
Thinking Machines Corporation

Getting Started in C*

The
Connection Machine
System

Getting Started in C*
VMM~:4

May 1993

Thinking Machines Corporation
Cambridge, Massachusetts

A,89

Second edition, May 1993

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
product described herein.

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, and CM-5, CM-5 Scale are trademarks of Thinking Machines Corporation.
C*® is a registered trademark of Thinking Machines Corporation.
CM Fortran and Prism are trademarks of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1990-1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02!142-1264
(617) 234-1000

.I

Contents
.2_001133ME. Z

Chapter 1 What Is C*?

1.1 C* and C

1.2 C* Imp]Lementations

1.3 Developing a C* Program

Chapter 2 A Simple Program

2.1 Step 1: Declaring Shapes and Parallel Variables .

Shapes
Parallel Variables

Scalar Variables

2.2 Step 2: Selecting a Shape

2.3 Step 3: Assigning Values to Parallel Variables ..

2.4 Step 4: Performing Computations Using Parallel Variables

2.5 Step 5: Choosing an Individual Element of a Parallel Varial

2.6 Step 6: Performing a Reduction Assignment of a Parallel V

2.7 Compiling and Executing the Program

Compiling
Executing

. 5

ble........... 9

riable 10

.............. 11

.............. 11

.............. 12

Chapter 3 Shapes and Parallel Variables ...

3.1 Shapes.............................
Declaring Shapes

3.2 Parallel. Variables

Declaring Parallel Variables

3.3 Other Kinds of Parallel Data
Parallel Structures

Parallel Arrays

3.4 Pointers to Shapes and Parallel Variables .

Pointers to Shapes

13

13

14

15

15

16

17

18

18

19

iii.I.l

May 1993
Copyright © 1991-1993 T7inking Machines Corporation

1

1

2

2

3

........

.....

..

...........................

uoptiodtoa sautov a uu! a lZ E£66t-166[O© jtySudoj
E661 .VNy

6b .. nd in o
................................... UOIS-2A 9-N D
................................. --UOTs A 00Z-
....................................... TLnff1'9

..................... smexoJd aldmueS 9 adq3

................ gm dda. fl ML uoonTu4mmmoD pT.D
. -. --SddlT inolM uoT.o3TnummoD pDu

....... - u.lxopuI ~:aI putI uopoun, pxoood aqL
........................... uopou~ poo od ar

............................... uo}om ummoDp u

................... suosod aWpoTmI a W auL ua,

............................ uop.m m tumo oD Tuu

............................ JOpumumoD nospU t

................................ uo!euamnmmoD

Z'S

S .adeq;3

....................-.... suolounm up10IIOIAO

. o o aaaJa Xq Sussuc pure nlA Xq usszc

...................................... -............... -suonount S'b

... siollado uolonpao Z',

................................... uolssaidxa luouT.puoD aI,

............ Q......... sp-ado I-lm -o, o -M SIOai2dO ku!lt

....... SHI IOled B pUB SHI 'eOS B liT luumUg2 !SSV

............... puI odO IOIIed e pu

pumadO peOS B 'ipm siolmodO irmEI

.. smowi do Lmul

.................................. siOl odO 3 pappumS I ',|

... suop!m ado lalp mud ,.axdvq3

t,; mopo gU eelxpn DOTT.Z *--------------------------- suopoun ooecd pue olI~Cd a
.Z suopounjI e4dO s- 4'eootIpeP puB eduqse34o OOtIB aOuL
ZZ ... sa

pue sadqS gUg.8o3o01V I(IOMMruXaI

ZZ luomawalS ala.tna auL

IZ -*----------.......................... aa S a rq aL :IXoO 3 9UaS
OZ luaasTa :adqS Utsoou t

61 sOalqF.A IOTI- o slm.uoa

L£E

.,3 U! p3UV~ 2Ul4MfJ AT

0 Ltb

£b

Et,

O,

6£

8£

L£

L£

9E

b£

££

EC

O£

6Z

8Z

LZ

LZ

9Z

9Z

...........

..........................

.............

.............

.............

*0 k u paz1ms3S u.waD Al.

il-me §~I§ NN 11111§§

6.2 Prime Number Sieve .. 50

6.3 Shuffle 52

CM-200 Version .. 52

CM-5 Version .. 55

Output .. 57

Chapter 7 Perfonnance Hints. 59

Index ... 61

May 1993
Copyright 1991-1993 Thinking Machines Corporation

Contents v

S

Customer Support

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electrouc Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-support@think.com

ames! think! customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

May 1993
Copyright 1991-1993 Thinldng Machines Corporation vi

Chapter 1

What Is C*?

C* (pronounced "sea-star") is an extension of the C programming language
designed to help users program massively parallel distributed-memory
computers.

1.1 C* and C

The C* language is based on the standard version of C specified by the American
National Standards Institute. (We assume in this guide that you are familiar with
C.) C programmers will find most aspects of C* code familiar to them. C lan-
guage constructs such as data types, operators, structures, pointers, and functions
are all maintained in C*; new features of Standard C such as function prototyping
are also supported. C* extends C with a small set of new features to aid in writing
programs for massively parallel computers. For example:

* C provides a shape keyword that lets you describe the size and shape
of parallel data. You can then declare parallel variables by tagging them
with a shape.

* C* lets you operate on parallel variables by providing a few new opera-
tors, and new meanings for standard C operators.

* C* adds a with statement that lets you choose the shape to be used for
parallel operations, and a where statement to restrict operations to cer-
tain data points of the shape.

* C* extends Standard C structures, pointers, and functions so that they
work with parallel data.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

2 >>8;isz>Sg' Getting Started>'fz~f~f ins2+if Cf ''of ' a, f Off'''' off X z *Zf'fff~y f 2 f~f ''I ' f =.....

C* provides ways for parallel variables to interact with other parallel
variables, even if the parallel variables are of different shapes.

1.2 C* Implementations

This guide refers to two implementations of the C* language:

* CM-200 C* - Use this implementation to run your program on a
CM-200, CM-200a, CM-2, or CM-2a Connection Machine system.

* CM-5 C* - Use this implementation to run your program on all models
of the CM-5 Connection Machine system.

1.3 Developing a C* Program

C* uses its own compiler, run-time libraries, and header files, as well as some
Standard C libraries. Files containing C* source code must have the suffix .cs.

Within your C* program, you can include calls to library routines such as those
in the CMFS library. You can also call subroutines written in CM Fortran.

On a CM-2, CM-2a, CM-200, or CM-200a, you execute the program by attach-
ing to the CM via the cmattach command, or by submitting the executable load
module as a batch request to a queue in the NQS batch system.

On a CM-5, you execute the program just as you would any UNIX executable
load model; or you can submit it as a batch request to NQS.

You can use Prism, the CM's graphical programming environment, to help you
develop, debug, and analyze the performance of your C* program.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

Getting Started in C *2

1*

Chapter 2

A Simple Program
-: # :.#:.....$. .::~::~::~:::~:3~::~.::: ~ ii... I·r·~~;;. ··~; ··.

This chapter uses a simple C* program to show some basic features of the lan-
guage. Subsequent chapters discuss these features in more detail. See Chapter 6
for examples of more advanced C* programs.

The prograrr which we'll call add. cs, declares three parallel variables of the
same shape; each of the parallel variables consists of 65,536 individual data
points called elements. It then assigns integer constants to each element of these
parallel variables and performs simple arithmetic on them.

#include <stdio.h>

/*

* 1. Declare the shape and the variables.

*/

shape [2] [32768]ShapeA;

int:ShapeA pl, p2, p3;

int sum = 0;

main()

{

* -
* 2. Select the shape.

*/

with (ShapeA){

'9

May 1993
Copyright Q 1991-1993 Thinking Machines Corporation 3

4 Getting Started in C*

.

/*
* =-===-=======2====

* 3. Assign values to two of the parallel variables.

*/

p2 = 2;

/*

* 4. Add them and assign the result to the third parallel
* variable.

*/

p3 = pl + p2;

/*

* 5. Print the sum in one element of p3.

./

printf ("The sum in one element is %d.\n", [0] [l]p3);

/*
* === -- ==-===== = =

* 6. Calculate and print the sum in all elements of p3.
*/

sum += p3;

printf ("The sum in all elements is %d.\n", sum);

}

}

The output of add. cs is shown below:

The sum in one element is 3.
The sum in all elements is 196608.

,

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

K,... ll::i:~`";~~.i':ii:::':~::~.:.~·::''

i:. .�A.Sim.:ple:::.,.::>:.:: ~::.::::s::::::: !:::. , . .: :::ra::m
2.1 Step 1: Declaring Shapes and Parallel Variables

Shapes

The initial step in dealing with parallel data in a C* program is to declare its
shape - that is, the way the data is to be organized. In Step 1 of add. cs, the
line

shape [12] [32768]ShapeA;

declares a shape

in Figure 1.
called ShapeA. ShapeA consists of 65,536 positions, as shown

0 1

ShapeA

2 32767

0

1

Position

Figure 1. The shape ShapeA.

ShapeA has two dimensions; you can also declare shapes with other numbers of
dimensions. The choice of two dimensions here is arbitrary. The appropriate
shape depends on the data with which your program will be dealing.

