The
Connection Machine
System

CMSSL for CM Fortran:
CM-35 Edition, Volume

s
S

Preliminary Documentation for Version 3.1 Beta 2

January 1993

Thinking Machines Corporation
Cambridge, Massachusetts



First preliminary edition for 3.1 Beta 2, January 1993

e T
PRELIMINARY DOCUMENTATION

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines assumes no liability for errors in this
document.

This document does not describe any product that is currently available from Thinking Machines Corporation,
and Thinking Machines does not commit to implement the contents of this document in any product.

e vesde de de de e dede de e do o de e de ok de e dede e dodedede ke ke ek kb ke ke kK dedode ke dede ke kk ok kkdededdkhkkkkhk kR kkhkkhhkhk

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMosTt, CMAX, and Prism are trademarks of Thinking Machines Corporation.
C*®is a registered trademark of Thinking Machines Corporation.

FastGraph is a trademark of Thinking Machines Corporation.

Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.

Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation

245 First Street

Cambridge, Massachusetts 02142 -1264
(617) 234-1000

¢



Content

S

About This Manual . .....oitt it iiieiiierereeneeeaeeeenssrrernaeannens xiii
CUSLOMET SUPPOTE ...ttt tiie ittt tiessaeceonnnasnneanneoannesanneennns xvii
Volume I
Chapter 1 Introduction to the CMSSL for CM Fortran ............... 1
1.1 Aboutthe CMSSL ........ccievverinennnnnnn.. e e, 1
1.2 Contents of the CMSSLforCMFortran ............coovvevvnnnennn. .. 2
12.1 Library ROUtNES .....vvivinniiiiiiinneennnannnnnnsss 2
12.2 SafetyMechanism ..........ooiiiiiiiiiii i 21
1.3 Notes on Terminology .........c..oeuiiuniiiniiiniiineinannennnss 21
131 Data Types. ... oiiiiiiiiiii it iiiiiiiniereereeeeraenens. 21
1.3.2  Array Axis Descriptions ................. e, 21
1.3.3 Processing Nodes and Subgrids .....................coo.... 22
1.4 Data Types Supported ................. et beaaa e, 22
1.5 Support for Multiple Instances . .. ......coirritiienieiiaannn. 25
1.5.1 Defining Multiple Independent Data Sets ................... 27
1.5.2 Notation Used for CM Arrays and Embedded Matrices . ....... 28
1.5.3 Rules for Data Axes and Instance AXeS ............cveunnn.. 28
1.5.4 Specifying Single-Instance vs. Multiple-Instance Operations .... 29
1.6 Numerical Stability for the Linear Algebra Routines ................... 33
1.7 CM Fortran Performance Enhancements with CMSSL ................. 33
Chapter 2 Using the CM Fortran CMSSL Interface ................... 35
2.1 Creating a CM Fortran CMSSL Program ............ccovvvvinnnnnnn.. 35
2.1.1 Including the CMSSL Header File ......................... 36
2.12 Calling CMSSLRoutines ..........coiveiiiiineeeinnnnn.. 36
2.1.3 Compilingand Linking . .....cuiiiiinnnrnreenennennnnn. 37
2.1.4 Executing CMSSL Programs ..............cccveuevannn... 37
2.2 Using the CMSSL Safety Mechanism ...........ccovviieennnnnnnnnnnn 37
Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation il



23
24

Chapter 3
3.1

3.2
33
34
| 3.5
3.6
3.7

3.8

Chapter 4
4.1

4.2

43

CMSSL for CM Fortran (CM-5 Edition)

e s

2.2.1 Safety Mechanism Features ...................ooennnn., 38
222 Levelsof ErrorChecking .....covvvvviniininneennneneenes 39
2.2.3 Setting the CMSSL Safety Environment Variable ............. 40
2.2.4 Using CMSSL Safety From Within a Program ............... 40
On-Line Sample Codeand ManPages ...........cciiviiiiiiinnnenns 41
FurtherReading ..........cciiiiiiiiiiiiiiiiiiiiiiiiiiiiieneenans 42
Dense Matrix Operations ................c..coiviiininn... 43
Inner Product .....cooiiiiiiiiiiii i et it e i 44
Manpage: Inner Product ........ ... ciiiriiiiiiiiiinnennrnnnnnns 46
7\ (o v+ + 52
Manpage: 2-NOorm ......... ... iiiiiiiriiiieerennncnnnrnenaaans 53
Outer Product ......ccviiiiiiiiiiiiiiieeietr et etrenatnrenenannns 56
Man page: Outer Product ..............ccciiiiiiiiiininnnnennnnnn 57
Matrix Vector Multiplication ................cooiiiiiiiii i 61
Man page: Matrix Vector Multiplication ............................. 62
Vector Matrix Multiplication ...........ccviiiiiiinnnneeerenanaenns 66
Man page: Vector Matrix Multiplication ............................. 67
Matrix Multiplication ..........ccviitiiiiiiiiie ittt 71
Man page: Matrix Multiplication ................... ... .. ... ... ... 73
Infinity NOTID ..ottt ittt i i et iesinnneannenennenaans 79
Man page: Infinity Norm ........... ... i i 80
References . ..ovvuuniii it it i iiia e i 83
Sparse Matrix Operations .................................. 85
INtroduction .......ccoiiiiiiiiiiiiii i e et 85
4.1.1 Arbitrary Sparse Matrix Operations ........................ 86
4.1.2 Grid Sparse Matrix Operations . . . ......c.ccevveeenenrennn... 88
Arbitrary Elementwise Sparse Matrix Operations ... ..........c00vunnn. 89
4.2.1 The Arbitrary Elementwise Sparse Matrix Routines ........... 89
4.2.2 Storage of Sparse Matrices . ..........ciiiiiiiiii ... 89
423 Savingthe Trace . ..ovvvrieiiinr e iieneeinnennnenennnns 91
4.2.4 Random Permutation of Source and Destination Array
Element Locations ............cevuiiiiinnnnnnnnnnnnnnns 91
Man page: Arbitrary Elementwise Sparse Matrix Operations ........... 95
Arbitrary Block Sparse Matrix Operations ................ccevnunnnn. 104

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

o @




) B

Con

tents

4.3.1 The Arbitrary Block Sparse Matrix Routines ................
4.3.2 Block Representation, Gathering, and Scattering .............
433 SavingtheTrace ........covviiiiiiiinnirinneaeecassnnns
4.3.4 Random Permutation of Source and Destination Array
ElementLocations ...........cieveiiinnenennenennnnnnns
435 Examples .......coiieiuiiierinrennnnariinreaecsnsnnnes

4.4 Grid Sparse Matrix Operations ..........oovvvvnnnneennenereneennss
4.4.1 The Grid Sparse Matrix Routines .. ..........covvennnennn..
4.4.2 Grid Sparse Matrix Representation ..............c.cvcueenn..
4.4.3 Matrix Representation of the Grid Sparse Matrix Operations . . . .

Man page: Grid Sparse Matrix Operations .........................

L B 0 (o (- oo = T

Chapter 5 Linear Solvers for Dense Systems ..........................

5.1 Introduction .......coiuiniiirenrnensreeeereeennmnanessnosssnnas
5.1.1 Embedding Coefficient Matrices within Larger Matrices .......

5.2 Gaussian Elimination ..........oiiiiiiiiiiiiiiiii e
5.2.1 Blocking and Load Balancing ..................coienll
5.2.2 Numerical Stability ....... ...ttt i,

Man page: Gaussian Elimination ......................... .. ...

5.3 Routines for Solving Linear Systems Using Householder Transformations

(“QR™ ROULIMES) « .t vt vetiieeiineeieteeiinneerenaeeonnaneananens
5.3.1 The QR Routines and their Functions ......................
532 TheQRPFactorsDefined ...............cciiiiiiinnnnn..,
5.3.3 Householder Algorithm .................................
5.3.4 Blockingand Load Balancing .............ccoiiiinnnnnnn.
5.3.5 Numerical Stability ............c...iiiiiiiiii
5.3.6 The Pivoting Option: Working with IlI-Conditioned Systems . . ..
5.3.7 Saving and Restoring the QR State ........................

Man page: Solving Linear Systems

Using Householder Transformations ..............................

5.4 Matrix Inversion and the Gauss-Jordan System Solver .................
541 Matrix Inversion .......coceiiiiiiiiiiiiiiiieeniieaan.n.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation




Chapter 6 Linear Solvers for Banded Systems ......................... 215
6.1 Banded System Factorization and Solver Routines
with Optional Pairwise Pivoting ...............coooviiiiiii s, 217
6.1.1 The Routines and Their Functions .................couutn, 217
6.1.2 Algorithms Used .......ovvieiiiininiiiiiiiineenenannnnen. 217
6.13 HowtoSetUpYourData......ccovovvvviiiiiiennnnnnnnnn. 225
6.1.4 NeedforInterface Blocks . ......covviiiiiiiiinenennnnn., 231
Man page: Banded System Factorization and Solver
Routines with Optional Pairwise Pivoting .......................... 234
6.2 Banded System Factorization and Solver Routines (without Pivoting) ..... 243
6.2.1 The Routines and their Functions ...................o0vtns. 243
6.22 AlgorithmsUsed ........cooiviiiiiiiiiiiiiniiannaannnn. 245
6.2.3 Need forInterface Blocks .............ccevvvvininnnan.. 246
Man page: Banded System Factorization and Solver Routines ........ 247
6.3 References ........ccviiiiiiiieiiiiitironnssrooetsneanaoanansns 256
Chapter 7 Iterative Solvers............................................ 257
7.1 Krylov-Based Iterative Solvers ............cciiiiiiiiiniinennn., 257
7.1.1 CMSSL Iterative Solver Routines .................. SETTU 257
712 Algorithms. ... 258
7.1.3 Acknowledgments ...........cciiiiiiiiii it 259
714 Example..........ciiiiiiniiiiiiiiieieiinieeaareena, 259
Man page: lterative Solvers .............. ..ottt 262
T2 ReferenCes ...c.uiiiiiiiriiiiiinineraaaeeeeeeeronnnecansnnnnns 273
Chapter 8 Eigensystem Analysis .....................ccooiiiiiin.... 275
8.1 Reduction to Tridiagonal Form and Cormresponding Basis Transformation .. 278
8.1.1 Blockingand Load Balancing ...........ccoiiiieniunnn... 278
8.1.2 Numerical Stability ............ ... .o i, 278
Man page: Reduction to Tridiagonal Form
and Corresponding Basis Transformation ......................... 279
8.2 Eigenvalues of Real Symmetric Tridiagonal Matrices .................. 284
8.2.1 Parallel Bisection Algorithm ......................oone... 284
B.2.2 ACCUIACY .. iiiiiitnriiriiie e inneraneoninnannnennnns 285
823 ReSHCHON .. .ovvi it et i e e 285
Man page: Eigenvaiues of Real Symmetric Tridiagonal Matrices . ...... 286
8.3 Eigenvectors of Real Symmetric Tridiagonal Matrices ................. 288

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation




8.3.1 Inverse Iteration Algorithm ..................cccevin... 288
8.3.2 ACCUMACY ..vviiiiiiiiiiiiiierenseerannonnasecennnnns 288
8.3.3 Applicability .......cciuiiiiiiiiiii it it 289
8.34 ReStHCHOM .. .uintiiiiaiiieneenersenenneannannnnn. 289
835 Performance ..........ciiiiiiiiiiiiiieiii it 290
Man page: Eigenvectors of Real Symmetric Tridiagonal Matrices ...... 291
8.4 Eigensystem Analysis of Dense Hermitian Matrices ................... 294
841 ACCUTACY ....oviiiiniinieneinentnroceonananesesnnnnnns 294
Man page: Eigensystem Analysis of Dense Hermitian Matrices ....... 295
8.5 Generalized Eigensystem Analysis of Real Symmetric Matrices .......... 299
8.5.1 ACCUTACY ..viviiiitit ittt iieararennens 299
Man page: Generalized Eigensystem Analysis of
Real SymmetricMatrices .............. ...ttt 300
8.6 Eigensystem Analysis of Real Symmetric Matrices Using Jacobi Rotations . 304
B.6.1 ACCUIACY .. iiiiiintieiiiiiaiienereenrenaeonansoennans 304
Man page: Eigensystem Analysis of Real Symmetric Matrices
Using JacobiRotations ...................ciiiiiiiiiiiiinnnnnnn. 305
8.7 Selected Eigenvalue and Eigenvector Analysis _
Using a &-Step Lanczos Method .............cciiiiiiinininnnnn... 309
8.7.1 The k-Step Lanczos Algorithm ............................ 309
8.7.2 Input Arguments and Data Structures ...................... 310
8.7.3 Multiple Eigenvalues .............cccoviiiiiinnnninnn... 31
8.7.4 Convergence Properties and Spectral Transformations ......... 311
8.7.5 Reverse Communication Interface ...............ccovunnn.. 312
8.7.6 Data Layout Requirement ...........ccvviiinrennnnnnnn... 316
8.77 On-LineExample ........ccvviiininiiiinnnnninnnnn. 317
8.7.8 Acknowledgments............ ..o i 318
Man page: Selected Eigenvaiue and Eigenvector
Analysis Using a k-Step Lanczos Method .......................... 319
8.8 Selected Eigenvalue and Eigenvector Analysis
Using a k-Step AmoldiMethod .............oviiiiiiiiiiinnnnnnn. 329
8.8.1 The k-Step Amoldi Algorithm .....................ccounn. 329
8.8.2 Input Arguments and Data Structures ...................... 330
8.8.3 Reverse Communication Interface ....................c..... 331
8.8.4 Data Layout Requirement ............ et 334
885 On-LineExample .............ociiiiiiiiiiinnenninnnns 335
8.8.6 Acknowledgments..............ccviiiiiiiiiiiniienn, 336
Man page: Selected Eigenvalue and Eigenvector
Analysis Using a k-Step ArnoidiMethod ........................... 337
8.9 References ...........cvvviviinnnnn. i 348

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



CMSSL for CM Fortran (CM- 5 Edmon)

Volume II

Chapter 9

9.1
9.2

9.3

Chapter 10
10.1

10.2

Chapter 11
11.1

11.2

Chapter 12
12.1

Fast Fourier Transforms ................c.oooiiiiiiiiiin, 351
The CMSSL FFT Library Calls . .....ovviiiiiiiiniiiiininnaneaannns 352
Complex-to-Complex FFT . ....viiiiiiiiiiiiiiiiiiiiaaeeenns 354
9.2.1 Butterfly Computations, Twiddle Factors, ,
and the CCFFT SetupPhase ...............cooiiiiiiiiii, 354
9.2.2 BitOrderingand BitReversal ..............cccoiivenne, 354
9.2.3 Multidimensional and Multiple-Instance FFTs ............... 355
9.2.4 Current Restrictions and Planned Extensions ................ 357
9.2.5 Summary: Optimizing CCFFT Address Ordering ............. 358
Man page: Complex-to-Complex Fast Fourier Transform ............. 359
23 (= = 11T O 368
Ordinary Differential Equations ............................ 3N
Explicit Integration of Ordinary Differential
Equations Using a Runge-Kutta Method ......................oooet. 371
10.1.] Examples ......cooiiiieiionnniernnoneenrnssecennacensons 372
Man page: Explicit Integration of Ordinary Differential
Equations Using a Runge-KuttaMethod ..................... .. ... 374
8 = (= 1= 381
Linear Programming ...................c.coociiiiiiiiiat 383
Dense Simplex Routing .........coiiiiiiiiiiininiiiiiniiinnennnn, 383
11.1.1 Geometrical Description of the Algorithm ................... 383
11.12 Verticesand Bases ...........cvvvemeviennernenanarennas 384
11.1.3 Input Array Format ...........ccoiiiiiiiiiiiiiiiiinnnnn 384
11,14 ReINVEISION .. .ovvveetnnaniiniaereeerannseeenssannnens 385
11.1.5 Degeneracy . .....c.ovvevunerenianeeeennnesennnnscnnnens 386
11.1.6 Implementation ..........coviieenrneeenneeeneannnnanans 386
11,17 Example.....oviiniiiiiin ittt iieiiieeeieanennannns 386
Man page: Dense Simplex ......... ..o iiiiiiiiiiiiiinnnnnnas 388
References ... .o i i i et it 395
Random Number Generators ............................... 397
INtroduCHOn .. ..veii ittt it 397

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation




Contents

12.1.1 The Fast RNG and the VP RNG Compared ................. 398
12.1.2 The RNGROUHNES ......0vvvnrnrunnnnnnnnennreeennnnnns 398
12.1.3 Implementation ..... PP 399
122 State Tables ..cuvviiieieiiniinneniaiieiiiiiiiiiiiiiaaiaaens 400
12.2.1 FastRNG State Tables ..........coiiiiiiveneerenennennns 400
1222 VPRNG State Tables .........ccoiiiiiiiiiniiniininn.. 401
12.2.3 State Table Parameters .........ccoeviuiiiiinaneeennnannns 402
12.2.4 Need for Deallocation ..........covvviiiiiiinennin.. 403
12.2.5 Parameters Saved During Checkpointing . . .................. 403
12.3 Safety Checkpointing . ....coviuniiiiiiiiiiiiiiieeeeeeeneeeanens 405
12.4 Altemnate-Stream Checkpointing ............ccciviiiiiiiinieennnnnn 406
12,5 RefeIenCeS .. ..vuiiitiietianiiieerneatransesserieransseenans 409
Manpage: Fast RNG ........... ... iiiiiiiiniiiiniiinninennnns 410
Manpage: VP RNG ..... ...ttt ittt iiiiiiiiintaneenns 418
Chapter 13 Statistical Analysis................... ..o 427
13.1 How to HiStogram ........cveievvneeeneenennennneannneeiennnnnns 428
Manpage: Histogram .............ciiiiiiiiiiiiiineniennnnnnenns 430
Man page: Range Histogram ........... ...... 432
Chapter 14 Communication Primitives ................................. 435
4.1 POIYSHEL © .. v vvveee e ettt et et e e e, 436
14.1.1 The Polyshift Routines ............cccvvrvriianneenrennnn. 436
14.1.2 Optimization Recommendations ... ......c.cvvuiiiieeenenn. 438
Manpage: Polyshift ........... ... ... i 439
142 All-to-All Broadcast .. ..lveeieneeientrerenereronrsososesesaansnns 445
142.1 The All-to-All Broadcast Routines ................covvnnn. 447
Man page: All-to-AllBroadeast . ....................ciiiiiinnn.. 449
143 Sparse Gather Utility .......oiiiiiiiiiiiiiiin it iinnneennnn. 456
14.3.1 The Gather Utility Routines ...........ccivviiinnineennnnn 456
14.3.2 Definition of the Gather Operation ................cc.ccooe.. 456
14.3.3 Gather Operation Examples ................cooiiiiiii.t, 457
Man page: Sparse Gather Utility ................... ... ... ..., 459
14.4 Sparse Scatter Utility .........oviiiiiiiinii i, 463
14.4.1 The Scatter Utility Routines ...........cccviveeranneennas. 463
14.4.2 Definition of the Scatter Operation ..........covvvuinveeenen 463
14.4.3 Scatter Operation Example .........covvviiiiiinennnnnn.. 464

Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation



14.5

14.6

147

14.8

14.9

14.10

14.11

14.12

14.13

14.14

14.15

Man page: Sparse Scatter Utility .......................ooiiiiaat, 466
Sparse Vector Gather Utility .........coiiiviiiiiiiiiiiniiiinnnn, 469
14.5.1 Definition of the Vector Gather Operation . .................. 469
1452 Examples ......ccovveiiioiieeenreecnteenanseneesnansns 469
Man page: Sparse Vector Gather Utility . . .......................... 471
Sparse Vector Scatter Utility .........cviiiiiiiiiiiiiiiiiniannn.. 475
14.6.1 Definition of the Vector Scatter Operation ................... 475
1462 Example.......oooiiiiiiiiiiiiiiiiieiiiiiiiiiieriienns 475
Man page: Sparse Vector Scatter Utility ..... e teeeeetaeeesaneenen 477
Vector Move (Extractand Deposit) .........cociiiiiiniinnnin..n. 480
Man page: Vector Move (Extract and Deposit) ..................... 481
Block Gather and Scatter Utilities ......oovviviieiiiiiiininineneenn. 484
Man page: Block Gather and Scatter Utilities ....................... 487
Partitioning of an Unstructured Mesh and Reordering of Pointers .. ....... 491
149.1 DefInitions ...\ ciiitiniiiiieeieeiectrererenannnanannns 491
14.9.2 Finite Element Numbering Scheme ........................ 493
149.3 PartitioningRules ............ciiiiiiiiiiiiiiiiiiiaaa 494
149.4 The Partitioning Permutation ................ccivieeuennnn. 495
149.5 Mesh Partitioning Example ...........ccc0vvnienvnenannnnn. 495
149.6 Reorderinga Pointers ATray . ........cccvvvvvninnnennnnnn. 496
Man page: Partitioning of an Unstructured Mesh
and Reorderingof Pointers ................ ... .. ...iiiiiiiiaan.. 497
Partitioned Gather Utility ........... ...t iiiiiiiiiiiii it iiinnnnn 502
Man page: Partitioned Gather Utility .............................. 503
Partitioned Scatter Utility . .. .......oiiiiiiii ittt e 508
Man page: Partitioned Scatter Utility .............................. 509
Computation of Block Cyclic Permutations ..............ooieuuunnnn. 513
14.12.1 Blocking, Load Balancing, and Block Cyclic Ordering ........ 514
14.12.2 Obtaining L, U, and R Factors in Elementwise Consecutive
: L« 516
Man page: Computation of Block Cyclic Permutations ............... 518
Permutation Along an AXiS .........ccviiiiiiiriiii i 521
Man page: Permutation Alongan Axis ............................ 522
Send-to-NEWS and NEWS-to-Send Reordering ...................... 525
Man page: Send-to-NEWS and NEWS-to-Send Reordering ............ 526
Communication Compiler ........ ... iiiiiiiiiiiiiiiinnnnnnn. 528
14.15.1 Communication Compiler Routines ............coovuunn.... 528
14.15.2 How to Use the Communication Compiler .................. 530

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

ay
g



Man page: Communication Compiler ..................ccoenvunn. .. 532
cee... 545

14.16 References .........covueenn..

547

s s e e s e s s e a et s s s

Index .................

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation






About Thls Manual

Objectives

This manual describes the CM Fortran programming interface to the Connection Machine Scientific
Software Library (CMSSL).

This manual describes CMSSL software for the Connection Machine supercomputer, model CM-5.
(Note that throughout this book, statements made about the CM-200 also apply to the CM-2, unless

otherwise noted.)

Intended Audience

Anyone writing CM Fortran programs that use the CMSSL software should read this document.

Organization

This manual is divided into two volumes with fourteen chapters:

Volume I

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction to the CMSSL for CM Fortran

Describes the contents of the CMSSL. Discusses the data types supported and
explains how to perform CMSSL operations on multiple independent data sets
concurrently.

Using the CMSSL CM Fortran Interface
Explains how to include CMSSL routine definitions in CM Fortran code, and how
to compile, link, and execute CM Fortran programs that call CMSSL routines.

Dense Matrix Operations
Describes the inner product, 2-norm, outer product, matrix vector multiplication,
vector matrix multiplication, matrix multiplication, and infinity norm routines.

Sparse Matrix Operations

Describes the routines that perform arbitrary elementwise sparse matrix
operations, arbitrary block sparse matrix operations, and grid sparse matrix
operations.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporauon xm



xiv

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Volume II

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

CMSSL for CM Fortran (CM-5 Edition)

Linear Solvers for Dense Systems

Describes the the Gaussian elimination (LU decomposition) routines, routines that
solve linear systems using Householder transformations (the QR routines), matrix
inversion, and the Gauss-Jordan system solver.

Linear Solvers for Banded Systems
Describes the banded system factorization and solver routines, which solve
tridiagonal, block tridiagonal, pentadiagonal, and block pentadiagonal systems.

Iterative Solvers
Describes routines that solve linear systems using Krylov space iterative methods.

Eigensystem Analysis

Describes routines that perform eigensystem analysis of dense real symmetric
tridiagonal systems, dense Hermitian systems, dense real symmetric systems,
dense real systems, and sparse systems. Included are routines that use the Jacobi
method, a k-step Lanczos method, and a k-step Amoldi method. Also included are
routines that reduce Hermitian matrices to real symmetric tridiagonal form (and
perform the corresponding basis transformation).

Fast Fourier Transforms
Describes the simple and detailed complex-to-complex FFT routines.

Ordinary Differential Equations
Describes routines that integrate ordinary differential equations (ODEs) explicitly
using a fifth-order Runge-Kutta-Fehlberg formula.

Linear Programming
Describes a routine that solves multi~dimensional minimization problems using
the simplex linear programming method.

Random Number Generators
Describes the Fast and VP random number generators.

Statistical Analysis : _
Describes the histogram and range histogram routines.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation




P

About This Manual
mm R AR XA TN

Chapter 14 Communication Primitives

Describes the polyshift operation; the all-to-all broadcast; the sparse gather, sparse
scatter, sparse vector gather, sparse vector scatter, and vector move (extract and
deposit) routines; the block gather and scatter utilities; partitioning of an
unstructured mesh and reordering of pointers; the partitioned gather and scatter

~ utilities; routines that compute block cyclic permutations and permute an array
along an axis; send-to-NEWS and NEWS-to-send reordering; and the
communication compiler.

Revision Information

This is the first edition of this manual.

Acknowiedgments

The Center for Research on Parallel Computation at Rice University has contributed to this
release of the CMSSL.

Notation Conventions

The table below displays the notation conventions used in this manual.

Convention Meaning

bold typewriter UNIX and CM System Software commands, command options, and file
names.

boldface sans serif CM Fortran lax:;guage elements, such as function and subroutine names
and constants, when they appear embedded in text or in syntax lines.

italics Parameter names, when they appear embedded in text or syntax lines.
bold italics CM arrays, when they appear embedded in text or syntax lines.
typewriter Code examples and code fragments.

% bold typewriter In interactive examples, user input is shown in bold typewriter
typewriter and system output is shown in regular typewriter font.

Version 3.1 Beta 2, January 1993 Xxv
Copyright © 1993 Thinking Machines Corporation



CMSSL for CM Fortran (CM-5 Edition)

Standard Abbreviations for
Matrix Operations and Matrix Types

The following standard abbreviations are used in the CMSSL CM Fortran interfaces to identify
matrix types. Further abbreviations will be introduced as more matrix types are supported.

CMSSL Matrix Type Abbreviations

dense general gen

dense symmetric sym

arbitrary elementwise sparse sparse

arbitrary block sparse block_sparse
grid sparse grid_sparse
tridiagonal ' gen_tridiag
pentadiagonal gen_pentadiag
block tridiagonal , block_tridiag
block pentadiagonal block_pentadiag

The following standard abbreviations are used in the CMSSL CM Fortran interfaces to identify

matrix operations:
CMSSL Matrix Operation Abbreviations
factorization factor
inversion invert
multiplication muit
solver solve
polyshift pshift
xvi Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation

U

N
Y
[
4y
v

k



Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to

T |

respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264
Internet
Electronic Mail: customer-support@think.com
uucp
Electronic Mail: ames ! think!customer-support
Telephone: (617) 234-4000

(617) 876-1111



Chapter 9

Fast Fourier Transforms

This chapter describes the CM Fortran interface to the CMSSL Fast Fourier
Transforms (FFTSs). One section is devoted to each of the following topics:

® the CMSSL FFT library calls
= the complex-to-complex FFT (CCFFT)

= references

) “[ " This chapter assumes a basic understanding of Fourier Transforms.

The complex-to-complex Fast Fourier Transform (FFT) in-
cluded in this Beta release on the CM-5 is pre-release software.
The performance of this pre-release FFT is very poor; it is in-
cluded only to prevent existing code from breaking. A later
release containing full support for the complex-to-complex FFT
is planned. In addition, in this Beta release of the complex-to-
complex FFT, whenever the operand array has a layout
directive, an interface block is necessary; see Section 9.2.4
below for details and an example. ~

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 351



CMSSL for CM Fortran (CM-5 Edition) :

= W9

9.1 The CMSSL FFT Library Calls

The CMSSL provides two FFT user interfaces:

® The Simple FFT. This interface is used to transform a data set in the same
direction along all axes. You can use the simple FFT to perform multidi-
mensional FFTs, but not to perform multiple independent FFTs
concurrently.

®» The Detailed FFT. This interface provides (at the cost of added interface
complexity) a great deal of flexibility, including support for multiple in-
stances. For each axis of a multidimensional array, the Detailed FFT
allows you to choose the following:

* Whether a transform is performed along the axis, and if so, in which
direction (forward or inverse).

» The address ordering (normal or bit-reversed) used to store input
and output data values along the axis.

* The scaling factor (none, axis length, or square root of axis length) A
applied to the transform results. At the end of the FFT, each element ) 3
of the array is divided by the product of the scaling factors. (The
axes for which you specified “none” as the scaling factor do not
contribute to this product.)

These features are described in the man pages later in this chapter.
To perform an FFT, you must follow these steps:

1. Call the fft_setup routine.

This routine computes internal values (including twiddle factors), allo-
cates an internal FFT setup object, and computes an FFT setup ID, which
you must then use as an argument in all subsequent Simple FFT, Detailed
FFT, and deallocation calls associated with this setup call.

2. Call the fft or fft_detailed routine.

These routines execute the Simple and Detailed FFTs, respectively. You

may follow one call to the setup routine with multiple calls to these rou-

tines. However, the result of a call to the setup routine can only be used

for arrays with the same rank, axis extents, layout directives, and data type

as the array supplied in the setup routine. If any of these parameters

change, you must call fft_setup again to create another setup structure. }]]’ %
(

Version 3.1 Beta 2, January 1993
352 Copyright © 1993 Thinking Machines Corporation



Chapter 9. Fast Fourier Transforms

R

3. Call the deallocate_fft_setup routine.

This routine deallocates a specified FFT setup strucure and frees the stor-
age space it required.

You may have more than one setup ID active at a time; that is, you may call the
setup routine more than once before deallocating any setup IDs. When you call
fft, fft_detailed, or deallocate_fft_setup, you must be sure to provide the correct
setup ID.

i

!J\‘;’ ' }h'j; ‘

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 353



9.2

9.2.1

CMSSL for CM Fortran (CM-5 Edition)

Complex-to-Complex FFT

The CMSSL complex-to-complex FFT is a Discrete Fourier Transform in which
the same call is used to specify a one-dimensional or multidimensional transform
on any legal array of floating-point data. For example, in Fourier Analysis Cyclic
Reduction (FACR) for a three-dimensional problem (see references 1, 6, 16, and
18 in Section 9.3), the data array has at least three axes. You may choose to per-
form Fourier transformation on planes represented by two of the axes, while
tridiagonal systems of equations are solved along the third axis.

Butterfly Computations, Twiddle Factors,
and the CCFFT Setup Phase

The CMSSL FFT is of the Cooley-Tukey variety (see references 3 and 4). In the
radix-2 algorithm of this type, there are logyN stages for a data set of size N =
2log)N. Tn each such data set, “butterfly”” computations are performed on pairs

. of data; NJ2 butterfly computations are performed in each stage. In a radix-4 al-

9.2.2

354

gorithm, there are log4N stages, each of which involves butterfly computations
on four data points; N/4 butterfly computations are performed in each stage.
Higher-radix FFTs are defined similarly. The Discrete Fourier Transform relies
on a set of coefficients known as twiddle factors. The twiddle factors are various
roots of unity, and depend only upon the size of the data set and the radix. In the
CMSSL CCFFT, the twiddle computations are performed during a setup phase and
used during the subsequent evaluation phase. This organization allows you to
amortize the expense of twiddle factor computation over several transformations.

The sign of the twiddle factors determines the direction of an FFT. In the CMSSL
FFT, the forward transform is defined as one that uses twiddle factors with a neg-
ative exponent, and the inverse transform is defined as one that uses twiddle
factors with a positive exponent.

Bit Ordering and Bit Reversal

The Cooley-Tukey FFT bit-reverses the addresses in which it stores results. For
example, if an 8-point FFT is performed, the indices of the output are

0,4,2,6,1,5,3,7

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

e




N

)s i

l[;

9.2.3

Chapter 9. Fast Founer T}'amfonns

In binary, this sequence is
000, 100, 010, 110, 001, 101, 011, 111
that is, the normal sequence with bits reversed.

The Detailed FFT allows you to specify whether the address ordering of the input
is normal or bit-reversed, and whether the desired address ordering of the result
is normal or bit-reversed.

In the CCFFT, if you specify opposite address orderings for input and output, the
Detailed FFT performs the single bit-reversal that is inherent in the Cooley-
Tukey algorithm, and produces output that is bit-reversed relative to the input.
If you specify the same address ordering for input and output, the Detailed FFT
performs an extra bit reversal, and produces output with the same ordering as the
input. The extra bit reversal exacts a performance cost.

The Simple FFT does not provide bit-reversal options; it always produces output
data with the same bit ordering as the input data. It does this by automatically
performing a bit-reversal on the transformed data, thus annihilating the bit-rever-
sal inherent in the FFT. This feature causes a Simple FFT to take 20% to 50%
more time than an identical Detailed FFT for which the input and output address
orderings are opposite.

Multidimensional and Multiple-Instance FFTs

The CMSSL FFT allows you to specify whether you want to perform a forward
transform, an inverse transform, or no transform along each axis of a multidi-
mensional CM array. As described later in this chapter, it is also possible to
perform bit-reversal on an axis without transforming it. The axes along which
you perform a transform or a bit-reversal define the dataset; the axes along which
you perform neither a transform nor bit-reversal are the instance axes, represent-
ing multiple independent data sets.

The CMSSL FFT routines perform multidimensional and multiple-instance FFTs
by combining the following principles:

» If you supply a multidimensional data set, the routines perform a multidi-
mensional FFT by computing a one-dimensional FFT along each axis of
the cell in turn.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 355



CMSSL for CM Fortran (CM-5 Edition)

S84

= If you specify one or more instance axes (possible only with the Detailed
FFT, as described below), the routine computes multiple concurrent, inde-
pendent one-dimensional FFTSs along each cell axis in turn.

For example, if your array has rank 3 and extents (p X g X r), you can perform
any of the FFTs indicated in Table S.

Table 5. Possible FFTs with a three-dimensional input array.

Data Axis  Instance Axis

Numbers Numbers Resulting FFTs

1 2,3 gr concurrent one-dimensional FFTs along the
first axis.

2 L3 pr concurrent one-dimensional FFTs along the
second axis.

3 2,3 pq concurrent one-dimensional FFTs along the
third axis.

1,2 3 r concurrent two-dimensional FFTs. The dataset

for each two-dimensional FFT is defined by the
first two axes. The third axis defines the in-
stances.

1,3 2 q concurrent two-dimensional FFTs. The dataset
for each two-dimensional FFT is defined by the
first and third axes. The second axis defines the
instances.

2,3 1 _p concurrent two-dimensional FFTs. The dataset
for each two-dimensional FFT is defined by the
second and third axes. The first axis defines the
instances.

,2,3 none One three-dimensional FFT on the entire array.

Version 3.1 Beta 2, January 1993
356 Copyright © 1993 Thinking Machines Corporation




orms

R

9:.2.4 Current Restrictions and Planned Extensions

The current FFT algorithm requires that the length of each axis subject to trans-
formation or bit-reversal is equal to some power of 2. All other array axes can
have any length.

Future plans include combining the local reordering of multiple axes, with the
~ result that the local reordering time will be essentially independent of the number
of axes reordered.

Need for Interface Blocks

In this Beta release of the complex-to-complex FFT, whenever the operand array

(called ¢ in the example below) has a layout directive, an interface block is neces-

sary; otherwise, the probablity of getting the right answer is low. The example

below illustrates the use of the interface block. (For definitions of arguments, see

the man page following this section.) In this case, one of the axes has been de-

clared :serial. The subdirectory ££t/cmf of the CMSSL examples directory
\ u}ﬁ» @ contains an example that also illustrates the use of an interface block.

cmf$layout c(:serial, :news)
complex c(lda, lda)

interface
subroutine fft_detailed(c, f£ft_type, ops, in_bit_order,
$ out_bit_order, scale, fftsetup, ier)

cmf$layout c{:news, :news)
complex c(:, :)
character*4 fft_type
integer ops(2)
integer scale(2)
integer in bit_order (2), out_bit_order(2)
integer fftsetup, ier
end interface

call fft_detailed(c, ’'CTOC’, ops, in_bit_order,
$ out_bit_order, scale, fftsetup, ier)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 357



CMSSL for CM Fortran (CM-5 Edmon)

9.2.5 Summary: Optimizing CCFFT Address Ordering

For an axis that is being transformed in a CCFFT,

= If you specify opposite address orderings for input and output, the De-
tailed FFT performs the single bit-reversal that is inherent in the
Cooley-Tukey algorithm, and produces output that is bit-reversed relative
to the input.

