
..
....... :

The
Connection Machine
System

Version 1.2
August 1992

Thinking Machines Corporation
Cambridge, Massachusetts

CM Fortran Release Notes

First printing, August 1992

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assume
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

**

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-1, CM-2, CM-200, CM-5, and DataVault are trademarks of Thinking Machines Corporation.
CMosT and Prism are trademarks of Thinking Machines Corporation.

C*® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
Thinking Machines is a trademark of Thinking Machines Corporation.
Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
SunOS and Sun FORTRAN are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1992 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

Contents
*. USiN:." .N iS:§S-P>M R X:IE8: S R ^

Customer Support

1 About Version 1.2

1.1 Highlights of Version 1.2

1.2 Porting from Version 1.1

1.3 Current Documentation

2 Software Compatibility

2.1 CM System Software

2.2 Sun FORTRAN Not Required

2.3 Layered Products on CM-2/200 Systems

2.4 Layered Products on CM-5 Systems

2.5 CM Fortran Execution Models: CM-2/200 Only

3 New and Enhanced Compiler Switches

3.1 Switches for Using Prism

3.2 Switches for Specifying CM Model

3.3 Switches Released in Version 1.1

4 Enhancements to the Utility Library

4.1 Enhancement of Send-Address Types

4.2 System Information Procedures

4.3 Numerical Ranking and Sorting Procedures .

4.4 Procedures for I/O via Devices

4.5 Procedures for Parallel I/O in Serial Order ..

Serial-Order Files

Writing to Devices

Version 1.2, August 1992

viii

1

1

3

3

4

4

4

6

7

8

9

9

10

11

15

15

16

16

17

18

19

20

..

...........................

iii

iv CM Fortran Release Notes

4.6 Parallel File I/O: Behavior and Restrictions 21

Arguments .. 21

Behavior ... 22

File Operations .. 23

4.7 Note on Front-End 1/O: Appending to a File 24

5 Note on Floating-Point Exceptions 25

6 The C Language Preprocessor (From Version 1.1) 26

7 New and Ongoing Restrictions 28

7.1 May Need to Declare a CM Array in Main 28

7.2 Noncanonical Array Expressions as Arguments 28

7.3 FORALL Statement Limitations 29

7.4 Restrictions on Array-Valued User Functions 30

7.5 Array Restrictions 31

Array Argument Home 3..................... 31

Array Argument Shape .. 32

Size Limit of Serial Dimensions [CM-2/200] 33

7.6 ENTRY Statement Limitation .. 34

7.7 Restrictions on Directives .. 34

ALIGN Directive Restrictions 34

Order of Directives ... 34

Order of Directives and Executable Statements 35

7.8 Dynamic Array Allocation and Argument Checking 35

7.9 Data Segment Size Limitation [VAX front end to CM-2 only] 35

8 Deprecation of Paris Calls (From Version 1.0) 36

8.1 Paris and the Two Execution Models (CM-2/200 Only) 36

8.2 Paris and the Utility Library .. 36

8.3 Field ID Access Function ... 38

Version 1.2, August 1992

Content · V.B f f.~m ;,¢,y,,, * ->;.N ' jc .M... a

9 Bugs Fixed in Version 1.2 .. 39

9.1 Bugs Discovered and Fixed Since Version 1.1 39

#925 Hollerith constant as argument caused a compile-time error 39

#928 Compiler generated incorrect code for integer constants greater than

13 bits (212) ... 39

#931 Repeated use of a scalar complex constant variable caused the compiler

to generate erroneous code 39

#936 A logical IF followed by an arithmetic IF caused a segmentation

violation .. 39

#951 The compiler generated incorrect code for the power operator (**)

when used with complex values 39

#956 Nested array constructors failed [Paris] 39

#964 Vector-valued subscripts could fail at run time [Slice and CM-5] 39

#969 DO WHILE failed when the global reduction function aNY occurred

as part of control expression [Sun and CM-5] 40

#970, 1013, 1015 The compiler generated incorrect optimized code [-O, Slice,

and CM-5] .. 40

#980 The compiler generated erroneous calls to CMRT_cross_geometry_

move [Slice and CM-5] 40

#981 The END= and ERR- constructs produced segmentation errors

[CM-5, -Slice on Sun] 40

#983 Assumed-size character arrays could not be passed to a function 40

#1001 Array assignments failed with different layouts [Paris] 40

#1014 A double-complex value could be lost for a common subexpression

when there was a function call to an intrinsic that used that value 40

#1020 Programs compiled for profiling (-pg switch) failed at run time

[VAX] .. 40

9.2 Bugs Previously Reported and Now Fixed 40

#312 Concatenation and character function results [Slice and CM-5] 40

#467 Effect of INQUIRE statement could be optimized away 41

#530 Array constructors of the form [R,I: J] failed 41

#531 FORALL generated incorrect code [Slice and CM-5, -0] 41

#622 Substring operations on character function results failed 41

#623 Substring operations on character function results could fail [-O] 41

#675 Overlapping string copy not as documented [Sun and CM-5] 41

#683 DLBOUND and DUBOUND could cause compiler failure 41

#773 Assignment of array-valued function reference to section [Paris] 41

#821 Optimization problems [-O] 42

#827 Assumed-size character arrays caused compiler failure 42

#828 Character comparison could cause compiler failure [VAX] 42

Version 1.2, August 1992

Contents v

vi CM Fortran Release Notes

#832 TRANSPOSE used near MATMUL failed [Paris] 42

#836 FORALL computed wrong answer [Slice and CM-5] 42

#862 TRANSPOSE of a non-canonical array section failed 43

#892 ALIGN directive could cause compiler failure 43

#916 MATMUL failed on non-canonical arrays 43

#918 Use of DO loop index in an IF statement failed [slice and CM-5, -0] .. 43

10 Bugs Outstanding in Version 1.2 44

10.1 Bugs Discovered Since Version 1.1 44

Doc Correction: Incorrect formula for calculating peak FLOPS on CM-2

slicewise 44

#938 FORALL fails with array section assignment 44

#946 The compiler fails to flag mismatched arguments when enabling

run-time safety [-argument_checking, -safety] 44

#950 Data transfer from front end to serial axis can fail [CM-2] 45

#957 The MATMUL intrinsic fails for large arrays [Slice and CM-5] 45

#959 Compiler generates invalid Paris code for FORALL that results in a

safety error during execution [Paris] 45

#961 NaN checking (for uninitialized variables) is improperly implemented 4
for array sections, even if the array section (but not the whole array)

has been initialized [Slice and CM-5] 46

#962 Paris logicals represented differently from scalar logicals [Paris] 46

#963 A compile-time error occurs when FORALL attempts to spread

a 1D array to be used with a 3D array 46

#978 Compiling with -list with more than 19 include files causes

a compiletime error ... 46

#984 A compile-time error occurs on a substring expression with

upper bound unspecified 46

#989 A READ from a file into an array section corrupts data elsewhere

in the array or in the other memory locations [Slice and CM-5] 46

#992 FORMAT statement omits data if it encounters an embedded

end-of-record [Sun and CM-5] 47

#997 Multiple definitions of blank common can cause run-time error

[Sun and CM-5] .. 47

#1000 Compile-time error occurs from using the REAL intrinsic within

an expression on a DOUBLE COMPLEX data type that is being

assigned to a DOUBLE PRECISION type [Slice and CM-5] 47

#1003 SPREAD intrinsic fails with array constructor argument 47

#1005 UNPACK fails for serial array section [Slice and CM-5] 47

#1016 The PACK intrinsic doesn't work with dummy array arguments

[Slice and CM-5] ... 47

Version 1.2, August 1992

:nnt:s:....... Ovi"-. ·I; .'
:.....'":...,."'i->:-.

#1017 Passing character strings between Sun f77 and CM Fortran

[Sun and CM-5] .. 48

#1018 -O switch restricted for assumed-size character strings

[Sun and CM-5] .. 48

#1021 Array constructors restricted for DATA attribute 48

10.2 Bugs Previously Reported (Version 1.1) 49

#392 OPEN statement has wrong default for BLANK- specifier [VAX] 49

#527 Functions returning adjustable arrays not yet supported 49

#541 PACK without VECTOR argument, passed to an intrinsic 49

#558 FORALL with mask expression and variable indexes fails [-O] 50

#561 Concatenation of character substrings may fail at run time 50

#599 No LAYOUT directive permitted for array-valued function results 50

#636 Incorrect array home assumed for array-valued function result 50

#668 FORALL statement assigning a [m:n] array constructor fails 51

#680 FORALL with MERGE may compute wrong answer [Paris] 51

#718 DO loop with real index may fail 52

#772 Complex PRODUCT with mask gives incorrect answers [Paris] 52

#817 DO WHILE loop with a .NOT. in control expression [Paris] 52

#875 MAXLOC/MINLOC may choose non-first max element

[Slice and CM-5] ... 53

#878 FORALL with variable offset on index [Paris] 53

#884 SPREAD gives RTS error on subgrids larger than 64K words

[Slice and CM-5] ... 54

#888 FORALL statement can cause RTS warning [Slice and CM-5] 54

#909 NaN checking of single-precision complex may fail [Slice and CM-5] . 54

#920 List-directed input of 80+ character records [Sun and CM-5] 55

Version 1.2, August 1992

Contents .vii

Customer Support;, ; I "':'":g>:-: * .. ''"x:;:. :�'i:'i'""':'.:.: "'""'""'.." . ;:. '. g

Thinking Machines Customer Support encourages customers to report errors in Connec-
tion Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us iden-
tify and correct the problem. A code example that failed to execute, a session transcript,

the record of a backtrace, or other such information can greatly reduce the time it takes
Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact that

person directly for support. Otherwise, please contact Thinking Machines' home office
customer support staff:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

uucp

Electronic Mail:

Telephone:

customer-support@think.com

ames! think! customer-support

(617) 234-4000

(617) 876-1111

viii

CM Fortran Release Notes
Version 1.2

1 About Version 1.2

CM Fortran Version 1.2 is a maintenance release, emphasizing improvements in
reliability. This release also makes available to CM-2 and CM-200 users some
new features that were released previously for the CM-5 only.

These release notes replace all previous release notes for CM Fortran, including
Versions 1.0 and 1.1 (all CM models) and 1.1.3 (CM-5 only). New features and
long-term restrictions described in the earlier release notes are repeated here.

1.1 Highlights of Version 1.2

The following features, new since Version 1.1, are now available for all CM
models. (Many of these were released for CM-5 only in Version 1.1.3.)

* Numerous bugs have been fixed-about 60 in all. The major ones are
noted in Section 9; known bugs still outstanding are listed in Section 10.

* The global optimizer (the -o switch) is much more robust.

* The cmf switches -cmprofile, -g, and -cmdebug enable a program to
run under the Prism development environment. The older debugger
cmdbx is now deprecated (Section 3.1).

Version 1.2, August 1992

..........

