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About This Manual
a _ ~

Objectives of This Manual

This manual describes the CMAX Converter for translating Fortran 77 code into
CM Fortran. It also provides hints for preparing portable code. The topics
covered are:

* The converter's actions and the mechanics of using it

* Fortran 77 constructions and their CMAX-generated equivalents

* The programming conventions of scalable Fortran 77, which enhance the
portability of code performance

* General portability issues and some variations on the porting process

Intended Audience

The reader of this manual is assumed to have a thorough grasp of Fortran 77
programming and some knowledge of CM Fortran (at the level of the CM
Fortran Programming Guide). User-level knowledge of UNIX is also required.

Revision Information

This is a new manual.

Related On-Line Documents

* cax-1 . O.releasenotes
* cmax-1.0.bugupdate

The path is typically /usr/doc on Connection Machine CM-5 systems and
/usr/cm/doc on CM-2/200 systems. See your system administrator for the
locations if these files have been moved.

Version 1.0, July 1993
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Customer Support· ~~~~ -.....%.~ .. .·.~ 
Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can

greatly reduce the time it takes Thinking Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-support@think.com

ames!think! customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000
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Chapter 1

Overview
~~~ ~~~1

CMAX - the CM Automated Translator - converts Fortran 77 programs into CM
Fortran. It greatly simplifies the task of porting serial Fortran programs to the
massively parallel Connection Machine system.

The conversion procedure is the same whether your target is the global data par-
allel model of CM Fortran or the nodal model that uses the vector units for
parallel processing and explicit message passing for communication.

This chapter provides an overview of the converter: its goals and its capabilities.
Later chapters address the larger porting process: preparing the program, using
the converter, and customizing code for best performance on the CM system.

1.1 Why Use the Converter?

The CMAX Converter has two basic goals:

It enables developers of new Fortran 77 programs to access the parallel
processing resources of the CM system. For programs that follow the few
simple conventions of scalable Fortran, conversion is largely automatic.

CMAX
Converter

CM Fortran
Compiler

CM Fortran

Version 1.0, July 1993
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Users in a heterogeneous computer environment and third-party software
developers can use the converter as a "preprocessor" for routine CM For-
tran compilation. Since the program is maintained in Fortran 77 for
portability to multiple platforms, the converter provides a migration path
onto and off from the CM system.

* The converter assists users in porting older Fortran 77 programs to CM
Fortran. Nonstandard features and non-scalable programming idioms may
not convert automatically, however, so some manual recoding is usually
required.

Older
Fortran 77 CMAX

+ recoding

The amount of recoding depends, naturally, on the size and condition of
the input program. It is not a specific goal of the CMAX Converter to con-
vert pre-Fortran 77, "dusty deck" programs, although it can be helpful in
the later stages of the porting process.

Dusty deck

o o oI

U

Dusty decks must first be brought to conformance with the Fortran 77
standard. From there, any of several paths can be followed, depending on
whether the program is to run on several architectures or on the CM only.

Chapter 2 of this manual provides more information on the converter's place
within an overall porting process.

Version 1.0, July 1993
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Chapter 1. Overview 3

1.2 A Simple Conversion

The CMAX Converter's basic actions are:

* to vectorize DO loops on arrays, that is, translate them into CM Fortran
array operations

* to indicate the CM home - serial control processor or parallel processing
unit - of each array

These actions enable the CM Fortran compiler to generate parallel instructions
and to allocate arrays on the appropriate part of the system.

This section illustrates the converter by presenting the straightforward conver-
sion of a simple program. Program BART, Figure 1, numerically integrates the
cosine function over a given interval using Simpson's rule. The converter auto-
matically translates BART into the CM Fortran program shown in Figure 2.

1.2.1 Invoking the Converter

The converter is currently available as a batch tool that can be invoked from any
shell prompt. The barebones conversion procedure is the following.

1. Create a package containing the source program. A package is a set of
files that the CMAX Converter treats as a complete program.

% cmax bartpack -AddFiles= bart.f [othersourcefiles]

2. Convert the program in the package to CM Fortran. Each converted . f
file is written to a . f cm file.

% cmax bartpack

3. Compile the output file(s) for the CM system of your choice.

% cmf [ cmfswitches ] -o bart bart. fcm

4. Execute the program on the appropriate CM system.

% bart

Chapter 2 of this manual presents more information about the cmax command
and the variations in the conversion procedure.

Version 1.0, July 1993
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PROGRAM BART
REAL START, END
INTEGER NSLICES, NELTS

PRINT *, ' Enter START, END, NSLICES:'
READ (5, *) START, END, NSLICES
NELTS = NSLICES + 1

PRINT,*, ' The integral = ',
SIMPSON(START, END, NSLICES, NELTS)

STOP
END

FUNCTION SIMPSON(START, END, NSLICES, NELTS)

REAL START, END

INTEGER NSLICES, NELTS
PARAMETER (MAXSLICES = 1000)

REAL LENGTH, EPSILON
REAL VALUE(MAXSLICES), COEFF(MAXSLICES), X, AREA
INTEGER I

LENGTH = END - START
EPSILON = LENGTH/NSLICES

C Evaluate function and compute coefficients:
DO I = 1,NELTS

X = START + (I-1)*EPSILON
VALUE(I) = COS(X)

COEFF(I) = 2 + 2*MOD(I-1,2)
END DO

C First and last coefficients are 1.0:

COEFF(1) = 1.0

COEFF(NELTS) = 1.0

C Compute total area using Simpson's rule:
AREA = 0.0

DO I = 1,NELTS

AREA = AREA + COEFF(I)*VALUE(I)
END DO

SIMPSON = (LENGTH/(3*NSLICES) ) *AREA

RETURN
END

Figure 1. The BART program, coded in Fortran 77 with DO loops on arrays.
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PROGRAM BART
REAL START, END
INTEGER NSLICES, NELTS

PRINT *, ' Enter START, END, NSLICES:'
READ( 5,* ) START,END,NSLICES
NELTS = NSLICES + 1

PRINT *, ' The integral =
SIMPSON(START,END,NSLICES,NELTS)

STOP

END

FUNCTION SIMPSON (START, END, NSLICES, NELTS)
REAL START, END
INTEGER NSLICES, NELTS
PARAMETER (MAXSLICES = 1000)

REAL LENGTH, EPSILON
REAL VALUE(MAXSLICES), COEFF(MAXSLICES), X, AREA
INTEGER I

CMF$ LAYOUT COEFF(:NEWS)
CMF$ LAYOUT VALUE(:NEWS)

REAL X100(MAXSLICES)
CMF$ LAYOUT X100(:NEWS)

LENGTH = END - START
EPSILON = LENGTH / NSLICES

C Evaluate function and compute coefficients:
FORALL (I = :NELTS) X100(I) = START + (I - 1) * EPSILON
VALUE(:NELTS) = COS(X100(:NELTS))
FORALL (I = 1:NELTS) COEFF(I) = 2 + 2 * MOD(I - 1,2)

C First and last coefficients are 1.0:
COEFF(1) = 1.0

COEFF(NELTS) = 1.0

C Compute total area using Simpson's rule:
AREA = 0.0

AREA = AREA + DOTPRODUCT(COEFF(:NELTS),VALUE(:NELTS))

SIMPSON = (LENGTH / (3 * NSLICES)) * AREA

RETURN
END

Figure 2. The BART program, converted to CM Fortran.
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1.2.2 The Converter's Action

Notice what the converter has done to the BART program. It has performed loop
conversion to express parallelism, and it has determined where on the CM system
each operation will be performed.

This section is a brief introduction only; a more detailed list of the transforma-
tions CMAX can perform appears in Appendix B.

Loop Conversion

The converter has translated the two Do loops in the Fortran 77 program into
array operations. The loop that operates on each array element independently,

C Evaluate function and compute coefficients:

DO I = 1,NELTS

X = START + (I-1)*EPSILON

VALUE(I) = COS(X)

COEFF(I) = 2 + 2*MOD(I-1,2)
END DO

turns into these array assignment statements:

C Evaluate function and compute coefficients:

FORALL. (I=1:NELTS) X100(I) = START+(I-1)*EPSILON

VALUE(:NELTS) = COS(X100(:NELTS))

FORALL (I=1:NELTS) COEFF(I) = 2+2*MOD(I-1,2)

The loop that sums the products of the respective elements of COEFF and VALUE

into a scalar,

C Compute total area using Simpson's rule:
AREA = 0.0

DO I = 1,NELTS

AREA = AREA + COEFF(I)*VALUE(I)
END DO

turns into this call to the intrinsic function DOTPRODUCT:

C Compute total area using Simpson's rule:
AREA = 0.0

AREA = AREA +
DOTPRODUCT (COEFF(: NELTS),VALUE(:NELTS))

Version 1.0, July 1993
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Array Homes

The converter has also inserted directives that control where on the CM system
the operations will occur, guaranteeing that the data to be processed in parallel
is allocated in the memory of the parallel processors.

The arrays COEFF and VALUE,

PARAMETER (MAXSLICES = 1000)

REAL VALUE(MAXSLICES), COEFF(MAXSLICES)

become distributed across CM processors in NEWS order:

PARAMETER (MAXSLICES = 1000)

REAL VALUE(MAXSLICES), COEFF(MAXSLICES)

CMF$ LAYOUT COEFF (:NEWS)

CMF$ LAYOUT VALUE(:NEWS)

In addition, the scalar x,

REAL X

is promoted to an array named x100 and distributed, since it will be used in array
operations:

REAL X100(MAXSLICES)

CMF$ LAYOUT X100(:NEWS)

1.2.3 Is BART Typical?

BART's conversion is painless not only because the program is simple, but also
because it is, to a large extent, scalable. The basic feature of scalable programs
is that they operate on arrays of data, which a compiler can split up among multi-
ple processors for independent or coordinated processing. Contrast BART with
program MAGGIE in Figure 3. MAGGIE is also a Simpson integrator, but this
implementation does not use arrays. The CMAX Converter will not produce par-
allel code for MAGGIE.

The following section presents the conventions of scalable Fortran 77 program-
ming. Although these conventions arose from a desire to use data parallel
systems effectively, they turn out to be a convenient strategy for achieving good
performance on many other architectures as well.

Version 1.0, July 1993
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PROGRAM MAGGIE

REAL START, END

INTEGER NSLICES

PRINT *, ' Enter START, END, NSLICES:'

READ (5, *) START, END, NSLICES

PRINT *, ' The integral = ,

SIMPSON(START, END,NSLICES)

STOP

END

FUNCTION SIMPSON(START, END, NSLICES)

REAL START, END
INTEGER NSLICES

REAL LENGTH, EPSILON

REAL X, AREA
INTEGER I

LENGTH = END - START

EPSILON = LENGTH/NSLICES

C Evaluate function and accumulate into area:

AREA = 0

DO I = 1, NSLICES-1

X = START + I*EPSILON

AREA = AREA + (2 + 2*MOD(I,2))*COS(X)

END DO

AREA = (COS(START) + AREA +

COS(START + NSLICES*EPSILON))

C Compute total area using Simpson's rule:

SIMPSON = (LENGTH/(3*NSLICES))*AREA

RETURN

END

Figure 3. The MAGGIE program, coded in Fortran 77 without arrays.
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1.3 Writing Scalable Fortran

Fortran 77 is available on virtually all platforms and thus assures convenient por-
tability. A program's performance, however, is often tuned to the details of a
particular architecture, and thus may not port well. With the recent explosion of
architectures - vector machines, highly pipelined machines, machines with
multiple functional units, massively parallel machines, and machines with com-
binations of all these features - the portability of a code's performance is not
guaranteed, and must be engineered in.

We define scalability as the portability of a code's performance. In particular, a
scalable program is one designed to execute efficiently on any size data set, large
or small, using any number of processors, from one to thousands. Modem data
parallel languages like Fortran 90 provide constructs conducive to scalable pro-
gramming; for older languages like Fortran 77, one must follow certain
conventions to ensure scalability.

The conventions express three basic objectives:

* Make it easy for a compiler to recognize how data and computations may
be split up for independent or coordinated processing.

* Avoid constructions that rely on a particular memory organization.

* Use data layout directives and library procedures (with some conditiona-
lizing convention) to take advantage of the specific performance
characteristics of the target platforms.

This section introduces the conventions of scalable programming in Fortran 77,
using fragments from a widely used computational aerodynamics program called
FL067T . This program uses a multigrid scheme to simulate the 3-dimensional
airflow past a swept wing. It is implemented in about 5000 lines of code.*

NOTE: The conventions are intended as rules of thumb rather than hard-and-fast
requirements. In places where different conventions may conflict, as noted in the
illustrations below, the goal being sought should guide the programmer's judg-
ment which to follow.

Version 1.0, July 1993
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* This section is condensed from "FL067: A Case Study in Scalable Programming," by Skef Wholey, Clif-
ford Lasser, and Gyan Bhanot, Thinking Machines Technical Report TMC-213, January 1992. The pro-
gram FL067 was developed and is owned by Professor Antony Jameson of the Department of Aerospace
Engineering at Princeton University.
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Rule 1: Scalable programs operate on most or all the data "at
once."

In Fortran 77, this convention means looping over as many array axes, and as
much of each axis, as possible. The loop below, for example, calculates the air
pressure for each cell:

DO 90 K=1,KL

DO 90 J=:L,JL

DO 90 .I=1,IL

QQ = W(I,J,K,2)**2 + W(I,J,K,3)**2 + W(I,J,K,4)**2

QQ = .5*QQ/W(I,J,K,1)

P(I,J,K)=(GAMMA-1.)*DIM(W(I,J,K,5),QQ)
90 CONTINUE

The 4-dimensional array w implements a 3-dimensional array of 5-element
record structures; structure components are selected by indexing along the fourth
axis. The first structure component is the air density; the second, third, and fourth
components are the momentum densities in the x, Y, and z directions,
respectively; and the fifth component is the total energy density.

NOTE: While data can be distributed across processors along the three spatial
dimensions of w, the fourth dimension is better left undistributed (in CM Fortran
parlance, it is a serial axis) since operations on it are likely to be inherently
sequential. This case illustrates the judgmental quality of scalable programming,
since a serial axis warrants different treatment from axes in the data domain.

Rule 2: Scalable programs operate on data elements homoge-
neously, performing identical or similar operations on
each.

The programming style encouraged by serial computers (and serial thinking)

often violates this convention. The code below computes different values for
interior and boundary cells:

DO 10 J=2,M-1

DO 10 I=2,N-1

A(I,J) = A(I,J) + B(I,J) i Interior

10 CONTINUE

DO 20 J=1,M

A (1,J) = C(1,J) ! Edge

A(N,J) = C(N,J)
20 CONTINUE

Version 1.0, July 1993
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DO 30 I=2,N-1

A(I,1) = C(I,1) I Edge

A(I,N) = C(I,N)

30 CONTINUE

In addition to violating the first rule - operate on all the data at once - these
loops perform different operations for different elements. Rather than coding
three loops as above, one could set up a logical variable wxsx which is .TRUE.

for interior elements and . FALSE. for boundary elements. The above
computation could then be expressed in this scalable code:

DO 10 J=1,N

DO 10 I=1,N

IF (MASK(I,J)) THEN

A(I,J) = A(I,J) + B(I,J)
ELSE

A(I,J) = C(I,J)
END IF

10 CONTINUE

Rule 3: Scalable programs exhibit locality of reference.

In Fortran 77, this convention means that expressions within loops should
reference similarly indexed portions of similarly shaped arrays. Elements at the
loop indices or nearby are used in computations; distant elements are not. A sub-
routine of FL067 computes each element of array DTL as a function of nearby
elements of array RAD:

DO 70 K=1,KL

DO 70 J=1,JL

DO 70 I=1,IL

RADA = RAD(I+O,J+0,K+0) + RAD(I+1,J+0,K+0) +
RAD(I+0,J+1,K+0) + RAD(I+1,J+I,K+0) +
RAD(I+0,J+0,K+1) + RAD(I+1,J+0,K+l) +
RAD(I+0,J+1,K+1) + RAD(I+l,J+l,K+l)

DTL(I,J,K) =CFL/RADA
70 CONTINUE

In data parallel architectures, this convention allows the compiler to use nearest-
neighbor communication instead of the more costly general communication
between processors.
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Rule 4: Scalable programs exhibit numerical stability.

Some degree of imprecision is unavoidable in floating-point calculations. Since
most real numbers cannot be represented exactly in digital form, these numbers
are rounded to a representable number. The cumulative round-off error for a
series of computations can lead at times to floating-point exceptions or incorrect
results.

Scalable programs avoid relying on the correctness of an algorithm or round-off
tolerance tuned to a single architecture. This is particularly true of array summa-
tions and other reductions, since floating-point reductions are especially
sensitive to the order of evaluation. Because they may use a different order of
evaluation, vector and parallel machines may produce markedly different results
from serial machines, including run-time errors.

For example, if reversing the order of the loop changes the answer in a significant
way, then the computation is numerically unstable. Consider this program:

PROGRAM ROUNDABOUT

REAL A(12), X
INTEGER I

A(1) = +1E+8

A(2) = +1E+1

A(3) = +2E+8

A(4) = +2E+1

A(5) = +3E+8

A(6) = +3E+1

A(7) = -3E+1

A(8) = -3E+8

A(9) = -2E+1

A(10) = -2E+8
A(11) = -1E+1

A(12) = -1E+8

C Add up from 1 to 12:

X = 0.0

DO I = 1,12
X = X + A(I)

END DO
PRINT , X

Version 1.0, July 1993
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C Add up from 12 to 1:

X = 0.0

DO I = 12,1,-1

X = X + A(I)

END DO

PRINT *, X

C Add up odd elements, then even:

X = 0.0

DO I = 1,11,2

X = X + A(I)

END DO

DO I = 2,12,2

X = X + A(I)

END DO

PRINT *, X

END

*. '',;,_
A system using IEEE 32-bit REAL values produces this output:

-40.0000
40. 0000

0.

Using IEEE 64-bit DOUBLE PRECISION instead of 32-bit REAL, the output is:

0.

0.

0.

Scalable programs maintain numerical stability on all target architectures. This
example illustrates two options for achieving this:

* Go to higher-precision representation.

* Change the algorithm. In this example, the numerically stable answer is
obtained by summing first the odd elements, then the even elements.
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Rule 5: Scalable programs use easily recognizable idioms to ex-
press common, well-structured dependences.

In the loops shown thus far, each iteration can be executed independently of the
others; that is, there are no loop-carried data dependences. Most algorithms do
have some form of interaction between data items. While code with arbitrary
data dependences does not generally execute well on vector or parallel machines,
most well-structured data-dependent computations do have efficient low-level
algorithms on serial, vector, and parallel machines. Scalable code enables a com-
piler to recognize such computations by expressing them with a small set of
common idioms. (Appendix B of this manual lists many of these idioms.)

Consider this convergence-checking code, from the EULER subroutine of FL067:

NSUP = 0

HRMS = 0

DO 80 K=1,KL

DO 80 J=1,JL

DO 80 I=1,IL

V = W(I,J,K,2)*W(I,J,K,2) +
W(I,J,K,3)*W(I,J,K,3) +
W(I,J,K,4)*W(I,J,K,4)

IF (V1.GE.(GAMMA*P(I,J,K)*W(I,J,K,1)))

NSUP = NSUP + 1I COUNT
V1 = W(I,J,K,5) + P(I,J,K)
Vi = V/W(I,J,K,1) - HO
HRMS = HRMS + V*Vl I SUM

80 CONTINUE

HRMS = SQRT(HRMS/FLOAT((NX-1)*NY*NZ))

The variable NSUP is incremented once for each cell that exceeds a threshold.
An incrementation contained in an IF statement is an idiomatic way of
expressing the reduction operation named COUNT in Fortran 90. The variable
mRss is computed using another reduction operation: the sma of the square of
a value computed for each cell. This operation is also the idiomatic expression
of DOTPRODUCT.
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Rule 6: Scalable programs do not assume a particular memory
model.

Certain features of Fortran 77 - particularly sequence association and storage
association - assume a linear model of memory.

* Sequence association is the mapping of a multidimensional object in col-
umn-major order to a linear sequence of values.

REAL A(10,10), B(10,10)

CALL SUBA(A, B(5,5))

SUBROUTINE SUBA (C,D)

REAL C(100), D(10)

In this example, the elements of matrices A and B are sequence associated
with elements of the dummy vector arguments c and D.

* Storage association occurs when two or more variables (or arrays) share
the same storage. This feature is exploited by EQUIVALENCE,

REAL A(2,50)

COMPLEX C(100)

EQUIVALENCE (A(1,1),C(1))

and by some uses of COMMON,

SUBROUTINE SUBA

COMMON /BOUNDS/ IBX, IBY, IBZ

SUBROUTINE SUBB

COMMON /BOUNDS/ IBDS(3)

Sequence and storage association are difficult to implement and tend to be ineffi-
cient on memory systems that are not linear. These features are included in
Fortran 90 for compatibility with Fortran 77, but scalable programs avoid them.

New features of Fortran 90, such as allocatable, automatic, and assumed-shape
arrays, reduce the need for some uses of sequence and storage association. Other
uses can be replaced by alternative Fortran 77 practices, which are both clearer
and more scalable (see Chapter 4).
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As general principles of scalable programming, the following are corollaries of
Rule 6.

Rule 6a: Multidimensional arrays should be declared as such and
be declared consistently throughout a program.

Arrays that change shape, particularly across subroutine boundaries, impose a
severe burden on systems with nonlinear memory organization such as the CM
system. In addition, performance is greatly affected by the way in which arrays
are allocated, and the number and size of dimensions must be made explicit when
they are allocated.

The original FL067 code used storage pools from which it allocated different
mesh variables. Pointers into these pools were passed to subroutines, which
declared their arguments as multidimensional arrays. To enhance scalability, this
original code,

DIMENSION W(IDX5),P(IDX),

K1 = 1

KW = 1

NC = (IE+1) * (JE+1) * (KE+1)
L1 = K1 + NC

LW = KW + 5*NC

CALL FLO (W(KW),P(K1), ..., W(LW),P(L1), ...)

was recoded as,

DIMENSION W_O(O:IEM,0:JEM,O:KEM,5),P_0(O:IEM,O:JEM,O:KEM)