* If you specify the same address ordering for input and output, the Detailed
FFT performs an extra bit reversal, and produces output with the same or-
dering as the input. The extra bit reversal exacts a performance cost.

For an axis that is not being transformed,

= If you specify opposite address orderings for input and output, the De-
tailed FFT performs a single bit-reversal and produces output that is
bit-reversed relative to the input.

* If you specify the same address ordering for mput and output, the Detailed
FFT performs no bit reversal.

Thus, for optimal CCFFT performance, specify

* Opposite address orderings for input and output, for each axis that is being
transformed.

® The same address ordering for input and output, for each axis that is not
being transformed.

Note that violating these recommendations along any axis is costly, but violating
them along several axes is not significantly more costly.

To bit-reverse the address ordering of a dataset without transforming it, call the
Detailed FFT specifying no transform for all axes and specifying opposite values
for the input and output address ordering.

These points are independent of the directions of the transforms.

Version 3.1 Beta 2, January 1993
358 Copyright © 1993 Thinking Machines Corporation



‘W’WI‘/ a

P

L |

Complex-to—Complex FFT

RS

R i

Complex-to-Complex Fast Fourier Transform

The routines described below use a complex-to-complex Fast Fourier Transform (CCFFT)
algorithm to calculate the Discrete Fourier Transform of an n-dimensional CM array. The
Simple FFT call, fft, performs the same operation (either a forward or an inverse FFT) along
all axes of the array. With the Detailed FFT call, fft_detailed, you can specify different
transform operations, bit orderings, and scaling factors for each axis of the array.

SYNTAX
setup_id = fft_setup (4, type, ier)

it (A, type, op, setup_id, ier)
fft_detailed (A, type, ops, in_bit_orders, out_bit_orders, scales, setup_id, ier)

deallocate_fft_setup (setup_id)

ARGUMENTS

A Complex CM array. The A you supply in the fft_setup call must
have the same rank, axis extents, layout directives, and precision
as the A arguments you supply in all subsequent fft or fft_detailed
calls associated with the setup call. All axes that are to be
transforrmed must have power-of-2 extents.

When you call fft_setup, you may supply arbitrary values in A; the
setup routine neither examines nor modifies the contents of the
array, but rather uses its size, shape, and data type to create the
setup object.

When you call fft or fft_detailed, A is the array to be transformed.
Upon completion, this array is overwritten with the results.

The elements of A may be complex or double- precision complex.
The floating-point precision of the result data always matches that
of the input.

type Front-end variable of type CHARACTER*4 that specifies the type
of FFT to be performed. Specify 'CTOC’ for a complex-to-
complex transform.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 359



BEIBT

op

ops

in_bit_orders

out_bit_orders

scales

360

Complex-to-Complex FFT

CMSSL for CM Fortran (CM-5 Edition)

R AR A St

Front-end scalar integer variable indicating the direction in which
the A axes are to be transformed in a Simple FFT. Must be one of
the following symbolic constants (or the equivalent integer
value):

CMSSL_f_xform (1) forward transformation
CMSSL_I_xform (2) inverse transformation

Front-end integer vector with length equal to the rank of A. Each
element specifies the direction (if any) in which the corresponding
A axis is to be transformed in a Detailed FFT. Each element must
be one of the following symbolic constants (or the equivalent
integer value):

CMSSL_nop (0) no operation
CMSSL_f_xform (1) forward transformation
CMSSL_i_xform (2) inverse transformation

Front-end integer vector with length equal to the rank of A. Each
element indicates the initial address ordering of the corresponding
A axis in a Detailed FFT. Each element must be one of the
following symbolic constants (or the equivalent integer value):

CMSSL_normal (0) normal address ordering
CMSSL_bit_reversed (1) bit-reversed address ordering

Front-end integer vector with length equal to the rank of A. Each
element indicates the desired output address ordering of the
corresponding A axis in a Detailed FFT. Each element must be one
of the following symbolic constants (or the equivalent integer
value):

CMSSL_normal (0) normal address ordering
CMSSL_bit_reversed (1) bit-reversed address ordering

Front-end integer vector with length equal to the rank of A. Each
element specifies the scaling factor (if any) for the corresponding
A axis. Each element must be one of the following symbolic
constants (or the equivalent integer value):

CMSSL_noscale (0) no scaling
CMSSL_scale_sqrt (1) scale by square root of the axis length
CMSSL_scale_n (2) scale by the axis length

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

Vi |

-
e

i



OH

)

Chapter 9. Fast Fourier Transforms Complex-to-Complex FFT

At the end of the fft_detailed call, each element of A is divided by
the product of the scaling factors. (The axes for which you
specified CMSSL_noscale do not contribute to this product.)

setup_id Scalar integer variable. The ID of a setup structure returned by the
fft_setup routine.

ier Scalar integer variable. Upon return, contains 0 if the call
succeeded.

DESCRIPTION

To perform a CCFFT, you must follow these steps:

1. Call fft_setup.

This routine computes internal values (including the twiddle factors), allocates
an internal FFT setup object, and computes an FFT setup ID, which you must
supply in all subsequent Simple FFT, Detailed FFT, and deallocation calls asso-
ciated with this setup call.

2. Call fit or fft_detailed.

These routines execute the Simple and Detailed FFTs, respectively. You may
follow one call to fft_setup with multiple calls to these routines. However, the
result of a call to fft_setup can only be used for arrays with the same rank, axis
extents, layout directives, and precision as the array supplied in the setup rou-
tine. If these parameters change, you must call fft_setup again to create another
setup structure.

3. (Call deallocate_fft_setup.

This routine removes an FFT setup object that is no longer needed. Because
an FFT setup object occupies both partition manager and processing node
memory, you should free this memory by deallocating the setup object after
the completion of all FFT invocations that use it.

The time required to compute the contents of an FFT setup structure is substantially
longer than the time required to actually perform an FFT. For this reason, and because it
is common to perform FFTs on many arrays with the same rank, axis lengths, layout
directives, and precision, the setup phase is separated from the transform phase.

You may have more than one setup ID active at a time; that is, you may call the setup
routine more than once before deallocating any setup IDs. When you call fft, fft_
detailed, or deallocate_fft_setup, you must be sure to provide the correct setup ID.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 361



362

Complex~to-Complex FFT CMSSL for CM Fortran (CM-5 Edi

tion)

R SR

Multidimensional and Multiple-Instance FFTs. The fft routine computes a multidi-
mensional transform by performing a one-dimensional transform along each axis in
turn. The fft_detailed routine supports multiple instances, and computes one or more
concurrent, independent one-dimensional FFTs along each data axis in turn.

Front-End Scalar Argument for Simple FFT. In the fft call, the op argument deter-
mines whether the routine performs a forward or an inverse FFT transform along each
axis. The transform direction is the same for all axes. The simple FFT uses the follow-
ing conventions:

®  Along each axis, input and output data are stored using the same bit ordering.

® For a forward FFT, no scaling factors are used. For an inverse FFT, the axis
length is used as the scaling factor for each axis.

Front-End Vector Arguments for Detailed FFT. The fft_detailed call requires four

front-end vector arguments, ops, in_bit_orders, out_bit_orders, and scales, whose

lengths must equal the rank of A. Within each of these vectors, each element specifies
an option for the corresponding axis of A, as follows:

= The ops vector specifies the direction in which the corresponding A axis is to
be transformed, or specifies that the axis is not to be transformed. In a muiti-
ple-instance FFT, the axes to be transformed are the data axes, and the axes that
are not to be transformed are the instance axes.

®  The in_bit_orders and out_bit_orders vectors specify the order in which the
original and the resulting A values are stored along each axis. In normal ad-
dress ordering (CMSSL_normal), data values are stored consecutively.
Consecutive order is the only compiler-supported data allocation scheme. In
bit-reversed ordering, consecutive data values are stored according to sequen-
tial addresses whose high- and low-order bits have been swapped; that is, the
consecutive allocation scheme is applied to the bit-reversed indices.

Although fft_detailed can handle any combination of bit orderings, perform-
ance is best when the axes of an untransformed array and a transformed array
have opposite bit-orderings — that is, input normal and output bit-reversed,
or input bit-reversed and output normal.

For some applications, operating with bit-reversed indices is acceptable. How-
ever, special caution is required when data motion is involved. For example,
NEWS communication is efficient for SHIFT operations, but if you use NEWS
communication to perform a SHIFT on data that is bit-reversed, the results will
not be those expected. Bit reversing rearranges the order of the data elements
along an axis; a subsequent SHIFT simply shifts those rearranged elements. If

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

WP



)

Y

"

h

’

Chapter 9. Fast F

R

ourier Transforms Complex-to—-Complex F
SR S e N S SRR R BES

onioniaty

you want to perform an operation that requires adjacency of consecutive in-
dices, you must either operate on data that has normal bit ordering or take the
bit-reversal into account in your computations.

The scales vector specifies a scaling factor (none, square root of axis length, or
axis length) for each axis. At the end of the fft_detailed call, each element of A
is divided by the product of the scaling factors. (The axes for which you speci-
fied CMSSL _noscale do not contribute to this product.)

For example, suppose A has dimensions (m, n, p) and you supply
(CMSSL_scale_n, CMSSL_scale_sqrt, CMSSL_noscaie)

as the scales vector. At the end of the fft_detailed call, each element of A is
divided by m * sqrt(n).

One artifact of the Fourier Transform algorithm is that if no scaling is per-
formed, then a forward FFT followed immediately by an inverse FFT results
in the original array with all values multiplied by the FFT size — that is, the
product of the lengths of the transformed axes. Scaling is typically used to
correct this effect and prevent arithmetic overflow. Typically, a scaling factor
of CMSSL_noscale is used for all axes in a forward transform, and a scaling
factor of CMSSL_scale_n is used for all axes being transformed in an inverse |
transform. Alternatively, you may specify a scaling factor of CMSSL_scale_
sqrt for all transformed axes in both the forward and the inverse FFTs. This
alternative is less efficient, but can reduce the risk of arithmetic overflow for
very large numbers.

Scaling is independent of the operations performed along the axes. For exam-
ple, it is possible to specify a scaling factor of CMSSL_scale_n for an axis that
is not being transformed.

Bit-Reversing the Addressing of a CM Array. You can use the Detailed FFT to bit-
reverse the addressing of any n-dimensional CM array. To do this, specify CMSSL_nop
for all elements of the ops argument, and opposite values for the input and output ord-
erings; that is, either CMSSL_normal for the in_bit_orders values and CMSSL_bit_
reversed for the out_bit_orders values, or CMSSL_bit_reversed for the in_bit_orders
values and CMSSL_normal for the out_bit_orders values.

Setup Uses Array Shape, Layout, and Data Type. The setup ID computed by the
fft_setup call can be used for all arrays with the same shape, layout, and data type (in-
cluding precision) as the A argument supplied in the #ft_setup call — and only for such

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 363



364

CMSSL for CM Fortran (CM-5 Edition)

arrays. If a transform is to be performed on two arrays, A and B, of the same shape,
layout, and data type, then one call to the setup routine suffices, even if transforms are
performed on different axes of the two arrays. But if A and B have different shapes,
layouts, or data types, then you must make one call for each array. Note that to be the
same shape, two arrays must not only have the same number of axes, but also the same
axis lengths. Thus, if two arrays with the same number of axes differ in even one axis
length or in any layout directives, they require separate setup calls.

Setup is Private. The FFT setup data contains information private to the FFT. The
format of this data is not documented and may change between CMSSL releases. For
this reason, application code should never access or modify the contents of an FFT
setup structure.

Header File. The FFT routines use predefined symbolic constants. Therefore, you must
include the statement INCLUDE ‘ /usr/include/cm/cmssl-cmf.h’ at the top of
the main file of any FFT program. This file defines symbolic constants and declares the
type of the CMSSL functions.

Bit Reversal and Performance. For an axis that is being transformed,

® If you specify opposite address orderings for input and output, the Detailed
_ FFT performs the single bit-reversal that is inherent in the Cooley-Tukey algo-
rithm, and produces output that is bit-reversed relative to the input.

* If you specify the same address ordering for input and output, the Detailed FFT
performs an extra bit reversal, and produces output with the same ordering as
the input. The extra bit reversal exacts a performance cost.

For an axis that is not being transformed,

®= If you specify opposite address orderings for input and output, the Detailed
FFT performs a single bit-reversal and produces output that is bit-reversed rel-
ative to the input.

= If you specify the same address ordering for input and output, the Detailed FFT
performs no bit reversal.

Thus, for optimal FFT performance, specify

* Opposite address orderings for input and output, for each axis that is being
transformed.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

W P

w9



Chapter 9. Fast Fourier Transforms

Complex-to—Complex FFT

®  The same address ordering for input and output, for each axis that is not being
transformed. ‘

To bit-reverse the address ordering of a dataset without transforming it, call the De-
tailed FFT specifying no transform for all axes and specifying opposite values for the
input and output address ordering.

These points are independent of the directions of the transforms.

EXAMPLES

Sample code that uses the complex-to-complex FFT can be found on-line in the subdi-
rectory

££t/cmf/
of a CMSSL examples directory whose location is site-specific.

Provided below are code skeletons showing the basic usage of the Simple FFT and the
’ Detailed FFT.

-l

Code Skeleton Showing Basic Usage of Simple FFT. The following code demon-
strates the syntax of the fft routine:

PROGRAM simple _manual_example
INCLUDE ‘/usr/include/cm/cmssl-cmf.h’

INTEGER setup_id, ier
COMPLEX my_cm_array (256, 256)

c initialize our cm array (this makes sure it’s on
C the cm)
my_cm_array = (1.0, 0.0)

c create an FFT setup id before taking the FFT
setup_id = fft_setup (my_cm_array, 'CTOC', ier)

c perform the forward transform on my_cm_array
CALL fft(my_cm_array, ‘CTOC’,CMSSL_f_xform,setup_id,ier)

cC use the transformed array here
C perform the inverse transform on my_cm_array
; CALL fft(my_cm_array,’CTOC’,CMSSL_i_xform,setup_id,ier)
Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation 365



Complex-to-Compiex FFT CMSSL for CM Fortran (CM-5 Edition)

o} finally, scrap the setup
CALL deallocate fft_setup( setup_id )

STOP
END

Code Skeleton Showing Basic Usage of Detailed FFT. The code below demon-
strates the syntax of the fft_detailed routine. After allocating and initializing the needed
variables, this code performs a forward FFT followed by an inverse FFT on the array
my_cm_array. Notice that the output of the forward FFT call is in bit-reversed order.
The transformed array is operated on with data in bit-reversed order, thereby avoiding
two applications of the reordering function (one after the forward FFT, one after the

inverse FFT).

PROGRAM detailed manual_ example
INCLUDE ' /usr/include/cm/cmssl-cmf.h’

c declare and initialize variables
INTEGER forward ops(2), inverse ops(2), normal_ bits(2),
& reversed_bits(2), unscaled(2), n_scaled(2), setup, ier
DATA forward ops/CMSSL_f xform, CMSSL f xform/,
inverse_ops/CMSSL_i_xform, CMSSL_i_xform/, Q"
normal_bits/CMSSL_normal, CMSSL_normal/,
reversed_bits/CMSSL_bit_reversed,CMSSL_bit_reversed/,
unscaled/CMSSL_noscale, CMSSL_noscale/,
n_scaled/CMSSL_scale_n, CMSSL_scale_n/,
ier/0/
COMPLEX my_cm_array (256, 256)

R RR R R R

o] initialize our cm array (this ensures it’'s on the cm)
my_cm_array = (1.0, 0.0)

c get the setup
setup_id = fft_setup( my_cm_array. ‘CTOC’, ier )

c call a forward detailed FFT
CALL f£ft_detailed( my_cm_array, ‘CTOC’, forward ops,
& normal_bits, reversed bits, unscaled, setup_id, ier )

c Do something with the transformed array here
Cc call an inverse detailed FFT
CaLL fft_detailed( my_cm array, ’‘CTOC’', inverse ops,

& reversed_bits, normal_bits, n_scaled, setup_id, ier )

cC scrap the setup
CALL deallocate_fft_ setup (setup_id)

Version 3.1 Beta 2, January 1993
366 Copyright © 1993 Thinking Machines Corporation



‘hapter 9. Fast Fourier Transforms

s

Complex-to-Complex FFT

R

STOP
END
‘y‘v? ;
L )
Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation 367



CMSSL for CM Fortran ( CM-5 Edmon)

368

9.3 References

For further information about the CCFFT, see the following references:

1.

Buzbee, B. L., G. H. Golub, and C. W. Nielson. On Direct Methods for
Solving Poisson’s Equations. SIAM J. Numer. Anal. 7, no. 4 (1970): 627-56.

Chu, C. The Fast Fourier Transform on Hypercube Parallel Computers.
Ph.D. Thesis, Center for Applied Mathematics, Cornell University, Ithaca
NY 14585.

. Cooley, J. C., P. Lewis, and P. D. Welch. The Fast Fourier Transform Al-

gorithm: Programming Considerations in the Calculation of the Sine,
Cosine, and Laplace Transforms. J. Sound Vibrations 12, no. 3 (1970):
315-37.

Cooley, J. C., and J. W. Tukey. An Algorithm for the Machine Computa-
tion of Complex Fourier Series. Math. Comp. 19 (1965): 291-301.

Edelman, A. Optimal Matrix Transposition and Bit-Reversal on Hyper-
cubes: Node Address-Memory Address Exchanges. Thinking Machines
Corporation Technical Report, 1989.

Hockney, R. W. The Potential Calculation and Some Applications. Meth-
ods Comput. Phys. 9 (1970): 135-211.

Hong, J. W,, and H. T. Kung. /O Complexity: The Red-Blue Pebble
Game. In Proc. of the 13th ACM Symposzum on the Theory of Computa-
tion. ACM, 1981. Pp. 326-33.

Johnsson, S. L. Communication Efficient Basic Linear Algebra Computa-
tions on Hypercube Architectures. J. Parallel Distributed Comput.4, no.
2 (1987): 133-72.

Johnsson, S. L. and C-T. Ho. Matrix Transposition on Boolean n-Cube
Configured Ensemble Architectures. SIAM J. Matrix Anal. Appl. 9, no. 3
(1988): 419-54.

10.Johnsson, S. L. and C-T. Ho. Optimal Communication Channel Utilitza-

tion for Matrix Transposition and Related Permutations on Boolean
Cubes. Technical Report TR-03-91, Harvard University, Division of
Applied Sciences, January 1991.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

==

,



Chapter 9 Fast Fourzer T)'ansfoms

11.Johnsson, S. L., C-T. Ho, M. Jacquemin, and A. Ruttenberg. Computing
Fast Fourier Transforms on Boolean Cubes and Related Networks. In Ad-
vanced Algorithms and Architectures for Signal Processing II, 826.
Society of Photo-Optical Instrumentation Engineers, 1987. Pp. 223-31.

12.Johnsson, S. L., Jacquemin, M., and C-T. Ho. High Radix FFT on Boolean
Cube Networks. Harvard University, Division of Applied Sciences, Tech-
nical Report TR-25-91. To appear in the Journal of Computational
Physics.

13.Johnsson, S. L. and R. L. Krawitz. Cooley-Tukey FFT on the Connection
Machine. Parallel Computing 18, no. 11 (1992): 1201-21.

14.Johnsson, S. L., M. Jacquemin, and R. L. Krawitz. Communication
Efficient Multi-Processor FFT. J. Comp. Phys 102, no. 2 (1992): 381-97.

15.Johnsson, S. L and C.-T. Ho. Boolean Cube Emulation of Butterfly
Networks Encoded by Gray Code. Yale University Department of
Computer Science, Technical Report YALEU/DCS/RR-764, 1990. Also
Thinking Machines Corporation Technical Report BA90-1, TMC-5. To
appear in Journal of Parallel and Distributed Computing.

il ’
h\ : ) N : . .
)/ i : 16.Swarztrauber, P. N. The Methods of Cyclic Reduction, Fourier Analysis,
and the FACR Algorithm for the Discrete Solution of Poisson’s Equation
on a Rectangle. SIAM Review 19 (1977): 490-501.

17.Swarztrauber, P. N. Multiprocessor FFTs. Parallel Computing 5
(1987): 197-210.

18.Temperton, C. On the FACR(1) Algorithm for the Discrete Poisson Equa-
tion. J. of Computational Physics 34 (1980): 314-29.

19.Van Loan, C. Computational Frameworks for the Fast Fourier Transform.
SIAM, 1992,

.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 369






Chapter 10

Ordinary Differential Equations

This chapter describes the CMSSL routine that solves the initial value problem
for a system of first-order ordinary differential equations (ODEs) using a Runge-
Kutta method. Section 10.2 provides references.

3 ’ 10.1 Explicit Integration of Ordinary Differential
! Equations Using a Runge-Kutta Method

The initial value problem for a system of N coupled first-order ODEs,

dyi(x)fdx = fi(x, y1, .. »3N) i=1,.., N (1)

consists of finding the values y;(x;) at some value x; of the independent variable
x, given the values y;(xp) of the dependent variables at xo. The ode_rkf routine
solves the initial value problem by integrating explicitly the set of equations (1)
using a fifth-order Runge-Kutta-Fehlberg formula. Control of the step size
during integration is automatic. The evaluation of the right-hand side and
possibly the scaling array for accuracy control are provided by the user through
a reverse communication interface.

For detailed information about the ode_rkf routine, refer to the man page at the
end of this section. The examples below use the syntax and reverse communica-
tion interface described in the man page.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation _ 371



CMSSL for CM Fortran (CM-5 Edi

tion)
S B N O S SR e B

10.1.1 Examples

Provided below are schematic examples of how to use the ode_rkf reverse
communication interface. For actual codes, refer to the on-line examples (the
pathname is included in the man page). The following examples assume the
variables are stored in a two-dimensional array.

Exampile 1

In this example, we want to integrate an autonomous system of coupled ODEs
using the default error control. The routine deriv(y,dy) evaluates the
derivatives of y. Since the system is autonomous, the derivatives are independent
of x. We check for possible zero values of yscal and set them to a small value,
epsilon. The reverse communication proceeds as follows:

info=0
ido=0

10 continue
call ode_rkf(ido,y,w,x,xc,xf,dx,rtol,atol,ipntz,info, setup)

if(ido.eq.1) then

call deriv(w(ipntzr(1),:,:),w{ipntzr(2),:,:))
else if (ido.eq.3)

w(ipntr(2),:,:)=max(w(ipntr{2),:,:),epsilon)
else

stop

endif
goto 10

Example 2

Suppose we want to integrate a time-dependent system of ODEs and we choose
our own error control. The routine deriv (xc,y,dy) evaluates the derivatives
at xc while the routine scal (dx,y,dy,yscal) evaluates yscal = tol(fy] + dx
* |dy/dx]). We do not check for zero values in yscal (ido = 3), since we assume
this is done in the routine scal.

info=1
ido=0

Version 3.1 Beta 2, January 1993
372 Copyright © 1993 Thinking Machines Corporation



I

Chapter 10. Ordinary Differential

Eguations

s

10 continue

call ode_rkf(ido,y,w,x,xc,xf,dx,rtol,atol,ipntz, info, setup)

if (ido.eq.1l) then

call derivixc,w(ipntr(1),:,:),w(ipntr(2),:,:))
else if (ido.eqg.2) then

call scal(dx,y,w(ipntr(1,:,:)),w(ipntz(2),:,:))
else

stop
endif

goto 10

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

373



ODEs: Runge-Kutta Method

Explicit Integration of Ordinary Differential
Equations Using a Runge-Kutta Method

The routines described below integrate ordinary differential equations (ODEs) explicitly
using a fifth-order Runge-Kutta-Fehlberg formula. Control of the step size during integra-

tion is automatic.

SYNTAX

ode_rkf_setup (y, w, setup, ier)

ode_rkf (ido, y, w, x, xc, xf, dx, rtol, atol, ipntr, info, setup)

deallocate_ode_rkf_setup (setup)

ARGUMENTS

374

ido

Scalar integer variable. Reverse communication flag. ido must be
zero on the first call to ode_rkf. The ode_rkf routine sets ido to
indicate the type of operation to be performed by the calling
program, places the operand in w(ipntr(1), :, ..., :), and returns
control to the calling program. The calling program has the
responsibility of carrying out the requested operation and calling
ode_rkf again, placing the result in w(ipntr(2), ., ..., :). The values
of ido have the meanings listed below. All values except 0 are
returned to the calling program.

0

The calling program must supply this value on
the first call to ode_rkf.

The calling program must compute the
derivatives of the dependent variables dy/dx=
Sf(x,y) at x=xc. Array elements ipntr(1) and
ipntr(2) are pointers into w for y and dy/dx,
respectively, at xc.

(Returned only if info =1.) The calling program
must compute the scaling array for accuracy con-
trol. The values of the dependent variables y(x)
are in array y, while the pointer into w for dy/dx

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

ii 9

(AN |



3

)

XC

Chapter 10 Ordmary Dtﬁerennal Equatwns ODEs Flunge-Kutta Method

at x is ipntr(1). The pointer into w for the scaling
array is ipntr(2).

3 At least one component of the scaling array
stored in w(ipntr(2), :, ..., :), is zero. Reset the
zero values to avoid overflow in the stepsize con-
trol (equation (2) in the Description section).

99 The integration is completed.

Real CM array of arbitrary dimension and shape. Represents the
collection of dependent variables. The values of y are always the
values of the variables at x. Input values are taken as initial values
for the integration.

Real CM work array of rank one greater than that of y. The first
axis must have extent at least 6 and must be declared :seriai. The
remaining axes must match the axes of y in order of declaration,
extents, and layout. This array is used in the basic iteration for
reverse communication. Do not modify the values of w except as
indicated by the returned value of ido.

Real scalar variable. Independent variable. The value of x on input
(ido=0) corresponds to the initial values of the dependent
variables y. During the integration, x always has the last value of
the independent variable at which the variables y have been
computed successfully.

Real scalar variable. Intermediate value of the independent
variable to be used for the evaluation of the derivatives. When the
derivatives depend explicitly on x, it is the variable xc, and not x,
that must be passed to the user-supplied subroutine that evaluates
the derivatives when ido=1.

Real scalar variable. Value of the independent variable x at which
the integration is terminated. Input only.

Real scalar variable. Step size. On input (ido=0), dx is the
estimated first increment of the independent variable to be
attempted by the integrator. Since the integrator is adaptive, a step
size that is too large (small) will be reduced (increased)
automatically. However, the input value of dx cannot be 0. The
sign of the input value of dx is set internally to the sign of xf-x.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 375



oD

376

E

rtol

atol

ipntr

info

setup

ier

During the integration, dx is the value of the step size currently
being attempted by the integrator.

Relative tolerance for the local error control. Must have the same
precision (single or double) as y. Ignored if info = 1. See the
Description section for details.

Absolute tolerance for the local error control. Must have the same
precision (single or double) as y. Ignored if info = 1. See the
Description section for details.

One-dimensional front-end integer array of length at least 2. On
return, contains pointers to mark the locations in the work array w:

ipntr(1) When ido = 1, ipntr(1) points to the section of w
holding the values of the dependent variables at
xc.

When ido = 2, ipntr(1) points to the array holding
the values of the derivatives at x.

ipntr(2) When ido = 1, ipntr(2) points to the section of w
that should hold the values of the derivatives at xc
after a user-supplied routine is called using the
reverse communication interface.

When ido = 2 and info = 1, ipntr(2) points to the
section of w that should hold the values of the
scaling array used for accuracy control after a
user-supplied routine is called using the reverse
communication interface. '

Scalar integer variable. On input, set info to 1 if you want to
provide your own scaling array for accuracy control using the
reverse communication interface. Any other integer value causes
ode_rfk to use the default scaling array (see the Description
section).

One-dimensional front-end integer array of length 2.

Scalar integer variable. Set to 0 upon successful return. Upon
return from ode_rkf_setup, may contain the following error codes:

-1 The first dimension of w is not declared :serial.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

(



Chapter 10. Ordmary Dzﬁvrenual Equatwns ODEs Runge-Kutta Method

-2 The serial dimension of w has extent less than 6.

-3 The rank of w is not one greater than the rank of
Y-
-4 The sections of w containing the vectors and in-

dexed by the first dimension do not have the
same shape as y.

DESCRIPTION

The initial value problem for a system of N coupled first-order ordinary differential
equations (ODEs),

dyi(@)fdx = fi(x, y1, .. »y¥) =1,..,N (1)

consists of finding the values y;(x;) at some value x; of the independent variable x,
given the values y;(xg) of the dependent variables at xq. The ode_rkf routine solves the
initial value problem by integrating explicitly the set of equations (1) using a fifth-or-
der Runge-Kutta-Fehlberg formula. Control of the step size during integration is
)}} xl; ’ automatic. The evaluation of the right-hand side and possibly the scaling array for
accuracy control are provided by the user through a reverse communication interface.

Setup and Deallocation. To use ode_rkf, follow these steps:

1. Call ode_rkf_setup.

This routine generates a setup ID and returns it in the front-end array setup.
You must supply this setup array in all subsequent ode_rkf and deallocate_
ode_rkf calls associated with this setup call.

2. Call ode_rkf iteratively, as described under Reverse Communication Inter-
face, below.

You can use the same setup array to solve more than one initial value problem
sequentially, as long as the array geometries are the same. You can also have
more than one setup active at a time.

3. Call dealliocate_ode_rkf.

This routine deallocates the memory associated with the setup ID.

Step Size Control and Accuracy. For a trial integration step dx, ode_rkf estimates the
errors yerri(x + dx) of the computed solution at x + dx. This allows for automatic

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 377



378

ODEs: Runge-Kutta Method

CMSSL for CM Fortran (CM-5 Edition)

control of the step size if one is able to accept or reject the step based on a prescribed
accuracy requirement. The test implemented in ode_rkf is to accept the step if errmax <
1, where

erri(x + dx)|
i yscal(x)

errmax = i=1,..,N (2

and the scaling array yscal is defined by
yscal(x) = rtol * y;(x)| +atol i=1,..,N

The input arguments rtol and atol are the relative and absolute precision, respectively.
This combination covers the range between relative (atol = 0) and absolute (rzol = 0)
accuracy. If any component of yscal is zero, the reverse communication interface
returns the code ido = 3, allowing you to reset the zero components in order to avoid
overflow in the evaluation of (2).

You may wish to monitor the accuracy of the integration in a way that is more
appropriate to your problem. For instance, it may be desirable to scale the error with
the time step dx and to include the value of the derivatives in yscal, as in Example 2 in
Section 10.1.1. This combination enforces accuracy over the whole integration range,
wheréas the default formula merely ensures local accuracy. It is possible to set your
own array yscal by seting info = 1 and using the reverse communication interface (ido
=2).

Reverse Communication Interface. The aim of the reverse communication interface
is to isolate from the ode_rkf code the evaluation of the derivatives and possibly the
construction of the scaling array. Such operations are performed by user-supplied
routines, on data structures that are the most natural to the problem at hand. To this end,
ode_rkf is called iteratively; ode_rkf gives control back to the calling routine whenever
the evaluation of the derivatives or the scaling array is required. The reverse commu-
nication interface also allows you to reset possible zero values of yscal in order to
avoid overflow in (2).

The reverse communication flag, ido, which must be 0 for the first call to ode_rkf,
dictates which operation is to be performed. When ido = 1, the derivatives must be
evaluated at the intermediate value xc; that is, you must evaluate the right-hand side
of (1) o

ﬁ(xc:}’l,---,}’N) i=1,..,N

at xc. The source array, which contains the values of the dependent variables at xc, is
stored in the section of the workspace array w indexed by the pointer ipner(1). The

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



i)

Cha ter 10 Ordmary Dzﬁ"erentzal Equatzons ODES' Runge-Kutta Method

user-supplied routine that evaluates the derivatives at xc must place the derivatives into

the destination array, which is the section of the workspace array w indexed by the
pointer ipntr(2).

When ido = 2, you must set up your own scaling array to be used for accuracy control.
You are prompted to do so only if the input parameter info has been set to 1. When
ode_rkf returns ido = 2, the values of the dependent variables and their derivatives to be
used in the construction of the scaling array are in the arrays y and w(ipntr(1),....:),

respectively. The time step currently attempted by the integrator is dx. The user-sup-
plied routine that creates the scaling array must place the scaling array into the section
of the workspace array w indexed by the pointer ipntr(2).

A fifth-order Runge-Kutta step requires six right-hand-side evaluations at different
values of the independent variable xc. Note that it is the array w(ipntr(1), ., ..., :), and
not y, that contains the values of the dependent variables at xc, to be used in the evalua-
tion of the derivatives. The array y contains the values of the dependent variables at x,
and is only updated once the currently attempted step dx is successful.

Finally, ido = 3 indicates that at least one component of the scaling array is zero. To
avoid overflow in the error computation (2), you need only replace the zero compo-
nents with small values, as in Example 1 in Section 10.1.1.

NOTES

Use of Array w. Do not use the CM array w as temporary workspace.

Data Layout. The ode_rkf routine imposes several constraints on the way the CM
arrays y and w are laid out on the machine. The array y contains the dependent
variables. The number of dimensions of y and its layout on the machine can (and
should) be chosen in such a way as to optimize the evaluation of the right-hand side of
(1). In particular, y can be a muitidimensional array. The product of the dimensions
must be equal to the size of the problem (the number of dependent variables). Once the
layout of y is chosen, w must adhere to the same layout directives as y except for its
first extra dimension, which must be local to the processors and of size at least 6. Thus,
w contains at least 6 arrays identical to y, “stacked up” in memory. The axis indexing
these arrays in w must be the first axis; to ensure that it is local, the calling program
must use a layout directive to declare it :serial.

For example, in the one-dimensional case, the array declarations should be as follows:

real y(n), w(6,n)
CMFSLAYOUT w(:serial,),y()

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 379



ODEs: Runge-Kutta Meth

od

tion)

S

In the two-dimensional case, the declarations would be

real y(nl,n2), w(6,nl1,n2) .
CMFS$LAYOUT w(:serial,,),y(,)

In this second case, there are nl * n2 dependent variables.

Caution Regarding Array Sections. In the reverse communication interface, the
array sections w(ipntr(1),.,...,:) and w(ipntr(2),.,...,:) designate source and destination
vectors, respectively, and are passed to the matrix vector subroutines as shown in the
examples in Section 10.1.1. Since the first dimension of w is always serial, the sections
w(ipntr(1),.,...,:) and w(ipntr(2),:,...,:) are passed in place only if all dimensions of w
other than the first have a canonical layout. If w has a non-canonical dimension other
than the first, the array sections are not passed in place; this degrades performance and
may produce incorrect results. One remedy is to pass the whole array w along with the
pointer array ipntr to the subroutine and extract the relevant array sections in the sub-
routine itself. Alternatively, you can make the interface explicit by means of an
interface block. For information about passing array sections and about interface
blocks, refer to the CM Fortran Programming Guide. For an example, refer to the on-
line sample code.

EXAMPLES

Sample CM Fortran code that uses the ode_rkf routine can be found on-line in the sub-
directory

ode/cmf

of a CMSSL examples directory whose location is site-specific.

380

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

0

) |

i
h

’



10.2 References

1. Press, W. H. and S. A. Teukolsky. Adaptive stepsize Runge-Kutta integra-
tion. Computers in Physics 6 (1992): 188-91.

2. Cash, J. R. and A. H. Karp. A variable order Runge-Kutta method for
initial value problem with rapidly varying right hand sides. ACM Trans.
Math. Software 16 (1990): 201-22.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 381






Chapter 11

Linear Programming

11.1

11.1.1

This chapter describes the dense simplex routine, gen_simplex. Section 11.2 pro-
vides references.

Dense Simplex Routine

The gen_simplex routine solves multidimensional minimization problems using
the simplex linear programming method. The goal is to find the minimum of a
linear function of multiple independent variables. In the standard formulation,
the problem is to minimize the inner product cTx subject to the conditions Mx =
b, 0 < x < u, where M is an m X n matrix, c is a coefficient vector, and cTx is
referred to as the cost. The upper bound vector # may be infinity in one or more
components.

Geometrical Description of the Algorithm

Geometrically, the algorithm can be described in terms of the polytope in n-space
defined by the plane Mx = b and the bounds O < x < u. The problem is to find
a vertex of the polytope that lies as far as possiblg in the direction -c. If the solu-
tion consists of more than one point, gen_simplex chooses one vertex within the
solution as its result.

