IOR (COOPERATIVE, REENTRANT)))

ate an input port for the required field input
iport = AvVScreate_input_port(’input field’,

$ *field 2D 4-vector byte’,

$ IOR (REQUIRED, PARALLEL))

ate an output port for the result
oport = AVScreate_output_port(’output field’,
$ 'field 2D scalar byte’)

call AvSset_compute_proc(luminance_compute)

return
end

[p oo Ne!

to

Unpack the structure members we need, create CMF arrays that point

the field data, and call the routine that does the real work

integer function luminance_compute (in, out)
implicit none

include ‘avs/avs.inc’

include ‘/usr/include/cm/CMF_defs.h’
include ’'cm/cmavs.inc’

integer in, out
integer indesc(CMF_SIZEOF_DESCRIPTOR),

$ outdesc(CME_SIZEOF;PESCRIPTOR)
integer iresult, dims(2)

Version 1.0, February 1993
Convricht © 1993 Thinkine Machines Corporation

26 CM/AVS User s Guide

C Now get pointers to the arrays containing the AVS field data
call cMAVSfield data get (in, indesc)
iresult= AVSfield get_dimensions(in, dims)

C If there is already output data, deallocate it.
if (out .ne. 0) then
call Avsdata free(“field”,out)
endif
out = CMAVSdata_alloc(“field 2D scalar byte”,dims)

C Get a pointer to the output data
call cMavsfield data_get (out,outdesc)

C Copy the points from input to output ‘
iresult= CMAVSfield_copy_points(in,out)

C Call the real function that does the work
call luminance_internal (indesc, outdesc, dims(1), dims(2))

C Return 1 to indicate success
luminance_compute = 1

return

end
C
C The real workhorse
C

subroutine luminance_internal (in, out, x, y)

integer x, y
integer in(4,x,y), out(1,x,y)
CMFSLAYOUT in(:serial, :news, :news), out(:serial, :news, :news)

C
C Set up the weights for NTSC luminance
c
double precision red weight, green_weight, blue_weight

parameter (red weight = ,299,

$ green_weight = .587,
$ blue _weight = .114)

out(1,:,:) = in(2,:,:) * red weight +

$ in(3,:,:) * green_weight +
S in(4,:,:) * blue_weight
return

end

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. Writing CM/AVS Modules 27

3.7 The CM/AVS Header Files

" The routines that you write must include the standard AVS header files. In
addition, they must include the CM/AVS files that define all the appropriate
symbols and return types for the CM/AVS routines.

The header file for CM Fortran routines is
/usr/include/cm/cmavs. inc
The include file for C* routines is

<cm/cmavs.h>

3.8 The CM/AVS Libraries

The CM/AVS subroutine and coroutine libraries are listed below.
For a sparc processor:

CMF subroutine libcmavsflow_f_cm5_sparc_sp.a
CMF coroutine libcmavssim f_cm5_sparc_sp.a
C* subroutine libcmavsflow_c_cm5_sparc_sp.a
C* coroutine libcmavssim c_cm5_sparc_sp.a

For a vector unit processor:

CMF subroutine 1ibcmavsflow_£_cm5_vu_sp.a
CMF coroutine ~ libcmavssim_f_cm5_vu_sp.a
C* subroutine libcmavsflow_c_cm5_vu _sp.a
C* coroutine libcmavasim c_cm5_vu_sp.a

These libraries act in conjunction with the standard AVS libraries:

FORTRAN subroutine libflow_f.a
FORTRAN coroutine libsim f.a

C subroutine libflow_c.a
C coroutine libsim c_.a

When you link a CM/AVS module, specify the CM/AVS library first, then the
corresponding AVS library. To build a CM Fortran subroutine module, for

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

CM/AVS User s Guide

3.9

example, link against 1ibcmavsflow_£f_cm5_sparc_sp.a first, then against
libflow_£f.a.

Compiling a Module

To compile a CM Fortran subroutine module, start a shell on a CM-5 compile
server and invoke the CM Fortran compiler:

For a sparc processor:

cmf -cm5 -sparc -o module_name module_name.fcm \
-lcmavsflow_f_cm5_sparc_sp -L/usr/avs/lib -1flow_f \
-lgeom -lutil -1lm

For a vector unit processor:
cmf -cm5 -vu -o module_name module_name.fcm \
-lcmavsflow_f_cm5_vu_sp -L/usr/avs/lib -1flow_f \

-lgeom -lutil -1m

To compile a C* subroutine module, start a shell on a CM-5 compile server and
invoke the C* compiler:

For a sparc processor:

cs -cm5 -sparc -o module_name module_name.cs \
-lcmavsflow_c_cm5_sparc_sp -L/usr/avs/lib -1flow_c \
-lgeom -lutil -1m

For a vector unit processor:
cs -cm5 -vu -o module_name module_name.cs \
-lcmavsflow _c_cm5_vu sp -L/usr/avs/lib -1lflow_c \

-lgeom -lutil -1lm

To compile coroutine modules, replace £1ow with sim in the 1cmavsflow. . .
and 1£low_c library names above.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. Writing CM/AVS Modules
% T 3

3.10 Debugging a Module

AVS reports run-time errors in a dialog box. However, the run-time error
messages are not as detailed as those issued by a debugger, and some problems
may appear to be downstream from the actual error.

To obtain detailed debugging messages, follow these steps:

1.

2.

Compile all the files for your module with the -g switch.

Select Read Remote Modules (or Read Modules, if you are on the
partition manager) to add your module to the palette.

Start a shell on the machine that will run this module (for CM/AVS
modules, this is the partition manager).

In this shell, change to the directory containing your module and invoke
avs_dbx:

avs_dbx -debug prism your_module
The ~debug switch lets you specify your preferred debugger. You may
substitute “prism -C” (including the quotes) for prism .

Drag your module into a network. It will not fire immediately. Instead,
you will see the following message in the window where you invoked
avs_dbx:

your_module instance waiting, fire when ready...

Set the desired breakpoints.

Launch the module by telling the debugger to run it.

3.11 Getting Help

Man pages for all the CM/AVS modules are viewable through AVS after you have
“read” them following the instructions in Sections 2.3 and 2.4. To view them:

1.

In the shell where you will invoke the AVS kernel, set the environment
variable AVS_HELP_PATH as follows:

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

30 CM/AVS User s Guide

C shell:
setenv AVS_HELP PATH /usr/doc/cmavs/modules

Bourne or Korn shell:
AVS_HELP_PATH=/usr/doc/cmavs/modules
export AVS_HELP PATH

2. Open the AVS network editor.

3. Inthe module library list, find the CM/AVS module whose man page you
want to view. Using the right mouse button, select the button on the right
of the module icon.

4. On the resulting pop-up menu, select Show Module Documentation.
The man page will appear in the AVS viewer.

3.12 Multiple-Module Binaries

CM/AVS modules may be linked together into a single binary in exactly the same
‘way as AVS modules. With the exception noted below, this is desirable, because
it enables multiple modules in a network to run in a single process.

NOTE

A connection between an AVS module and a CM/AVS module
can work only if the modules are not linked in the same binary.

Field transfer between modules in a single process can be considerably faster
than field transfer between modules in separate processes. The former involves
a simple pointer copy, while the latter uses sockets to transfer all the data.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A
CM/AVS Routines

This appendix contains descriptions of the supported user-visible routines in the
CM/AVS libraries, in alphabetical order.

A module may use the CM/AVS routines to

® allocate parallel arrays

® gain access to the data and coordinates as CM Fortran arrays or C* parallel
variables

® query whether or not a field is parallel
CMJ/AVS provides the following routines:

CMAVScorout_init
CMAVSdata_alloc
CMAVSfield alloc
CMAVSfield alloc_data_shape
CMAVSfield alloc_points_shape
cMavsfield copy points
CMAVSfield data get
cmavsfield points_get
CMAVSfleld reset minmax
CMAVSis_fleld on CM -

These routines should be used in conjunction with the standard AVS routines.

Most of the standard AVS routines also work on parallel fields. The exceptions
are listed in Table 1 in Chapter 3.

Version 1.0. February 1993
Copy-igh © 1993 Thinking Machines Corporation 31

32

A1

A2

CM/AVS User s Guide

CMAVScorout_init

Initializes a CM/AVS coroutine module.
C* Binding

#include <cm/cmavs.h>
void
CMAVScorout_init(int argc, char *argv{],
int (*desc) ()); '

CMF Binding

include '’ /usr/include/cm/cmavs.inc’
SUBROUTINE CMAVScorout_init (desc)
external desc

This subroutine should be used instead of AVScorout_init to initialize a
CMJ/AVS coroutine module. It must precede any other AVS or CM/AVS routines.

The subroutine sets up some internal data structures, then calls the user-supplied
module description function desc. '

For the C* interface, argc and argv are the same arguments that are passed to
main,

CMAVSdata_alloc

Allocates a parallel field based on a descriptive string.
C* Binding

#include <cm/cmavs.h>
void *
CMAVSdata_alloc(char *string, int *dims);

CMF Binding

include ’/usr/include/cm/cmavs.inc’
character*n string

integer dims ()

integer function CMAVSdata_alloc(string,dims)

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. CM/AVS Routines 33

A3

This routine allocates a parallel field based on a descriptive string. The behavior
is similar to AvSdata_alloc, except that it allocates the data and points on the
CM-5 processing nodes. The string argument is a descriptive string in the same
form that is used for AvSdata_alloc.

NOTE

The string argument must describe a field; trying to allocate
any other AVS object such as ued or geom on the processing
nodes will result in a fatal run-time error.

The dims argument is an array of integers that tells us how much space to
allocate for this field on the CM-5. In C¥*, this routine returns a pointer to an
Avfield structure. In CM Fortran, it returns an opaque integer that can be used
anywhere a parallel field is needed.

CMAVSfield_alloc

Allocates a field structure for a parallel field using the given template field.
C* Binding

#include <cm/cmavs.h>
AvsSfield *
cMAvsfield alloc (CMAVSfield *template, int *dims)

CM Fortran Binding

include /usr/include/cm/cmavs.inc’

integer template

integer dims()

integer function CMAVSfield alloc(template, dims)

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

A4

This routine allocates a field structure for a parallel field using the given template
field. The template may be either a parallel or serial AVS field. The newly
allocated field will always be a parallel field.

The dims argument is an array of integers that tells how much space to allocate
for this field on the processing nodes. If you use zero in CM Fortran, or NULL
in C*, instead of a dimensions array, the dimensions are taken from the template
field.

In C*, this routine returns a pointer to an AVSfield structure. In CM Fortran, it
returns an opaque integer that can be used anywhere a CM/AVS field is needed.

