@

The
Connection Machine
System

CM Fortran Utility Library
Reference Manual

Preliminary Documentation for Version 2.0 Beta
January 1993

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, January 1993

ek deke e de e e e e dedede deke e e e de e dedede e e dede e e de e e dede e e e e e ko e e o e e e e e e dede e dede e dede e ek
PRELIMINARY DOCUMENTATION

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines assumes no liability for errors in this
document.

This document does not describe any product that is currently available from Thinking Machines Corporation,
and Thinking Machines does not commit to implement the contents of this document in any product.

sededededededodedode gk dodededodedk ke kkdededekhkdokded vk ki ke ke d ki kb k ki hikdhikhhdkdhdhhdkhdikhkilhkikhhd

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMost, CMAX, and Prism are trademarks of Thinking Machines Corporation. '
C*®is a registered trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.

CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.

Scalable Computing (SC) is a trademark of Thinking Machines Corporation.

Thinking Machines® is a registered trademark of Thinking Machines Corporation.

SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1991-1993 by Thinking Machines Corporation. All rights reserved.

245 First Street
Cambridge, Massachusetts 02142 -1264
(617) 234-1000

ontents

Field Test SUpPOrtottt i i ittt ettt ettt vi
About This Manualt i i vii
Chapter 1 Introduction iiiiiiiiiinnn.n 1
1.1 WhyaUtility Library?ttt 1
1.2 Contents of the Utility Library cciiiiiiiiieneenn., 2
1.3 The Utility Library Header File iiiiiiiine, 3
1.4 Restrictions on Utility Procedurescoooiiiiiiine., 3

Chapter 2 Inquiries, Random Numbers,

and Dynamic Allocation 5
2.1 SystemInquiry Functionsc.cciiiiiiiiiiiniiiiinnnn, 5
2.1.1 Language COMPAriSONouviinirnneennenreeennns 6
2.2 Array Inquiry Subroutine i il it 7
22.1 Language Comparisoncocvvivenenenencannanns 7
2.3 Random Number Generationcoviiiiiiiiiiinnnnnn. 8
2.3.1 Language CompariSoncocvveveuenineacannnnns 8
2.4 Dynamic Array Allocationcviiiiiiiin i 9
: 24.1 AllocationExamplettt 10
2.4.2 Controlling Array Layoutcooiiirinnnnennnenns 11
2.4.3 Detailed-Layout Allocation Example 11
244 ReStTiCHONS .. .ovuvttiiniiiii it iiiiiii s iiinaeens 13
2.4.5 Language CompariSOncccveeveenunnnerceenenns 13
Chapter 3 DataMotion iiiiiiiiiinnnen 15
31 Amay Transfers........cooiiiiiiiiiii i i i i 15
3.1.1 Language COMPAriSONcovvuuernnrsennteennarens 16
3.2 ScatterswithCombiningc.civiiniininiinriniinnennnns 17
3.2.1 Constructing Send Address Arrays..........ooviiiinannaen. 17
3.2.2 Address-Construction and Scatter Example 19
3.2.3 Language COmpariSOncoveuiveneenrennrnnnnas 20

Version 2.0 Beta, January 1993

Copyright © 1991-1993 Thinking Machines Corporation il

iv

CM Fortran Utility Library

3.3 Paralle]l Prefix Operationscccoieeienireenennnannnennnans 21
3.3.1 ScanSegmentscciiiiieeeriiteiteaananenn 22

332 ScamningExamplecc0iiiiiiiiiiiieriaiiannn. 23

3.3.3 Language CompariSoncovceeererecnnanannnnns 24

34 Rankingand Sorting...........covviiiiiiiiinnecriinterennnanenns 25
341 AxisSegmentsiiiiiiiiiiiiiiiieriiaeranen 25

3.4.2 Ranking and Sorting Examplesccoivvniiinnnnn, 27

3.5 Table LOOK-UPS . ..o vvverieenenennnncnancncoesosasossnannnannanns 28
3.5.1 Language CompariSOncccoveeerecennnnnannannns 29

3.6 Gathers/Scatterson Serial AXeSccoiireiairetrraenenrriannnns 30
3.6.1 Conditions for Fast Performancecccvvvunnnn. 30

3.6.2 Gather/Scatter Examplesccoiiiiiriinnnnnnnnnn 32

3.6.3 Language COmpAariSOnccoevneeneenrennnnnns 32
Chapter4 Parallel /O iiiiiiiiiiinn... 33
41 CMFile Operationsovuveiiiinneernreancronnrasesannnns 33
4.1.1 Opening, Closing, and Removing CM Files 34

4.1.2 Readingand WritingCM Files............ccevvvivvenennnn 35

4.1.3 Manipulating CM Files.............ccoiiiiiiinnennnnennn, 39

4.1.4 Example of CM File Operationsc.oo.. 42

4.2 Parallel JJO via Devicesand Socketsoovviiieiininneneneann, 43
Appendix Dictionary of Utility Procedures 47
CMF_ALLOCATE_ARRAY .0\'tvnreenernnnnennsesonsesnnsssnnnsenennns 50
CMF_ALLOCATE_DETAILED ARRAYcenevennsecnnnrennnnsannenns 53
CMF_ALLOCATE_LAYOUT ARRAY ..tetuuneeennnseenunnnnseennnnsennnns 57
CMF_ALLOCATE_TABLE ..\'tuusttunsenneeanessonseennssonnarennennns 59
CMF _ARCHITECTURE ...iiivuurireeoosrosesssncssssseensosnsesssnssoss 61

01 1000 =34 o PETTTI 62
CMF_ASET 1D .. tuuetunnnennnncunssaneesnssensesenneseonsesnnesanss 64
CMF_AVAILABLE _MEMORY ttvuusernnneeennareesnnneseesnnnnensnnnnns 66

CMF_CM_ARRAY_FROM FILEueeeevvnnnsessecensennnsnsenseennns 67
CMF_CM _ARRAY FROM FILE FMScovevnesennsscnnesnnonscncsanss 69
CMF_CM_ARRAY _FROM FILE SO ...ccuveuvenseeerencssnssonernnsennes T
CMF_CM ARRAY TO FILE i.uiuiiuiiuerecnsocnnsnroconcsasocsansssnses 73
CMF_CM_ARRAY TO FILE FMS ...tuvvunrnnsennennsnnsecnernnsnnrens 75
CMF_CM_ARRAY _TO FILE SO +ieuttueeunrunrensonnesnescoesnasnnnaes 77
CMF_DEALLOCATE ARRAY ...iiviviniernnrnssnssonssanssosnss serseseen 79
Version 2.0 Beta, January 1993

Copyright © 1991-1993 Thinking Machines Corporation

Contents v

CMF_DEALLOCATE_TABLEc0vuvnenn Ceeirecaiasaeteieienanennas 80
CMF_DEPOSIT_GRID_COORDINATEeevvuenrnrnnvasacenucnnnns ... 81
CMF_DESCRIBE_ARRAY e eiaiareseeieieeara i naaaas 83
CMF_FE ARRAY FROM CM......... et aeieaeaes el 84
CMF_FE_ARRAY TO CM R Ceereeeietisiens 85
CMF_FILE CLOSE t.vvuvninrnenernesncsssusesssscessnssnsnssasnasnnss 86
CMF_FILE FDOPENcovevrnnninnsncncncnss Ceeeeaeen. B - 1/
CMF_FILE GET_FD .ututuiutnrnnnesarucnrecsasasocncncnenesnsnsssnes 88
CMF_FILE LSEEK ..vvnviiiunnrnnrnnrnsnnenneneens cevees Ceerreaeeaes 89
CMF_FILE LSEEK FMS e tteanerraiarei e R |
'CMF_FILE OPEN .t.itvvenennernnroneinsennesnnssnnsanss Ceerieeiaeees 93
CMF_FILE REWIND ouuvrennrnrensneronenceasnesncsnsoscasnssnnsnses 94
CMF_FILE TRUNCATEcovnenrenrncnsnnns Ceeraeieaeaean ceeees . 95
CMF_FILE UNLINK ctootiuvueneenenncnncnnnnssassnsecnassasnssasanss 97
CMF_GET_GEOMETRY_ID ...vvvvenevnrncncncens Cereeaeieeeieraaea, 98
CMF_LOOKUP_IN TABLE ..uvuveeeuencnesesacssnossonsscnsnsossnsnnns 99
CMF_MAKE SEND ADDRESS ceeeens Cierenens Ceeerrieiaaaes 101
CMF_MY_SEND_ADDRESS et eierarareteeaaaaeas e, 103
CMF_NUMBER_OF _PROCESSORS ...t tueuierntncrsnsasnsncesnesnencncns 105
(0713 0)30) -1 N Ceeenes Ceeeeaeeees Cereeeans .. 106
CMF_RANDOM ...0vnenenenennncnennnnsnsnnness Cetieerrarreiaeeaaee, . 107
CMF_RANDOMIZE +1vueuenrnenneennnsncnennsacnesesocnsnssrncnesnonns 109
CMF_RANK .+ .ttuinenneenroneenesncsonssnnsonssossesasancenssosasneaes 110
CMF_SCANvvvvnnnnnnns ettt eraiaieieietae e aaanes N
CMF_SEND .« ttuuunnsteennnennnnnsecennnaseseennnesessessnnnnenenes 119
CMF_SIZEOF_ARRAY ELEMENT Cerereiaieaes Cereraeaieeeees 122
CMF_SORT e eetiaeeatieseiie it ta ettt 123
Version 2.0 Beta, January 1993

Copyright © 1991-1993 Thinking Machines Corporation

Field Test Support

Field test software users are encouraged to communicate with Thinking
Machines Corporation as fully as possible throughout the test period. Please
report any errors you may find in this software and suggest ways to improve it.

‘When reporting an error, please provide as much information as possible to help
us identify the problem. A code example that failed to execute, a session tran-
script, the record of a backtrace, or other such information is extremely helpful

in this regard.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for field test support. Otherwise, please contact Thinking
Machines’ home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

Version 2.0 Beta, January 1993

Copyright © 1991-1993 Thinking Machines Corporation

customer-support@think.com

ames ! think!customer-support

Thinking Machines Corporation
Customet Support '

245 First Street

Cambridge, Massachusetts 02142-1264

(617) 234-4000

About This Manua

Objectives of This Manual

This manual provides reference and usage information about the procedures in
the CM Fortran Utility Library.

Intended Audience

This manual assumes familiarity with CM Fortran programming.

Organization of This Manual

The chapters of this manual describe the functional categories of utility
procedures and suggest how to use them. The appendix is a dictionary of the
individual procedures.

Revision Information

This is a preliminary draft of a new manual. The Utility Library was previously
documented in an appendix to the CM Fortran Users Guide, Version 1.1.

Related Documents

= The CM Fortran Reference Manual defines the language; the CM Fortran
Users Guide provides information about using the compiler.

= The dictionary entries in this manual are available on line as man pages.
View them with the command man on CM-5 or cmman on CM-2/200,
specifying the utility procedure name in uppercase.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation vi

Chapter 1

Introduction

1.1

The Utility Library provides convenient access from CM Fortran to the capabili-
ties of lower-level CM software. The purpose is typically to achieve functionality
or performance beyond what is currently available from the compiler.

As the compiler continues to develop, some of the utility procedures become
redundant with CM Fortran language features. This manual compares utility pro-
cedures with the corresponding language features in the current release and notes
any differences in behavior or performance.

Why a Utility Library?

CM Fortran programmers can use Utility Library procedures in situations where
one is normally tempted to make explicit calls to lower-level software. There are
several advantages to using the Utility Library instead in these situations:

® Convenience. The utility procedures take CM Fortran array names and
other CM Fortran data objects as arguments. There is no need to convert
CM Fortran objects into the data types used by lower-level software.

* CM Portability. With the few exceptions noted, the utility procedures sup-
port all CM hardware configurations and execution models, regardless of
the particular lower-level software involved. There is no need to recode
these calls to port a program from one CM system to another, even though
the underlying system software may be quite different.

= Support. The Utility Library is a supported part of the CM Fortran prod-
uct. Unlike some of the underlying system software, the library remains
stable over time so that programs using it do not require maintenance.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation 1

CM Fortran Utility Library

1.2 Contents of the Utility Library

The chapters that follow describe the Utility Library procedures under these
functional categories.
= Inquiries
* System inquiry
= Array inquiry
®* Random number generation
® Dynamic array allocation
= Data motion (interprocessor)
= Array transfers
= Scatters with combining (plus
array address construction)
= Paralle] prefix operations
= Ranking and sorting
= Data motion (local)
= Table look-ups
= Gathers/scatters on serial axes
® Parallel /O
= CM file operations
= CM J/O via devices or sockets

1.3 The Utility Library Header File

Each program unit that uses procedures from the Utility Library must include its
header file:

INCLUDE ‘/usr/include/cm/CMF_defs.h’

The pathname of CMF_de£s . h may be different if your system administrator has
revised the CM directory structure.

The compiler command cmf links with the Utility Library automatically; no
explicit linking is required.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

1.4 Restrictions on Utility Procedures

" Aligned arrays. The utility procedures do not operate on arrays that are
aligned with other arrays of higher rank or aligned with non-zero dimen-
sion offset(s) with any other array.

= Lower bounds. The utility procedures assume that all array dimensions
have a lower bound of 1. Any other lower bound value is ignored. (An
exception is the parallel I/O procedures, which accept arrays with any
lower bound value.)

A few restrictions apply only to particular procedures. These are noted both in
the text discussing the functional categories and in the individual procedure
descriptions in the appendix.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Chapter 2

Inquiries, Random Numbers,
and Dynamic Allocation

2.1 System Inquiry Functions

Three functions report information about the CM system that is executing the
program. They all take no arguments and return integer scalar results.

CMF_ARCHITECTURE returns a predefined constant that identifies the CM hard-
ware platform and execution model:

ARCH = CMF_ARCHITECTURE()

CMF_NUMBER_OF_PROCESSORS reports the number of processing elements
available:

NUM = CMF_NUMBER_OF_ PROCESSORS ()
The table below shows the return values of these two inquiry functions. Notice

that the CM system component that serves as the “processing element” is differ-
ent for the various platforms and execution models.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran hardware platforms and execution models.

Compiler CMF_ARCHITECTURE CMF_NUMBER_OF _
options returns PROCESSORS returns
CM-5
Vector units —cm5 —vu CMF_CM5_VU number of vector units
Nodes -cm5 -sparc CMF_CM5_SPARC number of nodes
CM-200

Slicewise = -cm200 -slicewise CMF_CM200_SLICEWISE number of nodes

Paris -cm200 —paris CMF_CM200_PARIS number of processors
CM-2

Slicewise -cm2 -slicewlse CMF_CM2_SLICEWISE number of nodes

Paris -cm2 -paris CMF_CM2_PARIS number of processors
CM Fortran .

Simulator -cmsim CMF_CMSIM " number of processors (1)

See the CM Fortran User s Guide for more information on execution models and
the hardware platforms they support. '

A third inquiry function, CMF_AVAILABLE_MEMORY, reports the number of bytes
of memory still available in each processing element:

= CMF_AVAILABLE MEMORY()

NOTE: This function returns incorrect results for the vector unit model in Version
2.0 Beta.

2.1.1 Language Comparison

No comparable language feature.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

2.2 Array Inquiry Subroutine

The subroutine CMF_DESCRIBE_ARRAY prints information about a CM array to
standard output:

CALL CMF_DESCRIBE_ ARRAY(ARRAY)

The output includes the home, rank, and dimension extents of the array, as well
as detailed information about its layout on the processing elements.

The Utility Library also providés two special-purpose array inquiry functions.

® CMF_GET_GEOMETRY_ID is used only in constructing destination
addresses for scatter operations; it is described in Section 3.2.1.

® CMF_SIZEOF_ARRAY_ ELEMENT is used only for certain operations on
CM files; it is described in Section 4.1.3.

2.2.1 Language Comparison

No comparable language feature.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

2.3 Random Number Generation

Two subroutines serve to fill a CM array with pseudo random numbers:
CALL CMF_RANDOMIZE(SEED)
CALL CMF_RANDOM(DEST, LIMIT)

CMF_RANDOMIZE sets a seed for the random number generator used by
CMF_RANDOM. CMF_RANDOM uses the initialized random number generator to
store a pseudo random number in each element of the DEST array.

The LIMIT argument should always be specified as 1.0 for floating-point values.
For integers, the argument serves as the exclusive upper bound of the values gen-
erated. If you do not want to set a limit for integer values, specify the LIMIT

argument as 0.

The random number generator algorithm used by these routines is Wolfram’s
Rule 30 Cellular Automaton, described in Stephen Wolfram, ‘““‘Random
Sequence Generation by Cellular Automata,” Advances in Applied Mathematics
7, pp. 123-69 (1986). This paper may be more readily available as a reprint in
Stephen Wolfram, Theory and Application of Cellular Automata, World Scien-
tific (1986).

The cellular automaton is run on a finite string of bits, i=0,...,N-1, with periodic
boundary conditions (so that site N is equivalent to site 0). In the CM imple-
mentation N = 59.

* For integer data the random numbers are generated by simply running the
automaton for 32 generations.

® For real, double-precision real, complex, or double-precision complex
data, the random numbers are generated by running the automaton for s
generations (where s is the mantissa length), and setting the exponent bits
and sign bit so that the result is uniformly distributed between 2.0 and 1.0.
Then 1.0 is subtracted from the result to yield a number that is uniformly
distributed between 0.0 and 1.0.

2.3.1 Language Comparison

No comparable language feature.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

3

1

Reference Manual 9

2.4 Dynamic Array Allocation

Three subroutines allocate CM arrays at run time, giving the programmer differ-
ent levels of control over the array’s layout. A fourth subroutine deallocates an

array created by any of the other three.

CALL CMF_ALLOCATE_ARRAY
& (FE_ARRAY, EXTENTS, RANK, TYPE)

CALL CMF_ALLOCATE_LAYOUT ARRAY
& (FE_ARRAY, EXTENTS, RANK, TYPE, ORDERS, WEIGHTS)

CALL CMF_ALLOCATE_DETAILED_ARRAY
& (FE_ARRAY, EXTENTS, RANK, TYPE, ORDERS,
& SUBGRIDS, PMASKS)

CALL CMF_DEALLOCATE_ARRAY(FE_ARRAY)

The FE_ARRAY argument is an integer front-end vector whose length is the pre-
defined constant CMF_SIZEOF_DESCRIPTOR. This array is treated as the
descriptor of a CM array; the remaining arguments specify information to be
placed in the slots of the descriptor. All three variants take as arguments:

= EXTENTS a front-end vector that contains dimension extents
" RANK a scalar integer that indicates rank

= TYPE A pre-defined integer constant that indicates type:
CMF_LOGICAL, CMF_S_INTEGER,
CMF_FLOAT, CMF_DOUBLE,
CMF_COMPLEX, CMF_DOUBLE_COMPLEX

The FE_ARRAY argument cannot be used as a CM array within the program unit
that calls the allocation subroutine, since that program unit treats it as a front-end
array. Instead, you pass the FE_ARRAY argument (that is, the descriptor) to
another program unit that explicitly declares it a CM array. This method is illus-
trated in the following example.

Version 2.0 Beta, January 1993
Copyright © 19911993 Thinking Machines Corporation

10

ty

CM Fortran Utili

Library

2.4.1 Allocation Example (Canonical Layout)

SUBROUTINE ALLOCATE ()

IMPLICIT NONE

INTEGER NEW_ARRAY (CMF_SIZEOF DESCRIPTOR)
INTEGER EXTENTS(7), RANK, I

PARAMETER (RANK=3)

INCLUDE ‘/usr/include/cm/CMF_defs.h’
DO I=1,RANK
EXTENTS(I) = I * 10

END DO

CALL CMF_ALLOCATE ARRAY
& (NEW_ARRAY, EXTENTS, RANK, CMF_S INTEGER)

CALL PRINT DIMS3D (NEW_ARRAY)
CALL CMF_DEALLOCATE_ ARRAY (NEW_ARRAY)

END SUBROUTINE ALLOCATE

SUBROUTINE PRINT_DIMS3D(IN)
IMPLICIT NONE
INTEGER IN(:,:,:)

PRINT *,”Shape of DUMMY is (”,DUBOUND(IN,1),
& »,” ,DUBOUND (IN, 2),
& »," DUBOUND (IN,3),")"

END SUBROUTINE PRINT DIMS3D

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

oy

Reference Manual 11

2.4.2 Controlling Array Layout

The “layout” and “detailed” variants of the allocation procedures take additional
front-end vector arguments that contain layout information for each of the array
dimensions. The significance of these arguments is comparable to the various
forms of the em£ compiler directive LAYOUT.

ORDERS contains symbolic constants indicating the ordering of each
dimension: CMF_SERIAL ORDER, CMF_NEWS_ORDER, or (for CM-2/200
only) CMF_SEND_ORDER.

WEIGHTS is a vector of integers indicating relative dimension weights.

SUBGRIDS is a vector of integers indicating the desired subgrid length for
each dimension (comparable to the :BLOCK item in the detailed-layout
directive).

PMASKS is a vector of integers that serve as bit-masks to indicate the
desired processors (comparable to the : PDESC item in the detailed-layout
directive). If ORDERS contains the value CMF_SERIAL_ORDER for any
dimension, then PMASKS must contain 0 for that dimension.

There is no form directly comparable to the : BLOCK : PROCS form of the detailed
LAYOUT directive. However, if PMASKS contains all zeros, the system computes
the number of processors for each axis as extent / subgrid-length, rounded if nec-
essary to the next power of 2.)

2.4.3 Allocation Example (Detailed Layout)

IMPLICIT NONE

INCLUDE ’/usr/include/cm/CMF_defs.h’

INTEGER NEWARRAY (CMF_SIZEOF_DESCRIPTOR)

INTEGER EXTENTS(7),ORDERS(7),SUBGRIDS (7),PMASKS (7)
INTEGER RANK,I

INTEGER NPN,NPN_FRAC, FRAC, SG1,SG2

REAL A(200)

PARAMETER (RANK = 2)
PARAMETER (FRAC = 4)
PARAMETER (SGl1 = 5, SG2 = 40)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

12 CM Fortran Utility Library

FIRE 4
i qi

A = 1.0 ! initialize if CM-2 running in auto-attach mode

NPN = CMF_NUMBER_OF_PROCESSORS ()
NPN_FRAC NPN/FRAC

PMASKS (1) = (NPN_FRAC - 1) * FRAC
PMASKS(2) = FRAC - 1 '

SG1
SG2

SUBGRIDS (1)
SUBGRIDS (2)

EXTENTS (1) = NPN_FRAC * SG1
EXTENTS (2) = FRAC * SG2

DO I = 1,RANK
ORDERS (I) . = CMF_NEWS_ORDER
END DO

CALL CMF_ALLOCATE DETAILED_ ARRAY
& (NEWARRAY, EXTENTS, RANK, CMF_FLOAT, ORDERS, SUBGRIDS, PMASKS)

CALL USE_NEWARRAY (NEWARRAY, EXTENTS)

CALL CMF_DEALLOCATE ARRAY (NEWARRAY)
END

SUBROUTINE USE_NEWARRAY (A, EXT)

INTEGER EXT(2)

REAL A(EXT(1),EXT(2)), B(EXT(1),EXT(2))
CMF$ LAYOUT A(:,:)
CMF$ ALIGN B(I,J) WITH aA(I,J) .