1

2 CM Fortran Release Notes

* The cmf switches -cm5, -cm2, and -cm200, and the environmental vari-
able CMF_DEFAULT_MACHINE, enable you to specify the hardware
platform for which a program should be compiled (Section 3.2).

* Send-address arrays used by Utility Library procedures can now be de-
clared either integers or double-precision reals for any CM hardware

platform (Section 4.1). We recommend declaring send-address arrays as
double-precision real for maximum portability with little or no perform-
ance penalty.

* Two new Utility Library procedures, CMF_ARCHITECTURE and
CMF _NUMBER_OF_PROCESSORS, provide information about the CM sys-
tem that is executing a program (Section 4.2).

* Two new Utility Library procedures, CMF_RANK and CMF_SORT, provide
enhanced sorting capabilities of numerical array values. CMF_RANK is sim-
ilar to CMF_ORDER, except that it permits ranking values within segments
of an array axis. CMF_SORT writes the sorted values themselves to a des-

tination array. (Section 4.3)

* Two new Utility Library procedures, CMF_FILE FDOPEN and

CMF_FILE _GET FD, enable the utility I/O procedures to work on devices
as well as files by translating between CM Fortran unit numbers and CMFS

(CM File System) file descriptors (Section 4.4).

* Two new Utility Library procedures, CMF_CM_ARRAY_TO_FILE_SO and

CMF_CM_ARRAY_FROM_FILE_SO, enable you to read and write CM files
from the CM-2/200 in normal Fortran order ("serial order"), which is the
order compatible with the CM-5 and CM-HIPPI (Section 4.5). CM-5 users,

please note that the behavior of these procedures has changed since Vi. 1.3

(Sections 4.5 and 4.6).

New users of CM Fortran should note the descriptions here of compiler switches
(Section 3.3) and the C language preprocessor (Section 6), features added in Ver-

sion 1.1. These features and the ongoing language restrictions (Section 7) have
not been incorporated into the CM Fortran User s Guide for the CM-2/200.

Two restrictions are newly documented with this release (see Section 7):

* Certain main programs may require you to initialize the parallel proces-
sing unit, even if they contain no parallel operations.

· You may need to work around restrictions on passing noncanonical array
expressions as arguments (by providing an interface block, for example).

Version 1.2, August 1992

-M For 't R' a N ot'e`.' :s'3'`. I ''".':..e.' '".'.---.>',,'' "'" '.,:1> > . r

1.2 Porting from Version 1.1

CM Fortran programs developed under Version 1.1 should be recompiled and
relinked to execute under Version 1.2.

A code change is required in CM-5 programs that used the serial-order (SO) I/O
utility under V1.1.3 to write CM files. These files should be read under V1.2 with
the "no suffix" I/O procedure, not with the SO procedure. See Section 4.5.

1.3 Current Documentation

The complete documentation set for CM Fortran V1.2 is as follows. The informa-
tion in these manuals applies to all CM hardware platforms, except where noted.

CM Fortran Release Notes, V1.2, August 1992 [this document]

Getting Started in CM Fortran, November 1991
CMFortran Reference Manual, V1.0 and 1.1, July 1991
CM Fortran Programming Guide, V1.0, January 1991

CM Fortran User s Guide, V1.0 and 1.1, July 1991 [CM-2/200 only]
CMFortran User's Guide, V1.1.3, January 1992 [CM-5 only]

CM Fortran Optimization Notes: Slicewise Model, V1.0, March 1991
CMFortran Optimization Notes: Paris Model, V1.0, February 1991

[CM-2/200 only]

CM Fortran Master Index, V1.0 May 1991

On-line man pages for the cmf compiler command, all CM Fortran intrin-
sic functions, and all procedures in the CM Fortran Utility Library. To
view these man pages, use the command man on CM-5 or the command
cmnman on CM-2/200. Enter the comand or function name in all upper case.

NOTE: The descriptions of the Utility Library procedures in the two user's
guides are incomplete and slightly outdated. Please refer to the on-line
man pages for up-to-date information on the utility procedures.

NOTE: The master index dates from Version 1.0, and thus covers only the
material of that vintage.

Version 1.2, August 1992

CMFortran Release Notes 3

4 CM Fortran Releasei~i~ii ~I;; Notesi..·· . .ifi''. :::.·:·.::~.- ·:·.: ··-·;- ·:: ·:-·::·:~:·:

2 Software Compatibility

Version 1.2 of CM Fortran is implemented for the CM-2, the CM-200, and the
CM-5. This section notes the versions of the CM system software and layered
products that are compatible with this release.

2.1 CM System Software

On the CM-5, Version 1.2 requires CMosT Version 7.1 or later.

On the CM-2 and CM-200, Version 1.2 requires CM System Software Version 6.1
or later.

2.2 Sun FORTRAN Not Required

Previous releases required that CM Fortran programs be linked on a system with
Sun's FORTRAN 77 libraries installed. This restriction is lifted with Version 1.2.

For the convenience of users whose programs call functions in the Sun library
libF77 .a, CM Fortran now provides these functions in libcmf77. a. If Sun
FORTRAN 77 is installed, the CM Fortran compiler driver links with both the
libcmf77.a and libF77.a libraries. Thus, object files compiled with Sun's
f77 command will link successfully.

The libcmf77.a library functions, listed in the table below, all have on-line
man pages. View them with the command clman on CM-2/200 and the command
man on CM-5. To avoid name conflicts with the Sun library man pages, specify
the function name in all upper case.

Version 1.2, August 1992

CM Fortran Release iotes4

CM Fortran Release Notes 5
. .: .. .: . .. :.. -.- ::

access
alarm

chdir

chmod

ctime

drand

dtime

etime

exit

fdate

fork

free

gerror

getarg

getcwd

getenv

getgid

getlog

getpid

getuid

gmtime
hostnm

iargc

idate

ierrno

irand

itime

kill

link

lnblnk

loc

lstat

ltime

perror

qsort

rand

rename

rindex

signal

sleep

stat

symlnk

system

time

unlink

wait

are a few differences between this list of functions and the contents of
libf77 .a.

* Sun's library includes the functions INDEX and LEN. These are intrinsic
functions in CM Fortran (not library functions in libcmf77. a). They are
described in the CM Fortran Reference Manual, and their on-line man
pages are accessible with the command man on CM-5 or cmman on
CM-2/200 (specify function name in all upper case).

* The CM Fortran library libcmf77.a does include the functions RINDEX

and LNBLNK, and CM Fortran provides separate man pages for them.

Version 1.2, August 1992

There
Sun's

6'"~'~-"~'~iil:ii~~i~~:~j...-. M.Fortran Re. Notes

2.3 Layered Products on CM-21200 Systems

On CM-2/200 systems, CM Fortran Version 1.2 is compatible with the following
versions of CM layered software products:

System
Component Link with

Prism, 1.1

CMSSL for CMF, 3.0 -lcmssl[-s]

CM Graphics, 2.0
*Render for CMF -lcmsr
Generic Display for CMF -lcmsr
Image File Interface for CMF -itif f

Display Operations for Fortran, 2.0

CM File System for Fortran, 6.1 -lcmfs

Some notes on this table:

* Notice that the CMSSL library is not automatically linked. Use the suffix
-s to link CMSSL for the slicewise execution model; omit -s for the Paris
model.

* The three libraries in CM Graphics 2.0 provide a CM Fortran interface.
The Display Operations ("Framebuffer") library provides a Fortran/Paris
interface. The Display Operations library is part of libparisfort.a, although
its version numbering has been changed to conform to the rest of the
graphics software.

* The CM Fortran Utility Library provides utilities that call certain proce-
dures in the CM File System library. The utilities open, close, read, write,
truncate, and "lseek" CM files. Some other CMFS procedures can be
called directly, via their Fortran interface.

* This release supports the practice of calling the C interface to any CMFS
procedure from CM Fortran. New Utility Library procedures enable this
practice by translating between CM Fortran unit numbers and CMFS file
descriptors (see Section 4.4).

Version 1.2, August 1992

CM Fortran Release Notes6

::.i i:::. :ii : :::::::. : .:: ... -a -- :.-: :-.::: :.I -. : :::: :- .. -..

2.4 Layered Products on CM-5 Systems

On CM-5 systems, CM Fortran Version 1.2 is compatible with the following ver-
sions of CM layered software products:

System
Component Link with

Prism, 1.1

CMXll Graphics, 1.3 See CMXII Reference Manual

CMSSL Scientific, 3.0 Beta See CMSSL Release Notes

CM File System for C, 7.1 See Using the CM-5 I/O System
and Using CM-HIPPI on the CM-5

Some notes on this table:

The CMXll Graphics library is supported only on the CM-5.

* A version of the Scientific Software library for the CM-5 is currently in
beta test.

* The CMMD Message Passing library, supported on CM-5, is not currently
compatible with CM Fortran.

* The CM-2 Graphics and Paris libraries are not supported on the CM-5.

* Please use the CM Fortran Utility Library for parallel I/O. To call lower-
level software (for example, to use CM-HIPPI), use the C interface to the
subset of CMFS procedures that are supported on the CM-5.

4

Version 1.2, August 1992

CM Fortran Release Notes 7

8 CM Fortran Release Notes

2.5 CM Fortran Execution Models: CM-2/200 Only

Version 1.2 may be installed on CM-2 and CM-200 systems with either the slice-
wise or Paris execution model as the default. Use the compiler switch -paris
or -slicewise to choose the non-default option. CM-S systems support only
one execution model, comparable to the slicewise model.

On the CM-2/200 any CM Fortran source code can be compiled for either execu-
tion model, but the models are not object-code compatible. A program unit
compiled for one execution model cannot be linked with a program unit com-
piled for the other model.

Version 1.2, August 1992

CM Fortran Release Notes 9.....W....:.:. E. :,,; . ¢ .. :. :::

3 New and Enhanced Compiler Switches

CM Fortran compiler switches have been enhanced to permit the use of the Prism
development environment and to enable you to select the CM hardware platform
for which to compile a program. (Some of these enhancements have been pre-
viously released for the CM-5 only.)

3.1 Switches for Using Prism

The following switch is now available on all CM platforms.

-[no] cmprofile default: -nocmprofile

Produce information needed for performance analysis under the Prism de-
velopment environment. If used, this switch should be used during both
compilation and linking.

By default, the -cmprof ile switch activates the -cmdebug switch:
Prism performs performance analysis on a block-by-block basis (with
source code lines fused together). To analyze a program on a line-by-line
basis, relating performance to source code lines, specify the -g switch.
(By suppressing certain optimizations, the -g switch causes the program
to execute artificially slowly.)

In addition, the switches -g and -cmdebug, which produce information needed
for program debugging, now enable a program to run under the Prism develop-
ment environment. For remote users or those without X Windows, Prism
provides a shell interface that resembles cmdbx:

% prism -C

Version 1.2, August 1992

9
10 CM Fortran Release Notes

NOTE

The cmdbx debugger is deprecated now that the superior Prism
development environment is available on all CM platforms.
Please use the Prism Version 1.1 debugger instead of cmdbx.