Parallel Variables

Once you have declared a shape, you can declare parallel variables of that shape.
In add.cs, the line

int:ShapeA p, p2, p3;

I19

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

0

Chapter 2. A Simple Pro~ram 5

... Q

6IGettingfStarted in C..

declares three parallel variables: pI, p2, and p3. They are of type int and of
shape ShapeA. This declaration means that each parallel variable is laid out us-
ing ShapeA as a template, with memory allocated for one element of the variable
in each of the 65,536 positions specified by ShapeA. Figure 2 shows the three
parallel variables of shape ShapeA.

Figure 2. Three parallel variables of shape ShapeA.

With C*, you can perform operations on all elements of a parallel variable at the
same time, on a subset of these elements, or on an individual element.

Scalar Variables

In Step 1, the line

int sum = 0;

is Standard C code that declares and initializes a Standard C variable. These C
variables are called scalar to distinguish them from C* parallel variables. In the
CM-200 and CM-5 implementations of C*, memory for Standard C variables is
allocated on the serial computer (for example, front end or partition manager)
rather than on the CM processors.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

0 1 2 32767

Elements

p2 - ' '

p3

9

E . . .

6 Getting Started in C*

Ch p e 2.. .A Si l: Pm r y. 7...............`.......: :.. :'I...........'

2.2 Step 2: Selecting a Shape

In Step 2 of add. cs, the line

with (ShapeA) /* Step 2 */

tells C* to use ShapeA in executing the code that follows. In other words, the
with statement specifies that only the 65,536 positions defined by ShapeA are
active. In C* terminology, this makes ShapeA the current shape. With some ex-
ceptions, the code following the with statement can operate only on parallel
variables that are of the current shape. A program can execute most parallel code
only within the body of a with statement.

2.3 Step 3: Assigning Values to Parallel Variables

Once a shape: has been selected to be current, the program can include statements
that perform operations on parallel variables of that shape. Step 3 in add. cs is
a simple example of this:

p = 1;
p2 = 2;

/* Step 3 */

The first statement assigns the constant 1 to each element of pi; the second state-
ment assigns 2 to each element of p2. After these two statements have been
executed, p. and p2 are initialized as shown in Figure 3.

9.
_ t

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

Chapter 2. A Simple Progrtam 7

8 et'tingf 'eiofan: sf., State in- : S :Csf'S,.,S !.i " .:',
0'

Figure 3. Initialized parallel variables.

Note that the statements in Step 3 look like simple C assignment statements, but
the results are different (although probably what you would expect) because pa
and p2 are parallel variables. Instead of one constant being assigned to one scalar
variable, one constant is assigned simultaneously to each element of a parallel
variable.

2.4 Step 4: Performing Computations Using
Parallel Variables

Step 4 in add. cs is a simple addition of parallel variables:

p3 = p + p2;

In this statement, each element of pi is added to the element of p2 that is in the
same position, and the result is placed in the element of p3 that is also in the same
position. Figure 4 shows the result of this statement.

9

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

pl 1;
p2 - 2; 0 1 2 32767

0 1 1 1 1
pl

I 1 1 1

2 2 2
p2

2 2 2

Getting Started in C*8

Chater 2.Sn A.... Simple Prgram. 9I0

Figure 4. Addition of parallel variables.

Like C* assignment statements, C* parallel arithmetic operators look the same
as the Standard C arithmetic operators, but work differently because they use
parallel variables.

2.5 Step 5: Choosing an Individual Element
of a Parallel Variable

In Step 5 of add. ca we print the sum in one element of p3. Step 5 looks like
a Standard C printf statement, except for the expression whose value is to be
printed:

[0] [1]p3

[0o [1] specifies an individual element of the parallel variable p3. Elements are
numbered starting with 0, and you must include subscripts for each dimension
of the parallel variable. Thus, [ol [1] p3 specifies the element in row 0, column
1 of p3, and the printf statement prints the value contained in this element.

9:1

May 1993
Copyright © 1991-1993 TChinking Machines Corporation

p3 pl + p2;

32767

1
*.

1

2

. . . 2

3

3

0 1 2

0 1 1 1

pi1 1 1 1

2 1222 2 2
p2

2 2 2

3 3 3
p3

3 3 3

+

Chapter Z A Simple Program 9

:: .::..:....-:::::..:::.: : : ::::::: :.'.::::: ::::1-::0 :etn Started:in>-x < -,.~:-<,>..>x.i.x> >, "x. >_,~-.x<.........., >x,<x- x >,,,-- <. >>.<.<, .- :~-.... ,.... >>>>>..> . >~x. ~ -. <....<> :->><<:·

Figure 5. Element [0][1] of p3 .

Note that this printf statement would be incorrect:

printf ("The sum in one element is %d.\n", p3);

The printf statement is looking for one value to print. Different elements of p3
could have different values (even though they are all the same in the sample pro-
gram), so pri:atf would not know which one to print.

2.6 Step 6: Performing a Reduction Assignment
of a Parallel Variable

So far, add. cs has demonstrated assignments to parallel variables and addition
of parallel variables. This line in the program:

sum += p3; /* Step 6 */

demonstrates a reduction assignment of a parallel variable. In a reduction assign-
ment, the variable on the right-hand side must be parallel, and the variable on the
left-hand side must be scalar. The + - reduction assignment operator adds the val-
ues in all elements of the parallel variable (in this case, p3) and adds this sum
to the value in the scalar variable (in this case, sum); see Figure 6. (Note that the
value of the scalar variable on the left-hand side is included in the addition; that
is why add. cs initializes sum to 0 in Step 1.)

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

0 1 2 32767

0 3 3 3

10 Getting Started in C *

ap>: : ::.: 'Sipl P. :r r'1:::::::::: : ::~: ::::::.%: :.:::::::::: :::::: ,'::::::::::: :>:::::~~:: ::::::::::..:: ::~::~:~:::. :: ::~::~:::.:::::~~ : :::~:::: .<:::::%::::...:.::.:.....:::::::~: :::::~::::::::::.:::::::....-, ~ .:...::...:.:::.:::::: :..<:.::::: ... ::::. :. .~.:...

Figure 6. The reduction assignment of parallel variable p3 .

The final statement of the program prints in Standard C fashion the value con-
tained in sum.

2.7 Compiling and Executing the Program

Compiling

You compile a C* program using the compiler command cs. To compile the pro-
gram add. cs, issue this command:

% cs add.cs

As with the C compiler command cc, this command produces an executable load
module, placed by default in the file a. out. You can use the -o option to specify
a different file.

The cs command has various other options you can specify, many of which, like
-o, are the same as standard cc options.

90

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

sum +EA p3;

sum 196608 |

0 1 2 32767

o 3 3 3 3
p3 ..

1 3 3 3

Chapter 2. A Simple Programm 11

"."':2! Gettig" Started", in Cii" "! I
Executing

To execute the resulting load module, simply type its name at the UNIX prompt
of a front end or partition manager, just as you would any executable program:

% a. out

For complete information on compiling and executing C* programs, see the C*
User s Guide for the C* implementation you will be using.

q-

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

12 Getting Started in C*

Chapter 3

Shapes and Parallel Variables
a ~~~11,1'.idl -_ H

As the sample program in Chapter 2 shows, shapes and parallel variables are
central to the- way C* extends C to support data parallel programming. This chap-
ter describes shapes and parallel variables in more detail.

3.1 Shapes

A shape is a template for parallel data. In C*, you must specify the shape of
the data before you can define data of that shape. A shape is specified by:

* How many dimensions it has. This is referred to as the shape's rank.

• The number of positions in each of its dimensions. A position is an area
that can contain values of parallel data.

The total number of positions in a shape is the product of the number of positions
in each of is dimensions. For example, an 8-by-4 shape has 32 positions.*

Typically, the choice of a shape reflects the natural organization of the data. For
example, a graphics program might use a shape representing the 2-dimensional
images that the program is to process. If your program works on different data
sets, you can have a different shape for each one.

* In the CM-200 implementation of C*, the number of positions in each dimension of a shape must be a
power of 2, and the total number of positions in the shape must be some multiple of the number of physi-
cal processors in the section of the CM that the C* program is using.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

Getting Started in C*

Declaring Shapes

Use the new C* keyword shape to declare a shape, as in this example:

shape [1.6384] employees;

This statement declares a shape called employees. It has one dimension (a rank
of 1) and 16384 positions. A dimension is also referred to as an axis.

Note the position of the brackets, to the left of the shape name. Left indexing is
an important new concept in C*. A shape can have multiple axes; specify each
in brackets to the left of the shape name. For example, here is a 2-dimensional
shape:

shape [256] [512]image;

The left-most axis is referred to as axis 0; the next axis to the right is axis 1, and
so on.

A program can include many shapes. You can use a single shape statement to
declare multiple shapes. For example:

shape [3.6384]employees, [256] [512] image;

The shapes we have looked at so far have been fully specified. You don't need
to specify a shape fully when you declare it. For example,

shape data;

declares a shape called data, without specifying its rank or the number of posi-
tions in it. You can also specify the shape's rank without specifying its size. For
example,

shape []data;

declares a 1-dimensional shape of unspecified size.

Declaring a shape that is not fully specified is useful if, for example, the size of
the shape is to come from user input. However, a shape's rank and size must be
fully specified before you can use it. Section 3.7 describes how to specify a shape
fully.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

14 0" ... 1, K;~~~~~~~~~~~:ja·:··~::::::~::: Il~l:l::i8:::X ·:rr

... _. . >.C.: aal....l Variales.1
3.2 Parallel Variables

As Chapter 2 explained, a parallel variable is similar to a Standard C variable,
except that it has a shape in addition to its type and storage class. The shape de-
fines how many elements of a parallel variable exist, and how they are organized.
Each element occupies one position within the shape and contains a single value.
If a shape has 16384 positions, a parallel variable of that shape has 16384 ele-
ments, one for each position.