CMAVSfield_alloc_data_shape

Allocates a C* shape that can contain the data from a field.
C* Binding

#include <cm/cmavs.h>
shape
CMAVSfield alloc_data_shape (AVsSfield *field)

CM Fortran Binding
Not applicable.

This routine allocates a C* shape that can be used to refer to the data in any
parallel field having the same rank and dimensions as the intput field. Note that
the field’s veclen does not matter; vectors become C* per-processor arrays that
do not affect the choice of shape.

Each time you call cMAVSfield_alloc_data_shape, a new shape is
allocated, even if you use the same field as input.

To deallocate the shape that this routine allocates, you must use the C* routine
deallocate_shape. The field data is not affected when you free the shape that
points to it.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. CM/AVS Routines 35
o

A.5 CMAVSfield_alloc_points_shape

Allocate a C* shape that can contain the points from a field.
C* Binding

#include <cm/cmavs.h>
shape
CMAVSfield alloc_points_shape (AvSfield *field)

CM Fortran Binding
Not applicable.

This routine allocates a C* shape that can be used to refer to the coordinates in
any parallel field having the same rank and dimensions as the input field.

Do not call this routine on a uniform field; the coordinates for a uniform field can
never reside on the processing nodes.

For a rectilinear field, this routine returns a one-dimensional shape with a
number of positions equal to the sum of the field dimensions. For an irregular

- field, it returns a shape of rank ndim, where the number of positions in each axis
is given by the dimensions array.

Each time you call cMAVSfield_alloc_points_shape, a new shape is
allocated, even if you use the same field as input.

To deallocate the shape that this routine allocates, you must use the C* routine
deallocate_shape. The field coordinates are not affected when you free the
shape that points to them.

A.6 CMAVSfield_copy_points

Copies points array from infield to outfield.
C* Binding

#include <cm/cmavs.h>
int CMAVSfield copy points(AvSfield *infield,
AvSfield *outfield)

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

A.7

CMF Binding

include ’/usr/include/cm/cmavs.inc’
integer infield, outfield
integer function
CMAVSfield copy_points(infield,outfield)

This routine copies a points array from an infield to an outfield. It works only
if the points arrays are both on the partition manager or both on the processing
nodes. The routine returns 1 on success, 0 on failure.

CMAVSfield_data_get

Gets access to the data portion of a parallel field by returning a pointer to a C*
parallel variable or filling in a CM Fortran array descriptor.

C* Binding

‘ #include <cm/cmavs.hd
void:void *
CMAvVSfield data_get (Avsfield *field, shape S)

CM Fortran Binding

include ’/usr/include/cm/CMF_defs.h’

include ‘/usr/include/cm/cmavs.inc’

integer field

integer basevec (CMF_SIZEOF_DESCRIPTOR)
CMFSLAYOUT basevec (:serial)

subroutine CMAVSfield data_get(field, basevec)

. This routine returns a pointer to a C* parallel variable or fills in a CM Fortran

array descriptor, thereby giving access to the data portion of a parallel field. (The
C* parallel variable is allocated in the specified shape.) Once the descriptor is
loaded with a CM Fortran array descriptor, it may be passed to any CM Fortran
routine that is expecting a parallel array of the appropriate rank.

Note the following:

= The C* interface takes both a field and a shape; it returns a pointer to a
parallel variable. The parallel pointer refers to the data in the first
argument (AVS£ield). You must pre-allocate the shape using

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. CM/AVS Routines 37

CMAVSfield allocate_points_shape. You may use the same shape
to construct pointers to any fields that have the same rank and dimensions.

If you dispose of the field (as with AvSdata_£ree) you should no longer
refer to any arrays created from that field.

A pointer returned by cMAVS_field data_get can be invalidated if
you make another call to cMAvVSfield data_get on the same field.

If you use CMAVSfield_data_get on a field whose data resides on the
partition manager, a fatal error occurs.

A.8 CMAVSfield_points_get

Returns a pointer to the parallel coordinate data from a CM/AVS field.
C* Binding

#include <cm/cmavs.h>
float:void *
CMAVSfield points_get (AVSfield *field, shape S)

CMF Binding

include ’/usr/include/cm/CMF_defs.h’
include ‘/usr/include/cm/cmavs.inc’
integer field
integer basevec (CMF_SIZEOF_DESCRIPTOR)
CMFSLAYOUT basevec (:serial)
subroutine CMAVSfield points_get
(field, basevec)

This routine returns a pointer to the parallel coordinate data from a CM/AVS field.
It works only when the coordinate array resides on the processing nodes, and it

does not work on uniform fields.

Note the following:

= The C* interface takes both a field and a shape; it returns a pointer to a

parallel variable. The parallel pointer refers to the data in the first
argument (AVS£field). You must pre-allocate the shape using
CMAVSfield_allocate points_shape. You may use the same shape
to construct pointers to any fields that have the same rank and dimensions.

Version 1,0, February 1993
Copvright © 1993 Thinkine Machines Corporation

CM/AVS Users Guide

® A pointer returned by CMAVS_field_points_get can be invalidated if
you make another call to CMAVSfield points_get on the same field.

* If you use CMAVSfield points_get on a field whose data resides on
the partition manager, a fatal error occurs.

A.9 CMAVSfield_reset_minmax

Recomputes the minimim and maximum values for the field’s computational
data and stores those values with the field.

C* Binding

#include <cm/cmavs.h>
void
CMAVSfield reset _minmax (AVSfield *field)

CM Fortran Binding

include ’/usr/include/cm/cmavs.inc’
integer field
SUBROUTINE CMAVSfield reset minmax(field)

This routine recomputes the min and max values for the field’s computational
data and stores those values with the field. The routine works for both parallel
and serial fields. :

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix A. CM/AVS Routines 39

A.10 CMAVSis_field_on_CM

Accepts a pointer to an AVS field, and returns true if the field is a parallel field.
C* Binding

#include <cm/cmavs.h>
bool
CMAVSis_field on_CM(AVSfield *field);

CM Fortran Binding

include ‘/usr/include/cm/cmavs.inc’
integer field
logical function CMAVSis field_on_CM(field)

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

Appendix B
CM/AVS Modules

R

This appendix contains man pages for the following CM/AVS modules, in

alphabetical order:
antialias cm | fft cm
clamp cm field math cm
color range cm field to byte cm
colorizer cm field to double cm
combine scalars cm field to float cm
compare field cm field to int cm
compute gradient cm l luminance cm
contrast cm orthogonal slicer cm
downsize cm threshold cm

extract scalar cm

With the exception of ££t cm, all the CM/AVS modules are AVS modules that
have been adapted for the CM-5, and they may be interchanged with their AVS
counterparts. For example, downsize cm and downsize are interchangeable.

See Appendix C and /usr/examples/cmavs/unsupported/README for
information about unsupported modules.

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation 41

antialias ¢m (CM/AVS) antialias cm (CM/AVS)

NAME

antialias cm - antialias an image

SUMMARY
Name antialias cm
Type filter
Inputs field 2D uniform 4-vector byte (image)
Outputs field 2D uniform 4-vector byte (image)
Parameters none

DESCRIPTION

The antialias cm module downsamples an image using a Gaussian 3x3 convolution filter.
This produces an antialiasing effect, reducing jagged edges. The output image is half the
size of the input image in each dimension—a 512x512 image becomes a 256x256 image
after antialiasing.

It should be noted that the CM implementation uses a different algorithm than the serial
version. This will probably be corrected in a later release.

INPUTS
Image (required; field 2D uniform 4-vector byte)
The image to be antialiased.
OUTPUTS
' Image (field 2D uniform 4-vector byte)

The output antialiased image. This image is half the size
of the input image in each dimension.

CNMIAUR T N 1ast change: October 1992 43

antialias cm (CM/AVS) \ antialias cm (CM/AVS)

EXAMPLE 1

The following network reads an image, antialiases it on the CM-5, and displays it through
the image viewer.

READ IMAGE

. I
ANTIALIAS CM

l
IMAGE VIEWER

RELATED MODULES
Modules that could provide the Image input:

colorizer cm
composite
convolve

field math cm
localops

read image
replace alpha

Modules that can process antialias cm output:
extract scalar cm

image viewer
display image

CM/AVS 1.0 Last change: October 1992 4

clamp cm (CM/AVS) . clamp cm (CM/AVS)

NAME

clamp cm - restrict values in data field to user-specified range

SUMMARY
Name clamp cm
Type filter
Inputs field any-dimension n-vector any-data any-coordinates
Outputs field of same type as input
Parameters Name Type Default Min Max
clamp_min float 0.0 none none
clamp_max float 255.0 none none
DESCRIPTION

The clamp cm module transforms the values of a field as follows:

o Any value less than the value of the clamp_min parameter is set to
clamp_min.

o Any value greater than the value of the clamp_max parameter is set to
clamp_max.

o Values within the clamp_min-to-clamp_max range are not changed.

After being clamp’ed, a data set’s values are all in this range:

clamp_min <= value <= clamp_max

If appropriate, clamp cm also changes the values of the min_val and max_val attributes
of the output field in accordance with the clamp_min and clamp_max values. clamp cm
works with uniform, rectilinear and irregular fields, whether they are vector or scalar.

The statistics module can be used to determine the min_val and max_val of the input
field, so you can know what range is reasonable to clamp to.

Note the difference between the clamp cm and threshold cm modules:
o threshold cm sets values outside the specified range to be zero.

o clamp cm sets values outside the specified range to be the range’s minimum
and maximum values.

CNMIAVE 10 Last change: January 1993 45

clamp cm (CM/AVS)

clamp cm (CM/AVS)

INPUTS ,
Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field. It may be uniform, rectilinear
or irregular; and either vector or scalar.
PARAMETERS
clamp_min A ﬂoatihg-point number that specifies the minimum output value.
clamp_max A floating-point number that specifies the maximum output value.
OUTPUTS
Data Field (field same-dimension same-vector same-data same-coordinates)
The output field has the same dimensionality and type as the input
field.
EXAMPLE

The following network reads in an AVS field. The statistics module is used to display the

field contents with and without clamping:

READ FIELD

STATISTICS

RELATED MODULES
Modules that could provide the Data Field input:

read volume
any other filter module

CM/AVS 1.0 Last change: January 1993

STATISTICS

46

clamp cm (CM/AVS) clamp cm (CM/AVS)

Modules that could be used in place of clamp cm:
threshold cm

Modules that can process clamp cm output:
colorizer cm
any other filter module

Modules that tell you the range of data in the field:
statistics

print field
generate histogram

SEE ALSO

The AVS example script CLAMP demonstrates the AVS clamp module.