3.2 Switches for Specifying CM Model

The CM hardware platform that the compiler targets by default is determined for
a site at installation time. You can change the default by means of the user envi-
ronmental variable CMF_DEFAULT_MACHINE. Possible values are CM5, CM2, and

CM200 (case is not significant).

The following cmf switches are now available on the CM-2/200, as well as on the
CM-5.

-cm5

Compile for a CM-5 system.

-cm2

Compile for a CM-2 system.

-cm200

Compile for a CM-200 system.

The CM hardware platforms are not object-code-compatible. That is, the. o files
generated under any one of these switches cannot be mixed with. o files gener-
ated under the other switches. Also, the system signals an error at run time if a
load module prepared for one platform is executed on another platform.

Version 1.2, August 1992

CM Fortran Release Notes 11

3.3 Switches Released in Version 1.1

The following compiler switches were added to CM Fortran in Version 1.1. They
appear in the new CM-5 CMFortran User s Guide (January 1992), but have not
yet been added to the user's guide for the CM-2/200.

-safety=l evel

Enables run-time safety checking at a level specified by an integer value.
This switch can be used on the CM-5 and with the slicewise execution
model on the CM-2/200. It is not supported with the Paris model (with
-paris, use the -argument-checking switch instead.)

The key safety levels are:

0 No safety checking

1 Provides the same safety checks as the -argument_checking
switch, which include checking the validity of send addresses
and the number and homes of CM array arguments. Any argu-
ment from 1 through 9 provides these checks.

10 Provides the checks above plus NaN checking for CM arrays of

type real or complex, under the slicewise execution model. This
level of checking also causes program memory to be initialized
to a known value (currently, the value -1), which may help to
detect the use of uninitialized real or complex variables. Any ar-
gument of 10 or greater provides these checks.

You cannot use this switch with calls to the Utility Library routines that
allocate arrays dynamically (see restriction in Section 7.8 below).
Run-time safety checking mistakes the homes of dynamically allocated
arrays and signals an error.

-list
The listing file produced by this switch now identifies the communication
routines generated and the source code line numbers at which each refer-
ence occurs. For example, the source lines of a (somewhat contrived)
program xref. f cm would appear in the listing file xref. lis as:

Version 1.2, August 1992

12 CM Fortran Release Notes: ::: :::............:: :::::::: .:.:...... , , ,:;.......... ·.. : :·:, · ; .: ; % . - :··· :"- ·· ·'··' ··'·' '`'·

Source Listing Fil
1 1 1

2 2 1

3 3 1

4 4 1

5 5 1

6 6 1

7 7 1

8 8 1

9 9 1

10 10 1

11 11 1

12 12 1

13 13 1

14 14 1

15 15 1

e: /users/user-name/xref.fcm

program xref

parameter (m = 10)

real a(m), b(m)

integer v(m)

a = [1:m]*17.0

v = [1,4,3,2,7,6,9,8,10,5]

a(v) = a*3

print 10, a

10 format(A:¢, 10F9.3)

loop: do 100 i=l,m

b(i) = log(real(i*i*i))

a(i) = a(i)*b(v(i))

if (i==9) exit loop
100 continue

print 10, a

16 16 1 200 end

The listing file reports the communication routine references as:

COMMUNICATION ROUTINES

Name Line Number (number of times)

READ VALUE FROM PROCESSOR 12(2)
VECTOR SEND 7

FE TO CM ARRAY TRANSFER 6

The example code generates references to three different communication
routines: READ VALUE FROM PROCESSOR on line 12, VECTOR SEND on
line 7, and FE TO CM ARRAY TRANSFER on line 6. (VECTOR SEND is a gen-
eral communication routine to handle vector-valued subscripting.) If more
than one reference to a communication routine appears on a single line,
that number is indicated in parentheses following the line number.

Many of the communication routines support the intrinsic functions di-
rectly, and references to them use the name of the intrinsic function itself
(possibly qualified), such as CSHIFT, MAXLOC, SUM (into scalar), and SUM

(into vector). Others refer to common CM communication patterns: SEND,
GET, VPMOVE, NEWS, and NEWS (power of two). Still others refer to

Version 1.2, August 1992

CM Fortran Release Notes 13

data transfers between the CM and the front end: READ VALUE FROM PRO-

CESSOR, FE TO CM ARRAY TRANSFER, and so on. The listing also reports

uses of SUBROUTINE ARGUMENT COPYOUT.

-[no]cross_reference

When used together with the -list switch, this switch causes the listing
file to include information that relates line labels and names (symbols) to
source code lines. (Add the switch -show_include if you want the con-
tents of include files to be listed also.) The -cross_reference switch
is ignored if the -list switch is not specified. The default is -no-
cross_reference. The symbol and label cross reference listings
generated for the program listed in the previous bullet are shown below.

Symbol Cross

Symbol

Reference File:

Line Number(s)

/users/usr-name/xref.fcm

3 5 7 7 8 12 12 15

11 12

11 11 11 11 12 12 12 13

3 4 5 10

6 7 12

Cross Reference

Defined

9 8

14 10

16

File: /users/usr-name/xref.fcm

References(s)
15

A
B

I

LOG

LOOP

M
REAL

V

XREF

3

10
11
10
2

11
4

1

13

3

Label

Label

10

100
200

Version 1.2, August 1992

14 CM Fortran Release Notes

-Dname -Dname=def

Defines the symbol name for use by the C language preprocessor cpp.
The first form sets the value of name equal to 1; the second form sets its
value equal to def. The switch has the same effect as a #def ine prepro-
cessor directive (see Section 6 below).

-pecode

This switch has been modified to behave like the -s switch. That is, the
program is compiled and linked, but the intermediate file containing the
PE assembler code is retained (the intermediate file has the extension
_peac.peac). (This switch is supported only on the CM-2 and CM-200.)

Version 1.2, August 1992

F'ortran R9:;MElease Notes 1.5,, f; :'l IMPM Z S

4 Enhancements to the Utility Library

Several new Utility Library procedures (for system information and for I/O) are
available to CM-2/200 users with CM Fortran Version 1.2.

The new procedures were previously released in Version 1.1.3 for the CM-5 only.
They are documented in the CM Fortran User a Guide for the CM-5, January
1992.

In addition, two new sorting utilities have been added, and the send-address pro-
cedures have been enhanced to permit easy porting between CM models.

4.1 Enhancement of Send-Address Types

The procedures that take send-address arrays as arguments have been enhanced
to facilitate porting programs between CM platforms. These procedures can now
take a double-precision real array or an integer array as the send-address argu-
ment on any CM hardware platform.

The procedures affected are:

CMFMAKESENDADDRESS
CMF MY SEND ADDRESS

CMF DEPOSIT GRID COORDINATE

CMF SEND combiner

The CM-2/200 computes send addresses as integers (4-byte values), whereas send
addresses on the CM-5 are 8-byte integers. Since CM Fortran does not support
an 8-byte integer type, CM Fortran programmers writing for the CM-5 declare
send-address arrays as DOUBLE PRECISION or REAL*8.

We recommend, for maximum portability among CM platforms, that all CM For-
tran programs declare send addresses as double-precision values. There is a
performance penalty for using integer send-address arrays on the CM-5, as the
system coerces the values to the proper length. In addition, addresses for arrays
larger than 232 cannot be represented in 4 bytes. In contrast, there is only a mar-
ginal performance penalty for using double-precision send-address arrays on the
CM-2/200 under the slicewise execution model (one array copy operation), along
with the slightly greater use of memory.

Version 1.2, August 1992

CM Fortran Release Notes 15

16 CM Fortran Release Notes

4.2 System Information Procedures

The following procedures enable a program to determine at run time what CM
platform, what execution model (on CM-2/200), and what number of parallel pro-
cessors are executing the program.

CMF_ARCHITECTURE(

Returns an integer constant that identifies the CM model and execution
model under which a program is running. The returned value is one of:

CMFCM5 SPARC

CMFCM200 SLICEWISE

CMFCM200_PARIS
CMF CM2 SLICEWISE

CMF CM2 PARIS

CMF_NUMBER_OF_PROCESSORS(

On the CM-5, returns as an integer the number of nodes in the partition
executing the program. On the CM-2/200, returns the number of nodes
(slicewise model) or the number of bit-serial processors (Paris model) ex-
ecuting the program.

4.3 Numerical Ranking and Sorting Procedures

Two procedures have been added to the CM Fortran Utility Library to enhance
its sorting capabilities. Man pages are available on line for these procedures.

CMF_RANK (DEST, SOURCE, SEGMENT, AXIS,

DIRECTION, SEGMENT_MODE, MASK)

Determines the numerical rank of each element along an array axis and
stores the rank of that element into the corresponding element of a destina-
tion array. This is the same operation performed by the previously released
utility procedure CMF_ORDER, but CMF_RANK enables you to control the
direction of the ranking and to partition the array axis into segments that
are ranked independently.

Version 1.2, August 1992

......... :·~'· ::: X~'~··:'·'"'·'·'''i' '·....·::::j:::.i:~:i~:~:~:3::::~:~:~:~ jl. ~:::

CMF_SORT (DEST, SOURCE, SEGMENT, AXIS,
DIRECTION, SEGMENT_MODE, MASK)

Ranks the elements along an array axis and places the sorted values in
order into a destination array. This procedure enables you to specify the
direction of the sort and to define axis segments.

4.4 Procedures for 1/0 via Devices

New CM Fortran utility procedures enable you to perform I/0 via CM-HIPPI,
VME, or CM sockets. To do so, you need to access lower-level parallel 1/O proce-
dures, as described in the documentation for CM I/O and CM-HIPPI. These
lower-level procedures use file or socket descriptors, rather than CM Fortran unit
numbers. The new CM Fortran utility procedures associate such descriptors with
the unit numbers required by the CM Fortran utility I/0 procedures.

The procedure CMF_FILEFDOPEN associates the file or socket descriptor of a
previously opened "file" (or device) with a CM Fortran unit number. You can
then use the unit number in a call to CMF_CM_ARRAY _TO/FROM_FILE_SO

(always use this "serial order" variant of the read/write utilities). The procedure
CMF_FILE_GET_FD translates between unit numbers and CMFS file descriptors,
which enables you to call the low-level routines of the CMFS (CM File System)
library from a CM Fortran program.

CMF_FILE_FDOPEN (CMFS_FD, UNIT, IOSTAT)

Associates the descriptor of an open CM file system file or a CM socket
with a CM Fortran unit number. Both values are input values; the proce-
dure establishes an association between them.

CMFS_FD Integer; a CMFS file or socket descriptor.

UNIT An integer variable containing a valid unit number [1:29].

IOSTAT An integer variable into which the status of the 1/0 opera-
tion will be placed. A positive value indicates success; a
negative value indicates failure.

