
re The
Connection Machine
System

Prism User's Guide~~~~~~~ "L~~~~~~~~~~~~~~~~2~~~~~~~-- -

Version 1.2
March 1993

Thinking Machines Corporation
Cambridge, MassachusettsLIP

First printing, March 1993

The information in this document is subject to cbhange without notice and should not be construed as a
commitment by Thinking Machines Corporatio. Thinking Machines Corporation reserves the right to make
changes to any products described herein to improve functioning or design. Although the information in this
document has been reviewed and is believed to be reliable, Thinking Machines Corporation does not assne
responsibility or liability for any errors that may appear in this document. Thinking Machines Corporation does
not assume any liability arising from the application or use of any information or product described herein.

k******************C****~*******************************

Counection Machinee is a registered trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation
CM, CM-2, CM-200, CM-S, and DataVault are trademarks of Thinking Machines Corporation.
CMosr, Prism, and CMAX are trademarks of Thinking Machines Corporation.
C* is a registered tademark of Thinking Machines Corporation.
Paris, C/Paris, and CM Fortran are trademarks of Thinng Machines Corporation.
CMMD, CMSSL, and CMXl1 are trademarks of Thinking Machines Corporation.
Motif is a trademark of Open Software Foundation, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
The X Window System is a trademark of the Machusetts Institute of Technology.

Copright 0 1991-1993 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 Frst Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

r7

('

0

Contents
,~s s~~~s s s s.... _ . , I .:

About This Manual ..

Customer Support ...

Chapter 1 Introduction ..

1.1 Overview ...

1.2 The Look and Feel of Prism

1.3 Loading and Executing Programs

1.4 Debugging ..

1.5 Visualizing Data ..

1.6 Analyzing Program Performance

1.7 Editing and Compiling ...

1.8 Obtaining On-Line Help and Documentation

1.9 Customizing Prism ..

Chapter 2 Using Prism ...

2.1 Before Entering Prism . .
2.1.1 Supported Languages

2.1.2 Compiling and Linking Your Program

2.1.3 Setting Up Your Environment

2.2 Entering Prism

2.2.1 Invoking Prism

2.2.2 Command-Line Options

2.3 Within Prism

2.3.1 Using the Mouse

2.3.2 Using Keyboard Alternatives to the Mouse....

2.3.3 Issuing Commands....................

2.4 Using the Menu Bar
2.4.1 With a Mouse

2.4.2 From the Keyboard

2.4.3 What Happens When You Choose an Item

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation iii

ix

xii

1

1

2

3

3

4

4

5

5

6

7

8

8

8

9

10

10

10

11

12

12

14

14

15

15

17

· ·.........· ·

......

......
..............
............................
..............
..............
..............
..............
..............
..............
..............
..............
..............

I"

iv
------ ---------

2.5 Using Windows, Dialog Boxes, and Lists
2.5.1 Windows ..

2.5.2 Dialog Boxes ..
2.5.3 Lists...

2.6 Using the Source Window and Line-Number Region
2.6.1 The Source Window

2.6.2 The Line-Number Region

2.7 Using the Command Window

2.7.1 Using the Command Line
2.7.2 Using the History Region
2.7.3 Redirecting Output
2.7.4 Logging Commands and Output
2.7.5 Executing Commands from a File

2.8 Using Prism with Paris Programs

2.9 Writing Expressions in Prism

2.9.1 How Prism Chooses the Correct Variable or Procedure.
2.9.2 Using Fortran Intrinsic Functions in Expressions............
2.9.3 Writing C* Expressions.................................

2.9.4 Using C and C* Arrays in Expressions.
2.9.5 Hints for Detecting NaNs and Infinities

2.10 Issuing UNIX Commands ..

2.10.1 Changing the Current Working Directory
2.10.2 Setting and Displaying Environment Variables

2.11 Leaving Prism ...

Chapter 3 Loading and Executing a Program

3.1 LoadigProgram..
3.1.1 From the Menu Bar.....................................
3.1.2 From the Command Window

3.1.3 What Happens When You Load a Program
3.1.4 Loading Subsequent Programs

3.2 Associating a Core File with a Loaded Program

3.3 Attaching to and Detaching from a Running Process

3.4 Attaching to and Detaching from a CM-2 or CM-200
3.4.1 Attaching from within Prism
3.4.2 Detaching from within Prism.
3.4.3 Cold Booting ..

,, Wl i.w. . r . ._ (.·I 1· IV

17

17

19

19

19

19

23

24

24

25

26

27

27

28

29

29

30

31

33

34

34

35

35

36

(3

37

37

38

39

39
40

40

40

41

42

44

44

Ct,

Version 1.2, March 1993
Copyright C 1993 Thking Machines Corporation

Prirm rlcvr'c rmilj/o

Cn · . .V
3.4.4 Turning Safety On and Off

3.4.5 Obtaining Information about CM Users .

3.5 Executing a Program

3.5.1 Running a Program

3.5.2 Program I/O

3.5.3 Stepping through a Program

3.5.4 Interrupting and Continuing Execution .

3.5.5 Status Messages

3.6 Choosing the Current File and Function

3.7 Creating a Directory List for Source Files

Chapter 4 Debugging a Program

4.1 Overview of Events

4.2 Using the Event Table

4.2.1 Description of the Event Table .

4.2.2 Adding an Event

4.2.3 Deleting an Existing Event

4.2.4 Editing an Existing Event

4.2.5 Saving Events

4.3 Setting Breakpoints

4.3.1 Using the Line-Number Region

4.3.2 Using the Event Table and the E

4.3.3 Using Commands

4.4 Tracing Program Execution

4.4.1 Using the Event Table and the E

4.4.2 Using Commands

4.5 Displaying and Moving through the Call St

4.5.1 Displaying the Call Stack

4.5.2 Moving through the Call Stack

4.6 Examining the Contents of Memory and Re

4.6.1 Displaying Memory

4.6.2 Displaying the Contents of Regis

4.7 Using pndbx on a CM-5

........................... 53

........................... 53
........................... 55

........................... 55

........................... 58

........................... 58

........................... 59
..........,,,,., 59

........................... 60

........................... 61
vents Menu 62

........................... 63

........................... 66
vents Menu 66

........................... 67
ack 68

........................... 68

. , , o,,,, ,.. 69

,gisters 70
........................... 70
ters 71

........................... 72

Visualizing Data

Overview
5.1.1 Printing and Displaying

73

73

74

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

_W-- ,
.

44

45

45

45

46

46

47

48

48

50

(,.

Chapter 5

5.1

C'

Contents v

vI'./~7 Prism.:~ er;Bi- " - Guide ~ 7...... ~---.....~~~~:::::<?-:-- - !:... ~ 7 ~-:

5.1.2 Methods ..

5.1.3 Limitations ...

5.2 Choosing the Data to Visualize

5.2.1 Printing and Displaying from the Debug Menu
5.2.2 Printing and Displaying from the Source Window

5.2.3 Printing and Displaying from the Event Table
and the Events Menu

5.2.4 Printing and Displaying from the Command Window.

5.3 Working with Visuaizers.

5.3.1 Uing the Data Navigator in a Visualizer

5.3.2 Using the Display Window in a Visualizer
5.3.3 Using the ille Menu

5.3.4 Using the Options Menu

5.3.5 Updating and Closing the Visualiz

5.4 Visualizing Structues

5.4.1 Expanding Pointers..........................

5.4.2 Panning and Zooming

5.4.3 Deleting Nodes
5.4.4 More about Pointers in Structures......

5.4.5 Updating and Closing a Structure Visualizer
5.4.6 Visualizing Dynamic Arrays and Union Members

5.5 Printing the Type of a Variable
5.5.1 What Is Displayed

5.6 Modifying Data

5.7 Changing the Radix of Data

... 82

82
83

91

92

93

94
95

95

95

96

98

99

99

100

Obtaining Performance Data

6.1 Overview ...

6.2 Writing and Compiling Your Program...............................
6.2.1 Including Timers within Your Program

6.3 Obtaining the Most Accurate Performance Data

6.4 Collecting Performance Data

6.4.1 Collecting Performance Data outside of Prism

6.5 Displaying Performance Data
6.5.1 The Resources Pane
6.5.2 The Procedures Pane
6.5.3 The Source-Lines Pane

6.5.4 Displaying Performance Data in the Command Window 112

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

74

74

75

75

76

77

78

80

81

Chaptelr6 101

101

102

102

103

104

105

105

107

110

112

vi Prism User Guide

...........

...........

...........

--- e vi i -- -i --------- 7Z-7 Z ---

6.6 Intepreng theData .. 113
6.6.1 Making Sense of the Times 113
6.6.2 IsolatingBotenec 113
6.6.3 Anomalous Performance Data 115

6.7 Saving and Loading Performance Data Files 115

Chapter 7

7.1

7.2

Editing and Compiling Programs 117

Editing Source Code .. 117

Using the mak Utility .. 118
7.2.1 Creating the Makefie 118
7.2.2 Usingthe Makefile 118

,/

Chapter 8 Getting Help ...

8.1 Getting Help ...

8.1.1 Using the Help Index

8.1.2 Choosing Other Selections from the Help Menu

8.1.3 Using Help Selections and Help Buttons

8.1.4 Getting Help on Using the Mouse

8.1.5 Obtaining Help from the Command Window

8.2 Obtaining On-Line Docunentation

8.2.1 Viewing Manual Pages

8.2.2 Viewing CM Documents.................................

8.2.3 Viewing Release Notes and Bug-Update Files

8.3 Sending Electronic Mail about Prism

8.4 The Prism Mailing List ..
I.

121

121

122

124

125

126

126

126

127

128

129

130

130

Chapter 9 Customizing Prism 131

9.1 Using the Tear-Off Region 131

9.1.1 Adding Menu Selections to the Tear-Off Region 132

9.1.2 Adding Prism Commands to the Tear-Off Region 133

9.2 Setting Up Alternative Names for Commands and Variables 133

9.3 Using the Customize Utility 134

9.3.1 How to Change a Setting 135
9.3.2 The Resources 136

9.3.3 Where Prism Stores Your Changes 138

C,
Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Contents vii

d-i~W&

: :::: :: ------------:::------ :: Pr----. U

9.4 Changing Prism Defaults in Your X Resource Database

9.4.1 Adding Prism Resources to the Resource Database ..

9.4.2 Specifying the Editor and Its Placement

9.4.3 Specifying the Window for Error Messages

9.4.4 Changing the Text Fonts

9.4.5 Changing Colors

9.4.6 Changing Keyboard Translations

9.4.7 Changing the xterm to Use for /O

9.4.8 Changing How Prism Signals an Error

9.4.9 Changing the make Utility to Use

9.4.10 Changing How Prism Treats Stale Data

9.5 Initializing Prism

Appendix A Prism Commands

..................... 141

............

............

. ... e.... .- *

............

............

in Visualizers

... 141

... 142

... 144

... 145

... 145

... 145

... 145

..................... 147

Appendix B

B.1

B.2

B.3

B.4

B.5

Commands-Only Prism

Specifying the Commands-Only Option ..

Iuing Commrnands

Useful Commands

Obtaining On-Line Documentation

Leaving Commands-Only Prism

151

151

152

153

153

.......................... 154

Appendix C Using Prism with CMAX

C.1 How Prism Can Display Both Source Files

C.2 Splitting the Source Window
C.2.1 From the Command Line

C.3 Using the Master Pane.

C.3.1 From the Command Line

C.4 Displaying Corresponding Source Lines

C.5

C.6

C.7

Debugging

Analyzing Performance

Using Commands-Only Prism

Appendix D Glossary ... 161

Index .. 165

... 138

... 140

... 140

... 141

Im

155

155

156

157

157

158

158

159

159

160

Version 1.2, March 1993

Copyright C) 1993 Thinking Machines Corporation

C.

Prism User 5r Guideviii

About This Manual

Objectives of This Manual

This manual explains how to use the Prism programming environment to
develop, execute, debug, and analyze the performance of programs on a CM-2,
CM-200, or CM-5 Connection Machine system.

Intended Audience

The manual is intended for application programmers developing programs in C
(including C* and C/Paris) or Fortran (including CM Fortran and Fortran/Paris).
We assume you know the basics of developing and debugging programs, as well
as the basics of using a CM. Some familiarity with the UNIX debugger dbx is
helpful, but not required. Prism is based on the X and OSF/Motif standards.
Familiarity with these standards is also helpful but not required.

Revision Information

This manual has been revised to incorporate changes made for Prism Version 1.2.

Organization of This Manual

The manual contains these chapters:

Chapter 1 Introduction
Gives an overview of Prism.

Chapter 2 Using Prism
Provides general information about using Prism.

Chapter 3 Loading and Executing a Program
Describes how to load and execute a program in Prism.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation ix

x Pis Uer Gid

Chapter 4 Debugging a Program
Describes how to use Prism to perform certain basic kinds of
debugging, such as setting a breakpoint and tracing program
execution.

Chapter 5 Printing and Displaying Data
Describes how to choose data for printing and display, and how
to specify the way in which the data is to be visualized.

Chapter 6 Obtaining Performance Data
Describes how to collect and interpret performance statistics for
your program.

Chapter 7 Editing and Compiling Programs
Describes how to edit and compile source code using Prism.

Chapter 8 Getting Help
Describes how to use Prism's on-line help and on-line documen-
tation facilities.

Chapter 9 Customizing Prism
Describes how to change Prism's behavior to suit your needs
and preferences.

Appendix A

Appendix B

Appendix C

Appendix D

Prism Commands
Lists Prism commands.

Commands-Only Prism
Describes how to use Prism in commands-only mode, without
its graphical interface.

Using Prism with CMAX
Describes how to use Prism with programs that have been con-
verted from Fortran 77 to CM Fortran via the CMAX Converter.

Glossary
Defines specialized terms used in the Prism documentation.

C

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

e

M142�I'Idftil

I 1119

Prism User S GuideX

Abot Tis anul x

Related Documents

Refer to the release notes for last-minute information on Prism. The release notes
are available on-line by choosing the Release Notes selection from the Help
menu or by issuing the command help release.

The Prism Reference Manual provides reference descriptions of all Prism
commands.

For general information about developing and running programs on a CM-2 or
CM-200 series Connection Machine system, consult the CM User Guide. For
information on the CM-5, consult the manuals in the CM-5 documentation set.

For complete information about CM Fortran, consult the volume Programming
in Fortran in the Thinking Machines Corporation documentation set. For
complete information about C*, consult the volume Programming in C*.

Notation Conventions

The table below displays the notation conventions used in this manual:

Convention Meaning

boldface Prism, UNIX, and CMOST commands, command
options, and file names. Also, language elements,
such as keywords, operators, and function names,
when they appear embedded in text.

Ctrl-D Simultaneous keystrokes are shown with a con-
necting hyphen. To type the Ctrl-D combination,
for example, press the D key while holding down
the Control key.

italics Parameter names and placeholders in command
formats.

boldface In interactive examples, user input is shown in
typewriter bold typewriter font and system output is

shown in typewriter font.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

About This Manual xi

(j11

Customer Support
----------- - --------- 11III .. HpD

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can

greatly reduce the time it takes Thinldng Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinkidng Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-supportothink.com

ames! think! customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

drSf

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation xii

Chapter 1

Introduction

The Prism programming environment is an integrated graphical environment
within which users can develop, execute, debug, and analyze the performance of
programs written for the CM-2, CM-200, or CM-5 Connection Machine system.
It provides an easy-to-use, flexible, and comprehensive set of tools for perform-
ing all aspects of Connection Machine programming. Prism operates on
terminals or workstations running the X Window System. In addition, a com-
mands-only option allows you to operate on any terminal, but without the
graphical interface.

This chapter introduces Prism. Subsequent chapters discuss specific aspects of
it.

1.1 Overview

You can either load an executable program into Prism, or start from scratch by
calling up an editor and a UNIX shell within Prism and using them to write and
compile the program.

Once an executable program is loaded into Prism, you can (among other things):

· execute the program

· debug the program

* analyze the program's performance

* visualize data

Version 1.2, March 1993
Copyright @ 1993 Thinking Machines Corporation

Prism User s Guide

1.2 The Look and Feel of Prism

Figure 1 shows the main window of Prism with a program loaded. It is within
this window that you debug and analyze your program. You can operate with a
mouse, use keyboard equivalents of mouse actions, or issue keyboard
commands.

menu
bar ----

status
region

line-numb
region

command
window

er

0Paln m adm.ai*LcA

tear-off
region

source
window

Figure 1. Prism's main window.

Clicking on items in the menu bar displays pulldown menus that provide access
to most of Prism's functionality.

You can add frequently used menu items and commands to the tear-off region,
below the menu bar, to make them more accessible.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

2

HelFile CM Execute Debug Performance Events Utilities Doc

Load. Run 1Pr nt..Contnue Sp Next Interrupt Dol 1 collt

Program: primeslx Status: not started
Une Source File: primes .fcm

1 > program findprlmes
2 implicit none
3 integer l. n, nextprime
4 parameter (n = 70000)
5 logical primes(n), candidn)
6 integer identityin)
7
8 C
9 C Initialization

10 C
11
12 identit = t1:n3
13 primes false.
14 candid . true.
15 candid(1) = fajle.
16 call loop(n, identity, primes, candid)
17 call results(n, primes)
18 end
19
20
21 subroutine loop(n, identity, primes, candid)
22 logical primes(n), candid(n)
23 integer identity(n)
24 Integer i. n, nextprime
25
26
27 C
28 C Loop: Find next valid candidate, mark it as a prime,
29 C invalidate all multiples as candidates, repeat.
30 C
31
32 nextprime = 2
33 do while (nextprime le. sqrt(real(n)))
34 B primea(nextprime) = true.
35 cndid(nextprime:n:nextprime) = false.
36 nextprime minval(identit. , candid)

(1) stop at "primestl.fcma":34

l
P7

_ _ _ _ __

I j

i

ChapNEr 1'... Introduc- 3

The status region displays the program's name and messages about the pro-
gram's status.

The source window displays the source code for the executable program. You
can scroll through this source code and display any of the source files used to
compile the program. When a program stops execution, the source window
updates to show the code currently being executed. You can select variables or
expressions in the source code and print their values or obtain other information
about them.

The line-number region is associated with the source window. You can click to
the right of a line number in this region to set a breakpoint at that line. In
Figure 1, a breakpoint is set at line 34.

The command window at the bottom of the main Prism window displays mes-
sages and output from Prism. You can also type commands in the command
window rather than use the graphical interface.

General aspects of using these areas are discussed in Chapter 2.

1.3 Loading and Executing Programs

You can load an executable program into Prism when you start it up, or any time
afterward. Once the program is loaded, you can run the program or step through
it. You can also interrupt execution at any time. CM-2 and CM-200 users can
attach to and detach from a CM from within Prism.

You can also attach to a running program or associate a core file with a program.

Chapter 3 discusses these topics in more detail.

1.4 Debugging

Prism allows you to perform standard debugging operations such as setting
breakpoints and traces, and displaying and moving through the call stack Chap-
ter 4 discusses these topics.

Version 1.2 March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter . Introduction 3

4 Prism User's--- -- ---Gu-- -d-
1.5 Visualizing Data

In data parallel computing, it is often important to obtain a visual representation
of the data elements that make up an array or parallel variable. In Prism, you can
create visualizers that provide standard representations of variables or expres-
sions. For example:

* In the text representation, the data is shown as numbers or characters.

* In the colormap representation, each data element is mapped to a color,
based on a range of values and a color map you specify. (This representa-
tion is available only on color workstations.)

· In the threshold representation, each data element is mapped to either
black or white, based on a cutoff value that you can specify.

A data navigator lets you manipulate the display window relative to the data
being visualized. Options are available that let you update a visualizer or save a
snapshot of it.

See Chapter 5 for a complete discussion of visualizing data.

1.6 Analyzing Program Performance

Prism provides performance data essential for effectively analyzing and tuning
data parallel programs. The data includes:

· processing time on the front end (for a CM-2 or CM-200) or partition man-
ager (for a CM-5)

* processing time on the CM (for a CM-2 or CM-200) or the nodes (for a
CM-5)

· time spent doing various forms of communication

* time spent performing I/O

The performance data is displayed as histograms and percentages for each com-
puting resource. For each resource, you can also obtain data on usage for each
procedure and each source line in the program. You can save the performance
data in a file and re-display it at a later time.

Version 1.2, March 1993
Copyright c0 1993 Thinking Machines Corporation

Prism User f Guide4

Chsss-apter1.-Introd-ction 5-

In addition, a performance advisor provides information about and analysis of
the data that Prism collects.

Performance data is available for both C* and CM Fortran programs.

See Chapter 6 for a complete discussion of performance analysis.

1.7 Editing and Compiling

You can call up the editor of your choice within Prism to edit source code (or
anything else). If you change your source code and want to recompile, Prism also
provides an interface to the UNIX make utility. See Chapter 7.

1.8 Obtaining On-Line Help and Documentation

Prism features a comprehensive on-line help system. Help is available for each
menu, window, and dialog box in Prism. In addition, the Help Index provides a
list of entries on which you can obtain information. Clicking on an entry displays
the topic in which the entry is discussed Each topic may have a list of related
topics, subtopics, terms, and commands associated with it; you can click on any
of these to open a new window displaying information about the selected item.

An on-line tutorial gives you hands-on experience in using Prism on a sample
program.

In addition to help on Prism itself, an interface is provided to on-line documenta-
tion for the entire Connection Machine system. You can call up a manual page
for a CM command or library routine, or view the portions of the CM documenta-
tion set that are most relevant to a specific question.

On-line help and documentation are described in more detail in Chapter 8.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 1. Introduction 5

- Pr---sm- User Gu----d- --- I'..

1.9 Customizing Prism

Prism provides various ways in which you can change aspects of how it operates.

They are discussed in Chapter 9.

Version 1.2, March 1993
Copyright C 1993 Thilking Machines Corporation

Prism User $ Guide6

Chapter 2

Using Prism

This chapter describes general aspects of using Prism. Succeeding chapters
describe how to perform specific functions within Prism. To learn:

* What to do before entering the Prism programming environment, see
Section 2.1.

* How to enter the Prism programming environment, see Section 2.2.

* How to perform actions within Prism, see Section 2.3.

* How to use the menu bar, see Section 2.4.

* How to use windows, dialog boxes, and lists, see Section 2.5.

* How to use the source window and line-number region, see Sec-
tion 2.6.

* How to use the command window, see Section 2.7.

* How to use Prism with Paris programs, see Section 2.8. Read this sec-
tion only if you are going to be running Paris programs on a CM-2 or
CM-200 series Connection Machine system.

* How to write expressions in Prism, see Section 2.9.

* How to issue UNIX commands, see Section 2.10.

* How to leave Prism, see Section 2.11.

The best way to learn how to use Prism is to try it out for yourself. We encourage
you to do this as you read this chapter. A quick way to try out some of the major
features of Prism is to take its on-line tutorial. To do this, left-click with your
mouse on Help in the menu bar at the top of the main Prism window. Then left-

Version 1.2, March 1993
Copyright ¢ 1993 Thinking Machines Corporation 7

8 Prs sr' ud

click on TIutorial in the menu. A window will appear with instructions that will
guide you through loading, executing, and analyzing a sample program.

2.1 Before Entering Prism

2.1.1 Supported Languages

You can work on Fortran, CM Fortran, C, and C* programs within Prism. Perfor-
mance data is available only for C* and CM Fortran programs. On the CM-5, the
C* or CM Fortran program can run either on the nodes or on the vector units.

2.1.2 Compiling and Linking Your Program

Note these points in compiling and linking your program:

* To use Prism's debugging features, compile and link each program mod-
ule with the -g compiler option to produce the necessary debugging
information.

* To obtain performance data about a C* or CM Fortran program, compile
it with the -cmprof ile option. For CM-2/200 C* programs, you must not
turn off optimization by compiling with the -oo option.

* You can combine the -g and -cmprof ile options. For slicewise and
CM-5 CM Fortran programs, however, this slows execution and distorts
performance data. In CM Fortran programs (both slicewise and Paris) and
CM-5 C* programs, you can do some debugging by specifying -cmpro-
file alone. This can cause problems in setting breakpoints and stepping
through a program, however.

* To use Prism for a Paris program on a CM-2 or CM-200, you must link with
the library libprism2. a.

* To use Prism for a C/Paris program, you must include this text on the cc
command line:

-Zcc -U CC dbx

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

8 Prism User a Guide

Chptr . sig rim

2.1.3 Setting Up Your Environment

To enter the Prism programming environment, you must be logged in to a termi-
nal or workstation running the X Window System (unless you want to run Prism
in commands-only mode; see below).

* To use a CM-2 or CM-200 series Connection Machine system, you must be
logged in to a front end that is connected to a CM.

* To use a CM-5, you must be logged in to a CM-5 partition manager.

Prism works under these X servers:

MT X1llR4

* NCD X11R4

* Silicon Graphics XllR4

Prism works under these window managers:

· term

* tvtwm

· gwm

· olwm

* uwm

Make sure your DISPLAY environment variable is set for the terminal or work-
station from which you are running X. For example, if your workstation is named
Valhalla, you can issue this command (if you are running the C shell):

% setenv DISPLAY valhalla:O

Note for CM-2 and CM-200 users: You may want to attach to the CM before
entering Prism. Prism provides a utility for attaching to a CM, but you may need
more flexibility than this utility provides. For information on the Prism utility,
see Section 3.4. For general information on attaching to a CM, see the CM User s
Guide.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

V.`

Chapter 2. Using Prism 9

2.2 Entering Prism

2.2.1 Invoking Prism

To enter Prism, issue the prism command at your UNIX prompt. When you enter
Prism, you see the main window shown in Figure 1 in Chapter 1.

2.2.2 Command-Line Options

Loading a Program

If you specify the name of an executable program on the command line, that
program is automatically loaded into Prism. For example:

% prism primesl.x

You can also load a process that is currently running. Add its process ID after the
name of the program. For example:

% prism primesl.z 2256

You can obtain the process's process ID by issuing the ps or caps command.

You can also associate a core file with a program. Add the name of the core file
after the name of the program.

See Chapter 3 for more information on loading a program.

Specifying Commands-Only Prism

Use the -c option to bring up Prism in commands-only mode. This allows you
to run Prism on a terminal with no graphics capability. See Appendix B for
information on commands-only Prism.

Specifying X Toolkit Options

You can also include most standard X toolkit command-line options when you
issue the prism command; for example, you can use the -geometry option to
change the size of the main Prism window. See your X documentation for
information on these options. Also, note these limitations:

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

10 Prism Userk Guide

Chapter 2. si n m- 1

Aj w'

* The -font, -title, and -rv options have no effect.

* The -bg option is overridden in part by the setting of the Prism.textBg-
Color resource, which specifies the background color for text in Prism;
see Section 9.4.5.

X toolkit options are meaningless, of course, if you use -c to run Prism in com-
mands-only mode.

Specifying Input and Output Files

You can use the form

% prism < input-file

to specify a file from which Prism is to read and execute commands upon
start-up. Similarly, use the form

% prism > logfile

to specify a file to which Prism commands and their output are to be logged.

If you have created a .prisminit initialization file, Prism automatically
executes the commands in the file when it starts up. See Section 9.5 for informa-
tion on .prisminit.

2.3 Within Prism

Within the Prism environment, you can perform most actions in one of three
ways:

* by using a mouse; see Section 2.3.1

* by using keyboard alternatives to the mouse; see Section 2.3.2

* by issuing commands from the keyboard; see Section 2.3.3

Version 1.2 March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 2. Using Prism 11

1 2......... P rism- U-s e---r------G uide-

2.3.1 Using the Mouse

You can point and click with a mouse in Prism to choose menu items and to per-
form actions within windows and dialog boxes. Prism assumes that you have a
standard three-button mouse.

This manual uses these terms when discussing the mouse:

* The mouse pointer is the graphical image that appears on the screen and
represents the current location of the mouse. Mouse actions are generally
related to the location of the mouse pointer.

* Left-clicking refers to pressing the left mouse button, right-clicking refers
to pressing the right button, etc. If we don't mention which button to click,
the left button is assumed.

* To double-click the mouse is to press the left mouse button twice in rapid
succession. This is a shortcut for selecting items in lists.

* To drag the mouse pointer is to move it while holding down a mouse but-
ton; you do this, for example, to select text in the source window. To slide
the mouse pointer is to move it without holding down a mouse button.

In any window where you see this mouse icon:

you can left-click on the icon to obtain information about using the mouse in the
window.

2.3.2 Using Keyboard Alternatives to the Mouse

You can use the keyboard to perform many of the same functions you can per-
form with a mouse. This section lists these keyboard alternatives.

In general, to use a keyboard alternative, the focus must be in the screen region
where you want the action to take place. The focus is generally indicated by the
location cursor, which is a heavy line around the region.

General keyboard alternatives are:

Version 1.2, March 1993
Copyright 0D 1993 Thinking Machines Corporation

12 Prism Users Guide

Chpe' . Usn Prs 13'.'

Esc Use the Esc key instead of the Close or Cancel button to close the
window or dialog box in which the mouse pointer is currently
located.

Tab Use the Tab key to move the location cursor from field to field
within a window or dialog box. The buttons in a window or box
constitute one field. The location cursor highlights one of the but-
tons when you tab to this field.

Shift-Tab Shift-Tab performs the same function as Tab, but moves through
the fields in the opposite direction.

Return Use the Return key to choose a highlighted choice in a menu, or
to perform the action associated with a highlighted button in a
window or dialog box.

arrow keys Use the up, down, left, and right arrow keys to move within a field.
For example, when the location cursor highlights a list, you can
use the up and down arrow keys to move through the choices in
the list. In some windows that contain text (for example, help win-
dows), pressing the Control key along with an up or down arrow
key scrolls the text one-half page.

F1 Use the F1 key instead of the Help button to obtain help about a
window or dialog box.

F10 Use the F10 key to move the location cursor to the menu bar.

