
The
Connection Machine
System

C* User's Guide
.··'··: e ' ;:s ':" ' ' ' ' Z ' ''S' I''' ' '' " ''S v ' '

Version 6.0.2
June 1991

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, November 1990
Second printing, with corrections, June 1991

The information in this document is subject to change without notice and should not be construed as a

commitmentby Thinking Machines Corporation. Thinking Machines Corporationreserves the rightto
make changes to any products described herein to improve functioning or design. Although the

information in this document has been reviewed and is believed to be reliable, Thinking Machines

Corporation does not assume responsibility or liability for any errors that may appear in this document.
Thinkling Machines Corporation does not assume any liability arising from the application or use of

any information or product described herein.

C* ® is a registered trademark of Thinking Machines Corporation.

Connection Machine® is a registered trademark of Thinking Machines Corporation.

CM-2, IM, Paris, CM Fortran, and DataVault are trademarks of Thinking Machines Corporation.

CMFS and CMSSL are trademarks of Thinking Machines Corporation.
VAX axnd ULTRIX are trademarks of Digital Equipment Corporation.
Sun, Sun-4, and SunOS are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street

Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111

About This Manual

Customer Support

Chapter 1 Introduction

1.1 Developing a C* Program

1.2 Compiling a C* Program

1.3 Executing a C* Program

1.4 Debugging a C* Program

r 2 Developing a C* Program

2.1 C* .cs Files

2.1.1 C* Keywords

2.1.2 Reserved Identifiers

2.1.3 Default Shape

2.2 Header Files

2.2.1 The <math.h> File

2.2.2 The <stdlib. h> File

2.2.3 The <string. h> File
2.2.4 Header Files and C* Keywords .

9 t rilna Prie frnm (r*

2.3.1 The Relationship between Paris and C*

2.3.2 Calling Paris Functions

C* Parallel Variables and Paris Field IDs

C* Shapes and Paris VP Sets

C* Parallel Arrays and Paris Fields

C* Memory Layout and Paris Functions

2.4 Calling CM Libraries
2.4.1 General Information

2.4.2 The Graphics and Visualization Library

2.4.3 The CM I/O Library

2.4.4 The CM Scientific Software Library

2.5 Calling CM Fortran ..

iii

Contents
�: : : : : : : : : : : ::s : : : : : ::o..:go: : : : : ::.: : : : : : : : : : : :::::i::.. .$. .. : S: .s:

vii

ix

1

1

1

2

2

Chaptel 3

.. .o............ 3

.............. .. 3
............... 4
...... 4
......... 5

. 5

............... 6

........ 6

........... 7

............... 7

.... 7

... 8

................ 9

................ 10

............... 10

................ 11

................ 11

................ 11
12

12

13

13

.... ...

iv C* User Guide

2.5.1 Overview...................................
2.5.2 In Detail

Include File

Calling the Subroutine
What Kinds of Variables Can You Pass?

Passing Parallel Variables

Passing Scalar Variables

Freeing the Descriptors

An Example

2.6 Using UNIX Utilities

2.6.1 The Program Maintenance Utility make

2.6.2 The Profiling Tools prof and gprof

Chapter 3 Compiling a C* Program

3.1 The Basic Compilation Process

3.1.1 Basic Options ...

Getting Help: The -help Option

Changing the Optimization Level: The -O Option

Choosing a Specific Version of the Compiler: The -release
Option

Choosing a Specific Version of Paris: The -ucode Option

Printing the Version Number: The -version Option

3.1.2 Options in Common with cc:

The -c, -D, -g, -I, -1, -L, -o, -pg, and -U Options

3.2 A Closer Look at the Compilation Process

3.2.1 Advanced Options

Using Another C Compiler: The -cc Option

Specifying a Different C* Pre-processor: The -cpp Option

Displaying Compilation Steps: The -dryrun Option
Putting . c Files through the C* Compilation Phase: The -force

Option
Keeping the Intermediate File: The -keep Option

Suppressing Line Directives: The -noline Option

Displaying Names of Overloaded Functions: The -overload

Function
Turning On Verbose Compilation: The -verbose Option
Creating Assembly Source Files: The -S Option
Changing the location of Temporary Files: The -temp Option.
Turning Off Warnings: The -warn Option

Specifying Options for Other Components: The -Z Option

.......... 13

.......... 14

........... 14

.......... 14

......... 15

.......... 16

......... 16

......... 17

.......... 17

.......... 18

......... 18

......... 18

19

19

19

21

21

21

22

22

22

23

23

23

24

24

24

24

25

25

25

25

25

26

26 0

3.3 Symbols ..

3.4 Compiling a C* Program that Calls CM Fortran

Chapter 4 Executing a C* Program on a CM

4.1 Overview . ..

4.2 Obtaining Direct Access ...

4.2.1 Executing the Program Immediately
4.2.2 Obtaining an Interactive Subshell

4.2.3 Options for cmattach

Waiting for Resources

Specifying a Sequencer, an Interface, and a CM
Obtaining Exclusive Access

4.3 Obtaining Batch Access ...

4.3.1 Submitting a Batch Request
4.3.2 Options for qsub

Specifying a Queue

Receiving Mail ..

Setting the Priority

Specifying Output Files

4.4 Other CM Commands ..

Debugging a C* Program........

5.1 Using dbx
5.1.1 Invoking Overloaded Functions from

..... within......

within dbx ..
5.1.2 Calling C* Debugging Functions from within dbx

5.2 Defining a Region: The CMC_define_region Function

5.3 Defining Data Types for Parallel Variables: The CMCdefaulttype and
CMC_define_type Functions

5.4 Printing Values of a Parallel Variable:

The CMCprint and CMCprint region Functions
5.4.1 Printing Values of a Pointer to a Parallel Variable

5.4.2 Changing the Format: The CMC defineformat,
CMCdefinewidth, and CMC define view
Functions ..

5.5 Setting the Context: The CMC on, CMC_on region, CMC_off, and
CMCoff_region Functions

26

27

29

29

30

30

31

31

31

31

32

32

32

33

33

33

33

34

34

35

35

36

38

38

39

40

41

42

43

Contents v

Chapter 5

Version 6.0, Month 1991

.......... :jj:.:I:::::j:..I: :~jj~~:I ;I~~jj ~ :.ll~ ~ :I i

.........

vi C* User Guide

5.5.1 Saving and Restoring Contexts: The CMCpush context and

CMCpop context Functions 44

5.6 Assigning Values to a Parallel Variable:

The CMC_set and CMC set_region Functions 44

5.7 Obtaining Status Information:

The CMC status Function

5.8 Obtaining Help: The CMC_help Function

5.9 Sample Debugging Sessions

5.9.1 The Program

5.9.2 Compiling the Program

5.9.3 The Initial Debugging Session

5.9.4 The Second Session

5.9.5 The Third Debugging Session

5.9.6 The Final Debugging Session

.......... 45

.......... 46

.......... 46
.......... 46
.......... 48
.......... 49
.......... 53
.......... 57
.......... 60

Appendix A Man Pages 65

Index 79

About This Manual

Objectives of This Manual

This manual describes how to develop, compile, execute, and debug C* programs on a Connection Ma-
chine system.

Intended Audience

Readers are assumed to have a working knowledge of the C* language and of the UNIX operating
system.

Organization of This Manual

Chapter 1 Introduction
Chapter 1 is a brief overview.

Chapter 2 Developing a C* Program
This chapter describes C* libraries and associated header files, and explains how to
call Paris functions, CM library functions, and CM Fortran subroutines from a C*
program.

Chapter 3 Compiling a C* Program
Chapter 3 describes the C* compiler and its command line options.

Chapter 4 Executing a C* Program on a CM-2
Chapter 4 describes how to run a C* program.

Chapter 5 Debugging a C* Program
This chapter describes functions useful in debugging a C* program, and contains a
sample debugging session.

Appendix A Man Pages
This appendix contains man pages for the cs compiler command and C* libraries.

vii

viii C* User Guide

Associated Documents

The fbllowing document about C* appears in the same volume as this user's guide:

' C* Programming Guide

In addition, a technical report is available that provides a reference description of the C* language.

Information about related aspects ofthe Connection Machine system is contained in the following vol-
umes of the Connection Machine documentation set:

* Connection Machine User s Guide

* Connection Machine I/O Programming

* Connection Machine Graphics Programming

* Connection Machine Parallel Instruction Set

* Connection Machine Programming in C/Paris

Also consult the documentation foryour front end (a Sun-4 running SunOS or a VAX running ULTRIX)
for further information about program development facilities.

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention Meaning

bold typewriter

italics

C* and C language elements, such as keywords, operators, and
function names, when they appear embedded in text. Also UNIX
and CM System Software commands, command options, and file
names.

Parameter names and placeholders in function and command
formats.

typewriter

O/% boldface

regular

Code examples and code fragments.

In interactive examples, user input is shown in boldface
typewriter and system output is shown in regular
typewriter font.

Customer Support
............ i-S g': '' I= ! . .an ! ... :.....?.!.:........ * .;".9.....f al V ' "' " : .i...... : .m...

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a back-
trace, or other such information can greatly reduce the time it takes Thinking Machines to respond
to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

Usenet
Electronic Mail:

Telephone:

customer-support@think.com

ames!think!customer-support

(617) 234-4000

(617) 876-1111

For Symbolics Users Only

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail facil-
ity for automatic reporting of Connection Machine system errors. When such an error occurs, simply
press Ctrl-M to create a report. In the mail window that appears, the To: field should be addressed
as follows:

To: customer-support(think.com

Please supplement the automatic report with any further pertinent information.

ix

Chapter 1

Introduction

C* is an extension of the C programming language designed for the Connection Machine
data parallel computing system. This chapter presents an overview of the process of devel-
oping and executing a C* program. The rest of this manual goes into the process in more
detail.

1.1 Developing a C* Program

Develop C* source code in one or more files. You must use the suffix .cs if the file contains
parallel code or any other features that C* adds to standard C (for example, the new <?=
and :>?= operators). You can use standard UNIX tools like gprof and make. Chapter 2
describes facilities for developing a C* program. It also describes how to call Paris func-
tions, functions in the CM graphics, I/O, and scientific software libraries, and CM Fortran
subroutines.

1.2 Compiling a C* Program

Compile the files by issuing the command es from your UNIX front end. The command can
take various options, some of which are identical to options for the C compiler cc. Chapter
3 describes the compiler options and the compiling process in detail.

1

2 C* User i' Guide A

1.3 Executing a C* Program

To execute a program, issue the command cmattach along with the name of the executa-

ble load module, plus any arguments that the program requires. Or, use the qsub command
to submit the executable load module as a batch request to the CM batch system.

The cmattach and qsub commands are discussed in Chapter 4.

1.4 Debugging a C* Program

You can debug a C* program using a standard UNIX debugger like dbx. C* provides func-

tions you can call to do such things as print out values of a parallel variable, set the context

of a shape, and define a region within a shape on which operations are to take place. Chap-

ter 5 describes the C* debugging functions.

I

Chapter 2

Developing a C* Program
S A : N X - 0 X 0 0 Ex -.....

A C* program can consist of:

I Standard serial C code.

" C* code; see Section 2.1.

" Header files; see Section 2.2.

" Calls to Paris, the CM parallel instruction set; see Section 2.3.

" Calls to CM library functions; see Section 2.4.

" Calls to CM Fortran subroutines; see Section 2.5.

2.1 C*.cs Files

All C(* code must appear in files with the suffix .cs. C* code consists of any of the exten-

sions that C* adds to standard C. Standard C code can appear in either . c or . s files;

putting it in. c files speeds up compilation, as discussed in Section 3.2 in the next chapter.

2.1.1 C* Keywords

C* adds the following new keywords to standard C:

allocate_detailedshape
allocate_shape
bool
boolsizeof

3

li iil; "":' :: ::::I :::::: ::j j:l ~ :::: - : :·: :: . - .:: :. :. . _ . : : - ::: .: : :'; - ':.. ::1 .:·: ...·. . :,: : : ' ;': '-, , '.. - - -::: :: :: :i: ii : : : : : : : : :::::: :::::: :::: : · : :.· :. .:. . :. ...: .: . : . ::.···-·-·-····i -;;·

current

dimof

everywhere
overload
pcoord

physical

positionsof
rankof

shape

shapeof
where

with

C* code must not use these words, except as prescribed in the definition of the language.

2.1.2 Reserved Identifiers

Identifiers beginning with CM are reserved for use by this implementation of the language.
Do not create identifiers beginning with CM in your programs.

2.1.:3 Default Shape

Although the language does not define a default shape, this implementation provides one.
If you specify a default geometry via the -g option to the cmattach or cmcoldboot com-
mandL, a VP with this geometry becomes the default shape of the program. If you do not
use this option, the default shape is physical-that is, a 1-dimensional shape whose size
is the: number of physical processors to which you are attached.

For more information on cmattach and cmcoldboot, see the CM User s Guide.

To gain access to a default shape specified via the -g option, you must first declare a shape
that is not fully specified, and assign the current shape to it while the default shape is cur-
rent. In the following example, the default shape is assigned to shape s:

shape S;

Irain ()

'

C* User Guide4

Chapter 2: Developing a C* Program 5

S = current;
{

float:S x, y, z;
with (S)

x = y + z;
}

NOTE: We do not recommend writing code that relies on the default shape, since this fea-
ture is implementation-dependent and may change.

2.2 Header Files

C* substitutes its own header files for <math. h>, <stdlib.h>, and <string. h>, as

described below. These files are typically in /usr/include/cs. C* accepts any other
standard C libraries and associated header files. Appendix A contains the man pages for
these files.

In addition, C* includes the following header files:

In <cscomm. h>, which is the header file for the communication functions described
in Part HI of the C* Programming Guide.

is <cstimer. h>, which provides wrappers for the Paris timing functions described
in the CM User s Guide. Note that the timer functions in <cstimer . h> begin with
"cmc" rather than "CM". If you use these versions of the timing functions and in-
clude <cstimer. h>, you need not include the much larger header file
<cm/paris. h>, as described in the CM User s Guide.

Man pages for these header files are also contained in Appendix A.

2.2.1 The <math.h> File

The C* version of<math. h> declares all the functions in the UNIX serial math library and
extends all ANSI serial functions with parallel overloadings. No special library is required
to use these functions.