B = CSHIFT(A,DIM=1,SHIFT=1)
C Other operations on arrays A and B

RETURN
END

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Reference Manual

13

2.44 Restrictions

In addition to the general restrictions listed in Section 1.4, the following restric-
tions apply only to the dynamic allocation utilities.

= All four dynamic allocation utilities are incompatible with run-time safety,
including argument checking and NaN checking. Do not use -safety or
-argument_checking to compile a program that uses these procedures.

* The procedure CMF_ALLOCATE_DETAILED_ARRAY is not supported
under the Paris execution model on CM-2 or CM-200.

2.4.5 Language Comparison

The dynamic allocation utility procedures are largely, but not completely, redun-
dant with the CM Fortran statement ALLOCATE, which creates deferred-shape
CM arrays. Some differences are:

L s Deferred-shape arrays cannot appear in COMMON, so their names are not
; 3 available to all program units. In contrast, arrays created with
- CMF_ALLOCATE_ARRAY or one of its variants can be globally available.

® Data types and ranks of deferred-shape arrays must be known at compile
time. With CMF_ALLOCATE_ARRAY, they can be decided at run time
(although used only in subroutines where the appropriate type and rank are
declared).

= If a deferred-shape array is subject to a LAYOUT directive, the directive
must appear in the specification part of the program unit (before any
executable code). If you use the utility CMF_ALLOCATE_LAYOUT ARRAY
Or CMF_ALLOCATE_DETAILED_ ARRAY instead, you can compute before
the call to determine layout-related values, such as subgrid lengths.

® The dynamic allocation utilities are incompatible with run-time safety, but
deferred-shape arrays can be used in programs compiled with -safety.

Neither the Utility Library nor the CM Fortran language provides for dynamic

allocation of front-end arrays or scalars. For this purpose, use the CM Fortran

subroutines FMALLOC and FFREE in 1ibem£77 . a (described in the CM Fortran

User's Guide). These subroutines provide an interface to the standard malloc

and free functionality that, together with the %VAL operator, enable you to man-
- age front-end storage.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

il

Chapter 3
Data Motion

This chapter describes the utility procedures that perform three distinct kinds of
data movement:

® Array transfers between the control processor and the parallel unit
= Data cémmunication among the parallel processing elements
» Scatters with combining
P s Paralle] prefix operatmns
’ » Ranking and sorting
= Data motion on serial (locally stored) array dimensions
* Table look-ups
= Gathers/scatters on serial axes

3.1 Array Transfers

Two subroutines perform block transfers of array data between the serial control
processor and the parallel processing unit:
CALL CMF_FE_ARRAY TO_CM(DEST, SOURCE)

CALL CMF_FE ARRAY FROM CM(DEST, SOURCE)

CMF_FE_ARRAY_TO_CM copies the contents of a front-end array SOURCE into a
CM array DEST. CMF_FE_ARRAY FROM CM performs the opposite procedure.
The source and destination arrays must match in shape and type.

@

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation ' 15

16

fE e

cM Fortran Uullty Lzbrary

e

3.1.1 Language Comparison

The FORALL statement can express CM-FE array transfers, such as:
FORALL (I=1:N) FE_ARRAY(I) = CM_ARRAY (I)

However, in Version 2.0 this statement generates a DO loop with calls to read-
to-processor or write-from-processor; that is, it transfers array data
between the system components one element at a time. For this release, the array-
transfer utilities give better performance.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

oF
1 ‘.J
(" 0

Reference Manual 17

3.2 Scatters with Combining

3.2.1

The cMF_sEND__ family of subroutines are used to scatter elements from a source
array to specified locations in a destination array. If more than one value is sent
to a single location, the values are combined according to the operation specified
in the subroutine name:

CALL CMF_SEND_combiner
& (DEST, SEND_ADDRESS, SOURCE, MASK)

The combiners are OVERWRITE, ADD, MAX, MIN, IOR, IAND, and TEOR.

® CMF_SEND_OVERWRITE operates on CM arrays of any type. It arbitrarily
chooses one of the colliding values to store in the destination location.

® CMF_SEND_ADD operates on any numeric type.

" CMF_SEND_MAX and _MIN operate on integer and real arrays (single- or
double-precision).

. CMF_SEND_IOR, _IAND, and _IEOR operate on integer and logical
arrays. They correspond to logical inclusive OR, logical AND, and logical
exclusive OR, respectively. Integer operations are done on a bitwise basis.

The MASK argument controls which elements of SOURCE are selected for the
operation. The SEND_ADDRESS argument is a CM array of destination addresses,
constructed with the procedures described below. It must be conformable with
the SOURCE array.

Constructing Send Address Arrays

A send address is an internal format for the linearized address of an n-dimen-
sional coordinate. As such, it specifies an absolute location for a data element
that is independent of its relative grid location.

Three procedures are used to convert grid coordinates (specifying the desired
locations in the DEST array) into send addresses for use with CMF_SEND__ :

GEOMETRY = CMF_GET_GEOMETRY_ID(ARRAY)

CALL CMF_MAKE SEND ADDRESS(ARRAY)

CALL CMF_DEPOSIT GRID_COORDINATE

& (GEOMETRY, SEND_ADDRESS, AXIS, COORDINATE, MASK)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

18 CM Fortran Utility Library
RS R S

(A related subroutine, CMF_MY_SEND_ADDRESS (ARRAY), fills an array with the
send addresses of its own elements.)

To construct a send-address array for use with cMF_SEND_, perform the follow-
ing steps:

1. Declare an array to hold the send addresses. The array must have the same
shape and layout as the SOURCE array with which it will be used.

REAL*8 ASEND_ADDRESS
DIMENSION SEND_ADDRESS(..) ! same shape as source

NOTE: The SEND_ADDRESS array may be declared as INTEGER, or as
DOUBLE PRECISION or REAL*8. The CM-2/200 computes send addresses
as 4-byte values; the CM-5 uses 8-byte send addresses. Both platforms
accept either 4-byte or 8-byte send-address arrays. However, there may be
a performance penalty for using 4-byte addresses on the CM-5, as the sys-
tem coerces the values to 8-byte length. There is no performance penalty
for using 8-byte send-address arrays on the CM-2, although there is some
waste of memory. For maximum portability, CM Fortran programs should
declare send-address arrays as DOUBLE PRECISION or REAL*8. INTEGER
send-address arrays should only be used in programs to be run on the
CM-2, and only when conserving memory is an issue.

2. Call cMF_MAKE_SEND_ADDRESS to initialize the send address array.
CALL CMF_MAKE SEND ADDRESS(SEND_ADDRESS)

3. Use the function CMF_GET_GEOMETRY_ID to retrieve the geometry iden-
tifier of the DEST array:

GEOMETRY = CMF_GET_GEOMETRY_ID(DEST)

A geometry contains information about the shape and layout of a CM
array, in this case, the array for which send addresses are being
constructed.

4. Call cMF_DEPOSIT_ GRID_COORDINATE on the coordinates for one axis.

CALL CMF_DEPOSIT GRID_COORDINATE
& (GEOMETRY, SEND_ADDRESS, AXIS, COORDINATE, MASK)

The subroutine CMF_DEPOSIT GRID_COORDINATE incorporates the grid
coordinates for one axis into the send addresses being constructed. The
COORDINATE array contains the grid coordinates for the axis of GEOME -
TRY specified by Ax1s.

Version 2.0 Beta, January 1993
Copyright © 19911993 Thinking Machines Corpcration

Reference Manual 19

NOTE: The grid coordinates passed to CMF_DEPOSIT GRID_COORDI -
NATE should be 1-based. If you have specified a lower bound other than
1 for an array, you must adjust the coordinates specified in COORDINATE
by subtracting 1 less than the lower bound.

5. Call cMF_DEPOSIT GRID_COORDINATE again for each remaining axis
of the DEST array, incorporating into the send address the COORDINATE
values for that axis.

6. Pass the array of send addresses to the desired CMF_SEND__ procedure.

3.2.2 Address-Construction and Scatter Example

The example below shows how to construct send addresses for a call to
CMF_SEND_ADD.

SUBROUTINE HISTOGRAM(OUT, IN, V1, V2)

o IMPLICIT NONE
;‘m“’ REAL, ARRAY(:,:) :: OUT, IN
INTEGER, ARRAY(:,:) :: V1,V2
REAL*S, ARRAY (DUBOUND(IN,1),DUBOUND (IN,2)) :: SADDR

INTEGER GEOM
CMF$ ALIGN SADDR(I,J) WITH IN(I,J)

INCLUDE ‘/usr/include/cm/CMF_defs.h’

.C Get OUT array’s geometry identifier
GEOM = CMF_GET_GEOMETRY_ID (OUT)

C Construct send addresses for OUT array
CALL CMF_MAKE_SEND_ADDRESS (SADDR)
CALL CMF_DEPOSIT_GRID_COORDINATE (GEOM, SADDR, 1,V1, .TRUE.)
CALL CMF_DEPOSIT_GRID_COORDINATE (GEOM, SADDR, 2,V2, .TRUE.)

C Perform send-with-add
CALL CMF_SEND__ADD(OUT, SADDR, IN, .TRUE.)

RETURN
END

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library
R i S

e f W
A

3.2.3 Language Comparison

Beginning with Version 2.0, the FORALL statement generates parallel send-with-
combiner instructions for n-to-m-dimensional scatters when the possibility of
data collisions exists. Except for arrays of high rank (as noted below), the perfor-
mance of FORALL is comparable to that of CMF_SEND_combiner.

To express send-with-combiner operations with FORALL, supply an index array
(conformable with the source array) for each dimension of the destination array.
Then use a reduction function to combine multiple values being sent to the same
destination element.

For example, a 1-to-1-dimensional send-with-add operation is written as:

FORALL (I=1:8) A(I)=SUM(B(1:1000),MASK=V(1:1000).EQ.I)

where

Ais A(8) of numeric type.

B is B(1000) of numeric type.
Vis v(1000) of type integer.

A 1-to-1-dimensional send-with-add operation that adds in the original destina- ol
tion value is written as: ’

FORALL (I=1:N) A(I) = A(I) + SUM(B(:), MASK=V(:).EQ.I)

For a 2-to-2-dimensional send-with-add, use an index array (conformable with
the source array) for each dimension of the destination array:

FORALL (I=1:N,J=1:M)

& OUT(I,J) =
& SUM(IN(:,:),
& MASK=(X(:,:).EQ.I).AND. (Y (:,:).EQ.J))

A 1-to-2-dimensional send-with-add operation is written as:

FORALL (I=1:N,J=1:M)
& OUT (I,J)=
& SUM(IN(:), MASK=X(:).EQ.I .AND. Y(:).EQ.J)

A permanent restriction on this use of FORALL is that it generates parallel
instructions only if the rank of oUT plus the rank of IN is below a certain thresh-
old. The threshold in Version 2.0 is 7. For arrays of higher rank, use the utility
procedure CMF_SEND_combiner for best performance.

E
e», o

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Reference Manual : 21

3.3 Parallel Prefix Operations

The subroutines in this section perform parallel prefix operations, or scans, on
one axis of an array:

CALL CMF_SCAN combiner (DEST, SOURCE, SEGMENT, AXIS
& DIRECTION, INCLUSION, SEGMENT MODE, MASK)

These subroutines apply a binary operator cumulatively over the elements of the
SOURCE array AXIS, combining each value with the cumulative result from all
the values that precede it. The result for each element is stored in the correspond-
ing element of the DEST array.

The combiners are COPY, ADD, MAX, MIN, IOR, IAND, and IEOR.

" CMF_SEND_COPY operates on CM arrays of any type. It copies the first
element of an axis to all the other elements of that axis.

" CMF_SEND_ADD operates on any numeric type.

® CMF _SEND_MAX and _MIN operate on integer and real arrays (single- or
. D double-precision).

® CMF_SEND_IOR, _IAND, and _IEOR operate on integer and logical
arrays. They correspond to logical inclusive OR, logical AND, and logical
exclusive OR, respectively. Integers operations are done on a bitwise basis.

DIRECTION can be CMF_UPWARD or CMF_DOWNWARD. If the value is
CMF_UPWARD, the values are combined from the lower numbered elements
toward the higher. If the value is CMF_DOWNWARD, the values are combined from
higher numbered elements toward the lower.

The scan can be limited to selected elements of the array axis through the MASK
argument, a logical CM array conformable with SOURCE and DEST. Selected ele-
ments are those that correspond to a . TRUE. element in the MASK array. Array
elements that correspond to a .FALSE. value in MASK are excluded from the
computation, and the corresponding element of DEST is not changed.

In addition, the array elements along the axis may be partitioned into distinct
sets, called segments, through the use of the SEGMENT, SEGMENT MODE, and
INCLUSION arguments. Each segment is treated as a separate set of values. SEG-
MENT is a logical CM array conformable with SOURCE and DEST;
SEGMENT MODE and INCLUSION are predefined integer constants.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

3.3.1 Scan Segments

Each element of SEGMENT that contains . TRUE. marks the corresponding ele-
ment of SOURCE as a segment boundary (the start or end of a segment). Segments
begin (or end) with an element in which the value of SEGMENT is . TRUE., and
continue up (or down) the axis through all elements for which the value of SEG-
MENT is .FALSE.. The effect of these boundaries depends on the value of
SEGMENT MODE.

*]f SEGMENT_ MODE is CMF_NONE, the scan operation proceeds along the
entire length of the array axis and the values in SEGMENT have no effect.

® If SEGMENT MODE is CMF_SEGMENT BIT, then:

The MASK argument does not affect the use of the SEGMENT array.
That is, elements containing .TRUE. in the SEGMENT array create
a segment boundary even if the corresponding value of MASK is
.FALSE.. (The MASK array still selects the elements of SOURCE to
be included, as described above.)

A SEGMENT value of .TRUE. indicates the start of a segment for
both upward and downward scans.

When the INCLUSION argument is CMF_EXCLUSIVE, the first
DEST element in each segment is set to zero. (There is no scan result
value for this element because in exclusive mode the first element
of each segment of SOURCE is excluded from the scan.)

® If the value is CMF_START BIT, then:

The MASK argument applies to the SEGMENT array as well as to the
SOURCE array. That is, elements containing . TRUE. in SEGMENT
array create a segment boundary only if the corresponding element
of MASK is also .TRUE..

A SEGMENT value of .TRUE. indicates the start of a segment for
upward scans, but the end of a segment for downward scans. That
is, the SOURCE element corresponding to a . TRUE. SEGMENT ele-
ment is the first element in a segment for an upward scan, but the
last element in a segment for a downward scan. In downward scans,
the new segment begins with the first unmasked element following
the segment boundary.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

f

Reference Manual 23

» When the INCLUSION argument is CMF_EXCLUSIVE, the first
DEST element in each segment (which is set to zero in CMF_SEG-
MENT_BIT scans) is used to store the final scan result of the
preceding segment. Note that this result value does not contribute
to the scan result for the segment in which it is stored.

3.3.2 Scanning Example

The table below shows the results for a single row along an axis being scanned
by the subroutine CMF_SCAN_ADD. The SOURCE argument is an integer array
filled with the value 1. The MASK and SEGMENT arguments are logical arrays with
the values indicated at the top of the table (where T stands for . TRUE. and F
stands for .FALSE.).

The table shows scan results for both directions, both inclusion modes, and all
three segmentation modes. The dots indicate masked elements; the underlining
groups elements that are considered part of the same segment.

MASK TTTTFFFFTTFFTTTF
SEGMENT FFTFFFTFFFFFFTTFTF
SOURCE 1111111111111111
SEGMENT-
DIRECTION INCLUSION MODE DEST
upward exclusive none 0123 4 5 . 678
downward exclusive none 8 7 6 5 4 3 . 210
upward inclusive none 1234 56 . 789
downward inclusive none 9 87 6 5 4 . 321
upward exclusive segment 0101 0 1 201
downward exclusive segment 1010 2 1 010
upward inclusive segment 1212 12 312
downward inclusive segment 2121 32 121
upward exclusive start 0121 2 3 . 4 5 1
downward exclusive start 215 4 32 . .110
upward inclusive start 1212 3 4 51 2
downward inclusive start 3215 4 3 211

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

3.3.3 Language Comparison

A scan operation is expressed with FORALL as:
FORALL (I=1:N) A(I) = SUM(B(%:I))

In Version 2.0, this statement generates a sum of spread rather than a scan
instruction. The utility procedure CMF_SCAN_combiner gives better perfor-
mance.

‘I’;'iﬁ
ELs 4
XY
3 ¥

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Reference Manual 25

3.4 Ranking and Sorting

3.4.1

Two subroutines determine the numerical rank of the values along a dimension
of a CM array; a third sorts the values by rank.

CMF_ORDER places the numerical rank of each element along the specified axis
of a source array into the corresponding element of the destination array, under
the control of a logical mask. The source, destination, and mask arguments must
be conformable arrays.

CALL CMF_ORDER (DEST, SOURCE, AXIS, MASK)

CMF_RANK performs the same operation, but it also enables you to break the axis
into segments. The direction argument (either CMF_UPWARD or CMF_DOWNWARD)
determines whether the smallest or the largest value is given rank 1.

CALL CMF_RANK (DEST, SOURCE, SEGMENT, AXIS,
& DIRECTION, SEGMENT MODE, MASK)

CMF_SORT places the sorted values themselves in the destination array. It, too,
enables you to control the direction of the sort and to segment the source axis.

CALL CMF_SORT (DEST, SOURCE, SEGMENT, AXIS,
& DIRECTION, SEGMENT MODE, MASK)

Language comparison: CM Fortran has no ranking or sorting functions.

Axis Segments

CMF_RANK and CMF_SORT take SEGMENT and SEGMENT MODE arguments that
partition the source array axis into distinct segments. Each segment is treated as

a separate set of values for ranking purposes.

= The SEGMENT argument is logical array that is conformable with SOURCE
and DEST. Each element of SEGMENT that contains . TRUE . marks the cor-
responding element of SOURCE as a segment boundary. The effect of these
boundaries depends on the value of SEGMENT MODE.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utili

The SEGMENT_MODE argument is a pre-defined integer constant, one of
CMF_NONE, CMF_SEGMENT BIT, Or CMF_START BIT.

» If SEGMENT MODE is CMF_NONE, the elements are sorted along the entire
length of the array axis and the values in SEGMENT have no- effect.

= If SEGMENT MODE is CMF_SEGMENT BIT, then:

» A SEGMENT value of .TRUE. indicates the start of a segment for
both upward and downward sorts.

» The MASK argument does not affect the use of the SEGMENT array.
That is, elements containing .TRUE. in the SEGMENT array create
a segment boundary even if the corresponding value of MASK is
.FALSE.. (The MASK array still selects the elements of SOURCE to
be included.)

* [f SEGMENT MODE is CMF_START BIT, then:

* A SEGMENT value of .TRUE. indicates the start of a segment for
upward sorts, but the end of a segment for downward sorts. That is,
the SOURCE element corresponding to a . TRUE. SEGMENT element
is the first element in a segment for an upward sort, but the last ele-
ment in a segment for a downward sort. In downward sorts, the new
segment begins with the first unmasked element following the seg-

ment boundary.

» The MASK argument applies to the SEGMENT array as well as to the
SOURCE array. That is, elements containing .TRUE. in the SEG-
MENT array create a segment boundary only if the corresponding
element of MASK is also . TRUE..

Specific behavior of CMF_RANK and CMF_SORT on segmented axes is illustrated
in the examples shown below. Note that the segmentation is not carried over into
the destination array:

= CMF_RANK ranks each element within its own segment, but the numbering
of the elements is continuous along the entire length of the axis. In the
final example below, DEST is [XXX1 3 2],not [XXX1 2 1].

= CMF_SORT sorts each segment independently, but the values are placed in
the destination without regard to segments. In the final example below,
DESTis [7.0, 2.0, 3.0, XXx]l,not [7.0, XXX, 2.0, 3.0]).

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

-
(.
i

L

Reference Manual 27

’ s

3.4.2 Ranking and Sorting Examples

Upward sort and rank:
If SOURCE = [1.0 7.0 3.0 2.0]
and SEGMENT = [T F F F]
then rank DEST = 1 a4 2]
and sort DEST = [1.0 2.0 3.0 7.0]

Downward sort and rank:

If SOURCE = [1.0 7.0 3.0 2.0]
and SEGMENT = [T 7 F F 1]
then rank DEST = 4 1 2 3]
and sort DEST = [7.0 3.0 2.0 1.0]
Upward sort and rank with mask:
If SOURCE = {1.0 7.0 3.0 2.0]
N and SEGMENT = [T F F F]
&L 3 and MASK = [T T F T]
then rank DEST = [T 3 XXX 2]
and sort DEST = [1.0 2.0 7.0 XXX]
Segmented upward sort and rank:
If SOURCE = [1.0 7.0 3.0 2.0]
and SEGMENT = [T F T -F]
then rank DEST = 1 2 4 3]
and sort DEST = [1.0 7.0 2.0 3.0)

Segmented upward sort and rank with mask:

If SOURCE = [1.0 7.0 3.0 2.0]

and SEGMENT = [T F T F]

and MASK = [F T T T]

then rank DEST = [XXX 1 3 2]

and sort DEST = [7.0 2.0 3.0 XXX]
Version 2.0 Beta, January 1993

Copyright © 1991-1993 Thinking Machines Corporation

28 CM Fortran Utility Library

3.5 Table Look-Ups

Three procedures are used to perform “table look-ups,” that is, vector indirection
on a serial dimension of a CM array. Under the conditions noted below, the
look-up utility uses the indirect addressing hardware on the CM processing ele-
ments to perform local memory accesses, rather than generating communication.

TABLE_ID = CMF_ALLOCATE_TABLE
& (TYPE, ELEMENT COUNT, INITIAL VALUES)

CALL CMF_LOOKUP_IN_ TABLE
& (DEST, TABLE_ID, INDEX, MASK)

CALL CMF_DEALLOCATE_TABLE (TABLE_ID)

The function CMF_ALLOCATE_TABLE allocates and initializes a look-up table,
placing a copy in the memory of each processing element; it returns an integer
that serves as a pointer to the table. TYPE is the type of data to be stored in the
table; it is specified as one of:

CMF_LOGICAL, CMF_S_INTEGER,

CMF_FLOAT, CMF_DOUBLE,

CMF_COMPLEX, CMF_DOUBLE_COMPLEX

The elements of INITIAL_VALUES must be of the appropriate type.