MAIAUQ 1 0 T act rhanaa: Tannarv 1002 a7

color range cm{ CM/AVS) : color range cm (CM/AVS)

NAME

color range cm - scale AVS colormap to the range of data in a parallel field

SUMMARY
Name color range cm
Type data
Inputs field (any-dimension scalar any-data any-coordinates)
colormap
Outputs colormap
Parameters none
DESCRIPTION

color range cm adjusts the minimum and maximum values of a colormap to those of a
parallel field, thus normalizing the colormap to the range of the data in the field. To do
this, color range cm examines a parallel field to see if the minimum and maximum data
values are specified in the field’s data structure. If they are not, it calculates the minimum
and maximum values and stores them in the field’s data structure. In both cases, color
range cm also stores the minimum and maximum data values into its output AVS col-
ormap data structure. ‘

Use color range cm whenever you have data that you want represented as colors, but that
dara’s range of values is either not evenly distributed between 0 and 255, or much of the
data values lie outside the 0 to 255 range.

For example, your input field contains floating point values between the range 0 and 1. If
you were to give this range of data values to one of the modules that produces colors
from numbers (e.g., arbitrary slicer or field to mesh) all of the numbers would map to
the same color. Because data coloring is done by using a byte value 0-255 to index into
the AVS colormap, all of these floating point values would map to the number 1, and
hence to the same color. In the default colormap this is the same blue.

Similarly, if you have data that lies in the range -55 to +500, all values outside the range
0-255 will be “clamped” to the two boundary values and visual information about the
data’s true character will be lost.

Applying color range cm between the output of the generate colormap module and a
scalar version of your data field stores the range of your data values into the colormap
data structure. Modules downstream can use these minimum and maximum values to
scale their index into the colormap intelligently. A narrow range of data values will be
made to “fan out” across the whole colormap. A wide range of data values will be scaled
to fit within the 0-255 range without clipping outlying values. Note, however, that this
desirable effect does not occur just because color range cm is in the network; it occurs
because the downstream modules that receive the modified colormap data structure have

CMJ/AVS 1.0 Last chanee: Jannarv 1003 4R

color range cm{(CM/AVS) color range cm (CM/AVS)

been written to make intelligent use of the new minimum/maximum values color range
generates.

INPUTS

Data Field (required; field any-dimension scalar any-data any-coordinates)
This is the parallel field whose field data structure will be scanned to
see if it already contains minimum and maximum data values. If it
does, these data values will be stored into the output colormap data
structure. If it does not, color range cm calculates the minimum
and maximum values and stores them into both the original AVS
field’s data structure and the output colormap. Because color range
can modify the original parallel field, data passing through this mod-
ule is not shared.

Color Map (required; colormap)
This is the original AVS colormap. Any minimum or maximum val-
ues that may have been set in the input colormap are ignored.

OUTPUTS

Color Map (colormap)
The output from color range ¢cm is a new colormap containing the
calculated (or transferred from the input field data structure) mini-
mum/maximum data values.

EXAMPLE

The following network reads in a 3-vector field, i.e. every field location has 3 values
associated with it. The extract scalar cm module selects one of the field’s values. color
range cm stores the field’s min and max values so that the colormap can be scaled to the
range of data in the field:

CNIAVC 1 N T act rhanoe: Tanuarv 1993 49

color range cm (CMJ/AVS) : color range cm (CM/AVS)

READ FIELD

l
GENERATE COLORMAP |

| I
| EXTRACT SCALAR CM

FIELD TO MESH

I
GEOMETRY VIEWER

RELATED MODULES
Modules that could provide the Data Field input:

read field
extract scalar cm (for fields with vectors)

Modules that could provide the Color Map input:
generate colormap
Modules that can process color range cm output:

arbitrary slicer
bubbleviz
colorizer cm
field legend
field to mesh
isosurface
probe

SEE ALSO
The AVS example script COLOR RANGE demonstrates the AVS color range module.

CM/AVS 1.0 Last change: Januarv 1993 50

colorizer cm (CM/AVS) colorizer cm (CM/AVS)

NAME
colorizer cm - convert field of data values to color values
SUMMARY
Name colorizer cm
Type filter
Inputs field any-dimension scalar any-data any-coordinates colormap
Outputs field any-dimension 4-vector byte any-coordinates
Parameters none
DESCRIPTION
The colorizer cm module converts the data at each point of a scalar field from the input
value (which can be any data type) to a color (4-vector of bytes). The conversion is
accomplished by using the input value as an index into a colormap:
COLORMAP
Aux Red Green Blue
Value Value Value
I | | | l
Input 1| | I | |
Value 2 | | | | |
—_ _ 3 | | | I
e.g. 147
| 146 | | | I I
+--> 147 | | | | | Output
148 | | | | | Value
l | | I I
colorizer cm accepts field of any type (byte, integer, real, double). However, the field of
cclors output by colorizer cm contains only byte data.
INPUTS

Data Field (required; field any-dimension scalar any-coordinates) The principal
input data for the colorizer cm module is a field, which can be of
any dimensionality. The data at each point of the field may be of any
data type.

Color Map (optional; colormap) The optional colormap may be of any size, but
any entries beyond the 256th are unused. Default: If this input is

colorizer ¢m (CM/AVS)

OUTPUTS
Field of Colors

EXAMPLE

colorizer cm (CM/AVS)

omitted, a gray-scale colormap is used (lo-value = black; hi-value =
white).

(field any-dimension 4-vector byte any-coordinates) Each input
value is transformed into a color value, which is structured as four
bytes, as illustrated above. The red, green, and blue bytes specify a
true-color pixel value. The auxiliary byte is typically used to specify
an opacity value (lo-value = completely transparent; hi-value =
completely opaque).

The dimensionality of the output field is the same as that of the
input field. For byte input, the output field is four times as large as
the input field, since each byte (8 bits) is converted to a color value
(32 bits).

The min_val and max_val attributes of the output field are invali-
dated. The dimensions of the 4-vector output data are assigned the
labels “Alpha”, “Red”, “Green”, and "Blue”.

The following network reads in an AVS image, which is a 2D field of 4-vector bytes.
extract scalar cm takes one of the bytes, generating a 2D field with a single byte at each
location. These bytes are then translated back into colors by colerizer cm:

READ IMAGE

GENERATE COLORMAP EXTRACT SCALAR CM

CM/AVS 1.0

COLORIZER CM

I
DISPLAY IMAGE

Last change: January 1993 52

colorizer cm (CM/AVS) colorizer cm (CM/AVS)

RELATED MODULES

Modules that could provide the Data Field input: read volume field to byte Modules
that could provide the Color Map input: generate colormap Modules that could be used
in place of colorizer cm: arbitrary slicer Modules that can process colorizer cm output:
alpha blend gradient shade display image tracer

SEE ALSO
Many of the AVS example scripts demonstrate the AVS colorizer module.

CMI/IAVS 10 T act rhanos* Tanarv 1002 -]2

combine scalars cm (CM/AVS) combine scalars cm (CM/AVS)

NAME

combine scalars cm - combine scalar fields into a vector field

SUMMARY
Name combine scalars cm
Type filter
Inputs field any-dimension scalar any-data any-coordinates (channel 0 —
optional)
field any-dimension scalar any-data any-coordinates (channel 1 —
optional)
field any-dimension scalar any-data any-coordinates (channel 2 —
optional)
field any-dimension scalar any-data any-coordinates (channel 3 —
optional)
Outputs field same-dimension 1D-4D same-data
Parameters Name Type Default Min Max
Vector Len Dial 4 14
DESCRIPTION

The combine scalars cm module combines up to four fields with scalar data values into a
field whose data values are vectors. The input field must be of like dimension and the
scalar values must be of the same type.

This module is generally most useful for constructing images or gradient fields from sep-
arately computed components.

The input ports on this module’s Network Editor icon are processed right-to-left: the
rightmost port contributes a value to the first element (lowest memory location) of each
output vector; the leftmost port contributes a value to the last element (highest memory
location) of each output vector.

If the selected scalars have labels and/or units associated with them, those labels will be
carried over to the newly constructed vector.

INPUTS
None of the input fields is absolutely required, but at least one of them must be provided.

If an input field is omitted, zero values may be output in the corresponding element of
each output vector, depending on the vector dimension set by Vector Length.

CMI/AVS 1.0 Last chanee: Octoher 1992, 54

combine scalars cm (CM/AVS) combine scalars cm (CM/AVS)

Channel 0 (optional; field any-dimension scalar any-data any-coordinates) The
rightmost input port. A set of values to be output in the first dimen-
sion of the output vectors.

Channel 1 (optional; field any-dimension scalar any-data any-coordinates) A
set of values to be output in the second dimension of the output vec-
tors.

Channel 2 (optional; field any-dimension scalar any-data any-coordinates) A
set of values to be output in the third dimension of the output vec-
tors.

Channel 3 (optional; field any-dimension scalar any-data any-coordinates) The
leftmost input port. A set of values to be output in the fourth dimen-
sion of the output vectors.

PARAMETERS

Vector Length Specifies the dimension of the output vectors—1 - 4.

OUTPUTS
Field (field same-dimension 1D-4D same-data) The scalar input streams

are assembled into a single output stream consisting of vectors,
whose dimension is specified by Vector Length. The coordinate
type (e.g. uniform, rectilinear, or irregular) of the output field is the
same as the leftmost, non-empty input field. The field’s min_val,
max_val, veclen, label, and unit are updated.

EXAMPLE 1

The following network performs contrast stretching on only the red band of an image.

READ IMAGE

I

I
| | |

EXTRACT SCALAR CM EXTRACT SCALAR CM EXTRACT SCALAR CM
[red] [green] [bluel

| I I
CONTRAST CM ! |

I | |
COMBINE SCALARS CM (channel 0 not used)

I
DISPLAY IMAGE

ALIAUC 1 N T nct rhanaa: Natahar 1009 |8

combine scalars cm (CM/AVS) combine scalars cm (CM/AVS)

EXAMPLE 2
The following network swaps the green and blue bands of an image:

READ IMAGE
I
|
I | I
EXTRACT SCALAR [CM] EXTRACT SCALAR _[CM] EXTRACT SCALAR [CM]
[red] [green] [blue]
| I l
- I |
| [==-= | ===
| | |
COMBINE SCALARS CM

I
DISPLAY IMAGE

RELATED MODULES
extract scalar cm
SEE ALSD

The AVS example script CONTRAST demonstrates the AVS combine scalars module.