Meta Use the Meta key along with a mnemonic (see below) to display a
menu. The Meta key has different names on different keyboards;
on some it is the Left or Right key.

Ctrl-c Use the Ctrl-c key combination to interrupt command execution.

The following keys and key combinations work on the command line and in text-
entry boxes - that is, fields in a dialog box or window where you can enter or
edit text:

Back Space Deletes the character to the left of the I-beam cursor.

Delete Same as Back Space.

Ctrl-a Moves to the beginning of the line.

Ctrl-b Moves back one character.

Ctrl-d Deletes the character to the right of the I-beam cursor.

Version 1.2. March 1993
Copyright C 1993 Thinking Machines Corporation

Chapter Z. Using Prism 13

14... Pr -. --------- -- --- im- - Us.......s G....-i
Ctrl-e

Ctrl-f

Ctrl-k

Moves to the end of the line.

Moves forward one character.

Deletes to the end of the line.

Ctrl-u Deletes to the beginning of the line.

In addition, you can use mnemonics and keyboard accelerators to perform
actions from the menu bar, see Section 2.4.

2.3.3 Issuing Commands

You can issue commands in Prism from the command line in the command win-
dow. Most commands duplicate functions you can perform from the menu bar,
it's up to you whether you use the command or the corresponding menu selec-
tion. Some functions are only available via commands. See Appendix A for a list
of all Prism commands. Section 2.7 describes how to use the command window.

Many commands have the same syntax and perform the same action in both
Prism and the UNIX debugger dbz. There are differences, however; we recom-
mend that you check the reference description of a command before using it.

2.4 Using the Menu Bar

The menu bar is the line of titles across the top of the main window of Prism;
see Figure 2.

ile CM Execute Debug Performance Events Utilities Doe Help

Figure 2. The menu bar.

Each title is associated with a pull-down menu, from which you can perform
actions within Prism; see Figure 3 for an example. (The CM title appears only
if you are running Prism from a CM-2 or CM-200 front end.)

Version 1.2, March 1993
Copyright 0 1993 Thining Machines Corporation

14 Prism User Guide

Chate 2 Uin Pis 1

Figure 3. A Prism menu.

2.4.1 With a Mouse

To display the pulldown menu associated with a title in the menu bar, left-click
on the title with your mouse. The menu appears beneath the title. To browse
through the menus, drag the mouse pointer over the menu-bar titles; each menu
appears in turn.

There are two ways to choose an item from a menu:

· Drag the mouse pointer until it is on the selection you want, and then let
go.

* Slide the pointer onto the selection you want, and then left-click the
mouse.

To make a menu disappear, either drag the mouse pointer off the menu and then
release the mouse button, or slide the mouse pointer off the menu and then left-
click the mouse.

2.4.2 From the Keyboard

To go to the menu bar, press the F10 key.

When the location cursor is in the menu bar, you can use the left and right arrow
keys to display the menus under each title. To select an item from a menu, use

Version 1.2, March 1993
Copyright) 1993 Thinking Machines Corporation

CM Execute Debug Performance Events Utilities Doc Help

Load... IPrint.. Continuel i Step Iterrupt ip D r Collection

File...
Status: initial

Func...
ource File:

Use...

Quit..

Help

. ,A
"5 .v

Chapter 2. Using Prism 15

6 P

the up and down arrow keys to move through the items until the one you want
is highlighted. Then press Return or the spacebar to choose it.

Another way to display menus from the keyboard is to type the mnemonic
associated with the menu, as described below.

Mnemonics

Mnemonics are a quick way of displaying menus, or of choosing items from a
menu, by simply typing a letter.

Each title on the menu bar, and each item in their pulldown menus, has a letter
underlined. For example:

file

The underlined letter is the mnemonic for the item. Typing the mnemonic is
equivalent to clicking on the item with the mouse. For example, typing F from
the menu bar displays the File pulldown menu. The menu stays on the screen
until you make a choice from it or press the Esc key to cancel it.

Note these points in using mnemonics:

* To use a mnemonic for a menu bar, the location cursor must be in the
menu-bar region. If the cursor is outside this region, press the F10 key to
move the location cursor to the menu bar. Or press the Meta key along
with the mnemonic.

* The mnemonics for items in a pulldown menu work only when the menu
is displayed. Thus, to display the dialog box for loading a file, type F (in
the menu bar region) to display the File menu, and then type L to display
the Load dialog box.

To perform a function directly, without displaying the pulldown menu, you can
use keyboard accelerators instead.

Keyboard Accelerators

A keyboard accelerator is a shortcut that lets you choose a frequently used menu
item without displaying its pulldown menu. Keyboard accelerators consist of the
Control key plus a function key; you press both at the same time to perform the
action. The keyboard accelerator for a menu selection is displayed next to the

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

16 Prism User a Guide

17
.�

name of the selection; if nothing is displayed, there is no accelerator for the
selection.

The keyboard accelerators are:

Ctrl-F1
Ctrl-F2
Ctrl-F3
Ctrl-F4
Ctrl-F5
Ctrl-F6
Ctrl-F7
Ctrl-F8
Ctrl-F9

Run
Continue
Interrupt
Step
Next
Where
Up
Down
Collection

2.4.3 What Happens When You Choose an Item

When you choose an item, Prism performs the action associated with the item.
If it needs more information, it displays a window or dialog box, which you use
to provide Prism with the information. If a menu selection has "..." after it, a
window or dialog box is displayed when you choose it. Later chapters in this
guide describe the actions associated with specific titles in the menu bar.

2.5 Using Windows, Dialog Boxes, and Lists

This section discusses general aspects of using windows, dialog boxes, and
scrollable lists in Prism. If you are familiar with other X applications, you can
skip this section.

2.5.1 Windows

Windows are used to display information that you may want to keep on your
screen; they also sometimes request information from you. The main Prism dis-
play is a window. The source window and the command window are panes
within this main window. Other windows are displayed as the result of choosing
menu items.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

her

Chapter 2. Using Prism

-9

Prism does not determine how window operations are performed (except for
panes - like the source window - that appear within other Prism windows);
this is under the control of the window manager for your X Window System.
Different window managers let you operate windows in different ways; check the
documentation for your window manager, or ask your system administrator for
more information. Generally, you will be able to perform these actions:

* Delete the window. It is possible to delete windows. It is also possible to

"destroy" a window. Do not destroy any Prism windows. This will kill
Prism.

* Turn the window into an icon. An icon is a small graphical image repre-
senting a window. Often you can close a window by clicking on a box in
the upper left corner; this creates an icon. You can then click on the icon
if you want to open it again.

* Move the window. Often you can do this by clicking on a horizontal bar
along the top of the window, then dragging the window to its new location.

* Change the size of the window. Often you can do this by clicking on the
small resize box in a corner of the window, then dragging the window until
it is the size you want.

* Scroll through the window, if the text is larger than the size of the win-
dow. Typically there is a scroll bar at one side of the window; The scroll
bar has arrows at the top and bottom; you can click on the arrows to move
the text in the window up or down. The scroll bar also has an elevator that
shows where the text is located in terms of the total text that can be dis-
played. For example, the elevator is at the top when the beginning text is
displayed. You can drag this elevator to scroll quickly through the text.
You can also click above or below the elevator to move up or down a page.

There can also be a horizontal scroll bar that lets you scroll through text that
is too wide to be displayed in the window.

Flies

rtest.x
rtest3

artest4.x

artestS.x

Figure 4. Scroll bars.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Prism User Ir Guide18

2.5.2 Dialog Boxes

Prism uses dialog boxes to obtain information from you. Once you have provided
the information, the dialog box goes away. For example, the Run (args) selec-
tion from the Execute menu displays a dialog box. You can close it without
providing information by clicking on Cancel.

Your window manager may also let you perform actions such as moving a dialog
box or turning it into an icon.

If a dialog box gets buried beneath windows, reissue the command that displayed
the dialog box; the box will reappear at the front of your screen.

2.5.3 Lists

Many windows and dialog boxes in Prism contain lists that you can scroll
through (for example, in choosing a program to load). If the list is too long for
the space provided, there is a scroll bar to the right, which operates as described
in Section 2.5.1. You can also use the up and down arrow keys to move through71~t~~~~ ~ the list.
If names in the list are too long for the space provided (for example, because files
have long pathnames), there is a scroll bar beneath the list; you can use this scroll
bar to scroll horizontally. You can also use the left and right arrow keys to scroll
across the line.

Typically, you will be selecting an item from the list. To do this, first highlight
it by clicking on it or moving to it with the up or down arrow key; then click on
the Select button (or its equivalent), or press the Return key. Or you can simply
double-click, rapidly, on the item.

2.6 Using the Source Window and Line-Number Region

2.6.1 The Source Window

The source window displays the source code for the executable program loaded
into Prism. (Chapter 3 describes how to load a program into Prism, and how to
display the different source files that make up the program.) When you execute

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Using Prism 19

20 Prism Useri Guide

the program, and execution then stops for any reason, the source window updates
to show the code being executed at the stopping place. The Source File: field at
the top of the source window lists the filename of the file displayed in the
window.

The source window is a separate pane within the main Prism window. You can
resize it by dragging the small resize box at the upper right of the window. If you
change its size, the new size is saved when you leave Prism.

You cannot edit the source code displayed in the source window. To edit source
code within Prism, you must call up an editor; see Chapter 7.

Moving through the Source Code

As mentioned above, you can move through a source file displayed in the source
window by using the scroll bar on the right side of the window. You can also use
the up and down arrow keys to scroll a line at a time, or press the Control key
along with the arrow key to move half a page at a time. (To do this, the focus
must be in the command window.) To return to the current execution point, type
Ctrl-x in the source window.

To search for a text string in the current source file, issue the /string or ?string
command in the command window. The string command searches forward in
the file for the string you specify, and repositions the file at the first occurrence
it finds. The ?string command searches backward in the file for the string you
specify.

You can display different files by choosing the File or Func selection from the
File menu; see Section 3.6. You can also move between files. Prism keeps a list
of the files you have displayed. With the mouse pointer in the source window,
do this to move through the list:

* To display the previous file in the list, click the middle mouse button while
pressing the left button. You are returned to the location at which you left
the file.

* To display the next file in the list, click the right mouse button while press-
ing the left button.

Version 1.2, March 1993
Copyright 1993 Thinking Machines Corporation

Chapter 2. Using Prism 21

Selecting Text

You can select text in the source window by dragging over it with the mouse; the
text is then highlighted. Or double-click with the mouse pointer pointing to a
word to select just that word. Left-click anywhere in the source window to
"deselect" selected text.

Right-click in the source window to display a menu that includes actions to per-
form on the selected text; see Figure 5. For example, select Print to display a
visualizer containing the value(s) of the selected variable or expression at the
current point of execution. (See Chapter 5 for a discussion of visualizers and
printing.) To close the popup menu, right-click anywhere else in the main Prism
window.

U Une ISource File: users/cmsg39bowkerlsdelsrclmalnttestprlmes.cs

44
45
46
47
48
49
50
51
52
53
54
55
56
57

/O

void in
boo: c
int ml

*is..pr

ias.con

do

Print

Display

Whatis
Doc Search
Show source pane P

Help

h are ndices to the one- */
r /

isprimep) C

FIRSTPRIME) ? TRUE : FALSE:

where(s_coandidate)
minimumprime = <?= pcoord(O'): I

Figure 5. The popup menu in the source window.

You can print the value of a variable or expression directly from the source win-
dow, without displaying the menu. To do this, press the Shift key while selecting
the variable or expression. A visualizer is displayed, showing the value(s) of the
variable or expression.

You can display the definition of a function by pressing the Shift key while
selecting the name of the function in the source window. This is equivalent to
choosing the Func selection from the File menu and selecting the name of the
function from the list; see Chapter 3. Do not include the arguments to the func-
tion, just the function name.

Splitting the Source Window

You can split the source window to simultaneously display the source code and
assembly code of the loaded program. Follow these steps to split the source
window:

Version 1.2, March 1993
Copyright 1993 Thinking Machines Corporation

:
1rnWII-

1.

Prism User's Guide

1. First load a program, as described in Chapter 3.

2. Right-click in the source window to display the popup menu, as
described above.

3. Click on Show source pane in the popup menu.

4. This displays another menu. Choose Show .s source from it.

This causes the assembly code for your program to be displayed in the bottom
pane of the window, as shown in Figure 6.

Figure 6. A split source window.

When you split the source window, the top pane is highlighted; it is the master
pane. Left-click in the slave pane to make it the master. If you scroll through the
master, the slave pane scrolls to the corresponding place as well. Scrolling
through the slave does not cause the master to scroll.

To return to a single source window, right-click in the pane you want to get rid
of, and choose Hide this source pane from the popup menu.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

22

Une Source File: lusesnicmsg3bowkersdeJsrcimaintestiprimes.cs
53 iscandidate = (pcoord(O) >= FIRSTPRIME) ? TRUE: FALSE:
54
55 do
56 where(iscandidate) (
57 minimumprime = <?= pcoord(O);
58 where(I (pcoord(O) X minimuimprime))
59 Iscandidate = FALSE:
60 [minimumprme]is-primep =TRUE:
61 - 3
62 while(l= scandidate):
63
64
65 ain() C
66 shape MAXIMUM_PRIME]s:
67
68 bool:s is-prime

259c Id EXfp 683, Xol
25a0 mov 1, Xo2
25a4 mov 1, Xo3
25aB call CM_u_write_to_processor_lL
25ac nop
25b0 mov 7. XoO
25b4 call CMPROFresourcestoptimer
25b8 nop

61 - 25bc mov 2, XoO
25c0 call CMPROFresourcestarttimer
25c4 nop
25c8 Id CXfp -123, XoO
25cc call CMLoadcontext
25d0 nop
25d4 mow 2. XoO
25d8 call CMPROFrescurcestoptimer

l"s�i�2�

NOTE: If you have used the CMAX Converter to translate a Fortran 77 program
into CM Fortran, you can use the Prism's split-screen technique to view the For-
tran 77 version of a CM Fortran program, as well as its assembly code. The use
of Prism with CMAX is described in Appendix C.

2.6.2 The Line-Number Region

The line-number region shows the line numbers associated with the source code
displayed in the source window. Figure 7 shows a portion of a line-number
region, with a breakpoint set.

Une

3>

Figure 7. The line-number region.

The > symbol in the line-number region in Figure 7 is the execution pointer.
When the program is being executed, the execution pointer points to the next line
to be executed. If you move elsewhere in the source code, typing Ctrl-x returns
to the current execution point.

A B appears in the line-number region next to every line at which execution is
to stop. You can set simple breakpoints directly in the line-number region; all
methods for setting breakpoints are described in Chapter 4.

There are two other symbols you will see in the line-number region:

* The - symbol is the scope pointer, it indicates the current source position
(that is, the scope). Prism uses the current source position to interpret
names of variables. When you scroll through source code, the scope
pointer moves to the middle line of the code that is displayed. Various
Prism commands also change the position of the scope pointer.

* The * symbol is used when the current source position is the same as the
current execution point; this happens whenever execution stops.

Version 1.2 March 1993
Copyright 0 1993 Thinldng Machines Corporation

Chapter Z Uing Prism 23

-~

If you right-click in the line-number window, you display the source-window
popup menu discussed in the previous section. Right-click anywhere in the main
Prism window to close this menu.

2.7 Using the Command Window

The command window is the area at the bottom of the main Prism window in
which you type commands and receive Prism output.

The command window consists of two boxes: the command line, at the bottom,
and the history region, above it. Figure 8 shows a command window, with a com-
mand on the command line and messages in the history region.

(1) stop at "artest5.f":22
Running: /proJ/sde/test/f77/artest5.x
stopped in procedure "MAIN" at line 22 in file "artest5.f"

Iprint f2 on dedicated,

Figure 8. The command window.

The command window is a separate pane within the main Prism window. You
can resize this window (using the resize box at the top right of the window) and
scroll through it. If you don't intend to issue commands in the command window,
you may want to make this window smaller, so that you can display more code
in the source window. If you use the command window frequently, you may want
to make it bigger. If you change the size of the window, the new size is saved
when you leave Prism.

2.7.1 Using the Command Line

You type commands on the command line at the bottom of the command win-
dow. You can type in this box whenever it is highlighted and an I-shaped cursor,
called an I-beam, appears in it. See Section 2.3.2 for a list of keystrokes you can
use in editing the command line. Press Return to issue the command. Type

Version 1.2, March 1993

Copyright © 1993 Thinking Machines Corporation

Prism User 's Guide24

Chper2 Uig rsm2

Ctrl-c to interrupt execution of a command (or choose the Interrupt selection
from the Execute menu).

You can issue multiple commands on the Prism command line; separate them
with a semicolon (;). One exception: if a command takes a filename as an argu-
ment, you cannot follow it with a semicolon, because Prism can't tell if the
semicolon is part of the filename.

Prism keeps the commands that you issue in a buffer. Type Ctrl-p to display the
previous command in this buffer. Type Ctrl-n to display the next command in
the buffer. You can then edit the command and issue it in the usual way.

During long-running commands (for example, when you have issued the run
command to start a program executing), you may still be able to execute other
commands. If you issue a command that requires that the current command com-
plete execution, you receive a warning message and Prism waits for the
command to complete.

2.7.2 Using the History Region

Commands that you issue on the command line are echoed in the history region,
above the command line. Prism's response appears beneath the echoed com-
mand. Prism also displays other messages in this area, as well as command
output that you specify is to go to the command window. Use the scroll bar at
the right of this box to move through the display.

You can select text in the history region, using one of these methods:

* Double-click to select the word to which the mouse pointer is pointing.

* Triple-click to select the line on which the mouse pointer is located.

* Press the left mouse button and drag the mouse over the text to select it.

You can then paste the selected text into other text areas within Prism by clicking
the middle mouse button.

To re-execute a command, triple-click on a line in the history region to select it,
then click the middle mouse button with the mouse pointer still in the history
region. If you middle-click with the mouse pointer on the command line, the
selected text appears on the command line but is not executed. This gives you
a way to edit the text before executing it.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Using Prism 25

26 Prism User's GuideB B

2.7.3 Redirecting Output

You can redirect the output of most Prism commands to a file by including an
at sign (e) followed by the name of the file on the command line. For example,

where S where.output

puts the output of a where command (a stack trace) into the file where .output,
in your current working directory within Prism.

You can also redirect output of a command to a window by using the syntax on
window, where window can be:

* command (abbreviation con). This sends output to the command window;
this is the default.

* dedicated (abbreviation ded). This sends output to a window dedicated
to output for this command. If you subsequently issue the same command
(no matter what its arguments are) and specify that output is to be sent to
the dedicated window, this window will be updated. For example,

list on ded

displays the output of the list command in a dedicated window. (Some
commands that have equivalent menu selections display their output in the
standard window for the menu selection.)

* snapshot (abbreviation sna). This creates a window that provides a
snapshot of the output. If you subsequently issue the same command and
specify that output is to be sent to the snapshot window, Prism creates a
separate window for the new output. The time each window was created
is shown in its title. Snapshot windows let you save and compare outputs.

You can also make up your own name for the window; the name appears in the
title of the window. This is useful if you want a particular label for a window. For
example, if you were doing a stack trace at line 22, you could issue this
command:

where on line22

to label the window with the location of the stack trace.

The commands whose output you cannot redirect are: cmcoldboot, cmfinger,
edit, email, make, and sh.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

26 Prism User L Guide

M; --. ^ - _

2.7.4 Logging Commands and Output

As we mentioned in Section 2.2.2, you can specify on the Prism command line
the name of a file to which commands and output are to be logged. You can also
do this from within Prism, by issuing the log command.

Use the log command to log Prism commands and output to a file. This can be
helpful in saving a record of a Prism session. For example,

log prism.log

logs output to the file prism. log. Use oo instead of 0 to append the log to an
already existing file. Issue the command

log off

to turn off logging.

You can use the log command along with the source command to replay a
session in Prism; see the next section. If you want to do this, you must edit the
log file to remove Prism output.

2.7.5 Executing Commands from a File

As we mentioned in Section 2.2.2, you can specify on the Prism command line
the name of a file from which commands are to be read in and executed. You can
also do this from within Prism, by issuing the source command.

Using the source command lets you rerun a session you saved via the log com-
mand. You might also use source if, for example, your program has a long
argument list that you don't want to retype constantly.

For example,

source prism. cmd

reads in the commands in the file prism. cmds. They are executed as if you had
actually typed them in the command window. When reading the file, Prism inter-
prets lines beginning with a pound sign (#) as comments.

The .prisminit file is a special file of commands; if it exists, Prism executes
this file automatically when it starts up. See Section 9.5 for more information.

Version 1.2, March 1993

Copyright Q 1993 Thinking Machines Corporation

Chapter Z. Using Prism 27

28 Prism--UserIsGuide

2.8 Using Prism with Paris Programs

NOTE: Read this section only if you are going to run Paris programs on a
CM-2 or CM-200 series Connection Machine system.

You can work on Paris programs in the Prism programming environment. How-
ever, before printing a Paris parallel variable, array, pointer, or structure, or using
it in an expression, you must tell Prism its type. For example, if you define a
variable of length 32 and use it in Paris routines dealing with floats, you need
to tell Prism that the variable represents a float.

There are two ways of defining types:

From the source window: (This method does not work for structures, pointers,
or arrays.) Select the variable in the source window, as described in Sec-
tion 2.6.1. Then right-click to display a popup menu. Choose Define Type from
this menu. (NOTE: Define Type appears in this menu only if you are logged in
to a CM-2 or CM-200 front end.) Choosing Define Type displays another menu,
listing C types. Click on the type of the variable. You can then operate on the
variable within Prism.

From the command window: Issue the type command, specifying the type of
the variable, structure, pointer, or array. For example,

type unsigned int a

specifies that a is a parallel unsigned int.

type struct foo bar

specifies that bar is a parallel struct of type foo.

type float arrayatl [] 20]

specifies that array_a is a parallel 10-by-20 array of floats.

type int *ptr

specifies that ptr is a pointer to a parallel int.

As mentioned above, you have to define the types only once during a Prism ses-
sion. To avoid having to do this during every session, put the appropriate type
commands in your .prisminit file, or in a special initialization file for each
Paris program you are working on; see Section 2.7.5 to learn how to use such
initialization files.

Version 1.2, March 1993
Copyright 0 1993 Thinldng Machines Corporation

Prism User k Guide28

Chpe . Usn Pris 29 .

2.9 Writing Expressions in Prism

While working in Prism, there are circumstances in which you may want to write
expressions that Prism will evaluate. For example, you can print or display
expressions, and you can specify an expression as a condition under which an
action is to take place. You can write these expressions in the language of the
program you are working on. This section discusses additional aspects of writing
expressions.

2.9.1 How Prism Chooses the Correct Variable or Procedure

Multiple variables and procedures can have the same name in a program. This
can be a problem when you specify a variable or procedure in an expression. To
determine which variable or procedure you mean, Prism tries to resolve its name
by using these rules:

1. It first tries to resolve the name using the scope of the current function.
For example, if you use the name x and there is a variable named x in
the current function, Prism uses that a. The current function is ordinarily
the function at the program's current stopping point, but you can change
this. See Section 3.6.

2. If this fails to resolve the name, Prism goes up the call stack and tries to
find the name in the caller of the current function, then its caller, and so
on.

3. If the name is not found in the call stack, Prism arbitrarily chooses one
of the variables or procedures with the name in the source code. When
Prism prints out the information, it adds a message of the form "[using
qualified name]". Qualified names are discussed below.

Issue the which command to find out which variable or procedure Prism would
choose; the command displays the fully qualified name, as described below.

Using Qualified Names

You can override Prism's procedure for resolving names by qualifying the name.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Using Prism 29

30 Prism U---ser--- ----- ------------ -Gu--ide------

A fully qualified name starts with a back-quotation mark ('). The leftmost sym-
bol in the name is the file, followed optionally by the procedure, followed by the
variable name. Each is preceded by a . Thus,

· foo'

specifies the variable a in file foo. (Note that you drop the extension in the file-
name.) And

foo' f'oo

specifies the a in the procedure foo in the file foo.

Partially qualified names do not begin with ', but have a in them. For example,

foO'

In this case, Prism looks up the leftmost name first, and picks the innermost sym-
bol with that name that is visible from your current location.

Use the whereis command to display a list of all the fully qualified names that
match the identifier you specify.

Prism assigns its own names (for example, $bl) to local blocks of C code. This
disambiguates variable names, in case you reuse a variable name in more than
one of these local blocks.

Prism attempts to be case-insensitive in interpreting names, but will use case to
resolve ambiguities.

2.9.2 Using Fortran Intrinsic Functions in Expressions

Prism supports the use of a subset of Fortran intrinsic functions in writing expres-
sions; the intrinsics work for all languages that Prism supports, except as noted
below. For complete information on the intrinsics, see the CM Fortran Reference
Manual.

The intrinsics, along with the supported arguments, are:

AIMAo (complex number) - Returns the imaginary part of a complex
number. Works for Fortran and CM Fortran only.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User f Guide30

ChapterI2..U-ingIPrism--1

ALL (logical array) - Determines whether all elements are true in a
logical array. Works for Fortran and CM Fortran only.

* AnY (logical array) - Determines whether any elements are true in a log-
ical array. Works for Fortran and CM Fortran only.

* CPLX (numeric-arg, numeric-arg) - Converts the arguments to a com-
plex number. If the intrinsic is applied to Fortran variables, the second
argument must not be of type complex or double-precision complex.

* COUNT (logical array) - Counts the number of true elements in a logical
array. Works for Fortran and CM Fortran only.

* DSIZz (array) - Counts the total number of elements in the array.

* mAVAL (array) - Computes the maximum value of all elements of a
numeric array.

*· MINAL (array) - Computes the minimum value of all elements of a
numeric array.

* PRODUCT (array) - Computes the product of all elements of a numeric
array.

* RANK (scalar or array) - Returns the rank of the array or scalar.

* REAL (numeric argument) - Converts an argument to real type. Works
for Fortran and CM Fortran only.

*· SM (array) - Computes the sum of all elements of a numeric array.

The intrinsics can be either upper- or lowercase.

2.9.3 Writing C* Expressions

Prism currently does not parse many parts of the C* language. Here are some of
the features of C* that Prism doesn't recognize:

* The functions pcoord, shapeof, rankof, and dimof are not supported.

* Dot notation is not understood.

* Shapes are not known objects.

* Current context isn't respected or understood.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 2 Using Prism 31

32I IINIi INI I i-I I III fl I I ---- -----.......... Prim U..er GuIN. ..i d

* Reduction operators are not supported, except as listed below.

* The communication intrinsic functions are not supported.

· The auto-increment and auto-decrement operators are not understood.

Using C* Reduction Operators

Prism allows the use of these C* reduction operators in writing expressions:

> ?- Computes the maximum value of an array or parallel variable.

<?- Computes the minimum value of an array or parallel variable.

*= Computes the product of all elements of an array or parallel
variable.

+ = Computes the sum of all elements of an array or parallel variable.

You can also use certain Fortran intrinsics, as described in Section 2.9.2.

Passing Parallel Variables to Functions

If you call a C* function in Prism, you must pass parallel variables to it by refer-
ence, not by value. For example, if you have a parallel integer pi, you would
pass it to function f as follows:

f (&pl)

Using Array-Section Syntax in C* Left Indexes

In Prism, you can use left indexes as you normally would to specify an element
of a C* parallel variable. For example:

[112] [1l471 parl

In addition, you can use array-section syntax from Fortran 90 to specify a range
of elements. This syntax is useful, for example, if you want to print the values
of only a subset of the elements of a parallel variable. The syntax is:

lower-bound: upper-bound: stride

where:

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

32 Prism User s Guide

V

Chapter 2. Using Prism 33

lower-bound

upper-bound

stride

is the lowest-numbered coordinate you choose along the
axis; it defaults to 0.

is the highest-numbered coordinate you choose along the
axis; it defaults to the highest-numbered coordinate for the
axis.

is the increment by which elements are chosen between the
lower bound and upper bound; it defaults to 1.

For example,

[5 :25:51 pvarl

specifies elements 5, 10, 15, 20, and 25 of the parallel variable pvarl.

[0:101] [100:110:2] pvar2

specifies the elements of the parallel variable pvar2 that have coordinates 0
through 10 along axis 0 and coordinates 100, 102, 104, 106, 108, and 110 along

axis 1.

For more information about array sections, see the CM Fortran Programming
Guide.

2.9.4 Using C and C* Arrays in Expressions

Prism handles arrays slightly differently from the way C and C* handle them.

In a C or C* program, if you have the declaration

int a[10];

and you use a in an expression, the type of a converts from "array of ints" to
"pointer to int". Following the rules of C and C*, therefore, a Prism command
like

print a + 2

should print a hexadecimal pointer value. Instead, it prints two more than each
element of a (that is, a [0] + 2, a ll] + 2, etc.). This allows you to do array
operations and use visualizers on C and C* arrays in Prism. (The print com-
mand and visualizers are discussed in Chapter 5.)

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 2. Using Prism 33

- P-m- G--d-

To get the C/C* behavior, issue the command as follows:

print &a + 2

2.9.5 Hints for Detecting NaNs and Infinities

Prism provides expressions you can use to detect NaNs (values that are "not a
number") and infinities in your data. These expressions derive from the way
NaNs and infinities are defined in the IEEE standard for floating-point arithmetic.

To find out if x is a NaN, use the expression:

(Z .ne.)

For example, if z is an array, issue the command

where (.ne. x) print z

to print only the elements of x that are NaNs. (The print command is discussed
in Chapter 5.) f

Also, note that if there are NaNs in an array, the mean of the values in the array
will be a NaN. (The mean is available via the Statistics selection in the Options
menu of a visualizer - see Chapter 5.)

To find out if x is an infinity, use the expression:

(x * 0.0 .ne. 0.0)

2.10 Issuing UNIX Commands

You can issue UNI and CMOST commands from within Prism.