Each element of a parallel variable can be thought of as a single scalar variable.
But a C* program can also carry out operations on all elements (or any subset
of elements) of a parallel variable at the same time.

Declaring Parallel Variables

Before declaring a parallel variable, you must fully specify the shape that the
parallel variable is to take. For example, once you have declared shape em-
ployees as in the example above, you can declare a parallel variable of that
shape:

unsigned int:employees employee_id;

This statement declares a parallel variable named employee_id; it is an un-
signed int of shape employees. Figure 7 shows this parallel variable.

Figure 7. A parallel variable of shape employees.

Once the parallel variable has been declared, you can use left indexing to specify
an individual element of it. For example, [2] employee_id refers to the third

May 1993
Copyright 0 1991-1993 Thinking Machines Corporation

shape employees

1 2 3 16383

employee. id ... } unsigned i

9

Chapter 3. Sharpes and Pazrallel ariables 15

8~~~~~~~i : ~ ~ ~ ~ ~ - : '::~:::::j:::: ;:: ~~:::~~i:::l Iaa . ..~i~i~i~i .*~t···:·:·:·:·:·:·:·:·:r·:·:·: .:~s::5·:·:~,.*·:~::::·:·~·:~·: · s:-i:·:· ''''"''`''''''~C'... 0
element of employee_id in Figure 7. [2] is referred to as the coordinate for
this element.

You can declare many parallel variables of the same shape. If they are of the
same type, you can declare them in the same statement. For example:

unsigned int:employees employee_id, age, salary;

All three parallel variables are of shape employees. As shown in Figure 8, ele-
ments of different parallel variables that are in the same position of a shape are
referred to as corresponding elements.

Figure 8. Three parallel variables of shape employees.

3.3 Other Kinds of Parallel Data

In addition to parallel variables, C* provides parallel versions of C aggregate
types. In this section, we look at parallel structures and parallel arrays.

C

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

shape employees

16383

·e

*eee

position

=1?.!?f=:2~:=.i?:=.?. 3

...... :.:..

.. ,.. .. .

..Institutiona liio n
_ - .. :.:--

employee_id

age

salary

corsponing elemens
corresponding elements

Getting Started in C*16

\ ·

Parallel Structures

You can declare an entire structure as a parallel variable. For example, if you
have declared this shape and structure:

shape [16384] employees;

struct date {
int month;

int day;

int year;

};

you can declare a parallel structure as follows:

struct date:employees birthday;

birthday is of type struct date and of shape employees. It is shown in
Figure 9.

shape employees

o 1 2 3

int

16383

...
structure

birthday

month

day

year

Figure 9. A parallel structure of shape employees.

Each element of the parallel structure contains a scalar structure, which in turn
will contain the birthday of an employee.

Accessing a member of a parallel structure works the same way as accessing a
member of a scalar structure. For example, birthday. day specifies all ele-
ments of structure member day in the parallel structure birthday.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

9.

3_I

Chapter 3. Shapes and P'arallel VGariables 17

Getting Started in C*

C* does not allow shapes, pointers, or parallel variables inside a parallel
structure.

Parallel Arrays

You can also declare an array of parallel variables. For example,

shape [16384]employees;
int:employees ratings[3];

declares an array of three parallel variables of shape employees, as shown in
Figure 10.

ratings [O]

anray ratings [1]

ratings
ratings [2]

shape employees

16383

...) int

* .

0 1 2 3

Figure 10. A parallel array of shape employees.

3.4 Pointers to Shapes and Parallel Variables

In addition to Standard C pointers, C* provides pointers to shapes and parallel
variables. As with C pointers, you can use the pointer in place of the object being
pointed to. In functions, you can use pointers to pass by reference instead of by
value.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

18 0E=d'~~~·r~. I~··q~

Chapter'3. Shapes andi P...... ::$arallel Variables.19

Pointers to Shapes

This statement declares the scalar variable shape_ptr to be a pointer to a shape:

shape *shape_ptr;

And this statement makes shape_ptr point to shape ShapeA:

shape_ptr = &ShapeA;

A dereferenced pointer to a shape can be used as a shape-valued expression; that
is, you can use it wherever you would use a shape name. For example,

with (*shape_ptr)

makes ShapeA the current shape.

Pointers to Parallel Variables

The statement:

int:ShapeA *pvar _ptr;

declares a scalar pointer pvarptr that points to a parallel int of shape
ShapeA. If pl is a parallel variable of shape ShapeA, then

pvar_ptr = &pl;

makes pvarptr a pointer to pi. You can then reference pi via the pointer
pvarDtr.

You can declare a pointer to a parallel variable of a shape that is not fully speci-
fied, even though you cannot declare a parallel variable of that shape. For
example:

shape data;

int:data *data_ptr;

The relationship between arrays and pointers is maintained in C*. For example,

-

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

Chapter 3. Shapes and I'arallel ariables 19

20S:ii.o:iiii ~ ~ ~ j~j'X .Gt...tn. Starte.d :.. '. - .' .' ,

int:ShapeA A1 [40];

declares a parallel array of 40 ints of shape ShapeA, and Al points to the first
element of the array - that is, its type is a scalar pointer to a parallel int of
shape ShapesA.

3.5 Choosing a Shape: The with Statement

Before you can carry out most operations on parallel variables, they must be of
the current shape. You designate the current shape by using the new C* with
statement. For example:

shape [16384]employees;

unsigned int:employees employee_id, age, salary;

main()

{

with (employees)

/* Operations on parallel variables of shape

employees go here. */

Most operations on parallel variables of shape employees can occur only within
the scope of the with statement. We will discuss what constitutes an operation
on a parallel variable in the next chapter. For now, note that the with statement
does not restrict operations on scalar expressions - that is, expressions, like
Standard C expressions, that refer to a single data point. This includes parallel
variables that are left-indexed so that they specify only one element of the paral-
lel variable -- for example, [4] age is considered a scalar expression.
Dereferenced pointers to parallel variables, however, share the same restrictions
as parallel variables.

You can have many with statements in a program, maldng different shapes cur-
rent at different times. You can also nest with statements. When the program
returns from the nested with statement, the previous shape once again becomes
current, as in this example:

with (ShapeA)

/* Put operations on parallel variables of shape
S:hapeA here. */

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

20 Getting Startedk in C*

Ch e .. :s a: i,s 21.

with (ShapeB) {

/* Operations on variables of shape ShapeB. */

}

/* Operations on variables of shape ShapeA

once again. */

3.6 Setting the Context: The where Statement

To perform an operation on a subset of the elements of a parallel variable, use
the new C* where statement to restrict the context in which the operation is per-
formed. A where statement specifies which positions in a shape remain active;
code in the body of a where statement operates only on elements in active
positions.

For example, the code below restricts parallel operations to positions of shape
employees where the value of parallel variable age is greater than 35:

shape [16384]employees;
unsigned int:employees employee_id, age, salary;

main()

{

with (employees)

where (age > 35)

/* Parallel code in restricted context
goes here. */

The controlling expression that where evaluates to set the context must operate
on a parallel variable of the current shape. It evaluates to 0 (false) or non-zero
(true) separately for each position that is currently active. Positions in which the
expression is false are made inactive. If no positions are active, code is still
executed, but an operation on a parallel variable of the current shape has no re-
sult. Initially, all positions in all shapes are active.

You can nest where statements; the effect is to cumulatively shrink the set of
active positions of the current shape. For example, the two where statements
below restrict the context to positions of shape employees in which age is
greater than 35 and salary is greater than 50000:

May 1993
Copyright © 1991-1993 hiinking Machines Corporation

Chapter I. Shapes and P'arallel ariables 21

22:... ":.:., . .: '>Gti State in C:i~i~i ~ ·······:M . = N :: -...;
x ... :.l::,:::::: · :2·· ::::::

with (employees)

where (age > 35) {

/* Parallel code in restricted context
goes here. */

where (salary > 50000) {

/* Parallel code in more restricted context
goes here. */

}

Like the if statement in Standard C, the where statement can include an else
clause. The else clause reverses the set of active positions; that is, those posi-
tions that were active when the where statement was executed are made inactive,
and those that were made inactive are made active. In the example below, it
causes parallel operations to be carried out on positions of shape employees
where age is less than or equal to 35 (assuming that all positions are initially
active):

with (employees)
where (age > 35)

/* Parallel code in one restricted context. */
else

/* Parallel code in the opposite context. */

The everywhere Statement

C* also provides an everywhere statement. The everywhere statement makes
all positions of the current shape active. Parallel code within the scope of an ev-
erywhere statement operates on all positions of the current shape, no matter
what context has been set by previous where statements. After the everywhere
statement, the context returns to what it was before the everywhere.

3.7 Dynamically Allocating Shapes and
Parallel Variables

One of the powerful features of C* is that it allows you to allocate (and deallo-
cate) shapes and parallel variables dynamically. The functions 9

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

Getting Started in C *22

Chapter . Shapes ana Parallel ariables 23

allocate_shape and deallocate_shape do this for shapes; palloc and

pfree do it for parallel variables..