The simplex method involves the following steps:
1. Find any vertex of the polytope.

2. Find a neighboring vertex that results in a lower cost.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 383



11.1.2

11.1.3

384

CMSSL for CM Fortran ( CM-5 Edmon)

3. Repeat Step 2 until no neighboring vertex results in a lower cost.

Vertices and Bases

To find a vertex, gen_simplex selects n-m variables and fixes them to their upper

bounds or to 0. These variables are selected so that the columns of M correspond-
ing to the remaining m variables are linearly independent. Solving the resulting
m-dimensional system yields a vertex. The basis defined by the m linearly inde-
pendent columns is said to be feasible if the solution satisfies the bounds 0 < x
<u

The process of moving from one basis to another is called a pivot or iteration.
The input argument max_iter is the upper bound on the number of iterations gen_
simplex will perform without finding a solution.

If you have any starting information about feasible bases (for example, you know
or guess that certain columns belong in a feasible or optimal basis), you can sup-
ply this information to gen_simplex in the bcol argument, which is described in
the man page following this section. Upon return, bcol contains information
about the last basis gen_simplex found.

Input Array Format

When you call gen_simplex, you must supply a two-dimensional zero-based CM
array, A, whose upper-left-hand corner of dimensions (m+1) X (n+1) contains the
standard input items for simplex problems (see Figure 33):

* an offset, , from which cTx is subtracted (element (0,0)). Typically, ©=0.

= the cost coefficient vector, ¢ (row 0)

the right-hand-side vector, b (column 0)

the matrix M (rows 1 through m, columns 1 through n)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

=

-
Siaadom



LA

Chapterll. Linear Programming

L)

column 0 columns 1 through n
l — I N ~
®—oI> c row 0
b M
rows 1 through m
A

Figure 33. Format of A.

When gen_simplex transforms M to find a vertex (basis), row 0 also changes and

becomes the reduced cost row. This row carries information about how close the

current basis is to being a solution to the problem. Theoretically, when every

element of the reduced cost row is greater than 0, the basis is optimal (the vertex

is the optimal solution). In practice, when every element of the reduced cost row

is greater than -epsilon (where epsilon is an input tolerance argument), the basis
QI I ’ is considered to be optimal.

The working version of A during gen_simplex processing is referred to as the
tableau.

% SRR ]

NOTE

The gen_simplex routine may place zeros in rows of A beyond
row m and columns beyond column n.

Ry

11.1.4 Reinversion

In some cases, the status code returned by gen_simplex indicates that you should
reinvert: that is, call the routine again, restoring the original values of A (includ-

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 385



tion)

ing row and column 0) and supplying the bcol values returned in the last call.
Reinverting allows gen_simplex to clear any numerical errors that have accumu-
lated and start again from a more numerically accurate version of the last basis
obtained in the prior call. The input argument reinvert_freq is an upper bound on
the number of iterations gen_simplex will perform before exiting with a status
that requests reinversion.

Degeneracy

A problem is degenerate if more than one basis represents the same vertex. If
gen_simplex encounters degeneracy, it may perform multiple iterations without
much improvement in cost. The input arguments degen_iter and degen_tol deter-
mine how long gen_simplex will continue in a degenerate case: degen_iter is an
upper bound on the number of iterations gen_simplex will perform with cost
improvement of less than degen_tol. We use a slight modification of the EXPAND
anti-cycling procedure (see reference 2 in Section 11.2).

Implementation

The gen_simplex routine takes the tableau A and creates or equivalences it with
a four-dimensional tableau in the CM, distributed in such a way as to minimize
communications overhead. Using special temporary arrays for pivot selection
and the rank 1 update, gen_simpiex proceeds either to solve the linear problem
until the reduced cost row contains elements greater than -epsilon and the
solution is feasible, or to exit with an appropriate status code.

Example

The following example assumes a knowledge of linear programming. Consider
the linear programming problem

Minimize -3x; -5x

subject to X1 +x2 = 11
X7 -X2 > -4
-2x; +x < 2
X7 +x2 > 2

) Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

R

PR



<,

Chapterl] Lmear Programmmg

with x; >1,x >0. The problem may be transformed to

Minimize -3x; -5x; -3

subject to b9} +x3 = 10
X7 X3 -X3 = -5
-2x; +x3 +x4 = 4
X +x -X5 =1
X1, X2, X3, X4 X5 >0

by adding the slack variable x4 and the surplus variables x; and x5, and trans-
forming the variable x; to be bounded below by zero. To compensate for the
change in the definition of x;, we now include a cost offset (-3). We supply gen_
simplex with partial knowledge about a possible starting basis by setting
beol(1)=0 (since we have no knowledge about a basic variable in row 1) and
setting bcol(2)=3, bcol(3)=4, and bcol(4)=5 to incorporate knowledge about
slack and surplus variables. Since the variables have no upper bounds, we set
bounds(i) = infinity for all i. (To do this, use the built-in infinity function
d_infinity( ); see the on-line example.) We set the input tableau argument A as

follows:
3 -3-5000 000
0 1 1 000 000
-5 1 -=1-10 0 000
4 =21 010000
4= 1 1 1 0 0-1000
0 0 0 00O0 000
0 0 0 000000
0 0 0 00O0O000O0

In this example, A contains some unused rows and columns; its active dimen-
sions are m+1=5 and n+1=6. Elements of bcol corresponding to the unused rows
are set to 0; elements of bounds corresponding to the unused columns are set to
infinity. The array flip is set to .faise..

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 387



CMSSL Jor CM Fortran (CM-5 Edition)

SR

SRR R, IR

Dense Simplex

The gen_simplex routine solves multidimensional minimization problems using the sim-
plex linear programming method. In the standard formulation, the problem is to minimize
the inner product cTx subject to the conditions Mx = b, 0 <x<u,where MisanmXn
matrix, ¢ is a coefficient vector, and ¢Tx is referred to as the cost. The upper bound vector
u may be infinity in one or more components.

SYNTAX

gen_simplex (A, x, flip, bounds, bcol, statarray, constraint_axis, variable_axis,
x_flip_bounds_axis, bcol_axis, m, n, iter_count, max_iter, reinvert_freq,
epsilon, degen_iter, degen_tol, ier)

ARGUMENTS

A Zero-based real CM array (single- or double-precision) with
rank 2 and NEWS-ordered axes. Must have dimensions at
least (n+1) X (n+1). On input, contains

* an offset ® from which cTx is subtracted (element
(©0,0).

s the cost coefficient vector, ¢ (row 0).
= the right-hand-side vector, b (column 0).

* the matrix M (rows 1 through m, columns 1
through n).

On exit, A contains the optimal tableau; that is, the basic
columns of M are the optimal basis. Element A(0,0) contains
the optimal value w-cTx, where  is the original offset passed
in and ¢Tx is the optimal cost.

x One-based real CM array with rank 1, the same precision as
A, and length n. Must be NEWS-ordered. When gen_simplex
exits with status = 0 (or status = -1, if reinv_freq = 0), x
contains the solution to the linear problem.

Slip One-based logical CM array with rank 1 and length n. Must
be NEWS-ordered.The first time you call gen_simplex, set

Version 3.1 Beta 2, January 1993
388 Copyright © 1993 Thinking Machines Corporation

F o

[y & K54

o T



Chapterll. Linear Programming
SO AR

’ sty

Dense Simplex

e S s

=

Jlip(i) = false. for all i. On return, element fTip(i) is set to .true.
if the ith variable has been set to its upper bound. When you
reinvert, supply the flip values returned by the last call.

bounds One-based real CM array with rank 1, the same precision as
A, and length n. Must be NEWS-ordered. The element
bounds(i) contains the upper bound of the ith variable of the
problem. Each bound must be > 0, but may be infinite.

beol One-based integer CM array with rank 1 and length m. Must
be NEWS-ordered.

On input to the first call to gen_simplex, if you have no
information about a starting basis, supply bcol(i) = 0 for all i.
Alternatively, you may supply information about a possible
starting basis, as follows: '

=  Set beol(i) to k to suggest that column & be the basic
column for row i. The routine attempts to pivot on
element (i, k).

i 9 *  Set bcol(i) to 0 if you have no information about the
: i basic column for row i.

= Set beol(i) to a negative number if row i is redundant.

The information you supply is used as a suggestion,; if it does
not work, gen_simplex proceeds to find a full-rank feasible
basis.

On exit, bcol(i) contains the number of the basic column
corresponding to row i of the problem. A negative entry
indicates that row i appears to be numerically redundant.

When you reinvert (restore the values of A and call gen_
simplex again), do not change the values of bcol; supply the
values returned by the last call. The routine uses these values
to determine the new starting basis.

statarray Ignored in the current release. Supply the scalar integer
constant 0.
constraint_axis Reserved for future releases. Supply the scalar integer
constant 1.
)
Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation 389



variable_axis

x_flip_bounds_axis

bcol_axis

iter_count

max_iter

reinvert_jreq

epsilon

390

CMSSL for CM Fortran (CM-5 Edition)

Reserved for future releases. Supply the scalar integer
constant 2.

Reserved for future releases. Supply the scalar integer
constant 1.

Reserved for future releases. Supply the scalar integer
constant 1.

Scalar integer variable. The number of rows in the matrix M.
(The array A must have at least m + 1 rows, since it also
includes the cost row as row 0.)

Scalar integer variable. The number of columns in the matrix
M. (The array A must have at least n + 1 columns, since it also
includes the right-hand-side vector, b, as column 0.)

Scalar integer variable. On return, contains the total number
of iterations performed. The gen_simplex routine does not
reset this counter; if you want to reset it, you must do so
explicitly. Set iter_count to 0 before the first call to gen_
simplex.

Scalar integer variable. An upper bound on the number of
iterations gen_simplex can perform without reaching an
optimal solution. Suggested value: 40n.

Scalar integer variable. If you supply a value p > 0, gen_
simplex will perform at most p iterations before exiting with a
status that requests reinversion. (Suggested value: 10000.)

If you set reinvert_freq to 0, gen_simplex proceeds until one
of the following conditions occurs: gen_simplex finds a
solution; exceeds the value of max_iter; determines that the
problem is infeasible, unbounded, or degenerate; or
encounters another fatal error. Numerical errors do not cause
the routine to exit. However, if numerical errors have
accumulated when gen_simpiex has finished, it returns a
status of -1. In this case, if you reinvert, gen_simplex clears
the numerical errors and re-checks the solution.

Double-precision real scalar variable. A tolerance for the
tableau elements, introduced for numerical stability. A
reduced cost or pivot element whose absolute value is less
than epsilon is ignored in the pivot selection. These elements

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



degen_iter

degen_tol

ier

Version 3.1 Beta 2, January 1993

Dense Simplex

S

are not necessarily zeroed, however, and may enter the
calculations at a future time. When the argument A is
double-precision, suggested values are between 10-10 and
10-6, typically 10-8.

Scalar integer variable. A bound on the number of iterations
gen_simplex will perform with cost improvement less than
degen_tol. Suggested value: 2000.

Double-precision real scalar variable. A lower bound on the
cost improvement after degen_iter iterations. Suggested -
value: le-6.

Scalar integer variable. On return, contains one of the
following status codes:

1 (Optimal) Successful termination. An optimal
solution has been found.
2 (Reinvert) Numerical errors have accumulated,

or (if reinvert_freq is > 0) the num-
ber of iterations has exceeded the
value of reinvert_freq. Restore the
original values of A (including row
and column 0) and call gen_simplex
again without modifying bcol or
Sflip. (This process is known as rein-
version.)

4 (Infeasible) The problem appears to be infeasi-
ble. However, the apparent
infeasibility may be due to numeri-
cal ill-conditioning, in which case
increasing the value of epsilon and
calling gen_simplex again may clear
the error.

8 (Unbounded) Either the cost minimizing direction
extends to infinity, or bad scaling or
numerical errors cause the problem
to appear unbounded. If the problem
is known to be bounded, restore the
original values of A (including row

Copyright © 1993 Thinking Machines Corporation 391



DESCRIPTION

392

16 (Degenerate)

32 (Suboptimal)

-1 (Bad data type)

and column 0), increase the value of
epsilon, and call gen_simplex again,

The number of iterations has
exceeded the value of degen_iter
and the cost has improved by less
then degen_tol. Restore the original
values of A (including row and col-
umn 0), increase reinvert_freq and
epsilon, and call gen_simplex again.

An optimal solution has not yet
been found, but the number of itera-
tions has exceeded max_iter.

A has a data type other than real
(single- or double-precision), or A,
x, and bounds do not match in data
type and precision.

-2 (Axis specification error)

You supplied an invalid value for
one of the axis arguments.

-128 (Internal/Other)

An internal error has occurred.

The simplex method involves the following steps:

1

2
3

Find any vertex of the polytope defined by the plane Mx = b and the bounds

Find a neighboring vertex that results in a lower cost.

Repeat Step 2 until no neighboring vertex results in a lower cost.

To find a vertex, gen_simplex selects n-m variables and fixes them to their upper
bounds or to 0. These variables are selected so that the columns of M corresponding to
the remaining m variables are linearly independent. Solving the resulting m-dimen-
sional system yields a vertex. The basis defined by the m linearly independent columns

Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation



Chapterll. Linear Programming Dense Simplex

is said to be feasible if the solution satisfies the bounds 0 < x < u. The process of mov-
ing from one basis to another is called a pivot or iteration.

When gen_simplex transforms M to find a vertex (basis), row 0 of A also changes and
becomes the reduced cost row. This row carries information about how close the cur-
rent basis is to being a solution to the problem. Theoretically, when every element of
the reduced cost row is greater than 0, the basis is optimal (the vertex is the optimal
solution). In practice, when every element of the reduced cost row is greater than -
epsilon, the basis is considered to be optimal. The solution vertex is returned in x, and
the basic columns are returned in A.

NOTES

Inactive Elements May be Zeroed. The gen_simplex routine may place zeros in rows
of A beyond row m and columns beyond column 7.

Performance. For best performance, A must satisfy the following conditions:

»  The product of the physical axis extents must equal the total number of proces-
sors in the machine (or CM-5 partition). In this context, the “number of
processors” is the number returned by CMF_number_of_processors( ); that is,
the number of Vector Units (on a CM-5 with Vector Units), parallel processing
nodes (on a CM-5 without Vector Units), or processing elements (on a CM-200
in the slicewise execution model). The physical extent of an axis is the number
of processors along the axis.

s The subgrid size in each dimension must be a multiple of the vector length. In
CM Fortran releases prior to Version 2.1, the vector length is
® 4 for a CM-2 or CM-200 (slicewise execution model)
®= ] for a CM-5 without Vector Units
= 8 for a CM-5 with Vector Units
Beginning with CM Fortran Version 2.1, the vector length will be 1 for all-
machines, and this requirement will disappear.

If A does not satisfy these conditions, gen_simplex must make a copy of A, with a
resulting cost in both time and memory.

If A does satisfy the above conditions (so that a copy is not required), then for best
performance, make the subgrid size approximately the same in each dimension. (If
gen_simplex makes a copy of A, this guideline does not apply.)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 393



Dense Slmplex CMSSL for CM Forrran ( CM-5 Edztzon)

Precision. For best results, double precision is recommended.

EXAMPLES

Sample CM Fortran code that uses the gen_simplex routine can be found on-line in the
subdirectory

simplex/cmf

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
394 Copyright © 1993 Thinking Machines Corporation



11.2 References

For more information about the simplex method, see the following references:

1. Luenberger, D. G. Linear and Nonlinear Programming. Reading, MA:
Addison-Wesley, 1984 (or any other introductory text on linear program-
ming).

2. Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright. A practical
anti-cycling procedure for linearly constrained problems. Mathematical
Programming 45 (1989): 437-74.

3. Eckstein, J., R. Qi, V. L. Ragulin, and S. A. Zenios. Data-Parallel Imple-
mentation of Dense Linear Programming Algorithms. Thinking Machines
Corporation Technical Report TMC-230, 1992.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 395






==

-

Chapter 12

Random Number Generators

This chapter describes the CM Fortran interface for the CMSSL random number
generators (RNGs). One section is devoted to each of the following topics:

introduction

state tables

safety checkpointing

alternate stream checkpointing

references

Man pages for the RNG routines follow these sections.

12.1 Introduction

The CMSSL includes two RNGs:

the Fast RNG
the VP RNG

These operations use a lagged-Fibonacci algorithm. They supplement the CM
Fortran random number utility, CMF_RANDOM, and use a cellular automaton al-
gorithm. (For a description of CMF_RANDOM, refer to the CM Fortran
documentation set.)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 397



CMSSL far cM Fortran ( CM ») Edman)

12.1.1

12.1.2

398

The Fast RNG and the VP RNG Compared

To construct pseudo-random values, the CMSSL random number generators use
state tables loaded from CMF_RANDOM. The difference between the Fast RNG
and the VP RNG lies in the allocation of their state table arrays, as follows:

= The Fast RNG operation stores one state table per parallel processing node.
* The VP RNG operation stores one state table per destination array element.

The Fast RNG (so named because it is much faster than the Paris RNG originally
used on the CM-2) thus consumes substantially less processing node memory
than the VP RNG. The VP RNG can produce identical results on CM partitions of
different sizes. Also, the VP RNG is slightly faster than the Fast RNG, albeit at
potentially high cost in memory.

The VP RNG, which mimics the Fast RNG, is generally used if access to a CM
partition of a specific size is not guaranteed. For instance, if you are using a
16-node partition while developing an application that will ultimately run on a
64-node partition, use the VP RNG to produce the same results that the Fast RNG
will produce when the application is finally run on the larger partition. The VP
RNG produces the same result for each array element, regardless of partition size
or array shape — provided that the same total number of array elements is main-
tained and that the same seed is used.

The RNG Routines

Most applications that use the CMSSL RNG simply require you to call the Fast
or VP RNG and then deallocate the state table. The following operations provide
this functionality:

initialize_fast_rng
fast_rng
deallocate_fast_rng

initialize_vp_rng

vp_rng
deallocate_vp_rng

Note that explicitly initializing these RNGs is only necessary if the default table
parameters are not suitable for your application. Section 12.2 discusses the state
table parameters.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 12. Random Number Generators

e

12.1.3

To guard against the effects of forced interruption, or to use more than one stream
of random values, some applications require checkpointing. Checkpointing is the
process of recording state information at a specific point in the random number
stream generation. Later, the stream generation can be continued from the check-
point.

In safety checkpointing, you save the RNG state to a file in case of forced inter-
ruption — for instance, during long periods of application execution. If an
interruption occurs, you can restore the state and continue processing. Safety
checkpointing is accomplished with the following routines:

save_fast_rng_temps
restore_fast_rng_temps

save_vp_rng_temps
restore_vp_rng_temps

In alternate stream checkpointing, you save the RNG states associated with two
distinct streams of random numbers in order to switch back and forth between
the streams. Alternate stream checkpointing is accomplished with the following
operations: ' ' '

fast_rng_state_field
fast_rng_residue
reinitialize_fast_rng

vp_rng_state_field
vp_rng_residue
reinitialize_vp_rng

See Sections 12.3 and 12.4 for detailed descriptions of safety checkpointing and
alternate stream checkpointing, respectively.

Implementation

The lagged-Fibonacci algorithm used by both CMSSL random number generators
is widely used to produce a uniform distribution of random values. This imple-
mentation has been subjected to a battery of statistical tests, both on the stream
of values within each processing node and for cross-node correlation. The only
test that the CMSSL RNGs fail is the Birthday Spacings Test, as predicted by Mar-
saglia in the paper referenced in Section 12.5. Despite this failure, these

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 399



CMSSL for CM Fonran ( CM-5 Edmon)

12.2

12.2.1

lagged-Fibonacci RNGs are recommended for the most rigorous applications
such. as Monte Carlo simulations of lattice gases.

State Tables

If you do not initialize the Fast RNG or VP RNG explicitly, the CM Fortran inter-
face uses default parameters to initialize the RNG automatically the first time you
call it. If you want to use non-default state table parameters, you must initialize
the VP or Fast RNG explicitly.

Fast RNG State Tables

The initialize_fast_rng routine allocates the state tables for the Fast RNG and ini-
tializes them with values generated by CMF_RANDOM. The application can
provide a seed for CMF_RANDOM by calling CMF_RANDOMIZE. Figure 34 shows
a Fast RNG state table. In the Fast RNG, one state table is associated with each
processing node; from this table, random values are constructed for each subgrid
element. (The subgrid associated with a processing node is the set of array ele-
ments residing in that node’s memory.) Thus, each time you call fast_rng, the
number of pseudo-random values produced by each state table is equal to the
subgrid size.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



One Processing Node

- width ———»

A
i
N —-
aj
% v
!
<
3
p=a+bh
by =a; + b

!

Subgrid of size n

Figure 34. Fast RNG state table.

12.2.2 VP RNG State Tables

The initialize_vp_rng routine allocates the state tables for the VP RNG and initial-
izes them with values generated by CMF_RANDOM. The application provides a
seed for CMF_ RANDOM in the initialize_vp_rng seed argument. Figure 35, below,
shows one VP RNG state table. In contrast to the Fast RNG state table, each sub-
grid element has its own state table. Each time you call vp_rng, each state table
produces only one value.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 401



CMSSL for CM

R IR

Fortran (CM-5 Edition)

One Subgrid Element

12.2.3

402

Figure 35. VP RNG state table.

If you do not call initialize_vp_rng explicitly, vp_rng selects a dynamic seed value
based on the system time. (This is the conventional default initialization proces-
dure in most random number generators.) As a result, with default initialization,
different results are obtained in different runs. Explicit initialization is required
to obtain identical results.

State Table Parameters

For either CMSSL RNG, each state table has table_lag elements and width width.
The state table field is treated as a circular buffer. Internal variables are initial-
ized so that they point into the table at offsets of short_lag and table_lag
elements. The operation of generating a pseudo-random value (termed stepping
the RNG) consists of adding the element at the short_lag pointer to the element
at the table_lag pointer. This sum is shown as b =a + b in the figures above,
where the element shown as b is overwritten by the sum. All or a portion of the
bits in element b are used to construct a pseudo-random value, which is then

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



12.2.4

12.2.5

copied to the destination field. The pointers are then either decremented by one
element or cycled around the buffer.

The state table parameters are critical to proper CMSSL RNG operation. The de-
faults used for automatic initialization are (17, 5) for table_lag and short_lag.
For information about the defaults for width, refer to the man page for Fast RNG
or VP RNG. Also, refer to the man pages for specific requirements and recom-
mendations regarding table_lag, short_lag, and width.

The period of a random number generator is the number of discrete pseudo-ran-
dom values it can generate before repeating the original stream. For applications
that call a CMSSL RNG many times, it is important to make sure the period is
long enough. The pericd should be greater than the total number of values pro-
duced by any one state table during all calls to the RNG. Otherwise, it may be
possible to detect correlations within the stream produced by one processing
node or between streams in different nodes. See the man page for Fast RNG or
VP RNG, later in this chapter, for information on calculating an RNG period from
different table parameters.

Need for Deallocation

Both the Fast RNG and the VP RNG allocate state tables on the CM heap; until
explicitly deallocated, the tables occupy CM memory. The operations deallocate_
fast_rng and deallocate_vp_rng deallocate the state table arrays. It is important
that you use the deallocation routines, especially for the VP RNG, in which the
state tables can occupy a significant amount of processing node storage space.
(In the Fast RNG, the state table size is only on the order of table_lag.)

Parameters Saved During Checkpointing

Figure 36 shows how a CMSSL RNG state table is stepped. Cycling through the
circular buffer requires table_lag steps. During one cycle, each element is used
once as the a value and once as the b value in the computation b = a + b; thus,
all element values are modified. Then the cycle repeats using the new values. The
residue is the number of steps taken so far in a cycle. At any point, if you save
the residue and the values in the state table, you can resume stream generation
with the next step.

Version 3.1 Beta 2, January 1993 )
Copyright © 1993 Thinking Machines Corporation 403



CMSSL for CM Fortran { CM- 5 Edmon)

Sy

az
a
) aj ai
S
4
0
S
b3 =a;3 + b3
bp=a+b
by =a; + b by =aj + b
Step 1 Step 2 Step 3 * * * Steptable_lag+1
residue = 0 residue = 1 residue = 2 residue = 0

Figure 36. Stepping the state table.

The following routines save or return information for checkpointing:

* The save_fast_rng_temps and save_vp_rng_temps routines save the con-
tents of the state table array, as well as all state table parameters (including
the residue), to a file.

®* The fast_rng_state_field and vp_rng_state_field routines return the state
table array descriptor.

= The fast_rng_residue and vp_rng_residue routines return the residue value.

As explained in Sections 12.3 and 12.4, for safety checkpointing you must copy
both the residue value and the contents of the state table array to a file; whereas
for alternate-stream checkpointing, you save the residue value and the state table
array descriptor (but not the actual contents of the array), and external storage is
not required.

Version 3.1 Beta 2, January 1993
404 Copyright © 1993 Thinking Machines Corporation



Chapter 12. Random Number Generators
S S R R R

%

12.3 Safety Checkpointing

If you are running a long application that makes repeated use of one of the
CMSSL RNGs, it is a good idea to safety checkpoint. Should a forced interruption
occur, the application can be resumed at a checkpoint rather than having to be
restarted from the beginning.

To perform safety checkpointing, you must use the save and restore routines,

save_fast_rng_temps : save_vp_rng_temps
restore_fast_rng_temps restore_vp_rng_temps

To use this method, insert calls to the save routine periodically among your RNG
calls. If a forced interruption occurs, call the restore routine, which restores the
state table to exactly the values it had when the state was saved. No reinitializa-
tion is required; you can call the RNG again immediately after restoring the state.
Figure 37 is a flowchart for safety checkpointing.

The Fast RNG generates different random number sequences for destination ar-
rays on different CM partition sizes. Therefore, if you are using the Fast RNG,
the partition size must be the same when you restore the Fast RNG state as when
you saved it.

In contrast, the VP RNG state table reflects the underlying geometry of the output
array originally used to initialize the table. Therefore, the dimensions of the out-
put array must be the same when you restore the VP RNG state as when you saved
it.

The save and restore routines use the CM file system (CMFS) to store files, and
expect CMFS pathnames. Specific restrictions are included in the man pages, lat-
er in this chapter.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 405



CMSSL

R S R R

for CM Fortran (CM-5 Edition)

S AN A AN

INITIALIZE
{to override defaults only)

¢ [nitilize CMF_RANDOM (Fast RNG only)
¢ Initialize CMSSL RNG

g

SAVE STATE
¢ Call save routine

l.

USE RNG

Application code

with CMSSL RNG RESTORE STATE

calls —_

. _P—>| ¢ Calirestore routine
forced
break
DEALLOCATE

Deallocate CMSSL RNG

Figure 37, Safety checkpointing.

12.4 Alternate-Stream Checkpointing

406

It is possible to switch back and forth between two or more Fast or VP RNG
streams by saving the state and reinitializing one RNG after the other. For in-
stance, you can use this strategy to make separate random picks from two
databases that need to be merged or compared in some way. You can also use it

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



R ]

. ..qwﬂ

Chapter 1 2 Random Number Generators

to increase efficiency when one stream of random numbers requires a wide state
table and another can use a narrower state table.

If two or more VP RNG calls use destination arrays with different shapes, axis
orderings, or axis weights, you must use alternate-stream checkpointing.

Figure 38 is a flowchart for alternate-stream checkpointing using two random
number streams. The first RNG is initialized and its state is saved. Then the sec-
ond RNG is initialized and its state is saved. To alternate between streams, first
one and then the other RNG is looped through the reinitialization, use, and state-
saving phases.

Unlike safety checkpointing, the state-saving phase of alternate-stream check-
pointing does not require saving a copy of the state table field contents. Two state
table fields are allocated during initialization; their array descriptors are used re-
peatedly during reinitialization, and finally both fields are deallocated.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 407



CMSSL for CM Fortran (CM-5 Edition)

N S e R

Initialize CMF_RANDOM (Fast RNG only)
(to override defauit only)

Y

INITIALIZE A
Initialize RNG for stream A

'

SAVE STATE A

a_state «— {fast,vp}_rng_state_field
a_residue « {fast,vp}_rng_residue

!

INITIALIZE B
Initialize RNG for stream B

'

SAVE STATE B

b_state « {fast,vpj_rng_state_field
b_residue «— {fast,vp}_rng_residue

-
No LOOP WITH A LOOP WITH B
Done? ¢ Reinitialize stream A * Reinitialize stream B
s Call CMSSL RNG e Call CMSSL RNG
¢Yes o SAVE stream A state e SAVE stream B state
DEALLOCATE A

Reinitialize stream A
Deallocate RNG for stream

!

DEALLOCATE B

¢ Reinitialize stream B
Deallocate RNG for stream B

> e

Figure 38. Alternate-stream checkpointing.

Version 3.1 Beta 2, January 1993
408 Copyright © 1993 Thinking Machines Corporation



Number Generators

12.5 References

For an analysis of the lagged-Fibonacci algorithm and a discussion of optimal lag
parameter choices, see:

1. Knuth, D. The Art of Computer Programming, Vol. 2: Seminiimerical Al-
gorithms. Reading, Mass.: Addison-Wesley, 1973. Pp. 26-28.

For a discussion of the vulnerability of lagged-Fibonacci generators to the Birth-
day Spacings Test, see:

2. Marsaglia, G. A Current View of Random Number Generators. In Com-

puter Science and Statistics, 16th Symposium on the Interface, Atlanta,
March 1985.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 409



Fast RNG CMSSL for CM Fortran (CM-5 Edition)

B R R A R R D B e S

Fast RNG

The CMSSL Fast RNG routines use a lagged-Fibonacci algorithm to generate pseudo-
random numbers and store them in a destination array. Results may be integer values
subject to a limit, or real values between 0.0 and 1.0.

SYNTAX

initialize_fast_rng (table_lag, short_lag, width, ier)

fast_rng (A, limit, ier)

'save_fast_rng_temps (file, ier)

restore_fast_rng_temps (file, ier)

state_table = fast_rng_state_field (ier)

residue = fast_rng_residue (ier)

reinitialize_fast_rng (table_lag, short_lag, width, state_table, residue, ier)

deallocate_fast_rng (ier)

ARGUMENTS

table_lag Scalar integer specifying the length of the state table. The default
value for automatic initialization is 17. When you call reinitialize_
fast_rng, supply the same value that was used in the original
initialize_fast_rng call.

short_lag Scalar integer used as an offset into the state table. Must be less
than table_lag. The default value for automatic initialization is 5.
When you call reinitialize_fast_rng, supply the same value that
was used in the original initialize_fast_rng call.

width Scalar integer specifying the width of the state table. Regardless
of the value you supply, the RNG is always initialized with the
following width values:

= 64, if the destination array is declared as double-precision
real.

Version 3.1 Beta 2, January 1993
410 Copyright © 1993 Thinking Machines Corporation



limit

file

state_table

residue

ier

Chapter 12, Random Number Generato

Fast RNG

= 32, if the destination array is declared as single-precision
real (unless you explicitly specify a width of 64, in which
case the RNG is initialized with a width of 64).

= 32, if the destination array is declared as integer and limit
is 0.

® 64, if the destination array is declared as integer and limit
is not 0.

CM array of type real or integer. Upon successful completion, this
array is overwritten with the RNG results.

Scalar integer. Ignored for the real case. For the integer case, the
exclusive, positive, upper bound on the pseudo-random values
generated. A limit value of 0 is interpreted as allowing any 32-bit
pattern, so that the full range of positive and negative mtegers is
permitted.

Literal string or string variable declared, for example,
character*(*). The name of the CMFS file in which to save the
RNG state (when you are calling save_fast_rng_temps), or in
which the state was already saved (when you are calling restore_
tast_rng_temps). If you do not supply a full pathname, the
DVHOSTNAME and DVWD environment variables supply the
defaults for the hostname and current directory name,
respectively. (Refer to the Connection Machine I/O System
Programming Guide for information about these variables.)

Array descriptor of a processing node heap field that contains the
restored checkpointed values of a Fast RNG state table array.
When you call reinitialize_fast_rng, supply the value returned by
a previous call to fast_rng_state_field.

Scalar integer returned by a previous call to the fast_rng_residue
routine. Contains the checkpointed value of the Fast RNG state
table residue that was current at the same execution pomt as the
values identified by state_table.

Scalar integer variable. Error code. Upon successful return from
Initialize_fast_rng, contains -1 if this initialization overwrote a
previous initialization, or O if it did not.

Upon successful return from fast_rng, contains -2 if default
initialization was used, or 0 if default initialization was not used.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 411



n)

Upon return from save_fast_rng_temps or restore_fast_rng_
temps, contains 0 if the routine was successful. If the code is
non-zero, the upper 16 bits describe the operation that failed (see
below) and the lower bits contain CMFS_errno. For CMFS_errno
codes, see the man page for the corresponding CMFS library call
in the Connection Machine J/O System Programming Guide.

Upper 16 bits Operation CMFS Library Call
1 open CMFS—open
2 Iseek CMFS-iseek
4or8 write CMFS-write-~file
(for save_fast_rng_temps)
4or8 read CMFS—read-file
(for restore_fast_rng_temps)
16 close CMFS—close

Upon successful return from fast_rng_state_field, contains -2 if
default initialization was used, or O if default initialization was not
used.

Upon return from fast_rng_residue, contains 0 if the routine
succeeded.

Upon successful return from reinitialize_fast_rng, contains -1 if
this initialization overwrote a previous initialization, or O if it did
not.

Upon return from deallocate_fast_rng, contains O if the routine
succeeded or -1 if there is no previous state to deallocate.

RETURNED VALUE
state_table Array descriptor of the current Fast RNG state table.
residue Scalar integer indicating how many times the Fast RNG state has
been stepped, modulo the rable_lag.
DESCRIPTION

The Fast RNG is much faster than CMF_RANDOM and uses far less processing node
memory than the VP RNG.

Version 3.1 Beta 2, January 1993
412 Copyright © 1993 Thinking Machines Corporation



Chapter 12 Random Number Generators Fast RNG

Usage. Follow these steps to use the Fast RNG:

1. Call initialize_fast_rng (optional). This step is required only if the default ini-
tialization parameters are not suitable for your application.

2. Call fast_rng to generate the pseudo-random numbers. You may repeat this
step as many times as you wish, but the state table parameters with which the
RNG was initialized (explicitly or by default) must be appropriate for each call.
If a fast_rng call requires different state table parameters, you must initiate a
new state table by calling initialize_fast_rng with the new parameter values.

3. After all fast_rng calls associated with one set of state table parameters have
finished, call deallocate_fast_rng to deallocate the state table.

To perform safety checkpointing, use the save_fast_rng_temps and restore_
fast_rng_temps routines. To perform alternate stream checkpointing, use the fast_rng_
state_field, fast_rng_ residue, and reinitialize_fast_rng routines.

Initialization. The initialize_fast_rng routine allocates one Fast RNG state table as heap
memory in the processing nodes. The state table is initialized with values generated by
CMF_RANDOM. The initialization routine also initializes internal state, including the
state table array descriptor referenced by fast_rng_state_field and the residue refer-
enced by tast_rng_residue.

Separate state tables are allocated in each processing node. The length of the state table
in bits per node is the product of the table_lag and width parameters. For example,
given a width of 32 and the recommended table_lag of 17, the state table occupies 544
bits per node.

If your application requires a state table array configured differently from the defauit,
you must call CMF_RANDOMIZE to initialize CMF_RANDOM with a seed, and then call
initialize_fast_rng, before using fast_rng. This is important because CMF_RANDOM is
used to fill the initial state table for the Fast RNG.

If you do not explicitly initialize CMF_RANDOM and the Fast RNG, initialization occurs
automatically when you first call fast_rng. The Fast RNG selects a dynamic seed value
based on the system time for the CMF_RANDOM seed. The other defaults used for auto-
matic initialization are 17 for table_lag and 5 for short_lag; for width defaults, see the
argument list above.

For reproducible results, use the same CMF_RANDOM sced and the same Fast RNG
parameters each time. If you need reproducible results on different partition sizes, use
the VP RNG.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 413



414

The state table parameters have an enormous effect on the results obtained by calls to
fast_rng. Use the following guidelines for proper state table initialization:

The period of a random number generator is the number of random values it
produces before repeating the original stream. To avoid correlation, the period
should be greater than the total number of random values produced by any
processing node; that is,

desired-period > subgrid size x invocations

where invocations is the number of times the program calls fast_rng.