DIMENSION W_1(0:IEM,O:JEM,0:KEM,5),P_1(0:IEM,O:JEM,O:KEM)

CALL FLO (W_,P_0, ... , W,P, ...)

Rule 6b: Data layout directives should be supplied where
necessary and helpful.

Most machines' performance is sensitive to data layout, because of its impact on
locality of access. Distributed-memory parallel machines are particularly sensi-
tive, since data layout directly influences the frequency of interprocessor
communication. Scalable programs reflect an awareness of the layout conven-
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tions of the target systems and use machine-specific directives to override the
default layout where appropriate.

In the FL067 program, the 4-dimensional array w shown under Rule 1 imple-
ments a 3-dimensional array of 5-element record structures; the structure
components are selected by indexing along the fourth axis. For the CM system,
the fourth dimension is better left undistributed, as specified by the CM Fortran
compiler directive LAYOUT:

REAL X(O:IE,O:JE,O:KE,5)

CMF$ LAYOUT W(:NEWS, :NEWS, :NEWS, :SERIAL)

A program might also benefit from aligning arrays in distributed memory, by
means of the directive ALIGN. These directives can be inserted into the Fortran
77 source program, since they are ignored by other Fortran compilers.

Rule 6c: Arrays should be of appropriate size and declared such
that they are easily changeable.

The optimal size for arrays and array dimensions varies among machines. On
Cray machines, certain array sizes can degrade performance because of bank
conflicts; the CM-2 system rewards power-of-2 array dimensions; other ma-
chines may have constraints stemming from page sizes or cache sizes; and so on.
Array sizes are easily changed between compilations if they are declared with
parameters instead of literal constants and if the PARAMETER statements are easy
to locate. (INCLUDE files are convenient for this purpose.) This convention is
also helpful in scaling a Fortran 77 program to different problem sizes.

Rule 7: Scalable programs use machine-specific libraries where
available.

A call to a library routine fulfills the scalability goal of specifying the desired
operation without dictating its algorithm. Sorting, matrix multiplication, equa-
tion solving, and Fourier transforms are examples of operations where no single
algorithm is universally optimal. Using library procedures, along with some
conditionalizing convention in the source program, helps make the code ma-
chine-independent and also takes advantage of any machine-specific tuning by
the library implementor.
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1.4 What Does the Converter Do?

CM Fortran includes all of Fortran 77 plus some extensions that support data par-
allel processing. These extensions include:

* Fortran 90 array operations and other language features that CM Fortran
provides to express parallelism

* CM Fortran compiler's conventions for laying out data (in linear versus
distributed memory, depending on whether parallel processing is
appropriate)

* Fortran 90 method of passing array arguments and the semantics of proce-
dure calls

The converter is designed to deal with all these translation issues. By viewing the
whole program, it can provide the cmf compiler with code (including directives)
that expresses parallelism; that avoids "array home" conflicts by directing that
arrays processed in parallel are to be allocated in distributed memory; and that
uses correct CM Fortran methods of passing distributed arrays as arguments.

1.4.1 Array Operations

An array operation is a computation that is performed on an array as a single
entity, that is, on all the array's elements or a specified subset of them. CM For-
tran adopts Fortran 90 array notation to indicate the set of elements. The array
reference A is short for A (1 : N:l), indicating all the elements; the reference
A(1:N/2:2) indicates every other element in the first half.

This triplet notation (express or implied) is analogous in function to the control
variables in a Do construct, specifying a range of indices for array elements to
be processed. But there is an important difference. A Do loop specifies indices
in a particular sequential order, and processes one or more entire statements for
an index before going on the the next index. An array operation, in contrast, may
process indices in any order, but it must perform any given single operation (such
as addition, multiplication, or assignment) for all indices before performing the
next operation. The net effect is that an array operation can process array
elements in any order without changing the result. The CM system takes
advantage of this feature to process array elements in parallel.
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The CMAX Converter analyzes Fortran 77 DO constructs to determine whether
they are functionally equivalent to any CM Fortran array operation, and if so,
converts the array notation and the loop(s).

This section illustrates the converter's loop-conversion capabilities; output may
be simplified to clarify the essential transformation. Verbatim output from loop
transformations is shown in Appendix B.

Loops without Dependences

Loop operations in which array elements do not interact vectorize straightfor-
wardly into elemental operations:

Fortran 77

DO 10 I=1,N

A(I)=B(I)+C(I)

DO 10 J=1,M

P(I,J)=P(I,J)+R(I,J)

10 CONTINUE

CM Fortran

A=B+C

P=P+R

In other loop operations, the data elements may interact but there is no depen-
dence between loop iterations. The converter's dependence analysis detects that
a step-by-2 smoothing operation can vectorize to an array assignment. (Notice
that the converter and CM Fortran accept the END DO statement.)

Fortran 77

DO I=2,N-1,2 

A(I)= (A(I-1) +A(I+1))/2 
END DO

t-c

CM Fortran

(2 :N-1:2)=(A( :N-2:2)+
A(3:N:2))/2

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation

0

IA1 A2 A3 IA4 A5A6 A7 I I J ]

LLLL

Using the CAX Converter20

P.



Chapter 1. Overview 21

�r"� <� C 2

Similarly, the apparent dependence in a "mirror" operation is recognized as not
a real dependence:

Fortran 77 CM Fortran

1,N/2

= A(N-I+1)

}
(1:N/2) =

A(N:N/2:-1)

I All A2 A 31 A 4 A5 A6 A7 A8

Loops That Express Common Idioms

Loops with certain well-structured dependences are functionally equivalent to
CM Fortran intrinsic functions, Utility Library procedures, or FORALL state-
ments. The converter recognizes the intent of the loop and substitutes the
corresponding array operation. For example, consider these idiomatic loop
constructions:

Fortran 77 CM Fortran

X = 0.0

DO I = 1,N

X = X + A(I)

END DO

DO J = 1,M

Y(J) = 1.0

DO I = 1,N

Y(J) = Y(J)

END DO

END DO

}

*B(I,J)

0.0

X + SUM(A)

= Y * PRODUCT(B,DIM=1)

Version 1.0, Juy-1993

Copyright © 1993 Thinking Machines Corporation

9

DO I =

A(I)
END DO

A*



22 Using the CMAX Converter
* ~iiiii~:j... .c~l~i~a~:il i:% -.. ::X .i:. .. ...... ;. :: : . ................:.::.: .: .- :.

Loops with Embedded Conditionals

Loops with embedded IF statements may convert to a masked array assignment,
such as WHERE or FORALL, or a masked intrinsic. For example:

Fortran 77 CM Fortran

DO I = 1,N

IF (A(I) .LT. 0.0) THEN

B(I) = -B(I)

ELSE

C(I) = 0.0

ENDIF

END DO

WHERE (A .LT. 0.0)

B = -B

ELSEWHERE

C = 0.0

ENDWHERE

Other Vectorization Capabilities

The converter analyzes and may restructure code to facilitate vectorization.

For example, it promotes scalar values that are used with arrays into arrays of the
appropriate shape, as illustrated above in the conversion of program BART. The
array name is derived from the scalar's name, as with x and xio00, and the array
is aligned, if necessary, with another CM array to enhance the locality of access
of their respective elements.

The converter may also fission loops to isolate vectorizable code from inherently
serial operations:

Fortran 77 CM Fortran

DO I = 1,N

A(I) = B

PRINT *,
X = X +

END DO

(I) +

D(I)

D(I)

C(I)
A = B + C

DO I = 1,N

PRINT *, D(I)
END DO

X = X + SUM(D)

Version 1.0, July 1993
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The converter may also transform a loop with an embedded subroutine call into
a subroutine that contains the loop, thereby making the loop vectorizable. This
loop-pushing transformation can be visualized as follows. Notice that the
dummy variable x becomes an array in the intermediate form, and the loop
becomes an array assignment in the CM Fortran version.

Fortran 77

SUBROUTINE PUSHME(A,N)

REAL A(N)

DO I = 1,N

CALL PULLYOU(A(I))

END DO

END

SUBROUTINE PULLYOU(X)
REAL X

X = X + 1
END

Intermediate Form

SUBROUTINE PUSHME(A,N)

REAL A(N)

CALL PULLYOU_V1 (A,N)
END

SUBROUTINE PULLYOU_V1(X,M) -

REAL X(M)

DO I = 1,M

X(I) = X(I) + 1
END DO

END

CM Fortran

SUBROUTINE PUSHME(A,N)

REAL A;(N)

CALL PULLYOU_V1(A,N)
END

SUBROUTINE PULLYOU_V1(X,M)

REAL X(M)
X = X + 1

END

Version 1.0, Judy 1993
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Limits on Vectorization

If the converter cannot safely vectorize a DO loop, it passes the code through un-
changed. The CM Fortran compiler then treats it as serial code. Some loop
constructions that the converter does not translate are the following.

* Loops that contain a STOP or RETURN statement, a computed or assigned
GO TO statement, or a forward or backward branch. In general, nonstruc-
tured constructs cannot convert to array operations.

* Loops containing calls to functions that are passed in as arguments.

* Loops that contain certain complicated data dependences. For example,
the converter cannot vectorize the following:

REAL A(10), B(10)

DO I=1,7

B(I) = A(I+3) + 10
A(I) = B(I+3) + 1

END DO

IBlIB 2 B3 B4 B5 B6 IB 7 B8IB 9IB10I

Al A2 A3 A4 A A6 A 7 A8 A 9lA0I

* Loops for which the converter cannot resolve a question of data depen-
dence. For example, the following loop can vectorize only if the index
offset M is zero or positive:

Fortran 77 CM Fortran

DO I=5,95{ A(5:95) =

A(I) = 5+A(M:95+M)**B(5:95)
END DO

Where M is negative, the loop must execute serially. If M is a run-time
value, the converter cannot resolve this question.

NOTE: The converter provides directives with which the user can assert
information that resolves some dependence issues. If the user asserts, in
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this case, CKxX$NODEPENDENCE - meaning that M is necessarily zero or
positive - the converter can vectorize the loop.

Loops with structured dependences that have no functionally equivalent
parallel operation in CM Fortran. For example, a parallel-prefix (or
"scan") operation along a dimension is vectorizable. A scan along the
diagonal of two dimensions, however, cannot (at present) be computed in
parallel, and the converter does not vectorize it.

DO J=2,N

DO I=2,N

A(I,J) = A(I-1,J) + A(I,J-1)
END DO

END DO

Version 1.0, July 1993
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1.4.2 Array Homes

Every CM system consists of two processing components with different memory
organizations:

* A serial control processor, called the front end on a CM-2 or CM-200 and
the partition manager on the CM-5. This processor has the conventional
linear memory organization.

* A parallel processing unit consisting of some number of processing ele-
ments, called processors (in the abstract) or nodes or vector units
(depending on the CM hardware configuration). The memory of the paral-
lel unit is distributed among the processors.

Data stored on the control processor, including all scalar data and front-end ar-
rays, is operated upon serially. Other arrays (CM arrays) are laid out across the
parallel processors, one or more elements in the local memory of each processor,
and are operated upon in parallel. The processing component on which an array
is stored is called its home. The CMAX Converter guides the compiler's array
home decisions.

Control
Processor

SERIAL Parallel Processors

O PERATIONS

ARRAY OPERATIONS ON

* CM arrays

II II II I

NOTE: The compiler's decomposition of data and code into "serial" versus "par-
allel" is the same regardless of whether a CM Fortran program is to run globally
or "on a node." In the latter case, each CM-5 node serves as a control processor
and the four vector units associated with each node are its dedicated parallel pro-
cessing unit. See the CMMD documentation set for more information about
executing CM Fortran programs "on a node."
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The Compiler's Action

The CM Fortran compiler decides the home of each array in a program after at-

tempting to determine whether it is to be processed serially or in parallel.

Usually, it goes by whether the array is used in an array operation, although the

programmer can control the decision with a compiler directive such as LAYOUT.

One of the chores of CM Fortran programming is to keep array homes consistent

across procedures. Since the compiler does not at present perform interprocedu-

ral analysis, it may give an array different homes in different procedures.
However:

* It is an error to perform an array operation on a front-end array.

* There is a severe performance penalty for performing a serial operation on

a CM array.

* It is an error to pass an actual array argument from either home to a

dummy argument with the other home.

For example:

9) PROGRAM FAILURE

INTEGER A(100,100)

DATA [initialize A]

CALL SUB(A)
PRINT *, A
STOP

END

SUBROUTINE SUB(B)

INTEGER B(100,100)
B = B**2

RETURN

END

The compiler allocates array A on the control processor, since there is nothing in

the main program to indicate that A is to be processed in parallel. Array B, on the

other hand, becomes a CM array by virtue of the array assignment in the subpro-

gram. This program fails at run time when the front-end array is passed to the
subroutine.
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The Converter's Action

The CMAX Converter spares the programmer the problem of controlling array
homes by inserting a LAYOUT directive for every array. Since the converter per-
forms interprocedural analysis, it can determine whether an array is used in an
array operation anywhere in the program and can thus avoid home mismatches
across procedure boundaries. It may also create variants of certain subprograms,
so that both front-end arrays and CM arrays can be passed to them as arguments.

The user can of course override the converter's action by means of in-line direc-
tives or converter command-line options. These features, and the situations
where they might be useful, are described in Chapter 2 of this manual.

The converter makes array home decisions by the following rules:

* A user-supplied cmf directive LAYOUT or cmax option overrides all inter-
nal rules. CMAX propagates LAYOUT directives across program
boundaries and issues a warning if it encounters inconsistency in their use.

• The converter also respects the cmf directive ALIGN within a program
unit, but does not propagate it across program boundaries. (See Chapter
2 for restrictions on ALIGN.)

* All arrays that CM Fortran restricts to the control processor are marked as
front-end arrays. These include arrays of CHARACTER type and arrays sub-
ject to an EQUIVALENCE statement.

* All arrays whose total size is below a threshhold number of elements are
marked as front-end arrays. (The default threshhold size is 8 elements; you
can specify a different number with the -ShortVectorLength=nn con-

verter switch. See Chapter 2.)

* All arrays in COMMON that change type or shape across program boundaries
are marked as front-end arrays.

* All arrays passed as arguments to procedures that define a dummy argu-
ment of a different type or shape are marked as front-end arrays, except
in those cases where the converter is able to adjust code to meet this CM
Fortran restriction.

The last two rules reflect restrictions that CM Fortran imposes on arrays stored
in distributed memory. Section 1.4.3 describes the current state of the converter's
ability to generate code that meets these restrictions, thereby enabling more
arrays to become CM arrays and be subject to array operations.
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1.4.3 Argument Passing

CM Fortran adopts the Fortran 90 semantics for passing CM array arguments; it
retains the Fortran 77 semantics for front-end array arguments. In Fortran 77,
where arrays are passed by reference, an array name as an argument indicates the
array's first element. In CM Fortran, where CM arrays are passed by descriptor,
the reference to the name of a CM array indicates all its elements.

When the argument is a whole array, a procedure call looks the same in both
cases:

REAL A(1000)

CALL SUB(A)

However, the A argument in Fortran 77 is short for A (1), whereas in CM Fortran,
the A is short for A (1:1000). The semantic difference becomes apparent when
the procedure is to operate on only part of the array. For instance, in the follow-
ing fragment the first subroutine call operates on the first half of the array and
second call on the second half:

Fortran 77
and CM Fortran
front-end arrays

REAL A(1000)

CALL SUB_1(A)

CALL SUB_2(A(501) )

SUBROUTINE SUB_1(B)

REAL B(500)

SUBROUTINE SUB_2(C)

REAL C(500)

CM Fortran
CM arrays

REAL A(1000)

CALL SUB_1(A(1:500)
CALL SUB_2(A(501:1000))

SUBROUTINE SUB_1(B)

REAL B(500)

SUBROUTINE SUB_2(C)
REAL C(500)

Both the calls on the left fail when A is a CM array because it is an error to change
array size or shape across subroutine boundaries. In fact, the argument to suB_2
is not an array at all, since the expression A(501) indicates a single array ele-
ment. Where A is a CM array, this element is transferred to the control processor
and passed as a scalar argument.
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The CMAX Converter's interprocedural analysis enables it to generate code that
meets the argument-passing requirements for CM arrays in three particular cases.

* Array arguments with a scalar subscript (one-dimensional)

* Array arguments with elided axes

* Assumed-size dummy array arguments (without change in rank)

Array Arguments with a Scalar Subscript

"Hidden array" arguments, like A(501) above, violate CM Fortran argument-
passing restrictions by passing a scalar argument to a dummy array.

The converter changes the call to pass the whole array, its length, and an integer
index into it, and changes the procedure definition accordingly. At present, this
action occurs only if both the actual and the dummy arrays are 1-dimensional.

Fortran 77 CM Fortran

REAL A(1000)

CALL SUB_ (A)
CALL SUB_2(A(501))

SUBROUTINE SUB_1(B)
REAL B(500)

SUBROUTINE SUB_2(C)

REAL C(500)

0REAL A(1000)

CALL SB(A11000)

CALL SUB_2(A,51,1000)
CALL SUB_2(A,501,1000)

SUBROUTINE SUB_1(B,OS,LN)

INTEGER OS, LN

REAL B(1-OS+1:LN+1-OS)

SUBROUTINE SUB_2(C,OS,LN)

INTEGER OS,LN

REAL C(1-OS+1:LN+1-OS)

Array Arguments with Elided Axes

In Fortran 77, one may pass n-minus-k-dimensional contiguous slices of n-di-
mensional arrays to subprograms in the following way: all indices in the call
other than rightmost k indices are the lower bound of the corresponding
dimension.
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REAL X(100,200,5)

CALL FOO(X(1,1,3))

SUBROUTINE FOO(Y)

REAL Y(100,200)

This type of memory reference violates CM Fortran argument-passing restric-
tions by reshaping an array across program boundaries. However, CMAX
recognizes the intention of axis elision in this situation and transforms the code
to pass a 2-dimensional section of the 3-dimensional array. The lower bound
indices are turned into colons, indicating the whole dimension. (The user could
improve performance of the output by inserting a CM Fortran LAYOUT directive
to designate the rightmost axis of x a serial, or non-distributed, axis.)

REAL X(100,200,5)

CALL FOO(X(:,:,3))

SUBROUTINE FOO(Y)
REAL Y(100,200)

CMF$ LAYOUT Y(:NEWS, :NEWS)

Assumed-Size Dummy Array Arguments

CM Fortran does not support assumed-size dummy CM arrays (those with
dimension lists ending in *), since Fortran 77 permits collapsing multiple axes
into the * axis. Where CMAX has determined that the actual and dummy argu-
ments are in fact of the same rank, and that they meet the other criteria for a CM
home and parallel processing, it generates an assumed-shape dummy array. For
example, this subroutine:

SUBROUTINE SUB(A,MAXA0,NSL)

REAL A(MAXAO, MAXAO, *)
DO IX = 1, MAXAO

DO IY = 1, MAXAO

DO ISL = 1, NSL

A(IX, IY, ISL) = A(IX, IY, ISL) * 2
END DO

END DO
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END DO

END

Is translated to:

SUBROUTINE SUB(A,MAXA0,NSL)

REAL A(:,:,:)

CMF$ LAYOUT A(:NEWS,:NEWS,:NEWS)

A(:,:,:NSL) = A(:,:,:NSL) * 2
END

Array Arguments Confined to Front End

The converter confines to the control processor any array arguments that violate
CM Fortran argument-passing restrictions in ways that the converter cannot
work around. Specifically, it marks as front-end arrays any array arguments that:

* Are passed with a scalar index ("hidden array argument") when either or
both the actual and dummy arguments are multidimensional.

* Change type or shape across subprogram boundaries (including array
arguments and arrays in comioN) except for recognized cases of axis eli-
sion or of scalar indexing into a 1-dimensional array.

* Are passed to assumed-size arrays when the actual and dummy arguments
are of different ranks.

As a result, no loops on these arrays can be vectorized. See Chapter 4 for some
ways to work around these restrictions in the Fortran 77 program.
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Chapter 2

The Conversion Process
*. . �

This chapter describes the mechanics of using the CMAX Converter and suggests
where the converter might fit into the overall process of porting Fortran 77 pro-
grams.

2.1 Invoking the Converter

The CMAX Converter is invoked from a shell prompt with the command cmax.
This command creates and operates upon packages. A package is a set of source
files that the converter treats as a complete program. All translation is of pack-
ages, not of source files directly, since the converter needs to perform
interprocedural analysis to determine arrays' homes, resolve questions of data
dependence, and determine the attributes of actual array arguments.

The command operates in one of three modes:

· Information only

% cmax information-operation

* Package operation without translation

% cmax packname package-operation

* Package translation with or without other package operation

% cmax packname [ -T ] [ translation-options ]

% cmax packname -Add= sourcefile-list -T [ translation-options ]
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The arguments:

* packname is a user-supplied name of up to 14 characters, including alpha-
numerics, underscore, hyphen, or period.