Version 1.2, August 1992

CM Fortran Release Notes 17

18 CM Fortran Release Notes

CMF_FILE_GET_FD (CMFS_FD, UNIT, IOSTAT)

Given a CM Fortran unit previously initialized by a call to either
CMF_FILEOPEN or CMF_FILEFDOPEN, associates that unit with the
descriptor of a CM file system file or a CM socket. It returns the descriptor
in the argument variable CMFS_FD.

CMFS_FD Integer; a CMFS file or socket descriptor.

UNIT An integer variable containing a valid unit number [1:29].

IOSTAT An integer variable into which the status of the I/O opera-
tion will be placed. A positive value indicates success; a
negative value indicates failure.

4.5 Procedures for Parallel 1/0 in Serial Order

Two new Utility Library procedures perform I/O directly from the parallel pro-
cessing unit, but they read and write files in normal Fortran order (or "serial
order"), rather than in a parallel order reflecting array geometry and machine
size. These new utilities give you the option of reading and writing data in the
order that is portable across CM models (CM-2/200 and CM-5) and compatible
with CM-HIPPI.

CMF_CM_ARRAY_TO_FILE_SO (UNIT, SOURCE, IOSTAT)

Writes the contents of a CM array to a CM file in serial order.

UNIT An integer variable containing a valid unit number [1:29].

SOURCE A CM array of any type.

IOSTAT An integer variable into which the status of the I/O10 opera-
tion will be placed. A positive value indicates success; a
negative value indicates failure.

Version 1.2, August 1992

____ __ __

. F::.rr.S :.an. :.Rla Noe�19

CMF_CM_ARRAY_FROM_FILE_SO (UNIT, DEST, IOSTAT)

Reads an array from a CM file in serial order.

UNIT An integer variable containing a valid unit number [1:29].

DEST A CM array of any type.

IOSTAT An integer variable into which the status of the I/O opera-
tion will be placed. A positive value indicates success; a
negative value indicates failure; a zero value indicates an
end-of-file condition.

Serial-Order Files

File data written with the SO utility is stored in the same order as data written with
the Fortran WRITE statement. For example, the array A(2,3) is stored in the
following order:

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(1,3)

A(2,3)

Unlike the other parallel read/write utilities, the SO utilities do not "pad" files.
Because they read and write only the array elements, not any extraneous data,
these utilities operate independently of the array geometry and of machine size
and model. Serial-order files are completely portable across the range of CM
configurations.

CM-5 users, please note that this behavior is a change from Version 1.1.3. The
SO utilities did pad files under some circumstances in that release. To read files
previously written from the CM-5 with the SO write procedure, please use the
generic read procedure, CMF_CM_ARRAY_FROM_FILE. The generic utilities
under Version 1.2 on CM-5 behave the same way the SO utilities behaved under
V1. 1.3; the SO utilities now behave differently in that they never pad files.

Version 1.2, August 1992

CM Fortran Release Notes 19

20<` Mf.r ReMMese BNot sI ;.

Writing to Devices

When writing to devices, use the serial-order I/O utilities. In this situation, the
"file" is either a CM-HIPPI device or a CM socket. You need to open it with the
utility described earlier, CMFFILE_FDOPEN, and then use CMF_FILEGETFD

to relate its file or socket descriptor to a Fortran unit number. You use the unit
number in a call to CMF_CM_ARRAYTO/FROMFILE SO.

Although the serial-order I/0 procedures do not pad CM files, they do sometimes
add extraneous data at the end of an array being written to a device. If you do
not wish to deal with padding explicitly in the program, you can avoid it by
observing the following restrictions when writing to devices:

* From CM-5:

Write from arrays whose size (number of elements) is a power of 2 and
an integer multiple of the size of the partition (number of nodes) executing
the program.

* From CM-2/200:

Write from arrays whose size (number of elements) is a power of 2 and
an integer multiple of the size of the machine (number of bit-serial proces-
sors) executing the program. The I/VO system considers the number of
bit-serial processors to be the CM-2/200 "machine size" under either
execution model, Paris or slicewise.

See the documentation on the CM I/O system and the CM-HIPPI (for CM-2 and
CM-5, respectively) for more information on this form of I/O programming.

Version 1.2, August 1992

CM Fortran Release Notes20

CM Fortran Release Notes 21

4.6 Parallel File 1/0: Behavior and Restrictions

The CM Fortran Utility Library now provides three variants of the procedures
that read or write CM arrays in parallel, that is, in multiple streams directly
between the memory of CM processors and the storage device. This section
describes the behavior of the three variants and the restrictions that apply to each.

Arguments

The three variants are distinguished by suffix (or lack of): no-suffix or generic,
FMS, or SO. They take the same arguments.

CMFCM_ARRAY_ TOFILE [, / _FMS, / _SO] (UNIT, ARRAY, IOSTAT)
CMFCM ARRAY_FROM_FILE [, / _FMS, /_SO] (UNIT, ARRAY, IOSTAT)

UNIT The unit number can be a variable, parameter, or literal constant in
the range 1:29 (inclusive). It is associated with a file by using it first
in a call to CMF FILE OPEN. Such "unit numbers" have no rela-
tion to the CM Fortran unit numbers that are used in front-end I/O
(described in the CM Fortran Reference Manual.)

ARRAY The array is a CM array of any type that is the source or destination
of the I/O operation. Like all arrays used with CM Fortran utility
procedures, it cannot be aligned with another array of higher rank
or aligned with an array of the same rank but with dimensions offset
with respect to each other. However, unlike other utility procedures,
the /O procedures can operate on arrays whose lower dimension
bounds are not necessarily one.

IOSTAT This argument is an integer variable into which the status of the
operation is placed. For all the I/O procedures, a positive value indi-
cates success and a negative value indicates failure. In addition, for
all the parallel read utilities, a zero value indicates an end-of-file
condition. Other than sign or zero, there is no significance to any
of the particular values returned.

Version 1.2, August 1992

22 CM Fortran Release Notes

Behavior

The three sets of the /O procedures give different combinations of speed and
portability. The FMS ("fixed machine size") routines are the fastest but the least
flexible. The SO ("serial order") routines are slower but the most portable. The
generic (no-suffix) routines are a compromise between the two for general-pur-
pose use. Always read a file with the same variant that was used to write it.

Variants of CMF CMARRAYTO/FROMFILE.

FMS Generic SO

CM-2/200

File order parallel parallel serial

Padding, if any scattered scattered none

Portability CM-2/200 only CM-2/200 only any CM or device
same machine size any machine size any machine

or partition size
same exec. model any exec. model any exec. model
same array shape same array shape any array shape
same array layout canonical array only canonical array only

CM-5

File order parallel parallel serial

Padding, if any scattered scattered none

Portability CM-5 only CM-5 only any CM or device
same partition size any partition size any partition

or machine size
same array shape same array shape any array shape
same array layout canonical array only canonical array only

The FMS and generic procedures write to a file in a parallel order that reflects
the geometry of the array and, in the case of FMS, the array layout and the size
of the machine executing the program. The FMS routines require that a later read
operation be to an identical array in a program running on the same size machine
under the same execution model. With the generic routines, which handle only
canonical arrays, the array shape must be the same but the machine size or execu-
tion model can be different.

Version 1.2, August 1992

41. . , :: ., :: . - ::., ,: :: ' : I .::: .:-'- '. :: . : , .. - :::I.. ..: : ·. ;-- .:::: .. 1.1..- .-.--.-....::: . I.. t - -. .:·:c ': ':':... 1 .. · "· ·' - ''j ::illlii~:: I::. . .. ::. I : :::: . :.:::.: ::::.·,: ::-:·:-. .: · :·::·j ~.·i ·~·.. ·~

CM Fotra (Ree :.- '3:,-,x. .�:::.::-:.::::'. .- :�. : - . - .,.`M M :. m m.:.:Xi~ · ~:····li;-~.:·:::~:· ·C

In addition, all arrays written to a parallel-order file must have the same shape.
The geometry of a new parallel file is established by the shape of the first array
written to it, and subsequent writes to the file must be of arrays with identical
shape. Arrays written with the FMS routines must also have the same layout as
the first array written.

The FMS and generic routines may write extraneous data (padding) to scattered
locations within the file. As long as you observe the restrictions noted in the
table, the padding is handled transparently when the file is read.

The SO procedures store data in files in serial order (array-element order) with
no padding. Although the arrays read to or written must have canonical layout,
there are no other restrictions on the portability of serial-order files, and arrays
of any shape can be written to the same file.

When using the generic and SO routines, note that a noncanonical array can be
changed to a canonical layout by means of an array assignment.

File Operations

All seek, rewind, and truncate operations on CM files must be preceded by a read
or write operation. It is necessary first to establish the geometry of a newly
opened file, even a serial-order file, by performing a read or write of the file. An
additional restriction on the CM-5 only is that the element size of any later file
operation must be the same as the element size of the read or write operation that
established the geometry of the file when it was first opened.

The procedures CMFFILE_LSEEK and CMF_FILE TRUNCATE operate on both
parallel-order and serial-order files (use CMF_FILE_LSEEK_FMS for parallel
files written with the FMS utility). However, there is a difference in how you
calculate the offset (for seek) or length (for truncate) argument.

* For serial-order files (those created with the SO utility), you can seek or
truncate either to an array or to an arbitrary element. For the offset or
length argument, use the number of bytes in the array's element type times
the number of elements to traverse.

* For parallel-order files, you can move the file pointer only from one array
to another within a file. You cannot move it to an arbitrary element. To
compute the offset, you need not specify the size of the array(s), since this
information is contained in the file geometry. You need specify only the
size of an array's elements, using CMFSIZEOF_ARRAY_ELEMENT.

Version 1.2, August 1992

CM Fortran Release Notes 23

24 CM Fortran Release Notes

As an example, suppose that a file associated with unit 29 was created
with three successive writes, of array A, then array B, then array C. Assume
that SIZEOF X is the value returned by CMFSIZEOF ARRAYELE-
MENT(X).

To position the file pointer to the beginning of array B, use:

CALL CMF_FILE_REWIND(29, IOSTAT)

CALL CMF_FILE_LSEEK(29, SIZEOF_A, IOSTAT)

To position the pointer to the beginning of array C, use:

CMF_FILE_REWIND(29, IOSTAT)

CMF_FILE_LSEEK(29, SIZEOF_A + SIZEOF_B, IOSTAT)

4.7 Note on Front-End 1/0: Appending to a File

CM Fortran provides no automatic method to append a record to a file written
from the front end or partition manager by means of the WRITE statement. The
language does not support the VAX APPEND mode in the OPEN statement, and has
not yet implemented the Fortran 90 POSITION keyword by which you could po-
sition the file pointer at the end of the last record.

To append to a file, read to end-of-file and then BACKSPACE. If all the records are

the same length, you can use direct-access I/O.