The period is very sensitive to the choice of table_lag and short_lag values.
The default pair of values, (17, 5), has been carefully chosen to produce the
maximum period for the minimum storage. Other suggested values are
(55, 24) and (71, 35). When the lag pairs are properly chosen, the period of the
Fast RNG depends exponentially on the state table length (table_lag) and on
the state table width (width), such that:

period = (2table_lag _1) x pwidth

For a discussion on choosing proper lag value pairs, see the paper by Knuth
referenced in Section 12.5.

The RNG is always initialized with the following width values:
® 64, if the destination array is declared as double-precision real.

® 32, if the destination array is declared as single-precision real (unless
you explicitly specify a width of 64, in which case the RNG is initial-
ized with a width of 64).

= 32, if the destination array is declared as integer and limit is 0.

® 64, if the destination array is declared as integer and limit is not 0.

Random Number Generation. The fast_rng routine copies a pseudo-random value,
chosen from a uniform distribution, into each element of A. The distribution range in
the floating-point case is from 0.0 (inclusive) to 1.0 (exclusive). The distribution range
in the integer case with a positive limit is from 0 (inclusive) to the specified limiz (ex-
clusive). The distribution range in the integer case with a 0 limiz is all integer values
from -231 t0 231 - 1 (in other words, any 32-bit pattern).

The Save and Restore Routines. The save_fast_rng_temps and restore_fast_rng_
temps routines provide a mechanism for safety checkpointing, allowing an application
to resume processing from a checkpoint after a forced interruption.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Fast RNG
o s

To use the save and restore routines, insert calls to the save routine periodically among
your RNG calls. If a forced interruption occurs, call the restore routine, which restores
the state table to exactly the values it had when the state was saved. No reinitialization
is required; you can call the RNG again immediately after restoring the state. The parti-
tion size must be the same when you restore the fast RNG state as when you saved it.

The State Field, Residue, and Reinitialization Routines. The fast_rng_state_field,
fast_rng_residue, and reinitialize_fast_rng routines provide a method for alternate-
stream checkpointing, in which the application switches back and forth between two or
more Fast RNG streams by saving the state and reinitializing one RNG after the other.

To perform checkpointing using these routines, follow these steps:

1. After the Fast RNG has been initialized either implicitly or explicitly by
initialize_fast_rng, and after fast_rng has been called zero or more times, call
fast_rng_state_field and fast_rng_residue.

2. Save the current state table array descriptor as a different array descriptor and
save the current state field residue.

3. Torestart a previously checkpointed Fast RNG number stream, call reinitialize_
fast_rng with the array descriptor of the checkpointed state table field and resi-
due.

The fast_rng_state_field routine returns the array descriptor of the Fast RNG state table.
The array descriptor will have been created previously by an implicit or explicit call to
initialize_fast_rng. The state table field resides in the processing nodes. Its length is the
product of the table_lag and width parameters used in the initialize_fast_rng call.

The fast_rng_residue routine returns the residue: a count of the number of times that
the Fast RNG state has been stepped, modulo the table_lag. The residue is the product
of the subgrid size and the number of calls to fast_rng that have occurred since the last
call to initialize_fast_rng or reinitialize_fast_rng.

The reinitialize_fast_rng routine reinitializes the Fast RNG from a previously check-
pointed state so that an interrupted computation can be resumed.

Deallocation. The deallocate_fast_rng routine deallocates the heap field that has been
used to store the state table for the Fast RNG. Call this routine when you are finished
with the Fast RNG.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 415



Seamans

RN

Fast RNG

AR

NOTES

416

Numerical Performance. The lagged-Fibonacci algorithm implemented by this RNG
is widely used to produce a uniform distribution of random values.

For a table width of 32 and using the default table_lag and short_lag values, (17, 5),
the period of the fast RNG is (217-1)232 =~ 5.6e15 bits. By comparison, the period for
CMF_RANDOM is estimated to be 6.8¢10 bits, with greater danger of cross-node corre-
lation.

Running time for the Fast RNG increases with the state table width and the number of
bits used. For best results, reduce the table width to the number of bits required and use
a limit value of 0.

Applications. The Fast RNG should be used in applications such as Monte Carlo simu-
lations where speed is a priority and there is enough room for the state table.

Include the CMSSL Header File. The fast_rng_residue and fast_rng_state_field calls
are functions; they return the residue and the array descriptor of the Fast RNG state
table, respectively. Therefore, you must include the line

INCLUDE ' /usr /include/cm/cmss’l—cmf .h’

in program units that contain calls to these routines. This file declares the types of the
CMSSL functions and symbolic constants.

Reproducible Results. To obtain reproducible results from the Fast RNG, initialize
CMF_RANDOM with the same seed each time, and call initialize_fast_rng explicitly.

In contrast, checkpointing and reinitializing an RNG is used to continue random value
stream generation from a previous or alternate state.

No Error Checking on Reinitialization. The reinitialize_fast_rng routine does not per-
form error checking on the input parameters. Unpredictible results or halted execution
are likely under the following conditions:

*® The length of szate_table is less than (table_lag x width).

®  residue is negative or residue 2 table_lag.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 1 2 Random Number Generators : Fast RNG
% A 2 S L s R o

EXAMPLES

Sample CM Fortran code that uses the Fast RNG routines can be found on-line in the
subdirectory

random/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
Copyrtght © 1993 Thinking Machines Corporanon 417



VP RNG CMSSL for CM Fortran (CM-5 Edition)

R AR R

VP RNG

The CMSSL VP RNG routines use a lagged-Fibonacci algorithm to generate pseudo-ran-
dom numbers and store them in a destination array. Results may be integer values subject
to a limit, or real values between 0.0 and 1.0.

SYNTAX

initialize_vp_rng (array, table_lag, short_lag, width, seed, ier)

vp_rng (A, limit, ier)

save_vp_rng_temps (file, ier)

restore_vp_rng_temps (file, ier)

state_table = vp_rng_state_field (array, ier)

residue = vp_rng_residue (array, ier)

reinitialize_vp_rng (table_lag, short_lag, width, state_table, residue, ier)

deallocate_vp_rng (array, ier)

ARGUMENTS

array Array descriptor for a CM array of the same shape and size as the
A argument supplied to any vp_rng call for this RNG stream.
Information about geometry and layout is taken from this

argument.

table_lag Scalar integer specifying the length of the state table. The default
value for automatic initialization is 17. When you call reinitialize_
vp_rng, supply the same value that was used in the original
initialize_vp_rng call.

short_lag Scalar integer used as an offset into the state table. Must be less
than rable_lag. The default value for automatic initialization is 5.
When you call reinitialize_vp_rng, supply the same value that was
used in the original initialize_vp_rng call.

Version 3.1 Beta 2, January 1993
418 Copyright © 1993 Thinking Machines Corporation



Chapter 12. Rando

seed

limit

file

state_table

Scalar integer specifying the width of the state table. Regardless
of the value you supply, the RNG is always initialized with the
following width values:

® 64, if the destination array is declared as double-precision
real.

= 32, if the destination array is declared as single-precision
real (unless you explicitly specify a width of 64, in which
case the RNG is initialized with a width of 64).

= 32, if the destination array is declared as integer and limit
is 0.

® 64, if the destination array is declared as integer and limit
is not 0.

Scalar integer used to initialize CMF_RANDOM for reproducible
results. If you do not explicitly initialize the VP RNG, the VP RNG
selects a dynamic seed value based on the system time.

Array descriptor for CM array of type real (single- or
double-precision) or integer. Upon successful completion, this
array is overwritten with the RNG results.

Scalar integer. Ignored for the real case. For the integer case, the
exclusive, positive, upper bound on the pseudo-random values
generated. A limit value of 0 is interpreted as allowing any 32-bit
pattern, so that the full range of positive and negative integers is
permitted.

Literal string or string variable declared, for example,
character*(*). The name of the CMFS file in which to save the
RNG state (when you are calling save_vp_rng_temps), or in which
the state was already saved (when you are calling restore_vp_
rng_temps). If you do not supply a full pathname, the
DVHOSTNAME and DVWD environment variables supply the
defaults for the hostname and current directory name,
respectively. (Refer to the Connection Machine /O System
Programming Guide for information about these variables.)

Array descriptor of a processing node heap field that contains the
restored checkpointed values of a VP RNG state table. When you

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 419



420

residue

ier

CMSSL for CM Fortran (CM-5 Edition)

call reinitialize_vp_rng, supply the value returned by a previous
call to vp_rng_state_field.

Scalar integer returned by the vp_rng_residue routine. Contains
the checkpointed value of the VP RNG state table residue that was
current at the same execution point as the values identified by
state_table.

Scalar integer variable. Error code. Upon successful return from
initialize_vp_rng, contains -1 if this initialization overwrote a
previous initialization, or O if it did not.

Upon successful return from vp_rng, contains -2 if default
initialization was used, or O if default initialization was not used.

Upon return from save_vp_rng_temps or restore_vp_rng_temps,
contains 0 if the routine was successful. If the code is non-zero,
the upper 16 bits describe the operation that failed (see below) and
the lower bits contain CMFS_errno. For CMFS_errno codes, see the
man page for the corresponding CMFS library call in the
Connection Machine /O System Programming Guide.

Upper 16 bits =~ Operation =~ CMES Library Call

1 open CMFS—open
2 Iseek CMFS-Iseek
4o0r8 write CMFS-write-file

(for save_vp_rng_temps)
4or8 read CMFS—read-file

(for restore_vp_rng_temps)
16 close CMFS—close

Upon successful return from vp_rng_state_field, contains -2 if
default initialization was used, or O if default initialization was not
used.

Upon return from vp_rng_residue, contains 0 if the routine
succeeded.

Upon successful return from reinitialize_vp_rng, contains -1 if this
initialization overwrote a previous initialization, or 0 if it did not.

Upon return from deallocate_vp_rng, contains 0 if the routine
succeeded or -1 if there is no previous state to deallocate.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 12. Random

.
R

Number Generators VP RNG

RETURNED VALUE
state_table Array descriptor of the current VP RNG state table.
residue Scalar integer indicating how many times the VP RNG state has
been stepped, modulo the table_lag.
DESCRIPTION

The VP RNG is useful for producing identical streams of random numbers on partitions
of different sizes, as long as the number of array elements is constant. It is much faster
than CMF_RANDOM and slightly faster than the Fast RNG; however, it uses far more
processing node memory than either.

Usage. Follow these steps to use the VP RNG:

1. Callinitialize_vp_rng (optional). This step is required only if the default initial-
ization parameters are not suitable for your application.

2. Call vp_rng to generate the pseudo-random numbers. You may repeat this step
as many times as you wish, but the state table parameters with which the RNG
was initialized (explicitly or by default) must be appropriate for each call. If
a vp_rng call requires different state table parameters, you must initiate a new
state table by calling initialize_vp_rng with the new parameter values.

3. After all vp_rng calls associated with one set of state table parameters have
finished, call deallocate_vp_rng to deallocate the state table.

To perform safety checkpointing, use the save_vp_rng_temps and restore_vp_rng_
temps routines. To perform alternate stream checkpointing, use the vp_rng_state_fieid,
_rng_residue, and reinitialize_vp_rng routines.

Initialization. The initialize_vp_rng routine allocates a VP RNG state table array as heap
memory in the processing nodes. The state table is initialized with values generated by
CMF_RANDOM. The initialization routine also initializes internal state, including the
state table array descriptor referenced by vp_rng_state_field and the residue referenced
by vp_rng_residue. '

The VP RNG is designed to produce identical results on partitions of different sizes. To
get identical results, be sure the following conditions are true:

® The size of array does not change between runs; this ensures that the same
total number of array elements are used each time.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 421



VP RNG CMSSL for CM Fortran (CM-5 Edition)

422

SRS

* The same seed is used each time. If you do not call initialize_vp_rng explicitly,
vp_rng selects a dynamic seed value based on the system time. (This is the
conventional default initialization procesdure in most random number genera-
tors.) As a result, with default initialization, different results are obtained in
different runs. Explicit initialization is required to obtain identical results.

The array parameter is used to determine the array geometry in which random values
are used. A separate state table is allocated for each destination array element. The
length of the state table in bits per destination array element is the product of the
table_lag and width parameters. For example, given a width of 32 and the recom-
mended table_lag of 17, the state table occupies 544 bits per array element.

If your application requires a state table array configured differently from the default,
you must call initialize_vp_rng (supplying a seed for CMF_RANDOM in the seed argu-
ment) before using vp_rng.

To produce the same results as the Fast RNG would produce, you must ensure that the
total number of array elements used by the VP RNG equals the total number of proces-
sing nodes used by the Fast RNG. Also, the seed you use to initialize the VP RNG state
table must be the same as the seed you use when you call CMF_RANDOMIZE before
calling initialize_fast_rng. :

If you do not explicitly initialize the VP RNG, initialization occurs automatically when
you first call vp_rng. The VP RNG selects a dynamic seed value based on the system
time. The other defaults used for automatic initialization are 17 for table_lag and 5 for
short_lag; for width defaults, see the argument list above. The A supplied in the first
invocation of vp_rng is used as the default array.

The state table parameters have an enormous effect on the results obtained by calls to
vp_rng. Use the following guidelines for proper state table initialization:

® The period of a random number generator is the number of random values it
produces before repeating the original stream. To avoid correlation, the period
should be greater than the total number of random values produced for any
subgrid element; that is,

desired-period > invocations

where invocations is the number of times the program calls vp_rng.

* The period is very sensitive to the choice of table_lag and short_lag values.
The default pair of values, (17, 5), has been carefully chosen to produce the
maximum period for the minimum storage. Other suggested values are
(55, 24) and (71, 35). When the lag pairs are properly chosen, the period of the

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 12. Random Number Generators VP RNG

S

VP RNG depends exponentially on the state table length (table_lag) and on the
state table width (width), such that:

period = (Zmble_lag _1) x 2Wldth

For a discussion on choosing proper lag value pairs, see the paper by Knuth
referenced in Section 12.5.

= The RNG is always initialized with the following width values:
" 64, if the destination array is declared as double-precision real.

® 32, if the destination array is declared as single-precision real (unless
you explicitly specify a width of 64, in which case the RNG is initial-
ized with a width of 64).

= 32, if the destination array is declared as integer and limit is O.

®* 64, if the destination array is declared as integer and limit is not 0.

Random Number Generation. The vp_rng routine copies a pseudo-random value,
chosen from a uniform distribution, into each element of A. The distribution range in
the floating-point case is from 0.0 (inclusive) to 1.0 (exclusive). The distribution range
in the integer case with a positive limit is from O (inclusive) to the specified limit (ex-
clusive). The distribution range in the integer case with a 0 limit is all integer values
from -231 to 231- 1 (in other words, any 32-bit pattern).

Each time the VP RNG is called, it generates one random value per subgrid element,
and places the random values in A. For any one stream of random values, all A argu-
ments must have the same shape, size, and axis orderings. To generate random values
for destination arrays that differ in these attributes, use alternate-stream checkpointing
(described below).

The Save and Restore Routines. The save_vp_rng_temps and restore_vp_rng_temps
routines provide a mechanism for safety checkpointing, allowing an application to
resume processing from a checkpoint after a forced interruption.

To use the save and restore routines, insert calls to the save routine periodically among
your RNG calls. If a forced interruption occurs, call the restore routine, which restores
the state table to exactly the values it had when the state was saved. No reinitialization
is required; you can call the RNG again immediately after restoring the state. The
dimensions of the destination array must be the same when you restore the VP RNG
state as when you saved it.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 423



VP RNG CMSSL for CM Fortran ( CM-5 Edmon)

The State Field, Residue, and Reinitialization Routines. The vp_rng_state_field,
vp_rng_residue, and reinitialize_vp_rng routines provide a method for alternate-stream
checkpointing, in which the application switches back and forth between two or more
VP RNG streams by saving the state and reinitializing one RNG after the other.

To perform checkpointing using these routines, follow these steps:

1. After the VP RNG has been initialized either implicitly or explicitly by
initialize_vp_rng, and after vp_rng has been called zero or more times, call
vp_rng_state_field and vp_rng_residue.

2. Save the current state table array descriptor as a different array descriptor and
save the current state field residue.

3. To restart a previously checkpointed VP RNG number stream, call reinitialize_
vp_rng with the array descriptor of the checkpointed state table field and resi-
due.

The vp_rng_state_field routine returns the array descriptor of the VP RNG state table.
The array descriptor will have been created previously by an implicit or explicit call to
initialize_vp_rng. The state table is a heap field that resides in the processing nodes. The
length of the state table is the product of the table_lag and width parameters supplied to
initialize_vp_rng.

The vp_rng_residue routine returns the residue: a count of the number of times that the
VP RNG state has been stepped, modulo the table_lag. The residue is the product of the
subgrid size and the number of calls to vp_rng that have occurred since the last call to
initialize_ vp_rng (implicit or explicit) or to reinitialize_vp_rng.

The reinitialize_vp_rng routine reinitializes the VP RNG from a previously check-
pointed state so that an interrupted computation can be resumed.

Deallocation. The deallocate_vp_rng routine deallocates the heap field that has been
used to store the state table for the VP RNG. Call this routine when you are finished
with the VP RNG. Using deallocate_vp_rng is important because the VP RNG state table
field can use a significant amount of processing node memory.

NOTES

424

Numerical Performance. The lagged-Fibonacci algorithm implemented by this RNG
is widely used to produce a uniform distribution of random values.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



For a table width of 32 and using the default table_lag and short_lag values, (17, 5),
the period of the VP RNG is (217-1)232 = 5.6e15 bits. By comparison, the period for
CMF_RANDOM is estimated to be 6.8e10 bits, with greater danger of cross-node corre-
lation.

Running time for the VP RNG increases with the state table width and the number of
bits used. For best results, reduce the table width to the number of bits required and use
a limit value of 0.

Applications. The VP RNG mimics the Fast RNG. It should be used in applications
such as Monte Carlo simulations where reproducible results across different partition
sizes must be verified.

Include the CMSSL Header File. The vp_rng_residue and vp_rng_state_field calls are
functions; they return the residue and the array descriptor of the VP RNG state table,
respectively. Therefore, you must include the line

INCLUDE ' /usr/include/cm/cmssl-cmf.h’

in program units that include calls to these routines. This file declares the types of the
CMSSL functions and symbolic constants.

Reproducible Results. To obtain reproducible results from the VP RNG, call
initialize_vp_rng using the same seed value each time.

In contrast, checkpointing and reinitializing an RNG is used to-continue random value
stream generation from a previous or alternate state.

No Error Checking on Reinitialization. The reinitialize_vp_rng routine does not per-
form error checking on the input parameters. Unpredictible results or halted execution
are likely under the following conditions:

® The length of state_table is less than (table_lag * width).
" residue is negative or residue 2 table_lag.
Use of CMF_RANDOM to Initialize the State Tables. The state table in each subgrid

element is initialized as though it were a Fast RNG state table in a partition with size
equal to the subgrid size times the number of processing nodes.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 425



VP RNG CMSSL for

AR

CM Fortran (CM-5 Edi

o

EXAMPLES

Sample CM Fortran code that uses the VP RNG routines can be found on-line in the
subdirectory

random/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
426 . Copyright © 1993 Thinking Machines Corporation

<.



Chapter 13

Statistical Analysis

This chapter describes the CMSSL statistical analysis routines. Currently in-
cluded are two histogramming operations that summarize a specified CM array
by the number of occurrences of each value or range of values. The following
routines are provided:

histogram Histograms all values in a data set.
histogram_range Histbgrams designated ranges of values within a data set.

Histograms provide a statistical mechanism for simplifying data. They are gener-
ally used in applications that need to display or extract summary information. For
particularly large data sets, histogram_range facilitates breaking data down into
subranges, perhaps as a preliminary step before doing more detailed analysis of
interesting areas.

In particular, histograms have many applications in image analysis and computer
vision. For example, a technique known as histogram equalization computes a
histogram of pixel intensity values in an image and uses it to rescale the original
picture.

The CMSSL histogram operations treat the elements of a front-end array as a se-
ries of bins. In each bin a tally of CM field values or value ranges is stored. The
number of histogram bins varies widely with the application, from a dozen tallies
on a large process or a few dozen markers on a probability distribution to a few
hundred intensity values in an image or a few thousand instruction codes in a
performance analysis.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 427



CMSSL for CM Fortran (CM-5 Edition)

SR A

13.1 How to Histogram

428

Decide whether to use a simple or a ranged histogram: Consider the number of
bits needed to represent the source values that are to be analyzed. For a simple
histogram, one front-end array element (or bin) is required for each possible
source value. Since 2678t possible values can be represented in length bits, a
simple histogram requires 2!¢28th front-end bins. From this, we see that 8-bit val-
ues can be histogrammed into 28 or 256 bins—a manageable number. However,
a simple histogram of 16-bit values would require 216 or 65,536 bins—which is
probably too many for useful analysis.

A ranged histogram uses one bin for each range of source values. Use a ranged
histogram to analyze source arrays that include large values. Determining the
number of bins to use and the range to assign each bin is easily done using expo-
nent arithmetic. Suppose for example we have 16-bit source values. Since 216 =
28 x 28 we could use 28 = 256 bins and tally a range of 28 values in each. When
making these calculations, don’t forget to account also for two tail bins—one for
either end of the value range. (See the histogram_ range man page for more on
tail bins.) '

As a concrete illustration of histogramming techniques, consider summarizing
the pixel information of a framebuffer image so that each bin reflects the number
of pixels with a given intensity.

Suppose the intensity is encoded in a CM array of 8-bit elements—as for black
and white images. The range of possible values is small, so a simple histogram
can be used. The front-end array should have one element (or bin) for each pos-
sible source value, or 28 = 256 elements. When we invoke the histogram routine

CALL histogram (fe_array, source_array, sbit_len, ier)

each bin tallies the number of pixels for one discrete intensity level. (Note: CM
Fortran currently follows standard Fortran by supporting only integer values of
32 bits. Nonetheless a histogram call on 8-bit elements may be simulated by us-
ing a length argument of 8 to histogram the low-order 8 bits of each 32-bit
element.)

If, however, the pixel intensity is encoded in a CM array of 24-bit elements—as
it is for RGB color images—then a front-end array of 224 = 16,777,216 elements
would be too large. (Also, since there are 4 bytes in a word, an array with 224
words would occupy over 67 megabytes.) Fortunately, there are two alternatives:

1. Call a simple histogram on each 8-bit color subfield separately, as with the
black and white case described above.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 13. Statistical Analysis
R BRI R R

sz

2. Use a range histogram as a microscope to close in on the interesting parts
of the data, as described below.

To use a range histogram for this problem, try to factor the total 224 range into
manageable chunks. In particular, since 224 = 216 x 28, we could put 216 values
in each of 28 middle range bins and leave the tail bins empty. Following this
course, we can obtain an overview of all the data by invoking the range histo-
gram routine

CALL historam range (fe_array, source_array, 258, 0, 65536 )

In this call, we specify the number of bins as 258 ( 256 + 2 tail bins = 258), the
range minimum as 0, and the range within each bin as 216 = 65536.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 429



Histogram CM Fortran (CM-5 Edition)
% SR R R

S % SRR

Histogram

Increments each element of the specified front-end array by the number of times its index
equals the value of an element in the specified source array.

For particularly large ranges of source data, consider using the range_histogram routine.

SYNTAX
histogram (s, A, length, ier)

ARGUMENTS
s Front-end array of integers for storing the histogram. The number
of elements in this array should be at least 2%n8th,
A Source CM array of type integer.
length Length in bits of the A values, or the number of bits of each A
value that are to be considered by the histogram routine. The
specified length should be no greater than n such that an s of 27
elements can fit in partition manager memory.
ier Error code. Scalar integer. Set to O if the routine succeeds.
DESCRIPTION

A tally is made of the number of times any particular integer i occurs as an s value.
This tally is added to the value of the corresponding histogram bin, s[i]. For example, if
s has been initialized to zero, and if s contains five elements that have the value 3, then
s(3) receives the value 3. .

The histogram thus records the distribution of values within one or more source arrays
(one per call). Note that histogram bins (that is, elements in s) are not precleared auto-
matically. This allows the successive collection of data from many arrays into one
histogram.

The length value is the number of bits of each A value that are to be considered by the
histogram routine. For example, if A contains 32-bit integers, a length value of 8

Version 3.1 Beta 2, January 1993
430 Copyright © 1993 Thinking Machines Corporation



Chapter 13. Statistical Analysis Histogram
<% R BRI A

causes the values represented by the low 8 bits of each source value to be tallied. High-
order bits are ignored.

NOTES

No Error Checking. No special error checking is done. Thus, there may be unpredict-
able damage if there are not enough destination bins to hold all values up through the
maximum value of the source data.

Front-End Array Size. To avoid error, the correct number of front-end array elements
is 2/ength where length is the number of bits used to represent each A value.

Performance. With the current implementation of this histogram routine, optimum
performance is obtained using large source arrays and a small number of bins.

Zero-Based Array Indexing. Zero values are tallied in the first bin. For this reason,
CM Fortran users might want to declare s to be zero-based.

EXAMPLES

Sample code that uses the histogram routines can be found on-line in the subdirectory
histogram/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 431



Range Histogram CMSSL for CM Fortran (CM-5 Edition)

S i

,,,,,,,,,, RS R, RSN SRR

Range Histogram

Increments each element of a front-end array by the number of times a source value falls
into the subrange associated with that element.

This is particularly useful for obtaining a statistical summary of large data sets, for which
unranged histogram information is too unwieldy to analyze. To histogram small data sets,
consider using the histogram routine.

SYNTAX

‘histogram_range (s, A, n, min, range, ier)

ARGUMENTS
s Front-end array of integers for storing the histogram. The number
of elements in this array must be 2 7.
A Source CM array containing either real or integer values.
n Scalar integer specifying the number of destination bins,
including 2 bins for tail values.
min Scalar integer specifying the minimum value for counting into the
second bin.
range Scalar integer specifying the size of the subrange associated with
all but the first and last bins.
ier Error code. Scalar integer. Normally set to 0.
DESCRIPTION

This subroutine treats each element of s as a bin associated with a range of A values. To
each bin it assigns an integer value equal to the bin’s initial value plus the number of
values within the A array that fall into the bin’s range.

There must be at least n number of elements in s. The range histogram uses the first
bin, s[1], and the last bin, s[n], to tally A values below and above the range under in-
spection. The middle elements are used to tally A values within subranges that span

Version 3.1 Beta 2, January 1993
432 Copyright © 1993 Thinking Machines Corporation



Range Histogram

successive increments of range. The min and range parameters determine the range of
values contributing to each element of the histogram, as follows:

®  The first bin, s[1], is incremented by the tally of all A values j for which j <
min.

= Each middle bin, s[i], is incremented by the tally of A values j for which
Jj2 (min + (i - 1) X range )
and
j<(min+ iXx range).

® The last bin, s[n], is incremented by the tally of A values j for which j 2 ( min
+ (n - 2) X range ).

The histogram thus records the distribution of values within one or more source arrays
(one per call). Note that histogram bins are not precleared automatically. This allows
the successive collection of data from many CM array fields into one histogram.

NOTES

Performance. With the current implementation of this histogram routine, optimum
performance is obtained using large source arrays and a small number of bins.

EXAMPLES

Sample code that uses the histogram routines can be found on-line in the subdirectory
histogram/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 433






Chapter 14

Communication Primitives

s

This chapter describes the following CMSSL communication primitives:
® polyshift
® all-to-all broadcast
® sparse gather and scatter utilities
® sparse vector gather and vector scatter utilities
* vector move (extract and deposit)
® block gather and scatter utilities
®* mesh partitioning and reordering of pointers
= partitioned gather and scatter utilities
* computation of block cyclic permutations
® permutation along an axis
* send-to-NEWS and NEWS-to-send reordering
® communication compiler
Sections 14.1 through 14.15 introduce these operations. Each section is followed

by a man page that describes the routine(s) in detail and provides sample code.
Section 14.16 provides references.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 435



CMSSL for CM Fortran ( CM 5 Edm

14.1

14.1.1

436

Polyshift

Many scientific applications make extensive use of array shifts in more than one
direction and/or dimension in an array geometry. One well-known example is
“stencils” used in solving partial differential equations (PDEs) by explicit finite
difference methods. Similar communication patterns are encountered in other
applications. For example, in quantum chromodynamics one needs to send
(3 X n) complex matrices in each direction of a four-dimensional lattice. Multi-
ple array shifts are also useful in many molecular dynamics codes. In the CMSSL,
such multiple array shifts are called “polyshifts” (PSHIFTS). They can be recog-
nized in CM Fortran code by a sequence of CSHIFT and/or EOSHIFT calls in
multiple directions of multiple dimensions, with no data dependencies among the
arguments and the results of the shifts. There is a potential performance gain in
recognizing a polyshift communications pattern, and calling specially developed
routines for doing the shifts. In addition, application programs that utilize calls
to polyshift routines can benefit from enhanced readability and maintainability.
This section describes the implementation of a high-level interface for calling
polyshift routines from CM Fortran.

The Polyshift Routines

Given a set of source and destination CM arrays, together with the types, dimen-
sions, and distances of the shifts to be performed, the polyshift routines shift the
arrays in multiple directions of multiple dimensions. To perform a polyshift op-
eration (or multiple polyshift operations, sequentially), you must follow these
steps:

1. Call either the pshift_setup routine or the pshift_setup_looped routine.

These routines are identical on the CM-5; both are provided for compati-
bility with the CM-200 library. The setup routine creates a setup structure
for the specified communication pattern and returns an ID corresponding
to that setup structure. You must supply this ID in subsequent calls to pshift
and deallocate_pshift_setup.

2. Call the pshift routine.

This routine performs the polyshift. To perform more than one polyshift
operation using the same communication pattern, follow one call to
pshift_setup or pshift_ setup_looped with multiple calls to pshift.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comuni

(o

cation Primitives

If the communication pattern changes, you must start with Step 1 again,
since multiple communication patterns require multiple setup calls. For
example, you might require both a five-point and a nine-point stencil in
the solution of a PDE; these would be set up in two different calls to
pshift_setup or pshift_setup_looped, and identified with two IDs. (Refer to
the online 9-point stencil example; the pathname is given in the man
page.)

3. After all pshift calls associated with the same pshift_setup or pshift_set-
up_looped call (that is, when a communication pattern is no longer
needed), call the deallocate_pshift_setup routine to deallocate the setup
structure created by the setup routine. 4

You may have more than one setup active at a time; that is, you may call either
or both setup routines more than once without calling the deallocation routine.
When you call pshift or deallocate_pshift_setup, the setup ID you supply identi-
fies the setup you want to use or deallocate.

The code skeleton below shows a CM Fortran program using the polyshift rou-
tines.

id = pshift_setup (...)
call pshift (..., id, ...)
call deallocate_pshift_setup (id)

In this example, the id argument is the polyshift setup ID; multiple IDs may be
active at the same time.

The pshitt routine allows only one shift operation per direction
per axis.

Always include the header file /usr/include/cm/cmssl-cmf.h in any pro-
gram unit that calls either of the functions pshift_setup or pshift_setup_looped so
that the correct return type is declared. This header file is also required for calls
to pshift in order to use the predefined parameters CMSSL_CSHIFT,
CMSSL_EOSHIFT_0, etc., defined in the man page.

Version 3.1 Beta 2, January 1993 .
Copyright © 1993 Thinking Machines Corporation 437



CMSSL for CM Fortran (CM-5 Editio

SRS AR T g SRS

n)

14.1.2 Optimization Recommendations

438

Follow these recommendations to optimize your code:

= Use array sizes that result in no padding. PSHIFT performance is best

when the array is not padded along any axis i on which shifts are being
performed. When this requirement is not met, PSHIFT performance is ap-
proximately the same as for the equivalent call to CSHIFT or EOSHIFT.

Attempt to “balance” your subgrid. Call CMF_DESCRIBE_ARRAY (de-
scribed in the CM Fortran documentation set) to determine your subgrid
size. Then use the weight parameter in the LAYOUT compiler directive to
adjust the subgrid size (this must be done empirically). For example, use

CMFS$ LAYOUT X (2:NEWS, 1:NEWS)
to increase the x-axis weight.

Use array-valued boundaries for end-off shifts only when absolutely nec-
essary.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication

Polyshift

Polyshift

Given a set of source and destination CM arrays, together with the types, dimensions, and
distances of the shifts to be performed, the polyshift routines shift the arrays in multiple
directions of multiple dimensions.

SYNTAX

setup_id = pshift_setup (n, cm_array, ier,
type_l, dim_1, dist_1,
type_2, dim_2, dist_2,

type_n, dim_n, dist_n)

setup_id = pshift_setup_looped (n, cm_array, ier,
type_1, dim_1, dist_1,
type_2, dim_2, dist_2,

type_n, dim_n, dist_n)

pshift (n, setup_id, ier,
type_1, A_l, B_1, dim_1, dist_I[, bdry_1},
type_2, A_2, B_2, dim_2, dist_2[, bdry_2],

type_n, A_n, B_n, dim_n, dist_n[, bdry_n])

deailocate_pshift_setup (setup_id)

ARGUMENTS

n Input. Scalar integer variable, parameter, or constant. The number
of distinct shifts, of the shift types, dimensions, and distances that
follow, to do in a single call to pshift. » must be greater than or
equal to 0 and less than or equal to 14. The value you supply to

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 439



Polyshift

" 440

cm_array

setup_id

ier

CMSSL for CM Fortran ( CM—5 Edmon)

pshift must be the same as the value you supplied in the associated
pshift_setup or pshift_setup_looped call. The contents of this
argument are not modified.

Input. CM array of any logical or numeric data type. This is a
“prototypical” array used in deriving the PSHIFT geometry. The
actual arguments to pshift must agree with cm_array in data type,
size, shape, and layout. The contents of this argument are not
modified.

Input. Scalar integer variable. PSHIFT setup structure identifier
that was returned by a previous call to pshift_setup or pshift_
setup_looped. The contents of this argument are not modified.

Output. Return code. Must be a scalar integer variable. Upon
return from pshift_setup or pshift_setup_looped, ier contains one
of the following codes:

0  Successful return.

2 n<0orn>14.

3 The setup routine cannot allocate partition manager
memory for the setup structure.

4  Some dim_i is less than 1 or greater than 7.

An unknown shift type was specified; that is, some

type_i was not one of the five shift types listed

under type_i, below.

6  You have specified muitiple negative shifts on some
dimension.

7  You have specified multiple positive shifts on some
dimension.

(%)

Upon return from pshift, ier contains one of the following codes:

0  Successful return.

2 ndoes not match the value supplied in the

pshift_setup or pshift_setup_looped call.

Some dim_i is less than 1 or greater than 7.

4  The array geometry of some A_i does not
match the geometry of the array supplied in the
pshift_setup or pshift_setup_iooped call.

5 The array geometry of some B_i does not
match the geometry of the array supplied in the
pshift_setup or pshift_setup_looped call.

6  Some type_i does not match the corresponding

w

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives Polyshift
B b R S oA R A eSS SR

shift type supplied in the pshift_setup or
pshift_setup_looped call.

7  Some dist_i does not match the corresponding
distance supplied in the pshift_setup or
pshift_setup_looped call.

8 A boundary array argument is missing from the pshift
call, or the data type of a boundary array is incorrect.

type_i Input. One of the following predefined CMSSL shift types:

CMSSL_CSHIFT
CMSSL_EOSHIFT_0
CMSSL_EOSHIFT_1
CMSSL_EOSHIFT_SCALAR
CMSSL_EOSHIFT_ARRAY

For the ith shift, these give shifts of the type corresponding to the
CM Fortran intrinsics (CSHIFT or EOSHIFT).

CMSSL_EOSHIFT_O0 shifts in a O of the proper data type at the
boundary.
CMSSL_EOSHIFT_1 shifts in a 1 of the proper data type at the
boundary.

CMSSL_EOSHIFT_SCALAR shifts in a front-end scalar variable at
the boundary. The variable must be specified in the call to pshift.
The data type must agree with the data type of cm_array.

CMSSL_EOSHIFT_ARRAY shifts in a CM array at the boundary.
This array must be specified in the call to pshift. The data type
must agree with the data type of cm_array. The rank must be one
less than the rank of cm_array. Refer to the discussion of EOSHIFT
in the CM Fortran Reference Manual for more details. The
contents of this argument are not modified.

A_i Output. CM array. The destination of the ith shift, as specified by
the types, dimensions, and distances that follow. Must agree in
data type, size, shape, and layout with the cm_array passed to
pshift_setup or pshift_setup_looped.