* sourcefile-list is a space-delimited list of filenames with the extension . f
or . F. (The extensions . f cm and . FCM are accepted when the translation
option -CMFortran is specified.)

The cmax command options are summarized in Figure 4 and described below.

2.1.1 Quick Forms

* To create a package and translate it in one step:

% cmax mypack -Add= *. f -T [ translation options]

* To add file(s) to an existing package and translate it in one step:

% cmax mypack -Add=munch. f -T [translation options]

* To translate an existing package:

% cmax mpack [ translation options]

2.1.2 Specifying Options

The cmax options are shown in Figure 4 in mixed case for readibility, but case
is ignored and any non-ambiguous abbreviation is accepted. For options that take
a list of arguments, a space after = is optional. Binary switches are specified with
or without a prepended no.

2.1.3 Getting Information

% max information-operation

The information-operation may be:

· display a help message: -Help

· display a list of the packages in the current directory: -Pack
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Option Abbreviation Default

Information Operations
-Help
-PackagesList

Package Operations

-AddFiles= sourcefile-list
-ContentsList

-DeleteFiles= sourcefile-list

-RemovePackage

-TranslatePackage

Package Translation Options

Input decisions

-[no]CMFortran

-EntryPoint=program-unit-name

-LineWidth=number

-[no]PermitArraySyntax

-[no]PermitAutomaticArrays

-StatementBufferSize=number

Output decisions

-CharForContinuation=char

-[no]LineMapping

- [no] ListingFile [=filename]

-OutputExtension=string

-OutputFile=filename

-Verbose=number

Conversion decisions

-DefineSymbols= name-list
- [no] Dependence
- [no]PermitKeywordsCMF
- [no] Permutation

- [no] Push

-[no]RestructureCode

-[no]UnknownRoutinesSafe

-ShortVectorLength=number

-ShortLoopLength=number

-[no]Vectorize

-[no]ZeroArrays

-Help

-Pack

-Add=

-Cont

-Del=

-Rem

-T

- [no] CMF

-E=

-LineWidth

-[no]PermitArr

-[no]PermitAuto

-StatementBuffer

-Char=

-[no]LineMap

-[no]List

-List[=]

-OutputE=

-OutputF=

-Verb=

-Define=

-[no]Dep

-[no]PermitKey

-[no] Perm

-[no] Push

- [no]Restruct
- [no] Unknown

-ShortV=

-ShortL=

- [no]Vec
-[no]Zero

-noCMF

72

-noPermitArr

-noPermitAuto

6700

&
-LineMap

-noList

packname. lis
fcm

1

-Dep
-noPermitKey

-noPerm
-noPush

-Restruct

-Unknown

8

8

-Vec

-noZero

Figure 4. cmax command options, recommended abbreviations, and default values, if any.
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2.1.4 Creating and Manipulating Packages (Without Translation)

% cmaxpackname package-operation

The package-operation may be:

· create a package with specified source files: -Add= sourcefile-list

* add files to an existing package: -Add= sourcefile-list

* delete files from a package: -Del= sourcefile-list

* display a list of the files in a package: -cont

* remove a package: -Rem

Packages contain pointers to the source files, not copies of the files. Removing
a package or deleting files from it does not affect the source files in any way;
only the pointers are removed. These pointers enable the converter to get the
latest version of any files on which it performs conversion operations.

2.1.5 Translating packages

% cmax packname [ -T] [ translation-options ]
% max packname -Add= sourcefile-list -T [ translation-options]

The translation-options may be any of the options listed under that category in
Figure 4. The remainder of this section suggests some uses for various options.

The converter writes converted files and other user-visible output files to the cur-
rent directory. As shown in Figure 5, it also creates a subdirectory named cxmx
under the current directory. This subdirectory holds the converter's internal files
and directories, which the user does not access directly. These internal items
include packages and the package database files generated during conversion.

2.1.6 Removing Package Debris

If you typically use a "scratch" package during development, get into the habit
of removing the package (with the -Remove option) before each session.
Otherwise, you may end up with a package that contains multiple main programs
or other anomalies. Any time you are in doubt about the state of a package or of
the CMAX subdirectory, don't hesitate to remove them and create them anew.
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Also, note that interrupting CMAX can leave the package in an inconsistent state.
Remove and recreate the package to fix the problem.

sobel.input sobel.params

% cmax sobelpack -add=sobel.f

cmax <sobelpack> [ version ]
Creating new package
Adding fortran source file(s) to package <sobelpack>

sobel.f

CMAX execution complete.

% s

CMAX
sobel.params

sobel.f sobel.input

% cmax -pack
Packages in current directory:

sobelpack

CMAX execution complete.

% cmax sobelpack -cont

cmax <sobelpack> [ version]

Listing contents of package <sobelpack>

sobel.f

CMAX execution complete.

% cmax sobelpack -list -verb=l

cmax <sobelpack> [ version ]

Translating package <sobelpack>
CMAX execution complete.

% is
CMAX
sobelpack.lis

sobel.ttab

sobel.fcm
sobel.f

sobel.params

sobel.input

Figure 5. Sample package-creation and conversion session.
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2.2 Controlling Conversion Output and Input

2.2.1 Output Decisions

Naming Converted Files

By default, the converter creates output files in the present working directory,
using the input filename with the extension . fcm. To change the output file-
names, use the translation option -OutputFile= or -OutputExtension=.
Notice that -OutputF= causes the whole program to be written to a single file.

% cmax mypack -OutputE=FCM

% cmax mypack -OutputE=vl.fcm

=> filename. FCM

=> filename. vl. fcm

% cmax mypack -OutputF=whole.fcm => whole.fcm

Suppressing Line-Mapping Files

The output includes a set of files named filename. ttab. These files are used by
the Prism development environment to relate the source line numbers of CMAX
input and output programs. If you will not be loading the converted output pro-
gram into Prism (or using the Emacs utilities suggested in Appendix Section
A.4), you can suppress the . ttab files with the option -noLinexapping.

% cmax mypack -noLineMap => [ no .ttab files]

Choosing the Continuation Character

CMAX-generated statements that extend over multiple source lines are continued
with the ampersand (&) character. Use the option -CharForContinuation=
to specify another character.

% cmax mypack

% cmax mypack

-Char=>

-Char=.

Remember to quote characters that would otherwise be interpreted by other soft-
ware. For example, the UNIX shell interprets & as a job-control character, and the
make utility interprets $ as a macro reference.

% cmax mypack
% cmax mypack

-Char=/&

-Char=$$

& specified at the shell
$ specified in makefile
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Initializing Arrays to Zero

Some Fortran 77 programs target platforms that automatically initialize user
memory to zero. Although this practice is not required by the standard, a program
may assume it and not initialize some variables. Such a program could produce
unexpected results in CM Fortran, since the Connection Machine system does
not implement this practice.

For convenience, CMAX provides the option - [no] ZeroArrays, which causes
the converter to initialize local CM arrays to zero. Scalar variables, front-end
arrays, and arrays in COMMON are not affected.

% max mypack -Zero

2.2.2 Getting Conversion Information

Two options provide information about the converter's activities during program
analysis and translation.

Progress Messages

The -verbose= option causes CMAX to send a specified level of messages to
standard output as it proceeds. The levels are:

0 General startup messages only
1 0 + report of actions
2 1 + messages at start of "passes" over program
3 2 + message at start of transformation of each subprogram
4 3 + message at start of transformation of each Do loop

% cmax mypack -Verb=l => [brief messages]

Efficiency Notes in Listing File

The -ListingFile option causes CMAX to generate a summary report of its
actions and decisions:

% cmax mypack -List => mypack.lis

% cmax mypack -List=today.lis => today.lis
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The listing file is in three parts:

* The Array Homes section lists every array, by subprogram, stating its
home as determined by CMAX. The notes indicate the reason why each front-

end array was not designated a CM array.

* The Routine Variants section lists the procedure variants CMAX has
created and information concerning array arguments.

* The Statement-Level Efficiency Notes identify loops that did and did not
vectorize. For those that did not, the inhibiting cause is shown.

2.2.3 Input Decisions

Accepting Wide Input Lines

The option -LineWidth= enables CMAX to accept source code lines of any
width (in characters) up through the specified argument. The default is 72; the
upper limit is 255.

% cmax mypack -LineWidth=132

Accepting Long Continued Statements

The option -tatementBuffersize= enables CMAX to accept source code
statements of any length (in characters) up through the specified limit. This
switch is useful for codes that continue statements over a large number of lines.

% cmax mypack -StatementBuffer=10000

The argument is the number of characters that will be accepted by CMAX's
internal statement buffer. It excludes spaces and the first six characters of
continuation lines. The default is 6700; there is no arbitrary upper limit.
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2.3 Approaches to a Conversion Process

2.3.1 Performing Conditional Conversion

For programs that are targetted to multiple architectures, it is possible to convert
conditionally, selecting only those segments that are appropriate to the CM sys-
tem. As detailed below in Section 3.5, you can conditionalize a program either
in-line or on a file-by-file basis.

Converting In-Line Conditionals

In-line conditionalizing is described below in Section 3.5. The converter recog-
nizes a subset of the syntax of the C preprocessor cpp, such as:

#ifdef CM

CALL [ CM library procedure ]
#else

CALL [ generic routine 
#endif

Symbol names are defined with the -Define option on the cmax command line:

% cmax mypack -Define=CM

% cmax mypack -Define=CM5 CM2 CSIM

During conversion, the converter emulates certain actions of the C preprocessor
cpp. In its analyses and transformations, it ignores all code that is conditional
upon an undefined symbol. When writing the output files, it suppresses such
code and also removes the cpp-like syntax from around translated code. The out-
put . f cm files need no further preprocessing before cmf compilation.

NOTE: CMAX does not invoke the C preprocessor cpp, but rather emulates a
subset of its functionality. If your favorite cpp directives are not recognized by
CMAX, you might prefer to invoke the preprocessor directly on your program
before converting it.
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Converting File-Level Conditionals

Another approach to conditional conversion is to isolate machine-specific code
in separate files and then process only the appropriate files for each target sys-
tem. The UNIX make utility is useful for this purpose.

For example, suppose a Fortran 77 program consists of the files main. f,
munch. f, crunch. f, and sort-sun. f. Since the sort algorithm is specially
tuned for a Sun, you have an additional file, sort-cm. f cm, with a sort routine
tuned for the CM and coded in CM Fortran. You would then use a make file to
select and process the files for the CM system, including sort-cm. fcm but
excluding sort-sun. f.

See Section 2.3.3 below for more information on using make with CMAX.

2.3.2 Converting Partial Programs

It is possible to approach a large conversion project by converting one or a few
files at a time. You might, for instance, convert the individual subroutines or
modules of a program separately.

Selecting the Partial Program

To begin, create a package containing only the subset of files to be converted at
each step. If the main program unit is missing, use the cmax option -Entry-
Point= to specify the root node of the subtree.

% cmax partprogram -Add=file.f -T -EntryPoint=MYSUB

If the main program unit is missing and you fail to specify another entry point,
CMAX exits with an error:

Unable to locate a main entry point.

Use the -EntryPoint argument to select an
entry point from the following list:

FOO BAR BAZ

Once you have specified an entry point, CMAX treats the package as a complete
program for the purposes of interprocedural analysis. It looks only at the
subprograms that are in the call hierarchy beginning at the specified root node.
Any other subprograms in the package are ignored.
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This behavior means that you have two options for translating a library of
subprograms:

* Write a dummy main program that calls each of the subprograms.

· Create a separate package for each subprogram and specify the
subprogram name as the entry point when translating its package.

Managing the Interfaces between Partial Programs

If you convert a program in stages, be aware that you are responsible for consis-
tency among the separate parts. In particular, the converter cannot do the full
interprocedural analysis for making valid array home decisions when it sees only
part of the program.

The option - [no] UnknownRoutinesSafe enables you to control the assump-
tions the converter makes about unseen parts of the program. The positive form,

% cmax partprogram -E=MYSUB -UnknownRoutinesSafe

asserts that program units outside the package being translated do not contain
code that would constrain any array in the package to a front-end home. The
negative form,

% cmax partprogram -E=MYSUB -noUnknown

causes the converter to make conservative assumptions about unseen parts of the
program, with the result that fewer loops may vectorize.

2.3.3 Using make Files

Because it needs to perform interprocedural analysis, CMAX does not support
incremental conversion. Since a change to one program unit might have ramifi-
cations, such as constraining an array's home, in another unit, the converter
needs to build a new program database for each package translation.

Thus, even when invoked via make, the converter does not limit itself to the
source files that have changed since the last invocation. It does, however, refrain
from overwriting previous output files if it has not changed them. The make util-
ity then selects only the revised . fcmm iles for compilation and linking.
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Provided with CMAX are two sample make files that you can adapt as needed.
One, reproduced in Figure 6, converts and compiles for the CM Fortran global
model; the other converts and compiles for the nodal modal, which uses calls to
the CM message-passing library CMMD for communication.

These files, along with some sample . f files for conversion, are on line in:

* CM-5 systems: /usr/examples/cmax/'

* CM-2/200 systems: /usr/cm/exanples/cmax/

See your system administrator for the locations if these files have been moved.
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# CMF definitions and defaults. Change CMFFLAGS and LIBS for
# use on non-CM5/VU systems.

CMF = cmf
OPT = -O

DEBUG =

CMFFLAGS = -vu $(OPT) $(DEBUG)
LIBS = /usr/lib/libcmax_cm5_vu.a

# CMAX definitions and defaults. Change as desired.

CMAX = /usr/bin/cmax
CMAXFLAGS= -verbose=4 -list

# The package and the files it contains:
TARGET = simple
PACKAGE = simple
TRANSLATION = simple-cmaxed
F77SRCS = main.f setup.f elwise.f total.f
CMFSRCS = $(F77SRCS:%.f=%.fcm)
OBJS = $(F77SRCS:%.f=%.o)

# The TRANSLATION (a dummy file) is used to keep track of

# how up-to-date the .fcm files are with respect to the .f
# files. TRANSLATION gets "touched' after CMAX is run. The

# TARGET depends on both the TRANSLATION and the OBJS:

$(TARGET): $(TRANSLATION) $(OBJS)
$(CMF) $(CMFFLAGS) $(OBJS) $(LIBS) -o $(TARGET)

# If any .f file is changed, CMAX will be run and .fcm files
# recompiled if needed.

$(TRANSLATION) : $(F77SRCS)
$(CMAX) $(PACKAGE) -Add=$(F77SRCS) -T $(CMAXFLAGS)

touch $@

# This rule tells how to compile the .fcm with cmf:

%.o: %.fcm

$(CMF) $(CMFFLAGS) -c $<

clean:
rm -rf $(CMFSRCS) $(TARGET) $(TRANSLATION) *.o *.lis\
*.ttab $(CMAX) $(PACKAGE) -remove

I Figure 6. Sample make file for CMAX, global program execution model
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2.4 Controlling Conversion Rules with Options

The CMAX Converter follows certain defaults rules when choosing array homes
and deciding whether to transform a loop or clone a procedure. You can control
some of its decisions by changing its rules with converter command switches.

You can also control converter behavior on a case-by-case basis by inserting di-
rectives into the input program, as shown in Section 2.5.

2.4.1 Controlling Vectorization on Small Arrays or Loops

Data parallel processing is inefficient on a small array, since CM resources are
left idle. Data parallel processing is also inefficient for a small number of loop
iterations, since the overhead of beginning a parallel operation cannot be amor-
tized effectively. The converter does not vectorize loops when either the iteration
count or the array size is below a certain threshhold.

The default threshhold for both interation count and array size is 8. You can
change the threshholds by using the cmax switches -ShortVectorLength=
and - hortLoopLength=.

% coax mypack -ShortV=1000

% cmax mypack -ShortL=1000

Note that shorter loop and vector lengths may be appropriate for nodal CM For-
tran programs compared with global programs.

2.4.2 Controlling Code Restructuring

Two kinds of code transformation can be inhibited or enabled by means of com-
mand options. By default, the converter transforms Il/GOTO constructions into
block IF/ENDIF constructs, since only the latter are potentially vectorizable into
masked array operations. To inhibit the restructuring of IF/ooTo constructions:

% cmmx mypack -noRestructureCode

By default, the converter does not attempt to push loops that contain subroutine
calls into a variant of the subroutine (a transformation described above in Section
1.4.1). To enable this behavior on a packagewide basis:

/
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% cmax mypack -Push

The converter provides a directive that allows you to enable loop pushing for a
particular loop or for the loops in a particular program unit (see Section 2.5).

2.4.3 Controlling Vectorization Analysis

Three cmax translation options are the global-scope variants of directives that
either inhibit vectorization or assert information to permit vectorization. The
directives are typically used to override the default command settings for particu-
lar cases. The default command settings are:

% cmax mypack -Vectorize

% cmax mypack -Dependence

% cmax mypack -noPermutation

See Section 2.5 for a discussion of the significance of these options.

2.4.4 Processing Fortran 77 with Array Extensions

Two cmax translation options enable the converter to recognize certain Fortran
90 array extensions in Fortran 77 (. f) input files. Without these switches, CMAX
does not recognize Fortran 90 features in . f files and exits with an error when
it encounters them.

Array Syntax

The option -PermitArraySyntax causes the converter to accept array syntax
(references to whole arrays and array sections using Fortran 90 notation).

% cmax mypack.-PermitArr

Automatic Arrays

The option -PermitAutomaticArrays causes the converter to accept Fortran
90 automatic arrays. An automatic array is an explicit-shape local array with a
bound that of one or more variables.

% cmax mypack -PermitAuto
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2.4.5 Accepting CM Fortran Keywords in .f Files

When CMAX encounters the name of a CM Fortran intrinsic procedure in a .f

source file, it takes it to be the name of a user variable or procedure. The con-
verter changes such names in the output program to avoid later confusing the
cmf compiler. For example, if you define and call your own suM function, cmf
would read it as a call to the sum intrinsic function instead. Renaming the user
function avoids the ambiguity.

You can use the CMAX option -[no] PermitKeywordsCMF to change this
behavior. The positive form, -PermitKey, causes the converter to accept the
following CM Fortran reserved keywords in . f source files and treat them as
intrinsic procedure names.

ALL

ANY

COUNT

CSHIFT

DIAGONAL

DLBOUND

DOTPRODUCT

DSHAPE

DUBOUN)

EOSHIFT

FIRSTLOC

LASTLOC

MATMUL

MAXLOC

MAXVAL

MERGE
MINLOC

MINVAL

MVBITS

PACK

PRODUCT

PROJECT
RANK

REPLICATE

RESHAPE

SPREAD
SUM

TRANSPOSE
UNPACK
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This option should be used with care. Since it inhibits changing user names, it
may suppress some CMAX transformations. For example, if a transformation to
the sum intrinsic is appropriate but the program contains a user function of that
name, the transformation does not occur. Also, since CMAX passes the user name
through unchanged, you may get incorrect results when cmf treats sUM as a
reference to the intrinsic rather than the user function.

2.5 Controlling Conversion with Directives

CMAX converter directives are specialized code comments that control certain
translation actions or assert information. The converter also recognizes two CM
Fortran compiler directives, and uses the information they assert in its analysis
of the program.

2.5.1 CMAX$ Converter Directives

The CMAX Converter supports the following directives:

CMAX$ [NO]VECTORIZE [L I R]
CMAX$ [NO]DEPENDENCE [L I R]

CMAX$ [NO] PERMUTATION [ L IR ]
CMAX$ [NO]PUSH [L I R]

The c of cmAx$ must appear in column 1; space after the $ is optional. A direc-

tive can be specified in either its positive or its negative form (although one

makes more sense than the other).

The argument specifies the directive's scope: L (the default) indicates that the

directive applies only to the loop immediately following it (and not to loops

nested within that loop); R indicates that the directive applies to all subsequent
loops in the program unit.

The converter removes cMAX$ directives when it writes converted files.
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Selectively Inhibiting Vectorization

The NOVECTORIZE directive instructs the converter not to vectorize the loop or
loops within its scope. It can be useful, for instance, when the outer loop of a
nested DO construct performs an inherently serial operation. You can speed the
conversion process by instructing the converter not to bother analyzing the possi-