From the menu bar: Choose the Shell selection from the Utilities menu. Prism
creates a UNIX shell. The shell is independent of Prism; you can issue UNIX
commands from it just as you would from any UNIX shell. The type of shell that
is created depends on the setting of your SHELL environment variable.

From the command window: Issue the sh command on the command line.
With no arguments, it creates a UNIX shell. If you include a UNIX command line

Version 1.2, March 1993
Copyright 1993 Thinking Machines Corporation

Prism User k Guide34

Chapter 2. Using Prism 35

as an argument, the command is executed, and the results are displayed in the
history region.

Some UNIX commands have Prism equivalents, as described below.

2.10.1 Changing the Current Working Directory

By default your current working directory within Prism is the directory from
which you started Prism. To change this working directory, use the cd command,
just as you would in UNIX. For example,

cd /allen/bin

changes your working directory to /allen/bin.

cd ..

changes your working directory to the parent of the current working directory.
Issue cd with no arguments to change the current working directory to your login
directory.

Prism interprets all relative filenames with respect to the current working direc-
tory. Prism also uses the current working directory to determine which files to
show in file-selection dialog boxes.

To find out what your current working directory is, issue the pwd command, just
as you would in UNIX.

2.10.2 Setting and Displaying Environment Variables

You can set, unset, and display the settings of environment variables from within
Prism, just as you do in UNIX.

Use the setenv command to set an environment variable. For example,

setenv EDITOR emacs

sets your EDITOR environment variable to emacs.

Use the unsetenv command to remove the setting of an environment variable.
For example,

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

T

36 Pri---m--User-----Gu..de

unsetenv EDITOR

removes the setting of the EDITOR environment variable.

Use the printenv command to print the setting of an individual environment
variable. For example,

printenv EDITOR

prints the current setting of the EDITOR environment variable. Or, issue
printenv or eetenv with no arguments to print the settings of all your environ-
ment variables.

2.11 Leaving Prism

To leave Prism:

* From the menu bar: Choose the Quit selection from the File menu. You
are asked if you are sure you want to quit. Click on OK if you're sure;
otherwise, click on Cancel or press the Esc key to stay in Prism.

* From the command window: Issue the quit command on the command
line. (You aren't asked if you're sure you want to quit.)

If you have created subprocesses while in Prism (for example, a UNIX shell),
Prism displays this message before exiting:

Prism- su-rcse a tl ernig

Prism sub-processes may still be running.
Terminate them also?

EILE E
Choose Yes (the default) to leave Prism and terminate the subprocesses. Choose
No to leave Prism without terminating the subprocesses. Choose Cancel to stay
in Prism.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

.

36 Prism User k Guide

Chapter 3

Loading and Executing a Program

This chapter describes how to load and run programs within Prism. To learn:

* How to load a program into Prism, see Section 3.1.

* How to associate a core file with a loaded program, see Section 3.2.

* How to attach to and detach from a running process, see Section 3.3.

* How to attach to a CM-2 or CM-200 and perform other CM-related

:i! tasks, see Section 3.4. This section is for CM-2 and CM-200 users only.

* How to execute a program, see Section 3.5.

* How to change the current file and the current function, see Section
3.6.

* How to specify the directories to be searched for source files, see Sec-
tion 3.7.

We assume in this chapter that you already have an executable program that you
want to run within Prism You can also develop the program from scratch by
calling up an editor within Prism; see Chapter 7.

3.1 Loading a Program

Before you can execute, debug, or analyze the performance of a program in
Prism, you must first load the program into Prism. Only one program can be
loaded at a time.

Version 1.2, varch 1993
Copyright a 1993 Thinking Machines Corporation 37

8 -m U- - -G U

As described in Chapter 2, you can load a program into Prism by specifying its
name as an argument to the prism command. If you don't use this method, you
can load a program once you are in Prism by using one of the methods described
below.

3.1.1 From the Menu Bar

Choose the Load selection from the File menu. (It is also by
off region.) A dialog box appears, as shown in Figure 9.

default in the tear-

Figure 9. The Load dialog box.

To load a program, you can simply double-click on its name, if the name appears
in the Programs scrollable list. Or, you can put its pathname in the Selection
box, then click on Load. To put the file's pathname in the Selection box, you can
either type it directly in the box, or click on its name in the Programs list. The
Programs list contains the executable programs in your current working direc-
tory; see Section 2.10.1.

Use the Load-Program Filter box to control the display of filenames in the Pro-
grams list; the box uses standard UNIX filters. For example, you can click on a
directory in the Directories list if you want to change to that directory. But the
Programs list does not update automatically to show the programs in the new
directory. Instead, the filter changes to directory-name/*, indicating that all pro-
grams in directory-name are to be displayed. Click on Filter to display the
filenames of the programs. Or simply double-click on the directory name in the
Directories list to display the programs in the directory.

Version 1.2, March 1993

Copyright 0 1993 Thinking Machines Corporation

(I

Load-Program Filter

I/proJ/de/test/F77/* I

Directories Programs

iproUsdelkstlt77I 311 1

Selection

Imper. x I

G o | Filter C e Hl

............... IH~l i

Prism User 5 Guide38

I

Chapter 3. Loading and Executing a Program 39

If you want to use a different filter, you can edit the Load-Program Filter box
directly. For example, change it to directory-namelprog* to display only pro-
grams beginning with prog.

Click on Cancel or press the Esc key if you decide not to load a program.

3.1.2 From the Command Window

Issue the load command on the command line, with the name of the executable
program as its argument. For example:

load myprogram

The program you specify is loaded.

3.1.3 What Happens When You Load a Program

Once a program is successfully loaded:

* The program's name appears in the Program field in the main window.

* The source file containing the program's main function appears in the
source window.

* The Load dialog box disappears (if you loaded the program using this
box).

* The status region displays the message not started.

You can now issue commands to execute, analyze, and debug this program.

If Prism can't find the source file, it displays a warning message in the command
window. Choose the Use selection from the File menu to specify other directo-
ries in which Prism is to search; see Section 3.7.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Ah

:4)

g . 1. 1. 1. I, g II, I-111111 v -Im ,111111 --------- --- ---- --- ---- --- 11,1 I I I I i I 11,111111111111111111ilii--

40 rim Uers Gid

3.1.4 Loading Subsequent Programs

Only one program can be loaded at a time. If you have a program loaded and you
want to switch to a new program, simply load the new program; the previously
loaded program is automatically unloaded. If you want to start fresh with the
current program, issue the reload command with no arguments; the currently
loaded program is reloaded into Prism.

3.2 Associating a Core File with a Loaded Program

As mentioned in Chapter 2, you can have Prism associate a core file with a pro-
gram by specifying its name after the name of the program on the prism
command line.

You can also do this by loading the program and then issuing the core com-
mand, specifying the name of the corresponding core file as its argument.

In either case, Prism reports the error that causeror thate core dump and loads the
program with a stopped status at the location where the error occurred. You can
then work with the program within Prism. You can, for example, examine the
stack and print the values of variables. You cannot, however, continue execution
from the current location; if you were running the program on a CM-2 or CM-200,
you cannot print the values of parallel variables or CM-resident arrays.

3.3 Attaching to and Detaching from
a Running Process

As we described in Chapter 2, you can load a running process into Prism by spec-
ifying the name of the executable program and the process ID of the
corresponding running process on the prism command line.

You can also attach to a running process from within Prism. To do this:

1. Find out the process's process ID by issuing the UNIX command ps (or
cmps if the process is running on a CM-5 or under timesharing on a CM-2
or CM-200).

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

40 Prism User S Guide

T

Chapter 3. Loading and Executing a Program 41

2. Load the executable program for the process into Prism,

3. Issue the attach command on the Prism command line, using the pro-
cess's process ID as the argument.

With either method of attaching to the process, the process is interrupted; a mes-
sage is displayed in the command window giving its current location, and its
status is stopped. You can then work with the program in Prism as you normally
would. The only difference in behavior is that it does not do its I/O in a special
xterm window; see Section 3.5.2.

To detach from a running process, issue the command detach from the Prism
command line. The process continues to run in the background from the point at
which it was stopped in Prism; it is no longer under the control of Prism. Note
that you can detach any process in Prism via the detach command, not just pro-
cesses that you have explicitly attached.

3.4 Attaching to and Detaching from
a CM-2 or CM-200

NOTE: Read this section only if you are going to run programs on a CM-2 or
CM-200 series Connection Machine system.

To run a program on a CM-2 or CM-200, you must be attached to a CM resource
(that is, one or more sequencers on the CM). You can attach in any of the standard
ways. For example, you can issue the cmattach command before entering
Prism, and then issue the prism command from a cmattach subshell.

You can also attach, detach, cold boot, turn Paris safety on and off, and obtain
information about CM users from within Prism. To attach, you must be running
Prism from a front end that is physically connected to a CM-2 or CM-200 series
Connection Machine system. The CM menu discussed in this section does not
appear if you are not running Prism from a front end.

For complete information on attaching, detaching, cold booting, and turning
safety on and off, see the CM User Guide.

Version 1.2 March 1993
Copyright 0 1993 Thinking Machines Corporation

42 Pr G

3.4.1 Attaching from within Prism

You can attach to a CM resource from within Prism. Attaching automatically
cold boots the resource.

From the menu bar: Choose the CMattach selection from the CM menu. A
dialog box is displayed; see Figure 10. By default, you are attached to the high-
est-numbered sequencer available on the first CM available, whether it is
timeshared or exclusive.

Figure 10. The CMattach dialog box.

In the CM Name text-entry box, specify the name of the CM to which you want
to attach. The default is any, meaning that you will accept any available CM.
Left-click on CM Name to display a menu of available CMs. You can either click
on a choice from this menu or type the name of the CM in the box.

In the Sequencers box, specify the number(s) of the sequencer(s) to which you
want to attach. The default is any, meaning that you will accept any available
sequencer(s). Left-click on Sequencers to display a menu of legal sequencer
sets. You can either click on a choice from this menu or type your choice in the
box. If you choose any in both boxes, you are attached to the highest-numbered
sequencer on the first CM that is available.

In the Interface box, specify the number of the front-end bus interface by which
you want to attach to the CM. Once again, the default is any, meaning that you
will accept any available interface. Left-click on Interface to display a menu of
interfaces. You can either click on a choice from this menu or type your choice
in the box.

Click on TimeShare if you want to attach to a timeshared CM resource. Click
on Exclusive if you want to attach to a CM resource running in exclusive mode.
In both cases, the diamond next to the word turns black, indicating your choice.
Don't Care is the default choice; it means that you will take whatever resource

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

n ce I.nwEJ
!- ' iz"-' m

ioeShe E Eclushe | lDont Cre|
imsv [i3urh ELn

Prism User S Guide42

I

Chapter 3. Loading and Executing a Program 43

is available, whether it is timeshared or exclusive. You can choose only one of
the three.

When you have specified the information, click on Attach to attach to the CM
resource (if it is available). You receive messages in the history region of the
command window telling you if the attach was successful. You may also receive
messages from CM System Software in the xterm from which you started Prism.

Click on Cancel or press the Esc key to close the dialog box without attempting
to attach.

Note that this dialog box gives you less control over the characteristics of the CM
resource than other methods. For example, you cannot specify the version of the
microcode that the resource is to run. For maximum control over the characteris-
tics of the CM resource, you must attach from within your program or by calling
cmattach before you enter Prism.

From the command window: Issue the cmattach command to attach to a CM.
By default you are attached to the highest-numbered sequencer available on the
first CM available. The Prism version of cmattach accepts this subset of the
shell-level cmattach options:

-e Attach in exclusive mode only.

- t Attach in timeshared mode only.

-C name Attach to the specified CM.

- i number Attach via the specified interface.

-s seq-set Attach to the specified sequencer or sequencer set.

Auto-attaching in Prism

As of Version 6.1 of CM System Software, a program can attach automatically
to an available CM resource, run, and then detach. This works in Prism - with
one complication. If an auto-attached program has a segmentation fault, it will
remain attached to the CM; this allows you to examine the values of CM-resident
data. To detach, you must issue this command from the command line to force
the program to exit:

cont kill

rsion 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

~44 Prism User's Guide

(This also kills the program.) You cannot use the CMdetach selection described
below. CMdetach detaches Prism from a CM; it cannot detach an auto-attached
program.

3.4.2 Detaching from within Prism

You can detach from a CM resource from within Prism, whether or not you
attached to it from within Prism.

From the menu bar: Choose the CMdetach selection from the CM menu. A
dialog box is displayed, asking if you really want to detach. Click on Detach to
proceed. Click on Cancel or press the Esc key to close the dialog box without
detaching.

You receive a message in the history region of the command window when you
are detached.

From the command window: Issue the cmdetach command to detach from the
CM resource; in this case, you are not asked if you are sure you want to detach.

3.4.3 Cold Booting

To cold boot the CM resource to which you are attached, choose the CMcoldboot
selection from the CM menu, or issue the cmcoldboot command from the com-
mand window. The Prism version of cmcoldboot accepts all the options
suppoted by the shell-level cmcoldboot.

3.4.4 Turning Safety On and Off

To turn Paris safety on or off for the CM resource to which you are attached,
choose the CMsetsafety selection from the CM menu. This is a toggle switch.
Choosing the selection fills in the toggle box to the left of the menu selection;
safety is now on. Choosing it again turns safety back off. From the command
window, issue metsaf ety on to turn safety on, and ametsaf ety off to
turn it off.

Note that safety should be turned off when you are collecting performance data;
otherwise your results will be inaccurate. If you attempt to run a program with

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User Ir Guide44

i

Chapter 3. Loading and Executing a Program 45

collection and safety both on, Prism turns safety off and displays a message
informing you of this. (It will then turn safety back on when you turn collection
off.)

3.4.5 Obtaining Information about CM Users

Choose the CMfinger selection from the CM menu to display information about
what CMs are available and who is using them.

From the command window, issue the amfinger command to obtain the same
output. ,

3.5 Executing a Program

To execute a program, you must first load it, as described in Section 3.1. If the
program uses a CM-2 or CM-200, you must be attached; see Section 3.4. Once you
start the program running, you can step through it, and interrupt and continue
execution.

3.5.1 Running a Program

To run a program:

From the menu bar: If you have no command-line arguments you want
to specify, choose the Run selection from the Execute menu; execution
starts immediately. (The Run selection by default is in the tear-off region.)

If you have command-line arguments, choose the Run (args) selection
from the Execute menu. A dialog box is displayed, in which you can spec-
ify any command-line arguments for the program; see Figure 11. If you
have more arguments than fit in the input box, they scroll to the left. Click
on the Run button to start execution.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