6 C* User Guide

2.2.2 The <stdlib.h> File

The file <stdlib.h> contains scalar and parallel declarations of the function abs, rand,
and srand; the parallel versions of rand and srand are named prand and psrand. The
file also contains the declarations ofpalloc, pfree, and deallocate_shape, which are
described in the C* Programming Guide. No special library is required to use these
functions.

Note that prand returns a different random number for every element of a parallel variable.

2.2.3 The <string.h> File

The file <string. h> contains parallel declarations of the functions memcpy, memmove,
memcmp, and memset. In addition, it contains declarations of boolean versions of these
functions, called boolcpy, boolmove, boolcmp, and boolset.

The boolean versions are useful for performing memory operations at the bit level. These
functions take pointers to bools for arguments and return pointers to bools (except for

bool.cmp). If you are dealing with arguments that are not bools, you must cast them to be
pointers to bools. Also, note that the size argument for memcpy and related functions is
in teIms of chars, while the size argument for the boolean versions is in terms of bools.

For example, in the following code fragment, both memcpy and boolcpy copy source to
dest:

#include <string.h>

int:current source[2], dest[2];

memcpy(source, dest, 2*sizeof(int:current));

boolcpy((bool:current *)source,

(bool:current *)dest, 2*boolsizeof(int:current));

In this case, both functions accomplish the same thing; you would use boolcpy, however,
if the number of bits to be copied was not a multiple of chars.

Ad I

Chapter 2: Developing a C* Program 7

2.2.4 Header Files and C* Keywords

A difficulty can occur when you want to include a standard header file that also makes use
of a C* keyword. For example, the X Window System header file <Xll/Xlib. h> uses the
C* keyword current as a variable name. Including this file would result in a syntax error.
In such a situation, you can do the following:

#define current Current

#include <Xll/Xlib.h>

#undef current

This redefines current to be Current while <Xll/Xlib. h> is being included, then un-
defines it. Of course, if you subsequently want to use the <Xll/lib .h> variable in your
program, you must refer to it as Current.

2.3 Calling Paris from C*

The header file <cm/paris. h> declares the functions in the C* interface to Paris. You
might want to use these C functions to obtain Paris features not available with C* syntax.
In addition, you need to know the relationship between C* and Paris if you are going to call
routines in the CM graphics, I/O, or scientific software libraries. These libraries provide a
C/Paris interface; they do not currently provide a direct C* interface.

For general information about Paris functions, see the manual Introduction to
Programming in C/Paris. For complete reference information on Paris, see the Paris
Reference Manual. Section 2.4, below, discusses the CM libraries.

2.3.1 The Relationship between Paris and C*

This section explains how concepts in C* map onto underlying Paris concepts.

A shape in C* is the VP set ID (cM vp_set id_t) of a Paris VP set with its associated
geometry. When a shape is passed to a function, C* passes this VP set ID. It is also this VP
set II) that is returned when you issue a dbx print call with the name of the shape as an
argument; see Chapter 5. The current shape is the current VP set.

8 C* User Guide

Aparallel variable in C* is a Paris field, with the length specified by the parallel variable's
type. A pointer to a parallel variable is also a Paris field. Thus:

pvar == CM field id t
&pvar == CM field id t

When you issue the dbx command print with the name of the parallel variable as an argu-
ment,. it returns the field ID of a Paris field; see Chapter 5.

When a pointer to a parallel variable is passed to a function, C* passes the field ID of the
parallel variable. When a parallel variable is passed to a function, C* passes the field ID
of a copy of the parallel variable-this allows the parallel variable to be passed by value.

A position in C* is a virtual processor. Active positions are processors in the current VP
set that have their context flags set.

An element in C* is the value of a field stored in an individual virtual processor.

Send and get operations in C* are performed by the corresponding Paris calls. Grid com-
munication functions in C* are performed by the corresponding NEWS calls in Paris.

2.3.2! Calling Paris Functions

In calling Paris functions within a C* program, there is one essential difference from
C/Paris programming: C* does all space allocation. You pass C/Paris functions addresses
of C* parallel variables rather than direct machine offsets. Little of the usual C/Paris book-
keeping is required-in particular, no initialization or CM stack control is necessary.

Please note the following in calling Paris from C*:

* If you explicitly allocate fields using Paris functions in a C* program, it is impor-
tant to understand that C* automatically deallocates all stack fields when leaving
a block. Therefore, stack fields can exist only within a block. If you want a field
to continue to exist after your program leaves a block, allocate a heap field instead.

* Don't manipulate the context using Paris functions; the C* behavior is undefined.

i i

Chapter: ~ ~ ·:::·C 2: Developing-:lll ii'~ a::::::::i::::a::i Cii,:"· Progra :9: : : :; - ; :- :- :::

C* Parallel Variables and Paris Field IDs

Pass the addresses of parallel variables rather than field IDs to Paris functions that take
field IDs as arguments. (You can simply pass the parallel variable itself, but this requires
an unnecessary creation of a temporary variable.)

For example, the following C/Paris code fragment adds the values in two fields:

#include <cm/paris.h>

/* C/Paris code omitted. ...*/
CM_set_vp_set(S);

CM fieldidt pl, p2;

/* Stack fields are explicitly allocated: */

p1 = CMallocate_stackfield(32);

p2 = CM allocate stack field(32);

/* C/Paris code omitted. ... */

CMs_add_2_1L(pl, p2, 32);

Here is the corresponding C*/Paris program fragment, including a call to
CM s; add 2 1L:

#include <cm/paris.h>

/* C* code omitted. . . .*/

with (S) {

int:S pl, p2;

/* Addresses of parallel variables are passed: */

CM s add 2 1L(&pl, &p2, boolsizeof(int:S));

Note the use of boolsizeof to determine the size of a parallel int in the C* fragment;
this makes the code more portable than explicitly specifying the value 32.

Cha~ter 2: Developing a C Program 9

"' :::.:::: .::::: X .:!::i:l::ii: ::i:: XXi; i:l: '::if I:i::I : :::i:' ··:' :' :·.:E:··: :' ::I:::: :1 :: :1: 1::l.:~:I~I~:: : :I· ··: · : :' X'.:' :: ": , . I. :::':::::j. :::::. :::' . .:$:I,.::: ::::::::: X":;: ".. ll.·. ·. - ·· : ·····:· i ··.;:::::·I·:X:·:·:··X;:;:: , ...

C* Shapes and Paris VP Sets

A C* shape represents the VP set ID of the corresponding VP set. For example,

CM_vp_set_geometry(S);

returns the geometry associated with shape s. You could use this geometry in a call to
CM geometry_axis_vp__ratio, for example, to obtain the VP ratio of axis 0 of shape s:

CM_geometry_axis_vp_ratio(CM_vp_set_geometry(S));

C* Parallel Arrays and Paris Fields

A parallel array in C* is allocated as one large Paris field, and elements within the array
are calculated as offsets within this field, using CM_addoffset_to_field_id. If you
write a C/Paris function that takes a C* parallel array as an argument, you must treat it
similarly. For example, here is a C* parallel array:

int:S parray[10];

A user-written C/Paris function that takes this array as an argument should be prototyped
as in the following example:

f(CM field id t x);

rather than as:

f(CMfield id t x[10]); /* This is wrong */

To access element 3 of the array, the function should do the following:

CM add offset to field id(x, 3*sizeof(parray[O]));

rather than simply specifying x [3].

c9

0

C* User s Guide10

Chapter 2: Developing a C* Program 11

C* Memory Layout and Paris Functions

Some advanced Paris functions (for example, aref32 and aset32) require that memory
for fields be allocated contiguously on the CM. The current implementation of C* does not
guarantee that memory for parallel variables will be laid out contiguously. To ensure that
you have the correct memory layout, use palloc to allocate the memory yourself for par-
allel variables that are to be used with these Paris functions.

2.4 Calling CM Libraries

You can call routines from the standard CM libraries from within a C* program.
Specifically:

* Call routines from the CM graphics libraries to perform basic graphics operations
and to display images on the CM graphic display system or on an X Window
System.

* Call routines from the CM I/O library to perform standard I/O functions-for ex-
ample, reading data into the CM from a DataVault or other I/0 device.

* Call routines from the Connection Machine Scientific Software Library (CMSSL)
to perform data parallel versions of standard mathematical operations such as ma-
trix multiply and Fast Fourier Transform.

2.4.1 General Information

CM libraries currently provide a C/Paris interface; you can call functions in these libraries
as you would any Paris functions. See Section 2.3 for a discussion of the relationship be-
tween C* and Paris. Therefore, note the following when consulting the documentation for
the libraries:

* When a call requires a field ID as an argument, pass it the address of the corre-
sponding parallel variable.

* As described in Section 2.3, a shape in C* is the VP set ID of a VP set with its
associated geometry; positions are virtual processors. Interpret discussions of ge-
ometry and VP sets with these correspondences in mind.

12 C* User s Guide

Since C* initializes the CM automatically, ignore the requirement that the Paris
routine CM init must be called before making any calls to library routines.

2.4.2 The Graphics and Visualization Library

Use the CMSR library to perform graphics operations and to display images of your data.
For complete information on the calls in this library, consult the volume Connection Ma-
chine Graphic Display System in the Connection Machine documentation set.

2.4.3 The CM 1/0 Library

I/O operations on the CM are carried out by making calls to functions in the CMFS library
(CMFS stands for CMfile system.) For information on CMFS library calls, consult the CM
I/O Svstem Programming Guide. This guide describes how to use these calls to do such
things as create files in the CM file system, read and write data between a CM and an I/O

device in the Connection Machine system, and, if necessary, transpose serial data so that
it is in the proper format for parallel operations.

Please note the following, in addition to the information discussed in Section 2.4.1 above:

Shapes by default are in news order. (You can specify a different order by using
the allocate_detailed shape function.) When using the CMFS trans-
pose_always function to transpose data between serial and parallel format, you
must include as the final argument one of the provided functions
(CMFS write_to_row_major, CMFS_write_to_column_major,
CMFS_read_from_rowmaj or, or CMFS_read from column_maj or) to
make sure that the data is correctly transposed. Do this even if the data is one-di-
mensional. The choice between row-major and column-major order depends on
the way in which the serial data is laid out; note that data in C is laid out in row-ma-
jor order. If the data is laid out in an order other than column-major or row-major,
you must write your own function to correctly rearrange the data.

0

C p 2s A. : Developing a C Program 1 3 .

2.4.4 The CM Scientific Software Library

A C* program can contain calls to routines in the Connection Machine Scientific Software
Library (CMSSL). Currently, C* users must use the C/Paris interface to the CMSSL. For
complete information on this interface, see the manual CMSSLfor Paris.

Please note the following, in addition to the information discussed in Section 2.4.1:

CMSSL routines typically run more efficiently when fields are allocated contigu-
ously. Normal stack allocation in C* does not work in this way. To get this
behavior, you must call the palloc function to allocate memory individually for
each argument to a CMSSL routine.

2.5 Calling CM Fortran

You can call CM Fortran subroutines from within a C* program. This section describes
how. See Chapter 3 for a discussion of how to link in the CM Fortran program and other
required files.

2.5.1 Overview

To call a CM Fortran subroutine, do the following:

* Include the file <csfort.h>.

* Use the function CMC CALL FORTRAN to call one or more CM Fortran subrou-
tines. You must convert the subroutine name to lowercase and add an underscore
to the end of it.

* To pass a parallel variable to a subroutine, create a scalar variable of type
CMC_descriptor t. Call the function CMC wrappvar, with a pointer to the
parallel variable as an argument, and assign the result to the scalar variable you
created. Pass this scalar variable to the CM Fortran subroutine when you call it via
CMC CALL FORTRAN.

* Pass scalar variables to a CM Fortran subroutine by reference.

Chapter 2 Developing a C*~ Program 13

14 C* User s Guide

After you are finished with a descriptor, free it by calling CMC free_desc with
the scalar variable as an argument.

2.5.2 In Detail

Include File

As mentioned in the overview, you must include the file <csfort. h> if your program
includes a call to a CM Fortran subroutine.

Calling the Subroutine

To call a CM Fortran subroutine, use the following syntax:

CMC_CALL_FORTRAN (subroutine_(args), . ..);

where:

subroutine is the name of the subroutine. It must be in lowercase (even if the
original subroutine name is in uppercase), and you must add an
underscore to the end of the subroutine name.

args are the subroutine's arguments, if any.

To call multiple subroutines, separate them with commas within the argument list. For ex-
ample:

CMC_CALL_FORTRAN (subroutine, subroutine2_ (), subroutine ());

The subroutine is not constrained by the current shape or the context as established by the
C* program. When the call to CMC_CALL_FORTRAN returns, however, both the shape and
the context are what they were before the function was called.

VAX users only:

In addition, if you compile on a VAX, you must create and compile a JBL (Jacket Building
Language) file to map the subroutine name used in your C* program (plus a preceding
underscore) to the subroutine name used by the CM Fortran compiler. The CM Fortran
compiler converts all subroutine names to uppercase, with no leading or trailing under-

Chapter 2: Developing a C* Program 15

scores. The first line of the file creates the mapping. The second line is a mask of registers
to be saved; you need not change the sample line shown below. For example, if the name
of the CM Fortran subroutine is TEST, create the following file (it must have the suffix
.jbl):

test :TEST

{pass <r2, r3, r4, r5, r6, r7, r8, r9, r10, rll>};

Note that you would use the same file if the CM Fortran routine were called "test" (in
lowercase), because the CM Fortran compiler converts the name to uppercase.

You can create multiple mappings in a single JBL file.

See Chapter 3 of this manual for information on compiling this file. See the VAXFortran

for ULTRIX System User Manual for more information about JBL.

What Kinds of Variables Can You Pass?

You can pass both parallel and scalar variables as arguments to a CM Fortran subroutine.
The parallel variables you pass can be of any shape. The variables can be of the following

standard types:

bool
signed int
signed long int
float
double
long double

In addition, <csfort. h> provides typedefs for two new types: CMC_complex and
CMC_double_complex. The typedefs are defined as follows:

typedef struct{float real, imag;} CMC_complex;

typedef struct{double real, imag;} CMC_double_complex;

Use these types to pass variables that can be treated as complex numbers by CM Fortran.

16 C* User ~ Guide

Passing Parallel Variables

A two-step process is required to pass a C* parallel variable to a CM Fortran subroutine.