Version 1.2, August 1992

CMo".:l _o.- R Noe. 2.:

5 Note on Floating-Point Exceptions

The CM-2/200 and the CM-5 handle floating-point exceptions in an IEEE standard
manner. Overflow, division by zero, inexact, and invalid operands are masked in
CM arrays of floating-point types. Overflow turns into a properly signed infinity,
and division by zero (except 0/0) turns into a properly signed infinity. Underflow
turns into zero instead of a denormalized number.

Floating-point exceptions are handled differently by Sun front-ends (CM-2/200)
and control processor (CM-5), although still conforming to IEEE standards. In
scalars and front-end arrays of floating-point types, the system executes traps for
overflow, divide by zero, and invalid operand; underflow turns to zero; and inex-
act is masked.

Users should note that if a CM Fortran program has a STOP statement in it and
if the program is linked with the Sun FORTRAN 77 library, Version SC1.0, the
following message appears :

Note: Following IEEE floating-point traps are en-

able; see ieee_handler(3M): Overflow; Division by

Zero; Invalid Operand;

Sun's implementation of IEEE arithmetic is dis-

cussed in the Numerical Computation Guide.

This message is informational only. You can prevent its appearing by setting the
following environmental variable to null:

% setenv CMF SUN FORTRAN DIR

Version 1.2, August 1992

CM Fortran Release Notes 25

26 CM Fortran Release Notes

6 The C Language Preprocessor
(From Version 1.1)

Beginning with Version 1.1, the CM Fortran compiler accepts files designated
for preprocessing with the C language preprocessor. This feature is described in
the CM-5 CMFortran User s Guide; the description is included here since it has
not yet been incorporated in the user's guide for the CM-2/200.

The cmf command driver accepts files with (uppercase) extensions of .FCM,. F,
and .FOR, and invokes the C language preprocessor cpp on each file before pass-
ing it on to the appropriate compiler. (These extensions correspond to their
lowercase counterparts used for CM Fortran, Sun FORTRAN 77, and VAX FOR-
TRAN source files, respectively).

The C preprocessor can provide a useful conditional compilation facility for CM
Fortran source code when used with the cmf command line switch -D described
in the section on new compiler switches.

For example, the following program contains preprocessor control lines that con-
ditionally define a parameter N, which is used in the declaration of a matrix A.

PROGRAM CPP

#if ASIZE > 0 && ASIZE < 10

PARAMETER (N = ASIZE)

#else

PARAMETER (N = 9)

#endif
CHARACTER*10 FMT

INTEGER A(N,N)
A= 0

FORALL (I = 1:N, J=1:N) A(I,J) = I*10 + J

WRITE (FMT, 10) N

10 FORMAT((1X,¢, I2.2, I3)¢)

PRINT FMT, TRANSPOSE(A)
END

The preprocessor control lines (those beginning with the character #) test wheth-
er the value of the symbol ASIZE is in the range 1 to 9 and, if so, select the first
PARAMETER statement for compilation, otherwise the second. (The control lines
themselves are filtered from the file actually passed to the compiler, along with
the unselected PARAMETER statement.) The value for ASIZE is substituted for all
occurrences of the symbol ASIZE in the program; the value of symbol ASIZE
can be defined in the source code, on the command line, or it can be left unde-

Version 1.2, August 1992

F..o ..a .ee........... .. :. ..:.. ..iii'i
fined (in which case it assumes the value zero). If the program is in the file
cpp. FCM, then the command line

% cmf -DASIZE=7 -P cpp.FCM

causes the matrix A to be declared as a 7x7 array. (The -P switch is passed on
to the cpp program, and should be specified to circumvent a rather obscure com-
piler problem.)

The manual page for cpp describes the program switches and preprocessor com-
mand lines in detail, including a facility for defining macros with arguments.

Version 1.2, August 1992

CM Fortran Release Notes 27

~.::: ::i:,:· : :::·1:1:.":::~~~': ::::'· ":~::::::::::::::::::::::· : ~ ~ ·;;~·.~: ·· ·;; · ·::.......... ·:: j::::::::~i~i:~-i::::::·;: :c;

7 New and Ongoing Restrictions

This section notes two newly documented restrictions in CM Fortran (Sections
7.1 and 7.2). It also restates several long-term restrictions, previously reported
in CM Fortran release notes (Version 1.0 or 1.1).

7.1 May Need to Declare a CM Array in Main

A main program that performs no parallel operations does not initialize the paral-
lel processing unit. If the main program has no parallel operations, the parallel
processing unit is initialized by the first subprogram that does perform some par-
allel operation.

This arrangement usually causes no inconvenience. However, if such a main pro-
gram should include calls to CM timer routines or to certain utility routines, such
as CMF_ALLOCATE_TABLE, the program fails with a run-time error. The timer e
and certain utility routines fail unless the parallel processing unit has been initial-
ized.

To work around this restriction, simply declare a CM array in a main program.
(Forcing the array onto the parallel unit requires a LAYOUT directive as well as
a specification statement.)

INTEGER WORKAROUND(10)

CMF$ LAYOUT WORKAROUND(:NEWS)

The parallel processing unit is initialized when a CM array is declared, even if
it is not used in an executable statement.

7.2 Noncanonical Array Expressions as Arguments

If an array expression involving an array with noncanonical layout is passed as
an argument, the wrong values are passed for some elements even when the lay-
outs of the caller and the called routines agree. No error is reported.

e.

Version 1.2, August 1992

CM Fortran Release Notes28

., fan. R ase Note.s 29

The problem arises because the array expression is evaluated in a temporary, and
the temporary is passed as the argument. However, in the absence of an interface
block, the temporary is laid out in canonical order; its element-order thus does
not match the order expected by the dummy argument.

To have this operation execute correctly, you can either:

· Do the expression assignment to the actual argument before the call

CALL SUB(A/1.5) ! error

A = A/1.5 ! correct

CALL SUB(A)

Notice that a noncanonical whole array is passed correctly.

* Provide an interface block in the caller that specifies the noncanonical lay-
out of the array expression:

INTERFACE

SUBROUTINE SUB(X)

INTEGER, PARAMETER :: GS = 5

REAL, ARRAY(1:3, 1:GS, 1:GS) :: X

CMF$ LAYOUT X(:SERIAL, :NEWS, :NEWS)
END INTERFACE

7.3 FORALL Statement Limitations

In Version 1.2, the following forms of the FORALL statement generate code that
executes serially. The compiler issues appropriate warning messages for these
forms.

A reference to an external function anywhere in a FORALL statement, such
as,

FORALL (I = 1:F(3)) A(G(I)) = H(I)

Any of the references to functions F, G, and H is sufficient to cause the
FORALL statement to be executed serially.

Version 1.2, August 1992

CM Fortran Release Notes 29

30.S. CM Fortran, Re~~~~~ile-,.(.-ase N','~z,.:otesi:....

The use of a FORALL index name in any of the following contexts (assume
that I is an index name associated with a FORALL statement):

* in an array constructor, such as [I] or [1: I 1

* as a subscript in an array element designator specifying an element
of a front-end array, such as FE (I)

* as an argument to a statement function, such as FUN (I)

* in a triplet subscript, such as 1: I or I: +5: 2

* as an argument to a transformational intrinsic function (with the ex-
ception of PROJECT and SPREAD), such as CSHIFT (X, I,2)

Note that use of a FORALL index name in any of the reduction intrinsics
(ALL, AN, COUNT, MAXVAL, MINVAL, PRODUCT, and suM) does not inhibit
parallelism.

The compiler still has difficulties compiling some forms of the FORALL state-
ment into the most efficient CM operations. The CM Fortran Utility Library
provides fast procedures that serve as replacements for those forms of FORALL. e
See the CM Fortran User Guide.

7.4 Restrictions on Array-Valued User Functions

Array-valued user functions are supported in this release, but only for result ar-
rays whose size can be determined at compile time and whose layout is
canonical.

An example of an array-valued function is the following. Function BINARY con-
verts an integer value to its binary representation, returning the result as a
32-element integer array.

FUNCTION BINARY(N)

INTEGER BINARY(0:31), N
BINARY = 0 FORCE RESULT TO CM MEMORY

BINARY=IBITS([32[N]], [0:31], [32[l]])
END

9..

Version 1.2, August 1992

30 CM Fortran Release Notes

~~·~~·~-~~·~~·~~·-;~~·.....::: !...I........ -'1.,,. :- .-..,:·:·:·:·:·:·i ·.·. ··.·., .·: -----.. .::: '

The function can be called by the program:

INTERFACE

FUNCTION BINARY(N)

INTEGER BINARY(0:31)

END INTERFACE

PRINT 10, BINARY(1024+7)

10 FORMAT(1X,3211)

END

Note the presence of the interface block. An interface block must be provided in
any program unit that references an array-valued function. The interface block
must describe the type and shape of each of the function's arguments and its re-
sult. If any of the arguments or the result has non-canonical layout, the interface
block must indicate the layout of those arguments and the result. However, no
LAYOUT directives are currently permitted on function result variables, so func-
tions returning non-canonical result arrays cannot be defined or referenced.

A function declaring an array-valued result is flagged as an error if the size of
the array result is not known at compile time, as in the following case:

FUNCTION IOTA(A,N)

INTEGER A(N), IOTA(N)

A = [1:N]

END

7.5 Array Restrictions

This section restates the continuing restriction that the homes and shapes of ac-
tual array arguments must match the corresponding dummy arguments. There is
also a limitation on the total size of serial dimensions of a CM array under the
Paris execution model on the CM-2.

Array Argument Home

As specified in the CM Fortran Reference Manual, the home of an actual array
must match the home of a dummy array argument to which it is passed. Conse-
quently, a failure occurs if a CM actual array is passed to a front-end dummy
array, or if a front-end actual array is passed to a CM dummy array. The program-

Version 1.2, August 1992

CMFortran Release Notes 31

CM Fortran Release Notes

mer must ensure that the actual and dummy array homes match. An example
illustrates this restriction:

PROGRAM ERRONEOUS

PARAMETER (NA = 1000, NB = 500)
REAL A(NA), B(NB)

A = [1:NA] I A is a CM a

DO I = 1, NB

B(I) = NB B is an FE

END DO

CALL SQUARE(A, NA)I OKAY: CM ac

CALL SQUARE(B, NB)! ERROR: FE a

dummy

END

SUBROUTINE SQUARE(X,

REAL X(N)
X = X*X I

END

rray

array

tual to CM dummy

ctual to CM

N)

Dummy X is a CM array

The program above fails at the second call to subroutine SQUARE because of an
array home mismatch. This will occur even if the main program and subprogram
are compiled as part of the same file, since CM Fortran compiles program units
completely independently of one another.

The compiler can detect this problem if interface blocks are used. Alternatively,
compile with the switch -safety=1 (or higher value) to catch this kind of error
at run time.