I

.61

..

~~~~ s~~~~~ e s-------- -- I I g11 I01 11-111.1m ja m u



46-Pr-sm-User's- Guide

Figure 11. The Run (args) dialog box.

From the command window: Issue the run command, including any
arguments to the program on the command line. You can abbreviate the
command to r.

When the program starts executing, the status region displays the message
running.

You can continue to interact with Prism while a program is running, but many
features will be unavailable. Unavailable selections are grayed out in menus. If
you issue a command that cannot be executed while the program is running, it
is queued until the program stops.

... A
3.5.2 Program 1/0

Prism by default creates a new window for a program's I/O. This window per-
sists across multiple executions and program loads, giving you a complete
history of your program's input and output. If you prefer, you can display I/O in
the xterm from which you invoked Prism; see Section 9.3.

3.5.3 Stepping through a Program

You must begin execution by choosing Run or Run (args) (or issuing run from
the command line). If execution stops before the program finishes (for example,
because you have set a breakpoint), you can then step through the program, as
described in this section. To step through the entire program, set a breakpoint at
the first executable line, and then run to it. (See Section 4.3 for information on
setting breakpoints.)

NOTE: If you compiled your CM Fortran program with the - cmprof .le option
instead of -g, a single step may execute several lines of code; this is caused by
the way -cmprofile creates the symbol table information.

/: 

Version 1.2, March 1993
Copyright 0 1993 Thinldng Machines Corporation

46 Prismn User s Guide



'

Chapter 3. Loading and Executing a Program 47

From the menu bar:

* Choose the Step selection from the Execute menu to execute the next line
of the program. (It is by default in the tear-off region.) Step steps into any
functions called on that line.

* Choose the Next selection from the Execute menu to execute the next
statement of the program. (It is also by default in the tear-off region.) Next
steps over any function called in the line, considering the function to be
a single statement.

· Choose the Stepout selection from the Execute menu to execute the cur-
rent function, then return to its caller.

The execution pointer moves to indicate the next line to be executed.

From the command window: Issue the step, next, or stepout command
from the command line to perform the same action as the equivalent menu-bar
selection; return is a synonym for stepout. In addition, you can specify the
number of lines to be executed as an argument to step and next, and you can
specify as an argument to stepout the number of levels of the call stack that you
want to step out.

The stepi and nexti commands are also available for stepping by machine
instruction. The address and instruction are displayed in the command window.

If execution takes considerable time - for example, because Next calls a long-
running function - the status changes to running. You can use Prism, but
many commands will be unavailable. Unavailable selections are grayed out in
menus.

3.5.4 Interrupting and Continuing Execution

To interrupt execution, choose Interrupt from the Execute menu or type Ctrl-c.
The status changes to stopped, and the source window updates to show the point
'at which execution stopped.

To continue execution after a program has been interrupted, choose Continue
from the Execute menu, or issue the coant command from the command line.
(Or you can step through the program, as described above.)

Continue and Interrupt are available by default in the tear-off region.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation



48 Prism UserIs Gu-de

3.5.5 Status Messages

Prism displays the status messages listed in Table 1 before, during, and after the
execution of a program.

Table 1. Status messages.

Message

initial
loading
not started

stopped
terminated

Displayed when:

Prism starts up without a program loaded.
Prism is loading a program.
A program is loaded but not yet started.
A program is running.
A program has stopped at a breakpoint or signal.
A program has run to completion and the process has
gone away.

3.6 Choosing the Current File and Function

Prism uses the concepts of currentfile and currentfuncion.

The current file is the source file currently displayed in the source window. The
current function is the function or procedure displayed in the source window.
You might change the current file or function if, for example, you want to set a
breakpoint in a file that is not currently displayed in the source window, and you
don't know the line number at which to set the breakpoint.

In addition, changing the current file and current function changes the scope used
by Prism for commands that refer to line numbers without specifying a file, as
well as the scope used by Prism in identifying variables; see Section 2.9.1 for a
discussion of how Prism identifies variables. The scope pointer (-) in the line-
number region moves to the current file or current function to indicate the
beginning of the new scope.

To change the current file:

Version 1.2, March 1993
Copyright C 1993 Thiing Machines Corporation

48 Prism User k Guide



Chap'ter,. Lodn n*xeuigaPorm 9")

From the menu bar: Choose the File selection from the File menu. A
window is displayed, listing in alphabetical order the source files that
make up the loaded program. Click on one, and it appears in the Selection
box; click on OK, and the source window updates to display the file. Or
simply double-click, rapidly, on the source file. You can also edit the file-
name in the Selection box.

NOTE: The File window displays only files compiled with the -g switch.

Source Fliles
fles.fcm
update.fem
umpcm.fcm
uxes.fcm
pdate.fcm
ridgen.fcm
npuLt.fcm
g.s

bump.fcm

SO Helpon

IE I·· celp I

Figure 12. The File window.

From the command window: Issue the file command, with the name
of a file as its argument. The source window updates to display the file.

To change the current function or procedure:

From the menu bar: Choose the Func selection from the File menu. A
window is displayed, listing the functions in the program in alphabetical
order. (CM Fortran procedure names are converted to all lowercase.) Click
on one, and it appears in the Selection box; click on OK, and the source
window updates to display the function. Or simply double-click on the
function name in the list. You can also edit the function name in the Selec-
tion box.

By default, the Func window displays only functions in files compiled
with the -g switch. To display all functions in the program, click on the
Select All Functions button. The button then changes to Show -g Func-
tions; click on it to return to displaying only the -g functions.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 3. Loading and Executing a Program 49



0 Pr.......User.......G...de. ................... _ .......

* From the command window: Issue the func command with the name
of a function or subroutine as its argument. The source window updates
to display the function.

* From the source window: Select the name of the function in the source
window by dragging the mouse over it while pressing the Shift key. When
you let go of the mouse button, the source window is updated to display
the definition of this function. NOTE: Do not include the arguments with
the function, just its name.

Note that if the function you choose is in a different source file from the current
file, changing to this function also has the effect of changing the current file.

3.7 Creating a Directory List for Source Files

If you have moved a source file, or if for some other reason Prism can't find it,
you can explicitly add its directory to Prism's search path.

From the menu bar: Choose the Use selection from the File menu. This
displays a dialog box, as shown in Figure 13. To add a directory, type its
pathname in the Directory box, then click on Add. To remove a directory,
click on it in the directory list; its pathname appears in the Directory box;
then click on Remove.

pro/sde/test77

Directory 

11dd" IRv _ cl HelpI

Figure 13. The Use dialog box.

Version 1.2, March 1993
Copyright o 1993 Thinking Machines Corporation

50 Prism User' Guide



r,

Chapter 3. Loading and Executing a Program 51

From the command window: Issue the use command on the command
line. Specify a directory as an argument; the directory is added to the front
of the search path. Issue use with no arguments to display the list of direc-
tories to be searched.

NOTE: No matter what the contents of your directory list is, Prism searches for
the source file first in the directory in which the program was compiled.

., 

Ott 7X

Version 1.2 March 1993
Copyright 0 1993 Thinking Machines Corporation



i



Chapter 4

Debugging a Program

This chapter discusses how to perform certain basic kinds of debugging in Prism.
It also describes how to use events to control the execution of a program.

To learn:

* What events are, see Section 4.1, below.

* How to use the event table, see Section 4.2.

pI P How to set breakpoints, see Section 4.3.

* How to trace program execution, see Section 4.4.

* How to display and move through the call stack, see Section 4.5.

* How to examine the contents of memory and registers, see Section 4.6.

* How to obtain an interface to pndbx to do node-level debugging on a
CM-5, see Section 4.7.

4.1 Overview of Events

A typical approach to debugging is to stop the execution of a program at different
points so that you can perform various actions - for example, check the values
of variables. You stop execution by setting a breakpoint. If you perform a trace,
execution stops, then automatically continues.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation 53



5 4 - - - - - - -- ri s m U- G

Breakpoints and traces are events. You can specify before the execution of a pro-
gram begins what events are to take place during execution. When an event
occurs:

· The execution pointer moves to the current execution point.

* A message is printed in the command window.

· If you specified that an action was to accompany the event (for example,
the printing of a variable's value), it is performed.

* If the event is a trace, execution then continues. If it is a breakpoint, execu-
tion does not resume until you explicitly order it to (for example, by
choosing Continue from the Execute menu).

Prism provides various ways of creating these events - for example, by issuing
commands, or by using the mouse in the source window. Section 4.3 describes
how to create breakpoint events; Section 4.4 describes how to create trace events.
Section 4.2 describes the event table, which provides a unified method for listing,
creating, editing, and deleting events.

You can define events so that they occur:

* When the program reaches a certain point in its execution - for example,
at a specified line or function.

* When the value of a variable changes - for example, you can define an
event that tells Prism to stop the program when z changes value. This kind
of event is sometimes referred to as a watchpoint. It slows execution con-
siderably, since Prism has to check the value of the variable after each

-statement is executed.

· At every line or assembly-language instruction.

* Whenever a program is stopped- for example, you can define an event
that tells Prism to print the value of z whenever the program stops.

These are referred to as triggering conditions.

In addition, you can qualify an event as follows:

* So that it occurs only if a specified condition is met - for example, you
can tell Prism to stop at line 25 if x is not equal to 1. Like watchpoints,
this kind of event slows execution.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

54 Prism User ~ Guide



~u1Ch 5

So that it occurs only after its triggering condition has been met a speci-
fied number of times - for example, you can tell Prism to stop the tenth
time that the program reaches the function foo.

You can include one or more Prism commands as actions that are to take place
as part of the event. For example, using Prism commands, you can define an
event that tells Prism to stop at line 25, print the value of x, and do a stack trace.

4.2 Using the Event Table

The event table provides a unified method for controlling the execution of a pro-
gram. Creating an event in any of the ways discussed later in this chapter adds
an event to the list in this table. You can also display the event table and use it
to:

* add new events

· delete existing events

· edit existing events

You display the event table by choosing the Event Table selection from the

Events menu.

This section describes the general process of using the event table.

4.2.1 Description of the Event Table

Figure 14 shows the event table.

The top area of the event table is the event list - a scrollable region in which
events are listed. When you execute the program, Prism uses the events in this
list to control execution. Each event is listed in a format in which you could type
it as a command in the command window. It is prefaced by an ID number
assigned by Prism. For example, in Figure 14, the events have been assigned the
IDs 1 and 2.

Version 1.2, March 1993

Copyright © 1993 Thinking Machines Corporation

Chapter 4 Debugging a Program 55



56-- - - - - - - - - -- - P s r .. I
t I Evet 

event (1) stop n loop
(2) top at "prnmeol.Fcn":35 C print primee on dedicated )

Id Location I Watch

Acons I

Condition I After I
Stop 9 Instruction Silent E

Common New we eplc Delete
Eveits Common Events

buttons Debugging Printing
pc Stop 'oer |[Stop It apcond4 Print 

TraCe ¢loe- I Trac Tr ce cond Di-spl-I

CloseI Hep -I

,event
fields

Figure 14. The event table.

The middle area of the event table is a series of fields that you fill in when editing
or adding an event; only a subset of the fields is relevant to any one event. The
fields are:

* Id. This is an identification number associated with the event. You cannot
edit this field.

* Location. Use this field to specify the location in the program at which
the event is to take place. Use the syntax filename ": linenumber to iden-
tify the source file and the line within this file. If you just specify the line
number, Prism uses the current file. There are also three keywords you can
use in this field:

* Use eachline to specify that the event is to take place at each line
of the program; this is the default.

· Use eachinst to specify that the event is to take place at each assem-
bly-language instruction.

· Use stopped to specify that the event is to take place whenever the
program stops execution.

* Watch. Use this field to specify a variable or expression whose value(s)
are to be watched; the event takes place if the value of the variable or
expression changes. (If the variable is an array or a parallel variable, the

Version 1.2, March 1993
Copyright C) 1993 Thinking Machines Corporation

11,

io I

i(

56 Prism User g Guide

f



Chapter .DggE.ing!!!!~i!!! 7-!--T~:.?.. -...- :!a--::- Proga-- 5 -7 -- -. _-..___..._.:'. - ; -_ '

event takes place if the value of any element changes.) This slows execu-
tion considerably.

* Actions. Use this field to specify the action(s) associated with the event.
The actions can be most Prism commands; separate multiple commands
with semicolons. (The commands that you can't include in the Actions
field are: attach, core, detach, load, return, run, and step.)

* Condition. Use this field to specify a logical condition that must be met
if the event is to take place. The logical condition can be any language
expression that evaluates to true or false. See Section 2.9 for more
information about writing expressions in Prism. Specifying a condition
slows execution considerably, unless you also specify a location at which
the condition is to be checked.

* After. Use this field to specify how many times a triggering condition is
to be met (for example, how often a program location is reached) before
the event is to take place. The event table updates during execution to
show the current count (that is, how many times are left for the triggering
condition to be met before the event is to take place). Once the event takes
place, the count is reset to the original value. The default setting is 1, and
the event takes place each time the condition is met. See Section 4.1 for
a discussion of triggering conditions.

* Stop. Use this field to specify whether or not the event is to halt execution
of the program. Putting a y in this field creates a breakpoint event; putting
an n in this field creates a trace event.

* Instruction. Use this field to specify whether to display a disassembled
assembly-language instruction when the event occurs.

* Silent. Use this field to specify whether or not the event is to cause a mes-
sage to appear in the command window when it occurs.

The buttons beneath these fields are for use in creating and deleting events, and
are described below.

The area headed Common Events contains buttons that provide shortcuts for
creating certain standard events.

Click on Close or press the Esc key to cancel the Event Table window.

Version 1.2. March 1993
Copyright 0 1993 7hinking Machines Corporation

Chapter 4. Debugging a Program 57



58 Prsm----- - U sG d

4.2.2 Adding an Event

You can either add an event from scratch, or you can use the Common Events
buttons to fill in some of the fields for you. You would add an event from scratch
if it weren't similar to any of the categories covered by the Common Events
buttons.

To add an event from scratch:

1. Click on the New button; all values currently in the fields are cleared.

2. Fill in the relevant fields to create the event.

3. Click on the Save button to save the new event; it appears in the event
list.

To use the Common Events buttons to add an event:

1. Click on the button for the event you want to add - for example, print.
This fills in certain fields (for example, it puts print on dedicated in the
Actions field) and highlights the field or fields that you need to fill in
(for example, it highlights the Location field when you click on print, (!

because you have to specify a program location). '

2. Fill in the highlighted field(s). You can also edit other fields, if you like.

3. Click on Save to add the event to the event list.

Most of these Common Events buttons are also available as separate selections
in the Events menu. This lets you add one of these events without having to dis-
play the entire event table. The menu selections, however, prompt you only for
the field(s) you must fill in. You cannot edit other fields.

Individual Common Events buttons are discussed throughout the remainder of
this guide.

You can also create a new event by editing an existing event; see Section 4.2.4.

4.2.3 Deleting an Existing Event

To delete an existing event, using the event table:

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User S Guide58



r

Chapter 4. Debugging a Program 59

1. Click on the line representing the event in the event list, or move to it
with the up and down arrow keys. This causes the components of the
event to be displayed in the appropriate fields beneath the list.

2. Click on the Delete button.

You can also choose the Delete selection from the Events menu to display the
event table. You can then follow the procedure described above.

Deleting a breakpoint at a program location also deletes the B in the line-number
region at that location.

4.2.4 Editing an Existing Event

You can edit an existing event to change it, or to create a new event similar to
it.

To edit an existing event:

1. Click on the line representing the event in the event list, or move to it
with the up and down arrow keys. This causes the components of the
event to be displayed in the appropriate fields beneath the list.

2. Edit these fields. For example, you can change the Location field to
specify a different location in the program.

3. Click on Replace to save the newly edited event in place of the original
version of the event. Click on the Save button to save the new event in
addition to the original version of the event; it is given a new ID and is
added to the end of the event list. Clicking on Save is a quick way of
creating a new event similar to an event you have already created.

4.2.5 Saving Events

Events that you create for a program are deleted when you load another program,
reload the current program, or leave Prism. You can use Prism commands to save
your events to a file, and then execute them from the file rather than individually.
Follow this procedure:

i )

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation



60 Prism User's Guide

1. Issue the show events command, which displays the event list. Redi-
rect the output to a file. For example:

show events primes.events

(See Section 2.7.3 for information on redirecting output.)

2. Edit this file to remove the ID number at the beginning of each event.
This leaves you with a list of Prism commands.

3. Issue the source command when you want to read in and execute the
commands from the file. For example:

source primes.events

4.3 Setting Breakpoints

A breakpoint stops execution of a program when a specific location is reached,
if a variable or expression changes its value, or if a certain condition is met.
Breakpoints are events that Prism uses to control execution of a program. This
section describes the methods available in Prism for setting a breakpoint.

You can set a breakpoint:

* by using the line-number region

* by using the event table and the Events menu

* from the command window, by issuing the command stop or when

You'll probably find it most convenient to use the line-number region for setting
simple breakpoints; however, the other two methods give you greater flexibil-
ity - for example, in setting up a condition under which the breakpoint is to take
place.

In all cases, an event is added to the list in the event table. If you delete the break-
point using any of the methods described in this section, the corresponding event
is deleted from the event list. If you set a breakpoint at a program location, a B
appears next to the line number in the line-number region.

NOTE: If you compiled your CM Fortran program with the -cmprofile option
instead of -g, you may be unable to set breakpoints at certain lines.

Version 1.2, March 1993

Copyright © 1993 Thinking Machines Corporation

Prism User $ Guide60



Chapter 4. Debugging a Program 61

4.3.1 Using the Line-Number Region

To use the line-number region to set a breakpoint, the line at which you want to
stop execution must appear in the source window. If it doesn't, you can scroll
through the source window (if the line is in the current file), or use the File or
Func selection from the File menu to display the source file you are interested
in.

To set a breakpoint in the line-number region:

1. Position the mouse pointer to the right of the line numbers; the pointer
turns into a B.

2. Move the pointer next to the line at which you want to stop execution.

3. Left-click the mouse.

A B is displayed, indicating that a breakpoint has been set for that line. A mes-
sage appears in the command window confirming the breakpoint, and an event
is added to the event list.

The source line you choose must contain executable code; if it does not, you
receive a warning in the command window, and no B appears where you clicked.

See Section 2.6.2 for more information on the line-number region.

Deleting Breakpoints via the Line-Number Region

To delete the breakpoint, left-click on the B that represents the breakpoint you
want to delete. The B disappears; a message appears in the command window,
confirming the deletion.

What Happens in a Split Source Window

As described in Section 2.6.1, you can split the source window to display source
code and the corresponding assembly code, or (if you are using CMAX) CM For-
tran code and the corresponding Fortran 77 code.

You can set a breakpoint in either pane of the split source window. The B appears
in the line-number region of both panes, unless you set the breakpoint at an
assembly code line for which there is no corresponding source line.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation



62 Prism User? Guid

Deleting a breakpoint from one pane of the split source window deletes it from
the other pane as well.

4.3.2 Using the Event Table and the Events Menu

To set a breakpoint, choose the Stop <ioc> or Stop <var> selection from the
Events menu. These choices are also available as Common Events buttons
within the event table itself; see Section 4.2.2.

* Stop <Boc> prompts for a location at which to stop the program. You can
also specify a function or procedure; the program stops at the first line of
the function or procedure.

Stop at location

Location I

OK Cancel| Help

Figure 15. The Stop <loc> dialog box.

* Stop <var> prompts for a variable name. The program stops when the
variable's value changes. The variable can be an array, array section, or a
parallel variable, in which case execution stops any time any element of
the array or variable changes. This slows execution considerably.

In addition, Stop <cond> is available as a Common Events button. It prompts
for a condition, which can be any expression that evaluates to true or false; see
Section 2.9 for more information on expressions. The program stops when the
condition is met. This slows execution considerably.

You can also use the event table to create combinations of these breakpoints: for
example, you can create a breakpoint that stops at a location if a condition is met.
In addition, you can use the Actions field of the event table to specify the Prism
commands that are to be executed when execution stops.

Version 1.2, March 1993

Copyright ©( 1993 Thinking Machines Corporation

Prism User s Guide62

i



Chapter 4. Debugging a Program 63

Deleting Breakpoints via the Event Table

To delete a breakpoint, choose the Delete selection from the Events menu, or use
the Delete button in the event table itself. See Section 4.2.3.

4.3.3 Using Commands

Issue the command stop (or when, which is an alias for stop) from the com-
mand line to set a breakpoint. The syntax of the stop command is also used by
the stopi, trace, and tracei commands, which are discussed below. The
general syntax for all the commands is:

command [variable I at line I n func] [it expr] [icmd; cmd...]}] [after n]

where:

command as mentioned above, can be stop, stopi, when,
trace, or tracei.

variable is the name of a variable. The command is executed (in
other words, the event takes place) if the value of the
variable changes. If the variable is an array, an array
section, or a parallel variable, the command is executed
if the value of any element changes. This form of the
command slows execution considerably. You cannot
specify both a variable and a program location.

line specifies the line number where the stop or trace is to be
executed. If the line is not in the current file, use the for-
mat:

at file-name" line-number

fiunc is the name of the function or procedure in which the
stop or trace is to be executed.

expr is any language expression that evaluates to true or
false. This argument specifies the logical condition, if
any, under which the stop or trace is to be executed. For
example:

if a .GT. 10

-) .

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

i



64.... Pr----User.................. . .. Gu_~_:IIde

This form of the command slows execution consider-
ably, unless you combine it with the at line syntax. See
Section 2.9 for more information on writing expressions
in Prism.

cmd is any Prism command (except attach, core, detach,
load, return, run, and step). This argument speci-
fies the actions, if any, that are to accompany the
execution of the stop or trace. For example, print a)
prints the value of a. If you include multiple commands,
separate them with semicolons.

n is an integer that specifies how many times a triggering
condition is to be reached before the stop or trace is
executed: see Section 4.1 for a discussion of trieeerine
conditions. This is referred to as an after count. The
default is 1. Once the stop or trace is executed, the count
is reset to its original value. Note that if there is both a
condition and an after count, the condition is checked
first. 

The first option listed (specifying the location or the name of the variable) must
come first on the command line; the other options, if you include them, can be
in anv rwAr

For the when command, you can use the keyword stopped to specify that the
actions are to occur whenever the program stops execution.

When you issue the command, an event is added to the event list. If the command
sets atbreakpoint at a program location, a B appears in the line-number region
next to the location.

Examples

stop in foo (print a) after 10

Stop execution the tenth time in function foo and print a.

stop at bar":17 if a -- 0

Stop at line 17 of file bar if a is equal to 0.

stop a

(

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

.I

64 Prism User k Guide



VT

Chapter 4. Debugging a Program

Stop whenever a changes.

stop if a .eq. 5 after 3

Stop the third time a equals 5.

when stopped {print a; where)

Every time the program stops execution, print a and do a stack trace.

For Machine Instructions

To set a breakpoint at a front-end or partition-manager machine instruction, issue
the stopi command, using the syntax described above, and specifying a
machine address. For example,

stopi at OxlOOO

stops execution at address 1000 (hex).

The history region displays the address and the machine instruction. The source
pointer moves to the source line being executed.

Deleting Breakpoints via the Command Window

To delete a breakpoint via the command window, first issue the show events
command. This prints out the event list. Each event has an ID number associated
with it.

To delete one or more of these events, issue the delete command, listing the
ID numbers of the events you want to delete; separate multiple IDs with one or
more blank spaces. For example,

delete 1 3

deletes the events with IDs 1 and 3. Use the argument all to delete all existing
events.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

65

)

3i�c�i�



66 Prism Useri Guide

4.4 Tracing Program Execution

You can trace program execution by using the event table or Events menu, or by
issuing commands. All methods add an event to the event table. As described
earlier, tracing is essentially the same as setting a breakpoint, except that execu-
tion continues automatically after the breakpoint is reached. When tracing source
lines, Prism steps into procedures if they were compiled with the -g option;
otherwise it steps over them as if it had issued a next command. (For CM For-
tran programs, it steps into procedures unless they are in files compiled with the
-nodebug option.)

4.4.1 Using the Event Table and the Events Menu

To trace program execution, choose the Trace, Trace <loc>, or Trace <var>
selection from the Events menu. These choices are also available as Common
Events buttons within the event table itself.

· Trace displays source lines in the command window before they are
executed.

* Trace <loc> prompts for a source line. Prism displays a message immedi-
ately prior to the execution of this source line.

* Trace <var> prompts for a variable name. A message is printed when the
variable's value changes. The variable can be an array, an array section,
or a parallel variable, in which case a message is printed any time any
element changes. This slows execution considerably.

In addition, Trace <cond> is available as a Common Events button. It prompts
for a condition, which can be any expression that evaluates to true or false; see
Section 2.9 for more information on writing expressions. The program displays
a message when the condition is met. This also slows execution considerably.

For variations of these traces, you can create your own event in the event table.
You can also use the Actions field to specify Prism commands that are to be
executed along with the trace.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

66 Prism User s Guide



Chapter 4. Debugging a Program 67
~~*·~~~~R "- ~ -" · .".... , .. ,~

Deleting Traces via the Event Table

To delete a trace, choose the Delete selection from the Events menu, or use the
Delete button in the event table itself. See Section 4.2.3.

4.4.2 Using Commands

Issue the trace command from the command line to trace program execution.
Issuing trace with no arguments causes each source line in the program to be
displayed in the command window before it is executed.

The trace command uses the same syntax as the stop command; see Section
4.3.3. For example,

trace print a)

traces and prints a on every source line.

trace at 17 if a .GT. 10

traces line 17 if a is greater than 10.

In addition, Prism interprets

trace line-number

as being the same as

trace at line-number

For Machine Instructions

To trace machine instructions, use the tracei command, specifying a machine
address. When tracing machine instructions, Prism follows all procedure calls
down. The tracei command has the same syntax as the stop command; see
Section 4.3.3.

The history region displays the address and the machine instruction. The execu-
tion pointer moves to the next source line to be executed.

)

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

T,

t



68- Pr--m-----' iG ide

Deleting Traces via the Command Window

To delete a trace, use the show events command to obtain the ID associated
with the trace, then issue the delete command with the ID as its argument. See
Section 4.3.3.

4.5 Displaying and Moving through the Call Stack

The call stack is the list of procedures and functions currently active in a pro-
gram. Prism provides you with methods for examining the contents of the call
stack.

4.5.1 Displaying the Call Stack

From the menu bar: Choose the Where selection from the Debug menu. The
Where window is displayed; see Figure 16. The window contains the call stack
it is updated automatically when execution stops or when you issue commands
that change the stack.

ecursel(x - i4. y - zo2, z - 14i line zU In -recursel.c
rcurse(x - 194. y - 20.2 z - 194) line 10 In 'recurse.
recurse(x - 195. y - 205, z - 195 line 12 In recurse.c
recurse(x - 196. y - 204 z - 19) line 8 In 'recurse4.c
recurse(x - 197. y - 203, z - 197) line 2 In recurse3.e
recurse(x - 19. y - 202 z - 198) line 8 In 'recurse2.c
ecursel(x - 198. y - 201, z - )18 line 20 In recursel.c
recurseo(x - 200. y -200. z -200 line 10 In recurse.c
man() line 16 In recurse.c

!Cncel I I Help I

Figure 16. The Where window.

('

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

I

( I
% !

I

('

I

68 Prism User k Guide

i

i



Chapter 4. Debugging a Program 69

From the command window: Issue the where command on the command line.
If you include a number, it specifies how many active procedures are to be dis-
played; otherwise, all active procedures are displayed in the history region.

Note for CM Fortran users: When a CM Fortran program starts up on a CM-2
or CM-200, the operating system calls a runtime routine named main. This rou-
tine does some initialization, and then calls MaI, which is the name of your CM
Pnrtran main mrnoram Prinm Ainlau thie mr 4 i ;itli7atirn mntin a the first

routine in the call stack. On the CM-5, the call to main is preceded by a call to
a routine named cMTs -calaraain.

4.5.2 Moving through the Call Stack

Moving up through the call stack means heading toward the main procedure.
Moving down through the call stack means heading toward the current stopping
point in the program.

Moving through the call stack changes the current function and repositions the
source window at this function. It also affects the scope that Prism uses for inter-
preting the names of variables you specify in expressions and commands.

Prism provides these methods for moving through the call stack:

From the menu bar: Choose Up or Down from the Debug menu. Up moves
up one level in the call stack; Down moves down one level. These selections are
available by default in the tear-off region.

From the command window: Issue the up command on the command line to
move up one level. If you specify an integer as an argument, you move up that
number of levels. Issue the down command to move down one level; specifying
an integer moves down that number of levels.

From the Where window: If the Where window is displayed, clicking on a
function in it changes the stack level to make that function current.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

k!'



"70- ------- Pr...ism:-- User I II G"11 ud11_

4.6 Examining the Contents of Memory
and Registers

You can issue commands in the command window to display the contents of
memory addresses and registers.

4.6.1 Displaying Memory

To display the contents of an address, specify the address on the command line,
followed by a slash (). For example:

oxlOOOO/

If you specify the address as a period, Prism displays the contents of the memory
address following the one printed most recently.

Specify a symbolic address by preceding the name with an &. For example,

fex/

prints the contents of memory for variable z. The Prism output, for example,
might be:

0x000237f8: 0x3f800000

The address you specify can be an expression made up of other addresses and the
operators +, -, and indirection (unary *). For example,

Ox000+100/

prints the contents of the location 100 addresses above address OxlOO0.

After the slash you can specify how memory is to be displayed. These formats
are supported:

d print a short word in decimal
D- print a long word in decimal
o print a short word in octal
O print a long word in octal
x print a short word in hexadecimal
X print a long word in hexadecimal
b print a byte in octal
c print a byte as a character

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

70 Prism User k Guide



T

Chapter 4. Debugging a Program 71

s print a string of characters terminated by a null byte
f print a single-precision real number
F print a double-precision real number
i print the machine instruction

The initial format is x. If you omit the format in your command, you get either
x (if you haven't previously specified a format), or the previous format you spe-
cified.

You can print the contents of multiple addresses by specifying a number after the
slash (and before the format). For example,

Ox1000/8X

displays the contents of eight memory locations starting at address 0xl000. Con-
tents are displayed as hexadecimal long words.

4.6.2 Displaying the Contents of Registers

You can examine the contents of registers in the same way that you examine the
contents of memory. Specify a register by preceding its name with a dollar sign.
For example,

f o/

prints the contents of the fO register.

Register names for a SPARC are:

$pc program counter
$np next program counter
$fsr floating status register
$fq floating queue
Swim window invalid mask
$tbr trap base register

Sg-S$g7 global registers
$iO-$i7 input registers
$10-$17 local registers
$oO-So7 output registers
Ssp synonym for $o6
Sfp synonym for $i6

Version 1.2, March 1993