bility of vectorizing this sort of loop.

CMAX$ NOVECTORIZE

DO J = 1,3
DO I = 1,N

PARTICLES(I,J) = PARTICLES(I,J) + DELTAV(I,J)
END DO

END DO

In some cases, a nonvectorizable outer loop will prevent CMAX from vectorizing
inner loops. Putting a NOVECTORIZE directive on the outer loop can solve this
problem. For example:

CMAX$ NOVECTORIZE

DO K = 1,10

A(5) = B(2) + B(92)

B(92) = A(2) + A(5)

DO I = 1,Npp

X = X + A(I)

END DO

END DO

Because loop-level scope is the default, the directive in this example does not
inhibit vectorization of the inner loop.

If you do want to suppress vectorization of nested loops, you can either supply
a directive for each loop level,

CMAX$ NOVECTORIZE

DO J = 1,M

CMAX$ NOVECTORIZE
DO I = 1,N

A(I,J) = B(I,J)**2 + C(I,J)**2
END DO

END DO

or you can specify a larger scope for the directive:
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CMAX$ NOVECTORIZE R

DO J = 1,M

DO I = 1,N

A(I,J) = B(I,J)**2
END DO

END DO

51

+ C(I,J)**2

With routine-wide scope, this directive applies to both the outer and inner loops,
and also to any loops that occur later in the program unit.

Asserting Independence

The NODsPENDENCE directive asserts that the loop or loops within its scope have
no loop-carried data dependences. It is useful for enabling vectorization in cases
where the converter cannot determine whether dependence exists. For example,
the following loop cannot vectorize if the index offset x turns out at run time to
be negative:

DO I=5,95

A(I) = A(I+M)**B(I)
END DO

If the user asserts non-dependence, however, the loop can vectorize:

Fortran 77 CM Fortran

CMAX$ NODEPENDENCE A(5:95) 

DO I=5~,95 _ 1 . A(5+M:95+M)**B(I)
A(I) = A(I+M)**B(I)

END DO

Asserting Uniqueness of Index Values

The PERMUTATION directive asserts that an indirection array on the left-hand
side of an assignment is a permutation of a sequence, that is, it does not contain
duplicate index values. For example, the following loop cannot vectorize if the
index array NDx contains duplicate values:

DO I = 1,N

A(NDX(I))
END DO

= B (I)
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If the user asserts that NDX is a permutation, however, the loop can vectorize:

Fortran 77

CMAX$ PERMUTATION

DO I = 1,N

A(NDX(I)) = B(I)
END DO

CM Fortran

FORALL (I=1:N)} -* . A(NDX(I)) = B(I)

Controlling Loop Pushing

The [NO] PUSH directive enables or disables loop pushing for the loop or loops
within its scope. This transformation is described in Section 1.4.1. The global
(packagewide) default is -noPush.

2.5.2 CMF$ Compiler Directives

The CMAX Converter recognizes some forms of the CM Fortran compiler direc-
tives LAYOUT and ALIGN, which specify how individual arrays are to be
allocated by cmf, and accepts their determination of array layout. These direc-
tives can appear in the Fortran 77 source program, since they are ignored by
compilers other than cmf.

The converter parses all lines beginning with cmAX$ or caF$. Besides its own
directives, it recognizes and accepts:

CMF$ LAYOUT

CMF$ ALIGN

with axis specifiers : NEWS, :SERIAL, or :SEND
except with non-zero axis offsets

CMAX does not recognize the following and treats them as syntax errors:

cxF$ COMMON

CMF$ ALIGN

CMF$ LAYOUT

with non-zero offsets
with axis weights or with assumed-layout or

detailed-layout axis ordering

s)
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It responds to unrecognized forms with a message like:

% cmax mypack -Trans
cmax <mypack> [ version ]
Translating package <mypack>

*******> Ignoring unrecognized CMF$ directive

cmax(_MAIN) :CMF$COMMONFEONLY/A/

The LAYOUT and ALIGN directives contain information that needs to be kept
consistent across a CM Fortran program. CMAX propagates to other program
units the information on array home and layout that it derives from a recognized
form of LAYOUT. It does not, however, propagate information from ALIGN.
Because of the potential here for an error in the output program, CMAX issues
the following warning whenever it ancounters ALIGN:

% cmax mypack -Trans
cmax <mypack> [ version]
Translating package <mypack>

*******> Warning: ALIGN may propagate incorrectly
cmax(_MAIN): CMF$ALIGNB(I)WITHC(1,I)

The warning means that CMAX does not check that ALIGN is used correctly or
consistently, and it does not propagate alignment information between
procedures. For example, you might align a 1-dimensional array N with a column
of a 2-dimensional array M, and then pass N to a procedure. CMAX does not
propagate the noncanonical layout; you have to do it manually by creating
2-dimensional arrays where needed and aligning to them.

It is sometimes possible - and preferable - to use multiple LAYOUT directives
to avoid an ALIGN. CMAX does propagate LAYOUT directives of the recognized
forms.

Finally, you need to insert CMAX or CM Fortran directives explicitly to preserve
the sense of other vendor's directives that already appear in a program. CMAX
will derive no useful information from a program fragment such as:

C$DIR NO_RECURRENCE

CDIR$ IVDEP
C*$*ASSERT PERMUTATION (JND)
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Figure 7. The generic porting process, from older Fortran to the CM and other systems.
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2.6 The Porting Process

The CMAX Converter is meant to be used as part of a larger process. Specifically,
it automates the translation of standard, scalable Fortran 77 to CM Fortran. For
a newly written program that expresses the programmer's intent clearly and does
not rely on any architecture-specific features, the translation may be nearly com-
plete. Many older programs, however, are specifically tuned to a given target
system or constrained to work around limitations in Fortran 77 by means of
rather obscure idioms. For these programs, some amount of manual recoding is
needed.

2.6.1 Where Does the Converter Fit In?

The nature of the overall porting process varies according to the state of the origi-
nal program and whether it is now aimed at one architecture or many. Figure 7
shows a schematic view of the porting process: an older program is first brought
to conformance with the Fortran 77 standard and is made scalable for porting to

multiple systems, including the CM. What steps are needed to accomplish this,
and where the converter can help, depends on the situation.

Consider the cross-product of two factors:

Maintain in

Fortran 77 CM Fortran

Porting

code

Writing
new

code

Users in groups 1 and 2
intention either of maintz
architectures (group 1) or
2). All these users need to
make the code standard ar
the latter, as shown in chg

,.

are porting existing code to the CM system, with the
fining the code in Fortran 77 for portability to other
of maintaining it in CM Fortran for the CM only (group
perform the tasks shown in flowcharts A and B below:
id make the code scalable. The converter can help with
rt B.
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A
Original

Fortran program

tandard,
porable

Yes

P

Standrud, portable
Forlrn n7 program

Older Fortran to
standard, portable

Fortran 77

Standard, portable Fortran 77
to scalable Fortran 77

Contrast the approach of users in group 3, who are writing new code in Fortran
77 for the CM and other systems. Such code could have portability and scalabil-
ity engineered in, again with some help from the converter during development.
The converter's real value, however, to someone maintaining in Fortran 77 is in
fairly routine processing for the CM system. Notice in chart B that the convert-
er's output program is being evaluated, but the input program is being developed.

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation

s1 a Fortran 77
programt

56 Using the CMAX Converter

m

I

t

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

l

I



Chapr ...xhia I'Me C o n... .. Prces 57: .,; .-.. 

Tuning for the CM among others:
tune the input program

Tuning for the CM only:
tune the output program

When the program reaches the performance tuning stage, the converter is most
helpful to users maintaining in Fortran 77 (chart C). As in the development stage,
the converter's output program is evaluated, but the input program is tuned.
Users who are maintaining in CM Fortran would naturally tune the output pro-
gram (chart D).

This manual focuses primarily on the steps in chart B: the one that is relevant to
all three categories of users. Chapter 3 does offer some general hints on achiev-
ing portability (chart A), although the topic is too large and varied to be treated
exhaustively. Chapter 4 focuses on achieving scalability (chart B), with specific
programming hints for porting serial Fortran codes to the massively parallel CM
system. The remaining step, performance tuning as in charts C and D, is not
treated in this manual, since the performance issues in converted codes are the
same as those in native CM Fortran codes.
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2.6.2 Converting a Program Iteratively

With its default option settings, the converter does not accept CM Fortran (. f cm)
files as input. However, you may want to feed CMAX its own output files,
perhaps after adding directives or other aids to translation.

To cause CMAX to accept fcm files, use the option - [no] cixFortran. In addi-
tion, you must use either -OutputExtension or -OutputFile to rename
output files, since CMAX exits rather than overwriting an input file with output
of the same name.

% cmax packname -CMF -OutputE=cmaxed.fcm

With this option supplied, CMAX will not attempt to vectorize loops that already
contain parallel contructs, but will attempt again to vectorize serial loops.

When -cMF is specified, the converter recognizes the Fortran 90 language
constructions specified by -PermitArr, -PermitAuto, and -Permitey, plus
other features like WHERE and END WHERE. It does not recognize nested wmERE
or array pointers.

When -cm is specified, CMAX parses all files in the package, including . f files,
as CM Fortran source code. Take note of the caveats mentioned in connection
with -PermitKey (Section 2.4.5 above) when using this switch: it is important
to avoid confusion between user-supplied names and reserved keywords in both
the .fcm files and . f files.
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Chapter 3

General Porting Issues

This chapter notes some issues that arise in preparing a serial Fortran program
for conversion to CM Fortran. These are general issues that arise in any effort to
port an existing program to another system:

* Check for program correctness.

* Bring the program to conformance with the Fortran 77 standard.

* Conditionalize any machine-specific code.

(4) * Make the program portable to the particular target architectures, including

their shared language extensions and their respective restrictions and data
layout conventions.

In the case of the CM system, the fourth task amounts largely to making the pro-
gram scalable, as defined previously. Chapter 4 gives more information on
targetting a program to the CM system, including some optimizations and some
specific programming hints for enhancing scalability. This chapter offers some
hints that pertain to the first three tasks.

3.1 Check the Input Program for Correctness

The converter cannot, obviously, turn an incorrect program into a correct one. In
fact, subtle bugs in the program might become even harder to locate after con-
version. It is worthwhile to begin by running the original Fortran program on its
target system and verifying its results.
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This step also !provides baseline results against which to compare the results of
later versions of the program. It is advisable to test and debug the program peri-
odically throughout the porting process, checking its results against the baseline
results.

3.2 Standardize the Input Program

The converter is designed to recognize and translate standard Fortran 77 code,
although it does recognize some common language extensions. Many vendor-
specific language extensions and nonstandard coding practices are not translated
and may become errors in CM Fortran. Recoding such features is a necessary part
of any effort to port to another system.

3.2.1 Some Code-Checking Tools

Many implementations of Fortran 77 provide compiler options that assist the
porting process. For example, the Sun f77 option -ansi reports most nonstan-
dard language features; Sun and VAX FORTRAN both provide options that flag
out-of-bounds array references; CONVEX provides an option that flags uninitial-
ized variables;, and so on. These and other tools may be available on your
development platform.

Figure 8 illustrates the output of the Sun -ansi option. The sample program
shown uses very common language extensions that Sun FORTRAN does in fact
support: lowercase letters, names exceeding six characters, and the IMPLICIT
NONE, DO WHILE, and END DO statements. Notice that the option inhibits f77
compilation when nonstandard features are encountered.

CM Fortran and the CMAX Converter also support the features listed in the
Figure 8 -ansi output, as well as INCLUDE lines, the NAMELIST statement, and
the DOUBLE COMPLEX data type.

CMAX provides command options that cause it to accept certain Fortran 90 fea-
tures in input programs. See Chapter 2 for the options of accepting array syntax,
automatic arrays, and/or Fortran 90 intrinsic function names.
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program nonstandard
implicit none
real x,yisareal

integer i

do i=1,5

write(*,*) i

end do

do while (.false.)

x=yisareal*i

end do

stop 'This is the end.'
end

% f77 nonstandard.f
nonstandard.f:

MAIN nonstandard:

% a.out
1

2

3

4

5

STOP: This is the end.

% f77 -ansi nonstandard.f

nonstandard.f:

MAIN nonstandard:

"nonstandard.f", line 1: ANSI extension:
lower case letters

"nonstandard.f", line 2: ANSI extension:
statement

"nonstandard.f", line 3: ANSI extension:
longer than 6 characters

"nonstandard.f", line 5: ANSI extension:

of DO statement

"nonstandard.f", line 8: ANSI extension:
of DO statement

input contains

IMPLICIT NONE

symbolic name(s)

nonstandard form

nonstandard form

Figure 8. Nonstandard features reported by Sun's -ansi compiler option.
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3.2.2 Code-Checking on the CM System

If you are converting a program for the CM system only, its general portability
is less an issue than is its portability to CM Fortran. In this case, you can compile
and execute the program on a CM control processor, using the cmf compiler and
the Prism debugger to locate unsupported features.

% cp my-program.f my-program.fcm

If you choose this route, make sure that the compiler allocates common arrays
on the control processor:

% cmf -fecommon my-program.fcm

If you allow the compiler to allocate common blocks on the parallel processing
unit (as it does by default), your program will encounter compile-time errors
from features that are not supported for CM arrays (such as character type) and
will fail at run time from errors such as mismatched array homes. (The CMAX
Converter will prevent most of these errors when it converts the program to CM
Fortran.)

Once the program compiles and links successfully, you can test it for run-time
errors and check the correctness of its results. If necessary, compile the program
for debugging with Prism:

% cmf -fecommon -g my-program. fcm

Since this program executes on the control processor only, it runs much more
slowly that it will when its Do loops have been converted to array operations.

3.3 Nonstandard Coding Practices

Some coding practices, though nonstandard, are very commonly used because
they work on many sequential computers. When porting to CM Fortran, pay par-
ticular attention to the following trouble spots. The converter is not guaranteed
to flag these practices, and they may show up later as obscure CM Fortran com-
pile-time or run-time errors.
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3.3.1 Uninitialized Variables

Some programs neglect to initialize variables, expecting uninitialized memory to
contain a known value. It is sometimes assumed that Fortran 77 requires auto-
matic initialization of variables in COMMON to zero.

In fact, the Fortran 77 standard does not require automatic initialization of user
memory, and CM Fortran does not do so unless run-time safety is enabled. When
safety is enabled, with the cmf option -safety=10, the CM sets user memory
in the parallel processors to a NaN. This permits checking that floating-point
variables are initialized in the program.

For maximum portability, a program should initialize all variables. However, you
can use the cmax option -ZeroArrays to cause the converter to initialize CM
local arrays to, zero.

3.3.2 Out-of-Bounds Array References

An out-of-bounds array reference is an error in CM Fortran and should be re-
moved from the input program. Many Fortran 77 compilers provide an option
that helps locate instances of this nonstandard practice.

Emulating Assumed-Size Arrays

One place where an out-of-bounds reference might occur is with a dummy array
argument declared as length one but used as an assumed-size array. This was a
common practice under Fortran 66, and it persists in many widely distributed
benchmark programs and numerical algorithms. For example, consider this sub-
routine from Numerical Recipes*:

SUBROUTINE ZBRAK(FX,X1,X2,N,XB1,XB2,NB)

DIMENSION XB1(1),XB2(1)
NBB=NB

NB=O

X=X1

DX=(X2-X1)/N
FP=FX(X)

(continued next page)

* Numerical Recipes: The Art of Scientific Computing, by William H. Press, Brian Flannery, Saul
Teukolsky, and William Vetterling. Cambridge University Press, 1990

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation



DO 11 I=1,N
X=X+DX

FC=FX (X)
IF(FC*FP.LT.O.) THEN

NB=NB+1

XB1(NB)=X-DX ! Nonstandard reference
XB2(NB)=X ! Nonstandard reference

ENDIF

FP=FC

IF(NBB.EQ.NB)RETURN

11 CONTINUE

RETURN

END

This practice usually works on systems with linear memory organization, as long
as the value of NB does not exceed the storage allocated for the actual arrays
passed to xB1 and XB2. In standard Fortran 77, however - and particularly for
portability to distributed-memory systems like the CM - you should not declare
dummy arrays as length one unless the actual arrays really are.

Although the standard Fortran 77 method of declaring dummy arrays used like

those above is the assumed-size array B1 ( * ), this practice does not give a com-
piler (or the converter) much more information about the array than does the
Fortran 66 practice. Distributed-memory systems are sensitive to array rank and
shape, which both these practices obscure. The converter can transform
assumed-size dummy arrays into correct CM Fortran code only if the rank of the
dummy and actual array arguments match.

Linearizing Multidimensional Arrays

Another source of out-of-bounds references is the practice of linearizing multidi-
mensional arrays instead of writing nested Do loops. Some older vectorizing
compilers generated more efficient code from single loops, leading programmers
to write:

REAL A(IM, JM), B(IM, JM), C(IM, JM)

DO I = 1,IM*JM

A(I,1) = B(I,1)* C(I,1)

END DO

instead of

(.
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DO J = 1,JM

DO I = 1,IM

A(I,J) = B(I,J) * C(I,J)

END DO

END DO

The first loop, although not standard-conforming, usually works on linear-
memory systems because the column-major representation of this array in
memory puts element (1, 2) directly after element (IM, 1). This is not the case
in distributed memory, however, where the "next" memory location after the end
of an array dimension is not a meaningful concept. Linearizing the array ob-
scures the 2-dimensional nature of the computation - an error in CM Fortran
which the CMAX Converter may not be able to prevent. Since distributed-
memory systems prohibit out-of-bounds array references - and since modem
vectorizing compilers can generate efficient code from nested loops - it is best
to avoid this practice and use the second form instead.

3.3.3 Aliasing from Above

Aliasing from above refers to overlaps between actual array arguments or
between arrays in COmMON within a subprogram, such that the same storage is
referenced with more than one name. For example, the arguments x and z below
reference the same memory locations.

REAL A(10), B(10)

CALL SUB(A,B,A,10)

SUBROUTINE SUB(X,Y,Z,N)
INTEGER N
REAL X(N), Y(N), Z(N)

Avoid this kind of argument-passing in portable code. Neither Fortran 77 nor CM
Fortran permits any action within subroutine sB that modifies either array x or
array z.
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3.4 Remove Outmoded "Optimizations"

A number of coding practices, such as the linearizing of arrays noted above, are
no longer necessary for their original target systems, and they inhibit the porta-
bility of a program to other systems. You can assist the CMAX Converter (and
other systems' compilers) by removing outmoded optimizations from the pro-
gram. This section mentions some examples of these practices.

Strip-Mining

Older vectorizing compilers generated optimal code for arrays of a length suited
to their particular vector registers. This led programmers to "strip-mine" arrays
for segments of the size needed:

REAL S(0:63)

DO I = 1,N,64

DO I2 = 0,63

S(I2) = A(I1+I2) * B(I1+I2)

S(I2) = 3.0 * S(I2) + 42.0 

C(I1+I2) = S(I2)

END DO

END DO

Since modern compilers do strip-mining automatically, there is no need to
obscure code in this way. The loop above can be written more clearly as:

DO I = 1,N

S = A(I) * B(I)
S = 3.0 * S + 42.0

C(I) = S

END DO

t
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Unrolling Loops

Many modem compilers can unroll loops when needed for best performance;
they no longer require you to perform this optimization by hand. A loop written
as,

DO I = 1,N,4
S = S +- A(I) + A(I+1) + A(I+2) + A(I+3)

END DO

should be rewritten as,

DO I = 1,N
S = S + A(I)

END DO

I,
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3.5 Conditionalize Machine-Specific Code

It is often necessary to write machine-specific code as part of a portable
application. Such code might be:

* Expressions of machine-specific algorithms, such as solvers tuned for
each of the target architectures

* Vendor-provided library functions, tuned by the implementors for best
performance on their respective systems

* A set of array declarations or PARAMETER statements, which might vary
between compilations with target system or with problem size

* For the CM system, code written in CM Fortran to express operations that
the CMAX Converter does not yet translate from Fortran 77.

Machine-specific code must be encapsulated and conditionalized so that it is vis-
ible only to its intended target, and ignored by other systems. This process can