First, declare a scalar variable of type CMC_descriptor_t. For example:

CMC_descriptor_t desc_a;

Next. make this variable a descriptor for the parallel variable by calling the function
CMC_wrappvar, with a pointer to the parallel variable as its argument, and assigning the
result to the scalar variable. For example, if pl is the parallel variable you want to pass, call
the MC_ wrappvar function as follows:

desc_a = CMC_wrap_pvar(&pl);

You can wrap a parallel variable of any shape.

You can then pass the descriptor to the CM Fortran subroutine. For example:

CMC_CALL_FORTRAN(subroutine_ (desc_a));

The descriptor stores the address (field ID)'of the parallel variable, and the parallel variable
is passed by reference in this way. The CM Fortran subroutine can then operate on the
parallel variable referenced by the descriptor.

C* code can operate on the parallel variable even after it has been wrapped.

You can reuse a descriptor in a program, but first you must free it; see below.

Passing Scalar Variables

Pass scalar variables to a CM Fortran subroutine by reference. For example:

int sl;

CMC_CALL_FORTRAN(subroutine_ (&sl));

Capter 2 Developin a C Program 17

Freeing the Descriptors

When you are through using a descriptor, free it by calling CMCfree desc with the des-
criptor as the only argument. For example:

CMC free desc(clesc a);

You can free a descriptor to a parallel variable of any shape.

An Example

The following is a C* program that calls a CM Fortran subroutine.

#include <stdio.h>

#include <csfort.h>

shape [16384]S;

CMC descriptor t desc a;
int sl;

int:S pl;

main ()

with (S) {

sl = 1;
pl = 1;
desc_a = CMC_wrap_pvar(&pl);

CMC_CALL_.FORTRAN(fortran_op_ (desc_a,&sl));

CMC_free_desc(desc_a);

printf("Result for last position is %d\n", [16383]pl);

And here is the simple CM Fortran subroutine it calls:

subroutine fort.ran_op(a,s)
integer a(16384)
integer s

a = a + s

Chapter 2 Developing a C* Program 17

18 C* User i Guide
x: ' : .S : : .'...... :.: ':: . :

return

end

2.6 Using UNIX Utilities

You can use standard UNIX utilities like make, prof, gprof, and dbx with C* programs.
dbx is discussed in Chapter 5.

2.6.1 The Program Maintenance Utility make

The make utility makes object (.o) files from C*. cs files, just as it does with . c files. The
only requirement is that the following code must appear somewhere in the makefile:

CS = cs

CSFLAGS = $(CFLAGS)

.SUFFIXES: .cs

.CS.O:
$(CS) -c $(CSFLAGS) $<

2.6.2 The Profiling Tools prof and gprof

The two profiling tools prof and gprof work with C* programs just as they do with C
programs. We recommend using gprof rather than prof, since prof shows only the ex-
ecution times of individual Paris operations, without adding them into the times shown for
the C* routines that called them. In contrast, gprof shows the total time spent in each C*
routine. See the CM User a Guide for more information about profiling.

0

0

Chapter 3

Compiling a C* Program
* , . ..; -.........

To compile a C* program, use the cs command.

Section 3.1 describes the basics of using cs, including the most common options. This
section contains all the information most programmers need.

Section 3.2 provides a more detailed look at the compilation process and discusses options
more likely to be used by advanced programmers.

Section 3.3 discusses symbols for which cs provides #defines.

Section 3.4 explains how to compile a C* program that calls a CM Fortran subroutine.

3.1 The Basic Compilation Process

The cs command takes a C* source file (which must have a. cs suffix) and produces an
executable load module. The command also accepts .c source files, .o output files, . obj
JBL files (VAX only), and . a library files, but all parallel code must be in a . s file.

3.1.1 Basic Options

The options accepted by cs include some that are specific to C* and the Connection Ma-
chine system, as well as versions of cc options. This section describes commonly used
options. All options are listed in Table 1.

19

20 C* User Guide

Table 1. C* compiler options

Option Meaning

Basic options:
-help
-h Give information about cs without compiling.
-o[O] Invoke extra C* optimization. Specify -o0 to turn off

all optimization.
-release number Compile using the compiler version number.
-ucode number Link with CM software version number.
-version Print the compiler version number.

Options in common with cc:
-c Compile only.
-Dname [=dej] Define a symbol name to the preprocessor.
-g Produce additional symbol table information for

debugging; required for C* debugging functions.
-Idir Search the specified directory for #include files.
-Ldir Add dir to the list of directories in the object library

search path.
-llib Link with the specified library.
-o output Change the name of the final output file to output.
-pg Link with profiling libraries for use with gprof.
-uname Undefine the C preprocessor symbol name.

Advanced options:
-cc compiler Use the specified C compiler.
-cpp pre-processor Specify a different C* pre-processor.
-dryrun Show, but do not execute, compilation steps.
-force Force . c files through the C* compilation phase.
-keep c Keep the intermediate . . c file.
-noline Suppress #line directives in the output C file.
-overload Display names used by the compiler for overloaded

functions.
-s Create an assembly source file for each input source file.
-temp=directory Change the location of temporary files to directory.
-verbose
-v
-warn
-zcomp switch

Display informational messages during compilation.
Suppress warnings from the C* compilation phase.
Pass option switch to component comp, where comp
is cpp or cc.

0

.... . - ::: .. I.::: I : I :..::. ::::::: '.: :: .:.:`:::::,..'-."-.'::'-: ':� :::::::: X - ,, ;: : :: II.:: ::::: : : :: ::::::::: : X: , :: '. :::,. : : : "': : '. : : : : : : : 'I.- -'- : ".". : :: : :j : : : :: : .: : : . : : : : : : :.: :: : :: :: ! :.: :::: :: '. :: : : :: : ". : : ". X : : .. : -.'. :: ' ' : .':: ... - . .:... . x : :: . . ::: : . :: X " , .. '. :;:;: .; - , : '.. " ., , , ' q : : .: ::: ::,:::: ::::: -, ;�:-: - -:,: .. " -a % - -- .:: - .::.: .: - : -.1.; .:." - - - .::.:. . ":, .:..'.' .:, : -X ; '. . .,. : - .:: ::: .. � I . : .: . X .. :: :. . X.X

Getting Help: The -help Option

Specify -help or-h to print a summary of available command line options for cs, without
compiling.

Changing the Optimization Level: The -O Option

Use the -o option to choose extra optimization for your program, or to turn off optimiza-
tion.

If you do not specify -o0., default optimization includes local copy propagation, dead code
elimination, variable minimization, and some peephole optimizations. You can debug a
program compiled at this level by using dbx or another debugger.

For more optimization, specify -o. At this level, the compiler optimizes user variables as
well as compiler-generated temporaries. A program compiled using -o is too highly opti-
mized for use with a debugger.

To turn off all optimization, specify -00. This is normally not useful.

Choosing a Specific Version of the Compiler: The -release Option

Use the -release option to choose a specific version of the compiler. The initial release
of the compiler has two versions: 6.0, which operates with version 5.2 of the CM system
software, and 6.0.1, which operates with version 6.0 of the CM System Software. (Note
that the compiler version and the CM system software version do not coincide.) Either one

of these versions may be installed as the default. To determine which version is the default,
use the -version option, as described below. To compile using a version that is not the
default, use the -release option. For example,

% cs -release 6.0.1 myfile.cs

compiles with C* Version 6.0.1.

Typically, the default C* version will work with the standard installed version of the Paris
library. If that is the case, you will have to specify the -ucode option along with the
-release option in order to compile a program under a CM system software version that
is not the default; the -ucode option is described below.

Chapter 3 Compiling a C" Program 21

22 C* User Guide

Choosing a Specific 'Version of Paris: The -ucode Option

By default, cs uses the standard installed version of the Paris library. You might want to
use a different version for your program if, for example, you want to compare execution
time for the standard version against that obtained using an older version. Use the -ucode
option, followed by a four-digit number, to specify another version of Paris. Obtain this
four-digit number from your system administrator. Then issue the cs command as in the
following example:

% s -ucode 5211 myfile.cs

The Paris library 5211 is the version used in Version 5.2 of CM system software. If Version
6.0.1 is the default version of C*, you would also have to specify the -release option to
compile your program using this library. For example:

% s -ucode 5211 -release 6.0 myfile.cs

Note that the version numbers of C* and CM System Software do not coincide. See above
for more information about the -release option.

Printing the Version Number: The -version Option

Specify the -version option to cause as to print its version number before compiling. If
you do not specify a source file, es simply prints the version number and exits.

3.1.2 Options in Common with cc:
The -c, -D, -g, -I, -I, -L, -o, -pg, and -U Options

The C* compiler allows you to specify the cc options -c, -D, -g, -I, -1, -L, -o, and -pg
on the cs command line. See Table 1 for a brief description of these options; for more
information, consult your documentation for cc.

You must include the -g option if you want to use the C* debugging functions on the com-
piled program.

Use the -pg option if you want to profile your program using the UNIX gprof utility. This
option causes the compiler to link your program with special Paris and I/O libraries. These

Chapter 3 : Compiling a C; Program

libraries provide more accurate timings of individual operations, at the expense of de-
creased efficiency in the program as a whole.

3.2 A Closer Look at the Compilation Process

The cs command actually has three phases, which normally are transparent to the user:

* A preprocessing phase

* A C* compilation phase

* A C compilation phase (which includes linking)

The C* compilation phase takes a preprocessed C* source file and generates an equivalent
output file, which has the extension.. c. Any parallel code in the .cs file is translated into
C/Paris in this . .c file; serial code in the .cs file may be somewhat changed. The C com-
pilation phase takes this C/Paris file and produces an executable load module.

Typically, only . s files are read during the C* compilation phase; . c, .o, and . a files are
not read until the C compilation phase. This means that putting serial code in . c files
speeds up compilation, siince these files don't have to go through both compilation phases.
You may, however, want a . c file to go through the C* compilation phase if the code
includes ANSI features like function prototyping, since the C* compilation phase imple-
ments many ANSI features. To accomplish this, specify the -force option to cs, as
described below.

3.2.1 Advanced Options

This section describes c:s options that would typically be used by an advanced program-
mer. All options are listed in Table 1.

Using Another C Compiler: The -cc Option

The C* compiler works in conjunction with the standard C compiler available on your VAX
or Sun front end. The use of C* with other C compilers is not supported and can lead to
incorrect results. However, you can use another compiler if you want to, by including the

Chapter 3: Compiling a C Program 23

24 C* User Guide

-cc switch, followed by the name of the compiler. For example, to use the Gnu C compiler,
specify the -cc option as in the following example:

% s -cc gcc myfile.cs

Specifying a Different C* Pre-processor: The -cpp Option

Use the -cpp option to specify a different pre-processor during C* compilation. For
example,

% s -cpp /usr/.local/lib/gcc-cpp foo.cs

uses the Gnu C compiler's pre-processor for foo. cs (the pathname of this pre-processor
may be different at different sites). This gives you access to ANSI C features available in
the Gnu C pre-processor. Note, however, that the use of a pre-processor other than the one
available with the standard C compiler on your VAX or Sun front end is not supported.

Displaying Compilation Steps: The -dryrun Option

Specify -dryrun to cause cs to show, but not carry out, the steps in the compilation.

Putting .c Files through the C* Compilation Phase: The -force Option

Specify -force to put. c files through the C* compilation phase. Otherwise, such files are
passed unread to the C compilation phase. You might want to specify -force to take ad-
vantage of the C* compilation phase's type checking of prototyped function declarations.

Keeping the Intermediate File: The -keep Option

Specify the -keep option, followed by the argument c, to have cs keep the . c file
produced by the C* compilation phase.

NOTE: The .. c file is not portable between front ends. You cannot create a .. c file on a
Sun, for example, and execute it on a VAX.

Chapter 3: Compiling a C* Program 25

Suppressing Line Directives: The -noline Option

Specify -noline to suppress #line directives in the output C file. This seriously limits
your ability to debug C* source files with dbx or other debuggers. It does, however, let you

debug at the C/Paris level--in other words, you can debug the . c file rather than the .cs
file.

Displaying Names of Overloaded Functions: The -overload Function

Use the -overload option to cause the compiler to display informational messages listing
the names it uses internally for overloaded functions. This is necessary if you want to in-
voke such a function directly using dbx.

Turning On Verbose Compilation: The -verbose Option

Specify -verbose or -v to display informational messages as the compilation proceeds.
This can be useful if you want to see which part of the compilation process produced an

error message.

Creating Assembly Source Files: The -S Option

Use the -s compiler option to create an assembly source file for each input source file. For

example:

% s -S foo.cs bar.cs

produces the files foo. s and bar. s.

You cannot combine the -s option with either the -c option or the -o option.

Changing the location of Temporary Files: The -temp Option

Use the -temp option to change the location in which C* temporary files are created. By
default, these files are created in /tmp. To create them in the directory /var/bar, for ex-
ample, issue a cs command like this:

% cs -temp=/var/bar foo.cs

26 C* Users Guide

Note that no spaces are allowed.

Sun users who want to redirect temporary files created by the C compiler should still use
this option:

-Zcc -tempdirect ory

Turning Off Warnings: The -warn Option

Specify -warn to suppress warnings produced during the C* compilation phase.

Specifying Options for Other Components: The -Z Option

Use the -z option to specify cpp or cc options that cs does not recognize. These options
are passed directly to the specified component without any interpretation by cs. Type -z,
followed by the component name, followed by the option. There is no space between -z
and the component name; leave at least one space between the component name and the
option. For example, specify

% cs -Zcc -w myfile.cs

to suppress cc warning messages.

3.3 Symbols

The as command provides #defines for the symbols listed below:

cstar The C* language (as opposed to the C language)
unix Any UNIX system

.ultrix ULTRIX only
vax VAX only
sun Sun only
sparc Sun-4 only

If the symbol is applicable, as automatically defines it as 1. For example, if you are execut-
ing cs on a VAX nmning ULTRIX, the vax and ultrix symbols are each defined as 1. This d

Chapter:: Mii ::`::::::. '::::::: .. . ; ::3:: Compiling a C:Program2.:7: >A.:, I . :: t t::::ii:: :B g ·. ilj;:*B::::..: ·.:

lets you place the symbols in #ifdef statements to isolate code for execution only when
the program is running under VAX ULTRIX. Thus, you can use these symbols to ensure that
your code is portable. The cstar symbol lets you isolate parallel code within a program,
allowing you to share source code between a C and a C* program.

3.4 Compiling a C* Program that Calls CM Fortran

If your program includes a call to a CM Fortran subroutine, as described in Chapter 2, fol-
low the instructions in this section.