CMF_LOOKUP_IN_TABLE uses an array of (integer) indices to retrieve values
from the look-up table, and stores them in a destination array of the same type.
CMF_DEALLOCATE_TABLE deallocates a look-up table. For example,

REAL DEST(8192), TABLE VALUES (100)
INTEGER TABLE '
- INTEGER INDEX(8192)

TABLE = CMF_ALLOCATE_TABLE

& (CMF_FLOAT, 100, TABLE_VALUES)
CALL CMF_LOOKUP_IN_ TABLE

& (DEST, TABLE, INDEX, .TRUE.)

CALL CMF_DEALLOCATE_TABLE (TABLE)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Q" i

Reference Manual : 29

3.5.1 Language Comparison

Under certain circumstances, the table look-up procedures are significantly faster
than assignments of conventionally allocated arrays. The circumstances are:

= The contents of the look-up table rarely or never change.

® The look-up table is relatively small, that is, it fits into the memory of a
single processing element. The size restriction by CM Fortran execution
mode] is:

CM-5 VU model: Table size is limited by the amount
of memory on a vector unit.

CM-5 nodes model : Table size is limited by the amount
of memory on a SPARC node.

CM-2/200 slicewise model: Table size is limited by the amount
of memory on a processing node
(which corresponds to a unit of the
64-bit floating-point accelerator).

CM-2/200 Paris model: Table size is limited by the amount
of memory on a processing node
(which corresponds to 32 bit-serial
Processors).

P

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

30

CM Fortran Utility Library

3.6 Gathers/Scatters on Serial Axes

3.6.1

Two subroutines transfer array-indexed values between two CM arrays. Under
the conditions noted below, these procedures use the special indirect addressing
hardware for local transfers.

CALL CMF_AREF 1D (DEST, ARRAY, INDEX, MASK)
CALL CMF_ASET 1D (ARRAY, SOURCE, INDEX, MASK)

The ARRAY argument can be multidimensional. The “1D” in the procedure
names refers to the fact that the indirect addressing occurs only on a single axis.

CMF_AREF_1D extracts array-indexed values from the serial axis of ARRAY.
INDEX is an INTEGER array of the same shape and layout as DEST. Each element
of INDEX provides an index into ARRAY for the value to be stored in the corre-
sponding element of DEST.

CMF_ASET_1D performs the opposite operation. INDEX is an INTEGER array of
the same shape and layout as SOURCE. In this operation, each element of INDEX
specifies the location in ARRAY at which to store the corresponding element of
SOURCE.

Conditions for Fast Performance

These subroutines use the fast indirect addressing hardware when the ARRAY
argument meets the following conditions:

® Its first dimension must be serially ordered (that is, local to a processing
element).

= It must have one more dimension than the INDEX, MASK, and DEST arrays.

= Excluding its first axis, its remaining axes must have the same shape and
layout as the INDEX, MASK, and DEST arrays.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

M;,.-;%
“ S

In addition, these subroutines are substantially faster when

= the MASK argument is the scalar . TRUE..

= the product of the dimensions of the INDEX argument is an integer multi-
ple of the number of processing elements executing the program. (This
number is returned by the function CMF_NUMBER_OF_PROCESSORS.)

Two restrictions that affect the performance of these subroutines are:

= The subroutines do not use the indirect addressing hardware under the
Paris execution model on CM-2/200, even if the other constraints are met.
Their performance under the Paris model is therefore slower than under
the other CM Fortran execution models.

® The serial dimension of ARRAY must fit into the memory of a single pro-
cessing element. The size restriction by CM Fortran execution model is:

s CM-5 VU model: Serial dimension extent is limited by
the amount of memory on a vector
unit.

3 = CM-5 nodes model : Serial dimension extent is limited by
i the amount of memory on a SPARC
node.

= CM-2/200 slicewise model: Serial dimension extent is limited by
the amount of memory on a proces-
sing node (which corresponds to a
unit of the 64-bit floating-point accel-
erator).

» CM-2/200 Paris model: Not applicable.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

32 CM Fortran Utility Library

S

3.6.2 Gather/Scatter Examples

This call to CMF_AREF_1D is functionally equivalent to the DO loop shown:

. INTEGER I

INTEGER DEST(8192), ARRAY(10,8192), INDEX(8192)
CMF$ LAYOUT ARRAY (:SERIAL, :NEWS)

LOGICAL MASK(8192)

DO I=1,8192
IF (MASK(I)) DEST(I) = ARRAY (INDEX(I),I)
END DO

CALL CMF_AREF 1D(DEST, ARRAY, INDEX, MASK)

This call to CMF_ASET_1D is functionally equivalent to the DO loop shown:

INTEGER I

INTEGER SOURCE(8192), ARRAY(10,8192), INDEX(8192)
CMF$ LAYOUT ARRAY (:SERIAL, :NEWS)

LOGICAL MASK(8192)

DO I=1,8192
IF (MASK(I)) ARRAY(INDEX(I),I) = SOURCE(I)
END DO

CALL CMF_ASET 1D(ARRAY, SOURCE, INDEX, MASK)

3.6.3 Language Comparison

The FORALL statement expresses the operations shown in the examples above as

follows:
FORALL(I=1:8192, MASK{(I)) DEST(I) = ARRAY(INDEX(I),I)
FORALL (I=1:8192, MASK(I)) ARRAY(INDEX(I),I) = SOURCE(I)

In Version 2.0, however, these statements generate send (scatter) or get (gather)
instructions rather than using the local indirect addressing hardware. As long as
the stated constraints are met, the utility procedures CMF_AREF_1D and
CMF_ASET_1D give better performance.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Chapter 4

Parallel I/O

4.1

The Utility Library procedures in this chapter support CM parallel I/O. Parallel
/O refers to transferring data in multiple streams between the CM processing
elements and an external device. The procedures fall into two categories:

= Operations on files of the CM file system
® JJO via sockets and devices (including CM-HIPPI)

Language Comparison

The CM Fortran READ and WRITE statements perform serial I/O only. A CM array
is first moved to the control processor and then transferred in a single stream to
a UNIX file on a storage device. For CM arrays, especially for large ones, the
Utility Library I/O procedures give better performance.

CM File Operations

The CM file system — the destination of parallel write operations — resides on
storage devices on the CMIO bus, such as the DataVault mass storage system.
Operations on these files are supported by the CM File System library, CMFS.
The utility procedures in this section provide a convenient interface to selected
procedures in this library.

For more information on the CM file system and library, see the CM I/O docu-
mentation for CM-5 or for CM-2/200. Note that support for the CM Scalable Disk
Array and its Scalable File System (SFS) begins with CM Fortran Version 2.1.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation 33

34

CM Fortran Utility Library

4.1.1 Opening, Closing, and Removing CM Files

The subroutines in this section open, close, or remove (unlink) CM files.

Opening a CM File

CMF_FILE_OPEN opens the CM file specified by PATH (a character string) and
associates the file with the integer argument ONIT. The value returned in TOSTAT
indicates whether the operation succeeded.

CALL CMF_FILE OPEN(UNIT, PATH, IOSTAT)

File Units

The JJO procedures currently support 29 simultaneously open file units. For each
CM file to be opened, you choose a value in the range 1 through 29. The number
becomes associated with a file when it is used as the UNIT argument (variable,
parameter, or literal constant) to CMF_FILE_OPEN. You then supply the
appropriate unit number to other I/O procedures when you wish to operate on this
file. .

These parallel I/O unit numbers have no relation to standard CM Fortran unit
numbers, as described in the CM Fortran Reference Manual for the READ and
WRITE statements.

Error Status

All the parallel I/O procedures take an integer IOSTAT argument, into which the
error status of the operation is placed:

= A positive value in TOSTAT indicates success.

= A negative value in TOSTAT indicates failure.

® For the parallel read utilities only (see below), a zero value in TOSTAT
indicates an end-of-file condition.

Other than sign or zero, there is no significance to any of the particular values
returned.

Version 2.0 Beta, January 1993
Copyright ® 1991-1993 Thinking Machines Corporation

4.1.2

Reference Manual 35

Closing a CM File
CMP_FILE_CLOSE closes the file associated with UNTT.

CALL CMF_FILE CLOSE(UNIT, IOSTAT)

Removing a CM File
CMF_FILE UNLINK removes the entry for the file specified by PATH from the
file’s directory.

CALL CMF_FILE UNLINK(PATH, IOSTAT)
If this entry is the last link to the file and no process has the file open, then the
file is deleted and all resources associated with it are reclaimed. If, however, the

file is open in any process, the resource reclamation is delayed until the file is
closed, even though the directory entry has disappeared.

Reading and Writing CM Files

The CM Fortran Utility Library provides procedures that read or write CM arrays
in parallel, that is, in multiple streams directly between the memory of CM pro-
cessors and a CM file on a storage device.

These procedures are available in three variants, reflecting different trade-offs
between speed and flexibility. The variants are distinguished by suffix (or lack
of): no-suffix or generic, FMS, or SO. They take the same arguments.

CALL CMF_CM_ARRAY TO_FILE (UNIT, ARRAY, IOSTAT)
CALL CMF_CM ARRAY FROM FILE (UNIT, ARRAY, IOSTAT)

CALL CMF_CM_ARRAY TO_FILE FMS
CALL CMF_CM ARRAY FROM FILE_ FMS

CALL CMF_CM_ARRAY_TO_FILE_SO
CALL CMF_CM_ARRAY FROM FILE_ SO

Always read a file with the same variant that was used to write it.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Arguments

UNIT Integer variable, parameter, or literal constant in the range 1:29.
This is the unit number that became associated with a file by the
initial call to CMF_FILE_OPEN (see Section 4.1.1).

ARRAY CM array of any type and hyout. This array is the source or destina-
tion of the IfO operation.

IOSTAT Integer variable. The value returned in this argument indicates the
' error status of the operation:

= A positive value in TOSTAT indicates success.
» A negative value in IOSTAT indicates failure.

= For the parallel read utilities only, a zero value in TIOSTAT
indicates an end-of-file condition.

NOTE

Like all procedures in the Utility Library, these IJO procedures
cannot be used with any array that is aligned with another array
of higher rank or aligned with non-zero axis offset(s) with any
other array.

Unlike other Utility Library procedures, these /O procedures
do support arrays with lower bounds other than 1.

Behavior

The three sets of read/write procedures give different combinations of speed and
portability. The FMS (“fixed machine size™) routines are the fastest but the least
flexible. The SO (“serial order”) routines are slower but the most portable across
CM configurations and execution models. The generic (no-suffix) routines are a
compromise between the two for general-purpose use.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Reference Manual 37

The generic and FMS procedures treat file data in a parallel order, which we call
the geometry of the file. File geometry reflects the shape and layout of the first
array written to that file. In consequence:

= All subsequent writes to a parallel-ordered file must be of arrays of the
same shape and layout as the first, and any read operation from the file
must be to an array of the same shape and layout.

= Parallel-ordered files may contain extraneous data (padding) in scattered
locations. As long as you observe the restrictions on using the FMS and
generic routines (summarized in the table below), the padding is handled
transparently when the file is read.

In the interest of speed, the FMS procedures impose the further restriction that
write and read operations of a CM file must be from the same execution model,
and the same machine size (number of processing elements). Hence the term
“fixed machine size.” These procedures are not portable from one CM model
(CM-2/200 versus CM-5) to the other.

The generic procedures, in contrast, are limited only by array shape, layout, and
CM model. They can write and then read from different execution models and
machine sizes, although the following restrictions do apply on CM-2/200 only:

® An array written under one CM-2/200 execution model (Paris or slicewise)
and read under the other execution model must have canonical layout. You
can work around this restriction by assigning a non-canonical array to a
canonical temporary before writing it to a file.

® An array written from one CM-2/200 machine size and read into a different
machine size must be at least the size of the larger machine. That is, the
array must have at least as many elements as the number of bit-serial pro-
cessors in the larger machine (even under the slicewise execution model).

The SO procedures treat file data in serial order. Serial ordering is the same as
array-element ordering and the same as the output of the Fortran WRITE state-
ment. For example, the SO utility stores the elements of array A(2,3) in the
following order:

A(1,1)
A(2,1)
A(1,2)
A(2,2)
A(1,3)
A(2,3)

Version 2.0 Beta, January 1993
. Copyright © 1991-1993 Thinking Machines Corporation

38

CM Fortran Utility Library

Unlike the generic and FMS variants, the SO procedures do not pad files. Because
they read and write only the array elements, not any extraneous data, these utili-
ties operate independently of array shape and layout, and are completely portable
across CM hardware models, execution models, and machine sizes. The SO utili-
ties are also compatible with parallel I/O via sockets and devices (Section 4.2).

The following table summarizes the behavior of the three variants of the parallel
read/write utility procedures. The “portability” entry refers to restrictions on sub-
sequent reads and writes of a CM file after the first array has been written to it.

Variants of CMF_CM_ARRAY_TO/FROM_FILE.

FMS Generic)
CM-5
File order parallel parallel serial
Padding yes yes no
Portability CM-5 only CM-5 only any CM or device
same partition size any partition size any partition
or machine size
same exec. model . any exec. model any exec. model
same array shape same array shape any array shape
same array layout same array layout any array layout
CM-2/200
File order parallel parailel serial
Padding, if any yes yes no
Portability CM-2/200 only CM-2/200 only any CM or device
same machine size any machine size* any machine
or partition size
same exec. model any exec. model any exec. model
same array shape same array shape any array shape
same array layout same array layout** any array layout

* If written from one machine size and read into a different machine size, the array must
be at least the size of the larger machine.
** If written from one execution mode] and read into the other execution model, the

array must have canonical layout.

Version 2.0 Beta, January 1993

Copyright © 19911993 Thinking Machines Corporation

()

Reference Manual 39

4.1.3 Manipulating CM Files

The procedures in this section rewind, seek within, or truncate a CM file.

Determining File Geometry

All seek, rewind, and truncate operations on CM files must be preceded by a read
or write operation. It is necessary first to determine the geometry of a newly
opened file, even a serial-order file, by performing a read or write of the file.

For the CM-5 only, a further restriction is that the element size in any file manipu-
lation (rewind, seek, or truncate) must be the same as the element size in the read
or write operation that initially determined the file’s geometry in that session.

Rewinding a File
CMF_FILE_REWIND moves the file pointer to the beginning of a CM file.

@") CALL CMF_FILE_ REWIND(UNIT, IOSTAT)

Seeking within a File

Three procedures serve to reposition the file pointer in a CM file:
CALL CMF_FILE LSEEK(UNIT, OFFSET, IOSTAT)
CALL CMF_FILE LSEEK FMS(UNIT, OFFSET, IOSTAT)
OFFSET = m_sxznor_hmi_mnmr(ARRAY)

CMF_FILE_LSEEK operates on files written with the generic and SO write proce-
dures; use CMF_FILE_LSEEK_FMS on files written with the FMS write
procedure.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library

The seek utilities operate slightly differently on serial-ordered files (those written
with the SO procedure), compared with parallel-ordered files (those written with
the generic or FMS procedure).

® Inserial-ordered files, CMF_FILE LSEEK can move the file pointer either
to an array boundary or to an arbitrary element (though not to an arbitrary
bit or byte boundary). For the OFFSET argument, use the number of bytes
in the array’s element type times the number of elements to traverse.

® In parallel-ordered files, CMF_FILE_LSEEK and CMF_FILE_LSEEK_FMS
move the file pointer only from one array to another within a file. You
cannot move it to an arbitrary element. To compute the offset, you need
not specify the size of the array(s), since this information is contained in
the file geometry. You need specify only the size of an array’s elements,
using CMF_SIZEOF_ARRAY ELEMENT.

For example, suppose that a parallel-ordered file associated with unit 29 was
created with three successive writes, of array A, then array B, then array c. To
position the file pointer to the beginning of array B, use:

CALL CMF_FILE REWIND(29, IOSTAT)
SIZEOF_A = CMF_SIZEOF_ARRAY ELEMENT(A)
CALL CMF_FILE LSEEK(29, SIZEOF A, IOSTAT)

To move the file pointer to the beginning of array ¢, add the return values of
CMF_SIZEOF_ARRAY_ ELEMENT for the two arrays to be traversed:

CMF_FILE REWIND(29, IOSTAT)

SIZEOF_A = CMF_SIZEOF_ARRAY ELEMENT(A)
SIZEOF_B = CMF_SIZEOF_ARRAY ELEMENT(B)
CMF_FILE LSEEK(29, SIZEOF A + SIZEOF_B, IOSTAT)

To read arrays A and C:

CALL CMF_FILE REWIND(29, IOSTAT)

CALL CMF_CM ARRAY FROM FILE(29, DEST A, IOSTAT)
CALL CMF_FILE LSEEK(29, SIZEOF_B, IOSTAT)

CALL CMF_CM ARRAY FROM_FILE(29, DEST C, IOSTAT)

If these arrays had been written with CMF_CM_ARRAY TO_FILE_FMS, you
would have used the FMS variant of the seek and read procedures.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

(d

Reference Manual : 41

Changing the Size of a File

CMF_FILE_TRUNCATE increases or decreases the size of a CM file:
CALL CMF_FILE TRUNCATE(UNIT, LENGTH, IOSTAT)
LENGTH = CMF_SIZEOF_ARRAY_ ELEMENT (ARRAY)

This subroutine changes the size of the file specified by UNIT to LENGTR. If the
file is smaller than LENGTH, it is extended to LENGTH. If the file is larger than
LENGTH, it is truncated and the extra data is lost. The file must be open when
CMF_FILE_TRUNCATE is called.

Like the seek procedures described above, CMF_FILE_TRUNCATE behaves
slightly differently with serial-ordered and parallel-ordered files, and you com-
pute the LENGTH argument differently for the two kinds of files.

® CMF_FILE_TRUNCATE can extend or truncate a serial-ordered file either
by whole arrays or by an arbitrary number of array elements (though not
by an arbitrary number of bits or bytes). For the LENGTH argument, supply
the number of bytes in the array’s element type times the number of ele-
ments desired.

® CMF_FILE_TRUNCATE can extend or truncate a parallel-ordered file only
by whole arrays, not by an arbitrary number of array elements. To com-
pute the LENGTH argument, you need not specify the size of the array(s),
since this information is contained in the file geometry. Specify only the
size of array elements, using CMF_SIZEOF_ARRAY ELEMENT.

You compute the LENGTH argument for parallel-ordered files in the same way as
the OFFSET argument for the seek procedures, shown above. And, as with the
seek procedures, you can extend or truncate a file by more than one array by
invoking CMF_SIZEOF_ARRAY_ ELEMENT on several arrays in succession,
adding the returned values, and supplying the result as the LENGTH argument.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

42 CM Fortran Utility Library

4.1.4 Example of CM File Operations

The following program writes five arrays into a file and then reads the third one:

PROGRAM READ RECORD

INTEGER FILE_UNIT, IOSTAT, RECORD
REAL A(8192)

DOUBLE PRECISION B(8192)

COMPLEX C(8192), DEST(8192)

DOUBLE COMPLEX D(8192)

LOGICAL E(8192)

INCLUDE ' /usr/include/cm/CMF_defs.h’

C Initialize variables

FILE UNIT = 13
JOSTAT =0

A = [1:8192]

B = [1:8192]

C = CMPLX(([1:8192], [1:8192])
D = DCMPLX([1:8192], [1:8192])
E = MOD([1:8192],2).EQ.0
DEST = 0.0

C Open a file and write to it; add failure tests to each
C operation if desired.

CALL CMF_FILE_OPEN(FILE UNIT, '‘my-file’, IOSTAT)
IF (IOSTAT<0) PRINT *,”File open failed”, IOSTAT

CALL CMF_CM ARRAY TO_FILE(FILE UNIT,A, IOSTAT)

CALL CMF_CM ARRAY TO_FILE (FILE UNIT,B, IOSTAT)

CALL CMF_CM_ARRAY TO_FILE(FILE UNIT, C, IOSTAT)

CALL CMF_CM_ARRAY TO_FILE(FILE UNIT,D, IOSTAT)

CALL CMF_CM ARRAY TO_FILE(FILE_UNIT,E, IOSTAT)
C Rewind the file

CALL CMF_FILE REWIND (FILE UNIT, IOSTAT)

C Compute the offset to the third recoxd

RECORD = CMF_SIZEOF_ARRAY ELEMENT (A) +
$. CMF_SIZEOF_ARRAY ELEMENT (B)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Reference Manual 43

C Seek to the third record
CALL CMF_FILE_LSEEK(FILE_UNIT,RECORD, IOSTAT)
C Read the third record into array DEST
CALL CMF_CM ARRAY FROM FILE(FILE UNIT,DEST, IOSTAT)

~ STOP
END

4.2 Parallel 1/O via Devices and Sockets

The serial-order read and write utilities described above for the CM file system
can also be used to transfer data via the CM-HIPPI or VME interfaces. In these
cases the “file” is either a CM-HIPPI device or a CM socket, respectively. Opera-
tions on these devices require you to access the lower-level CM J/O library CMFS,
as described in the CM I/O and CM-HIPPI documentation.

Translating between File Descriptors and Unit Numbers

The CMFS procedures use file or socket descriptors to specify the desired “file.”
Two CM Fortran utility procedures translate between these descriptors and the
unit numbers required by the CM Fortran utility I/O procedures.

One subroutine associates a CMFS file or socket descriptor of a previously
opened “file” (or device) with a CM Fortran unit number.

CALL CMF_FILE FDOPEN(CMFS_FD, UNIT, IOSTAT)

Both cMFS_FD and UNIT are input values; the procedure simply establishes an
association between them. You can then call the CM Fortran utility readlwnte
procedures, CMF_CM_ARRAY_TO/FROM FILE SO.

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CM Fortran Utility Library

The other subroutine determines the CMFS file or socket descriptor that is
already associated with a CM Fortran unit number:

CALL CMF_FILE_GET FD(CMFS_FD, UNIT, IOSTAT)

UNIT is an input value; the value returned in cMFS_FD is the CMFS descriptor
associated with it. This procedure is useful if you wish to use the descriptor in
calls to the CMFS routines.

I/O via Devices
To write or read data via devices, use the serial-order (“SO”) I/O procedures.

Although the serial-order /O procedures do not pad CM files, they do sometimes
add extraneous data at the end of an array being written to a device. If you do
not wish to deal with padding explicitly in the program, you can avoid it by
observing certain restrictions on array size. These restrictions are reported in the
documentation for CM-HIPPL

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

Version 2.0 Beta, January 1993
Copyright © 19911993 Thinking Machines Corporation

Appendix

45

4 &
i !
Q °

4

Appendix
Dictionary of Utility Procedures

This appendix provides reference information about the individual procedures in
the CM Fortran Utility Library. The procedures are listed below by functional
category. The dictionary entries that follow are alphabetical by procedure name.