CM/AVS 1.0 Last change: October 1992 56

compare field cm (CM/AVS) compare field cm (CM/AVS)

NAME

compare field cm - compare two fields, display and write data difference

SUMMARY v

Name compare field cm
Type data output

Inputs field any-dimension n-vector any-data any-coordinatés
field same-dimension same-vector same-data same-coordinates

QOutputs none

Parameters Name Type Default Min Max
Do Compare oneshot off
Max Elements integer 100 1 1000

Output File typein /tmp/cfield_...

DESCRIPTION

The compare field cm module compares any two identically-structured AVS fields. It

* will print out differences between the headers if they are different. If the headers are the

INPUT

same, it will proceed to do a comparison of the data contents of the two fields. If the
fields are not identical in their data components, compare field cm will print the mes-
sage, "fields are DIFFERENT", to standard output.

The output of the compare is a list of up to Max Elements data differences. The results
of the compare are both displayed in an Qutput Browser widget in the control panel and
written to a file.

The Output Browser in which compare field cm displays its output can be resized, like
any other widget, using the AVS Layout Editor. For a detailed description of how to do
this, see the section titled “Layout Editor,” in the chapter "Advanced Network Editor” of
the AVS User s Guide.

compare field cm was originally written to make sure that two identical modules, one
written in C and one written in Fortran, produced the same results. It could also be useful
to compare the contents of a field before and after an operation has been performed on it.

Input Field 1 (required; field any-dimension n-vector any-data any-coordinates)
The input field can be 1, 2, 3, or 4 dimensional; it can be vector or
scalar, can contain byte, int, float or double data, and can have uni-
form, rectilinear, or irregular coordinates.

PSS L IO S S Y, Y , V- f <o}

compare field cm (CM/AVS) . compare field cm (CM/AVS)

Input Field 2 (required; field any-dimension n-vector any-data any-coordinates)
The second input field must match the first in the number of dimen-
sions (Ndim), the size of each dimension (Dims), the number of
coordinate dimensions (Nspace), the vector length (Veclen), the data
type (byte, float, double, etc.), and the type of coordinate system
(uniform, rectilinear, curvilinear), if a comparison of the two fields’

data is to be done.
PARAMETERS
Do Compare A oneshot "do it now” switch that triggers the actual comparison
after both input fields exist.

Max Elements An integer dial that controls how many of the data differences to
display in the Output Browser and write to the output file. The
allowable range is -1 (none) to 1000. The default is 100. compare
field cm compares the entire fields, until this limit is reached.

Output File An ASCII typein for specifying the output file. By default, com-
pare field cm writes to a file in the /f/mp directory called cfield_nnnn
(where nnn is the process id of the compare field cm module. The
Output File is rewritten whenever any of the other parameters or
input files change. Since the Output Browser is limited in size, this
output file can be useful to examine directly, using a conventional
text editor.

EXAMPLE 1

The following network reads an image into an AVS field. One version of the image goes
directly to compare field cm, the other is passed through a threshold cm filter. The
"before” and "after” images are compared and the different alpha, red, green, blue values
at each pixel] are listed.

READ IMAGE

I
THRESHOLD CM |
I
l

I I
COMPARE FIELD CM

CM/AVS 1.0 Last change: January 1993 58

compare field cm (CM/AVS) compare field cm (CM/AVS)

RELATED MODULES

print field

LIMITATIONS

compare field cm writes to /#mp by default. This can cause problems if: (1) there is no
/tmp mounted on your system, or (2) the /tmp directory does not have very much room in
it or has inaccessible protections.

SEE ALSO

The AVS example script COMPARE FIELD demonstrates the AVS compare field mod-
ule.

CAIAURQ 1 0 Last change: January 1993 59

compute gradient cm (CM/AVS) . compute gradient cm (CM/AVS)

NAME

compute gradient cm - compute gradient vectors for 2D or 3D data set

SUMMARY
Name compute gradient cm
Type filter
Inputs field 2D/3D scalar byte any-coordinates
Outputs field same-dimension 3-vector real same-coordinates
Parameters Name Type Default Min .Max
2D Height float 0.5 0.0 1.0
Flip toggle on off on
DESCRIPTION

The compute gradient cm module computes the gradient vector at each point in a 2D or
3D field of data. The gradient is can be used (e.g. by gradient shade) as a “pseudo sur-
face normal” at each point.

A "nearest neighbor” approach is used to compute the gradient: in each direction, the
component of the gradient vector is the difference of the next data and the previous data.
In two dimensions, this can be pictured as follows:

Y-1 I | X, Y-1 | |
I I | I
I | | I
Y | X-1,Y I X, Y l X+1,Y l
| I I |
I I | I
y+1 | | X,Y+1 | |
I | I I
X-1 X X+1

Delta x[X] [Y] = data([X-1][Y] - data[X+1] [Y]
Delta_y [X] [Y] = data(X] [Y-1] - datalX] [Y+1]

Delta_z[X] [Y] = 2D Height Dial for 2D data
Delta z[X] [Y] [Z] = datalX][Y][Z-1] - data[X][Y][Z+1] for 3D data

CM/AVS 1.0 Last change: January 1993 60

compute gradient cm (CM/AVS) compute gradient cm (CM/AVS)

This is backwards from the standard definition of a gradient which usually subtracts the
previous value from the next. This was done because the standard definition yields gradi-
ents in which the Z componant will typically point in the negative direction. While the
standard definition is better known, the definition of “gradient” as used by this module
produces more useful images since the Z componant of the gradient now points towards
the eye instead of away from it. However, for the purists, there is a button called Flip (on
by default) which lets you disable this “feature” and produce a typical gradient.

This module is slightly different from the vector grad module in a second respect. Since
the intent of this module is to produce gradients useful to lighting calculations, the vec-
tors are automatically normalized.

INPUTS
Data Field

PARAMETERS
2D Height

Flip

OUTPUTS

Data Field

CM/IAVR 1D

(required; field 2D/3D scalar byte any-coordinates) The input field
may be either 2D or 3D. The data at each point of the field must be
a single byte. The byte values will be interpreted as integers in the
range 0..255.

(appears for 2D data only) Supplies the Z-coordinate of the gradient.
It can be used to change the apparent height of the surface. A value
of 1.0 is generally a very “rough” or "noisy” surface, whereas values
approaching 0.0 will show little effect for shading.

This toggle (on by default) causes the “correct” gradients to be
flipped so that the Z axis generally points towards the eye, making
gradients which are more useful for computing lighting calculations.
If the "real” gradient is desired, then this button can be turned off
and the gradients will not be flipped.

(field same-dimension 3-vector real same-coordinates) The output
field has the same dimensionality as the input field. For each ele-
ment, the output data is a 3D vector of reals, representing the 3D
gradient.

The min_val and max_val attributes of the output field are invali-
dated.

1 .ast chance: Tannarv 1993 61

compute gradient cm (CM/AVS) . compute gradient cm (CM/AVS)

EXAMPLE 1

The following network shades a 2D image:
READ IMAGE

EXTRACT SCALAR CM (choose 1 (= red))

I

I I

COMPUTE GRADIENT CM |

I I
| I

. GRADIENT SHADE

I
DISPLAY IMAGE

EXAMPLE 2
The following network fragment shows how to get the same results as compute gradient
using other modules:
READ FIELD
FIELD | TO FLOAT
VECTOIIQ GRAD
FIELD ! MATH (multiply by -1.0)
VECTOIIQ NORM
EXAMPLE 3

The following network shades a 3D image:

CM/AVS 1.0 Last change: January 1993 62

compute gradient cm (CM/AVS) compute gradient cm (CM/AVS)

READ VOLUME GENERATE COLORMAP

EEREEELETERELIPS | |
| -oee-- - ||
COMPUTE GRADIENT CM COLORIZER CM

RELATED MODULES

gradient shade
display image (for two-dimensional data)
alpha blend (for three-dimensional data)
extract scalar cm (to get a single scalar height field from an image)
vector grad (to compute non-normalized true gradients)
vector norm (to normalize vector fields)

LIMITATIONS

There may be algorithms better than “nearest-neighbor” for computing the gradient.

This module produces 12 bytes per pixel (voxel). For example, a 128 x 128 x 128 byte
volume is about 2.1 MB before the gradient is computed. The compute gradient cm
module produces a 25.2 MB internal data set from this data. This will have an adverse
performance effect on systems whose physical memory is limited and may even exceed
‘'the available swap space.

SEE ALSO

The AVS example scripts ANIMATED FLOAT and HEDGEHOG demonstrate the AVS
compute gradient module.

CM/AVS 1.0 Last change: January 1993 63

contrast cm (CM/AVS) . contrast cm (CM/AVS)

NAME
contrast cm - perform linear transformation on range of field values
SUMMARY
Name contrast
Type filter
Inputs field any-dimension n-vector any-data any-coordinates
Outputs field of same type as input
Parameters Name Type Default Min Max
cont_in_min float 0.0 none none
cont_in_max float 255.0 none none
cont_out_min float 0.0 none none
cont_out_max float 255.0 none none
DESCRIPTION
The contrast cm module transforms all the values in a field. Two different types of
transformation take place:

o Linear transform: All values that fall within the “input range” specified by the
cont_in_min and cont_in_max parameters are transformed linearly to the “out-
put range” cont_out_min .. cont_out_max.

(cont_out_max - cont_out_min) * (value - cont_in_min)
new_value =
(cont_in_max - cont_in_min)
(More precisely, this is an affine transformation.) In essence, this transforma-
tion “stretches” or “compresses” one specified range of data to fit another speci-
fied range.

o All values that fall outside the specified input range are “clamped” to the limit

values of the output range.
The contrast cm module typically is used to remove low-level noise from images and
volumes, or to increase the contrast in faded images and volumes.
INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input data may be an AVS field of any dimensionality.
CMJ/AVS 1.0 Last change: January 1993 64

contrast cm (CM/AVS)

PARAMETERS

cont_in_min

cont_in_max

cont_out_min

cont_out_max

OUTPUTS
Data Field

contrast cm (CM/AVS)

Specifies the bottom of the range of input values that will be
transformed linearly.

Specifies the top of the range of input values that will be trans-
formed linearly.

Specifies the bottom of the range of output values. All values <
cont_in_min will be transformed to this value.

Specifies the top of the range of output values. All values 2
cont_in_max will be transformed to this value.

- The output field has the same dimensionality and type as the input
field.

If the input field has byte values, appropriate new min_val and max_val values are writ-
ten to the output field.