1. Compile the C* program, using the -c option. For example:

% s - testcs.cs

2. Compile the CM Fortran program, also using the -c option. For example:

% cmf -c testfcm.fcm

3. For Vax users only: Compile the JBL file you created to map the subroutine
name(s) you used in the C* program to those created by the ULTRIX Fortran com-
piler. For example:

% jbl cstofortran.jbl

This creates a file with a .obj suffix that you must link in with your other files.

4. Use the cmf compiler to link the .o files, the .obj file (if you are compiling on a
VAX), and the required libraries. You must also link the following library:

* libcsrta - the C* runtime library

In addition, include any libraries that you need to explicitly link with your
program.

For example, on a Sun you might issue the cmf command as follows:

% cmf -nocmfmain testcs.o testfcm.o -Zld "-lcsrt

On a VAX you might issue the cmf command as follows:

Chapter 3: Compiling a C* Program 27

28 C* Users Guide

% cmf -nocmfmain testcs.o testfcm.o cstofortran.obj \
-Zlk "-lcsrt

The result is an executable load module that you can execute as you normally would.

Chapter 4

Executing a C* Program on a CM

Once a C* program has been compiled and linked, you can execute the output file on a
Connection Machine system. This chapter gives an overview of how to execute a program
on a CM system. For complete information, consult the CM User s Guide.

4.1 Overview

To execute a program on a CM, you must gain access to some of its processors; this is
known as attaching to the CM. Your front end has one or more interfaces, each of which
can attach to one or more sequencers within the CM; each sequencer controls a group of
CM processors.

There are two basic methods of attaching to a CM: direct access and batch access.

* For direct access, issue the cmattach command to attach an interface to one or
more sequencers on the CM. Depending on how you issue the command, your pro-
grams is executed immediately and you are then detached from the CM, or you
enter an interactive subshell from which you can execute the program and other
commands.

* For batch access, issue the qsub command to submit your program to a queue that
has been set up in the CM batch system. Your program attaches to the CM and is
executed when it reaches the head of the queue. Check with your system adminis-
trator to find out if the batch system has been installed at your site.

In both cases, access to the CM can be either exclusive or timeshared, depending on how
your system is configured. With exclusive access, only one user can be attached to an inter-
face and a sequencer at a time. With timeshared access, multiple users can be attached at

29

30 C* User s Guide

a time, and multiple jobs can be running on the same processors. Neither affects the way
you compile or execute your program. Performance may be somewhat slower under time-
sharing, however.

Direct, exclusive access is ideal when you are developing your program, since it lets you
debug interactively on the CM. This kind of access may be relatively difficult to obtain,
however.

4.2 Obtaining Direct Access

Use the cmattach command to obtain direct access to CM processors.

4.2.1 Executing the Program Immediately

To execute a program immediately, issue cmattach with the name of the executable pro- - I
gram as an argument. For example,

% cmattach myprogram

attaches to any free interface and sequencer, initializes (cold boots) the sequencer and its
processors, and executes the program. The system displays a message that gives you the

following information:

* The name of the CM, the number of the sequencer, and the number of processors
to which you are attaching

* The version of the CM microcode that this sequencer is running

* Whether Paris-level safety checking is on

If no sequencers or interfaces are available, you receive an error message.

211 1

Chapter 4: ExFeciui a Ci" Program 31

4.2.2 Obtaining an Interactive Subshell

Issue cmattach without the name of an executable program to obtain an interactive sub-
shell. If an interface and a sequencer are available, you are attached to them, and the
processors controlled by the sequencer are cold-booted. You are placed in a UNIX subshell,
from which you can execute your program, enter the debugger, or issue any standard UNIX
commands.

To leave the subshell and detach from the CM, type exit or the Ctrl-D key combination
at the UNIX prompt.

4.2.3 Options for cmattach

This section describes several of the most commonly used options for cmattach. See its
on-line man page for a discussion of all its options.

Waiting for Resources

Use the -w option to tell cmattach to wait if initially it cannot obtain an interface and a
sequencer. If you don't require interactive use of the CM, it is generally preferable to sub-
mit your program to a batch queue.

Specifying a Sequencer, an Interface, and a CM

You can control the CM, the interface, and the sequencer(s) to which cmattach will attach
you. You might want to specify a particular sequencer if, for example, you want to use a
framebuffer that is connected to that sequencer.

Use the -c option, followed by the name of a CM, to specify the CM to which you want
to attach.

Use the -s option to specify number of the sequencer(s) to which you want to attach. Valid
values are 0, 1, 2, 3, 0-1, 2-3, and 0-3.

Use the -i option to specify the number of the interface to which you want to attach.

Chapter 4: Executing a C Program 31

32 C* User s Guide

Obtaining Exclusive Access

Use the -e option to cmattach to specify that you require exclusive access to one or more
sequencers. If you use this option, the system will not attach you to a sequencer that is
running under timesharing.

4.3 Obtaining Batch Access

In the CM batch system, you submit your program as a request to a queue. The queue may
be associated with a CM and a sequencer, in which case the request is generally executed
when it reaches the head of the queue. Or, the queue could send the request to another
queue for execution.

The batch system is configured differently at different sites. To find out what queues exist
at your site and when they are active, ask your system administrator, or issue the following
command:

% qstat -x

4.3.1 Submitting a Batch Request

Use the qsub command to submit a batch request for execution via a queue in the CM
batch system. You can submit multiple programs as one batch request. There are two ways
of specifying the programs to be executed:

Put their names in a script file, and specify the name of the script file on the qsub
command line. For example, the file myprogram_script could contain the fol-
lowing names of executable C* programs:

myprograml

myprogram2

myprogram3

You can then submit these programs for execution by issuing the following
command:

Chapter 4.·. : : sing a C"s Pg 33:.: s : ::

% qsub myprogram_script

Enter the names of the files from standard input. Put the names of the programs on
separate lines, and type Ctrl-D at the end to signal that there is no more input. For
example:

% qsub
myprograml.

myprogram2

myprogram3

Ctrl-D

You can also issue other commands as part of the request-for example, cmsetsafety to
turn Paris run-time safety on or off.

4.3.2 Options for qsub

This section describes several of the most commonly used options for qsub. See its on-line
man page for a discussion of all its options.

Specifying a Queue

Use the -q option to specify the name of the queue to which the request is to be submitted.
If you omit this, the request is sent to the default queue (if one has been set up).

Receiving Mail

Use the -mb option to specify that mail is to be sent to you when the request begins execu-
tion. Use -me to have mail sent to you when the request ends execution.

Setting the Priority

Use the -p option, followed by an integer from 0 through 63, to set a priority for this re-
quest in its queue. 63 is the highest priority, and 0 is the lowest priority. The priority

Chapter 4 Executing a C Program 33

34 C* User Guide

determines the request's position in the queue. If you don't set a priority, the request is
assigned a default priority.

Specifying Output Files

Use the -o option, followed by a pathname, to specify the file to which output of the batch
request is to be sent. Use the -e option to specify the pathname for the standard error out-
put. If you omit these options, the output is sent to default files based on an ID number
assigned to the request by the batch system.

4.4 Other CM Commands

Other commands are useful in executing programs on the CM. For example:

* Use the cmfinger command to obtain information about the CM system: who is
using the interfaces and sequencers, and whether any sequencers are free.

* Use the cmdetach command to detach an interface from a sequencer, making it
available for use by another user.

* Use the cmps command to list the processes that are running under timesharing on
a sequencer.

* Use the cmset.safety command to turn Paris-level safety checking on and off.

* Use the cmcoldboot command to reset the state of the CM hardware to which you
are attached.

* Use the qdel command to delete a batch request from a queue.

* Use the qstat command to obtain information about batch requests in a queue.

See the CM User ' Guide and the on-line man pages for complete information on these
commands.

Chapter 5

Debugging a C* Program
., , , h , W: :..:.:.:.:.:: :.:.:.:·:·:::·:.:.:.: ::::::::::::::i::: :.,.;

C* programs can be debugged using a standard debugger like dbx. C* provides a variety
of functions that you can call within a debugger. Among other things, these functions let
you:

* Define a region within a shape to use for debugging.

* Print values of a parallel variable.

* Make positions active or inactive.

* Assign values to a parallel variable.

These functions stay in effect during the execution of a program in dbx. They output their
results to the standard error device. Table 2 summarizes the debugging functions discussed
in this chapter.

As described in Chapter 3, note that debugging is difficult when your program is compiled
with the -o option.

5.1 Using dbx

To use dbx or another debugger, invoke it from within an interactive subshell spawned by
cmattach. For example:

% cmattach

Attaching the Connection Machine system name...

coldbooting... done.

Attached to 8192 physical processors on

sequencer 0, microcode version 6002

35

36 C* User Guide

Paris safety is off.

Entering CMATTACH subshell. Type "exit" or control-D

to detach the CM. . .

% dbx a.out

(dbx) [dbx commands such as run, step, and next]
(dbx) quit

% exit

Detaching... done.

The dbx commands behave with C* programs as they do with C programs, with the
exception noted below.

Note on the VAX version of dbx

C* programs are translated into C/Paris programs as part of the
compilation process. Although dbx displays the C* statements, it
actually operates on this C/Paris program. In the VAX version of
dbx, the result is that you may have to issue a step or next
command more than once before a C* statement is completely
executed; what is happening is that dbx is stepping through the
underlying C/Paris statements.

5.1.1 Invoking Overloaded Functions from within dbx

To keep track of different versions of an overloaded function within a program, the compil-
er assigns separate names to each version. If you want to invoke a particular version of such
a function from within dbx, you must use this internal name. To obtain these names, use
the -overload option when compiling the program; this causes the compiler to display
the names it uses. For example, if your program contains two versions of the function sin,
one called with a parallel float, the other with a parallel double, the compiler might
respond as in the following example: ,

Chapter 5: Debugging a C* Program 37

% cs -overload myprogram.cs

"myprogram.cs", line 13: info: overloading is CMC sin F

"myprogram.cs", line 14: info: overloading is CMCsin D

Table 2. C* debugging functions

Function and Arguments Use

CMC_default_type (ype_sel) Change the default data type to typesel.
CMC_define_format (type_sel, 'format")

Specify a format for printing.
CMC_define_region (shape, lower_bound, upper_bound, ...)

Specify a region of a shape.
CMCdefine_type (pvar, type spec) Specify a data type for a parallel variable.
CMC_define view (shape, row, col, ...)

CMCdefine_width (typesel, width)
CMC_help ()
CMC_off (shape, coord...)
CMC_off_region (shape)

CMCon (shape, coord, ...)
CMCon region (shape)
CMCpop_context (shape)

CMC_print (pvar, coord, ...)

CMC_print_region (pvar)

CMCpush_context (shape)

CMC_set (pvar, value, coord, ...)

CMCset region (pvar, value)

CMC status()

Specify the order in which axes are to be
represented by CMCprint region.
Specify a width for printing a parallel variable.
Get information about the debugging functions.
Make a position inactive.
Make all positions in the shape's region
inactive.
Make a position active.
Make all positions in the shape's region active.
Change the context to the most recently saved
context.
Print the value of one element of a parallel
variable.
Print values of a parallel variable in a region.
Save the current context on a stack.
Assign a value to an active element of a
parallel variable.
Assign a constant value to active elements of a
parallel variable in a region.
Display debugging status information.

38 C* User Guide

5.1.2 Calling C* Debugging Functions from within dbx

To use one of the C* debugging functions described in this chapter, issue it with the dbx
command call. To lessen the amount of typing this requires, you can use the dbx com-
mand alias to create an abbreviation for the call. For example, issuing the following
command:

% (dbx) alias ppr "call CMC_print region"

makes ppr an alias for the string "CMC print region". You can then use ppr along
with the appropriate argument in place of a call to CMC print region. For example:

% (dbx) ppr(pl)

To execute these alias commands automatically when you start a dbx session, put them
in the file .dbxinit in your current or home directory.

We provide a sample .dbxinit file, called cs-dbxinit, which is located in the directory
that contains sample programs. Ask your system administrator for the path for this directo-
ry at your site.

5.2 Defining a Region: The CMC_define_region Function

C* debugging functions let you perform operations either on a single element or position,
or on a selected set of positions within a shape; this set of positions is referred to as a re-
gion. Since shapes usually have thousands of positions, it is easier to focus on a small
subset of them for debugging purposes.

Initially a shape's region consists of all positions in the shape. To change the region, use
the CMC_define_region function. Its first argument is the name of the shape. Then, for
each dimension, specify the beginning and ending coordinates that define the region. Start
with axis 0, and include beginning and ending coordinates for each axis in the shape. For
example,

(dbx) call CMC_define_region (ShapeA, 0, 4)

defines the region of ShapeA as positions 0 through 4; ShapeA must be a 1-dimensional
shape.

(dbx) call CMC defineregion(ShapeB, 0, 4, 0, 9)

Chapter 5: Debugging a C* Program 39

defines the region of ShapeB as those positions with coordinates 0 through 4 along axis
O and 0 through 9 along axis 1-a total of 50 positions. ShapeB must be a 2-dimensional
shape.

Note that a region can contain both active and inactive positions.

Once a region is defined for a shape, it stays in effect until you issue another call to
CMC_define region to change it, or until the program finishes execution within dbx.

NOTE: To indicate the current shape, specify CMcurrent_vp_set rather than the C*
keyword current.

5.3 Defining Data Types for Parallel Variables: The
CMC_default_type and CMC_define_type Functions

C* debugging functions must know the type of a parallel variable before they can operate
on it. The default type for use with the debugging functions is double. To change the de-
fault, call the CMCdefaulttype function. Its sole argument is a data type selector,
which must be one of the following:

CMCbool

CMC char

CMC double

CMC float

CMC int

CMC_long_double

CMC_long_int

CMC short

If you want the default to be an unsigned data type, use the corresponding signed type. For
example, use CMCint to make either integers or unsigned integers the default data type.

If a parallel variable does not have the default data type, specify its type using the
CMC define_type function. Include the parallel variable and the type selector as argu-
ments. For example,

(dbx) call CMC_define_type(pl, CMC int)

defines pi as an int.

40 C* User Guide

You can't define a type for a parallel variable until you have passed the point in your pro-
gram where space is allocated for the parallel variable on the CM. For a parallel variable
at file scope, this occurs when you enter the first function in the compilation unit where the
parallel variable is declared. For an auto parallel variable, this occurs when the parallel
variable is declared.