Copyright 0D 1993 Thinking Machines Corporation



72 rim Uers Gid

SfO-$f31

Sy

floating-point registers
Y register

4.7 Using pndbx on a CM-5

For CM-5 users, Prism provides an interface to the node-level debugger pndbx.

To start pndbx, choose PN Debug from the Utilities menu (this selection
appears only if you are running Prism from a CM-5 partition manager). The
toggle box next to PN Debug is filled in, indicating that node-level debugging
is turned on. If a program is running, Prism starts up pndbx in a separate win-
dow; if a program isn't running, a message is displayed in the command window
informing you that pndbx will start up the next time you run a program. The
interface to pndbx will be created each time you run a program until you choose
PN Debug again to turn it off.

For information on using pndbx, see the CMMD User Guide.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

i

I
i

A

i
i

i
i

I

I

i

i

i
i
i
ii

i

i

i

i

i

i
I

i

i

i
I
I

72 Prism User a Guide
i
i
i
t

I,

(I,.� I
i

I
II

ii

t
I



T

Chapter 5

Visualizing Data

This chapter describes how to examine the values of variables and expressions
in your program. This is referred to as visualizing data. In addition, it describes
how to find out the type of a variable and change its values.

Section 5.1 is an overview of visualizing data. To learn:

· How to choose the variable or expression whose values are to be visu-
alized, see Section 5.2.

How to work with graphical visualizers, see Section 5.3.

* How to visualize structures and pointers, see Section 5.4.

· How to print the type of a variable, see Section 5.5.

* How to change the values of a variable, see Section 5.6.

· How to change the radix of data, see Section 5.7.

5.1 Overview

You can visualize either variables (including arrays, structures, pointers, etc.) or

expressions; see Section 2.9 for information on writing expressions in Prism. The
data can reside on either the front end or the CM (for a CM-2 or CM-200), or on
the partition manager or the nodes (for a CM-5). In addition, you can provide a
context, so that Prism handles the values of data elements differently, depending
on whether they meet the condition you specify.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation 73



74Hils PrNism UIIserI--'s----- Guide --------- ----_ _- ----

5.1.1 Printing and Displaying

Prism provides two general methods for visualizing data: printing and
displaying.

Printing data shows the value(s) of the data at a specified point during
program execution.

- ULspuymng uUaa UUmse ls VLUUC,) tUW C uJpaau cvery uLUV u lprU4gram
stops execution.

Printing or displaying to the history region of the command window prints out
the numeric or character values of the data in standard fashion.

Printing or displaying to a graphical window creates a visualizer, which provides
you with various options as to how to represent the data.

5.1.2 Methods

Prism provides these methods for choosing what to print or display: (

* by choosing the Print or Display selection from the Debug menu in the
menu bar (see Section 5.2.1)

* by selecting text within the source window (see Section 5.2.2)

* by adding events to the event table (see Section 5.2.3)

* by issuing commands from the command window (see Section 5.2.4)

In all cases, choosing Display adds an event to the event list, since displaying
data requires an action to update the values each time the program is stopped.
Note that, since Display updates automatically, the only way to keep an
unwanted display window from reappearing is to delete the corresponding dis-
play event.

You create print events only via the event table and the Events menu.

5.1.3 Limitations

Note these limitations on visualizing data:

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User Guide74



Chapter 5. 4sualizing Data 75

You occasionally cannot print or display a CM-resident variable or array
after interrupting execution; you receive an error message if you try. If this
occurs, you must do a Step or Next after the interrupt before attempting
to print.

You cannot print or display any variables after a program finishes
_ ^.+;~i CAUL;UUUU.

* Visualizers do not deal correctly with Fortran adjustable arrays. The size
is determined when you create a visualizer for such an array. Subsequent
updates to the visualizer will continue to use this same information, even
though the size of the array may have changed since the last update. This
will result in incorrect values in the visualizer. Printing or displaying val-
ues of an adjustable array in the command window or to a new window
will work, however.

* PDa.pnll *1e 'r11tt m t A*F!11 n L'a th , a er a AMP Dae ,lhl , lgr AhP.1 VA. r- r- 
can print or display its values. (See Section 2.8.)

5.2 Choosing the Data to Visualize

This section describes the methods Prism provides for printing and displaying
data.

5.2.1 Printing and Displaying from the Debug Menu

To print a variable or expression at the current program location, choose Print
from the Debug menu. It is also by default in the tear-off region.

To display a variable or expression every time execution stops, starting at the
current program location, choose Display from the Debug menu.

When you choose Print or Display, a dialog box appears; Figure 17 shows an
example of the Print dialog box.

Version 1.2, March 1993
Copyright 0 1993 Thining Machines Corporation

· \�-�I· IlIIII · I···I···L�· II�--····� L·IT� lIIIiIIIII �· ·� ·111·11··�1 1·1·1�11·� ·�·LI·L� ·rllU

FI

i

I

I
I



76;i rsm .U r Gi............-----d-e------ --- ------ .. . - -- ....---

Figure 17. The Print dialog box from the Debug menu.

In the Expression box, enter the variable or expression whose value(s) you want
printed. Text selected in the source window appears as the default; you can edit
this text.

The dialog boxes also offer choices as to the window in which the values are to
appear:

* You can specify that the values are to be printed or displayed in a standard
window dedicated to the specified expression. The first time you print or
display the data, Prism creates this window. If you print data, and subse-
quently print it again, this standard window is updated. This is the default
choice for both Print and Display.

* You can create a separate snapshot window for printing or displaying val-
ues. This is useful if you want to compare values between windows.

* You can print out the values in the command window.

Click on Print or Display to print the values of the specified expression at the
current program location.

Click on Cancel or press the Esc key to close the window without printing or
displaying.

5.2.2 Printing and Displaying from the Source Window

To print and display from the source window:

1. Select the variable or expression by dragging over it with the mouse or
double-clicking on it.

2. Right-click the mouse to display a popup menu.

Version 1.2, March 1993
Copyright o 1993 Thinking Machincs Corporation

Expression Ipreii I * Update dedicated window ( any

0 Create snapshot window.

([I ~]C ncel | Help O Display In command window.

(

(

76 Prism User Guide



ChXteS. J sualig- Daa 77N--

3. Click on Print in this menu to display a snapshot visualizer containing
the value(s) of the selected variable or expression at that point in the pro-
gram's execution. Click on Display to display a visualizer that is
automatically updated whenever execution stops.

To print without bothering to display the menu, press the Shift key while
selecting the variable or expression

NOTE: Prism prints the correct variable when you choose it in this way, even if
the scope pointer sets a scope that contains another variable of the same name.

5.2.3 Printing and Displaying from the Event Table
and the Events Menu

You can use the Events menu or the event table to define a print or display event
that is to take place at a specified location in the program.

From the Events Menu

The Print dialog box (see Figure 18) prompts for the variable or expression
whose value(s) are to be printed, the program location at which the printing is
to take place, and the name of the window in which the value(s) are to be
displayed.

Print

Location I

Expression I l

Window dedicated 

[IOK [Caed| Help.

Figure 18. The Print dialog box from the Events menu.

Window names are dedicated, snapshot, and command; you can also make up
your own name. The default is dedicated. See Section 2.7.3 for a discussion of
these names.

)

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

)

Chapter 5 laualizing Data 77



I .

When you have filled in the fields, click on OK; the event is added to the event
table. When the location is reached in the program, the value(s) of the expression
or variable are printed.

The Display dialog box is similar, but it does not prompt for a location; the dis-
play visualizer will update every time the program stops execution.

From the Event Table

Click on Print or Display in the Common Events buttons to create an event that
will print or display data.

If you click on Print, the Location and Action fields are highlighted. Put a pro-
gram location in the Location field. Complete the print event in the Actions
field, specifying the variable or expression, and the window in which it is to be
p aJ.L . AV %FAULLA.

print d2 on dedicated

If you click on Display, the Location field displays stopped, and the Actions
field displays print on dedicated. Complete the description of the print event,
as described above. The variable or expression you specify is then displayed
whenever the program stops execution.

5.2.4 Printing and Displaying from the Command Window

Use the print command to print the value(s) of a variable or expression from
the command window. Use the display command to display the value(s). The
display command prints the value(s) of the variable or expression immedi-
ately, and creates a display event so that the values are updated automatically
whenever the program stops.

The commands have this format:

[where (expression) command variable[, variable ... ]

The optional where (expression) syntax sets the context for printing the vari-
able or expression; see below.

In the syntax, command is either print or display, and variable is the variable
or expression to be displayed or printed.

Version 1.2, March 1993

Copyright O 1993 Thinking Machins Corporation

78 Prism User k Guide

-A-*-A l~~rmrln



Redirection of output to a window via the on window syntax works slightly dif-
ferently for display and print from the way it works for other commands; see
Section 2.7.3 for a discussion of redirection. Separate windows are created for
each variable or expression that you print or display. Thus, the commands

display on dedicated
display y on dedicated

create two windows, each of which is updated separately.

r- _ . · __ .r C _ _ * _ .· _ ._ r _ _____ sj§ --A

io print or wrsplay me contents or a register, precede me register's name with a
dollar sign. For example,

print $pc

prints the program counter register. See Section 4.6.2 for a complete list of regis-
ter names.

Setting the Context

You can precede the print or display command with a where statement that
can make elements of a variable or array inactive. Inactive elements are not
printed in the command window; Section 5.3.4 describes how they are treated in
visualizers. Making elements inactive is referred to as setting the context.

To set the context, follow the where keyword with an expression in parentheses.
The expression must evaluate to true or false for every element of the variable
or array being printed. In CM Fortran, the expression can operate on a conform-
able array. In C*, it can operate on a parallel variable of the same shape as the
variable being printed.

For example,

where (i .gt. 0) print i

prints (in the command window) only the values of i that are greater than 0.

In a C* program where pvarl and pvar2 are of the same shape,

where (pvar > 0) display pvar2 on dedicated

displays as active only the elements of pvar2 for which the value of the corre-
sponding element of pvarl is greater than 0.

You can use certain Fortran intrinsics in the where statement. For example,

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 5. Vualing Data 79

1'.AI

44 I



Prism User f Guide

where (a .eq. maxval(a)) print a

prints the element of a that has the largest value. (Ihis is equivalent to the mAX-
LOC intrinsic function.) See Section 2.9 for more information on writing
expressions in Prism.

Note that setting the context affects only the rinting or displavine of the vari-
_ ___ -- w -- - --

able. It does not affect the actual context of the program as it executes.

5.3 Working with Visualizers

The window that contains the data being printed or displayed is called a visual-
izer. Figure 19 shows a visualizer for a 3-dimensional array.

Z31 Zz 223 224 225

231 232 233 234 235
241 242 243 244 245
251 252 253 254 255
261 262 263 264 265

A 272 273 274 275
282 283 284 285

291 292 293 294 295
301 302 303 304 305
311 312 313 314 315
321 322 323 324 325
331 332 333 334 335
341 342 343 344 345
351 352 353 354 355
361 362 363 364 365
371 372. 373 374 375
381 382 383 384 385
391 392 393 394 395
401 402 403 404 405

~ data
navigator 

Figme 19. A visualize for a 3-dimensional array.

The visualizer consists of two parts: the data navigator and the display window.
There are also File and Options pulldown menus.

The data navigator shows which portion of the data is being displayed, and pro-
vides a quick method for moving through the data. The data navigator looks
different depending on the number of dimensions in the data. It is described in
more detail in Section 5.3.1.

Version 1.2, March 1993
Copyright C 1993 Thinking Machines Corporation

80

menus--

display
window

I
I

I
i,

i

l



The display window is the main part of the visualizer. It shows the data, using
a representation that you can choose from the Options menu. The default is text:
that is, the data is displayed as numbers or characters. Figure 19 is a text visual-
izer. The display window is described in more detail in Section 5.3.2.

The File menu lets you save, update, or cancel the visualizer, see Section 5.3.3
for more information. The Ontions menu. among other things. lets you change
the way values are represented; see Section 5.3.4.

5.3.1 Using the Data Navigator in a Visualizer

The data navigator helps you move through the data being visualized. It has dif-
ferent appearances, depending on the number of dimensions in your data. If your
data is a single scalar value, there is no data navigator.

For 1-dimensional arrays and parallel variables, the data navigator is the scroll
bar to the right of the data. The number to the right of the buttons for the File
and Options menus indicates the coordinate of the first element that is displayed.
The elevator in the scroll bar indicates the position of the displayed data relative
to the entire data set.

For 2-dimensional data, the data navigator is a rectangle in the shape of the data,
with the axes numbered. The white box inside the rectangle indicates the position
of the displayed data relative to the entire data set. You can either drag the box
or click at a spot in the rectangle. The box moves to that spot, and the data dis-
played in the display window changes.

For 3-dimensional data, the data navigator consists of a rectangle and a slider,
each of which you can operate independently. The value to the right of the slider
indicates the coordinate of the third dimension. Changing the position of the bar
along the slider changes which 2-dimensional plane is displayed out of the
3-dimensional data.

For data with more than three dimensions, the data navigator adds a slider for
each additional dimension.

Changing the Axes

You can change the way the visualizer lays out your data by changing the num-
bers that label the axes. Click in the box surrounding the number; it is

Version 1.2, March 1993

Copyright 0 1993 Thinking Machines Corporation

Chapter 5. Vinalizing Data 81

1.

4·



highlighted, and an I-beam appears. You can then type in the new number of the
axis; you don't have to delete the old number. The other axis number automati-
cally changes; for example, if you change axis 1 to 2, axis 2 automatically
changes to become axis 1.

5.3.2 Using the Display Window in a Visualizer

The display window shows the data being visualized.

In addition to using the data navigator to move through the data, you can drag
the data itself relative to the display window by holding down the left mouse
button; this provides finer control over the display of the data.

To find out the coordinates and value of a specific data element, click on it while
pressing the Shift key. Its coordinates are displayed in parentheses, and its value
is displayed beneath them. If you have set a context for the visualizer, you also
see whether the element is active or inactive (see Section 5.3.4). Drag the mouse

with me shrnt Kev eDresse. and You see me coordinates. value. and context or
each data element over which the mouse pointer passes. 

You can resize the visualizer to display more (or less) data either horizontally or
vertically.

5.3.3 Using the File Menu

Click on File to pull down the File menu.

Choose Update from this menu to update the display window for this variable,
using the value(s) at the current program location. See Section 5.3.5 for more
information on updating a visualizer.

Choose Snapshot to create a copy of the visualizer, which you can use to
compare with later updates.

Choose Close to cancel the visualizer.

Version 1.2 March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User Guide82

I
-.0



T

Chapter 5. isualizing Data 83

5.3.4 Using the Options Menu

Click on Options to pull down the Options menu. See Figure 20.

i. o pnti Io 
Representation I 

01. 08( Parameters... 13.00000 14. 00000
21.00 _- 23.00000 24.00000
1.00 Ruler 33.00000 34.00000
41 S t s00( .... 43.00000 44.00000

53.00000 54.00000
1.00 Set ContexL.. 63.00000 64.00000
1.00 73.00000 74.00000
1. 00 Help 83.00000 84.00000
1.00 luu v. uuuuu 93.00000 94.00000
01.0000 102.0000 103.0000 104.0000

Figure 20. The Options menu in a visualzer.

Choosing the Representation

Choose Representation from the Options menu to display another menu that
gives the choices for how the values are represented in the display window. The
choices are described below. You can control aspects of how these visualizers
appear by changing their parameters, as described later in this section.

* Choose Text to display the values as numbers or letters. This is the default.

* Choose Dither to display the values as a shading from black to white.
Groups of values in a low range are assigned more black pixels; groups
of values in a high range are assigned more white pixels. This has the
effect of displaying the data in various shades of gray. Figure 21 shows a
2-dimensional dither visualizer. The lighter area indicates values that are
higher than values in the surrounding areas; the darker area indicates val-
ues that are lower than surrounding values.

For complex numbers, Prism uses the modulus.

.)

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Hi l i i 'l ' l im l --- ---- ---- ------ ---- ---- --- - --- ---- --- - ----- --- - - - g s 0 1 ---- -- -- - ---- i it a --- ---- "



84-Pr--m-User-s-G- -d-

Figure 21. A dither visualizer.

Choose Threshold to display the values as black or white. By default,
Prism uses the mean of the values as the threshold; values less than or
equal to the mean are black, and values greater than the mean are white.
Figure 22 shows a threshold representation of a 3-dimensional array.

For complex numbers, Prism uses the modulus.

Figure 22. A threshold visualizer.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

(

(

3I

rism User ~ Guide84

i



Chatr. IiiualiINOiiiiiiiii!i i Data!!--- 85-- !'
O i )

* Choose Colormap (if you are using a color workstation) to display the
values as a range of colors. By default, Prism displays the values as a con-
tinuous spectrum from blue (for the minimum value) to red (for the
maximum value). You can change the colors that Prism uses; see Section
9.3.2.

For complex numbers, Prism uses the modulus.

* Choose Graph to display values as a graph, with the index of each array
element plotted on the horizontal axis and its value on the vertical axis.
A line connects the points plotted on the graph. This representation is par-
ticularly useful for -dimensional data, but can be used for
higher-dimensional data as well; for example, in a 2-dimensional array,
graphs are shown for each separate 1-dimensional slice-vof the 2-dimen-
sional plane.

Figure 23 shows a graph visualizer for a -dimensional array.

Figure 23. A 1-dimensional graph visualizer.

a Choose Surface (if your data has more than one dimension) to render the
3-dimensional contours of a 2-dimensional slice of data In the representa-
tion, the 2-dimensional slice of data is tilted 45 degrees away from the
viewer, with the top edge further from the viewer than the bottom edge.
The data values rise out of this slice. Figure 24 is an example.

Version 1.2, March 1993
Copyriglu 0 1993 Thinking Machines Corporation

Chapter 5. Hsuarliwng Data 85



86~~~~ D ~ ~ ~ ~ ~ ~ ~ !!!-;--- ------ Prism. -......- G- d-- - e--

( l 

Figure 24. A surface visualizer.

NOTE: If there are large values in the top rows of the data, they may be
drawn off the top of the screen. To see these values, flip the axes as
described earlier in this section, so that the top row appears in the left
column.

Choose Vector to display data as vectors. The data must be a Fortran com-
plex or double complex number, or a pair of variables to which the CMPLX
intrinsic function has been applied (see Section 2.9.2). The complex num-
ber is drawn showing both magnitude and direction. The length of the
vector increases with magnitude. There is a minimum vector length of five
pixels, because direction is difficult to see for smaller vectors. By default,
the lengths of all vectors scale linearly with magnitude, varying between
the minimum and maximum vector lengths. Figure 25 shows a vector
visualizer.

Version 1.2, March 1993
Copyright 0 1993 hinnking Machines Corporation

i

I

( I

i

i
I

I

i
i

i
I

i

I
iI

ii

i
t

I

i

i

i

I
i

i
i
i
ij

I

Prism User k Guide86



Chapter 5. Visualizing Data 87

Figure 25. A vector visualizer.

Setting Parameters

Choose Parameters from the Options menu to display a dialog box in which
you can change various defaults that Prism uses in setting up the display window;
see Figure 26. If a parameters is grayed out or missing, it does not apply to the
current representation.

Figure 26. The Visualization Parameters dialog box.

The parameters are:

)

Version 1.2, March 1993
Copyright ) 1993 Thinking Machines Corporation

File 2ptions [ ii
44.&ion 44444444444j ,J.tl =I i~~~~~~~~~~~~~~c:

_1
t444t tt44 rrt44 r 4 ttttttt44444
rrrsrr~lltr / r r I T 7 I / I / I /// /1/ 71/ 

r r o > --X r OP 
rr Ar r sAr r r / / / / o / // //,/////

rrrrrrrr - - - - - - - - - -______

r rr 4 4b ---------------- I--
^_xfisjsss__sj__________________

rI,,,.,zzzzs$S)siX111LL\Lll\Llrrrrrrrrlrrllll111 11111 1~ f
*{ {, # {,,,, { { { Z g I/ ZZ{///////

{{f{{@{{b//trrr(///33////////

S w f SS _ S z RR / / , / , 3 o,/////

t e e tt - w -e t e tJ(ee/JJJJ/JJJK

rrrww________ _a__^___________

t * * .* | . _ . P_ | _ Z C e, I .

CCCCCCCCCCCCCCCCCCCCCC~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~tCCH-C-C~~~~~~~~~~~~~~~~

Visualization Parameters

Field Width 114 |

Precision 17 1

Mininum I 

Maxium I I

Threshold I I

Apply Cancel Help

�Y�3�3y"C,��



* Field Width - Type a value in this box to change the width of the field
that Prism allocates to every data element.

For the text representation, the field width specifies the number of charac-
ters in each column. If a number is too large for the field width you
specify, dots are printed instead of the number.

For dither, threshold, colormap, and vector representations, the field width
specifies how wide (in pixels) the representation of each data element is
to be. By default, dither, threshold, and colormap visualizers are scaled to
fit the display window. Note, however, that for dither visualizers, the gray
shading may be more noticeable with a smaller field width.

For the graph representation, the field width specifies the horizontal spac-
ing between elements.

For the surface representation, it specifies the spacing of elements along
both directions of the plane.

Field Height - For graph and surface representations, changing this
value affects the maximum height (in pixels) to which Prism scales every
data value.

* Precision - Type a value in this box to change the precision with which 
Prism displays real numbers in a text visualizer. The precision must be less
than the field width. By default, Prism prints doubles with 16 significant
digits, and floating-point values with 7 significant digits. You can change
this default by issuing the set command with the $dprecision argu-
ment (for doubles) or $fprecision argument (for floating-point
values). For example,

set $d recision 11

sets the default precision for doubles to 11 significant digits.

* Minimum and Maximum - For colormap representations, use these
variables to specify the minimum and maximum values that Prism is to
use in assigning color values to the data elements. Data elements that have
values below the minimum and above the maximum are assigned default
colors.

For graph, surface, and vector representations, these parameters represent
the bottom and top of the range that is to be represented. Values below the
minimum are shown as the minimum; values above the maximum are
shown as the maximum.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

88 Prism User S Guide



p ii--- ------ . ....................... Data------..-------

By default Prism uses the entire range of values for all these repre-
sentations.

Threshold - For threshold representations, use this variable to specify
the value at which Prism is to change the display from black to white. Data
elements whose values are at or below the threshold are displayed as
black; data elements whose values are above the threshold are displayed
as white. By default, Prism uses the mean of the data as the threshold.

Displaying a Ruler

Choose Ruler from the Options menu to toggle the display of a ruler around the
data in the display window. The ruler is helpful in showing which elements are
being displayed. Figure 27 shows a 3-dimensional threshold visualizer with the
ruler displayed.

In the surface representation, the ruler cannot indicate the coordinates of ele-
ments in the vertical axis, since they change depending on the height of each
element. However, you can press the Shift key and left-click as described above
to display the coordinates and value of an element.

Figure 27. A threshold visualizer with a ruler.

.)

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

89Chapter 5. Vualizing Data



90 Prism-- - - - - - - - - - - -G-- -d-

Displaying Statistics

Choose Statistics from the Options menu to display a window containing statis-
tics and other information about the variable being visualized. The window
contains:

* the name of the variable

* its type and number of dimensions

* the total number of elements the variable contains, and the total number
of active elements, based on the context you set within Prism (see the next
section for a discussion of setting the context)

* the variable's minimum, maximum, and mean; these statistics reflect the
context you set for the visualizer

Figure 28 gives an example of the Statistics window.

Figure 28. Statistics for a visualizer.

For complex numbers, Prism uses the modulus.

Setting the Context

Choose Set Context from the Options menu to display a dialog box in which
you can specify which elements of the variable are to be considered active and
which are to be considered inactive. Active and inactive elements are treated dif-
ferently in visualizers:

* In text, graph, surface, and vector visualizers, inactive elements are grayed
out

Version 1.2, March 1993
Copyright 0 1993 Thining Machines Corporation

(

Ill

array [11[1] of Integer

100 elements (75 active)

Min - 3

Meax- 110

Mean - 73

I
I
i

i

I

i

ii

ji
i
I

i
i
i

I
i

4

Prism User Guide90



ChaptgdrS. ulig at 9- -1--

* In colormap visualizers, inactive elements by default are displayed as
gray. You can change this default; see Section 9.3.2.

· Context has no effect on dither and threshold visualizers.

Figure 29 shows the Set Context dialog box.

|everywhere. 

_Ily [y] Cael L±r Help|

Figure 29. The Set Context dialog box.

By default, all elements of the variable are active; this is the meaning of the
everywhere keyword in the text-entry box. To change this default, you can either
edit the text in the text-entry box directly, or you can click on the Where button
to display a menu. The choices in the menu are everywhere and other.

* Choosing everywhere, as mentioned above, makes all elements active.

* Choose other to erase the current contents of the text-entry box. You can
then enter an expression into the text-entry box.

In the text-entry box, you can enter any valid expression that will evaluate to true
or false for each element of the variable.

The context you specify for printing does not affect the program's context; it just
affects the way the elements of the variable are displayed in the visualizer.

See "Setting the Context" above for more information on context. See Section
2.9 for more information on writing expressions in Prism.

Click on Apply to set the context you specified. Click on Cancel or press the Esc
key to close the dialog box without setting the context.

5.3.5 Updating and Closing the Visualizer

If you created a visualizer by issuing a Display command, it automatically
updates every time the program stops execution.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

)

Chapter 5. V~ualing Data 91



92 Prsm Uer'sGuid

If you created the visualizer by issuing a Print command, its display window is
grayed out when the program resumes execution and the values in the window
are outdated. To update the values, choose Update from the visualizer's File
menu.

To close the visualizer, choose Close from the File menu, or press the Esc key.

5.4 Visualizing Structures

If you print a pointer or a structure (or a structure-valued expression) in a win-
dow, a structure visualizer appears. One exception: C* parallel structures are
displayed in a regular visualizer, because they can't contain pointers.

Figure 30 shows an example of a structure visualizer.

Grah m m m
File Options A Zoom

opwidget = Ox4FbiaO
draw= Ox4dbO0B
ny = Ox4eOdBB
left_x = O
top = 0
totalh = 0

otaL w = 0
win_h = 396
w nw = 607
zoom = 2
win = 15728963
gc = Ox4db470
Font = Ox48deF8
ot = OxO 
urrent = OxO 1
odes = OxO

Figure 30. A structure visualizer.

The structure you specified appears inside a box; this is referred to as a node. The
node shows the fields in the structure and their values. If the structure contains
pointers, small boxes appear next to them; they are referred to as buttons. Left-
click on a node to select it. Use the up and down arrow keys to move between
buttons of a selected node.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

(

Prism User S Guide92



Chapr S

You can perform various actions within a structure visualizer, as described
below.

5.4.1 Expanding Pointers

You can expand scalar pointers in a structure to generate new nodes. (You cannot

expand a pointer to a parallel variable.)

To expand a single pointer:

* With a mouse: Left-click on a button to expand the pointer. For example,
clicking on the button next to the nav field in Figure 30 changes the visu-
alizer as shown in Figure 31.

* From the keyboard: Use the right arrow key to expand and visit the node
pointed to by the current button. If the node is already expanded, pressing
the right arrow key simply visits the node. Use the left arrow key to visit
the parent of a selected node.

towdget = Ox4Fb/aO draw = Ox4dbiBO
draw = Ox4dbOBO gc = 0x41bb20
n = Ox4eOdB8 l top_ = 0
left_x = 0 leftx = 0
top = 0 totalh = 0
totalh = 0 total-w = 0

otalw = 0 inh = 396
in_h = 396 win_w = 607
inw = 607 tabx = 0
zoom = 2 tab._ = 0
in = 15728963 navs = 46
c = Ox4db470 navh = 46
ont = Ox48deF8 pan = Ox167a00
oot = OxO clientddta = Ox4e39f 8
urrent = OxO
odes = OxO

Figure 31. A structure visualizer, with one pointer expanded.

To expand all pointers in a node:

* With the mouse: Double-click or Shift-left-click on the node.

Version 1.2, March 1993

Copyright © 1993 Thinking Machines Corporation

)

Chapter 5. Vwualizing Data 93



94 Prism Users Guide

* From the keyboard: Press the Shift key along with the right arrow key.

· From the Options menu: Click on Expand. The cursor turns into a tar-
get; move the cursor to the node you are interested in and left-click.

To recursively expand all pointers from the selected node on down:

· With the mouse: Triple-click or Control-left-click on the node.

* From the keyboard: Press the Control key and the right arrow key.

* From the Options menu: Click on Expand All. The cursor turns into a
target; move the cursor to the node you are interested in and left-click.

5.4.2 Panning and Zooming

You can left-click and drag through the data navigator or the display window to
pan through the data, just as you can with visualizers; see Sections 5.3.1 and
5.3.2.

You can also "zoom" in and out on the data by left-cicking on the Zoom arrows. 
Click on the down arrow to zoom out and see a bird's-eye view of the structure;
click on the up arrow to get a closeup. Figure 32 shows part of a complicated
structure visualizer in which we have zoomed out.

Figure 32. Zooming out in a structure visualizer.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

i

I

i
I

I

i

i



Ch-aptr. --- at -sgDt

The selected.node is centered in the display window whenever you zoom in or .
out.

5.4.3 Deleting Nodes

To delete a node (except the root node):

· With the mouse: Middle-click on a node (except the root node).

* From the Options menu: Click on Delete. The cursor turns into a target;
move the cursor to the node you want to delete and left-click

Deleting a node also deletes its children (if any).

5.4.4 More about Pointers in Structures

Note the following about pointers in structure visualizers:

· Null pointers - for example, root in Figure 31 - have "ground" sym-
bols next to them.

* If a pointer has previously been expanded, it has an arrow next to its but-
ton; you can't expand the pointer again. (This prevents infinite loops on
circular data structures.)

* A pointer containing a bad address has an X drawn over its button.

5.4.5 Updating and Closing a Structure Visualizer

Left-click on Update in the File menu to update a structure visualizer. When you
do this, the root node is re-read; Prism attempts to expand the same nodes that
are currently expanded. (The same thing happens if you re-print an existing
structure visualizer.)

Left-click on Close in the File menu to close the structure visualizer.

Version 1.2 March 1993
Copyright 0 1993 Thinking Machines Corporaton

e -if
tc 

'

Chapter 5 14sualwzng Data 95



5.4.6 Visualizing Dynamic Arrays and Union Members

You can include special functions in your program to describe data structures to
Prism in more detail than the compiler alone can provide. This allows Prism's
structure visualizer to display the additional information. Specifically, you can
tell Prism:

* which union member of a structure is currently valid

* which pointers in a structure are really dynamically sized arrays

Note these points about the functions discussed in this section:

* Providing these functions is optional. Prism's structure visualizer still
expands structure nodes without them, but the dynamic arrays look like
pointers, and every union member is printed instead of only the currently
valid member.

* You never call these functions directly; rather, Prism calls them as
necessary.

Calling the Functions

You can provide a special function for each C structure type whose definition you
wish to augment. The function has this definition:

int prismdefinename (pointer)

struct name *pointer;

where name is the type name of the structure.

When visiting a node of a structure, the structure visualizer first checks for the
existence of such a function. If the function does not exist, the node is expanded
normally. If the function does exist, it is called with one argument: a pointer to
the specific instance of the structure type being expanded.

Your prism_def ine_name function must call several auxiliary functions,
defined in the Prism run-time library, to augment the structure's definition. These
functions are:

* void prism_struct_init()

Call this at the top of the function.

* int prism struct_return()

Version 1.2, March 1993
Copyright ¢ 1993 Thinking Machines Corporation

Prism User $ Guide96



Chptr. isaizngDta9
:)

The function should end with

return prism_struct_return();

* void prismadd array (char *fieldname,

int nelements)

Call this for each pointer field in the structure that is really a dynamic
array. fieldname is the name of the pointer field of the structure, and
nelements is the current length of the array pointed to by fieldname.

* void prism addunion (char *unionname,

char *union_element)

Call this for each field of a structure that is of type union. union_name
is the name of the member that is a union. union element is the name

of the field in the union that is currently valid.

An Example

This sample program shows the use of these functions.

struct Graph {
int nlines;

float *lines;

int nvertices;

float *vertices;

};

/* length of lines array */

/* length of vertices array */

struct Value {
int type;

union {,

int ival;

float fval;

double dval;
} val;

};

#define INTEGER 0
#define FLOAT 1
#define DOUBLE 2

prism_define_Graph(g)
struct Graph *g;

Version 1.2, March 1993
Copyright ) 1993 Thinking Machines Corporation

)

/* gives type of currently valid

union member */

)

Chapter 5. Wisualizing Data 97



prism_struct_init();

prism add array( "lines", g->nlines);
prism_add_array( "vertices", g->nvertices);

return prism_struct_return();

prism define Value(v)

struct Value *v;

{

prism_struct_init();

if (v->type == INTEGER)

prism_add union( "val", "ival");
else if (v->type == FLOAT)

prism_add_union( "val", "fval");
else if (v->type == DOUBLE)

prism_add_union( "val", "dval");

return prism struct return(); (

The functions prism_define_Graph and prism_define_Value provide
additional information about the structure types Graph and Value, respectively.

5.5 Printing the Type of a Variable

Prism provides several methods for finding out the type of a variable.

From the menu bar: Choose the Whatis selection from the Debug menu. The
Whatis dialog box appears; it prompts for the name of a variable. Click on
Whatis to display the information about the variable in the command window.

From the source window: Select a variable by double-clicking on it or by drag-
ging over it while pressing the left mouse button. Then hold down the right
mouse button; a popup menu appears. Choose Whatis from this menu. Informa-