System Inquiry Functions
| ARCH = CMF_ARCHITECTURE ()
i ’ NUM = CMF_NUMBER_OF_PROCESSORS ()
" BYTES = CMF_AVAILABLE_MEMORY ()

Array Inquiry Subroutine
CMF_DESCRIBE_ARRAY (ARRAY)

Random Number Subroutines
CMF_RANDOM (DEST, LIMIT)
CMF_RANDOMIZE (SEED)

Dynamic Array Allocation Subroutines

CMF_ALLOCATE_ARRAY
{ ARRAY, EXTENTS, RANK, TYPE)

CMF_ALLOCATE_LAYOUT_ARRAY
(ARRAY, EXTENTS, RANK, TYPE, ORDERS, WEIGHTS)

CMF_ALLOCATE_DETAILED_ARRAY
(ARRAY, EXTENTS, RANK, TYPE, ORDERS, SUBGRIDS, PMASKS)

CMF_DEALLOCATE_ARRAY (ARRAY)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation . 47

CM Fortran Utility Library Reference Manual

Array Transfer Subroutines
CMF_FE_ARRAY_TO_CM (DEST, SOURCE)
CMF_FE_ARRAY_FROM_CM (DEST, SOURCE)

Array Address Construction Procedures
GEOMETRY = CMF_GET_GEOMETRY_ID (ARRAY)
CMF_MAKE_SEND_ADDRESS (ARRAY)
CMF_MY_SEND_ADDRESS (ARRAY)

CMF_DEPOSIT_GRID_COORDINATE
(GEOMETRY, SEND_ADDRESS, AXIS, COORDINATE, MASK)

Scatter-with-Combining Subroutine

CMF_SEND_[OVERWRITE | ADD | MAX | MIN | IOR | IAND | IEOR]
(DEST, SEND_ADDRESS, SOURCE, MASK)

Parallel Prefix Subroutine

CMF_SCAN_| COPY | ADD | MAX | MIN | IOR | IAND | IEOR]
(DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
SEGMENT_MODE, MASK))

SOrting_ Subroutines

CMF_ORDER
(DEST, SOURCE, AXIS, MASK))

CMF_RANK
(DEST, SOURCE, SEGMENT, AXIS, DIRECTION,
SEGMENT_MODE, MASK)

CMF_SORT
(DEST, SOURCE, SEGMENT, AXIS, DIRECTION,
SEGMENT_MODE, MASK)

Table Lookup Procedures

TABLE = CMF_ALLOCATE_TABLE
(TYPE, ELEMENT_COUNT, INITIAL_VALUES)

CMF_DEALLOCATE_TABLE (TABLE)
CMF_LOOKUP_IN_TABLE (DEST, TABLE, INDEX, MASK)

Gathers/Scatters on Serial Axes (Subroutines)
CMF_AREF_1D (DEST, ARRAY, INDEX, MASK)
CMF_ASET_1D (ARRAY, SOURCE, INDEX, MASK)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

()

Y

b2

Appendix: Dictionary of Utility Procedures
E R R R Y

5

CM File Operations Procedures
CMF_FILE_OPEN (UNIT, PATH, IOSTAT)
CMF_FILE_CLOSE (UNIT, IOSTAT)
CMF_FILE_UNLINK (PATH, IOSTAT)

CMF_CM_ARRAY_TO_FILE (UNIT, SOURCE, IOSTAT)
CMF_CM_ARRAY_FROM_FILE (UNIT, DEST, IOSTAT)
CMF_CM_ARRAY_TO_FiLE_FMS (UNIT, SOURCE, I0STAT)
CMF_CM_ARRAY_FROM_FILE_FMS (UNIT, DEST, IOSTAT)
CMF_CM_ARRAY_TO_FILE_SO (UNIT, SOURCE, IOSTAT)
CMF_CM_ARRAY_FROM_FILE_SO (UNIT, DEST, IOSTAT)

CMF_FILE_LSEEK (UNIT, OFFSET, IOSTAT)
CMF_FILE_LSEEK_FMS (UNIT, OFFSET, IOSTAT)
CMF_FILE_REWIND (UNIT, IOSTAT)
CMF_FILE_TRUNCATE (UNIT, LENGTH, |OSTAT)
SIZEOF = CMF_SIZEOF_ARRAY_ELEMENT (ARRAY)

CM /O via Sockets or Devices (Subroutines)
CMF_FILE_FDOPEN (CMFS_FD, UNIT, IOSTAT)
CMF_FILE_GET_FD (UNIT, CMFS_FD, IOSTAT)

Version 2.0 Beta, January 1993
Copyright © 1991-1993 Thinking Machines Corporation

CMF_ALLOCATE_ARRAY (3CMF) CMF_ALLOCATE_ARRAY (3CMF)

NAME)
CMF_ALLOCATE_ARRAY - Allocates a CM array dynamically. Q, 1

SYNTAX
INCLUDE ’/usr/ include /cm/CMF_defs.h’

CALL CMF_ALLOCATE_ARRAY (ARRAY, EXTENTS, RANK, TYPE)

ARGUMENTS

ARRAY Front-end array of integers. This front-end array must have
CMF_SIZEOF_DESCRIPTOR elements of type INTEGER.
(CMF_SIZEOF_DESCRIPTOR is a predefined constant.) This argument will be
modified to point to the allocated CM memory.

EXTENTS
Front-end array of at least RANK integers. This array contains the length of each
axis of the array to be created. The first element specifies the length of axis 1, the
second element specifies the length of the second axis, and so on. The axes will
default to CMF_NEWS_ORDER ordering.

RANK Integer. The rank of the array to be created. C

TYPE Integer. The type of the array to be created. This is one of the following integer
values:
« CMF_LOGICAL
* CMF_S_INTEGER
« CMF_FLOAT
+ CMF_DOUBLE
e CMF_COMPLEX
* CMF_DOUBLE_COMPLEX

RETURNED VALUE

None.

DESCRIPTION
The subroutine CMF_ALLOCATE_ARRAY allocates CM siorage to hold an array of the

shape specified by RANK and EXTENTS, and of the type specified by TYPE. ARRAY is
modified to serve as a descriptor for the array.

CM Fortran Version 2.0 Last change: December 1992 50

CMF_ALLOCATE_ARRAY (3CMF) CMF_ALLOCATE_ARRAY (3CMF)

To use the elements of the CM array created by CMF_ALLOCATE_ARRAY in CM Fortran
operations, you must pass ARRAY to a program unit that explicitly declares it as a CM
array. Since the program unit that calls CMF_ALLOCATE_ARRAY must declare ARRAY as a
front-end array, ARRAY cannot be used in that program unit except to be passed to other
program units. See the example given below.

NOTE

Do not use the compiler switches -safety=level or -argument checking when com-
piling programs that use dynamically allocated arrays.

EXAMPLE

This example illustrates the standard method for using CMF_ALLOCATE_ARRAY. In the
ALLOCATE subroutine, NEW_ARRAY is declared as a front-end array and modified by the
call to CMF_ALLOCATE ARRAY to point to the CM memory allocated for the array.
NEW_ARRAY is then passed to the subroutine PRINT_DIMS3D which declares and uses it
as a CM array.

SUBROUTINE ALLOCATE ()

IMPLICIT NONE

INCLUDE ' /usr/include/cm/CMF_defs.h’

INTEGER NEW_ARRAY (CMF_SIZEOF_DESCRIPTOR), EXTENTS(7), RANK, I
PARAMETER (RANK=3)

DO I=1, RANK
EXTENTS(I) = I * 10
END DO
CALL CMF_ALLOCATE_ARRAY (NEW_ARRAY, EXTENTS, RANK, CMF_S_INTEGER)

CALL PRINT_DIMS3D(NEW_ARRAY)

CALL CMF_DEALLOCATE_ARRAY (NEW_ARRAY)
END SUBROUTINE ALLOCATE

SUBROUTINE PRINT_DIMS3D (IN)
IMPLICIT NONE
INTEGER IN(:,:,:)

PRINT *,"Shape of DUMMY is (",DUBOUND(IN,1),
& w n DUBOUND(IN,2),
& w, " _DUBOUND(IN,3),")"

END SUBROUTINE PRINT_ DIMS3D

CM Fortran Version 2.0 Last change: December 1992 51

CMF_ALLOCATE_ARRAY (3CMF)

SEE ALSO
CMF_ALLOCATE_DETAILED ARRAY
CMF_ALLOCATE_LAYOUT_ ARRAY
CMF_DEALLOCATE ARRAY

CM Fortran Version 2.0

Last change: December 1992

CMF_ALLOCATE_ARRAY (3CMF)

52

¢

()

CMF_ALLOCATE_DETAILED_ARRAY (3CMF) CMF_ALLOCATE_DETAILED_ARRAY (3CMF)

\ NAME
i ’ CMF_ALLOCATE_DETAILED_ARRAY - Allocates a CM array dynamically with a
specified detailed layout.
SYNTAX
INCLUDE ’/usr/include/cm/CMF_defs.h’
CALL CMF_ALLOCATE DETAILED ARRAY (ARRAY, EXTENTS, RANK, TYPE, ORDERS,
SUBGRIDS, PMASKS)
ARGUMENTS
ARRAY Front-end array of integers. This front-end array must have
CMF_SIZEOF_DESCRIPTOR elements of type INTEGER.
(CMF_SIZEOF_DESCRIPTOR is a predefined constant.) This argument will be
modified to point to allocated CM memory when the array is passed as an argu-
ment to a subprogram.
EXTENTS ,
Front-end array of at least RANK integers. This array contains the length of each
axis of the array to be created. The first element specifies the length of axis 1, the
A ’ second element specifies the length of axis 2, and so on.
”
RANK Integer. The rank of the array to be created.
TYPE Integer. The type of the array to be created. This is one of the following integer
values:
¢ CMF_LOGICAL
¢ CMF_S_INTEGER
s CMF_FLOAT
* CMF_DOUBLE
+ CMF_COMPLEX
« CMF_DOUBLE_COMPLEX
ORDERS
Front-end array of integers. This array specifies the ordering of each axis of the
array to be created. Each element of this array must be one of the following inte-
ger values:
+ CMF_NEWS_ORDER
* CMF_SERIAL_ORDER
The axes will default to CM_NEWS_ORDER ordering.
Use CMF_NEWS_ORDER for axes for which SUBGRIDS and PMASKS values are
specified. Anywhere CMF_SERIAL_ORDER is used for an axis, the correspoinding
Il) PMASKS value must be 0, and the SUBGRIDS value must be the axis extent.
'

A '?

CM Fortran Version 2.0 Last change: December 1992 53

CMF_ALLOCATE_DETAILED_ARRAY (3CMF) CMF_ALLOCATE_DETAILED_ARRAY (3CMF)

SUBGRIDS
Front-end array of integers. This array indicates the desired subgrid length for @\‘f
each axis. ' i

PMASKS
Front-end array of integers. The integers in this array serve as bitmasks to indi-
cate the desired processors. If the ORDERS argument contains the value
CMF_SERIAL_ORDER for any axis, the PMASKS argument must contain 0 for that
axis.

RETURNED VALUE

None.

DESCRIPTION

The subroutine CMF_ALLOCATE DETAILED ARRAY allocates the CM storage to hold an
array of the shape specified by RANK and EXTENTS, the type specified by TYPE, and with
CMF_NEWS_ORDER ordering.

To use the elements of CM array created by CMF_ALLOCATE DETAILED ARRAY in CM
Fortran operations, you must pass ARRAY to a program unit that explicitly declares it as a
CM array. Since the program unit that calls CMF_ALLOCATE_DETAILED ARRAY must g
declare ARRAY as a front-end array, ARRAY cannot be used in that program unit except to é‘
be passed to other program units. o

The SUBGRIDS and PMASKS arguments enable you to specify in detail how the CM array |
is laid out on the parallel processing elements (CM-5 vector units, CM-5 nodes, or f
CM-2/200 nodes, depending on the execution model). For each array axis, the value in the ;
SUBGRIDS argument specifies the number of elements in the subgrid in each processing

element. The value in PMASKS is a bit-mask that specifies which processing elements are

used.

NOTES

Do not use the compiler switch -safety=Ievel or -argument_checking to compile
programs that contain dynamically allocated arrays.

CMF_ALLOCATE_DETAILED_ ARRAY cannot be used under the Paris execution model on
a CM-2/200 system.

CM Fortran Version 2.0 Last change: December 1992 54

et e me

v

o ey v s e 3

%

o
© o s . RS aate AT R

CMF_ALLOCATE_DETAILED_ARRAY (3CMF) CMF_ALLOCATE_DETAILED_ARRAY (3CMF)

EXAMPLE

The following program illustrates CMF_ALLOCATE_DETAILED ARRAY. Notice the use of
the assumed-layout directive when the new array is passed as an argument to a subpro-

gram.

CMF$

IMPLICIT NONE

INCLUDE ‘/usr/include/cm/CMF_defs.h’

INTEGER NEWARRAY(CMF_SIZEOE_DESCRIPTOR)

INTEGER EXTENTS(?),ORDERS(7),SUBGRIDS(7)fPMASKS(?)
INTEGER RANK, I

INTEGER NPN,NPN_FRAC, FRAC, SG1,SG2

“REAL A(200)

PARAMETER (RANK = 2)

PARAMETER (FRAC = 4)

PARAMETER (SG1 = 5, SG2 = 40)

A=1.0 ! initialize if CM-2 running in auto-attach mode

NPN = CMF_NUMBER_OF PROCESSORS ()
NPN_FRAC = NPN/FRAC

PMASKS (1) = (NPN_FRAC - 1) * FRAC
PMASKS (2) = FRAC - 1

SUBGRIDS (1) = SG1
SUBGRIDS (2) = SG2

EXTENTS (1) = NPN_FRAC * SG1
EXTENTS (2) = FRAC * SG2

DO I = 1,RANK
ORDERS (I) = CMF_NEWS_ORDER
END DO

CALL CMF_ALLOCATE_DETAILED ARRAY
(NEWARRAY , EXTENTS , RANK, CMF_FLOAT , ORDERS,, SUBGRIDS, PMASKS)

CALL USE_NEWARRAY (NEWARRAY, EXTENTS)

CALL CMF_DEALLOCATE ARRAY (NEWARRAY)

-STOP

END

SUBROUTINE USE_NEWARRAY (A, EXT)

INTEGER EXT(2)

REAL A(EXT(1),EXT(2)), B(EXT(1),EXT(2))
LAYOUT A(:,:)

CM Fortran Version 2.0 Last change: December 1992 55

CMF_ALLOCATE_DETAILED_ARRAY (3CMF) CMF_ALLOCATE_DETAILED_ARRAY (3CMF)

CMF$ ALIGN B(I,J) WITH A(I,J)

B = CSHIFT(A,DIM=1,SHIFT=1)

C Other operations on arrays A and B
RETURN
END
SEE ALSO

CMF_ALLOCATE_ARRAY
CMF_DEALLOCATE_ARRAY
CMF_ALLOCATE_LAYOUT ARRAY

CM Fortran Version 2.0 Last change: December 1992

56

(fj M
]
¥

CMF_ALLOCATE_LAYOUT_ARRAY (3CMF) CMF_ALLOCATE_LAYOUT_ARRAY (3CMF)

Yo NAME
»a‘ ’ CMF_ALLOCATE_LAYOUT_ARRAY - Allocates a CM array with a specified lay-
out. ’
SYNTAX
INCLUDE ' /usr/include/cm/CMF_defs.h’
CALL CMF_ALLOCATE LAYOUT ARRAY (ARRAY, EXTENTS, RANK, TYPE, ORDERS, WEIGHTS
ARGUMENTS

ARRAY Front-end array of integers. This front-end array must have
CMF_SIZEOF_DESCRIPTOR elements of type INTEGER.
(CMF_SIZEOF_DESCRIPTOR is a predefined constant.) This argument will be
modified to point to the allocated CM memory.

EXTENTS ‘
Front-end array of at least RANK integers. This array contains the length of each
axis of the array to be created. The first element specifies the length of axis 1, the
second element specifies the length of axis 2, and so on. The axes will have the
ordering specified by the ORDERS and WEIGHTS arguments.

X
y| ’ RANK Integer. The rank of the array to be created.

_ TYPE Integer. The type of the array to be created. This is one of the following integer
i values:
; + CMF_LOGICAL
+ CMF_S_INTEGER

« CMF_FLOAT

+ CMF_DOUBLE

+ CMF_COMPLEX

+ CMF_DOUBLE_COMPLEX

ORDERS :
Front-end array of integers. This array specifies the ordering of each axis of the
array to be created. Each element of this array must be one of the following inte-
ger values: _ :
» CMF_NEWS_ORDER
+ CMF_SERIAL_ORDER
+ CMF_SEND_ORDER

WEIGHTS
Front-end array of non-negative integers. This array specifies the weight, or
heaviness of use, of each axis of the array to be created. The WEIGHTS
array should be initialized to all ones if no special weighting of axes is required.

CM Fortran Version 2.0 Last change: December 1992 - 57

CMF_ALLOCATE_LAYOUT_ARRAY (3CMF) CMF_ALLOCATE_LAYOUT_ARRAY (3CMF)

RETURNED VALUE

None.

DESCRIPTION

The subroutine CMF_ALLOCATE_LAYOUT ARRAY allocates the CM storage to hold an
array of the shape specified by RANK and EXTENTS, the type specified by TYPE, and with
ordering and weights specified for each axis by ORDERS and WEIGHTS.

To use the elements of CM array created by CMF_ALLOCATE_LAYOUT_ARRAY in CM For-
tran operations, you must pass ARRAY to a program unit that explicitly declares it as a CM
array. Since the program unit that calls CMF_ALLOCATE_LAYOUT _ ARRAY must declare
ARRAY as a front-end array, ARRAY cannot be used in that program unit except to be
passed to other program units.

NOTE

Do not use the compiler switch -safety=level or -argument_checking to compile
programs that contain dynamically allocated arrays.

SEE ALSO

CMF_ALLOCATE_ARRAY
CMF_ALLOCATE DETAILED ARRAY
CMF_DEALLOCATE ARRAY

CM Fortran Version 2.0 Last change: December 1992 58

CMF_ALLOCATE_TABLE (3CMF) CMF_ALLOCATE_TABLE (3CMF)

NAME
CMF_ALLOCATE_TABLE - Allocates a lookup table and returns a table identifier.

SYNTAX
INCLUDE /usr/include/cm/CMF_defs.h’

TABLE JD = CMF_ALLOCATE_TABLE (TYPE, ELEMENT_COUNT, INITIAL_VALUES)

ARGUMENTS

TYPE Integer. TYPE describes the type of the elements to be allocated for the table.
Valid values are:

CMF_LOGICAL
CMF_S_INTEGER
CMF_FLOAT
CMF_DOUBLE
CMF_COMPLEX
CMF_DOUBLE_COMPLEX

ELEMENT_COUNT
An INTEGER specifying the number of elements in the lookup table.

INITIAL_VALUES
A front-end array of the same type as TYPE containing the values to be used to
initialize the table. '

NOTE: This routine assumes that the front-end array INITIAL_VALUES has a
lower bound of 1. All other lower bound values are ignored.

RETURNED VALUE

An INTEGER used as an identifier for the lookup table. This value must be passed to the
otherr CM Fortran utility routines, CMF_LOOKUP_IN TABLE and
CMF_DEALLOCATE_TABLE, that operate on this table.

DESCRIPTION

CMF_ALLOCATE_TABLE allocates a table as specified by TYPE and ELEMENT_COUNT,
initializes it to the values specified in INITIAL_VALUES, and returns a table identifier. Val-
ues can be retrieved from this table using parallel array referencing by passing the table
identifier to CMF_LOOKUP_IN_TABLE.

CM Fortran Version 2.0 Last change: June 1992 59

CMF_ALLOCATE_TABLE (3CMF) CMF_ALLOCATE_TABLE (3CMF)

Using CMF_ALLOCATE_TABLE and CMF_LOOKUP_IN_TABLE to perform indirect index-
ing is significantly faster than using a conventionally allocated table when:

« The content of the table never or rarely changes.
« The table is relatively small. Specifically, it must use less memory than is avail-
able on a single processing element (vector unit, node, or processor, depending

on the execution model).

For more detail on using these tables, see the man page for CMF_LOOKUP_IN_TABLE.

SEE ALSO

CMF_LOOKUP_IN_TABLE
CMF_DEALLOCATE_TABLE

CM Fortran Version 2.0 Last change: June 1992 60

CMF_ARCHITECTURE (3CMF) CMF_ARCHITECTURE (3CMF)

NAME
CMF_ARCHITECTURE - Identifies current CM model and execution model.

SYNTAX
INCLUDE ’/usr/include/cm/CMF_defs.h’

ARCH = CMF_ARCHITECTURE ()

ARGUMENTS

None.

RETURNED VALUE

Returns an INTEGER constant, Valid values are one of the following:
+ CMF_CMS5_SPARC
« CMF_CM5_VU
« CMF_CM200_SLICEWISE
s CMF_CM2_SLICEWISE
¢ CMF_CM200_PARIS
+ CMF_CM2_PARIS
* CMF_SIM

DESCRIPTION

This function returns a constant that identifies the CM model (CM-2, CM-200, or CM-5)
and the execution model under which a program is running. On the CM-2/200 the execu-
tion model can be Paris or slicewise. On the CM-5 the execution model can be SPARC
indicating a CM-5 without vector units, or VU indicating a CM-5 that contains vector units
in addition to the Sparc processors. Finally, CMF_S1M indicates that the program is run-
ning on a Sun computer under the CM Fortran simulator.

SEE ALSO

CMF_NUMBER_OF_PROCESSORS

CM Fortran Version 2.0 Last change: June 1992 61

CMF_AREEF_1D (3CMF) CMF_AREF_1D (3CMF)

NAME
CMF_AREF_1D - Extracts array-indexed values from the serial axis of a CM array.

SYNTAX

INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_AREF 1D (DEST, ARRAY, INDEX, MASK)

ARGUMENTS

DEST A CM array of the same type as ARRAY and conforming to INDEX and MASK. Val-
ues referenced from ARRAY are stored in DEST.

ARRAY The CM array to be referenced. ARRAY must be of the same type as DEST and
have one more dimension than DEST, INDEX, and MASK. The first axis must have
: SERIAL ordering and all axes after the first must have the same shape and lay-
out as the other arguments.

INDEX A CM INTEGER array conforming to DEST and MASK. These values are used as
indices into the : SERIAL axis of ARRAY.