The allocate_shape and deallocate_shape Functions

Use the C* intrinsic function allocateshape to allocate a shape dynamically.
The allocate_shape function has two formats. In the first, it takes as argu-
ments a pointer to a shape, the rank of this shape, and the number of positions
in each axis. It returns a description of the shape. For example,

allocateshape(&new shape, 3, 2, 2, 4096);

allocates a 3-dimensional shape that is 2-by-2-by-4096.

In the alternative format, you can use an array to specify the rank and the number
of positions in each axis. This format is useful if the program will not know the
rank until run time, and therefore can't use the variable number of arguments
required by the previous syntax.

You can use allocate_shape either to allocate a totally new shape, or to com-
plete the specification of a shape that was not fully specified when you declared
it.

Use the C* library function deallocate_shape to deallocate a shape that was
allocated via allocate_shape; include the header file <stdlib.h> when
calling this function. Its argument is a pointer to the shape to be deallocated. For
example,

deallocate_shape(&new_shape);

deallocates the shape allocated above.

You might want to deallocate a shape if you have reached the limit on the number
of shapes imposed by your CM system, or if you want to reuse a partially speci-
fied shape.

For certain programs, you may be able to improve performance by using the in-
trinsic function allocate_detailed shape. See the C*Programming Guide
for information.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

A· I ~~· ·- ·T ~ · · --

24;>: S U> GEetting Sta .rt.e . . .d in C .

The palloc and pfree Functions

Use the C* library function palloc to explicitly allocate storage for a parallel
variable; use the function pf ree to free this storage. In both cases, include the
header file <stdlib .h>.

The palloc function takes two arguments: a shape and a size. It allocates space
of that size and shape, and returns a pointer to the beginning of the space.

The unit of size in palloc is bools. bool is a new data type in C* that stores
either a 0 or a 1. (The actual size of a bool can be different in different imple-
mentations.)

To obtain the exact size of a variable or data type in units of bools, use the new
C* operator boolsizeof. For example,

sl = boolsizeof(int:ShapeA);

returns the number of bools that must be allocated for a single instance of a
parallel int.

The pfree function takes as its argument the pointer returned by palloc.

The example below allocates a shape and a parallel variable of that shape, using
allocate shape and palloc, then deallocates both using pfree and deal -
locate_shape:

#include <stdlib.h>

shape S;

double:S *p;

main()

{

allocateshape(&S, 2, 4, 8192);

p = palloc(S, boolsizeof(double:S));

/* ... */

pfree(p);
deallocateshape(&S);

Note the use of boolsizeof to obtain the size, in bools, of a parallel double.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

24 Getting Started in C*

0

Chapter 4

Parallel Operations
. _.............o f $.

Operations in C* that involve only scalar variables work exactly as they do in
Standard C. As we mentioned in the previous chapter, these operations can take
place anywhere in the program; you don't have to worry about the current shape
or the context.

This chapter gives an overview of how to perform operations that involve paral-
lel variables. It also describes the use of parallel variables and shapes in
functions.

4.1 Standard C Operators

Unary Operators

You can Use Standard C unary operators with parallel variables of the current
shape. Each active element of the parallel variable performs the operation sepa-
rately, at the same time. For example, if pi is a parallel variable of the current
shape,

pl++;

increments the value in every active element of pl.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation 25

26 Ge n .':.'. .: ..."..."..: '':i.:..i : ::i: nii:: :..--...'.'.............: ": :'"':-

Binary Operators with a Scalar Operand
and a Parallel Operand

You can use Standard C binary operators when one of the operands is parallel and
one is scalar; the parallel variable must be of the current shape. In this case, the
scalar value is first promoted to a parallel value of the shape of the parallel oper-
and, and this parallel value is used in the operation. For example, if pi is a
parallel variable of the current shape,

p = 12;

assigns the value 12 to each active element of pl. If si is scalar,

pl = sl;

assigns the value of s1 to each active element of p1. Similarly,

p2 = p + sl;

adds the value of 81 to each active element of pl, and assigns the result to the
corresponding element of pa2. (Corresponding elements are discussed in Chap-
ter 3.) Both p1 and p2 must be of the same shape.

Assignment with a Scalar LHS and a Parallel RHS

A scalar variable is not promoted when it is on the left-hand side of an assign-
ment statement. If si is scalar and pi is parallel, this statement is illegal in C*:

s = pi; /* This is wrong */

To assign a parallel variable to a scalar variable, you must explicitly demote the
parallel variable to a scalar variable, by casting it to the type of the scalar vari-
able. Thus, if si is an int, this code works:

s = (int)pl; /* This works */

In this case, C* simply chooses one value from the active elements of the parallel
variable and assigns that value to the scalar variable. C* does not specify which
of the values will be chosen; it could be different for different implementations
of the language.

May 1993
Copyright) 1991-1993 Thinking Machines Corporation

26 Getting Started in C *

.. ;:;:·: :;:·

Binary Operators with Two Parallel Operands

Standard binary C operators work with two parallel operands if both are of the
current shape. These operations once again bring in the concept of corresponding
elements. For example, if pa and p2 are parallel variables of the current shape,

p2 = pl;

simply assigns the value in each active element of pa to the corresponding ele-
ment of p2, as shown in Figure 11.

Figure 11. Assignment of a parallel variable to a parallel variable.

Similarly,

p3 = (>= p2);

assigns to p3, for each corresponding active element of pa, 1 if it is greater than
or equal to the corresponding element of p2, and 0 if it is not.

The Conditional Expression

The conditional expression ?: operates in slightly different ways depending on
the mix of parallel and scalar variables in the expression. Consider the statement
below, where s is scalar, and pa, p2, and p3 are parallel variables of the current
shape:

pl = (sl < 5) ? p2 : p3;

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

I

p2 =]pl;
0 1 2 3 n

pi 1 8 1 47 12 95 ... [j

p2 18 47 12 1 95 ...

Chapter 4. Parallel Operattions 27

28 GetingStarted.in C." '.. .:: : :, ' _ ''

If sa is less than 5, this statement assigns the value of the corresponding element
of p2 to each active element of pi; otherwise, pi is assigned the value of the
corresponding element of p3.

The behavior is different if all the operands are parallel variables of the current
shape. For example:

p = (p2 < 5) ? p3 : p4;

In this case, each active element of p2 is evaluated separately. If the value in p2
is less than 5 in a given element, the value of p3 is assigned to pa for the corre-
sponding element; otherwise, the value of p4 is assigned to pi. If either p3 or
p4 (or both) were scalar in this example, they would be promoted to parallel
variables of the current shape, and the expression would be evaluated as
described above.

4.2 Reduction Operators

Standard C has several compound assignment operators, such as + -, that perform
a binary operation and assign the result to the left-hand side. Many of these oper-
ators can be used with parallel variables in C* to perform reductions - that is,
they reduce the values of all elements of a parallel variable to a single scalar
value. C* reduction operators provide a quick way of performing operations on
all elements of a parallel variable.

Reduction operators can be either unary or binary. For example, if pa is a parallel
variable of the current shape,

+= p1

sums the values ot a active elements of parallel variable pi.

sl += p1;

sums the values of all active elements of pa, and adds them to the value of scalar
variable as.

When used with two parallel variables, these operators perform simple elemental
binary operations. For example, if pi and p2 are both parallel variables of the
current shape,

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

28 Getting Started in C *

1..154p it Pnt. __I U I IWnI t

,I114Jl&srGl . £(&uIrU/ l.i..u..JIh..

pl += p2;

adds the value of each active element of p2 to the value of the corresponding
element of pi.

C* introduces two new reduction operators: the minimum operator, <?=, and the
maximum operator, > ?. For a parallel variable, <? = returns the minimum value
among its active elements, and > ?= returns the maximum value.

4.3 Functions

C* adds support for parallel variables and shapes to Standard C functions. Paral-
lel variables and shapes can be passed as arguments to and returned from
functions. For example, this function takes a parallel variable of type int and
shape ShapeA as an argument:

void print_sum(int:ShapeA x)

{

printf ("The sum of the elements is %d.\n", +=x);

}

Note the use of the unary reduction operator, discussed above. Note also, how-
ever, that this function has limited usefulness, since it requires that the parallel
variable be of a specific shape. C* provides more general methods for specifying
shapes in functions.

Use the C* keyword current to specify that the parallel variable is of the cur-
rent shape; current always refers to the current shape. By substituting
current for ShapeA in the function above, we generalize the function so that
it works for any current shape.

You cannot pass a parallel variable that is not of the current shape. However, you
can pass a pointer to a parallel variable of a shape that isn't current. To allow you
to specify a pointer to a parallel variable of any shape, C* extends the use of the
Standard C keyword void. You can use void instead of a shape name to specify
a shape without indicating its name; the actual shape is determined by the parallel
variable that is ultimately assigned to the pointer.

For a function to perform most operations on a pointer to a parallel variable not
of the current shape, the function must contain its own with statement to make

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

11 C%

3J~~~~~~~~~~U Ly(~~emng ,3arrea inm -
the parallel variable's shape current. To do this, you can use the new C* intrinsic
function shapeof, which takes a parallel value and returns the shape of that par-
allel value. For example, this function returns the sum of the active elements of
a parallel variable of any shape:

int sum(int:void *ptr)
{

with (shapeof(*ptr))
return (+= *ptr);

Like a dereferenced pointer to a shape, shapeof is a shape-valued expression;
you can use it anywhere you can use a shape name.