tion about the variable appears in the command window.

Version 1.2, March 1993
Copyright ) 1993 Thinking Machines Corporation

Prism User 5 Guide98



From the command window: Issue the whatis command from the command
line, specifying the name of the variable as its argument.

5.5.1 What Is Displayed

Prism -displays the information about the variable in the command window. If a
CM Fortran array is CM-resident, that information is included. For example:

whatin primes
(CM based) logical primes (1:999)

5.6 Modifying Data

You can use the assign command to assign new values to a variable or an array.
For example,

assign z - 0

assigns the value 0 to the variable x. You can put anything on the left-hand side

of the statement that can go on the left-hand side in the language you are using -
for example, a variable, a Fortran array section, or a C* left-indexed parallel
variable.

If the left-hand side is a CM Fortran array or array section, the right-hand side
must be a conformable expression. For example, if arrayl and array2 are con-
formable,

assign arrayl - array2 + 2

adds 2 to each element of array2 and assigns the result to arrayl.

Similarly, if the left-hand side is a C* parallel variable, the right-hand side must

be of the same shape. For example, if pI and p2 are parallel variables of the same

shape,

assign p - p2

assigns the value of each element of n2 to the corresvonding element of pD.

ti -

ersion 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 5. Vamulizig Data 99



If the right-hand side does not have the same type as the left-hand side, Prism
performs the proper type coercion.

5.7 Changing the Radix of Data

Use the command value - base to change the radix of a value in Prism. The value
can be a decimal, hexadecimal, or octal number. Precede hexadecimal numbers
with Ox; precede octal numbers with 0 (zero). The base can be D (decimal), X
(hexadecimal), or 0 (octal). Prism prints the converted value in the command
window.

For example, to convert 100 (hex) to decimal, issue this command:

0xl00D

Prism responds:

256

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

100 Prism User s Guide



Chapter 6

Obtaining Performance Data

Prism lets you collect performance data on your C* or CM Fortran program. Col-
lecting and analyzing performance data can help you uncover and correct
bottlenecks that slow down a program.

Section 6.1 is an overview of obtaining performance data in Prism. To learn:

· How to write and compile your program to obtain performance data,
see Section 6.2.

* How to obtain the most accurate performance data, see Section 6.3.

* How to collect performance data, see Section 6.4.

* How to display performance data, see Section 6.5.

* How to interpret performance data, see Section 6.6.

* How to save a file of performance data and reload it into Prism, see
Section 6.7.

6.1 Overview

Prism helps you determine where your C* or CM Fortran program is spending
its time, and why.

To determine where your program is spending its time, Prism provides data at the
level of the entire program, individual procedures within the program (with both
call-graph and flat displays), and individual source lines within procedures. This

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation 101



allows you to zero in on the lines that have the greatest impact on a program's
performance.

To determine why a procedure or a source line is a bottleneck in your program,
Prism provides data on a program's use of several different computing resources,
not just CPU time. For example, the code may be doing a lot of send/get commu-
nication or /O. Providing data on the code's use of these resources makes it
easier to determine how, or if, the code's performance can be improved.

Prism aggregates performance data separately for the front end (or partition man-
ager) and for the CM (or the nodes); these are referred to as the serial subsystem
and parallel subsystem, respectively. This is necessary because both subsystems
contribute independently to a program's execution time.

In addition to displaying the data, Prism provides a performance advisor that
gives an interpretation of the data. See Section 6.6.2 for more information on it.

6.2 Writing and Compiling Your Program

Performance data is available for C* and CM Fortran programs. To collect per-
formance data, you must compile your program with the -cmprof ile option.
Don't use the -oo option to turn off optimization for a CM-2/200 C* program.

If your program calls an individual routine not compiled with the -cqprofile
option (such as a routine from a CM library like CMSSL), serial-subsystem data
will be available for that routine, as well as summary data on use of the parallel
subsystem. Specific information on parallel-subsystem resources will not be
available. A routine not compiled with -cmprof ile cannot call a routine com-
piled with -cmprof ile.

Performance data is available if you compile your CM Fortran or CM-5 C* pro-
gram with the -cmsim option and run it on a Sun-4. The timings will effectively
be those for a one-node CM-5.

6.2.1 Including Timers within Your Program

Prism collects performance data using the CM timing utility; see the CM Fortran
User s Guide or C* User's Guide for a description of this utility. By default,

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User s Guide102



Chapr 6

Prism uses timers 5-63, leaving timers 0-4 available for use within the program
itself. If you want to use more than five timers, use the environment variable
CMPROF_N_USER_TIMERS to specify the number. For example, if you want to
use 10 timers, set the variable as follows (for the C shell):

% setenv CMPROF N USER TIMERS 10

This reserves timers 0-9 for use within your program. Program execution
becomes less efficient, and the performance data becomes more distorted, as you
use more timers, leaving fewer available for Prism.

NOTE: If you fail to set this environment variable, and thereby try to use timers
that Prism itself is using, the resulting performance data will be incorrect and
possibly bizarre (for example, with values well in excess of 100 percent). You
receive a warning from Prism if you try to use timers that Prism is using.

6.3 Obtaining the Most Accurate Performance Data

This section gives some hints on how to obtain the most accurate performance
data in Prism.

Note these general points:

* Collecting performance data slows execution of the program slightly. The
exact degree to which this occurs is program-dependent.

* Interrupting performance (for example, by stopping at a breakpoint and
printing values) distorts performance data.

Note these points with regard to serial-subsystem data:

* Running on a heavily loaded front end or partition manager may inflate
somewhat the time allocated to its CPU system time. For most accurate
results, run your program on a front end or partition manager that is not
heavily loaded.

* Paging on the front end or partition manager may cause some discrepan-
cies in the data for the serial subsystem; these discrepancies will be greater
on smaller programs.

Note these points with regard to parallel-subsystem data:

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Obtaining Peformance Data 103



104 Prism User s Guide

* To account for the effect of timesharing on the CM or nodes, Prism
normalizes the elapsed time for all resources except I/O, so that it approxi-
mates the time the program would have taken to execute on a dedicated
system. Since Prism accounts for the effects of timesharing on the parallel
subsystem, parallel performance data for all resources except I/O should
be consistent between runs of a program.

* Prism does not normalize the elapsed time for I/O. For most accurate I/O
data, therefore, run your program on a CM (including the front end or
partition manager) that is not heavily loaded. If the CM is heavily loaded,
the percentage assigned to I/O will be inflated relative to the percentages
assigned to the other resources.

6.4 Collecting Performance Data

To collect performance data, you must turn collection on before running the pro-
gram. Collection remains on until you explicitly turn it off.

* From the menu bar: Choose Collection from the Performance menu.
(This selection is also available by default in the tear-off region.) Collec-
tion toggles the collection of performance data. Performance collection is
off when the toggle box to the left of the menu selection is not filled in;
this is the default. Choosing Collection turns it on, and the toggle box is
filled in. To turn it off, choose Collection when the toggle box is filled in.

* From the command window: Issue the collection on command to
turn collection on; issue collection off to turn it off. Issuing the
collection command also affects the state of the toggle box in the
Collection menu selection.

On a CM-2 or CM-200, Prism automatically turns safety off if you run a program
with collection turned on; it turns safety back on if you subsequently run the pro-
gram with collection turned off.

(

Version 1.2, March 1993
Copyright O 1993 Thinking Machines Corporation



Chpe 6.OtiigPromneDt 0

6.4.1 Collecting Performance Data outside of Prism

You can also collect performance data by setting environment variables, without
entering Prism. This is convenient if you can't enter Prism for some reason (for
example, because the CM is only accepting batch jobs).

To turn on collection of performance data, set the environment variable CMPRO-

FILING to t:

% setenv CMPROFILING t

To turn collection off, set the environment variable to f.

To specify the program on which data is to be collected, set the environment
variable CMPROFILING EXECUTABLE FILENAME to the name of the executable
program. For example:

% setenv CMPROFILINGEXECUTABLE FILENAME a.out

To specify the file to which the performance data is to be sent, set the environ-
ment variable CMPROFILING_DATA_FILENAME to the name of the file. For
example:

% setenv CMPROFILING_DATA FILENAME perf.data

You can load this file into Prism for examination at a later time; Section 6.7
explains how.

6.5 Displaying Performance Data

To display performance data, the program must have finished execution. Choose
Display Data from the Performance menu. A window appears, containing the
data. Figure 33 shows an example.

)

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6 Obtaining Performance Data 105



~;.. - 5

Pamiwc Data E

PM Total 6 198.7 X

Node cpu (user) 1 38.2 

Node cpu (system) 1 150.1 X

Comm (Send/Get)

Comm (NEWS)

Comm (Reductions) 0 7.6 X
Corm (PM <-> Node) 10.0 X

Node not profiled

Node I/0

Node+Comm Total I 196.0 X

MAIN Io.1 x
loop I 50.0 X
results

Figure 33. The Performance Data window.

The Performance Data window contains three levels of performance data:

* Performance statistics for the resources that Prism measures, along with
totals for each of the two subsystems.

Per-procedure performance statistics for a specified resource or subsys-
tem. You can choose either flat or call-graph display of these statistics.

Per-source-line performance statistics for a specified resource and
procedure.

All statistics are displayed as histograms in panes within the Performance Data
window, along with the percentage or the amount of time that the histogram bar
represents. If the program didn't use the resource, the histogram bar does not
appear. (Occasionally, however, a resource will show a utilization of 0% because
of rounding.) The total amount of execution time and the display mode for proce-
dures (flat or call-graph) is displayed at the top of the window.

Version 1.2, March 1993
Copyright C) 1993 Thinking Machines Corporation

106 Prism User 's Guide

File Optlons Help Total time: BJ0 a Mode: flat 0

Resources Resource: Node cpu (system)

I

Procedure: loop

i

i

I

i

i

i

1I

I

i

i

i

i

ii

i
i

(

subroutine loop(n, identity, primes, candid)
logical primes(n), candid(n)
integer dentty(n)
integer i. n. nextprime

C
C Loop: Find next valid candidate, mark it as a prime,
C invalidate all multiples as candidates, repeat.
C

nextprime = 2
do while (nextprime le. sqrt(real(n)))

primes(nextprime) = true.
candid(nextprime:n:nextprime) = false. '149.9 
nextprime = minval(ldentit, 1. candid)

end do

C

I

;

?1 Y



Chapter 6. Obtaining Performance-Da 107

By default, the window displays the percentage of total execution time next to
each histogram bar. Choose Units from the Options menu to change this. You
have these choices:

* Choose Utilization (the default) to display the percentage of the total use
that the histogram bar represents.

* Choose Seconds to display the actual time, in seconds, that the histogram
bar represents.

* Choose Microseconds to display the actual time in microseconds.

Once collected, performance data is retained until you load another program
(whether or not you leave collection on) or until you re-execute the currently
loaded program with collection on.

Choose Close from the File menu to close the Performance Data window.

6.5.1 The Resources Pane

The Resources pane within the Performance Data window displays histogram
bars showing a program's use of the measured resources, along with totals for
each subsystem.

You can use the Sort By selection from the Options menu to determine the order
in which the resources are displayed. Choose Name (the default) to display the
resource usages by subsystem. Choose Time to display the resources in order
from the highest usage for a subsystem (at the top) to the lowest.

On a CM-2 or CM-200

The Resources pane for a CM-2 or CM-200 series Connection Machine system
provides this data:

· FE cpu (user) - This is front-end CPU time used by the program.

· FE cpu (system) - This is front-end CPU time used by the operating sys-
tem on behalf of the program.

* FE O - This is time spent in /0 on the front end.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 6. Obtaininig Perfrmancce Data 107



• FE Total is the total of these resources. It represents the program's use of
the front-end subsystem.

* CM cpu (user) - This is the time that the program spent in processing
on the CM. It refers to the amount of time any CM processor was active.

* CM cpu (system) - This is CM CPU time used by the operating system
on behalf of the program.

* Comm (Send/Get) - This is the time that the program spent in router
communication (sends and gets) on the CM.

* Comm (NEWS) - This is the time that the program spent in NEWS com-
munication (also referred to as grid communication) on the CM.

* Comm (Reductions) - This is the time that the program spent doing data
reductions on the CM.

* Comm (FE<->CM) - This is the time spent in communication between
the front end and the CM processors.

* CM I/O - This is the time spent in /O between the CM processors and
I/O devices. (

* CM not profiled - This is the time spent on the CM by routines that
weren't compiled with the -cmprofile option. (These include routines
in CM libraries such as CMSSL.) If the routine had been compiled with
-cmprofile, this time would be allocated to the other CM resources.
This resource is not displayed for CM-2/200 C* programs or CM Fortran
programs prior to Version 2.1; for these programs, CM time in routines not
compiled with -cmprof ile is not measured.

* CM Total is the total of these resources. It represents the program's use
of the CM subsystem.

The total use of the front-end subsystem can be less than or equal to 100 percent.
Typically, it will be less than 100 percent, because there will be times when the
CM is busy and the front end is not.

The total use of the CM subsystem can also be less than or equal to 100 percent.
The difference between the total and 100 percent is time during which the CM
is idle. To use the CM efficiently, CM idle time should be kept as low as possible.

Note that the use of front-end resources and CM resources can each sum to 100
percent, because both can be busy all the time a program is executing.

Version 1.2, March 1993
Copyright ) 1993 Thinking Machines Corporation

108 Prism User 's Guide



ChapterB 6.- ObtainIngPerformanceDa 109

On a CM-5

The Resources pane provides this data for a CM-5 system:

* PM cpu (user) - This is partition-manager CPU time used by the
program.

* PM cpu (system) - This is partition-manager CPU time used by the oper-
ating system on behalf of the program.

* PM O - This is time spent in /O on the partition manager.

* PM Total is the total of these resources. It represents the program's use of
the partition-manager subsystem.

* Node cpu (user) - This is the time that the program spent in processing
on the nodes. It refers to the amount of time any nodes were active.

* Node cpu (system) - This is node CPU time used by the operating sys-
tem on behalf of the program.

* Comm (Send/Get) - This is the time that the program spent in router
communication (sends and gets) on the CM.

* Comm (NEWS) - This is the time that the program spent in NEWS com-
munication (also referred to as grid communication) on the nodes.

* Comm (Reductions) - This is the time that the program spent doing data
reductions on the nodes.

* Comm (PM<-->Node) - This is the time spent in communication
between the partition manager and the nodes.

* Node I/O - This is the time spent in /O between the nodes and /O
devices.

* Node not profiled - This is the time spent on the nodes by routines that
weren't compiled with the -cmprof ile option. (These include routines
in CM libraries such as CMSSL.) If the routine had been compiled with
-cmprofi le, this time would be allocated to the other node resources.
This resource is available only as of CM Fortran 2.1 and CM-5 C* Version
7.1; for programs using earlier versions of these languages, time spent in
routines not compiled with -cmprofile is not measured

* Node+Comm Total is the total of these resources. It represents the pro-
gram's use of the node subsystem.

Version 1.2, March 1993

Copyright C) 1993 Thinking Machines Corporation

Chapter 6. Obtaining Perforance Data 109



The total use of the partition-manager subsystem can be less than or equal to 100
percent. Typically, it will be less than 100 percent, because there will be times
when the nodes are busy and the partition manager is not.

The total use of the node subsystem can also be less than or equal to 100 percent.
The difference between the total and 100 percent is time during which the nodes
are idle. To use the nodes efficiently, node idle time should be kept as low as
possible.

Note that the use of partition-manager resources and node resources can each
sum to 100 percent, because both can be busy all the time a program is executing.

6.5.2 The Procedures Pane

The pane titled Resources: name in the Performance Data window displays
histograms showing the utilization of a specific resource or subsystem by each
procedure in a program; we call this the Procedures pane. You choose the
resource or subsystem by left-clicking on it in the Resources pane. By default,
the most-used resource appears in the Procedures pane. The name of the '
resource or subsystem appears in the title of the pane - for example: Resource:
CM Total.

Use the Mode selection from the Options menu to choose how you want to dis-
play the procedure data:

* Choose Call Graph to display the dynamic call graph of the procedures.

* -Choose Flat (the default) to display a list of all procedures in the program
and their use of the resource or subsystem.

In flat mode, the Procedures pane displays a list of all procedures in the program
and each one's total use of the selected resource or subsystem. This is useful for
determining which procedures are consuming most of the time for the resource
or subsystem. The Procedures pane in Figure 33 shows the data in flat mode.

Version 1.2, March 1993
Copyright C0 1993 Thinking Machines Corporation

110 Prism User s Guide



Chaptr 6. btainng Peformace Daa 11

Resource: Node cpu (system)

MAIN I 150.1 x

loop 1 150.0 X
results

Figure 34. A call-graph display.

In call-graph mode, you see which procedures call which other procedures, and
the use of the selected resource or subsystem for each individual call. This gives
a more detailed picture of the program's behavior. Figure 34 shows the call-
graph display for the data shown in the Procedures pane in Figure 33. Note in
Figure 34 that the time allocated to the MAIN routine includes the time spent in
loop, which it calls.

To navigate down through the call graph, click anywhere on the line that lists a
procedure (other than the procedure at the top); the display changes to show this
procedure at the top, with the procedures it calls below it. Thus, in call-graph
mode, the Procedures pane at any one time shows two levels of the call graph.

To move up through the call graph, click on the top procedure in the display; the
display changes to show the caller of this procedure at the top, with the proce-
dures it calls beneath it.

As with the Resources pane, you can use the Sort By selection from the Options
menu to arrange the procedures in the Procedures pane.

· Choose Time (the default) to list procedures according to their use of the
resource or subsystem, from most to least.

* Choose Name to arrange the procedures in alphabetical order.

In call-graph mode, the sorting applies only to the children of the calling proce-
dure; the calling procedure is always at the top of the display.

If a routine is not compiled with the -cmprof ile option, Prism will display data
only for serial-subsystem resources or for the not profiled parallel-subsystem

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 6. Obtaining Performance Data 111



resource (if available); as mentioned above, all parallel-subsystem time for the
routine is included in the not profiled resource.

6.5.3 The Source-Lines Pane

The pane titled Procedure: name displays performance data associated with
each source line in a procedure; we call this the Source-Lines pane. Choose the
procedure by left-clicking on the line for the procedure in the Procedures pane;
by default, Prism displays the source code for the procedure that has the highest
utilization of the most-used resource. The resource or subsystem for which the
data is shown is the one displayed in the Procedures pane.

For slicewise and CM-5 CM Fortran programs, Prism actually calculates perfor-
mance data at the level of basic blocks. These basic blocks can include one or
more lines of source code; the lines are not necessarily contiguous. Prism allo-
cates the amount of time spent in a basic block equally to each line in the block.
In general, this will give an accurate picture of each line's contribution to the
overall time spent in the basic block. It is possible, however, that the data may
be misleading. To get a more accurate picture of per-line data, compile with the
-g switch in addition to -cmprofile. This produces unoptimized code, how-
ever, and overall performance will be much worse.

Also note these points:

· Source-line data is not available for the serial subsystem, or for serial-sub-
system resources.

*· If a routine is not compiled with the -cmprof ile option, source-line data
is not available.

6.5.4 Displaying Performance Data in the Command Window

To display an ASCII version of the performance data, issue the perf command
from the command window. As with other commands, you can redirect output
to a file by using the syntax efilename. This is useful if you are using Prism with
the commands-only option, or if you want to study the data at a later time when
you don't have a graphical interface available.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User ~ Guide112



r

Chapter 6. Obtaining Performance Data 113

6.6 Interpreting the Data

This section discusses how to make sense of the performance data that Prism
provides.

6.6.1 Making Sense of the Times

Recall that the totals for the serial subsystem (front end or partition manager) and
the parallel subsystem (CM or nodes) are separate; each can be as high as 100%.
The time for one subsystem can be less than 100% if it is idle while the other
subsystem is worldng. The times for both subsystems can be less than 100% if
each is idle at times when the other is busy. The ideal is for the parallel subsystem
to be busy as close to 100% of the time as possible.

Recall also, as described in Section 6.3, that the load on either the serial subsys-
tem or the parallel subsystem can affect your results. For most accurate results,
run on lightly loaded systems.

6.6.2 Isolating Bottlenecks

Prism's performance data gives you a picture of how your program uses system
resources. We assume you will want to use this information to try to improve the
program's performance. The key to improving performance is to find the bottle-
necks in the program - the procedures, and the source lines within the
procedures, whose use of a particular resource has the greatest impact on how
long the program takes to complete. This section describes how to use the perfor-
mance data to find your program's bottlenecks.

To help you in this analysis, Prism provides a performance advisor, which sum-
marizes and analyzes the performance data that Prism has collected. To display
this information, choose Advice from the Performance menu, or issue the com-
mand perfadvice. You can use this performance advisor, or you can analyze
the data on your own, to isolate the bottlenecks in your program. The perfor-
mance advisor provides answers to the questions discussed below; we believe
that following this procedure provides the best method for interpreting the per-
formance data.

We suggest asking these questions to isolate the bottlenecks in your program:

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation



114 Prism User Guide

1. Which of the two subsystems that Prism measures does the program
use more heavily? For example, if total serial-subsystem time is greater
than total parallel-subsystem time, then reducing the use of the serial
subsystem is likely to provide the greatest performance gains. Reducing
the use of the parallel subsystem may improve performance, but you may
also find that it will have no effect on performance, since the use takes
place at the same time that the serial subsystem is also in operation.

2. Which resource within this subsystem has the highest usage? If your
program uses the parallel subsystem more heavily than the serial subsys-
tem, and Send/Get communication is the most-used parallel-subsystem
resource, then you will obtain the greatest performance gains by reduc-
ing the use of this resource.

3. Which procedure uses this resource most heavily? This tells you
where you will have the biggest payoff when attempting to reduce the
use of the most heavily used resource.

4. Which source lines within this procedure use this resource most
heavily? Finally, goinR to the source-line level isolates the svecific lines
of code that have the greatest effect on performance.

Here is an example of a report from the performance advisor (for a CM-2 or
CM-200). Note that it does not include source-line information, because the most-
used resource is FE cpu (user), for which source-line data is unavailable.

Of the two subsystems that Prism currently measures,
your program makes greater use of the front end.

Within that subsystem, your program makes the greatest
use of the "FE cpu (user)" resource, having kept it busy
71% of the total elapsed time.

Procedure complexarray, called from floatarray, called
from MAIN, makes the greatest use of the "FE cpu (user)"
resource, having kept it busy 69% of the elapsed time.

Note that when you first display data for a program, by default the Performance

Data window displays the most-used resource and the procedure that uses this

resource the most; this helps you analyze your data without having to use the

performance advisor.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

i.I
r



Chapter 6._- Obin Pr- D

6.6.3 Anomalous Performance Data

It is possible that your performance data will simply appear incorrect. For exam-
ple, you may get percentages in the thousands or millions.

This problem can occur if you try to use timers that Prism has allocated for its
own use. If you use more than five timers in your program, be sure to set the
environment variable CMPROF N USIRTIEs to the number that you use; see
Section 6.2.1.

6.7 Saving and Loading Performance Data Files

You can save performance data you have collected for a program in a file; you
can later load this file into Prism and re-display the data. This lets you look at
the progression of performance analyses as you work on your program. It is also
useful if you do your original data collection outside of Prism or in commands-
only Prism, and later want to look at your data in the graphical version.

Follow this procedure:

1. Collect the data as you normally do (that is, turn collection on and run
the program to completion).

2. Choose Save Data from the Performance Menu. (Alternatively, you
can choose Display Data from the Performance menu to display the
Performance Data window, then choose Save Data from the File menu
in this window.)

A dialog box appears; in it, specify the name of the file in which you
want to save the data. If you don't supply a complete pathname, the file-
name is interpreted relative to the directory from which you started
Prism. The data is then saved in this file.

Alternatively, you can issue the perfsave command from the com-
mand window, specifying the name of the file in which the data is to be
saved.

3. When you want to look at the data again, choose Load Data from the
Performance menu (or from the File menu in the Performance Data
window). A file-selection dialog box is displayed, from which you
choose the file in which you saved the data. The data is then reloaded.

Version 1.2 March 1993
Copyright © 1993 Tinking Machines Corporation

Chapter 6. Obtaining Performnance Data 115



116_e pa Prism___ User.7'!!!!'"'s--: Gu..'........................................ide!!"~i!...---'---"""-I *..........

If no program is loaded at the time, Prism loads the corresponding
executable program; if another program is loaded, Prism displays a dia-
log box and asks if you want to load the program associated with the
performance data. If you don't, the usefulness of the performance data
will be limited, since Prism will incorrectly associate the data with the
procedures and source lines of the program that is loaded.

Alternatively, you can issue the perfload command from the com-
mand window, specifying the name of the file in which the data was
saved.

Note these points in saving and loading performance data:

* The performance data is associated with a specific version of the program.
If you modify the program, Prism will not be able to load the version for
which the data was collected. (It prints a warning when it detects that its
performance data file is out of date.) Therefore, if you want to use this
feature to maintain a historical record of your attempts at improving a pro-
gram's performance, you should rename the program whenever you
change it, and save the earlier versions along with their performance data
files.

* You can display only one set of performance data at a time within Prism.
Therefore, if you want to compare data from different versions of a pro-
gram on-screen, you have to run multiple instances of Prism.

4:

Version 1.2, March 1993
Copyright CD 1993 Thinking Machines Corporation

4

(

116 Prism User Guide



Chapter 7

Editing and Compiling Programs
__------ - "' g11-1- 1J"11I '- --- m m m iiiiiiiilillill

You can edit and compile source code by invoking the appropriate utilities from
Prism. To learn:

* How to edit source code, see Section 7.1, below.

* How to use the UNIX make utility from within Prism to compile and
link source code, see Section 7.2.

7.1 Editing Source Code

Prism provides an interface to the editor of your choice. You can use this editor
to edit source code (or anything else).

To call the editor from within Prism:

From the menu bar: Choose the Edit selection from the Utilities menu.

From the command window: Issue the command edit from the command
line.

You can specify which editor Prism is to call by using the Customize utility to
set a Prism resource; see Section 9.3. If this resource has no setting, Prism uses
the setting of your EDITOR environment variable. Otherwise, Prism uses a
default editor, as listed in the Customize window.

The editor is invoked on the current file, as displayed in the source window. If
possible, the editor is also positioned at the current execution point, as seen in
the source window; this depends on the editor.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation 117

i: 

4�.

i. I



118 Prism User's GNode

If you issue the edit command from the command window, you can specify a
filename or a function name, and the editor will be invoked on the specified file
or function.

After the editor has been created,.it runs independently. This means that changes
you make in the current file are not reflected in the source window. To update
the source window, you must recompile and reload the program. You can do this
using the Make selection from the Utilities menu, as described below.

7.2 Using the make Utility

Prism provides an interface to the standard UNIX tool make. The make utility lets
you automatically recompile and relink a program that is broken up into different
source files. See your UNIX documentation for an explanation of make and
makefiles.

7.2.1 Creating the Makefile

Create the makefile as you normally would. Within Prism, you can choose the
Edit selection from the Utilities menu to bring up a text editor in which you can
create the file; see Section 7.1.

7.2.2 Using the Makefile

After you have made changes in your program, you can n make to update the
program

Prism uses the standard UNIX make utility, /bin/make, unless you specify
otherwise. You do this by using the Customize utility to change the setting of a
Prism resource; see Section 9.3.

To run make:

From the menu bar: Choose Make from the Utilities menu. A window appears;
Figure 35 is an example.

Version 1.2, March 1993
Copyright 0 1993 hinking Machines Corporation

118 Prism User k Guide



Chapte 7. EditigandComplingrogra

a m &VA 9T

Figure 35. The Make window.

The window prompts for the names of the makefile, the target file(s), the direc-
tory in which the makefile is located, and other arguments to make. If a file is
loaded, its name is in the Target box, and the directory in which it is located is
in the Directory box; you can change these if you like.

If you leave the Makefile or the Target box empty, Make uses a default. See
your UNIX documentation for a discussion of these defaults. If you leave the
Directory box empty, Make looks for the makefile in the directory from which
you started Prism.

You can specify any standard make arguments in the Other Args box.

The window also asks if you want to reload after the make. Answering Yes (the
default) automatically reloads the newly compiled program into Prism if the
make is successful. If you answer No, the program is not reloaded.

To cancel the make while it is in progress, click on the Cancel button. If a make
is not in progress, clicking on Cancel closes the window.

The output from make is displayed in the box at the bottom of the Make window.
Subsequent makes use the same window, unless you start a new make while a
previous make is still in progress.

From the command window: Issue the make command on the command line.
You can specify any arguments that are valid in the UNIX version of make.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Makeft I

Target(s) I prie.0

Directory |/tmp sunt/uaerVmeg3/bcker/ede/rcvmi n/ test

Other Args I

Reload After Mke? 3*y,, EoN

cd /tmpjnt/uer s/ g3/bker/mde/ r/ml ntet
make primlei. x
cm -lice -apFl -o -prmel.x prmel. fcm
cef 04M2 Slice..le 1.2 (SPARC)]
Cnompllng primes cfa
Llnking... don.

EnI cel I E 'PL

3
1
JJ

i

Chapter 7 Editing and Compiling Programs~ 119



4

4



Chapter 8

Getting Help

This chapter describes how to obtain information about Prismi and Connection
Machine commands, languages, and libraries. To learn:

* How to obtain help about Prism, see Section 8.1.

* How to obtain CM on-line documentation, see Section 8.2.

* How to send electronic mail about Prism, see Section 8.3.

.A;* How to join the Prism mailing list, see Section 8.4.

8.1 Getting Help

There are several ways in which you can get help in Prism:

* The Help menu in the menu bar provides help an several major topics. It
includes the Help Index, which gives in-depth information about all
aspects of Prism.

* The Help selection in menus and the Help button in windows and dialog
boxes provide instructions for using these screen areas.

* Command-line help provides information about commands you can issue
from the command window.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation 121



122..................... P------:_ ::m ........... ::::::::::::: G....::::::::..i t
8.1.1 Using the Help Index

The Help Index is a list of entries about which you can obtain information; see
Figure 36.

Help Index

This is an Index to Prism's on-line help system. For
complete information on the help system, choose the
selection Using Help In the Help menu.

Advice
aliases, creating
arrays, C and C. using in expressions
assembly language code, displaying
breakpoints
Bug Updates
call stack
CMAX
CM Fortran programs, compiling and linking
CM. obtaining on-line documentation for
Collection
colormap representation
colors, changing default

I .·m I lon~~~~~u) I urr, ~~I

Figure 36. The Help Index.

Displaying the Help Index

From the menu bar, choose the Index selection from the Help menu.

Choosing an Entry from the Help Index

To choose an entry:

With a mouse: Left-click on the entry so that it is highlighted. Use the scroll bar
to the right of the list to scroll through the complete list of entries; then click on
Select. Or simply double-click on the entry.

(

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

122 Prism User L Guide



Chapter & Getting Help 123

From the keyboard: Use the up and down arrow keys to move through the
entries. Each entry is highlighted as you reach it. Press Return to display
information about a highlighted entry.

When a Topic Window Is Displayed

Choosing an entry causes Prism to display a window containing the topic in
which the entry is discussed See Figure 37 for an example. If there is more text
than will fit in the window, click on the up or down arrow in the scroll bar to
move the text up or down a line. Or drag the elevator in the scroll bar up or down
to move to the corresponding point in the text. From the keyboard, you can use
the up and down arrow keys to move through the text; press the Control key
along with the arrow key to scroll one-half page of text.

* miaha I
-- Related Topics ---
Choosing the Current Fl
Resolving Nmnes

Displaying and Moving through the Call Stack Using the Command Wlr
Using the Menu Bar

The cll stack Is the list of procedures and functions currently active --- Terms ---current function
on the stck This help topic describes how to display the call stack -- Commands ---
and move through It to change the current function. down

up
where

Displaying the Call Stack