be managed however you prefer. Two possible strategies are file-level condition-
alizing and in-line conditionalizing. (

File-Level Conditionalizing

If machine-specific code segments are placed in separate files, you can use a tool
such as the UNIX make utility to select the appropriate files for conversion or
compilation. See Chapter 2 for information on converting files via make.

In-Line Conditionalizing

The converter supports in-line conditionalizing in a manner similar to the C pre-
processor cpp. As shown in Chapter 2, the cmax option -DefineSymbols=
defines specified symbols during the conversion of a package. The converter
ignores any code segments that are made conditional on an undefined symbol.

To conditionalize a CM-specific segment of code:

#ifdef CM
CALL [ CM library procedure ]

#endi f
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The converter also recognizes the following form:

#if defined (symbol)
#elif defined (symbol)
#else

#endif

For example, when cmax is invoked with the option -DefineSymbols=CK, the
converter processes only the CM-related code in this fragment:

#if defined (CM)

[CM-specific code]
#elif defined (CRAY)

[Cray-specific code]
#elif defined (CONVEX)

[CONVEX-specific code]
#else

[generic code]
#endif

The test condition can also be an expression involving symbols:

#if expression
#elif expression
#else

#endif

Expressions may contain symbols along with parentheses and the C-style opera-
tors logical and (&&), or ( I I ), and not ( ). Any other item in an expression causes
the expression to be treated as undefined, and the code segment that is condi-
tional upon it is thus ignored. For example:

#if ( CM5 I CM200 ) && !CMSIM

#elif CMSIM

#else

#endif

If this subset of cpp-like syntax does not include features you wish to use, you
have the option of invoking cpp directly on your input program before running
it through CMAX.
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3.6 Miscellaneous Conversion Hints

This section notes some programming practices that facilitate conversion via
CMAX.

3.6.1 Revealing Reduction Idioms

CMAX recognizes many reductions of calls to intrinsic functions, such as the
MINVAL of ABs. For example, this loop:

DO I = 1 , 100

X = X + SIN(A(I))

IF (A(I) .GT. 0.0) Y = Y + SQRT(A(I))

Z = MIN(Z,ABS(A(I)))

ENDDO

converts to:

X = X + SUM(SIN(A))

Y = Y + SUM(SQRT(A),MASK=A .GT. 0.0) C
Z = MIN(Z,MINVAL(ABS(A)))

For constructions that are not recognized, you can sometimes manually split the
expression to reveal a recognized idiom. For example, reductions of complicated
expressions will sometimes not vectorize because the right hand side of the
assignment statement cannot be expressed in array syntax. Splitting the
expression across two statements will enable vectorization. Consider:

DO I = 1 , 100

X = X + ABS(A(I) * SIN(FLOAT(I)))
ENDDO

can be rewritten as:

DO I = 1 , 100

T = ABS(A(I) * SIN(FLOAT(I)))
X X + T

ENDDO

to be converted into:

FORALL (I = 1:100)

& T100(I) = ABS(A(I) * SIN(FLOAT(I)))

X = X + SUM(T100)
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3.6.2 Include Files

CMAX converts C-style #include directives into Fortran-style INCLUDE lines.
This code:

SUBROUTINE S002()

IMPLICIT NONE

INTEGER I,K,P,M,N

#include "foo.FCM"

INTEGER SL

END

Is transformed into this code:

SUBROUTINE s002()

IMPLICIT NONE

INTEGER I,K,P,M,N

INCLUDE 'foo.FCM'

INTEGER SL
END

CMAX expands include files in-line if they are modified during conversion. Also,
CMAX-generated LAYOUT directives for arrays that are declared in include files
appear in the output . fcm files rather than in the include files themselves. This
behavior can lead to output files that are longer and perhaps less readable than
they would otherwise be. You can increase output readability in the course of an
iterative porting process by clipping out the generated LAYOUT directives (or

write your own if you prefer) and putting them in the include files yourself.
(Compilers other than cmf will ignore them.) Then CMAX will not generate new
ones with every run.

CM Fortran Limit on Include Files

CM Fortran versions prior to Version 2.1 Beta 1 place a limit of 20 on the number
of include files used in a single source file. If the limit is exceeded, compilation
aborts with a "File stack overflow" error. There are two workarounds for
this limitation:
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* Concatenate include files, but be careful to check whether the code uses
the same names for variables in different COmmON blocks.

* Use C-like #include and rename your output file(s) to .FCM. The cmf
command will invoke cpp to preprocess the files before invoking the CM
Fortran compiler.

In Version 2.1 Beta 1, the cmf compiler accepts up to 252 include files per source
file, nested to a maximum depth of 19.

3.6.3 SAVE Variables in Procedure Variants

Because CM Fortran requires that actual array arguments match the
corresponding dummies in home and shape, CMAX generates procedure variants
where needed to accommodate more than one category of array arguments.
SAVE variables cannot be shared between these independent procedures.

For example, if CMAX needs to clone

SUBROUTINE HUMPTY (...)
INTEGER SAT, ONA, WALL
SAVE

it will warn:

Warning: Cloning routine HUMPTY which has 3 local save

variables. SAVE variables will not be shared between
clones:

SAT

ONA

WALL

You can preserve the original intent of the subroutine by using a coMMON block
instead of the SAVE attribute:

SUBROUTINE HUMPTY (...)
INTEGER SAT, ONA, WALL

COMMON /DUMPTY/ SAT, ONA, WALL

4
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Chapter 4

Porting to CM Fortran

This chapter provides a series of hints for programming in Fortran for the CM
system. Many of these items are particular ways of engineering scalability into
the program; as such, they often benefit the program on other systems as well.
Other items pertain to CM-specific procedures and restrictions; these should be
included conditionally if the program is targetted to multiple architectures.

The topics described include:

* Declaring CM arrays

* Customizing CM I/O operations

* Avoiding memory model assumptions

* Simulating dynamic array allocation

N

E

Expressing circular element shifts

Converting to nodal CM Fortran with message passing
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4.1 CM Array Declarations

Optimal array sizes and layouts for CM systems are described in the CM Fortran
documentation set. This section lists some general hints for declaring and laying
out local and common arrays.

4.1.1 Array Layouts

The CMAX Converter generates a LAYOUT directive for every array in the pro-
gram. By default, arrays used in vectorized operations are laid out in NEWS
order, and arrays confined to the control processor are described with all dimen-
sions serial. The converter also generates appropriate ALIGN directives for the
arrays that it creates (for instance, by promoting scalar values).

The converter never overrides user-specified LAYOUT and ALIGN directives.
Insert directives as needed for best performance. For example, an array dimen-
sion intended for serial operations only (such as the time dimension in the
evolution of a system) should be laid out within processors:

REAL, A(10,1000,1000)

CMF$ LAYOUT A(:SERIAL, :NEWS, :NEWS)

NEWS ordering is appropriate for most data parallel operations. SEND ordering
is used on CM-2 systems to optimize certain procedures of the CM Scientific
Software Library; it is redundant with NEWS ordering on the CM-5.

Operations between arrays are most efficient if the arrays are aligned in distrib-
uted memory. Replace this,

REAL A(1000,1000), B(1000,1000)

CMF$ LAYOUT A(:SERIAL, :NEWS), B(:NEWS, :NEWS)

with this,

REAL A(1000,1000), B(1000,1000)

CMF$ LAYOUT A(:SERIAL, :NEWS), B(:SERIAL, :NEWS)

Use the ALIGN directive to align specified dimensions of arrays that are of differ-
ent sizes or ranks. However, take note of the restrictions on CMAX's ability to
manage user-supplied ALIGN directives (Chapter 2).
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CM Fortran Version 2.0 gives best performance if all serial dimensions are
declared to the left of any parallel dimension (NEWS or SEND). This restriction
is removed in Version 2.1.

4.1.2 Arrays in COMMON

The CM Fortran compiler allocates arrays in COMMON either on the control pro-
cessor or on the parallel processors, never on both. In the Fortran 77 input
program, it is useful to segregate the common arrays that will be processed in
parallel from those that will be processed serially, placing them in separate COM-
MON blocks. If you fail to do so, the compiler will not maintain the storage and
sequence association of the front-end arrays in the common block.

CM Fortran Version 2.0 requires that all CM arrays in COMMON be declared in the
main program unit, regardless of where they are declared and used in the pro-
gram. You need to add the declarations manually to the output program to avoid
a later CM Fortran error. This restriction is removed in Version 2.1.
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4.2 Customizing 1/0 Operations

CM Fortran supports all Fortran 77 I/O statements, as well as certain common
extensions such as NANELIST. The CMAX Converter makes no changes to I/0
operations.

This section lists some I/O revisions you might wish to consider.

4.2.1 /0 into a Single Vector

Some programs perform I/O0 by reading and writing a single large vector, often
in CONmON. The computational kernel of the program then indexes into the vector
to get data as needed.

As noted earlier, the converter can deal with such code only in the 1-dimensional
case. For greater scalability, programs should declare arrays in the shapes actual-
ly used and perform I/O operations separately on each of the arrays.

4.2.2 Recoding for Parallel File 1/0

Prior to Version 2.1 Beta 1, CM Fortran implements READ and WRITE as serial
operations only. Data is transferred in a single stream between the control proces-
sor and a peripheral device. If a CM array is to be written, it is first moved to the
control processor and then transferred.

Avoiding this "front-end bottleneck" can significantly increase the speed of an
I/O operation. The CM Fortran Utility Library procedures cm,_cX_ARRAY_To/

FROM_FILE perform parallel I/O, reading or writing in multiple streams between
the parallel processors and the device.

In 2.1 Beta 1, the Fortran I/O statements perform parallel I/O on CM arrays, mak-
ing the utility routines unnecessary.

4.2.3 Block Data Transfers for Serial O10

If you choose not to recode I/O operations with CM Fortran utility routines, all
your READ and WRITE statements will execute serially (from the control proces-
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sor) in versions prior to 2.1 Beta 1. The cmf compiler usually performs a block
transfer of a CM array to facilitate this operation.

The exception is when the I/O operation contains an implied DO loop. In this case,
the compiler transfers a CM array to or from the control processor one element
at a time. To avoid this time-consuming operation, either:

* Using some conditionalizing convention to target the code to the CM sys-
tem, manually insert the CM Fortran block-transfer utility procedures
(CMF_FE_ARRAY_TO/FROM_CM) into the program.

* Rewrite the I/O operation in a way that the converter will translate into a
block-transfer utility. For example, if you expect array A to become a CM
array, read instead into a front-end temporary array and then use a vecto-
rizable Do loop to copy the values from TEMP to A.

Rewrite this ... ... like this

READ *, (A(I), I=1,N) READ *, (TEMP(I), I=1,N)

DO I=1,N

A(I) = TEMP(I)
END DO

4.2.4 Vendor-Specific Difference in READ/WRITE Behavior

A problem you might encounter in porting from Sun or VAX Fortran to CM
Fortran is a difference in the behavior of the READ and WRITE statements. Both

the Sun and VAX implementations act on the first character specified, whereas
the standard defines it as a carriage control character (which essentially means

it is ignored). CM Fortran is standard-conforming in this respect, but its output

may be unexpected in a code written for Sun or VAX. For example, consider:

PROGRAM OUTPUT

WRITE(6,100) '
WRITE(6,100)

100 FORMAT(A)
END

No leading blank'

One leading blank'

In Sun FORTRAN this gives:
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% output
No leading blank

One leading blank

In CM Fortran this gives:

% output
o leading blank

One leading blank

A workaround that preserves the expected behavior is to write the FORMAT

statement as:

100 FORMAT (1X,A)

I
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4.3 Avoiding Memory Model Assumptions

Although CM Fortran includes all of Fortran 77, some standard features are re-
stricted to the control processor and thus t sequential execution. These features
- EQUIVALENCE, arrays that change shape across program boundaries, and
assumed-size arrays - are ones that rely on a linear model of memory. This sec-
tion provides some hints for making Fortran 77 programs more scalable by
working around these features.

4.3.1 Coding around EQUIVALENCE

The CMAX Converter does not vectorize loops on equivalenced arrays, since CM
Fortran supports equivalencing for front-end arrays only.

The EQUIVALENCE statement is used for a number of different purposes, many
of which can be expressed in another way. In preparing a Fortran 77 program,
you should consider these alternatives for arrays that you want to be processed
in parallel.

Saving Memory

One use of EQUIVALENCE is to save memory while retaining the clarity of code.
Two or more arrays that are used in non-overlapping stages of the program may
be folded into one with EQUIVALENCE, thus reducing the amount of storage
used.

REAL TOADS(1000000), FROGS(1000000)

EQUIVALENCE (TOADS, FROGS )

If TOADS and FROGS are processed entirely separately, it makes sense to reuse
the storage and also to clarify the code by giving the storage different names for
each of its uses.

9_
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When targetting the CM system, however, it is best to remove the EQUIVALENCE
statement (at the cost of extra memory use),

REAL TOADS(1000000), FROGS(1000000)

Or to use a single array for both purposes (possibly at the cost of some clarity),

REAL FROADS(1000000)

Either of these approaches permits the CM system to perform parallel operations
on the two data sets.

Alternatively, you can use the converter's Fortran 77 dynamic allocation utility,
described below in Section 4.4.

Naming a Subarray

In the interest of conciseness, a programmer might use EQUIVALENCE to define
an abbreviation for a piece of an array:

REAL A(100,100), ARIGHT(100)

EQUIVALENCE (ARIGHT, A(1,100))

ARIGHT(K) = X

Here, ARIGHT is aliased to the rightmost (100th) column of A. This kind of
abbreviation saves keystrokes, although it can make code somewhat less trans-
parent - it is not immediately obvious from looking at a later line that ARIGHT

and A share storage.

When targetting the CM system, it is best to remove the EQUIVALENCE statement
and write out the real reference in full. A clearer expression of the intent of the
above fragment is:

REAL A(100,100)

PARAMETER (ARIGHT = 100)

A(K,ARIGHT) = X
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Subverting the Type System

Programmers who are thoroughly familiar with their target memory organization
can use EQUIVALENCE to avoid the constraints of the type system, perhaps for
convenience,

REAL A(2000)

COMPLEX B(1000)

EQUIVALENCE (A,B)

DO I = 1,2000

A(I) = 0.0

END DO

or perhaps to perform operations on types for which they are not supported:

REAL A(1000)

INTEGER B(1000)

EQUIVALENCE (A,B)

DO I = 1,1000

B (I) = [bit-level operation]
END DO

These uses of EQUIVALENCE are not generally portable, and are unlikely to work
on the CM system even if EQUIVALENCE were supported for CM arrays. If you
need to do something like this to optimize for another architecture, it is best to
isolate and conditionalize that section of the program.
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4.3.2 Coding for CM Array Argument Passing

A general rule of scalable programming is to declare multidimensional arrays as
such and to avoid reshaping them across program boundaries. Recall that a CM
array as an argument is passed by descriptor, which indicates all the array's ele-
ments as well as its shape (see Section 1.4.3).

The CMAX Converter confines to the control processor any arrays that are sub-
ject to the following kinds of operations:

* Reshaping or retyping arrays across subroutine boundaries, with certain
recognized exceptions

* Passing array arguments with scalar subscripts when either the actual or
the dummy argument is multidimensional

As a result, loops on these arrays cannot be vectorized anywhere in the program.
Some manual recoding is required to permit vectorization in these cases.

Reshaping across Subroutine Boundaries

To permit vectorization, rewrite this fragment as shown.

Rewrite this ... ... like this

REAL A(N1,N2,N3)

CALL ZEROFILL(A, N1*N2*N3)

SUBROUTINE ZEROFILL(A,N)

REAL A(N)

DO I = 1,N

A(I) = 0.0

END DO

RETURN

REAL A(N1,N2,N3)

CALL ZEROFILL (A,N1,N2,N3)

SUBROUTINE

ZEROFILL(A,N1,N2,N3)

REAL A(N1,N2,N3)

DO K = 1,N3

DO J = 1,N2

DO I = 1,N1

A(I,J,K) = 0.0

END DO

END DO

END DO

RETURN

I
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Array Arguments with Scalar Subscripts

The converter cannot convert "hidden array arguments" (arrays referenced with
a scalar subscript) when either the actual or the dummy argument is multidimen-
sional. To permit vectorization in the 1-dimensional case, write subroutine calls
and definitions as shown on the left. Such code converts as shown on the right:

Fortran 77 CM Fortran

SUBROUTINE HIDDEN1(A,N)

REAL A(N)

DO I=1,N

A(I)=SQRT(A(I))+2.0

END DO

RETURN

END

SUBROUTINE HIDDEN(AA, NN)

REAL AA(NN)

CALL HIDDEN1(AA(5), 57)

RETURN

END

/
SUBROUTINE

HIDDEN1(A,OS,LN,N)

INTEGER LN, OS

REAL A(1-OS+1:LN+1-OS)

A(I:N)=SQRT(A(:N))+2.0
RETURN

END

SUBROUTINE HIDDEN(AA,NN)

REAL AA(NN)

CALL HIDDEN1(AA,5,NN,57)

RETURN

END
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4.4 Dynamic Array Allocation

Scalable software allows some array sizes to be determined at run time, so that
the program scales easily for different size data sets and also makes best use of
memory in the target architectures. For this purpose, CM Fortran provides For-
tran 90 automatic and allocatable arrays.

The CMAX Converter provides library procedures that simulate dynamic array
allocation on any Fortran 77 platform. When you convert the program to CM
Fortran, CMAX transforms these procedures into dynamic allocation on the CM
system.

4.4.1 Simulating Dynamic Allocation in Fortran 77

Fortran 77 does not provide any straightforward way to express the allocation of
arrays whose size is determined at run-time. This forces programmers to devise
indirect ways of expressing this intent.

Constant Array Sizes

Some Fortran 77 programmers opt to "hard-wire" array sizes. For example, the
BART program shown in Chapter 1 is fully portable and converts cleanly into CM
Fortran. However, the computation is performed on arrays (VALuE and COEFF)
whose size is specified with the parameter MAXSLICES; the run-time value
NSLICES indicates how much of the storage to use. The specification part of
BART's function definition reads:

FUNCTION SIMPSON(START, END, NSLICES, NELTS)
REAL START, END

INTEGER NSLICES, NELTS

PARAMETER (MAXSLICES = 1000)
REAL LENGTH, EPSILON

REAL VALUE(MAXSLICES), COEFF(MAXSLICES), X, AREA
INTEGER I

On distributed-memory systems, constant array sizes can mean poor utilization
of memory and processing resources. If MAXSLICES is 1024 and the array vALUE
is evenly distributed over 128 processors, each processor holds 8 contiguous ele-
ments.
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Processor

Element

0

0

1

2

3

4

5

6

7

1 2 3

8 16 24

9 17 25

10

11

12

13

14

15

18

19
20

21

22

23

If NSLICES is always equal to MAXSLICES, processors will be fully utilized.
However, when NSLICES is 256, only 32 processors participate in the computa-

tion of the integral, leaving 96 processors idle.

Constant array sizes pose other problems for programmers, even on serial and
shared-memory computers. To run BART with large NSLICES, it may be neces-
sary to recompile the program, setting MAXSLICES higher.

If the array size were instead determined dynamically, then the VALUE and
COEFF arrays - and all the related computation - could be evenly distributed
regardless of array size and the number of processors in the machine, all without
recompilation.

Arrays in COMMON

Another frequent approach to "dynamic" array allocation in Fortran 77 is used
in the HOMER program (Figure 9), another Simpson integrator. A large chunk

of memory is allocated in COmmON at compile time, and then used as needed at
run time. Although this approach is more scalable than constant array sizes, it

suffers from the same problems of uneven distribution as BART, and it may also
obscure the actual type and shape of the data set. Also, the common array
(MEMORY) may be only partially used at run time, wasting memory on both serial

and parallel machines.
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PROGRAM HOMER
REAL START, END

INTEGER NSLICES, NELTS
COMMON /EMBLK/ MEM(1000000)
REAL MEM

PRINT *, ' Enter START, END, NSLICES:'
READ (5, *) START, END, NSLICES
NELTS = NSLICES + 1

PRINT *, ' The integral =
SIMPSON(START,END,NSLICES,NELTS,MEM(1) ,MEM(+NELTS))

STOP
END

FUNCTION SIMPSON (START, END, NSLICES, NELTS, VALUE, COEFF)
REAL START, END

INTEGER NSLICES, NELTS
REAL VALUE(NELTS), COEFF(NELTS)

REAL LENGTH, EPSILON
REAL X, AREA
INTEGER I

LENGTH = END - START
EPSILON = LENGTH/NSLICES

C Evaluate function and compute coefficients:
DO I = 1,NELTS

X = START + (I-1)*EPSILON
VALUE(I) = COS(X)
COEFF(I) = 2 + 2*MOD(I-1,2)

END DO

C First and last coefficients are 1.0:

COEFF(1) = 1.0

COEFF(NELTS) = 1.0

C Compute total area using Simpson's rule:
AREA = 0.0

DO I = 1,NELTS

AREA = AREA + COEFF(I)*VALUE(I)
END DO

SIMPSON = (LENGTH/(3*NSLICES) ) *AREA

RETURN
END

Figure 9. The ]HOMER program, coded in Fortran 77 with a common array. 1(|
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4.4.2 A CM Fortran Solution

Because Fortran 77 lacks the features of automatic and allocatable arrays, pro-
grammers cannot express their intent clearly. In the BART and HOMER
programs, for instance, the CMAX Converter cannot determine whether the pro-
grammer who wrote a PARAMETER statement or a COMMON statement would
actually have preferred dynamic allocation.

One approach to porting these memory management schemes to CM Fortran is