EXAMPLE 1

The following diagram shows how field values are transformed given these parameters:

cont_in_min = 100
cont_in_max = 500
cont_out_min = 3000
cont_out_max = 6000

Outputs

6000 .-

| X I
I X I
| p 4 |
I X I
3000 p 00000 0o I R |~ -
l I
I |
| I
I |
- - I ___________________________ |
100 500
Inputs
Last change: January 1993 65

CMI/AVS 1.0

contrast cm (CM/AVS) i contrast cm (CM/AVS)

You can use contrast cm to make a negative out of an image by “flipping” the output val-
ues (e.g. cont_out_min = 255; cont_out_max = 0).
EXAMPLE 2

The following network reads in an image, extracts the red, green and blue channels, con-
trast stretches only the red channel, and then uses combine scalars to pack the seperate

channels back into an image.
READ IMAGE
I
[=m-mmmmmmm s - |
| I |
EXTRACT EXTRACT EXTRACT
SCALAR CM SCALAR CM SCALAR CM (red)

I ' | I
' CONTRAST CM

COMBINE SCALARS CM

I
DISPLAY IMAGE

RELATED MODULES
Modules that could provide the Data Field input:

read volume

SEE ALSO

The AVS example script CONTRAST demonstrates the AVS contrast module.

CMJ/AVS 1.0 Last change: January 1993 66

downsize cm (CM/AVS) downsize cm (CM/AVS)

NAME

downsize cm - reduce size of data set by sampling

SUMMARY

Name downsize cm

Type filter
Inputs field 2D/3D n-vector any-data any-coordinates

Outputs field of same type as input

Parameters Name Type Default Min Max
downsize integer 8 1 16

DESCRIPTION

The downsize cm module changes the size of the input data set by subsampling the data.
It extracts every nth element of the field along each dimension, where 7 is the value of the
downsize factor parameter. This technique preserves the aspect ratio of the input data.

This module is useful for operating on a reduced amount of data, in order to adjust other
processing parameters interactively, or save memory. After the parameter values have
been set, you can remove the downsize cm module, so that the full data set is used for
final processing.

Alternatively, retain the downsize cm module in the network, so that you can interac-
tively choose between image quality (downsize factor = 1 for highest-resolution data)
and execution speed (downsize factor > 1 for lower-resolution data).

INPUTS

Data Field (required, field 2D/3D n-vector any-data any-coordinates)
The input data may be any AVS field.

PARAMETERS

downsize Determines ilOW data elements from the field are sampled. Increas-

ing this parameter causes more elements to be skipped over, thus
decreasing the size of the output.

CMJ/AVS 1.0 Last change: October 1992 67

downsize cm (CM/AVS) . downsize cm (CM/AVS)

OUTPUTS

Data Field The output field has the same dimensionality as the input field, but
the number of elements in each dimension is reduced by the down-
size factor.

The min_val and max_val attributes of the output field are invali-
dated. Note that the extent is unmodified; this module changes the
resolution of the data within the physcial space delimited by the
extents. It does not alter the physical extents of the data.

EXAMPLE

The following diagram shows how a downsize factor of 4 reduces a 2D field. Each ele-
ment of the field is represented by a hyphen or an o. Only the o’s are included in the out-

put field.
D
ST
BT
iiiiiiiio
- LIMITATIONS

downsize cm works for 2D, and 3D data sets only.

RELATED MODULES
Modules that could provide the Data Field input:

read volume
read field
filter modules

CM/AVS 1.0 Last change: October 1992 68

downsize cm (CM/AVS) downsize cm (CM/AVS)

SEE ALSO

The AVS example scripts FIELD MATH, and GRAPH VIEWER demonstrate the AVS
downsize module.

CM/AVS 1.0 Last change: October 1992 69

extract scalar cm (CM/AVS) . extract scalar cm (CM/AVS)

NAME
extract scalar cm - extract a scalar field from a vector field
SUMMARY
Name extract scalar cm
Type filter
Inputs field any-dimension n-vector any-data any-coordinates
(n=1.25)
Outputs field same-dimension scalar same-data same-coordinates
Parameters Name Type Default
Channel n radio buttons Channel 0
DESCRIPTION
The extract scalar cm module inputs a field whose data values are vectors (1D to 25D),
and outputs one of the dimensions (“channels”) as a scalar-valued field. The output field
has the same structure as the input field, except that its data values are scalars (vector
length of 1).
This module is useful for performing operations on individual channels of vector fields. It
is frequently used with the combine scalars cm module, which composes vector fields
from individual scalar fields.
INPUTS
Data Field (required; field any-dimension n-vector any data any-coordinates)
The input data may be any field whose data values are vectors with
25 or fewer dimensions. Even scalar fields may be used, since their
data values are considered to be 1D vectors.
PARAMETERS
Channel n Selects the dimension of the input data values to be output. A set of
radio buttons appears, showing the labels that are attached to the
dimensions of the n-vector data.

CM/AVS 1.0 Last change: October 1992 70

extract scalar cm (CM/AVS) extract scalar cm (CM/AVS)

OUTPUTS
field (same-dimension scalar same-data same-coordinates)
The output field has the same dimensionality as the input field. The
data for each element is reduced from a vector to a scalar. The
veclen, min_val, max_val, label, and unit values in the field are
updated.
EXAMPLE 1

This examples displays a slice of the Y-component of the gradient field of a volume:

READ VOLUME

I
COMPUTE GRADIENT

|

EXTRACT SCALAR CM [1] (0=X, 1=Y, 2=Z)
|

ORTHOGONAL SLICER CM

|
GENERATE COLORMAP FIELD TO BYTE CM
I I
[
COLORIZER CM

|
DISPLAY IMAGE

For additional examples, sec the combine scalars cm manual page.

RELATED MODULES

combine scalars cm

SEE ALSO

' The AVS example scripts CONTOUR GEOMETRY, CONTRAST, as well as others
demonstrate the AVS extract scalar module. The extract scalar cm module may be sub-
stituted in many of these examples.

fft cm (CM/AVS) : fft cm (CM/AVS)

NAME
ff cm - do a Fast Fourier Transform on a field

SUMMARY
Name fft cm
Type filter
Inputs field float (each axis must be length power of two)
Outputs field
Parameters op
DESCRIPTION

The fit cm module takes a floating point {1|2[3}D 2-vector and, depending on the "op”
parameter, does either a forward or inverse Fast Fourier Transform on it. The module
uses the simple FFT routine in the Thinking Machines CMSSL library.

INPUTS
field (required; field 1D, 2D, or 3D 2-vector float)
The field to be transformed.
OUTPUTS
field (required; field 1D, 2D, or 3D 2-vector float)
The transformed field.
EXAMPLE

The following network reads an image, crops it to dimensions which are a power of two,
pulls out a 2-vector, converts it to floating point, does a forward FFT, then an inverse
FFT, coverts the data back to bytes, extracts the first channel, and recombines it into a
greyscale image, and displays it. The result should be the greyscale equivalent of the first
extracted channel of the image.

CM/AVS 1.0 Last change: October 1992 72

fft cm (CM/AVS)

READ IMAGE

I
CROP

|
EXTRACT VECTOR

I
FIELD TO FLOAT CM

I
FFT CM (forward)

I
FFT CM (inverse)

|
FIELD TO BYTE CM

I
EXTRACT SCALAR CM

I
COLORIZER CM

|
IMAGE VIEWER

RELATED MODULES
Modules that could provide the field input:
read field
Modules that can process fft cm output:
write field

image viewer
display image

fft cm (CM/AVS)

field math cm (CM/AVS) field math cm (CM/AVS)

NAME

field math cm - perform math operations between fields

SUMMARY
Name field math cm
Type filter
Inputs field any-dimension n-vector any-data any-coordinates
field same-dimension same-vector any-data same-coordinates
(OPTIONAL)
Outputs field same-dimension same-vector any-data same-coordinates
Parameters
Name Type Default Min Max
choice choice +
Normalize boolean off
Constant float typein 0.0 unbounded unbounded
DESCRIPTION

The field math cm module performs unary and binary operations upon parallel fields.

The unary operations are Not, Square, and Sqrt. The binary operations are +, -, *, /, And,
Or, Xor, Left-Shift, Right-Shift, and RMS (Root Mean Square). Unary operations are per-
formed against the right port field only. The field that is connected to the left port is
ignored. If only one field is provided as an operand for a binary operations, the field must
be attached to the right port and the binary operations are performed on the right port
field and the Constant input parameter.

When two fields are connected to the module, the Constant parameter is not displayed
and the fields are evaluated against each other.

The input fields must be of the same dimensionality, size, and vector length. When the
fields contain different data types, the output field will have the more elaborate data type.

When the fields have different coordinate types, the output field will have the same coor-
dinate type as the right input port field.

During computation, byte data is converted to integer, while short, integer, and float data
are converted to double. The result is then converted back to the appropriate output data
type. If Normalize is off, the data is “clamped” to the range:

0...255] byte
[-32767...32767) short
[-2147483647...2147483647) integer

CM/AVS 1.0 Last chanee: Januarv 1993 74

field math cm(CM/AVS) field math cm (CM/AVS)

If Normalize is on, the result is normalized to between:

[0...255] byte
[0...32767] short
[0...2147483647] integer
[0...1] float, double
INPUTS
Data Field (required; field any-dimension n-vector any-data
any-coordinates)
The rightmost input field is used as the input to unary operations, or
the first operand for binary operations.
Data Field (optional; field same-dimension same-vector any-data
same-coordinates)
The left field is the second operand in binary operations. It must
have the same dimension, size, and vector length as the first input
field.
PARAMETERS
+
*
[
And (bitwise)
Or (bitwise)
Xor (bitwise)
Not (bitwise)
Left-Shift (bitwise)
Right-Shift (bitwise)
Square
Sqrt
RMS (Root Mean Square)

A choice of operations. For binary operations, if the left port field (ﬁeld?) is not pro-
vided, the Constant parameter is used as the second operand (i.e. field2 is replaced by

- 4 s Yaameener 10072 75

field math cm (CM/AVS) . field math cm (CM/AVS)

Constant).
+ fieldi + field2
- fieldl - field2
* fieldli * field2
fieldi / field2 (result is 0 if field2 is 0)
And fieldl AND field2 |
Or fieldl OR field2 |
Xor fieldl XOR field2 | not applicable for
Not NOT fieldl | floats and doubles
Left-shift fieldl << field2 |
Right-shift fieldl »>> field2 |
Square fieldl * field1
Sqrt sqgrt (fieldi) ‘
RMS sqrt (fieldil**2 + field2**2)

Normalize Selecting Normalize causes the results of the operation to be nor-
malized to between 0 and 1 for floats and doubles, 0 and 255 for
bytes, 0 and 32767 for shorts, and 0 and 2147483647 for integers.
Normalize is off by default.