Note

It is important to use CMC definetype to define the type for
any parallel variable that is not of the default type. If you don't,
and the parallel variable is smaller than the default type, the de-
bugger may try to access memory beyond the parallel variable's
boundary; this may cause the debugger to abort.

> > ~....:.: >..... .. . : . M.........; .. o.'''.:. .: ... '

Note that you can't use structure or array syntax to print out parallel structures or parallel
arrays.

5.4 Printing Values of a Parallel Variable:
The CMC_print and CMC_print_region Functions

C* provides functions that let you print out either the value of a single element of a parallel
variable, or the values of a parallel variable's elements in the region specified by CMCde-
fine region. If the parallel variable does not have the default type, you must have
previously called the function CMC_definetype to specify a type for it.

To print the value of a single element, call the CMCprint function. As arguments, specify
the parallel variable, followed by the coordinate(s) of the element whose value you want
to print. Start with axis 0. For example,

(dbx) call CMCprint (pl, 5, 7)

prints the value of [5] [7] pl. If the specified element is in an inactive position, its value
is displayed in parentheses.

Chapter 5: Debugging a C* Program 41

To print the values of a parallel variable's elements in a region, call CMCprint region.
The parallel variable is the only argument. The function prints the values of the elements
in the region specified by CMC_define_region; if you have not called
CMCdefine region for the shape of this variable, the function prints the values of all
elements of the parallel variable.

If parallel variable p1 is of shape ShapeA and you issue the following commands:

(dbx) call CMC_define_region(ShapeA, 0, 4, 0, 9)

(dbx) call CMC print region(pl)

CMC_print_region prints out the specified values of pl as a 5 by 10 table, with axis 0
as the rows and axis 1 as the columns. Values of elements in inactive positions are dis-
played in parentheses.

If the shape is 3-dimensional, the function prints out a series of tables of values, each repre-
senting a plane of positions through axis 2. The function starts with the table of values for
elements whose axis 2 coordinate is the lower boundary for axis 2 specified in the call to
CMC_define_region.

You can change the format in which the values are displayed; see Section 5.4.2.

If the region contains too much data to be displayed on the screen, reissue
CMCdefineregion to reduce the size of the region.

5.4.1 Printing Values of a Pointer to a Parallel Variable

To look at values pointed to by a scalar pointer to a parallel variable, treat the pointer as
if it were a regular parallel variable. For example, if you declare parptr as follows:

int:current *pa.r_ptr;

you can define its type as follows:

(dbx) call CMC_. define_type(par_ptr, CMC_int)

If the current shape is 1-dimensional, you can print out the value at element [0] as follows:

(dbx) call CMC_print(par ptr, O)

42 C* User Guide

You cannot treat a pointer to a parallel variable as you would a standard C pointer, because
the debugger doesn't understand C* syntax. See Chapter 2 for information on the underly-
ing implementation of scalar-to-parallel pointers in C*.

5.4.2 Changing the Format: The CMC_define_format,
CMC_define_width, and CMC_define_view Functions

To change the way in which CMC_print_region displays the values of a parallel
variable, use the CMC_define_format, CMC_define_width, and CMC_define_view
functions.

Use CMC define format to specify a different display format for a data type. The func-
tion takes as arguments a type selector and a printf format. For example,

(dbx) call CMC defineformat(CMCfloat, "%5.2f")

causes floats to be printed out with a field width of 5 and a precision of 2. See Section
5.3 for the list of type selectors.

Due to a restriction in some Sun versions of dbx, you cannot pass a string to dbx as an
argument to a function. This means that you cannot call CMCdefine_format from a Sun
front end. Instead, use CMC_define_width. CMC_define_width takes as arguments a
type selector and an integer that specifies the field width of that type. For example:

(dbx) call CMC define width(CMC int, 4)

causes integers to be printed with a width of 4.

Note the following in using CMC_define_width:

* If the type selector is CMC float, CMC_double, or CMC_long_double, you
must specify two integers; the first specifies the width, and the second specifies the
precision. All other type selectors take only one integer.

* If the type selector is CMC char, and you specify a negative width, the char is
printed as an int with the width you specify. If the width is greater than or equal
to 0, the char is printed as a character.

* If you specify a width of 0, minimum-width columns are printed.

Chapter 5: Debugging a C········ ::·:~t::'·::.:::·.::··· Program 43:::::i::::::::

Use CMC_define_view to specify the order in which axes are represented for a shape.
By default, axis 0 is represented as rows and axis 1 is represented as columns.
CMC_define view takes the following arguments:

CMC_define_view (shape, row_axis, column_axis, ...)

Therefore, to display axis 0 as the columns and axis 1 as the rows for shape ShapeB, call
the function as follows:

(dbx) call CMC_defineview(ShapeB, 1, 0)

If ShapeC is 3-dimensional, you can reverse the default method of presenting the axes by
calling the function as follows:

(dbx) call CMC define_view (ShapeC, 2, 1, 0)

The results of the call remain in effect for a shape even if you call CMC_define region

to change the region that is to be displayed.

NOTE: To indicate the current shape, specify CM_current_vp_..set instead of the C* key-
word current.

5.5 Setting the Context: The CMC_on, CMC_on_region,
CMC_off, and CMC_off_region Functions

C* provides functions that let you make positions active or inactive.

For a single position, call the function CMC_on to make a position active; call the function
CMC off to make it inactive. Both take as arguments a shape and the coordinates of the
position, starting with axis 0. For example,

(dbx) call CMC on(ShapeB, 47, 59)

makes position [47][59] of ShapeB active.

(dbx) call CMC off(ShapeB, 47, 59)

makes it inactive.

Chapter 5: Debugging a C Program 43

4:4: .;:e : : ::: *: : :: :. :::: :C* Usr: G:::ide:

For a region, call CMC_on_region to make all positions within the region active, and call
CMC_off_region to make them all inactive. The only argument for both functions is a

shape. For example,

(dbx) call CMC_on region(ShapeA)

makes all positions active in the currently defined region for shape ShapeA.

(dbx) call CMC_off_region (ShapeA)

makes them inactive.

NOTE: To indicate the current shape, specify CM current_vp_set instead of the C* key-
word current.

5.5.1 Saving and Restoring Contexts: The CMC_push_context and
CMCpop_context Functions

In debugging, you might want to change a shape's context, see what happens, and then

change back to an earlier context. To do this, use the functions CMCpush_context and

CMCpop_context. Both take a shape as an argument. Use CMCpush context to save
the current context for a shape. You might then call a function like CMC_on_region to

change the context. Once you are through using the changed context, call
CMC_pop_context to return the context to what it was before the change. Do this before

leaving a block that changes the context; you will get unexpected results if you issue

CMCpop_context when the context is not the same as it was when you issued

CMC push_context.

NOTE: To indicate the current shape, specify CM current_vp_set instead of the C* key-
word current.

5.6 Assigning Values to a Parallel Variable:
The CMCset and CMCset_region Functions

C* provides two debugging functions that let you change the values in elements of a paral-
lel variable. For both these functions, if the parallel variable's type is not the default, you
must first specify its type using CMC define_type.

C* User i Guide44

Chapter 5: Debugging a C* Program 45

To assign a value to a single element of a parallel variable, call the CMC_ set function. As
arguments, specify the parallel variable, the value to be assigned, and the coordinates of the
element, starting with axis 0. For example,

(dbx) call CMC_set(p2, 4.0, 6, 7)

assigns the value 4.0 to [6] [7] p2, provided that the position is active. If the position is
inactive, you receive a warning message and the value is not assigned.

To assign a single value to all active parallel variable elements in a region, call
CMC_set_region. As arguments, specify the parallel variable and the value. For example,

(dbx) call CMC set_region (p2, 4. 0)

assigns the value 4.0 to all elements of p2 that are in active positions in the currently de-
fined region. If some positions are inactive, the value is assigned to the elements in active
positions, and you receive a warning message about the inactive positions.

5.7 Obtaining Status Information:
The CMCstatus Function

To find out the current status of your debugging session, call the CMC_status function.
CMC_status prints out information such as the default type, the default formats, the de-
fault views, and the current region(s). If you have not defined a region for a shape, but you
have called functions like CMCprint_region that access a region for the shape,
CMC_status prints the default, which is all positions in the shape.

Note

In the display, parallel variables are shown as Paris field IDs, and
shapes are shown as Paris VP set IDs. To determine the field ID
for a parallel variable, use the dbx command print with the par-
allel variable name as the argument. Similarly, to obtain the VP set
ID for a shape, issue print with the name of the shape. See Chap-
ter 2 for a discussion of the relationship between Paris concepts
and C* concepts.

46 C* User Guide

5.8 Obtaining Help: The CMC_help Function

Call the function CMC_help to obtain a list of the C* debugging functions and their argu-
ments.

5.9 Sample Debugging Sessions

This section presents a series of dbx sessions in which we debug a C* program. The ses-
sions are on a Sun; VAX sessions would look somewhat different.

5.9.1 The Program

The program, primes. cs, is supposed to find and display prime numbers, and is shown
below; line numbers have been added to help you follow the explanations. There are sever-
al errors in the program. The rest of the section will show the process by which these errors
are uncovered.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

#define MAXIMUMPRIME 16384

#define FALSE 0

#define TRUE 1
#define FIRST PRIME 2

/*
/* Function to find prime numbers

/*
/* Parameters:
/*
/* A pointer, "is_prime_p," to a one-dimensional parallel

/* char that will have non-zero elements in all positions

/* where the index is a prime number

/*
/* Side effects:
/*
/* find_primes alters the one-dimensional parallel char

/* that is pointed to by "is_prime_p."
/*

* /
*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

Chapter 5: Debugging a C* Program 47

21. /* Calling constraints: */
22. /* */
23. /* The shape of the parallel char pointed to by */
24. /* "is_prime_p" must be the current shape and all */
25. /* positions must be active */
26. /* */
27. /* Algorithm: */
28. /* */
29. /* This function will use the Sieve of Eratosthenes to */
30. /* find the prime numbers. That is, it will iterate */
31. /* through all numbers that are indices to the one- */
32. /* dimensional parallel char pointed to by is_prime_p */
33. /* */
34. void find_primes(char:current is_prime_p)
35. char:current is candidate;

36. int minimum_prime;
37.

38.

39.

40. iscandidate = (pcoord(O) >= FIRSTPRIME) ? TRUE : FALSE;
41.

42. do

43. where(is_candidate) {

44. minimum_prime = <?= pcoord(0);
45. where(pcoord(0) % minimum)
46. is candidate = FALSE;
47. [minimum prime] (*is_prime_p) = TRUE;
48. }

49. while(l= is candidate);

50. }

51.

52. main() {

53. shape [MAXIMUM_PRIME]s;
54.

55. char:s is_prime;
56. int i;

57.

58.

59. find_primes(&is_prime);

60. for(i=0; i<MAXIMUM PRIME; i++)

61. if([i]is_prime)

62. printf("The next prime number is %d\n", i);
63. }

48 C* User s Guide

We want to use the following algorithm:

1. Take as candidates all non-negative integers up to a specified value.

2. Eliminate 0 and 1 as candidates.

3. The smallest remaining candidate is a prime; call it p.

4. Remove p and all multiples of p from the set of candidates.

5. Go to step 3.

To implement this algorithm, primes. cs uses a function called find_primes.
find primes declares a parallel variable called iscandidate whose coordinates rep-
resent possible prime numbers. The function makes positions 0 and 1 inactive (to eliminate
0 and 1 as candidates), then finds the minimum active position (initially, this is 2); this is
a prime number. It then turns off all positions whose coordinates are multiples of the coor-
dinate of this minimum active position; these coordinates no longer represent possible
primes. The element at the minimum active position is set to 1 in a parallel variable pointed
to by isrimep.

find primes goes through a do loop, repeating these steps until there are no candidates
left. The coordinates of the elements set to 1 in the parallel variable pointed to by
is_prime_p represent the prime numbers.

5.9.2 Compiling the Program

We begin by trying to compile the program:

% cs -o primes primes.cs -g

But primes. cs does not make the compiler happy. The compiler responds:

"primes.cs", line 47: illegal indirection

"primes.cs", line 59: type clash on argument 1

"primes.cs", line 45: undefined identifier minimum

We look at the offending lines:

:.:,:: ,, : " : '.. '- : I.:,. .: : :......... X: .::: ::: : :::: "::: ::::: : ::·: : : : : : : :

47. [minimum_prime](*is_prime_p) = TRUE;

59. find_primes(&is_prime);

45. where((pcoord(O) % minimum))

The problems are fairly easy to spot. The difficulties with lines 47 and 59 are caused by
the same error. We defined find primes on line 34 as taking a parallel variable, rather
than as taking a pointer to a parallel variable. Thus, the compiler complained when it
reached the lines where we treat the parameter as a pointer.

The problem with the identifier minimum on line 45 is also obvious. We declared the vari-

able as minimumrime on line 36, but refer to it as minimum here.

5.9.3 The Initial Debugging Session

We make the corrections, which are shown below in bold (we omit the initial comments):

1. #define MAXIMUM PRIME 16384

2.

3. #define FALSE 0

4. #define TRUE 1

5. #define FIRST PRIME 2

34. void find primes(char:current *is_prime p) {
35. char:current iscandidate;

36. int minimum_prime;
37.

38.

39.

40. is candidate = (pcoord(O) >= FIRST PRIME) ? TRUE : FALSE;

41.

42. do

43. where(iscandidate) {

44. minimum_prime = <?= pcoord(O);

45. where(pcoord(O) % minimumprime)

46. is candidate = FALSE;

47. [minimum_prime] (*is_prime_p) = TRUE;

48. }

49. while(l= iscandidate);

50. }

51.

52. main() {

53. shape [MAXIMUMPRIME]s;

Chapter 5: Debugging a C* Program 49

50 C* User Guide

54.
55. char:s is_prime;

56. int i;

57.

58.

59. find_primes(&is_prime);

60. for(i=0; i<MAXIMUMPRIME; i++)

61. if([i]is_prime)

62. printf ("The next prime number is %d\n", i);

63. 1

We confidently compile the revised program. As expected, there are no errors, so we attach

to a CM. In the cmattach subshell, we first set Paris safety on (this is recommended when
you are going to be debugging):

% cmsetsafety on

And then we run the program:

% primes

Unfortunately, something seems to be wrong. The program isn't printing out a list of prime
numbers; it isn't doing anything. It seems to be stuck in an infinite loop. We use Ctrl-C to
kill the program, and we go into dbx:

% dbx primes

Reading symbolic information...