to rewrite the array allocation using the appropriate Fortran 90 dynamic alloca-
tion feature. Program LISA (Figure 10) illustrates the use of CM Fortran
automatic arrays (which follow a stack discipline). In LISA, the run-time value
NSLICES, not the compile-time value MAXSLICES, specifies the size of the
arrays. For another algorithm, an allocatable array or array pointer (which follow
a heap discipline) might be preferred.
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PROGRAM LISA
REAL START, END
INTEGER NSLICES, NELTS

PRINT *, ' Enter START, END, NSLICES:'
READ (5, *) START, END, NSLICES
NELTS = NSLICES + 1

PRINT *, ' The integral =
SIMPSON(START, END, NSLICES, NELTS)

STOP
END

FUNCTION SIMPSON(START, END, NSLICES, NELTS)
REAL START, END

INTEGER NSLICES, NELTS

REAL VALUE(NELTS), COEFF(NELTS), X(NELTS)
CMF$ LAYOUT VALUE(:NEWS), COEFF(:NEWS), X(:NEWS)

REAL LENGTH, EPSILON
REAL AREA
INTEGER I

LENGTH = END - START
EPSILON = LENGTH/NSLICES

C Evaluate function and compute coefficients:

FORALL (I = 1:NELTS) X(I) = START + (I - 1) * EPSILON
VALUE = COS(X)
FORALL (I = 1:NELTS) COEFF(I) = 2 + 2 * MOD(I - 1,2)

C First and last coefficients are 1.0:

COEFF(1) = 1.0

COEFF(NELTS) = 1.0

C Compute total area using Simpson's rule:

AREA = 0.0

AREA = AREA + DOTPRODUCT(COEFF,VALUE)

SIMPSON = (LENGTH / (3 * NSLICES)) * AREA

RETURN
END

Figure 10. The LISA program, coded in CM Fortran with automatic arrays. i?
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4.4.3 A Scalable Fortran 77 Solution

The CMAX Converter provides a canonical, portable way of expressing dynamic
memory allocation in Fortran 77. Programs that use this utility can be compiled
with any Fortran 77 compiler (source code is provided). The converter recog-
nizes this utility and translates it into dynamic array allocation in CM Fortran.

The utility package consists of the header file cmax. h and a set of libraries for
serial and parallel linking. (See Appendix A for information on linking programs
that make use of the dynamic allocation utility.) The utility defines a set of sub-
routines, one for each possible rank of the array to be allocated.

CMAXALLOCATE_rank ( INDEX_VAR, ELT_TYPE, N1 ... , N7 )

Returns a value in INDEXVAR that can (only) be used to index into the com-
mon array CMAX_MORY when passed as an argument to a procedure.

INDEX_VAR An integer variable or front-end array element

ELT_TYPE A predefined integer constant, one of CMAXLOGICAL,
CMAX_INTEGER, CMAX_REAL, CMAX_DOUBLE,

CMAX_COMPLEX, or CMAX_DOUBLE_COMPLEX

N1 ... , N7 Integer extents for array dimensions; the number of
extent arguments must correspond to the rank specified
in the procedure name

The common array CAX_MEMORY is declared by the header file in an INCLUDE

line. A call to CMaX_ALLOCATE_rank associates an index variable with a pointer
into that memory. The memory thus indicated becomes available as an array
when you pass a reference to it, CMAXMEMORY (INDEX_VAR), as an argument
to a subroutine or function. The corresponding dummy argument in the proce-
dure must match the shape and type of the array allocated; it can be either a CM
array or a front-end array in the subprogram scope.

An index variable can be used for multiple arrays of different dimension extents,
although all must be of the same rank and layout. You can also build arrays of
dynamically allocated arrays, by using a front-end array element at the index
variable. All dynamic arrays pointed to by elements of an index array must be
of the same rank and layout.
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The library procedure CMAX_DEALLOCATE performs dynamic deallocation.

CMAX_DEALLOCATE ( INDEX_VAR )

Frees the memory associated with the INDEX_VAR.

INDEX_VAR An integer variable previously defined as an index into
CmAX_MEMORY by a call to CMAX_ALLOCATE_rank

For example, this fragment allocates two arrays, a real array of rank 2 and an
integer array of rank 1.

INCLUDE 'cmax.h'

INTEGER I_A, I_B

CMAX_ALLOCATE_2(I_A, CMAX_REAL, K1, K2)

CMAX_ALLOCATE_1(I_B, CMAX_INTEGER, K1*K2)

CALL SUBMARINE (CMAX_MEMORY(I_A),

CMAX_MEMORY(I_B), K1, K2, K1*K2)

CALL CMAX_DEALLOCATE (I_A)

CALL CMAX_DEALLOCATE (I_B)

SUBROUTINE SUBMARINE(A, B, N1, N2, N3)
REAL A(N1, N2)

REAL B(N3)

The calls to CMAX_ALLOCATE and CMAXDEALLOCATE need not immediately
surround the call to the procedure that uses the storage. Any code can come
between allocation and use, there can be multiple uses of an allocated array, and
the allocated arrays can be deallocated in any order. These features are also true
of the CM Fortran dynamic array allocation to which the CMAX Converter trans-
lates this utility.

See Figure 11 for an example of a Simpson integrator coded with the CMAX
dynamic allocation utility.
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PROGRAM MARGE
REAL START, END
INTEGER NSLICES, NELTS
INTEGER I_VALUE, ICOEFF
INCLUDE 'cmax.h'

PRINT *, ' Enter START, END, NSLICES:'
READ (5, *) START, END, NSLICES
NELTS = NSLICES + 1

CALL CMAX_ALLOCATE_1 (I_VALUE, CMAX_REAL, NELTS)
CALL CMAXALLOCATE_1 (I_COEFF, CMAX_REAL, NELTS)
PRINT *, ' The integral = ', SIMPSON(START,END,

NSLICES,NELTS,CMAX_MEMORY(I_VALUE),CMAX_MEMORY(I_COEFF))
CALL CMAX_DEALLOCATE (I_VALUE)
CALL CMAX_DEALLOCATE(I_COEFF)
STOP
END

FUNCTION SIMPSON (START, END, NSLICES, NELTS, VALUE, COEFF)

REAL START, END

INTEGER NSLICES, NELTS
REAL VALUE(NELTS), COEFF(NELTS)
REAL LENGTH, EPSILON
REAL X, AREA
INTEGER I

LENGTH = END - START
EPSILON = LENGTH/NSLICES

C Evaluate function and compute coefficients:
DO I = 1,NELTS

X = START + (I-1) *EPSILON
VALUE(I) = COS(X)
COEFF(I) = 2 + 2*MOD(I-1,2)

END DO
C First and last coefficients are 1.0:

COEFF(1) = 1.0

COEFF(NELTS) = 1.0

C Compute total area using Simpson's rule:
AREA = 0.0

DO I = 1,NELTS

AREA = AREA + COEFF(I)*VALUE(I)
END DO

SIMPSON = (LENGTH/(3*NSLICES))*AREA
RETURN
END

b Figure 11. The MARGE program, coded in Fortran 77 with the CMAX dynamic allocation utility.

Version 1.0, July 1993

Copyright © 1993 Thinking Machines Corporation

b

Chapter 4. Porting to CM Fortran 91



92 Usn heCACnee

It is advisable to control the layout of the index array and the allocated arrays
with explicit LAYOUT directives.

* If an array, the INDEX_VAR argument itself must be placed on the front
end (layout :SERIAL).

* The INDEX_VAR argument (array or scalar) can be placed in COMMON. If

so, the user is responsible for seeing that all the arrays it points to have the
same rank and layout. CMAX cannot enforce this restriction.

* The allocated arrays can be designated either front-end or CM by explicit
LAYoUT directive.

* If the procedure that allocates an array never uses CMAX EMORY () -

that is, never passes the array to a subprogram where it is declared and
used - the layout defaults to all: NEws. If you wish to control layout (or
home) explicitly, insert a subprogram that does nothing more than declare
and lay out the array.

When the allocated array is given an explicit all :SERIAL layout in a called
subroutine, CMAX_ALLOCATE_rank allocates a front-end array. For example, in
the following program, the dynamic array ISER will become a CM Fortran front-
end array.

PROGRAM CEREAL

INCLUDE '/usr/include/cm/cmax.h'

INTEGER ISER

CALL CMAX_ALLOCATE_ (ISER, CMAX_INTEGER, 100)

CALL USIT(CMAX_MEMORY(ISER))

END

SUBROUTINE USIT(K)

INTEGER K(100)

CMF$ LAYOUT K(:SERIAL)

DO I = 1,100

K(I) = I
END DO

PRINT *, K

END
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4.5 Circular Element Shifts

Fortran 77 provides no concise way to express a circular shift of array elements,
where the element(s) that shift off the end of a dimension are "wrapped" around
to the beginning. This operation is expressed by the Fortran 90 intrinsic function

CSHIFT.

The CMAX library provides a canonical, portable way to express circular shifts
in Fortran 77. This utility can be compiled with any Fortran 77 compiler, or
translated by the CMAX Converter into references to the CSHIFT function. (A
future version of the converter will recognize a circular shift idiom.)

The utility package consists of the header file cmax.h and a library for serial
linking. (See Appendix A for information on linking programs that use the circu-
lar shift utility.) The utility defines a set of subroutines, one for each possible
rank of the array to be shifted.

CMAX_CSHIFT_rank ( DEST, SOURCE,
DIM, SHIFT, ELT_TYPE, N1 ... , N7 )

Shifts the elements of the specified DIM of the source array by SHIFT distance
and returns the result in the destination array. Both the source and destination
arrays must be of the specified type and shape.

DEST The destination array; must not overlap with the source
array

SOUJRCE The source array

DIM An integer between 1 and rank indicating the dimension
along which to shift elements

SHIFT An integer indicating the distance (number of element
positions) to shift

ELT_TYPE A predefined integer constant, one of CMAX_LOGICAL,

CMAX_INTEGER, CMAX_RAL, CXLA_DOUBLE,

CMAX_COMPLEX, or CMAX_DOUBLE_COMPLEX

N1 ... , N7 Integer extents for array dimensions; the number of
extent arguments must correspond to the rank specified
in the procedure name
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For example, this fragment shifts the elements in real vector A by 3 positions in
the negative direction (upward, in terms of array element order) and shifts the
second dimension of matrix B by 1 position in the positive direction (downward).
The elements that shift off the end wrap around to the other end of the dimension.
The subroutines store the results in arrays x and y respectively, which are the
same type and shape as the source arrays.

INCLUDE 'cmax.h'

REAL A(K1), B(K2,K3)

REAL X(K1), Y(K2,K3)

CALL CMAX_CSHIFT_1(X,A,1,-3,CMAX_REAL,K1)

CALL CMAX_CSHIFT_2(Y,B,2,1,CMAX_REAL,K2,K3)

The converter recognizes these subroutines and transforms them into references
to the CM Fortran CSHIFT intrinsic function. The converter uses argument key-
words in the output code so that the order of the DIM and SHIFT arguments is
compatible with any version of CM Fortran.

X = CSHIFT(A, DIM=1, SHIFT=-3)

Y = CSHIFT(B, DIM=2, SHIFT=1)

Version 1.0, July 1993
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4.6 Converting to Nodal CM Fortran
with Message Passing

CMAX supports both global and nodal CM Fortran for the CM-5. Since the CM
Fortran source is largely the same for both execution models (barring some I/O
differences), CMAX users notice little difference in targeting one or the other.

One slight difference is that you might choose different values for the cmax
command options -ShortVectorLength and -ShortLoopLength. On the
node, shorter lengths are often appropriate; in global programming, longer
lengths are appropriate.

The major difference you might notice is in the need to control array homes
explicitly in nodal programs. CMAX flags the CMMD message-passing routines
as unknown external routines and makes assumptions about their impact on array
homes according to the setting of -UnknownRoutinesSafe. However, many
CMMD routines take arguments that essentially specify the homes of arrays. To
avoid problems, you should always insert explicit LAYOUT directives for arrays
that will be passed to CMMD routines.

For example, to send a block of data, you might write either:

REAL X(1000)

CMF$ LAYOUT X(:NEWS)
INTEGER RESULT

RESULT = CMMD_SEND_BLOCK(DEST_NODE,

& CMMD_DEFAULT_TAG, X, CMMD_PARALLEL_ARRAY)

or:

REAL X(1000)

CMF$ LAYOUT X(:SERIAL)
INTEGER RESULT

RESULT = CMMD_SEND_BLOCK(DEST_NODE,

& CMMD_DEFAULT_TAG, X, 1000 * 4)

depending on whether x is to have a :NEWS or: SERIAL layout. It is advisable
to specify that layout for x in the CMAX input program to avoid home
mismatches in the output program.
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Appendix A

User Interface Reference

This appendix provides reference material for the features of the CMAX Convert-
er's user interface. These are:

* The cmax command

* The CMAX converter directives

* The CMAX library

* Some sample EMACS utilities
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A.1 The cmax Command

The cmax command creates and operates upon packages. A package is a special-
ized subdirectory containing the Fortran source files that the CMAX Converter
treats as a complete program. Figure 12 summarizes the command's actions and,
when the action is translation of a package, its translation options.

The cmax command can be invoked in several modes (as detailed in Section
A.1.1). In summary, the modes are:

* Information only

cmax information-operation

* Package operation without translation

cmax packname package-operation

* Package translation with or without other package operation

cmax packname [translation-options]
cmax packname -T [translation-options]
cmax packname -Add= sourcefile-list -T [translation-options]

packname can be up to 14 characters, including any alphanumeric as well as
underscore, hyphen, or period. The first character must be alphanumeric; case
is ignored.

The following rules apply when specifying any cmax command option:

· Case is ignored.

* Any nonambiguous abbreviation is accepted. The abbreviations shown in
Figure 12 are recommended, since they are unlikely to conflict with the
names of internal options and possible future options.

* Where an = sign appears after an option name, it is required syntax. For
options that take a list of arguments (-Add=, -Del=, and -Define=), a
space after = is optional. For options that take a single argument, no space
after = is permitted.

· Binary switches are specified with or without a prepended no. The brack-
ets shown in Figure 12 are a documentation convention only.
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Option Abbreviation Default

Information Operations
-Help

-PackagesList

Package Operations

-AddFiles= sourcefile-list
-ContentsList
-DeleteFiles= sourcefile-list
-RemovePackage

-TranslatePackage

Package Translation Options

Input decisions

-[no] CMFortran

-EntryPoint =pnrgram-unit-name
-LineWidth=number
-[no] PermitArraySyntax
-[no]PermitAutomaticArrays

-StatementBuf ferSize=number

Output decisions

-CharForContinuat ion=char
- [no] LineMapping

-[no] ListingFile [=filename]

-OutputExtens ion=string

-OutputFi le=filename
-Verbose=number

Conversion decisions

-De fineSymbols=name-list
- [no] Dependence
- [no] PermitKeywordsCMF

- [no] Permutation
- [no] Push

-[no]RestructureCode

-[no]UnknownRoutinesSafe

-ShortVectorLength=number

-ShortLoopLength=number

-[no]Vectorize

-[no]ZeroArrays

-Help

-Pack

-Add=

-Cont
-Del=

-Rem
-T

- [no] CMF

-E=

-LineWidth

-[no]PermitArr

-[no]PermitAuto

-StatementBuffer

-Char=

-[no] LineMap

-[no] List
-List [=]

-OutputE=

-OutputF=

-Verb=

-Define=

- [no] Dep

- [no] PermitKey

- [no] Perm
- [no] Push
-[no]Restruct

- [no] Unknown

-ShortV=

-ShortL=

-[no]Vec

-[no]Zero

-noCMF

72

-noPermitArr
-noPermitAuto
6700

&

-LineMap

-noList

packname .1 is

fcm

1

-Dep
-noPermitKey
-noPerm
-noPush
-Restruct

-Unknown

8

8

-Vec

-noZero

Figure 12. cmax command options, recommended abbreviations, and default values, if any.
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A.1.1 Invoking the cmax Command

The general rules for invoking the cmax command are:

* Options that specify operations (the first two categories in Figure 12) are
mutually incompatible, except that -T (translate) can be used with -Add=.

* If a packname but no operation is specified on the command line, -T is
assumed. Any translation option may appear.

* Translation options are incompatible with all operations except -T (which
may be assumed) and the combination of -Add= and -T. If -Add= is spe-
cified along with any translation option, -T must appear.

From these rules derive the following cmax command modes:

* Getting information

% cmax information-operation

The information-operation may be:

· display a help message: -Help

* display a list of the packages in the current directory: -Pack

* Creating and manipulating packages (without translation)

% cmax packname package-operation

The package-operation may be:

· create a package with specified source files: -Add= sourcefile-list

* add files to an existing package: -Add= sourcefile-list

* delete files from a package: -Del= sourcefile-list

· display a list of the files in a package: -ont

* remove a package: -Rem

sourcefile-list is a space-delimited list of filenames with extensions . f,
.f cm, . F, or . FCM.

Packages contain pointers to source files, not copies. Removing a package
or deleting files from it removes pointers only; source files are not
affected.
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Translating packages

% cmax packname [translation-options]
% cmax packname -T [translation-options]
% cmax packname -Add= sourcefile-list -T [translation-options]

The translation-options may be any of the options listed under that cate-
gory in Figure 12 and described below.

A.1.2 cmax Translation Options

Input Decisions

The following options control certain decisions the CMAX Converter makes con-
cerning acceptable input.

- [no] CMlortran Default: -noCxFortran
When enabled, accept input files with the filename extension . f cm or
. 1CM. In this case, CMAX parses all files in the package as CM Fortran
files, regardless of their extension. When disabled, CMAX exits with an
error when it encounters an . f cm source file. The positive form should be
used with either -OutputExtension or -OutputFile to rename
output, since CMAX exits rather than overwriting an input file with output
of the same name.

-EntryPoint= program-unit-name

Use the specified program unit as the entry point (root node) of the pro-
gram.

-LineWidth=number Default: -LineWidth=72

Accept source files with line width (in characters) up through the specified
number. The number argument is an integer less than or equal to 255.

- [no] PermitArraySyntax Default: -noPermitArraySyntax

When enabled, accept whole arrays and array sections in expressions in . f
source files.

Iw
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- [no]PermitAutomaticArrays Default: -noPermitAutomatic

When enabled, accept automatic arrays in . f source files. An automatic
array is an explicit-shape local array with a bound that depends on the
values of one or more variables.

-StatementBufferSize=number Default: -StatementBuffer=6700

Accept source files with line length (in characters and including continua-
tions) up through the specified number. There is no aribtrary limit on the
value of the integer number argument.

Output Decisions

The following options control certain decisions the CMAX Converter makes con-
cerning output from the translation process.

-CharForContinuation=char Default: -CharForContinuation=&

Specify the continuation character used in generated code.

- [no]LineMapping Default: -LineMapping

When enabled, generate files named sourcefile. ttab that contain transla-
tion tables. These .ttab files are used by the Prism development
environment to relate the source code lines in the input and output files.

-[no]ListingFile

-ListingFile ename]

Default: -noListingFile
Default: packname. lis

When enabled, generate a listing file for the translation operation. This file
reports the homes of all arrays, the subprogram variants the converter has
generated, and statement-level efficiency notes. The listing file is named
packname. lis if no other name is supplied.

-OutputExtension=string Default: -OutputExtension=fcm

Write converted output files to the present working directory with file-
names constructed of the sourcefile names and the extension string. The
string argument may contain periods, such as cmaxed. fcm.
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-OutputFile=filename

Write the converted program to a single filefilename in the present work-
ing directory.

-Verbose=number Default: -Verbose=1

Set the level of informational messages issued to stdout during program
analysis and conversion. The levels are:

0

1

2

3

4

General startup messages only
O + report of actions
1 + messages at start of "passes" over program
2 + message at start of transformation of each subprogram
3 + message at start of transformation of each DO loop

Conversion Decisions

The following options control certain decision rules that the CMAX Converter
applies in the course of translating a package.

-DefineSymbols= name-list

Treat the specified name or names as defined symbols when preprocessing
source files. Code that is conditional upon an undefined symbol is ignored
during translation and does not appear in the output program.

-[no]Dependence Default: -Dependence

When enabled, asserts that DO constructs in the package may exhibit loop-
carried dependences. (This option is the global scope variant of the CMAX
directive [NO] DEPENDENCE.)

- [no] PermitKeywordsCMF Default: -noPermitKeywordsCMF

When enabled, accept CM Fortran reserved keywords in. f source files
and treat them as intrinsic procedure names. If disabled, CMAX changes
user-supplied names for variables and procedures when they conflict with
CM Fortran keywords.

- [no]Permutation Default: -noPermutation

When enabled, asserts that index arrays used in Do constructs to perform
indirect addressing do not contain duplicate index values. (This option is
the global scope variant of the CMAX directive [NO] PERMUTATION.)
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- [no] Push Default: -noPush

Enables or disables "loop pushing" as a technique of making vectorization
possible. Loop pushing refers to rewriting a Do construct that contains a
subroutine call as a call to a subroutine that contains the DO construct.
Loop pushing is not currently implemented for functions. (This option is
the global scope variant of the CMAX directive [NOl PUSH.)

- [no] RestructureCode Default: -RestructureCode
Enables or disables the conversion of IF/GOTO constructions to block
IF/ENDI constructs where possible. Block IF/EDIF constructs inside
DO constructs may be translatable to masked array assignments (WHERE or
FORALL).

-ShortLoopLength=number Default: ShortLoopLength=8

Do not vectorize DO constructs with explicit loop iteration counts (product
of extents in loop nest) of less than number.

-ShortVectorLength=number Default: ShortVectorLength=8

Do not vectorize DO constructs on arrays whose size (product of dimen- 0
sion extents) is less than number.

- [no] UnknownRoutinesSafe Default: -nknownRoutinesSafe

When enabled, asserts that unseen program units (those outside the pack-
age being translated) do not contain code that would constrain any array in
the package to a front-end home.

- [no] Vectorize Default: -Vectorize
Enables or disables the translation of Do constructs into array operations.
(This option is the global scope variant of the CMAX directive [NO ] VEC-