Constant A floating point typein to specify the constant value to use as the
second operand in binary operations. I two fields are connected to
the module, Constant is ignored and disappears from the control
panel. The default is 0.0. There is no upper or lower limit.

OUTPUTS

Data Field (field same-dimension same-vector any-data same-coordinates)
The output field has the same form as the input fields.

If the input fields were of different data types, the output field
will have the more elaborate data type. If the input fields had
different coordinate types, the output field will have the same
coordinate type as the right input port field.

EXAMPLE 1

The following network inverts (flips the look-up table) an image using the Not function,
with Normalize on. The same effect can be achieved by multiplying the image by -1.

READ IMAGE

l
FIELD MATH CM -

l
DISPLAY IMAGE

CM/AVS 1.0 Last change: January 1993 76

field math cm (CM/AVS) field math cm (CM/AVS)

EXAMPLE 2

This network does a logical AND on a volume against the constant 128 (0x80), which
produces a volume with only Os and 255s based on whether the source voxel was greater
or less than 128.

READ VOLUME

I
FIELD MATH CM

I
ORTHOGONAL SLICER CM

I
COLORIZER CM

|
DISPLAY IMAGE

RELATED MODULES
Modules that could provide the Data Field inputs:

Any module that outputs a field
Modules that can process field math cm output:

Any module that inputs a field

SEE ALSO
Two AVS FIELD MATH example scripts demonstrate the AVS field math module.

MAIAUC 10 Last change: January 1993 71

field to byte cm(CM/AVS) field to byte cm (CM/AVS)

NAME

field to byte cm - transform any field to a byte-valued field

SUMMARY
Name field to byte cm
Type filter
Inputs field any-dimension n-vector any-data any-coordinates
Outputs field same-dimension same-vector byte any-coordinates
Parameters |
Name Type Default Choices
byte normalize toggle on on, off
DESCRIPTION

The field to byte cm module takes a field of data (integer, real, double, or byte) and con-
verts it to a byte field. It can be used in conjunction with volume visualization modules
that have a bias towards byte fields (i.e., compute gradient cm).

By default, the input data is normalized to the range 0..255 If the toggle parameter
byte_normalize is turned off, the data is “clamped” to that range instead. (See below for

details.)
INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field.
PARAMETERS

byte_normalize This is a toggle parameter:

If on: The data is transformed linearly into the range
0..255:

new value = -------------------o-

If off: The data is “clamped” so that no value falls outside the
range 0..255:

CMJ/AVS 1.0 Last change: October 1992 78

field to byte cm (CM/AVS) : field to byte cm(CM/AVS)

If value < 0 new_value=0
If 0 <= value <= 255 new_value = value
If value > 255 new_value = 255
OUTPUTS
Data Field (field same-dimension same-vector byte same-coordinates)

The output field has the same dimensionality as the input field, but
each scalar value is forced to be a byte.

Appropriate new values of the min_val and max_val attributes are
written to the output field.

RELATED MODULES
Modules that could provide the Data Field input:

read volume
Modules that could be used in place of field to byte cm:
field to int cm
field to float cm
field to double cm
Modules that can process field to byte cm output:

read volume

SEE ALSO

The AVS example scripts FIELD TO BYTE and FIELD TO INTEGER demonstrate the
AVS field to byte module.

CMI/AVS 1.0 Last change: October 1992 79

field to double cm (CM/AVS) , field to double cm (CM/AVS)

NAME
field to double cm - transform any field to a field of double-precision floating point val-
ues
SUMMARY
Name field to double cm
Type filter
Inputs field any-dimension n-vector any-data any-coordinates
Outputs | field same-dimension same-vector double same-coordinates
Parameters
Name Type Default Choices
double normalize toggle on on, off
DESCRIPTION
The field to double cm module takes a field of data (byte, real, double, or integer) and
converts it to an double field. This may be useful for computing fields at greater data res-
olutions.
By default, the input data is simj)ly cast (re-typed) to be double-precision floating point.
If the toggle parameter double_normalize is turned on, the data is also normalized to the
range 0..1. (See below for details.)
INPUTS
Data Field (required; field any-dimension n-vector any-data any-coordinates)
' The input data may be any AVS field.
PARAMETERS

double_normalize This is a toggle parameter:

If on: The data is transformed linearly into the range 0..1:

(value - min)
new value = -----------------o--n

If off: The data is converted to double-precision floating
point format.

CM/AVS 1.0 Last change: October 1992 80

field to double cm (CM/AVS) ‘ field to double cm (CM/AVS)

OUTPUTS

Data Field (field field same-dimension same-vector double same-coordinates
' The output field has the same dimensionality as the input field, but
each scalar value is forced to be a double-precision number.

Appropriate new values of the min_val and max_val attributes are
written to the output field.

RELATED MODULES

read volume
field to byte cm
field to int cm
field to float cm

SEE ALSO

The AVS example script FIELD TO INTEGER demonstrates the AVS field to double
module.

CMJ/AVS 1.0 Last change: October 1992 81

field to float cm (CM/JAVS)

NAME

field to float cm (CM/AVS)

field to float cm - transform any field to a field of single-precision floating point values

SUMMARY
Name
Type
Inputs
Outputs

Parameters

DESCRIPTION

field to float cm
filter
field field any-dimension n-vector any-data any-coordinates

field same-dimension same-vector float same-coordinates

Name Type Default Choices
float normalize toggle off on, off

The field to float cm module takes a field of data (byte, short, real, double, or integer)
and converts it to a float field. It can be used in conjunction with modules that have a
bias towards float fields (particle advector, samplers).

By default, the input data is simply cast (re-typed) to be single-precision floating point. If
the toggle parameter float normalize is turned on, the data is also normalized to the range
0..1. (See below for details.)

- INPUTS

Data Field

PARAMETERS

float normalize

CM/AVS 1.0

(required; any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field.

This is a toggle parameter:

If on: the data is transformed linearly into the range 0..1:

_ (value - min)
new_value = ----------------o----

If off: the data is converted to single-precision floating point
format.

Last change: January 1993 82

field to float cm (CM/AVS) field to float cm (CM/AVS)

OUTPUTS

Data Field (field same-dimension same-vector float same-coordinates
The output field has the same dimensionality as the input field, but
each scalar value is forced to be a single-precision number.

Appropriate new values of the min_val and max_val attributes are
written to the output field.

RELATED MODULES

read volume
particle advector
samplers

field to byte cm
field to short

field to int cm
field to double cm

SEE ALSO

The AVS example script FIELD TO INTEGER demonstrates the AVS field to float mod-
ule.

LIMITATIONS

Overflow or underflow may occur when converting a double field to a float field with
float normalize turned off.

CMI/AVS 1.0 Last change: January 1993 83

field to int cm (CM/AVS)

NAME

field to int cm (CMJAVS)

field to int cm - transform any field to an integer-valued field

SUMMARY

Name

Type
Inputs

Outputs

Parameters

DESCRIPTION

field to int cm

filter

field any-dimension n-vector any-data any-coordinates
field same-dimension same-vector integer same-coordinates

Name Type Default Choices
int normalize toggle on on, off

The field to int cm module takes a field of data (byte, short, real, double, or int) and con-
verts it to an int field. This may be useful for performing integer math with greater preci-
sion (-231-1 to 231-1, -2147483647...2147483647) than that offered by byte fields

(0..255).

By default, the input data is “clamped” to the range -231-1...231-1. If the toggle parame-
ter int_normalize is turned on, the data is normalized to 0...231-1 instead. (See below for

details.)

INPUTS
Data Field

PARAMETERS
int normalize

CMJ/AVS 1.0

(required; field any-dimension n-vector any-data any-coordinates)
The input data may be any AVS field.

This is a toggle parameter:

If on: the data is transformed linearly into the range
0..231-1:

(value - min) * 2147483647

new_value

Last change: January 1993 84

field to int cm (CM/AVS) field to int cm (CM/AVS)

If off: ~ the data is “clamped” so that no value falls outside
the range -2147483647..2147483647. Values
greater than 2147483647 are set to 2147483647.
Values less than -2147483647 are set to
-2147483647.

OUTPUTS

Data Field (field same-dimension same-vector integer same-coordinates)
The output field has the same dimensionality as the input field, but
each scalar value is forced to be an integer.

Appropriate new values of the min_val and max_val attributes are
written to the output field.

RELATED MODULES

field to byte cm
field to short

field to float cm
field to double cm

SEE ALSO

The AVS example script FIELD TO INTEGER demonstrates the AVS field to int mod-
ule.

CM/AVS 1.0 Last chanse: January 1993 85

luminance cm (CMJ/AVS) . luminance cm (CM/AVS)

NAME

luminance cm - compute the luminance of an image

SUMMARY
Name luminance cm
Type filter
Inputs field 2D uniform 4-vector byte (image)
Qutputs field 2D uniform scalar byte
Parameters none

DESCRIPTION

The luminance cm module computes the luminance (brightness) of an image, then out-
puts a 2-dimensional field of the same dimensions, but with a scalar byte value for each
pixel in the original image instead of the full four-byte alpha, red, green, blue vector.

The luminance (I) is calculated as follows:

I=(0.299 * red) + (0.587 * green) + (0.114 * blue)
This luminance byte value can be used to produce a black and white version of the origi-
nal image (with colorizer cm), or substituted back into the alpha byte of the original
image (with replace alpha) to produce transparency effects.

INPUTS
Image (required; field 2D uniform 4-vector byte)
The image whose luminance to calculate.
OUTPUTS
Data Field (field 2D uniform scalar byte)
The output field has the same dimension as the input image, but
with a scalar byte value representing the image luminance at each
original pixel instead of color value.
EXAMPLE 1

The following network reads an image, computes its luminance, colorizes the resulting
field with the default black and white colormap, producing a black and white version of
the original image. The result is displayed through the image viewer.

CM/AVS 1.0 Last change: October 1992 86

luminancs:v cm (CM/AVS) luminance cm (CM/AVS)

READ IMAGE
I

LUMINANCE CM
I

COLORIZER CM

I
IMAGE VIEWER

EXAMPLE 2

This network takes a geometry, displays it on the screen, then converts the screen pixmap
to an image, computes its luminance, uses that to create an alpha mask, renders a shaded
background and composites the rendered image over the shaded background. The con-
trast modules controls should be set to : minimum and maximum input contrast, both 1;
minimum output contrast 0, and maximum output contrast, 255. If the original geometry
were /usr/avs/data/geometryfjet.geom and the background module were set to produce a
sky-like pattern, this would produce a jet over a sky field.