Array Argument Shape

CM Fortran requires that the shape of an actual argument match the shape of the

corresponding dummy argument in two cases:

* in a reference to a procedure with an explicit interface (i.e., with an inter-
face block present)

* if the actual argument and the dummy argument are CM arrays

The compiler enforces the first case in most situations. The programmer must
enforce the second case.

Version 1.2, August 1992

32
*I~~:~~·,~~:~~·:·~~~3~i~~i~~i~~~i~~i~~-1.1-1M5--'-'1'--. i

CM Fortran Release Notes 33

A procedure reference fails at run time if a CM array actual argument is passed
to a CM array dummy argument of a different shape. For example, the subroutine

SUBROUTINE SUB(A, N)

REAL A(N)

A = A - 1.0 ! A is a CM array

END

should be called passing an array section, as with

CALL SUB(X(1:J), J)

The subroutine can be called with the statement

CALL SUB(X, J)

only if array x actually has the shape [J], which would be the case if x were
declared using the statement

REAL X(J)

Compile with the switch -safety=l (or higher value) to catch mismatches in
rank at run time. The compiler currently does not generate code to check for
shape mismatches.

Size Limit of Serial Dimensions [CM-2/200]

The following restriction applies only to programs running on the CM-2/200 that
use the Paris library at any level. Such programs include those compiled under
the Paris execution model, any programs that use Paris-based CM-2 libraries
(CMFS or Graphics), and any programs that use the CM Fortran 1/O utility proce-
dures.

This restriction does not apply to programs executed on the CM-5.

There is a restriction on the total size occupied by the serial dimensions of a CM
array as specified with the LAYOUT directive): the product of the size (rounded
to a power of two) of all serial dimensions must not exceed 65536 bits. This re-
striction follows from a limitation of the Paris field addressing mechanism that
uses 16 bit offsets with respect to a field ID.

Version 1.2, August 1992

34 CMFortran Release Notes

In CM Fortran terms, this implies the following total size limitations, in ele-
ments, for the serial dimensions of an array of each possible type, assuming VP
ratio of one:

65536 for LOGICAL arrays
2048 for REAL or INTEGER arrays
1024 for DOUBLE PRECISION real or COMPLEX arrays
512 for DOUBLE COMPLEX arrays

For a VP ratio N greater than one, divide the numbers above by N.

The compiler does not enforce this restriction on the length of serial dimensions,
and a program that exceeds the size limit will fail. The problem manifests itself
only on machines with more than 216 bits of memory per processor.

7.6 ENTRY Statement Limitation

The ENTRY statement does not work correctly in many cases and should not be
used in the current version.

7.7 Restrictions on Directives

ALIGN Directive Restrictions

The ALIGN directive is supported, except that an index-value with a leading mi-
nus sign is not permitted.

Order of Directives

In CM Fortran, COMMON directives must precede ALIGN and LAYOUT directives.
A COMMON directive establishing a default home for arrays of common block BLK
may not be followed by an ALIGN or LAYOUT directive establishing a different
home for one of the arrays in BL, or a compiler error message is issued.

Version 1.2, August 1992

CM.-q~,.: Fo>:e .-�tra Rees"Noe%3

Order of Directives and Executable Statements

In CM Fortran, all compiler directives must appear in the specification part of the
program, before the first executable statement. Directives that appear after any
executable statement are ignored.

7.8 Dynamic Array Allocation and Argument Checking

It is not possible to use run-time safety or argument checking when executing
programs that call the subroutines CMFALLOCATEARRAY or CMF_ALLO-

CATE LAYOUT ARRAY. This is because the allocation subroutines declare the
CM array as a front-end array descriptor, and when they are passed a CM array
argument, the argument-checking code signals an error. When compiling such
programs, do not use the -argumentchecking switch or the -safety switch.

7.9 Data Segment Size Limitation
[VAX front end to CM-2 only]

The VAX 1k linker is limited in the size of object files it can handle. The problem
can occur when linking for execution on the CM-2 under either the Paris or the
slicewise model, but it is more likely under slicewise. There are several possible
ways of eliminating this problem.

* If possible, build and execute the program using a Sun front end.

· Compile and link the program with the -pecode switch. This may work
if the data segments are fairly evenly distributed between the object file
(extension.o) and the PE code file (extension geac. peac).

· If this fails, reduce the size of the larger procedures of your application by
splitting them into smaller procedures.

Version 1.2, August 1992

CM Fortran Release Notes 35

i. �:.�: CiMFor....anRels'e Ns-I

8 Deprecation of Paris Calls
(From Version 1.0)

Explicit calls to Paris are not recommended in CM Fortran programs: they are
generally slow under the slicewise model on the CM-2/200 and are not supported
at all on the CM-5. The CM Fortran Utility Library is intended to make Paris calls
unnecessary. This section repeats earlier advice on upgrading existing code that
uses explicit Paris calls.

8.1 Paris and the Two Execution Models (CM-21200 Only)

Explicit Paris calls perform as expected when compiled for the Paris model on
the CM-2/200. We recommend that you upgrade your Paris code to use the CM
Fortran Utility Library (or CM Fortran itself) at your convenience.

If it is not convenient to upgrade your Paris code immediately, you must make
some changes (described below) in the use of the array descriptor access func-
tions before you can run your program under the slicewise model on the CM-2
or CM-200.

These changes will not enable your program to execute on the CM-5; for this
purpose, you must remove all Paris calls and replace them with calls to the utility
library procedures.

8.2 Paris and the Utility Library

The Utility Library gives you access (under both Paris and slicewise models) to
the highly efficient CM operations that the CM Fortran compiler does not yet
generate. Conversion from Paris to these utility procedures is straightforward.
(See the CM Fortran User s Guide for complete information on the Utility Li-
brary.)

Version 1.2, August 1992

36 CM Fortran Relese Notes

:CM....%.%.x..$.::.'B.+.>.'.I.'.N..'..'.::.~.~: Fort..ran Re. ?;:¥ease.:.':... ..:-:.-...- Notes,:.3....
~.':,..%¥:~~.:-.~-....-x,?&.'~...~'..¢~.~.~:.- ..~ .x>.~ ¥~~.~~~ ~?...~~.

For example, compare the CM Fortran (left) and Paris (right) scan procedures:

CMF SCAN op(

DEST_CM_ARRAY,
SOURCECMARRAY,
SEGMENTCMARRAY,
AXIS,
DIRECTION,

INCLUSION,

SEGMENTMODE,
MASK_CM_ARRAY)

where op is one of:
ADD, MAX, MIN, COPY,
OPR, IAND, IEOR

CM_scan_with_{s,u,f}_op (
dest,

source,

axis,

len,

direction,

inclusion,

smode,

sbit)

where op is one of:
add, max, min, copy,

logior, logand, logxor

Similarly, compare the CM Fortran and Paris procedures for array send with
combining:

CMF_SEND_op(CM_send_with_{s,u,f}_op(

DEST_CM_ARRAY, dest,

SENDADDRESS, sendaddress,
SOURCE_CM_ARRAY, source,

MASK_CM_ARRAY) len,

notify)

where op is one of:
MAX, MIN, ADD, where op is one of:
OVERWRITE, max, min, add,

IOR, IAND, IEOR overwrite,

ior, iand, ieor

Version 1.2, August 1992

CM Fortran Release Notes 37

38 CM F t Rel e :. .-m>ase N ts* $:� > ,. . �::::Be.~.x.-:.:.::::~~~::~.: ::~'~z:::::::::: :.:-':~~~: ..: .::::y ~~:.~: :x ,: .: .: -.x~. .: .: :: .-.:: .: .:~:: -'~~.: . .. : .:. .

8.3 Field ID Access Function

The array descriptor function CHF_GETFIELD_ID is obsolete under the slice-
wise model and on the CM-5. If your code references this function, and if it is not
convenient to update your code to call the utility library, you can use the tech-
nique described here as an interim measure on the CM-2/200 only.

CM Fortran provides a "wrapper" interface to lower-level software on the
CM-2/200. The wrappers, named for Paris procedures, take array names (and
thus, descriptors) rather than field ID's as arguments. The wrappers then generate
either Paris or the slicewise run-time routines, as appropriate.

For example, to operate on array A, replace this:

ID = CMF_GET_FIELD_ID(A)

CALL CM_F_ADD_2_1L(ID, ID, 23, 8)

with this:

CALL CM_F_ADD_2_1L(A, A, 23, 8)

Version 1.2, August 1992

38 CM Fortran Release Notes

CMFotrnRieleas:: 'Sjt.fR:i.e otes 39

9 Bugs Fixed in Version 1.2

This section describes implementation errors that have been corrected in Version
1.2, listed in order by reference number. The list is dividedint those that have
not been previously reported (Section 9.1) and those tha e previously
reported (Section 9.2).

All bugs pertain to all CM platforms and both execution r ere
otherwise noted.

9.1 Bugs Discovered and Fixed S ce Versi 1

In general, the optimizer (the -o switch) is ch more robust on all plat-
forms and execution models.

#925 Hollerit:stant as a-m''ea d:acompile-time error

#928 CompHler generated.incorrect code for integer constants greater than 13

31 Repeate use of a scaa constant variable caused the compiler
... to g r..fs. to .. erroneous codei

used with complex values

#956 Nested array constructors failed [Paris]

#964 Vector-valued subscripts could fail at run time [Slice and CM-5]

Version 1.2, August 1992

CM Fortran Release Notes 39

.... > ::..-0 F.. .. r ..l............ N....e

#969 DO WHILE failed when the global reduction function ANr occurred as
part of control expression [Sun and CM-5]

#970, 1013, 1015 The compiler generated incorrect optimizedo''de [-o, Slice,
and CM-5]

#980 The compiler generated erroneous calls to CMRT cross..ge t ove

[Slice and CM-5]

#981 The END- and ERR-= constructs produced segmentationfe[oCM5, [M
-Slice on Sun] ::,:

,

#983 Assumed-size character arrays could n passed to a function

#1001 Array assignments failed with difrent layouti mis

#1014 A doubleu"plex val ol bom on subexpression
when there:was a function callto a tat used that value

#1020- Programs complIe f filing (i tch) failed at run time [VAX]1

.

....... "Previously Reported and Now Fixed

I l t optimizer (the -o switch) is now much more robust on all plat-
forms: and-: e--e-t.tion models.

#312 Concatenation and character function results [Slice and CM-5]

A user-defined function involving assignment of a concatenation expression to
a character-valued function result could cause a compiler failure.

Version 1.2, August 1992

*
40 CM Fortran Release Notes

'Fota Rele:�- : : :: :, : . : X ':,'~ ~~.:.~ :~~~¢:~ase,> ...'.'...........:... ',:s,,, .. Noe:. ' :4.::.'.. 1..' ,.%-. 41.

#467 Effect of INQUIRE statement could be optimized away

The effect of the INQUIRE statement was optimized away if the variables in
which the results were returned had been assigned earlier in the program.