TORIZE.)

- [no] ZeroArrays Default: -noZeroArrays

When enabled, generate code that initializes local CM arrays to zero.
Scalar variables, front-end arrays, and arrays in common are not affected.
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A.2 CMAX Converter Directives

CMAX Converter directives are specialized code comments that control certain
translation actions or decision rules. A converter.directive may:

* Direct the converter not to attempt to vectorize a loop or loops

* Direct the converter not to attempt "loop pushing" on a loop or loops

* Assert that a particular loop or loops do not exhibit loop-carried data
dependences

• Assert that the index array(s) used in a loop or loops to perform indirect
addressing do not contain duplicate index values

The scope of a converter directive can be either a particular DO construct or a
program unit. Comparable cmax command options apply the directives' actions
or assertions globally throughout the package during program translation. Typi-
cally, in-line directives are used to override the default command action for
particular loops or for particular program units.

A.2.1 Directive Syntax

A directive is a comment line of the form

CNMx$directive-name [scope-spec]

directive-name is one of:

[NO] VECTORIZE

[NO] PUSH

[NO] DEPENDENCE

[NO] PERMUTATION

scope-spec is one of:

L [the default]
R

enable/disable vectorization

enable/disable loop pushing

assert/deny possibility of data dependence

assert/deny non-repetition of index values

the subsequent loop (but not loops inside it)

all subsequent loops in the program unit

The directive prefix cxlX$ must begin in column one, and one or more spaces
must separate the directive name from the scope specifier (if supplied).
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A.2.2 Synopsis of Directives

This section summarizes the forms and the behavior of the CMAX Converter
directives and the corresponding command options.

Loop Vectorization

The positive form enables conversion of loop(s) to array operations.

CMAX$VECTORIZE

CMAX$VECTORIZE L

CMAX$VECTORIZE R
-Vectorize

applies to

applies to

applies to
applies to

subsequent loop

subsequent loop

all subsequent loops in routine

all loops in package

The negative form disables conversion of loop(s) to array operations.

CMAX$NOVECTORIZE

CMAX$NOVECTORIZE L

CMAX$NOVECTORIZE R

-noVectorize

applies to
applies to
applies to

applies to

The default global setting is -vectorize.

subsequent loop

subsequent loop

all subsequent loops in routine

all loops in package

, I-1

Loop Pushing

The positive form enables the "pushing" of loop(s) that contain subroutine calls.
In this transformation, a variant of the subroutine is created whose body contains
the loop that had formerly called it. The loop within the subroutine may then be
vectorizable.

CMAX$PUSH

CMAX$PUSH L

CMAX$PUSH R

-Push

applies to subsequent loop

applies to subsequent loop

applies to all subsequent loops in routine

applies to all loops in package

The negative form disables the "pushing" of loop(s).

CMAX$NOPUSH

CMAX$NOPUSH

CMAX$NOPUSH

-noPush

L

R

applies to subsequent loop

applies to subsequent loop

applies to all subsequent loops in routine

applies to all loops in package

The default global setting is -noPush.
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Loop-Carried Data Dependence

The positive form asserts that data dependence may exist in the loop(s). The con-
verter analyzes such loops to determine whether dependence does exist and
whether it inhibits vectorization.

CMAX$DEPENDENCE

CMAX$DEPENDENCE

CMAX$DEPENDENCE

-Dependence

L

R

applies to subsequent loop

applies to subsequent loop

applies to all subsequent loops in routine

applies to all loops in package

The negative form asserts that there is no data dependence in the loop(s). The
converter does not perform dependence analysis on such loops.

CMAX$NODEPENDENCE

CMAX$NODEPENDENCE L

CMAX$NODEPENDENCE R

-noDependence

applies to subsequent loop

applies to subsequent loop

applies to all subsequent loops in routine

applies to all loops in package

The default global setting is -Dependence

Uniqueness of Values in an Index Array

The positive form asserts that array elements used as indices into another array
on the left hand side of an assignment in the specified loop(s) are each unique.
Repetition of an index value indicates multiple assignments of an array element
and thus a particular type of loop-carried data dependence.

CMAX$PERMUTATION

CMAX$PERMUTATION

CMAX$PERMUTATION

-Permutation

applies to
L applies to

R applies to

applies to

subsequent loop

subsequent loop

all subsequent loops in routine

all loops in package

The negative form asserts that array index values may not be unique.

CMAX$NOPERMUTATION

CMAX$NOPERMUTATION L

CMAX$NOPERMUTATION R

-noPermutation

applies to

applies to

applies to

applies to

subsequent loop

subsequent loop

all subsequent loops in routine

all loops in package

The default global setting is -noPermutation
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A.3 The CMAX Library

The CMAX library provides canonical ways to express actions that have no
straightforward expression in Fortran 77. These procedures are fully portable to
any Fortran 77 platform. The CMAX Converter recognizes them and translates
them into the corresponding CM Fortran feature.

The library presently provides utilities for expressing the intent of dynamic array
allocation and circular shifting of array elements.

A.3.1 Using the CMAX Library

Header File

Place the library header file in the Fortran 77 program with an INCLUDE line:

INCLUDE '/usr/include/cm/cmax.h'

Linking Fortran 77 Programs

To compile and link a Fortran 77 program, the serial link library must be avail-
able on the system and specified on the link line as:

% f77 myprogram. f libdirectory/libcmax. a

A version of this library compiled for a Sun-4 computer is available in the stan-
dard CM libdirectory:

CM-5: /usr/lib/libcmax. a
CM-2/200: /usr/local/lib/libcmax. a

To compile the serial library for other systems, obtain the library source code
from the CMAX on-line examples directory:

CM-5: /usr/examples/cmax/libcmax/libcmax. f
libcmax. c

CM-2/200: /usr/cm/examples /cmax/ libcmax/ libcmax . f
libcmax. c

See your site system adminstrator for locations if any of these files have been
moved from their default locations.

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation

11in fI" fa a M t rIn-ArtA



Appen~gI Urea rn

Linking CM Fortran Programs

You must link CMAX-generated .f cm files with a CMAX library if they contain:

* Converter output from the dynamic allocation utility, since CMAX gener-
ates its own dynamic allocation library routines rather than CM Fortran features

* Calls to the CM Fortran Utility Library procedure cma_sEND_combiner,
since CMAX uses its own library routine CMAX_GRID_TO_SEND_ADDR to
construct send addresses

NOTE: No explicit linking is needed for converted programs that use only the
circular shift utility from the CMAX library.

Where explicit linking is needed, specify on the cmf or linker command line the
appropriate link library for the target CM platform and execution model:

% cmf myprogram. fcm library

where library is one of:

libdirectory/libcmax_cm2 .a
libdirectory/l ibcmax_cm2 0 0. a
libdirectory/ ibcmax_cm5_sparc. a
libdirectory/l ibcmax_cm5_vu. a
libdirectoryl ibcmax mS_cmaim. a

and libdirectory is either:

CM-5 systems: /usr/lib/
CM-2/200 systems: /usr/local /lib/

See your site system adminstrator for locations if any of these files have been
moved from their default locations.
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A.3.2 The Dynamic Allocation Utility

This utility uses a common array CAX_MEMORY. A call to the subroutine
cMAx_ALLOCATE_rank associates an index variable (a scalar or a front-end array
element) with a pointer into that memory. Passing the argument
CMAX_MEMORY (INDEX_VAR) to a subroutine or function makes the memory
available as an array. The corresponding dummy argument in the procedure must
match the array indicated by CAX _EMORY (INDEX_VAR) in shape and type.

The converter transforms these subroutines into CM Fortran dynamic array
allocation and deallocation. The dynamic arrays may be CM arrays or front-end
arrays, depending on how they are treated in the subprogram scope.

CMAX_ALLOCATE_1( INDEX_VAR,

CMAX_ALLOCATE_2(INDEX_VAR,

CMAX_ALLOCATE_3( INDEX_VAR,

CMAX_ALLOCATE_4 (INDEX_VAR,

CMAX_ALLOCATE_5( INDEX_VAR,

CMAX_ALLOCATE_6( INDEX_VAR,

CMAX_ALLOCATE_7( INDEX_VAR,

ELTTYPE,
ELTTYPE,
ELTTYPE,
ELTTYPE,
ELTTYPE,
ELTTYPE,
ELTTYPE,

N1)
N1,

N1,

N1,

N1,

N1,

N1,

N2)

....

....

....

....

....

N3)
N4)

N5)

N6)

N7)

CMAX_DEALLOCATE(INDEXVAR)

where,

INDEX_VAR An integer variable or an element of an integer front-end
array

ELT_TYPE A predefined integer constant, one of CMAX_LOGICAL,

CMAX_INTEGER, CIMAX_REA, CMAXDOUBLE,

CMAX_COMPLEX, or CMAX _DOUBL_COMPLEX

N1 ... , N7 Integer extents for array dimensions; the number of
extent arguments must correspond to the rank specified
in the procedure name

NOTE: An index variable can be used for multiple arrays with different dimen-
sion extents, but they must all be of the same rank and layout. Also, all the arrays
referenced by the elements of an array of index variables must have the same
rank and layout.

.
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Link the output program with the appropriate CMAX library for the target CM
system and execution model, as shown in Section A.3.1. The converter translates
the subroutines listed above into the following:

CMAX_I_ALLOCATE_1

CAX _I_ALLOCATE_2
CMAX I ALLOCATE_3

CMAX_I_ALLOCATE_4

CMAX_I_ALLOCATE_5

CMAX I ALLOCATE_6

CMAX_I_ALLOCATE_7

CMAX I DEALLOCATE

These routines are internal versions of the CMAX allocation/deallocation rou-

tines. In addition to the user-supplied arguments, CMAX inserts a bitmask
argument to the allocation routines, which specifies the layout of the dynamic

array.

The user can opt to change these CMAX routines into CM Fortran dynamic
allocation features. No special linking is then required.
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A.3.3 The Circular Shift Utility

These subroutines shift the elements on dimension DIM of the source array by
SHIFT element positions and store the result in the destination array. Elements
that shift off the end of a dimension wrap around to the other end of that dimen-
sion.

CMAX_CSHIFT_1(DEST,

CMAX_CSHIFT_2 (DEST,

CNAX_CSHIFT_3 (DEST,

CMAX_CSHIFT_4 (DEST,

CMAX_CSHIFT_5(DEST,

CMAX_CSHIFT_6 (DEST,

CMAX_CSHIFT_7 (DEST,

SOURCE,

SOURCE,

SOURCE,

SOURCE,

SOURCE,

SOURCE,

SOURCE,

DIM,

DIM,

DIM,

DIM,

DIM,

DIM,

DIM,

SHIFT,

SHIFT,

SHIFT,

SHIFT,

SHIFT,

SHIFT,

SHIFT,

ELT_TYPE,

ELT_TYPE,

ELT_TYPE,

ELT_TYPE,

ELT_TYPE,

ELT_TYPE,

ELT_TYPE,

N1)

N1,

N1,

N1,

N1,

N1,

N1,

N2)

·.., N3)

..., N4)

..., N5)

..., N6)

... , N7)

where,

DEST The destination array; must not overlap with the source
array and must be of the same type and shape

SOURCE The source array; must be of the specified type and shape

DIM An integer between 1 and the rank of the array, indicating
the dimension along which to shift elements

SHIFT An integer indicating the distance (number of element
positions) to shift

ELT_TYPE A predefined integer constant, one of CMAX_LOGICAL,

CMAX_INTEGER, CMAX_REAL, CMAX_DOUBLE,

CMAX_COMPLEX, or CMAX_DOUBLE_COMPLEX

N1 ... , N7 Integer extents for array dimensions; the number of
extent arguments must correspond to the rank specified
in the procedure name

The converter transforms these subroutines into references to the CM Fortran
intrinsic function CSHIFT. The converter uses argument keywords in the output
code so that the order of the DIm and SHIFT arguments is compatible with any
version of CM Fortran.

No special linking is required for a CMAX-generated program that performs cir-
cular shifts, since the CM Fortran intrinsic function is generated.

t

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation

$

Using the CMAX Converter114



App~enix:'~~ *'*,000 A. User: 0 .':YN ~'/ ' ...'/ 4¢~~:~~, ~ "!:. ver' eece11

A.4 Gnu EMACS Utilities for CMAX (Unsupported)

EMACS editors can be customized in a number of ways to assist with the
conversion process. CMAX provides a sample implementation for Gnu Emacs of
the utilities described in this section:

* cmax-viewer command

* cmax-subprogram command

cmax-buf fer command

The implementation is in the file cmax. el. Customize this file to suit your needs

and your local variant of EMACS. (It is not officially supported by Thinking

Machines.)

The file is on-line in:

· CM-5 systems: /usr/examples/cmax/cmax.el

* CM-2/200 systems: /usr/cm/examples/cmax/cmax.el

See your system administrator for the location if this file has been moved.

A.4.1 The CMAX Viewer

The CMAX viewer is an EMACS mode lets you view and move through CMAX

input and output files at the same time. Unlike Prism, which requires executable

files, this utility loads ASCII source files. By allowing you to compare input and

output source, along with efficiency notes, the utility helps you determine what

CMAX has done and why.

To activate the CMAX viewer:

1. Translate a. f file using the cmax option -LineNap (the default).

2. Place the cursor within a buffer containing either the. f or. f cm file.

3. Invoke the EMACS command M-x cmax-viewer.

The utility finds the line-mapping (. ttab) file and both Fortran files associated
with it. It displays the input and output file in two adjoining windows, allowing

you to scroll or otherwise move around in both files in synchronized fashion. For
programs translated with -list, invoke the EMACS command bound to c-c v
to display efficiency notes for the variable or subprogram name at the cursor.
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Type C-h m for mode help, and you will see the following message.

CMAX Viewer Mode:

This mode can be entered by calling cmax-viewer interactively.

Turn on cmax-viewer-mode, a mode for looking at . f files and cmax output
simultaneously, based on a . ttab file.

Moving the cursor in either the input source or output source window will move
the cursor in both windows.

If the cursor is in the input source window, any efficiency notes for the pointed
to line are displayed at the bottom of the screen. You must run CMAX with -list
to generate a . ttab with efficiency notes.

You can use c-c v (below) to display efficiency notes for variables or subpro-
grams when pointing to them in either window.

These special commands operate in both source windows in synchronized fash-
ion:

c-n Move point to next line.
c-p Move point to previous line.
C-v Scroll source windows up.
M-v Scroll source windows down.
M-< Go to beginning of buffer.
M-> Go to end of buffer.
C-L Recenter.
C-c v Display efficiency notes for the variable or

subprogram name at the point.
g Go to line number of buffer.
q Quit cmax-viewer mode.

NOTE: If you prefer side-by-side source windows to top-and-bottom source
windows, add this line to the EMACS code:

(setq cmax-viewer-split-function

'split-window-horizontally) t
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A.4.2 Command cmax-subprogram

The command M-x cmax-subprogram sends the subprogram surrounding the
point to a CMAX process and displays the translated output in the buffer named
CMAX.

If invoked with a prefix argument (c-u), the command prompts for additional
switch arguments and passes them to the cmax command. Alternatively, set the
variable cmax-default-switches (it is set to -verb=4 by default).

A.4.3 Command cmax-buffer

The command M-x cmax-buffer sends the contents of the current buffer to a
CMAX process and displays the translated output in the buffer named CMAX.

If invoked with a prefix argument (-u), the command prompts for additional
switch arguments and passes them to the cmax command. Alternatively, set the
variable cmax-default-switches (it is set to -verb=4 by default).
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Appendix B

Idioms and Transformations

This appendix shows the CM Fortran output code that CMAX generates from
particular Fortran 77 loop idioms and other constructions.

B.1 Fortran 90 and CM Fortran Language Constructs

For descriptions of these constructs, see the CM Fortran Reference Manual.
These examples use one- and two-dimensional arrays; in general, multidimen-

sional forms are recognized.

B.1.1 Array Syntax

This subroutine performs an elementwise addition of two arrays:

SUBROUTINE EXAMPLE_ARRAY_ADD(A,

REAL A(N,N), B(N,N), C(N,N)

DO J = 1,N

DO I = 1,N

C(I,J) = A(I,J) + B(I,J)
END DO

END DO

RETURN
END

B, C, N)
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It translates to code which uses array syntax:

SUBROUTINE EXAMPLEARRAY ADD(A,B,C,N)

REAL A(N,N), B(N,N), C(N,N)

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT B(:NEWS,:NEWS)

CMF$ LAYOUT C(:NEWS,:NEWS)
C = A + B
RETURN

END

This subroutine computes a more complicated function of several arrays, using
scalars which need to be promoted:

SUBROUTINE EXAMPLEARRAYCRUNCH(X1, X2, Y1, Y2, D, N)
REAL X1(N), X2(N), Y1(N), Y2(N), D(N)
DO I = 1,N

D1 = X1(I)-X2(I)

D2 = Y1(I)-Y2(I)

D(I) = SQRT(Dl*D1 + D2*D2)
END DO

RETURN

END

It translates to code which uses array syntax and promoted scalar arrays:

SUBROUTINE EXAMPLEARRAY CRUNCH(X1,X2,Y1,Y2,D,N)

REAL X1(N), X2(N), Y(N), Y2(N), D(N)

CMF$ LAYOUT D(:NEWS)

CMF$ LAYOUT X1(:NEWS)

CMF$ LAYOUT X2(:NEWS)

CMF$ LAYOUT Y1(:NEWS)

CMF$ LAYOUT Y2(:NEWS)

REAL D2000(N)

CMF$ LAYOUT D2000(:NEWS)

REAL D1000(N)

CMF$ LAYOUT D1000(:NEWS)
D1000 = X - X2

D2000 = Y1 - Y2

D = SQRT(D1000 * D1000 + D2000 * D2000)
RETURN
END
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This subroutine performs a smoothing operation using nearest-neighbor values:

SUBROUTINE EXAMPLEARRAY_SMOOTH(IN, OUT, N)

REAL IN(N,N), OUT(N,N)

DO J = 2,N-1

DO I = 2,N-1

OUT(I,J) = 0.25*(IN(I-1,J-1)

IN(I+1,J-1) +

END DO
END DO

RETURN

END

+ IN(I-1,J+l)
IN(I+1,J+1))

It translates to code which uses array sections:

SUBROUTINE EXAMPLE_ARRAY_SMOOTH(IN,OUT,N)

REAL IN(N,N), OUT(N,N)

CMF$ LAYOUT IN (:NEWS,:NEWS)

CMF$ LAYOUT OUT(:NEWS,:NEWS)

OUT(2:N - 1,2:N - 1) =

& 0.25 * (IN(:N - 2,:N - 2) +

& + IN(3:,:N - 2) + IN(3:,3:))
RETURN

END

IN(:N - 2,3:)
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B.1.2 WHERE

This subroutine performs a simple conditional elementwise operation:

SUBROUTINE EXAMPLE_WHERE_1(TEMP, N, DTEMP)

REAL TEMP(N)

DO I=1,N

IF (TEMP(I) .GT. 98.6) TEMP(I) = TEMP(I) - DTEMP

END DO

RETURN

END

It translates to code which uses a WHERE statement:

SUBROUTINE EXAMPLE_WHERE_1 (TEMP,N,DTEMP)

REAL TEMP(N)

CMF$ LAYOUT TEMP(:NEWS)

WHERE (TEMP .GT. 98.6) TEMP = TEMP - DTEMP

RETURN

END

This subroutine performs a slightly more complex conditional elementwise
operation:

SUBROUTINE EXAMPLE_WHERE_2

& (PRESSURE,TEMP,RAINING,N,DPRESSURE)
REAL PRESSURE(N), TEMP(N)

LOGICAL RAINING(N)

DO I=1,N

IF (PRESSURE(I) .LT. 1.0) THEN

TEMP(I) = TEMP(I) - 5.0

ELSE

RAINING(I) = .TRUE.

END IF

END DO

RETURN
END
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It translates to code which uses a WHERE construct:

SUBROUTINE EXAMPLE_WHERE_2

& (PRESSURE,TEMP,RAINING,N,DPRESSURE)
REAL PRESSURE(N), TEMP(N)

CMF$

CMF$

CMF$

LOGICAL RAINING(N)

LAYOUT PRESSURE (:NEWS)

LAYOUT RAINING (:NEWS)
LAYOUT

WHERE

TEMP =

TEMP(:NEWS)

(PRESSURE .LT. 1.0)

TEMP - 5.0

ELSEWHERE
RAINING = .TRUE.

ENDWHERE

RETURN

END
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B.1.3 FORALL

This subroutine computes APL's IOTA function:

SUBROUTINE EXAMPLE_FORALL_1i (A, N)
INTEGER A(N)

DO I = 1,N

A(I) = I
END DO

RETURN
END

It translates to code which uses a FORALL:

SUBROUTINE EXAMPLE_FORALL_1 (A,N)

INTEGER A(N)

CMF$ LAYOUT A(:NEWS)

FORALL (I = 1:N) A(I) = I

RETURN

END

This subroutine computes a two-dimensional mask which is true for the "red"
squares of a checkerboard:

SUBROUTINE EXAMPLE_FORALL_2 (RED, N)

LOGICAL RED(N,N)

DO J = 1,N

DO I = L,N

RED(I,J) = (MOD(I+J,2) .EQ. 0)

END DO

END DO

RETURN

END
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It translates to:

SUBROUTINE EXAMPLE_FORALL_2 (RED,N)

LOGICAL RED(N,N)

CMF$ LAYOUT RED (:NEWS,:NEWS)

FORALL (J = 1:N, I = 1:N)

& RED(I,J) = (MOD(I + J,2) .EQ. 0)
RETURN
END

This subroutine multiplies a two-dimensional array with a one-dimensional array
spread across its columns:

SUBROUTINE EXAMPLE_FORALL_3(V, A, N)
REAL V(N), A(N,N)

DO J = 1,N

DO I = 1,N

A(I,J) = A(I,J) * V(I)

END DO
END DO

RETURN

END

It translates to:

CMF$

CMF$

SUBROUTINE EXAMPLE_FORALL_3 (V,A,N)

REAL V(N), A(N,N)
LAYOUT A(:NEWS,:NEWS)

LAYOUT V(:NEWS)

FORALL (J = 1:N, I = 1:N) A(I,J) = A(I,J) * V(I)

RETURN

END
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This subroutine adds an array with the transpose of another array:

SUBROUTINE EXAMPLE_FORALL_4 (A, B, N)

REAL A(N,N), B(N,N)

DO J = 1,N

DO I = 1,N

A(I,J) = A(I,J) + B(J,I)

END DO

END DO

RETURN
END

It translates to:

SUBROUTINE EXAMPLE_FORALL_4 (A,B,N)
REAL A(N,N), B(N,N)

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT B(:NEWS,:NEWS)

FORALL (J = 1:N, I = 1:N) A(I,J) = A(I,J) + B(J,I)
RETURN
END

This subroutine zeros the upper triangle of an array:

SUBROUTINE EXAMPLE_FORALL_5 (A, N)

REAL A(N,N)

DO J = 1,N

DO I = 1,J-1

A(I,J) = 0.0

END DO

END DO
RETURN
END

It translates to:

SUBROUTINE EXAMPLE_FORALL_5(A,N)

REAL A(N,N)
CMF$ LAYOUT A(:NEWS,:NEWS)

FORALL (J = 1:N, I = 1:N, I .LT. J) A(I,J) = 0.0

RETURN
END

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation

�~�dfi�'i�'��"""'"""""""`��i�8



Appendix B. Idioms and Transformations

This subroutine does complicated indirect addressing:

SUBROUTINE EXAMPLE_FORALL_6(A, B, I1, I2, N)

REAL A(N,N), B(N,N)

INTEGER I1(N,N), I2(N)

DO J = 1,N

DO I = 1,N

A(I,J) = A(I,J) + B(I1(I,J),I2(J))
END DO

END DO

RETURN
END

It translates to:

SUBROUTINE EXAMPLE_FORALL_6 (A,B,I1,I2,N)
REAL A(N,N), B(N,N)

INTEGER I1(N,N), I2(N)
CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT B(:NEWS,:NEWS)

CMF$ LAYOUT I1(:NEWS,:NEWS)
CMF$ LAYOUT I2(:NEWS)

FORALL (J = 1:N, I = 1:N)

& A(I,J) = A(I,J) + B(I1(I,J),I2(J))
RETURN
END
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B.2 Fortran 90 and CM Fortran Intrinsic Funtions

For descriptions of these intrinsics, see the CM Fortran Reference Manual.
These examples use one- and two-dimensional arrays; in general, multidimen-
sional forms are recognized.

B.2.1 ALL

This subroutine computes the logical AND of all the elements in an array:

SUBROUTINE EXAMPLE_ALL_1(L, FLAG, N)
LOGICAL L(N,N), FLAG

DO J=1,N

DO I=1,N

FLAG = FLAG .AND. L(I,J)

END DO
END DO

RETURN
END

It translates to:

SUBROUTINE EXAMPLE_ALL_2(L,FLAG,N)