MASK A CM LOGICAL array conforming to DEST and INDEX, or the scalar value
.TRUE.. If MASK is the scalar value . TRUE., all the elements of DEST are modi-
fied. If MASK is a LOGICAL array, only the elements of DEST corresponding to
the elements of MASK that contain . TRUE. are modified.

RETURNED VALUE

None.

DESCRIPTION

This subroutine places into selected elements of DEST the value from the first axis of
ARRAY referenced by the corresponding elements of INDEX. The elements selected are
those that correspond to a .TRUE. element in MASK. Note that even though
CMF_AREF_1D operates only on the first axis of ARRAY, ARRAY must have a rank greater
than one.

CMF_AREF_1D uses indirect addressing hardware to perform this reference significantly
faster than the equivalent CM Fortran code. (See the example provided below.)

NOTES
This subroutine is significantly faster when

+ MASK is the scalar value . TRUE. .

CM Fortran Version 2.0 Last change: December 1992 62

CMF_AREF_1D (3CMF) CMF_AREF_1D (3CMF)

+ The product of the dimensions of INDEX is an integer multiple of the number of
nodes or processors available to the program. (The number of processing elements
is returned by the function CMF_NUMBER_OF _PROCESSORS.)

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank that
have the individual axes offset.

This routine assumes that the arrays have a lower bound of 1. All other lower bound
values are ignored.

EXAMPLE

The DO loop, the FORALL statement, and the call to CMF_AREF_1D given below are all
equivalent, but the call to CMF_AREF_1D is significantly faster.

INTEGER I, DEST(8192), ARRAY({(10,8192), INDEX(8192)
CMFS$SLAYOUT ARRAY (:SERIAL, :NEWS)
LOGICAL MASK(8192)

o] -
DO I=1, 8192
IF (MASK(I)) DEST(I) = ARRAY(INDEX(I), I)
END DO
c -
FORALL(I=1:8192, MASK(I)) DEST(I) = ARRAY(INDEX(I),I)
c

CALL CMF_AREF_1D(DEST, ARRAY, INDEX, MASK)

CM Fortran Version 2.0 Last change: December 1992 63

CMF_ASET_1D (3CMF) CMF_ASET_1D (3CMF)

NAME

CMF_ASET_1D - Stores values into the serial axis of a CM array at array-indexed loca-
tions.

SYNTAX

INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_ASET_1D (ARRAY, SOURCE, INDEX, MASK)

ARGUMENTS

ARRAY A CM array of the same type as SOURCE. ARRAY must have one more dimension
than SOURCE, INDEX, and MASK. The first axis must have : SERIAL ordering,
and all axes after the first must have the same shape and layout as the other argu-
ments. Values referenced from SOURCE are stored in ARRAY.

SOURCE
A CM array of the same type as ARRAY and the same shape and layout as INDEX
and MASK.

INDEX A CM INTEGER array of the same shape and layout as SOURCE and MASK. These
values are used as indices into the : SERIAL axis of ARRAY, specifying the loca-
tion at which to store the corresponding value of SOURCE.

MASK A CM LOGICAL array of the same shape and layout as SOURCE and INDEX, or
the scalar value . TRUE. . If MASK is the scalar value .TRUE., all the elements of
SOURCE are stored. If MASK is a LOGICAL array, only the elements of SOURCE
corresponding to the elements of MASK that contain .TRUE. are stored.

RETURNED VALUE

None.

DESCRIPTION

This subroutine stores selected elements of SOURCE into the first (serial) axis of ARRAY at
the locations specified by the corresponding elements of INDEX. The elements selected
are those that correspond to a . TRUE. element in MASK. Though CMF_ASET_1D operates
on only a single axis, ARRAY must have a rank greater than one.

CMF_ASET_lD uses indirect addressing hardware to perform this reference significantly
faster than the equivalent CM Fortran code.

CM Fortran Version 2.0 Last change: June 1992 64

{

|9

P
e v T e s b e s
‘ . .

CMF_ASET_1D (3CMF) CMF_ASET_1D (3CMF)

NOTES
This subroutine is significantly faster when
+ MASK is the scalar value . TRUE. .

« The product of the dimensions of INDEX is an integer multiple of the number of

nodes or processors available to the program. (The number of processing elements
is returned by the function CMF_NUMBER_OF _PROCESSORS.)

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound
values are ignored.

CM Fortran Version 2.0 Last change: June 1992 65

CMF_AVAILABLE_MEMORY (3CMF) CMF_AVAILABLE_MEMORY (3CMF)

NAME

CMF_AVAILABLE_MEMORY - Rewrns the number of bytes available in each node
Or ProCessor.

SYNTAX

INCLUDE ‘/usr/include/cm/CMF_defs.h’

MEM = CMF_AVAILABLE MEMORY ()

RETURNED VALUE

An INTEGER specifying the number of bytes of memory available in each node or pro-
Cessor.

DESCRIPTION

This function returns an integer reporting, in units of bytes, the amount of memory left in
each processing element: node for CM-5 sparc model, or CM-2/200 slicewise; vector unit
for CM-5 vu model; or processor for CM-2/200 Paris.

Note: This function returns incorrect results for the vector unit model in Version 2.0 Beta.

CM Fortran Version 2.0 Last change: December 1992 66

o SR -

Pi i

CMF_CM_ARRAY_FROM_FILE (3CMF)

NAME
CMF,

SYNTAX

CMF_CM_ARRAY_FROM_FILE (3CMF)

'_CM_ARRAY_FROM_FILE - Reads an array from a CM file.

INCLUDE '’ /usr/include/cm/CMF_defs.h’

CALL CMF_CM_ARRAY FROM FILE (UNIT, DEST, IOSTAT)

ARGUMENTS

UNIT

DEST

An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE_ OPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end I/0.

A CM array of any type. TheDESTanaymustbexdenncalmshapeandtypeto
the array that is to be transferred from the file.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A

positive value indicates success, a value of 0 indicates an end-of-file condition,
and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine reads an array from the CM file specified by UNIT into the CM array
specified by DEST. The file must have been written by CMF_CM _ARRAY TO_FILE.
CMF_CM_ARRAY TO_FILE writes the array to the file in a parallel order that reflects the
geometry of the array. This allows CMF_CM_ARRAY FROM FILE to transfer the array

faster

than CMF_CM_ARRAY FROM FILE_SO. However the files written by

CMF_CM_ARRAY TO_FILE cannot be ‘transferred outside the CM system and are subject
to the followmg restrictions when being read back into the CM system:

The machine used to read the file must be the same model (CM-2/200 or CM-5)
that was used to write the file.

The DEST array must be identical in shape and type to the array in the file.

Files read by CMF_CM ARRAY FROM FILE must have been written by
CMF_CM_ARRAY TO_FILE. The machine size, array layout, and execution model
can be different between the write and read operations, with the following excep-
tions:

CM Fortran Version 2.0 Last change: October 1992 67

CMF_CM_ARRAY_FROM_FILE (3CMF) CMF_CM_ARRAY_FROM_FILE (3CMF)

+ On CM-2/200 only, an array written from one execution model (Paris or S |
slicewise) and read into the other execution model must have canonical 6\’
layout. '

A canonical array is one in which the axis ordering or weights have not
been changed from the defaults by the LAYOUT directive. Within a pro-
gram, a noncanonical array can be converted to a canonical array by an
array assignment.

+ On CM-2/200 only, an array written from one machine size and read into a
different machine size must have at least as many elements as the number
of bit-serial processors in the larger machine.

More specialized parallel order files can be written with
CMF_CM_ARRAY TO_FILE FMS and read with CMF_CM ARRAY FROM FILE FMS.
These subroutines write and read arrays to CM files more quickly than
CMF_CM_ARRAY TO_FILE and CMF_CM_ARRAY_ FROM FILE, but they“are more
restricted in their use. In particular, a file must be read on the same size machine as it
was written from.

. -

Serial order files are written with CMF_CM_ARRAY TO_FILE SO and read with
CMF_CM _ARRAY FROM_FILE SO. Such files can be transferred between CM-2/200 1
andCM-Ssytems outsﬂetthMﬁlesystem,orduectlytoanIlOdewcesuchasa '

HIPPI interface or a CM socket.

NOTE 0
The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but

with offsets for the individual axes.

SEE ALSO

CMF_CM_ARRAY_ FROM_FILE_FMS
CMF_CM_ARRAY_FROM FILE SO

CMF_CM_ARRAY TO_FILE)
CMF_CM_ARRAY_TO_FILE_FMS é
CMF_CM_ARRAY_TO_FILE SO

CM Fortran Version 2.0 Last change: October 1992 68

el

e TR

S e e et v st o e

CMF_CM_ARRAY_FROM_FILE_FMS (3CMF) CMF_CM_ARRAY_FROM_FILE_FMS (3CMF)

NAME

CMF_CM_ARRAY_FROM_FILE_FMS - Reads an array from a CM file to a CM
array for a fixed machine size.

SYNTAX

INCLUDE ‘/usr/include/cm/CMF_defs.h’

CMF_CM_ARRAY FROM FILE_FMS (UNIT, DEST, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end I/0.

DEST A CM array of any type. The DEST array must be identical in shape, type, and
layout to the array that is to be transferred from the file.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success, a value of zero indicates an end-of-file condi-
tion, and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine reads the contents of an array from the file specified by UNIT and stores
it in the DEST CM array. The file must have been written by
CMF_CM_ARRAY TO FILE_FMS. CMF_CM _ARRAY TO_FILE FMS writes the file in a
parallelordertbatreﬂectsthegeometlyofthearray,thearraylayout and the size of the
machine executing the program. This allows CMF_CM_ARRAY FROM FILE_FMS to trans-
fer the array substantially faster than CMF_CM ARRAY FROM FILE or
CMF_CM_ARRAY FROM_FILE so. However, parallel order files cannot be transferred
outside the CM file system, and FMS files are subject to the following restrictions when
being read back into the CM:

» The array must be read by CMF_CM_ARRAY FROM FILE FMS into the same
machine model (CM-2/200 or CM-5) that was used to write the file. Files written
by CMF_CM_ARRAY TO_FILE_FMS are not portable between CM-2/200 and CM-5
systems.

+ The machine used to read the array must be a CM-2/200 section or a CM-5

CM Fortran Version 2.0 Last change: October 1992 69

CMF_CM_ARRAY_FROM_FILE_FMS (3CMF) CMF_CM_ARRAY_FROM_FILE_FMS (3CMF)

partition with the same physical size as the one that was used to write the file. In
addition, the same execution model (slicewise or Paris nodes or vector units) must
be used when writing and reading.

+ As mentioned in the description of the DEST argument above, the destination
array on the CM and the array that is to be transferred from the file must be identi-
cal in shape, type, and layout.

More general parallel order files that have some of the performance advantages of FMS
files but less severe restrictions can be written with CMF_CM_ARRAY TO_FILE and read
with CMF_CM_ARRAY FROM FILE.

Serial order files that can be transferred, between CM-2 and CM-5 systems, outside the
CM file system, or directly to an I/O device such as a HIPPI interface or a CM socket, can
be written with CMF_CM_ARRAY TO FILE SO and read with
CMF_CM_ARRAY FROM FILE_SO.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMF_CM_ARRAY FROM FILE
CMF_CM_ARRAY_FROM_FILE_ SO
CMF_CM_ARRAY_TO FILE
CMF_CM_ARRAY_TO FILE_ FMS
CMF_CM_ARRAY_TO_FILE_SO

CM Fortran Version 2.0 Last change: October 1992 70

.

CMF_CM_ARRAY_FROM_FILE_SO (3CMF) CMF_CM_ARRAY_FROM_FILE_SO (3CMF)

NAME

CMF_CM_ARRAY_FROM_FILE_SO - Reads an array from a CM file to a CM array
in serial order.

SYNTAX

INCLUDE '’ /usr/include/cm/CMF_defs.h’

CALL CMF_CM ARRAY FROM FILE SO (UNIT, DEST, IOSIAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end J/O.

DEST A CM array of any type, shape, or layout.

IOSTAT An INTEGER variable into which the status of the [JO operation will be placed. A
positive value indicates success and specifies the number of bytes read from the
file, a value of zero indicates an end-of-file condition, and a negative value indi-
cates failure.

RETURNED VALUE

None.

DESCRIPTION

CMF_CM_ARRAY FROM FILE_SO reads an array from the CM file specified by UNIT into
the CM array DEST. CMF_CM_ARRAY_FROM_FILE_SO expects the array to be in normal
Fortran (or "serial”) order, that is, an array written with CMF_CM_ARRAY TO_FILE SO.Of
with the Fortran 77 (and CM Fortran) WRITE statement.

NOTE
The CM Fortran Utility Library procedures do not operate correctly on arrays that have

‘been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

CM Fortran Version 2.0 Last change: October 1992 7

CMF_CM_ARRAY_FROM_FILE_SO (3CMF) CMF_CM_ARRAY_FROM_FILE_SO (3CMF)

SEE ALSO

CMF_CM_ARRAY FROM FILE
CMF_CM_ARRAY FROM FILE_FMS
CMF_CM_ARRAY_TO_FILE
CMF_CM_ARRAY TO_FILE_FMS
CMF_CM_ARRAY_TO_FILE_SO

CM Fortran Version 2.0 Last change: October 1992

72

CMF_CM_ARRAY_TO_FILE (3CMF) CMF_CM_ARRAY_TO_FILE (3CMF)

m NAME
CMF_CM_ARRAY_TO_FILE - Writes the contents of an array to a CM file.

SYNTAX
i: INCLUDE '’ /usr/include/cm/CMF_defs.h’

‘ CALL CMF_CM_ARRAY TO_FILE (UNIT, SOURCE, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE_OPEN that creates the file in the CM file system. This UNIT number
has no relation to the standard Fortran unit numbers used in front-end I/O.

SOURCE
A CM array of any type.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success, and a negative value indicates failure.

y
1) RETURNED VALUE

None.

DESCRIPTION

This subroutine writes the contents of the CM array SOURCE to the CM file specified by
UNIT. The array is written to the file in a parallel order that reflects the geometry of the
array. This allows CMF_CM_ARRAY_ TO_FILE to transfer the array substantially faster
than CMF_CM_ARRAY TO_FILE_SO. However, files written with
CMF_CM_ARRAY_TO_FILE cannot be transferred outside the CM file system and are sub-
ject to the following restrictions when being used on the CM:

+ All arrays written to the file must have the same shape as the first array written to
the file.

+ The array must be read by CMF_CM_ARRAY FROM_FILE into the same machine
; model (CM-2/200 or CM-5) that was used to write the file. Files written by
‘i CMF_CM _ARRAY_TO_FILE are not portable between CM-2/200 and CM-5 systems.

+ Files written by CMF_CM_ARRAY_TO_FILE are, in most cases, portable across
machine sizes, array layouts, and execution models. The exceptions are:

CM Fortran Version 2.0 Last change: October 1992 73

CMF_CM_ARRAY_TO_FILE (3CMF) CMF_CM_ARRAY_TO_FILE (3CMF)

NOTE

« On CM-2/200 only, an array written from one execution model (Paris or
slicewise) and read into the other execution model must have canonical
layout.

A canonical array is one in which the axis ordering or weights have not
been changed from the defaults by the LAYOUT directive. Within a pro-
gram, a noncanonical array can be converted to a canonical array by an
array assignment.

« On CM-2/200 only, an array written from one machine size and read into a
different machine size must have at least as many elements as the number
of bit-serial processors in the larger machine.

More specialized parallel order filess can be written with
CMF_CM_ARRAY_TO FILE_FMS and read with CMF_CM_ARRAY FROM FILE_FMS.
These subroutines write and read arrays to CM files more quickly than
CMF_CM_ARRAY TO_FILE and CMF_CM_ARRAY_ FROM FILE, but they are more sev-
erlyrestnctedmthexruse Inparuclﬂar ‘a file must be read on the same size machine
as it was written from.

Serial order files are written with CMF_CM_ARRAY TO FILE SO and read with
CMF_CM_ARRAY FROM FILE SO. Such files can be transferred between CM-2/200
andCM-Ssytems outmdetheCMﬁlesystcm,orduectlytoanIlOdevmesuchasa
HIPPI interface or a CM socket.

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMF_CM_ARRAY FROM FILE
CMF_CM_ARRAY_FROM_FILE_FMS
CMF_CM_ARRAY FROM FILE SO
CMF_CM_ARRAY_TO_FILE_FMS
CMF_CM_ARRAY_TO_FILE_SO

CM Fortran Version 2.0 Last change: October 1992 74

CMF_CM_ARRAY_TO_FILE_FMS (3CMF) CMF_CM_ARRAY_TO_FILE_FMS (3CMF)

NAME

CMF_CM_ARRAY_TO_FILE_FMS - Writes the contents of an array to a CM file for
a fixed machine size.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_CM_ARRAY TO_FILE_FMS (UNIT, SOURCE, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE_OPEN that creates the file in the CM file system. This UNIT number
has no relation to standard Fortran unit numbers used in front-end J/O.

SOURCE
A CM array of any type.

IOSTAT An INTEGER variable into which the status of the JJO operation will be placed. A
positive value indicates success; and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine writes the contents of the CM array SOURCE to the CM file specified by
UNIT. The array is written to the file in a parallel order that reflects the geometry of the
array, the array layout, and the size of the machine executing the program. This allows
CMF_CM _ARRAY TO_FILE FMS to transfer the array substantially faster than
CMF_CM_ARRAY_TO_FILE or CMF_CM ARRAY TO_FILE SO. However, parallel order
files cannot be transferred outside the CM file system, and FMS files are subject to the fol-
lowing restrictions when being used on the CM:

. Allarrayswnttentotheﬁlemusthavethesamcshapcandlayoutastheﬁrstanay
written.

+ The array must be read by CMF_CM _ARRAY_FROM_FILE_FMS into the same
machine model (CM-2/200 or CM-5) and the same execution model (slicewise or
Paris, nodes or vector units) that were used to write the file.

+ The array must be read into a CM-2/200 section or a CM-5 partition with the same
~ physical size as the one that was used to write the file.

CM Fortran Version 2.0 Last change: October 1992 75

CMF_CM_ARRAY_TO_FILE_FMS (3CMF) CMF_CM_ARRAY_TO_FILE_FMS (3CMF)

+ The array from the file must be read into an array on the CM with the same shape,
type, and layout.

More general parallel order files that have some of the performance advantages of FMS
files but less severe restrictions can be written with CMF_CM_ARRAY_TO_FILE and read
with CMF_CM_ARRAY FROM_FILE.

Serial order files that can be transferred between CM-2/200 and CM-5 systems, outside the
CM file system, or directly to an J/O device such as a HIPPI interface or a CM socket, can
be written with CMF_CM_ARRAY TO FILE SO and read with
CMF_CM_ARRAY FROM FILE_SO.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMF_CM_ARRAY FROM_FILE
CMF_CM_ARRAY FROM FILE FMS
CMF_CM_ARRAY FROM FILE_SO
CMF_CM_ARRAY TO_FILE
CMF_CM_ARRAY_TO_FILE_ SO |

CM Fortran Version 2.0 Last change: October 1992 76

CMF_CM_ARRAY_TO_FILE_SO (3CMF) CMF_CM_ARRAY_TO_FILE_SO (3CMF)

NAME
CMF_CM_ARRAY_TO_FILE_SO - Writes the contents of an array to a CM file in
serial order.

SYNTAX

INCLUDE ‘/usr/include/cm/ CMF_defs.h’

CALL CMF_CM_ARRAY_TO_FILE_SO (UNIT, SOURCE, IOSIAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the the CM file system. This UNIT num-
ber has no relation to standard Fortran unit numbers used in front-end 1/0.

SOURCE
A CM array of any type, shape, or layout.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success, and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

~ CMF_CM_ARRAY_TO_FILE_SO writes the contents of the SOURCE array to a CM file spec-
medbyUNITmnomalFoman(or “serial”) order. Th&sean'aysmustbereadbackmto
the CM system with CMF_CM_ARRAY_FROM FILE_SO.

The array elements are stored in a serial order file in the same order as those written with
the Fortran 77 (and CM Fortran) WRITE statement. For example, the array A(2,3) is
stored in the following order:

A(LD
AQR,))
A(1,2)
AQR2)
A(1,3)
- AQR3)

CM Fortran Version 2.0 Last change: October 1992 77

CMF_CM_ARRAY_TO_FILE_SO (3CMF)

CMF_CM_ARRAY_TO_FILE_SO (3CMF)

Files containing arrays in serial order are portable to any CM configuration and may also
be transferred outside the CM system to other file systems. However, arrays that are writ-
ten by CMF_CM_ARRAY TO_FILE_SO directly to a device (a HIPPI interface or a CM
socket) may contain some “padding”.

The padding consists of extra elements added to the array when it is allocated in CM
memory or when the I/O system writes it out. The padding is handled transparently by the
CM Fortran I/O utilties that read and write in parallel order
(CMF_CM_ARRAY TO/FROM_FILE and CMF_CM_ARRAY TO/FROM FILE_FMS), and the
padding is stripped from the arrays when they are written to a file in serial order by
CMF_CM_ARRAY_ TO_FILE_SO. However, when CMF_CM_ARRAY TO_FILE_SO is used
to write an array to a device, extraneous data may be added to the end of the array.
Padding is not present if the following restrictions are observed when writing to devices:

« From the CM-5:

Write from arrays whose size (number of elements) is a power of 2 and an integer
multiple of the size of the partition (number of nodes) executing the program.

+ From the CM-2/200:

Write from arrays whose size (number of elements) is a power of 2 and an integer
mulitple of the size of the machine (number of bit-serial processors) executing the
program. The I/O system considers the number of bit-serial processors to be the
CM-2/200 machine size under either execution model, Paris or slicewise.

NOTE

The CM Fortran Utility Library procedures do not operate correctly on arrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank but
with offsets for the individual axes.

SEE ALSO

CMF_CM_ARRAY FROM FILE
CMF_CM_ARRAY FROM FILE FMS
CMF_CM_ARRAY_ FROM_FILE SO
CMF_CM_ARRAY_TO_FILE
CMF_CM_ARRAY_TO_FILE FMS

CM Fortran Version 2.0 Last change: October 1992 78

CMF_DEALLOCATE_ARRAY (3CMF) CMF_DEALLOCATE_ARRAY (3CMF)

NAME
CMF_DEALLOCATE_ARRAY - Deallocates a dynamically allocated CM array.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_DEALLOCATE_ARRAY (ARRAY)

ARGUMENTS

ARRAY Front-end array. The ARRAY argument modified by CMF_ALLOCATE_ARRAY,
CMF_ALLOCATE_DETAILED ARRAY, or CMF_ALLOCATE_ LAYOUT_ARRAY as a
descriptor for a dynamically allocated CM array. The CM array represented by
this argument will be deallocated.