#530 Array constructors of the form [R, I:J] failed

Array constructors of the form [R, I :J where I and J were integ an was
real or complex caused an intemrnal compiler error or asser erro

, , .

Optimized code compiled from FORALL for th slicewisel odelteC y
sometimes failed.

#622 Substring operations on charat fun faied

A substring operation on a chracter fnction result cod ause an internal com-
piler e rrn o i...........a r

...............efge~ ... S., ,Rixxax....,.ai: :

#623Sit also intoer t on charaanction ofthe utility rould ftines. []

#675exsffix OvYerlapinstring copy not as documented [Sun and CM-SI

A ssignment of an array-valued function reference to a smetion of an array withNT tatements;non-canoent of overlapping substrings produced unexpected esults.#683 ONio UD could cause compiler failure

DLBOUNrjT DUBOUND could cause an internal compiler error when applied to
array sbtions or array constructors.

#773 Assignment of array-valued function reference to section Parisl

Assignment of an array-valued function reference to a section of an array with
non-canonical layout could fail at runtime with a field access error.

Version 1.2, August 1992

CM Fortran Release Notes 41

4.2 -:.- CM F oM...n.... l N ..e-..v...-.............................. .. 'fi':5~::~ :>.~ :::5::: :~: ':..: .-.~..::~::::::~-.::.'::::: .~:.'~:5::::::~::::x..::::;:::.::::::;.::::::..:::::::::-..::.: :5 :~:::..-:..'.:~:. .2 :;:::: :~: :: :: :~:: :: :::::'.::~.:~~::: ~is~".::~!::~::::~~:: ~!::: : : i:::~!~$:~~~::$~~!:::~ic:::.! i :.' ~: i i: -.

#821 Optimization problems [-0]

Use of the -o switch during compilation caused several compiler problems.

#827 Assumed-size character arrays caused compiler failures

Assumed-size character array arguments caused an internal coP r

#828 Character comparison could cause compiler failure VAX]

A relational expression comparing two character string literl oim es cau;sd..r
a compiler error. .;

#832 TRANSPOSE used near MATMUL failed Pairl s.ir

The TRANSPOSE intrinsic used in cse proie MATMU intrinsic some-
times returned all zeros.

#836 FORLL ted Sc M5
'Hiii~iiiiii~'me

.iscac:at:ied the elements of the plane
or N = 32or any greater power of 2.

A, T

L:N) A(J,K,L) = L
T,K,1) = A(J,K,1)+A(J,K,N) ERR

Version 1.2, August 1992

42 CM Fortran Release Notes

CM:~T~:~:~:~i s Fortran Rekase Notes 43

#862 TRANSPOSE of a non-canonical array section failed

Assigning the result of a TRANSPOSE of a non-canonical array section to itself
---ol A - +;__r t in _rrr

#892

CaLuavU a iLUlljJIIJL-LU14. IriU1.

... ::..:: .:.:: .

ALIGN directive could cause compiler failure ss

An attempt to ALIGN an array c with an array B that has itse dbeen
aligned with an array A caused a compiler DTBRTS error if aay had -
AL dimension.

::S::::.f:Ssj R, SSS. 'f>

#916

........ .

ne dimension;
under slicewise and on the CM-5, th tfailu

#918 Use of DO loop index in anfiiF statmer

A DO lo x varia t s
1-5, -01

1 the condition
RTS error if the
atement.

IF statement
o used in the

Version 1.2, August 1992

CM Fortran Release Notes 43

44�CM:-�Fortran.:.-? '::i::i : : .- Releasei!:,iiiiii - i i i i Noteii l!i:: s.....-! ii:i:;

10 Bugs Outstanding in Version 1.2

This section describes known remaining implementation errors in Version 1.2,
listed in order by reference number. The list is divided into those that have not
been previously reported (Section 10.1) and those that have been previously re-
ported (Section 10.2).

All bugs pertain to all CM platforms and both execution models, except where
noted.

10.1 Bugs Discovered Since Version 1.1

This section reports outstanding bugs that have not been reported previously.

Doc Correction: Incorrect formula for calculating peak FLOPS on CM-2 slicewise

The formula given in Appendix A (page 39) of the CM Fortran Optimization
Notes: Slicewise Model, Version 1.0, for calculating peak FLOPS rate is incor-
rect. The factor vector-length is extraneous and should be removed from the
formula. This factor is already included in the figures reported in the .peac file.

#938 FORALL fails with array section assignment

A FORALL statement causes a compile-time error if there is an array section (a
colon) on the left-hand side of the FORALL assignment. For example,

FORALL (J = 1:M) X(:,J) = AO(J, BASIS(J))

will not work. The workaround is to introduce a new index to cover the same
range, as in:

FORALL (I = 1:M, J = 1:M) X(I,J) = AO(J, BASIS(J))

#946 The compiler fails to flag mismatched arguments when enabling run-time
safety [-argument_checking, -safety]

The compiler fails to check for mismatched arguments. For example, the follow-
ing user code compiles, even though a subroutine that expects a 3-dimensional

Version 1.2, August 1992

44 CM Fortran Release Notes

CM Fortra":':',,'.n Re4 ---'., .'. "'- ''" :?...,' ""°""'.--'.·..:',:'i..i :.:,, . .-.-lse Noe 45'':: .-'""'-.:.,....4:"';"".-.:

array is called with a 1-dimensional array. When such code is executed, a seg-
mentation fault results.

PROGRAM SEGFAULT

INTEGER FOO(3)

CALL FAULTSEG(FOO)
END

SUBROUTINE FAULTSEG(BAR)

INTEGER BAR(:,:,:,:)

RETURN
END

#950 Data transfer from front end to serial axis can fail [CM-2]

When reading data off the front end into a serial axis of a CM array, data can
become corrupted.

To work around this, read into a temporary: news array. Then use an assignment
statement to copy into the array with the serial dimension.

DOUBLE PRECISION, ARRAY (NY,NX) :: SERIAL

CMFSLAYOUT SERIAL (:SERIAL,:NEWS)

READ(18) (TEMP(I,:), I = 1, NY)
SERIAL = TEMP

#957 The MATMUL intrinsic fails for large arrays [Slice and CM-5]

When given an array with a large on-chip subgrid, the MATMuL intrinsic fails with
an "Integer division by zero" error.

The workaround is to make the array smaller or link with -lcmssl-s to use the
library version of matrix multiplication.

#959 Compiler generates invalid Paris code for PORALL that results in a safety
error during execution [Paris]

Version 1.2, August 1992

CM Fortan Release Noes 45

46 CM Fortran Release Notes

#961 NaN checking (for uninitialized variables) is improperly implemented for
array sections, even if the array section (but not the whole array) has
been initialized [Slice and CM-5]

The workaround is to initialize the whole array first.

#962 Paris logicals represented differently from scalar logicals [Paris]

When written to a file with DIRECT access and then read back, Paris logical val-
ues are represented differently from front-end logical values. Because of this, an
equivalence test between Paris and front-end logical values fails.

#963 A compile-time error occurs when FORALL attempts to spread a 1D array
to be used with a 3D array

#978 Compiling with -list with more than 19 include files causes a compile-
time error

The workaround is to merge headers or sources so as to include fewer than 19
files.

#984 A compile-time error occurs on a substring expression with upper bound
unspecified

The compiler takes the incorrect expression to be an array element reference. For
example, an incorrect reference such as CMSGIN (), implies that CMSGIN is an
array of characters instead of a character string. The character string should be
referenced:

ITYP = CMSGIN(1:1)

#989 A READ from a file into an array section corrupts data elsewhere in the
array or in the other memory locations [Slice and CM-5]

The workaround is to use implied DO loop on the READ instead of an array sec-
tion:

READ (1) ((X(I,J),I=1,7),J=1,7)

Version 1.2, August 1992

Cor..':'n: :..... '" 'Relas Nt 471 01.f'>..

#992 FORMAT statement omits data if it encounters an embedded end-of-
record [Sun and CM-5]

#997 Multiple definitions of blank common can cause run-time error [Sun and
CM-5]

If there are two definitions of blank common, the latter is taken as a redefinition.
This can lead to a segmentation fault if the second definition is smaller than the
first.

#1000 Compile-time error occurs from using the REAL intrinsic within an ex-
pression on a DOUBLE COMPLEX data type that is being assigned to a
DOUBLE PRECISION type [Slice and CM-5]

The compiler fails to promote the REAL output to double-precision real unless a
double-precision MOLD argument is supplied.

The workaround is to use MOLD argument in the REAL intrinsic to cast the result
of the real to a double-precision type.

#1003 SPREAD intrinsic fails with array constructor argument

Use of SPREAD intrinsic with an array constructor as an argument causes a com-
pile-time error.

The workaround is to assign the result of the array constructor to a temp. Use the
temp as an argument to SPREAD.

#1005 UNPACK fails for serial array section [Slice and CM-5]

The UNPACK intrinsic fails at run time with an array section that indexes into a
serial dimension.

The workaround is to copy the array section into a temp and then perform the
unpack on the temp.

#1016 The PACK intrinsic doesn't work with dummy array arguments [Slice and
CM-5]

PACK returns the correct answer if the array arguments are copied into local ar-
rays first and then these local arrays are passed to the PACK intrinsic.

Version 1.2. August 1992

CM Fortran Release Notes 47

48x••...:.:`.:$?~ CM F .. R oe .es<o .s...:..............:......:-............................::: :~.:::5~ : :...q-::::~x-. .:.~.:p$:~:5 ~ : .:: % : .::~::.::::::.:5: :::55~q,.¥::.,-~':: .:>..::':.::::~:: : ::::..5> :: : : !:-.:: :. :::5:::.::-:: : c. ::: ..: ::::':~ :.:: :::::~::: ::~ :.q::>.5 ,,: :q : :::~~:~': :.c %...&: :%:::::; :~~ .:: ::: ::::: .- : :: .: ::::. : ::~~.: : ;4':::.:~: ;::~: : :::: : .:

#1017 Passing character strings between Sun f77 and CM Fortran [Sun and
CM-5]

Sun's f77 compiler and CM Fortran have incompatible calling conventions for
functions returning character strings. Sun f77 passes/expects the address of the
character string to be returned, the size of that character string, and finally the
explicit arguments. CM Fortran, however, passes/expects only the address of the
character string followed by the explicit arguments. In other words, CM Fortran
does not pass the size of the character string.

A workaround exists if the caller is compiled with CM Fortran and the callee is
compiled with Sun f77. Just pass an additional argument specifying the length
of the character string to be returned. For example, in the main program below,
change the function call to TMP = 21C (5,I).

PROGRAM TEST000

CHARACTER LABEL *30,I21C*5,TMP*5
I=23

TMP = I21C(I)

LABEL='COOR.'//TMP

PRINT*, LABEL
END

#1018 -o switch restricted for assumed-size character strings [Sun and CM-5]

Extra garbage characters are printed for assumed-size character strings when the
-o switch is specified.