LOGICAL L(N,N), FLAG

CMF$ LAYOUT L(:NEWS,:NEWS)

FLAG = FLAG .AND. ALL(L)
RETURN

END

This subroutine computes ALL over the second dimension of an array:

SUBROUTINE EXAMPLE_ALL_2(L, FLAGS, N)

LOGICAL L(N,N), FLAGS(N)

DO J=1,N

DO I = 1,N

FLAGS(I) = FLAGS(I) .AND. L(I,J)
END DO

END DO
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RETURN
END

It translates to:

SUBROUTINE EXAMPLE_ALL_2 (L,FLAGS,N)

LOGICAL L(N,N), FLAGS(N)

CMF$ LAYOUT FLAGS(:NEWS)

CMF$ LAYOUT L(:NEWS,:NEWS)

FLAGS = FLAGS .AND. ALL(L,DIM=2).

RETURN
END
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B.2.2 ANY

This subroutine computes the logical OR of all the elements in an array:

SUBROUTINE EXAMPLE_ANY_1(L, FLAG,

LOGICAL L(N,N), FLAG

DO J=1,N

DO I=1,N

FLAG = FLAG .OR. L(I,J)

END DO

END DO

RETURN

END

It translates to:

SUBROUTINE EXAMPLE_ANY_1(L,FLAG,N)

LOGICAL L(N,N), FLAG

CMF$ LAYOUT L(:NEWS,:NEWS)

FLAG = FLAG .OR. ANY(L)
RETURN

END

N)

I

This subroutine computes ANY over the first dimension of an array-

SUBROUTINE EXAMPLE_ANY_2(L, FLAGS, N)

LOGICAL L(N,N), FLAGS(N)

DO J=1,N
DO I = 1,N

FLAGS(J) = FLAGS(J) .OR.
END DO

END DO

RETURN
END

L(I,J)
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It translates to:

SUBROUTINE EXAMPLE_ANY_2 (L,FLAGS,N)

LOGICAL L(N,N), FLAGS(N)

CMF$ LAYOUT FLAGS(:NEWS)

CMF$ LAYOUT L(:NEWS,:NEWS)

FLAGS = FLAGS .OR. ANY(L,DIM=1)

RETURN

END

p
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B.2.3 COUNT

This subroutine counts the number of zero elements in an array:

SUBROUTINE ]EXAMPLE_COUNT_1 (A, K, N)

REAL A(N,N)

DO J = 1,N

DO I = 1,N

IF (A(I,J) .EQ. 0.0) K = K + 1

END DO

END DO

END

It translates to:

SUBROUTINE EXAMPLE_COUNT_1(A,K,N)

REAL A(N,N)

CMF$ LAYOUT A(:NEWS,:NEWS)

K = K + COUNT(A .EQ. 0.0)

END

This subroutine computes coume over the second dimension of an array:

SUBROUTINE EXAMPLE_COUNT_2 (A, K, N)

REAL A(N,N)

INTEGER K(N)

DO J=1,N

DO I = 1,N

IF (A(I,J) .EQ. 0.0) K(I) = K(I) + 1

END DO

END DO

RETURN

END

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation



Aia 

It translates to:

SUBROUTINE EXAMPLE_COUNT_2 (A, K, N)
REAL A(N,N)

INTEGER K(N)

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT K(:NEWS)

K = K + COUNT(A .EQ. 0.0,DIM=2)

RETURN

END
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B.2.4 DOTPRODUCT

This subroutine computes DOTPRODUCT:

SUBROUTINE EXAMPLE_DOTPRODUCT(X, Y, N, A)

REAL X(N), Y(N), A

DO I = 1,N

A = A + X(I) * Y(I)
END DO

END

It translates to:

SUBROUTINE EXAMPLE_DOTPRODUCT(X,Y,N,A)

REAL X(N), Y(N), A

CMF$ LAYOUT X(:NEWS)

CMF$ LAYOUT Y(:NEWS)

A = A + DOTPRODUCT(X,Y)

END
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B.2.5 MATMUL

These subroutines perform matrix multiplies:

SUBROUTINE EXAMPLE_MATMUL_1(A, B, C, N1, N2, N3)

REAL A(N1, N2), B(N2, N3), C(N1, N3)

DO J=1,N3

DO I=I,N1

C(I,J)=0.0
END DO

END DO

DO K=1,N2

DO J=1,N3

DO I=1,N1

C(I,J)=C(I,J)+A(I,K)*B(K,J)
END DO

END DO

END DO

RETURN

END

SUBROUTINE EXAMPLE_MATMUL_2(A, B, C, N1, N2, N3)

REAL A(N1, N2), B(N2, N3), C(N1, N3)

DO I=i,Nl

DO J=1,N3

C(I,J)=0.0

DO K=1,N2

C(I,J)=C(I,J)+A(I,K)*B(K,J)
END DO

END DO

END DO

RETURN

END
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They translate to:

SUBROUTINE EXAMPLE_MATMUL_1

REAL A(N1, N2), B(N2, N3),

LAYOUT A(: NEWS,:NEWS)

LAYOUT B(:N'EWS,:NEWS)

LAYOUT C(:N'EWS,:NEWS)

C = 0.0

C = C + MATMUL(A,B)
RETURN
END

SUBROUTINE EXAMPLE_MATMUL_2

REAL A(N1, N2), B(N2, N3),

LAYOUT A(:NEWS,:NEWS)

LAYOUT B(:NEWS,:NEWS)

LAYOUT C (: NEWS,: NEWS)

C = MATMUL(A,B)
RETURN
END

(A, B, C,N1,N2 ,N3)

C(N1, N3)

(A, B, C, N1,N2, N3)

C(N1, N3)

.
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B.2.6 MAXLOC

This subroutine finds the maximum element of an array and its location:

SUBROUTINE MAXLOC_EXAMPLE_1(A, AMI, AMJ, AMAX, N1, N2)
REAL A(N1,N2), AMAX

INTEGER AMI, AMJ

DO J=1,N2

DO I=1,N1

IF (A(I,J) .GT. AMAX) THEN
AMdAX = A(I,J)

AMI = I

AMJ = J

END IF

END DO

END DO

RETURN
END

It translates to:

SUBROUTINE MAXLOC_EXAMPLE_1 (A, AMI,AMJ,AMAX,N1, N2)
REAL A(N1,N2), AMAX
INTEGER AMI, AMJ

CMF$ LAYOUT A (: NEWS,: NEWS)

INTEGER IJ(2)

CMF$ LAYOUT IJ(:NEWS)

IJ = MAXLOC(A)

IF (IJ(1) .GT. 0 .AND. IJ(2) .GT. 0

& .AND. A(IJ(1),IJ(2)) .GT. AMAX) THEN
AMAX = A(IJ(1),IJ(2))

AMI = IJ(1)

AMJ = IJ(2)

ENDIF

RETURN

END
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This subroutine finds the maximum element of an array and its location subject
to a mask:

SUBROUTINE MAXLOC_EXAMPLE_2(A,MASK,AMI,AMJ,AMAX,N1,N2)
REAL A(N1,N2), AMAX

LOGICAL MASK(N1,N2)

INTEGER AMI, AMJ

DO J=I,N2

DO I=1,Nl

IF (MASK(I,J).AND.(A(I,J).GT.AMAX)) THEN

AMAX = A(I,J)

AMI = I

AMJ = J

END IF

END DO

END DO

RETURN

END

It translates to:

SUBROUTINE MAXLOC_EXAMPLE_2(A,MASK,AMI,AMJ,AMAX,N1,N2)

REAL A(N1,N2), AMAX

LOGICAL MASK(N1,N2)

INTEGER AMI, AMJ

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT MASK(:NEWS,:NEWS)

INTEGER IJ(2)

CMF$ LAYOUT IJ(:NEWS)

IJ = MAXLOC(A,MASK=MASK)

IF (IJ(1) .GT. 0 .AND. IJ(2) .GT. 0

& .AND. A(IJ(1),IJ(2)) .GT. AMAX) THEN

AMAX = A(IJ(1),IJ(2))

AMI = IJ(1)

AMJ = IJ(2)

ENDIF

RETURN
END
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B.2.7 MAXVAL

This subroutine finds the maximum value of an array:

SUBROUTINE EXAMPLE_MAXVAL_1(A, X, N)

REAL A(N,N), X
DO J=1,N

DO I=1,N

X = MAX(X,A(I,J))

END DO

END DO

RETURN

END

It translates to:

SUBROUTINE EXAMPLE_MAXVA_ 1 (A,X,N)

REAL A(N,N), X

CMF$ LAYOUT A(:NEWS,:NEWS)

X = MAX(X,MAXVAL(A))
RETURN

END

This subroutine finds the maximum values along the first dimension of an array:

SUBROUTINE EXAMPLE_MAXVAL_2(A, X, N)

REAL A(N,N), X(N)

DO J=1,N
DO I = 1,N

X(J) = MAX(X(J),A(I,J))

END DO

END DO

RETURN

END
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It translates to::

SUBROUTINE EXAMPLE_MAXVAL_2(A,X,N)

REAL A(N,N), X(N)

CMF$ LAYOUT A (:NEWS,:NEWS)

CMF$ LAYOUT X(:NEWS)

X = MAX(X,LAXVAL(A,DIM=1))

RETURN

END
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B.2.8 MINLOC

This subroutine finds the minimum element of an array and its location:

SUBROUTINE MINLOC_EXAMPLE_1(A, AMI, AMJ, AMIN, N1, N2)

REAL A(N1,N:2), AMIN

INTEGER AMI, AMJ

DO J=1,N2

DO I=1,N1

IF (A(I,J) .LT. AMIN) THEN

AMIN = A(I,J)

AMI = I

AMJ = J

END IF

END DO

END DO

RETURN

END

It translates to:

SUBROUTINE MINLOC_EXAMPLE_1 (A, AMI, AMJ, AMIN, N1, N2)

REAL A(N1,N2), AMIN

INTEGER AMI, AMJ

CMF$ LAYOUT A(: NEWS,:NEWS)

INTEGER IJ(2)

CMF$ LAYOUT IJ(:NEWS)

IJ = MINLOC(A)

IF (IJ(1) .GT. 0 .AND. IJ(2) .GT. 0

& .AND. A(IJ(1),IJ(2)) .LT. AMIN) THEN

AMIN = A(IJ(1),IJ(2))

AMI = IJ(1)

AMJ = IJ(2)

ENDIF

RETURN
END
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This subroutine finds the minimum element of an array and its location subject
to a mask:

SUBROUTINE MINLOC_EXAMPLE_2 (A, MASK, AMI ,AMJ, AMIN, N1, N2)

REAL A(N1,N2), AMIN

LOGICAL MASK(N1,N2)

INTEGER AMI, AMJ

DO J=1,N2

DO I=1,N1

IF (ASK(I,J).AND.(A(I,J).LT.AMIN)) THEN

AMIN = A(I,J)

AMI = I

AMJ = J

END IF

END DO

END DO

RETURN

END

It translates to:

SUBROUTINE MINLOC_EXAMPLE_2 (A, MASK, AMI, AMJ, AMIN, N1, N2)

REAL A(N1,N2), AMIN

LOGICAL MASK(N1,N2)

INTEGER AMI, AMJ

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT MASK(:NEWS,:NEWS)

INTEGER IJ(2)

CMF$ LAYOUT IJ(:NEWS)

IJ = MINLOC(A,MASK=MASK)

IF (IJ(1) .GT. 0 .AND. IJ(2) .GT. 0

& .AND. A(IJ(1),IJ(2)) .LT. AMIN) THEN

AMIN = A(IJ(1),IJ(2))

AMI = IJ(1)

AMJ = IJ(2)

ENDIF

RETURN

END
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B.2.9 MINVAL

This subroutine finds the minimum value of an array:

SUBROUTINE EXAMPLE_MINVA_1(A,
REAL A(N,N), X

DO J=1,N

DO I=1,N

X = MIN(X,A(I,J))

END DO

END DO

RETURN

END

X, N)

It translates to:

SUBROUTINE EXAMPLE_MINVAL_1(A,X,N)

REAL A(N,N), X

CMF$ LAYOUT A(:NEWS,:NEWS)

X = MIN(X,MINVAL(A))
RETURN

END

This subroutine finds the minimum values along the second dimension of an

array:

SUBROUTINE EXAMPLE_MINVAL_2

REAL A(N,N), X(N)

DO J=1,N

DO I = 1,N

X(I) = MIN(X(I),A(I,L

END DO

END DO

RETURN

END

(A, X, N)

r) )
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It translates to:

SUBROUTINE EXAMPLE_MINVAL_2(A,X,N)

REAL A(N,N), X(N)

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT X(:NEWS)

X = MIN(X,MINVAL(A,DIM=2))

RETURN

END

i,''
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B.2.1 0 PRODUCT

This subroutine computes the product of all the elements in an array:

SUBROUTINE EXAMPLE_PRODUCT_1 (A, X, N)

REAL A(N,N), X

DO J=1,N

DO I=1,N

X = X * A(I,J)

END DO

END DO

RETURN

END

It translates to:

SUBROUTINE EXAMPLE_PRODUCT_1 (A,X,N)

REAL A(N,N), X

CMF$ LAYOUT A(:NEWS,:NEWS)

X = X * PRODUCT(A)

RETURN

END

This subroutine computes the product of elements along the first dimension of

an array:

SUBROUTINE EXAMPLE_PRODUCT_2 (A, X, N)

REAL A(N,N), X(N)

DO J=1,N

DO I = 1,N

X(J) = X(J) * A(I,J)

END DO

END DO

RETURN

END
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It translates to:

SUBROUTINE EXAMPLE_PRODUCT2 (A,X,N)

REAL A(N,N), X(N)

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT X(:NEWS)

X = X * PRODUCT(A,DIM=1)

RETURN

END

This subroutine computes the product of all the positive elements of an array:

SUBROUTINE EXAMPLE_PRODUCT_3 (A,
REAL A(N,N), X

DO J=1,N

DO I=1,N

IF (A(I,J) .GT. 0.0) X =
END DO

END DO

RETURN

END

It translates to:

X, N)

X * A(I,J)

SUBROUTINE EXAMPLE_PRODUCT_3 (A,X,N)

REAL A(N,N), X

CMF$ LAYOUT A(:NEWS,:NEWS)

X = X * PRODUCT(A,MASK=A .GT. 0.0)
RETURN

END
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B.2.11 SUM

This subroutine computes the sum of all the elements in an array:

SUBROUTINE EXAMPLE_SUM_1(A,

REAL A(N,N), X

DO J=1,N

X, N)

DO I=1,N

X = X + A(I,J)
END DO

END DO

RETURN
END

It translates to:

SUBROUTINE EXAMPLE_SUM_1(A,X,N)

REAL A(N,N), X

CMF$ LAYOUT A(:NEWS,:NEWS)

X = X + SUM(A)
RETURN
END

This subroutine computes the sum of elements along the second dimension of an

array:

SUBROUTINE EXAMPLE_SUM_2(A, X, N)

REAL A(N,N), X(N)

DO J=1,N

DO I = 1,N

X(I) = X(I) + A(I,J)

END DO

END DO

RETURN

END
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It translates to:

SUBROUTINE EXAMPLE_SUM_2(A,X,N)

REAL A(N,N), X(N)

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT X(:NEWS)

X = X + SUM(A,DIM=2)
RETURN

END

This subroutine computes the sum of all the elements of an array under a mask:

SUBROUTINE EXAMPLE_SUM_3(A, MASK, X, N)

REAL A(N,N), X

LOGICAL MASK(N,N)

DO J=1,N

DO I=1,N

IF (MASK(I,J)) X = X + A(I,J)

END DO

END DO

RETURN

END

It translates to:

SUBROUTINE EXAMPLE_SUM_3(A,MASK,X,N)

REAL A(N,N), X

LOGICAL MASK(N,N)

CMF$ LAYOUT A(:NEWS,:NEWS)

CMF$ LAYOUT MASK(:NEWS,:NEWS)

X = X + SUM(A,MASK=MASK)
RETURN

END
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B.3 CM Fortran Utility Library Subroutines

For descriptions of these subroutines, see the CM Fortran Utility Library Refer-
ence Manual. These examples use one- and two-dimensional arrays; in general,
multidimensional forms are recognized.

B.3.1 CMF_SCAN_

This upward, inclusive add scan:

SUBROUTINE

REAL A(N),
LAST = 0

DO I=1,N
LAST =

B(I) =

END DO

RETURN
END

EXAMPLE_SCAN_ADD_1(A,B,N)

B(N)

LAST + A(I)

LAST

translates to:

SUBROUTINE EXAMPLE_SCAN_ADD_ (A,B,N)
REAL A(N), B(N)

CMF$ LAYOUT A(:NEWS)

CMF$ LAYOUT B(:NEWS)

INCLUDE '/usr/include/cm/CMF_defs.h'
LAST = 0

CALL CMF_SCAN_ADD(B,A,CMF_NULL, 1, CMF_UPWARD,
& CMF_INCLUSIVE,CMF_NONE,.TRUE.)
RETURN
END
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This downward, inclusive add scan:

SUBROUTINE EXAMPLE_SCAN_ADD_2(A,B,N)

REAL A(N), B(N)

LAST = 0

DO I=N,1,-l

LAST = LAST + A(I)

B(I) = LAST

END DO

RETURN

END

translates to:

SUBROUTINE EXAMPLE_SCAN_ADD_2(A,B,N)

REAL A(N), B(N)

CMF$ LAYOUT A(:NEWS)

CMF$ LAYOUT B(:NEWS)

INCLUDE '/usr/include/cm/CMF_defs.h'
LAST = 0

CALL CMF_SCAN_ADD(B,A,CMF_NULL,1,CMF_DOWNWARD,

& CMF_INCLUSIVE,CMF_NONE,.TRUE.)
RETURN

END

This upward, exclusive add scan:

SUBROUTINE EXAMPLE_SCAN_ADD_3(A,B,N)

REAL A(N), B(N)
LAST = 0

DO I=1,N

B(I) = LAST

LAST = LAST + A(I)
END DO

RETURN
END
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translates to:

SUBROUTINE EXAMPLE_SCAN_ADD_3 (A, B, N)

REAL A(N), B(N)

CMF$ LAYOUT A(:NEWS)

CMF$ LAYOUT B(:NEWS)

INCLUDE '/usr/include/cm/CMF_defs.h'

LAST = 0

CALL CMF_SCAN_ADD(B,A, CMFNULL,1,CMF_UPWARD,

& CMF_EXCLUSIVE,CMFNONE,.TRUE.)
RETURN

END

This upward, inclusive, segmented add scan:

SUBROUTINE EXAMPLE_SCAN_ADD_4 (A, B, SEGMENT, N)

REAL A(N), B(N)

LOGICAL SEGMENT(N)

LAST = 0

DO I=1,N

IF (SEGMENT(I)) LAST = 0

LAST = LAST + A(I)

B(I) = LAST

END DO

RETURN
END

translates to:

SUBROUTINE EXAMPLE_SCAN_ADD_4 (A, B, SEGMENT, N)

REAL A(N), B(N)

LOGICAL SEGMENT(N)

CMF$ LAYOUT A(:NEWS)

CMF$ LAYOUT B(:NEWS)

CMF$ LAYOUT SEGMENT(:NEWS)

INCLUDE '/usr/include/cm/CMFdefs.h'

LAST = 0

CALL CMF_SCAN_ADD(B,A,SEGMENT,1,CMFUPWARD,
& CMF_INCLUSIVE,CMF_SEGMENT_BIT,.TRUE.)
RETURN

END
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This masked, upward, inclusive, segmented add scan:

SUBROUTINE EXAMPLE_SCAN_ADD_5(A,B,SEGMENT,MASK,N)

REAL A(N), B(N)

LOGICAL SEGMENT(N), MASK(N)

LAST = 0

DO I=1,N

IF (SEGMENT(I)) LAST = 0

IF (MASK(I)) THEN

LAST = LAST + A(I)

B(I) = LAST

END IF

END DO
RETURN
END

translates to:

SUBROUTINE EXAMPLE_SCAN_ADD_5(A,B,SEGMENT,MASK,N)

REAL A(N), B(N) C
LOGICAL SEGMENT(N), MASK(N)

CMF$ LAYOUT A(:NEWS)

CMF$ LAYOUT B(:NEWS)

CMF$ LAYOUT MASK(:NEWS)

CMF$ LAYOUT SEGMENT(:NEWS)

INCLUDE '/usr/include/cm/CMF_defs.h'

LAST = 0

CALL CMF_SCAN_ADD(B,A,SEGMENT,1,CMF_UPWARD,

& CMF_INCLUSIVE,CMF_SEGMENT_BIT,MASK)
RETURN
END

This upward, inclusive, segmented copy scan:

SUBROUTINE EXAMPLE_SCAN_COPY_1 (A, B, SEGMENT, N)
REAL A(N), B(N)

LOGICAL SEGMENT(N)

LAST = A(1)

DO I=1,N

IF (SEGMENT(I)) LAST = A(I)
B(I) = LAST

END DO ~
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RETURN

END

translates to:

CMF$

CMF$

CMF$

SUBROUTINE EXAMPLE_SCAN_COPY_1(A,B,SEGMENT,N)

REAL A(N), B(N)

LOGICAL SEGMENT(N)

LAYOUT A(:NEWS)

LAYOUT B(:NEWS)

LAYOUT SEGMENT(:NEWS)

INCLUDE '/usr/include/cm/CMF_defs.h'

LAST = A(1)

CALL CMF_SCAN_COPY(B,A, SEGMENT, 1,CMFUPWARD,

& CMF_INCLUSIVE,CMF_SEGMENT_BIT,.TRUE.)
RETURN

END
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B.3.2 CMF_SEND_

This subroutine, which is in essence a combining send:

SUBROUTINE EXAMPLE_SENDADD_1 (A, B, V1, V2, N1, N2)

REAL A(N1,N2), B(N1,N2)

INTEGER V(N1,N2), V2(N1,N2)

DO I=1,N1

DO J=1,N2

IF (B(I,J).GT.0.0) THEN

A(Vi(I,J),V2(I,J)) = A(VI(I,J),V2(I,J)) + B(I,J)

END IF

END DO

END DO

RETURN

END

translates to:

SUBROUTINE EXAMPLE_SENDADD_ (A,B,V1,V2,N1,N2)

REAL A(N1,N2), B(N1,N2)

INTEGER V(Nl,N2), V2(N1,N2)

CMF$ LAYOUT A(:]NEWS,:NEWS)

CMF$ LAYOUT B (: NEWS,:NEWS)

CMF$ LAYOUT V1 (:NEWS,:NEWS)

CMF$ LAYOUT V2 (:NEWS,:NEWS)

INTEGER GR:IDTEMP(N1,N2)

CMF$ LAYOUT GRI1DTEMP (:NEWS,:NEWS)

CALL CMAX_GRID_TO_SENDADDR(GRIDTEMP,A,V1, V2)

CALL CMF_SEND_ADD(A,GRIDTEMP,B,B .GT. 0.0)

RETURN

END

NOTE: This output must be linked with the CMAX library, since it constructs
send addresses using CMAX_GRID_TO_SEND_ADDR (a CMAX library routine)

rather than the CM Fortran Utility Library routines.
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B.3.3 CMF_FE_ARRAY_TO_CM and CMF_FE_ARRAY_FROM_CM

This subroutine, which transfers one array from the serial control processor to the
parallel processors and one array in the other direction:

SUBROUTINE EXAMPLE_TRANSFERS(CM_A, FEA, CM_B, FE_B, N)

REAL CM_A(N,N,N), FEA(N,N,N)

REAL CM_B(N,N,N), FEB(N,N,N)

CMF$ LAYOUT CM_A(: NEWS,: NEWS,: NEWS)

CMF$ LAYOUT FE_A( :SERIAL, :SERIAL, :SERIAL)

CMF$ LAYOUT CM_B(:NEWS,:NEWS,:NEWS)

CMF$ LAYOUT FE_B( :SERIAL,:SERIAL,:SERIAL)

DO K = 1,N

DO J = 1,N

DO I = 1,N

CM_A(I,J,K) = FE_A(I,J,K)

FE_B(I,J,K) = CM_B(I,J,K)
END DO

END DO

END DO

RETURN

END

translates to:

SUBROUTINE EXAMPLE_TRANSFERS (CM_A, FE_A, CM_B, FE_B, N)

REAL CM_A(N,N,N), FE_A(N,N,N)

REAL CM_B(N,N,N), FEB(N,N,N)

CMF$ LAYOUT CM_A(:NEWS,:NEWS,:NEWS)

CMF$ LAYOUT FE_A(:SERIAL,: SERIAL,:SERIAL)

CMF$ LAYOUT CM_B (:NEWS,:NEWS,:NEWS)

CMF$ LAYOUT FE_B (: SERIAL,:SERIAL,: SERIAL)

CALL CMF_FE_ARRAY_TOCM(CM_A,FE_A)
CALL CMF_FE_ARRAY_FROM_CM(FE_B,CM_B)
RETURN
END
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A
-Add option, 34
aliasing from above, 65
ALIGN, directive, 52, 74
ALL, intrinsic, 48, 128

-ansi option to Sun f77, 60
ANY, intrinsic, 48, 130

array allocation, dynamic, 84
CMAX utility package for, 89
in CM Fortran, 87
reference summary, 112
simulating in Fortran 77, 84

array arguments, 28, 29, 65, 82
assumed-size dummies, 31, 63
"hidden", 30
home mismatches, 27
reshaping, 82
with elided axes, 30
with scalar subscripts, 30, 83

array notation, 19
array operations, 19, 47

elemental, 20
array sections, 121
array syntax, 119
arrays

allocatable, 87
assumed-size, 63
automatic, 47, 87
CM, 26

declaring consistently, 17
front-end, 26, 28
homes of, 3, 7, 26, 28
in COMMON, 28, 32, 39, 62, 65, 75, 85
pointer, 87
references out of bounds, 63
slices of, 30

B

BART program, 4, 5

C

C preprocessor cpp, 41, 68

CHARACTER type, 28

-CharForContinuation option, 38, 104
circular shift utility

reference summary, 114
using, 93

cloned procedures. See procedure variants
cmax command. See invoking CMAX
CMAX library

linking with, 110
reference summary, 110
using, 89, 93

CMAX subdirectory, 36
CMAX viewer, 115

cmax.h, header file, 89, 93, 110
CMAX_ALLOCATE_rank, utility routine, 89,

112

CMAX_CSHIFTrank, utility routine, 93, 114
CMAXDEALLOCATE, utility routine, 90, 112
CMAX_I_ALLOCATE_rank, internal routine,

113

CMAX_MEMORY, in allocation package, 89,
112

cmax-buffer, EMACS command, 117

cmax- subprogram, EMACS command,
117

cmax-viewer, EMACS command, 115

CMF_CM_ARRAY_FROM_FILE, utility
procedure, 76

CMCM_ARRAY_TO_FILE, utility
procedure, 76
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CMF_FE_ARRAY-FROM_CM, utility
procedure, 155

CMF_FE_ARRAY_TO_CM, utility procedure,
155

CMF_SCAN_, utility procedure, 149
CMFSEND, utility procedure, 154
-CMFortran option, 58,103
CMMD, message-passing library, 26, 44, 95

COMMON, directive, 52
COMMON arrays. See arrays in COMMON
conditional conversion, 41, 43, 68
conditionalizing, for library routines, 18
conditionals in loops, 12, 22, 46
-ContentsList option, 36
continuation characters, 38
continued statements, 40
converting conditionally, 41
converting iteratively, 58
converting part programs, 42
COUNT, intrinsic, 48, 132

cpp preprocessor, 41, 68
CSHIFT, intrinsic, 48, 94

D

-DefineSymbols option, 41, 68
-DeleteFiles option, 36
DEPENDENCE, directive, 49, 109
-Dependence option, 47, 105
dependences, loop-carried, 15, 21

apparent, 20
complicated, 24
idiomatic expressions of, 15, 21, 51

descriptors, of arrays, 29
DIAGONAL, intrinsic, 48
directives, reference summary, 107
distributed memory, 26, 28, 64, 74
DLBOUND, intrinsic, 48
DOTPRODUCT, intrinsic, 48, 134
DOUBLE COMPLEX type, 60

DSHAPE, intrinsic, 48
DUBOUND, intrinsic, 48

dusty decks, 2

E

efficiency notes, 39
EMACS utilities, 115

-EntryPoint option, 42, 43, 103
EOSHIFT, intrinsic, 48
EQUIVALENCE statement, 28, 79

F

filenames
CMAX input, 34, 102

CMAX output, 38

FIRSTLOC, intrinsic, 48
FORALL, statement, 124
Fortran 77 extensions, 60

See also array operations
Fortran 90 notation, 47
front-end processor, 26
function references, in loops, 24

G

global CM Fortran, 26, 95
GO TO statement, 24, 46

H

-Help option, 34
HOMER program, 86

homes of arrays. See arrays, homes of

I

1/0 operations, 76
#include directives, 71
include files, 71
INCLUDE lines, 71

interative conversion, 58
interprocedural analysis, 33, 42
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a0, ; , 

invoking CMAX, 3, 33, 37

for information, 34, 102
for package operation, 36, 102
for package translation, 36, 103
reference summary, 100
table of options, 35

K

keywords, CM Fortran reserved, 48

L

LASTLOC, intrinsic, 48
LAYOUT, directive, 52, 71, 74, 95

layout directives, scalability convention, 18
libcmax. a, library file, 110
libraries, conversion of, 43;
library routines, scalability conventions, 18
linear memory assumptions, 16, 79
linearizing multidimensional arrays, 64
-LineMapping option, 38, 104
-LineWidth option, 40, 103
LISA program, 88
-ListingFile option, 39, 104

locality of reference, scalability convention,
12

loop fissioning, 22
loop pushing, 23, 46

M

MAGGIE program, 8

make files, 44, 45
make utility, 42, 43
MARGE program, 91

MATMUL, intrinsic, 48, 135

MAXLOC, intrinsic, 48, 137

MAXVAL, intrinsic, 48, 139

MERGE, intrinsic, 48

messages during translation, 39
MINLOC, intrinsic, 48, 1411

MINVAL, intrinsic, 48, 143

MVBITS, intrinsic, 48

N

nodal CM Fortran, 26, 44, 95
NODEPENDENCE, directive, 25, 49, 109
nonstandard Fortran 77, 60, 62
NOPERMUTATION, directive, 49, 109
NOPUSH, directive, 49, 108

-noRestructureCode option, 46
NOVECTORIZE, directive, 49, 108
numerical stability, scalability convention, 13

0
optimizations, outmoded, 66
options. See invoking CMAX
out-of-bounds array references, 63
-OutputExtension option, 38, 58, 104
-OutputFile option, 38, 58, 105

P
PACK, intrinsic, 48
packages, 3, 33, 34, 102

-PackagesList option, 34
partial-program conversion, 42
partition manager, 26
-PermitArraySyntax option, 47, 103
-PermitAutomaticArrays option, 47,

104

-PermitKeywordsCMF option, 48, 105
PERMUTATION, directive, 49, 109
-Permutation option, 47, 105
preprocessing input, 41
procedure variants, 28, 30, 31, 72
PRODUCT, intrinsic, 48, 145
PROJECT, intrinsic, 48
PUSH, directive, 49, 108
-Push option, 47, 106

R

RANK, intrinsic, 48
reduction idioms, unrecognized, 70
-RemovePackage option, 36
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REPLICATE, intrinsic, 48
RESHAPE, intrinsic, 48

-RestructureCode option, 106
RETURN statement, 24

root node of input, 42

S
SAVE variables, 72
scalable Fortran 77

conventions of, 11
defined, 7, 9

scalar promotion, 22, 120
sequence association, 16
serial axes, 11, 18

-ShortLoopLength option, 46, 95, 106
-ShortVectorLength option, 28, 46, 95,

106

Simpson programs, 4, 5, 8, 86, 88, 91

sourcefiles, 34

SPREAD, intrinsic, 48
-StatementBufferSize option, 40, 104
STOP statement, 24
storage association, 16
strip-mining, 66
SUM, intrinsic, 48, 147

switches. See invoking CMAX

T
-TranslatePackage option, 34, 36
TRANSPOSE, intrinsic, 48
triplet notation, 19, 47

.ttab files, 38

U

uninitialized variables, 63
-UnknownRoutinesSafe option, 43, 95,

106

UNPACK, intrinsic, 48
unrolling loops, 67

V

variants of procedures. See procedure variants
vector units, 26
vectorization

defined, 3

illustrated, 6
inhibiting, 50
limits on, 24, 32
techniques of, 20

VECTORIZE, directive, 49, 108
-Vectorize option, 47, 106
-Verbose option, 39, 105

W

WHERE

construct, 123

statement, 122

z
-ZeroArrays option, 39, 63, 106

£-

Version 1.0, July 1993
Copyright © 1993 Thinking Machines Corporation

Afff
t