B_i Input. CM array. The source of the ith shift, as specified by the
types, dimensions, and distances that follow. Must agree in data
type, size, shape, and layout with the cm_array passed to pshift_
setup or pshift_setup_looped. The contents of this argument are
not modified.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 41



dist_i

bdry_i

RETURNED VALUE

setup_id

DESCRIPTION

CMSSL for CM Fortran (CM-5 Edition)

Y SRR

Input. Scalar integer variable, parameter, or constant. The
dimension along which to perform the ith shift. The contents of
this argument are not modified.

Input. Scalar integer variable, parameter, or constant. The
distance (number of elements) to shift for the ith shift. Positive or
negative numbers, as defined in the CSHIFT and EOSHIFT entries
of the CM Fortran Reference Manual. The contents of this
argument are not modified.

Input. Front-end scalar or CM array. The boundary value shifted
in if the ith shift type is CMSSL_EOSHIFT_SCALAR or CMSSL_
EOSHIFT_ARRAY. The contents of this argument are not modified.

If type_i is CMSSL_EOSHIFT_SCALAR or CMSSL_EOSHIFT_
ARRAY, you must supply a bdry_i argument.

If type_i is CMSSL_CSHIFT, CMSSL_EOSHIFT_0, or CMSSL_
EOSHIFT_1, do not supply a bdry_i argument. (CSHIFT does not
use a boundary value; EOSHIFT_0 and EOSHIFT_1 use boundary
values 0 and 1, respectively.)

Scalar integer variable. A PSHIFT setup structure identifier
returned by pshift_setup or pshift_setup_looped and required by
pshift and deallocate_pshift_setup.

The polyshift routines perform the following operation:

Al(””i”’) = Bl(””i'*'di*gt_l a”);
Az(’li”,,,) = Bz(’,j+di‘gt-2”,”);

All (”””ky) = Bn (,,,,,,k"‘dist_n,)

Usage. To perform a polyshift operation (or multiple polyshift operations, sequential-
ly), you must follow these steps:

442

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives
B S S R R SRR

Polyshift
S

1. Call either the pshift_setup or the pshift_setup_looped routine.

These routines are identical on the CM-5; both are provided for compatibility
with the CM-200 library. The setup routine creates a setup structure for the spe-
cified communication pattern and returns an ID corresponding to that setup
structure. You must supply this ID in subsequent calls to pshift and deallocate_
pshift_setup.

2. Call the pshift routine.

This routine performs the polyshift. To perform more than one polyshift opera-
tion using the same communication pattern, follow one call to pshift_setup or
pshift_setup_looped with multiple calls to pshift.

If the communication pattern changes, you must start with Step 1 again, since
multiple communication patterns require multiple setup calls. For example,
you might require both a five-point and a nine-point stencil in the solution of a
PDE; these would be set up in two different calls to pshift_setup or pshift_
setup_looped, and identified with two IDs. (Refer to the online 9-point stencil
example.)

3. After all pshift calls associated with the same pshift_setup or pshift_setup_
looped call (that is, when a communication pattern is no longer needed), call
the deallocate_pshift_setup routine to deallocate the setup structure created by
the setup routine.

You may have more than one setup active at a time; that is, you may call either or both
setup routines more than once without calling the deallocation routine. When you call
_pshift or deallocate_pshift_setup, the setup ID you supply identifies the setup you want
to use or deallocate.

Setup Phase. The pshift_setup and pshift_setup_looped routines allocate a PSHIFT
setup structure to be used by pshift for performing a specific polyshift, and return an ID
for the structure in setup_id.

Polyshift Phase. The pshift routine executes a specific polyshift communications pat-
tern as determined by the serup_id and the source, destination, and boundary
arguments.

Deallocation Phase. The deallocate_pshift_setup call deallocates the PSHIFT setup
structure specified by a given setup ID.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 443



Polyshift

NOTES

Restriction on Number of Shifts. The pshift routine performs a maximum of two
shifts per array dimension, one in each direction.

Need for Deallocation. The pshift_setup and pshift_setup_looped calls dynamically
allocate partition manager memory. The deallocate_pshift_setup call frees this
memory.

Include the Header File. Always include the header file /usr/include/cm/
cmssl-cmf.h in any program unit that calls either of the functions pshift_setup or
pshift_setup_looped so that the correct return type is declared. This header file is also
required for calls to pshift in order to use the predefined parameters CMSSL_CSHIFT,
CMSSL_EOSHIFT_Q, etc.

EXAMPLES

Sample CM Fortran code that uses the polyshift routines can be found on-line in the
subdirectory

pshift/cmf

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
444 Copyright © 1993 Thinking Machines Corporation



14.2 All-to-All Broadcast

"~ All-to-all broadcasting is often used to implement data interactions of the type
occuring in many so-called N-body computations, in which every particle inter-
acts with every other particle. With an array distributed over a number of
memory modules, each of which is associated with a parallel processing node,
every module must receive the data from every other module. Another example
of an application of all-to-all broadcasting is matrix-vector multiplication with
the matrix distributed with entire rows per processor, and the vector distributed
evenly over the processors. Every processor must gather all the elements of the
vector in order to perform the required multiplication.

If every module were to send its data to every other module before any computa-
tions start, then for P processors the memory requirements would grow by a
factor of P. The all-to-all broadcasting routine preserves memory by performing
the broadcast operation as a sequence of permutations. In each communication
step, the communication system is used as efficiently as possible.

The all-to-all broadcast can be factored into two parts: a local permutation, and
all-to-all broadcasting of local data sets between processors. The performance of
the CMSSL implementation depends strongly upon the amount of local data mo-
tion. This section explains this dependency and provides hints for optimizing
computations using the all-to-all broadcast.

As with all CMSSL functions, the all-to-all broadcast function operates on data
arrays as they are allocated by the compiler. Consider a fixed data set M struc-
tured as a two-dimensional array A(M/P, P) distributed over N processors, with
the first axis of length M/P local to a processor. Assume that an all-to-all broad-
cast is performed along the second axis, which has local extent P/N. No local
data motion is performed when P = N since the second axis has no local compo-
nent. When P > N, the broadcast operation is factored into a local broadcast
operation of P/N steps for each exchange of (M/P)(P/N) elements between pro-
Cessors.

The one-dimensional data structure A(M) requires the most extensive local data
motion for a fixed data set M, namely (M/N)2, while no local data motion is re-
quired for P = N. The interprocessor data motion is independent of P, but
decreases with N.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 445



CMSSL for CM Fortran (CM-5 Edition)

S

As an example of how to tune performance by reducing the number of local
memory moves, we consider a typical calculation on the CM system (see refer-
ence 2) as defined by

M
a = X, Fonx) i=1,..M
1

The following pseudocode, using the all-to-all broadcast and the Fortran 90 array
syntax, is independent of the machine configuration and involves local data mo-
tion whenever M is larger than the current number of processors being used.

Code 1
array:: x(M), yM), z(M)
do i=1, M
all-to-all-broadcast(i, x(:), axis=1)
z(:) = z(:) + F(y(:),x(:))
enddo :

The : symbol indicates that the operation is performed on all the array elements
at once. The instruction all-to-all-broadcast(i,x(:),axis=1) per-
forms the 1% all-to-all broadcast step along the first axis of array x.

The following alternative encoding of the same computation assumes an N-pro-
cessor configuration. Only N physical broadcast operations are performed. The
communication cost is minimum.

Code 2
array:: x(M/N,N), y(M/N,N), z(M/N,N)
do i=1,N
all-to-all-broadcast(i, x(:,:), axis=2)
do j=1, M/N
do k=1,M/N
2(3,:) = z(3,:) + Fly(d,:), x(k,:))
enddo
enddo
enddo

CM Fortran implementation of the above pseudocodes (see reference 2) shows
that, in practice, a substantial gain can be made when using a two-dimensional

Version 3.1 Beta 2, January 1993
446 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives

data structure, with a serial local axis and a parallel broadcast axis, instead of a
one-dimensional data structure, given a fixed data set.

Reference 1 shows how to reduce the amount of computation when F is symmet-
ric, a particularly important point when solving N-body problems on the CM with
the all-to-all broadcast.

14.2.1 The All-to-All Broadcast Routines

Given a real or complex CM array and a selected axis, the all-to-all broadcast
routines perform a stepwise broadcast along the selected axis. Every array ele-
ment visits every location along the axis. Each step corresponds to a data
permutation along the axis, and is typically followed by computations. To per-
form an all-to-all broadcast operation (or multiple broadcast operations,
sequentially), you must follow these steps:

1. Call the all_to_all_setup routine.

This routine determines how many steps are required to complete an all-
to-all broadcast of the given array along the selected axis, and determines
the permutation pattern for the broadcast.

2. Follow the setup routine with a do loop that has one iteration for each re-
quired step of the broadcast. Each iteration of the loop contains a call to
all_to_all, which performs one step of the broadcast, followed by the com-
putations the application requires.

3. When the broadcast is complete, the call deallocate_all_to_all_setup to
deallocate the space required by the all-to-all broadcast.

Only one all to all broadcast setup can be active at a time; that is, you must deal-
locate one setup before creating a new one.

The code skeleton below shows a CM Fortran program using the all-to-all broad-
cast. The step_count argument is the number of required broadcast steps
determined by the all_to_ all_setup routine.

call all to_all_setup (..., step_count, ...)

do i = 1, step_count
call all_to_all (...)
where (...)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 447



CMSSL for CM Fortran (CM-5 Edition)

elementwise computation

end where
end do

call deallocate_all to_all_setup (...)

Version 3.1 Beta 2, January 1993
448 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Co

ll-to-All Broadcast

R S 5

All-to-All Broadcast

Given an integer, real, or complex CM array and a selected axis, the all-to-all broadcast
routines perform a stepwise broadcast along the selected axis. Every array element visits
every location along the axis. Each step corresponds to a data permutation along the axis,
and is typically followed by computations.

SYNTAX

all_to_all_setup (A, valid_mask, axis, setup_id, step_count, use_valid, ier)

ali_to_all (A, valid_mask, setup_id, step_index, ier)

deallocate_all_to_all_setup (setup_id)

ARGUMENTS
A

valid_mask

setup_id

step_count

step_index

use_valid

The integer, real, or complex CM array to be permuted in the
all-to-all loop.

A logical CM array with extents and layout identical to those of
A. The all_to_all_setup routine sets the values of valid_mask.
When you call the all-to-all routine, supply the values assigned by
the previous, associated all_to_all_setup call.

Scalar integer variable. Identifies the axis selected for the
all-to-all broadcast.

Scalar integer variable. Upon return from all_to_all_setup,
contains a value that you must supply in all subsequent, associated
all_to_all and deallocate_all_to_all_setup calls.

Scalar integer variable. Upon return from all_to_all_setup,
contains the number of steps required in the all-to-all broadcast
loop.

Scalar integer variable. The current loop index value of the
all-to-all loop.

Scalar logical variable. Upon return, a value of .true. indicates that
you must use valid_mask to contextualize the computation. A

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 449



AII-to-AII Broadcast CMSSL for CM Fortran ( CM 5 Edztzon)

value of .false. indicates that for the particular partition size, array
shape, and array layout directives you are using, you need not use
valid_mask to contextualize the computation. For more
information, refer to the description and notes below.

ier Scalar integer variable. Upon return from all_to_all_setup,
contains one of the following codes describing the outcome of the
setup request:
0  Success.

-1 A is missing or invalid.

-2 valid_mask is missing or invalid.

-3 axis is missing or invalid.
-99  The specified axis is degenerate (has length 1).
other Execution error.

Upon return from all_to_all, contains one of the following
codes describing the outcome of the all-to-all step:

0  Success.
-1 A is missing or invalid.
-2 valid_mask is missing or invalid.
-3 The setup object identified by setup_id is
missing or invalid.
-4  step_index is missing or invalid.
other Execution error.

DESCRIPTION

450

The all-to-all broadcast routines perform the operation

A(i,) = AG,P(>),)

where P is a permutation based on the step_index argument.

Usage. To perform an all-to-all broadcast operation (or multiple broadcast operations,
sequentially), you must follow these steps:

1. Call the all_to_ail_setup routine.

This routine determines how many steps are required to complete an all-to-all
broadcast of the given array along the selected axis, and determines the permu-
tation pattern for the broadcast.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives All-to-All Broadcast
RS R SR RN P 55 S SRR

5

2. Follow the setup routine with a do loop that has one iteration for each required
step of the broadcast. Each iteration of the loop contains a call to all_to_all,
which performs one step of the broadcast, followed by the computations the
application requires.

3. When the broadcast is complete, the call deallocate_all_to_all_setup to deallo-
cate the space required by the all-to-all broadcast.

Only one all-to-all broadcast setup can be active at a time: you must deallocate one
setup before creating a new one.

Setup Phase. Given a CM array and a chosen axis, the all_to_all_setup routine deter-
mines the permutation pattern for the all-to-all broadcast, allocates a setup structure,
and places the setup ID in the setup_id argument. You must supply setup_id as an argu-

ment in subsequent all_to_all and deallocate_all_to_all_setup calls for this broadcast.

The all_to_all_setup routine also determines the permutation length and returns this
number in step_count. The permutation length is the number of steps required for the
complete all-to-all broadcast; that is, the number of permutation steps after which the
array elements will be back in their original positions. You must use the value returned
in step_count as the bound for the all-to-all broadcast loop. Because of the manner in
which arrays are implemented in CM Fortran, step_count may exceed the array axis

length. (Refer to the notes below for more information.)

A third returned value, use_valid, provides a way to optimize the computations involv-
ing the permuted data elements. This argument and the optimization are discussed in
the notes below.

‘Broadcast Phase. Given a CM array that has been processed by a previous call to
all_to_all_setup, and given the value assigned to setup_id by all_to_all_setup, the
all_to_all routine permutes all elements of the array along the axis selected in the all_
to_all_setup call. The setup object identified by setup_id determines the permutation
pattern.

During the all-to-all loop, each element of the array follows a path defined for it at
setup time. (See Mathur, K. K. and S. L Johnsson. All-to-All Communication on the
Connection Machine CM-200. Thinking Machines Corporation Technical Report
TR-243, 1992.) The collection of paths followed by the data elements within an all-to-
all loop guarantees that each element visits each axis position and returns to its initial
location on completion of the loop.

Deallocation Phase. The deallocate_all_to_all_setup routine frees the partition man-

ager and parallel processing node storage space that was allocated by the

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 451



All-to-All Broadcast CMSSL for CM Fortran ( CM-5 Edmon)

all_to_all_setup routine for the all-to-all broadcast identified by setup_id. Call
deallocate_all_to_all_setup when the all-to-all broadcast loop has finished. Supply the

setup_id value returned by all_to_all_setup.

NOTES

Setup is Private. The setup_id argument is private. Application code should never
access or modify the contents of an all-to-all setup object.

Step Count is Private. The step_count argument is also private. Do not change its
value. To ensure that array elements are fully permuted and return to their original
positions on completion of the all-to-all broadcast loop, be sure to use the value re-
turned in step_count as the bound on the do loop.

Permutation Pattern. The order in which array elements visit a given array location
depends on the shape of the array, the layout or align directives, and the size of the
partition. Computations must not be sensitive to the order of data elements encoun-
tered; for example, they should not use the value of step_index. (See the Thinking
Machines Corporation Technical Report, TR-243, referenced above.)

Two one-dimensional arrays with identical shapes and axis layouts have the same per-
mutation pattern. Likewise, two identical multidimensional arrays have the same
permutation pattern. However, within a multidimensional array, the multiple instances
of the all-to-all broadcast along a selected axis have different permutation patterns. For
example, if the elements of a two-dimensional array are broadcast along rows, then
different rows may have different permutation paths. The on-line sample code illus-
trates this important distinction.

Contextualizing Computations. A CM Fortran array that is allocated on the CM is
mapped onto a VP set. The VP set axes may have greater extents than the correspond-
ing Fortran array axes. The mapping depends on the partition size, array shape, and
array layout directives you are using, and therefore varies from program to program
and from CM to CM. When they exist, the VP set elements that do not contain Fortran
array elements are masked out during both computation and communication. The array

' mapping mechanism is therefore transparent to the user.

452

However, to optimize performance, the all-to-all broadcast routines operate on the
whole VP set rather than only on the section that contains the Fortran array. The
step_count value (the number of steps in the all-to-all loop) returned by all_to_ail_set-

up is the extent of the VP set axis corresponding to the chosen Fortran array axis. The
value of step_count may therefore exceed the Fortran array axis extent.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14 Comumcanon anznves AII-to-AII Broadcast

Another consequence of the use of the whole VP set is that masked VP set elements
may visit valid Fortran array locations. The logical array valid_mask required by the
all_to_all_setup and all_to_all routines signals these bad spots at each step of the all-to-
all broadcast so that you can exclude them from your computations. At each step, you
must pass valid_mask to the all_to_all routine. Following the all_to_all call, you must
contextualize all computations on the permuted elements by enclosing them in a
WHERE block that references valid_mask. An exception is described under Optimiz-
ing Code, below.

Conversely, valid Fortran array elements may end up in the masked region of the VP
set, so that not all Fortran array elements are available at each step of the all-to-all
broadcast. A global reduction operation on the array would give different results at
different steps of the broadcast. It is guaranteed, however, that all Fortran array ele-
ments will have visited all Fortran array axis locations upon completion of the all-to-all
broadcast.

Optimizing Code. You can save a significant amount of time by omitting the contextu-
alization described above in cases where the broadcast axis has the same extent in the
Fortran array and the VP set. However, it is not safe to remove the contextualization
unconditionally because, as mentioned earlier, the mapping of Fortran array to VP set
depends on variable parameters (partition size, array shape, and array layout direc-
tives). We therefore recommend the following safe, though inelegant, solution, which
ensures correct results and optimizes the speed of execution. If the use_valid argument
returned by all_to_all_setup is .false., the setup routine has determined that for the par-
ticular partition size, array shape, and array layout directives you are using, you do not
need to use a WHERE block to contextualize your computations. Therefore, instead of a
sequence such as

where (valid_mask)
elementwise computation

end where

you may optimize your code by using a sequence such as

if (use_valid) then
where (valid mask)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 453



AIl-to-All Broadcast CMSSL for CM Fortran ( CM-5 Edttzon)

B S NS s

elementwise computation

end where
else

elementwise computation

end if

Specifying the Valid Data Mask Only Once. If you broadcast two or more arrays of
the same shape and layout along the same axis by making successive calls to all_to_all
within each iteration of the broadcast loop, the arrays may all share the setup_id,
step_count, and valid_mask returned by a single all_to_all_setup call. In this case, you
must include a non-null valid_mask in exactly one of the all_to_all calls; the others
must all specify a null valid data mask by passing O to the routine in place of
valid_mask. The on-line sample program called example2 provides an example.

Deallocated Setup IDs are Invalid. A setup_id that has been deallocated no longer
represents a valid setup object. Attempts to use it in a subsequent all_to_all call result in
erTors.

EXAMPLES

Sample CM Fortran code that uses the all-to-all broadcast routines can be found
on-line in the subdirectory

all-to-all/cmf
of a CMSSL examples directory whose location is site-specific.
The sample programs illustrate the following important distinction:

* Within a multidimensional array, the multiple instances of the all-to-all
broadcast along a selected axis have different permutation patterns.

= Two separate arrays with 1dent1cal shapes and axis layout share the same
permutation pattern.

The first example, example1, performs independent computations on four arrays of
size m. Because the computations do not require that the broadcasts use the same per-

Version 3.1 Beta 2, January 1993
454 Copyright © 1993 Thinking Machines Corporation



Chapter 1 4 Camunzcauon anmves AII-to-AII Broadcast

R N

mutation pattern, the program can broadcast the multiple instances at once by forming
a (4, m) array. This example illustrates the first point above.

In the second example, example2, the computations require that the broadcasts of
three arrays of size m use the same permutation pattern. Therefore, the program must
treat the arrays separately rather than as multiple instances within a single array. The
program performs the broadcasts of the three arrays sequentially.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 455



14.3

14.3.1

14.3.2

456

CMSSL for CM Fortr

(CM-5 Edition)

Sparse Gather Utility

The sparse gather utility is a communication primitive that is used internally by
the CMSSL basic linear algebra routines for arbitrary sparse matrices. The gather
utility is intended for applications that do not do explicit sparse linear algebra
operations, but want to make use of some of the primitives commonly used in
these operations. ’

The Gather Utility Routines

Given a source vector, a destination array, and an array containing a gathering
pattern, the sparse gather utility routines gather elements from the vector into the
array. To perform a gather operation (or multiple gather operations, sequential-
ly), you must follow these steps:

1. Call the sparse_util_gather_setup routine.

2. Call the sparse_util_gather routine.

To perform more than one gather operation using the same sparsity (gath-
ering pattern), follow one call to sparse_util_gather_setup with multiple
calls to sparse_util_gather. If the sparsity changes, start with Step 1 again.

3. After all sparse_util_gather calls associated with the same sparse_util_
gather_setup call, call the deallocate_gather_setup routine to deallocate
the processing node storage space required by the setup routine.

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine. However, call-
ing the setup routine repeatedly without calling the deallocation routine may
cause you to run out of memory. It is therefore strongly recommended that you
call deallocate_gather_setup as soon as you have finished the associated gather
operations.

Definition of the Gather Operation

The gather operation is defined by

where (y_mask) y = x(p)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation




Chapter 14 Comunlcanan anmves

14.3.3

where x is the vector from which elements are being gathered, y is the resulting
array, p is an array of pointers supplied by the user application, and y_mask is
a mask for the destination array. These arguments are described in detail in the
man page.

The preprocessing performed by the sparse_util_gather_setup routine allows a
program to amortize the overhead of the setup phase over multiple communica-
tion operations, as long as the sparsity of the system remains constant. The
on-line sample code performs both preprocessed and unpreprocessed gather op-
erations.

Gather Operation Examples

The examples below are based on the argument definitions supplied in the man
page. For clarity, these examples use letters instead of numbers for the elements
of x and y. The examples assume that the application has already performed any
required permutations of the source vector or the p array.

Example 1: Elementwise Gather Operation
Given the source vector
=[dgkbijhfaec]
the destination mask
ymask=[T TTTTTTTTTFFFF
and the pointers array
p=[157132241----]

(where the symbol - indicates masked data), the gather operation results in the
destination array

y=[dihdkggbd--- -]

Example 2: Finite-Element Type Application

Given the source vector

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 457



458

x=[abcdefghij

the destination mask

TTTTTF |
TTTTTF
TTTTTF
TFTFFF

- -

y_mask =

and the pointers array

v AN -

. o

the gather operation results in the destination array

.- -

abdee -
bcec -
y = 8
defhh -
Le—g———d

Example 3: Unmasked Destination Array
Given the source vector

x =[d g kb]
and the pointers array

p=[143132],

and assuming y_mask = .true. (the destination array is not masked), the gather
operation results in the destination array

y=[dbkdkgl

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14 Comumcatzon Przmmves Sparse Gather Utlhty

Sparse Gather Utility

Given a source vector, a destination array, and an array containing a gathering pattern, the
routines described below gather elements from the vector into the array.

SYNTAX

sparse_util_gather_setup (p, y_mask, x_template, trace, trace_mask, ier)
sparse_util_gather (y, x, trace, trace_mask)

deallocate_gather_setup (trace, trace_mask)

ARGUMENTS

P Integer CM array with the same axis extents and layout directives
as y. Must be one-based. Indicates the gathering pattern. If an
element of the array p contains the value n, then the corresponding
element of the destination array receives the nth element of the
source vector during the gather operation. The contents of p
remain unchanged by sparse_util_gather_setup.

y_mask If you need to mask elements of y, declare y_mask as a logical CM
array with the same axis extents and layout directives as y; set to
{true. the elements that correspond to active elements of y. The
contents of y_mask remain unchanged by sparse_util_gather_
setup.

If you do not need to mask elements of y, you can conserve
processing node memory by supplying the scalar logical value
true. for y_mask.

x_template CM array with the same axis extent, layout directives, and data
type as x. The setup routine uses only the shape and layout of this
routine, ignoring the contents.

y CM array of any type with arbitrary shape. Destination array to
which source vector elements are gathered. The initial values of
y are overwritten.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 459



Sparse

SR

Gather Utility

R

x CM array of rank 1 and of the same type and precision as y. Source
vector from which elements are gathered. The contents of x
remain unchanged by sparse_util_gather.

trace Scalar integer variable. Internal variable. The initial value you
supply to sparse_util_gather_setup is ignored. You must supply
sparse_util_gather and deallocate_gather_setup with the value that
sparse_util_gather_setup assigns to frace.

trace_mask Scalar integer variable. Internal variable. The initial value you
supply to sparse_util_gather_setup is ignored. You must supply
sparse_util_gather and deallocate_gather_setup with the value that
sparse_util_gather_setup assigns to trace_mask.

ier Scalar integer variable. Upon return from sparse_util_gather_
setup, contains one of the following codes:

0  Successful return.
-1 Invalid arguments (for example, mismatched
sizes or shapes).

DESCRIPTION

Definition. The gather operation is defined by
where (y_mask) y = x(p)

where x is the vector from which elements are being gathered, y is the resulting array,
and p is an array of pointers.

Usage. Follow these steps to perform a gather operation (or multiple gather opera-
tions, sequentially):

1. Call sparse_util_gather_setup.

2. Call sparse_util_gather.

To perform more than one gather operation using the same sparsity (gathering
pattern), follow one call to sparse_util_gather_setup with multiple calls to
sparse_util_gather. If the sparsity changes, start with Step 1 again.

3. After all sparse_util_gather calls associated with the same sparse_util_gather_
setup call, call deallocate_gather_setup to deallocate the processing node stor-
age space required by the setup routine. {

Version 3.1 Beta 2, January 1993
460 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives Sparse Gather Utility

G B R O R R

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine.

Setup Phase. The sparse_util_gather_setup routine analyzes the gathering pattern
supplied by the application in the p argument. Using p and y_mask, sparse_util_
gather_setup computes an optimization, or trace, for the communication required by
the gather operation; allocates the required storage space; and saves the trace for use in
subsequent calls to the sparse_util_gather routine. The setup routine assigns appropri-
ate values to two internal variables, trace and trace_mask, that must be supplied in
subsequent calls to sparse_util_gather and deallocate_gather_setup.

The saving of the trace saves communication time, particularly when one setup call is
amortized by several gather operations.

Gather Phase. The sparse_util_gather routine gathers elements from x into y, using
the communication pattern saved by a previous call to sparse_util_gather_setup.

As long as the arguments supplied to sparse_util_gather_setup remain the same, the
application can call sparse_util_gather multiple times following one call to sparse_
util_gather_setup, each time supplying trace, trace_mask, and a source vector, x, and
receiving in return a destination array, y.

Deallocation Phase. The deallocate_gather_setup routine deallocates the extra stor-
age space that sparse_util_gather_setup allocated for saving the trace. Each sparse_
util_gather_setup call should be followed (after one or more associated calls to sparse_
util_gather) by a deallocate_gather_setup call.

NOTES

Trace Deallocation. It is strongly recommended that you call deallocate_gather_setup
as soon as the associated gather operations have finished, as the trace typically occu-
pies a significant amount of processing node storage.

Permutation of the Source Vector. Many applications require permutation of the
source vector prior to the gather operation. This permutation is the responsibility of the
user application and is not performed by sparse_util_gather_setup or sparse_util_
gather. You can either permute the source vector itself before supplying it to sparse_
util_gather, or permute the p array before supplying it to sparse_util_gather_setup.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation : 461



Sparse Gather Utility

o

5 Edition)

RS

EXAMPLES

Sample CM Fortran code that uses the sparse gather and scatter utilities can be found
on-line in the subdirectory

sparse-utilities/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
462 Copyright © 1993 Thinking Machines Corporation



Chap

14.4

14.4.1

14.4.2

ter 14. Comunic
R AR IR

ation Primitives

Sparse Scatter Utility

The sparse scatter utility is a communication primitive that is used internally by
the CMSSL basic linear algebra routines for arbitrary sparse matrices. The scatter
utility is intended for applications that do not do explicit sparse linear algebra
operations, but want to make use of some of the primitives commonly used in
these operations.

The Scatter Utility Routines

Given a source array, a destination vector, and an array containing a scattering
pattern, the sparse scatter utility routines scatter elements from the array to the
vector. To perform a scatter operation (or multiple scatter operations, sequential-
ly), you must follow these steps:

1. Call the sparse_util_scatter_setup routine.

2. Call the sparse_util_scatter routine.

To perform more than one scatter operation using the same sparsity (scat-
tering pattern), follow one call to sparse_util_scatter_setup with multiple
calls to sparse_util_scatter. If the sparsity changes, you must start with
Step 1 again.

3. After all sparse_util_scatter calls associated with the same sparse_util_
scatter_setup call, call the deallocate_scatter_setup routine to deallocate
the processing node storage space required by the other two routines.

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine. However, call-
ing the setup routine repeatedly without calling the deallocation routine may
cause you to run out of processing node memory. It is therefore strongly recom-
mended that you call deallocate_scatter_setup as soon as you have finished the
associated scatter operations.

Definition of the Scatter Operation

The scatter operation is defined by

where (x_mask) y(p|t) =x

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 463



14.4.3

464

CMSSL for CM Fortran (CM-5 Edition)
B SRR CERe

s A

where x is the array from which elements are being scattered, y is the resulting
vector, p is an array of pointers supplied by the user application, and x_mask is
a mask for the source array. These arguments are described in detail in the man
page.

The preprocessing performed by the sparse_util_scatter_setup routine allows a
program to amortize the overhead of the setup phase over multiple communica-
tion operations, as long as the sparsity of the system remains constant. The
on-line sample code performs both preprocessed and unpreprocessed gather
operations.

Scatter Operation Example

The example below is based on the argument definitions in the man page. For
clarity, this example uses letters instead of numbers for the elements of x and y.

Given the source array

aeimg
bfjnr
cgkos
dhl pt
L 4

with mask

(T TTTT]

TTTTT
TTTTT

TFTFF

x_mask =

and p array

LV T N S I
N O v p

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



22 "”;’#}’m%

and given the initial destination vector

y=[1 v2 vz v4 vs v6 v7 vg]
the scatter operation results in destination vector

y = [vita wvptbte v3+f+n wytcti vs+d+gt+j+m+q vetk vytlir vgto+s]

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 465



Sparse Scatter Utility

SRR

Sparse Scatter Utility

Given a source array, a destination vector, and an array containing a scattering pattern, the
routines described below scatter elements from the array to the vector.

SYNTAX

sparse_util_scatter_setup (p, y_template, x_mask, setup)

sparse_util_scatter (y, p, x, x_mask, setup)

deallocate_scatter_setup (setup)

ARGUMENTS
p

y_template

x_mask

466

Integer CM array with the same axis extents and layout directives
as x. Must be one-based. Indicates the scattering pattern. If an
element of the array p (as supplied to sparse_util_scatter_setup)
contains the value n, then the scatter operation adds the
corresponding source array element to destination vector element
n. If two or more source array elements are sent to the same
destination vector element, the colliding destination values are
added. The contents of p are modified by a successful call to
sparse_util_scatter_setup. When you call sparse_util_scatter,
supply the values assigned to p by sparse_util_scatter_setup.

CM array with the same axis extent, layout directives, and data
type as y. The setup routine uses only the shape and layout of this
routine, ignoring the contents.

If you need to mask elements of x, declare x_mask as a logical CM
array with the same axis extents and layout directives as x; set to
true. the elements that correspond to active elements of x. Only
those source array elements for which the mask is true are sent to
the destination vector. Elements of p corresponding to masked
elements of the source array are ignored. The contents of x_mask
remain unchanged by sparse_util_scatter_setup.

You may set any component of x_mask to .faise. during the course
of the computation without calling the setup routine again.
However, a component of x_mask that has been set to .false.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 1 4 Comumcatzon anmves Sparse Scatter Utlhty

before the sparse_util_scatter_setup call cannot be set to .true.
during the computation.

If you do not need to mask elements of x, you can conserve
processing node memory by supplying the scalar logical value
true. for x_mask.

y CM array of any type and rank 1. The sparse_util_scatter routine
adds the scattered x elements to the initial values of y.

x CM array of arbitrary shape and of the same type and precision as
y. Source array from which elements are scattered. The contents
of x remain unchanged by sparse_util_scatter.

setup Scalar integer variable. Internal variable. The initial value
supplied to sparse_util_scatter_setup is ignored. You must supply
sparse_util_scatter and deallocate_scatter_setup with the value
assigned to setup by sparse_util_scatter_setup.

? DESCRIPTION
Definition. The scatter operation is defined by
where (x_mask) y(p|+) =x
where x is the array from which elements are being scattered, y is the resulting vector,
and p is an array of pointers.
Usage. Follow these steps to perform a scatter operation (or multiple scatter opera-
tions, sequentially):
1. Call sparse_util_scatter_setup.

2. Call sparse_util_scatter.

To perform more than one scatter operation using the same sparsity (scattering
pattern), follow one call to sparse_util_scatter_setup with multiple calls to
sparse_util_scatter. If the sparsity changes, start with Step 1 again.

3. After all sparse_util_scatter calls associated with the same sparse_util_scatter_
setup call, call the deallocate_scatter_setup routine to deallocate the proces-
sing node storage space required by the other two routines.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 467



Sparse Scatter Utility CMSSL for CM Fortran (CM-5 Edition)

RO

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine. However, calling the
setup routine repeatedly without calling the deallocation routine may cause you to run
out of memory. It is therefore strongly recommended that you call deallocate_
scatter_setup as soon as you have finished the associated scatter operations.

Setup Phase. The sparse_util_scatter_setup routine analyzes the scattering pattern
supplied by the application in the p argument. Using p and x_mask, sparse_util_
scatter_setup assigns appropriate values to the internal variable setup, which must be
supplied in subsequent calls to sparse_util_scatter.

Scatter Phase. The sparse_util_scatter routine scatters elements from x and adds them
to the initial values of y, using the information returned by a previous call to the
sparse_util_scatter_setup routine.

As long as the arguments supplied to sparse_util_scatter_setup remain the same, the
application can call sparse_util_scatter multiple times following one sparse_util_
scatter_setup call, each time supplying a source array, x, and receiving in return a des-
tination vector, y.

Deallocation Phase. The deallocate_scatter_setup routine deallocates the extra stor-
age space that the setup routine allocated. Each call to the setup routine should be

followed (after one or more calls to sparse_util_scatter) by a deallocate_scatter_setup
call.

EXAMPLES

Sample CM Fortran code that uses the sparse gather and scatter utilities can be found
on-line in the subdirectory

sparse-utilities/cmf/

of a CMSSL examples directory whose location is site-specific.

468

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

A



14.5.1

14.5.2

Primitives

Sparse Vector Gather Utility

The sparse vector gather utility, sparse_util_vec_gather, performs the same
operation as the sparse gather utility, sparse_util_gather, except that sparse_util_
vec_gather operates on vectors rather than individual data elements. The vectors
that are gathered must lie along the left-most axis (which must be declared
:serial) in both the source array and the destination array.

Definition of the Vector Gather Operation

The vector gather operation is defined by
where (y_mask) y = x(:, p)

where x is the array from which vectors are being gathered, y is the resulting
destination array, p is an array of pointers supplied by the user application, and
y_mask is a mask for the destination array. These arguments are described in
detail in the man page.

As with the sparse gather utility, the preprocessing performed by the sparse_util_
vec_gather_setup routine allows a program to amortize the overhead of the setup
phase over multiple communication operations, as long as the sparsity of the sys-
tem remains constant.

Examples

The examples below are based on the argument definitions supplied in the man
page at the end of this section. For clarity, these examples use letters instead of
numbers for the elements of x and y. The examples assume that the application
has already performed any required permutations of the source array or the point-
ers array.

Example 1: Vector Gather Operation with Masked Destination Array

Suppose the source array x has dimensions (3, 8). The vectors (of length 3) lie
along the first axis, which is :serial:

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 469



CMSSL for cM Fortran ( CM 5 Edmon)

abcdefgh
x=|i jklmnop
qrstuvwx
If the destination mask is
ymask=[T TTTTTTTTFEFF F
and the pointers array is

p=[157132241----]

(where the symbol - indicates masked data), the vector gather operation results
in the destination array

imoikjjli----

aegacbbda----
y
quwgsrrtaq----

Example 2: Vector Gather Operation with Unmasked Destination
Array

Given the source array
abcdefgh

x={i jklmnop
gqrstuvwzx

and the pointers array
p=[157132241],

and assuming y_mask = .true. (the destination array is not masked), the vector
gather operation results in the destination array

aegacbbda
y=fimoikijijli].

quwqgsrrtq

Version 3.1 Beta 2, January 1993
470 . Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comumcanon Przmmves Sparse Vector Gather Utility

o

Sl

Sparse Vector Gather Utility

Given a source array, a destination array, and an array containing a gathering pattern, the
routines described below gather vectors from the source array into the destination array.