Passing by Value and Passing by Reference

As we have shown, you can pass parallel variables by value or by reference. In
deciding which method to use, you must take into account the effect of positions
made inactive by the where statement. (See Chapter 2 for a discussion of
where.)

When you pass a variable by value, the compiler makes a copy of it for use in
the function. If the variable is parallel and positions are inactive, elements in
those positions have undefined values in the copy. This is not a problem if the
function does not operate on the inactive positions; if it does, however, passing
by value can produce unexpected results. The function can operate on the inac-
tive positions if, for example, it contains an everywhere statement to widen the
context, and then operates on a parallel variable you pass. In such a situation, you
should define the function so that it passes by reference rather than by value.

Overloading Functions

It may be convenient for your program to have more than one version of a func-
tion with the same name - for example, one version for scalar data and another
for parallel data. This is known as overloading. C* allows overloading of func-
tions, provided that the functions differ in the type of at least one of their
arguments or in the total number of arguments. For example, these versions of
function f can be overloaded:

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

__ rt Ad J: n So

Chapter 4. Parallel operations 31

void f(int x);
void f(int x, int y);

void f(int:current x);

Use the overload statement to specify the names of the functions to be over-
loaded. For example, this statement specifies that there may be more than one
version of the function f:

overload f;

The overload statement must precede an overloaded declaration. Typically, it
is put at the beginning of the file that contains the declarations of the functions.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

A· ·~·· · --

(i

Chapter 5

Communication

In the previous chapter we talked about how C* performs operations on individ-
ual parallel variables, or on corresponding elements of parallel variables of the
current shape. Many problems, however, require more complex interac-
tions - for example, they require data to be shifted along an axis of a parallel
variable, or between parallel variables of different shapes. We refer to these kinds
of interactions as communication. This chapter describes some of the ways in
which C* lets parallel variables communicate.

5.1 Kinds of Communication

C* provides two kinds of communication for parallel variables:

* General communication, in which the value of any element of a parallel
variable can be sent to any element of any other parallel variable,

whether or not the parallel variables are of the same shape.

* Grid communication, in which parallel variables of the same shape can
communicate in regular patterns by using their coordinates. We use the
term "grid communication" since the coordinates can be thought of as
locating positions on an n-dimensional grid. Grid communication is
faster than general communication.

Both kinds of communication can be expressed through the syntax of the lan-
guage, as well as through functions provided in the C* communication library.
This chapter briefly describes how to use C* syntax. For complete information
on the C* communication library, see the C* Programming Guide. In addition
to functions that perform grid and general communication, the library also

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

34 ei'tingS'tarted .3in, C::,f.:,S';Sx

provides functions that perform certain useful transformations of parallel data.
For example:

· The scan function calculates running results for various operations on
a parallel variable.

* The spread function spreads the result of a parallel operation into ele-
ments of a parallel variable.

* The rank function produces a numerical ranking of the values of paral-
lel variable elements; this is useful for sorting parallel data.

5.2 General Communication

General communication involves the concept of parallel left indexing. So far, we
have seen only constants in left indexes - for example, [o] p1; you can also use
a scalar variable in a left index. But what if you use a parallel variable as an index
for another parallel variable? If po and pi are both 1-dimensional parallel vari-
ables, what does [po] pi mean?

A parallel left index rearranges the elements of the parallel variable, based on the
values stored in the elements of the index; the index must be of the current shape,
but the parallel[variable it is indexing need not be.

In the example below, source, dest, and index are all parallel variables of the
current shape. We want to assign values of source to dest, but reversing their
order. To do this, we use index as a parallel left index for dest; the values in
index control where source is to send its values. The statement looks like this:

[index] dest = source;

Figure 12 shows some sample data, and the result of the assignment. The arrows
point out what happens for the value of [01 source. The value in the corre-
sponding element of index is 4; therefore, the value in [0o] source is assigned
to [41 dest.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

34 Getting Started in C*

LflufcwF .3. i..mmuriwusri3

Figure 12. Parallel left indexing - a send operation.

Note that dest need not have been of the current shape.

If a parallel variable's shape has more than one dimension, there must be an
index for each axis of the shape. For example:

[indexO] [indexl]dest = source;

Figure 12 above is an example of a send operation. In a send operation, the index
parallel variable is applied to the destination parallel variable on the left-hand
side.

There is a special use of reduction operators with send operations. It is possible
that the values in elements of an index variable could be the same. This would
cause more than one value to be sent to the same element of the destination paral-
lel variable. You can use a reduction operator to specify what is to be done if this
occurs. For example,

[index]dest += source;

specifies that the values are to be added to the value of the element of dest. If
you do a simple assignment, and multiple values are being sent to the same ele-
ment, the compiler picks one of the values and assigns it to the element.

In addition to the send operation, C* also has a get operation. In a get operation,
the index parallel variable is applied to the source parallel variable on the right-
hand side. For example:

May 1993
Copyright © 1991-1993 Thirnking Machines Corporation

[index]dest - source;

source

index

dest

~r., Z r..Y^- r)

3G:e ng S.. .. e .i C .:.:.. g S..e:

dest = I:indexsource;

Figure 13 shows some sample data for a get operation. In the figure, the arrows
show how [0] dest gets its value. The value in the corresponding element of
index is 1; therefore, [0o] dest gets its value from [1] source.

Figure 13. Parallel left indexing of a parallel variable - a get operation.

In a get operation, the destination and index parallel variables must be of the
current shape, but the source parallel variable can be of any shape.

When There Are Inactive Positions

The element of the parallel variable that initiates an operation must be active.
That is:

* In a send operation, an inactive position cannot send a value, but active
positions can send to it.

* In a get operation, an inactive position cannot get a value, but active
positions can get from it.

Figure 14 shows an example for a send operation.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

dest = [index]source;

0 1 2 3 4

source

index

dest

36 Getting Started in C*

~~;~~:ZZ~~::~~~~~·:·rz~~~g.~~: · 19~~~r ~ ~l:;:~~~.~~~:~~: :::::·:;:;:;)'~~~~~~~: ·~~i~~:::::·:t":i::j·: · ~~................:~i~:~::~zij~i:·Y1:j:::::~::::::::i:~i·: ·:~·:·:·:·:·:.:·:.:·r:·:::·:·:·:·::E~·:~ :gj:~i:::l:::·:~~:s~j::·:: :·:::.:c·::·:::........:·x::::j::;I~i·:r~
Chapter 5. Communication 37

0

" active

. inactive

where (source < 30)

[inclex] dest=source;

0 1 2 3 4

source

index

dest

Figure 14. A send operation with inactive positions.

As the arrows in the example show, [1] source sends its value to [3] dest,
even though position [3] is inactive. However, [4] source, for example, does
not send its value to [21 dest, because position [4] is inactive.

5.3 Grid Communication

Grid communication in C* involves left indexing and the C* library function
pcoord.

The pcoord Function

Use pcoord to create a parallel variable in the current shape; each element in
this variable is initialized to its coordinate along the axis you specify as the argu-
ment to pcoord. For example,

shape [65536]ShapeA;
int:ShapeA pl;

May 1993
Copyright 1991-1993 Thinking Machines Corporation

.. G t i":":g S e iC.. : �C....... .. : .:--:......:... ... i . .ii .ii
main()

with (ShapeA)

pl. = pcoord(O);

i

initializes p1 as shown in Figure 15.

Figure 15. The use of pcoord with a 1-dimensional shape.

The argument to pcoord is the axis along which the indexing is to take place;
for example, in a 2-dimensional shape, pcoord (1) initializes the elements to
their coordinates along axis 1.

The pcoord Function and Left Indexing

The pcoord function provides a quick way of creating a parallel left index for
mapping a parallel variable onto another shape. For example, if dest is of the
current shape and source is of some other (1-dimensional) shape,

dest = [pcoord(O)]source;

maps source onto the current shape, and assigns the values of the elements of
source to deist, based on this mapping.

Now let's assume that dest and source are both of the current (1-dimensional)
shape. Consider this statement:

[pcoord(O) +]dest = source;

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

0

p1 pcoord(O);

shape ShapeA

0 1 2 3 4 5 6 7 8 65535

pi 1 2 3 4 5 1 6 7 8 ... E

38 Getting Started in C *

Chapter. Communication 39

The statement says: Send the value of the source element to the dest element
whose coordinate is one position higher. This syntax provides grid communica-
tion along an axis of a shape. You can add a scalar value to, or subtract a scalar
value from, pcoord in a left index. Which operation you choose determines the
direction of the communication; the value added or subtracted specifies how
many positions the values are to travel along the axis.

You can use pcoord to specify movement along more than one dimension. For
example:

dest [pcoord(O) - 2 [pcoord(1) + 1Isource;

Note that specifying the axis in the statements shown above provides redundant
information when you are performing grid communication. By definition, the
first pair of brackets contains the value for axis 0, the next pair of brackets con-
tains the value for axis 1, and so on. C* therefore lets you simplify the expression
by substituting a period for pcoord (axisnumber). Thus, this statement is
equivalent to the one above:

dest - [. - 2 [. + source;

This use of the period is a common idiom in C* programs.

Grid Communication without Wrapping

The left-indexed pcoord statements shown so far are not useful by themselves,
because they do not specify what happens when elements try to get from or send
to positions that are beyond the border of an axis; this behavior is undefined
in C*.