The workaround is to print substrings instead.

#1021 Array constructors restricted for DATA attribute

If an array type declaration has a DATA attribute and if that array is initialized by
an array constructor that uses a negated lower bound, then the array is initialized
with the wrong data. For example,

PARAMETER (IVELOCITY_MAX=2)

INTEGER, ARRAY(-IVELOCITY_MAX: IVELOCITY_MAX), DATA
$ VELOCITY = [-IVELOCITY_MAX:IVELOCITY_MAX]

produces incorrect results. The workaround is to avoid negated lower bounds.

Version 1.2, August 1992

48 CM Fortran Release Notes

CMFortran Release Notes 49

10.2 Bugs Previously Reported (Version 1.1)

This section reports bugs that were described in the release notes for Version 1.1
and are still outstanding.

#392 OPEN statement has wrong default for BLANK= specifier [VAX]

The BLANK= specifier of the OPEN statement should default to a value of ¢NULL¢
if the specifier is omitted; it incorrectly defaults to ZEROO.

#527 Functions returning adjustable arrays not yet supported

Array-valued functions whose size cannot be determined at compile-time are
currently flagged as erroneous by the compiler. The following valid example
fails to compile.

FUNCTION R(A,B,N)
REAL A(N), B(N), R(N)
IF (SUM(A) > SUM(B)) THEN

R A
ELSE
R=B

END IF
END

#541 PACK without VECTOR argument, passed to an intrinsic

The compiler may generate an error message for a reference to PACK with no
VECTOR argument. This happens only if the reference appears as an argument to
an array-valued intrinsic function whose result size is dependent on its input ar-
gument. In the example below, the first and second references to PACK work, but
the third causes a compiler error message.

PARAMETER (N = 30)
INTEGER A(N)
A = [1:N]

PRINT *, PACK(A, MOD(A,2)==0) I okay
PRINT *, SUM(PACK(A, MOD(A,2)==0)) I okay
PRINT *, CSHIFT(PACK(A, MOD(A,2)==O), 1, 1) I ERROR
END

Version 1.2, August 1992

----2110111-201.-.-��.�' "M Nk

50 CM Fortran Release Notes

#558 FORALL with mask expression and variable indexes fails [-o]

A masked FORALL statement with an index expression involving variables can
fail to produce the correct answer when compiled with optimization.

#561 Concatenation of character substrings may fail at run time

Concatenation of a character substring with a string may cause a segmentation
fault at run time if the starting or ending point of the substring range is not known
at compile time. The example below fails if STR1 and STR2 are character strings
and N is an integer variable whose value is not known at compile time.

CALL FOO(STR1(1:N) // STR2)

The example works if N is a literal or named integer constant.

#599 No LAYOUT directive permitted for array-valued function results

The compiler currently does not allow LAYOUT directives to affect the layout of
array-valued function result variables. Such a function must be declared using an
interface block. The compiler fails to compile the following example, complain-
ing that FOO is an unknown array name.

INTERFACE
FUNCTION FOO(ARG)
REAL FOO(4)

CMF$ LAYOUT FOO() ! currently not supported
END INTERFACE

REAL A(4)
CMF$ LAYOUT A()

A = FOO(42.0)
END

#636 Incorrect array home assumed for array-valued function result

The result variable of an array-valued function should be allocated in CM
memory, since all array-valued function results are CM arrays. The compiler
fails make this happen unless the function result is used in an array operation that
causes it to be allocated in CM memory. For example, the function below re-
quires the assignment to SQUARE to force the result to CM memory.

Version 1.2, August 1992

CM Fortran Re.lease ::Noe:s , : :. -' ';': :, ::::··. .. 1.:-.-~::~:·.;;;; ·..~.;-;.;::;::;-·::::·;~: I·::: :::~j::~~:~.:::::::i::r. : ·· ·:::·..x~::~::.·-: ··:·::;.~;

FUNCTION SQUARE(IGNORED)
INTEGER SQUARE(4,4)
SQUARE = 0 ! force result to CM memory
FORALL (I=1:4, J=1:4) SQUARE(I,J) = I*10 + J
END

The function above can be referenced from a program unit that declares the inter-
face block:

INTERFACE
FUNCTION SQUARE(IGGY)
INTEGER SQUARE(4,4)

END INTERFACE

#668 FORALL statement assigning a [m:n] array constructor fails

The compiler fails with an internal error when attempting to compile the follow-
ing program.

INTEGER B(3,4)
FORALL (J = 1:4) B(:,J) = [1:3] ! compiler fails

PRINT *, B
END

Replacing [1: 3] with [1, 2,3] eliminates the problem.

#680 FORALL with MERGE may compute wrong answer [Paris]

A FORALL assignment in which the MERGE intrinsic is referenced may produce
the wrong answer. The program below illustrates the problem: the results differ
in the last element.

INTEGER A(32), B(32), C(32)
CMF$ LAYOUT A(), B(), C()

A = -99
B = -99

FORALL (I=1:32) C(I) = I - 16
DO I=1,32
A(I) = MERGE(C(I+1), -99, I+1 < 30) ! WORKS

END DO
FORALL (I=1:32)

$ B(I) = MERGE(C(I+1), -99, I+1 < 30) ! FAILS
PRINT *, A(32), B(32)
END

Version 1.2, August 1992

CM Fortran Release Notes 51

52 CM Fota Releas'"'";''"'';.:: N t........;' _ ; :s.: ~·:: · ·:'·-:~·::·:·::·:·::·: C ·:·~·:·:;i:·: ·~·:·::·:·::·:·X:~·: :·: · :·:··:·;.;:·;:.. ::·:·).:·:

#718 DO loop with real index may fail

A Do loop with a real index variable may not increment properly. The example
below fails as is, but works if the third loop control expression (PI/2) is re-
placed by PI.

DO X = 0., PI*2, PI/2
PRINT *, X

END DO

END

#772 Complex PRODUCT with mask gives incorrect answers [Paris]

The PRODUCT intrinsic sometimes fails on complex array arguments. The pro-
gram below prints incorrect answers regardless of whether the DIM argument is
1, 2, or 3.

COMPLEX A(2,3,2)
A = RESHAPE ([2,3,2], [2 [3 [(0,0),(2,2)]]]

PRINT *, PRODUCT(A, DIM=1, MASK = A .NE. 0)
END

#817 DO WHILE loop with a .NOT. in control expression [Paris]

A DO WHILE loop whose control expression begins with the operator . NOT. may

exit prematurely. The DO WHILE loop in the program below terminates (incor-
rectly) after one iteration; it should loop indefinitely.

LOGICAL DONE
DONE = .FALSE.
DO WHILE (.NOT. DONE)
CALL DOIT(DONE)

ENDDO
END

SUBROUTINE DOIT (DONE)
LOGICAL DONE

REAL TEMP(8)
TEMP = 42.0
DONE = .NOT. ANY (TEMP > 0)
END

A workaround is to rewrite the loop condition without the . NOT. operator, as in

Version 1.2, August 1992

52 CM Fortran Release Notes

CM Fortran Release f~iiNotes. 9 53 k KtzK ., A . :

NOTDONE = .TRUE.
DO WHILE (NOTDONE)
CALL DOIT(.NOT. NOTDONE)

ENDDO
END

#875 MAxLochmINLoc may choose non-first max element [Slice and CM-5]

MAMLOC fails to return the indexes of the first maximum element of an array if
the array has more than one maximum. MINLOC suffers from a similar problem.

PRINT *, MAXLOC([4,7,3,7,5,-2,3,-2])
PRINT *, MINLOC([4,7,3,7,5,-2,3,-2])
END

The example above prints the values 4 and 8; the correct answer is 2 and 6.

#878 FORALL with variable offset on index [Paris]

The following program incorrectly prints zeros.

PARAMETER (N=64, M=28)
REAL A(N,N,N), T(M)

CMF$ LAYOUT A(,,), T()
FORALL (I = 1:M) T(I) = EXP(-0.008*I**2/M)
A = 1.
FORALL (I=1:M, J=1:N, K=1:N) A(M-I+1,J,K) =

$ A(M-I+1,J,K)*T(I)
PRINT f(I10, 2X, E14.6)f, (I, A(I,N,N), I=1,M)
END

A workaround is to introduce a temporary CM array to allow the index expres-
sion M-I+l to be moved into another FORALL statement. The second FORALL

statement then becomes:

FORALL (I=1:M) TMP(I) = T(M-I+1)
FORALL (I=1:M,J=1:N,K=1:N) A(I,J,K) = A(I,J,K)*TMP(I)

Version 1.2, August 1992

CM Fortran Release Notes 53

54 CM Fortran Release Notes

#884 SPREAD gives RTS error on subgrids larger than 64K words [Slice and
CM-5]

The SPREAD function fails if the total size of the subgrid in which its SOURCE
argument is allocated exceeds 64K words. The run-time system prints a diagnos-
tic message if this error occurs.

CALL TEST(2048) !Runs only on large-memory system
END

SUBROUTINE TEST(N)
REAL A(N,N,4), REAL B(N,N)
B = 17.

A = SPREAD(B, DIM=3, NCOPIES=4
END

A workaround is to align c with the original array A rather than the aligned array
B, as in

CMF$ ALIGN C(I) WITH A(1,1,I)

#888 FORALL statement can cause RTS warning [Slice and CM-5]

The FORALL statement below generates a warning from the run-time system in-
dicating that an invalid send/get address exists at specified array coordinates.

INTEGER A(8), T(8)
K= 4
T = [1:8]

A = -99
FORALL (I=1:8, I<=4) A(I) = T(I + K)
PRINT *, A
END

#909 NaN checking of single-precision complex may fail [Slice and CM-5]

NaN safety checking for CM arrays of type single-precision complex (invoked
using the -safety=10 switch) may incorrectly warn of invalid values even
when the values are legitimate.

COMPLEX E(16)
E = (2,3)
PRINT *, E
END

Safety checking works correctly for double-precision complex arrays.

Version 1.2, August 1992

....jx~�:! : :'::. : : �, :./-.. ~: ·: -: :·:-: :. :J.~.~ i ~i~~i3~i i?:-: :...: :~ i-~'"::: ~:: :~i~i~i~:i i :' : :::-:.'--:'.-.:: :::.: :: ~ :.......:...:'::'...:i ::. . .

#920 List-directed input of 80+ character records [Sun and CM-5]

List-directed input of a record with 80 or more characters fails with an
end-of-file error.

LOGICAL A(50)
OPEN(UNIT=10, FILE=¢TEST1¢, STATUS=UNKNOWN)
A = .FALSE.
WRITE(10, *)A
CLOSE(10)
OPEN(UNIT=10, FILE=¢TEST1¢, STATUS=¢UNKNOWN)

READ(10,*) A ! this statement fails
END

One possible workaround is to use formatted I/0 to read and write files.

Version 1.2, August 1992

CM Fortran Release Notes 55