RETURNED VALUE

None.

DESCRIPTION

CMF_DEALLOCATE_ARRAY deallocates a CM array that has been allocated with
CMF_ALLOCATE_ARRAY, CMF_ALLOCATE DETAILED_ ARRAY, or
CMF_ALLOCATE_LAYOUT ARRAY. Only ARRAY arguments modified by these three sub-
routines should be passed to this subroutine. The contents of the CM array represented by
ARRAY cannot be accessed after a call to this subroutine.

SEE ALSO

CMF_ALLOCATE_ARRAY
CMF_ALLOCATE DETAILED ARRAY
CMF_ALLOCATE LAYOUT ARRAY

CM Fortran Version 2.0 Last change: December 1992 79

CMF_DEALLOCATE_TABLE (3CMF) CMF_DEALLOCATE_TABLE (3CMF)

NAME

CMF_DEALLOCATE_TABLE - Deallocates all storage associated with a lookup table
allocated by CMF_ALLOCATE_TABLE.

SYNTAX

INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_DEALLOCATE TABLE (TABLE)

ARGUMENTS

TABLE An INTEGER. The identifier, as returned by CMF_ALLOCATE_TABLE, for the
table to be deallocated. Only tables allocated by the CMF_ALLOCATE_TABLE sub-
routine can be deallocated by this procedure.

RETURNED VALUE |

None.

DESCRIPTION

CMF_DEALLOCATE_TABLE deallocates all storage associated with a lookup table allo-
cated by CMF_ALLOCATE_TABLE. Under some circumstances, these tables allow signifi-
cantly faster access for vector indirection on invariant arrays than conventionally allo-
cated arrays.

See the man page for CMF_LOOKUP_IN_TABLE for more details.

SEE ALSO

CMF_ALLOCATE_TABLE
CMF_LOOKUP_IN TABLE

CM Fortran Version 2.0 Last change: June 1992 80

CMF_DEPOSIT_GRID_COORDINATE (3CMF) CMF_DEPOSIT_GRID_COORDINATE (3CMF)

NAME

CMF_DEPOSIT_GRID_COORDINATE - Modifies a send address to incorporate spe-
cific grid coordinates.

SYNTAX

INCLUDE ' /usr/include/cm/CMF_defs.h’

CALL CMF_DEPOSIT_GRID_COORDINATE

&

ARGUMENTS

(GEOMETRY, SEND_ADDRESS, AXIS, COORDINATE, MASK)

GEOMETRY :

An INTEGER geometry ID as returned by CMF_GET_GEOMETRY_ID. The send
address is computed for the geometry specified by this argument.

SEND_ADDRESS

AXIS

A CM array in which the send addresses are stored.

On any CM platform, this array may be declared as INTEGER to support 4-byte
send addresses, or as DOUBLE PRECISION Or REAL*8 to support 8-byte send
addresses. We recommend using DOUBLE PRECISION Or REAL#8. See
DESCRIPTION below for details.

An INTEGER specifying the axis number of the coordinates being deposited into
the send address.

COORDINATE

MASK

A CM INTEGER array of the same shape and layout as SEND_ADDRESS and
MASK. This array contains the grid coordinates to be incorporated into
SEND_ADDRESS. These coordinates should be one based and not larger than the
length of the axis of the specified GEOMETRY.

A CM LOGICAL array of the same shape and layout as SEND_ADDRESS and
COORDINATE, or the scalar value . TRUE.. If MASK is the scalar value .TRUE., all
the elements of SEND_ADDRESS are modified. If MASK is a LOGICAL array, only
the elements of SEND_ADDRESS corresponding to the elements of MASK that

contain . TRUE . are modified. '

RETURNED VALUE

None.

CM Fortran Version 2.0 Last change: June 1992 81

CMF_DEPOSIT_GRID_COORDINATE (3CMF) CMF_DEPOSIT_GRID_COORDINATE (3CMF)

DESCRIPTION

This subroutine modifies send addresses stored in selected elements of SEND_ADDRESS,
along the axis specified by AXIS, to incorporate the grid coordinates stored in the corre-
sponding elements of COORDINATE. The MASK argument controls which elements are
selected for the computation. The SEND_ADDRESS array should be initialized by calling
CMF_MAKE SEND_ADDRESS before ca]hng CMF_DEPOSIT_GRID_COORDINATE. YOu can
call CMF_DEPOSIT GRID_COORDINATE repeatedly for each axis of the geometry with-
out disturbing coordinates already deposited in SEND_ADDRESS.

SEND_ADDRESS can be declared as an INTEGER, Or a§ a DOUBLE PRECISION Or
REAL*8 CM array. The CM-2/200 computes send addresses as 4-byte values; the CM-5
uses 8-byte send addresses. Each platform will accept either 4-byte (INTEGER) or 8-byte
(DOUBLE PRECISION or REAL#*8) send address arrays. However, there may be a perfor-

mance penalty for using 4-byte addresses on the CM-5, as the system coerces the values

to 8-byte length. There is a minimal performance penalty for using 8-byte send-address
arrays on the CM-2 (one array copy). Therefore, for maximum portability, all CM Fortran
programs that compute send addresses should declare them as DOUBLE PRECISION Or
REAL*8 values. INTEGER send address arrays should only be used in programs to be run
on the CM-2 in which the marginally greater memory use is an issue.

NOTES

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

SEE ALSO

CMF_GET_GEOMETRY_ID
CMF_MAKE_SEND ADDRESS
CMF_MY SEND_ADDRESS
CMF_SEND

CM Fortran Version 2.0 Last change: June 1992 82

CMF_DESCRIBE_ARRAY (3CMF) ' CMF_DESCRIBE_ARRAY (3CMF)

NAME

CMF_DESCRIBE_ARRAY - Prints information about a CM array to stdout.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_DESCRIBE_ARRAY (ARRAY)

ARGUMENTS

ARRAY A CM array of any type.

RETURNED VALUE

None.

DESCRIPTION

This subroutine prints descriptive information about a CM array to stdout. This infor-
mation includes the shape and layout of the array.

SEE ALSO

CMF_GET_GEOMETRY_ID
CMF_SIZEOF_ARRAY ELEMENT

CM Fortran Version 2.0 Last change: June 1992 83

CMF_FE_ARRAY_FROM_CM (3CMF) CMF_FE_ARRAY_FROM_CM (3CMF)

NAME

CMF_FE_ARRAY_FROM_CM - Transfers the contents of a CM array to a front-end
array.

SYNTAX

INCLUDE ' /usr/include/cm/CMF_defs.h’

CALL CMF_FE _ARRAY FROM CM (DEST, SOURCE)

ARGUMENTS

DEST A front-end array of the same type and shape as SOURCE. This array is the desti-
nation of the transfer.

SOURCE
A CM array of any type.

RETURNED VALUE

None.

DESCRIPTION

This subroutine transfers the contents of a CM array to a front-end array as quickly as
possible. The two arrays should be of the same shape and type.

NOTES

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

SEE ALSO

CMF_FE_ARRAY_TO_CM

CM Fortran Version 2.0 Last change: June 1992 84

CMF_FE_ARRAY_TO_CM (3CMF) CMF_FE_ARRAY_TO_CM (3CMF)
NAME

CMF_FE_ARRAY_TO_CM - Transfers the contents of a front-end array to a CM array.

SYNTAX
INCLUDE ’/usr/include/cm/CMF_defs.h’

CALL CMF_FE_ARRAY_TO_CM (DEST, SOURCE)

ARGUMENTS

DEST A CM array of the same type and shape as SOURCE. This array is the destination
of the transfer.

SOURCE
A front-end array of any type.

RETURNED VALUE

None.

DESCRIPTION

This subroutine transfers the contents of a front-end array to a CM array as quickly as
possible. The two arrays should be of the same shape and type.

NOTES

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

SEE ALSO

CMF_FE_ARRAY FROM CM

CM Fortran Version 2.0 Last change: June 1992 85

CMF_FILE_CLOSE (3CMF) CMF_FILE_CLOSE (3CMF)

NAME |
CMF_FILE_CLOSE - Closes a CM file. ‘ A

SYNTAX

INCLUDE ' /usr/include/cm/CMF_defs.h’

CALL CMF_FILE CLOSE (UNIT, IOSIAT)

ARGUMENTS

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. The unit number is assigned by the user to a file when it is
created with CMF_OPEN_FILE and has no relation to standard Fortran unit num-
bers.

IOSTAT An INTEGER variable into which the status of the IO operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None. - |
| ¢

DESCRIPTION
Closes a file in the CM file system.

SEE ALSO

CMF_FILE_FDOPEN
CMF_FILE_LSEEK
CMF_FILE_LSEEK FMS
CMF_FILE_OPEN
CMF_FILE_REWIND
CMF_FILE_TRUNCATE
CMF_FILE_UNLINK

CM Fortran Version 2.0 Last change: December 1992 86

CMF_FILE_FDOPEN (3CMF) CMF_FILE_FDOPEN (3CMF)

NAME

CMF_FILE_FDOPEN - Associates CM file or socket descriptor with a CM Fortran unit
number. Both the descriptor and the unit number are input values.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_FILE_FDOPEN (CMFS_FD, UNIT, IOSIAT)

ARGUMENTS

CMFS_FD
INTEGER. A CMFS (CM file system) file or socket descriptor.

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. This is the CM Fortran unit number to be associated with
CMFS_FD. This unit number has no relation to standard Fortran unit numbers.

IOSTAT INTEGER. An integer variable into which the status of the I/O operation will be
placed. A positive value indicates that the operation has succeeded; a negative
value indicates that the operation has failed.

RETURNED VALUE

None.

DESCRIPTION

This subroutine associates the descriptor, CMFS_FD, of an open CMFS file or a CM socket
with the CM Fortran unit number UNIT. You can then use UNIT as an argument to
CMF_CM ARRAY TO_FILE oOr CMF_CM ARRAY FROM FILE on the CM-5, or to
CMF_CM ARRAY TO_FILE_ SO or CMF_CM ARRAY FROM_FILE_SO on the CM-2, to per-
form I/O to CM-HIPPI, VME, or CM sockets { fromw1th1n a CM Fortran program.

SEE ALSO
CMF_FILE GET_FD

For more information on using the CM file system, see your CM J/O system documenta-
tion.

For more information on using the CM-HIPPI interface, see your CM-HIPPI documenta-
tion.

CM Fortran Version 2.0 Last change: June 1992 87

CMF_FILE_GET_FD (3CMF) CMF_FILE_GET_FD (3CMF)

NAME

CMF_FILE_GET_FD - Determines the CMFS file or socket descriptor previously asso-
ciated with a specified CM Fortran unit.

SYNTAX

INCLUDE ’/usr/include/cm/CMF_defs.h’

CALL CMF_FILE GET_FD (UNIT, CMFS_FD, IOSIAT)

ARGUMENTS

CMFS_FD
An INTEGER output argument. The CMFS file or socket descriptor is returned in
this variable.

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. The unit number is assigned by the user to a file when it is
created with CMF_OPEN_FILE and has no relation to standard Fortran unit num-
bers.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine returns, in the argument CMFS_FD, the CMFS (CM file system) file or
socket descriptor, associated with the CM Fortran unit, UNIT. This allows you to deter-
mine the file descriptor previously associated with UNIT, for example with
CMF_FILE FDOPEN, so that the file descriptor can be used in calls to the low-level rou-
tines of the CMFS (CM File System) library.

SEE ALSO
CMF_FILE_FDOPEN

For more information on using the CM file system, see your CM JJO system documenta-

tion.

CM Fortran Version 2.0 Last change: December 1992 88

CMF_FILE_LSEEK (3CMF) CMF_FILE_LSEEK (3CMF)

NAME

CMF_FILE_LSEEK - Offsets the file pointer a specified distance within a CM file.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_FILE_LSEEK (UNIT, OFFSET, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit
number in the range 1 to 29. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the CM file system. This UNIT num-
ber has no relation to the standard Fortran unit number used in front-end I/O.

OFFSET INTEGER An offset from the current position in the specified file. This argu-
ment is specified differently for serial order and parallel order files. See the
DESCRIPTION and EXAMPLE sections below for more information.

IOSTAT An INTEGER variable into which the status of the I/O operation will be

placed. A positive value indicates success and a negative value indicates
failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine moves the file pointer within a CM file. If you do not reset the file pointer
with CMF_FILE_REWIND, the offset is added to the current position of the file pointer.
Before performing a seek operation on any CM file, you must perform a read or write
operation on the file. This establishes the geometry of the file.

Seeking In Serial Order Files
For serial order files (those written with CMF_CM_ARRAY_TO_FILE_SO), the offset is
given in bytes. To calculate the offset, multiply the number of bytes in the array’s element

type by the number of elements to traverse. This allows you to seek to an arbitrary ele-
ment in the file.

Seeking In Parallel Order Files

For parallel order files (those written with CMF_CM_ARRAY_TO_FILE), you can only seek
to the beginning of whole arrays. To compute the offset, you need not specify the size of
the array, since this information is contained in the file geometry. You need specify only

CM Fortran Version 2.0 Last change: August 1992 89

CMF_FILE_LSEEK (3CMF) CMF_FILE_LSEEK (3CMF)

the size of an array’s elements using the function CMF_SIZEOF_ARRAY ELEMENT. To
seek over multiple arrays, call the utility function CMF_SIZEOF_ARRAY ELEMENT on
each array and add the results. (See the example given below.)

Note that on the CM-5 only the element size of any later file operation must be the same
as the element size of the read or write operation that established the geometry of the file
when it was first opened.

NOTE

If the file was written with CMF_CM ARRAY TO FILE FMS, you must use
CMF_FILE_LSEEK_FMS to perform a seek operation on it.

EXAMPLE

These examples illustrate the use of CMF_SIZEOF ARRAY ELEMENT to seek over parallel
order files. For these examples, assume that a file associated with unit 29 has had three
arrays written to it: A, B, and then C. Assume also that we have determined SIZEOF A
and SIZEOF_B by calling CMF_SIZEOF_ARRAY ELEMENT on each array. Then, to posi-
tion the file pointer to the beginning of array a, call

CALL CMF_FILE REWIND(29, IOSTAT)
To position the file pointer to the beginning of array B, use:

CALL CMF_FILE_REWIND (29, IOSTAT)
CALL CMF_FILE_LSEEK(29, SIZEOF_A, IOSTAT)

To position the file pointer to the beginning of array c, use:

CALL CMF_FILE REWIND (29, IOSTAT)
CALL CMF_FILE LSEEK(29, SIZEOF_A+SIZEOF_B, IOSTAT)

To read arrays A and C:

CALL CMF_FILE REWIND (29, IOSTAT)

CALL CMF_CM_ARRAY FROM FILE (29, DEST ARRAY, IOSTAT)
CALL CMF_FILE_LSEEK(29, SIZEOF B, IOSTAT)

CALL CMF_CM_ARRAY_FROM FILE (29, DEST ARRAY, IOSTAT)

SEE ALSO

CMF_FILE CLOSE
CMF_FILE LSEEK_FMS
CMF_FILE_OPEN
CMF_FILE_REWIND:
CMF_SIZEOF_ARRAY_ ELEMENT
CMF_FILE_TRUNCATE
CMF_FILE_UNLINK

CM Fortran Version 2.0 Last change: August 1992 90

CMF_FILE_LSEEK_FMS (3CMF) CMF_FILE_LSEEK_FMS (3CMF)

NAME

CMF_FILE_LSEEK_FMS - Moves the file pointer a specified distance in a file writ-
ten by CMF_CM_ARRAY_TO_FILE FMS.

SYNTAX
INCLUDE * /usr/include/cm/CMF_defs.h’

CALL CMF_FILE_LSEEK FMS (UNIT, OFFSET, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29 inclusive. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the CM file system. This UNIT number
has no relation to the standard Fortran unit number used in front-end J/O.

OFFSET
INTEGER An offset from the current position in the specified file. See the
DESCRIPTION and EXAMPLE sections below for information on how to specify

this argument.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine moves the file pointer to array boundaries within a CM file that has been
written by CMF_CM ARRAY TO FILE FMS. See the man page for
CMF_CM ARRAY TO_FILE_FMS for details on FMS procedures

Before performmg a seek operation on any CM file, you must perform a read or write
operation on the file. This establishes the geometry of the file. Note that on the CM-5 only
the element size of any later file operation must be the same as the element size of the
read or write operation that established the geometry of the file when it was first opened.

To compute the offset, you need not specify the size of the array, since this information is
contained in the file geometry. You need specify only the size of an array’s elements
using the function CMF_SIZEOF_ARRAY_ELEMENT. To seek over muitiple arrays, call the
utility function CMF_SIZEOF_ARRAY ELEMENT on each array and add the results. (See
the example given below.) If you do not reset the file pointer with CMF_FILE REWIND,
the offset is added to the current position of the file pointer.

CM Fortran Version 2.0 Last change: August 1992 91

CMF_FILE_LSEEK_FMS (3CMF) CMF_FILE_LSEEK_FMS (3CMF)

NOTE

If the file was written with CMF_CM_ARRAY TO_FILE Or CMF_CM ARRAY TO_FILE, use
CMF_FILE LSEEK to perform a seek operation on it.

EXAMPLE

These examples illustrate the use of CMF_SIZEOF_ARRAY ELEMENT to seek over
FMSparallel order files. For these examples, assume that CMF_CM_ARRAY_TO_FILE_FMS has been
used to write three arrays (A, B, and then C) to the file associated with unit 29. Assume also that
we have determined SIZEOF_A and SIZEOF_B by calling CMF_SIZEOF_ARRAY_ ELEMENT on
each array. Then, to position the file pointer to the beginning of array A, call

CALL CMF_FILE_REWIND(29, IOSTAT)
To position the file pointer to the beginning of array B, use:

CALL CMF_FILE REWIND (29, IOSTAT)
CALL CMF_FILE LSEEK_FMS (29, SIZEOF A, IOSTAT)

To position the file pointer to the beginning of array C, use:

CALL CMF_FILE_REWIND (29, IOSTAT)
CALL CMF_FILE_LSEEK FMS (29, SIZEOF_A+SIZEOF B, IOSTAT)

To read arrays 2 and C:

CALL CMF_FILE_REWIND (29, IOSTAT)

CALL CMF_CM ARRAY FROM FILE_FMS (29, DEST_ARRAY, IOSTAT)
CALL CMF_FILE LSEEK FMS(29, SIZEOF_ B, IOSTAT)

CALL CMF_CM ARRAY FROM FILE_FMS (29, DEST_ARRAY, IOSTAT)

SEE ALSO

CMF_FILE CLOSE
CMF_FILE_LSEEK FMS
CMF_FILE_OPEN
CMF_FILE_REWIND
CMF_SIZEOF_ARRAY ELEMENT
CMF_FILE_TRUNCATE
CMF_FILE_UNLINK

CM Fortran Version 2.0 Last change: August 1992 92

CMF_FILE_OPEN (3CMF) CMF_FILE_OPEN (3CMF)

NAME

CMF_FILE_OPEN - Opens a CM file and attaches the file to the UNIT.

SYNTAX
INCLUDE ’/usr/include/cm/CMF_defs.h’

CALL CMF_FILE_OPEN (UNIT, PATH, IOSIAT)

ARGUMENTS

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant.

PATH A CHARACTER string containing the pathname for the file to be opened.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine opens a CM file and attaches the file to the UNIT. You must supply this
unit number to other CM file system procedures when you wish to operate on this file.
Note that the CM file system unit numbers have no relation to standard Fortran unit num-
bers.

SEE ALSO

CMF_FILE_FDOPEN
CMF_FILE CLOSE
CMF_FILE_LSEEK
CMF_FILE LSEEK FMS
CMF_FILE_REWIND
CMF_FILE TRUNCATE
CMF_FILE_UNLINK

CM Fortran Version 2.0 Last change: June 1992 93

CMF_FILE_REWIND (3CMF) CMF_FILE_REWIND (3CMF)

NAME

CMF_FILE_REWIND - Moves a file pointer to the beginning of a CM file.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_FILE_REWIND (UNIT, IOSTAT)

ARGUMENTS

UNIT An INTEGER variable containing a valid unit number [1:29]. It may be a param-
eter or literal constant. The unit number is assigned by the user to a file when it is
created with CMF_OPEN_FILE and has no relation to standard Fortran unit num-
bers.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine moves the file pointer for the CM file associated with the UNIT number to
the beginning of that file. You can reset the file pointer before setting it to a specific loca-
tion in the file with CMF_FILE LSEEK or CMF_FILE LSEEK_FMS. See the man page for
CMF_FILE LSEEK for more information.

NOTE

Before calling CMF_FILE REWIND on a newly opened file, you must first perform a read
or write on the file.

SEE ALSO

CMF_FILE_CLOSE
CMF_FILE_LSEEK
CMF_FILE_LSEEK_ FMS
CMF_FILE OPEN
CMF_FILE_TRUNCATE
CMF_FILE_UNLINK

CM Fortran Version 2.0 Last change: June 1992 94

CMF_FILE_TRUNCATE (3CMF) CMF_FILE_TRUNCATE (3CMF)

NAME
CMF_FILE_TRUNCATE - Change the size of a CM file.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_FILE TRUNCATE (UNIT, LENGTH, IOSTAT)

ARGUMENTS

- UNIT An INTEGER variable, parameter, or literal constant containing a valid unit num-
ber in the range 1 to 29. The unit number is specified in the call to
CMF_FILE OPEN that creates the file in the CM file system. This UNIT number
hasnorelauontothestandardFomanumtnumbcrusedmfront-endIIO

LENGTH
" An INTEGER specifying the new length of the file. This argument is specified dif-
ferently for serial order and parallel order files. See the DESCRIPTION section
below for more information.

IOSTAT An INTEGER variable into which: the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

This subroutine changes the size of the specified CM file to LENGTH. The file is extended
or shortened by the difference between the LENGTH argument and the file’s current
length. If the file was previously larger than LENGTH, the extra data is lost. If the file was
previously smaller than LENGTH, the file is extended to LENGTH.

Deriving LENGTH for Serial Order Files

For serial order files (those written with CMF_CM_ARRAY TO_FILE_sO), the length is
given in bytes. To calculate the length for the file, muluply the number of bytes in the
array’s element type by the number of array elements to be contained in the file.

Deriving LENGTH for Parallel Order Flles
For parallel order files (those written with CMF_CM ARRAY TO_FILE or
CMF_CM_ARRAY_TO_FILE_ SO), the file can only be reduced or enlarged by whole

arrays. To compute ‘the length of the array, you need not specify the size of the array,
since this information is contained in the file geometry. You need specify only the size of

CM Fortran Version 2.0 Last change: August 1992 95

CMF_FILE_TRUNCATE (3CMF) CMF_FILE_TRUNCATE (3CMF)

an array’s elements using the function CMF_SIZEOF ARRAY ELEMENT. You can increase
or decrease the size of the file by more than one array by calling
CMF_SIZEOF_ARRAY ELEMENT on several arrays in succession, adding the returned val-
ues together, and supplying the cumulative result as the LENGTH argument.