Read 1693 symbols

We have created aliases for the C* debugging functions and some frequently used dbx
commands. We print them out to refresh our memory:

(dbx)
df

dr

dt

dv
dw
off

offr
on

onr

alias

"call

"call

"call
"call
"call

"call
"call

"call
"call

CMCdefine format"
CMC_define_region"

CMC_define_type"
CMCdefine view"
CMCdefine width"
CMC off"

CMC_off_region"
CMCon"
CMC_on_region" I)

Chapter'5 : eb ggiga' 'Prog'ram''': 5'1' "':' ' '',':'.- ';i .I..

phelp "call CMC_help()"

popc "call CMC_pop_context"

pp "call CMCprint"

ppr "call CMC_print_region"

pstat "call CMC_status()"

pushc "call CMC_push_context"
set "call CMC set"

setr "call CMC_set_region"

type "call CMC_default_type"
n "next"

p "print"

s "step"

We will use these abbreviations in our debugging sessions. Note that you must create your
own aliases for the C* debugging functions; put the appropriate alias commands in

.dbxinit if you want them to be in effect when you start your dbx session.

We then start debugging primes. cs. We decide to take a look at is_ candidate before
the program enters the first where statement of the findprimes function. We don't need
to see very much of the parallel variable; we know that elements [0] and [1] should be set
to 0, and elements [2] and above should be set to 1. All elements should be active.

We begin by stepping through main. Note that we use a next command at the beginning
of main. When you enter the first function in a compilation unit, use the next command
to avoid stepping into functions required by C* runtime support. Note also the use of the
step command to enter the findprimes function; we use step in this case so that we
do go into the function.

(dbx) stop in main
(1) stop in main

(dbx) run

Running: primes

stopped in main at line 52 in file "primes.cs"

52 main() {

(dbx) n

stopped in main at line 59 in file "primes.cs"

59 find_primes(&is_prime);

(dbx) s

stopped in find_primes at line 34 in file "primes.cs"
34 void find_primes(char:current *is_prime_p) {

(dbx) n
stopped in find_primes at line 40 in file "primes.cs"

40 iscandidate = (pcoord(O) >= FIRST PRIME) ? TRUE : FALSE;

(dbx) n

Chapter 5 Debugging a C* Program 51

,······;~·: .,.31~::a::::li~i~~i~ii ::::: :` :::,::::: . : . . '-`-`-.`.'.--,.::.:1'-,'~j :: -. :·::..:,:::: :i:::::: ::::::j: ::XX :::.: : :::::: " .: . - . .. : , ::. , : ::: ·.. .: .. - - , . . - .1. .., . .

stopped in find_primes at line 43 in file "primes.cs"
43 where(is_candidate) {

We now call the appropriate C* debugging functions. We use CMC defineregion to
define a region from 0 through 9 of shape s. We call CMC definetype to define
is_candidate as a char. We call CMC_define width to specify that is candidate

is to be printed as an int with field width 2.

(dbx) dr(s, 0, 9)

Region set to [0, 9]

stopped in find_primes at line 43
43 where(is_candidate) {

(dbx) dt(is candidate, CMCchar)

stopped in find_primes at line 43
43 where(is_candidate) {

(dbx) dw(CMCchar, -2)

stopped in find_primes at line 43
43 where(is candidate) {

in file "primes.cs"

in file "primes.cs"

in file "primes.cs"

Finally, we call CMC print region to print the values of is_candidate:

(dbx) ppr (is_candidate)

But something has gone very wrong. Instead of printing out 10 values, the debugger prints
out screen after screen of numbers! Puzzled, we call CMC_print status to see what's
going on:

(dbx) pstat

CMC debugging status

Default type: CMC_double
Default formats:

CMCbool %ld

CMCchar %2d

CMC short %6d

CMCint %10d
CMC_long_int %10ld

CMC float %10.4g

CMCdouble %l0g
CMC_long_double %l0g

Parallel variable types:

field id 458760 type CMC char

52 C* User s Guide

Chapter 5: Debugging a C* Program 53

Shape regions:

vp set 2 [0,9]

vp set 0 [0,8191]

Context stacks:

Shape views:

vp set 0 0

stopped in find_primes at line 43 in file "primes.cs"

43 where(is candidate) {

Why are there two "Shape regions" defined? The first one (vp set 2) clearly refers to

shape s, since we defined the region [0,9] for shape s; the second one is much larger, and
that is apparently the region that was being printed for is candidate. Why isn't
is candidate of shape s?

This gives us enough evidence to figure out the bug-there is no with statement making
s the current shape. Without the with statement, is_candidate becomes a parallel vari-
able of the default shape, which for this implementation of C* is the shape physical; see
Chapter 2.

We now quit dbx:

(dbx) quit

and add the required with statement.

5.9.4 The Second Session

Here is the revised program, with the revision shown in bold:

1. #define MAXIMUMPRIME 16384

2.

3. #define FALSE 0

4. #define TRUE 1

5. #define FIRST PRIME 2
34. void find_primes(char:current *is_prime_p)
35. char:current iscandidate;

36. int minimum_prime;
37.

38.

39.

54 C* User Guide

40. iscandidate = (pcoord(0) >= FIRSTPRIME) ? TRUE : FALSE;
41.

42. do

43. where(iscandidate) {

44. minimum_prime = <?= pcoord(0);

45. where(pcoord(0) % minimum_prime)

46. iscandidate = FALSE;

47. [minimum_prime](*is_prime_p) = TRUE;

48. }

49. while(l= is candidate);

50.

51.

52. main() {

53. shape [MAXIMUM_PRIME]s;
54.

55. char:s is_prime;

56. int i;

57.

58. with(s)

59. find_primes(&is_prime);

60. for(i=0; i<MAXIMUM PRIME; i++)

61. if([i]is_prime)

62. printf("The next prime number is %d\n", i);

63. }

We now debug this new version. We issue the same debugging calls to define the region,
the width, and the type of is candidate. Let's pick up the story where we left off in the
previous session-as we attempted to print out a region of is candidate at line 43:

(dbx) ppr(iscandidate)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

0 0 1 1 1 1 1 1 1 1

stopped in find_primes at line 43 in file "primes.cs"

43 where(is_candidate) {

This is the behavior we want. We then enter the where statement and see what happens to
the context:

:: `:::.::::..:::..:' , ::;:::: i·:::l::-:. I::I : '1 I; . .. ::::I : z. :j ·2 ' ·:l: ' : : ·: :::..`·::........ :: : : : :· : : X::: -:.: :r':.: :·..... .., . - ; ~~~~~::: ,'. ::: . , : !": :: :::::::: :::~ ~ ~ ~ j:::

(dbx) n

stopped in find_primes at line 44 in file "primes.cs"

44 minimum_prime = <?= pcoord(O);

(dbx) ppr(is_candidate)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

(0) (0) 1 1 1 1 1 1

stopped in find_primes at line 44 in file "primes.cs"

44 minimum_prime = <?= pcoord(0);

This too is the behavior we want: positions 0 and 1 are now inactive. (Note that inactive
positions are shown in parentheses.) We go to the next line of code and print out the value
of minimum_prime:

(dbx) n
stopped in find_primes at line 45 in file "primes.cs"

45 where(pcoord(0) % minimum_prime)

(dbx) p minimumprime

minimum_prime = 2

This is correct; 2 is the lowest coordinate of all the active positions. We step again and print
out the region for is candidate:

(dbx) n
stopped in find_primes at line 46 in file "primes.cs"

46 iscandidate = FALSE;

(dbx) ppr(is_candidate)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

() (0) (1) 1 (1) 1 (1) 1 (1) 1

stopped in find_primes at line 46 in file "primes.cs"

46 iscandidate = FALSE;

This doesn't look right. We wanted to select the positions whose coordinates were multi-
ples of minimum_prime; instead, those positions have been turned off, and the

Chapter 5: Debugging a C* Program 55

56 C* User Guide

odd-numbered positions are active. We forge ahead, however, and see what happens after
line 46:

(dbx) n

stopped in find_primes at line 47 in file "primes.cs"

47 [minimum_prime) (*isprime_p) = TRUE;

(dbx) ppr(is candidate)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

() (0) 1 0 1 0 1 0 1 0

stopped in find_primes at line 47 in file "primes.cs"

47 [minimum_prime] (*is_prime_p) = TRUE;

(dbx) n

stopped in find_primes at line 48 in file "primes.cs"
48

No, this doesn't look good. We have come out of the inner where statement, and only the
even coordinates are set to 1. This is the opposite of what we wanted. We decide to take
a look at isaprime_p. Note that, even though it's a pointer to a parallel variable, we can
treat it as a parallel variable in dbx. First, we make sure to define its type (the debugger
might abort if we try to print it as a double, which is the default). Then we print it.

(dbx) dt(is_prime_p, CMC_char)
stopped in find_primes at line 47 in file "primes.cs"

48 }

(dbx) ppr(is_prime_p)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

0 0 1 0 0 0 0 0 0 0

stopped in find_primes at line 48 in file "primes.cs"
48

This looks all right: all the positions are active again, and element [2] is set to 1. We step

through the outer where statement again as the do loop continues, and then print out
is candidate and minimum prime:

(dbx) n

stopped in find_primes at line 43 in file "primes.cs"
43 where(is candidate) {

(dbx) n
stopped in find_primes at line 44 in file "primes.cs"

44 minimum_prime = <?= pcoord(O);

(dbx) n

stopped in find_primes at line 45 in file "primes.cs"

45 where(pcoord(O) % minimum_prime)

(dbx) ppr(iscandidate)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

(0)() 1 (0) 1 (0) 1 (0) 1 (0)

stopped in find_primes at line 45 in file "primes.cs"
45 where(pcoord(0) % minimum_prime))

(dbx) p minimumprime
minimum_prime = 2

We see now why the program went into an infinite loop. We wanted to select the coordi-
nates that were multiples of mnimumrime, so that we could set is candidate to 0
in those positions; instead, we did the opposite in line 45. The even-numbered positions
remain set to 1 for is candidate, and therefore remain active; as a result,
minmum prime always comes out 2, and the program never stops. The solution is to use
! to negate the condition for the where statement in line 45.

We quit dbx, fix the bug, and try again.

5.9.5 The Third Debugging Session

The revised program is shown below; the revised line is in bold.

1. #define MAXIMUMPRIME 16384

2.

3. #define FALSE 0

4. #define TRUE 1

5. #define FIRST PRIME 2

Chapter 5: Debming a C* Program 57

58 C* User Guide

34. void find_primes(char:current *is_prime_p) {
35. char:current is candidate;

36. int minimum_prime;

37.

38.

39.

40. is_candidate = (pcoord(0) >= FIRST_PRIME) ? TRUE : FALSE;

41.

42. do

43. where(is candidate) {

44. minimum_prime = <?= pcoord(0);

45. where(!(pcoord(0) % minimum_prime))

46. is candidate = FALSE;

47. [minimum_prime] (*is_prime_p) = TRUE;

48. }

49. while(l= is candidate);

50. }

51.

52. main() {

53. shape [MAXIMUM_PRIME]s;
54.

55. char:s is_prime;

56. int i;

57.

58. with(s)

59. find_primes(&is_prime);

60. for(i=0; i<MAXIMUM PRIME; i++)

61. if ([i]is_prime)
62. printf("The next prime number is %d\n", i);

63. }

This time we pick up the story where we started to go wrong last time: in the inner where
statement of findprimes, where we want to set the context to the positions whose coor-
dinates are multiples of minimum prime. Once again, we have already defined the region,
the width, and the type of is candidate.

(dbx) n
stopped in find_primes at line 45 in file "primes.cs"

45 where(!(pcoord(0) % minimum_prime))

(dbx) n
stopped in find_primes at line 46 in file "primes.cs"

46 iscandidate = FALSE;

(dbx) ppr(is candidate)

Chapter5:::i :::: ebug a: CA;. Prora 5i::9· ::: | :: : :: :::;.i....

[./*Row*/]

o 1 . 2 3 4 5 6 7 8 9

() (0) 1 (1) 1 (1) 1 (1) 1 (1)

stopped in find_primes at line 46 in file "primes.cs"

46 iscandidate = FALSE;

This looks right. The even-numbered positions are active. We leave the inner where state-
ment and look at is candidate once again:

(dbx) n
stopped in find_primes at line 47 in file "primes.cs"

47 [minimum_prime] (*is_prime_p) = TRUE;

(dbx) ppr (is candidate)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

(0 (0) 0 1 0 1 0 1 0 1

stopped in find_primes at line 47 in file "primes.cs"

47 [minimum_prime] (*is_prime_p) = TRUE;

The positions with odd-numbered coordinates are now set to 1 and therefore are still candi-
dates. This is the correct behavior. We then look at isprimae_p:

(dbx) dt(is prime p, CMC_char)
stopped in find_primes at line 47 in file "primes.cs"

47 [minimum_prime] (*is prime_p) = TRUE;

(dbx) ppr(is prime p)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

() (0) 1 0 0 0 0 0 0 0

stopped in find_primes at line 47 in file "primes.cs"
47 [minimum_prime] (*is_prime_p) = TRUE;

Chapter 5: Debugginlg a C* Program 59

60 C* User Guide

But that can't be right: line 47 hasn't been executed yet to set element [2] to 1 for
isprimep. So why is it set? At this point, we notice another error in our program: we
forgot to initialize isprimep to 0 in the find primes function. This means that the
parallel variables retain their values from the previous execution of the program (since we
haven't coldbooted the CM), and element [2] of is rime_p remains set to 1.

We make the required change and try again.

5.9.6 The Final Debugging Session

Here 'is what the code looks like now (the latest revision is in bold):

1. #define MAXIMUMPRIME 16384

2.

3. #define FALSE 0

4. #define TRUE 1

5. #define FIRSTPRIME 2

34. void find_primes(char:current *is prime_p) { i

35. char:current is_candidate;

36. int minimum_prime;
37.

38. *is_prime_p = FALSE;

39.

40. is_candidate = (pcoord(O) >= FIRSTPRIME) ? TRUE : FALSE;

41.

42. do

43. where(is candidate) {

44. minimum_prime = <?= pcoord(O);

45. where(!(pcoord(O) % minimum_prime))

46. iscandidate = FALSE;

47. [minimum_prime] (*is_prime_p) = TRUE;

48. }

49. while(l= iscandidate);

50.