From the menu bar: Choose the Where selection from the
Debug menu. The Where window Is displayed; It shows the
current call stack The window is updated automatically when
execution stops, or when you Issue commands that change the stack.

From the command wlndow: Issue the where command on the
command line. If you nclude an Iteger as an argument the integer
:specmes now many aove proceoures are to oe oisplyea; ouemnse, 

Cancel ect I

Figure 37. A help topic.

Getting Help on Related Topics, Subtopics, Terms,
and Commands

To the right of the topic discussion there may be lists of related topics, subtopics,
terms, and commands. Choose an item in these lists in the same way you chose
a topic from the main Help Index. Another window is displayed; the original
window remains on the screen.

. , ' 

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

L

q

i i

I

i

i

I

i

i
i

-- - -



-------124Prism---....

* Related topics are topics that may be of interest to the reader of the current
topic.

* Subtopics provide information about self-contained subjects within a topic
area. They too can contain lists of related topics, terms, and commands.

* Terms are specialized words or phrases used in the topic discussion. If you
are unfamiliar with a term, click on its entry and a brief definition appears
in a separate window. If you want further information, click on Help in the
definition window, another window is displayed showing the topic in
which the term is discussed.

* Commands provide reference descriptions of Prism commands.

Cancelling Topic Windows

To cancel an individual topic window, click on the Cancel button in the window
or press the Esc key.

To cancel all open topic windows, as well as the Help Index window itself, click
on the Cancel All button in the Help Index window. 

8.1.2 Choosing Other Selections from the Help Menu

In addition to the Help Index, you have several other sources of information you
can choose from the Help menu:

· Choose Using Help to display an overview of the Help system.

C* hoose Release Notes to display release notes for the current version of
Prism. (You should be sure to read the release notes before using Prism,
to find out about last-minute information that doesn't get into the docu-
mentatio)

· Choose Overview to display an overview of the features of Prism.

· Choose Glossary to display a list of terms used in Prism. You can click
on a term to find out more information about it.

· Choose Commands Reference to display a list of Prism commands. You
can double-click on a command to obtain its reference description.

Version 1.2, March 1993
Copyright 0 1993 Thining Machines Corporation

124 Prism User Guide



Chapter-------------- - H p 1

* Choose Tutorial to display an on-line tutorial that will guide you through
loading, executing, and analyzing a sample program in Prism. We recom-
mend taldng this tutorial as a quick way of becoming acquainted with
some of Prism's major features.

These choices are also available from the Help Index.

8.1.3 Using Help Selections and Help Buttons

Each menu in Prism has a Help selection, and each window and dialog box has
a Help button.

You can use either the mouse or the keyboard to choose help. A Help window
is displayed that gives information about the menu or dialog box; see Figure 38
for an example. It also names the Help Index entry where you can find more
detailed information.

0a mh-4p

r,

Figure 38. The Help window for the Use dialog box.

To cancel the Help window, click on the Cancel button or press the Esc key.

Version 1.2, March 1993
Copyright 0 1993 Thinkig Machines Corporation

Use Dialog Box

Use the Use dialog box to create a list of directories to be used by
Prism in searching for source files. You may need to add a directory
to Prism's search list if you have moved a source file, or if for some
other reason Prism cant find the file.

To add a directory to the search list, type its pathname in the
Directory box, then click on Add. (If its pathname Is too long for
the box It scrolls to the left.)

To remove a directory from the list, click on Its name In the search
list the name is highlighted. Then click on Remove.

Click on Close or press the Esc key to close the dialog box

For more information on creating a list of source directories, choose
Use in the Help Index

I I
IN

Chapter & Getting Help 125

t O

a



126Prism--------- User

I
8.1.4 Getting Help on Using the Mouse

Some Prism windows include an icon of a mouse:

Click on this icon to display information about using the mouse in the window.

8.1.5 Obtaining Help from the Command Window

Use the help command to obtain help from the command window. Issuing the
command

help comands

displays a list of Prism commands and editing key combinations. Issuing help
with the name of a command as an argument displays help on that command.
Issuing help with no arguments displays a brief message about how to use com-
mand-line help.

8.2 Obtaining On-Line Documentation

This section discusses how to obtain on-line documentation about CM com-
mands, languages, and libraries within graphical Prism.

Prism offers interfaces to several kinds of on-line documentation:

* UNI-style manual pages

· plain-text versions of Connection Machine manuals

· release notes

* bug-update files

See Section B.4 for a discussion of how to obtain on-line documentation from
commands-only Prism.

(

Version 1.2, March 1993
Copyright C0 1993 Thinling Machines Corporation

i

I

I

i

i
z

i
i
i

i

I
i

126 Prism User s Guide



Chapter & Getting Help 127

8.2.1 Viewing Manual Pages

To obtain a manual page, choose the Man Pages selection from the Doc menu.
This brings up man, a standard X program for viewing manual pages; nman
operates independently of Prism.

Help for man appears in the man window, as shown in Figure 39. Basically,
you can search for a manual page by choosing Search from the man Options
menu. You can use man to view any UNIX manual pages available on your sys-
tem, not just those related to the CM.

NOTE: If zan is not available on your system, you will not be able to use this
feature.

I [nwal Pr 

Fgure 39. The iman window.

Version 1.2, March 1993
Copyright 1 1993 Thinking Machines Corporation

tions I Sections I Xman Help

XMAN Is an X Window Sytum manval brmwing tl, buit upon thl XToelldt.

CREDITS

Veion: U 'ShowVersion' menu item.
Baed Upon: Xmn for Xl1lOby Bary 8hn - Boto Univ.
Writta By: Chris D. Pters - MIT X Consortium
Copyright. 1988, 19g89Maschustt Institute ofTechnolo

GETTING STARTED

Bydefault. man stert bycrating a small window that contains
thre 'buttens' (places on which to click a pointerbutten). Two of
thesbuttons, Help and Quit a self xplanatoy. The third, Manual
Pageo, crtea new mnual pgoebrowsrwindow you may u this
button to open new manual page a time man is running.

A newmanual page serte up displaying this help information. The
manual page conins threesections. In the upper lft crner are two
menu buttons. When the mouse b clicked on either of them buttons a
menu is popped up. The contente of them menus is dcrb below.
Dlrctly to tbo right ofthe menu buttns is an informaional disply.
,Thio dplayusuallycontein, the ame of th directoryr manuai page
being displaed. Itis aim ud to dsplaywarning m age ad the
currenterson of xman. The lttand largstction is the
information display This section of the application contains either

lst of manual page to choose or the text ot a m nual page

To use xman just pull down the sections menu to mlect a manual
section. ce the ection is displayed dick the left pointer button
on the name ofthe nuual page thatyauwuld liketoam. Xmanwll
automatically replace the drector Iistingwith the manual page that
has bam selected.

That should be enough to getyou startd. once you understand the
basics of howo use an, take a look atthe retof th file to the
advanced fatures that are avaable to make using xman fastand

cient.

SCROLLING TEXT

The scrollbars a similar to xtrm and xmh crolbars clicking the
left or right pointer buttns with the pointer at the bottom of the
scrollbarwill scroll the textdown or up oneo age. reetily.

----- - . 111 1 11 , W 1 1-- -- --- --- --- -- I -- --- ----- -- --- --- --- -



.'128 i Prism User'sGde

8.2.2 Viewing CM Documents

There are two ways of viewing sections of Connection Machine documents
available on-line: from the menu bar and from the source window.

From the Menu Bar

From the menu bar, choose Online Doc from the Doc menu. This displays a dia-
log box in which you can enter the topic on which you want information. The
topic can be in the form of one or more keywords, or it can be a sentence. Click-
ing on Search in this dialog box passes the topic on to a special version of xwais,
the X version of Thinking Machines' wide-area information server; see below.

From the Source Window

Select the text on which you want information by dragging the mouse over it.
Then right-click the mouse; a popup menu is displayed. Click on Doc Search in
this menu. Prism passes the selected text as a topic to xwais.

Using the xwais Utility

The xwais utility displays a window like the one shown in Figure 40. If you have
selected text as a topic, it appears in the Tell me about: field.

Figure 40. The xwais window.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

128 Prism User s Guide



Chaper & Getting Help 129

xwais automatically searches the CM documentation for information on your
topic. When the search is concluded, the titles of the relevant sections are listed
in the Resulting Documents field; the sections are rated according to how rele-
vant they are, with the most relevant receiving a score of 1000.

To view a document section, click on its title so that it is highlighted, then click
on View. The document section appears in a separate window. Click on Save to
File in this window to save the information to a file; click on Done to close the
window.

Several of the fields in the xwais window are not relevant to a search for on-line
documentation. Specifically, you do not need to use the Similar to: field, or the
Search, Add Source, Delete Source, Add Document, and Delete Document
buttons.

Click on Done when you are finished using xwais.

8.2.3 Viewing Release Notes and Bug-Update Files

t (I Thinldng Machines provides monthly bug-update files for each of its products;
these files contain information about newly reported, outstanding, and fixed bugs
for the product. It also provides on-line versions of the release notes for its
products.

To view a bug-update file, choose Bug Updates from the Doc menu. A window
will appear, the files available at your site should be listed in the Bug Update
Files list in this window. Check with your system administrator if this list is
empty, or if the file you are interested in is missing (the files may have been
installed in a different location from that specified when Prism was installed).

To dispay a file, left-click on its name in the list, then click on OK. Or simply
double-click, rapidly, on the name. The file will appear in your default editor.
(Use the Customize utility to change this editor; see Section 9.3.2.)

The procedure for viewing release notes is the same. Choose Release Notes from
the Doc menu to display a window that contains a list of Release Note files. Click
on the filename, then click on OK to display the file in your default editor.

NOTE: Release notes on Prism itself are also available by selecting Release
Notes in the Help menu, as described in Section 8.1.2.

e.

Version 1.2, March 1993

Copyright 0 1993 Thinking Machines Corporation

Chapter &. Getting Help 129



130 Prism User -o Guide

8.3 Sending Electronic Mail about Prism

You can send electronic mail about Prism to Thinking Machines Corporation. We
encourage you to write us and let us know what is wrong (or right!) with Prism,
or to get an answer to a question.

From the menu bar: Choose the Email selection from the Utilities menu.

From the command window: Issue the email command on the command line.

In each case, Prism displays a window containing an editor. The edit buffer con-
tains the last few Prism error messages, along with instructions on how to send
the contents of the buffer - basically, you just save the buffer in the usual way
before quitting the editor; the mail is sent automatically. Simply quit the editor
if you decide not to send us mail. You can use the Customize utility to determine
which editor Prism displays; see Section 9.3.2.

We put the last few error messages into the buffer as a convenience, in case you
are sending us information about a possible bug. Feel free to add more informa-
tion, or to delete the error messages and write us about something else entirely.

If you want to talk about Prism more informally with other users, we encourage 
you to join the prism-talkethink. com mailing list, as described below.

8.4 The Prism Mailing List

Thinking Machines maintains a mailing list, prism-talkethink. corn, where
Prism users can discuss how to get the most out of the Prism programming
environment. If you have comments, questions, or insights about Prism, we urge
you to join this list and share them with others.

Prism developers may monitor this list and, at their discretion, participate in
discussions, but they are not obligated to do so. For this reason, bug reports
should not be sent to this list. If you want to ensure a prompt, official response
to your mail, use the Prism Email feature, or contact your Applications Engineer
or Thinldking Machines' Customer Support group directly.

To join this list, simply send e-mail to prism-talk-requestOthink. com.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User ~ Guide130



,

Chapter 9

Customizing Prism
-~~~~il I. II- . . ..... I:: -' : .......... I. II . ... - . . ..........................

This chapter discusses ways in which you can change various aspects of Prism's
appearance and the way Prism operates. To learn:

· How to use the tear-off region, see Section 9.1, below.

· How to set up alternative names for commands and variables, see Sec-
tion 9.2.

* How to change Prism defaults by using the Customize utility, see Sec-
tion 9.3.

* How to change Prism defaults in your X resource database, see Sec-
tion 9.4.

* How to initialize Prism, see Section 9.5.

9.1 Using the Tear-Off Region

You can place frequently used menu selections and commands in the tear-off
region below the menu bar, in the tear-off region, they become buttons that you
can click on to execute them. Figure 41 shows the buttons that are there by
default.

ILo Runl j PRit.. Contnuel tep e Inte rruptlU Dow 10 Collecilon

Figure 41. The tear-off region.

Version 1.2, March 1993
Copyright O 1993 Thinking Machines Corporation 131

- --i



Prism User s Guide
~x"~c~,~r.

Putting menu selections and commands in the tear-off region lets you get access
to them without having to pull down a menu or issue a command from the com-
mand line.

Changes you make to the tear-off region are saved when you leave Prism; see
Section 9.3.3.

9.1.1 Adding Menu Selections to the Tear-Off Region

From the menu bar: To add a menu selection to the tear-off region, first enter
tear-off mode by choosing Tear-off from the Utilities menu. A dialog box
appears that describes tear-off mode; see Figure 42.

Figure 42. The Tear-Off dialog box.

While the dialog box is on the screen, choosing any selection from a menu adds
a button for this selection to the tear-off region. Clicking on a button in the tear-
off region removes that button. If you fill up the region, you can resize it to
accommodate more buttons. To resize the region, drag the small resize box at the
bottom right of the region.

Click on Close or press the Esc key in the dialog box to close the box and leave
tear-off mode.

When you are not in tear-off mode, clicking on a button in the tear-off region has
the same effect as choosing the equivalent selection from a menu.

From the command window: Use the tearoff and untearoff commands
from the command window to add menu selections to and remove them from the
tear-off region. Put the selection name in quotation marks; case doesn't matter,
and you can omit spaces and the ellipsis (...) that indicates the selection displays

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

132

-·W

4

Tear-off Mode
You are now In tear-off mode. Choosing a menu Item adds a button for that
Item to the tear-off region beneath the menu bar. Clicking on a button In
the tear-off region removes the button.

Click on Close In this box to close the box and leave tear-off mode.

I Help 
4



Chapter 9. Customizing Prism 133

a window or dialog box. If the selection name is ambiguous, put the menu name
in parentheses after the selection name. For example,

tearoff print (events)

adds a button for the Print selection from the Events menu to the tear-off region.

9.1.2 Adding Prism Commands to the Tear-Off Region

To add a Prism command to the tear-off region, issue the pushbutton com-
mand, specifying the label for the tear-off button and the command it is to
execute. The label must be a single word. The command can be any valid Prism
command, along with its arguments. For example,

pushbutton printa print a on dedicated

adds a button labeled printa to the tear-off region. Clicking on it executes the
command print a on dedicated.

To remove a button created via the pushbutton command, you can either click
on it while in tear-off mode, or issue the untearoff command as described
above.

9.2 Setting Up Alternative Names for
Commands and Variables

Prism provides commands that let you create alternative names for commands,
variables, and expressions.

Use the alias command to set up an alternative name for a Prism command. For
example,

alias ni nexti

makes ni an alias for the nexti command. Prism provides some default aliases
for common commands. Issue alias with no arguments to display a list of the
current aliases. Issue the unalias command to remove an alias. For example,

unalias ni
4.-'

Version 1.2, March 1993
Copyright C 1993 Thinking Machines Corporation

1



removes the alias created above.

Use the set command to set up an alternative name for a variable or expression.
For example,

set alan annoyinglylong_array_name

abbreviates the annoyingly long array name to alan. You can use this abbrevi-
ation subsequently in your program to refer to this variable. Use the unset
command to remove a setting. For example,

unset alan

removes the setting created above.

Changes you make via alias and set last for your current Prism session. To
make them permanent, you can add the appropriate commands to your
.prisminit file; see Section 9.5.

9.3 Using the Customize Utility (
Many aspects of Prism's behavior and appearance - for example, the colors it
displays on color workstations, and the fonts it uses for text - are controlled by
the settings of Prism resources. The default settings for many of these resources
appear in the file Prism in the Xll app-defaults directory for your system.
Your system administrator can change these system-wide defaults. You can over-
ride these de' vults in two ways:

* For many of them, you can use the Customize selection from the Utilities
menu to display a window in which you can change the settings. This sec-
tion describes this method.

* A more general method is to add an entry for a resource to your X resource
database, as described in the next section. Using the Customize utility is,
however, much more convenient.

Choosing Customize from the Utilities menu displays the window shown in
Figure 43.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Prism User S Guide134



Chapter 9CsmznP

s1 oamlzatin @

Figure 43. The Customize window.

9.3.1 How to Change a Setting

On the left of the Customize window are the names of the resources. Next to
each resource is a text-entry box that contains the resource's setting (if any). To
the right of the fields are Help buttons. Clicking on a Help button or anywhere
in the text-entry field displays help about the associated resource in the box at
the top of the window.

The way you set a value for a resource differs depending on the resource:

* For Edit Geometry, Text Font, and Visualizer Color File, you enter the
setting in the resource's text-entry box.

* For Editor, Error Window, and Make, you can left-click on the button
labeled with the resource's name. This displays a menu of choices for the
resource. Clicking on one of these choices displays it in the resource's
text-entry box. For Editor and Make, you can also enter the setting
directly in the text-entry box.

1)i

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

I i
Edit Geometry eOx24 3Hell

Editor | el

Error Bell false el

ErrorWindow comand I

Make lbirn/nakee1 [ i

IMark Stale Data true i e

Text Font |8x1 elp

eUse Xtrm true | el

Visualizer Color File I eli

lose I I Help I

Chapter 9. Customizing Prism 135



136 Prism UserR Guide

For Error Bell and Use Xterm, there are only two possible settings, yes
and no; clicking on the button labeled with the resource's name toggles the
current setting.

Whenever you make a change in a text-entry box, Apply and Cancel buttons
appear to the right of it. Click on Apply to save the new setting; it takes effect
immediately. Click on Cancel to cancel it; the setting changes back to its pre-
vious value.

Click on Close or press the Esc key to close the Customize window.

9.3.2 The Resources

Edit Geometry - Use this resource to specify the X geometry string for the
editor created by the Edit and Email selections from the Utilities menu. The
geometry string specifies the number of columns and rows, and optionally the
left and right offsets from the corner of the screen. The Prism default is 80x24
(that is, 80 rows and 24 columns). See your X documentation for more informa-
tion on X geometries. (
Editor - Use this resource to specify the editor that Prism is to invoke when
you choose the Edit or Email selection from the Utilities menu, or when you
display a file via the Release Notes or Bug Updates selections from the Doc
menu. Click on the Editor box to display a menu of possible choices. If you
leave this field blank, Prism uses the setting of your EDITOR environment vari-
able to determine which editor to use.

Error Bell - Use this resource to specify how Prism is to signal errors. Choos-
ing yes tells Prism to ring the bell of your workstation. Choose no (the Prism
default) to have Prism flash the screen instead.

Error Window - Use this resource to tell Prism where to display Prism error
messages. Choose command (the Prism default) to display them in the com-
mand window. Choose dedicated to send the messages to a dedicated window;
the window will be updated each time a new message is received. Choose snap-
shot to send each message to a separate window.

Make - Use this resource to tell Prism which make utility to use when you
choose the Make selection from the Utilities menu. The Prism default is the
standard UNIX make utility, /bin/make. Click on the Make box to display a
menu of possible choices.

Version 1.2, March 1993
Copyright ©) 1993 Thinking Machines Corporation

Prism User ~ Guide136



Chapter 9. Customizing Prism 137

Mark Stale Data - Use this resource to tell Prism how to treat the data in a
visualizer that is out-of-date (because the program has continued execution past
the point at which the data was displayed). Choose true (the default) to have
Prism draw diagonal lines over the data; choose false to leave the visualizer's
appearance unchanged.

Text Font - Use this resource to specify the name of the X font that Prism is
to use in displaying the labels of histogram bars and text in visualizers. The
default, 8x13, is a 12-point fixed-width font. To list the fonts available on your
system, issue the UNIX command xlsfonte. Specifying a font much larger than
the default can cause display problems, because Prism doesn't resize windows
and buttons to accommodate the larger font.

Use Xterm - Use this resource to tell Prism what to do with the /0 of a pro-
gram. Specify yes (the Prism default) to tell Prism to create an xterm in which
to display the I/O. Specify no to send the I/O to the xterm from which you started
Prism.

Visualizer Color File - Use this resource to tell Prism the name of a file that
specifies the colors to be used in colormap visualizers. If you leave this field
blank, Prism uses gray for elements whose values are not in the context you spec-
ify; for elements whose values are in the context, it uses black for values below
the minimum, white for values above the maximum, and a smooth spectral map
from blue to red for all other values.

The file must be in ASCII format. Each line of the file must contain three integers
between 0 and 255 that specify the red, green, and blue components of a color.
To get a list of some of the colors available on your system, you can consult the
file /uir/lib/X11/rgb. tit.
The first line of the visualizer color file contains the color that is to be displayed
for values that fall below the minimum you specify in creating the visualizer. The
next-to-last line contains the color for values that exceed the maximum. The last
line contains the color used to display the values of elements that are not in the
context specified by the user in a where statement. Prism uses the colors in
between to display the values falling between the minimum and the maximum.
For example:

o o o

255 0 0

255 255 0
O 255 0

0 255 255
0 0 255

'. '

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation



255 0 255
255 255 255
100 100 100

Like the default settings, this file specifies black for values below the minimu,
white for values above the maximum, and gray for values outside the context.
But the file reverses the default spectral map for other values: from lowest to
highest, values are mapped red-yellow-green-cyan-blue-magenta.

9.3.3 Where Prism Stores Your Changes

Prism maintains a file called .prism_defaults in your home directory. In it,
Prism keeps:

* changes you make to Prism via the Customize utility

· changes you make to the tear-off region

· changes you make to the size of the panes within the main Prism window

Do not attempt to edit this file; make all changes to it through Prism itself. If you
remove this file, you get the default configuration the next time you start up
Prism.

9.4 Changing Prism Defaults in Your
X Resource Database

As mentioned in the previous section, you can change the settings of many Prism
resources either by using the Customize utility or by adding them to your X
resource database. This section describes how to add a Prism resource to your X
resource database. An entry is of the form

resource-name: value

where resource-name is the name of the Prism resource, and value is the setting.
Table 2 lists the Prism resources.

.... ~~~~~~~~~~~~~~~

Version 1.2, March 1993
Copyright 0 1993 Thinking Machincs Corporation

138 Prism User Ir Guide



Chapter 9. Customizing Prism 139

Table 2. Prism resources.

Resource Use

Prism.dialogColor Specify the color for dialog boxes.
Prism.editGeometry Specify the size and placement of editor window.
Prism.editor Specify the editor to use.
Prism.errorBell Specify whether the error bell is to ring.
Prism.errorwin Specify the window to use for error messages.
Prism*fontList Specify the font for labels, menu selections, etc.
Prism.helpColor Specify the color for help windows.
Prism.mainColor Specify the main background color for Prism.
Prism.make Specify the make utility to use.
Prism.markStaleData Specify how Prism is to mark stale data in

visualizers.
Prism.textBgColor Specify the background color for widgets

containing text.
Prism.textFont Specify the text font to use for certain labels.
Prism.textManyFieldTranslations

Specify the keyboard translations for dialog
boxes that contain several text fields.

Prism.textMasterColor Specify the color used to highlight the master
pane in a split source window.

Prism.textOneFieldTranslations
Specify the keyboard translations for dialog
boxes that contain one text field.

Prism.useXterm Specify whether to use a new xterm for I/O.
Prism.vizColormap Specify the colors to be used in colormap

visualizers.
Prism*XmText.fontList Specify the text font to use for most running text.

Note that the defaults mentioned in the sections below are the defaults for Prism
as shipped; your system administrator can change these in Prism's file in your
system's app-defaults directory.

Version 1.2 March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 9. Customizing Prism 139



::::::!140!i:::::::::::.:... .Pr......:....:-------------- - - G--

9.4.1 Adding Prism Resources to the Resource Database

The X resource database keeps track of default settings for programs running
under X. Use the xrdb program to add a Prism resource to this database. An easy
way to do this is to use the -merge option and to specify the resource and its
setting from the standard input. For example, the following command specifies
a default editor (the resource is described below):

% xrdb -merge
Prism.editor: emacs
CtrI-d

Type Ctrl-d to signal that there is no more input. Note that you must include the
-merge option; otherwise, what you type replaces the contents of your database.
The new settings take effect the next time you start Prism.

Another way to add your changes is to put them in a file, then merge the file into
the database. For example, if your changes are in prim. defe, you could issue
this command:

% xrdb -merge prism.defs

Consult your X documentation for more information about zrdb. 

9.4.2 Specifying the Editor and Its Placement

Use the Prism.editor resource to specify the editor that Prism is to invoke when
you choose the Edit or Email selection from the Utilities menu (or issue the
corresponding commands).

Use the resource Prism.editGeometry to specify the X geometry string for the
editor created by the Edit selection from the Utilities menu. The geometry string
specifies the number of columns and rows, and the left and right offsets from the
comer of the screen.

You can also change the settings of these resources via the Customize utility; see
Section 9.3 for more information

Version 1.2, March 1993
Copyright C0 1993 Thinking Machines Corporation

140 Prism User $ Guide



Chater9.Cusomzin Pism14

9.4.3 Specifying the Window for Error Messages

Use the Prism.errorwin resource to specify the window to which Prism is to
send error messages. Predefined values are command, dedicated, and snapshot.
You can also specify your own name for the window.

You can also change the setting of this resource via the Customize utility; see
Section 9.3.

9.4.4 Changing the Text Fonts

You may need to change the fonts Prism uses if, for example, its fonts aren't
available on your system. Use the resources described below to do this. To list
the names of the fonts available on your system, issue the UNIX xlsfonts com-
mand. You should try to substitute a font that is about the same size as the Prism
default; substituting a font that is much larger can cause display problems, since
Prism does not resize windows and buttons to accommodate the larger font.

Use the Prism.textFont resource to specify the font that Prism is to use in dis-
playing the labels of histograms and text in visualizers. By default, Prism uses
a 12-point fixed-width font for this text.

You can also change the setting of this resource via the Customize utility; see
Section 9.3.

Use the Prism*XmText.fontList resource to change the font used to display
most of the running text in Prism, such as the source code in the source window.
By default, Prism uses a 12-point fixed-width font for this text.

Use the Prism*fontList resource to change the font used for everything else (for
example, menu selections, pushbuttons, and list items). By default, Prism uses
a 14-point Helvetica font for this text.

9.4.5 Changing Colors

Prism provides several resources for changing the default colors it uses when it
is run on a color workstation. To get a list of some available colors, you can con-
sult the file /usr/lib/Xl/rgb. txt.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Chapter 9. Customizing Prism 141



Changing the Colors Used for Colormap Visualizers

Use the Prism.vizColormap resource to specify a file that contains the colors
to be used in colormap visualizers. You can also change the setting of this
resource via the Customize utility; see Section 9.3. See Section 9.3.2 for a dis-
cussion of how to create a visualizer color file.

Changing Prism's Standard Colors

Use the Prism.helpColor resource to change the background color of help
windows.

Use the Prism.dialogColor resource to change the background color of dialog
boxes.

Use the Prism.textBgColor resource to change the background color for text in
buttons, dialog boxes, help windows, etc. Note that this setting overrides the set-
ting of the X toolkit -bg option.

Use the Prism.textMasterColor resource to change the color used to highlight
the master pane when the source window is split.

Use the Prism.mainColor resource to change the color used for just about
everything else.

The defaults are:

Prism.helpColor: bisque3

Prism.dialogColor: Thistle
Prism.textBgColor: snow2
Prism.textMasterColor: black

Prism.mainColor: light sea green

9.4.6 Changing Keyboard Translations

You can change the keys and key combinations that Prism translates into various
actions. In general, doing this requires an understanding of X and Motif pro-
gramming. You may be able to make some changes, however, by reading this
section and studying the defaults in Prism's file in your system's app-def aults
directory.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

142 Prism User i Guide



Chapter9.C som z g- Pr_--m 1 ..... 43-----------

Changing Keyboard Translations in Text Widgets

Use the Prism.textOneFieldTranslations resource to change the default key-
board translations for dialog boxes that contain only one text field. Its default
definition is:

Prism.textOneFieldTranslations: \

<Key>osfDelete: delete-previous-character () \n\
<Key>osfBackSpace: delete-previous-character() \n\

Ctrl<Key>u: eraseto_beginning() \n\
Ctrl<Key>k: erase toend() \n\
Ctrl<Key>d: delete char_at_cursor_position() \n\
ctrl<Key>f: move cursor to next char() \n\
Ctrl<Key>h: move cursor to_prev char() \n\
Ctrl<Key>b: move_cursor_toprev_char() \n\

Ctrl<Key>a: move cursor to beginning of_text() \n\
Ctrl<-Key>e: move cursor to end of text()

Che definitions with osf in them are special Motif keyboard symbols.)

Use the Prism.texanyFieldTranslations resource to change the default key-
board tnslations for dialog boxes that contain several text fields. Its default
definition is:

Prism.textManyFieldTanslations: \

<Key>osfDelete: delete-previous-character () \n\
<Key>osfBackSpace: delete-previous-character() \n\
<Key>Return: next-tab-group() \n\

<Key>KP_Enter: next-tab-group() \n\
Ctrl<Key>u: erase to_beginning() \n\
Ctrl<Key>k: erasetoend() \n\

Ctrl<Key>d: delete_char at cursorposition() \n\
Ctrl<Key>f: move cursorto next char() \n\
Ctrl<Key>h: move_cursor toprev_char () \n\
Ctrl<Key>b: move_cursor toprev_char() \n\
Ctrl<Key>a: move_cursor tobeginning_of_text() \n\
Ctrl<Key>e: movecursorto end of text()

If you make a change to any field in one of these resources, you must copy all
the definitions.

Changing General Motif Keyboard Translations

Prism uses the standard Motif translations that define the general mappings of
functions to keys. They are shown below.

. )

Version 1.2, March 1993
Copyright 0 1993 Thining Machines Corporation

Chapter 9. Customizing Prism 143



144PrsmUsr' Gid

*defaultVirtualBindings: \

osfActivate :

osfAddMode :

osfBackSpace :

osfBeginLine :

osfClea 

osfDelete :

osfDown :

osfEndLine :

osfCancel :

osfHelp :

osfInsert :

osfLeft :

osfMenu :

osfMenuBar :

osfPageDown :

osfPageUp :

osfRight :

osfSelect :

osfUndo :

osfUp

<Key>Return \n

Shift <Key>F8 \n
<Key>BackSpace \n\
Key>Home \n\

<Key>Clear \n\

<Key>Delete \n\

<Key>Down \n\

<Key>End \n\

<Key>Escape \n\

<Key>F1 \n\

<Key>Insert \n\

<Key>Left \n\

<Key>F4 \n\
<Key>F10 \n\

<Key>Next \n\

<Key>Prior \n\

<Key>Right \n\

<Key>Select \n\

<Key>Undo \n\

<Key>Up

To change any of these, you must edit its entry in this resource. For example, if
your keyboard doesn't have an F10 key, you could edit the osfMenuBar line and
substitute another function key. 4

Note these points in changing this resource:

* All entries in the resource must be included in your resource database if

you want to change any of them; otherwise the omitted entries are
undefined.

*· The entries in this resource apply to all Motif-based applications. If you
want your changes to apply only to Prism, change the first line of the

resource to Prism*defaultVirtualBindings.

9.4.7 Changing the xterm to Use for I/0

By default, Prism creates a new xterm for input to and output from a program.
Set the Prism.useXterm resource to false to tell Prism not to do this. Instead,
I/O will go to the xterm from which you invoked Prism. You can also change the
setting of this resource via the Customize utility; see Section 9.3.

4

Version 1.2, March 1993
Copyright ) 1993 Thinking Machines Corporation

t
144 Prism User S Guide



Chper9 CsomzngPis 4

9.4.8 Changing How Prism Signals an Error

By default, Prism flashes the command window when there is an error. Set the
resource Prism.errorBell to true to tell Prism to ring the bell of your worksta-
tion instead. You can also change the setting of this resource via the Customize
utility; see Section 9.3.

9.4.9 Changing the make Utility to Use

By default Prism uses the standard UNIX make utility, /bin/make. Use the
resource Prism.make to specify the pathname of another version, of make to use.
You can also change the setting of this resource via the Customize utility; see
Section 9.3.

9.4.10 Changing How Prism Treats Stale Data in Visualizers

9 By default Prism prints diagonal lines over data in visualizers that has become
"stale" because the program has continued execution from the spot where the
data was collected. Set the resource Prism.markStaleData to false to tell Prism
not to draw these diagonal lines. You can also change the setting of this resource
via the Customize utility; see Section 9.3.

9.5 Initializing Prism

Use the .prisminit file to initialize Prism when you start it up. You can put
any Prism commands into this file. When Prism starts, it executes these com-
mands, echoing them in the history region of the command window.

When starting up, Prism first looks in the current directory for a file called
.prisminit. If the file is there, Prism uses it. If the file isn't there, Prism looks
for it in your home directory. If the file isn't in either place, Prism starts up with-
out executing a .prisminit file.

The .prisminit file is useful if there are commands that you always want to
execute when starting Prism. For example:

.9

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Chapter 9. Customizing Prism 145



* If you always want to log command output, put a log command in the file;
see Section 2.7.4.

* If you want to use your own aliases for Prism commands, put the appropri-
ate alias commands in the file; see Section 9.2.

Note that you don't need to put pushbutton or tearoff commands into the