NOTES
CMF_FILE_TRUNCATE requires the file to be open for writing.

Before calling CMF_FILE TRUNCATE on a newly opened file, you must first perform a
read or write on the file.

SEE ALSO

CMF_FILE_CLOSE
CMF_FILE_LSEEK
CMF_FILE_LSEEK_FMS
CMF_FILE_OPEN
CMF_FILE_REWIND
CMF_SIZEOF_ARRAY ELEMENT
CMF_FILE_UNLINK

CM Fortran Version 2.0 Last change: August 1992 96

CMF_FILE_UNLINK (3CMF) CMF_FILE_UNLINK (3CMF)

NAME

CMF_FILE_UNLINK - Removes a file from a directory.

SYNTAX
INCLUDE ’/usr/include/cm/CMF_defs.h’

CALL CMF_FILE UNLINK (PATH, IOSTAT)

ARGUMENTS
PATH A CHARACTER string containing the pathname of the file to be removed.

IOSTAT An INTEGER variable into which the status of the I/O operation will be placed. A
positive value indicates success and a negative value indicates failure.

RETURNED VALUE

None.

DESCRIPTION

CMF_FILE_UNLINK removes the entry for the file PATH from the file’s directory. If this
entry was the last link to the file and no process has the file open, then the file is deleted
and all resources associated with the file are reclaimed. If, however, the file was open in
any process, the actual resource reclamation is delayed until the file is closed, even
though the directory entry has disappeared.

SEE ALSO

CMF_FILE_CLOSE
CMF_FILE_LSEEK
CMF_FILE LSEEK_ FMS
CMF_FILE_OPEN
CMF_FILE_REWIND
CMF_FILE_TRUNCATE

CM Fortran Version 2.0 Last change: June 1992 97

CMF_GET_GEOMETRY_ID (3CMF) CMF_GET_GEOMETRY_ID (3CMF)

NAME
CMF_GET_GEOMETRY_ID - Returns a geometry identifier for a CM array.

SYNTAX

' INCLUDE ‘/usr/include/cm/CMF_defs.h’

GEOM_ID = CMF_GET_GEOMETRY_ID (ARRAY)

ARGUMENTS

ARRAY A CM array of any type.

RETURNED VALUE

An INTEGER identifying the geometry of ARRAY. This identifier should only be passed to
other CM Fortran library procedures that accept geometry identifiers, such as
CMF_DEPOSIT_GRID_COORDINATE.

DESCRIPTION

This function returns an identifier for a geometry object that defines the shape and layout
of ARRAY on the CM. This identifier is required by CMF_DEPOSIT GRID COORDINATE.
Note that you cannot access the array information directly from this identifier. It can only
be passed to other procedures. Information about an array can be displayed by calling
CMF_DESCRIBE_ARRAY.

SEE ALSO

CMF_DEPOSIT_GRID_COORDINATE.
CMF_DESCRIBE_ARRAY
CMF_SIZEOF_ARRAY ELEMENT

CM Fortran Version 2.0 Last change: June 1992 98

CMF_LOOKUP_IN_TABLE (3CMF)

NAME

CMF_LOOKUP_IN_TABLE (3CMF)

CMF_LOOKUP_IN_TABLE - Performs parallel array reference on a lookup table.

SYNTAX

INCLUDE ' /usr/include/cm/CMF_defs.h’

CALL CMF_LOOKUP_IN_TABLE (DEST, TABLE, INDEX, MASK)

ARGUMENTS

DEST A CM array. The destination array. The values retrieved from the table are stored
into this array.

TABLE Integer. The identifier for the lookup table to be referenced as returned by
CMF_ALLOCATE TABLE. Only lookup tables allocated by the
CMF_ALLOCATE_TABLE subroutine can be referenced by this procedure.

INDEX An INTEGER CM array containing the indices to be used to reference Z4BLE. The
indices must have a lower bound of 1.

MASK A CM LOGICAL array or the scalar value . TRUE.. If MASK is the scalar value
.TRUE., all the elements of DEST are modified. If MASK is a LOGICAL array,
only the elements of DEST corresponding to the elements of MASK that contain
.TRUE. are modified.

RETURNED VALUE

None.

DESCRIPTION

CMF_LOOKUP_IN TABLE performs a parallel array reference on ZABLE.

DEST, INDEX, and MASK (if an array) must be conformable parallel arrays. Each element
of INDEX is used as an index into Z4ABLE, and the value retrieved from that location in
TABLE is stored into the corresponding element of DEST.

Using CMF_ALLOCATE_TABLE and CMF_LOOKUP_IN_TABLE to perform indirect index-
ing is significantly faster that using a conventionally allocated table when:

 The content of the table never or rarely changes.

« The table is relatively small. Specifically, it must consume less memory than is
available on a processing element (vector unit, node, or processor, depending
on the execution model). The function CMF_AVAILABLE_MEMORY returns the
amount of memory left in each processing element in units of bytes.

CM Fortran Version 2.0 Last change: December 1992 99

CMF_LOOKUP_IN_TABLE (3CMF) CMF_LOOKUP_IN_TABLE (3CMF)

When these constraints are met, CMF_LOOKUP_IN_ TABLE stores a copy of the table into
each processing element. This allows the subroutine to do local memory references into
the local copy of the table using indirect addressing hardware.

NOTES

CMF_LOOKUP_IN_ TABLE is substantially faster when

EXAMPLE

» the MASK argument has a value of . TRUE.

. the product of the dimensions of INDEX is an integer multiple of the number of
nodes or processors available to the program. The number of processing ele-
ments is returned by the function CMF_NUMBER_OF_PROCESSORS.

The CM Fortran Utility Library procedures will not operate on atrays that have
been aligned with other arrays of greater rank or with other arrays of the same rank
but with offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower
bound values are ignored.

The code below using CMF_LOOKUP_IN_TABLE is significantly faster than the following
code when the constraints on ZABLE are met. '

C Conventional Array Referencing

C

c

REAL DEST(8192), TABLE(100)
INTEGER INDEX(8192)
DEST = TABLE (INDEX)

C Faster Array Referencing Using CMF_LOOKUP_IN TABLE

C

SEE ALSO

REAL DEST (8192), TABLE_VALUES (100)
INTEGER TABLE
INTEGER INDEX(8192)

TABLE = CMF_ALLOCATE TABLE (CMF_FLOAT, 100, TABLE VALUES)
CALL CMF_LOOKUP_IN_TABLE (DEST, TABLE, INDEX, .TRUE.)

CALL CMF_DEALLOCATE_TABLE (TABLE)

CMF_ALLOCATE_TABLE
CMF_AVAILABLE MEMORY
CMF_DEALLOCATE_TABLE

CM Fortran Version 2.0 Last change: December 1992 100

CMF_MAKE_SEND_ADDRESS (3CMF)

NAME

CMF_MAKE_SEND_ADDRESS (3CMF)

CMF_MAKE_SEND_ADDRESS - Initializes a send address.

SYNTAX

INCLUDE '’ /usr/ihclude/cm/ChdF_defs .hr

CALL CMF_MAKE_SEND_ADDRESS (ARRAY)

ARGUMENTS

ARRAY A CM array. On any CM platform, this array may be declared as INTEGER to sup-
port 4-byte send addresses, or as DOUBLE PRECISION or REAL*8 to support
8-byte send addresses. We recommend using DOUBLE PRECISION or REAL*S.
See DESCRIPTION below for details.

RETURNED VALUE

None.

DESCRIPTION

This subroutine initializes ARRAY with NULL send addresses. This should be done before
calling CMF_DEPOSIT_GRID_COORDINATE. ARRAY can be an INTEGER CM array, or a
DOUBLE PRECISION or REAL*8 CM array.

The CM-2/200 computes send addresses as 4-byte values; the CM-5 uses 8-byte send
addresses. Each platform will accept either 4-byte (INTEGER) or 8-byte (DOUBLE PRE-
CISION or REAL*8) send address arrays. However, there may be a performance penalty
for using 4-byte addresses on the CM-5, as the system coerces the values to 8-byte
length. There is a minimal performance penalty for using 8-byte send-address arrays on
the CM-2 (one array copy). Therefore, for maximum portability, all CM Fortran programs
that compute send addresses should declare them as DOUBLE PRECISION Or REAL*S
values. INTEGER send address arrays should only be used in programs to be run on the
CM-2 in which the marginally greater memory use is an issue.

NOTES

The CM Fortran Utility Library procedures will not operate on arrays that have been.
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the array has a lower bound of 1. All other lower bound values
are ignored.

CM Fortran Version 2.0 Last change: June 1992 101

CMF_MAKE_SEND_ADDRESS (3CMF) CMF_MAKE_SEND_ADDRESS (3CMF)

SEE ALSO

CMF_MY_SEND_ADDRESS
CMF_DEPOSIT GRID_COORDINATE
CMF_SEND

CM Fortran Version 2.0 Last change: June 1992 102

CMF_MY_SEND_ADDRESS (3CMF) CMF_MY_SEND_ADDRESS (3CMF)

NAME

CMF_MY_SEND_ADDRESS - Calculates the send address of each element in an
array.

SYNTAX
INCLUDE ' /usr/include/cm/CMF_defs.h’

CALL CMF_MY_ SEND_ADDRESS (ARRAY)

ARGUMENTS
ARRAY A CM array. Each element of this array is filled with its own send address.

On any CM platform, this array can be declared as INTEGER to support 4-byte
send addresses, or as DOUBLE PRECISION or REAL*8 to support 8-byte send
addresses. We recommend using DOUBLE PRECISION or REAL*8. See
DESCRIPTION below for details.

RETURNED VALUE

None.

DESCRIPTION

This subroutine calculates the send address for each element of ARRAY and fills each ele-
ment with its own send address.

The CM-2/200 computes send addresses as 4-byte values; the CM-5 uses 8-byte send
addresses. Each platform will accept either 4-byte (INTEGER) or 8-byte (DOUBLE PRE-
CISION or REAL*8) send address arrays. However, there may be a performance penalty
for using 4-byte addresses on the CM-5, as the system coerces the values to 8-byte length.
There is a minimal performance penalty for using 8-byte send-address arrays on the CM-2
(one array copy). Therefore, for maximum portability, most CM Fortran programs that
compute send addresses should declare them as DOUBLE PRECISION or REAL*8 values.
INTEGER send address arrays should only be used in programs to be run on the CM-2 in
which the marginallly greater memory use is an issue.

NOTE

The CM Fortran Utility Library procedures will not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

CM Fortran Version 2.0 Last change: June 1992 103

CMF_MY_SEND_ADDRESS (3CMF)

SEE ALSO
CMF_MAKE_SEND_ADDRESS
CMF_DEPOSIT GRID_COORDINATE
CMF_SEND

CM Fortran Version 2.0

Last change: June 1992

CMF_MY_SEND_ADDRESS (3CMF)

104

CMF_NUMBER_OF_PROCESSORS (3CMF) CMF_NUMBER_OF_PROCESSORS (3CMF)

NAME

CMF_NUMBER_OF_PROCESSORS - Returns the number of vector units, nodes, or
processors currently available to the program. :

SYNTAX
INCLUDE ’/usr/include/cm/CMF_defs.h’

NUM = CMF_NUMBER_OF_PROCESSORS ()

ARGUMENTS

None.

RETURNED VALUE

INTEGER

DESCRIPTION

The meaning of the value returned by CMF_NUMBER_OF _PROCESSORS varies with the
CM architecture and the exectution model under which the program is running. The
machine and execution model can be determined with the CM Fortran utility
CMF_ARCHITECTURE. The following table summarizes the meaning of the return value
of CMF_NUMBER_OF _PROCESSORS for each value returned by CMF_ARCHITECTURE:

CMF_ARCHITECTURE CMF_NUMBER OF PROCESSORS

Return Values Return Values
CMF_CM5_SPARC number of processing nodes
CMF_CM5_VU : number of vector units
CMF_CM200_SLICEWISE number of processing nodes
CMF_CM2_SLICEWISE number of processing nodes
CMF_CM200_PARIS number of bit-serial processors
CMF_CM2_PARIS number of bit-serial processors

CMF_S1IM (CM Fortran simulator) 1

SEE ALSO

CMF_ARCHITECTURE

CM Fortran Version 2.0 Last change: December 1992 105

CMF_ORDER (3CMF) CMF_ORDER (3CMF)

NAME

CMF_ORDER - places the numerical rank of each element of a source array in the cor-
responding element of the destination array.

SYNTAX

INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_ORDER (DEST, SOURCE, AXIS, MASK)

ARGUMENTS
DEST A CM INTEGER array.

SOURCE
A CM array of any type. The order of this array is stored in DEST.

AXIS Integer. The axis over which to do the ordering.

MASK A CM LOGICAL array conforming to DEST, or the scalar value . TRUE.. If MASK
is the scalar value .TRUE., all the elements of DEST are modified. If MASK is a
LOGICAL array, only the elements of DEST corresponding to the elements of
MASK that contain . TRUE. are modified.

RETURNED VALUE

None.

DESCRIPTION

For each element of SOURCE with a MASK value of .TRUE., CMF_ORDER places the
numerical rank of that element in the corresponding element of DEST. Each row along the
specified AXIS is treated as a scparate set of values to be ordered. The rank values com-
puted by this subroutine will always be 1 to N inclusive, where N is the number of items
in each set of values to be ordered. This is true regardless of the lower bound of SOURCE.

NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

CM Fortran Version 2.0 Last change: June 1992 106

CMF_RANDOM (3CMF) CMF_RANDOM (3CMF)

NAME

". CMF_RANDOM - Places a different pseudo random number in each element of an
array DEST. '

SYNTAX
INCLUDE ‘/usr/ include/cm/CMF_defs.h’

CALL CMF_RANDOM (DEST, LIMIT)

ARGUMENTS
DEST A CM array of one of the following types:
« INTEGER
* REAL
« DOUBLE PRECISION
+ COMPLEX

* DOUBLE COMPLEX

LIMIT An INTEGER (*4 only) specifying the exclusive upper bound for the range of
random numbers generated. For floating-point values this number should be 1.0.
For INTEGERS only, to specify no upper bound, LIMIT should be 0.

RETURNED VALUE

None.

DESCRIPTION
This subroutine places a pseudo random number in each element of the DEST array.

The random number generator algorithm used by this procedure is Wolfram’s Rule 30
Cellular Automaton. For INTEGER data the random numbers are generated by simply
running the automaton for 32 generations. For REAL, DOUBLE PRECISION, COMPLEX,
and DOUBLE COMPLEX types, the random numbers are generated by running the automa-
ton for s generations (where s is the mantissa length), and setting the exponent bits and
sign bit so that the result is uniformly distributed between 2.0 and 1.0. Then 1.0 is sub-
tracted from the result to yield a number that is uniformly distributed between 0.0 and
1.0. This automaton is run on a finite string of bits, i=0,...,N-1, with periodic boundary
conditions (so that site N is equivalent to site 0). In the CM implementation N = 59.

The primary reference for the Rule 30 Cellular Automaton is Stephen Wolfram, “Random

Sequence Generation by Cellular Automata,” Advances in Applied Mathematics 7, pp.

123-69 (1986). This paper may be more readily available as a reprint in Stephen Wol-

fram, Theory and Application of Cellular Automata (including selected papers
\’ 1983-1986), World Scientific (1986).

CM Fortran Version 2.0 Last change: December 1992 107

CMF_RANDOM (3CMF) CMF_RANDOM (3CMF)

NOTE ‘
The CM Fortran Utility Library procedures do not operate on arrays that have been |
aligned with other arrays of greater rank or with other arrays of the same rank but with

offsets for the individual axes.

SEE ALSO

CMF_RANDOMIZE

CM Fottran Version 2.0 Last change: December 1992 108

o

CMF_RANDOMIZE (3CMF) CMF_RANDOMIZE (3CMF)

NAME
CMF_RANDOMIZE - Initializes the random number generator with a seed.

SYNTAX

INCLUDE ’/usr/include/cm/CMF_defs.h’

CALL CMF_RANDOMIZE (SEED)

ARGUMENTS

SEED An INTEGER scalar specifying the seed value with which to initialize the random
number generator.

RETURNED VALUE

None.

DESCRIPTION

This subroutine uses SEED to initialize the random number generator used when
CMF_RANDOM is called.

The random number generator algorithm used by cCMF_RANDOM is Wolfram’s Rule 30
Cellular Automaton. For more information see the man page for CMF_RANDOM.

SEE ALSO

CMF_RANDOM

CM Fortran Version 2.0 Last change: June 1992 109

CMF_RANK (3CMF) | CMF_RANK (3CMF)

NAME

CMF_RANK - Places the numerical rank of each selected element along an array axis,
or axis segment, into the corresponding element of the destination array.

SYNTAX

INCLUDE ’/usr/include/cm/CMF_defs.h’

CALL CMF_RANK (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, SEGMENT_MODE,

&

ARGUMENTS

DEST

MASK)

A CM INTEGER array. The destination array. The DEST and SOURCE arrays must
be of the same shape and layout.

SOURCE

A CM array of any type. The source array. The SOURCE and DEST arrays must be
of the same shape and layout.

SEGMENT

AXIS

A LOGICAL CM array of the same shape and layout as DEST, SOURCE, and
MASK. .TRUE. values in the SEGMENT array are used as segment delimiters for
the corresponding elements of the SOURCE array.

If SEGMENT_MODE has a value of CMF_NONE, then this argument is ignored and
may be CMF_NULL. Otherwise, each segment is ranked independently. The argu-
ments SEGMENT_MODE, DIRECTION, and MASK control the way the ranking
proceeds over the segments. See the DESCRIPTION section below for details.

An integer. The axis of SOURCE to be ranked.

DIRECTION

An integer. The value can be CMF_UPWARD or CMF_DOWNWARD. If the value is
CMF_UPWARD, thevalu&sarerankedfromthesmallwtvaluetothelargest rank 1
1sass1gnedtothesmallwtvalue If the value is CMF_DOWNWARD, the values are
mnkedﬁ'omhrgestvaluetothesmaﬂwt,mnkllsasmgnedtothelargestvalue

SEGMENT_MODE

MASK

An INTEGER. One of the following integer values: CMF_NONE,
CMF_SEGMENT_BIT or CMF_START_ BIT. This argument controls how the seg-
ments of SOURCE defined by the SEGMENT array are interpreted. See DESCRIP-
TION below for more information.

A CM LOGICAL array, or the scalar value . TRUE..

If the value of MASK is a scalar .TRUE., all the values of SOURCE will be
includedintheranking_.

CM Fortran Version 2.0 Last change: June 1992 110

CMF_RANK (3CMF) ' CMF_RANK (3CMF)

If MASK is a logical array, it must be of the same shape and layout as DEST,
SOURCE, and SEGMENT. The values in SOURCE corresponding to values of
.FALSE. in MASK are not included in the ranking.

RETURNED VALUE

None.

DESCRIPTION

This subroutine determines the numerical ranking of the values stored in the selected ele-
ments along the specified axis of the SOURCE array and places the rank of each element
in the corresponding element of the destination array DEST. Selected elements are those
that correspond to a . TRUE. element in the MASK array. The rankings computed by this
subroutine are always 1 to N inclusive, where N is the number of elements in the set of
values to be ordered. Array elements that correspond to a .FALSE. value in the MASK
argument are not included in the ranking and the corresponding element of DEST is not
changed.

The rank is always stable; for each pair of elements that contain equal values, the element
with the lower grid coordinate along the ranking axis is assigned the lower numbered
rank, regardless of the direction of the ranking.

In addition, the array elements along the axis may be partitioned into distinct sets, called
segments, through the use of the SEGMENT and SEGMENT_MODE arguments. Each seg-
ment along the specified AXIS is treated as a separate set of values to be ordered. Each
element of SEGMENT that contains .TRUE., marks the corresponding element of
SOURCE as a segment boundary (the start or end of a segment). Segments begin (or end)
with each element in which the value of SEGMENT is . TRUE ., and continue up (or down)
the axis through all elements where the value of SEGMENT is .FALSE.. The effect of
these boundaries depends on the value of SEGMENT_MODE.

If SEGMENT_MODE is CMF_NONE, the elements are ranked along the entire length of the
array axis and the values in SEGMENT have no effect.

If SEGMENT_MODE is CMF_SEGMENT_BIT, then:

+ The MASK argument does not affect the use of the SEGMENT array. That is, ele-
ments containing . TRUE. in the SEGMENT array create a segment boundary even
if the corresponding value of MASK is .FALSE. (The MASK array still selects the
elements of SOURCE to be included as described above.)

+ A SEGMENT value of .TRUE. indicates the start of a segment for both upward
and downward ranks.

If the value is CMF_START BIT, then:

« The MASK argument applies to the SEGMENT array as well as to the SOURCE
array. That is, elements containing .TRUE. in SEGMENT array create a segment

CM Fortran Version 2.0 Last change: June 1992 111

CMF_RANK (3CMF) CMF_RANK (3CMF)

boundary only if the corresponding element of MASK is also . TRUE..

A SEGMENT value of . TRUE. indicates the start of a segment for upward ranks,
but the end of a segment for downward ranks. That is, the SOURCE element corre-
sponding to a . TRUE. SEGMENT element is the first element in a segment for an
upward rank, but the last element in a segment for a downward rank. In downward
ranks, the new segment begins with the first unmasked element following the seg-
ment boundary.

NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-

ues are ignored.
EXAMPLES
Upward Rank
If SOURCE =[1.0, 7.0, 3.0, 2.0],
and SEGMENT = [T, F, F, F 1,
then DEST = [1, 4, 3, 2]
Downward Rank
If SOURCE =[1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, F, F 1,
then DEST = [4, 1, 2, 3 1.
Upward Rank With Mask
If SOURCE =[1.0, 7.0, 3.0, 2.0}
and SEGMENT = [T, F, F, F 1,
and MASK = [T, T, F, T 1,
then DEST = [1, 3, X, 2],
Segmented Upward Rank
If SOURCE ={1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, T, F 1,
and MASK = [T, T, T, T 1,
then DEST = [1, 2, 4, 3 1.
Segmented Upward Rank With Context
If SOURCE =[1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, T, F 1,
and MASK = [F, T, T, T 1,
then DEST = [X, 1, 3, 2 1.

CM Fortran Version 2.0 Last change: June 1992 112

CMF_RANK (3CMF) CMF_RANK (3CMF)

Note that, while the ranking is determined within each segment, the rank indices are num-
bered continuously across the entire axis. In this example, the ranking stored in DEST is

(X, 1, 3, 2] asillustrated,not [X, 1, 2, 1].Thatis, the ranking starts
anew in each segment, but the numbering of the indices associated with each element is
not restarted. Each element receives a unique ranking index.