51.

52. main() {

53. shape [MAXIMUM_PRIME]s;
54.

55. char:s is_prime;
56. int i;

57. A

Chapter '''''"''''''''''''' .5: Debggin a:CPrg .6:

58. with(s)

59. find_primes(&is_prime);

60. for(i=0; i<MAXIMUM PRIME; i++)

61. if([i]is_prime)

62. printf("The next prime number is %d\n", i);

63. }

We rerun dbx and look at is primep before line 38 is executed:

% dbx primes
Reading symbolic information...

Read 1711 symbols

(dbx) stop in find_primes

(1) stop in find_primes

(dbx) run
Running: primes

stopped in find_primes at line 34 in file "primes.cs"

34 void find_primes(char:current *is_prime_p) {

(dbx) n

stopped in find primes at line 38 in file "primes.cs"
38 *is_prime_p = FALSE;

(dbx) dt(is primep, CMC_char)

stopped in find_primes at line 38 in file "primes.cs"
38 *is_prime_p = FALSE;

(dbx) dr(s, 0, 9)

Region set to [0, 9]

stopped in find_primes at line 38 in file "primes.cs"

38 *is_prime_p = FALSE;

(dbx) dw(CMC char, -2)

stopped in find_primes at line 38 in file "primes.cs"

38 *is _primep = FALSE;

(dbx) ppr (is prime_p)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

0 0 1 0 0 0 0 0 0 0

stopped in find_primes at line 38 in file "primes.cs"
38 *is_prime_p = FALSE;

Chapter 5 Debugging a C* Program 61

., X . I :::::: ::: . :: :::: -,-: : " : . :: : : ::·::::i::·'''''·:''' · ··'··":'''''`'":I'::~::::·:iI~~l:i:,,,: ·~·;'·\' ::. bii- - - X.:~:~l~l~
:.·:::. ·. , ·::: ·· · .. .· ··::: ·· ·: i. ·: ·· ·; :· ··:::;::::::::;··.:: ·-: ;*n ·· ·.. -::r. :: ··::: ··.. _;.

The values have not changed from the previous execution of the program. We then look
at is_primep after line 38 is executed. As required, all values are now zero.

(dbx) n
stopped in find_primes at line 40 in file "primes.cs"

40 is candidate = (pcoord(O) >= FIRST_PRIME) ? TRUE : FALSE;

(dbx) ppr(is prime_p)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0

stopped in find_primes at line 40 in file "primes.cs"

40 iscandidate = (pcoord(O) >= FIRST_PRIME) ? TRUE : FALSE;

We continue go step through the program, looking at the behavior of isprimep:

(dbx) n
stopped in find_primes at line 43 in file "primes.cs"

43 where(iscandidate) {

(dbx) n

stopped in find_primes at line 44 in file "primes.cs"

44 minimum_prime = <?= pcoord(0);

(dbx) n
stopped in find_primes at line 45 in file "primes.cs"

45 where(!(pcoord(0) % minimum_prime))

(dbx) n
stopped in find_primes at line 46 in file "primes.cs"

46 iscandidate = FALSE;

(dbx) n
stopped in find_primes at line 47 in file "primes.cs"

47 [minimum_prime] (*is_prime_p) = TRUE;

(dbx) n

stopped in find_primes at line 48 in file "primes.cs"

48 }

(dbx) ppr(isprime_p)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

0 0 1 0 0 0 0 0 0 0 0

62 C* User Guide

Chapter 5: Debugging a C* Program 63
. . . : :

stopped in find_primes at line 48 in file "primes.cs"

48

The first prime number is set correctly. We go through the loop again:

(dbx) n
stopped in find_primes at line 43 in file "primes.cs"

43 where(iscandidate) {

(dbx) n
stopped in find_primes at line 44 in file "primes.cs"

44 minimum_prime = <?= pcoord(O);

(dbx) n
stopped in find_primes at line 45 in file "primes.cs"

45 where(!(pcoord(O) % minimum_prime))

(dbx) print minimum_prime
minimum_prime = 3

(dbx) n

stopped in find_primes at line 46 in file "primes.cs"

46 iscandidate = FALSE;

(dbx) n
stopped in find_primes at line 47 in file "primes.cs"

47 [minimum_prime](*is prime_p) = TRUE;

(dbx) n

stopped in find_primes at line 48 in file "primes.cs"

48 }

(dbx) ppr(is_primep)

[./*Row*/]

0 1 2 3 4 5 6 7 8 9

O 0 1 1 0 0 0 0 0 0

stopped in find_primes at line 48 in file "primes.cs"

48 }

The second prime number is correctly set. We feel confident enough now to see if the pro-
gram can run to completion:

(dbx) cont
The next prime number is 2

The next prime number is 3
The next prime number is 5

64······::·::2::::··· C········ U ser·········.·.....; G u··: ·· ···::·:x·,·;· ·· · :::::::::: :>~:~,.,..::::~ie:::
...·..... ·.~~~ ·i·:·:~~: · ;·;·;·;,;;;:;·.·:·:·:·:·:·:·:·:·:·:·. . :·:·:·.,::::::i~~~~~~~~~~i~i~i~i~~i~~:':l::::::':: :::·'::::':::':':::':I*:·:':':':':':':' ·:·::· ·:······-:·;;...... ...

The next prime number is 7
The next prime number is 11
The next prime number is 13 ...
execution completed, exit code is 0
program exited with 0

The program runs correctly (we spare you from having to read the rest of the prime num-
bers). There is nothing left to do, then, except to quit dbx:

(dbx) quit

0

64 C* User Guide

Appendix A

Man Pages

This appendix contains the text of man pages for as and for C* header files. These man
pages are also available on-line.

65

(6

cs (1) MISC. REFERENCE MANUAL PAGES cs (1)

NAME

cs - C* compiler

SYNOPSIS

cs [option] ... file ...

DESCRIPTION
cs is the C* compiler. It translates C* programs into C/Paris, and then invokes the C compiler cc(l) to
make an executable load module. File names ending in .cs are treated as C* source files, file names
ending in .c are treated as C source files and are passed directly to cc, file names ending in .o are
treated as object files and are passed directly to Id (1), file names ending in .a are treated as object
libraries and are passed directly to Id. In addition, VAX file names ending in .obj are treated as object
files and are passed directly to Id.

cs accepts a number of the options and filename endings that cc accepts, plus a few specific to cs.

OPTIONS

Options specific to cs
-cc cmdname

Use cmdname, rather than cc, as the compiler to perform C compilations.

-dryrun Show, but do not execute compilation steps.

-force Force input files with the .c suffix to be passed through the C* compilation phase rather
than just the cc phase. This option is useful for processing ANSI C programs.

-help Print a summary of available command line switches without compiling.

-h Synonym for -help.

-keep keyword
Retain intermediate files generated by the compilation process. Currently the only legal
value for keyword is c.

-noline Suppress #line directives in the output C file.

-overload For each call to an overloaded function, print the actual name of the function called. This is
useful for debugging.

-Olevel Invoke the C* optimizer with level level. Legal values for level are 0, 1, and 2. Optimiza-
tion levels are described in more detail below.

-ucode number
Link with CM software version number.

-verbose Display informational messages as the compilation proceeds.

-v Synonym for -verbose.

-version Print the C* compiler version number before compiling.

-warn Suppress warnings from the C* compilation phase.

-Zcomp switch
Pass option switch to component comp. comp is either cpp or cc. For example, -Zcc -O
turns on the C compiler's optimizer.

Options in common with cc
-c Suppress the linking phase of the compilation and force an object file to be produced even

if only one program is compiled.

-Dname[=de]
Define the symbol name to the preprocessor. If def is not supplied then name is defined
with a value of 1.

-g Have the compiler produce additional symbol table information for dbx(l).

Last change: 11/01/90 1Thinking Machines

MISC. REFERENCE MANUAL PAGES

-Idir Seek #include files whose names do not begin with "/" first in the directory of the file
argument, then in directories named in -I options, then in directories on a standard list.

-Ldir Add directory dir to the list of directories on the object library search path.

-Ix This option is an abbreviation for the library name '/lib/libx.a', where x is a string. If that
does not exist, Id(1) tries '/usr/lib/libx.a'. If that does not exist, Id(l) tries
'/usr/local/lib/libx.a'. A library is searched when its name is encountered, so the placement
of a -1 is significant.

-o output Name the final output file output. If this option is used, the file a.out will be left undis-
turbed.

-pg Link with profiling libraries for use with gprof(l).

-Uname Undefine the preprocessor symbol name.

OPTIMIZATION
The C* compiler has three levels of optimization: zero, one and two.

Level zero turns the optimizer off. This is not normally useful for users. Specify -00 to turn the optim-
izer off.

Level one performs local copy propagation, dead-code elimination, variable minimization and some
peephole optimizations. This is the default behavior of the compiler. You don't need to specify anything
on the command line to get this behavior.

Level 2 performs the same optimizations as level one, except that user variables are optimized in addi-
tion to compiler-generated temporaries. A program compiled at optimization level two will generally
be too highly-optimized for use with the debugger. Specify -O or -02 to turn on optimization level 2. [I

DEFAULT SYMBOLS
The C* compiler provides the following default symbols, each defined as 1. These symbols are useful
in #ifdef statements to isolate code for one of the particular cases. Thus, these symbols can be useful
for ensuring portable code. The cstar symbol can be used to share source between a C and a C* pro-
gram.

cstar The C* language (as opposed to the C language)
unix Any UNIX system
ultrix ULTRIX only
vax VAX only
sun Sun only
sparc Sun-4 only

FILES
file.cs input C* code
file.cpp intermediate, preprocessed code
file..c intermediate C/Paris code
file.o relocatable object file
file.obj VAX JBL object file
file.a object library
a.out linked executable output
/lib/cpp C preprocessor
/usr/include/cs directory of C* include files
/usr/local/lib/cstar C* compiler executable
/bin/cc C compiler
/usr/local/lib/libcsrt.a C* library linked by default }
/usr/local/lib/libcsrt-pg.a C* default profiling library
/usr/local/lib/libparis.a Paris library linked by default

Last change: 11/01/90

cs(l)cs(l)

Thinking Machines 2

MISC. REFERENCE MANUAL PAGES

SEE ALSO

cc(1), dbx(1)

Thinking Machines Corporation, C* documentation set: C* Programming Guide; C* Release Notes;
and C* User's Guide.

DIAGNOSTICS

Occasional messages may be produced by the C compiler, assembler, or linker, in addition to those nor-
mally produced by the C* compilation phase.

RESTRICTIONS
Bugs and restrictions are listed in the C* Release Notes.

Last change: 11/01/90

cs(l) cs(l)

Thining Machines 3

MISC. REFERENCE MANUAL PAGES

NAME

cscomm.h - C* communication functions

SYNTAX
#include <cscomm.h>

SYNOPSIS
overload get, send, scan, global;

overload spread, copy_spread, multispread, copy multispread, reduce, copy_reduce;

overload rank, read from position, write toposition, makemulticoord, make_send_address;

overload from grid, from_griddim, to_grid, to grid_dim;

overload from torus, from torusdim, totorus, to_torus_dim;

overload readfrompvar, write_topvar,

type:current get(CMC_sendaddrt:current send_address, type :void *sourcep,
CMC_collision_modet collision_mode);

type:current send(type:void *destp, CMC_sendaddrt:current send_address, type:current source,
CMC_combiner t combiner, bool:void *notifyp);

type:current scan(type:current source, int axis, CMC_combiner t combiner,
CMC_communication direction_t direction, CMC_ segment_mode_t smode,
bool:current *sbitp, CMC scan_ inclusiont inclusion);

type global(type:current source, CMCcombinert combiner);

type:current spread(type:current source, int axis, CMC_combiner t combiner);

type:current copy_spread(ype:current *sourcep, int axis, int coordinate);

type:current multispread(type:current source, int axis_map, CMC_combiner_t combiner);

type:current copymultispread(type:current *sourcep, int axis_map, CMC_multicoord_t multi_coord);

void reduce(type:current *destp, type:current source, int axis, CMC_combiner_t combiner, int to_coord);

void copyreduce(type:current *destp, type:current source, int axis, int to_coord, int from_coord);

unsigned int:current rank(type:current source, int axis, CMC_communication_directiont direction,
CMC_segment_modet smode, bool:current *sbitp);

type read_fromposition(CMC_sendaddr_t send_address, type :void *sourcep);

type writetoosition(CMC_sendaddr_t send_address, type:void *destp, bool source);

CMC multicoord t make_multi coord(shape s, unsigned int axis_mask,
CMC_sendaddrt send-address);

CMC_multicoord_t make_multi coord(shape s, unsigned int axis_mask, int axes[]);

CMC_multicoord_t make_multicoord(shape s, unsigned int axis_mask, int axis, ...);

CMC_sendaddrt:current make_send_address(shape s, int:current axis, ...);

CMC_sendaddr t:current make_sendaddress(shape s, int:current axes[]);

CMC_sendaddr_t make_sendaddress(shape s, int axis, ...);

CMCsendaddrt make_send_address(shape s, int axes[]);

type:current from_grid(type:current *sourcep, type:current value, int distance, ...);

type:current from_griddim(type:current *sourcep, type:current value, int axis, int distance);

Last change: 10/31/90

cscomm.h (1) cscomm.h ()

Thinking Machines 1

MISC. REFERENCE MANUAL PAGES

type to_grid(type:current *destp, type:current source, type:current *valuep, int distance, ...);

void to grid_dim(type:current *destp, type:current source, type:current *valuep, int axis, int distance);

type:current from torus(type::current *sourcep, int distance, ...);

type:current from_torus dim(type:current *sourcep, int axis, int distance);

void to torus(type:current *destp, type:current source, int distance, ...);

void to_torus dim(type:current *destp, type:current source, int axis, int distance);

void readfrom pvar(type *destp, type:current source);

type:current write topvar(type *sourcep);

unsigned int:current enumerate(int axis, CMCcommunication directiont direction,
CMC_scaninclusiont inclusion, CMC_segmentmode_t smode, bool:current *sbitp);

DESCRIPTION
The C* communication functions, which duplicate and supplement communication features of the
language, support grid communication, communication with computation, and general communication.
Communication functions are overloaded to support arithmetic, aggregate, and void types.