One way of solving this problem is to first use a where statement to restrict the
context to those positions that do not get or send beyond the border of an axis.
For example, if you want dest to get from source elements two coordinates
lower along axis 0 (that is, position 2 gets from position 0, position 3 gets from
position 1, and so on), you must make positions 0 and 1 inactive, because ele-
ments in these positions would otherwise attempt to get nonexistent values. The
following code accomplishes this:

where (pcoord(O) > 1)

dest = . - 2 source;

May 1993
Copyright (1991-1993 Thinking Machines Corporation

_1 __ _ _

Getting Started in C*

Figure 16 is an example; the arrow shows [2] dest getting a value from
[0] source.

where (pcoord(O) > 1)

dest = [. - 2]source;
i active

/ inactive

0 1 2 3 4

20 30 40

0 10 20

Bource

dest

Figure 16. Grid communication without wrapping.

If you want to get from a parallel variable two coordinates higher along axis 0,
you can use the C* intrinsic function dimof to determine the number of positions
along the axis. dimof takes two arguments: a shape and an axis number; it
returns the number of positions along the specified axis. For example:

where (pcoord(0) < (dimof(ShapeA,

dest = [. + 2]source;
0) - 2))

Grid Communication with Wrapping

The examples in the previous section solve the problem of getting or sending
beyond the border of an axis by making the troublesome positions inactive. In
some situations, however, you might prefer to have values wrap back to the other
side of the axis. To do this, we once again use the dimof function, along with
the new C* modulus operator %%. (The %% operator gives the same answers as
the Standard C operator % when both operands are positive. It can differ when
one or both operands are negative; see the C* Programming Guide for complete
details.)

Consider this statement:

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

40
a, . ".." :

Chapter .. Communication 41

dest = [(. + 2) %% dimof(ShapeA, O)]source;

The expression in brackets does the following:

1. It adds 2 to the coordinate index returned by pcoord.

2. For each value returned, it returns the modulus of this number and the
number of positions along the axis.

Step 2 does not affect the results as long as Step 1 returns a value that is less than

the number of coordinates along the axis. In the example above, assume that axis
0 of shape ShapeA contains 1024 positions; therefore, dimof (ShapeA, 0)
returns 1024. The result of (5 0 2 %% 102 4) is 502, for example, so
(500] dest gets from [502] source. When Step 1 returns a value equal to or
greater than the number of coordinates along the axis, however, Step 2 achieves
the desired wrapping. For example, [1022] dest attempts to get from element
[1024] source, which is beyond the border of the axis. But (1024 %6% 1024)
is 0, so instead [1022] dent gets from [0] source. Thus, the %% operator pro-
vides the wrapping back to the low end of the axis.

0

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

-s s j * A A4

0n

Chapter 6

Sample Programs

This chapter presents three programming examples in C*. If you have C*
installed at your site, these programs may be available in the C* examples direc-
tory. Check with your system administrator for the location of this directory.

6.1 Julia

This program displays a Julia set. A Julia set is a kind of fractal, obtained by
iteratively applying a function at points in a complex plane until the function
goes off to infinity. The number of iterations at each point determines how the
point is displayed.

Note these points about the program:

* In the program, the shape julia is the 1024-by-1024 plane in which the
set is to be displayed. The points in the plane are obtained by initializing
parallel variables using pcoord.

* The where statement makes a position inactive when the function goes
off to infinity for the complex number at that position; in cases where
this does not happen, the for loop stops the iterations at 500.

* The program requires no communication among parallel variables.

• The CM-200 version includes calls to the CM graphics library to display
the Julia set. When compiling the program, you must link to the cmsr
and x:l libraries; the comments at the beginning of the program show
how to do this. The program uses the CM Generic Display Interface to
prompt the user for the device on which the Julia set is to be displayed:

May 1993
Copyright © 1991-1993 Thinking Machines Corporation 43

i:::·:::::·:'·:-: ~ ~ ~ ~ ~ ~ ~ ~ ~ :::::i::.--

a framebuffer or an X Window System. NOTE: You must use Version 2.0
of the graphics library for this program to compile correctly.

The CM-5 version uses calls to CMX1l. Use these commands to compile
and link:

% c -vu julia.cs -lcmxcm5 vu_p -1Xm -lXt -1Xext \
-lX11

CM-200 Version

Here is the CNM-200 version:

/*

* This program computes a Julia set (a fractal) in the square region of
* the complex plane defined by the point (LEFT_SIDE,TOP_SIDE) and the
* side length SI.

* The fractal is computed on an N x N grid, with each pixel being

* handled by a separate virtual processor on the CM. Each pixel will be
* assigned a value in the range 0 to RES.

* The fractal is computed by iterating the complex function

* f(Z) = Z*Z + C for each coordinate in the above region of

* the complex plane and counting the number of iterations
* required to cause the function's value to become unbounded
* at each coordinate. The set of iteration counts is then used as

* the set of values that is displayed on the output device.

* NOTE: Complex numbers are handled as pairs of real numbers.

* To compile this example use the following command:

* cs -o julia julia.cs -lcmsr -lX11

./

#include <stdio.h>
#include <cm/cmsr.h>
#include <cm/display.h>

/* 9o

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

44 Getting Started in C*

C e,... .SamlePrgr ".....5...............

* parameters defining the size, position, and resolution of the image
* to be computed

*/

#define N
#define RES

#define SI

#define TOP SIDE

#define LEFT SIDE

512

500

3.0f

-1.53f

-1.50f

/* the components of the complex constant, C */

#define CR

#define CI

0.320f

0.043f

main()

{
shape [N] [N]jul.a ;

float:julia zr, zi

float:julia zrs, zis

int:julia ittr

/* real and imaginary components of z */

/* squares of same */
/* number of cycles before cell done */

float cell size ;

int i ;

/* Set up output: device */

initialize dispay() ;

/* for all pixels simultaneously */

with (julia)
{

ittr 0

zrs - 0.Of

zis - O.0f ;

cell size SI / N ;

/* Give each processor the

it should use. */

coordinate in the complex plane that

zr = pcoord(l) * cellsize + TOPSIDE;
zi - pcoord(0) * cell size + LEFT SIDE;

for(i=0; i<RES; i++)

{
/* Perform the iteration for those points in the plane where

the iteration has not produced an unbounded value. There

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

0 Chapter 6 Sample Proglram 45

46,..S : Gettin StartC.' -. edin, C: : : ::, in .x.C .·.

is a result from the theory of complex numbers that states
that the values produced by the iteration will remain
bounded so long as the magnitude of the function's value

does not exceed 2. */

where (zrs+zis < 4.0f)

{
/* iterate f(Z) = Z*Z + C */

zrs zr * zr ;

ZiS = Zi * Zizis zi * zi ;

zi = 2.0f * zr * zi + CI ;

zr - zrs - zis + CR ;

/* Update the iteration count for those processors that
are still handling unbounded iterations. */

ittr = i ;

/* Done. Display the resulting fractal. */

CMSR write todisplay(&ittr);

}

if (CMSR_display_type()==CMSR x display)
printf("Type return to quit");

getchar ();

}

initialize display()

{
int zoom

CMSR_select_display_menu(8, N, N);

if (CMSR_display_type()==CMSR_cmfb_display)

zoom = (1024/N) - 1;

CMFB_set_zoom (CMSR_cmfb_display_display_id(), zoom, zoom, 0);
CMSR_set_display_offset(128/(zoom+l), 0);

}
}

May 1993
Copyright 1991-1993 Thinking Machines Corporation

46 Getting Started in C*

Chapter 6. Sample Programs 47

CM-5 Version

Here is the CM-5 version:

/*

* This program computes a Julia set (a fractal) in the square region of
* the complex plane defined by the point (LEFTSIDE,TOPSIDE) and the
* side length SI.

* The fractal is computed on an N x N grid, with each pixel being
* handled by a separate virtual processor on the CM. Each pixel will be

* assigned a value in the range 0 to RES.

* The fractal is computed by iterating the complex function

* f(Z) - Z*Z + C for each coordinate in the above region of

* the complex plane and counting the number of iterations
* required to cause the function's value to become unbounded
* at each coordinate. The set of iteration counts is then used as

* the set of values that is displayed on the output device.