CM Fortran Version 2.0 Last change: June 1992 113

CMF_SCAN (3CMF) CMF_SCAN (3CMF)

NAME

CMF_SCAN_[ADD, MAX, MIN, COPY, IOR,_IAND, IEOR] - Performs a scan ‘
along an axis on the selected elements of the source array, optionally within segments.
SYNTAX
INCLUDE ’/usr/include/cm/CMF_defs.h’
CALL CMF_SCAN_ADD (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
& SEGMENT_MODE, MASK)
CALL CMF_SCAN_MAX (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
& SEGMENT_MODE, MASK)
CALL CMF_SCAN_MIN (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
& SEGMENT_MODE, MASK)
CALL CMF_SCAN COPY (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
& SEGMENT_MODE, MASK)
CALL CMF_SCAN_IOR (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
& SEGMENT_MODE, MASK)
CALL CMF_SCAN IAND (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
& SEGMENT_MODE, MASK) ‘
CALL CMF_SCAN_IEOR (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, INCLUSION,
& SEGMENT_MODE, MASK)
ARGUMENTS

DEST A CM array. The destination array. The DEST and SOURCE arrays must be of the
same type, shape, and layout.

SOURCE
A CM array. The source array. The SOURCE and DEST arrays must be of the same
type, shape, and layout.

SEGMENT
A LOGICAL CM array of the same shape and layout as DEST, SOURCE, and
MASK. .TRUE. values in the SEGMENT array are used as segment delimiters for
the corresponding elements of the SOURCE array.

If SEGMENT_MODE has a value of CMF_NONE, then this argument is ignored and
may be CMF_NULL. Otherwise, the scan operation is performed independently for
each segment of SOURCE defined by SEGMENT. The arguments SEG-
MENT_MODE, DIRECTION, INCLUSION, and MASK control the way the scan pro-
ceeds over the segments. See the DESCRIPTION section below for details. Q

CM Fortran Version 2.0 Last change: June 1992 114

CMF_SCAN (3CMF) CMF_SCAN (3CMF)

AXIS Aninteger. The axis of SOURCE along which the scan is performed.

DIRECTION _
An integer. The value can be CMF_UPWARD or CMF_DOWNWARD. If the value is
CMF_UPWARD, the values are combined from the lower numbered elements
toward the higher. If the value is CMF_DOWNWARD, the values are combined from
higher numbered elements toward the lower.

INCLUSION
An integer. The value can be CMF_EXCLUSIVE or CMF_INCLUSIVE. If the value
iS CMF_EXCLUSIVE the first element in each SOURCE segment (as defined by the
.TRUE. elements of SEGMENT) is not included in the computation. If the value is
CMF_INCLUSIVE, the first value in each segment is included.

SEGMENT_MODE
An INTEGER. One of the following integer values: CMF_NONE,
CMF_SEGMENT_BIT or CMF_START BIT. This argument controls how the seg-
ments of SOURCE defined by the SEGMENT array are interpreted for the scan
operation. See DESCRIPTION below for more information.

MASK A CM LOGICAL array, or the scalar value . TRUE..

If the value of MASK is a scalar . TRUE., all the values of SOURCE will be
included in the computation.

If MASK is a logical array, it must be of the same shape and layout as DEST,
SOURCE, and SEGMENT. The values in SOURCE corresponding to values of
.FALSE. in MASK are not included in the computation.

RETURNED VALUE

None.

DESCRIPTION

Each subroutine in this group performs a scan operation along an axis of the source array
on the selected elements and puts the results in the destination array. Optionally, you may
specify scan segments for the source array so that the scan operation is performed inde-
pendently on distinct sections of the array axis.

Each of these subroutines cumulatively applies a binary operator over the selected ele-
ments of one axis of the source array SOURCE. Selected elements are those that corre-
spond to a .TRUE. element in the MASK array. The scan operation combines each
selected element of the array with the cumulative result from all the selected elements
that precede it. The result for each of these elements is stored in the corresponding ele-
ment of the destination array DEST. Array elements that correspond to a . FALSE. value
in the MASK argument are excluded from the computation and the corresponding element
of DEST is not changed.

CM Fortran Version 2.0 Last change: June 1992 115

CMF_SCAN (3CMF) CMF_SCAN (3CMF)

In addition, the array elements along the axis may be partitioned into distinct sets, called
segments, through the use of the SEGMENT and SEGMENT_MODE arguments. Each ele-
ment of SEGMENT that contains . TRUE ., marks the corresponding element of SOURCE as
a segment boundary (the start or end of segment). Segments begin (or end) with each ele-
ment in which the value of SEGMENT is .TRUE., and continue up (or down) the axis
through all elements where the value of SEGMENT is .FALSE.. The effect of these
boundaries depends on the value of SEGMENT_MODE.

If SEGMENT_MODE is CMF_NONE, the operation specified by the subroutine proceeds along the
entire length of the array axis and the values in SEGMENT have no effect.

If SEGMENT_MODE is CMF_SEGMENT_BIT, then:

+ The MASK argument does not affect the use of the SEGMENT array. That is, ele-
ments containing . TRUE. in the SEGMENT array create a segment boundary even
if the corresponding value of MASK is . FALSE. (The MASK array still selects the
elements of SOURCE to be included as described above.)

+ A SEGMENT value of .TRUE. indicates the start of a segment for both upward
and downward scans.

+ When the INCLUSION argument is CMF_EXCLUSIVE, the first DEST element in
each segment, is set to zero. (There is no scan result value for this element
because in exclusive mode the first element of each segment of SOURCE is
excluded from the scan).

If SEGMENT_MODE is CMF_START_BIT, then:

« The MASK argument applies to the SEGMENT array as well as to the SOURCE
array. That is, elements containing . TRUE. in SEGMENT array create a segment
boundary only if the corresponding element of MASK is also . TRUE..

» A SEGMENT value of .TRUE. indicates the start of a segment for upward scans,
but the end of a segment for downward scans. That is, the SOURCE element corre-
sponding to a . TRUE. SEGMENT element is the first element in a segment for an
upward scan, but the last element in a segment for a downward scan. In downward

scans, the new segment begins with the first unmasked element following the seg-
ment boundary.

« When the INCLUSION argument is CMF_EXCLUSIVE, the first DEST element in
each segment (which is set to zero in CMF_SEGMENT_BIT scans) is used to store
the final scan result of the preceding segment. Note that this result value does not
contribute to the scan result for the segment in which it is stored.

See the example below for an illustration of how these arguments interact. Information
on each of the individual scan routines follows. -

CM Fortran Version 2.0 Last change: June 1992 116

CMF_SCAN (3CMF) CMF_SCAN (3CMF)

. CMF_SCAN_ADD
The subroutine CMF_S CAN_ADD can operate on numbers of the following types:

¢ INTEGER

« REAL

+ DOUBLE PRECISION (real)

+ COMPLEX

« DOUBLE COMPLEX (double-precision complex)

CMF_SCAN_MAX, CMF_SCAN_MIN

The subroutines CMF_SCAN MAX and CMF_SCAN_MAX can operate on numbers of the fol-
lowing types:

+ INTEGER
* REAL
+ DOUBLE PRECISION (real)

CMF_SCAN_IOR, CMF_SCAN_IAND, CMF_SCAN_IEOR

The subroutines CMF_SCAN_IOR, CMF_SCAN_IAND, and CMF_SCAN_IEOR, can operate
on the following types:

* LOGICAL
« INTEGER

f ‘ The operations IOR, IAND, and IEOR, correspond to logical inclusive OR, logical AND,
B and logical exclusive OR, respectively.

For INTEGERS, these subroutines do the operation on a bitwise basis.
CMF_SCAN_COPY

The subroutine CMF_SCAN_COPY operates on all types. The binary operator used by this
routine always returns its first argument. This subroutine is usually used to copy the first
element in a segment to all the other elements of that segment.

Here is an example for CMF_SCAN_COPY:

CMF_SCAN_COPYDEST, SOURCE, SEGMENT, 1, CMF_UPWARD, CMF_INCLUSIVE,

& CMF_SEGMENT BIT, .TRUE.)

If SOURCE =[1,2,3,4,5,6,7,8,9],

and SEGMENT = [T,F,F,F,T,F,F,F,F],

then DEST =[1,1,1,1,5,5,5,5,5].
NOTE

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

0

CM Fortran Version 2.0 Last change: June 1992 117

CMF_SCAN (3CMF) CMF_SCAN (3CMF)

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

EXAMPLE

The table below shows the results for a single row along the axis being “‘scanned” by the
subroutine CMF_SCAN_ADD. The SOURCE argument is an integer array filled with the
value 1. The MASK and SEGMENT arguments are logical arrays with the values indicated
at the top of the table (where T stands for . TRUE. and F stands for . FALSE.). The argu-
ment DIRECTION can be CMF_UPWARD or CMF_DOWNWARD. The argument INCLUSION
can be CMF_EXCLUSIVE or CMF_INCLUSIVE. The argument SEGMENT_MODE can be
CMF_NONE, CMF_SEGMENT_BIT, or CMF_START BIT. DEST elements that are masked

(the elements marked with dots ” . ” in the table) are not changed by this operation.

MASK TTTTFFFFTTFFTTTTF

SEGMENT FFTFFFTFFFFFFTFF

SOURCE 11131111111111111

SEGMENT -
DIRECTION INCLUSION MODE DEST
upward exclusive none 0123 4 5 . 67 8
downward exclusive none 87 65 4 3 . 210
upward inclusive none 1234 56 .7 89
downward inclusive none 9 876 5 4 . 321
upward exclusive segment 0101 01 . 201
downward exclusive segment 1010 21 . 010
upward inclusive segment 1212 12 . 312
downward inclusive segment 2121 32 . 121
upward exclusive start 0121. .23 . 451
downward exclusive start 2154 . .32 . 110
upward inclusive start 1212. . 34 . 512
downward inclusive start 3215. . 43 211
CM Fortran Version 2.0 Last change: June 1992 118

‘

L

CMEF_SEND (3CMF) CMF_SEND (3CMF)

NAME

CMF_SEND_[OVERWRITE, MAX, MIN, ADD, IOR, IAND, IEOR] - Sends
elements from SOURCE to DEST according to the addresses in SEND_ADDRESS. Com-
bines multiple values sent to the same DEST element using the operation specified in the
name of the send function.

SYNTAX

INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL
CALL
CALL
CALL
CALL
CALL

CALL

ARGUMENTS

DEST

CMF_SEND_OVERWRITE (DEST, SEND_ADDRESS, SOURCE, MASK)
CMF_SEND_MAX (DEST, SEND_ADDRESS, SOURCE, MASK)
CMF_SEND_MIN (DEST, SEND_ADDRESS, SOURCE, MASK)
CMF_SEND_ADD (DEST, SEND_ADDRESS, SOURCE, MASK)
CMF_SEND_IOR (DEST, SEND_ADDRESS, SOURCE, MASK)
CMF_SEND_IAND (DEST, SEND_ADDRESS, SOURCE, MASK)

CMF_SEND_IEOR (DEST, SEND_ADDRESS, SOURCE, MASK)

A CM array. The destination array. The data types allowed for each type of com-
biner are listed below.

SEND_ADDRESS

CM array. The send addresses used to determine where in DEST each element of
SOURCE is sent. Send addresses are constructed using the CM Fortran Utility
Library procedures CMF_MAKE SEND_ADDRESS, CMF_MY_SEND_ADDRESS, and
CMF_DEPOSIT_GRID_COORDINATES.

On any CM platform, this array may be declared as INTEGER to support 4-byte
send addresses, or as DOUBLE PRECISION or REAL*S to support 8-byte send
addresses. We recommend using DOUBLE PRECISION or REAL*S. See
DESCRIPTION below for details.

SOURCE

MASK

A CM array. The source array. This array must have same shape and layout as
SEND_ADDRESS. The data types allowed for each type of combiner are listed
below.

A CM LOGICAL array or the scalar value . TRUE.. If MASK is a logical array, it
must have the same shape and layout as SEND_ADDRESS and only those elements
of SOURCE that correspond to . TRUE. values in MASK are sent to DEST. If MASK
is the scalar value . TRUE., all elements of SOURCE are sent.

CM Fortran Version 2.0 Last change: June 1992 . 119

CMF_SEND (3CMF) CMF_SEND (3CMF)

RETURNED VALUE ‘i

None.

DESCRIPTION

Each selected element of SOURCE is sent to the element of DEST specified by the send-
address in the corresponding element of SEND_ADDRESS. If multiple elements of
SEND_ADDRESS have the same value, the corresponding elements of SOURCE are com-
bined together. The MASK argument controls which elements of SOURCE are selected for
the computation.

The SEND_ADDRESS array may be declared as INTEGER, or as DOUBLE PRECISION or
REAL*8. The CM-2/200 computes send addresses as 4-byte (INTEGER)values; the CM-5
uses 8-byte (DOUBLE PRECISION or REAL*8) send addresses. Each platform will accept
cither 4-byte or 8-byte send address arrays. However, there may be a performance penalty
for using 4-byte addresses on the CM-5, as the system coerces the values to 8-byte length.
There is a minimal performance penalty for using 8-byte send-address arrays on the CM-2
(one array copy). Therefore, for maximum portability, most CM Fortran programs that
compute send addresses should declare them as DOUBLE PRECISION or REAL*8 values.
INTEGER send address arrays should only be used in programs to be run on the CM-2 in
which the marginally greater memory use is an issue.

CMF_SEND_ADD &

The subroutine CMF_SEND_ADD can operate on numbers of the following types:
« INTEGER
+ REAL
* DOUBLE PRECISION
+ COMPLEX
« DOUBLE COMPLEX

CMF_SEND_MAX, CMF_SEND_MIN

The subroutines CMF_SEND_MAX and CMF_SEND_MIN can operate on numbers of the fol-
lowing types:

* INTEGER

* REAL

« DOUBLE PRECISION

CMF_SEND_IOR, CMF_SEND_IAND, CMF_SEND_IEOR

The subroutines CMF_SEND IOR, CMF_SEND_IAND, and CMF_SEND_IEOR can operate
on numbers of the following types:

« INTEGER

+ LOGICAL

These operations correspond to logical inclusive OR, logical AND, and logical exclusive
OR, respectively. For INTEGERs, these subroutines do the operation on a bitwise basis.

CM Fortran Version 2.0 Last change: June 1992 120

CMF_SEND (3CMF) CMF_SEND (3CMF)

. CMF_SEND_OVERWRITE

The subroutine CMF_SEND_OVERWRITE operates on all the element types. The combin-
ing function used by this subroutine arbitrarily chooses one of the values being combined
as the output. That is, if there are multiple elements of INDEX with the same index value,
one of the corresponding values of SOURCE is arbitrarily chosen and written into DEST.

SEE ALSO
CMF_MAKE_SEND_ADDRESS
CMF_MY_SEND_ADDRESS
CMF_DEPOSIT_GRID_COORDINATE
NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-
ues are ignored.

CM Fortran Version 2.0 Last change: June 1992 121

CMF_SIZEOF_ARRAY_ELEMENT (3CMF) CMF_SIZEOF_ARRAY_ELEMENT (3CMF)

NAME

CMF_SIZEOF_ARRAY_ELEMENT - Returns the size of an array for use with
CMF_FILE_LSEEK, CMF_FILE_LSEEK FMS, and CMF_FILE_TRUNCATE.

SYNTAX
INCLUDE ‘/usr/include/cm/CMF_defs.h’

LENGTH = CMF_SIZEOF_ARRAY ELEMENT (ARRAY)

ARGUMENTS

ARRAY A CM array of any type.

RETURNED VALUE

INTEGER

DESCRIPTION
This function returns the size of a single array element of ARRAY.

This return value can also be passed to CMF_FILE LSEEK, CMF_FILE LSEEK_FMS, and
CMF_FILE_TRUNCATE to specify the length of an array.CMF_SIZEOF_ARRAY ELEMENT
can be called for multiple arrays stored in a file and thc return values added togethcr to
compute file positions for these routines.

See the man pages for CMF_FILE LSEEK, CMF_FILE LSEEK FMS, and
CMF_FILE TRUNCATE for more information.

SEE ALSO

CMF_DESCRIBE_ARRAY

CM Fortran Version 2.0 Last change: June 1992 - 122

CMF_SORT (3CMF) CMF_SORT (3CMF)

NAME

CMF_SORT - Sorts the elements along an array axis (or axis segment) by numerical
ranking and places the values in order in the destination array.

SYNTAX
‘INCLUDE ‘/usr/include/cm/CMF_defs.h’

CALL CMF_SORT (DEST, SOURCE, SEGMENT, AXIS, DIRECTION, SEGMENT_MODE,
& MASK)

ARGUMENTS

DEST A CM array of the same type as SOURCE. The destination array. The DEST and
SOURCE arrays must be of the same shape and layout.

SOURCE
A CM array of any type. The SOURCE and DEST arrays must be of the same
shape and layout.

SEGMENT
A LOGICAL CM array of the same shape and layout as DEST, SOURCE, and
MASK. .TRUE. values in the SEGMENT array are used as segment delimiters for
the corresponding elements of the SOURCE array.

If SEGMENT_MODE has a value of CMF_NONE, then this argument is ignored and
may be CMF_NULL. Otherwise, each segment is sorted independently. The argu-
ments SEGMENT_MODE, DIRECTION, and MASK control the way the sorting pro-
ceeds over the segments. See the DESCRIPTION section below for details.

AXIS An integer. The axis of SOURCE to be sorted.

DIRECTION
An integer. The value can be CMF_UPWARD or CMF_DOWNWARD. If the value is
CMF_UPWARD, the values are sorted from the smallest value to the largest; the
smallest value is assigned to the first element of the corresponding axis of DEST.
If the value is CMF_DOWNWARD, the values are sorted from the largest value to the
smallest; the largest value is assigned to the first element of the corresponding
axis of DEST.

SEGMENT_MODE
An INTEGER. One of the following integer values: CMF_NONE,
CMF_SEGMENT_BIT or CMF_START BIT. This argument controls how the seg-
ments of SOURCE defined by the SEGMENT array are interpreted. See DESCRIP-
TION below for more information.

CM Fortran Version 2.0 Last change: June 1992 123

CMF_SORT (3CMF) CMF_SORT (3CMF)

MASK A CM LOGICAL array, or the scalar value . TRUE..
If the value of MASK is a scalar . TRUE., all the values of SOURCE are sorted. e

If MASK is a logical array, it must be of the same shape and layout as DEST,
SOURCE, and SEGMENT. The values in SOURCE corresponding to values of
.FALSE. in MASK are not sorted.

RETURNED VALUE

None.

DESCRIPTION

This subroutine sorts the values stored in the selected elements along one axis of the
SOURCE array by numerical ranking, and stores the values in order into the DEST array.
Selected elements are those that correspond to a . TRUE. element in the MASK array.
Array elements that correspond to a . FALSE. value in the MASK argument are not sorted
and the corresponding element of DEST is not changed.

In addition, the array elements along the axis may be partitioned into distinct sets, called
segments, through the use of the SEGMENT and SEGMENT_MODE arguments. Each seg-
ment along the specified AXIS is treated as a separate set of values to be sorted. Each ele-
ment of SEGMENT that contains . TRUE ., marks the corresponding element of SOURCE as
a segment boundary (the start or end of a segment). Segments begin (or end) with each
element in which the value of SEGMENT is . TRUE., and continue up (or down) the axis
through all elements where the value of SEGMENT is .FALSE.. The effect of these
boundaries depends on the value of SEGMENT_MODE. '

If SEGMENT_MODE is CMF_NONE, the elements are sorted along the entire length of the
array axis and the values in SEGMENT have no effect.

If SEGMENT_MODE is CMF_SEGMENT BIT, then:

» The MASK argument does not affect the use of the SEGMENT array. That is, ele-
ments containing . TRUE. in the SEGMENT array create a segment boundary even
if the corresponding value of MASK is . FALSE. (The MASK array still selects the
elements of SOURCE to be included as described above.)

» A SEGMENT value of .TRUE. indicates the start of a segment for both upward
and downward sorts.

If the value is CMF_START_BIT, then:

+ The MASK argument applies to the SEGMENT array as well as to the SOURCE
array. That is, elements containing . TRUE. in SEGMENT array create a segment
boundary only if the corresponding element of MASK is also . TRUE..

« A SEGMENT value of .TRUE. indicates the start of a segment for upward sorts,
but the end of a segment for downward sorts. That is, the SOURCE element

CM Fortran Version 2.0 Last change: June 1992 124

CMF_SORT (3CMF) CMF_SORT (3CMF)

corresponding to a . TRUE. SEGMENT element is the first element in a segment
for an upward sort, but the last element in a segment for a downward sort. In
downward sorts, the new segment begins with the first unmasked element follow-

ing the segment boundary.
EXAMPLES
Upward Sort
If SOURCE =[1.0, 7.0, 3.0, 2.0],
and SEGMENT = [T, F, F, F 1,
then DEST =[1.0, 2.0, 3.0, 7.0 1]

Downward Sort

If SOURCE =[1.0, 7.
and SEGMENT = [T, F, F,
then DEST ={7.0, 3

Upward Sort With Mask

|

If SOURCE =[{1.0, 7.0,

3.0, 2.0]
and SEGMENT = [T, F, F, F],
and MASK = [T, T, F, T 1,
then DEST =11.0, 2.0, 7.0, X 1.

Segmented Upward Sort
If SOURCE =[1.0, 7.0, 3.0,-2.0]
and SEGMENT = [T, F, T, F],
and MASK = [T, T, T, T 1,
then DEST =[1.0, 7.0, 2.0, 3.0].
Segmented Upward Sort With Mask
IfSOURCE = [1.0, 7.0, 3.0, 2.0]
and SEGMENT = [T, F, T, F 1,
and MASK = [F, T, T, T 1,
then DEST =[7.0, 2.0, 3.0, X 1.

Note that, while each segment is sorted independently, the values are stored into the desti-
nation without regard to segments. As illustrated in this example, the selected values are
packed into DEST in sorted order without preserving the segment boundaries:

({7.0, 2.0, 3.0, Xl,not [7.0, X, 2.0, 3.0]).

NOTES

The CM Fortran Utility Library procedures do not operate on arrays that have been
aligned with other arrays of greater rank or with other arrays of the same rank but with
offsets for the individual axes.

CM Fortran Version 2.0 Last change: June 1992 - 125

CMF_SORT (3CMF) CMF_SORT (3CMF)

This routine assumes that the arrays have a lower bound of 1. All other lower bound val-

CM Fortran Version 2.0 Last change: June 1992 126