SYNTAX

sparse_util_vec_gather_setup (p, y_mask, x_template, trace, trace_mask, ier)

sparse_util_vec_gather (y, x, trace, trace_mask)

deallocate_vec_gather_setup (trace, trace_mask)

ARGUMENTS
p

y_mask

x_template

Integer CM array with the same axis extents and layout directives
as the subarray of y formed by omitting the left-most axis of y.
Must be one-based. Indicates the gathering pattern. If element (py,
..., p) Of the array p contains the value n, then the vector x(:, n)
is gathered from the source array to locations y(:, p1, ..., Px) in the
destination array during the gather operation. The contents of p
remain unchanged by sparse_util_vec_gather_setup.

If you need to mask elements of y, declare y_mask as a logical CM
array with the same axis extents and layout directives as the
subarray of y formed by omitting the left-most axis of y; set to
true. the elements that correspond to active vectors within y. The
contents of y_mask remain unchanged by sparse_util_vec_gather_
setup.

If you do not need to mask elements of y, you can conserve
processing node memory by supplying the scalar logical value
true. for y_mask.

CM array with the same axis extent, layout directives, and data
type as the subarray of x formed by omitting the left-most axis of
x. The setup routine uses only the shape and layout of this array,
ignoring the contents.

CM array of any type with arbitrary shape. Destination array to
which vectors from the source array are gathered. The gathered

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 471



R

trace

trace_mask

ier

DESCRIPTION

Sparse Vector Gather Utility CMSSL for CM Fortran (CM-5 Edition)

R SR R

vectors will lie along the left-most axis of y. This axis must be
declared :serial, and must have the same extent as the left-most
axis of x. The initial values of y are overwritten.

CM array of rank 2 and of the same type and precision as y. Source
array from which vectors are gathered. The vectors to be gathered
must lie along the left-most axis of x. This axis must be declared
:serial, and must have the same extent as the left-most axis of y.
The contents of x remain unchanged by sparse_util_vec_gather.

Scalar integer variable. Internal variable. The initial value you
supply to sparse_util_vec_gather_setup is ignored. You must
supply sparse_util_vec_gather and deallocate_vec_gather_setup
with the value that sparse_util_vec_gather_setup assigns to trace.

Scalar integer variable. Internal variable. The initial value you
supply to sparse_util_vec_gather_setup is ignored. You must
supply sparse_util_vec_gather and deallocate_vec_gather_setup
with the value that sparse_util_vec_gather_setup assigns to trace_
mask.

Scalar integer variable. Upon return from sparse_util_vec_
gather_setup, contains one of the following codes:

0  Successful return.
-1  Invalid arguments (for example, mismatched
sizes or shapes).

Definition. The vector gather operation is defined by

where (y_mask) y =x(:, p)

where x is the array from which vectors are being gathered, y is the resulting destina-
tion array, and p is an array of pointers.

Usage. Follow these steps to perform a vector gather operation (or multiple vector
gather operations, sequentially):

1. Call sparse_util_vec_gather_setup.

2. Call sparse_util_vec_gather.

472

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comumcatzon Przmztzves
T e

R U L

To perform more than one vector gather operation using the same sparsity
(gathering pattern), follow one call to sparse_util_vec_gather_setup with mul-
tiple calls to sparse_util_vec_gather. If the sparsity changes, start with Step 1
again.

3. After all sparse_util_vec_gather calls associated with the same sparse_util_
vec_gather_setup call, call deallocate_vec_gather_setup to deallocate the pro-
cessing node storage space required by the setup routine.

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine.

Setup Phase. The sparse_util_vec_gather_setup routine analyzes the gathering pat-
tern supplied by the application in the p argument. Using p and y_mask, sparse_util_
vec_gather_setup computes an optimization, or trace, for the communication required
by the gather operation; allocates the required storage space; and saves the trace for use
in subsequent calls to the sparse_util_vec_gather routine. The setup routine assigns ap-
propriate values to two internal variables, trace and trace_mask, that must be supplied
in subsequent calls to sparse_util_vec_gather and deallocate_vec_gather_setup.

The saving of the trace saves communication time, particularly when one setup call is
amortized by several gather operations.

Gather Phase. The sparse_util_vec_gather routine gathers vectors from x into y, using
the communication pattern saved by a previous call to sparse_util_vec_gather_setup.

As long as the arguments supplied to sparse_util_vec_gather_setup remain the same,
the application can call sparse_util_vec_gather multiple times following one call to
sparse_util_vec_gather_setup, each time supplying trace, trace_mask, and a source
array, x, and receiving in return a destination array, y.

Deallocation Phase. The deallocate_vec_gather_setup routine deallocates the extra
storage space that sparse_util_vec_gather_setup allocated for saving the trace. Each
sparse_util_vec_gather_setup call should be followed (after one or more associated
calls to sparse_util_vec_gather) by a deallocate_vec_gather_setup call.

NOTES

Trace Deallocation. It is strongly recommended that you call deallocate_vec_
gather_setup as soon as the associated gather operations have finished, as the trace
typically occupies a significant amount of processing node storage.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 473



Sparse Vector Gather Utlhty CMSSL for CM Fortran (CM-5 Edmon)
SR SRR 9 R S B AR % 3 ]

Permutation of the Source Array. Many applications require permutation of the
source array prior to the vector gather operation. This permutation is the responsibility
of the user application and is not performed by sparse_util_vec_gather_setup or
sparse_util_vec_gather. You can either permute the source array itself before supplying
it to sparse_util_vec_gather, or permute the p array before supplying it to sparse_util
vec_gather_setup.

EXAMPLES

Sample CM Fortran code that uses the sparse vector gather and sparse vector scatter
utilities can be found on-line in the subdirectory

sparse-utilities/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
474 Copyright © 1993 Thinking Machines Corporation




pusnes

14.6

14.6.1

14.6.2

Chapter 14. Co

munication Primitives
b 2 2 SRR

SR : R R L S

Sparse Vector Scatter Utility

The sparse vector scatter utility, sparse_util_vec_scatter, performs the same
operation as the sparse scatter utility, sparse_util_scatter, except that sparse_util_
vec_scatter operates on vectors rather than individual data elements. The vectors
that are scattered must lie along the left-most axis (which must be declared
:serial) in both the source array and the destination array.

Definition of the Vector Scatter Operation

The scatter operation is defined by
where (x_mask) y(, pi+) = x

where x is the array from which vectors are being scattered, y is the resulting
destination array, p is an array of pointers supplied by the user application, and
x_mask is a mask for the source array. These arguments are described in detail
in the man page at the end of this section.

The preprocessing performed by the sparse_util_vec_scatter_setup routine al-
lows a program to amortize the overhead of the setup phase over multiple
communication operations, as long as the sparsity of the system remains con-
stant.

Example

The example below is based on the argument definitions in the man page. For
clarity, this example uses letters instead of numbers for the elements of x.

Suppose the source array x has dimensions (3, 6). The vectors (of length 3) lie
along the first axis, which is :serial:

aeimg
x = |bfjnr
cgkos

If x_mask is

x_mask=[T T T T Fl,

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 475



the pointers array is

p=[1 422 -],
and the initial destination array is
Vi1 V12 V13 Vi4 V15 Vi6 V17 VI8

y=|[V21 v22 V23 V24 W5 W6 V27 Vo8
V31 V32 V33 V34 V35 Vig V37 V38

then the vector scatter operation results in destination array

viita vptitm viz vigte vis vig vi7 vig
y= [ v21tb vaatjtn w3 vagtf vas vos w7 g
vai+c viotk+to vi3 vagtg vis vig V37 vag

Version 3.1 Beta 2, January 1993
476 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Camumcanon anmves Sparse Vector Scatter Utility

Sparse Vector Scatter Utility

Given a source array, a destination array, and an array containing a scattering pattern, the
routines described below scatter vectors from the source array to the destination array.

SYNTAX

sparse_util_vec_scatter_setup (p, y_template, x_mask, setup)

sparse_util_vec_scatter (y, x, x_mask, setup)

deallocate_vec_scatter_setup (setup)

ARGUMENTS
p

y_template

x_mask

Integer CM array with the same axis extents and layout directives
as the subarray of x formed by omitting the left-most axis of x.
Must be one-based. Indicates the scattering pattern. If element
(p1, ..., px) of the array p (as supplied to sparse_util_vec_scatter_
setup) contains the value n, then the scatter operation adds the
vector x(:, p1, ..., Px) to the vector y(:, n) within the destination
array. If two or more source array elements are sent to the same
destination array element, the colliding destination values are
added. The contents of p remain unchanged by sparse_util_vec_
scatter_setup.

CM array with the same axis extent, layout directives, and data
type as the subarray of y formed by omitting the left-most axis of
y. The setup routine uses only the shape and layout of this array,
ignoring the contents.

If you need to mask elements of x, declare x_mask as a logical CM
array with the same axis extents and layout directives as the
subarray of x formed by omitting the left-most axis of x; set to
true. the elements that correspond to active vectors within x. Only
those vectors for which the mask is true are sent to the destination
array. Elements of p corresponding to masked locations of the
source array are ignored. The contents of x_mask remain
unchanged by sparse_util_vec_scatter_setup.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 477



Sparse Vector Scatter Utillty CMSSL for CM Fortran (CM-5 Edition)
¥ S SRS R A o S % N OS]

You may set any component of x_mask to .false. during the course
of the computation without calling the setup routine again.
However, a component of x_mask that has been set to .faise.
before the sparse_util_vec_scatter_setup call cannot be set to
Jtrue. during the computation.

If you do not need to mask elements of x, you can conserve
processing node memory by supplying the scalar logical value
true. for x_mask.

y CM array of any type and rank 2. The sparse_util_vec_scatter
routine adds the scattered vectors from x to the initial values of the
vectors that lie along the left-most axis of y. This axis must be
declared :serial, and must have the same extent as the left-most
axis of x.

x CM array of arbitrary shape and of the same type and precision as
y. Source array. The vectors to be scattered must lie along the
left-most axis of x. This axis must be declared :serial, and must
have the same extent as the left-most axis of y. The contents of x
remain unchanged by sparse_util_vec_scatter.

setup ) Scalar integer variable. Internal variable. The initial value
supplied to sparse_util_vec_scatter_setup is ignored. You must
supply sparse_util_vec_scatter and deallocate_vec_scatter_setup
with the value assigned to setup by sparse_util_vec_scatter_setup.

DESCRIPTION

Definition. The scatter operation is defined by
where (x_mask) y(, p|+) =x

where x is the array from which vectors are being scattered, y is the resulting destina-
tion array, and p is an array of pointers.

Usage. Follow these steps to perform a vector scatter operation (or multiple vector
scatter operations, sequentially):

1. Call sparse_util_vec_scatter_setup.

2. Call sparse_util_vec_scatter.

Version 3.1 Beta 2, January 1993
478 Copyright © 1993 Thinking Machines Corporation



Chapter 14 Comumcatzon Przmmves Sparse Vector Scatter Utillty

To perform more than one vector scatter operation using the same sparsity
(scattering pattern), follow one call to sparse_util_vec_scatter_setup with mul-
tiple calls to sparse_util_vec_scatter. If the sparsity changes, start with Step 1

again.
\

3. After all sparse_util_vec_scatter calls associated with the same sparse_util_
vec_scatter_setup call, call the deallocate_vec_scatter_setup routine to deallo-
cate the processing node storage space required by the other two routines.

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine. However, calling the
setup routine repeatedly without calling the deallocation routine may cause you to run
out of memory. It is therefore strongly recommended that you call deallocate_
vec_scatter_setup as soon as you have finished the associated scatter operations.

Setup Phase. The sparse_util_vec_scatter_setup routine analyzes the scattering pat-
tern supplied by the application in the p argument. Using p and x_mask, sparse_util_
vec_scatter_setup assigns appropriate values to the internal variable setup, which must
be supplied in subsequent calls to sparse_util_vec_scatter.

Scatter Phase. The sparse_util_vec_scatter routine scatters vectors from x and adds
them to the initial values of y, using the information returned by a previous call to the
sparse_util_vec_scatter_setup routine.

As long as the arguments supplied to sparse_util_vec_scatter_setup remain the same,
the application can call sparse_util_vec_scatter multiple times following one sparse_
util_vec_scatter_setup call, each time supplying a source array, x, and receiving in re-
turn a destination array, y.

Deallocation Phase. The deallocate_vec_scatter_setup routine deallocates the extra
storage space that the setup routine allocated. Each call to the setup routine should be
followed (after one or more calls to sparse_util_vec_scatter) by a deallocate_vec_
scatter_setup call.

EXAMPLES

Sample CM Fortran code that uses the sparse vector gather and scatter utilities can be
found on-line in the subdirectory sparse-utilities/cm£/ of a CMSSL examples
directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 479



14.7 Vector Move (Extract and Deposit)

480

The vector_move routine moves a vector from a source array to a destination
array of the same rank, data type, and node layout. The vector_move_utils routine
returns node layout and subgrid shape information for any CM array.

Details about these routines are provided in the man page that follows.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chap

R XSS

ter 14. Comunication Primitives Vector Move (Extract and Deposit)
% SRS e SRR R

Sy

/-’ —

Vector Move (Extract and Deposit)

The vector_move routine moves a vector from a source array to a destination array of the
same rank, data type, and node layout. The vector_move_utils routine returns node layout
and subgrid shape information for any CM array.

SYNTAX

vector_move (y, X, y_coords, y_axis, x_coords, x_axis, ier)

vector_move_utils (array, subgrid_extents, node_layout, ier)

ARGUMENTS
y One-based CM array of any data type.

x One-based CM array of the same rank and data type as y.

O The x and y arrays must have the same node layout; otherwise, the

‘ code -1 is returned in ier. In this context, node refers to a
processing element (PE) on a CM-200 or CM-2; a processing node
(PN) on a CM-5 without vector units; or a vector unit on a CM-5
with vector units. Node layout refers to the number of nodes along
each array axis.

The extent of axis x_axis in x must equal the extent of axis y_axis
iny.

y_coords One-based integer front-end array of rank 1 and extent equal to
the rank of y. Defines the destination vector to which the source
vector will be moved. This destination vector is formed by
holding the coordinate along each axis i of y constant at the value
_coords(i), except the coordinate corresponding to axis y_axis.
The value of y_coords(y_axis) is ignored.

y_axis Scalar integer variable. Identifies the axis in y along which the
destination vector lies. Must satisfy 1< y_axis < rank(y).

x_coords One-based integer front-end array of rank 1 and extent equal to
the rank of x. Defines the source vector to be moved to the y array.
This source vector is formed by holding the coordinate along each
axis i of x constant at the value x_coords(i), except the coordinate

A4

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 481



Vector Move (Extract and Deposit)

CMSSL for CM Fortran (CM-5 Edition)

A N S R ]

corresponding to axis x_axis. The value of x_coords(x_axis) is
ignored.

x_axis Scalar integer variable. Identifies the axis in x along which the
source vector lies. Must satisfy 1< x_axis < rank(x).

array CM array whose node layout and subgrid shape is required.

subgrid_extents  Integer front-end array of rank 1 and extent equal to the rank of
array. On successful return, subgrid_extents(i) contains the
subgrid extent of array along axis i.

node_layout Integer front-end array of rank 1 and extent equal to the rank of
array. On successful return, node_layout(i) contains the number
of nodes along axis i of array.

ier Scalar integer variable. Error code. Set to 0 on successful return,
or to -1 otherwise.

DESCRIPTION

482

The vector_move routine moves a source vector from x to a destination vector in y.
Each element in the destination vector is overwritten by the corresponding source
value.

The vector_move_utils routine returns node layout and subgrid shape information for
any CM array. The subgrid_extents argument returns the subgrid extent of the array
along each axis; the node_layout argument returns the number of nodes along each
axis. In this context, node refers to a processing element (PE) on a CM-200 or CM-2; a
processing node (PN) on a CM-5 without vector units; or a vector unit on a CM-5 with
vector units.

The on-line examples show how to use the vector_move and vector_move_utils rou-
tines to extract and deposit rows and columns of a two-dimensional array, and how to
use vector_move to extract a face from a three-dimensional array.

Consider a 64 X 64 source array A and a 64 X 16 destination array C. Further assume a
4 X 8 node layout underlying both A and C. The subgrid of A on each node is 16 X 8;
the subgrid of C on each node is 16 X 2. The following CM Fortran expression extracts
the third column of the subgrid of A on each node and deposits it in the second column
of the subgrid of C:

C(:,2:16:2) = A(:,3:64:8)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14 Comumcanon anmves Vector M°V9 (EX'"' act and Deposit)
frois S R S e

The same functionality can be achieved by calling vector_move with the following
arguments:

integer y_coords(2), x_coords(2)
integer y_axis, x_axis

y_coords(2) = 2

x_coords(2) = 3

y_axis = 1

X _axis = 1

vector_move(C, A, y_coords, y_axis, x_coords, x_axis, ier)

NOTES

One-Based Arrays. The arrays x, y, x_coords, and y_coords must be one-based.

Node Layout. The node layout must be identical for x and y. An error is signalled if
this is not the case. (Node layout refers to the number of nodes along each array axis.)
Use the detailed layout available in CM Fortran Version 2.0 or 2.1 to ensure that the
: node layouts of x and y are identical. The on-line examples illustrate the use of the
:\‘ detailed layout directives in this context. You can also obtain the node layout and sub-
grid shape using vector_move_utils.

EXAMPLES

Sample CM Fortran program that uses the extract and deposit routines can be found
on-line in the subdirectory

vector-move/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 483



14.8 Block Gather and Scatter Utilities

484

The block_gather and block_scatter routines move a block of data from a source
CM array into a destination CM array. The arrays must have the same rank (> 2),
type (integer, real, or complex), precision, and layout, with at least one serial axis
and at least one parallel axis. The gather or scatter operation occurs along a
single, specified serial axis. In the simplest case, a block of data elements is
moved from a two-dimensional source array (with one serial dimension and one
parallel dimension) to a similar destination array. You can add instances by ex-
tending the parallel axis or by adding more axes (which may be serial or parallel).

In block_gather, the source starting index for the gather operation can be different
for each instance; the destination starting index is the same for all instances. In
block_scatter, the source starting index is the same for all instances; the destina-~
tion starting index can be different for each instance. In both block_gather and
block_scatter, the block of data that is moved in each instance can be spread out
along the serial axis, with gaps between elements, in both the source and destina-
tion arrays.

You can use block_gather and block_scatter to avoid implicit indirect addressing
or communication operations.

The man page at the end of this section provides detailed information about these
routines and their arguments. Refer to the argument list when examining the fol-
lowing three figures. Figure 39 shows a block gather operation; Figure 40 shows
a block scatter operation. In these figures, the source and destination arrays are
two-dimensional; axis vector_axis is vertical. Only a single instance is pictured.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunicati

jon Primi
e e RN

axis vector_axis

(serial) NN] } element size
count :
Y(:s i) ‘
? ~

x_stride
N

y_stride |—t

LI?J\’\<'\KI
I

p(l, 9
y_index

Figure 39. A block gather operation. The source and destination arrays are 2-dimensional.
The vertical acxis is the selected serial axis. Only a single instance is shown.

Y@, 0)
axis vector_axis [
(serial) } element size
N y_stride
e
x_stride | KN / \
/'E T D
x_index

Figure 40. A block scatter operation. The source and destination arrays are 2-dimensional.
The vertical axis is the selected serial axis. Only a single instance is shown.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 485



CMSSL for CM Fortran (CM-5 Edition)

Figure 41 shows two instances of the same block scatter operation pictured in
Figure 40. Note that the destination starting indices are different for the two in-
stances, whereas the source starting indices, strides, and count are the same for
all instances.

Y, L it
axis vector_axis G0 I:(_.l b

(serial)
X, ) XC, i+1) /rn} element size
=/
x_stridel % \
/ p(1,i+1)
x_index

p(L,9)

Figure 41. Two instances of the block scatter operation from Figure 40.

Version 3.1 Beta 2, January 1993
486 Copyright © 1993 Thinking Machines Corporation



-

Chapter 1 4 Comumcatzan Przmmves Block Gather and Scatter Utilities

S

Block Gather and Scatter Utilities

The biock_gather and block_scatter routines move a block of data from a source CM array
into a destination CM array. The arrays must have the same rank (> 2), type (integer, real,
or complex), precision, and layout, with at least one serial axis and at least one parallel
axis. In the gather operation, the source starting index can be different for each instance;
the destination starting index is the same for all instances. In the scatter operation, the
source starting index is the same for all instances; the destination starting index can be
different for each instance.

SYNTAX

block_gather (Y, y_stride, y_index, X, x_stride, p, count, vector_axis)
block_scatter (Y, y_stride, p, X, x_stride, x_index, count, vector_axis)

ARGUMENTS

Y Integer, real, or complex CM array of rank > 2. Must have at least
one serial axis and at least one parallel axis. Serves as the
destination array.

y_stride Scalar integer. Specifies the distance (along axis vector_axis)
between the Y array locations into which data is to be moved. A
gap of (y_stride - 1) elements will be left between incoming
destination data elements. If y_stride = 1, destination data
elements are placed in locations that are contiguous along axis
vector_axis.

y_index Scalar integer used only in the block_gather call. Specifies the ¥
starting index (along axis vector_axis) for all instances of the
gather operation.

X CM array of the same rank, type, precision, and layout as Y. Serves
as the source array. The axis identified by vector_axis may have
different extents in X and ¥: however, all other axes must have the
same extents in X and ¥.

x_stride Scalar integer. Specifies the distance (along axis vector_axis)
between the X array locations from which data is to be moved. A

Version 3.1 Beta 2, January 1993

" Copyright © 1993 Thinking Machines Corporation 487



Block Gather and Scatter Utllmes CMSSL for CM For:ran (CM-5 Edznon)

gap of (x_stride - 1) elements will be left between outgoing
source data elements. If x_stride = 1, source data elements are
moved from locations that are contiguous along axis vector_axis.

x_index Scalar integer used only in the block_scatter call. Specifies the X
starting index (along axis vector_axis) for all instances of the
scatter operation.

J4 Integer CM array that has the same rank and layout as X and Y.
Axis vector_axis must have extent 1; all other axes must have the
same extents as in X and ¥. The meaning of the element

P(W1, ..y Uvector_axis-1> 1, Uvector_axis+1s +-+s Un)

depends on whether you are calling block_gather or block_scatter:

= When you call block_gather, it is the X starting index
(along axis vector_axis) for the gather operation occur-

ring at locations (uj, ..., Uvector_axis-1s +s Wvector_axis+1s ++-s
up) of Xand Y.

®. When you call block_scatter, it is the Y starting index
(along axis vector_axis) for the scatter operation occur-

ring at locations (41, ..., Uyector_axis-1» *» Wvector_axis+1s -+

up) of X and Y.
count Scalar integer. The number of data elements to be moved in each
instance.
vector_axis Scalar integer. Identifies the serial axis along which data is to be

moved from X to Y.

DESCRIPTION

The block_gather and block_scatter routines move a block of data from a source CM
array into a destination CM array. The arrays must have the same rank (> 2), type (real
or complex), precision, and layout, with at least one serial axis and at least one parallel
axis. The gather or scatter operation occurs along a single, specified serial axis. In the
simplest case, a block of data elements is moved from a two-dimensional source array
(with one serial dimension and one parallel dimension) to a similar destination array.
You can add instances by extending the parallel axis or by adding more axes (which
may be serial or parallel).

Version 3.1 Beta 2, January 1993
488 Copyright © 1993 Thinking Machines Corporation



Chapter 14, Comumc tzon anmves Block Gather and Scatter Utilltles

In block_gather, the source starting index for the gather operation can be different for
each instance; the destination starting index is the same for all instances. In block_scat-
ter, the source starting index is the same for all instances; the destination starting index
can be different for each instance. In both block_gather and biock_scatter, the block of
data that is moved in each instance can be spread out along the serial axis, with gaps
between elements, in both the source and destination arrays.

You can use block_gather and block_scatter to avoid implicit indirect addressing or
communication operations.

Given X and Y arrays of rank 2, with one axis serial and the other parallel with length
equal to the number of processing nodes, the following CM Fortran pseudo code de-
scribes the gather operation:

REAL*4 Y (32,64),X(128,64),p(1,64)
CMF$LAYOUT Y(:serial,),X(:serial,),p(:serial,)

do i=1,count
Y(y_index+(y_stride* (i-1),:)=
+ X(p(1,:)+{x_stride*(i-1),:)
enddo

The effect of this code is to copy a block of count elements of X (strided by x_stride
elements and starting at a different starting index in each node) into ¥, striding by
y_stride elements and starting at a fixed starting index of y_index.

The scatter operation performs the inverse operation, copying a block of count ele-
ments of X (strided by x_stride elements and starting at a fixed starting index of
x_index) into Y, striding by y_stride elements and starting at a different starting index
in each node.

The block gather and scatter operations can also be described as follows:

Block gathel'l Y(””i””) = X(”” P (D””)
Block scatter: Y(””p(i)””) = X(s99 3950)

where

y_index < i < (count-1) * y_stride

j =mod(i, N)

N = number of processing nodes along axis vector_axis
(for CM-5 systems without vector units)

N = number of vector units along axis vector_axis
(for CM-5 systems with vector units)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 489



Block Gather and Scatter Utillties CMSSL for CM Fortran (CM- 5 Edu‘zon)
Ay 3 R R RS A SERTEESR TS

If collisions occur at the destination during the scatter operation, one of the colliding
values is stored; the others are lost.

NOTES

CAUTION. These routines are a high level interface to functions that are used internal-
ly in the CMSSL. These functions may be misused and can access memory beyond the
normal bounds of the array. While some safety checking will occur when safety is en-
abled, it will not be able to catch all misuses of the function, so users of these functions
should be sure they stay within the bounds of the arrays.

EXAMPLES

Sample CM Fortran code that uses the block gather and scatter utilities can be found
on-line in the subdirectory

block-scatter-gather/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
490 Copyright © 1993 Thinking Machines Corporation



RESRER

Chapt

PR

er 14. Comunication P

rimitives

s S e e e

14.9 Partitioning of an Unstructured Mesh

14.9.1

and Reordering of Pointers

The routines described in this section allow you to reorder an array of pointers
derived from a mesh so that the communication required by subsequent gather
and scatter operations is reduced. The following routines are provided:

generate_dual Given an element nodes array, ien, that describes an
unstructured mesh, this routine produces the correspond-
ing dual connectivity array, idual.

partition_mesh Given a dual connectivity array describing an unstruc-
tured mesh, this routine returns a permutation, ¢, that
reorders the mesh elements to form discrete partitions.
The routine also returns the number of resulting partitions
and the number of elements per partition.

reorder_pointers  Given a pointers array, p, and a permutation g (for
example, the permutation returned by partition_mesh),
this routine reorders the pointers array along its last axis
using ¢.

If you derive the pointers array p from a mesh, reorder p using the permutation
q returned by partition_mesh, and then supply these reordered pointers to the
setup routine for the partitioned gather or scatter operation (described in Sections
14.10 and 14.11, respectively), the setup routine takes advantage of data locality;
the communication required by the gather or scatter is reduced.

Definitions

An unstructured mesh is a finite collection of elements and nodes. Each element
is a bounded region of n-space (where n = 1, 2, or 3) defined by nodes and faces.
Each element and each node is assigned a number. Figure 42 shows a two-di-
mensional unstructured mesh with 11 elements. Node numbers are not shown in
this figure.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation ] 491



CMSSL for CM Fortran (CM-5 Edition)

Figure 42. A two-dimensional unstructured mesh with 11 elements.

Two ways of representing an unstructured mesh are as follows:

= Each node in the mesh is associated with one or more elements of the ele-
ment nodes array, ien, defined by

ien(m, n) = the node number of the mth node of the nth mesh element.

This array has dimensions ien(nnode, nel), where nnode is the maximum
number of nodes per element and rel is the number of elements in the
mesh. In Figure 43, ien(1, 8) = ien(2, 1) = 1.

ien(1,8) and ien(2,1)
represent Node 1.

Figure 43. The ien array identifies nodes.

» The connectivity of the mesh elements across faces is represented by the
dual connectivity array, idual, defined by

idual(m, n) = the element that shares face m with element n;
idual(m, n) = O if face m of element n is a boundary of the mesh.

Version 3.1 Beta 2, January 1993
492 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives
SN e SR

frte s e s ISR

This array has dimensions idual(nface, nel), where nface is the maximum
number of faces per element and nel is the number of elements in the
mesh. In Figure 44, idual(1, 1) = 7, idual(2, 1) = 8, and iduali(3, 1) = 0.

ﬂ;e -
<>

Figure 44. The idual array identifies neighboring elements.

, 0 14.9.2 Finite Element Numbering Scheme

The generate_dual routine generates the idual array corresponding to the ien
array and element type you supply. Your ien array must use the standard finite
element numbering scheme. Figure 45 shows the standard numbering schemes
for the element types supported by generate_dual.

The generate_dual routine can handle higher-order element meshes as long as the
nodes at the vertices of the elements are the first ones listed in ien. Note that the
current implementation of generate_dual does not support having different ele-
ment types in the same mesh.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 493



4
3 4 3
A 1 3
1 2
' 1 2 2
triangle quadrilateral tetrahedron
5 6
8
4 I 5 5 zZ 6 7
1
1 A 3 Moo,
2 3 1 2 1 2
pyramid prism hexahedron

Figure 45. The standard finite element numbering schemes expected by generate_dual.

14.9.3 Partitioning Rules

You must supply the partition_mesh routine with an idual array that describes a
mesh. The routine determines the number of resulting partitions based on the
number of mesh elements and a number N that represents your machine configu-
ration. The number N is defined by '

N = subgrid_quantum * CMF_number_of_processors( )

where subgrid_quantum is
8 4 for a CM-2 or CM-200 (slicewise execution model).
= ] for a CM-5 without vector units.

= 8 for a CM-5 with vector units.

Beginning with CM Fortran Version 2.1, N will equal CMF_number_of_
processors() (that is, subgrid_quantum will be 1) on CM-5 systems with vector
units.

For the purposes of this discussion, when N is defined as above, the machine
configuration in question is said to have N processing entities. Note that these
“processing entities” are abstractions that represent a machine configuration.

Version 3.1 Beta 2, January 1993
494 Copyright © 1993 Thinking Machines Corporation



Internally, partition_mesh maps them to the processing nodes in your current
machine configuration.

The partition_mesh routine determines the number of partitions by associating

14.94

14.9.5

mesh elements with processing entities, using the following principles:

= The mesh elements should be spread across as many processing entities
as possible.

= All partitions except the last must hold the same number, £, of mesh ele-
ments; the last partition must hold / < k elements.

* Each processing entity can be associated with at most one partition.

For example, if your current machine configuration has 128 processing entities,
and your mesh contains 201 elements, partition_mesh associates two mesh ele-
ments with each of 100 processing entities, and the one remaining mesh element
with the 101st processing entity. Thus, 101 partitions are required.

Upon completion, partition_mesh returns the number of processing entities in
numproc, the number of partitions in the output parameter numpar, and the num-
ber of elements per partition (k, in the description above) in the nelpar argument.
In the above example, numproc is set to 128, numpar to 101, and nelpar to 2.

The Partitioning Permutation

The partition_mesh routine generates a permutation of the mesh element num-
bers, and returns the permutation in the integer array g. When element n is
replaced with element g(n), effectively the nodes of the mesh remain unchanged,
but the elements are reordered. Reordered elements 1 through nelpar comprise
the first partition, elements (nelpar+1) through 2*nelpar comprise the second
partition, and so on.

Mesh Partitioning Example

Suppose you supply partition_mesh with an idual array that represents the
11-element mesh shown in Figure 42, and the current machine configuration has
four processing entities. Based on the partitioning principles listed above,
partition_mesh determines that four partitions are required; they will hold ele-

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 495



CMSSL for CM Fortran (CM-5 Edition)

R e

ments 1-3, 4-6, 7-9, and 10-11, respectively. The partition_mesh routine might
return the following g array:

g()=1 q(7) =2

q(2) =10 q(8) =4

q(3)=7 q09) =38

g4 =3 q(10) =9

gd) =11 q(11) =5

q(6)=6
This permutation results in the reordered mesh shown in Figure 46. Heavy lines
denote partition boundaries.

QX‘A' .
>

Figure 46. Partitions of a reordered mesh.

14.9.6 Reordering a Pointers Array

The reorder_pointers routine reorders a given pointers array, p, along its last axis
using a permutation ¢. The array ¢ must have rank 1 and length equal to the
extent of the last axis of p, and must be a permutation of p along its last axis.

If p has rank 7, reorder_pointers replaces element (py, p, p3, ..., pr) With element
(P1, P2 P3 - q(pr)). The reordered pointers array can then be supplied to the
setup routines for the partitioned gather or scatter (see Sections 14.10 and 14.11).

Version 3.1 Beta 2, January 1993
496 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunicatio

ettt

Mesh Partitioning and Pointer Reordering

S S s

Partitioning of an Unstructured Mesh
and Reordering of Pointers

The routines described below allow you to reorder an array of pointers derived from an
unstructured mesh so that the communication required by subsequent gather and scatter
operations is reduced.

SYNTAX

generate_dual (idual, ien, elem_type, ier)
partition_mesh (idual, q, numproc, numpar, nelpar, ier)

reorder_pointers (p, q)

ARGUMENTS

idual Integer zero-based CM array that describes an unstructured mesh.
Must have rank 2 and dimensions (nface, nel), where nface is the
maximum number of faces per element and nel is the number of -
elements in the mesh. This dual connectivity array is defined by

idual(m, n) = the element that shares face m with element n;
idual(m, n) = 0 if face m of element n is a boundary of the mesh.

When you call generate_dual, idual is an output argument; it is the
dual connectivity array corresponding to the ien array you supply.

When you call partition_mesh, idual is an input argument; it is the
dual connectivity array that represents the mesh you want to
partition.

ien Input integer CM array that describes an unstructured mesh. Must
be at least one-based, with rank 2 and dimensions (nnode, nel),
where nnode is the maximum number of nodes per element and
nel is the number of elements in the mesh. This element nodes
array is defined by

ien(m, n) = the node number of the mth node of the nth
mesh element.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 497



498

R

elem_type

numproc

numpar

CMSSL for CM Fortran (CM-5 Edition)

SRR 5 R S

The ien array you provide to generate_dual must use the standard
finite element numbering scheme for numbering nodes.

Character*3 scalar string variable. Specifies the type of elements
in the mesh whose ien array you are providing. Must have one of
the following values:

Value Element type

"TRI’ triangle

'QUA’ quadrilateral

'TET’ tetrahedron

’PYR’ pyramid

PRI’ prism

"HEX’ hexahedron (brick)

When you call partition_mesh, ¢ is an output integer CM array of
rank 1 and length equal to the number of elements in the mesh you
want to partition. Upon successful .completion, ¢ contains a
permutation that reorders the mesh into partitions. When element
n is replaced with element g(n), effectively the nodes of the mesh
remain unchanged, but the elements are reordered. Reordered
elements 1 through nelpar comprise the first partition, elements
(nelpar+1) through 2*nelpar comprise the second partition, and
SO on.

When you call reorder_pointers, g is an input integer CM array of
rank 1 and length equal to the extent of the last axis of p; ¢ must
be a permutation of p along its last axis.

Integer CM array of any rank and shape. On input to
reorder_pointers, p contains pointers.

On successful completion of reorder_pointers, p contains the
reordered pointers. If p has rank r, reorder_pointers replaces

element (py, p3, p3, ..., pr) with element (py, p2, p3, ..., 4(@r)).

Output scalar integer variable. On return, numproc is set to a value
N that represents your current machine configuration and
determines the number of partitions in the reordered mesh. (See
the Description section for the definition of N).

Output scalar integer variable. On return, contains the number of
partitions formed by the reordered mesh.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter ] 4, C’omumcatzon anmves Mesh Partitiomng and Pointer Reordenng

nelpar Output scalar integer variable. On return, contains the number of
elements in each partition (with the possible exception of the last
partition, which may contain fewer elements).

ier ~ Scalar integer variable. Error code. On return from generate_dual,
ier has one of the following values:

0  Successful return.
-1  Invalid elem_type.
-2 Invalid dimensions for idual or ien.
-3 ien is not one-based.

On return from partition_mesh, ier has one of the following
values:

0  Successful return.
-1  The second dimension of idual is not equal to the

length of q.