In the function prototypes listed above, there exists a function definition for the following values of
type: bool, signed char, signed short int, unsigned short int, signed int, unsigned int, signed long
int, unsigned long int, float, double, long double, and void.

SEE ALSO
cs, C* Users' Guide, C* Programming Guide

Last change: 10/31/90

cscomm.h (1) cscomm.h ()

2Thinking Machines

MISC. REFERENCE MANUAL PAGES

NAME

cstimer.h - C* timer functions

SYNTAX

#include <cstimer.h>

SYNOPSIS
extern unsigned CMC number of timers;

void CMC timer clear (unsigned timer);

void CMC_timerprint (unsigned timer);

double CMCtimer_read_cm_busy (unsigned timer);

double CMC timer readcm idle (unsigned timer);

double CMC_timer_read_elapsed (unsigned timer);

int CMC timer_readrunstate (unsigned timer);

int CMC timer read_starts (unsigned timer);

void CMCtimer setstarts (unsigned timer, unsigned value);

void CMC timerstart (unsigned timer);

void CMC_timer stop (unsigned timer);

DESCRIPTION
The timer functions under C* are wrappers for the Paris timer functions. See the CM User's Guide for
more information about the Paris timer functions.

SEE ALSO
CM User's Guide

Last change: 10/29/90

cstimer.h (1) cstimer.h (1)

Thinking Machines 1

MISC. REFERENCE MANUAL PAGES

NAME

math.h - C* mathematical library

SYNTAX
#include <math.h>

SYNOPSIS
overload acos, asin, atan;

overload atan2;

overload cos, sin, tan;

overload cosh, sinh, tanh;

overload asinh, acosh, atanh;

overload exp, log, loglO, logb;

overload pow, ceil, sqrt, fabs, floor,

overload copysign, drem, finite, scalb, truncate;

float:current acos(float:current);

double:current acos(double:current);

float:current asin(float:current);

double:current asin(double:current);

float:current atan(float:current);

double:current atan(double:current);

float:current atan2(float:current f, float:current f2);

double:current atan2(double:current d, double:current d2);

float:current cos(float:current);

double:current cos(double:current);

float:current sin(float:current);

double:current sin(double:current);

float:current tan(float:current);

double:current tan(double:current);

float:current cosh(float:current);

double:current cosh(double:current);

float:current sinh(float:current);

double:current sinh(double:current);

float:current tanh(float:current);

double:current tanh(double:current);

float:current acosh(float:current);

double:current acosh(double:current);

float:current asinh(float:current);

double:current asinh(double:current);

Last change: 10/29/90

math.h (1)

1Thinking Machines

math.h (1)

MISC. REFERENCE MANUAL PAGES

float:current atanh(float:current);

double:current atanh(double:current);

float:current exp(float:current);

double:current exp(double:current);

float:current log(float:current);

double:current log(double:current);

float:current loglO(float:current);

double:current log 1O(double:current);

float:current logb(float:current f);

double:current logb(double:current d);

float:current pow(float:current,float:current);

double:current pow(double:current,double:current);

float:current ceil(float:current);

double:current ceil(double:current);

float:current sqrt(float:current f);

double:current sqrt(double:current d);

float:current fabs(float:current);

double:current fabs(double:current);

float:current floor(float:current);

double:current floor(double:current);

float:current truncate(float:current);

double:current truncate(double:current);

float:current copysign(float:current f, float:current 2);

double:current copysign(double:current d, double:current d2);

float:current drem(float:current f, float:current f2);

double:current drem(double:current d, double:current d2);

int:current finite(float:current f);

int:current finite(double:current d);

float:current scalb(float:current f, int:current i);

double:current scalb(double:current d, int:current i);

DESCRIPTION
The mathematical library under C* contains the entire serial C mathematical library, along with parallel
overloadings of many of the functions. In addition, only parallel versions of the following functions,
which have no scalar overloadings, are provided: acosh, asinh, and atanh.

SEE ALSO
cs, C* User's Guide, C* Programming Guide

RESTRICTIONS
Because the scalar and parallel versions of some routines are implemented using different algorithms,

Last change: 10/29/90

math.h (1) math.h(l)

Thinking Machines 2.

MISC. REFERENCE MANUAL PAGES

results of routines given the same numerical input may be slightly different in a serial context than in a
parallel context. This is particularly the case on the VAX, because the VAX and the Connection
Machine processors use different floating-point formats (the VAX uses VAX format, while the Connec-
tion Machine processors use IEEE format).

Last change: 10/29/90

math.h(l)math.h (1)

3Thinking Machines

MISC. REFERENCE MANUAL PAGES

NAME

stdarg.h - C* variable arguments

SYNTAX

#include <stdarg.h>

SYNOPSIS

void va_start(va_list ap, parmN);

type = va_arg(va_alist ap, type);

void va_end(valist ap);

DESCRIPTION
The macros va_start, va_arg, and va_end can be used to write functions that can operate a variable
number of arguments.

The va_start macro must be called to initialize ap before use by va_arg and va_end.

The va_arg macro expands to an expression that has the type and value of the next argument in the
call. The value of ap is modified so that successive calls to va arg will continue to read arguments in
the call.

The va_end macro facilitates a normal return from a function that the macros va_start and va_arg to
read a variable argument list.

EXAMPLE
#include <stdarg.h>

#define MAXARGS 32

void f(int nparams, ...)

{

int i, array[32];

va list ap;

va_start(ap, nparams);

for (i = 0 ; i < MAXARGS; i++)

array[i++] = va_arg(ap, int);

va end(ap);

SEE ALSO
ANSI C Programming Language Standard, C* Programming Guide

Last change: 10/29/90

stdarg.h () stdargh ()

Thinldng Machines 1

MISC. REFERENCE MANUAL PAGES

NAME

stdlib.h - C* generic utilities

SYNTAX
#include <stdlib.h>

SYNOPSIS

int abs(int i);

int rand(void);

void srand(unsigned seed);

overload abs;

int:current abs(int:current i);

void psrand(unsigned seed); int:current prand(void);
*palloc(shape s, int bsize); void pfree(void:void *pvar);

LIMITATIONS
Seed values of 0 and -1

Thinking Machines

void deallocate_shape(shape *s);

DESCRIPTION

The C* generic utilities contain the parallel and scalar overloading of abs. The serial function is docu-
mented on the abs man page; the parallel function behaves exactly like the scalar function. Which abs
function is called depends on whether a scalar or parallel integer is passed as the argument.

The function psrand reseeds the random number generator in all processors, even those that are not
selected when the call occurs. Even though a scalar integer is passed to psrand, every processor will
be seeded for a different sequence of random numbers. (Actually, it may be possible for two processors
to have the same sequence, given a Connection Machine configuration with many virtual processors.)

The function prand is the parallel version of the rand function.

SEE ALSO

cs, abs(3), rand(3)

C* Programming Guide

are not accepted by psrand.

Last change: 10/29/90

void:void

stdlib.h (1) stdlib.h ()

1

MISC. REFERENCE MANUAL PAGES

NAME

string.h - C* string handling functions

SYNTAX
#include <string.h>

SYNOPSIS
bool:current *boolcpy (bool:current *sl, bool:current *s2, sizet n);

bool:current *boolmove (bool:current *sl,bool:current *s2, sizet n);

int:current boolcmp (const bool:current *sl, bool:current *s, size_t n);

bool:current *boolset (bool:current *s, bool:current c, size t n);

void:current *memcpy (void:current *sl, void:current *s2, sizet n);

void:current *memmove (void:current *sl, void:current *s2, size t n);

int:current memcmp (const void:current *sl, void:current *s, size_t n);

void:current *memset (void:current *s, int:current c, sizet n);

DESCRIPTION
The string handling functions under C* contain the serial C string handling functions along with parallel
overloadings of the functions.

SEE ALSO
ANSI C Programming Language Standard

6

Last change: 10/29/90

string.h () string.h ()

Thinking Machines 1

Index
!R::::::::i: : : : : :x:':::i;:::::: . , is:, is.:iiiiiis s:::i!i~iiii!?i{i!iiiiiiii~:iiii~~iifi::ii:!ii=i???:...... i:

Symbols
.. c files, 23

debugging, 25

keeping, 24
.a files, 19, 23

. c files, 3, 19, 23

putting through C* compilation, 24
. cs files, 1, 3-5, 23
.dbxinit, 38

·ofiles, 19, 23

.obj files, 19
#define, 26
#ifdef, 27
#line directives, suppressing, 25

A
abs, 6
allocate_detailed shape, 12

aref32, 11

arrays, parallel. See parallel arrays

aset32,11
attaching. See cmattach
attaching to the CM, 29

B

batch request, submitting, 32
batch system, executing a C* program under,

32

boolcmp, 6
boolcpy, 6

boolmove,6

boolset, 6

boolsizeof, 9

C
C compiler, using other than the default, 23

C*, 1

C* debugging functions
aliasing, 38

table of, 37
C/Paris, 8, 23

cc, 19,26

CM Fortran, calling from C*, 13
CM libraries, calling from C*, 11
<cm/paris. h>, 5, 7

CM add offsettofield id, 10

CM_current_vp_set, 39,43,44

cmattach, 2,29, 35

-g option, 4
executing a program immediately with, 30

options for, 31

using to obtain an interactive subshell, 31

CMC bool,39

CMC char, 39
and CMC define width,42

CMCdefault_type, 39-40
CMCdefineformat,42-44
CMC_defineregion, 38-39,40

CMC_define_type, 39-40

CMC define view,42-44

CMCdefine width,42-44

CMCdouble, 39

CMCfloat, 39

andCMCdefine width,42

CMC_help, 46

CMC int,39

CMC_long_double, 39

CMC_longint, 39

CMCoff,43-44

CMC_off_region, 43-44

CMC_on, 43-44
CMC on region, 43-44
CMC_pop_context, 44

CMC_print, 40-43

79

C* User ~ Guide

CMC print_region, 40-43

CMC_pushcontext, 44

CMC set,44-45

CMC_set region,44-45

CMCshort, 39

CMC status, 45

cmcoldboot, 34

-g option, 4
cmdetach, 34
cmnfinger, 34
CMFS library, 12

cmps, 34
cmsetsafety, 34
CMSR library, 12

CMSSL, calling from C*, 13

compiler, choosing a specific version of, 21
compiling

changing location of temporary files, 25-26
creating assembly source files, 25
displaying steps in, 24
getting help, 21
keeping intermediate files, 24
specifying a different pre-processor, 24
turning off warnings in, 26

compiling a C* program, 1
in detail, 23-26

the basic process, 19-23
context, saving and restoring, 44
cpp, 26
cs, 1, 19

-cc option, 23
-cpp option, 24
-dryrun option, 24
-force option, 24
-g option, 22
-help option, 21
-keep option, 24
-line option, 25
-O option, 21

debugging with, 35
-overload option, 25, 36
-pg option, 22

-release option, 21
-S option, 25
-temp option, 25-26
-ucode option, 22
-v option, 25
-verbose option, 25
-version option, 22
-warn option, 26
-Z option, 26
options in common with cc, 22-23
symbols defined for, 26

<cscomm. h>, 5
cstar symbol, 26
<cstimer. h>, 5
current shape, 7

D

dbx, 2, 21, 25

alias command, 38
call command, 38
using, 35-38

deallocate_shape, 6
debugging, 2

-g compiler option required for, 22
obtaining help in, 46
printing values of pointers to parallel

variables, 41-42
table of C* functions for, 37

default type, changing, 39
developing C* programs, 1

E
elements, 8
executing C* programs, 2

F

field IDs, 45
and parallel variables, 9

function prototyping, 23

80 If;

4

4

"'~~~~~'''`''' :i:::i.:.:::,: ''·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~·'·'·~~~~~~~~'·' :::::·:~~~~~~...... .

Index 81i·::::::~::j.j::::::::::f::: :::::::.::.::.:::I^ "-'·· "'· 81·

G

gprof, 1

and -pg compiler option, 22
using with C*, 18

graphics and visualization, 12

H

header files, 5-7
and C* keywords, 7

I/O library, calling from C*, 12
identifiers, reserved, 4
intermediate files. See .. c files

K

keywords
and header files, 7
list of C*, 3

M

make utility, 1, 18

<math. h>, 5
memcmp, 6

memcpy, 6

memmove, 6

memory layout, and Paris functions, 11
memset, 6

0
optimization level, 21
overloaded functions, invoking from within

dbx, 36
overloading, 25, 36

P
palloc, 6, 11

parallel arrays
and C* debugging functions, 40
and Paris fields, 10

parallel structures, and C* debugging
functions, 40

parallel variables
and field IDs, 9
and Paris fields, 8
assigning values to in debugging, 44-45
changing the display of, 42-43
printing values of, 40-43

Paris

calling from C*, 7-11
choosing a specific version of, 22
relationship to C*, 7

Paris functions
allocating fields using, 8
manipulating the context using, 8

pfree, 6
physical, 4
pointers, scalar-to-parallel, in debugging,

41-42
positions

and virtual processors, 8
turning on and off in debugging, 43-44

prand, 6
preprocessing, 23
printf, 42
prof, using with C*, 18
psrand, 6

Q
qdel, 34
qstat, 34
qsub, 29, 32

options for, 33

R

rand, 6
See also prand

randomizing a parallel variable, 6
region

assigning values to, 44-45
changing the display of, 42-43
defining, 38-39
making positions active within, 44

C* User s Guide

making positions inactive in, 44
printing values in, 40-43

S
shapes

and Paris VP sets, 10
default, 4

spare, symbol 26
srand, 6

See also psrand
status information, in debugging, 45
<stdlib. h>, 6-7
<string.h>, 6

structures, parallel. See parallel structures
sun symbol, 26

T

timesharing, executing a program under, 29
timing functions, 5
type, default for debugging functions, 39

a"
types, defining, 39-40

U

ULTRIX, 26

ultrix symbol, 26
unix symbol, 26

V

vax symbol, 26
virtual processors, 8
VP set IDs, 7, 45
VP sets, 7

and shapes, 10

W

warnings, turning off, 26

Ii

82
;ii:�Q!j:iFililii::iliO)iiiliiiiiiXlii '"'""':':'·'':':':'':':':`:':':·:·:·: '�::::::''::::'·'·''· jj::�:�.i::::::::::::::'::::j::.:::::�i: i:i:::i:::l:i::ii:i:i:l:lii:i:��:i:jii:i ·:::::':· ::::::..:::::::::::::::::::::::8::jj::::