READ GEOM

I
GEOMETRY VIEWER

DISPLAY IMAGE

I
I
| I I
BACKGROUND LUMINANCE CM |
I

|

I I
CONTRAST CM
I
COMPOSITE

I
IMAGE VIEWER

RELATED MODULES
Modules that could provide the Image input:

Any module that produces an image as output

M MIAUQ 1 0 Last change: October 1992 87

luminance ¢cm (CM/AVS) luminance cm(CM/AVS)

Modules that can process luminance cm output:

colorizer cm
contrast cm
Any modules that can process a 2D scalar field

Other related modules:
background
composite
replace alpha
extract scalar cm

SEE ALSO

The AVS example script LUMINANCE demonstrates the AVS luminance module.

CM/AVS 1.0 Last change: October 1992 88

orthogonal slicer cm (CM/AVS) orthogonal slicer cm (CMJAVS)

NAME
orthogonal slicer cm - slice through 3D or 2D field with plane perpendiculai to coordi-
nate axis
SUMMARY
Name orthogonal slicer cm
Type mapper
Inputs field 3D or 2D n-vector any-data any-coordinates
Outputs field 2D or 1D n-vector same-data same-coordinates
Parameters Name Type Default Min Max Choices
slice plane int 0 0 255 on, off
axis choice K LJK
DESCRIPTION

The orthogonal slicer cm module takes a 2D slice from a 3D array, or a 1D slice from a
2D array. It does so by holding the array index in one dimension constant, and letting the
other index(es) vary. For instance, a data set might include a volume of 5000 points,
arranged as follows (using FORTRAN notation):

DATA(I,J,K)- I=110
J =1,20
K=125

You can take a 2D “I-slice” from this data set by setting /=4 and letting the other indices
vary:

DATA(4,J,K) J=1,20
K 1,25

The notation used in the example above assumes that the field’s data values are scalars (in
FORTRAN, DATA(4,5,6) must be a scalar). In fact, however, the orthogonal slicer cm
module can take slices of vector-valued fields, also. It passes through whatever data type
is presented to it; e.g. if the input is a “field 3D 3-vector float”, the output is a “field 2D
3-vector float”.

CM/AVR 1 0 Last chanoe: October 1992 89

orthogonal slicer cm (CM/AVS) , orthogonal slicer cm (CM/AVS)

INPUTS
Data Field (field 2D/3D n-vector any-data any-coordinates)
The input may be any 3D or 2D field.
PARAMETERS
slice plane Determines the value of the array index to be held constant. This
value is reset to zero each time a new data field is input.
axis Selects the dimension (I, J, or K) in which the array index is to be
held constant. '
OUTPUTS
Data Field (field 1D/2D n-vector any-data any-coordinates)
The output field is 2D instead of 3D (or 1D instead of 2D), and has
the same type of data as the input field.
Appropriate new values for min_ext and max_ext are written to the
output field.
EXAMPLE 1

The following network takes a slice from a scalar volume and displays it:

READ VOLUME

I
ORTHOGONAL SLICER CM

| GENERATE COLORMAP (optional)
T -

COLORIZER CM
|
DISPLAY IMAGE

The colorizer cm module is necessary because the output of orthogonal slicer cm is a
“field 2D scalar byte”, which must be cast into an AVS image field for display.

CM/AVS 1.0 Last change: October 1992 90

orthogonal slicer cm (CM/AVS) orthogonal slicer cm (CM/AVS)

EXAMPLE 2
For reasonably small volumes, a better way to construct this network is:

READ VOLUME ,
GENERATE COLORMAP (optional)

COLORIZER CM
I
ORTHOGONAL SLICER CM

l
DISPLAY IMAGE

This network has the effect of colorizing the entire volume once, which make the slicing
operation more efficient. It does this at the expense of allocating more memory up front.

EXAMPLE 3

Irregular Data: orthogonal slicer cm supports the passing of “points” data for rectilin-
ear and irregular data. This is an important module for visualizing curved data sets. For
example:

READ FIELD (irregular data)

|

| |
ORTHOGONAL SLICER CM |

GENERATE COLORMAP | |

| | VOLUME BOUNDS

I I |

FIELD TO MESH |

I 1

| I
GEOMETRY VIEWER

(This is the reason for labeling the axis control with “1, J, and K": frequently, the data is
not aligned to the X, Y, and Z axes. orthogonal slicer cm takes slices through the logical
data set, not the physical one.)

CM/AVS 1.0 Last change: October 1992 91

orthogonal slicer cm (CM/AVS) » orthogonal slicer cm (CM/AVS)

EXAMPLE 4

The following network shows how to use orthogonal slicer cm to plot the values of one
scan-line of an image:

READ IMAGE

I
EXTRACT SCALAR CM

|
ORTHOGONAL SLICER CM (set to middle of image)

|
GRAPH VIEWER

RELATED MODULES

field to mesh
colorizer cm

SEE ALSO

The AVS example scripts ANIMATED INTEGER, COLOR RANGE, and VECTOR
CURL demonstrate the AVS orthogonal slicer module.

CM/AVS 1.0 Last change: October 1992 92

threshold cm (CM/AVS) threshold cm (CM/AVS)

NAME
threshold cm - restrict values in data field
SUMMARY
Name threshold cm
Type filter
Inputs field any-dimension n-vector any-data any_coordinates
Outputs field of same type as input
Parameters Name Type Default Min Max
thresh_min float 0.0 none none
thresh_max float 255.0 none none
DESCRIPTION
The threshold cm module transforms the values of a field as follows:
o Any value less than the value of the threshold_min parameter is set to 0.
o Any value greater than the value of the threshold_max parameter is set to 0.
o Values within the threshold_min-to-threshold_max range are not changed.
After being threshold’ed, a data set’s values are all either zero, or in this range:
thresh_min <= value <= thresh_max
Note the difference between the clamp ¢cm and the threshold cm modules:
o threshold cm sets values outside the specified range to be zero.
o clamp cm sets values outside the specified range to be the range’s minimum
and maximum values.
INPUTS
Data Field (required; field any-dimension n-vector any-data any_coordinates)

The input data may be any AVS field.

CM/AVS 1.0 Last change: October 1992 93

threshold cm (CM/AVS) threshold cm (CM/AVS)

PARAMETERS
thresh_min The minimum threshold value.
thresh_max The maximum threshold value.
OUTPUTS
Field Data The output field has the same dimensionality as the input field.

Appropriate new values of the min_val and max_val attributes are
written to the output field.

RELATED MODULES

Modules that could provide the Data Field input:

read volume
any other filter module

Modules that could be used in place of threshold cm:
clamp cm
Modules that can process threshold cm output:

colorizer cm
any other filter module

SEE ALSO

The AVS example scripts CONTOUR GEOMETRY, and THRESHOLDED SLICER
demonstrate the AVS threshold module.

CM/AVS 1.0 Last change: October 1992 94

Appendix C

Unsupported Programs and Modules

This appendix contains information about programs and modules that are
included with CM/AVS but are not guaranteed or supported.

These items reside in the directory /usr/examples/cmavs/unsupported.

C.1 Programs
The following programs are documented in this appendix:

avstoppm

ppmtoavs

.2 Modules

The following modules are documented in this appendix:
field to polygons

field to spheres

Version 1.0, February 1993 .
Copyright © 1993 Thinking Machines Corporation 95

avstoppm (CM/AVS Unsupported) avstoppm (CM/AVS Unsupported)

NAME

avstoppm - convert AVS images (.x format) to PPM format

SYNOPSIS
avstoppm [infile] [outfile]

DESCRIPTION

avstoppm converts images from AVS format (filenames end in .x) to PPM format. If no
filenames are given, avstoppm reads from stdin and writes to stdout. If one filename is
given, it is the input filename, and output goes to stdout. If two filenames are given, the
first is the input file and the second is the output file (which is first truncated if it exists).

NOTE: The PPM format is part of the pbmplus package. For more information on the
pbmplus package, send mail to jef@well.sf.ca.us (Jeff Poskanzer); the pbmplus package
can be retrieved via FTP from archive.cis.ohio-state.edu:/pub/pbmplus/pbmplus.tar.Z,
among many other places.

avstoppm resides in fusr/fexamples/cmavs/unsupported.

OPTIONS

There are no options to avstoppm.

SEE ALSO

libppm(3), ppmto...(1) (converters for ppm to many image formats)

DIAGNOSTICS
The diagnostics are intended to be self-explanatory.

BUGS

None known.

CM/AVS 1.0 Last change: January 1993 - 97

ppmtoavs (CM/AVS Unsupported) . ppmtoavs (CM/AVS Unsupported)

NAME

ppmtoavs - convert PPM format images to AVS images (.x format)

SYNOPSIS
ppmtoavs [infile 1 [outfile]

DESCRIPTION

ppmtoavs converts images from PPM format to AVS image format. The alpha bytes of
the AVS image are all zeros (but they can be set to any value within AVS by using the
replace alpha module). '

NOTE: The PPM format is part of the pbmplus package. For more information on the
pbmplus package, send mail to jef@well.sf.ca.us (Jeff Poskanzer); the pbmplus package
can be retrieved via FTP from archive.cis.ohio-state.edu:/pub/pbmplus/pbmplus.tar.Z,
among many other places.

If no filenames are given, ppmtoavs reads from stdin and writes to stdout. If one file-
name is given, it is the input filename, and output goes to stdout. If two filenames are
given, the first is the input file and the second is the output file (which is first truncated if
it exists).

ppmtoavs resides in fusr/fexamples/cmavs/unsupported.

OPTIONS

There are no options to ppmtoavs.

SEE ALSO

' libppm(3), ppmtoe...(1) (converters for ppm to many image formats)

DIAGNOSTICS
The diagnostics are intended to be self-explanatory.

BUGS

None known.

CM/AVS 1.0 Last change: January 1993 98

field to polygons (CM/AVS Unsupported) field to polygons (CM/AVS Unsupported)

NAME
field to polygons (unsupported) - translates a coordinate field into a set of polygons
SUMMARY
Name field to polygons
Type mapper
Inputs polygon list 2D 3-space irregular float
colormap Outputs polygon geom (geom)
Parameters Name Type Default Choices
Use Color toggle off on, off
field_to_polygons resides in fusr/examples/cmavs/unsupported.
DESCRIPTION
field to polygons cm translates a field containing vertex coordinates into a geometry
describing polygons. The polygon list’s points array contains the vertex coordinates and
the data array (optionally) contains the color information.
The Use Color parameter determines how the polygon will be colored. (See below for
details.)
INPUTS
jpolygon list (required; field 2D 3-space [1 or 3]-vector irregular float)
The first dimension of the input field must be equal to the num-
ber of sides of the polygons. All polygons must have the same
number of sides. The second dimension is the number of poly-
gons. The points array describes the coordinates of the poly-
gons. The data array optionally describes the polygons color.
The vector length restriction has effect only if the Use Color
parameter is on.
colormap (colormap)

This colormap is used to color the polygons when the Use Color
toggle is on and a 1D data field is suppied. The default colormap
is a linear ramp from black to white with a low value of 0.0-and a
high value of 255.0.