DESCRIPTION

: ‘ The routines described here perform the following operations:

generate_dual Given an element nodes array, ien, that describes
an unstructured mesh, this routine produces the
corresponding dual connectivity array, idual.

partition_mesh Given a dual connectivity array describing an
unstructured mesh, this routine returns a per-
mutation, ¢, that reorders the mesh elements to
form discrete partitions. The routine also returns
the number of resulting partitions and the number
of elements per partition.

reorder_pointers Given a pointers array, p, and a permutation ¢
(for example, the permutation returned by
partition_mesh), this routine reorders the pointers
array along its last axis using gq.

Partitioning Rules. The partition_mesh routine determines the number of partitions
based on the number of mesh elements and a number N that represents your machine
configuration. The number N is defined by

N = subgrid_quantum * CMF_number_of_processors( )

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 499



Mesh Partltiomng and Pointer Reordermg CMSSL for CM Fortran (CM»5 Edition)
R SR R R SR SR

R s

where subgrid_quantum is

= 4 for a CM-2 or CM-200 (slicewise execution model).
» ] for a CM-5 without vector units.

s 8 for a CM-5 with vector units.

Beginning with CM Fortran Version 2.1, N will equal CMF_number_of_ processors( )
(that is, subgrid_quantum will be 1) on CM-5 systems with vector units.

For the purposes of this discussion, when N is defined as above, the machine configu-
ration in question is said to have N processing entities. Note that these “processing
entities” are abstractions that represent a machine configuration. Internally, partition_
mesh maps them to the processing nodes in your current machine configuration.

The partition_mesh routine determines the number of partitions by associating mesh
elements with processing entities, using the following principles:

s The mesh elements should be spread across as many processing entities as
possible.

= All partitions except the last must hold the same number, %, of mesh elements;
the last partition must hold / < k elements.

» Each processing entity can be associated with at most one partition.

For example, if your current machine configuration has 128 processing entities, and
your mesh contains 201 elements, partition_mesh associates two mesh elements with
each of 100 processing entities, and the one remaining mesh element with the 101st
processing entity. Thus, 101 partitions are required.

Upon completion, partition_mesh returns the number of processing entities in
numproc, the number of partitions in the output parameter numpar, and the number of
elements per partition (k, in the description above) in the nelpar argument. In the above
example, numproc is set to 128, numpar to 101, and nelpar to 2.

NOTES

Arrays with Inactive Elements. For arrays that are larger than the number of active
elements, set the inactive components of idual to 0.

Version 3.1 Beta 2, January 1993
500 Copyright © 1993 Thinking Machines Corporation



Mesh Partitioning and Poi

nter Reordering

e

Chapter 14. Comunication Primitives

e

SRR SRR

EXAMPLES

Sample CM Fortran code that uses the generate_dual, partition_mesh, and reorder_
pointers routines can be found on-line in the subdirectory

partitioning/cmf

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 501



14.10 Partitioned Gather Utility

502

The partitioned gather utility that performs the same operations as the sparse
gather and sparse vector gather routines. If you supply a pointers array that is
reordered along its last axis to achieve data locality, the partitioned gather takes
advantage of this locality, reducing communication time.

If your pointers are derived from a mesh, you can produce a partitioned pointers
array using the partition_mesh and reorder_pointers routines described in Section
14.9.

The partitioned gather utility is described in the man page that follows.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



sanane

Chapter 14. Comunication Primitives
Py s

Partitioned Gather Utility

NELEENEE

Partitioned Gather Utility

Given a source array, a destination array, and a pointers array containing a gathering pat-
tern, the routines described below gather elements or vectors from the source array into the
destination array. If the pointers array is reordered along its last axis to achieve data local-
ity, communication time is reduced.

SYNTAX

part_gather_setup (p, y_mask, x_template, trace, ier)
part_gather (y, x, y_mask, trace)
part_vector_gather (y, x, y_mask, trace)

deallocate_part_gather_setup (trace)

ARGUMENTS

P One-based integer CM array whose dimensions must satisfy the
following conditions:

®  p must have the same rank and axis extents as the array y
you supply in any subsequent associated call to part_
gather.

=  p must have the same rank and axis extents as the subar-
ray (formed by omitting the left-most axis) of the array y
you supply in any subsequent associated call to part_
vector_gather.

The array p contains pointers that indicate the gathering pattern,
as follows. If y_mask(py, ..., pr) = .true. and element (py, ..., pr)
of p contains the value n, then

* In a subsequent call to part_gather, element x(n) is gath-
ered from the source array to location y(pj, ..., Px) in the
destination array during the gather operation.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 503



Pa

504

y_mask

x_template

ility

rtitioned Gather

on)

REGNS

= In a subsequent call to part_vector_gather, the vector
x(:,n) is gathered from the source array to locations y(:,
D1, ---» Pr) in the destination array during the gather opera-
tion.

The contents of p remain unchanged by part_gather_setup.

If p has been reordered along its last axis to achieve data locality,
part_gather_setup takes advantage of this locality and
communication time is reduced.

If you need to mask elements of y, declare y_mask as a logical CM
array with the same axis extents and layout directives as

= The array y you supply in any subsequent associated call
to part_gather, or

®  The subarray (formed by omitting the left-most axis) of
the array y you supply in any subsequent associated call to
part_vector_gather. '

Set to .true. the elements that correspond to active elements of y.
The contents of y_mask remain unchanged by part_gather_setup,
part_gather, and part_vector_gather.

If you do not need to mask elements of y, you can conserve
processing node memory and get better performance by supplying
the scalar logical value .true. for y_mask.

You may set any component of y_mask to .false. during the course
of the computation without calling the setup routine again.
However, a component of y_mask that has been set to .false.
before the part_gather_setup call cannot be set to .true. during the
computation.

CM array of any type with the same axis extent and layout
directives as

® The array x you supply in any subsequent associated call
to part_gather, or

® The subarray, formed by omitting the left-most axis, of
the array x you supply in any subsequent associated call
to part_vector_gather.

The setup routine uses only the shape and layout of this routine,
ignoring the contents.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primi

tives
RIS oo

Partitioned Gather Utility
S s R I e

y CM array of any type with arbitrary shape. Destination array to
which elements or vectors from the source array are gathered. All
axes must be declared :serial except the last axis, which must have
canonical (:news) layout. In a call to part_vector_gather, you must
declare y with an extra left-most, :serial axis with the same extent
as the left-most axis of x. Upon return from part_vector_gather,
the gathered vectors will lie along this axis of y. The values of
active elements of y are overwritten.

X CM array of rank 1 (in a call to part_gather) or 2 (in a call to
part_vector_gather), with the same type as y. Source array from
which elements or vectors are gathered. In a call to
part_vector_gather, the vectors to be gathered must lie along the
left-most axis of x. This axis must be declared :serial, and must
have the same extent as the left-most axis of y. The contents of x
remain unchanged by part_gather and part_vector_gather.

trace Scalar integer variable. Internal variable. The initial value you
supply to part_gather_setup is ignored. You must supply part_
gather, part_vector_gather, and deallocate_part _gather_setup with
. the value that part_gather_setup assigns to trace.

ier Scalar integer variable. Upon return from part_gather_setup,
contains one of the following codes:

0  Successful return. .
-1  Invalid arguments (for example, mismatched
\ sizes or shapes).

j DESCRIPTION

Definition. The gather operation is defined by

where (y_mask) y = x(p) (part_gather)
where (y_mask) y = x(:, p) (part_vector_gather)

where x is the array from which elements or vectors are being gathered, y is the result-
ing destination array, and p is an array of pointers.

Usage. Follow these steps to perform a gather operation (or multiple gather opera-
tions, sequentially):

’ 1. Call part_gather_setup.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 505



Partitloned Gather Utility CMSSL for M Fortran (CM-5 Edmon)

506

2. Call part_gather or part_vector_gather.

To perform more than one gather operation using the same sparsity (gathering
pattern), follow one call to part_gather_setup with multiple calls to part_gather
and/or part_vector_gather. (You may intersperse calls to these two routines.) If
the sparsity changes, start with Step 1 again.

3. After all part_gather and part_vector_gather calls associated with the same
part_gather_setup call, call deallocate_part_gather_setup to deallocate the pro-
cessing node storage space required by the setup routine.

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine.

Setup Phase. The part_gather_setup routine analyzes the gathering pattern supplied
by the application in the p argument. Using p and y_mask, part_gather_setup computes
an optimization, or trace, for the communication required by the gather operation; al-
locates the required storage space; and saves the trace for use in subsequent calls to the
part_gather or part_vector_gather routine. The setup routine assigns appropriate value
to the internal variable trace, which must be supplied in subsequent calls to part_
gather, part_vector_gather, and deallocate_part_gather_setup.

The saving of the trace saves communication time, particularly when one setup call is
amortized by several gather operations.

Gather Phase. The part_gather and part_vector_gather routines gather elements or
vectors, respectively, from x into y, using the communication pattern saved by a pre-
vious call to part_gather_setup.

As long as the arguments supplied to part_gather_setup remain the same (except for
y_mask; see above), the application can call part_gather and/or part_vector_gather
multiple times following one call to part_gather_setup, each time supplying trace, a
mask, and a source array, x, and receiving in return a destination array, y.

Deallocation Phase. The dealiocate_part_gather_setup routine deallocates the extra
storage space that part_gather_setup allocated for saving the trace. Each part_gather_
setup call should be followed (after one or more associated calls to part_gather and/or
part_vector_gather) by a deallocate_part_gather_setup call.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 1 4 Comumcanon Przmmves Partitioned Gather Utlllty

NOTES

Trace Deallocation. It is strongly recommended that you call deallocate_part_
gather_setup as soon as the associated gather operations have finished, as the trace
typically occupies a significant amount of processing node storage.

Permutation of the Source Array. Some applications require permutation of the
source array prior to the gather operation. This permutation is the responsibility of the
user application and is not performed by part_gather_setup, part_gather, or part_
vector_gather.

EXAMPLES

j Sample CM Fortran code that uses the partitioned gather and scatter utilities can be
found on-line in the subdirectory

partitioning/cmf/ .

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 507



CMSSL for CM Fortran (CM-5 Edition)
e A Sy

14.11 Partitioned Scatter Utility

The partitioned scatter utility that performs the same operations as the sparse
scatter and sparse vector scatter routines. If you supply a pointers array that is
reordered along its last axis to achieve data locality, the partitioned scatter takes
advantage of this locality, reducing communication time.

If your pointers are derived from a mesh, you can produce a partitioned pointers
array using the partition_mesh and reorder_pointers routines described in Section
14.9.

The partitioned scatter utility is described in the man page that follows.

Version 3.1 Beta 2, January 1993
508 Copyright © 1993 Thinking Machines Corporation




Chapter

Comunication Primitives

Partitioned Scatter Utility

R R S e F R

Partitioned Scatter Utility

Given a source array, a destination array, and a pointers array containing a scattering pat-
tern, the routines described below scatter elements or vectors from the source array to the
destination array. If the pointers array is reordered along its last axis to achieve data local-
ity, communication time is reduced.

SYNTAX

part_scatter_setup (p, x_mask, y_template, trace, ier)
part_scatter (y, x, x_mask, trace)
part_vector_scatter (y, x, x_mask, trace)

deallocate_part_scatter_setup (trace)

ARGUMENTS

y4 One-based integer CM array whose dimensions must satisfy the
following conditions:

* p must have the same rank and axis extents as the array x

you supply in any subsequent associated call to part_
scatter.

® p must have the same rank and axis extents as the subar-
ray, formed by omitting the left-most axis, of the array x
you supply in any subsequent associated call to part_
vector_scatter.

The array p contains pointers that indicate the scattering pattern,
as follows. If x_mask(py, ..., p¢) = .true. and element (py, ..., pr)
of p contains the value n, then

» A subsequent call to part_scatter adds element x(py, ...,
Dx) of the source array to destination element y(n).

* A subsequent call to part_vector_scatter adds the vector
x(:, p1, ..., Px) to the vector y(:, n) within the destination
array.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 509



510

Partitioned Scatter Utili

x_mask

y_template

ty

R R R TR

CMSSL for CM Fortran (CM-5 Edition)

A i

If two or more source array elements are sent to the same
destination array element, the colliding destination values are
added

The contents of p remain unchanged by part_scatter_setup.

If p has been reordered along its last axis to achieve data locality,
part_scatter_setup takes advantage of this locality and
communication time is reduced.

If you need to mask elements of x, declare x_mask as a logical CM
array with the same axis extents and layout directives as

* The array x you supply in any subsequent associated call
to part_scatter, or

*  The subarray, formed by omitting the left-most axis, of
the array x you supply in any subsequent associated call
to part_vector_scatter.

Set to .true. the elements that correspond to active elements of x.
Only those source array elements (or vectors) for which the mask
is true are sent to the destination array. Elements of p
corresponding to masked locations of the source array are
ignored. The contents of x_mask remain unchanged by part_
scatter_setup.

If you do not need to mask elements of x, you can conserve
processing node memory by supplying the scalar logical value
true. for x_mask.

You may set any component of x_mask to .false. during the course
of the computation without calling the setup routine again.
However, a component of x_mask that has been set to .false.
before the part_gather_setup call cannot be set to .true. during the
computation.

CM array of any type with the same axis extent and layout
directives as

* The array y you supply in any subsequent associated call
to part_scatter, or

* The subarray, formed by omitting the left-most axis, of
the array y you supply in any subsequent associated call to
part_vector_scatter.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14, Comumcanon Prlmttzves Partltloned Scaﬂer Ut|||ty

The setup routine uses only the shape and layout of this routine,
ignoring the contents.

y CM array of any type and rank 1 (in a call to part_scatter) or 2 (in
a call to part_vector_scatter). The part_scatter routine adds the
scattered elements from x to the initial values of y. The
part_vector_scatter routine adds the scattered vectors from x to the
initial values of the vectors that lie along the left-most axis of y.
This axis must be declared :serial, and must have the same extent
as the left-most axis of x.

x CM array of arbitrary shape and of the same type and precision as
y. Source array from which elements or vectors are scattered. All
axes must be declared :serial except the last axis, which must have
canonical (:news) layout. In a call to part_vector_scatter, you must
declare x with an extra left-most, :serial axis with the same extent
as the left-most axis of y. The vectors to be scattered must lie
along this left-most axis of x. The contents of x remain unchanged
by part_scatter and part_vector_scatter.

trace Scalar integer variable. Internal variable. The initial value
supplied to part_scatter_setup is ignored. You must supply part_
scatter, part_vector_scatter, and deallocate _part_scatter_setup
with the value assigned to frace by part_scatter_setup.

DESCRIPTION

Definition. The scatter operation is defined by

where (x_mask) y(p|+) = x (part_scatter)
where (x_mask) y(:, p|+) = x (part_vector_scatter)

where x is the array from which elements or vectors are being scattered, y is the result-
ing destination array, and p is an array of pointers.

Usage. Follow these steps to perform a scatter operation (or multiple scatter opera-
tions, sequentially):

1. Call part_scatter_setup.

2. Call part_scatter or part_vector_scatter.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 511



Partition

To perform more than one scatter operation using the same sparsity (scattering
pattern), follow one call to part_scatter_setup with multiple calls to part_
scatter and/or part_vector_scatter. (You may intersperse calls to these two rou-
tines.) If the sparsity changes, start with Step 1 again.

3. After all part_scatter and part_vector_scatter calls associated with the same
part_scatter_setup call, call the deallocate_part_scatter_setup routine to deal-
locate the processing node storage space required by the setup routine.

You may have more than one setup active at a time; that is, you may call the setup
routine more than once without calling the deallocation routine. However, calling the
setup routine repeatedly without calling the deallocation routine may cause you to run
out of memory. It is therefore strongly recommended that you call deallocate_
part_scatter_setup as soon as you have finished the associated scatter operations.

Setup Phase. The part_scatter_setup routine analyzes the scattering pattern supplied
by the application in the p argument. Using p and x_mask, part_scatter_setup assigns
appropriate values to the internal variable trace, which must be supplied in subsequent
calls to part_scatter and part_vector_scatter.

Scatter Phase. The part_scatter and part_vector_scatter routines scatter elements or
vectors, respectively, from x and add them to the initial values of y, using the informa-
tion returned by a previous call to the part_scatter_setup routine.

As long as the arguments supplied to part_scatter_setup remain the same (except for
x_mask; see above), the application can call part_scatter and/or part_vector_scatter
multiple times following one part_scatter_setup call, each time supplying a source
array, x, and a mask, x_mask, and receiving in return a destination array, y.

Deallocation Phase. The deailocate_part_scatter_setup routine deallocates the extra
storage space that the setup routine allocated. Each call to the setup routine should be
followed (after one or more calls to part_scatter and/or part_vector_scatter) by a
deallocate_part_scatter_setup call.

EXAMPLES

Sample CM Fortran code that uses the partitioned gather and scatter utilities can be
found on-line in the subdirectory partitioning/cmf/ of a CMSSL examples direc-
tory whose location is site-specific.

S12

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives

S SR S S S TR

S

14.12 Computation of Block Cyclic Permutations

The compute_fe_block_cyclic_perms routine computes the permutations required
to transform any matrix from normal (elementwise consecutive) order to block
cyclic order, and vice versa. Many CMSSL routines use compute_fe_block_cy-
clic_perms internally because they operate on matrices in block cyclic order to
achieve improved performance.

The compute_fe_block_cyclic_perms routine only computes
block cyclic permutations; it does not apply any permutations
to the supplied matrices. To apply the block cyclic permuta-
tions, use the permute_cm_matrix_axis_from_fe routine,
described in Section 14.13.

The LU and QR routines described in Chapter 5 are examples of CMSSL routines
that operate on matrices in block cyclic order. As a result, the L and U factors
produced by the gen_ lu_get_I and gen_lu_get_u routines, and the R factor pro-
duced by the gen_gr_get_r routine, are in block cyclic order. The compute_fe_
block_cyclic_perms routine is useful in conjunction with the LU and QR routines
if you want to obtain the L and U factors or the R factor in elementwise consecu-
tive order. An example of this use of compute_fe_block_cyclic_perms is given in
Section 14.12.2.

The compute_fe_block_cyclic_perms routine supports multiple instances in the
sense that you supply it with one or more matrices embedded in a CM array. The
matrices must all have the same dimensions; therefore, they all have the same
block cyclic permutations, and compute_fe_block_cyclic_perms computes only
one set of permutations for all the instances. The “multiple-instance” format of
the routine is provided for compatibility with the QR and LU operations, and with
the permute_cm_matrix_axis_from_fe routine, which applies permutations to
multiple matrices at a time.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 513



tion)
R

14.12.1 Blocking, Load Balancing, and Block Cyclic Ordering

514

. One way to understand block cyclic ordering is to consider the CMSSL routines
that use blocking and load balancing (which is achieved through cyclic ordering)
to achieve improved performance. Examples of such routines are

=  The LU (Gaussian elimination) routines (described in Chapter 5).
® The QR routines (described in the Chapter 5).

= The routines that perform Householder reduction of Hermitian matrices to
real symmetric tridiagonal form and corresponding basis transformation
(described in Chapter 8).

Blocking

In the strategy called blocking, routines operate on and transfer blocks of data
rather than single data elements. Each block resides in the memory associated
with a parallel processing node. Blocking results in fewer vector-vector opera-
tions and more matrix-vector (level 2 BLAS) operations, which, when local to
a node, can yield very high performance.

When you call a routine that uses blocking, you supply a blocking factor (usually
denoted by nblock in the argument list) that determines the block size. For exam-
ple, if you call the LU factorization routine, gen_lu_factor, and supply a block
size of b, then in its Gaussian elimination process, gen_lu_factor eliminates b
variables at a time by subtracting multiples of b equations from all later equa-
tions. For more information about blocking, see reference 6 in Section 14.16.

Load Balancing

In an elimination operation that does not use load balancing, the elimination runs
through the columns of the matrix in order. As a result, the number of active
nodes decreases as the factorization proceeds. For example, if A is an (m X n)
matrix distributed across an array of nodes by assigning a contiguous p by ¢
chunk of 4 to each node, then each node contains p consecutive rows and g con-
secutive columns of A. Thus, the first column of nodes contains the first g

columns of A. After g elimination steps, all the columns of A4 in the first column -

of nodes will have been processed. Thus, after g steps, an entire column of nodes
becomes inactive. Similarly, after p steps, the first row of nodes becomes inac-
tive.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Suppose instead that the columns are processed in cyclic order (column 1 of the
first column of nodes, then column 1 of the second column of nodes, and so on).
Then as columns are eliminated, the active subgrid on each node shrinks, but no
node becomes completely inactive until the last column is eliminated from some
column of nodes. This strategy, called cyclic ordering, achieves load balancing:
that is, it increases the number of nodes that are active at any one time. For more
information about cyclic ordering, see reference 6 in Section 14.16.

Blocking and Load Balancing Combined: Block Cyclic Ordering

When blocking and load balancing are combined, a routine computes on a block
of columns or rows as a unit. For example, rather than updating a matrix a single
column at a time, a routine performs a block update of a number of columns.
That is, the load balancing scheme processes blocks, rather than single columns,
in cyclic order. In fact, some CMSSL routines eliminate columns and rows in
block cyclic order.

For example, if you choose the block size to be b, the QR or LU factorization
routine eliminates columns and rows in the following order:

* Columns 1 through b of the first column of node, along with rows 1
through b of the first row of nodes.

* Columns 1 through b of the second column of nodes, along with rows 1
through & of the second row of nodes; and so on.

After eliminating b columns from each column of nodes, the routine returns to
columns b + 1 through 2b of node column 1, and so on.

The permutations computed by the compute_fe_block_cyclic_perms routine are
those required to transform the rows and columns of a given matrix from normal
(elementwise consecutive) order to block cyclic order, and vice versa. For exam-
ple, the permutation that transforms the columns from elementwise consecutive
order to block cyclic order (with a blocking factor of b) does the following:

= Moves the first b columns of the original matrix into columns 1 through
b of the first column of nodes.

* Moves the next b columns of the original matrix into columns 1 through
b of the second column of nodes; and so on until the first b columns of each
column of nodes have been filled.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 515



=  Moves the next b columns of the original matrix are moved to columns b
+ 1 through 2b of node column 1.

®=  Continues this pattern until all columns of the original matrix have been
moved.

This description is approximate; the exact details involve operations on quanti-
ties of data that are not exact multiples of b rows and columns.

Choosing the Blocking Factor

As mentioned above, the CMSSL routines that operate on matrices in block cyclic
order require you to supply the blocking factor in the nblock argument. The opti-
mum block size depends on the routine you are calling and the details of your
application. For example, for the QR routines (described in Chapter 5), nblock =
4 is a good choice for typical applications; for very large matrices, nblock = 8
or even 16 may yield faster factorization. On the other hand, if you specify pivot-
ing with the QR routines, the current implementation requires nblock = 1.
Specific requirements for nblock are documented in the man pages for the vari-
ous routines.

The blocking factor you supply when you call compute_fe_block_cyclic_perms
depends on the context of the call. If you are using compute_fe_biock_cy-
clic_perms to “undo” the block cyclic ordering of an L, U, or R factor, supply the
same blocking factor you supplied in the original LU or QR factorization call.

14.12.2 Obtaining L, U, and R Factors in Elementwise Consecutive

516

Order

Because the LU and QR routines operate in block cyclic order, the L, U, and R
factors produced by the gen_iu_get_|, gen_lu_get_u, and gen_gr_get_r routines,
resepctively, are stored in block cyclic order. The compute_fe_block_cyclic_
perms routine is useful if you want to permute L, U, or R to “undo” the block
cyclic ordering. To obtain a factor in elementwise consecutive order, you must
follow these steps:

1. Before factoring the matrices embedded in a CM array A, compute their
block cyclic permutations by supplying A to compute_fe_block_cyclic_
perms.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation




Chapter 14. Comunication Primitives
R R SRR 3 e S R SR Ry

2. Use permute_cm_matrix_axis_from_fe to permute the columns and rows of
the matrices embedded in A to block cyclic order.

3. Use gen_lu_factor or gen_gr_factor to factor the matrices in A. (The factor-
ization routine works in block cyclic order, but since you already
permuted the matrices to block cyclic order in Step 1, the factorization
actually occurs in elementwise consecutive order.)

4. Use permute_cm_matrix_axis_from_fe to permute the columns and rows of
the factors from block cyclic order back to elementwise consecutive order.

This strategy is illustrated in the on-line sample code. (See the man page at the
end of this section for the pathname.)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 517



Computation of Block Cyclic Permutations CMSSL for CM Fortran (CM-5 Edition)

Computation of Block Cyclic Permutations

Given a block size and a CM array containing one or more embedded matrices, the
compute_fe_block_cyclic_perms routine computes the permutations required to transform
the rows and columns of the matrices from elementwise consecutive order to block cyclic

order, and vice versa.

SYNTAX

compute_fe_block_cyclic_perms (A, nl, n2, row_axis, col_axis, nblock,

£, foinv, g, g_iny, ier)

ARGUMENTS
A

nl

n2

row_axis

col_axis

nblock

518

CM array of any data type and rank greater than or equal to 2,
containing one or more instances of a matrix for which you
want to compute the block cyclic permutations. Only the rank,
axis extents, and layout directives of this array are used; its
contents are ignored.

Scalar integer variable. The number of rows in each matrix
embedded in A. Must be > n2.

Scalar integer variable. The number of columns in each
matrix embedded in A. Must be < nl.

Scalar integer variable. Identifies the axis that counts the rows
of each matrix embedded in A. Axis row_axis must have
length > nl.

Scalar integer variable. Identifies the axis that counts the
columns of each matrix embedded in A. Axis col_axis must
have length > n2.

Scalar integer variable. The blocking factor upon which the
block cyclic permutations are to be based.

Front-end integer array of rank 1 and length > nl. Upon
return, the first nl elements contain the permutation that

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



finv

g_inv

ier

Version 3.1 Beta 2, January 1993

Chapter 14. Comunication Primitives Computation of Block Cyclic Permutations
peeasen: SRS SRS S S % S

R S A

transforms the rows of each matrix from elementwise
consecutive order to block cyclic order. Note: this
permutation has no effect on the element ordering within a
given row.

Front-end integer array of rank 1 and length > nl. Upon
return, the first nl elements contain the permutation that
transforms the rows of each matrix from block cyclic order to
elementwise consecutive order. Note: this permutation has no
effect on the element ordering within a given row.

Front-end integer array of rank 1 and length > n2. Upon
return, the first n2 elements contain the permutation that
transforms the columns of each matrix from elementwise
consecutive order to block cyclic order. Note: this
permutation has no effect on the element ordering within a
given column.

Front-end integer array of rank 1 and length > n2. Upon
return, the first n2 elements contain the permutation that
transforms the columns of each matrix from block cyclic
order to elementwise consecutive order. Note: this
permutation has no effect on the element ordering within a
given column.

Scalar integer variable. Set to 0 upon successful completion.
The compute_fe_block_cyclic_perms routine can fail under

any of the following conditions:

-1 The A you supplied is not a CM array.

-2 The rank of A is < 2.

-3 row_axis has length < nl.

-4 col_axis has length < n2.

-20  One of the permutation arrays has length < 0.

-30  row_axis or col_axis is < 0 or > rank(A4), or
row_axis = col_axis.

Copyright © 1993 Thinking Machines Corporation 519



Computation of Block Cyclic Permutations CMSSL for CM Fortran (C.

'M-5 Editio
5 SR R R B

SRR

DESCRIPTION

Given a block size and a CM array A containing one or more embedded matrices, the
compute_fe_block_cyclic_perms routine computes the permutations required to trans-
form the rows and columns of the matrices from elementwise consecutive order to
block cyclic order, and from block cyclic order to elementwise consecutive order.

The permutations f and f_inv are called row permutations. Each row moves as a whole
unit; the elements within each column are reordered. The arrays fand f_inv must have
length at least nl.

The permutations g and g_inv are called column permutations. Each column moves as
a whole unit; the elements within each row are reordered. The arrays fe_col_axis_
perm and g_inv must have length at least n2.

The values in the front-end arrays are the destinations of the corresponding row or
column elements. For example, the row permutation into block cyclic order is given
by the mapping

A(L D) ————  A(f0),0)
while the column permutation out of block cyclic order is given by the mapping

A(: ) — = A(:, g_inv(i)

where A is a matrix embedded in A. For a detailed description of block cyclic order,
refer to Section 14.12.1.

EXAMPLES

Sample CM Fortran code that uses the compute_fe_block_cyclic_perms routine can be
found on-line in the subdirectory

lu/cmf/

of a CMSSL examples directory whose location is site-specific.

520

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation




Chapter 14. Comunication Primitives

e

14.13 Permutation Along an Axis

- The permute_cm_matrix_axis_from_fe routine permutes the rows or columns of
one or more matrices, using a permutation that is supplied in a front-end array.

The man page on the next page describes this routine and its arguments in detail,
and defines row and column permutations. Figure 47 illustrates a row permuta-
tion where

np=4, ng=6, f=[2 41 3]

T X11 X12 X13 X14 X15 X16| X17 X18 X31 X32 X33 X34 X35 X36| X17 X18
n_p X21 X22 X23 X24 X25 X26| X27 X28 X11 X12 X13 X14 X15 X16]X27 X28
X31 X32 X33 X34 X35 X36| X37 X338 X41 X42 X43 X44 X45 X46| X37 X38
T i X41 X42 X43 X44 X45 Xa6| X47 X48) 7 7| X1 X2 X33 X24 X25 X26| X47 X48
) X51 X52 X53 X54 X55 X56 X57 X58 Xs51 X572 X53 Xs54 X55 X56 X57 Xs58
axis.p | X6l X2 X63 X64 X65 X66 X67 X68 X61 X62 X63 X64 X65 X66 X67 X68
n_q - - -
axis_q —»
Original matrix Permuted matrix

Figure 47. A row permutation.

Figure 48 illustrates a column permutation where

np=6, nqg=4, f=[352614]

T X11 X12 X13 X4 X15 X16) X17 X18 X15 X13 X11 X16 X12 X14f X17 X18
n_q X21 X22 X23 X24 X35 X24 X27 X28 X25 X23 X21 X26 X220 X24f X27 X28
=%] X31 X32 X33 X34 X35 X3¢ X37 X338 X35 X33 X31 X36 X32 X34| X37 X338
Tl X41 X42 %43 K44 Xq5 X4 %47 Xa8 | 77| X45 X43 X41 X46 X42 X44| X47 X48
. Xs51 Xs52 X53 Xs4 X55 X56 X57 X58 Xs51 X52 Xs53 X54 X55 X56 X57 Xs8
axis_q _x61 X62 X63 X64 X65 X66 X67 X68 X61 X62 X63 X64 X65 X66 X67 X68
n_p - - -
axis_p ——
Original matrix Permuted matrix

Figure 48. A column permutation.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 521



Permutation Along an Axis CMSSL for CM Fortran (CM-5 Edition)
R AR AR SRR AR RGPS R B

R

Permutation Along an Axis

Given a CM array containing one or more embedded matrices, a front-end array containing
a permutation, and a choice of row or column axis, the permute_cm_matrix_axis_from_fe
routine permutes each matrix along the specified axis.

SYNTAX

permute_cm_matrix_axis_from_fe (4, n_p, n_g, axis_p, axis_g, f, ier)

ARGUMENTS

A CM array of any data type and rank greater than or equal to 2,
containing one or more embedded matrices whose rows or
columns you want to permute.

n_p Scalar integer variable. The active length of axis axis_p. Also the
length of the permutation to be applied to axis axis_p.

n_q Scalar integer variable. The active length of axis axis_g.

axis_p Scalar integer variable. Identifies the axis along which elements
are to be permuted. This axis counts either the rows or the
columns of the matrices embedded in A.

axis_q Scalar integer variable. Identifies the matrix axis other than
axis_p.

f Integer front-end array of rank 1 and length > n_p. The first n_p
elements of f must contain the new locations to which the first n_p
elements along axis_p of each matrix are to be mapped.

ier Scalar integer variable. Set to 0 upon successful completion. The

permute_cm_matrix_axis_from_fe routine can fail under any of the
following conditions:

-1  The A you have supplied is not a CM array.
-2 Therankof A is < 2.
-3 axis_p has length < n_p.

Version 3.1 Beta 2, January 1993
522 Copyright © 1993 Thinking Machines Corporation




- Chapter 1 4 Comumcanon anmves Permutatlon Along an Axls

-4  axis_g has length < n_gq.

-20  The f array has length < 0.

-30  axis_p or axis_q is < 0 or > rank(4),
or axis_p = axis_q.

i DESCRIPTION

Given a CM array A containing one or more embedded matrices, a front-end array f
containing a permutation, and a choice of row or column axis (axis_p), the
permute_cm_matrix_axis_from_fe routine permutes each matrix along axis_p.

If axis axis_p counts the rows, then the permutation is applied to the first n_p elements
of each of the first n_g columns. This operation is called a row permutation because the
first n_q elements of each row (up to row n_p, inclusive) move together as a whole
unit.

\ If axis axis_p counts the columns, then the permutation is applied to the first n_p ele-

‘ ments of each of the first n_qg rows. This operation is called a column permutation

| { . because the first n_g elements of each column (up to column n_p, inclusive) move
together as a whole unit.

The operation performed by this routine can be summarized as follows:

A(,”i!’J!”’) = A(”’ﬂi)”ii””’);
1 <i < nl along axis_p
1 <j < n2 along axis_q

A matrix element is not used in or affected by the permutation if its CM Fortran sub-
| . script in the axis_p dimension is greater than n_p, or if its CM Fortran subscript in the
axis_q dimension is greater than n_g.

If fis the permutation f or f_inv computed by the compute_fe_block_cyclic_perms rou-
tine, then to transform the rows into or out of block cyclic order, you must set axis_p,
axis_g, n_p and n_q to the same values as row_axis, col_axis, nl, and n2, respectively,
in the compute_fe_block_cyclic_perms call.

Similarly, if f is the permutation g or g_inv computed by the compute_fe_block_
cyclic_perms routine, then to transform the columns into or out of block cyclic order,
you must set axis_p, axis_g, n_p, and n_q to the same values as col_axis, row_axis, n2,
| and nl, respectively, in the compute_fe_block_cyclic_ perms call.

‘ Version 3.1 Beta 2, January 1993
‘ Copyright © 1993 Thinking Machines Corporation 523



Permutation Along an Axis CMSSL for CM Fortran (CM-5 Edition)
SR R RN S S MRS

EXAMPLES

Sample CM Fortran code that uses the permute_cm_matrix_axis_from_fe routine can be
found on-line in the subdirectory '

lu/cmf/

of a CMSSL examples directory whose location is site-specific.

Version 3.1 Beta 2, January 1993
524 Copyright © 1993 Thinking Machines Corporation




Chapter 14. Comunication Primitives

R R O RS S

14.14 Send-to-NEWS and NEWS-to-Send Reordering

On the CM-200, the send_to_news and news_to_send routines allow you to
change the ordering of specified axes of a CM array from send to NEWS ordering
or vice-versa.

On the CM-5, these routines have no effect, since NEWS and send ordering are
the same. They are provided only for compatibility with the CM-200. (Refer to
the CM Fortran documentation set for information about send and NEWS order-

ing.)

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 525



Send-to-NEWS and NEWS-~to-Send Reorderi

ng CMSSL for CM Fortran (CM-5 Edition)

R

Send-to-NEWS and NEWS-to-Send
Reordering

On the CM-200, given a CM array of any rank or type, the send_to_news and news_to_send
routines change the ordering of specified axes of the array by shuffling the data in place.
On the CM-5, these routines have no effect because send and NEWS ordering are the same.
They are provided only for compatibility with the CM-200.

SYNTAX

send_to_news (4, B, xform_vector)
news_to_send (4, B, xform_vector)

ARGUMENTS
A Integer front-end array of rank 1 and length CMSSL_DESC_
LENGTH (a symbolic constant defined in the include file cmss1-
cmf . h).
B CM array of any rank and type. Each B axis to be reordered must
be a power of 2 in length.
xform_vector Logical front-end vector of length equal to the rank of B,
indicating which axes of B are to be reordered.
DESCRIPTION

On the CM-200, the send_to_news and news_to_send routines reorder the CM array B
in place and, by creating a CM array descriptor in A, allow you to use the reordered
source array in a subroutine.

On the CM-5, these routines have no effect because send and NEWS ordering are the
same.