* NOTE: Complex numbers are handled as pairs of real numbers.
*/

#include <stdio.h>
#include <cm/cmxdisplay.h>

#include <cm/cmx-cs.h>

/*
* parameters defining the size, position and resolution of the image

* to be computed

*/

#define N 512

#define RES 256

#define SI 3.0f

#define TOP SIDE -1.53f

#define LEFT SIDE -1.50f

/* the components of the complex constant, C */

#define CR 0.320f
#define CI 0.043f

main(argc, argv)

{
shape [N][N]jul:ia ;

May 1993
Copyright O 1991-1993 Thinking Machines Corporation

48 Gettin tre anC

float:julia zr, zi ;

float:julia zrs, zis ;

int:julia ittr ;

CMX_display_t display;
Widget widget;

int depth, mask;

float cellsize ;
int i ;

/* real and imaginary components of z
/* squares of same
/* number of cycles before cell done

/* Set up X display */
CMXSetArgcArgv(argc, argv); /* Enable X command-line options */
CMXSetXWindowTit:le ("Julia Set");

display = CMXCreateSimpleDisplay(256, N, N);

widget = CMXGetWidget(display);

depth = CMXGetDepth(widget);
depth (depth <: 8) ? 1 : 8; /* CMXPutImage supports only 1, 8 */

mask = (1 << depth) - 1;

/* For all pixels simultaneously */
with (julia)

{
ittr -= 0

zrs = O.Of

zis = O.Of

cellsize = SI / N ;

/* give each processor the coordinate in the complex plane that
it should use */

zr = pcoord(1) * cellsize + TOP SIDE;

zi = pcoord(0) * cellsize + LEFTSIDE;

printf("Iteration ");

for(i=0; i<RES; i++)

/* Perform the iteration for those points in the plane where
the iteraw:ion has not produced an unbounded value. There

is a resu:Lt from the theory of complex numbers that states
that the values produced by the iteration will remain
bounded so long as the magnitude of the function's value
does not exceed two. */

printf("%d ", i);
fflush(stdout);
where (zrs+zis <= 4.0f)

{
/* ite:cate f(Z) = Z*Z + C */

zrs = zr * zr ;

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

*/
*/
*/

48 Getting Started in C

.: ::: . ::i:i::: :- :: ::,::-:i: i i .ii .. :. ::.......: :. ::::::: :: .:~~ilt~j:::,i::::';:::;:-::~~~:~:::::;j::::: iii:·::::::::::::i::::::f:·:;:::::~~~~~:,At .. ::: I: :

zis = zi * zi ;

zi = 2.0f * zr * zi + CI ;

zr = zrs - zis + CR ;

/* update the iteration count for those processors that are
still handling unbounded iterations */

ittr = i ;

}
/* done. display the low <depth> bits of the iteration count. */

CMXPutImage (CMXGetDisplay (display), CMXGetDrawaDle (display),

CMXGetGC(display), ittr & mask, depth, 0, 0, 0, 0,

CMXGetWidth(widget), CMXGetHeight(widget));

p
printf("\n")

printf("Type return to quit");

getchar ();

Output

Figure 17 shows what the output looks like.

Figure 17. Output of the Julia program.

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

0 Chapter 6 Sample Prograzms 49

}

50 Getting Started in C*

6.2 Prime Number Sieve

This program finds the prime numbers in a set of numbers. Note these points
about the program:

* The function find primes uses the keyword current for its parallel
variables so that it can be used with any current shape.

* The program uses the <?- reduction operator and pcoord to obtain the
lowest coordinate among active positions of the current shape.

* It uses, the parallel conditional expression to initialize the parallel vari-
able is candidate.

* It contains nested where statements. Inside the first where statement,
the program finds the minimum value still active; the second where
statement makes all multiples of this minimum value active and removes
them as candidates to be prime numbers.

* It uses scalar left indexing to select individual elements of parallel
variables.

Here is the code:

#define MAXIMUM PRIME 16384

#define FALSE 0
#define TRUE 1

#define FIRST PRIME 2

/* */
/* Function to find prime numbers */
/* */
/* Parameters: */
/* */
/* A pointer, "isprimep," to a one-dimensional parallel */
/* char that will have non-zero elements in all positions */
/* where the index is a prime number */

/* */
/* Side effects: */
/* */
/* find_primes alters the one-dimensional parallel bool */
/* that is pointed to by "is primep." */
/* */
/* Calling constraints: */
/* */
/* The shape of the parallel bool pointed to by */
/* "is_primep" must be the current shape and all */

May 1993
Copyright C) 1991-1993 Thinking Machines Corporation

ChWaters 6 ."I; Sample Prog 'r:'':'s 511' I ' '';>'- , ; '>,'l ':' .:

/*
/*

positions must be active

/* Algorithm:

/*
/* This function will use the Sieve of Eratosthenes to
/* find the prime numbers. That is, it will iterate
/* through all numbers which are indices to the one-
/* dimensional parallel bool

/*
void find_primes(bool:current *is_primep)

bool:current iscandidate;
int minimumprime;

*is_primep - FALSE;

is_candidate = (pcoord(O) >= FIRSTPRIME) ? TRUE : FALSE;

do

where(is_candidate)

minimum prime = <?= pcoord(O);
where(!(pcoord(O) % minimum_prime))

is candidate - FALSE;
[minimumjrime] * isprime p TRUE;

while(j= is candidate);

}

main() {

shape [MAXIMUM_PRIME]s;

bool:s is_prime;
int i;

with(s)

find_pr imes (&isprime);
for(i=O; i<MAXIMUM PRIME; i++)

if(if] is_prime)

printf("The next prime number is %d\n", i);

}

The program's output begins:

The next prime number is 2
The next prime number is 3
The next prime number is 5
The next prime number is 7

... and so on.

May 1993
Copyright 1991-1993 Thinking Machines Corporation

*/
*/

*/

Chtapter 6 Sample Prograoms 51

S~~~~~~~~~~~~~~~~~Z:~~~~ **.*:.* >.*:.:*: '': *...::....F. ..:: . : :. ::::: :.:
6.3 Shuffle

This program provides a perfect shuffle of a deck of cards - that is, the deck is
split into two halves, and the cards from each half are alternated. The program
continues to shuffle the deck until the original order is obtained again.

Note these points about the program:

* The program uses general communication to rearrange the deck into its
new order after each shuffle.

* The CM-200 version uses the shape physical - this is a predeclared
shape name in C*. The shape physical is always of rank 1; its number
of positions is the number of physical processors to which the program
is attached when it runs on a CM. The program then restricts the context
to those positions whose coordinates are less than or equal to
DEC _SIZE. This is a typical way of changing the number of positions
in your shape in CM-200 C* programs, if you don't want a power of 2.
Note that the CM-5 version doesn't require a where statement, since it
can use a shape of 52 positions.

CM-200 Version

Here is the version for CM-200 C*:

#include <stdio.h>
#define DECK SIZE 52

/* */
/* Function to print a deck of cards */
/* */
/* Parameters: */
/* */
/* A parallel int, "deck," of physical shape, the first */
/* DECK_SIZE entries of which contain card numbers. */

/* */
/* Side effects: */
/* */
/* The contents of "deck" are printed (allowing three */
/* columns per int) followed by a new line. */
/* */
/* Calling constraints: */
/* */
/* The first DECK_SIZE entries of physical shape should */
/* be active (because "deck" is passed by value) and */

May 1993
Copyright 1991-1993 Thinking Machines Corporation

52 Getting Started in C*

Chapter 6. Sample Programs
w :.,,:&>N .S>., .g~ :...... ,:-,:*U-;.R %M

/* DECK SIZE should be less than or equal to

/* dimof(physical, 0).

/*
/* Algorithm:

/*
/* Self-evident

/*
void print_deck(int:physical deck)

{

int i;

for(i - 0; i < I)ECKSIZE; i++)

printf("%3d", [i]deck);

printf("\n\n");

}

/*
/* Main. function to shuffle a deck of cards

/*
/* Parameters:

/*
/* None
/*
/* Description:

/*
This program takes a pseudo deck of cards and

repeatedly performs the perfect shuffle transformation

on the deck until it is back in its original order.

The perfect shuffle is performed by cutting the deck

in the middle and then interleaving cards from the

two half decks. For example, if the original deck

contained the cards 0, 1, 2, 3, 4, and 5, the first cut

deck would contain 0, 1, and 2, and the second cut

deck would contain 3, 4, and 5. Interleaving these

two decks results in 0, 3, 1, 4, 2, and 5.

Side effects:

The program performs output.

Program constraints:

The number of cards in the deck, DECK SIZE, should be
less than or equal to dimof(physical, 0).

Algorithm:

A "send" .Ls used to perform the shuffle.

May 1993
Copyright 3 1991-1993 Thinking Machines Corporation

*/
*/
*/

* /
*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

'/
'/
'/
*/
*/
*/
*/

1*

1*

1*

1*

1*

1*

1*

1*

1*

1*

1*

1*

53

54 Getting Started in:.:..,'·'' iiS:.....v "',

main()

int:physical original_deck, deck, shuffling_order;

/* offset is the half-way point in the deck (for cutting purposes) */

int offset (DECKSIZE+1)/2, numbershuffles - 0;

with (physical)

/* only positions in the deck are left active */

where((deck original_deck = pcoord(0)) < DECKSIZE)
printf ("original deck:");

print_deck(original_deck);

/* generate the perfect shuffle transformation: positions in the

first half of the deck are to be sent

to consecutive even positions

in the shuffled deck; whereas positions in the second half of the

deck are to be sent to consecutive odd positions in

the shuffled deck*/

shuffling_order = (2*deck < DECK SIZE) ? (2*deck)

: (2*(deck-offset)+1);

printf("shuffle order:");

print_deck(shuf fling_order);

do

/* perform the shuffle */

[shuffling order] deck = deck;

/* print the shuffled deck and an incremented
sequence number */

printf("%3d:", ++number_shuffles);

printdeck(deck);
/* continue to shuffle until the deck is in its original order */

} while(j=(deck ! originaldeck));

/* print the number of shuffles required */

printf("\nNumber of shuffles = %d\n", number shuffles);

May 1993

Copyright © 1991-1993 Thinking Machines Corporation

54 Getting Started in C*

::.:::r:Chat : 6~:i.:.S 55::..

CM-5 Version

Here is the version for CM-5 C*:

#include <stdio.h>

#define DECK SIZE 52

shape [DECKSIZE]deckshp;

*/
Function to print a deck of cards

Parameters:

A parallel int, "deck," of physical shape, the first
DECK SIZE entries of which contain card numbers.

Side effects:

The contents of "deck" are printed (allowing three

columns per int) followed by a new line.