CM/AVS Unsupported Last change: January 1993 99

field to polygons (CM/AVS Unsupported)

OUTPUTS

jpolygon geom (geom)

field to polygons (CM/AVS Unsupported)

The output géomeu'y containing the polygon objects.

PARAMETERS

Use Color This is a toggle parameter:

If on:

If off:

EXAMPLE

The polygon vertices will be colored using the
field’s data and, optionally, the given colormap.
There are two techniques used to color the data
depending on the vector length of the polygon
list. If the vector length is one, the value of each
element is used as an index into the colormap. If
the vector length is three, they are interpreted as
the red, green and blue color values.

(default) The polygons will be drawn without
explicit color information. Generally, this
results in the polygons being drawn in white. In
this case, the polygon list’s data array is ignored.

READ FIELD

FIELD TO POLYGONS

GEOMETRY VIEWER

RELATED MODULES

field to spheres (unsupported)

CMJ/AVS Unsupported Last change: January 1993 100

field to spheres (CMfAVS Unsupported)

NAME
field to spheres (unsupported) - translates a coordinate field into a set of spheres
SUMMARY
Name field to spheres
Type mapper
Inputs sphere list - field 3-space irregular float
colormap - colormap
Outputs sphere geom - geom
Parameters Name Type Default Choices
size dial 0.0
Use Color toggle off on, off
field_to_spheres resides in fusr/fexamples/cmavs/unsupported.
DESCRIPTION
field to spheres translates an irregular field describing a set of three space coordinates
into a geometry containing sphere objects. The sphere list’s points array describes the
spheres’ positions. Optionally, the field’s data array describes the spheres’ colors.
If the size parameter is equal to 0.0, the spheres will be drawn as single pixels. If the size
is greater than 0.0, the spheres will be drawn as uniformly sized spheres with radii equal
to the size.
The Use Color parameter determines how the spheres will be colored. (See below for
details.)
INPUTS
sphere list (required; field 3-space [1 or 3]-vector irregular float)
This field must be a list of irregular points in 3-space. The points
array describes the coordinates of the spheres. The data array
optionally describes the spheres color. The vector length restric-
tion has effect only if the Use Color parameter is on.
colormap (colormap)

CM/AVS Unsupported

This colormap is used to color the spheres when the Use Color
toggle is on and a 1D data field is suppied. The default colormap
is a linear ramp from black to white with a low value of 0.0 and a

high value of 255.0.

Last change: January 1993

field to spheres (CM/AVS Unsupported)

field to spheres (CM/AVS Unsupported)

PARAMETERS

size

Use Color

OUTPUTS

sphere geom

EXAMPLE

CM/AVS Unsupported

(dial)

field to spheres (CM/AVS Unsupported)

The size of the spheres. If equal to zero, the spheres are ren-
dered as single pixels. Otherwise, the value is used as the radius
in world coordinates.

This is a toggle parameter.

Ifon:

If off:

(geom)

The spheres will be colored using the field’s data
and, optionally, the given colormap. There are
two techniques used to color the data depending
on the vector length of the sphere list. If the
vector length is one, the value of each element is
used as an interpolated index into the colormap.
If the vector length is three, the three values are
interpreted as the red, green and blue color val-
ues. They should lie in the range from 0.0 to 1.0.

The spheres will be drawn without explicit color
information (no color information is encoded
with the sphere data). Generally, this results in
the spheres being drawn in white. In this case,
the sphere list’s data array is ignored.

The output geometry containing the sphere objects.

SAMPLERS

FIELD TO SPHERES

I

GEOMETRY VIEWER

Last change: January 1993 102

field to spheres (CM/AVS Unsupported) field to spheres (CM/AVS Unsupported)

RELATED MODULES

scatter dots

scatter dots is very similar to field to spheres, differing in the following ways:

(o]

(o]

CM/AVS Unsupported

The radius of each sphere may be specified independently in scatter dots.
scatter dots requires more information to be specified per sphere.
scatter dots is slower.

scatter dots requires a 1D coordinate field, whereas field to spheres is
independent of the field’s dimension.

Last change: January 1993 103

Index

Symbols

.avsrc file, 7

A

access routines
parallel field coordinates, 20
parallel field data, 20
arrays, declaring, 23
AVS routines
AVS_data_free, 18
Avsbuild_24d field, 18
Avsbuild_3d_field, 18
Avsbuild_free, 18
Avsdata_alloc, 19
Avsfield_alloc, 18
Avsfield copy_points, 18
Avsfield data_ offset, 18
Avsfield data ptr, 18
Avsfield_free, 18
Avsfield points_offset, 18
Avsfield points_ptr, 18
aAvsfield reset_minmax, 18
AvSset _module_flags, 17
avs_dbx, 29
AVS_TYPE_BYTE, 22
AVS_TYPE_DOUBLE, 22
AVS_TYPE_INTEGER, 22
AVS_TYPE_REAL, 22
AVS_TYPE SHORT, 22
avsbuild 2d_field, AVS routine, 18
Avsbuild_3d_field, AVS routine, 18
aAvsbuild_field, AVS routine, 18
AvScreate_input_port, AVS routine, 18
AvVSdata_alloc, AVS routine, 19
Avsdata_free, AVS routine, 18
avsfield_alloc, AVS routine, 18
Avsfield copy_points, AVS routine, 18
Avsfield _data_offset, AVS routine, 18

Version 1.0, February 1993)
Copyright © 1993 Thinking Machines Corporation

105

Avsfield data_ptr, AVS routine, 18

Avsfield free, AVS routine, 18

avsfield points_offset, AVS routine,
18

Avsfield _points_ptr, AVS routine, 18

Avsfield_reset_minmax AVS routine, 18

AvSset_module_flags, AVS routine, 17

B

binary file
multi-module, 19
multi-module, 12, 30

C

cleaning up, 14

CM/AVS
overview, 1
routines, 1

CM/AVS modules, running locally, 13

CMJAVS header file, 27

CM/AVS include file, 27

CMJAVS libraries, 27

CM/AVS modules
list, 5
man pages, 41
running remotely, 7

CM/AVS routines, 31
CMAVScorout_init, 32
CMAVSdata_alloc, 18, 19, 32
CMAVSfield alloc, 18, 19, 33
CHAVSfield alloc_data_shape, 34
CMAVSfield alloc_points_shape, 35
CMAVSfield_copy_points, 18, 35
CMAVSfield data_get, 18,20, 36
CMAVSfield points_get, 18, 20, 37
CMAVSfield reset_ minmax, 18, 38
CMAVSis_field on_cu, 39

106

CM/AVS User s Guide

cmavs -modules, binary file, 9

CMAVScorout_init, CM/AVS routine, 32

cMavsdata_alloc, CM/AVS routine, 18, 19,
32

CMAVSfield_alloc, CM/AVS routine, 18,
19, 33

CMAVSfield alloc_data_shape, CM/AVS
routine, 34

CMAvVSfield_alloc_points_shape,
CM/AVS routine, 35

CMAVSfield copy_points, CM/AVS
routine, 18, 35

CMAVSfield data_get, CM/AVS routine,
18, 20, 36

CMAVSfield_points_get, CM/AVS routine,
18, 20, 37

CMAVS8field_ reset_minmax, CM/AVS
routine, 18, 38

cMavsis_field on_cM, CM/AVS routine,
39

cmdbx, 29

CMF$LAYOUT, 21

CMF_ALLOCATE_ARRAY, 21

CMF_defs.h, 21

CMF_SIZEOF_DESCRIPTOR, 21

cmps, CM-5 process status, 14

colorizer cm, module, 10

compiling a module, 28

coordinate array, layout, 23

COROUT UNPACK_ARGS, flag, 17

D

data array, layout, 23

data types, primitive, 22
debugging a module, 29
declaring arrays, 23
display image, module, 10

E
examples, directory, 24
examples directory, 24

F

field, 1
irregular, 23
rectilinear, 23
uniform, 23
field coordinates, accessing parallel, 20
field data, accessing parallel, 20
field type
parallel, 16
allocating, 18
declaring, 17
passing, 17
using AVS routines on, 17
serial, 15
flags
COROUT_UNPACK_ARGS, 17
PARALLEL, 18
REQUIRED, 18
SINGLE_ARG_DATA, 17

H

header file
CM Fortran, 21
CM/AVS, 27

hosts file, 7
example, 8
field definitions, 7

include file, CM/AVS, 27
input ports, parallel, 18
installed libraries, 2
irregular fields, 23

L

libavsflow_c.a, 27
libavsflow_f.a, 27

libavssim c.a, 27
libavssim_f.a, 27
libcmavsflow_c_cmS_sparc.a, 27

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

libcmavsflow_c_cm5_vu.a, 27
libcmavsflow_£_cmS_sparc.a,27
libcmavaflow_£_cmS_vu.a, 27
libcmavssim c_cm5_sparc.a, 27
libcmavesim _c_cm5_vu.a, 27
libcmavssim £_cmS_sparc.a, 27
libcmavssim_f_cmS_vu.a, 27
libraries, CMJAVS, 27
luminance, module, 8
luminance cm, module, 8, 10
luminance module example, 24
luminance.fcm, example module, 24,
25-26

man pages, for CM/AVS modules, 41
module, 1

compiling a, 28

debugging a, 29
modules

CM/AVS man pages, 41

CMJAVS, list, 5

distributed, 6

running remotely, tutorial, 8
multi-module binary, 19
multi-module binary, 30

N
network, 1

overview, product, 1

Version 1.0, February 1993
Copyright © 1993 Thinking Machines Corporation

PARALLEL, flag, 18
parallel field, 1
paralle] field coordinates, accessing, 20
parallel field data, accessing, 20
parallel fields, 16
allocating, 18
declaring, 17
explicit allocation, 19
passing, 17
using AVS routines on, 17
parallel input ports, 18
performance, 12
primitive data types, 22
prism, 29

read image, module, 10
rectilinear fields, 23
REQUIRED, flag, 18
routines, CM/AVS, 1

S

sample module, 24
SINGLE_ARG_DATA, flag, 17
software, CM/AVS package, 2

U
uniform fields, 23