Version 3.1 Beta 2, January 1993
526 Copyright © 1993 Thinking Machines Corporation




Chapter 14. Comunication Primitives

Send~to~-NEWS and NEWS-to-Send Reordering

SO

NOTES

Header File Required. Be sure to include the header file cmssl-cmf .h in any pro-
gram that uses the send_to_news and news_to_send routines. This header file defines
the symbolic constant CMSSL_DESC_LENGTH.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 527



CMSSL for CM Fortran (CM-5 Edition)

14.15 Communication Compiler

The CMSSL provides a set of routines, referred to collectively as the communica-
tion compiler, that compute and use message delivery optimizations for basic
data motion and combining operations. The data motion and combining opera-
tions are similar to those performed by the CM Fortran utilities CMF_SEND_
combiner (for example, CMF_SEND_ADD), which are described in the CM For-
tran User s Guide. :

A message is a piece of data that must get from a source location to a destination
location. The set of all messages that must be delivered during an operation such
as a get or a send is called the communication pattern. The communication com-
piler allows you to compute an optimization, or trace, for a communication
pattern just once, and then use it many times in subsequent operations. This fea-
ture can yield significant time savings (with an associated memory cost) in
applications that use the same communication pattern repeatedly. The process of
computing a trace for later use is sometimes referred to as compilation of the
trace.

The communication compiler offers a variety of methods for computing a trace.
You can either select a method suited to your application, or allow the communi-
cation compiler to choose an appropriate method based on the number of times
you plan to perform a specific operation.

14.15.1 Communication Compiler Routines

528

The communication compiler includes the following routines:

®  Setup routine: comm_setup

This routine computes a trace for a specified type of operation, using a
selected trace compilation method. You must supply the setup routine with
the shapes and layouts of the source and destination arrays on which you
will be operating, and with the destination locations to which source ele-
ments are to be moved (for a send operation) or the source locations from
which elements are to be moved to the destination (for a get operation).
The setup routine computes a trace that can only be used on the current
partition size. It allocates processing node and partition manager memory
for storing the trace and related information. It returns an integer, trace,
that contains a pointer to the partition manager memory where informa-
tion about the trace (including pointers to processing node fields) is stored.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



b

Chapter 14. Comunication Primitives

®* Data motion and combining routines:

comm_get comm_send_max
comm_send comm_send_min
comm_send_add comm_send_or
comm_send_and comm_send_xor

Each of these routines uses a trace previously computed by the setup rou-
tine to perform the specified operation.

Compilation option routine: comm_set_option

This routine selects an option that prints error information. On the
CM-200, this routine also selects options that can help optimize trace com-
pilation and message delivery. The optimization options are not available
in this CM-5 release, as they affect only those compilations performed us-
ing the FastGraph method (which is also unavailable in this release on the
CM-5).

Deallocation routine: deallocate_comm_setup

This routine deallocates the memory that comm_setup allocated to store
a trace. Once this memory is deallocated, the specified trace can no longer
be used.

NOTE

The trace saving and restore routines, comm_save_trace and
comm_restore_trace, available on the CM-200, are currently un-
available on the CM-5. Attempts to call these routines on the
CM-5 result in an error code.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 529



CMSSL for CM Fortran (CM-5 Edition)

14.15.2 How to Use the Communication Compiler

530

The trace computed by the setup routine can be used for any operation that satis- .

fies the following conditions:

= The type of operation must match the operation type you specified in the
setup call. (The setup routine uses the same operation type for the
comm_send_add, comm_send_and, comm_send_max, comm_send_min,
comm_send_or, and comm_ send_xor operations, as these operations re-
quire the same setup action. A trace computed for any of these operations
can be used for any of the others, assuming the other two conditions are
met.)

= The source and destination arrays must have the same rank, axis extents,
and layout directives as in the setup call.

= The source and destination arrays must have the same data type, and that
data type must be valid for the operation to be performed.

You can follow a setup call with multiple calls to the data motion and combining
routines, as long as the above conditions are met. The arguments you supplied
in the setup call determine how data is moved in the associated data motion and
combining routine calls. You can also have more than one trace allocated at a
time; the only limit on the number of concurrently active traces is the amount of
memory.

To compute a trace and use it in the same program run, follow these steps:

1. Call comm_setup to allocate processing node memory and compute the
trace.

2. Call the desired data motion or combining routine. (You can repeat this
step an arbitrary number of times.)

3. Call deallocate_comm_setup.

If you want to set a compilation option, call the comm_set_option routine prior
to calling the setup routine.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



R

Chapter 14. Comunication Primitives

NOTE

The arrays you supply to the communication compiler must be
one-based.

For detailed information about the communication compiler routines, see the
man page that follows.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 531




Communication C

omplier CMSSL
e R s

Communication Compiler

Given a source array, a destination array, and gathering or scattering coordinates, the rou-
tines described below compute and use message delivery optimizations for basic data
motion and combining operations.

SYNTAX

trace = comm_setup (y, p, X, {x|y}_mask, operation, method, ier)
comm_get (y, trace, x, ier)

comm_send (y, trace, x, ier)

comm_send_add (y, trace, x, ier)

comm_send_and (y, trace, x, ier)

comm_send_max (y, trace, x, ier)

comm_send_min (y, trace, x, ier)

comm_send_or (y, trace, x, ier)

comm_send_xor (3, trace, x, ier)

comm_set_option (option, value, ier)

deallocate_comm_setup (trace)

ARGUMENTS

In the following argument descriptions, the comm_get, comm_send, comm_send_add,
comm_send_and, comm_send_max, comm_send_min, comm_send_or, and comm_
send_xor routines are referred to as data motion and combining routines.

The message delivery optimization for a given operation is referred to as a trace.

trace Scalar integer variable. Returned by comm_setup; contains the
address of a scalar structure that contains information necessary
to deliver the data, including CM addresses. When you call one of

Version 3.1 Beta 2, January 1993
532 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives Communication Compiler

SRR 3

the data motion or combining routines, you must supply the trace
value returned by comm_setup.

When you call dealiocate_comm_setup, supply the value
representing the trace you want to deallocate.

One-based CM array. When you call comm_setup, the contents of
y are ignored; only the shape and layout are used. If you are
computing a trace for a get operation, y can have any rank < 6. If
you are computing a trace for any of the send operations, y can
have any rank < 7.

When you call a data motion or combining routine, y must have
the same rank, axis extents, and layout directives as the y you
supplied in the comm_setup call that created the trace you are
using. This is the array to which elements of x will be moved,; it
should have the same data type as x. The valid data types depend
on the operation you are performing; see the Description section
for details.

One-based integer CM array that defines the gathering
coordinates (the source locations from which active destination
elements fetch their new values) for a get operation, or the
scattering coordinates (the destination locations to which source
array elements are to be moved) for the various send operations.

If you are computing a trace for comm_get, p must satisfy the
following conditions:

®* The rank of p must be one greater than the rank of y.

=  The extra axis of p must be last, have extent greater than
or equal to the rank of x, and be declared as :serial.

* The remaining axes of p must match the axes of y in order
of declaration, extents, and layout directives.

* If y has rank » and x has rank m, then to gather data into

YO'1, Y25 - - - Yn) from x(xy, x2, . . ., %), SEL PYL, Y2, - -
Y q) =xgforl<g<m.

If you are computing a trace for comm_send, comm_send_add,
comm_send_and, comm_send_max, comm_send_min, comm_
send_or, or comm_send_xor, p must satisfy the following
conditions:

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 533



COmmumcation Compiler CMSSL for CM Fortran ( CM-5 Edmon)

534

{xly}_mask

operation

® The rank of p must be one greater than the rank of x.

= The extra axis of p must be last, have extent greater than
or equal to the rank of y, and be declared as :serial.

® The remaining axes of p must match the axes of x in order
of declaration, extents, and layout directives.

® If y has rank n and x has rank m, then to send data from

x(xh X2y ¢ v oy xm) to .Y()’ls ) T yn)s Setp(xls X25 + « <5 Xms
g =y forl<gzn

One-based CM array. When you call comm_setup, the contents of
x are ignored; only the shape and layout are used. If you are
computing a trace for a get operation, x can have any rank < 7. If
you are computing a trace for any of the send operations, x can
have any rank < 6.

When you call a data motion or combining routine, x must have
the same rank, axis extents, and layout directives as the x you
supplied in the comm_setup call that created the trace you are
using. This is the array whose elements will be moved into y; it
should have the same data type as y. The valid data types depend
on the operation you are performing; see the Description section
for details.

If you are computing a trace for a get operation, this argument is
a mask for y. It can be either a logical CM array with the same
shape and layout as y, or the scalar value .TRUE.. Only those
elements of y that correspond to true y_mask values are
overwritten.

If you are computing a trace for any of the send operations, this
argument is a mask for x. It can be either a logical CM array with
the same shape and layout as x, or the scalar value .TRUE.. Only
those elements of x that correspond to true x_mask values are
moved into y.

Scalar integer variable that specifies the operation for which you
plan to use the trace. Can be any of the following symbolic
constants:

CMSSL_comm_by_get
CMSSL_comm_by_send

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives Communication Compiler

method

CMSSL_comm_by_send_overwrite
CMSSL_comm_by_send_with_op

The values CMSSL_comm_by_send and CMSSL_comm_by_send_
overwrite both represent the comm_send operation, but they
request different behavior with respect to collisions. (In a comm_
send operation, two or more source elements are said to collide if
they are sent to the same destination array location.) If the
scattering coordinates you supply contain collisions, CMSSL_
comm_by_send informs you of this condition by returning ier =
-4, while CMSSL_comm_by_send_overwrite does not return an
error. The code ier = -4 is only a warning; the trace computed by
CMSSL_comm_by_send is valid. For details about collision
handling, see the Description section.

The value CMSSL_comm_by_send_with_op represents the comm_
send_add, comm_send_and, comm_send_max, comm_send_min,
comm_send_or, and comm_ send_xor operations.

Usually a one-dimensional integer front-end array. The first
element specifies the method to be used in computing the trace,
and must have one of the values listed below. Some methods
require additional information which you must supply in
subsequent elements, as described below. The array may have any
length; the elements beyond those that are required are ignored.
If you choose a method that does not require any additional
information, you may define method as a scalar integer with one
of the values listed below.

CMSSL_method_automatic

Selects on¢ of the trace compilation methods based on your
estimate of how many times this trace will be used before it
is discarded. You must specify this estimate in method(2). If
method(2) is a large number, the setup routine will choose a
method that is likely to require more time for trace generation,
but yield faster communication. If method(2) is a small num-
ber, the setup routine will choose a method that is likely to
minimize the trace generation time. In particular:

»  If method(2) < 3, CMSSL_method_nop is used.

* If 3 < method(2) < 999, the method is chosen as fol-
lows: :

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 535



Communi

cation Compiler CMSSL for CM Fortran (CM-5 Edition)

S R R R A S AR R AT SRR

= If operation is CMSSL_comm_by_get and the
maximum fan-out that any processing node will
experience during the get is < 2, CMSSL_
method_get_into_sends is used. (For a defini-
tion of fan-out, see the description of CMSSL _
method_sort_and_scan, below.)

» If operation is CMSSL_comm_by_get and the
maximum fan-out that any processing node will
experience during the get is > 2, CMSSL_
method_sort_and_scan is used.

® If operation is CMSSL_comm_by_send or
CMSSL_comm_by_send_overwrite, CMSSL _
method_nop is used and collisions are stripped.
(For details about collision stripping, see the
Description section.)

» If operation is CMSSL_comm_by_send_with_
op, CMSSL_method_serial_combining is used.

s If method(2) > 999, CMSSL_method_nop is used.

Note that these choices are likely to change in future releases.
They may not yield the best results in all cases. It is recom-
mended that you experiment with other methods to find the
best one for your application.

method:  Must be an integer front-end array of
length > 2. The second element must
be your estimate of how many times
the trace will be used.

Usage: Valid in any comm_setup call.
CMSSL_method_fastgraph

This method is currently unavailable on the CM-5. If you se-
lect this method, CMSSL_method_nop is substituted.

CMSSL_method_get_into_sends

Compiles a gathering pattern to be used with comm_get into
a series of send operations.

Version 3.1 Beta 2, January 1993
536 Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunicati

jon Primitives

method:  May be either an integer front-end
array of length > 1 or a scalar integer.

Usage: Valid only in comm;setup calls in
which the operation is CMSSL_
comm_by_get.

CMSSL _method_nop

Stores the p and {x|y}_mask values with no additional pro-
cessing. A subsequent comm_get, comm_send, or comm_
send_combiner call, supplied with the trace value returned by
this method, will compute the trace and will run at about the
same speed as the corresponding CM Fortran utility library
routine. This method is useful for comparing the performance
of operations with and without compiled traces, with minimal
code changes.

method:  May be either an integer front-end
array of length > 1 or a scalar integer.

Usage: Valid in any comm_setup call.
CMSSL_method_serial_combining

During trace creation, spreads identical send addresses along
an extra, temporary serial axis. When the trace is used, mes-
sages are combined along the serial axis.

method:  May be either an integer front-end
array of length > 1 or a scalar integer.

Usage: Valid only in comm_setup calls in
which the operation is CMSSL_
comm_by_send_with_op.

CMSSL_method_sort_and_scan

Performs a sort to collect together elements that are to be
combined. This method performs particularly well when there
is a large variation in the fan-out or fan-in of the graph, or
when the maximum fan-in or fan-out is large.

Fan-out applies only to get operations. The fan-out for a
source location is the number of destination elements to

Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation 537



538

Communication Compiler

option

value

ier

which that location must send its data. A large variation in the
fan-out means that some source locations are sending to few
(or one) destination elements, while other source locations are
sending to many destination elements.

Fan-in applies only to send operations. The fan-in for a desti-
nation location is the number of source elements being sent to
it. A large variation in the fan-in means that some destination
locations are receiving few (or one) source elements, while
other destination locations are receiving many source ele-
ments.

method:  May be either an integer front-end
array of length > 1 or a scalar integer.

Usage: Valid in comm_setup calls in which
the operation is CMSSL_comm_by_
get or CMSSL_comm_by_send_with

op.

Scalar integer variable. In the current CM-5 release, only the value
CMSSL_comm_verbose is valid; any other option results in an
error message. The CMSSL_comm_verbose option determines
whether the communication compiler will print any messages
associated with returned ier codes. An associated value (see
below) of 0 specifies that messages should not be printed; a
non-zero value specifies that they should be printed. (Default: 0.)

Variable associated with option. See option description. Must be
an integer.

Scalar integer variable. Error code; set to 0 on successful return.

The following errors are returned by comm_setup:

-1  Invalid operation. The operation argument is not one
of the allowed operations.

-2 Invalid method. The method argument is not allowed
with the operation selected or is an unknown method.

-4  The scattering coordinates supplied in the p argument
contain collisions and the operation is CMSSL_
comm_by_send. This message is only a warning; the
computed trace is valid.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



-8

Chapter 14. Comunication Primitives

Communication Compile

The p array has an illegal shape or layout, or contains
invalid coordinates.

The following errors are returned by comm_get, comm_send,
comm_send_add, comm_send_and, comm_send_max, comm_
send_min, comm_send_or, and comm_send_xor:

-1

Invalid data type. The x and/or y data type is invalid
for this operation. For instance, complex data cannot
be passed to comm_send_max. Only data types that
are allowed in the combiner operation to be
performed are allowed in the comm_send_combiner
routines.

Invalid trace type. The trace value passed to this
routine was of the wrong type for this operation. For
instance, calling comm_send_add with a trace
compiled with operation = CMSSL_comm_by_get
will cause this error.

Bad or unrecognized trace. The trace valuepassed to
this routine was not usable. Possible reasons: the
trace was never assigned the return value of a
successful comm_setup call, the trace has already
been deallocated, or the memory used by the trace has
been corrupted.

The following errors are returned by comm_set_option:

-1
-2

DESCRIPTION

Invalid (unrecognized) option name.

Invalid option value. The value supplied is not valid
for the option selected.

The communication compiler consists of the following routines:

comm_setup Computes a message delivery optimization, or trace, for the
specified operation using the source and destination shapes
and layouts you have supplied. This trace can only be used on
the current partition size. The setup routine allocates
processing node and partition manager memory for storing

Version 3.1 Beta 2, January 1993

the trace and related information. It returns an integer, trace,

Copyright © 1993 Thinking Machines Corporation 539



Co

540

SRR AREAEREE

mmunication Compiler

comm_get

comm_send

comm_send_combiner

that contains a pointer to the partition manager memory where
information about the trace (including pointers to processsing
node fields) is stored. You must supply the value of trace in
subsequent calls to the data motion and combining routines,
and also to deallocate_comm_setup (when you want to
deallocate the memory associated with the trace).

where (y_mask) y = x(p)

Gathers selected source array elements into a destination
array. Only those destination array elements for which
y_mask was true in the setup call are overwritten. Each
destination array location receives at most one source
element. All data types are supported.

where (x_mask) y(p) = x

Scatters selected source array elements to a destination array.
Only those source array elements for which x_mask was true
in the setup call are moved. Each source array element is sent
to at most one destination location. Source array elements
overwrite the destination array elements to which they are
sent. All data types are supported.

Scatters selected source array elements to a destination array.
Only those source array elements for which x_mask was true
in the setup call are moved. Source array elements are
combined with the destination array elements to which they
are sent. Colliding source elements are combined together
with the destination element. The result overwrites the
original destination element. The following combining
operations are supported:

comm_send_add  where (x_mask) y(p|+) = x

Performs addition. Operates on inte-
ger, real, or complex data.

comm_send_and  where (x_mask) y(p|.and.) = x

Performs a logical AND operation.
Operates on logical or integer data.
For integers, performs the operation
on a bitwise basis.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



comm_set_option

munication Compiler

comm_send_max where (x_mask) y(pjmax) = x

Selects the maximum value. Oper-
ates on integer and real data.

comm_send_min  where (x_mask) y(pimin) = x

Selects the minimum value. Operates
on integer and real data.

comm_send_or where (x_mask) y(p|.or.) = x

Performs a logical inclusive OR op-
eration. Operates on logical or
integer data. For integers, performs
the operation on a bitwise basis.

comm_send_xor  where (x_mask) y(p|.xor.) = x

Performs a logical exclusive OR op-
eration. Operates on logical or
integer data. For integers, performs
the operation on a bitwise basis.

Selects an option that prints error information. On the
CM-200, this routine also selects options that can help
optimize trace compilation and message delivery. The
optimization options are not available in this CM-5 release, as
they affect only those compilations performed using the
FastGraph method (which is also unavailable in this release
on the CM-5).

deallocate_comm_setup Deallocates the memory that comm_setup allocated to store a

trace. When you call deallocate_comm_setup, you must
supply the trace value returned by comm_setup. Once you
have deallocated the memory associated with a trace, the trace
can no longer be used.

Usage. The trace computed by the setup routine can be used for any operation that
satisfies the following conditions:

® The type of operation must match the operation value you specified in the
setup call. (Note that the setup routine uses the same operation value, CMSSL._
comm_by_send_with_op, for the comm_send_add, comm_send_and, comm_
send_max, comm_send_min, comm_send_or, and comm_send_xor operations,

Version 3.1 Beta 2, January 1993

Copyright © 1993 Thinking Machines Corporation 541



542

Communication Compiler

CMSSL for CM Fortran (CM-5 Editi

on)
S

as these operations require the same setup action. A trace computed for any of
these operations can be used for any of the others, assuming the other two con-
ditions are met. Also, the operation values CMSSL_comm_by_send and
CMSSL_comm_by_send_overwrite both represent the comm_send operation,
but request different behavior with respect to collisions, as described in the
argument list above.)

®=  The source and destination arrays must have the same rank, axis extents, and
layout directives as in the setup call.

*= The source and destination arrays must have the same data type, and that type
must be valid for the operation to be performed.

You can follow a setup call with multiple calls to the data motion and combining rou-
tines, as long as the above conditions are met. The arguments you supplied in the setup
call determine how data is moved in the associated data motion and combining routine
calls. You can also have more than one trace allocated at a time; the only limit on the
number of concurrently active traces is the amount of memory.

To compute and use a trace, follow these steps:
1. Call comm_setup to allocate memory and compute the trace.

2. Call the desired data motion or combining routine. (You can repeat this step
an arbitrary number of times.)

3. Call deallocate_comm_setup.

If you want to set a compilation option, call the comm_set_option routine prior to call-
ing the setup routine.

Collision Handling. In a comm_send operation, two or more source elements are said
to collide if they are sent to the same destination array location. The communication
compiler handles collisions as follows:

* If you specify method(1) = CMSSL_method_automatic and 3 < method(2) <
999, collisions are stripped. The communication compiler arbitrarily chooses
one of the colliding source elements, and sends only that element to the des-
tination element.

* Inall other cases, all of the colliding source elements are sent to the destination
node, which arbitrarily chooses one of them to overwrite the destination
element.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



Chapter 14. Comunication Primitives Communication Compiler

If you specify operation = CMSSL_comm_by_send, the setup routine returns ier = -4 if
it encounters collisions. The computed trace is valid. If you specify CMSSL_comm_
by_send_overwrite, the setup routine does not issue the warning.

NOTES

Header File. The communication compiler routines use predefined symbolic con-
stants. Therefore, you must include the statement INCLUDE ’ /usr/include/
ecm/cmssl-cmf.h’ at the top of the main file of any program that uses these routines.
This file defines symbolic constants and declares the type of the CMSSL functions.

Compilation Methods. The methods available for computing traces attempt to opti-
mize communication, but each method involves a trade-off between compilation time
and message delivery performance gain. (That is, some methods require more time for
trace compilation but yield faster communication when the operation is performed;
others require less compilation time but yield slower communication during message
delivery.) Also, these techniques incur a cost in memory usage. Therefore, it is recom-
mended that you experiment with different methods to find the one that works best for
the operation you want to perform. Refer to the descriptions of the methods in the argu-
ment list, above.

Trace Deallocation. You can call comm_setup multiple times without calling
deallocate_comm_setup. However, to conserve memory, it is good practice to deallo-
cate a trace as soon as you are finished with it.

The trace is essentially a pointer to a region of partition manager memory; this region
of memory contains pointers to additional regions of memory allocated on both the
partition manager and the processing nodes. If you destroy this pointer before deallo-
cating the trace, there is no way for you to deallocate the trace subsequently. Therefore,
be careful not to overwrite the trace pointer (for example, by allowing comm_setup to
overwrite an allocated trace value, or by changing the value of the ¢trace variable manu-
ally) unless you have deallocated the trace.

EXAMPLES

Sample CM Fortran code that uses the communication compiler can be found on-line
in the subdirectory

comm-compiler/cmE/

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation 543



Communication Compiler

CMSSL for CM Fortran (CM-5 Edition)

o

of a CMSSL examples directory whose location is site-specific.

544

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



14.16 References

For more information on the all-to-all broadcast, see the following references:

L.

Brunet, J.-Ph., and S. L. Johnsson. All-to-All Broadcast and Applications
on the Connection Machine. Int. J. Sup. App. 6, no. 3 (1992): 241-56.

Brunet, J.-Ph., J. P. Mesirov, and A. Edelman. An Optimal Hypercube Di-
rect n-Body Solver on the Connection Machine. In Supercomputing 90,
ICS Press, 1990. Pp. 748-52.

. Johnsson, S. L., and C.-T. Ho. Spanning Graphs for Optimum Broadcast-

ing and Personalized Communication in Hypercubes. IEEE Trans.
Computers 38, no. 9 (1989): 1249-68.

Mathur, K. K. and S. L Johnsson. All-to-All Communication on the Con-
nection Machine CM-200. Thinking Machines Corporation Technical
Report TR-243, 1992.

. Brunet, J.-Ph., A. Edelman, and J. P. Mesirov. Hypercube Algorithms for
Direct N-Body Solvers for Different Granularities. To be published in

SIAM J. Sci. Stat. Comput.

For information about block cyclic ordering, refer to

6. Lichtenstein, W. and S. L. Johnsson. Block Cyclic Dense Linear Algebra.

Thinking Machines Corporation Technical Report TR-215, 1992.

For further information about the FastGraph trace compilation method of the
communication compiler, see the following reference:

7. Dahl, E, D. Mapping and Compiled Communication on the Connection

Machine System. Proceedings of the Fifth Distributed Memory Comput-
ing Conference, IEEE, DMCC 1990, Charleston, South Carolina, April
8-10, 1990. Pp. 756-66.

For information about the partitioning algorithm implemented on the CM, see the
following references:

8. Pothen, A., H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with

eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications
11 (1990): 430-52.

9. Simon, H. D. Partitioning of unstructured problems for parallel proces-

sing. Computing Systems in Engineering 2 (1991): 135-48.

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation ’ 545



10.Johan, Z. Data parallel finite element techniques for large-scale computa-
tional fluid dynamics. Ph.D. Thesis, Stanford University, 1992. Also
available as Thinking Machines Corporation Technical Report 244, 1992.

Version 3.1 Beta 2, January 1993
546 Copyright © 1993 Thinking Machines Corporation



For pages 1 through 349, see Volume I; for pages 351 through 546, see Volume II.

Numbers

2-norm, 52

A

all-to-all broadcast, 445
implementation, 445

all_to_all, 447, 449

all_to_all_setup, 447, 449

arbitrary block sparse matrix operations,
104

arbitrary elementwise sparse matrix
operations, 89

Arnoldi algorithm, implementation, 329

Arnoldi routines, selected eigenvalues and
eigenvectors, 329

axes, column and row, 21

B

banded linear solvers
accuracy, 224
algorithms used, 217, 245
choosing an algorithm, 224
numeric stability, 224
setting up data for, 225
with pivoting, 217
without pivoting, 243

basis transformation, 278

bi-conjugate gradient algorithm, 258

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

BICSTAB algorithm, 259
block cyclic ordering, 515

block cyclic permutations, computation of,
513

block gather utility, 484

block matrix representation, 104
block pentadiagonal systems, 230
block scatter utility, 484

block sparse matrix operations, 104
block tridiagonal systems, 230
block_gather, 484, 487

block_pentadiag_factor and related
routines, 243, 247

block_scatter, 484, 487
block_sparse_mat_gen_mat_mult, 104, 118
block_sparse_matrix_vector_muit, 104, 118
block_sparse_setup, 104, 118

block_tridiag_factor and related routines,
243, 247

blocking, 514
blocking factor, 516
butterfly computations, 354

C

CGS algorithm, 259
CM Fortran/CMSSL interface, 35-42
CMOST versions, 37

547



CMSSL library, contents, 2
cmssl-cmf.h, 36

comm_get, 529

comm_send and related routines, 529
comm_set_option, 529

comm_setup and related routines, 528, 532

communication compiler, 528
how to use, 530

communication primitives, 435

compiling, 37

complex-to-complex FFT, 354
compute_fe_block_cyclic_perms, 513, 518
conjugate gradient algorithm, 258
consecutive order, 517

cyclic reduction, 221

D
data types supported, 22
deallocate_all_to_all_setup, 447, 449
deallocate_banded, 217, 234
deailocate_banded_solve, 243, 247
deallocate_block_sparse_setup, 104, 118
deallocate_comm_setup, 529, 532
deallocate_fast_rng, 398, 403, 410-418
deailocate_fft_setup, 353, 359
deallocate_gather_setup, 456, 459
deallocate_grid_sparse_setup, 129, 141
deallocate_iter_soive, 262
deallocate_ode_rkf_setup, 374
deallocate_part_gather_setup, 503
dealiocate_part_scatter_setup, 509
deallocate_pshift_setup, 437, 439
deallocate_scatter_setup, 463, 466
deallocate_sparse_matvec_setup, 89, 95
deallocate_sparse_vecmat_setup, 89, 95

548

CMSSL for CM Fortra

deallocate_sym_lanczos_setup, 319, 337
deallocate_sym_tred, 278, 279
deallocate_vec_gather_setup, 471
dealIocat_e_vec_scatter_setup, 477
deallocate_vp_rng, 398, 403, 418-426
dense simplex, 383

Detailed FFT, 352

differential equations, ordinary, 371

dual connectivity array, 492

E

eigensystem analysis, 275
accuracy, 294
of dense Hermitian matrices, 294
using Jacobi rotations, 304

eigensystem analysis, generalized, 299
accuracy, 299

cigenvalues
accuracy of routine, 285
of real symmetric tridiagonal matrices,
284
selected, using k-step Arnoldi method,
329

selected, using k-step Lanczos method,
309

selected, using Lanczos method, 309

eigenvectors

accuracy of routine, 288

applicability of routine, 289

of real symmetric tridiagonal matrices,
288

performance of routine, 290

selected, using k-step Arnoldi method,
329

selected, using k-step Lanczos method,
309

selected, using Lanczos method, 309

element nodes array, 492

elementwise consecutive order, 517
elementwise sparse matrix operations, 89
example code, 41

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



executing CMSSL programs, 37
extract and deposit vector, 480

F

Fast Fourier Transforms. See FFT

Fast RNG, 397
period of, 403

fast_rng, 398, 410-417
fast_rng_residue, 404, 410417
fast_rng_state_fieid, 404, 410-417
FastGraph, 536

FFT
bit ordering, 354
bit reversal, 354
complex-to-complex, 354
Detailed, 352
library calls, 352
multidimensional (complex-to-complex),
355
multiple instance (complex-to-complex),
355
optimization (complex-to-complex), 358
Simple, 352
twiddle factors, 354
fft, 352, 359
fft_detailed, 352, 353, 359, 363-369
fft_setup, 352, 359
finite element numbering, 493

Fourier Transform. See FFT

G

gather operation
defined, 456
examples, 457

gather utility, 456
gather, block, 484
gather, partitioned, 502
gather, vector, 469
gathering, 87

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

Gauss-Jordan system solver, 203, 209-213
stability and performance, 205

Gaussian elimination, 151
numerical stability, 152
with pairwise pivoting, 221

Gaussian elimination, pipelined, 219
gbl_gen_2_norm, 53

gbl_gen_inner_product and related
routines, 46

gen_2_norm, 53

gen_arnoldi and related routines, 329, 337
gen_banded_factor, 217, 234
gen_banded_solve, 217, 234

gen_gj_invert, 203, 206-209

gen_gj_solve, 203, 209-213
gen_infinity_norm, 80

gen_inner_product and related routines, 46
gen_iter_solve and related routines, 262
gen_lu_factor and related routines, 153
gen_mat_block_sparse_mat_mulit, 104, 118
gen_mat_grid_sparse_mat_muit, 129, 141
gen_mat_sparse_mat_mult, 89, 95
gen_matrix_muit and related routines, 73

gen_matrix_vector_mult and related
routines, 62

gen_outer_product and related routines, 57

gen_pentadiag_factor and related routines,
243,247

gen_gr_factor and related routines, 184
gen_simplex, 388

gen_tridiag_factor and related routines,
243,247

gen_vector_matrix_muit and related
routines, 67

generalized eigensystem analysis, 299
generalized minimal residual algoithm, 258
generate_dual, 497

GMRES algorithm, 258

549



grid sparse matrix operations, 129

grid sparse matrix representation, 130
grid_sparse_mat_gen_mat_muit, 129, 141
grid_sparse_matrix_vector_mult, 129, 141
grid_sparse_setup, 129, 141

H

header file, 36

histogram, 427, 430432
how to, 428

histogram_range, 427, 432434
Householder transformations, 165

ill-conditioned systems, 179
infinity norm, 79
initialize_fast_rng, 398, 410417
initialize_vp_rng, 398, 418
inner product, 44

inverse iteration algorithm, 288
iterative solvers, 257

J

Jacobi rotations, 304

L

Lanczos algorithm, 309
convergence properties, 311
data layout requirements, 316, 334
implementation, 309

input arguments and data structures, 310,
330

reverse communication interface, 312,
331

550

CMSSL for CM Fortran

....... S RS

Lanczos routines, selected eigenvalues and
eigenvectors, 309

linking, 37

load balancing, 514

look-ahead Lanczos algorithm, 259
LU decomposition, 151

M

man pages, on-line, 41

matrix inversion, 203, 206-208
stability and performance, 205

matrix multiplication, 71
matrix vector multiplication, 61
mesh, unstructured, partitioning of, 491

multiple instances, 25
all-to-all broadcast, 32
Fast Fourier transforms, 32
how to specify, 27
matrix vector multiplication example, 29
polyshift, 32
OR solver example, 30
RNGs, 33

N

NEWS-to-send reordering, 525
news_to_send, 526

numeric stability, 33
definition, 33

)

ode_rkf and related routines, 374
ODE;s, 371

on-line examples, 41

on-line man pages, 41

ordinary differential equations, 371
outer product, 56

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation



parallel bisection algorithm, 284
part_gather and related routines, 503

part_scatter and related routines, 509

part_vector_gather and related routines,
503

part_vector_scatter and related routines,
509

partition_mesh, 497

partitioned gather utility, 502
partitioned scatter utility, 508
partitioning of unstructured mesh, 491
partitioning permutation, 495
peatadiagonal systems, 225
permutation, along an axis, 521
permutations, block cyclic, 513
permute_cm_matrix_axis_from_fe, 521, 522
pipelined Gaussian elimination, 219
pointers, reordering of, 491, 496
polyshift operation. See PSHIFT

PSHIFT
operation, 436
optimization recommendations, 438

pshift and related routines, 436, 439
pshift_setup, 436, 439
pshift_setup_looped, 436, 439

Q

QMR algorithm, 258
OR factors, 168

QR routines, 165
blocking and load balancing, 174
Householder algorithm, 171
numerical stability, 179
pivoting option, 179
OR state, saving and restoring, 182
quasi-minimal residual algorithm, 258

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

random number generators. See RNG
range histogram, 432-434

reduction to tridiagonal form, 278
reinitialize_fast_rng, 410417
reinitialize_vp_rng, 418

" reorder_pointers, 497

reordering of pointers, 491, 496

restarted GMRES algorithm, 258
restore_fast_rng_temps, 399, 410
restore_vp_rng_temps, 399, 418

reverse communication interface, 312, 331

RNG
alternate-stream checkpointing, 399, 406
checkpointing, 403
Fast, 397
Fast and VP compared, 398
implementation, 399
period of a, 403
safety checkpointing, 399, 405
saving and restoring, 405
state tables, 400404
VP, 397

Runge-Kutta method, 371

S

sample code, 41
save_fast_rng_temps, 399, 404, 410
save_vp_rng_temps, 399, 404, 418

scatter operation
defined, 463 -
example, 464

scatter utility, 463

scatter, block, 484

scatter, partitioned, 508
scatter, vector, 475

scattering, 87

send-to-NEWS reordering, 525

551



send_to_news, 526
Simple FFT, 352

simplex, 383
algorithm, 383
degeneracy, 386
reinversion, 385
vertices and bases, 384

sparse gather utility, 456
sparse matrices, storage of, 89

sparse matrix operations
arbitrary block, 104
arbitrary elementwise, 89
arbitrary sparse matrices, 85
gathering and scattering, 87
grid, 129
optimization recommendations, 88
storage representations, 86

sparse scatter utility, 463

sparse vector scatter utility, 475
sparse_mat_gen_mat_muit, 89, 95
sparse_matvec_mult, 89, 95
sparse_matvec_setup, 89, 95
sparse_util_gather, 456, 459
sparse_util_gather_setup, 456, 459
sparse_util_scatter, 463, 466
sparse_util_scatter_setup, 463, 466
sparse_util_vec_gather, 471
sparse_util_vec_gather_setup, 471
sparse_util_vec_scatter, 477
sparse_util_vec_scatter_setup, 477
sparse_vecmat_mulit, 89, 95
sparse_vecmat_setup, 89, 95
stability, definition, 33

statistical analysis, 427434
substructuring, 221
sym_jacobi_eigensystem, 304, 305
sy}n_lanczos and related routines, 309, 319
sym_to_tridiag, 278, 279

sym_tred, 278, 279

552

sym_tred_eigensystem, 294, 295
sym_tredjen_eigensystem, 299, 300
sym_tridiag_eigenvalues, 284, 286
sym_tridiag_eigenvectors, 288, 291

T

trace
in communication compiler, 528
in sparse matrix operations, 91, 106

tridiag_to_sym, 278, 279
tridiagonal form, reduction to, 278
tridiagonal systems, 225

twiddle factors for FFT, 354
two-norm, 52

U

unstructured mesh, partitioning of, 491

vV

vector gather operation
defined, 469
examples, 469

vector gather utility, 469
vector matrix multiplication, 66
vector move, 480

vector scatter operation
defined, 475
examples, 475

vector_block_sparse_matrix_muit, 104, 118
vector_grid_sparse_matrix_mulit, 129, 141
vector_move, 481

vector_move_utils, 481

VP RNG, 397
See also RNG
period of, 403

vp_rng, 398, 418

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

CMSSL for CM Fortran




vp_rng_residue, 404, 418
vp_rng_state_field, 404, 418

Version 3.1 Beta 2, January 1993
Copyright © 1993 Thinking Machines Corporation

553