.prisminit file, because changes you make to the tear-off region are automati-
cally saved when you leave Prism; see Section 9.1.

In the .prisminit file, Prism interprets lines beginning with # as comments.
If \ is the final character on a line, Prism interprets it as a continuation character.

Version 1.2, March 1993
Copyright 1993 Thinking Machines Corporation

146 Prism User s Guide



e

Appendix A

Prism Commands

This appendix lists all Prism commands. For complete reference descriptions of
these commands, see the Prism Reference Manual, or choose the Commands Ref-
erence selection from the Help menu.

Table 3. Prism commands.

Command

/string
?string
address/
value=base
alias

assign
attach

call
catch

cd
cmattach*

cmcoldboot*
cmdetach*

cmfinger*
cmsetsafety*
collection

cont

core
delete

Use

Searches forward in the current file for string.
Searches backward in the current file for string.
Prints the contents of a location in memory.
Converts a value to a different base.
Defines an alias.
Assigns the value of an expression to a variable or array.
Attaches to a runmning process.
Calls a procedure or function.
Tells Prism to catch the specified signal.
Changes the current working directory.
Attaches to a CM resource.
Cold boots a CM resource.
Detaches from a CM resource.
Displays information about CM users.
Sets safety on or off for a CM resource.
Turns collection of performance data on or off.
Continues execution.
Associates a core file with an executable program.
Removes an event.

*Available from CM-2 and CM-200 front ends only.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation 147

I



148 PrsmUsr'IG

Table 3. Prism commands (cont'd).

Command Use

detach
display
doc
down
dump
edit
email
file
func
help
hide**
ignore
list
load
log
make
next
nezti
perf
perfadvice
perfload
perfsave
print

printenv
pushbutton**

pwd
quit '

reload
return
run
select
set

setenv
show**
show events

source
status
step
stepi

Detaches from a running process.
Displays the value of an expression.
Displays on-line documentation in commands-only Pim.
Moves the symbol-lookup context down me level.
Prints the names and values of variables.
Calls up an editor.
Sends mail about Prism.
Sets the source file to the specified filename.
Sets the current function to the specified function name.
Lists currently implemented commnds.
Hides a pane of a split source window.
Tells Prism to ignore the specified signal.
Lists source lines.
Loads a program.
Creates a log file of your commands and Prism's responses.
Executes the make utility.
Executes one or more source lines, stepping over functions.
Executes one or more instructions, stepping over fiunctions.
Displays performance data.
Displays an analysis of performance data.
Loads a performance data file.
Saves performance data to a file.
Prints the value of an expression.
Displays currently set envinmment variables.
Adds a Prism command to the tear-off region.
Prints the current working directory.
Leaves Prism.
Reloads the currently loaded program.
Steps out to the caller of the current routine.
Starts execution of a program.
Specifies the master pane of a split source window.
Defines an abbreviation for a variable or expression.
Displays or sets environment variables.
Splits the source window.
Prints the event list.
Reads commands from a file.
Prints the event list.
Executes one or more source lines.
Executes one or more inucons.

**Not available in commands-only Prism.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

q (

4

148 Prism User Guide
i



Apeni A.Pim omnd 4

Table 3. Prism commands (cont'd).

stepout
stop
stopi
tearoff**

trace
tracei
type
unalias
unset

unsetenv
untearoff**
up
use
whatis
when
where
whereis

91I which

Steps out to the caller of the current routine.
Sets a breakpoint.

Sets a breakpoint at an instruction.
Adds a menu selection to the tear-off region.
Traces program execution.
Traces instructions.
Provides type information on Paris parallel variables.
Removes an alias.
Removes an abbreviation created by set.
Removes the setting of an environment variable.
Removes a button from the tear-off region.
Moves the symbol-lookup context up one level.
Adds a directory to the list to be searched for source files.
Prints the type of a variable.
Sets a breakpoint.
Prints a stack trace.
Prints the list of all fully qualified names for an identifier.
Prints the fully qualified name Prism chooses for an
identifier.

**Not available in commands-only Prism.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

$

Command Use

Appendix A. Prism Commandss 149



4

$

-

i



Appendix B

Commands-Only Prism
............... - --... -ii--------i-ii

You can run Prism in a commands-only mode, without the graphical interface.
This is useful if you don't have access to a terminal or workstation running X.
All Prism functionality is available in commands-only mode except features that
require graphics (for example, visualizers). This appendix provides an overview
of commands-only Prism. For further information on individual commands, read
the sections of the main body of this guide dealing with the commands, and read
the reference descriptions in the Prism Reference Manual.

.

B.1 Specifying the Commands-Only Option

To enter commands-only mode, specify the -c option on the prism command
line. You can also include other arguments on the command line; for example,
you can specify the name of a program so that Prism comes up with that program
loaded. X toolldt options are, of course, meaningless. See Section 2.2.2 for more
information on command-line options.

When you have issued the command, you receive this prompt:

(prism)

You can issue. most Prism commands at this prompt, except for commands that
apply specifically to the graphical interface; these include pushbutton, tear-
off, and untearoff.

Version 1.2, March 1993
Copyright O 1993 Thinking Machines Corporation

151



B.2 Issuing Commands

You operate in commands-only Prism just as you do when issuing commands on
the command line in graphical Prism; output appears below the command you
type, instead of in the history region above the command line. You cannot redi-
rect output using the on window syntax. You can, however, redirect output to a
file using the efilename syntax.

Commands-only Prism supports the editing key combinations supported by
graphical Prism, plus some additional combinations. Here is the entire list:

Ctrl-a Moves to the beginning of the line.

Ctrl-b (or Ctrl-h)
Moves back one character.

Ctrl-c Interrupts execution.

Ctrl-d Deletes the character under the cursor.

Ctrl-e Moves to the end of the line.

Ctrl-f Moves forward one character.

Ctrl-j (or Ctrl-m)
Done with input (equivalent to pressing the Return
key).

Ctrl-k Deletes to the end of the line.

Ctrl-l Refreshes the screen.

Ctrl-n Displays the next command in the commands buffer.

Ctrl-p Displays the previous command in the commands
buffer.

Ctrl-u Deletes to the beginning of the line.

When printing large amounts of output, commands-only Prism displays a more?
prompt after every screenful of text. Answer y or simply press the Return key
to display another screenful; answer n or , followed by a carriage return, to stop
the display and return to the (prism) prompt.

You can adjust the number of lines Prism displays before issuing the more?
prompt by issuilg the set command with the $page_size option, specifying

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Prism User 5v Guide152



Appedi. Comand-Only Pm1-

the number of lines you want displayed. For example, issue this command to
display 10 lines at a time:

(prism) set $page_size - 10

Set the $page_size to 0 to turn the feature off; Prism will not display a more?
prompt.

B.3 Useful Commands

This section describes some commands that are especially useful in commands-
only Prism.

Use the list command to list source lines from the current file. For example,

(prism) list 10, 20

prnts lines 10 through 20 of the current file.

0 Use the collection command with no arguments to print out the current status
of collection (on or off).

Use the show events command to print the events list. Use the delete com-
mand to delete events from this list.

Use the perf command to display performance data. Use the perf save com-
mand to save the performance data in a format that you can later load into the
graphical version of Prism (via the perf load command or the Load Data selec-
tion from the File menu in the Performance Data window). Use the
perfadvice command to display an analysis of the performance data.

B.4 Obtaining On-Line Documentation

Use the doc command to obtain on-line documentation in commands-only
Prism. The doe command is not available in graphical Prism.

Issuing doc displays a menu of available documents. Choose the number
associated with the document you want to view. In most cases, this displays

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Appendix A. Commands-Only Prism 153



154 Prism User s Guide

another menu of the chapters within the document. Choose the number
associated with the chapter, and the first screenful of text for that chapter is dis-
played. Answer y in response to the more? prompt or simply press the Return
key to display the next screenful. Answer n to return to the menu.

If you choose the number associated with bug-update files or release notes from
the top-level doc menu, Prism displays a menu of the files or release notes
available at your site.

From any menu, you can press p to return to the previous menu, q to return to
the (prism) prompt, or m to display the text of a UNIX or CMOST manual page.
When you press m, you can either enter the name of the man page immediately,
or press Return and be prompted for the name of the man page.

Use the syntax

number filename

to redirect the text of the document associated with number to the file you spec-
ify. Use

number oe filename

to add the text to the end of an existing file.

B.5 Leaving Commands-Only Prism

Issue the quit command to leave commands-only Prism and return to your
UNIX prompt.

Version 1.2, March 1993
Copyright C 1993 Thinking Machines Corporation

-



0

0

Appendix C

Using Prism with CMAX
I 'El" .- ~3' 

You can use Prism with source code you have translated from Fortran 77 to CM
Fortran using the CMAX Converter. Prism lets you:

* View both the Fortran 77 source code and the corresponding CM Fortran
source code at the same time, using Prism's split source window. Or, you
can view either code individually.

* Set breakpoints and create other events in terms of either the Fortran 77
or CM Fortran code.

* View the call stack in terms of either the Fortran 77 or CM Fortran code.

* View performance data in terms of either Fortran 77 or CM Fortran code.

This appendix describes how to use Prism with a CMAX-translated program.

C.1 How Prism Can Display Both Source Files

To display both Fortran 77 and CM Fortran source files, Prism uses a mapping
file that is created as part of the CMAX translation. This mapping file is named
filename. ttab, wherefilename is the name (minus the extension) of the Fortran
77 and CM Fortran source files. If Prism can't find this file, it won't be able to
load the Fortran 77 source file.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation 155



Prism User s Guide

C.2 Splitting the Source Window

Begin by loading the executable CM Fortan program into Prism.

You then split the source window to display the corresponding Fortran 77 code
by following these steps:

1. Right-click in the source window to display the source-window popup
menu.

2. Choose Show source pane from this menu.

3. This displays another menu. Choose Show .f source from this menu.

You then see a split screen like that shown in Figure 44. The CM Fortran source
code is in the top pane; the corresponding Fortran 77 source code is in the bottom
pane.

Figure 44. CM Fortran and Fortran 77 code in a split screen.

When your screen is split, breakpoints you set in the line-number region of one
pane also appear at the corresponding line in the other pane.

,9

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

156

I

I Une Source File: user&cmsg7ftileforgellOlb.fcm
10 real al(aslzel)
11
12 CFs LAYOUT al (:NEWS)
13 PRINT 40, 'Test: ilO1b'
14 FORALL (f 1:12) a(i) = mod(l,7)
15 CALL l101b(a1,izel)
16 PRINT 10, 1
17
19 - include 'test-Formats.inc'
19
20 STOP
21 END
22 x77: -------
23 * x77: Transformation of I101B from ilOlb.f
24 C x77: i
25 C x77: Transform DO/ENODO (1) I

11
13 print 40, 'Teat: iOib'
14 do = .sizel
14 al i) = mod(l,7)

end do
15 cll lOlb(1., izeD)
16 print 10, l
17
19 - include 'test-formats.ln'
19
20 stop
21 end
22
23
24 C Item 101 Priorit 5
25 C Fortrmn-77 source:

------ ---------- ---- ----- -- --- --- ---- 1 " -- .... .. .... ...... ..



Appendix C.UsingPrismwihCMX-1

To return to a single source window, put the mouse pointer in the pane you want
to delete, right-click, and choose Hide this source pane from the popup menu.

NOTE: You can also choose Show .s source from the Show source pane menu;

this displays the assembly code for the executable program. You can therefore
have a three-way split of your source window, displaying the CM Fortran, For-
tran 77, and assembly code versions of the program.

C.2.1 From the Command Line

To split the source window, issue the show command, using as an argument the
file extension of the source file you want to see in the other pane. For example,
when you first load the program, only the CM Fortran source code is visible. To
see the Fortrma 77 source code in a separate pane, issue the command:

show .f

To return to a single source window, issue the hide command, specifying the file
extension of the source code you no longer want to see. For example, to display
only the Fortran 77 code, issue the command:

hide . f cm

C.3 Using the Master Pane

When you split the source window, the top (CM Fortran) pane is highlighted; this
is the master pane. Left- or middle-click in the other pane to make it the master.

The master pane controls several aspects of the way Prism operates when the
screen is split. Specifically:

• Scrolling through the master pane causes the slave pane to scroll to the
corresponding location. You can scroll the slave pane independently, but
this does not cause the master pane to scroll.

• The line numbers shown in the slave pane are in terms of the lines in the
master pane. Thus, several Fortran 77 lines in the slave pane could have
the same line number, if they were all converted to a single CM Fortran
statement. Similarly, if the Fortran 77 pane is master, the CM Fortran pane

Version 1.2, March 1993
Copyright ©) 1993 Thinking Machines Corporation

Appendix C Using Prism with CAX 157



15Mr=mUsrs ud

may skip a line number, if it doesn't have code corresponding to that For-
tran 77 line.

* Prism interprets all unqualified line numbers in commands as referring to
the source code in the master pane. You can still refer to a line number in
the other source code, but you must qualify it with the filename. For exam-
ple, if CM Fortran is the master pane, you would specify a breakpoint in
the Fortran 77 code like this:

stop at foo.ff:20

* Prism displays line numbers for the master source code in the event table,
the Where window, and in messages in the command window.

* Prism displays the files for the master source code in the File window.

* Prism displays master source code in response to a list command.

* Source-line histograms in the Performance Data window show the mas-
ter source code.

* The ? and / search commands search in the master pane only.

* If you choose Edit from the Utilities menu, the master source code
appears in the editor.

C.3.1 From the Command Line

To choose the master pane from the command line, issue the select command,
specifying the extension of the source code you want to be in the master pane.
For example, to make the Fortran 77 code be in the master pane, issue this
command:

select .f

C.4 Displaying Corresponding Source Lines

Prism lets you graphically display the line or lines in one pane that correspond
to a line in another pane. Press the Shift key and left-click in the line-number
region next to the line you are interested in. A pound sign (#) appears next to the

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

158 Prism User s Guide



line; the same character appears next to the corresponding line(s) in the other
pane.

C.5 Debugging

You can debug in terms of either the Fortran 77 or CM Fortran source code. For
example, setting a breakpoint in one source code causes it to be set in the corre-
sponding location in the other source code.

If you hide the CM Fortran pane, it will look as if you are debugging your Fortran
77 code directly. Note, however, that this is not exactly the case - you are actu-
ally debugging a CM Fortran executable program. This means that you will not
be able to set a breakpoint at a line that has been optimized away in the transla-
tion. For example, if you try to set a breakpoint in the middle of a DO loop, Prism
insists on putting the breakpoint at the beginning of the loop. Similarly, you can't
print a Fortran 77 variable that has been optimized away.

C.6 Analyzing Performance

You can use Prism to analyze the performance of your translated CM Fortran
program. This will tell you if CMAX didn't translate a Fortran 77 construct into
the most efficient CM Fortran equivalent. For example:

* Unvectorized loops are treated as serial code in CM Fortran and are
executed on the partition manager; if you use Prism's performance analy-
sis feature, these loops will show up as using the Partition manager
(user) resource (on the CM-5) or the Front end manager (user) resource
(on the CM-2/200).

* Fortran 77 code that could be translated into a CSHIFT may be translated
as an assignment of array sections. This will generate unnecessary Send/
Get communication.

Note that you have two choices in working with your program:

You can edit the Fortran 77 code, and then use CMAX to retranslate the
code into CM Fortran.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Appendix C Using Prism with CMAX 159



Y BamnnPoa1 Prism Users Guid

You can edit the translated CM Fortran code directly. If you do this, you
can no longer use Prism's split source window to view the original Fortran
77 source, since the Fortran 77 code and the CM Fortran code won't be
equivalent.

C.7 Using Commands-Only Prism

Although you don't have the benefit of using the split source window, you can
use commands-only Prism with a CMAX-translated program. Use the select
command to specify the version of the source code in which you want to debug.
For example, issue this command to debug in terms of the Fortran 77 source
code:

(prism) elect .f

To subsequently debug in terms of the CM Fortran source code, issue this
command:

(prism) elect .fcm

Version 1.2, March 1993

Copyright CD 1993 Thinking Machines Corporation

160 Prism User k Guide



Appendix D

Glossary

This is a glossary of specialized terms used in Prism. The glossaryis also available
on-line; choose the Glossary selection from the Help menu.

alias An alternative name for a Prism command. You can set up
these alternative names via the alias command.

breakpoint An event that stops execution of a program at a specific
location, when a condition is met, or when a variable or
expression changes its value.

call stack The list of procedures and functions currently active in a
program.

command window The pane at the bottom of the main Prism window, in which
messages are displayed and the user can issue commands.

context In printing and displaying data, the active elements of a
variable or expression. Prism handles active elements dif-
ferently from inactive elements in certain data
representations.

current file The source file currently being displayed in the source win-
dow. When the program is first loaded, this is the file that
contains the main function. This can change during execu-
tion, or as a result of actions you perform in Prism. The
current file determines the scope that Prism uses in identi-
fying line numbers and variables.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation 161



162 Prism User~ Guide

current function

current line

data navigator

dialog box

display window

event

event list

event table

execution pointer

Help Index

history region

The function or procedure displayed in the source window.
This is the main function when a program is first loaded. It
can change during execution, or as a result of performing
certain actions in Prism. Prism uses the current function to
determine the scope it should use in identifying variables.

The source line at which the program is currently stopped.
The execution pointer (>) points to the current line in the
source window.

A component of a visualizer that lets you manipulate the
display window relative to the data being visualized.

A window used by Prism to obtain information from or
provide information to the user.

The pane within a visualizer that shows the data.

A breakpoint or trace, along with associated actions, that
the user creates to control the execution of a program.

The list of events, displayed as part of the event table or via
the show events command.

A table that lists the events that are to take place during the
execution of a program, and provides mechanisms for
adding, editing, and deleting these events.

The greater-than symbol (>) that appears in the line num-
ber region and points to the next line in the source window
to be executed.

The list of entries on which help is available.

The area of the command window where Prism displays
messages and responses to commands.

An I-shaped graphical image that appears in a text entry
box to show that text can be entered in it.

Version 1.2, March 1993
Copyright 1993 Thinking Machines Corporation

I-beam

162 Prism User S Guide



Append~"i D. Glossary 16

immediate action

keyboard accelerator

line-number region

location cursor

menu bar

mnemonic

mouse pointer

An action that takes place as soon as a menu selection is
chosen; no dialog box or window is displayed to obtain fur-
ther information from the user.

A sequence of keystrokes that performs an action without
the need to display a menu.

The area to the left of the source window in which line
numbers are displayed. The user can set breakpoints in this
region.

A graphical image that represents the focus of keyboard
actions; it is displayed as a box surrounding the selected
object.

The line of text across the top of the main Prism window. A
pulldown menu is associated with each word along this
line; you can choose items from these menus to perform
actions in Prism.

A single letter (generally the first letter) underlined in a
menu title or menu selection; by typing this letter, you can
display the menu or (when the menu is displayed) choose
the menu selection.

The graphical image (for example, an arrow head) that
appears on the screen and represents the current location of
the mouse.

performance advisor An analysis that Prism provides of performance data.

Prism resource

qualified name

A variable that controls an aspect of Prism's behavior.
Default values for many Prism resources appear in Prism's
file in your system's app-defaults directory. You can
change these defaults by specifying new values in your X
resource database, or by using the Customize utility.

A version of the name of a variable or function that identi-
fies it more completely within a program. For example,
' f oo' bar' x identifies the variable x in the function bar
in the source file f oo. Names can be either partially quali-
fied or fully qualified.

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

Appendix D. Glossary 163



164 Prism User's Guide

The small box in the corner of many windows; you can
drag this box to resize the window.

resolving names

resource

scope pointer

source window

subsystem

tear-off region

trigger condition

visualizer

watchpoint

The procedure by which Prism determines which (of possi-
bly several) variables or procedures with the same name it
is to use (for example, in an expression).

In performance analysis, one of the subsystem components
(for example, CM cpu time, Send/Get communication) for
which Prism measures a program's usage.

The - symbol in the line-number region. It indicates the
beginning of the scope that Prism uses for identifying
variables.

The pane in Prism's main window where source code is
displayed.

In performance analysis, one of the independent systems
for which Prism measures a program's usage. For a CM-2
or CM-200, they are the front end and the CM. For the CM-5,
they are the partition manager and the nodes. The front end
and partition manager are referred to as serial subsystems.
The CM and the nodes are referred to as parallel
subsystems.

The area beneath the menu bar in Prism's main window.
You can move frequently used menu selections and Prism
commands to this region to make them more accessible.

An action that causes an event to take place. Trigger condi-
tions include reaching a program location, a logical
condition becoming true, and the value of a variable
changing.

A window that displays scalar or parallel data using one of
several visual representations available in the Prism.

An event that occurs when the value of a variable changes.

Cb

Version 1.2, March 1993
Copyright 1993 Thinking Machines Corporation

resize box

164 Prism User S Guide



Index
_~aaIN 

Symbols
? command, 20

and split source window, 158
t, 146
, 26, 112

+-,32
*-, 32
/ command, 20

and split source window, 158
<?-, 32
>?, 32
\, 146

A

Advice selection, 113
Anica intrinsic function, 30
alias, 161

alia. command, 133, 146
LaL intrinsic function, 31

An intrinsic function, 31

app-defaults file, 134, 142

arrays, dynamic, visualizing in structure
visualizers, 96

arrow keys, 13
assembly code, displaying in split source

window, 22
assign command, 99
attach command, 41

can't be used in Actions field, 57
auto-attaching in Prism, 43

B

/bin/make, 118, 136

breakpoints, 161

deleting, 61, 63, 65
setting, 60

using commands to set, 63

using the event table and Events menu
to set, 62

using the line-number region to set, 61
Bug Updates selection, 129, 136
bug-update files

viewing, 129

viewing in commands-only Prism, 154

C

C*, -oo compiler option, 102
C* functions, passing parallel variables to, 32
C* left indexes, using army-section syntax in,

32

C* reduction operators, using in expressions,
32

call stack, 161
displaying, 68

moving through, 69
ed command, 35
changes, where Prism stores, 138
CM documents, viewing, 128
CM Frtran, -nodebug option, 66
CM menu, 41
CM-2, 41

CM-2/200

attaching to, 41
cold booting, 44
detaching from, 44
turning safety on and off, 44

CM-2/200 users, obtaining infonnation about,
45

CM-200, 41

cmattach command, 41, 43 -
CMattach selection, 42
CMAX, 23

using Prism with, 155
CMAX mapping file, 155

cmcoldboot command, 44

Version 1.2, March 1993
Copyright 0) 1993 hinking Machines Corporation 165

0



166 E 88fs-fi- sPrias ^sr^ a -^-^- z^ r far- aDs-z^ ^^-asa sers Guid-e- ------- Ide

CMcoldboot selection, 44
cedAtach command, 44
CMdetach selection, 44
cafinger command, 45
CMfinger selection, 45
caPtL intrinsic function, 31, 86
CQOFN usnRmTnns environment

variable, 103, 115

-cprof ile compiler option, 8, 60, 102
effect on stepping, 46

CQIROFILIN environment variable, 105

CMPROFILINGDATA FILENAME
environment variable, 105

CMPROFILING EXCUTABLE.FILENAE
environment variable, 105

cps command, 10, 40
cimetsaf oty command, 44
CMsetsafety selection, 44
CmTscalarMain, 69
collection command, 104, 153

Collection selection, 104
colormap visualizers, 4, 85, 142

minimum and maximum values of, 88
colors, changing Prism's standard, 142
command line, 24

using, 24
command window, 3, 161

using, 24
commands

adding to the tear-off region, 133
executing fronm a file, 27
getting help on, 123
issuing, 14

issuing multiple, 25
logging, 27
setting up alternative names for, 133

Commands Reference selection, 124
Common Events buttons, 57, 58, 78
compiling and linking, 8

from within Prism, 118
complex numbers, 83, 90
cont command, 47

and auto-attaching, 43

context, 161

setting via print or display command,
79

Continue selection, 47
continuing execution, 47
core command, 40

can't be used in Actions field, 57
core files, associating with loaded programs,

10,40
coNT intrinsic function, 31

Ctrl-a, 13, 152

Ctrl-b, 13, 152

Ctrl-c, 13, 25, 47, 152
Ctrl-d, 13, 152

Ctrl-e, 14, 152

Ctrl-f, 14, 152

Ctrl-h, 152
Ctrl-j, 152
Ctrl-k, 14, 152
Ctrl-L 152
Ctrl-m, 152
Ctrl-n, 25, 152
Ctrl-p, 25, 152

Ctrl-u, 14, 152

Ctrl-x, 20
current file, 48, 161

changing, 49
current function, 48, 162

changing, 49
current line, 162
current working directory, changing and

printing, 35
Customize selection, 134
Customize utility, using, 134

D

data, changing the radix of, 100
data navigator, 4, 162

using, 81

dbx, 14

dedicated window, 26, 77
Define Type selection, 28

t
Version 1.2, March 1993

Copyright 0 1993 Thinking Machines Corporation

166 Prism User s Guide



...i........ .. 167'~Z' ..... ........................................------------..0
delete command, 65, 68, 153
Delete selection, 59, 67
detach command, 41

can't be used in Actions field, 57
dialog boxes, 162

using, 19

dimof, 31

display command, 78
Display Data selection, 105
Display dialog box, 78
DISPY environment variable, 9
Display selection (Debug menu), 75
display window, 162

using, 82

displaying
difference from printing, 74
from the command window, 78
from the Debug menu, 75
from the event table, 78
from the Events menu, 77

doc command, 153
dot notation, 31
down command, 69
Down selection, 69
DsIZz intrinsic function, 31

E

eachinst keyword, 56
eachline keyword, 56
edit command, 117
edit geometry, 136
Edit selection, 117, 136, 140, 158

editing source code, 117
editor, specifying default, 140
EDIToR environment variable, 117, 136

elevator, 18

email command, 130
Email selection, 130, 136

environment variables, setting and displaying,
35

error bell, 136
enor messages, specifying window for, 141
error window, 136
errors, Prism's behavior after, 145

Esc key, 13
event list, 55, 65, 162
event table, 162

description of, 55
using, 55

Event Table selection, 55
events, 162

adding, 58
deleting, 58
editing, 59
saving, 59

Events menu, 58
executing a program, 45
execution pointer, 23, 162
expressions, writing in Prism, 29

F
F1 key, 13

F10 key, 13, 15, 16

file command, 49
File menu in visualizers, using, 82
File selection, 20, 49, 61
focus, 12

fonts, changing the default, 141
Fortran intrinsic functions, 30
front end, 9
func command, 50
Func selection, 20, 21, 49, 61
function definition, displaying in the source

window, 21

functions, choosing the correct, 29

G

-g compiler option, 8, 60
Glossary selection, 124
graph visualizers, 85

field height of, 88
minimum and maximum of, 88

gum, 9

H

help, getting, 121

Version 1.2 March 1993
Copyright 0 1993 Thinking Machines Corporation

0

0

Index 167



168"I Prism User'sI' Guide----I

help command, 126
Help Index, 122, 162

choosing an entry from, 122
help system, overview of, 5
hide command, 157
history region, 24, 162

using, 25

I-beam, 162

Io, 46
specifying the xterm for, 137, 144

icons, 18

immediate action, 163
Index selection, 122
infinities, detecting, 34
Interrupt selection, 25, 47
inter upting execution, 47

K

keyboard, using in the menu bar, 15
keyboard accelerators, 16, 163

keyboard alternatives to the mouse, 12

L

languages supported in Prism, 8
Libprim2.a, 8
line-number region, 3, 163

using, 23
list command, 153, 158

lists, using, 19

load command, 39
can't be used in Actions field, 57

Load Data selection, 115, 153
Load selection, 38
loading a program, 37
location cursor, 12, 163

log command, 27, 146

M

mail, sending, 128
mailing list, 128

main, 69
make command, 119
Make selection, 118
make utility, 118, 136

makefile
creating, 118

using, 118

Man Pages selection, 127
manual pages

viewing, 127

viewing in commands-only Prism, 154
Mark Stale Data, 137
master pane, in split source window, 157
AmAoc intrinsic function, 80

MAXVAL intrinsic function, 31

memory, examining the contents of, 70
menu bar, 2, 163

using, 14

Meta key, 13, 16

mVmma, intrinsic fimction, 31

MT X11 IR4, 9

mnemonics, 16, 163

Motif keyboard translations, changing, 143
mouse

getting help on using, 126
using, 12

using in the menu bar, 15
mouse pointer, 12, 163

mnm, 9

N

names, resolving, 29
NaNs, detecting, 34
NCD XllR4, 9
next command, 47
Next selection, 47
nexti command, 47

O
olwm, 9
on-line documentation

obtaining, 126
obtaining in commands-only Prism, 153

Version 1.2, March 1993
Copyright 0 1993 hindking Machines Corporation

a

168 Prism User s Guide



Index -8ggeg( ----- 169---

Online Doc selection, 128
Options menu in visualizers, using, 83
output

logging, 27
redirecting, 26

Overview selection, 124

P

Paris programs
compiling for Prism, 8
defining types for, 28

partition manager, 9
pcoord, 31
perf command, 112, 153

perfadvice command, 113, 153

perfload command, 116, 153

performance advisor, 113, 163

performance data
collecting, 104

outside of Prism, 105
consistency of, 104
displaying, 105

displaying in the command window, 112
for C* and CM Fortran programs run on a

Slm-4, 102

interpreting, 113

what is collected, 101
performance data files, saving and loading,

115

Performance Data window, 106
Resources pane, 107
Source-Lines pane, 112

perf save command, 11.5, 153
PN Debug selection, 72
pndbz, running on a CM-5, 72
print command, 78
Print dialog box, 75
Print selection (Debug menu), 75
Print selection (Events menu), 77
printenv command, 36
printing

difference from displaying, 74
from the command window, 78
from the Debug menu, 75

from the event table, 78
from the Events menu, 77
from the source window, 21, 76

Prism
commands-only

issuing commands in, 152
leaving, 154

specifying, 10, 151

useful commands in, 153
using with CMAX, 160

entering, 10

initializing, 145

languages supported in, 8
leaving, 36
look and feel of, 2
mailing list for, 130
overview of, 1
sending mail about, 130

prism command, 10
-c option, 10, 151

.prism defaults, 138
Prism defaults, changing, 138
.primainit, 11, 27, 28, 145
Prism resources, 163

table of, 139
Prism. dialogColor, 142
Prism. editeometry, 140
Prism. editor, 140
Prism. errorBell, 145
Prism.errorin, 141
Prism.helpColor, 142
Prim.mainColor, 142
Prism.markStaleData, 145
Prism. textBgColor, 142
Prism. textFont, 141
Prism. textManyFieldTranslations,

143

Prism. tezxtsuterColor, 142
Prism. teztOneFieldTranslations, 143
Prism.useXterm, 144
Prism.vizcolormap, 142
prism- talkethink. cm, 130
Prism*fontList, 141
Prim*mTezt. fontList, 141
prismdef ine_name function, 96

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

Index 169



-: ... .......... . .................. ""'"'"'"'"'"'"'"' "-'"'~"~;ZZ;.'.'-'---Z-----:-.......

Procedure Histograms window, 110
procedures, displaying performance data on,

110

process, ing
attaching to and detaching from, 40
loading, 10

PRODUCT intrinsic function, 31

pa command, 10, 40
pushbutton command, 13:3, 146, 151

pd command, 35

0
qualified names, 29, 163

using, 29
quit command, 36, 154
Quit selection, 36

R

radix, changing, 100
RAK intrinsic function, 31

rankof, 31
REAL intrinsic function, 31

registers
examining the contents of, 70
printing the contents of, 79

related topics, getting help on, 123
release notes

viewing, 129

viewing in commands-only Prism, 154
Release Notes selection (Doc menu), 129,

136
Release Notes selection (Help menu), 124
reload command, 40
resize box, 24, 164
resolving names, 29, 164
resources, 164

displaying data on, 107
return command, 47

can't be used in Actions field, 57
Return key, 13
Run (args) selection, 45
run command, 46

can't be used in Actions field, 57

Run selection, 45

S
safety, turned off when collecting

performance data, 104
Save Data selection, 115
scope pointer, 23, 164
scroll bar, 18
select command, 158
set command, 134

$dprecision and $fprecision
arguments, 88

$page_size option, 152
setenv command, 35
sh command, 34
shapeof, 31
Shell selection, 34
show command, 157
show events command, 60, 65, 68, 153
Silicon Graphics XllR4, 9
snapshot window, 26, 77
source code

editing, 117

moving through, 20
source command, 27, 60
source files, creating a directory list for, 50
source lines

displaying corresponding in split source
window, 158

displaying perfmance data on, 112
source window, 3, 164

splitting, 21
splitting for CMAX program, 156
using, 19

SPARC registers, 71

status messages, 48
status region, 3
step command, 47

can't be used in Actions field, 57
Step selection, 47
stepi command, 47
stepout command, 47
Stepout selection, 47
stepping through a program, 46

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

i. 4

- 4

41 I

170 Prism User Guide



-- -- - --i----- 171-. .0
Stop <cond> button, 62
Stop <loc> selection, 62
Stop <var> selection, 62
stop command, 63
stopi command, 63, 65
stopped keyword, 56
structures, visualizing, 92
subsystems, 164

subtopics, getting help on, 123
sux intrinsic function, 31
surface visualizers, 85

field height of, 88
minimum and maximum of, 88

T
Tab, 13

Tear-off dialog box, 132
tear-off region, 2, 164

resizing, 132
using, 131

Tearoff selection, 132
tearoff command, 132, 146, 151

terms, getting help on, 123
text, selecting in source window, 21
text font, 137
text visualizers, 4, 83

precision of, 88
text widgets, changing keyboard translations

in, 143
threshold -visualizers, 4, 84

threshold of, 89
topic windows

cancelling, 124

using, 123

Trace <cond> button, 66
Trace <loc> selection, 66
Trace <var> selection, 66
trace command, 63, 67
Trace selection, 66
tracei command, 63, 67
traces, deleting, 67, 68
tracing program execution, 66
trigger condition, 164
Tutorial selection, 8, 12.5

tvtm, 9
twm, 9
type command, 28

U

unalias command, 133
union members, visualizing in structure

visualizers, 96
UNIX commands, issuing, 34
unsot command, 134
unsetenv command, 35

untearoff command, 132, 151

up command, 69
Up selection, 69
use command, 51
Use selection, 39, 50
Using Help selection, 124
/usr/lib/Xl/rzgb. tzt, 137, 141
wm, 9

V

variables
changing the values of, 99
choosing the correct, 29
printing the type of, 98
setting up alternative, 133

vector visualizers, 86
minimum and maximum of, 88

visualization parameters, 87
visualizer color file

creating, 137

sample, 137

visualizers, 4, 80, 164

closing, 91
displaying a ruler for, 89
displaying from the source window, 21
field width of, 88
setting the context for, 90
statistics for, 90
structure, 92
treatment of stale data in, 137
updating, 91

working with, 80

Version 1.2, March 1993
Copyright X 1993 Thinking Machines Corporation

Index 171



172 Pri-m-User-s-Guide

W

watchpoint, 54, 164

whatis command, 99
Whatis selection, 98
when command, 63
where command, 69
Where selection, 68
Where window, 68, 69
whereis command, 30
which command, 29
window managers, 9, 18

windows
deleting and destroying, 18

using, 17

X

X resource database, adding Prism resources
to, 140

X servers, 9
X toolkit command-line options, 10
X Window System, 1
muan, 127

zrdb, 140
xterm, specify for /0, 144
zwaiu, 128

i 4

Version 1.2, March 1993

Copyright 0 1993 Thinking Machines Corporation

Prism User k Guide172