/* Calling constraints:

/*
/* The first DECKSIZE entries of physical shape should
/* be active (because "deck" is passed by value) and

/* DECKSIZE should be less than or equal to

/* dimof(physical, 0).

/*
/* Algorithm:

/*
/* Self-evident

/*
void printdeck(int::deckshp deck)

{
int i;

for(i - 0; i < DECK SIZE; i++)

printf(t"%3d", [i]deck);

printf("\n\n");

}

/*
/* Main function to shuffle a deck of cards
/*
/* Parameters:
/*
/* None

/*
/* Description:

*1
*1

*/
*/
/ /

*1
*1

*1

*/
'/
'/
*/
*/

'/

*/

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

1*
1*

1*

1*

1*

1*

Chapter 6. Sample Programs~ 55

56 Getting Started in C*

/* */
/* This program takes a pseudo deck of cards and */
/* repeatedly performs the perfect shuffle transformation */
/* on the deck until it is back in its original order. */

/* */
/* The perfect shuffle is performed by cutting the deck */
/* in the middle and then interleaving cards from the
/* two half decks. For example, if the original deck */
/* contained the cards 0, 1, 2, 3, 4, and 5, the first cut */

/* deck would contain 0, 1, and 2, and the second cut */
/* deck would contain 3, 4, and 5. Interleaving these */
/* two decks results in 0, 3, 1, 4, 2, and 5. */

/* */
/* Side effects:

/. */
/* The program performs output. */

/. */
/* Program constraints: */

/* */
/* The number of cards in the deck, DECK SIZE, should be */
/* less than or equal to dimof(physical, 0). */
/* */
/* Algorithm:

/* A "send" is used to perform the shuffle. */

~~~~~~~/* ~~~~*/

main()

int:deck_shp original_deck, deck, shuffling_order;

/* offset is the half-way point in the deck (for cutting purposes) */
int offset - (DECKSIZE+1)/2, numbershuffles - 0;

with(deck_shp)

/* only positions in the deck are left active */

deck - original_deck - pcoord(0)
printf("original deck:");

printdeck(originaldeck);

/* generate the perfect shuffle transformation: positions in the
first half of the deck are to be sent
to consecutive even positions
in the shuffled deck; whereas positions in the second half of the
deck are to be sent to consecutive odd positions in
the shuffled deck */

shuffling_order - (2*deck < DECK_SIZE) ? (2*deck)
: (2*(deck-offset)+1);

May 1993
Copyright © 1991-1993 Thinking Machines Corporation



Chapter 6. Sample Programs

printf("shuffle order:");

print_deck(shuffling_order);

do {

/* perform the shuffle */

[shuffling_order]deck - deck;

/* print the shuffled deck and an incremented

sequence number */
printf("%3d:", ++numbershuffles);

printdeck(deck);
/* continue to shuffle until the deck is in its original order */

} while(J-(deck !- originaldeck));

/* print the nurber of shuffles required */
printf("\nNumber of shuffles %d\n", number shuffles);

}

l

Output

Here is the olltput from the program:

original deck: 0 1 2 3 4 5 6 7

19 20 21 22 23 24 25 26 27 28 29 30 31

43 44 45 46 47 48 49 50 51

8 9 10 11 12 13 14 15 16 17 18

32 33 34 35 36 37 38 39 40 41 42

shuffle order: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

38 40 42 44 46 48 50 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

35 37 39 41 43 45 47 49 51

1: 0 26 1 27 2 28 3 29 4 30 5 31 6 32 7 33 8 34 9 35 10 36 11

37 12 38 13 39 14 40 15 41 16 42 17 43 18 44 19 45 20 46 21 47 22 48 23

49 24 50 25 51

2: 0 13 26 39 1. 14 27 40 2 15 28 41 3 16 29 42 4 17 30 43 5 18 31

44 6 19 32 45 7 20 33 46 8 21 34 47 9 22 35 48 10 23 36 49 11 24 37

50 12 25 38 51

3: 0 32 13 45 26 7 39 20 1 33 14 46 27 8 40 21 2 34 15 47 28 9 41

22 3 35 16 48 29 10 42 23 4 36 17 49 30 11 43 24 5 37 18 50 31 12 44

25 6 38 19 51

4: 0 16 32 48 13, 29 45 10 26 42 7 23 39 4 20 36 1 17 33 49 14 30 46

11 27 43 8 24 40 5 21 37 2 18 34 50 15 31 47 12 28 44 9 25 41 6 22

38 3 19 35 51

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

0 57
~~~'~~~~·:~~~~~·)~~~~~:~~~~~~~~~t~~~ C~~~~ ·............................. ... ..·~~~i:~~~~~~:~~~:~~~:~~~::i~~~~~:::s:( ~ ~ ~ ~ ~ ~ ~ ·-··· ..... ...... ...... ..


58 Getting Started in C*

5: 0 8 16 24 32 40 48 5 13 21 29 37 45 2 10 18 26 34 42 50 7 15 23

31 39 47 4 12 20 28 36 44 1 9 17 25 33 41 49 6 14 22 30 38 46 3 11

19 27 35 43 51

6: 0 4 8 12 16 20 24 28 32 36 40 44 48 1 5 9 13 17 21 25 29 33 37

41 45 49 2 6 10 14 18 22 26 30 34 38 42 46 50 3 7 11 15 19 23 27 31

35 39 43 47 51

7: 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

46 48 50 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

43 45 47 49 51

8: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51

Number of shuffles = 8

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

"O:.:,:·:·:;·-i:il�:��:::::�:::i�;

Chapter 7

Performance Hints

This chapter gives some tips on how to improve the performance of C* pro-
grams. For more information on CM-200 C* performance, see the C*
Programming Guide. For more information on CM-5 C* performance, see the
CM-5 C* Performance Guide.

* Prototype functions. Using ANSI function prototyping speeds up a pro-
gram by reducing the number of conversions that the compiler must
make.

* Pass parallel variables by reference. In function calls, passing a paral-
lel variable by reference rather than by value saves the need to make a
temporary copy of the parallel variable.

* Use the everywhere statement in functions when all positions are
active. Enclosing the function's statements in an everywhere state-
ment lets the compiler use faster instructions that ignore the context.

* Do not store scalar data in parallel variables. If data is scalar, declare
it as a Standard C variable, so that it is stored on the scalar computer
(front end or partition manager).

* Declare float constants as floats. That is, add the final f to the value;
this reduces the number of conversions that the compiler must make.

* If possible, put parallel variables that are to communicate in the
same shape. This reduces the amount of communication required.

* Whenever possible, use grid communication instead of general com-
munication. As mentioned in Chapter 5, grid communication is faster.

* Whenever possible, use send operatio nstead of get opeations afor
general communication. As mentioned in Chapter 5, send operations
are faster.

May 1993
Copyright © 1991-1993 Thrning Machines Corporation 59

0

a

Index
=

communication, 33
See also general communication; grid

communication

conditional expression, 27

context, 21

coordinates, 16

current, 29, 50

current shape, 7, 20

active positions, 7

allocate_detailed_ shape, 23

allocate_shape, 23

arrays, parallel, 18

assignment, with a scalar LHS and a
parallel RHS, 26

axis, 14

B

binary operators
with a scalar and a parallel operand, 26
with two parallel operands, 27

bool, 24

boolsizeof, 24

C

D

deallocate_shape, 23

demotion, parallel to scalar, 26

dimof, 40

E

elements, 3, 6, 15
corresponding, 16

else, 22

everywhere, 22, 59
and passing by value, 30

F

functions, 29
prototyping, 59

GC*, and C, 1

C* implementations, 2

C* program
compiling, 11-12
developing, 2
executing, 12
sample, 3, 43

cmattach, 2

general communication, 33, 52, 59
when there are inactive positions, 36

get operations, 35, 59

grid communication, 33, 37, 59
with wrapping, 40
without wrapping, 39

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

Symbols

?:, 27

%%, 40

+=, 28

<?=, 29, 50

>?=, 29

A

61

62 GetingStarLteEiOC

L R

rank, 13, 34

reduction assignment, 10

reduction operators, 28

M

maximum operator, 29

minimum operator, 29, 50

0
overload, 31

overloading functions, 30

P

palloc, 24

parallel variables, 5, 15
choosing an individual element of, 9-10
declaring, 15
dynamically allocating, 22
passing to a function, 29

passing by reference, 30, 5:9

passing by value, 59
and where statement, 30

pcoord, 37, 43, 50
and left indexing, 38

performance, improving, 59

period, and pcoord, 39

pfree, 24

physical predeclared shape name, 52

pointers
to parallel variables, 19

passing to a function, 29
to shapes, 19

positions, 5, 13
active, 21
inactive, 21

promotion, scalar to parallel, 26

S

scalar variables, 6

scan, 34

send operations, 35, 59

shape selection, 7

shapeof, 30

shapes, 5, 13
declaring, 14
dynamically allocating, 22
fully specified, 14

spread, 34

<stdlib. h>, 23, 24

structures, parallel, 17

U

unary operators, and parallel variables, 25

V

void, 29

W

where, 21, 43
and passing by value, 30
nested, 21, 50

with, 7, 20
in functions, 29

May 1993
Copyright © 1991-1993 Thinking Machines Corporation

left indexing, 14
and pcoord, 38
parallel, 34

0Getting Started in C *62

Thinking Machines Co:rporation t
245 First Street

Cambridge, MA 02142-1264
(617) 234-1000

